Powered by Deep Web Technologies
Note: This page contains sample records for the topic "global carbon emissions" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Global Fossil Fuel Carbon Emissions - Graphics  

NLE Websites -- All DOE Office Websites (Extended Search)

Fossil-Fuel CO2 Emissions Global Graphics Global Fossil-Fuel Carbon Emissions - Graphics Carbon Emission Estimates image image Global Per Capita Carbon Emission Estimates...

2

Global Fossil Fuel Carbon Emissions - Graphics  

NLE Websites -- All DOE Office Websites (Extended Search)

Fossil-Fuel CO2 Emissions Global Graphics Global Fossil-Fuel Carbon Emissions - Graphics Data graphic Data (ASCII, Fixed Format) Data graphic Data (ASCII, Comma-delimited)...

3

Monthly, global emissions of carbon dioxide from fossil fuel consumption  

Science Conference Proceedings (OSTI)

This paper examines available data, develops a strategy and presents a monthly, global time series of fossil-fuel carbon dioxide emissions for the years 1950 2006. This monthly time series was constructed from detailed study of monthly data from the 21 countries that account for approximately 80% of global total emissions. These data were then used in a Monte Carlo approach to proxy for all remaining countries. The proportional-proxy methodology estimates by fuel group the fraction of annual emissions emitted in each country and month. Emissions from solid, liquid and gas fuels are explicitly modelled by the proportional-proxy method. The primary conclusion from this study is the global monthly time series is statistically significantly different from a uniform distribution throughout the year. Uncertainty analysis of the data presented show that the proportional-proxy method used faithfully reproduces monthly patterns in the data and the global monthly pattern of emissions is relatively insensitive to the exact proxy assignments used. The data and results presented here should lead to a better understanding of global and regional carbon cycles, especially when the mass data are combined with the stable carbon isotope data in atmospheric transport models.

Andres, Robert Joseph [ORNL; Gregg, JS [Riso National Laboratory, Roskilde, Denmark; Losey, London M [ORNL; Marland, Gregg [ORNL; Boden, Thomas A [ORNL

2011-01-01T23:59:59.000Z

4

Global demographic trends and future carbon emissions  

E-Print Network (OSTI)

. Although such changes can affect energy use and greenhouse gas emissions, emissions scenario analyses have an energy­ economic growth model that accounts for a range of demographic dynamics, we show that slowing in particular world regions. climate change | energy | integrated assessment | population | households

5

CDIAC::Carbon Emission::Time Series Global Data  

NLE Websites -- All DOE Office Websites (Extended Search)

The 2013 version of this database presents a time series recording 1° The 2013 version of this database presents a time series recording 1° latitude by 1° longitude CO2 emissions in units of million metric tons of carbon per year from anthropogenic sources for 1751-2010. Detailed geographic information on CO2 emissions can be critical in understanding the pattern of the atmospheric and biospheric response to these emissions. Global, regional, and national annual estimates for 1751 through 2010 were published earlier (Boden et al. 2013). Those national, annual CO2 emission estimates were based on statistics about fossil-fuel burning, cement manufacturing and gas flaring in oil fields as well as energy production, consumption, and trade data, using the methods of Marland and Rotty (1984). The national annual estimates were combined with gridded 1° data on

6

Global Patterns of Carbon Dioxide Emissions from Soils on a 0...  

NLE Websites -- All DOE Office Websites (Extended Search)

Potter. 1996. Global Patterns of Carbon Dioxide Emissions from Soils on a 0.5 Degree Grid Cell Basis. DB-1015. Carbon Dioxide Information Analysis Center, U.S. Department of...

7

2013 Global Carbon Project  

NLE Websites -- All DOE Office Websites (Extended Search)

2013 Global Carbon Project 2013 Global Carbon Project DOI: 10.3334/CDIAC/GCP_2013_V1.1 image 2013 Budget v1.1 (November 2013) image 2013 Budget v1.3 (December 2013, contains typographical corrections to 2011 Australia emissions from v1.1 and corrections to the 2011 Australia transfer and consumption emissions from v1.2) image image image image Global Carbon Dioxide Emissions to Reach 36 Billion Tonnes in 2013 Global emissions of carbon dioxide from the combustion of fossil fuels will reach 36 billion tonnes for the year 2013. "This is a level unprecedented in human history," says CSIRO's Dr Pep Canadell, Executive-Director of the Global Carbon Project (GCP) and co-author of a new report. Global emissions due to fossil fuel alone are set to grow this year at a slightly lower pace of 2.1% than the average 3.1% since 2000, reaching 36

8

Annual Fossil-Fuel CO2 Emissions: Global Stable Carbon Isotopic Signature  

NLE Websites -- All DOE Office Websites (Extended Search)

2 2 data Data image Documentation Contributors R.J. Andres, T.A. Boden, and G. Marland The 2012 revision of this database contains estimates of the annual, global mean value of δ 13C of CO2 emissions from fossil-fuel consumption and cement manufacture for 1751-2009. These estimates of the carbon isotopic signature account for the changing mix of coal, petroleum, and natural gas being consumed and for the changing mix of petroleum from various producing areas with characteristic isotopic signatures. This time series of global fossil-fuel del 13C signature provides an additional constraint for balancing the sources and sinks of the global carbon cycle and complements the atmospheric δ 13C measurements that are used to partition the uptake of fossil carbon emissions among the ocean, atmosphere, and terrestrial

9

Annual Fossil-Fuel CO2 Emissions: Global Stable Carbon Isotopic Signature  

NLE Websites -- All DOE Office Websites (Extended Search)

3 3 data Data image Documentation Contributors R.J. Andres, T.A. Boden, and G. Marland The 2013 revision of this database contains estimates of the annual, global mean value of δ 13C of CO2 emissions from fossil-fuel consumption and cement manufacture for 1751-2010. These estimates of the carbon isotopic signature account for the changing mix of coal, petroleum, and natural gas being consumed and for the changing mix of petroleum from various producing areas with characteristic isotopic signatures. This time series of global fossil-fuel del 13C signature provides an additional constraint for balancing the sources and sinks of the global carbon cycle and complements the atmospheric δ 13C measurements that are used to partition the uptake of fossil carbon emissions among the ocean, atmosphere, and terrestrial

10

Annual Fossil-Fuel CO2 Emissions: Global Stable Carbon Isotopic Signature  

NLE Websites -- All DOE Office Websites (Extended Search)

1 1 data Data image Documentation Contributors R.J. Andres, T.A. Boden, and G. Marland The 2011 revision of this database contains estimates of the annual, global mean value of del 13C of CO2 emissions from fossil-fuel consumption and cement manufacture for 1751-2008. These estimates of the carbon isotopic signature account for the changing mix of coal, petroleum, and natural gas being consumed and for the changing mix of petroleum from various producing areas with characteristic isotopic signatures. This time series of global fossil-fuel del 13C signature provides an additional constraint for balancing the sources and sinks of the global carbon cycle and complements the atmospheric del 13C measurements that are used to partition the uptake of fossil carbon emissions among the ocean, atmosphere, and terrestrial

11

Geologic carbon sequestration as a global strategy to mitigate CO2 emissions: Sustainability and environmental risk  

E-Print Network (OSTI)

from geologic carbon sequestration sites: unsaturated zone2 from geologic carbon sequestration sites: CO 2 migrationGeologic Carbon Sequestration as a Global Strategy to

Oldenburg, C.M.

2012-01-01T23:59:59.000Z

12

Geologic carbon sequestration as a global strategy to mitigate CO2 emissions: Sustainability and environmental risk  

E-Print Network (OSTI)

and consequences of carbon dioxide sequestration, NatureData on Global Change. Carbon Dioxide Information AnalysisCA 94720 Glossary Carbon dioxide capture and storage (CCS) -

Oldenburg, C.M.

2012-01-01T23:59:59.000Z

13

Impact of emissions, chemistry, and climate on atmospheric carbon monoxide : 100-year predictions from a global chemistry-climate model  

E-Print Network (OSTI)

The possible trends for atmospheric carbon monoxide in the next 100 yr have been illustrated using a coupled atmospheric chemistry and climate model driven by emissions predicted by a global economic development model. ...

Wang, Chien.; Prinn, Ronald G.

14

Global Patterns of Carbon Dioxide Emissions from Soils on a 0.5 Degree Grid  

NLE Websites -- All DOE Office Websites (Extended Search)

Global Patterns of Carbon Dioxide Emissions from Soils on a 0.5 Degree Grid Global Patterns of Carbon Dioxide Emissions from Soils on a 0.5 Degree Grid Cell Basis (DB-1015) DOI: 10.3334/CDIAC/lue.db1015 This data has been updated. Please see NDP-081. Contributed by: James W. Raich 1 and Christopher S. Potter2 1Department of Botany Iowa State University Ames, IA 50011 USA Email: jraich@iastate.edu 2NASA Ames Research Center MS 242-2 Moffett Field, CA 94035 USA Email: cpotter@gaia.arc.nasa.gov Prepared by L.M. Olsen. Carbon Dioxide Information Analysis Center Date Published: March, 1996 (Revised for the web: 2002) The Carbon Dioxide Information Analysis Center is a part of the Environmental Sciences Division of the OAK RIDGE NATIONAL LABORATORY (ORNL) and is located in Oak Ridge, Tennessee 37831-6290. The ORNL is managed by University of Tennessee-Battelle, LLC for the U.S. DEPARTMENT OF ENERGY

15

Global carbon emissions in the coming decades: the case of China  

SciTech Connect

China's annual energy-related carbon emissions surpassed those of the United States in 2006, years ahead of published international and Chinese forecasts. Why were forecasts so greatly in error and what drove the rapid growth of China's energy-related carbon emissions after 2001? The divergence between actual and forecasted carbon emissions underscores the rapid changes that have taken place in China's energy system since 2001. In order to build a more robust understanding of China's energy-related carbon emissions, this article reviews the role of economic restructuring, urbanization, coal dependence, international trade, and central government policies in driving emissions growth.

Levine, M.D.; Aderi, N.T. [Lawrence Berkeley National Laboratory, Berkeley, CA (United States)

2008-07-01T23:59:59.000Z

16

Global Carbon Emissions in the Coming Decades: The Case of China  

SciTech Connect

China's annual energy-related carbon emissions surpassed those of the United States in In order to build a more robust understanding of China's energy-related carbon emissions, emissions after 2001? The divergence between actual and forecasted carbon emissions international trade, and central government policies in driving emissions growth. so greatly in error and what drove the rapid growth of China's energy-related carbon this article reviews the role of economic restructuring, urbanization, coal dependence, underscores the rapid changes that have taken place in China's energy system since 2001.

Levine, Mark; Levine, Mark D.; Aden, Nathaniel T.

2008-05-01T23:59:59.000Z

17

Global Carbon Emissions in the Coming Decades: The Case of China  

E-Print Network (OSTI)

economic growth and energy usage. However, whereasgrowth, domestic energy usage, and carbon emissions. Figurecarbon intensity of energy usage, and rapidly expanding

Levine, Mark D.

2008-01-01T23:59:59.000Z

18

Global Carbon Emissions in the Coming Decades: The Case of China  

E-Print Network (OSTI)

Decline in Chinas National Energy Consumption in the LateNational Laboratory, Carbon Dioxide Information Analysis Center; 1950-2006 emissions data are derived from revised total energy consumption

Levine, Mark D.

2008-01-01T23:59:59.000Z

19

Feedbacks in Emission-Driven and Concentration-Driven Global Carbon Budgets  

Science Conference Proceedings (OSTI)

Emissions of CO2 into the atmosphere affect the carbon budgets of the land and ocean as biogeochemical processes react to increased CO2 concentrations. Biogeochemical processes also react to changes in temperature and other climate parameters. ...

G. J. Boer; V. K. Arora

2013-05-01T23:59:59.000Z

20

Global emissions inventories  

SciTech Connect

Atmospheric chemistry determines the concentrations of most of the important greenhouse gases except for carbon dioxide. The rate of removal of the greenhouse gases from the atmosphere is also controlled by atmospheric chemistry. The indirect effects of chemical forcing resulting from the chemical interactions of other species can also affect the concentrations of radiatively important gases such as ozone. In order to establish the contribution of any possible climatic change attributable to individual greenhouse gases, spatially and temporally resolved estimates of their emissions need to be established. Unfortunately, for most of the radiatively important species the global magnitudes of their individual fluxes are not known to better than a factor of two and their spatial distributions are even more poorly characterized. Efforts to estimate future projections of potential impacts and to monitor international agreements will require continued research to narrow the uncertainties of magnitude and geographical distribution of emissions.

Dignon, J.

1995-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "global carbon emissions" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Geologic carbon sequestration as a global strategy to mitigate CO2 emissions: Sustainability and environmental risk  

SciTech Connect

Fossil fuels are abundant, inexpensive to produce, and are easily converted to usable energy by combustion as demonstrated by mankind's dependence on fossil fuels for over 80% of its primary energy supply (13). This reliance on fossil fuels comes with the cost of carbon dioxide (CO{sub 2}) emissions that exceed the rate at which CO{sub 2} can be absorbed by terrestrial and oceanic systems worldwide resulting in increases in atmospheric CO{sub 2} concentration as recorded by direct measurements over more than five decades (14). Carbon dioxide is the main greenhouse gas linked to global warming and associated climate change, the impacts of which are currently being observed around the world, and projections of which include alarming consequences such as water and food shortages, sea level rise, and social disruptions associated with resource scarcity (15). The current situation of a world that derives the bulk of its energy from fossil fuel in a manner that directly causes climate change equates to an energy-climate crisis. Although governments around the world have only recently begun to consider policies to avoid the direst projections of climate change and its impacts, sustainable approaches to addressing the crisis are available. The common thread of feasible strategies to the energy climate crisis is the simultaneous use of multiple approaches based on available technologies (e.g., 16). Efficiency improvements (e.g., in building energy use), increased use of natural gas relative to coal, and increased development of renewables such as solar, wind, and geothermal, along with nuclear energy, are all available options that will reduce net CO{sub 2} emissions. While improvements in efficiency can be made rapidly and will pay for themselves, the slower pace of change and greater monetary costs associated with increased use of renewables and nuclear energy suggests an additional approach is needed to help bridge the time period between the present and a future when low-carbon energy is considered cheap enough to replace fossil fuels. Carbon dioxide capture and storage (CCS) is one such bridging technology (1). CCS has been the focus of an increasing amount of research over the last 15-20 years and is the subject of a comprehensive IPCC report that thoroughly covers the subject (1). CCS is currently being carried out in several countries around the world in conjunction with natural gas extraction (e.g., 2, 3) and enhanced oil recovery (17). Despite this progress, widespread deployment of CCS remains the subject of research and future plans rather than present action on the scale needed to mitigate emissions from the perspective of climate change. The reasons for delay in deploying CCS more widely are concerns about cost (18), regulatory and legal uncertainty (19), and potential environmental impacts (21). This chapter discusses the long-term (decadal) sustainability and environmental hazards associated with the geologic CO{sub 2} storage (GCS) component of large-scale CCS (e.g., 20). Discussion here barely touches on capture and transport of CO{sub 2} which will occur above ground and which are similar to existing engineering, chemical processing, and pipeline transport activities and are therefore easier to evaluate with respect to risk assessment and feasibility. The focus of this chapter is on the more uncertain part of CCS, namely geologic storage. The primary concern for sustainability of GCS is whether there is sufficient capacity in sedimentary basins worldwide to contain the large of amounts of CO{sub 2} needed to address climate change. But there is also a link between sustainability and environmental impacts. Specifically, if GCS is found to cause unacceptable impacts that are considered worse than its climate-change mitigation benefits, the approach will not be widely adopted. Hence, GCS has elements of sustainability insofar as capacity of the subsurface for CO{sub 2} is concerned, and also in terms of whether the associated environmental risks are acceptable or not to the public.

Oldenburg, C.M.

2011-04-01T23:59:59.000Z

22

Version 2 Global Fire Emissions Database Available  

NLE Websites -- All DOE Office Websites (Extended Search)

Global Fire Emissions Database Available Global Fire Emissions Database Available The ORNL DAAC announces the release of the data set "Global Fire Emissions Database, Version 2 (GFEDv2)." This data set, which supersedes and replaces the Global Fire Emissions Database, Version 1 (GFEDv1), consists of 1 degree x 1 degree gridded monthly burned area, fuel loads, combustion completeness, and fire emissions of carbon (C), carbon dioxide (CO2), carbon monoxide (CO), methane (CH4), non-methane hydrocarbons (NMHC), molecular hydrogen (H2), nitrogen oxides (NOx), nitrous oxide (N2O), particulate matter (PM2.5), total particulate matter (TPM), total carbon (TC), organic carbon (OC), and black carbon (BC) for the time period January 1997 - December 2004. For more information or to access this data set, please see the Vegetation

23

Modeling global atmospheric CO2 with improved emission inventories and CO2 production from the oxidation of other carbon species  

Science Conference Proceedings (OSTI)

The use of global three-dimensional (3-D) models with satellite observations of CO2 in inverse modeling studies is an area of growing importance for understanding Earth s carbon cycle. Here we use the GEOS-Chem model (version 8-02-01) CO2 mode with multiple modifications in order to assess their impact on CO2 forward simulations. Modifications include CO2 surface emissions from shipping (0.19 PgC yr 1), 3-D spatially-distributed emissions from aviation (0.16 PgC yr 1), and 3-D chemical production of CO2 (1.05 PgC yr 1). Although CO2 chemical production from the oxidation of CO, CH4 and other carbon gases is recognized as an important contribution to global CO2, it is typically accounted for by conversion from its precursors at the surface rather than in the free troposphere. We base our model 3-D spatial distribution of CO2 chemical production on monthly-averaged loss rates of CO (a key precursor and intermediate in the oxidation of organic carbon) and apply an associated surface correction for inventories that have counted emissions of CO2 precursors as CO2. We also explore the benefit of assimilating satellite observations of CO into GEOS-Chem to obtain an observation-based estimate of the CO2 chemical source. The CO assimilation corrects for an underestimate of atmospheric CO abundances in the model, resulting in increases of as much as 24% in the chemical source during May June 2006, and increasing the global annual estimate of CO2 chemical production from 1.05 to 1.18 Pg C. Comparisons of model CO2 with measurements are carried out in order to investigate the spatial and temporal distributions that result when these new sources are added. Inclusion of CO2 emissions from shipping and aviation are shown to increase the global CO2 latitudinal gradient by just over 0.10 ppm (3%), while the inclusion of CO2 chemical production (and the surface correction) is shown to decrease the latitudinal gradient by about 0.40 ppm (10%) with a complex spatial structure generally resulting in decreased CO2 over land and increased CO2 over the oceans. Since these CO2 emissions are omitted or misrepresented in most inverse modeling work to date, their implementation in forward simulations should lead to improved inverse modeling estimates of terrestrial biospheric fluxes.

Nassar, Ray [University of Toronto; Jones, DBA [University of Toronto; Suntharalingam, P [University of East Anglia, Norwich, United Kingdom; Chen, j. [University of Toronto; Andres, Robert Joseph [ORNL; Wecht, K. J. [Harvard University; Yantosca, R. M. [Harvard University; Kulawik, SS [Jet Propulsion Laboratory, Pasadena, CA; Bowman, K [Jet Propulsion Laboratory, Pasadena, CA; Worden, JR [Jet Propulsion Laboratory, Pasadena, CA; Machida, T [National Institute for Environmental Studies, Japan; Matsueda, H [Meteorological Research Institute, Japan

2010-01-01T23:59:59.000Z

24

Acting Globally: Potential Carbon Emissions Mitigation Impacts from an International Standards and Labelling Program  

SciTech Connect

This paper presents an analysis of the potential impacts of an international initiative designed to support and promote the development and implementation of appliances standards and labelling programs throughout the world. As part of previous research efforts, LBNL developed the Bottom Up Energy Analysis System (BUENAS), an analysis framework that estimates impact potentials of energy efficiency policies on a global scale. In this paper, we apply this framework to an initiative that would result in the successful implementation of programs focused on high priority regions and product types, thus evaluating the potential impacts of such an initiative in terms of electricity savings and carbon mitigation in 2030. In order to model the likely parameters of such a program, we limit impacts to a five year period starting in 2009, but assume that the first 5 years of a program will result in implementation of 'best practice' minimum efficiency performance standards by 2014. The 'high priority' regions considered are: Brazil, China, the European Union,India, Mexico and the United States. The products considered are: refrigerators, air conditioners, lighting (both fluorescent and incandescent), standby power (for consumer electronics) and televisions in the residential sector, and air conditioning and lighting in commercial buildings. In 2020, these regions and enduses account for about 37percent of global residential electricity and 29percent of electricity in commercial buildings. We find that 850Mt of CO2 could be saved in buildings by 2030 compared to the baseline forecast.

McNeil, Michael A; Letschert, Virginie E.; de la Rue du Can, Stephane; Egan, Christine

2009-05-29T23:59:59.000Z

25

Acting Globally: Potential Carbon Emissions Mitigation Impacts from an International Standards and Labelling Program  

SciTech Connect

This paper presents an analysis of the potential impacts of an international initiative designed to support and promote the development and implementation of appliances standards and labelling programs throughout the world. As part of previous research efforts, LBNL developed the Bottom Up Energy Analysis System (BUENAS), an analysis framework that estimates impact potentials of energy efficiency policies on a global scale. In this paper, we apply this framework to an initiative that would result in the successful implementation of programs focused on high priority regions and product types, thus evaluating the potential impacts of such an initiative in terms of electricity savings and carbon mitigation in 2030. In order to model the likely parameters of such a program, we limit impacts to a five year period starting in 2009, but assume that the first 5 years of a program will result in implementation of 'best practice' minimum efficiency performance standards by 2014. The 'high priority' regions considered are: Brazil, China, the European Union,India, Mexico and the United States. The products considered are: refrigerators, air conditioners, lighting (both fluorescent and incandescent), standby power (for consumer electronics) and televisions in the residential sector, and air conditioning and lighting in commercial buildings. In 2020, these regions and enduses account for about 37percent of global residential electricity and 29percent of electricity in commercial buildings. We find that 850Mt of CO2 could be saved in buildings by 2030 compared to the baseline forecast.

McNeil, Michael A; Letschert, Virginie E.; de la Rue du Can, Stephane; Egan, Christine

2009-05-29T23:59:59.000Z

26

Global Fossil-Fuel CO2 Emissions  

NLE Websites -- All DOE Office Websites (Extended Search)

Data (ASCII, Fixed Format) Data graphic Data (ASCII, Fixed Format) Data graphic Data (ASCII, Comma-delimited) Trends Since 1751 approximately 337 billion metric tonnes of carbon have been released to the atmosphere from the consumption of fossil fuels and cement production. Half of these emissions have occurred since the mid 1970s. The 2007 global fossil-fuel carbon emission estimate, 8365 million metric tons of carbon, represents an all-time high and a 1.7% increase from 2006. Globally, liquid and solid fuels accounted for 76.3% of the emissions from fossil-fuel burning and cement production in 2007. Combustion of gas fuels (e.g., natural gas) accounted for 18.5% (1551 million metric tons of carbon) of the total emissions from fossil fuels in 2007 and reflects a gradually increasing global utilization of natural gas. Emissions from

27

Enduse Global Emissions Mitigation Scenarios (EGEMS): A New Generation of Energy Efficiency Policy Planning Models  

E-Print Network (OSTI)

of Carbon Dioxide Emissions on GNP Growth: Interpretation ofMcNeil et al Enduse Global Emissions Mitigation Scenarios (Keywords Greenhouse gas emissions, emissions scenarios,

McNeil, Michael A.

2010-01-01T23:59:59.000Z

28

Acting Globally: Potential Carbon Emissions Mitigation Impacts from an International Standards and Labelling Program  

E-Print Network (OSTI)

and carbon mitigation in 2030. In order to model the likelycould be saved in buildings by 2030 compared to the baselinemitigation in the year 2030 (in tons of CO 2 equivalent) as

Letschert, Virginie E.

2010-01-01T23:59:59.000Z

29

Carbon Emissions: Paper Industry  

U.S. Energy Information Administration (EIA) Indexed Site

Paper Industry Paper Industry Carbon Emissions in the Paper Industry The Industry at a Glance, 1994 (SIC Code: 26) Total Energy-Related Emissions: 31.6 million metric tons of carbon (MMTC) -- Pct. of All Manufacturers: 8.5% Total First Use of Energy: 2,665 trillion Btu -- Pct. of All Manufacturers: 12.3% -- Pct. Renewable Energy: 47.7% Carbon Intensity: 11.88 MMTC per quadrillion Btu Renewable Energy Sources (no net emissions): -- Pulping liquor: 882 trillion Btu -- Wood chips and bark: 389 trillion Btu Energy Information Administration, "1994 Manufacturing Energy Consumption Survey" and Emissions of Greenhouse Gases in the United States 1998 Energy-Related Carbon Emissions, 1994 Source of Carbon Carbon Emissions (million metric tons) All Energy Sources 31.6 Net Electricity 11.0

30

Carbon Emissions: Food Industry  

U.S. Energy Information Administration (EIA) Indexed Site

Food Industry Food Industry Carbon Emissions in the Food Industry The Industry at a Glance, 1994 (SIC Code: 20) Total Energy-Related Emissions: 24.4 million metric tons of carbon (MMTC) -- Pct. of All Manufacturers: 6.6% Total First Use of Energy: 1,193 trillion Btu -- Pct. of All Manufacturers: 5.5% Carbon Intensity: 20.44 MMTC per quadrillion Btu Energy Information Administration, "1994 Manufacturing Energy Consumption Survey" and Emissions of Greenhouse Gases in the United States 1998 Energy-Related Carbon Emissions, 1994 Source of Carbon Carbon Emissions (million metric tons) All Energy Sources 24.4 Net Electricity 9.8 Natural Gas 9.1 Coal 4.2 All Other Sources 1.3 Energy Information Administration, "1994 Manufacturing Energy Consumption Survey" and Emissions of Greenhouse Gases in the United States 1998

31

Carbon Emissions: Chemicals Industry  

U.S. Energy Information Administration (EIA) Indexed Site

Chemicals Industry Chemicals Industry Carbon Emissions in the Chemicals Industry The Industry at a Glance, 1994 (SIC Code: 28) Total Energy-Related Emissions: 78.3 million metric tons of carbon (MMTC) -- Pct. of All Manufacturers: 21.1% -- Nonfuel Emissions: 12.0 MMTC Total First Use of Energy: 5,328 trillion Btu -- Pct. of All Manufacturers: 24.6% Energy Sources Used As Feedstocks: 2,297 trillion Btu -- LPG: 1,365 trillion Btu -- Natural Gas: 674 trillion Btu Carbon Intensity: 14.70 MMTC per quadrillion Btu Energy Information Administration, "1994 Manufacturing Energy Consumption Survey" and Emissions of Greenhouse Gases in the United States 1998 Energy-Related Carbon Emissions, 1994 Source of Carbon Carbon Emissions (million metric tons) All Energy Sources 78.3 Natural Gas 32.1

32

Global warming and global dioxide emission: An empirical study  

Science Conference Proceedings (OSTI)

In this paper, the dynamic relationship between global surface temperature (global warming) and global carbon dioxide emission (CO{sub 2}) is modelled and analyzed by causality and spectral analysis in the time domain and frequency domain, respectively. Historical data of global CO{sub 2} emission and global surface temperature anomalies over 129 years from 1860-1988 are used in this study. The causal relationship between the two phenomena is first examined using the Sim and Granger causality test in the time domain after the data series are filtered by ARIMA models. The Granger causal relationship is further scrutinized and confirmed by cross-spectral and multichannel spectral analysis in the frequency domain. The evidence found from both analyses proves that there is a positive causal relationship between the two variables. The time domain analysis suggests that Granger causality exists between global surface temperature and global CO{sub 2} emission. Further, CO{sub 2} emission causes the change in temperature. The conclusions are further confirmed by the frequency domain analysis, which indicates that the increase in CO{sub 2} emission causes climate warming because a high coherence exists between the two variables. Furthermore, it is proved that climate changes happen after an increase in CO{sub 2} emission, which confirms that the increase in CO{sub 2} emission does cause global warming. 27 refs., 10 figs., 5 tabs.

Linyan Sun [Xian Jiaotong Univ., Shaanxi (China); Wang, M. [Saint Mary`s Univ., Halifax, Nova Scotia (Canada)

1996-04-01T23:59:59.000Z

33

The Global Carbon Bank | Open Energy Information  

Open Energy Info (EERE)

form form View source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit with form History Facebook icon Twitter icon » The Global Carbon Bank Jump to: navigation, search Name The Global Carbon Bank Place Houston, Texas Zip 77025 Sector Carbon, Services Product Houston-based provider of advisory and development services to utilities regarding carbon compliance and emissions offsets. References The Global Carbon Bank[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. The Global Carbon Bank is a company located in Houston, Texas . References ↑ "The Global Carbon Bank"

34

EIA - Greenhouse Gas Emissions - Carbon Dioxide Emissions  

U.S. Energy Information Administration (EIA)

Nonfuel uses of fossil fuels (for purposes other than their energy value) create carbon dioxide emissions and also sequester carbon in nonfuel products, ...

35

NPP and the Global Carbon Cycle  

NLE Websites -- All DOE Office Websites (Extended Search)

the Global Carbon Cycle the Global Carbon Cycle Introduction Photosynthetic carbon fixation comprises a major component of the global carbon cycle. Data on net primary productivity (NPP) may be sparse, but a consistent NPP data set may be used to calibrate, parameterize and evaluate models of terrestrial carbon cycling, as well as for validation of remote sensing data and other applications (identifying trends, investigating biogeochemical processes, etc.). It is also useful to place such data within the context of carbon cycling and carbon storage worldwide. For example: How much carbon exists in the biosphere, and where exactly is it stored? How much is in fossil fuels (coal, oil, gas), and how large are current fossil-fuel emissions? How much is in living biomass (plants/ animals/ humans)?

36

1. INTRODUCTION Global biomass and soil carbon estimate  

E-Print Network (OSTI)

1. INTRODUCTION Global biomass and soil carbon estimate Sahoko Yui and Sonia Yeh Institute peatland carbon data. 2. FOREST BIOMASS CARBON Table 1: Reclassification of Land Cover Types IGBP RFS 2 is to create spatially explicit global database of biomass and soil carbon stock and the emission factors

California at Davis, University of

37

EIA - Greenhouse Gas Emissions - Carbon Dioxide Emissions  

Gasoline and Diesel Fuel Update (EIA)

2. Carbon Dioxide Emissions 2. Carbon Dioxide Emissions 2.1. Total carbon dioxide emissions Annual U.S. carbon dioxide emissions fell by 419 million metric tons in 2009 (7.1 percent), to 5,447 million metric tons (Figure 9 and Table 6). The annual decrease-the largest over the 19-year period beginning with the 1990 baseline-puts 2009 emissions 608 million metric tons below the 2005 level, which is the Obama Administration's benchmark year for its goal of reducing U.S. emissions by 17 percent by 2020. The key factors contributing to the decrease in carbon dioxide emissions in 2009 included an economy in recession with a decrease in gross domestic product of 2.6 percent, a decrease in the energy intensity of the economy of 2.2 percent, and a decrease in the carbon intensity of energy supply of

38

carbon emissions | OpenEI  

Open Energy Info (EERE)

2010 (4 years ago) Date Updated Unknown Keywords capacity carbon emissions energy demand Energy Generation fossil fuels GHG emissions UK Data applicationvnd.openxmlformats-office...

39

Global Fire Emissions Database, Version 3.1 Published  

NLE Websites -- All DOE Office Websites (Extended Search)

Fire Emissions Database, Version 3.1 Published Fire Emissions Database, Version 3.1 Published The ORNL DAAC is pleased to announce the release of the Global Fire Emissions Database, Version 3.1: Global Fire Emissions Database, Version 3.1. Data set prepared by J.T. Randerson, G.R. van der Werf, L. Giglio, G.J. Collatz, and P.S. Kasibhatla. This data set provides monthly burned area, and monthly and annual fire emissions data from July 1996 to February 2012. Emissions data are available for carbon (C), dry matter (DM), carbon dioxide (CO2), carbon monoxide (CO), methane (CH4), hydrogen (H2), nitrous oxide (N2O), nitrogen oxides (NOx), non-methane hydrocarbons (NMHC), organic carbon (OC), black carbon (BC), particulate matter 2.5 micron (PM2p5), total particulate matter (TPM), and sulfur dioxide (SO2) among others. The C4 fraction of

40

Glossary: Energy-Related Carbon Emissions  

U.S. Energy Information Administration (EIA) Indexed Site

Glossary: Energy-Related Carbon Emissions Glossary: Energy-Related Carbon Emissions Glossary: Energy-Related Carbon Emissions For additional terms, refer to: the Glossary of Emissions of Greenhouse Gases in the United States 1998 for additional greenhouse gas related terms, the Glossary of Manufacturing Consumption of Energy 1994 for additional manufacturing terms, and Appendix F of Manufacturing Consumption of Energy 1994 for descriptions of the major industry groups. British Thermal Unit: The amount of heat required to raise the temperature of 1 pound of water by 1 degree Fahrenheit. One quadrillion Btu is 1015 Btu, or 1.055 exajoules. Btu: See British Thermal Unit. Carbon Dioxide: A colorless, odorless, non-poisonous gas that is a normal part of Earth's atmosphere. Carbon dioxide is a product of fossil-fuel combustion as well as other processes. It is considered a greenhouse gas as it traps heat radiated into the atmosphere and thereby contributes to the potential for global warming.

Note: This page contains sample records for the topic "global carbon emissions" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

CDIAC::Carbon Emission::Time Series USA Data  

NLE Websites -- All DOE Office Websites (Extended Search)

Estimates of monthly carbon dioxide emissions and associated 13C values from fossil-fuel consumption in the U.S.A. In Trends: A Compendium of Data on Global Change Carbon...

42

Carbon Emissions: Petroleum Refining Industry  

U.S. Energy Information Administration (EIA)

Energy-Related Carbon Emissions for the Petroleum and Coal Products Industry, 1994. Petroleum refining is by far the largest component of the petroleum and ...

43

CDIAC::Carbon Emission::Introduction  

NLE Websites -- All DOE Office Websites (Extended Search)

Introduction Introduction Each year the Carbon Dioxide Information Analysis Center (CDIAC) generates estimates of carbon releases from fossil-fuel consumption and cement production. Emissions from fossil-fuel burning represent the largest anthropogenic source of carbon to the atmosphere and are an important contributor to elevated atmospheric CO2 levels. CDIAC produces annual fossil-fuel CO2 emission time series at global and national scales and these time series serve as building blocks for other data products including gridded (1 x 1) emission time series. Details regarding the methods used to produce these time series and data products may be found on the CDIAC website. This new interface allows users to query, visualize, and download the latest CDIAC fossil-fuel CO2 emission estimates. In the future, additional

44

The Carbon Emission Analysis System Design of Coal-Fired Unit  

Science Conference Proceedings (OSTI)

Carbon dioxide is the main cause of global warming, that emission has been the world's attention. and the power industry is an important source of carbon dioxide emissions, this paper try to design the system of power plants for carbon emissions coal-fired ... Keywords: Analysis system, Carbon emissions, Energy saving

Han Jieping; Zhang Chengzhen

2011-08-01T23:59:59.000Z

45

State environmental law and carbon emissions: Do public utility commissions use environmental statutes to fight global warming?  

Science Conference Proceedings (OSTI)

In many states environmental statutes provide the authority for public utility commissioners to make decisions to reduce greenhouse gases from electricity generation. This article looks at six such laws and how the presence of these laws affected CO{sub 2} emissions during a nine-year period from 1997 to 2005. (author)

Sautter, John A.

2010-10-15T23:59:59.000Z

46

China's Industrial Carbon Dioxide Emissions in Manufacturing...  

NLE Websites -- All DOE Office Websites (Extended Search)

China's Industrial Carbon Dioxide Emissions in Manufacturing Subsectors and in Selected Provinces Title China's Industrial Carbon Dioxide Emissions in Manufacturing Subsectors and...

47

Energy-Related Carbon Emissions in Manufacturing  

Reports and Publications (EIA)

Energy-related carbon emissions in manufacturing analysis and issues related to the energy use, energy efficiency, and carbon emission indicators.

Information Center

2000-05-31T23:59:59.000Z

48

Carbon Emissions: Petroleum Refining Industry  

U.S. Energy Information Administration (EIA) Indexed Site

Petroleum Refining Industry Petroleum Refining Industry Carbon Emissions in the Petroleum Refining Industry The Industry at a Glance, 1994 (SIC Code: 2911) Total Energy-Related Emissions: 79.9 million metric tons of carbon (MMTC) -- Pct. of All Manufacturers: 21.5% -- Nonfuel Emissions: 16.5 MMTC Total First Use of Energy: 6,263 trillion Btu -- Pct. of All Manufacturers: 28.9% Nonfuel Use of Energy Sources: 3,110 trillion Btu (49.7%) -- Naphthas and Other Oils: 1,328 trillion Btu -- Asphalt and Road Oil: 1,224 trillion Btu -- Lubricants: 416 trillion Btu Carbon Intensity: 12.75 MMTC per quadrillion Btu Energy Information Administration, "1994 Manufacturing Energy Consumption Survey", "Monthly Refinery Report" for 1994, and Emissions of Greenhouse Gases in the United States 1998.

49

and Implications for the Global Carbon Cycle Executive Summary  

E-Print Network (OSTI)

North America is currently a net source of carbon dioxide to the atmosphere, contributing to the global buildup of greenhouse gases in the atmosphere and associated changes in the earths climate. In 2003, North America emitted nearly two billion metric tons of carbon to the atmosphere as carbon dioxide. North Americas fossil fuel emissions in 2003 (1856 million metric tons of carbon 10 % with 95 % certainty) were 27 % of global emissions. Approximately 85 % of those emissions were from the United States, 9 % from Canada and 6 % from Mexico. The conversion of fossil fuels to energy (primarily electricity) is the single largest contributor, accounting for approximately 42 % of North American fossil emissions in 2003. Transportation is the second largest, accounting for 31 % of total emissions. There are also globally important carbon sinks in North America. In 2003, growing vegetation in North America removed approximately 530 million tons of carbon per year ( 50%) from the atmosphere and stored it as plant material and soil organic matter. This land sink is equivalent to approximately 30 % of the fossil fuel emissions from North America. The imbalance between the fossil fuel source and the sink on land is a net release to the atmosphere of 1335 million metric tons of carbon per year ( 25%). Approximately 50 % of North Americas terrestrial sink is due to the regrowth of forests in the United

Lisa Dilling (co-lead; David M. Fairman; Richard A. Houghton; Gregg H. Marl; Adam Z. Rose; Thomas J. Wilbanks

2007-01-01T23:59:59.000Z

50

How the Carbon Emissions Were Estimated  

U.S. Energy Information Administration (EIA) Indexed Site

How the Carbon Emissions Were Estimated How the Carbon Emissions Were Estimated How the Carbon Emissions Were Estimated Carbon dioxide emissions are the main component of greenhouse gas emissions caused by human activity. Carbon dioxide is emitted mostly as a byproduct of the combustion of fossil fuels for energy, although certain industrial processes (e.g., cement manufacture) also emit carbon dioxide. The estimates of energy-related carbon emissions require both data on the energy use and carbon emissions coefficients relating energy use to the amount of carbon emitted. The Energy Information Administration (EIA) is the main source of data on U.S. energy use. Emissions of Greenhouse Gases in the United States 1998 used annual data provided by energy suppliers. However, to obtain more detail on how different sectors use energy, the emissions estimates in Energy and GHG Analysis rely data from on surveys of energy users, such as manufacturing establishments and commercial buildings.

51

Global climate change and pedogenic carbonates  

SciTech Connect

Global Climate Change summarizes what is known about soil inorganic carbon and develops strategies that could lead to the retention of more carbon in the soil. It covers basic concepts, analytical methods, secondary carbonates, and research and development priorities. With this book one will get a better understanding of the global carbon cycle, organic and inorganic carbon, and their roles, or what is known of them, in the greenhouse effect.

Lal, R.; Kimble, J.M.; Stewart, B.A.; Eswaran, H. [eds.

1999-11-01T23:59:59.000Z

52

Sectoral trends in global energy use and greenhouse gas emissions  

E-Print Network (OSTI)

Trends in Global Energy Use and Greenhouse Gas Emissions Lynn Price,Trends in Global Energy Use and Greenhouse Gas Emissions Lynn Price,Trends in Global Energy Use and Greenhouse Gas Emissions Lynn Price,

2006-01-01T23:59:59.000Z

53

Global Fossil-Fuel CO2 Emissions  

NLE Websites -- All DOE Office Websites (Extended Search)

metric tonnes of carbon have been released to the atmosphere from the consumption of fossil fuels and cement production. Half of these fossil-fuel CO2 emissions have occurred...

54

Figure 37. Carbon dioxide emissions from electricity ...  

U.S. Energy Information Administration (EIA)

Sheet3 Sheet2 Sheet1 Figure 37. Carbon dioxide emissions from electricity generation in three cases, 2005-2040 (million metric tons carbon dioxide ...

55

An option for the coal industry in dealing with the carbon dioxide global greenhouse effect including estimates for reduced CO/sub 2/ emissions technologies  

SciTech Connect

A new technical option for the coal industry in dealing with the carbon dioxide greenhouse effect has been devised. The option concerns a ''hydrogen economy'' based on coal. We have developed a very efficient process called HYDROCARB, which effectively splits coal into carbon and hydrogen. This process produces a clean, pure carbon fuel from coal for application in both mobile and stationary heat engines. We are suggesting that coal refineries be built based on this technology. A co-product of the process is a hydrogen-rich gas. If one is concerned about the greenhouse effect, then either all or part of the carbon can be withheld and either mainly or only the hydrogen is used as fuel. If one desires to attain the ultimate, and eliminate all CO/sub 2/ emissions from coal, then all of the carbon can be stored and only the hydrogen used. The option is still open for utilizing the clean carbon, which would be placed in monitored retrievable storage, not unlike the strategic petroleum reserve (SPR). Should the greenhouse effect be found to be a myth in the future, the carbon would be taken out of storage and utilized as a clean fuel, the impurities having been previously removed. This concept can be valuable to the coal industry in response to the arguments of the anti-coal critics. Total capital cost estimates have been made to replace all conventional coal burning power plants in the US with technologies that eliminate emissions of CO/sub 2/. These include removal, recovery and disposal of CO/sub 2/, nuclear, solar, photovoltaics, biomass, and HYDROCARB. 12 refs., 1 fig. 4 tabs.

Steinberg, M.

1988-12-01T23:59:59.000Z

56

The Greenness of Cities: Carbon Dioxide Emissions and Urban Development  

E-Print Network (OSTI)

carbon dioxide emissions index, we use conversion factors.into carbon dioxide emissions, we continue to use a factorappropriate factors to arrive at carbon dioxide emissions.

Glaeser, Edward L.; Kahn, Matthew E.

2008-01-01T23:59:59.000Z

57

Carbon Markets Global Ltd | Open Energy Information  

Open Energy Info (EERE)

Ltd Jump to: navigation, search Name Carbon Markets Global Ltd Place London, United Kingdom Zip NW4 2HT Product Assist project originators develop and finance clean development...

58

Abatement of Air Pollution: Control of Carbon Dioxide Emissions...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Carbon Dioxide EmissionsCarbon Dioxide Budget Trading Program (Connecticut) Abatement of Air Pollution: Control of Carbon Dioxide EmissionsCarbon Dioxide Budget Trading Program...

59

Predictability of carbon emissions from biomass burning in Indonesia from 1997 to 2006  

E-Print Network (OSTI)

Predictability of carbon emissions from biomass burning in Indonesia from 1997 to 2006 Robert D biomass burning C emissions in Indonesia for 1997­2006, obtained from the Global Fire Emissions Database), Predictability of carbon emissions from biomass burning in Indonesia from 1997 to 2006, J. Geophys. Res., 113, G

Field, Robert

60

Energy Use and Carbon Emissions:  

Gasoline and Diesel Fuel Update (EIA)

World Energy Use and Carbon Dioxide Emissions, 1980-2001 World Energy Use and Carbon Dioxide Emissions, 1980-2001 April 2004 Energy Information Administration Contacts Staff from the Office of Energy Markets and End Use (EMEU), Energy Markets and Contingency Information Division (EMCID) prepared this report. General questions concerning the content of the report may be referred to Mark Rodekohr (Mark.Rodekohr@eia.doe.gov, 202-586-1130), Director of EMCID; or Lowell Feld (Lowell.Feld@eia.doe.gov, 202-586-9502), Leader of the Contingency Information Team. Specific questions about the report should be referred to Nathan Wilson (Nathan.Wilson@eia.doe.gov, 202-586-9883). 1 Table of Contents CONTACTS .......................................................................................................................

Note: This page contains sample records for the topic "global carbon emissions" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Quantification of Black Carbon and Other Pollutant Emissions from a  

NLE Websites -- All DOE Office Websites (Extended Search)

Quantification of Black Carbon and Other Pollutant Emissions from a Quantification of Black Carbon and Other Pollutant Emissions from a Traditional and an Improved Cookstove Title Quantification of Black Carbon and Other Pollutant Emissions from a Traditional and an Improved Cookstove Publication Type Report LBNL Report Number LBNL-6062E Year of Publication 2010 Authors Kirchstetter, Thomas W., Chelsea Preble, Odelle L. Hadley, and Ashok J. Gadgil Keywords aethalometer, Berkeley Darfur Stove, black carbon, carbon monoxide, climate change, DustTrak, global warming, improved cookstoves, indoor air quality, LBNL Stove Testing Facility, particulate matter, photoacoustic absorption spectrometer, pollutant emission factor, three-stone fire Abstract Traditional methods of cooking in developing regions of the world emit pollutants that

62

NASA/Ames Global Emissions Data Set (GLEMIS) | Open Energy Information  

Open Energy Info (EERE)

NASA/Ames Global Emissions Data Set (GLEMIS) NASA/Ames Global Emissions Data Set (GLEMIS) Jump to: navigation, search Tool Summary LAUNCH TOOL Name: NASA/Ames Global Emissions Data Set (GLEMIS) Agency/Company /Organization: National Aeronautics and Space Administration Sector: Land Focus Area: Forestry, Agriculture Topics: GHG inventory Resource Type: Dataset, Maps Website: gcmd.nasa.gov/records/GCMD_NASA_AMES_GLEMIS.html NASA/Ames Global Emissions Data Set (GLEMIS) Screenshot References: NASA/Ames Global Emissions Data Set (GLEMIS)[1] "NASA-CASA data sets include global maps for predicted fluxes of soil nitrogen gases (N2O and NO), methane (CH4), and carbon monoxide (CO), plus predictions of net primary production (NPP) and carbon storage in leaf, wood, root, litter, and surface soil pools. Others data sets will follow.

63

Energy-Related Carbon Emissions in Manufacturing  

U.S. Energy Information Administration (EIA) Indexed Site

Energy Energy-Related Carbon Emissions Energy Energy-Related Carbon Emissions Detailed Energy-Related Carbon Emissions All Industry Groups 1994 emissions Selected Industries Petroleum refining Chemicals Iron & Steel Paper Food Stone, clay and glass Methodological Details Estimation methods Glossary Return to: Energy and GHG Analysis Efficiency Page Energy Use in Manufacturing Energy-Related Carbon Emissions in Manufacturing Manufacturing, which accounts for about 80 percent of industrial energy consumption, also accounts for about 80 percent of industrial energy-related carbon emissions. (Agriculture, mining, forestry, and fisheries account for the remaining 20 percent.) In 1994, three industries, petroleum, chemicals, and primary metals, emitted almost 60 percent of the energy-related carbon in manufacturing. The next three largest emitters (paper, food, and the stone, glass, and clay products industry) produced an additional 22 percent of the energy-related manufacturing emissions (Figure 1).

64

Asia Carbon Emission Management India Pvt Ltd | Open Energy Informatio...  

Open Energy Info (EERE)

Carbon Emission Management India Pvt Ltd Jump to: navigation, search Name Asia Carbon Emission Management India Pvt Ltd Place Chennai, Tamil Nadu, India Zip 600 034 Sector Carbon...

65

The Greenness of Cities: Carbon Dioxide Emissions and Urban Development  

E-Print Network (OSTI)

carbon dioxide emissions index, we use conversion factors.conversion factor of pounds of carbon dioxide emitted perappropriate factors to arrive at carbon dioxide emissions.

Glaeser, Edward L.; Kahn, Matthew E.

2008-01-01T23:59:59.000Z

66

Carbon Emissions: Iron and Steel Industry  

U.S. Energy Information Administration (EIA) Indexed Site

Iron and Steel Industry Iron and Steel Industry Carbon Emissions in the Iron and Steel Industry The Industry at a Glance, 1994 (SIC Code: 3312) Total Energy-Related Emissions: 39.9 million metric tons of carbon (MMTC) -- Pct. of All Manufacturers: 10.7% -- Nonfuel Emissions: 22.2 MMTC Total First Use of Energy: 1,649 trillion Btu -- Pct. of All Manufacturers: 7.6% Nonfuel Use of Energy: 886 trillion Btu (53.7%) -- Coal: 858 trillion Btu (used to make coke) Carbon Intensity: 24.19 MMTC per quadrillion Btu Energy Information Administration, "1994 Manufacturing Energy Consumption Survey" and Emissions of Greenhouse Gases in the United States 1998 Energy-Related Carbon Emissions, 1994 Source of Carbon Carbon Emissions (million metric tons) All Energy Sources 39.9 Coal 22.7

67

Carbon Emissions: Stone, Clay, and Glass Industry  

U.S. Energy Information Administration (EIA)

Energy-Related Carbon Emissions for Selected Stone, Clay, and Glass Industries, 1994. The cement and lime manufacturing industries emit almost half of ...

68

Field Emission Devices with Carbon Nanofiber Emitters  

Field Emission Devices with Carbon Nanofiber Emitters Note: The technology described above is an early stage opportunity. Licensing rights to this intellectual ...

69

Carbon Emissions: Stone, Clay, and Glass Industry  

Gasoline and Diesel Fuel Update (EIA)

Stone et al. Industries Energy-Related Carbon Emissions for the Stone, Clay, and Glass Industry by Source, 1994. Three sources, coal, natural gas, and electricity, account for...

70

Carbon Emissions: Iron and Steel Industry  

U.S. Energy Information Administration (EIA)

Energy-Related Carbon Emissions for Selected Iron and Steel Industries, 1994. Besides steel mills and blast furnaces, the primary metals industry also ...

71

CDIAC::Carbon Emission::Introduction  

NLE Websites -- All DOE Office Websites (Extended Search)

Information Analysis Center (CDIAC) generates estimates of carbon releases from fossil-fuel consumption and cement production. Emissions from fossil-fuel burning represent the...

72

Rapid growth in CO2 emissions after the 2008-2009 global financial crisis  

Science Conference Proceedings (OSTI)

Global carbon dioxide emissions from fossil-fuel combustion and cement production grew 5.9% in 2010, surpassed 9 Pg of carbon (Pg C) for the first time, and more than offset the 1.4% decrease in 2009. The impact of the 2008 2009 global financial crisis (GFC) on emissions has been short-lived owing to strong emissions growth in emerging economies, a return to emissions growth in developed economies, and an increase in the fossil-fuel intensity of the world economy.

Peters, Glen P. [Center for International Climate and Energy Research (CICERO), Oslo, Norway; Marland, Gregg [Appalachian State University; Le Quere, Corinne [University of East Anglia, Norwich, United Kingdom; Boden, Thomas A [ORNL; Canadell, Josep [CSIRO Marine and Atmospheric Research; Raupach, Michael [CSIRO Marine and Atmospheric Research

2011-01-01T23:59:59.000Z

73

Reduction of carbon dioxide emissions by mineral carbonation  

Science Conference Proceedings (OSTI)

The study investigates the technologies that have the potential to provide feasible reduction of carbon dioxide (CO2) from a reference power plant. Particular focus has been given to mineral carbonation (at 1 bar) in which magnesium (Mg) and/or ... Keywords: carbon dioxide, emissions, mineral carbonation

C. J. Sturgeon; M. G. Rasul; Ashfaque Ahmed Chowdhury

2010-02-01T23:59:59.000Z

74

Server selection for carbon emission control  

Science Conference Proceedings (OSTI)

Cloud owners are allowing their users to specify the level of resources being used in the different geographical locations that make up the cloud. The carbon emissions caused by powering these resources can vary greatly between different geographical ... Keywords: carbon emission, relative price function, subgradient method

Joseph Doyle; Donal O'Mahony; Robert Shorten

2011-08-01T23:59:59.000Z

75

A synthesis of carbon dioxide emissions from fossil-fuel combustion  

SciTech Connect

This synthesis discusses the emissions of carbon dioxide from fossil-fuel combustion and cement production. While much is known about these emissions, there is still much that is unknown about the details surrounding these emissions. This synthesis explores 5 our knowledge of these emissions in terms of why there is concern about them; how they are calculated; the major global efforts on inventorying them; their global, regional, and national totals at different spatial and temporal scales; how they are distributed on global grids (i.e. maps); how they are transported in models; and the uncertainties associated with these different aspects of the emissions. The magnitude of emissions 10 from the combustion of fossil fuels has been almost continuously increasing with time since fossil fuels were first used by humans. Despite events in some nations specifically designed to reduce emissions, or which have had emissions reduction as a byproduct of other events, global total emissions continue their general increase with time. Global total fossil-fuel carbon dioxide emissions are known to within 10% uncertainty (95% 15 confidence interval). Uncertainty on individual national total fossil-fuel carbon dioxide emissions range from a few percent to more than 50 %. The information discussed in this manuscript synthesizes global, regional and national fossil-fuel carbon dioxide emissions, their distributions, their transport, and the associated uncertainties.

Andres, Robert Joseph [ORNL; Boden, Thomas A [ORNL; Breon, F.-M. [CEA/DSM/LSCE, Gif sur Yvette, France; Ciais, P. [LSCE/CEA, Gif-sur-Yvette, France; Davis, S. [Carnegie Institution of Washington; Erickson, D [Oak Ridge National Laboratory (ORNL); Gregg, J. S. [Riso National Laboratory, Roskilde, Denmark; Jacobson, Andrew [NOAA ESRL and CIRES; Marland, Gregg [Appalachian State University; Miller, J. [NOAA ESRL and CIRES; Oda, T [NOAA ESRL/Boulder, CO/Cooperative Institute for Research in the Atmosphere, Colorado State Univ.; Oliver, J. G. J. [PBL Netherlands Environmental Assessment Agency, Bilthoven, The Netherlands; Raupach, Michael [CSIRO Marine and Atmospheric Research; Rayner, P [University of Melbourne, Australia; Treanton, K. [Energy Statistics Division, International Energy Agency, Paris, France

2012-01-01T23:59:59.000Z

76

Sectoral trends in global energy use and greenhouse gas emissions  

E-Print Network (OSTI)

Agency (IEA), 2004c. CO2 emissions from fuel combustion,of Carbon Dioxide Emissions on GNP Growth: Interpretation ofD. , 2000. Special Report on Emissions Scenarios: Report of

2006-01-01T23:59:59.000Z

77

Carbon dioxide and global change  

SciTech Connect

This book presents an analysis and review of the many potential consequences of the rapidly rising CO{sub 2} content of Earth's atmosphere. Covering both the physical (climatic) and biological effects of atmospheric CO{sub 2} enrichment, the book presents an overview of the interrelated aspects of this complex and demanding subject. Focus is on the search for evidence of global warming (the highly speculative climatic greenhouse effect) and global vegetative stimulation (the well established biological greenhouse effect). The pros and cons of all issues related to these phenomena are discussed. The author's estimate of where the world is headed as a result of mankind's great geophysical experiments is offered.

Idso, S.B. (Arizona State Univ. (US))

1989-01-01T23:59:59.000Z

78

International Carbon Dioxide Emissions and Carbon Intensity  

U.S. Energy Information Administration (EIA)

Financial market analysis and financial data for major energy companies. Environment. Greenhouse gas data, voluntary report- ing, electric power plant emissions.

79

A Global Technology Roadmap on Carbon Capture and Storage in Industry |  

Open Energy Info (EERE)

A Global Technology Roadmap on Carbon Capture and Storage in Industry A Global Technology Roadmap on Carbon Capture and Storage in Industry Jump to: navigation, search Tool Summary LAUNCH TOOL Name: A Global Technology Roadmap on Carbon Capture and Storage in Industry Agency/Company /Organization: United Nations Industrial Development Organization Focus Area: Industry Topics: Pathways analysis, Technology characterizations Resource Type: Publications Website: www.unido.org/index.php?id=1000821 References: A Global Technology Roadmap on Carbon Capture and Storage in Industry[1] CO2 Capture and Storage (CCS) is a key technology option for greenhouse gas (GHG) emissions mitigation. Recent studies suggest that CCS would contribute 19% of the total global mitigation that is needed for halving global GHG emissions by 2050. Overview

80

Why do carbon dioxide emissions weigh more than the ...  

U.S. Energy Information Administration (EIA)

Why do carbon dioxide emissions weigh more than the original fuel? Carbon dioxide emissions weigh more than the original fuel because during complete ...

Note: This page contains sample records for the topic "global carbon emissions" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Improving the Carbon Dioxide Emission Estimates from the Combustion...  

NLE Websites -- All DOE Office Websites (Extended Search)

the Carbon Dioxide Emission Estimates from the Combustion of Fossil Fuels in California Title Improving the Carbon Dioxide Emission Estimates from the Combustion of Fossil Fuels in...

82

Black Carbon Emission from Barbeque Activities during College...  

NLE Websites -- All DOE Office Websites (Extended Search)

Black Carbon Emission from Barbeque Activities during College Football Games Title Black Carbon Emission from Barbeque Activities during College Football Games Publication Type...

83

Emerging Energy-efficiency and Carbon Dioxide Emissions-reduction...  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy-efficiency and Carbon Dioxide Emissions-reduction Technologies for the Iron and Steel Industry Title Emerging Energy-efficiency and Carbon Dioxide Emissions-reduction...

84

Anthropogenic impacts on global storage and emissions of mercury from terrestrial soils: Insights from a new global  

E-Print Network (OSTI)

[1] We develop a mechanistic global model of soil mercury storage and emissions that ties the lifetime of mercury in soils to the lifetime of the organic carbon pools it is associated with. We explore the implications of considering terrestrial mercury cycling in the framework of soil carbon cycling and suggest possible avenues of future research to test our assumptions and constrain this type of model. In our simulation, input of mercury to soil is by atmospheric deposition, in part through leaf uptake and subsequent litter fall, and is moderated by surface photoreduction and revolatilization. Once bound to organic carbon, mercury is transferred along a succession of short?lived to long?lived carbon pools and is ultimately reemitted by respiration of these pools. We examine the legacy of anthropogenic influence on global mercury storage and emissions and estimate that storage of mercury in organic soils has increased by ?20 % since preindustrial times, while soil emissions have increased by a factor of 3 (2900 Mg yr ?1 versus 1000 Mg yr ?1). At steady state, mercury accumulates in the most recalcitrant soil carbon pools and has an overall lifetime against respiration of 630 years. However, the impact of anthropogenic emissions since preindustrial times has been concentrated in more labile pools, so that the mean lifetime of present?day anthropogenic mercury in all pools is ?80 years. Our analysis suggests that reductions in anthropogenic emissions would lead to immediate and large reductions in secondary soil mercury emissions.

Nicole V Smith?downey; Elsie M. Sunderl; Daniel J. Jacob

2010-01-01T23:59:59.000Z

85

Global Atmospheric Pollution Forum Air Pollutant Emission Inventory | Open  

Open Energy Info (EERE)

Global Atmospheric Pollution Forum Air Pollutant Emission Inventory Global Atmospheric Pollution Forum Air Pollutant Emission Inventory Jump to: navigation, search Tool Summary Name: Global Atmospheric Pollution (GAP) Forum Air Pollutant Emission Inventory Agency/Company /Organization: BOC foundation, U.S. Environment Protection Agency (EPA) and Swedish International Development Cooperation Agency (SIDA) Complexity/Ease of Use: Moderate Website: sei-international.org/rapidc/gapforum/html/emissions-manual.php Cost: Free Related Tools Global Atmospheric Pollution Forum Air Pollutant Emission Inventory World Induced Technical Change Hybrid (WITCH) Energy Development Index (EDI) ... further results Find Another Tool FIND DEVELOPMENT IMPACTS ASSESSMENT TOOLS A manual that provides formulation of methods and assessment of good

86

Multicentury Changes to the Global Climate and Carbon Cycle: Results from a Coupled Climate and Carbon Cycle Model  

Science Conference Proceedings (OSTI)

A coupled climate and carbon (CO2) cycle model is used to investigate the global climate and carbon cycle changes out to the year 2300 that would occur if CO2 emissions from all the currently estimated fossil fuel resources were released to the ...

G. Bala; K. Caldeira; A. Mirin; M. Wickett; C. Delire

2005-11-01T23:59:59.000Z

87

carbon dioxide emissions | OpenEI  

Open Energy Info (EERE)

dioxide emissions dioxide emissions Dataset Summary Description Total annual carbon dioxide emissions by country, 2005 to 2009 (million metric tons). Compiled by Energy Information Administration (EIA). Source EIA Date Released Unknown Date Updated Unknown Keywords carbon dioxide emissions EIA world Data text/csv icon total_carbon_dioxide_emissions_from_the_consumption_of_energy_2005_2009million_metric_tons.csv (csv, 12.3 KiB) Quality Metrics Level of Review Peer Reviewed Comment Temporal and Spatial Coverage Frequency Time Period 2005 - 2009 License License Other or unspecified, see optional comment below Comment Rate this dataset Usefulness of the metadata Average vote Your vote Usefulness of the dataset Average vote Your vote Ease of access Average vote Your vote Overall rating

88

Carbon Dioxide Emissions from Industrialized Countries  

NLE Websites -- All DOE Office Websites (Extended Search)

6 6 Carbon Dioxide Emissions from Industrialized Countries Extended discussion here Carbon emissions per capita 1973 vs. 1991 by major end use. (Denmark comparison is 1972 and 1991) With the third Conference of the Parties (COP-3) in Kyoto approaching, there is a great deal of excitement over policies designed to reduce future carbon dioxide (CO2) emissions from fossil fuels. At COP-3, more than 130 nations will meet to create legally binding targets for CO2 reductions. Accordingly, we have analyzed the patterns of emissions arising from the end uses of energy (and electricity production) in ten industrialized countries, with surprising and, in some cases, worrisome results. The surprise is that emissions in many countries in the early 1990s were lower than in the 1970s in an absolute sense and on a per capita basis; the worry

89

SPATIAL AND SEASONAL DISTRIBUTION OF CARBON DIOXIDE EMISSIONS FROM FOSSIL-FUEL COMBUSTION; GLOBAL, REGIONAL, AND NATIONAL POTENTIAL FOR SUSTAINABLE BIOENERGY FROM RESIDUE BIOMASS AND MUNICIPAL SOLID WASTE.  

E-Print Network (OSTI)

??Combustion of fossil fuels releases carbon dioxide (CO2) into the atmosphere, and has led to an increase in the atmospheric concentration of CO2. CO2 is (more)

Gregg, Jay Sterling

2009-01-01T23:59:59.000Z

90

Comparing the effects of greenhouse gas emissions on global warming  

E-Print Network (OSTI)

Policies dealing with global warming require a measure of the effects of the emissions of greenhouse gases that create different magnitudes of instantaneous radiative forcing and have different lifetimes. The Global Warming ...

Eckaus, Richard S.

1990-01-01T23:59:59.000Z

91

The carbon dioxide emissions game: Playing the net  

SciTech Connect

Concern about rising concentrations of carbon dioxide in the earth`s atmosphere has led to calls for the United States and other countries to reduce carbon emissions. These concerns resulted in the signing of the Framework Convention on Climate Change at the United Nations Conference on the Environment and Development in Rio de Janeiro in June 1992. The Framework calls for nations to develop action plans for limiting emissions of carbon and other greenhouse gases. In December 1992, in accordance with the Framework, the US Government released for public comment its National Action Plan for Global Climate Change (US Department of State, 1992). The Action Plan detailed steps for reducing carbon emissions by 93 to 130 million metric tons (MMT) by 2000. Some of the steps included in the Action Plan were reforming regulations, setting energy standards, promoting research and development of new energy technologies, expanding the use of alternative-fueled vehicles, and planting trees to sequester carbon. This paper explores the economic implications of implementing a much larger tree-planting program than the one presented in the Action Plan. Whereas the Action Plan estimated that 5 to 9 MMT of carbon (MMTC) could be sequestered in 2000 (with perhaps threefold increases in sequestration in later years when trees are growing the fastest), the program being considered in this analysis annually sequesters as much as 231 MMTC during its peak years. Our analysis focuses on how much the costs of stabilizing US carbon emissions at 1990 levels are reduced when economic criteria alone determine the number of trees that will be used. Our results show that when the focus is shifted from stabilization of gross emissions to net emissions the cost reductions are dramatic, about 20 to 80 percent depending on the assumed cost of trees. Political and institutional obstacles to the formation of such a cost effective response are explored in the conclusions.

Richards, K.R.; Edmonds, J.A.; Rosenthal, D.H.; Wise, M.

1993-06-01T23:59:59.000Z

92

Potential Efficiency Gains, and Energy and Carbon Emission Savings ...  

U.S. Energy Information Administration (EIA)

Table 3. Potential Efficiency Gains, and Energy and Carbon Emission Savings, of Replacing Existing 1997 Appliances

93

How the Carbon Emissions Were Estimated - U.S. Energy Information ...  

U.S. Energy Information Administration (EIA)

How the Carbon Emissions Were Estimated. Carbon dioxide emissions are the main component of greenhouse gas emissions caused by human ...

94

Challenges to estimating carbon emissions from tropical deforestation  

E-Print Network (OSTI)

An accurate estimate of carbon fluxes associated with tropical deforestation from the last two decades is needed to balance the global carbon budget. Several studies have already estimated carbon emissions from tropical deforestation, but the estimates vary greatly and are difficult to compare due to differences in data sources, assumptions, and methodologies. In this paper, we review the different estimates and datasets, and the various challenges associated with comparing them and with accurately estimating carbon emissions from deforestation. We performed a simulation study over legal Amazonia to illustrate some of these major issues. Our analysis demonstrates the importance of considering land-cover dynamics following deforestation, including the fluxes from reclearing of secondary vegetation, the decay of product and slash pools, and the fluxes from regrowing forest. It also suggests that accurate carbon-flux estimates will need to consider historical land-cover changes for at least the previous 20 years. However, this result is highly sensitive to estimates of the partitioning of cleared carbon into instantaneous burning vs. long-timescale slash pools. We also show that carbon flux estimates based on committed flux calculations, as used by a few studies, are not comparable with the annual balance calculation method used by other studies.

Holly K. Gibbsw; Frdric Achardz; Ruth Defries; Jonathan A. Foleyw; R. A. Houghton

2006-01-01T23:59:59.000Z

95

Grid Expansion Planning for Carbon Emissions Reduction  

SciTech Connect

There is a need to upgrade and expand electric power transmission and generation to meet specified renewable energy targets and simultaneously minimize construction cost and carbon emissions. Some challenges are: (1) Renewable energy sources have variable production capacity; (2) Deficiency of transmission capacity at desirable renewable generation locations; (3) Need to incorporate models of operations into planning studies; and (4) Prevent undesirable operational outcomes such as negative dispatch prices or curtailment of carbon neutral generation.

Bent, Russell W. [Los Alamos National Laboratory; Toole, Gasper L. [Los Alamos National Laboratory

2012-07-18T23:59:59.000Z

96

Global Mortality Attributable to Aircraft Cruise Emissions  

E-Print Network (OSTI)

Aircraft emissions impact human health though degradation of air quality. The majority of previous analyses of air quality impacts from aviation have considered only landing and takeoff emissions. We show that aircraft ...

Britter, Rex E.

97

Distributed Energy Resources for Carbon Emissions Mitigation  

DOE Green Energy (OSTI)

The era of publicly mandated GHG emissions restrictions inthe United States has begun with recent legislation in California andseven northeastern states. Commercial and industrial buildings canimprove the carbon-efficiency of end-use energy consumption by installingtechnologies such as on-site cogeneration of electricity and useful heatin combined heat and power systems, thermally-activated cooling, solarelectric and thermal equipment, and energy storage -- collectively termeddistributed energy resources (DER). This research examines a collectionof buildings in California, the Northeast, and the southern United Statesto demonstrate the effects of regional characteristics such as the carbonintensity of central electricity grid, the climate-driven demand forspace heating and cooling, and the availability of solar insolation. Theresults illustrate that the magnitude of a realistic carbon tax ($100/tC)is too small to incent significant carbon-reducing effects oneconomically optimal DER adoption. In large part, this is because costreduction and carbon reduction objectives are roughly aligned, even inthe absence of a carbon tax.

Firestone, Ryan; Marnay, Chris

2007-05-01T23:59:59.000Z

98

Rapid Assessment of City Emissions (RACE) for Low Carbon Cities...  

Open Energy Info (EERE)

Assessment of City Emissions (RACE) for Low Carbon Cities: Transport and Building Electricity Use Jump to: navigation, search Name Rapid Assessment of City Emissions (RACE) for...

99

Carbon Emissions: Paper Industry - U.S. Energy Information ...  

U.S. Energy Information Administration (EIA)

Energy-Related Carbon Emissions for Selected Paper Industries, 1994. Paper and paperboard mills emit over 80 percent of the energy-related carbon in ...

100

Black Carbon Concentrations and Diesel Vehicle Emission Factors...  

NLE Websites -- All DOE Office Websites (Extended Search)

Black Carbon Concentrations and Diesel Vehicle Emission Factors Derived from Coefficient of Haze Measurements in California: 1967-2003 Title Black Carbon Concentrations and Diesel...

Note: This page contains sample records for the topic "global carbon emissions" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Energy-Related Carbon Emissions - U.S. Energy Information ...  

U.S. Energy Information Administration (EIA)

Energy-Related Carbon Emissions for Carbon Forum - North America October 1, 2012 Washington, D.C. by Adam Sieminski, Administrator Whats driving ...

102

Improving the Carbon Dioxide Emission Estimates from the Combustion...  

NLE Websites -- All DOE Office Websites (Extended Search)

Improving the Carbon Dioxide Emission Estimates from the Combustion of Fossil Fuels in California and Spatial Disaggregated Estimate of Energy-related Carbon Dioxide for California...

103

Historical emissions of black and organic carbon aerosol from energy-related combustion, 18502000  

E-Print Network (OSTI)

Historical emissions of black and organic carbon aerosol from energy-related combustion, 1850) and primary organic carbon (OC) aerosols from fossil fuel and biofuel combustion between 1850 and 2000. We-related combustion, 1850­2000, Global Biogeochem. Cycles, 21, GB2018, doi:10.1029/2006GB002840. 1. Importance

Wisconsin at Madison, University of

104

China's Energy and Carbon Emissions Outlook to 2050  

E-Print Network (OSTI)

2009. World Energy Outlook 2009. Paris: OECD Publishing.Energy and Carbon Emissions Outlook to 2050 Nan Zhou, David37 Figure 39 Carbon Emissions Outlook for Two Scenarios by

Zhou, Nan

2011-01-01T23:59:59.000Z

105

Calculating Residential Carbon Dioxide Emissions --A New Approach  

E-Print Network (OSTI)

Calculating Residential Carbon Dioxide Emissions -- A New Approach Larry Hughes, Kathleen Bohan to submit an annual national greenhouse gas inventory to the United Nations Framework Convention on Climate different sectors and their associated greenhouse gas emissions (principally carbon dioxide, methane

Hughes, Larry

106

Strategic Analysis of the Global Status of Carbon Capture and...  

Open Energy Info (EERE)

Summary LAUNCH TOOL Name: Strategic Analysis of the Global Status of Carbon Capture and Storage (CCS): Country Studies, United Arab Emirates Focus Area: Clean Fossil Energy...

107

Strategic Analysis of the Global Status of Carbon Capture and...  

Open Energy Info (EERE)

Summary LAUNCH TOOL Name: Strategic Analysis of the Global Status of Carbon Capture and Storage: Country Studies, Brazil Focus Area: Clean Fossil Energy Topics: Policy Impacts...

108

Developing and Transferring Technologies for a Global Low-Carbon...  

NLE Websites -- All DOE Office Websites (Extended Search)

Office EETD Safety Program Development Contact Us Department Contacts Media Contacts Developing and Transferring Technologies for a Global Low-Carbon Energy System Speaker(s):...

109

Estimating the marginal cost of reducing global fossil fuel CO[sub 2] emissions  

Science Conference Proceedings (OSTI)

This paper estimates the marginal, total, and average cost and effectiveness of carbon taxes applied either by the Organization for Economic Cooperation and Development (OECD) members alone, or as part of a global cooperative strategy, to reduce potential future emissions and their direct implications for employment in the US coal industry. Two sets of cases are examined, one set in which OECD members acts alone, and another set in which the world acts in concert. In each case set taxes are examined which achieve four alternative levels of emissions reduction: halve the rate of emissions growth, no emissions growth, 20[percent] reduction from 1988 levels, and 50[percent] reduction from 1988 levels. For the global cooperation case, carbon tax rates of [dollar sign]32, [dollar sign]113, [dollar sign]161, and [dollar sign]517 per metric ton of carbon (mtC) were needed in the year 2025 to achieve the objectives. Total costs were respectively [dollar sign]40, [dollar sign]178, [dollar sign]253, and [dollar sign]848 billions of 1990 US dollars per year in the year 2025. Average costs were [dollar sign]32, [dollar sign]55, [dollar sign]59, and [dollar sign]135 per mtC. Costs were significantly higher in the cases in which the OECD members states acted alone. OECD member states, acting alone, could not reduce global emissions by 50[percent] or 20[percent] relative to 1988, given reference case assumptions regarding developing and recently planned nations economic growth.

Edmonds, J.; Barns, D.W.; McDonald, S. (Pacific Northwest Lab., Washington, DC (United States))

1992-01-01T23:59:59.000Z

110

The National Energy Modeling System: An Overview 1998 - Carbon Emissions  

Gasoline and Diesel Fuel Update (EIA)

CARBON EMISSIONS CARBON EMISSIONS A part of the integrating module, the carbon emissions submodule (CEM) computes the carbon emissions due to the combustion of energy. The coefficients for carbon emissions are derived from Energy Information Administration, Emissions of Greenhouse Gases in the United States 1996, published in October 1997. The calculations account for the fact that some fossil fuels are used for nonfuel purposes, such as feedstocks, and thus the carbon in the fuel is sequestered in the end product. CEM also allows for several carbon policy evaluation options to be imposed within NEMS. Although none of the policy options are assumed in the Annual Energy Outlook 1998, the options can be used in special analyses to simulate potential market-based approaches to meet national carbon emission

111

Carbon reduction emissions in South Africa  

SciTech Connect

This project is a feasibility study for a control system for existing backup generators in South Africa. The strategy is to install a system to enable backup generators (BGs) to be dispatched only when a large generator fails. Using BGs to provide ''ten minute reserve'' will save energy and reduce emissions of greenhouse gases by an estimated nearly 500,000 tons of carbon dioxide per year.

Temchin, Jerome

2002-02-28T23:59:59.000Z

112

Glossary: Energy-Related Carbon Emissions  

U.S. Energy Information Administration (EIA)

Carbon Sequestration: The fixation of atmospheric carbon dioxide in a carbon sink through biological or physical processes. Carbon Sink: ...

113

International Energy Outlook 2006 - Energy-Related Carbon Dioxide Emissions  

Gasoline and Diesel Fuel Update (EIA)

Eneregy-Related Carbon Dioxide Emissions Eneregy-Related Carbon Dioxide Emissions International Energy Outlook 2006 Chapter 7: Energy-Related Carbon Dioxide Emissions In the coming decades, actions to limit greenhouse gas emissions could affect patterns of energy use around the world and alter the level and composition of energy-related carbon dioxide emissions by energy source. Figure 65. World Carbon Dioxide Emissions by Region, 1990-2030 (Billion Metric Tons). Need help, contact the National Energy Information Center at 202-586-8800. Figure Data Figure 66. World Carbon Dioxide Emissions by Fuel Type, 1980-2030 (Billion Metric Tons). Need help, contact the National Energy Information Center at 202-586-8800. Figure Data Carbon dioxide is one of the most prevalent greenhouse gases in the

114

Global compilation of Carbon-13 measurements  

NLE Websites -- All DOE Office Websites (Extended Search)

compilation of Carbon-13 measurements during 1990-2005 in dissolved inorganic carbon (δ13C_DIC) compilation of Carbon-13 measurements during 1990-2005 in dissolved inorganic carbon (δ13C_DIC) A. Schmittner1, N. Gruber2, A. C. Mix1, R. M. Key3, A. Tagliabue4, and T. K. Westberry5 1College of Oceanic and Atmospheric Sciences, Oregon State University, Corvallis, Oregon, USA 2Institute of Biogeochemistry and Pollutant Dynamics, ETH Zürich, Zürich, Switzerland 3Department of Geosciences, Princeton University, Princeton, New Jersey, USA 4School of Environmental Sciences, University of Liverpool, Liverpool, UK 5Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon, USA data Data and Documentation Files The primary data source for the δ13C_DIC measurements is the Web Accessible Visualization and Extraction System (W.A.V.E.S) at the Carbon Dioxide Information Analysis Center (CDIAC). On 27 August 2010 we extracted data from two databases within CDIAC: First, from the Global Data Analysis Project GLODAP (Key et al., 2004) and second, from the Carbon Dioxide in the Atlantic Ocean (CARINA) data synthesis project mainly from WOCE and CLIVAR expeditions. The δ13C_DIC data on file at CDIAC have not been quality controlled. In the GLODAP database, some cruises (for example, 316N145_5 and INDIGO_123) had obvious bad data, and these were excluded from our compilation. From the remaining 31 GLODAP expeditions, we removed bottle numbers > 70 from seven cruises in order to exclude large Volume (LV) samples, many of which had large negative biases. From the CARINA database cruise 64TR19900417 was excluded due to obvious bad data, leaving 18 cruises. The remaining combined GLODAP and CARINA database contains 17,989 δ13C_DIC data for the time period from 1990-2005 from all oceans and all depths. These data were supplemented by 632 measurements from 1990 to 1998 made at Charles (Dave) Keeling's laboratory at Scripps Institution of Oceanography, described by Gruber et al. (1999), and by one transect (50 data points) from the northeast Pacific measured in Alan Mix's laboratory at Oregon State University, published along with nutrient data by Ortiz et al. (2000). The Keeling dataset is also available at CDIAC (http://cdiac.ornl.gov/ftp/oceans/keeling.data/), although here we used one single data file provided by N. Gruber. We do not use measurements prior to 1990 (such as all GEOSECS and TTO data). Due to unresolved intercalibration issues between laboratories the accuracy is currently estimated to be 0.1-0.2‰ (A. McNichol, personal communication, 2012). The combined data set contains a total of 18,670 δ13C_DIC measurements.

115

Regional carbon dynamics in monsoon Asia and its implications for the global carbon cycle  

E-Print Network (OSTI)

Regional carbon dynamics in monsoon Asia and its implications for the global carbon cycle Hanqin on the exchange of CO2 between the atmosphere and monsoon Asian ecosystems. During 1860­1990, modeled results suggest that monsoon Asia as a whole released 29.0 Pg C, which represents 50% of the global carbon release

116

Carbon Dioxide Emission Pathways Avoiding Dangerous Ocean Impacts  

Science Conference Proceedings (OSTI)

Anthropogenic emissions of greenhouse gases could lead to undesirable effects on oceans in coming centuries. Drawing on recommendations published by the German Advisory Council on Global Change, levels of unacceptable global marine change (so-...

K. Kvale; K. Zickfeld; T. Bruckner; K. J. Meissner; K. Tanaka; A. J. Weaver

2012-07-01T23:59:59.000Z

117

Development of the Electricity Carbon Emission Factors for Russia | Open  

Open Energy Info (EERE)

the Electricity Carbon Emission Factors for Russia the Electricity Carbon Emission Factors for Russia Jump to: navigation, search Name Development of the Electricity Carbon Emission Factors for Russia Agency/Company /Organization European Bank for Reconstruction and Development Sector Energy Focus Area Renewable Energy Topics GHG inventory Resource Type Publications Website http://www.lahmeyer.de/fileadm Country Russia Eastern Europe References Development of the Electricity Carbon Emission Factors for Russia[1] References ↑ "Development of the Electricity Carbon Emission Factors for Russia" Retrieved from "http://en.openei.org/w/index.php?title=Development_of_the_Electricity_Carbon_Emission_Factors_for_Russia&oldid=383164" Category: Programs What links here Related changes Special pages

118

BioFacts: Fueling a stronger economy, Global warming and biofuels emissions  

DOE Green Energy (OSTI)

The focus of numerous federal and state regulations being proposed and approved today is the reduction of automobile emissions -- particularly carbon dioxide (CO{sub 2}), which is the greenhouse gas considered responsible for global warming. Studies conducted by the USDOE through the National Renewable Energy Laboratory (NREL) indicate that the production and use of biofuels such as biodiesel, ethanol, and methanol could nearly eliminate the contribution of net CO{sub 2} from automobiles. This fact sheet provides and overview of global warming, followed by a summary of NREL`s study results.

NONE

1994-12-01T23:59:59.000Z

119

Figure 18. Energy-related carbon dioxide emissions in three ...  

U.S. Energy Information Administration (EIA)

Sheet3 Sheet2 Sheet1 Figure 18. Energy-related carbon dioxide emissions in three cases, 2005-2040 (million metric tons) Extended Policies No Sunset

120

Trends in Building-Related Energy and Carbon Emissions  

U.S. Energy Information Administration (EIA)

An analysis of trends in energy consumption and energy-related carbon emissions in U.S. buildings, 1970-1998.

Note: This page contains sample records for the topic "global carbon emissions" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Analysis of Carbon Emission Reduction of China's Integrated ...  

Science Conference Proceedings (OSTI)

In this paper, a model, based on carbon balance, was developed for CO2 emission analysis, with data obtained from a typical integrated steelworks in China.

122

Weekly Wrap-Up: Testing Wind Blades, Converting Carbon Emissions...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Chu announced six projects that aim to find ways of convert captured carbon dioxide (CO2) emissions from industrial sources into useful products. The innovative projects -...

123

Electricity Without CO2 Emissions: Assessing the Costs of Carbon...  

NLE Websites -- All DOE Office Websites (Extended Search)

Johnson and Keith: Electricity without CO 2 ... 1 ELECTRICITY FROM FOSSIL FUELS WITHOUT CO 2 EMISSIONS: ASSESSING THE COSTS OF CARBON DIOXIDE CAPTURE AND SEQUESTRATION IN US...

124

Integrated Estimates of Global Terrestrial Carbon Sequestration  

SciTech Connect

Assessing the contribution of terrestrial carbon sequestration to international climate change mitigation requires integration across scientific and disciplinary boundaries. As part of a scenario analysis for the US Climate Change Technology Program, measurements and geographic data were used to develop terrestrial carbon sequestration estimates for agricultural soil carbon, reforestation and pasture management. These estimates were then applied in the MiniCAM integrated assessment model to evaluate mitigation strategies within policy and technology scenarios aimed at achieving atmospheric CO2 stabilization by 2100. Adoption of terrestrial sequestration practices is based on competition for land and economic markets for carbon. Terrestrial sequestration reach a peak combined rate of 0.5 to 0.7 Gt carbon yr-1 in mid-century with contributions from agricultural soil (0.21 Gt carbon yr-1), reforestation (0.31 Gt carbon yr-1) and pasture (0.15 Gt carbon yr-1). Sequestration rates vary over time period and with different technology and policy scenarios. The combined contribution of terrestrial sequestration over the next century ranges from 31 to 41 GtC. The contribution of terrestrial sequestration to mitigation is highest early in the century, reaching up to 20% of total carbon mitigation. This analysis provides insight into the behavior of terrestrial carbon mitigation options in the presence and absence of climate change mitigation policies.

Thomson, Allison M.; Izaurralde, R Cesar; Smith, Steven J.; Clarke, Leon E.

2008-02-01T23:59:59.000Z

125

Predicting Greenhouse Gas Emissions and Soil Carbon from Changing Pasture to an Energy Crop  

E-Print Network (OSTI)

Predicting Greenhouse Gas Emissions and Soil Carbon from Changing Pasture to an Energy Crop biogeochemical cycles and global greenhouse gas budgets. Energy cane (Saccharum officinarum L.) is a sugarcane changing land from grazed pasture to energy cane would affect greenhouse gas (CO2, CH4 and N2O) fluxes

DeLucia, Evan H.

126

Carbon Dioxide Emissions Associated with Bioenergy and Other Biogenic  

Open Energy Info (EERE)

Carbon Dioxide Emissions Associated with Bioenergy and Other Biogenic Carbon Dioxide Emissions Associated with Bioenergy and Other Biogenic Sources Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Carbon Dioxide Emissions Associated with Bioenergy and Other Biogenic Sources Agency/Company /Organization: United States Environmental Protection Agency Sector: Energy, Climate Focus Area: Biomass, - Biomass Combustion, - Biomass Gasification, - Biomass Pyrolysis, - Biofuels, - Landfill Gas, - Waste to Energy, Greenhouse Gas Phase: Evaluate Options Resource Type: Publications, Guide/manual User Interface: Website Website: www.epa.gov/climatechange/emissions/biogenic_emissions.html Cost: Free References: EPA, 40 CFR Part 60[1] Tailoring Rule[2] Biogenic Emissions[3] The 'EPA Climate Change - Green House Gas Emissions - Carbon Dioxide

127

Inventory of Carbon Dioxide (CO2) Emissions at Pacific Northwest National Laboratory  

SciTech Connect

The Carbon Management Strategic Initiative (CMSI) is a lab-wide initiative to position the Pacific Northwest National Laboratory (PNNL) as a leader in science, technology and policy analysis required to understand, mitigate and adapt to global climate change as a nation. As part of an effort to walk the talk in the field of carbon management, PNNL conducted its first carbon dioxide (CO2) emissions inventory for the 2007 calendar year. The goal of this preliminary inventory is to provide PNNL staff and management with a sense for the relative impact different activities at PNNL have on the labs total carbon footprint.

Judd, Kathleen S.; Kora, Angela R.; Shankle, Steve A.; Fowler, Kimberly M.

2009-06-29T23:59:59.000Z

128

Global warming and the future of coal carbon capture and storage  

SciTech Connect

The paper considers how best to change the economic calculus of power plant developers so they internalize CCS costs when selecting new generation technologies. Five policy tools are analyzed: establishing a greenhouse gas cap-and-trade program; imposing carbon taxes; defining CCS systems as a so-called Best Available Control Technology for new power plants under the USA Clean Air Act's New Source Review program; developing a 'low carbon portfolio' standard that requires utilities to provide an increasing proportion of power from low-carbon generation sources over time; and requiring all new coal power plants to meet an 'emission performance' standard that limits CO{sub 2} emissions to levels achievable with CCS systems. Each of these tools has advantages and drawbacks but an emission performance standard for new power plants is likely to be most effective in spurring broad-scale adoption of CCS systems. Chapter headings are: global warming and the future of coal; new coal-fired power plants threaten all other efforts to combat global warming; a potential path to zero emissions through carbon capture and storage; CO{sub 2} capture at coal plants: the promise of IGCC and other technologies; barriers to commercialization of IGCC technology; crossing the chasm: a new policy framework to push ccs implementation forward; encouraging CCS systems with carbon caps and trading programs; using the existing Clean Air Act to require CCS systems for new coal plants; retail low carbon portfolio standard; carbon tax; emission performance standards for new coal power plants; and conclusions. 16 figs.

Ken Berlin; Robert M. Sussman [Skadden Arps, Slate, Meagher and Flom (United States)

2007-05-15T23:59:59.000Z

129

Combustion of biomass as a global carbon sink  

E-Print Network (OSTI)

This note is intended to highlight the important role of black carbon produced from biomass burning in the global carbon cycle, and encourage further research in this area. Consideration of the fundamental physical chemistry of cellulose thermal decomposition suggests that suppression of biomass burning or biasing burning practices to produce soot-free flames must inevitably transfer more carbon to the atmosphere. A simple order-of-magnitude quantitative analysis indicates that black carbon may be a significant carbon reservoir that persists over geological time scales.

Ball, Rowena

2008-01-01T23:59:59.000Z

130

Variability of building environmental assessment tools on evaluating carbon emissions  

Science Conference Proceedings (OSTI)

With an increasing importance of sustainability in construction, more and more clients and designers employ building environmental assessment (BEA) tools to evaluate the environmental friendliness of their building facilities, and one important aspect of evaluation in the BEA models is the assessment of carbon emissions. However, in the absence of any agreed framework for carbon auditing and benchmarking, the results generated by the BEA tools might vary significantly which could lead to confusion or misinterpretation on the carbon performance of a building. This study thus aims to unveil the properties of and the standard imposed by the current BEA models on evaluating the life cycle carbon emissions. The analyses cover the (i) weighting of energy efficiency and emission levels among various environmental performance indicators; (ii) building life cycle stages in which carbon is taken into consideration; (iii) objectiveness of assessment; (iv) baseline set for carbon assessment; (v) mechanism for benchmarking the emission level; and (v) limitations of the carbon assessment approaches. Results indicate that the current BEA schemes focus primarily on operational carbon instead of the emissions generated throughout the entire building life cycle. Besides, the baseline and benchmark for carbon evaluation vary significantly among the BEA tools based on the analytical results of a hypothetical building. The findings point to the needs for a more transparent framework for carbon auditing and benchmarking in BEA modeling. - Highlights: Black-Right-Pointing-Pointer Carbon emission evaluation in building environmental assessment schemes are studied. Black-Right-Pointing-Pointer Simulative carbon emission is modeled for building environmental assessment schemes. Black-Right-Pointing-Pointer Carbon assessments focus primarily on operational stage instead of entire lifecycle. Black-Right-Pointing-Pointer Baseline and benchmark of carbon assessment vary greatly among BEA schemes. Black-Right-Pointing-Pointer A more transparent and comprehensive framework for carbon assessment is required.

Ng, S. Thomas, E-mail: tstng@hkucc.hku.hk; Chen Yuan, E-mail: chenyuan4@gmail.com; Wong, James M.W., E-mail: jmwwong@hku.hk

2013-01-15T23:59:59.000Z

131

China's Energy and Carbon Emissions Outlook to 2050  

SciTech Connect

As a result of soaring energy demand from a staggering pace of economic expansion and the related growth of energy-intensive industry, China overtook the United States to become the world's largest contributor to CO{sub 2} emissions in 2007. At the same time, China has taken serious actions to reduce its energy and carbon intensity by setting both a short-term energy intensity reduction goal for 2006 to 2010 as well as a long-term carbon intensity reduction goal for 2020. This study presents a China Energy Outlook through 2050 that assesses the role of energy efficiency policies in transitioning China to a lower emission trajectory and meeting its intensity reduction goals. Over the past few years, LBNL has established and significantly enhanced its China End-Use Energy Model which is based on the diffusion of end-use technologies and other physical drivers of energy demand. This model presents an important new approach for helping understand China's complex and dynamic drivers of energy consumption and implications of energy efficiency policies through scenario analysis. A baseline ('Continued Improvement Scenario') and an alternative energy efficiency scenario ('Accelerated Improvement Scenario') have been developed to assess the impact of actions already taken by the Chinese government as well as planned and potential actions, and to evaluate the potential for China to control energy demand growth and mitigate emissions. In addition, this analysis also evaluated China's long-term domestic energy supply in order to gauge the potential challenge China may face in meeting long-term demand for energy. It is a common belief that China's CO{sub 2} emissions will continue to grow throughout this century and will dominate global emissions. The findings from this research suggest that this will not necessarily be the case because saturation in ownership of appliances, construction of residential and commercial floor area, roadways, railways, fertilizer use, and urbanization will peak around 2030 with slowing population growth. The baseline and alternative scenarios also demonstrate that China's 2020 goals can be met and underscore the significant role that policy-driven energy efficiency improvements will play in carbon mitigation along with a decarbonized power supply through greater renewable and non-fossil fuel generation.

Zhou, Nan; Fridley, David; McNeil, Michael; Zheng, Nina; Ke, Jing; Levine, Mark

2011-02-15T23:59:59.000Z

132

Regional Shares of World Carbon Emissions, 1997 and 2020  

Gasoline and Diesel Fuel Update (EIA)

Shares of World Carbon Emissions, 1997 and 2020 Shares of World Carbon Emissions, 1997 and 2020 Source: EIA, International Energy Outlook 2000 Previous slide Back to first slide View graphic version Notes: By country, the world's dominant coal consumers-the United States and China-were also the top two contributors to world carbon emissions in 1997, at 24 percent and 13 percent of the world total, respectively. By 2020, however, the U.S. share of world carbon emissions is projected to decline to 20 percent, with China's share increasing to 21 percent. The substantial increase in carbon emissions in China over the period is attributable to expectations of strong economic growth and the country's continuing heavy reliance on fossil fuels, especially coal which remains the country's primary source of energy.

133

Energy use and carbon emissions: Non-OECD countries  

SciTech Connect

This report surveys world energy use and carbon emissions patterns, with particular emphasis on the non-OECD countries. The non OECD is important not only because it currently makes up 84% of world population, but because its energy consumption, carbon emissions, population, and grow domestic product have all been growing faster than OECD`s. This presentation has seven major sections: (1) overview of key trends in non-OECD energy use and carbon emissions since 1970; (2) Comparison and contrasting energy use and carbon emissions for five major non OEDC regions (former Soviet Union and eastern Europe, Pacific Rim including China, Latin America, other Asia; Africa; 3-7) presentation of aggregate and sectoral energy use and carbon emissions data for countries within each of the 5 regions.

Not Available

1994-12-01T23:59:59.000Z

134

Carbon emissions and sequestration in forests: Case studies from seven developing countries. Volume 1, Summary: Draft  

SciTech Connect

Forests are a major source of carbon dioxide emissions in developing countries, in most cases far exceeding the emissions from the energy sector. To date, however, efforts at quantifying forestry emissions have produced a wide range of results. In order to assist policymakers in developing measures to reduce emissions` levels and to increase carbon sequestration, the Tropical Forest Research Network (F-7) has undertaken this effort to improve the precision of emissions estimates and to identify possible response options in the forestry sector. This paper summarizes the results of one component of this work. The Tropical Forest Research Network (F-7) was established in 1990 as part of the Intergovernmental Panel on Climate Change`s (IPCC) activities in examining growing emissions of greenhouse gases and their potential impact on the global climate. Unlike past methods, this study relied on a network of participants from developing countries to prepare estimates of carbon emissions. The participating countries -- Brazil, China, India, Indonesia, Malaysia, Mexico and Thailand -- currently represent an estimated two-thirds of the annual deforestation of closed moist forests. This study gives an estimate of 837 million tonnes of carbon emissions from deforestation and logging in the F-7 countries in 1990. A proportional projection of these estimates to the tropical biome shows that the total carbon emissions are between 1.1 and 1.7 billion tonnes of carbon, with a working average of 1.4 billion tonnes per year. This work also provides estimates of emissions and uptake from China, which past studies rarely have included. This summary will be followed by individual reports by each of the participating countries, which will include detailed evaluations of possible response options. Estimates for Nigeria are also under preparation.

Makundi, W.; Sathaye, J. [eds.; Cerutti, O.M.

1992-08-01T23:59:59.000Z

135

Carbon emissions and sequestration in forests: Case studies from seven developing countries  

SciTech Connect

Forests are a major source of carbon dioxide emissions in developing countries, in most cases far exceeding the emissions from the energy sector. To date, however, efforts at quantifying forestry emissions have produced a wide range of results. In order to assist policymakers in developing measures to reduce emissions' levels and to increase carbon sequestration, the Tropical Forest Research Network (F-7) has undertaken this effort to improve the precision of emissions estimates and to identify possible response options in the forestry sector. This paper summarizes the results of one component of this work. The Tropical Forest Research Network (F-7) was established in 1990 as part of the Intergovernmental Panel on Climate Change's (IPCC) activities in examining growing emissions of greenhouse gases and their potential impact on the global climate. Unlike past methods, this study relied on a network of participants from developing countries to prepare estimates of carbon emissions. The participating countries -- Brazil, China, India, Indonesia, Malaysia, Mexico and Thailand -- currently represent an estimated two-thirds of the annual deforestation of closed moist forests. This study gives an estimate of 837 million tonnes of carbon emissions from deforestation and logging in the F-7 countries in 1990. A proportional projection of these estimates to the tropical biome shows that the total carbon emissions are between 1.1 and 1.7 billion tonnes of carbon, with a working average of 1.4 billion tonnes per year. This work also provides estimates of emissions and uptake from China, which past studies rarely have included. This summary will be followed by individual reports by each of the participating countries, which will include detailed evaluations of possible response options. Estimates for Nigeria are also under preparation.

Makundi, W.; Sathaye, J. (eds.); Cerutti, O.M.

1992-08-01T23:59:59.000Z

136

China's Industrial Carbon Dioxide Emissions in Manufacturing Subsectors and in Selected Provinces  

E-Print Network (OSTI)

U.S. Energy-Related Carbon Dioxide Emissions, 2010. AugustChinas Industrial Carbon Dioxide Emissions in ManufacturingChinas Industrial Carbon Dioxide Emissions in Manufacturing

Lu, Hongyou

2013-01-01T23:59:59.000Z

137

Distributed Energy Resources for Carbon Emissions Mitigation  

E-Print Network (OSTI)

2003. Gas-Fired Distributed Energy Resource TechnologyATIONAL L ABORATORY Distributed Energy Resources for CarbonFirestone 5128 Distributed Energy Resources for Carbon

Firestone, Ryan; Marnay, Chris

2008-01-01T23:59:59.000Z

138

Cost and carbon emissions of coal and combined cycle power plants...  

NLE Websites -- All DOE Office Websites (Extended Search)

Cost and carbon emissions of coal and combined cycle power plants in India: international implications Title Cost and carbon emissions of coal and combined cycle power plants in...

139

Production, Energy, and Carbon Emissions: A Data Profile of the Iron and Steel Industry  

Reports and Publications (EIA)

Energy-related carbon emissions in manufacturing analysis and issues related to the energy use, energy efficiency, and carbon emission indicators.

Information Center

2000-09-14T23:59:59.000Z

140

Constraining the Ratio of Global Warming to Cumulative CO2 Emissions Using CMIP5 Simulations  

Science Conference Proceedings (OSTI)

The ratio of warming to cumulative emissions of carbon dioxide has been shown to be approximately independent of time and emissions scenarios and directly relates emissions to temperature. It is therefore a potentially important tool for climate ...

Nathan P. Gillett; Vivek K. Arora; Damon Matthews; Myles R. Allen

2013-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "global carbon emissions" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Constraining the ratio of global warming to cumulative CO2 emissions using CMIP5 simulations  

Science Conference Proceedings (OSTI)

The ratio of warming to cumulative emissions of carbon dioxide has been shown to be approximately independent of time and emissions scenario, and directly relates emissions to temperature. It is therefore a potentially important tool for climate ...

Nathan P. Gillett; Vivek K. Arora; Damon Matthews; Myles R. Allen

142

Estimated Carbon Dioxide Emissions in 2008: United States  

Science Conference Proceedings (OSTI)

Flow charts depicting carbon dioxide emissions in the United States have been constructed from publicly available data and estimates of state-level energy use patterns. Approximately 5,800 million metric tons of carbon dioxide were emitted throughout the United States for use in power production, residential, commercial, industrial, and transportation applications in 2008. Carbon dioxide is emitted from the use of three major energy resources: natural gas, coal, and petroleum. The flow patterns are represented in a compact 'visual atlas' of 52 state-level (all 50 states, the District of Columbia, and one national) carbon dioxide flow charts representing a comprehensive systems view of national CO{sub 2} emissions. Lawrence Livermore National Lab (LLNL) has published flow charts (also referred to as 'Sankey Diagrams') of important national commodities since the early 1970s. The most widely recognized of these charts is the U.S. energy flow chart (http://flowcharts.llnl.gov). LLNL has also published charts depicting carbon (or carbon dioxide potential) flow and water flow at the national level as well as energy, carbon, and water flows at the international, state, municipal, and organizational (i.e. United States Air Force) level. Flow charts are valuable as single-page references that contain quantitative data about resource, commodity, and byproduct flows in a graphical form that also convey structural information about the system that manages those flows. Data on carbon dioxide emissions from the energy sector are reported on a national level. Because carbon dioxide emissions are not reported for individual states, the carbon dioxide emissions are estimated using published energy use information. Data on energy use is compiled by the U.S. Department of Energy's Energy Information Administration (U.S. EIA) in the State Energy Data System (SEDS). SEDS is updated annually and reports data from 2 years prior to the year of the update. SEDS contains data on primary resource consumption, electricity generation, and energy consumption within each economic sector. Flow charts of state-level energy usage and explanations of the calculations and assumptions utilized can be found at: http://flowcharts.llnl.gov. This information is translated into carbon dioxide emissions using ratios of carbon dioxide emissions to energy use calculated from national carbon dioxide emissions and national energy use quantities for each particular sector. These statistics are reported annually in the U.S. EIA's Annual Energy Review. Data for 2008 (US. EIA, 2010) was updated in August of 2010. This is the first presentation of a comprehensive state-level package of flow charts depicting carbon dioxide emissions for the United States.

Smith, C A; Simon, A J; Belles, R D

2011-04-01T23:59:59.000Z

143

World Carbon Emissions, 1990, 2010, and 2020  

U.S. Energy Information Administration (EIA)

Even if the Annex I countries were to reach the emissions levels specified under the Kyoto Climate Change Protocol, ...

144

Table 21. Total Energy Related Carbon Dioxide Emissions, Projected...  

U.S. Energy Information Administration (EIA) Indexed Site

Total Energy Related Carbon Dioxide Emissions, Projected vs. Actual Projected (million metric tons) 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008...

145

Regional Shares of World Carbon Emissions, 1997 and 2020  

Annual Energy Outlook 2012 (EIA)

coal consumers-the United States and China-were also the top two contributors to world carbon emissions in 1997, at 24 percent and 13 percent of the world total, respectively. By...

146

Figure 5. Energy-related carbon dioxide emissions in four ...  

U.S. Energy Information Administration (EIA)

Sheet3 Sheet2 Sheet1 Reference High Oil/Gas Resouce CO2$15 CO2$15HR Released: May 2, 2013 Figure 5. Energy-related carbon dioxide emissions in four ...

147

World Carbon Emissions: IEO2000 vs. IEO99  

U.S. Energy Information Administration (EIA)

If world energy consumption rises to the levels projected in the IEO2000 reference case, carbon emissions would grow to 8.1 billion metric tons in 2010 (or 40 percent ...

148

World Carbon Emissions by Region, 1990-2020  

U.S. Energy Information Administration (EIA)

World carbon emissions are expected to reach 8.0 billion metric tons by 2010 and 9.8 billion metric tons by 2020 according to the IEO99 reference case projection ...

149

Regional Shares of World Carbon Emissions, 1997 and 2020  

U.S. Energy Information Administration (EIA)

By country, the worlds dominant coal consumersthe United States and Chinawere also the top two contributors to world carbon emissions in 1997, at 24 percent ...

150

World energy consumption and carbon dioxide emissions : 1950-2050  

E-Print Network (OSTI)

Emissions of carbon dioxide form combustion of fossil fuels, which may contribute to long-term climate change, are projected through 2050 using reduced form models estimated with national-level panel data for the period ...

Schmalensee, Richard

1995-01-01T23:59:59.000Z

151

World energy consumption and carbon dioxide emissions : 1950-2050  

E-Print Network (OSTI)

Emissions of carbon dioxide from combustion of fossil fuels, which may contribute to long-term climate change, are projected through 2050 using reduced form models estimated with national-level panel data for the period ...

Schmalensee, Richard.; Stoker, Thomas M.; Judson, Ruth A.

152

Energy-related carbon dioxide emissions down in 2011 - Today ...  

U.S. Energy Information Administration (EIA)

Annual energy-related carbon dioxide (CO 2) emissions fell 2.4% in 2011 compared to the level in 2010. Several factors combined to produce this drop, including slower ...

153

Short-Term Energy Carbon Dioxide Emissions Forecasts August 2009  

Reports and Publications (EIA)

Supplement to the Short-Term Energy Outlook. Short-term projections for U.S. carbon dioxide emissions of the three fossil fuels: coal, natural gas, and petroleum.

Information Center

2009-08-11T23:59:59.000Z

154

U.S. Energy-Related Carbon Dioxide Emissions, 2012  

U.S. Energy Information Administration (EIA) Indexed Site

Energy-Related Carbon Dioxide Emissions, 2012 October 2013 Independent Statistics & Analysis www.eia.gov U.S. Department of Energy Washington, DC 20585 October 2013 U.S. Energy...

155

Energy-related carbon dioxide emissions declined in 2012 ...  

U.S. Energy Information Administration (EIA)

Energy-related carbon dioxide (CO 2) emissions in 2012 were the lowest in the United States since 1994, at 5.3 billion metric tons of CO 2 (see figure above).

156

ME EET Seminar: Black Carbon: Snow Albedo Reduction and Emissions...  

NLE Websites -- All DOE Office Websites (Extended Search)

ME EET Seminar: Black Carbon: Snow Albedo Reduction and Emissions from Cookstoves Speaker(s): Thomas Kirchstetter Date: February 3, 2010 - 12:00pm Location: Campus TBD For more...

157

Carbon Emissions: Food Industry - Energy Information Administration  

U.S. Energy Information Administration (EIA)

The wet corn milling industry emits almost a sixth of the energy-related carbon in the food industry. ...

158

An Analysis of Fuel Demand and Carbon Emissions in China  

E-Print Network (OSTI)

Under the Kyoto Protocol to the United Nations Framework Convention on Climate Change, targets have been set for various developed countries to reduce their carbon emissions. China's share of carbon emissions ranked the second highest in the world in 1996, only after the United States. Although China was not formally required to achieve a reduction in its carbon emissions under the protocol, pressures were mounting, especially from the United States, for China to address the issue seriously. Some recent research on China's carbon emissions has largely been carried out in the framework of computable general equilibrium models. For example, Fisher-Vanden (2003) used such models to assess the impact of market reforms on shaping the level and composition of carbon emissions; Garbaccio et al. (1999) and Zhang (1998) studied macroeconomic and sectoral effects of policies and instruments, such as, a carbon tax, on achieving predefined targets of carbon emissions. A common omission in these studies is the role of fuel price changes in determining the amount of carbon emissions. This paper first shows China's total CO2 emissions from burning all types of fossil fuels over the 50 years or so to 2001, with those from burning coal singled out for the purpose of illustrating coal as the major CO2 emitter. Then, using annual data for the period 1985-2000, the study investigates whether changes in the relative prices of various fuels reduce coal consumption. Four sectors in the Chinese economy are selected for the study, namely, the chemical industry, the metal industry, the non-metal materials industry and the residential sector, which are top energy as well as top coal consumers. Five fuels are considered, namely, coal, crude oil, electricity, natural gas and petroleum products, ...

Baiding Hu Department; Baiding Hu

2004-01-01T23:59:59.000Z

159

Black Carbons Properties and Role in the Environment: A Comprehensive Review  

E-Print Network (OSTI)

NOAA/ESRL. Mauna Loa Carbon Dioxide Annual Mean Data.H. Can reducing black carbon emissions counteract globalanalysis of black carbon in soils. Global Biogeochem. Cycle.

Shrestha, Gyami

2010-01-01T23:59:59.000Z

160

Phase relation between global temperature and atmospheric carbon dioxide  

E-Print Network (OSTI)

The primary ingredient of Anthropogenic Global Warming hypothesis is the assumption that atmospheric carbon dioxide variations are the cause for temperature variations. In this paper we discuss this assumption and analyze it on basis of bi-centenary measurements and using a relaxation model which causes phase shifts and delays.

Stallinga, Peter

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "global carbon emissions" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Stabilization Wedges and the Management of Global Carbon for the Next 50 Years  

Science Conference Proceedings (OSTI)

More than 40 years after receiving a Ph.D. in physics, I am still working on problems where conservation laws matter. In particular, for the problems I work on now, the conservation of the carbon atom matters. I will tell the saga of an annual flow of 8 billion tons of carbon associated with the global extraction of fossil fuels from underground. Until recently, it was taken for granted that virtually all of this carbon will move within weeks through engines of various kinds and then into the atmosphere. For compelling environmental reasons, I and many others are challenging this complacent view, asking whether the carbon might wisely be directed elsewhere. To frame this and similar discussions, Steve Pacala and I introduced the 'stabilization wedge' in 2004 as a useful unit for discussing climate stabilization. Updating the definition, a wedge is the reduction of CO2 emissions by one billion tons of carbon per year in 2057, achieved by any strategy generated as a result of deliberate attention to global carbon. Each strategy uses already commercialized technology, generally at much larger scale than today. Implementing seven wedges should enable the world to achieve the interim goal of emitting no more CO2 globally in 2057 than today. This would place humanity, approximately, on a path to stabilizing CO2 at less than double the pre-industrial concentration, and it would put those at the helm in the following 50 years in a position to drive CO2 emissions to a net of zero in the following 50 years. Arguably, the tasks of the two half-centuries are comparably difficult.

Socolow, Robert (Princeton University)

2007-04-18T23:59:59.000Z

162

Strategic Analysis of the Global Status of Carbon Capture and Storage:  

Open Energy Info (EERE)

form form View source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit with form History Facebook icon Twitter icon » Strategic Analysis of the Global Status of Carbon Capture and Storage: Country Studies, Brazil Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Strategic Analysis of the Global Status of Carbon Capture and Storage: Country Studies, Brazil Focus Area: Clean Fossil Energy Topics: Policy Impacts Website: cdn.globalccsinstitute.com/sites/default/files/publications/8732/strat Equivalent URI: cleanenergysolutions.org/content/strategic-analysis-global-status-carb Policies: Regulations Regulations: "Emissions Mitigation Scheme,Mandates/Targets" is not in the list of possible values (Agriculture Efficiency Requirements, Appliance & Equipment Standards and Required Labeling, Audit Requirements, Building Certification, Building Codes, Cost Recovery/Allocation, Emissions Mitigation Scheme, Emissions Standards, Enabling Legislation, Energy Standards, Feebates, Feed-in Tariffs, Fuel Efficiency Standards, Incandescent Phase-Out, Mandates/Targets, Net Metering & Interconnection, Resource Integration Planning, Safety Standards, Upgrade Requirements, Utility/Electricity Service Costs) for this property.

163

Carbon dioxide emission during forest fires ignited by lightning  

E-Print Network (OSTI)

In this paper we developed the model for the carbon dioxide emission from forest fire. The master equation for the spreading of the carbon dioxide to atmosphere is the hyperbolic diffusion equation. In the paper we study forest fire ignited by lightning. In that case the fores fire has the well defined front which propagates with finite velocity.

Magdalena Pelc; Radoslaw Osuch

2009-03-31T23:59:59.000Z

164

Multi-layer carbon-based coatings for field emission  

DOE Patents (OSTI)

A multi-layer resistive carbon film field emitter device for cold cathode field emission applications. The multi-layered film of the present invention consists of at least two layers of a conductive carbon material, preferably amorphous-tetrahedrally coordinated carbon, where the resistivities of adjacent layers differ. For electron emission from the surface, the preferred structure can be a top layer having a lower resistivity than the bottom layer. For edge emitting structures, the preferred structure of the film can be a plurality of carbon layers, where adjacent layers have different resistivities. Through selection of deposition conditions, including the energy of the depositing carbon species, the presence or absence of certain elements such as H, N, inert gases or boron, carbon layers having desired resistivities can be produced.

Sullivan, John P. (Albuquerque, NM); Friedmann, Thomas A. (Albuquerque, NM)

1998-01-01T23:59:59.000Z

165

Sector trends and driving forces of global energy use and greenhouse gas emissions: focus in industry and buildings  

Science Conference Proceedings (OSTI)

Disaggregation of sectoral energy use and greenhouse gas emissions trends reveals striking differences between sectors and regions of the world. Understanding key driving forces in the energy end-use sectors provides insights for development of projections of future greenhouse gas emissions. This report examines global and regional historical trends in energy use and carbon emissions in the industrial, buildings, transport, and agriculture sectors, with a more detailed focus on industry and buildings. Activity and economic drivers as well as trends in energy and carbon intensity are evaluated. The authors show that macro-economic indicators, such as GDP, are insufficient for comprehending trends and driving forces at the sectoral level. These indicators need to be supplemented with sector-specific information for a more complete understanding of future energy use and greenhouse gas emissions.

Price, Lynn; Worrell, Ernst; Khrushch, Marta

1999-09-01T23:59:59.000Z

166

Do energy taxes decrease carbon dioxide emissions?.  

E-Print Network (OSTI)

?? This paper investigates the environmental effectiveness of the Swedish energy taxes. That is, whether these have decreased the CO2 emissions and how they have (more)

Sundqvist, Patrik

2007-01-01T23:59:59.000Z

167

Global carbon impacts of using forest harvest residues for district heating in Vermont  

DOE Green Energy (OSTI)

Forests in Vermont are selectively logged periodically to generate wood products and useful energy. Carbon remains stored in the wood products during their lifetime and in fossil fuel displaced by using these products in place of energy-intensive products. Additional carbon is sequestered by new forest growth, and the forest inventory is sustained using this procedure. A significant portion of the harvest residue can be used as biofuel in central plants to generate electricity and thermal energy, which also displaces the use of fossil fuels. The impact of this action on the global carbon balance was analyzed using a model derived from the Graz/Oak Ridge Carbon Accounting Model (GORCAM). The analysis showed that when forests are harvested only to manufacture wood products, more than 100 years are required to match the sequestered carbon present if the forest is left undisturbed. If part of the harvest residue is collected and used as biofuel in place of oil or natural gas, it is possible to reduce this time to about 90 years, but it is usually longer. Given that harvesting the forest for products will continue, carbon emission benefits relative to this practice can start within 10 to 70 years if part of the harvest residue is used as biofuel. This time is usually higher for electric generation plants, but it can be reduced substantially by converting to cogeneration operation. Cogeneration makes possible a ratio of carbon emission reduction for district heating to carbon emission increase for electricity generation in the range of 3 to 5. Additional sequestering benefits can be realized by using discarded wood products as biofuels.

McLain, H.A.

1998-07-01T23:59:59.000Z

168

Short-Term Energy Outlook Model Documentation: Carbon Dioxide (CO2) Emissions Model  

Reports and Publications (EIA)

Description of the procedures for estimating carbon dioxide emissions in the Short-Term Energy Outlook

Information Center

2009-08-11T23:59:59.000Z

169

Abatement of Air Pollution: Control of Carbon Dioxide Emissions/Carbon  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Carbon Dioxide Carbon Dioxide Emissions/Carbon Dioxide Budget Trading Program (Connecticut) Abatement of Air Pollution: Control of Carbon Dioxide Emissions/Carbon Dioxide Budget Trading Program (Connecticut) < Back Eligibility Agricultural Commercial Construction Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Connecticut

170

Tradeable CO sub 2 emission permits for cost-effective control of global warming  

SciTech Connect

Many current global warming mitigation policy proposals call for large, near-term reductions in CO{sub 2} emissions, thereby entailing high initial carbon emission tax rates or permit prices. This paper claims that these high initial tax rates or permit prices are not cost-effective in achieving the desired degree of climate change control. A cost-effective permit system is proposed and described that, under certain assumptions, would allow markets to optimally lead permit prices along a gradually increasing trajectory over tie. This price path presents the Hotelling result and would ease the abrupt, inefficient, and costly adjustments imposed on the fossil fuel and other industries in current proposals. This finding is demonstrated using the Argonne Model, a linear programming energy- environmental-economic model that allows for intertemporal optimization of consumer energy well-being. 12 refs., 3 figs., 1 tab.

Kosobud, R.F.; South, D.W.; Daly, T.A.; Quinn, K.G.

1991-01-01T23:59:59.000Z

171

Impact of European Emissions Trading System (EU-ETS) on carbon emissions and investment decisions in the power sector  

E-Print Network (OSTI)

This masters thesis assesses the impact of a emissions trading on short-term carbon abatement and investment decisions in the power sector. Environmental benefits from carbon abatement due to emissions trading are quantified ...

Feilhauer, Stephan M. (Stephan Marvin)

2009-01-01T23:59:59.000Z

172

Carbon Cycle  

NLE Websites -- All DOE Office Websites (Extended Search)

Carbon Cycle Carbon Cycle Latest Global Carbon Budget Estimates Including CDIAC Estimates Terrestrial Carbon Management Data Sets and Analyses Carbon Dioxide Emissions from Fossil-Fuel Consumption and Cement Manufacture, (2011) Annual Fossil-Fuel CO2 Emissions: Mass of Emissions Gridded by One Degree Latitude by One Degree Longitude (2012) Monthly Fossil-Fuel CO2 Emissions: Mass of Emissions Gridded by One Degree Latitude by One Degree Longitude (2012) Annual Fossil-Fuel CO2 Emissions: Global Stable Carbon Isotopic Signature (2012) Monthly Fossil-Fuel CO2 Emissions: Isomass (δ 13C) of Emissions Gridded by One Degree Latitude by One Degree Longitude (2012) AmeriFlux - Terrestrial Carbon Dioxide, Water Vapor, and Energy Balance Measurements Estimates of Monthly CO2 Emissions and Associated 13C/12C Values

173

Waste management activities and carbon emissions in Africa  

Science Conference Proceedings (OSTI)

This paper summarizes research into waste management activities and carbon emissions from territories in sub-Saharan Africa with the main objective of quantifying emission reductions (ERs) that can be gained through viable improvements to waste management in Africa. It demonstrates that data on waste and carbon emissions is poor and generally inadequate for prediction models. The paper shows that the amount of waste produced and its composition are linked to national Gross Domestic Product (GDP). Waste production per person is around half that in developed countries with a mean around 230 kg/hd/yr. Sub-Saharan territories produce waste with a biogenic carbon content of around 56% (+/-25%), which is approximately 40% greater than developed countries. This waste is disposed in uncontrolled dumps that produce large amounts of methane gas. Greenhouse gas (GHG) emissions from waste will rise with increasing urbanization and can only be controlled through funding mechanisms from developed countries.

Couth, R. [University of KwaZulu-Natal, CRECHE, School of Civil Engineering, Survey and Construction, Durban 4041 (South Africa); Trois, C., E-mail: troisc@ukzn.ac.za [University of KwaZulu-Natal, CRECHE, School of Civil Engineering, Survey and Construction, Durban 4041 (South Africa)

2011-01-15T23:59:59.000Z

174

Development of the Electricity Carbon Emission Factors for Ukraine | Open  

Open Energy Info (EERE)

Ukraine Ukraine Jump to: navigation, search Name Development of the Electricity Carbon Emission Factors for Ukraine Agency/Company /Organization European Bank for Reconstruction and Development Sector Energy Topics GHG inventory, Policies/deployment programs, Co-benefits assessment, Pathways analysis Resource Type Publications Website http://www.lahmeyer.de/fileadm Country Ukraine UN Region Eastern Europe References Development of the Electricity Carbon Emission Factors for Ukraine[1] "The study project "Development of the Electricity Carbon Emission Factors for Ukraine" was assigned by the European Bank for Development and Reconstruction (EBRD) to the consultant Lahmeyer International with Perspective as subcontractor on 16 July 2009. It is a baseline study with the overall goal to calculate reliable carbon

175

Carbon emissions and sequestration in forests: Case studies from seven developing countries  

SciTech Connect

Deforestation in Brazilian Amazonia in 1990 was releasing approximately 281--282 X 10{sup 6} metric tons (MT) of carbon on conversion to a landscape of agriculture, productive pasture, degraded pasture, secondary forest and regenerated forest in the proportions corresponding to the equilibrium condition implied by current land-use patterns. Emissions are expressed as committed carbon,'' or the carbon released over a period of years as the carbon stock in each hectare deforested approaches a new equilibrium in the landscape that replaces the original forest. To the extent that deforestation rates have remained constant, current releases from the areas deforested in previous years will be equal to the future releases from the areas being cleared now. Considering the quantities of carbon dioxide, carbon monoxide, methane, nitrous oxide, NO{sub x} and non-methane hydrocarbons released raises the impact by 22--37%. The relative impact on the greenhouse effect of each gas is based on the Intergovernmental Panel on Climate Change (IPCC) calculations over a 20-year time period (including indirect effects). The six gases considered have a combined global warming impact equivalent to 343 to 386 million MT of C0{sub 2}-equivalent carbon, depending on assumptions regarding the release of methane and other gases from the various sources such as burning and termites. These emissions represent 7--8 times the 50 million MT annual carbon release from Brazil's use of fossil fuels, but bring little benefit to the country. Stopping deforestation in Brazil would prevent as much greenhouse emission as tripling the fuel efficiency of all the automobiles in the world. The relatively cheap measures needed to contain deforestation, together with the many complementary benefits of doing so, make this the first priority for funds intended to slow global warming.

Makundi, W.; Sathaye, J. (eds.) (Lawrence Berkeley Lab., CA (United States)); Fearnside, P.M. (Instituto Nacional de Pesquisas da Amazonia (INPA), Manaus, AM (Brazil). Departmento de Ecologia)

1992-08-01T23:59:59.000Z

176

Are there basic physical constraints on future anthropogenic emissions of carbon dioxide?  

E-Print Network (OSTI)

Global Climate Models (GCMs) provide forecasts of future climate warming using a wide variety of highly sophisticated anthropogenic CO2 emissions models as input, each based on the evolution of four emissions "drivers": population p, standard of living g, energy productivity (or efficiency) f and energy carbonization c. The range of scenarios considered is extremely broad, however, and this is a primary source of forecast uncertainty. Here, it is shown both theoretically and observationally how the evolution of the human system can be considered from a surprisingly simple thermodynamic perspective in which it is unnecessary to explicitly model two of the emissions drivers: population and standard of living. Specifically, the human system grows through a self-perpetuating feedback loop in which the consumption rate of primary energy resources stays tied to the historical accumulation of global economic production - or p times g - through a time-independent factor of 9.7 +/- 0.3 milliwatts per inflation-adjuste...

Garrett, Timothy J

2008-01-01T23:59:59.000Z

177

New IPCC Tier-1 Global Biomass Carbon Map for the Year 2000  

NLE Websites -- All DOE Office Websites (Extended Search)

New IPCC Tier-1 Global Biomass Carbon Map for the Year 2000 Global Above- and Below-ground Living Biomass Carbon Density Submitted to ORNL-CDIAC by Aaron Ruesch and Holly K. Gibbs*...

178

Carbon Dioxide Emission Factors for Coal  

Reports and Publications (EIA)

The Energy Information Administration (EIA) has developed factors for estimating the amount of carbon dioxide emitted, accounting for differences among coals, to reflect the changing "mix" of coal in U.S. coal consumption.

William Watson

1994-08-01T23:59:59.000Z

179

Distributed Energy Resources for Carbon Emissions Mitigation  

E-Print Network (OSTI)

,to provide cooling. Solar technologies: Photovoltaics provide renewable electricity. Solar thermal collectors type in each location. City-specific weather,energy costs,and electric grid carbon-intensity values

180

Measurement of Black Carbon and Particle Number Emission Factors from  

NLE Websites -- All DOE Office Websites (Extended Search)

Measurement of Black Carbon and Particle Number Emission Factors from Measurement of Black Carbon and Particle Number Emission Factors from Individual Heavy-Duty Trucks Title Measurement of Black Carbon and Particle Number Emission Factors from Individual Heavy-Duty Trucks Publication Type Journal Article Year of Publication 2009 Authors Ban-Weiss, George, Melissa M. Lunden, Thomas W. Kirchstetter, and Robert A. Harley Journal Environmental Science and Technology Abstract Emission factors for black carbon (BC) and particle number (PN) were measured from 226 individual heavy-duty (HD) diesel-fueled trucks driving through a 1 km-long California highway tunnel in August 2006. Emission factors were based on concurrent increases in BC, PN, and COB2B concentrations (measured at 1 Hz) that corresponded to the passage of individual HD trucks. The distributions of BC and PN emission factors from individual HD trucks are skewed, meaning that a large fraction of pollution comes from a small fraction of the in-use vehicle fleet. The highest-emitting 10% of trucks were

Note: This page contains sample records for the topic "global carbon emissions" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Emission Scenario Dependency of Precipitation on Global Warming in the MIROC3.2 Model  

Science Conference Proceedings (OSTI)

The precipitation sensitivity per 1 K of global warming in twenty-first-century climate projections is smaller in an emission scenario with larger greenhouse gas concentrations and aerosol emissions, according to the Model for Interdisciplinary ...

Hideo Shiogama; Seita Emori; Kiyoshi Takahashi; Tatsuya Nagashima; Tomoo Ogura; Toru Nozawa; Toshihiko Takemura

2010-05-01T23:59:59.000Z

182

California's Carbon Challenge: Scenarios for Achieving 80% Emissions  

NLE Websites -- All DOE Office Websites (Extended Search)

Carbon Challenge: Scenarios for Achieving 80% Emissions Carbon Challenge: Scenarios for Achieving 80% Emissions Reduction in 2050 Title California's Carbon Challenge: Scenarios for Achieving 80% Emissions Reduction in 2050 Publication Type Report LBNL Report Number LBNL-5448E Year of Publication 2012 Authors Wei, Max, James H. Nelson, Michael K. Ting, Christopher Yang, J. Greenblatt, James E. McMahon, Daniel M. Kammen, Christopher M. Jones, Ana Mileva, Josiah Johnston, and Ranjit Bharvirkar Date Published 10/2012 Abstract Meeting the State of California's 2050 target of 80% lower greenhouse gas emissions (GHG) from a 1990 baseline is a challenging goal that cannot be met without a portfolio of measures and strategies that span both energy demand and energy supply. This study focuses on energy emissions with the target of reducing energy emissions by 80% relative to 1990 energy emissions. Meeting the 2050 target requires both a sustained commitment to aggressively develop existing technologies as well as an aggressive and sustained policy commitment to reshape and ultimately transform the state's energy system. The 2050 GHG target for California appears achievable, but requires significant changes in the way we produce energy, deliver energy services, and utilize energy.

183

Accounting for Carbon Dioxide Emissions from Bioenergy Systems  

DOE Green Energy (OSTI)

Researchers have recently argued that there is a 'critical climate accounting error' and that we should say 'goodbye to carbon neutral' for bioenergy. Many other analysts have published opionions on the same topic, and the US Environmental Protection Agency posted a specific call for information. The currently burning questions for carbon accounting is how to deal with bioenergy. The questions arises because, unlike for fossil fuels, burning of biomass fuels represents part of a cycle in which combustion releases back to the atmosphere carbon that was earlier removed from the atmosphere by growing plants. In a sustainable system, plants will again remove the carbon dioxide (CO{sub 2}) from the atmosphere. Conceptually, it is clear that there are no net emissions of the greenhouse gas CO{sub 2} if biomass is harvested and combusted at the same rate that biomass grows and removes CO{sub 2} from the atmosphere. The problem lies in the fact that growth and combustion do not occur at the same time or in the same place, and our accounting system boundaries - spatial and temporal - frequently do not provide full and balanced accounting. When the first comprehensive guidelines for estimating national greenhouse gas emissions and sinks were put together by the Organization for Economic Cooperation and Development, they noted that it has been argued that CO{sub 2} emissions resulting from bioenergy consumption should not be included in a country's official emission inventory because there are no net emissions if the biomass is produced sustainably, and if the biomass is not produced sustainably, the loss of carbon will be captured as part of the accounting for emissions from land-use change. In the same philosophical vein, the Kyoto Protocol provides that emissions or sinks of CO{sub 2} from land-use change and forestry activities be measured as the 'verifiable changes in carbon stocks'. From these has grown the convention that emissions from biomass fuels are generally not counted as part of emissions inventories, and biomass energy is sometimes referred to as being 'carbon neutral.' But what happens when a forest is harvested for fuel but takes 60 years to regrow or when biomass is harvested in a country that is not party to an international accord but is burned in a country that is party to an international accord? Biomass energy is only truly 'carbon neutral' if we get the system boundaries right. They need to make sure that the accounting methodology is compatible with our needs and realities in management and policy.

Marland, Gregg [ORNL

2010-12-01T23:59:59.000Z

184

World Carbon Emissions: IEO2000 vs. IEO99  

Gasoline and Diesel Fuel Update (EIA)

0 0 Notes: If world energy consumption rises to the levels projected in the IEO2000 reference case, carbon emissions would grow to 8.1 billion metric tons in 2010 (or 40 percent above the 1990 level) and 10.0 billion metric tons by 2020 (72 percent above the 1990 level). This year's forecasts are 129 million metric tons higher in 2010 relative to last year's forecast; and 192 million metric tons higher by 2020. The higher forecast for world carbon emissions can be attributed, in large part, to changes in the forecast for the FSU. Changes in the historical and projected carbon emissions for the FSU explain almost half of the increase between this year's IEO2000 and last year's report in 2010; and two-thirds of the difference in 2020. Historical data revisions

185

Evaluation of Black Carbon Estimations in Global Aerosol Models  

DOE Green Energy (OSTI)

We evaluate black carbon (BC) model predictions from the AeroCom model intercomparison project by considering the diversity among year 2000 model simulations and comparing model predictions with available measurements. These model-measurement intercomparisons include BC surface and aircraft concentrations, aerosol absorption optical depth (AAOD) from AERONET and OMI retrievals and BC column estimations based on AERONET. In regions other than Asia, most models are biased high compared to surface concentration measurements. However compared with (column) AAOD or BC burden retreivals, the models are generally biased low. The average ratio of model to retrieved AAOD is less than 0.7 in South American and 0.6 in African biomass burning regions; both of these regions lack surface concentration measurements. In Asia the average model to observed ratio is 0.6 for AAOD and 0.5 for BC surface concentrations. Compared with aircraft measurements over the Americas at latitudes between 0 and 50N, the average model is a factor of 10 larger than observed, and most models exceed the measured BC standard deviation in the mid to upper troposphere. At higher latitudes the average model to aircraft BC is 0.6 and underestimate the observed BC loading in the lower and middle troposphere associated with springtime Arctic haze. Low model bias for AAOD but overestimation of surface and upper atmospheric BC concentrations at lower latitudes suggests that most models are underestimating BC absorption and should improve estimates for refractive index, particle size, and optical effects of BC coating. Retrieval uncertainties and/or differences with model diagnostic treatment may also contribute to the model-measurement disparity. Largest AeroCom model diversity occurred in northern Eurasia and the remote Arctic, regions influenced by anthropogenic sources. Changing emissions, aging, removal, or optical properties within a single model generated a smaller change in model predictions than the range represented by the full set of AeroCom models. Upper tropospheric concentrations of BC mass from the aircraft measurements are suggested to provide a unique new benchmark to test scavenging and vertical dispersion of BC in global models.

Koch, D.; Schulz, M.; Kinne, Stefan; McNaughton, C. S.; Spackman, J. R.; Balkanski, Y.; Bauer, S.; Berntsen, T.; Bond, Tami C.; Boucher, Olivier; Chin, M.; Clarke, A. D.; De Luca, N.; Dentener, F.; Diehl, T.; Dubovik, O.; Easter, Richard C.; Fahey, D. W.; Feichter, J.; Fillmore, D.; Freitag, S.; Ghan, Steven J.; Ginoux, P.; Gong, S.; Horowitz, L.; Iversen, T.; Kirkevag, A.; Klimont, Z.; Kondo, Yutaka; Krol, M.; Liu, Xiaohong; Miller, R.; Montanaro, V.; Moteki, N.; Myhre, G.; Penner, J.; Perlwitz, Ja; Pitari, G.; Reddy, S.; Sahu, L.; Sakamoto, H.; Schuster, G.; Schwarz, J. P.; Seland, O.; Stier, P.; Takegawa, Nobuyuki; Takemura, T.; Textor, C.; van Aardenne, John; Zhao, Y.

2009-11-27T23:59:59.000Z

186

Carbon-containing cathodes for enhanced electron emission  

DOE Patents (OSTI)

A cathode has electropositive atoms directly bonded to a carbon-containing substrate. Preferably, the substrate comprises diamond or diamond-like (sp.sup.3) carbon, and the electropositive atoms are Cs. The cathode displays superior efficiency and durability. In one embodiment, the cathode has a negative electron affinity (NEA). The cathode can be used for field emission, thermionic emission, or photoemission. Upon exposure to air or oxygen, the cathode performance can be restored by annealing or other methods. Applications include detectors, electron multipliers, sensors, imaging systems, and displays, particularly flat panel displays.

Cao, Renyu (Cupertino, CA); Pan, Lawrence (Pleasanton, CA); Vergara, German (Madrid, ES); Fox, Ciaran (Los Altos, CA)

2000-01-01T23:59:59.000Z

187

Energy-Related Carbon Emissions, by Industry, 1994  

U.S. Energy Information Administration (EIA) Indexed Site

Energy Efficiency Page > Energy Energy-Related Carbon Emissions > Total Table Energy Efficiency Page > Energy Energy-Related Carbon Emissions > Total Table Total Energy-Related Carbon Emissions for Manufacturing Industries, 1994 Carbon Emissions (million metric tons) Carbon Intensity SIC Code Industry Group Total Net Electricity Natural Gas Petro- leum Coal Other (MMTC/ Quadrillion Btu) Total 371.7 131.1 93.5 87.3 56.8 3.1 17.16 20 Food and Kindred Products 24.4 9.8 9.1 W W 0.1 20.44 21 Tobacco Products W 0.1 W W W W W 22 Textile Mill Products 8.7 5.5 1.7 0.6 1.0 * 28.21 23 Apparel and Other Textile Products W 1.3 0.4 W W W W 24 Lumber and Wood Products 4.9 3.4 0.7 W W 0.2 9.98 25 Furniture and Fixtures 1.6 1.1 0.3 * 0.1 0.1 23.19 26 Paper and Allied Products 31.6 11.0 8.3 4.3 7.8 0.3 11.88

188

Options for reducing carbon dioxide emissions  

Science Conference Proceedings (OSTI)

Improvements in energy efficiency can significantly reduce the annual growth in greenhouse gas emissions. Such improvements occur when energy intensity is reduced; no reduction in energy services is required. Using the concept of cost of conserved energy'' to develop conservation supply curves similar to resource supply curves, researchers consistently find that electricity and natural gas savings of nearly 50% of current consumption are possible for US buildings. Such reductions in energy consumption directly reduce emissions of greenhouse gases. To capture these savings, we must continue to develop energy-efficient technologies and strategies. This paper describes three recent energy-efficient technologies that benefited from energy conservation research and development (R D) funding: high-frequency ballasts, compact fluorescent lamps, and low-emissivity windows. Other advanced technologies and strategies of spectrally selective windows, superwindows, electrochromic windows, advanced insulation, low-flow showerheads, improved recessed lamp fixtures, whitening surfaces and planting urban trees, daylighting, and thermal energy storage are also discussed. 33 refs., 9 figs., 3 tabs.

Rosenfeld, A.H.; Price, L.

1991-08-01T23:59:59.000Z

189

Sectoral trends in global energy use and greenhouse gas emissions  

E-Print Network (OSTI)

LBNL-56144 Sectoral Trends in Global Energy Use andAC02-05CH11231. ii Sectoral Trends in Global Energy Use andConsumption iii iv Sectoral Trends in Global Energy Use and

2006-01-01T23:59:59.000Z

190

Electricity Load and Carbon Dioxide Emissions: Effects of a Carbon Price in the Short Term  

Science Conference Proceedings (OSTI)

acceptable levels will require a dramatic de-carbonization of the electric generation sector in the U.S. One increasingly discussed way to meet this policy goal is to put an explicit price on carbon emissions, either through a tax or a trading scheme. ...

Adam Newcomer; Seth Blumsack; Jay Apt; Lester B. Lave; M. Granger Morgan

2008-01-01T23:59:59.000Z

191

Chemistry of organic carbon in soil with relationship to the global carbon cycle  

SciTech Connect

Various ecosystem disturbances alter the balances between production of organic matter and its decomposition and therefore change the amount of carbon in soil. The most severe perturbation is conversion of natural vegetation to cultivated crops. Conversion of natural vegetation to cultivated crops results in a lowered input of slowly decomposing material which causes a reduction in overall carbon levels. Disruption of soil matrix structure by cultivation leads to lowered physical protection of organic matter resulting in an increased net mineralization rate of soil carbon. Climate change is another perturbation that affects the amount and composition of plant production, litter inputs, and decomposition regimes but does not affect soil structure directly. Nevertheless, large changes in soil carbon storage are probable with anticipated CO2 induced climate change, particularly in northern latitudes where anticipated climate change will be greatest (MacCracken and Luther 1985) and large amounts of soil organic matter are found. It is impossible, given the current state of knowledge of soil organic matter processes and transformations to develop detailed process models of soil carbon dynamics. Largely phenomenological models appear to be developing into predictive tools for understanding the role of soil organic matter in the global carbon cycle. In particular, these models will be useful in quantifying soil carbon changes due to human land-use and to anticipated global climate and vegetation changes. 47 refs., 7 figs., 2 tabs.

Post, W.M. III

1988-01-01T23:59:59.000Z

192

Enduse Global Emissions Mitigation Scenarios (EGEMS): A New Generation...  

NLE Websites -- All DOE Office Websites (Extended Search)

Appliance Efficiency, bottom-up, china, emissions scenarios, end use, energy demand, forecasting, greenhouse gas emissions, india, modelling, Multi-Country, refrigerators URL...

193

Barnsley Biomass Working towards carbon emissions reduction in Yorkshire  

E-Print Network (OSTI)

Barnsley Biomass Working towards carbon emissions reduction in Yorkshire objectives Fifteen years Yorkshire town are being replaced by a cleaner, green alternative: biomass. Barnsley's Communal Biomass on to residents. · To increase energy efficiency. · To develop biomass usage in new and refurbished public

194

China's Energy and Carbon Emissions Outlook to 2050  

E-Print Network (OSTI)

LBNL-4472E China's Energy and Carbon Emissions Outlook to 2050 Nan Zhou, David Fridley, Michael McNeil, Nina Zheng, Jing Ke, and Mark Levine China Energy Group Energy Analysis Department Environmental Energy Technologies Division Lawrence Berkeley National Laboratory April 2011 This work was supported by the China

195

Table 11.2d Carbon Dioxide Emissions From Energy Consumption ...  

U.S. Energy Information Administration (EIA)

2 Carbon dioxide emissions from biomass energy consumption are excluded from total emissions in this table. ... non-combustion use of fossil fuels.

196

Table 11.2c Carbon Dioxide Emissions From Energy Consumption ...  

U.S. Energy Information Administration (EIA)

9 Wood and wood-derived fuels. 2 Carbon dioxide emissions from biomass energy consumption are excluded from total emissions in this ... non-combustion use of fossil ...

197

Evolution of anthropogenic and biomass burning emissions of air pollutants at global and regional scales during the 1980-2010 period  

Science Conference Proceedings (OSTI)

Several different inventories of global and regional anthropogenic and biomass burning emissions are assessed for the 1980-2010 period. The species considered in this study are carbon monoxide, nitrogen oxides, sulfur dioxide and black carbon. The inventories considered include the ACCMIP historical emissions developed in support of the simulations for the IPCC AR5 assessment. Emissions for 2005 and 2010 from the Representative Concentration Pathways (RCPs) are also included. Large discrepancies between the global and regional emissions are identified, which shows that there is still no consensus on the best estimates for surface emissions of atmospheric compounds. At the global scale, anthropogenic emissions of CO, NOx and SO2 show the best agreement in most years. The agreement is low for BC emissions, particularly in the period prior to 2000. The best consensus is for NOx emissions for all periods and all regions, except for China where emissions in 1980 and 1990 need to be better defined. Emissions of CO need a better quantification in the USA for all periods; in Central Europe, the evolution of emissions during the past two decades needs to be better determined. The agreement between the different SO2 emissions datasets is rather good for the USA, but better quantification is needed elsewhere, particularly for Central Europe and China. The comparisons performed in this study show that the use of RCP8.5 for the extension of the ACCMIP inventory beyond 2000 is reasonable, until more global or regional estimates become available. Concerning biomass burning emissions, most inventories agree within 50-80%, depending on the year and season. The large differences are due to differences in the estimates of burned areas from the different available products, as well as in the amount of biomass burnt.

Granier, Claire; Bessagnet, Bertrand; Bond, Tami C.; D'Angiola, Ariela; Denier van der Gon, Hugo; Frost, G. J.; Heil, Angelika; Kaiser, Johannes W.; Kinne, Stefan; Klimont, Z.; Kloster, Jean; Lamarque, J.-F.; Liousse, Catherine; Masui, Toshihiko; Meleux, Frederik; Mieville, Aude; Ohara, Toshimasa; Raut, Jean-Christophe; Riahi, Keywan; Schultz, Martin; Smith, Steven J.; Thomson, Allison M.; van Aardenne, John; van der Werf, Guido R.; Van Vuuren, Detlef

2011-08-08T23:59:59.000Z

198

Estimates of Global, Regional, and National Annual CO2 Emissions from  

NLE Websites -- All DOE Office Websites (Extended Search)

0 (1995) 0 (1995) (click above to download the data!) Estimates of Global, Regional, and Naitonal Annual CO2 Emissions from Fossil-Fuel Burning, Hydraulic Cement Production, and Gas Flaring: 1950-1992 NDP-030/R6 Cover T. A. Boden G. Marland Environmental Sciences Division Oak Ridge National Laboratory Oak Ridge, Tennessee R. J. Andres Institute of Northern Engineering School of Engineering University of Alaska-Fairbanks Fairbanks, Alaska Environmental Sciences Division Publication No. 4473 Date Published: December 1995 Prepared for the Environmental Sciences Division Office of Biological and Environmental Research Budget Activity Number KP 05 02 00 0 Prepared by the Carbon Dioxide Information Analysis Center World Data Center-A for Atmospheric Trace Gases OAK RIDGE NATIONAL LABORATORY

199

Estimating Carbon Supply Curves for Global Forests and Other Land Uses |  

Open Energy Info (EERE)

Estimating Carbon Supply Curves for Global Forests and Other Land Uses Estimating Carbon Supply Curves for Global Forests and Other Land Uses Jump to: navigation, search Tool Summary Name: Estimating Carbon Supply Curves for Global Forests and Other Land Uses Agency/Company /Organization: Resources for the Future Sector: Land Focus Area: Forestry, Agriculture Topics: GHG inventory, Resource assessment Resource Type: Guide/manual Website: www.rff.org/documents/RFF-DP-01-19.pdf Estimating Carbon Supply Curves for Global Forests and Other Land Uses Screenshot References: Estimating Carbon Supply Curves for Global Forests and Other Land Uses[1] Abstract "This study develops cumulative carbon "supply curves" for global forests utilizing an dynamic timber supply model for sequestration of forest carbon. Because the period of concern is the next century, and

200

Tracing Fuel Component Carbon in the Emissions from Diesel Engines  

DOE Green Energy (OSTI)

The addition of oxygenates to diesel fuel can reduce particulate emissions, but the underlying chemical pathways for the reductions are not well understood. While measurements of particulate matter (PM), unburned hydrocarbons (HC), and carbon monoxide (CO) are routine, determining the contribution of carbon atoms in the original fuel molecules to the formation of these undesired exhaust emissions has proven difficult. Renewable bio-derived fuels (ethanol or bio-diesel) containing a universal distribution of contemporary carbon are easily traced by accelerator mass spectrometry (AMS). These measurements provide general information about the emissions of bio-derived fuels. Another approach exploits synthetic organic chemistry to place {sup 14}C atoms in a specific bond position in a specific fuel molecule. The highly labeled fuel molecule is then diluted in {sup 14}C-free petroleum-derived stock to make a contemporary petroleum fuel suitable for tracing. The specific {sup 14}C atoms are then traced through the combustion event to determine whether they reside in PM, HC, CO, CO{sub 2}, or other emission products. This knowledge of how specific molecular structures produce certain emissions can be used to refine chemical-kinetic combustion models and to optimize fuel composition to reduce undesired emissions. Due to the high sensitivity of the technique and the lack of appreciable {sup 14}C in fossil fuels, fuels for AMS experiments can be labeled with modern levels of {sup 14}C and still produce a strong signal. Since the fuel is not radioactive, emission tests can be conducted in any conventional engine lab, dynamometer facility, or on the open road.

Buchholz, B A; Mueller, C J; Martin, G C; Cheng, A S E; Dibble, R W; Frantz, B R

2002-10-14T23:59:59.000Z

Note: This page contains sample records for the topic "global carbon emissions" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

EIA - AEO2010 - Accounting for carbon dioxide emissions from biomass energy  

Gasoline and Diesel Fuel Update (EIA)

Accounting for carbon diioxide emissions from biomass energy combustion Accounting for carbon diioxide emissions from biomass energy combustion Annual Energy Outlook 2010 with Projections to 2035 Accounting for carbon dioxide emissions from biomass energy combustion CO2 emissions from the combustion of biomass [75] to produce energy are excluded from the energy-related CO2 emissions reported in AEO2010. According to current international convention [76], carbon released through biomass combustion is excluded from reported energy-related emissions. The release of carbon from biomass combustion is assumed to be balanced by the uptake of carbon when the feedstock is grown, resulting in zero net emissions over some period of time [77]. However, analysts have debated whether increased use of biomass energy may result in a decline in terrestrial carbon stocks, leading to a net positive release of carbon rather than the zero net release assumed by its exclusion from reported energy-related emissions.

202

Estimates of the Global Indirect Energy-Use Emission Impacts of USA Biofuel Policy  

Science Conference Proceedings (OSTI)

This paper evaluates the indirect energy-use emission implications of increases in the use of biofuels in the USA between 2001 and 2010 as mandates within a dynamic global computable general equilibrium model. The study incorporates explicit markets for biofuels, petroleum and other fossil fuels, and accounts for interactions among all sectors of an 18-region global economy. It considers bilateral trade, as well as the dynamics of capital allocation and investment. Simulation results show that the biofuel mandates in the USA generate an overall reduction in global energy use and emissions over the simulation period from 2001 to 2030. Consequently, the indirect energy-use emission change or emission leakage under the mandate is negative. That is, global emission reductions are larger than the direct emission savings from replacing petroleum with biofuels under the USA RFS2 over the last decade. Under our principal scenario this enhanced the direct emission reduction from biofuels by about 66%. The global change in lifecycle energy-use emissions for this scenario was estimated to be about 93 million tons of CO2e in 2010, 45 million tons of CO2e in 2020, and an increase of 5 million tons of CO2e in 2030, relative to the baseline scenario. Sensitivity results of six alternative scenarios provided additional insights into the pattern of the regional and global effects of biofuel mandates on energy-use emissions.

Oladosu, Gbadebo A [ORNL

2012-01-01T23:59:59.000Z

203

Global Distribution of Total Inorganic Carbon and Total Alkalinity below the Deepest Winter Mixed Layer Depths  

SciTech Connect

Modeling the global ocean-atmosphere carbon dioxide system is becoming increasingly important to greenhouse gas policy. These models require initialization with realistic three-dimensional (3-D) oceanic carbon fields. This report presents an approach to establishing these initial conditions from an extensive global database of ocean carbon dioxide (CO{sub 2}) system measurements and well-developed interpolation methods.

Goyet, C.; Healy, R.; Ryan, J.; Kozyr, A.

2000-05-01T23:59:59.000Z

204

Modeling aviation's global emissions, uncertainty analysis, and applications to policy  

E-Print Network (OSTI)

(cont.) fuel burn results below 3000 ft. For emissions, the emissions indices were the most influential uncertainties for the variance in model outputs. By employing the model, this thesis examined three policy options for ...

Lee, Joosung Joseph, 1974-

2005-01-01T23:59:59.000Z

205

Energy, Carbon-emission and Financial Savings from Thermostat Control  

SciTech Connect

Among the easiest approaches to energy, and cost, savings for most people is the adjustment of thermostats to save energy. Here we estimate savings of energy, carbon, and money in the United States of America (USA) that would result from adjusting thermostats in residential and commercial buildings by about half a degree Celsius downward during the heating season and upward during the cooling season. To obtain as small a unit as possible, and therefore the least likely to be noticeable by most people, we selected an adjustment of one degree Fahrenheit (0.56 degree Celsius) which is the gradation used almost exclusively on thermostats in the USA and is the smallest unit of temperature that has been used historically. Heating and/or cooling of interior building space for personal comfort is sometimes referred to as space conditioning, a term we will use for convenience throughout this work without consideration of humidity. Thermostat adjustment, as we use the term here, applies to thermostats that control the indoor temperature, and not to other thermostats such as those on water heaters. We track emissions of carbon only, rather than of carbon dioxide, because carbon atoms change atomic partners as they move through the carbon cycle, from atmosphere to biosphere or ocean and, on longer time scales, through the rock cycle. To convert a mass of carbon to an equivalent mass of carbon dioxide (thereby including the mass of the 2 oxygen atoms in each molecule) simply multiply by 3.67.

Blasing, T J [ORNL; Schroeder, Dana [University of Georgia, Athens, GA

2013-08-01T23:59:59.000Z

206

Carbon emissions and sequestration in forests: Case studies from seven developing countries. Volume 2, Greenhouse gas emissions from deforestration in the Brazilian Amazon  

SciTech Connect

Deforestation in Brazilian Amazonia in 1990 was releasing approximately 281--282 X 10{sup 6} metric tons (MT) of carbon on conversion to a landscape of agriculture, productive pasture, degraded pasture, secondary forest and regenerated forest in the proportions corresponding to the equilibrium condition implied by current land-use patterns. Emissions are expressed as ``committed carbon,`` or the carbon released over a period of years as the carbon stock in each hectare deforested approaches a new equilibrium in the landscape that replaces the original forest. To the extent that deforestation rates have remained constant, current releases from the areas deforested in previous years will be equal to the future releases from the areas being cleared now. Considering the quantities of carbon dioxide, carbon monoxide, methane, nitrous oxide, NO{sub x} and non-methane hydrocarbons released raises the impact by 22--37%. The relative impact on the greenhouse effect of each gas is based on the Intergovernmental Panel on Climate Change (IPCC) calculations over a 20-year time period (including indirect effects). The six gases considered have a combined global warming impact equivalent to 343 to 386 million MT of C0{sub 2}-equivalent carbon, depending on assumptions regarding the release of methane and other gases from the various sources such as burning and termites. These emissions represent 7--8 times the 50 million MT annual carbon release from Brazil`s use of fossil fuels, but bring little benefit to the country. Stopping deforestation in Brazil would prevent as much greenhouse emission as tripling the fuel efficiency of all the automobiles in the world. The relatively cheap measures needed to contain deforestation, together with the many complementary benefits of doing so, make this the first priority for funds intended to slow global warming.

Makundi, W.; Sathaye, J. [eds.] [Lawrence Berkeley Lab., CA (United States); Fearnside, P.M. [Instituto Nacional de Pesquisas da Amazonia (INPA), Manaus, AM (Brazil). Departmento de Ecologia

1992-08-01T23:59:59.000Z

207

Global Coastal Carbon Program Data from the Carbon Dioxide Information Analysis Center (CDIAC)  

DOE Data Explorer (OSTI)

CDIAC provides data management support for the Global Coastal Carbon Data Project. The coastal regions data are very important for the understanding of carbon cycle on the continental margins. The Coastal Project data include the bottle (discrete) and surface (underway) carbon-related measurements from coastal research cruises, the data from time series cruises, and coastal moorings. The data from US East Coast, US West Coast, and European Coastal areas are available. CDIAC provides a map interface with vessel or platform names. Clicking on the name brings up information about the vessel or the scientific platform, the kinds of measurements collected and the timeframe, links to project pages, when available, and the links to the data files themselves.

208

An Improved Land Surface Emissivity Parameter for Land Surface Models Using Global Remote Sensing Observations  

Science Conference Proceedings (OSTI)

Because land surface emissivity (?) has not been reliably measured, global climate model (GCM) land surface schemes conventionally set this parameter as simply constant, for example, 1 as in the National Oceanic and Atmospheric Administration (...

Menglin Jin; Shunlin Liang

2006-06-01T23:59:59.000Z

209

Impact of Heavy Duty Vehicle Emissions Reductions on Global Climate  

Science Conference Proceedings (OSTI)

The impact of a specified set of emissions reductions from heavy duty vehicles on climate change is calculated using the MAGICC 5.3 climate model. The integrated impact of the following emissions changes are considered: CO2, CH4, N2O, VOC, NOx, and SO2. This brief summarizes the assumptions and methods used for this calculation.

Calvin, Katherine V.; Thomson, Allison M.

2010-08-01T23:59:59.000Z

210

Carbon emissions and sequestration in forests: Case studies from seven developing countries  

DOE Green Energy (OSTI)

As part of the effort to understand the sources of carbon dioxide and other major greenhouse gases, the Tropical Forestry and Global Climate Change Research Network (F-7) was established. The countries taking part in the F-7 Network -- Brazil, China, India, Indonesia, Malaysia, Mexico, Nigeria and Thailand -- possess large tracts of tropical forests and together experience the bulk of large scale tropical deforestation. Integreation of work of indigenous researchers and institutions from the participating countries should allow for the gathering of on-site information into the more general and universally available base of knowledge. The information contained in this report represents the results of the first phase of the F-7 project, which had the explicit aim of providing quantitative data on forestry-related carbon emissions from India and China.

Makundi, W.; Sathaye, J. (eds.) (Lawrence Berkeley Lab., CA (United States)); Ravindranath, N.H.; Somashekhar, B.S.; Gadgil, M. (Indian Inst. of Science, Bangalore, (India). Center for Ecological Sciences and ASTRA); Deying, Xu (Chinese Academy of Forestry, Beijing, (China). Research Inst. of Forestry)

1992-08-01T23:59:59.000Z

211

Model selection with considering the CO2 emission alone the global supply chain  

Science Conference Proceedings (OSTI)

This study formulates a model for analyzing eco-environmental impact on global supply chain network. The multi-criteria optimization model is applied to seek optimal solutions that not only can achieve predetermined objectives, but also can satisfy constraints ... Keywords: CO2 emission, Environmental management, Global supply chain, Integer linear programming, Multi-criteria optimization model, Supply chain management

Thi Phuong Le; Tzong-Ru Lee

2013-08-01T23:59:59.000Z

212

Strategies of developing road transport by controlling automotives' emissions to reduce local and global environment impacts  

Science Conference Proceedings (OSTI)

This research paper presents an overview of policies and methods of controlling the emissions caused by motor vehicles and road traffic to reduce local and global pollution. The main reason is the fact that individual mobility and modern freight transport ... Keywords: emission, engine, environment, modelling, noise, optimisation, pollution, traffic flows

Corneliu Cofaru

2011-02-01T23:59:59.000Z

213

NETL: Mercury Emissions Control Technologies - Long-Term Carbon Injection  

NLE Websites -- All DOE Office Websites (Extended Search)

Long-Term Carbon Injection Field Test for > 90% Long-Term Carbon Injection Field Test for > 90% Mercury Removal for a PRB Unit with a Spray Drier and Fabric Filter The intent of DOE's Phase I and II field tests was to work with industry to evaluate the most promising mercury control technologies at full-scale in a variety of configurations. Although longer-term tests were conducted, the test period was not sufficient to answer many fundamental questions about long-term consistency of mercury removal and reliability of the system when integrated with plant processes. As the technologies move towards commercial implementation, it is critical to accurately define the mercury removal performance and costs so that power companies and policy makers can make informed decisions. Therefore, the overall objective of this Phase III project is to determine the mercury removal performance, long-term emissions variability, and associated O&M costs of activated carbon injection for >90% mercury control over a 10 to 12 month period on a unit that represents the combination of coal and emission control equipment that will be used for many new and existing power plants.

214

Nitrogen trifluoride global emissions estimated from updated atmospheric measurements  

E-Print Network (OSTI)

Nitrogen trifluoride (NF[subscript 3]) has potential to make a growing contribution to the Earths radiative budget; however, our understanding of its atmospheric burden and emission rates has been limited. Based on a ...

Ivy, Diane J.

215

EIA - Greenhouse Gas Emissions Overview  

Gasoline and Diesel Fuel Update (EIA)

Greenhouse Gas Tables (1990-2009) Greenhouse Gas Tables (1990-2009) Table Title Formats Overview 1 U.S. emissions of greenhouse gases, based on global warming potential 2 U.S. greenhouse gas intensity and related factors 3 Distribution of total U.S. greenhouse gas emissions by end-use sector 4 World energy-related carbon dioxide emissions by region 5 Greenhouse gases and 100-year net global warming potentials Carbon dioxide emissions 6 U.S. carbon dioxide emissions from energy and industry 7 U.S. energy-related carbon dioxide emissions by end-use sector 8 U.S. carbon dioxide emission from residential sector energy consumption 9 U.S. carbon dioxide emissions from commercial sector energy consumption 10 U.S. carbon dioxide emissions from industrial sector energy consumption

216

Expanding the Role of "Land Use, Land Use Change and Forestry" Projects and the Carbon Market in Addressing Global Climate Change  

Science Conference Proceedings (OSTI)

While the Land Use, Land Use Change and Forestry (LULUCF) sector is highly significant in any consideration of global climate change, the fact remains that the scale of LULUCF market activity currently is very small, particularly compared with its overall potential for carbon sequestration and importance as both a source and sink of carbon emissions. The underlying problem seems to be finding a workable policy framework. A flexible market-based policy at both international and domestic levels will score ...

2005-12-19T23:59:59.000Z

217

Estimates of global, regional, and national annual CO{sub 2} emissions from fossil-fuel burning, hydraulic cement production, and gas flaring: 1950--1992  

SciTech Connect

This document describes the compilation, content, and format of the most comprehensive C0{sub 2}-emissions database currently available. The database includes global, regional, and national annual estimates of C0{sub 2} emissions resulting from fossil-fuel burning, cement manufacturing, and gas flaring in oil fields for 1950--92 as well as the energy production, consumption, and trade data used for these estimates. The methods of Marland and Rotty (1983) are used to calculate these emission estimates. For the first time, the methods and data used to calculate CO, emissions from gas flaring are presented. This C0{sub 2}-emissions database is useful for carbon-cycle research, provides estimates of the rate at which fossil-fuel combustion has released C0{sub 2} to the atmosphere, and offers baseline estimates for those countries compiling 1990 C0{sub 2}-emissions inventories.

Boden, T.A.; Marland, G. [Oak Ridge National Lab., TN (United States); Andres, R.J. [University of Alaska, Fairbanks, AK (United States). Inst. of Northern Engineering

1995-12-01T23:59:59.000Z

218

Energy Use and Carbon Dioxide Emissions from Cropland Production in the  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Use and Carbon Dioxide Emissions from Cropland Production in the Energy Use and Carbon Dioxide Emissions from Cropland Production in the United States, 1990-2004 These data represent energy use and fossil-fuel CO2 emissions associated with cropland production in the U.S. Energy use and emissions occurring on the farm are referred to as on-site energy and on-site emissions. Energy use and emissions associated with cropland production that occur off the farm (e.g., use of electricity, energy and emissions associated with fertilizer and pesticide production) are referred to as off-site energy and off-site emissions. The combination of on-site and off-site energy and carbon is referred to as total energy and total carbon, respectively. Data provided here are for on-site and total energy and associated CO2 emissions. Units are Megagram C for CO2 estimates and Gigajoule for energy

219

Carbon capture and storage in geologic formations has been proposed as a global warming mitigation strategy  

E-Print Network (OSTI)

Abstract Carbon capture and storage in geologic formations has been proposed as a global warming mitigation strategy that can contribute to stabilize the atmospheric concentration of carbon dioxide to maintain adsorbed methane in the coalbed formation. But now carbon dioxide will replace the methane

Mohaghegh, Shahab

220

Natural Variability in a Stable, 1000-Yr Global Coupled ClimateCarbon Cycle Simulation  

Science Conference Proceedings (OSTI)

A new 3D global coupled carbonclimate model is presented in the framework of the Community Climate System Model (CSM-1.4). The biogeochemical module includes explicit land watercarbon coupling, dynamic carbon allocation to leaf, root, and wood, ...

Scott C. Doney; Keith Lindsay; Inez Fung; Jasmin John

2006-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "global carbon emissions" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Table 22. Total Carbon Dioxide Emissions, Projected vs. Actual  

Gasoline and Diesel Fuel Update (EIA)

Total Carbon Dioxide Emissions, Projected vs. Actual Total Carbon Dioxide Emissions, Projected vs. Actual (million metric tons) 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 AEO 1982 AEO 1983 AEO 1984 AEO 1985 AEO 1986 AEO 1987 AEO 1989* AEO 1990 AEO 1991 AEO 1992 AEO 1993 5009 5053 5130 5207 5269 5335 5401 5449 5504 5562 5621 5672 5724 5771 5819 5867 5918 5969 AEO 1994 5060 5130 5185 5240 5287 5335 5379 5438 5482 5529 5599 5658 5694 5738 5797 5874 5925 AEO 1995 5137 5174 5188 5262 5309 5361 5394 5441.3 5489.0 5551.3 5621.0 5679.7 5727.3 5775.0 5841.0 5888.7 AEO 1996 5182 5224 5295 5355 5417 5464 5525 5589 5660 5735 5812 5879 5925 5981 6030 AEO 1997 5295 5381 5491 5586 5658 5715 5781 5863 5934 6009 6106 6184 6236 6268 AEO 1998 5474 5621 5711 5784 5893 5957 6026 6098 6192 6292 6379 6465 6542 AEO 1999 5522 5689 5810 5913 5976 6036 6084 6152 6244 6325 6418 6493 AEO 2000

222

Black carbon emissions in the United Kingdom during the past four decades: An empirical analysis  

DOE Green Energy (OSTI)

We use data from a unique 40-year record of 150 urban and rural stations in the ''Black Smoke and SO2 Network'' in Great Britain to infer information about sources of atmospheric black carbon (BC). The data show a rapid decline of ambient atmospheric BC between 1962 and the early 1990s that exceeds the decline in official estimates of BC emissions based only on amount of fuel use and mostly fixed emission factors. This provides empirical confirmation of the existence and large impact of a time-dependent ''technology factor'' that must multiply the rate of fossil fuel use. Current ambient BC amounts in Great Britain comparable to those in western and central Europe, with diesel engines being the principal present source. From comparison of BC and SO2 data we infer that current BC emission inventories understate true emissions in the U.K. by about a factor of two. The results imply that there is the potential for improved technology to achieve large reduction of global ambient BC. There is a need for comparable monitoring of BC in other countries.

Novakov, T.; Hansen, J.E.

2004-04-22T23:59:59.000Z

223

LANDFILL OPERATION FOR CARBON SEQUESTRATION AND MAXIMUM METHANE EMISSION CONTROL  

SciTech Connect

''Conventional'' waste landfills emit methane, a potent greenhouse gas, in quantities such that landfill methane is a major factor in global climate change. Controlled landfilling is a novel approach to manage landfills for rapid completion of total gas generation, maximizing gas capture and minimizing emissions of methane to the atmosphere. With controlled landfilling, methane generation is accelerated and brought to much earlier completion by improving conditions for biological processes (principally moisture levels) in the landfill. Gas recovery efficiency approaches 100% through use of surface membrane cover over porous gas recovery layers operated at slight vacuum. A field demonstration project's results at the Yolo County Central Landfill near Davis, California are, to date, highly encouraging. Two major controlled landfilling benefits would be the reduction of landfill methane emissions to minuscule levels, and the recovery of greater amounts of landfill methane energy in much shorter times than with conventional landfill practice. With the large amount of US landfill methane generated, and greenhouse potency of methane, better landfill methane control can play a substantial role in reduction of US greenhouse gas emissions.

Don Augenstein

1999-01-11T23:59:59.000Z

224

Figure 111. Energy-related carbon dioxide emissions in three cases ...  

U.S. Energy Information Administration (EIA)

Sheet3 Sheet2 Sheet1 Figure 111. Energy-related carbon dioxide emissions in three cases with three levels of emissions fees, 2000-2040 (million metric tons)

225

Improving the Carbon Dioxide Emission Estimates from the Combustion of Fossil Fuels in California  

E-Print Network (OSTI)

Can the envisaged reductions of fossil fuel CO2 emissions beGoulden. 2008. Where do Fossil Fuel Carbon Dioxide Emissionsof season-averaged fossil fuel CO 2 emissions (Riley et

de la Rue du Can, Stephane

2010-01-01T23:59:59.000Z

226

Carbon dioxide emissions from fossil fuels: A procedure for estimation and results for 1950-1982. Tellus 36B  

E-Print Network (OSTI)

This work briefly discusses four of the current research emphases at Oak Ridge National Laboratory regarding the emission of carbon dioxide (C02) from fossil fuel consumption, natural gas flaring and cement manufacture. These emphases include: 1) updating the 1950 to present time series of C02 emissions from fossil fuel consumption and cement manufacture, 2) extending this time series back to 1751, 3) gridding the data at 1 ' by 1 ' resolution, and 4) estimating the isotopic signature of these emissions. In 1991, global emissions of C02 from fossil fuel and cement increased 1.5 % over 1990 levels to 6188 x lo6 metric tonnes C. The Kuwaiti oil fires can account for all of the increase. Recently published energy data (Etemad et al., 1991) allow extension of the CO emissions time series back to 1751. Preliminary examination shows good agreement wit % two other, but shorter, energy time series. A latitudinal distriiution of carbon emissions is being completed. A southward shift in the major mass of C02 emissions is occurring from European-North American latitudes towards central-southeast Asian latitudes, reflecting the growth of population

Robert J. Andres; Gregg Marl; Tom Boden; Steve Bischof

1984-01-01T23:59:59.000Z

227

Scaling up: global technology deployment to stabilize emissions  

SciTech Connect

Climate change is becoming a defining fact of economic development. Three areas need to coalesce into a coherent vision in order to achieve adequate levels of emissions reductions: The technologies involved, including the physical and capacity-related constraints to deploying them; The investment required: who will provide it, the mechanisms they will use, and its cost; The policies that will offer the most effective incentives to providers of both technology and capital to implement lower-emission solutions. A paper by two Princeton researchers Pacala and Socolow provided a mental framework to discuss these solutions by breaking the required emission reductions down into manageable (though still large) 'wedges,' each provided by a different technology or set of technologies. Owing to its solution-oriented framework, the wedges approach has captured the imagination of those eager to tackle climate change. These include among the 15 options: replacing coal baseload power plants with gas plants, capturing CO{sub 2} at coal and gas power plants, capturing CO{sub 2} at coal-to-synfuels plant and increasing use of renewables. This paper presents an overview, using the wedges framework, on how technology, investment and policy interact. It is intended to engage actors in the policy and investment communities as the key enables of clean technology deployment worldwide. 30 refs., 5 figs., 2 tabs.

Fred Wellington; Rob Bradley; Britt Childs; Clay Rigdon; Jonathan Pershing

2007-04-13T23:59:59.000Z

228

Table 12.1 Carbon Dioxide Emissions From Energy Consumption by ...  

U.S. Energy Information Administration (EIA)

U.S. Energy Information Administration / Monthly Energy Review September 2013 159 Table 12.1 Carbon Dioxide Emissions From Energy Consumption by Source

229

Livscykelanalys fr koldioxidutslpp frn flerbostadshus; Life Cycle Analysis of Carbon Dioxide Emissions from Residential Buildings.  

E-Print Network (OSTI)

?? Today, about 15 to 20 percent of Swedens total emission of carbon dioxide can be traced to the household sector. By examining apartment blocks (more)

Palmborg, Sofia

2013-01-01T23:59:59.000Z

230

Table 11.2b Carbon Dioxide Emissions From Energy Consumption ...  

U.S. Energy Information Administration (EIA)

See Note, "Accounting for Carbon Dioxide Emissions From Biomass Energy Combustion," at end of ... other biomass. 3 Natural gas, excluding supplemental gaseous fuels.

231

Table 11.2a Carbon Dioxide Emissions From Energy Consumption ...  

U.S. Energy Information Administration (EIA)

table. See Note, "Accounting for Carbon Dioxide Emissions From Biomass Energy Combustion," at end of section. R=Revised. P=Preliminary.

232

Table 11.1 Carbon Dioxide Emissions From Energy Consumption by ...  

U.S. Energy Information Administration (EIA)

See Note, "Accounting for Carbon Dioxide Emissions From Biomass Energy Combustion," at end of section. 10 Wood and wood-derived fuels.

233

Table 11.2e Carbon Dioxide Emissions From Energy Consumption ...  

U.S. Energy Information Administration (EIA)

See Note, "Accounting for Carbon Dioxide Emissions From Biomass Energy Combustion," at end of section. R=Revised. P=Preliminary. ... 6 Wood and wood-derived fuels.

234

Table 11.2a Carbon Dioxide Emissions From Energy Consumption ...  

U.S. Energy Information Administration (EIA)

6 Wood and wood-derived fuels. ... See Note, "Accounting for Carbon Dioxide Emissions From Biomass Energy Combustion," at end of section. R=Revised. P=Preliminary.

235

Table 11.2b Carbon Dioxide Emissions From Energy Consumption ...  

U.S. Energy Information Administration (EIA)

8 Wood and wood-derived fuels. ... table. See Note, "Accounting for Carbon Dioxide Emissions From Biomass Energy Combustion," at end of section.

236

Table 11.2c Carbon Dioxide Emissions From Energy Consumption ...  

U.S. Energy Information Administration (EIA)

9 Wood and wood-derived fuels. ... table. See Note, "Accounting for Carbon Dioxide Emissions From Biomass Energy Combustion," at end of section.

237

Table 11.2e Carbon Dioxide Emissions From Energy Consumption ...  

U.S. Energy Information Administration (EIA)

Wood 6: Waste 7: Total: ... See Note, "Accounting for Carbon Dioxide Emissions From Biomass Energy Combustion," at end of section. R=Revised. P=Preliminary.

238

State-Level Energy-Related Carbon Dioxide Emissions, 2000-2009  

U.S. Energy Information Administration (EIA)

Overview. Energy-related carbon dioxide emissions vary significantly across states (Figure 1), whether considered on an absolute or per capita basis.

239

The CharXive Challenge. Regulation of global carbon cycles by vegetation fires  

E-Print Network (OSTI)

It is an open, but not unanswerable, question as to how much atmospheric CO2 is sequestered globally by vegetation fires. In this work I conceptualise the question in terms of the general CharXive Challenge, discuss a mechanism by which thermoconversion of biomass may regulate the global distribution of carbon between reservoirs, show how suppression of vegetation fires by human activities may increase the fraction of carbon in the atmospheric pool, and pose three specific CharXive Challenges of crucial strategic significance to our management of global carbon cycles.

Ball, R

2010-01-01T23:59:59.000Z

240

Assessing historical global sulfur emission patterns for the period 1850--1990  

Science Conference Proceedings (OSTI)

Anthropogenic sulfur dioxide emissions from energy-producing and metal production activities have become an important factor in better understanding the relationship between humans and the environment. Concerns about (1) acid rain effects on the environment and (2) anthropogenic aerosols affecting possible global change have prompted interest in the transformation and fate of sulfur in the environment. One step in assessing the importance of sulfur emissions is the development of a reliable regional emission inventory of sulfur as a function of time. The objective of this research effort was to create a homogeneous database for historical sulfur emission estimates for the world. The time from 1850--1990 was selected to include the period of industrialization form the time the main production of fuels and minerals began until the most recent year for which complete production data exist. This research effort attempts to correct some of the deficiencies associated with previous global sulfur emission estimates by (1) identifying those production activities that resulted in sulfur emissions by country and (2) calculating historical emission trends by country across years. An important component of this study was the comparison of the sulfur emission results with those of previous studies.

Lefohn, A.S. [A.S.L. and Associates, Helena, MT (United States); Husar, J.D.; Husar, R.B. [Washington Univ., St. Louis, MO (United States). Center for Air Pollution Impact and Trend Analysis; Brimblecombe, P. [Univ. of East Anglia, Norwich (United Kingdom)

1996-07-19T23:59:59.000Z

Note: This page contains sample records for the topic "global carbon emissions" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Energy Use and Carbon Emissions: Non-OECD Countries  

Gasoline and Diesel Fuel Update (EIA)

Non-OECD Non-OECD Countries December 1994 Energy Information Administration Office of Energy Markets and End Use U.S. Department of Energy Washington, DC 20585 This report was prepared by the Energy Information Administration, the independent statistical and analytical agency within the Department of Energy. The information contained herein should not be construed as advocating or reflecting any policy position of the Department of Energy or any other organization. Contacts Energy Use and Carbon Emissions: Non-OECD Countries was prepared by the Energy Information Administration (EIA), Office of Energy Markets and End Use (EMEU). General questions concerning the content of the report may be referred to W. Calvin Kilgore (202-586-1617), Director of EMEU; Mark Rodekohr (202-586-1130), Director of Energy Markets and Contingency Information Division; or Derriel Cato (202-586-6574),

242

Energy Use and Carbon Emissions: Some International Comparisons  

Gasoline and Diesel Fuel Update (EIA)

Some Some International Comparisons April 1994 Energy Information Administration Office of Energy Markets and End Use U.S. Department of Energy Washington, DC 20585 This report was prepared by the Energy Information Administration, the independent statistical and analytical agency within the Department of Energy. The information contained herein should not be construed as advocating or reflecting any policy position of the Department of Energy or any other organization. Contacts Energy Use and Carbon Emissions: Some International Comparisons is prepared by the Energy Information Administration (EIA), Office of Energy Markets and End Use (EMEU). General questions concerning the content of the report may be referred to W. Calvin Kilgore (202-586- 1617), Director of EMEU; Arthur Andersen (202-586-1441), Director of Energy Markets and Contingency Information Division; or

243

Transient Response of a Global Ocean-Atmosphere Model to a Doubling of Atmospheric Carbon Dioxide  

Science Conference Proceedings (OSTI)

The transient response of climate to an instantaneous increase in the atmospheric concentration of carbon dioxide has been investigated by a general circulation model of the coupled ocean-atmosphere-land system with global geography and annual ...

Syukuro Manabe; Kirk Bryan; Michael J. Spelman

1990-05-01T23:59:59.000Z

244

Institute a modest carbon tax to reduce carbon emissions, finance clean energy technology development, cut taxes, and reduce the deficit  

Science Conference Proceedings (OSTI)

The nation should institute a modest carbon tax in order to help clean up the economy and stabilize the nations finances. Specifically, Congress and the president should implement a $20 per ton, steadily increasing carbon excise fee that would discourage carbon dioxide emissions while shifting taxation onto pollution, financing energy efficiency (EE) and clean technology development, and providing opportunities to cut taxes or reduce the deficit. The net effect of these policies would be to curb harmful carbon emissions, improve the nations balance sheet, and stimulate job-creation and economic renewal.

Muro, Mark; Rothwell, Jonathan

2012-11-15T23:59:59.000Z

245

Urban emissions of CO2 from Davos, Switzerland: the first real-time monitoring system using an atmospheric inversion technique  

Science Conference Proceedings (OSTI)

Anthropogenic emissions from urban areas represent 70% of the fossil fuel carbon emitted globally according to carbon emission inventories. We present here the first operational system able to monitor in near real-time daily emission estimates, ...

Thomas Lauvaux; Natasha L. Miles; Scott J. Richardson; Aijun Deng; Dave Stauffer; Kenneth J. Davis; Gloria Jacobson; Chris Rella; Gian-Paul Calonder; Philip L. DeCola

246

Carbon Capture and Water Emissions Treatment System (CCWESTRS) at Fossil-Fueled Electric Generating Plants  

Science Conference Proceedings (OSTI)

The Tennessee Valley Authority (TVA), the Electric Power Research Institute (EPRI), and the Department of Energy-National Energy Technologies Laboratory (DOE-NETL) are evaluating and demonstrating integration of terrestrial carbon sequestration techniques at a coal-fired electric power plant through the use of Flue Gas Desulfurization (FGD) system gypsum as a soil amendment and mulch, and coal fly ash pond process water for periodic irrigation. From January to March 2002, the Project Team initiated the construction of a 40 ha Carbon Capture and Water Emissions Treatment System (CCWESTRS) near TVA's Paradise Fossil Plant on marginally reclaimed surface coal mine lands in Kentucky. The CCWESTRS is growing commercial grade trees and cover crops and is expected to sequester 1.5-2.0 MT/ha carbon per year over a 20-year period. The concept could be used to meet a portion of the timber industry's needs while simultaneously sequestering carbon in lands which would otherwise remain non-productive. The CCWESTRS includes a constructed wetland to enhance the ability to sequester carbon and to remove any nutrients and metals present in the coal fly ash process water runoff. The CCWESTRS project is a cooperative effort between TVA, EPRI, and DOE-NETL, with a total budget of $1,574,000. The proposed demonstration project began in October 2000 and has continued through December 2005. Additional funding is being sought in order to extend the project. The primary goal of the project is to determine if integrating power plant processes with carbon sequestration techniques will enhance carbon sequestration cost-effectively. This goal is consistent with DOE objectives to provide economically competitive and environmentally safe options to offset projected growth in U.S. baseline emissions of greenhouse gases after 2010, achieve the long-term goal of $10/ton of avoided net costs for carbon sequestration, and provide half of the required reductions in global greenhouse gases by 2025. Other potential benefits of the demonstration include developing a passive technology for water treatment for trace metal and nutrient release reductions, using power plant by-products to improve coal mine land reclamation and carbon sequestration, developing wildlife habitat and green-space around production facilities, generating Total Maximum Daily Load (TMDL) credits for the use of process water, and producing wood products for use by the lumber and pulp and paper industry. Project activities conducted during the five year project period include: Assessing tree cultivation and other techniques used to sequester carbon; Project site assessment; Greenhouse studies to determine optimum plant species and by-product application; Designing, constructing, operating, monitoring, and evaluating the CCWESTRS system; and Reporting (ongoing). The ability of the system to sequester carbon will be the primary measure of effectiveness, measured by accessing survival and growth response of plants within the CCWESTRS. In addition, costs associated with design, construction, and monitoring will be evaluated and compared to projected benefits of other carbon sequestration technologies. The test plan involves the application of three levels each of two types of power plant by-products--three levels of FGD gypsum mulch, and three levels of ash pond irrigation water. This design produces nine treatment levels which are being tested with two species of hardwood trees (sweet gum and sycamore). The project is examining the effectiveness of applications of 0, 8-cm, and 15-cm thick gypsum mulch layers and 0, 13 cm, and 25 cm of coal fly ash water for irrigation. Each treatment combination is being replicated three times, resulting in a total of 54 treatment plots (3 FGD gypsum levels X 3 irrigation water levels x 2 tree species x 3 replicates). Survival and growth response of plant species in terms of sequestering carbon in plant material and soil will be the primary measure of effectiveness of each treatment. Additionally, the ability of the site soils and unsaturated zone subsurface m

P. Alan Mays; Bert R. Bock; Gregory A. Brodie; L. Suzanne Fisher; J. Devereux Joslin; Donald L. Kachelman; Jimmy J. Maddox; N. S. Nicholas; Larry E. Shelton; Nick Taylor; Mark H. Wolfe; Dennis H. Yankee; John Goodrich-Mahoney

2005-08-30T23:59:59.000Z

247

Improved field emission characteristic of carbon nanotubes by an Ag micro-particle intermediation layer  

Science Conference Proceedings (OSTI)

An efficient way to improve field emission characteristic of carbon nanotubes (CNTs) through an Ag micro-particle intermediation layer is presented. In this way, the intermediation layer is deposited on an indium tin oxide glass substrate by electrochemical ... Keywords: Ag micro-particle intermediation layer, Carbon nanotubes, Field emission

Wenhui Lu; Hang Song; Yixin Jin; Haifeng Zhao; Zhiming Li; Hong Jiang; Guoqing Miao

2008-05-01T23:59:59.000Z

248

Atmospheric Carbon Dioxide and the Global Carbon Cycle: The Key Uncertainties  

DOE R&D Accomplishments (OSTI)

The biogeochemical cycling of carbon between its sources and sinks determines the rate of increase in atmospheric CO{sub 2} concentrations. The observed increase in atmospheric CO{sub 2} content is less than the estimated release from fossil fuel consumption and deforestation. This discrepancy can be explained by interactions between the atmosphere and other global carbon reservoirs such as the oceans, and the terrestrial biosphere including soils. Undoubtedly, the oceans have been the most important sinks for CO{sub 2} produced by man. But, the physical, chemical, and biological processes of oceans are complex and, therefore, credible estimates of CO{sub 2} uptake can probably only come from mathematical models. Unfortunately, one- and two-dimensional ocean models do not allow for enough CO{sub 2} uptake to accurately account for known releases. Thus, they produce higher concentrations of atmospheric CO{sub 2} than was historically the case. More complex three-dimensional models, while currently being developed, may make better use of existing tracer data than do one- and two-dimensional models and will also incorporate climate feedback effects to provide a more realistic view of ocean dynamics and CO{sub 2} fluxes. The instability of current models to estimate accurately oceanic uptake of CO{sub 2} creates one of the key uncertainties in predictions of atmospheric CO{sub 2} increases and climate responses over the next 100 to 200 years.

Peng, T. H.; Post, W. M.; DeAngelis, D. L.; Dale, V. H.; Farrell, M. P.

1987-12-00T23:59:59.000Z

249

Carbon Emissions Primer Symposium on Greenhouse Gas andSymposium on Greenhouse Gas and  

E-Print Network (OSTI)

6/5/2013 1 Carbon Emissions Primer Symposium on Greenhouse Gas andSymposium on Greenhouse Gas Council June 4, 2013 Portland, OR 1 CO2 Chemistry 1 molecule of CO 1 atom carbon1 molecule of CO2 = 1 atom carbon + 2 atoms oxygen 2 #12;6/5/2013 2 CO2 Chemistry 1 mole of carbon = 6 02 x 1023 carbon atoms 1

250

Rapid Assessment of City Emissions (RACE) for Low Carbon Cities: Transport  

Open Energy Info (EERE)

Rapid Assessment of City Emissions (RACE) for Low Carbon Cities: Transport Rapid Assessment of City Emissions (RACE) for Low Carbon Cities: Transport and Building Electricity Use Jump to: navigation, search Name Rapid Assessment of City Emissions (RACE) for Low Carbon Cities: Transport and Building Electricity Use Agency/Company /Organization Clean Air Asia, Chreod Ltd. Partner Asian Development Bank (ADB), Ministry of Planning Sector Land Focus Area Buildings, Economic Development, Energy Efficiency, Greenhouse Gas, Land Use, People and Policy, Transportation Topics Background analysis, Baseline projection, Co-benefits assessment, - Environmental and Biodiversity, GHG inventory, Low emission development planning, -LEDS, Market analysis, Pathways analysis, Policies/deployment programs Website http://cleanairinitiative.org/

251

Sardinia 2007, Eleventh International Waste Management and Landfill Symposium Potential for Reducing Global Methane Emissions  

E-Print Network (OSTI)

landfills, we developed reference projections of waste generation, recycling and landfill-gas captureSardinia 2007, Eleventh International Waste Management and Landfill Symposium 1 Potential for Reducing Global Methane Emissions From Landfills, 2000-2030 E. MATTHEWS1 , N. J. THEMELIS2 1 NASA Goddard

Columbia University

252

Accounting for Carbon Dioxide Emissions from Biomass Energy Combustion (released in AEO2010)  

Reports and Publications (EIA)

CO2 emissions from the combustion of biomass [75] to produce energy are excluded from the energy-related CO2 emissions reported in AEO2010. According to current international convention, carbon released through biomass combustion is excluded from reported energy-related emissions. The release of carbon from biomass combustion is assumed to be balanced by the uptake of carbon when the feedstock is grown, resulting in zero net emissions over some period of time]. However, analysts have debated whether increased use of biomass energy may result in a decline in terrestrial carbon stocks, leading to a net positive release of carbon rather than the zero net release assumed by its exclusion from reported energy-related emissions.

Information Center

2010-05-11T23:59:59.000Z

253

Simulations of the global carbon cycle and anthropogenic CO{sub 2} transient. Annual report  

SciTech Connect

This research focuses on improving the understanding of the anthropogenic carbon dioxide transient using observations and models of the past and present. In addition, an attempt is made to develop an ability to predict the future of the carbon cycle in response to continued anthropogenic perturbations and climate change. Three aspects of the anthropogenic carbon budget were investigated: (1) the globally integrated budget at the present time; (2) the time history of the carbon budget; and (3) the spatial distribution of carbon fluxes. One of the major activities of this study was the participation in the model comparison study of Enting, et al. [1994] carried out in preparation for the IPCC 1994 report.

Sarmiento, J.L.

1994-07-01T23:59:59.000Z

254

The impacts of population change on carbon emissions in China during 1978-2008  

SciTech Connect

This study examines the impacts of population size, population structure, and consumption level on carbon emissions in China from 1978 to 2008. To this end, we expanded the stochastic impacts by regression on population, affluence, and technology model and used the ridge regression method, which overcomes the negative influences of multicollinearity among independent variables under acceptable bias. Results reveal that changes in consumption level and population structure were the major impact factors, not changes in population size. Consumption level and carbon emissions were highly correlated. In terms of population structure, urbanization, population age, and household size had distinct effects on carbon emissions. Urbanization increased carbon emissions, while the effect of age acted primarily through the expansion of the labor force and consequent overall economic growth. Shrinking household size increased residential consumption, resulting in higher carbon emissions. Households, rather than individuals, are a more reasonable explanation for the demographic impact on carbon emissions. Potential social policies for low carbon development are also discussed. - Highlights: Black-Right-Pointing-Pointer We examine the impacts of population change on carbon emissions in China. Black-Right-Pointing-Pointer We expand the STIRPAT model by containing population structure factors in the model. Black-Right-Pointing-Pointer The population structure includes age structure, urbanization level, and household size. Black-Right-Pointing-Pointer The ridge regression method is used to estimate the model with multicollinearity. Black-Right-Pointing-Pointer The population structure plays a more important role compared with the population size.

Zhu Qin, E-mail: zhuqin@fudan.edu.cn; Peng Xizhe, E-mail: xzpeng@fudan.edu.cn

2012-09-15T23:59:59.000Z

255

Carbon offsets as a cost containment instrument : a case study of reducing emissions from deforestation and forest degradation  

E-Print Network (OSTI)

Carbon offset is one type of flexibility mechanism in greenhouse gas emission trading schemes that helps nations meet their emission commitments at lower costs. Carbon offsets take advantage of lower abatement cost ...

Kim, Jieun, S.M. Massachusetts Institute of Technology

2010-01-01T23:59:59.000Z

256

Strategic Analysis of the Global Status of Carbon Capture and Storage  

Open Energy Info (EERE)

Strategic Analysis of the Global Status of Carbon Capture and Storage Strategic Analysis of the Global Status of Carbon Capture and Storage (CCS): Country Studies, United Arab Emirates Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Strategic Analysis of the Global Status of Carbon Capture and Storage (CCS): Country Studies, United Arab Emirates Focus Area: Clean Fossil Energy Topics: Opportunity Assessment & Screening Website: www.globalccsinstitute.com/sites/default/files/publications/8737/strat Equivalent URI: cleanenergysolutions.org/content/strategic-analysis-global-status-carb Policies: "Deployment Programs,Financial Incentives" is not in the list of possible values (Deployment Programs, Financial Incentives, Regulations) for this property. DeploymentPrograms: Public-Private Partnerships

257

The Value of End-Use Energy Efficiency in Mitigation of U.S. Carbon Emissions  

DOE Green Energy (OSTI)

This report documents a scenario analysis exploring the value of advanced technologies in the U.S. buildings, industrial, and transportation sectors in stabilizing atmospheric greenhouse gas concentrations. The analysis was conducted by staff members of Pacific Northwest National Laboratory (PNNL), working at the Joint Global Change Research Institute (JGCRI) in support of the strategic planning process of the U.S. Department of Energy (U.S. DOE) Office of Energy Efficiency and Renewable Energy (EERE). The conceptual framework for the analysis is an integration of detailed buildings, industrial, and transportation modules into MiniCAM, a global integrated assessment model. The analysis is based on three technology scenarios, which differ in their assumed rates of deployment of new or presently available energy-saving technologies in the end-use sectors. These technology scenarios are explored with no carbon policy, and under two CO2 stabilization policies, in which an economic price on carbon is applied such that emissions follow prescribed trajectories leading to long-term stabilization of CO2 at roughly 450 and 550 parts per million by volume (ppmv). The costs of meeting the emissions targets prescribed by these policies are examined, and compared between technology scenarios. Relative to the reference technology scenario, advanced technologies in all three sectors reduce costs by 50% and 85% for the 450 and 550 ppmv policies, respectively. The 450 ppmv policy is more stringent and imposes higher costs than the 550 ppmv policy; as a result, the magnitude of the economic value of energy efficiency is four times greater for the 450 ppmv policy than the 550 ppmv policy. While they substantially reduce the costs of meeting emissions requirements, advanced end-use technologies do not lead to greenhouse gas stabilization without a carbon policy. This is due mostly to the effects of increasing service demands over time, the high consumption of fossil fuels in the electricity sector, and the use of unconventional feedstocks in the liquid fuel refining sector. Of the three end-use sectors, advanced transportation technologies have the greatest potential to reduce costs of meeting carbon policy requirements. Services in the buildings and industrial sectors can often be supplied by technologies that consume low-emissions fuels such as biomass or, in policy cases, electricity. Passenger transportation, in contrast, is especially unresponsive to climate policies, as the fuel costs are small compared to the time value of transportation and vehicle capital and operating costs. Delaying the transition from reference to advanced technologies by 15 years increases the costs of meeting 450 ppmv stabilization emissions requirements by 21%, but the costs are still 39% lower than the costs assuming reference technology. The report provides a detailed description of the end-use technology scenarios and provides a thorough analysis of the results. Assumptions are documented in the Appendix.

Kyle, G. Page; Smith, Steven J.; Clarke, Leon E.; Kim, Son H.; Wise, Marshall A.

2007-11-27T23:59:59.000Z

258

Weekly Wrap-Up: Testing Wind Blades, Converting Carbon Emissions, and  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Weekly Wrap-Up: Testing Wind Blades, Converting Carbon Emissions, Weekly Wrap-Up: Testing Wind Blades, Converting Carbon Emissions, and Eco-Driving Weekly Wrap-Up: Testing Wind Blades, Converting Carbon Emissions, and Eco-Driving July 23, 2010 - 5:17pm Addthis Elizabeth Meckes Elizabeth Meckes Director of User Experience & Digital Technologies, Office of Public Affairs On Thursday, Secretary Chu announced six projects that aim to find ways of convert captured carbon dioxide (CO2) emissions from industrial sources into useful products. The innovative projects - funded with $106 million from the American Recovery and Reinvestment Act and matched with $156 million in private cost-share - will seek to use CO2 emissions from industrial sources to create useful products such as fuel, plastics, cement, and fertilizers. Find out more here.

259

Unburned lubricant produces 60%90% of organic carbon emissions.  

E-Print Network (OSTI)

as the most polluting of conventional petroleum-based fuels, emissions from gasoline engines can more, lubricants, and engine operating conditions. NREL's Collaborative Lubricating Oil Study on Emissions (CLOSE vehicles without aftertreatment emission control systems exhibited OC emissions approxi- mately one order

260

Method of depositing multi-layer carbon-based coatings for field emission  

DOE Patents (OSTI)

A novel field emitter device for cold cathode field emission applications, comprising a multi-layer resistive carbon film. The multi-layered film of the present invention is comprised of at least two layers of a resistive carbon material, preferably amorphous-tetrahedrally coordinated carbon, such that the resistivities of adjacent layers differ. For electron emission from the surface, the preferred structure comprises a top layer having a lower resistivity than the bottom layer. For edge emitting structures, the preferred structure of the film comprises a plurality of carbon layers, wherein adjacent layers have different resistivities. Through selection of deposition conditions, including the energy of the depositing carbon species, the presence or absence of certain elements such as H, N, inert gases or boron, carbon layers having desired resistivities can be produced. Field emitters made according the present invention display improved electron emission characteristics in comparison to conventional field emitter materials.

Sullivan, John P. (Albuquerque, NM); Friedmann, Thomas A. (Albuquerque, NM)

1999-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "global carbon emissions" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Energy-Related Carbon Emissions - Energy Information Administration  

U.S. Energy Information Administration (EIA)

1990 1995 2000 2005 2010 2015 2020 2025 2030 2035 Energy-related CO2 emissions 2005 . 2020 : 2035 : Energy-related CO; 2 emissions ; 6.00 ; 5.43 . 5.76

262

The Greenness of Cities: Carbon Dioxide Emissions and Urban Development  

E-Print Network (OSTI)

electricity consumption. Car usage and home heating involvesto a population shift. Car Usage and Emissions We begin with

Glaeser, Edward L.; Kahn, Matthew E.

2008-01-01T23:59:59.000Z

263

Income Growth, Energy Consumption and Carbon Emissions in China  

Science Conference Proceedings (OSTI)

The paper examines the long-run relationship between per capita income growth, energy consumption, and pollutant emissions in China during the period 19532004. We find that energy consumption, pollutant emissions and income are cointegrated in ... Keywords: Energy consumption, Pollutant emissions, Causality, Multivariate cointegration, China

Zhi Zhao; Jiahai Yuan

2008-11-01T23:59:59.000Z

264

Renewable energy and its potential for carbon emissions reductions in developing countries: Methodology for technology evaluation. Case study application to Mexico  

Science Conference Proceedings (OSTI)

Many projects have been proposed to promote and demonstrate renewable energy technologies (RETs) in developing countries on the basis of their potential to reduce carbon emissions. However, no uniform methodology has been developed for evaluating RETs in terms of their future carbon emissions reduction potential. This study outlines a methodology for identifying RETs that have the potential for achieving large carbon emissions reductions in the future, while also meeting key criteria for commercialization and acceptability in developing countries. In addition, this study evaluates the connection between technology identification and the selection of projects that are designed to demonstrate technologies with a propensity for carbon emission reductions (e.g., Global Environmental Facility projects). Although this report applies the methodology to Mexico in a case study format, the methodology is broad based and could be applied to any developing country, as well as to other technologies. The methodology used in this report is composed of four steps: technology screening, technology identification, technology deployment scenarios, and estimates of carbon emissions reductions. The four technologies with the highest ranking in the technology identification process for the on-grid category were geothermal, biomass cogeneration, wind, and micro-/mini-hydro. Compressed natural gas (CNG) was the alternative that received the highest ranking for the transportation category.

Corbus, D.; Martinez, M.; Rodriguez, L.; Mark, J.

1994-08-01T23:59:59.000Z

265

CarBen Version 3: Multisector Carbon Dioxide Emissions Accounting Tool |  

Open Energy Info (EERE)

CarBen Version 3: Multisector Carbon Dioxide Emissions Accounting Tool CarBen Version 3: Multisector Carbon Dioxide Emissions Accounting Tool Jump to: navigation, search Tool Summary LAUNCH TOOL Name: CarBen Version 3: Multisector Carbon Dioxide Emissions Accounting Tool Focus Area: Geothermal Power Topics: Policy, Deployment, & Program Impact Website: www.netl.doe.gov/energy-analyses/refshelf/PubDetails.aspx?Action=View& Equivalent URI: cleanenergysolutions.org/content/carben-version-3-multisector-carbon-d Language: English Policies: Deployment Programs DeploymentPrograms: Technical Assistance The CarBen model enables users to conduct wedge anlayses of scenarios for mitigating U.S. greenhouse gas emissions. The spreadsheet-based tool relies upon expert opinion for scenario formulation and is not intended to be used

266

>Carbon Dioxide Emission Estimates from Fossil-Fuel Burning, Hydraulic  

NLE Websites -- All DOE Office Websites (Extended Search)

Carbon Dioxide Emission Estimates from Fossil-Fuel Burning, Hydraulic Carbon Dioxide Emission Estimates from Fossil-Fuel Burning, Hydraulic Cement Production, and Gas Flaring for 1995 on a One Degree Grid Cell Basis (NDP-058a) Prepared by Antoinette L. Brenkert Carbon Dioxide Information Analysis Center Oak Ridge National Laboratory Oak Ridge, Tennessee 37831-6290 Date Published: February 1998 (Revised for the Web: 2003) CONTENTS Abstract Documentation file for Data Base NDP-058a (2-1998) Data Base NDP-058a (2-1998) Abstract Carbon Dioxide Emission Estimates from Fossil-Fuel Burning, Hydraulic Cement Production, and Gas Flaring for 1995 on a One Degree Grid Cell Basis. (March 1998) Antoinette L. Brenkert DOI: 10.3334/CDIAC/ffe.ndp058.2003 This data package presents the gridded (one degree latitude by one degree longitude) summed emissions from fossil-fuel burning, hydraulic cement

267

Energy-Related Carbon Dioxide Emissions in U.S. Manufacturing  

U.S. Energy Information Administration (EIA) Indexed Site

Special Topic: Energy-Related Carbon Dioxide Emissions in U.S. Manufacturing 1 Special Topic: Energy-Related Carbon Dioxide Emissions in U.S. Manufacturing 1 Report #: DOE/EIA-0573(2005) Released Date: November 2006 Next Release Date: Not applicable Energy-Related Carbon Dioxide Emissions in U.S. Manufacturing Mark Schipper 1 , Energy Information Administration (EIA) Abstract Based on the Manufacturing Energy Consumption Survey (MECS) conducted by the U.S. Department of Energy, Energy Information Administration (EIA), this paper presents historical energy-related carbon dioxide emission estimates for energy-intensive sub-sectors and 23 industries. Estimates are based on surveys of more than 15,000 manufacturing plants in 1991, 1994, 1998, and 2002. EIA is currently developing its collection of manufacturing data for 2006.

268

China's Industrial Carbon Dioxide Emissions in Manufacturing Subsectors and in Selected Provinces  

E-Print Network (OSTI)

key resources for national energy consumption data in ChinaNBS published 2008 national energy consumption by industrialnational level, carbon emission factors for electricity consumption are calculated based on the energy

Lu, Hongyou

2013-01-01T23:59:59.000Z

269

Modeling Ambient Carbon Monoxide Trends to Evaluate Mobile Source Emissions Reductions  

Science Conference Proceedings (OSTI)

Regression models have been used with poor success to detect the effect of emission control programs in ambient concentration measurements of carbon monoxide. An advanced CO regression model is developed whose form is based on an understanding of ...

Robin L. Dennis; Mary W. Downton

1987-10-01T23:59:59.000Z

270

Energy-related carbon dioxide emissions down in 2011 - Today in ...  

U.S. Energy Information Administration (EIA)

Annual energy-related carbon dioxide (CO 2) emissions fell 2.4% in 2011 compared to the level in 2010. Several factors combined to produce this drop, including slower ...

271

A Monte Carlo Approach To Generator Portfolio Planning And Carbon Emissions  

Open Energy Info (EERE)

Monte Carlo Approach To Generator Portfolio Planning And Carbon Emissions Monte Carlo Approach To Generator Portfolio Planning And Carbon Emissions Assessments Of Systems With Large Penetrations Of Variable Renewables Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: A Monte Carlo Approach To Generator Portfolio Planning And Carbon Emissions Assessments Of Systems With Large Penetrations Of Variable Renewables Details Activities (0) Areas (0) Regions (0) Abstract: A new generator portfolio planning model is described that is capable of quantifying the carbon emissions associated with systems that include very high penetrations of variable renewables. The model combines a deterministic renewable portfolio planning module with a Monte Carlo simulation of system operation that determines the expected least-cost

272

Geographic Patterns of Carbon Dioxide Emissions from Fossil-Fuel Burning,  

NLE Websites -- All DOE Office Websites (Extended Search)

Fossil Fuel CO2 Emissions » Gridded Estimates for Benchmark Years Fossil Fuel CO2 Emissions » Gridded Estimates for Benchmark Years Geographic Patterns of Carbon Dioxide Emissions from Fossil-Fuel Burning, Hydraulic Cement Production, and Gas Flaring on a One Degree by One Degree Grid Cell Basis: 1950 to 1990 (NDP-058) data Data image ASCII Text Documentation PDF file PDF file Contributors R. J. Andres, G. Marland, I. Fung, and E. Matthews (contributors) DOI DOI: 10.3334/CDIAC/ffe.ndp058 This data package presents data sets recording 1° latitude by 1° longitude CO2 emissions in units of thousand metric tons of carbon per year from anthropogenic sources for 1950, 1960, 1970, 1980, and 1990. Detailed geographic information on CO2 emissions can be critical in understanding the pattern of the atmospheric and biospheric response to these emissions.

273

Carbon emissions and sequestration in forests: Case studies from seven developing countries. Volume 3, India and China  

DOE Green Energy (OSTI)

As part of the effort to understand the sources of carbon dioxide and other major greenhouse gases, the Tropical Forestry and Global Climate Change Research Network (F-7) was established. The countries taking part in the F-7 Network -- Brazil, China, India, Indonesia, Malaysia, Mexico, Nigeria and Thailand -- possess large tracts of tropical forests and together experience the bulk of large scale tropical deforestation. Integreation of work of indigenous researchers and institutions from the participating countries should allow for the gathering of on-site information into the more general and universally available base of knowledge. The information contained in this report represents the results of the first phase of the F-7 project, which had the explicit aim of providing quantitative data on forestry-related carbon emissions from India and China.

Makundi, W.; Sathaye, J. [eds.] [Lawrence Berkeley Lab., CA (United States); Ravindranath, N.H.; Somashekhar, B.S.; Gadgil, M. [Indian Inst. of Science, Bangalore, (India). Center for Ecological Sciences and ASTRA; Deying, Xu [Chinese Academy of Forestry, Beijing, (China). Research Inst. of Forestry

1992-08-01T23:59:59.000Z

274

A Comprehensive Model for Evaluation of Carbon Footprint and Greenhouse Gages Emission in Household Biogas Plants  

Science Conference Proceedings (OSTI)

Based on Life Cycle Assessment and other related methods, this paper introduced a comprehensive model for the evaluation of the carbon footprint and greenhouse gases emission in household biogas plants including nearly all the processes of the household ... Keywords: Biogas Plant, Carbon Footprint, Life Cycle, Greenhouse Gas

Jie Zhou; Shubiao Wu; Wanqin Zhang; Changle Pang; Baozhi Wang; Renjie Dong; Li Chen

2012-07-01T23:59:59.000Z

275

Distributed Energy Resources for Carbon Emissions Ryan Firestone and Chris Marnay  

E-Print Network (OSTI)

LBNL-62871 Distributed Energy Resources for Carbon Emissions Mitigation Ryan Firestone and Chris by the Office of Electricity Delivery and Energy Reliability, Distribution System Integration Program of the U Laboratory is an equal opportunity employer. #12;1 Firestone 5128 Distributed Energy Resources for Carbon

276

Carbon Dioxide Emissions of the City Center of Firenze, Italy: Measurement, Evaluation, and Source Partitioning  

Science Conference Proceedings (OSTI)

An eddy covariance station was installed in the city center of Firenze, Italy, to measure carbon fluxes at half-hourly intervals over a mostly homogeneous urban area. Carbon dioxide (CO2) emission observations made over an initial period of 3.5 ...

A. Matese; B. Gioli; F. P. Vaccari; A. Zaldei; F. Miglietta

2009-09-01T23:59:59.000Z

277

Plenary lecture 1: strategies of developing road transport by controlling automotives' emissions to reduce local and global environment impacts  

Science Conference Proceedings (OSTI)

This research paper presents an overview of policies and methods of controlling the emissions caused by motor vehicles and road traffic to reduce local and global pollution. The main premise is the fact that individual mobility and modern freight transport ...

Corneliu Cofaru

2011-02-01T23:59:59.000Z

278

Emission-Induced Nonlinearities in the Global Aerosol System: Results from the ECHAM5-HAM Aerosol-Climate Model  

Science Conference Proceedings (OSTI)

In a series of simulations with the global ECHAM5-HAM aerosol-climate model, the response to changes in anthropogenic emissions is analyzed. Traditionally, additivity is assumed in the assessment of the aerosol climate impact, as the underlying ...

Philip Stier; Johann Feichter; Silvia Kloster; Elisabetta Vignati; Julian Wilson

2006-08-01T23:59:59.000Z

279

San Diego's carbon footprint : measuring and mitigating greenhouse gas emissions.  

E-Print Network (OSTI)

??Climate Change is one of the most pressing issues of our time. The best way to measure and mitigate the greenhouse gas emissions causing climate (more)

Bushman, Tara Rose

2013-01-01T23:59:59.000Z

280

Storing Carbon in Agricultural Soils to Help Head-Off Global Warming and to Combat Desertification  

Science Conference Proceedings (OSTI)

We know for sure that addition of organic matter to soil increases water-holding capacity, imparts fertility with the addition of nutrients, increases soil aggregation and improves tilth. Depeing on it's type, organic matter contains between 40 and 60% carbon. Using agricultural management practices to increase the amount of organic matter and carbon in soils can be an effective strategy to offset carbon dioxide emissions to the atmosphere as well as to improve the quality of the soil and slow or prevent desertification.

Rosenberg, Norman J.; Izaurralde, Roberto C.

2001-12-31T23:59:59.000Z

Note: This page contains sample records for the topic "global carbon emissions" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Energy-related carbon dioxide emissions declined in 2012 ...  

U.S. Energy Information Administration (EIA)

Sales, revenue and prices, power plants, fuel use, stocks, generation, trade, ... which shifted power generation from the most carbon-intensive fossil fuel ...

282

Global Warming: Physics and Facts  

Science Conference Proceedings (OSTI)

This report contains papers on: A tutorial on global atmospheric energetics and the greenhouse effect; global climate models: what and how; comparison of general circulation models; climate and the earth`s radiation budget; temperature and sea level change; short-term climate variability and predictions; the great ocean conveyor; trace gases in the atmosphere: temporal and spatial trends; the geochemical carbon cycle and the uptake of fossil fuel CO{sub 2}; forestry and global warming; the physical and policy linkages; policy implications of greenhouse warming; options for lowering US carbon dioxide emissions; options for reducing carbon dioxide emissions; and science and diplomacy: a new partnership to protect the environment.

Levi, B.G. [Physics Today, New York, NY (United States); Hafemeister, D. [Committee on Foreign Relations (U.S. Senate), Washington, DC (United States); Scribner, R. [Georgetown Univ., Washington, DC (United States)] [eds.

1992-05-01T23:59:59.000Z

283

Global Warming: Physics and Facts  

Science Conference Proceedings (OSTI)

This report contains papers on: A tutorial on global atmospheric energetics and the greenhouse effect; global climate models: what and how; comparison of general circulation models; climate and the earth's radiation budget; temperature and sea level change; short-term climate variability and predictions; the great ocean conveyor; trace gases in the atmosphere: temporal and spatial trends; the geochemical carbon cycle and the uptake of fossil fuel CO{sub 2}; forestry and global warming; the physical and policy linkages; policy implications of greenhouse warming; options for lowering US carbon dioxide emissions; options for reducing carbon dioxide emissions; and science and diplomacy: a new partnership to protect the environment.

Levi, B.G. (Physics Today, New York, NY (United States)); Hafemeister, D. (Committee on Foreign Relations (U.S. Senate), Washington, DC (United States)); Scribner, R. (Georgetown Univ., Washington, DC (United States)) (eds.)

1992-01-01T23:59:59.000Z

284

Attributing land-use change carbon emissions to exported biomass  

Science Conference Proceedings (OSTI)

In this study, a simple, transparent and robust method is developed in which land-use change (LUC) emissions are retrospectively attributed to exported biomass products based on the agricultural area occupied for the production. LUC emissions account for approximately one-fifth of current greenhouse gas emissions. Increasing agricultural exports are becoming an important driver of deforestation. Brazil and Indonesia are used as case studies due to their significant deforestation in recent years. According to our study, in 2007, approximately 32% and 15% of the total agricultural land harvested and LUC emissions in Brazil and Indonesia respectively were due to exports. The most important exported single items with regard to deforestation were palm oil for Indonesia and bovine meat for Brazil. To reduce greenhouse gas (GHG) emissions effectively worldwide, leakage of emissions should be avoided. This can be done, for example, by attributing embodied LUC emissions to exported biomass products. With the approach developed in this study, controversial attribution between direct and indirect LUC and amortization of emissions over the product life cycle can be overcome, as the method operates on an average basis and annual level. The approach could be considered in the context of the UNFCCC climate policy instead of, or alongside with, other instruments aimed at reducing deforestation. However, the quality of the data should be improved and some methodological issues, such as the allocation procedure in multiproduct systems and the possible dilution effect through third parties not committed to emission reduction targets, should be considered. - Highlights: Black-Right-Pointing-Pointer CO{sub 2} emissions from land use changes are highly important. Black-Right-Pointing-Pointer Attribution of land use changes for products is difficult. Black-Right-Pointing-Pointer Simple and robust method is developed to attribute land use change emissions.

Saikku, Laura, E-mail: laura.saikku@helsinki.fi [University of Helsinki, P.O Box 65, 00014 University of Helsinki (Finland); Soimakallio, Sampo, E-mail: sampo.soimakallio@vtt.fi [VTT Technical Research Centre of Finland, P.O. Box 1000, 02044 VTT (Finland); Pingoud, Kim, E-mail: kim.pingoud@vtt.fi [VTT Technical Research Centre of Finland, P.O. Box 1000, 02044 VTT (Finland)

2012-11-15T23:59:59.000Z

285

Sri Lanka-Rapid Assessment of City Emissions (RACE) for Low Carbon Cities:  

Open Energy Info (EERE)

Sri Lanka-Rapid Assessment of City Emissions (RACE) for Low Carbon Cities: Sri Lanka-Rapid Assessment of City Emissions (RACE) for Low Carbon Cities: Transport and Building Electricity Use Jump to: navigation, search Name Sri Lanka-Rapid Assessment of City Emissions (RACE) for Low Carbon Cities: Transport and Building Electricity Use Agency/Company /Organization Clean Air Asia, Chreod Ltd. Partner Asian Development Bank (ADB), Ministry of Planning Sector Land Focus Area Buildings, Economic Development, Energy Efficiency, Greenhouse Gas, Land Use, People and Policy, Transportation Topics Background analysis, Baseline projection, Co-benefits assessment, - Environmental and Biodiversity, GHG inventory, Low emission development planning, -LEDS, Market analysis, Pathways analysis, Policies/deployment programs Website http://cleanairinitiative.org/

286

Vietnam-Rapid Assessment of City Emissions (RACE) for Low Carbon Cities:  

Open Energy Info (EERE)

Vietnam-Rapid Assessment of City Emissions (RACE) for Low Carbon Cities: Vietnam-Rapid Assessment of City Emissions (RACE) for Low Carbon Cities: Transport and Building Electricity Use Jump to: navigation, search Name Vietnam-Rapid Assessment of City Emissions (RACE) for Low Carbon Cities: Transport and Building Electricity Use Agency/Company /Organization Clean Air Asia, Chreod Ltd. Partner Asian Development Bank (ADB), Ministry of Planning Sector Land Focus Area Buildings, Economic Development, Energy Efficiency, Greenhouse Gas, Land Use, People and Policy, Transportation Topics Background analysis, Baseline projection, Co-benefits assessment, - Environmental and Biodiversity, GHG inventory, Low emission development planning, -LEDS, Market analysis, Pathways analysis, Policies/deployment programs Website http://cleanairinitiative.org/

287

Carbon emissions reduction strategies in Africa from improved waste management: A review  

SciTech Connect

The paper summarises a literature review into waste management practices across Africa as part of a study to assess methods to reduce carbon emissions. Research shows that the average organic content for urban Municipal Solid Waste in Africa is around 56% and its degradation is a major contributor to greenhouse gas emissions. The paper concludes that the most practical and economic way to manage waste in the majority of urban communities in Africa and therefore reduce carbon emissions is to separate waste at collection points to remove dry recyclables by door to door collection, compost the remaining biogenic carbon waste in windrows, using the maturated compost as a substitute fertilizer and dispose the remaining fossil carbon waste in controlled landfills.

Couth, R. [University of KwaZulu-Natal, CRECHE, School of Civil Engineering, Survey and Construction, Durban 4041 (South Africa); Trois, C., E-mail: troisc@ukzn.ac.z [University of KwaZulu-Natal, CRECHE, School of Civil Engineering, Survey and Construction, Durban 4041 (South Africa)

2010-11-15T23:59:59.000Z

288

Carbon-centered free radicals in particulate matter emissions from wood and coal combustion  

SciTech Connect

Electron paramagnetic resonance (EPR) spectroscopy was used to measure the free radicals in the particulate matter (PM) emissions from wood and coal combustion. The intensity of radicals in PM dropped linearly within two months of sample storage and stabilized after that. This factor of storage time was adjusted when comparing radical intensities among different PM samples. An inverse relationship between coal rank and free radical intensities in PM emissions was observed, which was in contrast with the pattern of radical intensities in the source coals. The strong correlation between intensities of free radical and elemental carbon in PM emissions suggests that the radical species may be carbon-centered. The increased g-factors, 2.0029-2.0039, over that of purely carbon-centered radicals may indicate the presence of vicinal oxygen heteroatom. The redox and biology activities of these carbon-centered radicals are worthy of evaluation. 22 refs., 4 figs., 1 tab.

Linwei Tian; Catherine P. Koshland; Junko Yano; Vittal K. Yachandra; Ignatius T.S. Yu; S.C. Lee; Donald Lucas [Chinese University of Hong Kong, Hong Kong (China). School of Public Health

2009-05-15T23:59:59.000Z

289

Soil Organic Carbon Sequestration by Tillage and Crop Rotation: A Global  

NLE Websites -- All DOE Office Websites (Extended Search)

Tillage and Crop Rotation Tillage and Crop Rotation Soil Organic Carbon Sequestration by Tillage and Crop Rotation: A Global Data Analysis DOI: 10.3334/CDIAC/tcm.002 PDF file Full text Soil Science Society of America Journal 66:1930-1946 (2002) CSITE image Tristram O. West and Wilfred M. Post DOE Center for Carbon Sequestration in Terrestrial Ecosystems (CSiTE) Environmental Sciences Division Oak Ridge National Laboratory P.O. Box 2008 Oak Ridge, TN 37831-6290 U.S.A. Sponsor: U.S. Department of Energy's Office of Science, Biological and Environmental Research Program Abstract Global map Changes in agricultural management can potentially increase the accumulation rate of soil organic carbon (SOC), thereby sequestering CO2 from the atmosphere. This study was conducted to quantify potential soil

290

Integrating Natural Gas Hydrates in the Global Carbon Cycle  

Science Conference Proceedings (OSTI)

We produced a two-dimensional geological time- and basin-scale model of the sedimentary margin in passive and active settings, for the simulation of the deep sedimentary methane cycle including hydrate formation. Simulation of geochemical data required development of parameterizations for bubble transport in the sediment column, and for the impact of the heterogeneity in the sediment pore fluid flow field, which represent new directions in modeling methane hydrates. The model is somewhat less sensitive to changes in ocean temperature than our previous 1-D model, due to the different methane transport mechanisms in the two codes (pore fluid flow vs. bubble migration). The model is very sensitive to reasonable changes in organic carbon deposition through geologic time, and to details of how the bubbles migrate, in particular how efficiently they are trapped as they rise through undersaturated or oxidizing chemical conditions and the hydrate stability zone. The active margin configuration reproduces the elevated hydrate saturations observed in accretionary wedges such as the Cascadia Margin, but predicts a decrease in the methane inventory per meter of coastline relative to a comparable passive margin case, and a decrease in the hydrate inventory with an increase in the plate subduction rate.

David Archer; Bruce Buffett

2011-12-31T23:59:59.000Z

291

Photon Enhanced Thermionic Emission for Solar Energy Harvesting Progress Report to the Global Climate and Energy Project  

E-Print Network (OSTI)

Photon Enhanced Thermionic Emission for Solar Energy Harvesting Progress Report to the Global Photon Enhanced Thermionic Emission (PETE) is a newly proposed form of solar energy harvesting which have inherently lower efficiency limits but take advantage of energy throughout the entire solar

Nur, Amos

292

Landfill CH sub 4 : Rates, fates, and role in global carbon cycle  

SciTech Connect

Published estimates for worldwide landfill methane emissions range from 9 to 70 Tg yr{sup {minus}1}. Field and laboratory studies suggest that maximum methane yields from lanfilled refuse are about 0.06 to 0.09 m{sup 3} (dry Kg){sup {minus}1} refuse, depending on moisture content and other variables, such as organic loading, buffering capacity, and nutrients in landfill microevnironments. Methane yields may vary by more than an order of magnitude within a given site. Fates for landfill methane include (1) direct or delayed emission to the atmosphere through landfill cover materials or surface soils; (2) oxidation by methanotrophs in cover soils, with resulting emission of carbon dioxide; or (3) recovery of methane followed by combustion to produce carbon dioxide. The percent methane assigned to each pathway will vary among field sites and, for individual sites, through time. Nevertheless, a general framework for a landfill methane balance can be developed by consideration of landfill age, engineering and management practices, cover soil characteristics, and water balance. Direct measurements of landfill methane emissions are sparse, with rates between 10{sup {minus}6} and 10{sup {minus}8} g cm{sup {minus}2} s{sup {minus}1}; very high rates of 400 kg m{sup {minus}2} yr{sup {minus}1} have been measured at a semiarid unvegetated site. The proportion of landfill carbon that is ultimately converted to methane and carbon dioxide is problematical; the literature suggests that, at best, 25% to 40% of refuse carbon can be converted to biogas carbon. Cellulose contributes the major portion of the methane potential. Routine excavation of nondecomposed cellulosic materials after one or two decades of landfill burial suggests that uniformly high conversion rates are rarely attained at field sites.

Bogner, J.; Spokas, K.

1991-01-01T23:59:59.000Z

293

Landfill CH{sub 4}: Rates, fates, and role in global carbon cycle  

SciTech Connect

Published estimates for worldwide landfill methane emissions range from 9 to 70 Tg yr{sup {minus}1}. Field and laboratory studies suggest that maximum methane yields from lanfilled refuse are about 0.06 to 0.09 m{sup 3} (dry Kg){sup {minus}1} refuse, depending on moisture content and other variables, such as organic loading, buffering capacity, and nutrients in landfill microevnironments. Methane yields may vary by more than an order of magnitude within a given site. Fates for landfill methane include (1) direct or delayed emission to the atmosphere through landfill cover materials or surface soils; (2) oxidation by methanotrophs in cover soils, with resulting emission of carbon dioxide; or (3) recovery of methane followed by combustion to produce carbon dioxide. The percent methane assigned to each pathway will vary among field sites and, for individual sites, through time. Nevertheless, a general framework for a landfill methane balance can be developed by consideration of landfill age, engineering and management practices, cover soil characteristics, and water balance. Direct measurements of landfill methane emissions are sparse, with rates between 10{sup {minus}6} and 10{sup {minus}8} g cm{sup {minus}2} s{sup {minus}1}; very high rates of 400 kg m{sup {minus}2} yr{sup {minus}1} have been measured at a semiarid unvegetated site. The proportion of landfill carbon that is ultimately converted to methane and carbon dioxide is problematical; the literature suggests that, at best, 25% to 40% of refuse carbon can be converted to biogas carbon. Cellulose contributes the major portion of the methane potential. Routine excavation of nondecomposed cellulosic materials after one or two decades of landfill burial suggests that uniformly high conversion rates are rarely attained at field sites.

Bogner, J.; Spokas, K.

1991-12-31T23:59:59.000Z

294

LEDS Global Partnership in Action: Advancing Climate-Resilient Low Emission Development Around the World (Fact Sheet)  

SciTech Connect

Many countries around the globe are designing and implementing low emission development strategies (LEDS). These LEDS seek to achieve social, economic, and environmental development goals while reducing long-term greenhouse gas (GHG) emissions and increasing resiliency to climate change impacts. The LEDS Global Partnership (LEDS GP) harnesses the collective knowledge and resources of more than 120 countries and international donor and technical organizations to strengthen climate-resilient low emission development efforts around the world.

Not Available

2013-11-01T23:59:59.000Z

295

Carbon dioxide emissions from fossil fuel consumption and cement manufacture, 1751-1991; and an estimate of their isotopic composition and latitudinal distribution  

SciTech Connect

This work briefly discusses four of the current research emphases at Oak Ridge National Laboratory regarding the emission of carbon dioxide (CO{sub 2}) from fossil fuel consumption, natural gas flaring and cement manufacture. These emphases include: (1) updating the 1950 to present time series of CO{sub 2} emissions from fossil fuel consumption and cement manufacture, (2) extending this time series back to 1751, (3) gridding the data at 1{sup 0} by 1{sup 0} resolution, and (4) estimating the isotopic signature of these emissions. In 1991, global emissions of CO{sub 2} from fossil fuel and cement increased 1.5% over 1990 levels to 6188 {times} 10{sup 6} metric tonnes C. The Kuwaiti oil fires can account for all of the increase. Recently published energy data (Etemad et al., 1991) allow extension of the CO emissions time series back to 1751. Preliminary examination shows good agreement with two other, but shorter, energy time series. A latitudinal distribution of carbon emissions is being completed. A southward shift in the major mass of CO{sub 2} emissions is occurring from European-North American latitudes towards central-southeast Asian latitudes, reflecting the growth of population and industrialization at these lower latitudes. The carbon isotopic signature of these emissions has been re-examined. The emissions of the last two decades are approximately 1{per_thousand} lighter than previously reported (Tans, 1981). This lightening of the emissions signature is due to fossil fuel gases and liquids, including a revision of their {delta}{sup 13}C isotopic signature and an increased production rate.

Andres, R.J.; Marland, G.; Boden, T.; Bischof, S.

1994-10-01T23:59:59.000Z

296

The Greenness of Cities: Carbon Dioxide Emissions and Urban Development  

E-Print Network (OSTI)

Integrated Database (eGRID), and the National Oceanic andProtection Agencys eGRID, or Emissions & GenerationDatabase data base 21 . The eGRID data base contains the

Glaeser, Edward L.; Kahn, Matthew E.

2008-01-01T23:59:59.000Z

297

"1. Carbon Dioxide Emission Factors for Stationary Combustion1"  

U.S. Energy Information Administration (EIA) Indexed Site

Fuel Emission Factors" Fuel Emission Factors" "(From Appendix H of the instructions to Form EIA-1605)" "1. Carbon Dioxide Emission Factors for Stationary Combustion1" "Fuel ",,"Emission Factor ",,"Units" "Coal2" "Anthracite",,103.69,,"kg CO2 / MMBtu" "Bituminous",,93.28,,"kg CO2 / MMBtu" "Sub-bituminous",,97.17,,"kg CO2 / MMBtu" "Lignite",,97.72,,"kg CO2 / MMBtu" "Electric Power Sector",,95.52,,"kg CO2 / MMBtu" "Industrial Coking",,93.71,,"kg CO2 / MMBtu" "Other Industrial",,93.98,,"kg CO2 / MMBtu" "Residential/Commercial",,95.35,,"kg CO2 / MMBtu" "Natural Gas3"

298

NETL: Advanced NOx Emissions Control: Control Technology - Carbon...  

NLE Websites -- All DOE Office Websites (Extended Search)

product. The FFR concept solves this problem. The technology increases the efficiency of NOx reduction in coal reburning and decreases carbon-in ash. FFR can achieve the same...

299

CARBON BED MERCURY EMISSIONS CONTROL FOR MIXED WASTE TREATMENT  

Science Conference Proceedings (OSTI)

Mercury has had various uses in nuclear fuel reprocessing and other nuclear processes, and so is often present in radioactive and mixed (both radioactive and hazardous according tohe Resource Conservation and Recovery Act) wastes. Depending on regulatory requirements, the mercury in the off-gas must be controlled with sometimes very high efficiencies. Compliance to the Hazardous Waste Combustor (HWC) Maximum Achievable Control Technology (MACT) standards can require off-gas mercury removal efficiencies up to 99.999% for thermally treating some mixed waste streams. Several test programs have demonstrated this level of off-gas mercury control using fixed beds of granular sulfur-impregnated activated carbon. Other results of these tests include: (a) The depth of the mercury control mass transfer zone was less than 15-30 cm for the operating conditions of these tests, (b) MERSORB carbon can sorb Hg up to 19 wt% of the carbon mass, and (c) the spent carbon retained almost all (98 99.99%) of the Hg; but when even a small fraction of the total Hg dissolves, the spent carbon can fail the TCLP test when the spent carbon contains high Hg concentrations. Localized areas in a carbon bed that become heated through heat of adsorption, to temperatures where oxidation occurs, are referred to as bed hot spots. Carbon bed hot spots must be avoided in processes that treat radioactive and mixed waste. Key to carbon bed hot spot mitigation are (a) designing for sufficient gas velocity, for avoiding gas flow maldistribution, and for sufficient but not excessive bed depth, (b) monitoring and control of inlet gas flowrate, temperature, and composition, (c) monitoring and control of in-bed and bed outlet gas temperatures, and (d) most important, monitoring of bed outlet CO concentrations. An increase of CO levels in the off-gas downstream of the carbon bed to levels about 50-100 ppm higher than the inlet CO concentration indicate CO formation in the bed, caused by carbon bed hot spots. Corrective actions must be implemented quickly if bed hot spots are detected, using a graded approach and sequence starting with corrective actions that are simple, quick, cause the least impact to the process, and are easiest to recover from. Multiple high and high-high alarm levels should be used, with appropriate corrective actions for each level.

Nick Soelberg; Joe Enneking

2010-11-01T23:59:59.000Z

300

Managing the cost of emissions for durable, carbon-containing products  

SciTech Connect

We recognize that carbon-containing products do not decay and release CO2 to the atmosphere instantaneously, but release that carbon over extended periods of time. For an initial production of a stock of carbon-containing product, we can treat the release as a probability distribution covering the time over which that release occurs. The probability distribution that models the carbon release predicts the amount of carbon that is released as a function of time. The use of a probability distribution in accounting for the release of carbon to the atmosphere realizes a fundamental shift from the idea that all carbon-containing products contribute to a single pool that decays in proportion to the size of the stock. Viewing the release of carbon as a continuous probabilistic process introduces some theoretical opportunities not available in the former paradigm by taking advantage of other fields where the use of probability distributions has been prevalent for many decades. In particular, theories developed in the life insurance industry can guide the development of pricing and payment structures for dealing with the costs associated with the oxidation and release of carbon. These costs can arise from a number of proposed policies (cap and trade, carbon tax, social cost of carbon, etc), but in the end they all result in there being a cost to releasing carbon to the atmosphere. If there is a cost to the emitter for CO2 emissions, payment for that cost will depend on both when the emissions actually occur and how payment is made. Here we outline some of the pricing and payment structures that are possible which result from analogous theories in the life insurance industry. This development not only provides useful constructs for valuing sequestered carbon, but highlights additional motivations for employing a probability distribution approach to unify accounting methodologies for stocks of carbon containing products.

Shirley, Kevin [Appalachian State University; Marland, Eric [Appalachian State University; Cantrell, Jenna [Appalachian State University; Marland, Gregg [ORNL

2011-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "global carbon emissions" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Analysis and optimization of the Graz cycle : a coal fired power generation scheme with near-zero carbon dioxide emissions  

E-Print Network (OSTI)

Humans are releasing record amounts of carbon dioxide into the atmosphere through the combustion of fossil fuels in power generation plants. With mounting evidence that this carbon dioxide is a leading cause of global ...

Alexander, Brentan R

2007-01-01T23:59:59.000Z

302

Methane Emissions - Energy Information Administration  

U.S. Energy Information Administration (EIA)

Carbon Dioxide Equivalent; Estimated 2003 ... for about 8.7 percent of total U.S. greenhouse gas emissions when weighted by methanes global warming potential factor.

303

The Temporal and Spatial Distribution of Carbon Dioxide Emissions from Fossil-Fuel Use in North America  

Science Conference Proceedings (OSTI)

Refinements in the spatial and temporal resolution of North American fossil-fuel carbon dioxide (CO2) emissions provide additional information about anthropogenic aspects of the carbon cycle. In North America, the seasonal and spatial patterns ...

J. S. Gregg; L. M. Losey; R. J. Andres; T. J. Blasing; G. Marland

2009-12-01T23:59:59.000Z

304

Ontario feedlot operators' willingness to accept carbon credit revenue for adopting management practices that reduce greenhouse gas emissions.  

E-Print Network (OSTI)

??The Canadian agricultural sector was recognised as a potential seller of carbon offset credits in the domestic emission trading system. A number of beneficial management (more)

Hristeva, Polina.

2007-01-01T23:59:59.000Z

305

Further Sensitivity Analysis of Hypothetical Policies to Limit Energy-Related Carbon Dioxide Emissions  

Gasoline and Diesel Fuel Update (EIA)

Further Sensitivity Analysis of Hypothetical Policies to Limit Energy-Related Carbon Dioxide Emissions Supplement to the Annual Energy Outlook 2013 July 2013 Independent Statistics & Analysis www.eia.gov U.S. Department of Energy Washington, DC 20585 U.S. Energy Information Administration | Further Sensitivity Analysis of Hypothetical Policies to Limit Energy-Related Carbon Dioxide Emissions i This report was prepared by the U.S. Energy Information Administration (EIA), the statistical and analytical agency within the U.S. Department of Energy. By law, EIA's data, analyses, and forecasts are independent of approval by any other officer or employee of the United States Government. The views

306

Table 4. 2010 State energy-related carbon dioxide emission shares by sector  

U.S. Energy Information Administration (EIA) Indexed Site

2010 State energy-related carbon dioxide emission shares by sector " 2010 State energy-related carbon dioxide emission shares by sector " "percent of total" ,"Shares" "State","Commercial","Electric Power","Residential","Industrial","Transportation" "Alabama",0.01584875241,0.5778871607,0.02136328943,0.1334667239,0.2514340736 "Alaska",0.06448385239,0.0785744956,0.0462016929,0.4291084798,0.3816314793 "Arizona",0.02474932909,0.5668758159,0.02425067581,0.04966758421,0.334456595 "Arkansas",0.03882032779,0.4886410984,0.03509200153,0.1307772146,0.3066693577 "California",0.04308920353,0.1176161395,0.07822332929,0.1824277392,0.5786435885 "Colorado",0.04301641968,0.4131279202,0.08115394032,0.1545280216,0.3081736982

307

Estimating carbon emissions avoided by electricity generation and efficiency projects: A standardized method (MAGPWR)  

SciTech Connect

This paper describes a standardized method for establishing a multi-project baseline for a power system. The method provides an approximation of the generating sources that are expected to operate on the margin in the future for a given electricity system. It is most suitable for small-scale electricity generation and electricity efficiency improvement projects. It allows estimation of one or more carbon emissions factors that represent the emissions avoided by projects, striking a balance between simplicity of use and the desire for accuracy in granting carbon credits.

Meyers, S.; Marnay, C.; Schumacher, K.; Sathaye, J.

2000-07-01T23:59:59.000Z

308

Solar-thermal hybridization of Advanced Zero Emissions Power Plants  

E-Print Network (OSTI)

Carbon Dioxide emissions from power production are believed to have significant contributions to the greenhouse effect and global warming. Alternative energy resources, such as solar radiation, may help abate emissions but ...

El Khaja, Ragheb Mohamad Fawaz

2012-01-01T23:59:59.000Z

309

Carbon Emissions Caps and the Impact of a Radical Change in Nuclear  

NLE Websites -- All DOE Office Websites (Extended Search)

Carbon Emissions Caps and the Impact of a Radical Change in Nuclear Carbon Emissions Caps and the Impact of a Radical Change in Nuclear Electricity Costs Title Carbon Emissions Caps and the Impact of a Radical Change in Nuclear Electricity Costs Publication Type Journal Article Year of Publication 2013 Authors Leibowicz, Benjamin, Maria Roumpani, and Peter H. Larsen Journal International Journal of Energy Economics and Policy Volume 3 Start Page 60 Issue 1 Date Published 2013 Keywords foresight, MARKAL, nuclear electricity, value of information Abstract In this study we analyze the impact of a radical change in nuclear electricity costs on the optimal electricity generation technology mix (EGTM) and constrain the value of information (VOI) on future nuclear costs. We consider three nuclear cost events and four carbon emissions caps. We develop a two-stage framework for energy-economic model MARKAL to eliminate foresight of future nuclear cost movements. We examine how the EGTM responds to these movements under alternative caps and analyze how these movements affect the cost of each cap. We define the expected savings from perfect foresight (ESPF), an upper bound on the VOI. We found that with current technologies, carbon mitigation that does not rely heavily on nuclear electricity is economically insensible. The Strong Cap is extremely costly because it restricts flexibility to respond to cost signals in choosing among technologies. The ESPF is highest under the Medium Cap by a substantial margin.

310

Allocation of Carbon Emission Certificates in the Power Sector: How generators profitfrom grandfathered rights  

E-Print Network (OSTI)

of over-allocation and attempt to quantify this in the context of the UK power system. 2 Coal and Gas in a Carbon Constrained Environment In the presence of emission certificates, fossil fuel generators will add the opportunity cost of emission... plant will be marginal, and no longer enjoy such benefit. Third, during the highest demand periods, the PC plant was and can be expected to remain infra-marginal. Typically the marginal plant will be an older fossil fuel plant characterised...

Martinez, Kim Keats; Neuhoff, Karsten

2006-03-14T23:59:59.000Z

311

An assessment of future energy use and carbon emissions from US residences  

SciTech Connect

This paper explores residential energy futures and their associated carbon emissions using an engineering-economic end-use model. The authors present detailed input assumptions and output results for twenty-four cases, each representing a different combination of electricity supply mix, demand-side policy case, and carbon tax. They describe current and projected future energy use by end-use and fuel, and assess which end-uses are growing most rapidly in importance over time.

Koomey, J.G.; Johnson, F.X.; McMahon, J.E.; Orland, M.C.; Levine, M.D.; Chan, P.; Krause, F.

1993-12-01T23:59:59.000Z

312

EIA - Will carbon capture and storage reduce the world's carbon dioxide  

Gasoline and Diesel Fuel Update (EIA)

Will carbon capture and storage reduce the world's carbon dioxide emissions? Will carbon capture and storage reduce the world's carbon dioxide emissions? International Energy Outlook 2010 Will carbon capture and storage reduce the world'ss carbon dioxide emissions? The pursuit of greenhouse gas reductions has the potential to reduce global coal use significantly. Because coal is the most carbon-intensive of all fossil fuels, limitations on carbon dioxide emissions will raise the cost of coal relative to the costs of other fuels. Under such circumstances, the degree to which energy use shifts away from coal to other fuels will depend largely on the costs of reducing carbon dioxide emissions from coal-fired plants relative to the costs of using other, low-carbon or carbon-free energy sources. The continued widespread use of coal could rely on the cost and availability of carbon capture and storage (CCS) technologies that capture carbon dioxide and store it in geologic formations.

313

An option for the coal industry in dealing with the carbon dioxide global greenhouse effect  

SciTech Connect

A new technical option for the coal industry in dealing with the carbon dioxide greenhouse effect has been devised. We have developed a very efficient process called HYDROCARB/sup SM/, which effectively splits coal into carbon and hydrogen. The process has been described in detail. We are suggesting that coal refineries be built based on this technology. The original thrust of this process is to produce a clean, pure carbon fuel from coal for application in both mobile and stationary heat engines. A co-product of the process is a hydrogen-rich gas. If one is concerned about the greenhouse effect, then either all or part of the carbon can be withheld and only the hydrogen is used as fuel. If one desires to attain the ultimate, and eliminate all CO/sub 2/ emissions from coal, then all of the carbon can be stored and only the hydrogen used. The option is still open for utilizing the clean carbon, which would be placed in monitored retrievable storage, not unlike the strategic petroleum reserve (SPR). This concept can be valuable to the coal industry in response to the arguments of the anti-coal critics. In this regard, we believe this process is unique; no other process can make this claim. We are convinced that the HYDROCARB Process would be of substantial benefit, economically as well as environmentally, let alone psychologically, to the coal and fossil fuel industry. 12 refs.

Steinberg, M.

1988-07-01T23:59:59.000Z

314

Short run effects of a price on carbon dioxide emissions from U.S. electric generators  

Science Conference Proceedings (OSTI)

The price of delivered electricity will rise if generators have to pay for carbon dioxide emissions through an implicit or explicit mechanism. There are two main effects that a substantial price on CO{sub 2} emissions would have in the short run (before the generation fleet changes significantly). First, consumers would react to increased price by buying less, described by their price elasticity of demand. Second, a price on CO{sub 2} emissions would change the order in which existing generators are economically dispatched, depending on their carbon dioxide emissions and marginal fuel prices. Both the price increase and dispatch changes depend on the mix of generation technologies and fuels in the region available for dispatch, although the consumer response to higher prices is the dominant effect. We estimate that the instantaneous imposition of a price of $35 per metric ton on CO{sub 2} emissions would lead to a 10% reduction in CO{sub 2} emissions in PJM and MISO at a price elasticity of -0.1. Reductions in ERCOT would be about one-third as large. Thus, a price on CO{sub 2} emissions that has been shown in earlier work to stimulate investment in new generation technology also provides significant CO{sub 2} reductions before new technology is deployed at large scale. 39 refs., 4 figs., 2 tabs.

Adam Newcomer; Seth A. Blumsack; Jay Apt; Lester B. Lave; M. Granger Morgan [Carnegie Mellon University, Pittsburgh, PA (United States). Carnegie Mellon Electricity Industry Center

2008-05-01T23:59:59.000Z

315

Corporate Carbon Strategy and Procurement of Greenhouse Gas Emissions Offsets for Compliance with Mandatory Carbon Constraints  

Science Conference Proceedings (OSTI)

This report explores strategies that may be employed by electric companies and other industrial enterprises to reduce their greenhouse gas (GHG) emissions to comply with potential future mandatory GHG emissions reduction programs. It explores the opportunities, challenges and risks associated with reducing GHG emissions from within a company's own operations, as well as other approaches that may be used for compliance such as real-time coal-to-natural gas fuel switching in the regional dispatch of electr...

2010-12-23T23:59:59.000Z

316

Characterization of field emission from carbon nanofibers on a metal tip  

SciTech Connect

Field electron emission from carbon nanofibers (CNFs) grown on a tungsten tip has been characterized by measuring emission current-voltage (I-V) curves and observing emission patterns on a phosphor screen. CNFs were vertically grown on the tip by plasma-enhanced chemical vapor deposition. Field emission from the CNFs over 100 {mu}A was strongly dependent on emitter-anode distance, and the dominant field electrons were emitted within an angular spread of {delta}{theta}{approx}25 deg., indicating the electron emission took place mainly from the emitter's apex area. By analyzing the I-V curves with the aid of the Fowler-Nordheim theory, the maximum current density was estimated to be about J=2x10{sup 9} A/m{sup 2}.

Sakai, Y.; Tone, D.; Nagatsu, S.; Endo, T.; Kita, S.; Okuyama, F. [Graduate School of Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555 (Japan)

2009-08-17T23:59:59.000Z

317

Evaluation of Biases in JRA-25/JCDAS Precipitation and Their Impact on the Global Terrestrial Carbon Balance  

Science Conference Proceedings (OSTI)

This study evaluates a modeled precipitation field and examines how its bias affects the modeling of the regional and global terrestrial carbon cycle. Spatial and temporal variations in precipitation produced by the Japanese 25-yr reanalysis (JRA-...

Makoto Saito; Akihiko Ito; Shamil Maksyutov

2011-08-01T23:59:59.000Z

318

Estimation of methane and carbon dioxide surface fluxes using a 3-D global atmospheric chemical transport model  

E-Print Network (OSTI)

Methane (CH?) and carbon dioxide (CO?) are the two most radiatively important greenhouse gases attributable to human activity. Large uncertainties in their source and sink magnitudes currently exist. We estimate global ...

Chen, Yu-Han, 1973-

2004-01-01T23:59:59.000Z

319

Emission spectra analysis of arc plasma for synthesis of carbon nanostructures in various magnetic conditions  

SciTech Connect

Arc discharge supported by the erosion of anode materials is one of the most practical and efficient methods to synthesize various high-quality carbon nanostructures. By introducing a non-uniform magnetic field in arc plasmas, high-purity single-walled carbon nanotubes (SWCNT) and large-scale graphene flakes can be obtained in a single step. In this paper, ultraviolet-visible emission spectra of arc in different spots under various magnetic conditions are analyzed to provide an in situ investigation for transformation processes of evaporated species and growth of carbon nanostructures in arc. Based on the arc spectra of carbon diatomic Swan bands, vibrational temperature in arc is determined. The vibrational temperature in arc center was measured around 6950 K, which is in good agreement with our simulation results. Experimental and simulation results suggest that SWCNT are formed in the arc periphery region. Transmission electronic microscope and Raman spectroscope are also employed to characterize the properties of carbon nanostructures.

Li Jian; Kundrapu, Madhusudhan; Shashurin, Alexey; Keidar, Michael [Department of Mechanical and Aerospace Engineering, George Washington University, Washington, DC 20052 (United States)

2012-07-15T23:59:59.000Z

320

GFDLs ESM2 Global Coupled ClimateCarbon Earth System Models. Part II: Carbon System Formulation and Baseline Simulation Characteristics  

Science Conference Proceedings (OSTI)

The authors describe carbon system formulation and simulation characteristics of two new global coupled carbonclimate Earth System Models (ESM), ESM2M and ESM2G. These models demonstrate good climate fidelity as described in part I of this study ...

John P. Dunne; Jasmin G. John; Elena Shevliakova; Ronald J. Stouffer; John P. Krasting; Sergey L. Malyshev; P. C. D. Milly; Lori T. Sentman; Alistair J. Adcroft; William Cooke; Krista A. Dunne; Stephen M. Griffies; Robert W. Hallberg; Matthew J. Harrison; Hiram Levy; Andrew T. Wittenberg; Peter J. Phillips; Niki Zadeh

2013-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "global carbon emissions" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Announcing the 2012-2013 Energy Innovation Contest for undergraduates to stamp out carbon emissions on  

E-Print Network (OSTI)

Announcing the 2012-2013 Energy Innovation Contest for undergraduates to stamp out carbon emissions on New Brunswick Campus The Rutgers Energy Institute will offer three awards: The REI gratefully acknowledges sponsorship of the Energy Contest by Sapphire Energy Inc. Awards will go to students who develop

Garfunkel, Eric

322

Carbon Dioxide Emissions from the Generation of Electric Power in the United States 1998  

Reports and Publications (EIA)

The President issued a directive on April 15, 1999, requiring an annual report summarizing carbon dioxide (CO2) emissions produced by electricity generation in the United States, including both utilities and nonutilities. In response, this report is jointly submitted by the U.S. Department of Energy and the U.S. Environmental Protection Agency.

Information Center

1999-10-15T23:59:59.000Z

323

Trends and breaks in per-capita carbon dioxide emissions, 1870-2028  

E-Print Network (OSTI)

We consider per-capita carbon dioxide emission trends in 16 early developed countries over the period 1870-2028. Using a multiple-break time series method we find more evidence for very early downturns in per-capita trends ...

Lanne, Markku

2003-01-01T23:59:59.000Z

324

emissions: mineral carbonation and Finnish pulp and paper industry (CO2  

E-Print Network (OSTI)

- ation of slags from iron- and steel industry" pre- sented at the 4th Nordic Mini-symposium on CO2CO2 emissions: mineral carbonation and Finnish pulp and paper industry (CO2 Nordic Plus) and Use of serpentinites in energy and metal industry (ECOSERP) Carl-Johan Fogelholm, Project leader, professor Sanni

Zevenhoven, Ron

325

Information management for global environmental change, including the Carbon Dioxide Information Analysis Center  

Science Conference Proceedings (OSTI)

The issue of global change is international in scope. A body of international organizations oversees the worldwide coordination of research and policy initiatives. In the US the National Science and Technology Council (NSTC) was established in November of 1993 to provide coordination of science, space, and technology policies throughout the federal government. NSTC is organized into nine proposed committees. The Committee on Environmental and Natural Resources (CERN) oversees the US Department of Energy`s Global Change Research Program (USGCRP). As part of the USGCRP, the US Department of Energy`s Global Change Research Program aims to improve the understanding of Earth systems and to strengthen the scientific basis for the evaluation of policy and government action in response to potential global environmental changes. This paper examines the information and data management roles of several international and national programs, including Oak Ridge National Laboratory`s (ORNL`s) global change information programs. An emphasis will be placed on the Carbon Dioxide Information Analysis Center (CDIAC), which also serves as the World Data Center-A for Atmospheric Trace Gases.

Stoss, F.W. [Oak Ridge National Lab., TN (United States). Carbon Dioxide Information Analysis Center

1994-06-01T23:59:59.000Z

326

Alternative Approaches to Analyzing Greenhouse Gas Emissions and Global Climate Change in CEQA Documents  

E-Print Network (OSTI)

Global climate change (GCC) is a change in the average weather of the earth that can be measured by wind patterns, storms, precipitation, and temperature. This paper is not a scientific analysis of the existence or potential causes of GCC. Further, this paper does not address National Environmental Policy Act (NEPA) requirements. Instead, the intent of this paper is to provide practical, interim information to California Environmental Quality Act (CEQA) practitioners to help Lead Agencies determine how to address GCC in CEQA documents prior to the development and adoption of guidance by appropriate government agencies. A typical individual project does not generate enough greenhouse gas emissions to influence GCC significantly on its own; the issue of GCC is by definition a cumulative environmental impact. Therefore, if the Lead Agency chooses to address GCC effects in a CEQA document, it should be discussed in the context of a cumulative impact. A complicating factor, however, is that there are currently no published CEQA thresholds or approved methods for determining whether a projects potential contribution to a cumulative GCC impact is considerable. This paper provides a summary of background information on GCC, the current regulatory environment surrounding greenhouse gas (GHG) emissions, and the various approaches that a Lead

Tony Held, Ph.D.; Terry Rivasplata; Tim Rimpo; Kenneth M. Bogdan

2007-01-01T23:59:59.000Z

327

REPORT DISTRIBUTION OF CARBON EMISSIONS IN THE UK: IMPLICATIONS FOR DOMESTIC ENERGY POLICY  

E-Print Network (OSTI)

The report looks at the distribution of carbon emissions and abatement opportunities of households in England, and the implications for energy and climate change policy impacts. The UK government has a target to reduce greenhouse gas emissions by 80 % on 1990 levels by 2050. In addition there are statutory targets to ensure that no household is in fuel poverty by 2016. An understanding of how current and proposed policy approaches to meeting these targets are likely to impact differentially on domestic energy consumers is fundamental to ensuring policies are both fair and effective. This research project uses advanced modelling techniques to develop and analyse the datasets needed to support and further understanding of: the distribution of carbon emissions from energy consumed in the home and through personal travel by car, public transport and aviation across households in Great Britain;

Ian Preston; Vicki White; Joshua Thumim; Toby Bridgeman

2013-01-01T23:59:59.000Z

328

AEO2011: Carbon Dioxide Emissions by Sector and Source - East South Central  

Open Energy Info (EERE)

South Central South Central Dataset Summary Description This dataset comes from the Energy Information Administration (EIA), and is part of the 2011 Annual Energy Outlook Report (AEO2011). This dataset is table 26, and contains only the reference case. The dataset uses million metric tons carbon dioxide equivalent. The data is broken down into residential, commercial, industrial, transportation, electric power, and total by fuel. Source EIA Date Released April 26th, 2011 (3 years ago) Date Updated Unknown Keywords 2011 AEO carbon dioxide emissions East South Central EIA Data application/vnd.ms-excel icon AEO2011: Carbon Dioxide Emissions by Sector and Source - East South Central- Reference Case (xls, 74.3 KiB) Quality Metrics Level of Review Peer Reviewed Comment Temporal and Spatial Coverage

329

AEO2011: Carbon Dioxide Emissions by Sector and Source - United States |  

Open Energy Info (EERE)

United States United States Dataset Summary Description This dataset comes from the Energy Information Administration (EIA), and is part of the 2011 Annual Energy Outlook Report (AEO2011). This dataset is table 30, and contains only the reference case. The dataset uses million metric tons carbon dioxide equivalent. The data is broken down into residential, commercial, industrial, transportation, electric power, and total by fuel. Source EIA Date Released April 26th, 2011 (3 years ago) Date Updated Unknown Keywords 2011 AEO carbon dioxide emissions EIA United States Data application/vnd.ms-excel icon AEO2011: Carbon Dioxide Emissions by Sector and Source - United States- Reference Case (xls, 75.1 KiB) Quality Metrics Level of Review Peer Reviewed Comment Temporal and Spatial Coverage

330

AEO2011: Carbon Dioxide Emissions by Sector and Source- Middle Atlantic |  

Open Energy Info (EERE)

Source- Middle Atlantic Source- Middle Atlantic Dataset Summary Description This dataset comes from the Energy Information Administration (EIA), and is part of the 2011 Annual Energy Outlook Report (AEO2011). This dataset is table 22, and contains only the reference case. The dataset uses million metric tons carbon dioxide equivalent. The data is broken down into residential, commercial, industrial, transportation, electric power, and total by fuel. Source EIA Date Released April 26th, 2011 (3 years ago) Date Updated Unknown Keywords AEO carbon dioxide emissions middle atlantic Data application/vnd.ms-excel icon AEO2011: Carbon Dioxide Emissions by Sector and Source- Middle Atlantic- Reference Case (xls, 74.4 KiB) Quality Metrics Level of Review Peer Reviewed Comment Temporal and Spatial Coverage

331

Table 5. Per capita energy-related carbon dioxide emissions by state (2000 - 201  

U.S. Energy Information Administration (EIA) Indexed Site

Per capita energy-related carbon dioxide emissions by state (2000 - 2010)" Per capita energy-related carbon dioxide emissions by state (2000 - 2010)" "metric tons carbon dioxide per person" ,,,,,,,,,,,,"Change" ,,,,,,,,,,,,"2000 to 2010" "State",2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,"Percent","Absolute" "Alabama",31.54590416,29.56352198,30.5739632,30.56483509,30.96927578,31.14605742,31.33283758,31.52225314,29.78727412,25.44798199,28.06679306,-0.1102872527,-3.479111105 "Alaska",70.60324067,68.51009907,67.8551127,67.17588806,70.92646205,72.04509462,67.81012638,64.8863351,57.56413017,54.58358965,54.63289567,-0.2261984697,-15.97034499 "Arizona",16.64049197,16.65546102,16.08173855,15.97087112,16.77174168,16.18743942,16.15392734,16.06780183,15.87052371,14.3654833,14.36549251,-0.1367146759,-2.274999466

332

Table 1. State energy-related carbon dioxide emissions by year (2000 - 2010  

U.S. Energy Information Administration (EIA) Indexed Site

State energy-related carbon dioxide emissions by year (2000 - 2010)" State energy-related carbon dioxide emissions by year (2000 - 2010)" "million metric tons carbon dioxide" ,,,,,,,,,,,,"Change" ,,,,,,,,,,,," 2000 to 2010 " "State",2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,"Percent","Absolute" "Alabama",140.4264977,131.9521389,136.7103146,137.2323195,139.6896437,141.493798,143.9716001,146.076107,139.2224128,119.7962734,132.7462762,-0.05469211069,-7.680221558 "Alaska",44.32104312,43.40375114,43.56121812,43.5078746,46.76217106,48.06229125,45.79367017,44.11576503,39.46205329,37.91867389,38.72718369,-0.1262122693,-5.593859429 "Arizona",85.96984024,88.33838336,87.66914741,89.29026566,96.58329461,96.7032775,100.0087541,102.1950438,103.1458188,94.63481918,95.91303514,0.1156591064,9.943194897

333

AEO2011: Carbon Dioxide Emissions by Sector and Source - South Atlantic |  

Open Energy Info (EERE)

South Atlantic South Atlantic Dataset Summary Description This dataset comes from the Energy Information Administration (EIA), and is part of the 2011 Annual Energy Outlook Report (AEO2011). This dataset is table 25, and contains only the reference case. The dataset uses million metric tons carbon dioxide equivalent. The data is broken down into residential, commercial, industrial, transportation, electric power, and total by fuel. Source EIA Date Released April 26th, 2011 (3 years ago) Date Updated Unknown Keywords 2011 AEO carbon dioxide emissions EIA South Atlantic Data application/vnd.ms-excel icon AEO2011: Carbon Dioxide Emissions by Sector and Source - South Atlantic- Reference Case (xls, 74.5 KiB) Quality Metrics Level of Review Peer Reviewed Comment Temporal and Spatial Coverage

334

AEO2011: Carbon Dioxide Emissions by Sector and Source - East North Central  

Open Energy Info (EERE)

North Central North Central Dataset Summary Description This dataset comes from the Energy Information Administration (EIA), and is part of the 2011 Annual Energy Outlook Report (AEO2011). This dataset is table 23, and contains only the reference case. The dataset uses million metric tons carbon dioxide equivalent. The data is broken down into residential, commercial, industrial, transportation, electric power, and total by fuel. Source EIA Date Released April 26th, 2011 (3 years ago) Date Updated Unknown Keywords AEO carbon dioxide emissions East North Central Data application/vnd.ms-excel icon AEO2011: Carbon Dioxide Emissions by Sector and Source - East North Central- Reference Case (xls, 74.5 KiB) Quality Metrics Level of Review Peer Reviewed Comment Temporal and Spatial Coverage

335

AEO2011: Carbon Dioxide Emissions by Sector and Source, New England |  

Open Energy Info (EERE)

Source, New England Source, New England Dataset Summary Description This dataset comes from the Energy Information Administration (EIA), and is part of the 2011 Annual Energy Outlook Report (AEO2011). This dataset is table 21, and contains only the reference case. The dataset uses million metric tons carbon dioxide equivalent. The data is broken down into residential, commercial, industrial, transportation, electric power, and total by fuel. Source EIA Date Released April 26th, 2011 (3 years ago) Date Updated Unknown Keywords AEO carbon dioxide emissions New England Data application/vnd.ms-excel icon AEO2011: Carbon Dioxide Emissions by Sector and Source, New England- Reference Case (xls, 73.9 KiB) Quality Metrics Level of Review Peer Reviewed Comment Temporal and Spatial Coverage

336

Table 3. 2010 state energy-related carbon dioxide emissions by sector  

U.S. Energy Information Administration (EIA) Indexed Site

2010 state energy-related carbon dioxide emissions by sector " 2010 state energy-related carbon dioxide emissions by sector " "million metric tons of carbon dioxide" "State","Commercial","Electric Power","Residential","Industrial","Transportation","Total" "Alabama",2.103862865,76.71236863,2.835897119,17.71721059,33.37693698,132.7462762 "Alaska",2.497277997,3.042968925,1.789261448,16.61816292,14.7795124,38.72718369 "Arizona",2.373783271,54.37078005,2.325955921,4.76376875,32.07874715,95.91303514 "Arkansas",2.566776983,32.30865878,2.320262268,8.646911643,20.27679552,66.11940519 "California",15.93482613,43.49564577,28.92778352,67.46363514,213.9882899,369.8101805 "Colorado",4.150125234,39.85763155,7.82954551,14.90850811,29.73188961,96.47770002

337

Table 2. 2010 state energy-related carbon dioxide emissions by fuel  

U.S. Energy Information Administration (EIA) Indexed Site

2010 state energy-related carbon dioxide emissions by fuel " 2010 state energy-related carbon dioxide emissions by fuel " "million metric tons of carbon dioxide" ,,,,,," Shares " "State","Coal","Petroleum","Natural Gas ","Total","Coal","Petroleum","Natural Gas" "Alabama",67.81545193,35.95576449,28.97505976,132.7462762,0.5108651925,0.2708608145,0.218273993 "Alaska",1.364880388,19.58916888,17.77313443,38.72718369,0.03524347131,0.5058247724,0.4589317562 "Arizona",43.2377726,34.82066125,17.85460129,95.91303514,0.4508018387,0.3630440972,0.1861540641 "Arkansas",27.72445786,23.82768621,14.56726112,66.11940519,0.4193089424,0.3603735717,0.2203174859 "California",5.157135123,241.2575077,123.3955377,369.8101805,0.01394535736,0.6523820067,0.3336726359

338

AEO2011: Carbon Dioxide Emissions by Sector and Source - West North Central  

Open Energy Info (EERE)

North Central North Central Dataset Summary Description This dataset comes from the Energy Information Administration (EIA), and is part of the 2011 Annual Energy Outlook Report (AEO2011). This dataset is table 24, and contains only the reference case. The dataset uses million metric tons carbon dioxide equivalent. The data is broken down into residential, commercial, industrial, transportation, electric power, and total by fuel. Source EIA Date Released April 26th, 2011 (3 years ago) Date Updated Unknown Keywords 2011 AEO carbon dioxide emissions EIA west north central Data application/vnd.ms-excel icon AEO2011: Carbon Dioxide Emissions by Sector and Source - West North Central- Reference Case (xls, 74.3 KiB) Quality Metrics Level of Review Peer Reviewed Comment Temporal and Spatial Coverage

339

AEO2011: Carbon Dioxide Emissions by Sector and Source - West South Central  

Open Energy Info (EERE)

South Central South Central Dataset Summary Description This dataset comes from the Energy Information Administration (EIA), and is part of the 2011 Annual Energy Outlook Report (AEO2011). This dataset is table 27, and contains only the reference case. The dataset uses million metric tons carbon dioxide equivalent. The data is broken down into residential, commercial, industrial, transportation, electric power, and total by fuel. Source EIA Date Released April 26th, 2011 (3 years ago) Date Updated Unknown Keywords 2011 AEO carbon dioxide emissions EIA West South Central Data application/vnd.ms-excel icon AEO2011: Carbon Dioxide Emissions by Sector and Source - West South Central- Reference Case (xls, 74.6 KiB) Quality Metrics Level of Review Peer Reviewed Comment Temporal and Spatial Coverage

340

AEO2011: Carbon Dioxide Emissions by Sector and Source - Mountain | OpenEI  

Open Energy Info (EERE)

Mountain Mountain Dataset Summary Description This dataset comes from the Energy Information Administration (EIA), and is part of the 2011 Annual Energy Outlook Report (AEO2011). This dataset is table 28, and contains only the reference case. The dataset uses million metric tons carbon dioxide equivalent. The data is broken down into residential, commercial, industrial, transportation, electric power, and total by fuel. Source EIA Date Released April 26th, 2011 (3 years ago) Date Updated Unknown Keywords 2011 AEO carbon dioxide emissions EIA Mountain Data application/vnd.ms-excel icon AEO2011: Carbon Dioxide Emissions by Sector and Source - Mountain- Reference Case (xls, 74.4 KiB) Quality Metrics Level of Review Peer Reviewed Comment Temporal and Spatial Coverage

Note: This page contains sample records for the topic "global carbon emissions" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Incorporation of catalytic dehydrogenation into fischer-tropsch synthesis to significantly reduce carbon dioxide emissions  

SciTech Connect

A new method of producing liquid transportation fuels from coal and other hydrocarbons that significantly reduces carbon dioxide emissions by combining Fischer-Tropsch synthesis with catalytic dehydrogenation is claimed. Catalytic dehydrogenation (CDH) of the gaseous products (C1-C4) of Fischer-Tropsch synthesis (FTS) can produce large quantities of hydrogen while converting the carbon to multi-walled carbon nanotubes (MWCNT). Incorporation of CDH into a FTS-CDH plant converting coal to liquid fuels can eliminate all or most of the CO.sub.2 emissions from the water-gas shift (WGS) reaction that is currently used to elevate the H.sub.2 level of coal-derived syngas for FTS. Additionally, the FTS-CDH process saves large amounts of water used by the WGS reaction and produces a valuable by-product, MWCNT.

Huffman, Gerald P.

2012-11-13T23:59:59.000Z

342

AEO2011: Carbon Dioxide Emissions by Sector and Source - Pacific | OpenEI  

Open Energy Info (EERE)

Pacific Pacific Dataset Summary Description This dataset comes from the Energy Information Administration (EIA), and is part of the 2011 Annual Energy Outlook Report (AEO2011). This dataset is table 29, and contains only the reference case. The dataset uses million metric tons carbon dioxide equivalent. The data is broken down into residential, commercial, industrial, transportation, electric power, and total by fuel. Source EIA Date Released April 26th, 2011 (3 years ago) Date Updated Unknown Keywords 2011 AEO carbon dioxide emissions EIA Pacific Data application/vnd.ms-excel icon AEO2011: Carbon Dioxide Emissions by Sector and Source - Pacific- Reference Case (xls, 74.2 KiB) Quality Metrics Level of Review Peer Reviewed Comment Temporal and Spatial Coverage Frequency Annually

343

LANDFILL OPERATION FOR CARBON SEQUESTRATION AND MAXIMUM METHANE EMISSION CONTROL  

Science Conference Proceedings (OSTI)

Controlled landfilling is an approach to manage solid waste landfills, so as to rapidly complete methane generation, while maximizing gas capture and minimizing the usual emissions of methane to the atmosphere. With controlled landfilling, methane generation is accelerated to more rapid and earlier completion to full potential by improving conditions (principally moisture, but also temperature) to optimize biological processes occurring within the landfill. Gas is contained through use of surface membrane cover. Gas is captured via porous layers, under the cover, operated at slight vacuum. A field demonstration project has been ongoing under NETL sponsorship for the past several years near Davis, CA. Results have been extremely encouraging. Two major benefits of the technology are reduction of landfill methane emissions to minuscule levels, and the recovery of greater amounts of landfill methane energy in much shorter times, more predictably, than with conventional landfill practice. With the large amount of US landfill methane generated, and greenhouse potency of methane, better landfill methane control can play a substantial role both in reduction of US greenhouse gas emissions and in US renewable energy. The work described in this report, to demonstrate and advance this technology, has used two demonstration-scale cells of size (8000 metric tons [tonnes]), sufficient to replicate many heat and compaction characteristics of larger ''full-scale'' landfills. An enhanced demonstration cell has received moisture supplementation to field capacity. This is the maximum moisture waste can hold while still limiting liquid drainage rate to minimal and safely manageable levels. The enhanced landfill module was compared to a parallel control landfill module receiving no moisture additions. Gas recovery has continued for a period of over 4 years. It is quite encouraging that the enhanced cell methane recovery has been close to 10-fold that experienced with conventional landfills. This is the highest methane recovery rate per unit waste, and thus progress toward stabilization, documented anywhere for such a large waste mass. This high recovery rate is attributed to moisture, and elevated temperature attained inexpensively during startup. Economic analyses performed under Phase I of this NETL contract indicate ''greenhouse cost effectiveness'' to be excellent. Other benefits include substantial waste volume loss (over 30%) which translates to extended landfill life. Other environmental benefits include rapidly improved quality and stabilization (lowered pollutant levels) in liquid leachate which drains from the waste.

Don Augenstein; Ramin Yazdani; Rick Moore; Michelle Byars; Jeff Kieffer; Professor Morton Barlaz; Rinav Mehta

2000-02-26T23:59:59.000Z

344

Modeling of the performance of carbon nanotube bundle, cu/low-k and optical on-chip global interconnects  

Science Conference Proceedings (OSTI)

In this work, we have quantified and compared the performance of carbon nanotube (CNT) and optical interconnects with the existing technology of Cu/low-K interconnects for future high-performance ICs. We present these comparisons not only in terms of ... Keywords: Cu, Global interconnects, bandwidth density, carbon nanotube, latency, optics, power

Hoyeol Cho; Kyung-Hoae Koo; Pawan Kapur; Krishna C. Saraswat

2007-03-01T23:59:59.000Z

345

Int. J. Global Energy Issues, Vol. 23, No. 4, 2005 307 Canada's efforts towards greenhouse gas emission  

E-Print Network (OSTI)

Int. J. Global Energy Issues, Vol. 23, No. 4, 2005 307 Canada's efforts towards greenhouse gas greenhouse gas emissions reductions. Without a major change in direction towards more compulsory policies, it seems unlikely that Canada will achieve significant domestic greenhouse gas reductions over and beyond

346

EIA - AEO2011 Early Release Energy-Related Carbon Dioxide Emissions  

Gasoline and Diesel Fuel Update (EIA)

1 Early Release Overview 1 Early Release Overview Release Date: December 16, 2011 | Next Release Date: January 2012 | Report Number: DOE/EIA-0383ER(2011) Energy-Related Carbon Dioxide Emissions Figure DataAfter falling by 3 percent in 2008 and nearly 7 percent in 2009, largely driven by the economic downturn, total U.S. energy-related CO2 emissions do not return to 2005 levels (5,980 million metric tons) until 2027, and then rise by an additional 5 percent from 2027 to 2035, reaching 6,315 million metric tons in 2035 (Figure 13). Energy-related CO2 emissions grow by 0.2 percent per year from 2005 to 2035. Emissions per capita fall by an average of 0.8 percent per year from 2005 to 2035, as growth in demand for electricity and transportation fuels is moderated by higher energy prices, effi ciency standards, State RPS requirements, and Federal

347

Carbon Dioxide Emissions From Vegetation-Kill Zones Around The Resurgent  

Open Energy Info (EERE)

Dioxide Emissions From Vegetation-Kill Zones Around The Resurgent Dioxide Emissions From Vegetation-Kill Zones Around The Resurgent Dome Of Long Valley Caldera, Eastern California, Usa Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Carbon Dioxide Emissions From Vegetation-Kill Zones Around The Resurgent Dome Of Long Valley Caldera, Eastern California, Usa Details Activities (2) Areas (1) Regions (0) Abstract: A survey of diffuse CO2 efflux, soil temperature and soil-gas chemistry over areas of localized vegetation-kill on and around the resurgent dome of Long Valley caldera California was performed to evaluate the premise that gaseous and thermal anomalies are related to renewed intrusion of magma. Some kill sites are long-lived features and others have developed in the past few years. Total anomalous CO2 emissions from the

348

Assumptions to the Annual Energy Outlook 2000-Table 2. Carbon Emission  

Gasoline and Diesel Fuel Update (EIA)

Carbon Emission Factors Carbon Emission Factors (Kilograms-carbon per million Btu) Fuel Type Carbon Coefficient at Full Combustion Combustion Fraction Adjusted Emissions Factor Petroleum Motor Gasoline 19.33 0.990 19.14 Liquefied Petroleum Gas Used as Fuel 17.20 0.995 17.11 Used as Feedstock 16.87 0.200 3.37 Jet Fuel 19.33 0.990 19.14 Distillate Fuel 19.95 0.990 19.75 Residual Fuel 21.49 0.990 21.28 Asphalt and Road Oil 20.62 0.000 0.00 Lubricants 20.24 0.600 12.14 Petrochemical Feedstocks 19.37 0.200 3.87 Kerosene 19.72 0.990 19.52 Petroleum Coke 27.85 0.500 13.93 Petroleum Still Gas 17.51 0.995 17.42 Other Industrial 20.31 0.990 20.11 Coal Residential and Commercial 25.92 0.990 25.66 Metallurgical 25.55 0.990 25.29 Industrial Other 25.61 0.990 25.39 Electric Utility1 25.74 0.990 24.486 Natural Gas Used as Fuel

349

Numerical evaluation of mechanisms driving Early Jurassic changes in global carbon cycling  

Science Conference Proceedings (OSTI)

The Early Jurassic (early Toarcian, ca. 183 Ma) carbon cycle perturbation is characterized by aabout -5 parts per thousand {delta} {sup 13}C excursion in the exogenic carbon reservoirs, a 1000 ppm rise in atmospheric CO{sub 2}, and a 6-7 degrees warming. Two proposed explanations for this presumed global carbon cycle perturbation are the liberation of massive amounts of isotopically light CH4 from (1) Gondwanan coals by heating during the intrusive eruption of the Karoo-Ferrar large igneous province (LIP) or (2) the thermal dissociation of gas hydrates. Carbon cycle modeling indicates that the release of CH4 from Gondwanan coals synchronous with the eruption of the Karoo-Ferrar LIP fails to reproduce the magnitude or timing of the CO{sub 2} and {delta} {sup 13}C excursions. However, sensitivity analyses constrained by a marine cyclostratigraphically dated {delta}{sup 13}C record indicate that both features of geologic record can be explained with the huge input of about 15,340-24,750 Gt C over about 220 k.y., a result possibly pointing to the involvement of hydrothermal vent complexes in the Karoo Basin. The simulated release of > 6000 Gt C from gas hydrates also reproduces aspects of the early Toarcian rock record, but the large mass involved raises fundamental questions about its formation, storage, and release.

Beerling, D.J.; Brentnall, S.J. [University of Sheffield, Sheffield (United Kingdom)

2007-03-15T23:59:59.000Z

350

Just Say No to Carbon Emissions (LBNL Science at the Theater)  

DOE Green Energy (OSTI)

Learn about three efforts our grandchildren may thank us for: cheap solar energy, bringing energy efficiency to China, and learning how to store carbon deep underground. Can solar energy be dirt cheap? We're all potentially billionaires when it comes to solar energy. The trick is learning how to convert sunlight to electricity using cheap and plentiful materials. Ramamoorthy Ramesh, an innovative materials scientist at Berkeley Lab, will discuss how he and other researchers are working to make photovoltaic cells using the most abundant elements in the Earth's crust -- materials that are literally as common as dirt. Energy efficiency in China: Nan Zhou is a researcher with Berkeley Labs China Energy Group. She will speak about Chinas energy use and the policies that have been implemented to increase energy efficiency and reduce CO2 emission growth. Her work focuses on building China's capacity to evaluate, adopt and implement low-carbon development strategies. Zhou has an architecture degree from China, and a Master and Ph.D. in Engineering from Japan. Understanding geologic carbon sequestration: Even with continued growth of renewable energy sources such as wind and solar, fossil fuels will likely remain cheap and plentiful for decades to come. Geologist Curt Oldenburg, who heads Berkeley Lab's Geologic Carbon Sequestration Program, will discuss a strategy to reduce carbon emissions from coal and natural gas. It involves pumping compressed CO2 captured from large stationary sources into underground rock formations that can store it for geological time scales.

Ramesh, Ramamoorthy; Zhou, Nan; Oldenburg, Curt

2010-04-26T23:59:59.000Z

351

MINIMIZING NET CARBON DIOXIDE EMISSIONS BY OXIDATIVE CO-PYROLYSIS OF COAL/BIOMASS BLENDS  

DOE Green Energy (OSTI)

Solid fuels vary significantly with respect to the amount of CO{sub 2} directly produced per unit heating value. Elemental carbon is notably worse than other solid fuels in this regard, and since carbon (char) is an intermediate product of the combustion of almost all solid fuels, there is an opportunity to reduce specific CO{sub 2} emissions by reconfiguring processes to avoid char combustion wholly or in part. The primary goal of this one-year Innovative Concepts project is to make a fundamental thermodynamic assessment of three modes of solid fuel use: (1) combustion, (2) carbonization, and (3) oxidative pyrolysis, for a wide range of coal and alternative solid fuels. This period a large set of thermodynamic calculations were carried out to assess the potential of the three processes. The results show that the net carbon dioxide emissions and the relative ranking of the different processes depends greatly on the particular baseline fossil fuel being displaced by the new technology. As an example, in a baseline natural gas environment, it is thermodynamically more advantageous to carbonize biomass than to combust it, and even more advantageous to oxidatively pyrolyze the biomass.

Robert Hurt; Todd Lang

2001-06-25T23:59:59.000Z

352

Incorporation of catalytic dehydrogenation into Fischer-Tropsch synthesis to lower carbon dioxide emissions  

DOE Patents (OSTI)

A method for producing liquid fuels includes the steps of gasifying a starting material selected from a group consisting of coal, biomass, carbon nanotubes and mixtures thereof to produce a syngas, subjecting that syngas to Fischer-Tropsch synthesis (FTS) to produce a hyrdrocarbon product stream, separating that hydrocarbon product stream into C1-C4 hydrocarbons and C5+ hydrocarbons to be used as liquid fuels and subjecting the C1-C4 hydrocarbons to catalytic dehydrogenation (CDH) to produce hydrogen and carbon nanotubes. The hydrogen produced by CDH is recycled to be mixed with the syngas incident to the FTS reactor in order to raise the hydrogen to carbon monoxide ratio of the syngas to values of 2 or higher, which is required to produce liquid hydrocarbon fuels. This is accomplished with little or no production of carbon dioxide, a greenhouse gas. The carbon is captured in the form of a potentially valuable by-product, multi-walled carbon nanotubes (MWNT), while huge emissions of carbon dioxide are avoided and very large quantities of water employed for the water-gas shift in traditional FTS systems are saved.

Huffman, Gerald P

2012-09-18T23:59:59.000Z

353

Nitrogen Isotopic Composition of Coal-Fired Power Plant NOx: Influence of Emission Controls and Implications for Global Emission  

E-Print Network (OSTI)

Nitrogen Isotopic Composition of Coal-Fired Power Plant NOx: Influence of Emission Controls from coal-fired power plants in the U.S. at typical operating conditions with and without the presence this, a novel method for collection and isotopic analysis of coal-fired stack NOx emission samples

Elliott, Emily M.

354

A DATA-CENTERED COLLABORATION PORTAL TO SUPPORT GLOBAL CARBON-FLUX ANALYSIS  

SciTech Connect

Carbon-climate, like other environmental sciences, has been changing. Large-scalesynthesis studies are becoming more common. These synthesis studies are often conducted by science teams that are geographically distributed and on datasets that are global in scale. A broad array of collaboration and data analytics tools are now available that could support these science teams. However, building tools that scientists actually use is hard. Also, moving scientists from an informal collaboration structure to one mediated by technology often exposes inconsistencies in the understanding of the rules of engagement between collaborators. We have developed a scientific collaboration portal, called fluxdata.org, which serves the community of scientists providing and analyzing the global FLUXNET carbon-flux synthesis dataset. Key things we learned or re-learned during our portal development include: minimize the barrier to entry, provide features on a just-in-time basis, development of requirements is an on-going process, provide incentives to change leaders and leverage the opportunity they represent, automate as much as possible, and you can only learn how to make it better if people depend on it enough to give you feedback. In addition, we also learned that splitting the portal roles between scientists and computer scientists improved user adoption and trust. The fluxdata.org portal has now been in operation for ~;;1.5 years and has become central to the FLUXNET synthesis efforts.

Agarwal, Deborah A.; Humphrey, Marty; Beekwilder, Norm; Jackson, Keith; Goode, Monte; van Ingen, Catharine

2009-04-07T23:59:59.000Z

355

"Table 21. Total Energy Related Carbon Dioxide Emissions, Projected vs. Actual"  

U.S. Energy Information Administration (EIA) Indexed Site

Total Energy Related Carbon Dioxide Emissions, Projected vs. Actual" Total Energy Related Carbon Dioxide Emissions, Projected vs. Actual" "Projected" " (million metric tons)" ,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,2011 "AEO 1994",5060,5129.666667,5184.666667,5239.666667,5287.333333,5335,5379,5437.666667,5481.666667,5529.333333,5599,5657.666667,5694.333333,5738.333333,5797,5874,5925.333333,5984 "AEO 1995",,5137,5173.666667,5188.333333,5261.666667,5309.333333,5360.666667,5393.666667,5441.333333,5489,5551.333333,5621,5679.666667,5727.333333,5775,5841,5888.666667,5943.666667 "AEO 1996",,,5181.817301,5223.645142,5294.776326,5354.687297,5416.802205,5463.67395,5525.288005,5588.52771,5660.226888,5734.87972,5812.398031,5879.320068,5924.814575,5981.291626,6029.640422,6086.804077,6142.120972

356

Carbon taxes and India  

Science Conference Proceedings (OSTI)

Using the Indian module of the Second Generation Model 9SGM, we explore a reference case and three scenarios in which greenhouse gas emissions were controlled. Two alternative policy instruments (carbon taxes and tradable permits) were analyzed to determine comparative costs of stabilizing emissions at (1) 1990 levels (the 1 X case), (2) two times the 1990 levels (the 2X case), and (3) three times the 1990 levels (the 3X case). The analysis takes into account India`s rapidly growing population and the abundance of coal and biomass relative to other fuels. We also explore the impacts of a global tradable permits market to stabilize global carbon emissions on the Indian economy under the following two emissions allowance allocation methods: (1) {open_quotes}Grandfathered emissions{close_quotes}: emissions allowances are allocated based on 1990 emissions. (2) {open_quotes}Equal per capita emissions{close_quotes}: emissions allowances are allocated based on share of global population. Tradable permits represent a lower cost method to stabilize Indian emissions than carbon taxes, i.e., global action would benefit India more than independent actions.

Fisher-Vanden, K.A.; Pitcher, H.M.; Edmonds, J.A.; Kim, S.H. [Pacific Northwest Lab., Richland, WA (United States); Shukla, P.R. [Indian Institute of Management, Ahmedabad (India)

1994-07-01T23:59:59.000Z

357

Low carbon spaces: area-based carbon emission reduction -a scoping study  

E-Print Network (OSTI)

- coded energy consumption data publicly available. #12;12 Issues surrounding an area-based carbon, a public-private body which considers all aspects of energy consumption and demand and has produced. These have a strong emphasis on climate change, reducing energy consumption and reducing greenhouse gas (GHG

358

Energy Use and Carbon Dioxide Emissions from Cropland Production in the United States, 1990-2004  

Science Conference Proceedings (OSTI)

Changes in cropland production and management influence energy consumption and emissions of CO2 from fossil-fuel combustion. A method was developed to calculate on-site and off-site energy and CO2 emissions for cropping practices in the US at the county scale. Energy consumption and emissions occur on-site from the operation of farm machinery and occur off-site from the manufacture and transport of cropland production inputs, such as fertilizers, pesticides, and agricultural lime. Estimates of fossil-fuel consumption and associated CO2 emissions for cropping practices enable (a) the monitoring of energy and emissions with changes in land management, and (b) the calculation and balancing of regional and national carbon budgets. Results indicate on-site energy use and total energy use (i.e., the sum of on-site and off-site) on US croplands in 2004 ranged from 1.6-7.9 GJ ha-1 yr-1 and from 5.5-20.5 GJ ha-1 yr-1, respectively. On-site and total CO2 emissions in 2004 ranged from 23-176 kg C ha-1 yr-1 and from 91-365 kg C ha-1 yr-1, respectively. During the period of this analysis (1990-2004), national total energy consumption for crop production ranged from 1204-1297 PJ yr-1 (Petajoule = 1 1015 Joule) with associated total fossil CO2 emissions ranging from 22.0-23.2 Tg C yr-1 (Teragram = 1 1012 gram). The annual proportion of on-site CO2 to total CO2 emissions changed depending on the diversity of crops planted. Adoption of reduced tillage practices in the US from 1990 to 2004 resulted in a net emissions reduction of 2.4 Tg C.

West, Tristram O. [ORNL; Brandt, Craig C [ORNL; Marland, Gregg [ORNL; Nelson, Richard G [ORNL; Hellwinckel, Chad M [ORNL; De La Torre Ugarte, Daniel G [ORNL

2009-01-01T23:59:59.000Z

359

Global projections for anthropogenic reactive nitrogen emissions to the atmosphere: an assessment of scenarios in the scientific literature  

Science Conference Proceedings (OSTI)

Most long-term scenarios of global N emissions are produced by Integrated Assessment Models in the context of climate change assessment. The scenarios indicate that N emissions are likely to increase in the next decades, followed by a stabilization or decline. Critical factors for future N emissions are the development of the underlying drivers (especially fertilizer use, animal husbandry, transport and power generation), air pollution control policy and climate policy. The new scenarios made for climate change assessment, the Representative Concentration Pathways - RCPs, are not representative of the range of possible N-emission projections. A more focused development of scenarios for air pollution may improve the relevance and quality of the scenarios.

Van Vuuren, Detlef; Bouwman, Lex; Smith, Steven J.; Dentener, Frank

2011-09-17T23:59:59.000Z

360

Mitigation of atmospheric carbon emissions through increased energy efficiency versus increased non-carbon energy sources: A trade study using a simplified {open_quotes}market-free{close_quotes} exogenously driven model  

SciTech Connect

A simplified model of global, long-term energy use is described and used to make a `top-level` comparison of two generic approaches for mitigating atmospheric carbon emissions: (a) those based on increased energy efficiency; and (b) those based on increased use of reduced- or non-carbon fuels. As approximate as is the model, first-order estimates of and trade offs between increasing non-carbon generation capacities (e.g., supply-side solutions) versus energy-use efficiency (e.g., demand-side solutions) to stem atmospheric carbon accumulations can be useful in guiding more elaborate models. At the level of this analysis, both the costs of abatement and the costs of damage can be large, with the formation of benefit-to-cost ratios as a means of assessment being limited by uncertainties associated with relating given climatic responses to greenhouse warming to aggregate damage cost, as well as uncertainties associated with procedures used for multi-generation discounting of both abatement and damage costs. In view of uncertainties associated with both supply-side and demand-side approaches, as well as the estimation of greenhouse-warming responses per se, a combination of solutions seems prudent. Key findings are: (a) the relative insensitivity of the benefit-to-cost ratio adopted in this study to supply-side versus demand-side approaches to abating atmospheric carbon-dioxide emissions; (b) the extreme sensitivity of damage costs, abatement costs, and the related benefit-to-cost ratios to the combination of discounting procedure and the (time) concavity of the function used to relate global temperature rise to damage costs; and (c) no matter the discounting procedure and/or functional relationship between average temperature rise and a damage cost, a goal of increased per-capita gross world product at minimum damage suggests action now rather than delay.

Krakowski, R.A.

1997-08-24T23:59:59.000Z

Note: This page contains sample records for the topic "global carbon emissions" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Historical emissions of black and organic carbon aerosol from energy-related combustion, 1850-2000 - article no. GB2018  

SciTech Connect

We present an emission inventory of primary black carbon (BC) and primary organic carbon (OC) aerosols from fossil fuel and biofuel combustion between 1850 and 2000. We reconstruct fossil fuel consumption and represent changes in technology on a national and sectoral basis. Our estimates rely on new estimates of biofuel consumption, and updated emission factors for old technologies. Emissions of black carbon increase almost linearly, totaling about 1000 Gg in 1850, 2200 Gg in 1900, 3000 Gg in 1950, and 4400 Gg in 2000. Primary organic carbon shows a similar pattern, with emissions of 4100 Gg, 5800 Gg, 6700 Gg, and 8700 Gg in 1850, 1900, 1950, and 2000, respectively. Biofuel is responsible for over half of BC emission until about 1890, and dominates energy-related primary OC emission throughout the entire period. Coal contributes the greatest fraction of BC emission between 1880 and 1975, and is overtaken by emissions from biofuel around 1975, and by diesel engines around 1990. Previous work suggests a rapid rise in BC emissions between 1950 and 2000. This work supports a more gradual increase between 1950 and 2000, similar to the increase between 1850 and 1925; implementation of clean technology is a primary reason.

Bond, T.C.; Bhardwaj, E.; Dong, R.; Jogani, R.; Jung, S.K.; Roden, C.; Streets, D.G.; Trautmann, N.M. [University of Illinois, Urbana, IL (USA). Dept. of Civil & Environmental Engineering

2007-05-15T23:59:59.000Z

362

Using Vehicle Taxes to Reduce Carbon Dioxide Emissions Rates of New Passenger Vehicles: Evidence from France, Germany, and Sweden  

E-Print Network (OSTI)

France, Germany, and Sweden link vehicle taxes to the carbon dioxide (CO2) emissions rates of passenger vehicles. Based on new vehicle registration data from 20052010, a vehicles tax is negatively correlated with its ...

Klier, Thomas

363

Enduse Global Emissions Mitigation Scenarios (EGEMS): A New Generation of Energy Efficiency Policy Planning Models  

Science Conference Proceedings (OSTI)

This paper presents efforts to date and prospective goals towards development of a modelling and analysis framework which is comprehensive enough to address the global climate crisis, and detailed enough to provide policymakers with concrete targets and achievable outcomes. In terms of energy efficiency policy, this requires coverage of the entire world, with emphasis on countries and regions with large and/or rapidly growing energy-related emissions, and analysis at the 'technology' level-building end use, transport mode or industrial process. These elements have not been fully addressed by existing modelling efforts, which usually take either a top-down approach, or concentrate on a few fully industrialized countries where energy demand is well-understood. Inclusion of details such as appliance ownership rates, use patterns and efficiency levels throughout the world allows for a deeper understanding of the demand for energy today and, more importantly, over the coming decades. This is a necessary next step for energy analysts and policy makers in assessment of mitigation potentials. The modelling system developed at LBNL over the past 3 years takes advantage of experience in end use demand and in forecasting markets for energy-consuming equipment, in combination with known technology-based efficiency opportunities and policy types. A particular emphasis has been placed on modelling energy growth in developing countries. Experiences to date include analyses covering individual countries (China and India), end uses (refrigerators and air conditioners) and policy types (standards and labelling). Each of these studies required a particular effort in data collection and model refinement--they share, however, a consistent approach and framework which allows comparison, and forms the foundation of a comprehensive analysis system leading to a roadmap to address the greenhouse gas mitigation targetslikely to be set in the coming years.

McNeil, Michael A.; de la Rue du Can, Stephane; McMahon, James E.

2009-05-29T23:59:59.000Z

364

Development of a rapid global aircraft emissions estimation tool with uncertainty quantification  

E-Print Network (OSTI)

Aircraft emissions impact the environment by changing the radiative balance of the atmosphere and impact human health by adversely affecting air quality. Many tools used to quantify aircraft emissions are not open source ...

Simone, Nicholas W. (Nicholas William)

2013-01-01T23:59:59.000Z

365

Soil Degradation and Global Change: Role of Soil Erosion and Deposition in Carbon Sequestration  

E-Print Network (OSTI)

andM. York. 1999. Carbon SequestrationResearchandofsoilmovementon carbonsequestrationinagriculturalanddepositionin carbonsequestration Asmeret Asefaw

Berhe, Asmeret Asefaw; Harden, Jennifer W.; Harte, John; Torn, Margaret S.

2005-01-01T23:59:59.000Z

366

Carbon dioxide emission index as a mean for assessing fuel quality  

Science Conference Proceedings (OSTI)

Carbon dioxide emission index, defined as the amount of CO{sub 2} released per unit of energy value, was used to rate gaseous, liquid and solid fuels. The direct utilization of natural gas is the most efficient option. The conversion of natural gas to synthesis gas for production of liquid fuels represents a significant decrease in fuel value of the former. The fuel value of liquids, such as gasoline, diesel oil, etc. is lower than that of natural gas. Blending gasoline with ethanol obtained either from bio-mass or via synthesis may decrease fuel value of the blend when CO{sub 2} emissions produced during the production of ethanol are included in total emissions. The introduction of liquid fuels produced by pyrolysis and liquefaction of biomass would result in the increase in the CO{sub 2} emissions. The CO{sub 2} emissions from the utilization of coal and petroleum coke are much higher than those from gaseous and liquid fuels. However, for petroleum coke, this is offset by the high value gaseous and liquid fuels that are simultaneously produced during coking. Conversion of low value fuels such as coal and petroleum coke to a high value chemicals via synthesis gas should be assessed as means for replacing natural gas and making it available for fuel applications.

Furimsky, E. [IMAF Group, Ottawa, ON (Canada)

2008-07-01T23:59:59.000Z

367

A global analysis of soil microbial biomass carbon, nitrogen and phosphorus in terrestrial ecosystems  

SciTech Connect

Soil microbes play a pivotal role in regulating land-atmosphere interactions; the soil microbial biomass carbon (C), nitrogen (N), phosphorus (P) and C:N:P stoichiometry are important regulators for soil biogeochemical processes; however, the current knowledge on magnitude, stoichiometry, storage, and spatial distribution of global soil microbial biomass C, N, and P is limited. In this study, 3087 pairs of data points were retrieved from 281 published papers and further used to summarize the magnitudes and stoichiometries of C, N, and P in soils and soil microbial biomass at global- and biome-levels. Finally, global stock and spatial distribution of microbial biomass C and N in 0-30 cm and 0-100 cm soil profiles were estimated. The results show that C, N, and P in soils and soil microbial biomass vary substantially across biomes; the fractions of soil nutrient C, N, and P in soil microbial biomass are 1.6% in a 95% confidence interval of (1.5%-1.6%), 2.9% in a 95% confidence interval of (2.8%-3.0%), and 4.4% in a 95% confidence interval of (3.9%-5.0%), respectively. The best estimates of C:N:P stoichiometries for soil nutrients and soil microbial biomass are 153:11:1, and 47:6:1, respectively, at global scale, and they vary in a wide range among biomes. Vertical distribution of soil microbial biomass follows the distribution of roots up to 1 m depth. The global stock of soil microbial biomass C and N were estimated to be 15.2 Pg C and 2.3 Pg N in the 0-30 cm soil profiles, and 21.2 Pg C and 3.2 Pg N in the 0-100 cm soil profiles. We did not estimate P in soil microbial biomass due to data shortage and insignificant correlation with soil total P and climate variables. The spatial patterns of soil microbial biomass C and N were consistent with those of soil organic C and total N, i.e. high density in northern high latitude, and low density in low latitudes and southern hemisphere.

Xu, Xiaofeng [ORNL; Thornton, Peter E [ORNL; Post, Wilfred M [ORNL

2013-01-01T23:59:59.000Z

368

Indirect global warming effects of ozone and stratospheric water vapor induced by surface methane emission  

SciTech Connect

Methane has indirect effects on climate due to chemical interactions as well as direct radiative forcing effects as a greenhouse gas. We have calculated the indirect, time-varying tropospheric radiative forcing and GWP of O{sub 3} and stratospheric H{sub 2}O due to an impulse of CH{sub 4}. This impulse, applied to the lowest layer of the atmosphere, is the increase of the atmospheric mass of CH{sub 4} resulting from a 25 percent steady state increase in the current emissions as a function of latitude. The direct CH{sub 4} radiative forcing and GWP are also calculated. The LLNL 2-D radiative-chemistry-transport model is used to evaluate the resulting changes in the O{sub 3}, H{sub 2}O and CH{sub 4} atmospheric profiles as a function of time. A correlated k-distribution radiative transfer model is used to calculate the radiative forcing at the tropopause of the globally-averaged atmosphere profiles. The O{sub 3} indirect GWPs vary from {approximately}27 after a 20 yr integration to {approximately}4 after 500 years, agreeing with the previous estimates to within about 10 percent. The H{sub 2}O indirect GWPs vary from {approximately}2 after a 20 yr integration to {approximately}0.3 after 500 years, and are in close agreement with other estimates. The CH{sub 4} GWPs vary from {approximately}53 at 20 yrs to {approximately}7 at 500 yrs. The 20 year CH{sub 4} GWP is {approximately}20% larger than previous estimates of the direct CH{sub 4} GWP due to a CH{sub 4} response time ({approximately}17 yrs) that is much longer than the overall lifetime (10 yrs). The increased CH{sub 4} response time results from changes in the OH abundances caused by the CH{sub 4} impulse. The CH{sub 4} radiative forcing results are consistent with IPCC values. Estimates are made of latitude effects in the radiative forcing calculations, and UV effects on the O{sub 3} radiative forcing calculations (10%).

Wuebbles, D.J.; Grossman, A.S.; Tamaresis, J.S.; Patten, K.O. Jr.; Jain, A.; Grant, K.A.

1994-07-01T23:59:59.000Z

369

A carbon nanotube field emission multipixel x-ray array source for microradiotherapy application  

Science Conference Proceedings (OSTI)

The authors report a carbon nanotube (CNT) field emission multipixel x-ray array source for microradiotherapy for cancer research. The developed multipixel x-ray array source has 50 individually controllable pixels and it has several distinct advantages over other irradiation source including high-temporal resolution (millisecond level), the ability to electronically shape the form, and intensity distribution of the radiation fields. The x-ray array was generated by a CNT cathode array (5x10) chip with electron field emission. A dose rate on the order of >1.2 Gy/min per x-ray pixel beam is achieved at the center of the irradiated volume. The measured dose rate is in good agreement with the Monte Carlo simulation result.

Wang Sigen [Department of Radiation Oncology, University of North Carolina at Chapel Hill, North Carolina 27599 (United States); Department of Physics and Astronomy, University of North Carolina at Chapel Hill, North Carolina 27599 (United States); Calderon, Xiomara; Peng Rui [Curriculum of Applied and Materials Sciences, University of North Carolina at Chapel Hill, North Carolina 27599 (United States); Schreiber, Eric C. [Department of Radiation Oncology, University of North Carolina at Chapel Hill, North Carolina 27599 (United States); Zhou, Otto [Department of Physics and Astronomy, University of North Carolina at Chapel Hill, North Carolina 27599 (United States); Curriculum of Applied and Materials Sciences, University of North Carolina at Chapel Hill, North Carolina 27599 (United States); Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, North Carolina 27599 (United States); Chang, Sha [Department of Radiation Oncology, University of North Carolina at Chapel Hill, North Carolina 27599 (United States); Department of Physics and Astronomy, University of North Carolina at Chapel Hill, North Carolina 27599 (United States); Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, North Carolina 27599 (United States)

2011-05-23T23:59:59.000Z

370

Carbon nanotube based microfocus field emission x-ray source for microcomputed tomography  

Science Conference Proceedings (OSTI)

Microcomputed tomography is now widely used for in vivo small animal imaging for cancer studies. Achieving high imaging quality of live objects requires the x-ray source to have both high spatial and temporal resolutions. Preliminary studies have shown that carbon nanotube (CNT) based field emission x-ray source has significant intrinsic advantages over the conventional thermionic x-ray tube including better temporal resolution and programmability. Here we report the design and characterization of a CNT based field emission x-ray source that also affords a high spatial resolution. The device uses modified asymmetric Einzel lenses for electron focusing and an elliptical shaped CNT cathode patterned by photolithography. Stable and small isotropic x-ray focal spot sizes were obtained.

Liu Zejian; Yang Guang; Lee, Yueh Z.; Bordelon, David; Lu Jianping; Zhou, Otto [Department of Physics and Astronomy, University of North Carolina, Chapel Hill, North Carolina 27599 (United States); School of Medicine, University of North Carolina, Chapel Hill, North Carolina 27599 (United States); Curriculum in Applied and Materials Sciences, University of North Carolina, Chapel Hill, North Carolina 27599 (United States); Department of Physics and Astronomy, University of North Carolina, Chapel Hill, North Carolina 27599 and Curriculum in Applied and Materials Sciences, University of North Carolina, Chapel Hill, North Carolina 27599 (United States)

2006-09-04T23:59:59.000Z

371

Reducing Greenhouse Gas Emissions with Carbon Dioxide Capture and Sequestration in Deep Geological Formations  

SciTech Connect

Carbon dioxide capture and sequestration (CCS) in deep geological formations has quickly emerged as an important option for reducing greenhouse emissions. If CCS is implemented on the scale needed for large reductions in CO2 emissions, a billion of tonnes or more of CO2 will be sequestered annually a 250 fold increase over the amount sequestered annually today. Sequestering these large volumes will require a strong scientific foundation of the coupled hydrological-geochemical-geomechanical processes that govern the long term fate of CO2 in the subsurface. Methods to characterize and select sequestration sites, subsurface engineering to optimize performance and cost, safe operations, monitoring technology, remediation methods, regulatory oversight, and an institutional approach for managing long term liability are also needed.

Benson, Dr. Sally [Stanford University; Cole, David R [ORNL

2008-01-01T23:59:59.000Z

372

Emerging Energy-efficiency and Carbon Dioxide Emissions-reduction Technologies  

NLE Websites -- All DOE Office Websites (Extended Search)

Emerging Energy-efficiency and Carbon Dioxide Emissions-reduction Technologies for the Iron and Steel Industry Ali Hasanbeigi, Lynn Price China Energy Group Energy Analysis and Environmental Impacts Department Environmental Energy Technologies Division Lawrence Berkeley National Laboratory Marlene Arens Fraunhofer Institute for Systems and Innovation Research (ISI) January 2013 This work was supported by the China Sustainable Energy Program of the Energy Foundation and Dow Chemical Company (through a charitable contribution) through the Department of Energy under contract No.DE- AC02-05CH11231. ERNEST ORLANDO LAWRENCE BERKELEY NATIONAL LABORATORY LBNL-6106E ii Disclaimer This document was prepared as an account of work sponsored by the United States

373

Fossil Fuel Carbon Dioxide Emissions Data and Data Plots from Project Vulcan  

DOE Data Explorer (OSTI)

Explore the Vulcan website for the Vulcan gridded data, methodological details, publications, plots and analysis.[Taken from "About Project Vulcan" at http://www.purdue.edu/eas/carbon/vulcan/index.php]Also, see the peer-reviewed paper that provides a "core" description for this project: Gurney, K.R., D. Mendoza, Y. Zhou, M Fischer, S. de la Rue du Can, S. Geethakumar, C. Miller (2009) The Vulcan Project: High resolution fossil fuel combustion CO2 emissions fluxes for the United States, Environ. Sci. Technol., 43, doi:10.1021/es900,806c.

Gurney, Kevin [PI and spokesperson for the Vulcan Collaboration

374

Estimating carbon dioxide emission factors for the California electric power sector  

SciTech Connect

The California Climate Action Registry (''Registry'') was initially established in 2000 under Senate Bill 1771, and clarifying legislation (Senate Bill 527) was passed in September 2001. The Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley Lab) has been asked to provide technical assistance to the California Energy Commission (CEC) in establishing methods for calculating average and marginal electricity emissions factors, both historic and current, as well as statewide and for sub-regions. This study is exploratory in nature. It illustrates the use of three possible approaches and is not a rigorous estimation of actual emissions factors. While the Registry will ultimately cover emissions of all greenhouse gases (GHGs), presently it is focusing on carbon dioxide (CO2). Thus, this study only considers CO2, which is by far the largest GHG emitted in the power sector. Associating CO2 emissions with electricity consumption encounters three major complications. First, electricity can be generated from a number of different primary energy sources, many of which are large sources of CO2 emissions (e.g., coal combustion) while others result in virtually no CO{sub 2} emissions (e.g., hydro). Second, the mix of generation resources used to meet loads may vary at different times of day or in different seasons. Third, electrical energy is transported over long distances by complex transmission and distribution systems, so the generation sources related to electricity usage can be difficult to trace and may occur far from the jurisdiction in which that energy is consumed. In other words, the emissions resulting from electricity consumption vary considerably depending on when and where it is used since this affects the generation sources providing the power. There is no practical way to identify where or how all the electricity used by a certain customer was generated, but by reviewing public sources of data the total emission burden of a customer's electricity supplier can b e found and an average emissions factor (AEF) calculated. These are useful for assigning a net emission burden to a facility. In addition, marginal emissions factors (MEFs) for estimating the effect of changing levels of usage can be calculated. MEFs are needed because emission rates at the margin are likely to diverge from the average. The overall objective of this task is to develop methods for estimating AEFs and MEFs that can provide an estimate of the combined net CO2 emissions from all generating facilities that provide electricity to California electricity customers. The method covers the historic period from 1990 to the present, with 1990 and 1999 used as test years. The factors derived take into account the location and time of consumption, direct contracts for power which may have certain atypical characteristics (e.g., ''green'' electricity from renewable resources), resource mixes of electricity providers, import and export of electricity from utility owned and other sources, and electricity from cogeneration. It is assumed that the factors developed in this way will diverge considerably from simple statewide AEF estimates based on standardized inventory estimates that use conventions inconsistent with the goals of this work. A notable example concerns the treatment of imports, which despite providing a significant share of California's electricity supply picture, are excluded from inventory estimates of emissions, which are based on geographical boundaries of the state.

Marnay, Chris; Fisher, Diane; Murtishaw, Scott; Phadke, Amol; Price, Lynn; Sathaye, Jayant

2002-08-01T23:59:59.000Z

375

Estimating carbon dioxide emission factors for the California electric power sector  

SciTech Connect

The California Climate Action Registry (''Registry'') was initially established in 2000 under Senate Bill 1771, and clarifying legislation (Senate Bill 527) was passed in September 2001. The Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley Lab) has been asked to provide technical assistance to the California Energy Commission (CEC) in establishing methods for calculating average and marginal electricity emissions factors, both historic and current, as well as statewide and for sub-regions. This study is exploratory in nature. It illustrates the use of three possible approaches and is not a rigorous estimation of actual emissions factors. While the Registry will ultimately cover emissions of all greenhouse gases (GHGs), presently it is focusing on carbon dioxide (CO2). Thus, this study only considers CO2, which is by far the largest GHG emitted in the power sector. Associating CO2 emissions with electricity consumption encounters three major complications. First, electricity can be generated from a number of different primary energy sources, many of which are large sources of CO2 emissions (e.g., coal combustion) while others result in virtually no CO{sub 2} emissions (e.g., hydro). Second, the mix of generation resources used to meet loads may vary at different times of day or in different seasons. Third, electrical energy is transported over long distances by complex transmission and distribution systems, so the generation sources related to electricity usage can be difficult to trace and may occur far from the jurisdiction in which that energy is consumed. In other words, the emissions resulting from electricity consumption vary considerably depending on when and where it is used since this affects the generation sources providing the power. There is no practical way to identify where or how all the electricity used by a certain customer was generated, but by reviewing public sources of data the total emission burden of a customer's electricity supplier can b e found and an average emissions factor (AEF) calculated. These are useful for assigning a net emission burden to a facility. In addition, marginal emissions factors (MEFs) for estimating the effect of changing levels of usage can be calculated. MEFs are needed because emission rates at the margin are likely to diverge from the average. The overall objective of this task is to develop methods for estimating AEFs and MEFs that can provide an estimate of the combined net CO2 emissions from all generating facilities that provide electricity to California electricity customers. The method covers the historic period from 1990 to the present, with 1990 and 1999 used as test years. The factors derived take into account the location and time of consumption, direct contracts for power which may have certain atypical characteristics (e.g., ''green'' electricity from renewable resources), resource mixes of electricity providers, import and export of electricity from utility owned and other sources, and electricity from cogeneration. It is assumed that the factors developed in this way will diverge considerably from simple statewide AEF estimates based on standardized inventory estimates that use conventions inconsistent with the goals of this work. A notable example concerns the treatment of imports, which despite providing a significant share of California's electricity supply picture, are excluded from inventory estimates of emissions, which are based on geographical boundaries of the state.

Marnay, Chris; Fisher, Diane; Murtishaw, Scott; Phadke, Amol; Price, Lynn; Sathaye, Jayant

2002-08-01T23:59:59.000Z

376

Carbon Balance and Management BioMed Central Commentary The Anthropocene, global change and sleeping giants: where on Earth are we going?  

E-Print Network (OSTI)

which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The "climate problem " has come to the fore in public policy debates over the last year or so. The continuing high temperatures, the spate of intense tropical cyclones and deepening droughts in some parts of the world have focused attention on the issue of defining "dangerous climate change " [1]. This is often conceptualised as an upper limit to the rise in global mean temperature, for example, 2C above pre-industrial levels, which in turn leads to a back calculation of the permissible concentration of CO 2 in the atmosphere and then to the trajectories of the corresponding maximum anthropogenic carbon emissions. Although a very important exercise, this approach to defining dangerous climate change can itself be dangerous, in particular because it often ignores the systemic

Will Steffen; Will Steffen

2006-01-01T23:59:59.000Z

377

Applications of carbon dioxide capture and storage technologies in reducing emissions from fossil-fired power plants  

Science Conference Proceedings (OSTI)

The aim of this paper is to investigate the global contribution of carbon capture and storage technologies to mitigating climate change. Carbon capture and storage is a technology that comprises the separation of from carbon dioxide industrial- and energy-related sources, transport to a storage location (e.g., saline aquifers and depleted hydrocarbon fields), and long-term isolation from the atmosphere. The carbon dioxides emitted directly at the power stations are reduced by 80 to 90%. In contrast, the life cycle assessment shows substantially lower reductions of greenhouse gases in total (minus 65 to 79%).

Balat, M.; Balat, H.; Oz, C. [University of Mahallesi, Trabzon (Turkey)

2009-07-01T23:59:59.000Z

378

A conceptual framework for the evaluation of cost-effectiveness of projects to reduce GHG emissions and sequester carbon  

SciTech Connect

This paper proposes a conceptual framework for evaluating the cost of projects to reduce atmospheric greenhouse gases (GHGs). The evaluation of cost-effectiveness should account for both the timing of carbon emissions and the damage caused by the atmospheric stock of carbon. We develop a conceptual basis to estimate the cost-effectiveness of projects in terms of the cost of reducing atmospheric carbon (CRAC) and other GHGs. CRAC accounts for the economic discount rate, alternative functional forms of the shadow price, the residence period of carbon in the atmosphere, and the multiple monetary benefits of projects. The last item is of particular importance to the developing countries.

Sathaye, J.; Norgaard, R.; Makundi, W.

1993-07-01T23:59:59.000Z

379

Uncertainty in future global energy use and fossil fuel CO{sub 2} emissions 1975 to 2075: Appendices A--B  

Science Conference Proceedings (OSTI)

Appendix A contains the Monte Carlo Data Set. The data sheets give the distribution for input variables used in Monte Carlo analysis of the IEA/ORAU Global Energy, CO{sub 2} Model. The data sheets include a discussion of data sources, bibliographic sources, and other considerations used in developing the particular data format and values for distributions. As much detail as possible about how distributions are related to published estimates is given but in most cases it was necessary to make a significant leap from available data to the quantified distribution. The distributions are meant to be roughly accurate and to the degree that uncertainty exists about the form and value of distributions, the authors have tended to opt for wider bounds. Appendix B contains The IEA/ORAU Long-Term Global Energy-CO{sub 2} Model, Version A.84 -- Model Improvements. The model was originally developed in 1982 in support of work conducted for the US Department of Energy Carbon Dioxide Research Division in the area of future global fossil fuel related CO emissions research. The uncertainty analysis, documented in this report, made demands on the model that had not previously been made, and in the process of operating the model much was learned about areas in which simplification or elaboration was justified, or in which a different approach was warranted. As a consequence of these criticisms, demands, and learning numerous model modifications were undertaken. Since two versions of the model now exist, version specifications have been adopted. The 1984 version is designated A.84, while the version completed in 1982 is designated B.82. Model changes fall into three categories: those which affect the theoretical structure of the model, those which affect the computational processes of the model, and those which affect only the model by which model inputs are entered.

Edmonds, J.A. [Oak Ridge Associated Universities, Washington, DC (United States). Inst. for Energy Analysis; Reilly, J.M. [Pacific Northwest Labs., Washington, DC (United States); Gardner, R.H. [Oak Ridge National Lab., TN (United States); Brenkert, A. [Science Applications International Corp., Oak Ridge, TN (United States)

1985-12-01T23:59:59.000Z

380

FULL SCALE BIOREACTOR LANDFILL FOR CARBON SEQUESTRATION AND GREENHOUSE EMISSION CONTROL  

DOE Green Energy (OSTI)

The Yolo County Department of Planning and Public Works is constructing a full-scale bioreactor landfill as a part of the Environmental Protection Agency's (EPA) Project XL program to develop innovative approaches for carbon sequestration and greenhouse emission control. The overall objective is to manage landfill solid waste for rapid waste decomposition and maximum landfill gas generation and capture for carbon sequestration and greenhouse emission control. Waste decomposition is accelerated by improving conditions for either the aerobic or anaerobic biological processes and involves circulating controlled quantities of liquid (leachate, groundwater, gray water, etc.), and, in the aerobic process, large volumes of air. The first phase of the project entails the construction of a 12-acre module that contains a 6-acre anaerobic cell, a 3.5-acre anaerobic cell, and a 2.5-acre aerobic cell at the Yolo County Central Landfill near Davis, California. The cells are highly instrumented to monitor bioreactor performance. Liquid addition has commenced in the 3.5-acre anaerobic cell and the 6-acre anaerobic cell. Construction of the 2.5-acre aerobic cell is nearly complete with only the biofilter remaining and is scheduled to be complete by the end of August 2003. The current project status and preliminary monitoring results are summarized in this report.

Ramin Yazdani; Jeff Kieffer; Heather Akau

2003-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "global carbon emissions" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

FULL SCALE BIOREACTOR LANDFILL FOR CARBON SEQUESTRATION AND GREENHOUSE EMISSION CONTROL  

DOE Green Energy (OSTI)

The Yolo County Department of Planning and Public Works is constructing a full-scale bioreactor landfill as a part of the Environmental Protection Agency's (EPA) Project XL program to develop innovative approaches for carbon sequestration and greenhouse emission control. The overall objective is to manage landfill solid waste for rapid waste decomposition and maximum landfill gas generation and capture for carbon sequestration and greenhouse emission control. Waste decomposition is accelerated by improving conditions for either the aerobic or anaerobic biological processes and involves circulating controlled quantities of liquid (leachate, groundwater, gray water, etc.), and, in the aerobic process, large volumes of air. The first phase of the project entails the construction of a 12-acre module that contains a 6-acre anaerobic cell, a 3.5-acre anaerobic cell, and a 2.5-acre aerobic cell at the Yolo County Central Landfill near Davis, California. The cells are highly instrumented to monitor bioreactor performance. Construction is complete on the 3.5-acre anaerobic cell and liquid addition has commenced. Construction of the 2.5-acre aerobic cell is nearly complete with only the biofilter remaining and construction of the west-side 6-acre anaerobic cell is nearly complete with only the liquid addition system remaining. The current project status and preliminary monitoring results are summarized in this report.

Ramin Yazdani; Jeff Kieffer; Heather Akau

2003-05-01T23:59:59.000Z

382

FULL SCALE BIOREACTOR LANDFILL FOR CARBON SEQUESTRATION AND GREENHOUSE EMISSION CONTROL  

DOE Green Energy (OSTI)

The Yolo County Department of Planning and Public Works is constructing a full-scale bioreactor landfill as a part of the Environmental Protection Agency's (EPA) Project XL program to develop innovative approaches for carbon sequestration and greenhouse emission control. The overall objective is to manage landfill solid waste for rapid waste decomposition and maximum landfill gas generation and capture for carbon sequestration and greenhouse emission control. Waste decomposition is accelerated by improving conditions for either the aerobic or anaerobic biological processes and involves circulating controlled quantities of liquid (leachate, groundwater, gray water, etc.), and, in the aerobic process, large volumes of air. The first phase of the project entails the construction of a 12-acre module that contains a 6-acre anaerobic cell, a 3.5-acre anaerobic cell, and a 2.5-acre aerobic cell at the Yolo County Central Landfill near Davis, California. The cells are highly instrumented to monitor bioreactor performance. Construction is complete on the 3.5-acre anaerobic cell and liquid addition has commenced. Construction of the 2.5 acre aerobic cell is nearly complete with only the blower station and biofilter remaining. Waste placement and instrumentation installation is ongoing in the west-side 6-acre anaerobic cell. The current project status and preliminary monitoring results are summarized in this report.

Ramin Yazdani; Jeff Kieffer; Heather Akau

2002-08-01T23:59:59.000Z

383

Full Scale Bioreactor Landfill for Carbon Sequestration and Greenhouse Emission Control  

DOE Green Energy (OSTI)

The Yolo County Department of Planning and Public Works constructed a full-scale bioreactor landfill as a part of the Environmental Protection Agency's (EPA) Project XL program to develop innovative approaches for carbon sequestration and greenhouse emission control. The overall objective was to manage landfill solid waste for rapid waste decomposition and maximum landfill gas generation and capture for carbon sequestration and greenhouse emission control. Waste decomposition is accelerated by improving conditions for either the aerobic or anaerobic biological processes and involves circulating controlled quantities of liquid (leachate, groundwater, gray water, etc.), and, in the aerobic process, large volumes of air. The first phase of the project entailed the construction of a 12-acre module that contained a 6-acre anaerobic cell, a 3.5-acre anaerobic cell, and a 2.5-acre aerobic cell at the Yolo County Central Landfill near Davis, California. The cells were highly instrumented to monitor bioreactor performance. Liquid addition commenced in the 3.5-acre anaerobic cell and the 6-acre anaerobic cell. Construction of the 2.5-acre aerobic cell and biofilter has been completed. The current project status and preliminary monitoring results are summarized in this report.

Ramin Yazdani; Jeff Kieffer; Kathy Sananikone; Don Augenstein

2005-03-30T23:59:59.000Z

384

FULL SCALE BIOREACTOR LANDFILL FOR CARBON SEQUESTRATION AND GREENHOUSE EMISSION CONTROL  

DOE Green Energy (OSTI)

The Yolo County Department of Planning and Public Works is constructing a full-scale bioreactor landfill as a part of the Environmental Protection Agency's (EPA) Project XL program to develop innovative approaches for carbon sequestration and greenhouse emission control. The overall objective is to manage landfill solid waste for rapid waste decomposition and maximum landfill gas generation and capture for carbon sequestration and greenhouse emission control. Waste decomposition is accelerated by improving conditions for either the aerobic or anaerobic biological processes and involves circulating controlled quantities of liquid (leachate, groundwater, gray water, etc.), and, in the aerobic process, large volumes of air. The first phase of the project entails the construction of a 12-acre module that contains a 6-acre anaerobic cell, a 3.5-acre anaerobic cell, and a 2.5-acre aerobic cell at the Yolo County Central Landfill near Davis, California. The cells are highly instrumented to monitor bioreactor performance. Liquid addition has commenced in the 3.5-acre anaerobic cell and the 6-acre anaerobic cell. Construction of the 2.5-acre aerobic cell and biofilter has been completed. The remaining task to be completed is to test the biofilter prior to operation, which is currently anticipated to begin in January 2004. The current project status and preliminary monitoring results are summarized in this report.

Ramin Yazdani; Jeff Kieffer; Heather Akau

2003-12-01T23:59:59.000Z

385

NETL: Global Environmental Benefits  

NLE Websites -- All DOE Office Websites (Extended Search)

Global Environmental Benefits Global Environmental Benefits Gasification Systems Global Environmental Benefits Environmental performance for future energy production systems is a much greater factor as emission standards tighten in the United States and worldwide. The outstanding environmental performance of gasification systems makes it an excellent technology for the clean production of electricity and other products. In addition, the reduction of CO2 emissions is one of the major challenges facing industry in response to global climate change. Other countries with coal reserves might potentially import technologies developed in the United States to enable low-cost gasification with carbon capture and EOR or sequestration. Not only will this benefit the U.S. gasification technology industry, but it will also result in a global environmental benefit through more affordable control of greenhouse gases (GHGs). See the U.S. Environmental Protection Agency (EPA) link below for a summary of the impact of fossil fuels without carbon capture on CO2 emissions, on the GHG contributions of different countries, and of the projected impact of developing countries to 2030:

386

Geographic patterns of carbon dioxide emissions from fossil-fuel burning, hydraulic cement production, and gas flaring on a one degree by one degree grid cell basis: 1950 to 1990  

SciTech Connect

Data sets of one degree latitude by one degree longitude carbon dioxide (CO{sub 2}) emissions in units of thousand metric tons of carbon (C) per year from anthropogenic sources have been produced for 1950, 1960, 1970, 1980 and 1990. Detailed geographic information on CO{sub 2} emissions can be critical in understanding the pattern of the atmospheric and biospheric response to these emissions. Global, regional and national annual estimates for 1950 through 1992 were published previously. Those national, annual CO{sub 2} emission estimates were based on statistics on fossil-fuel burning, cement manufacturing and gas flaring in oil fields as well as energy production, consumption and trade data, using the methods of Marland and Rotty. The national annual estimates were combined with gridded one-degree data on political units and 1984 human populations to create the new gridded CO{sub 2} emission data sets. The same population distribution was used for each of the years as proxy for the emission distribution within each country. The implied assumption for that procedure was that per capita energy use and fuel mix is uniform over a political unit. The consequence of this first-order procedure is that the spatial changes observed over time are solely due to changes in national energy consumption and nation-based fuel mix. Increases in emissions over time are apparent for most areas.

Brenkert, A.L. [ed.] [Oak Ridge National Lab., TN (United States). Carbon Dioxide Information Analysis Center; Andres, R.J. [Univ. of Alaska, Fairbanks, AK (United States). Inst. of Northern Engineering; Marland, G. [Oak Ridge National Lab., TN (United States). Environmental Sciences Div.; Fung, I. [Univ. of Victoria, British Columbia (Canada)]|[National Aeronautics and Space Administration, New York, NY (United States). Goddard Inst. for Space Studies; Matthews, E. [Columbia Univ., New York, NY (United States)]|[National Aeronautics and Space Administration, New York, NY (United States). Goddard Inst. for Space Studies

1997-03-01T23:59:59.000Z

387

A Strategy for a Global Observing System for Verification of National Greenhouse Gas Emissions  

E-Print Network (OSTI)

With the risks of climate change becoming increasingly evident, there is growing discussion regarding international treaties and national regulations to lower greenhouse gas (GHG) emissions. Enforcement of such agreements ...

Prinn, Ronald G.

388

The EUs Emissions Trading Scheme: A Proto-Type Global System?  

E-Print Network (OSTI)

The European Union's Emission Trading Scheme (EU ETS) is the world's first multinational cap-and-trade system for greenhouse gases. As an agreement between sovereign nations with diverse historical, institutional, and ...

Ellerman, A. Denny

2008-01-01T23:59:59.000Z

389

The EUs Emissions Trading Scheme: A Prototype Global System?  

E-Print Network (OSTI)

The European Union's Emission Trading Scheme (EU ETS) is the world's first multinational cap-and-trade system for greenhouse gases. As an agreement between sovereign nations with diverse historical, institutional, and ...

Ellerman, A. Denny

390

Livscykelanalys av flerbostadshus energieffektiviseringstgrder fr minskade koldioxidutslpp; Life Cycle Analysis of Residential Buildings - Energy Efficiency Measures for Decreasing Carbon Dioxide Emissions.  

E-Print Network (OSTI)

?? The importance of energy- and environmental issues has increased, and the work towards reducing carbon dioxide emissions plays a major part. The European Union (more)

Hedin, Hanna

2013-01-01T23:59:59.000Z

391

China's Industrial Carbon Dioxide Emissions in Manufacturing Subsectors and in Selected Provinces  

E-Print Network (OSTI)

emissions. In this paper, energy use and CO 2 emissions ofinformation, this paper estimates industrial energy-relatedenergy-intensive products. Emissions from manufacturing of textiles, and paper

Lu, Hongyou

2013-01-01T23:59:59.000Z

392

Air Quality Responses to Changes in Black Carbon and Nitrogen Oxide Emissions  

E-Print Network (OSTI)

2005). Particulate emissions from construction activities.M. S. , (2000b). In-use emissions from heavy- duty dieseland nitrogen dioxide emissions from gasoline- and diesel-

Millstein, Dev

2009-01-01T23:59:59.000Z

393

Experiences from Simulating the Global Carbon Cycle in a Grid Computing Environment, The Fourteenth Global Grid Forum (GGF 14),Chicago  

E-Print Network (OSTI)

Abstract. We discuss our software development experiences with Grid-BGC, a gridenabled terrestrial carbon cycle modeling environment. Grid-BGC leverages grid computing technologies to create a secure, reliable and easy to use distributed computational environment for climate modeling. The goal is to develop a system which insulates the scientists from tedious configuration details thereby increasing scientific productivity. This project is part of a collaborative effort between the

Jason Cope; Craig Hartsough; Sean Mccreary; Peter Thornton; Henry M. Tufo; Nathan Wilhelmi; Matthew Woitaszek

2005-01-01T23:59:59.000Z

394

Summary of the presentations at the international workshop on reducing carbon dioxide emissions from the developing world: Assessment of benefits, costs and barriers  

SciTech Connect

The ``International Workshop on Reducing Carbon Dioxide Emissions from the Developing World: Assessment of Benefits, Costs and Barriers`` was the second workshop held as part of a project being conducted by the International Energy Studies Group of Lawrence Berkeley Laboratory, in collaboration with experts from leading institutions across the developing world. The goal of the project is to analyze long-range energy consumption in developing countries and its potential contribution to global climate change. The US Environmental Protection Agency (EPA) is supporting this work, the results of which already have made a key contribution to the technical analysis being used as the basis for discussion by the Energy and Industry Sub-group of the Intergovernmental Panel on Climate Change (IPCC). The main purpose of this workshop was two-fold: (1) to discuss the feasibility of implementing the efficiency improvements and fuel switching measures incorporated into the long-term energy scenarios created for 17 developing countries and (2) to examine the costs and benefits of reducing energy-related carbon dioxide emissions generated by developing countries.

Sathaye, J.; Goldman, N. [eds.

1991-06-01T23:59:59.000Z

395

Summary of the presentations at the international workshop on reducing carbon dioxide emissions from the developing world: Assessment of benefits, costs and barriers  

SciTech Connect

The International Workshop on Reducing Carbon Dioxide Emissions from the Developing World: Assessment of Benefits, Costs and Barriers'' was the second workshop held as part of a project being conducted by the International Energy Studies Group of Lawrence Berkeley Laboratory, in collaboration with experts from leading institutions across the developing world. The goal of the project is to analyze long-range energy consumption in developing countries and its potential contribution to global climate change. The US Environmental Protection Agency (EPA) is supporting this work, the results of which already have made a key contribution to the technical analysis being used as the basis for discussion by the Energy and Industry Sub-group of the Intergovernmental Panel on Climate Change (IPCC). The main purpose of this workshop was two-fold: (1) to discuss the feasibility of implementing the efficiency improvements and fuel switching measures incorporated into the long-term energy scenarios created for 17 developing countries and (2) to examine the costs and benefits of reducing energy-related carbon dioxide emissions generated by developing countries.

Sathaye, J.; Goldman, N. (eds.)

1991-06-01T23:59:59.000Z

396

Mitigating Carbon Emissions: the Potential of Improving Efficiencyof Household Appliances in China  

SciTech Connect

China is already the second's largest energy consumer in the world after the United States, and its demand for energy is expected to continue to grow rapidly in the foreseeable future, due to its fast economic growth and its low level of energy use per capita. From 2001 to 2005, the growth rate of energy consumption in China has exceeded the growth rate of its economy (NBS, 2006), raising serious concerns about the consequences of such energy use on local environment and global climate. It is widely expected that China is likely to overtake the US in energy consumption and greenhouse gas (GHG) emissions during the first half of the 21st century. Therefore, there is considerable interest in the international community in searching for options that may help China slow down its growth in energy consumption and GHG emissions through improving energy efficiency and adopting more environmentally friendly fuel supplies such as renewable energy. This study examines the energy saving potential of three major residential energy end uses: household refrigeration, air-conditioning, and water heating. China is already the largest consumer market in the world for household appliances, and increasingly the global production base for consumer appliances. Sales of household refrigerators, room air-conditioners, and water heaters are growing rapidly due to rising incomes and booming housing market. At the same time, the energy use of Chinese appliances is relatively inefficient compared to similar products in the developed economies. Therefore, the potential for energy savings through improving appliance efficiency is substantial. This study focuses particularly on the impact of more stringent energy efficiency standards for household appliances, given that such policies are found to be very effective in improving the efficiency of household appliances, and are well established both in China and around world (CLASP, 2006).

Lin, Jiang

2006-07-10T23:59:59.000Z

397

Improving the Carbon Dioxide Emission Estimates from the Combustion of Fossil Fuels in California  

E-Print Network (OSTI)

Fuel use, CO 2 emissions, and CO 2 emission factors of ten largest California electricity generatingFuel use, CO 2 emissions, and CO 2 emission factors of ten largest California electricity generating

de la Rue du Can, Stephane

2010-01-01T23:59:59.000Z

398

Sensitivity study of global ozone to NO/sub x/ emission from aircraft  

Science Conference Proceedings (OSTI)

There recently has been renewed interest in the development of faster and more efficient aircraft for intercontinental passenger flights. Such aircraft would probably spend a large fraction of their flight time in the stratosphere, perhaps as high as 35 km. As a natural progression from studies that were done in the early 1970s, this study reinvestigates the sensitivity of stratospheric ozone to NO/sub x/ emissions based on current understanding of atmospheric chemical and physical processes. The LLNL one-dimensional and new two-dimensional chemical-radiative-transport models of the troposphere and stratosphere are used in this investigation. The two-dimensional model provides latitudinal, altitudinal, and seasonal resolution; and the computationally faster one-dimensional model is used for sensitivity studies. Because of uncertainties in possible future emissions, it is necessary to examine the model sensitivity to a wide range in magnitude, altitude, and latitude of assumed NO/sub x/ emissions. As an initial study, the models are used in simulation of a typical scenario from the CIAP era, and results are compared with those of a published two-dimensional model, which includes some three- dimensional features. This investigation lays the groundwork for future studies, including different background amounts of ClX and for other aircraft emission scenarios. 12 refs., 3 figs., 1 tab.

Kinnison, D.; Johnston, H.; Wuebbles, D.J.

1988-08-01T23:59:59.000Z

399

The Impact of Increased Use of Hydrogen on Petroleum Consumption and Carbon Dioxide Emissions  

Gasoline and Diesel Fuel Update (EIA)

SR/OIAF-CNEAF/2008-04 SR/OIAF-CNEAF/2008-04 The Impact of Increased Use of Hydrogen on Petroleum Consumption and Carbon Dioxide Emissions September 2008 Energy Information Administration Office of Integrated Analysis and Forecasting Office of Coal, Nuclear, Electric and Alternate Fuels U.S. Department of Energy Washington, DC 20585 This report was prepared by the Energy Information Administration, the independent statistical and analytical agency within the Department of Energy. Unless referenced otherwise, the information contained herein should be attributed to the Energy Information Administration and should not be construed as advocating or reflecting any policy position of the Department of Energy or any other organization. Service Reports are prepared by the Energy Information Administration upon special

400

Energy use and carbon dioxide emissions in energy-intensive industries in key developing countries  

E-Print Network (OSTI)

Structural Factors Affecting Energy Use and Carbon DioxideStructural Factors Affecting Energy Use and Carbon Dioxide

Price, Lynn; Worrell, Ernst; Phylipsen, Dian

1999-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "global carbon emissions" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Acting Globally: Potential Carbon Emissions Mitigation Impacts from an International Standards and Labelling Program  

E-Print Network (OSTI)

Energy efficiency standards for equipment: Additionalof Energy Efficiency Standards and Labeling Programs, LBNLGlobal Potential of Efficiency Standards in the Residential

Letschert, Virginie E.

2010-01-01T23:59:59.000Z

402

Global Carbon Emissions in the Coming Decades: The Case of China  

E-Print Network (OSTI)

in USChina trade. Energy Policy 33. Int. Energy Agency.fuel power generation. Energy Policy 35:3936-3951. 26. Worlddemand-side effects. Energy Policy 34 (18): 35493572. 29.

Levine, Mark D.

2008-01-01T23:59:59.000Z

403

Global Carbon Emissions in the Coming Decades: The Case of China  

E-Print Network (OSTI)

of fossil fuel power generation. Energy Policy 35:3936-3951.of Chinas fossil-fired power generation was 6% less thanchemicals, electric power generation, non-ferrous metals,

Levine, Mark D.

2008-01-01T23:59:59.000Z

404

Global Carbon Emissions in the Coming Decades: The Case of China  

E-Print Network (OSTI)

future, to after 2025 or 2030. It did not happen that way.2020) (after 2020) (after 2030) (after 2020) (after 2025) (be 50 percent higher in 2030. The IEA also forecasts that,

Levine, Mark D.

2008-01-01T23:59:59.000Z

405

Global Carbon Emissions in the Coming Decades: The Case of China  

E-Print Network (OSTI)

electricity consumption grew by more than 11% per yearconsumption of residential electricity to that year. In 2020

Levine, Mark D.

2008-01-01T23:59:59.000Z

406

15 Energy for development: solar home systemsin Africa and global carbon emissions  

E-Print Network (OSTI)

and DANIEL M. KAMMEN2 1Princeton University, USA,2University of California, Berkeley, USA KEYWORDS Renewables demand for PV due to those cost reductions (Duke and Kammen, 1999a).As a resultof thesedynamic effects:McKinsey & Company,FIorhamPark,NJ, USA 161 Climate ChangeandAfrica. ed. PakSumLow. Publishedby Cambridge

Kammen, Daniel M.

407

Acting Globally: Potential Carbon Emissions Mitigation Impacts from an International Standards and Labelling Program  

E-Print Network (OSTI)

2008). The Boom of Electricity Demand in the residential2005). Forecasting Electricity Demand in Developingwith Residential Electricity Demand in India's Future - How

Letschert, Virginie E.

2010-01-01T23:59:59.000Z

408

Acting Globally: Potential Carbon Emissions Mitigation Impacts from an International Standards and Labelling Program  

E-Print Network (OSTI)

Letschert (2007). Future Air Conditioning Energy Consumptionrefrigerators, air conditioning, lighting, standby power,the residential sector, and air conditioning and lighting in

Letschert, Virginie E.

2010-01-01T23:59:59.000Z

409

Acting Globally: Potential Carbon Emissions Mitigation Impacts from an International Standards and Labelling Program  

E-Print Network (OSTI)

air conditioning, lighting, standby power, televisions,fluorescent and incandescent), standby power (for consumerair conditioners, televisions and standby power; commercial

Letschert, Virginie E.

2010-01-01T23:59:59.000Z

410

Global Carbon Emissions in the Coming Decades: The Case of China  

E-Print Network (OSTI)

electricity generation, coal-fired plants accounted for moreis equivalent to 27 1-GW coal fired plants that would have

Levine, Mark D.

2008-01-01T23:59:59.000Z

411

Global Carbon Emissions in the Coming Decades: The Case of China  

E-Print Network (OSTI)

of energy efficiency of fossil fuel power generation. Energyincrease can be traced to fossil fuel combustion, land useemissions from commercial fossil fuel combustioni.e. ,

Levine, Mark D.

2008-01-01T23:59:59.000Z

412

Global Carbon Emissions in the Coming Decades: The Case of China  

E-Print Network (OSTI)

of Chinas Steel Industry Down 8.8%. www.chinaview.cnreported that the steel industry which is the sector withenergy consuming industries: iron and steel, petroleum and

Levine, Mark D.

2008-01-01T23:59:59.000Z

413

Geologic carbon sequestration as a global strategy to mitigate CO2 emissions: Sustainability and environmental risk  

E-Print Network (OSTI)

similarities to GCS is natural gas storage, carried out atFurthermore, the natural gas storage industry uses the samebe learned from the natural gas storage industry, the scale

Oldenburg, C.M.

2012-01-01T23:59:59.000Z

414

The Confusing Allure of Combined Heat and Power: The Financial Attraction and Management Challenge of Reducing Energy Spend and Resulting Carbon Emissions Through Onsite Power Generation  

E-Print Network (OSTI)

Sixty-one percent of global executives surveyed by McKinsey & Co. (in 2008) expect the issues associated with climate change to boost profitsif managed well. What these executives recognize is that new regulations, higher energy costs, and increased scrutiny by private gate-keepers (such as Wal-Mart) offer an opportunity to identify and implement more efficient practices in commercial and industrial environments. One of the most impactful solutions for the industrial sectorfrom the perspective of reducing energy spending and energy-related carbon emissionsis combined heat and power ("CHP"), sometimes referred to as cogeneration. However, the results of CHP deployment to date have been mixedlargely because companies do not fully appreciate the challenges of maintaining and operating a CHP system, optimizing its performance, and taking full advantage of the many benefits it offers. Despite these challenges, the slogan for CHP should perhaps be: "CHP, now more than ever".

Davis, R.

2009-05-01T23:59:59.000Z

415

The impact of biogenic carbon emissions on aerosol absorption inMexico City  

Science Conference Proceedings (OSTI)

In order to determine the wavelength dependence of atmospheric aerosol absorption in the Mexico City area, the absorption angstrom exponents (AAEs) were calculated from aerosol absorption measurements at seven wavelengths obtained with a seven-channel aethalometer during two field campaigns, the Mexico City Metropolitan Area study in April 2003 (MCMA 2003) and the Megacity Initiative: Local and Global Research Observations in March 2006 (MILAGRO). The AAEs varied from 0.76 to 1.56 in 2003 and from 0.54 to 1.52 in 2006. The AAE values determined in the afternoon were consistently higher than the corresponding morning values, suggesting the photochemical formation of absorbing secondary organic aerosols (SOA) in the afternoon. The AAE values were compared to stable and radiocarbon isotopic measurements of aerosol samples collected at the same time to determine the sources of the aerosol carbon. The fraction of modern carbon (fM) in the aerosol samples, as determined from {sup 14}C analysis, showed that 70% of the carbonaceous aerosols in Mexico City were from modern sources, indicating a significant impact from biomass burning during both field campaigns. The {sup 13}C/{sup 12}C ratios of the aerosol samples illustrate the significant impact of Yucatan forest fires (C-3 plants) in 2003 and local grass fires (C-4 plants) at site T1 in 2006. A direct comparison of the fM values, stable carbon isotope ratios, and calculated aerosol AAEs suggested that the wavelength dependence of the aerosol absorption was controlled by the biogenically derived aerosol components.

Marley, N; Gaffney, J; Tackett, M J; Sturchio, N; Hearty, L; Martinez, N; Hardy, K D; Machany-Rivera, A; Guilderson, T P; MacMillan, A; Steelman, K

2009-02-24T23:59:59.000Z

416

Reducing carbon emissions? The relative effectiveness of different types of environmental tax: the case of New Zealand  

Science Conference Proceedings (OSTI)

Concerns about the impact of human activities on the environment have encouraged policy makers in New Zealand, and other nations, to reassess the relative effectiveness and efficiency of environmental taxes. Countries' experience with environmental taxation ... Keywords: CGE model, Carbon tax, Greenhouse gas emissions, Q3 Non-renewable resources and conservation, Q4 Energy

Frank Scrimgeour; Les Oxley; Koli Fatai

2005-11-01T23:59:59.000Z

417

Analysis of data for the carbon dioxide capture domain  

Science Conference Proceedings (OSTI)

To tackle the global concern for adverse impact of greenhouse gas (GHG) emissions, the post combustion carbon dioxide (CO"2) capture technology is commonly adopted for reducing industrial CO"2 emissions, for example, from power generation plants. The ... Keywords: Carbon dioxide capture, Data modeling, Expert validation, Neural networks, Sensitivity analysis

Yuxiang Wu; Christine W. Chan

2011-02-01T23:59:59.000Z

418

Continuous, Non-Invasive, In-Field Soil Carbon Scanning System  

NLE Websites -- All DOE Office Websites (Extended Search)

Continuous, Non-Invasive, In-Field Soil Continuous, Non-Invasive, In-Field Soil Carbon Scanning System Background Earth generates and emits an enormous amount of carbon dioxide into the atmos- phere from its deep energy resources, its near-surface processes, and biotic activi- ties. Although anthropogenic carbon dioxide emissions increase global warming, global warming is also alleviated by human activities in sequestering carbon into the terrestrial ecosystem and injecting carbon dioxide deep into geological formations,

419

Transient Response of the Hadley Centre Coupled Ocean-Atmosphere Model to Increasing Carbon Dioxide. Part III: Analysis of Global-Mean Response Using Simple Models  

Science Conference Proceedings (OSTI)

The roles of surface, atmospheric, and oceanic feedbacks in controlling the global-mean transient response of a coupled ocean-atmosphere general circulation model to increasing carbon dioxide are investigated. The analysis employs a four-box ...

J. M. Murphy

1995-03-01T23:59:59.000Z

420

GFDLs ESM2 Global Coupled ClimateCarbon Earth System Models. Part I: Physical Formulation and Baseline Simulation Characteristics  

Science Conference Proceedings (OSTI)

The physical climate formulation and simulation characteristics of two new global coupled carbonclimate Earth System Models, ESM2M and ESM2G, are described. These models demonstrate similar climate fidelity as the Geophysical Fluid Dynamics ...

John P. Dunne; Jasmin G. John; Alistair J. Adcroft; Stephen M. Griffies; Robert W. Hallberg; Elena Shevliakova; Ronald J. Stouffer; William Cooke; Krista A. Dunne; Matthew J. Harrison; John P. Krasting; Sergey L. Malyshev; P. C. D. Milly; Peter J. Phillipps; Lori T. Sentman; Bonita L. Samuels; Michael J. Spelman; Michael Winton; Andrew T. Wittenberg; Niki Zadeh

2012-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "global carbon emissions" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Motor vehicles and global warming  

SciTech Connect

Energy use in transportation is one of the contributors to the concern over global warming. The primary greenhouse gases released by the transportation sector are carbon dioxide and chlorofluorocarbons. When all greenhouse gases are considered, CO{sub 2} emissions from the operation of highway vehicles worldwide represent about 4.7% of global warming enhancement. CO{sub 2} emissions from U.S. highway vehicles along represent about 2 to 2.5% of worldwide greenhouse gases. The use of CFCs in automotive air conditioning, in blowing foams for seats and padding and in the manufacture of electronic circuit boards accounted for 15% of the global usage of CFC-12 in 1985 according to the U.S. EPA. The Motor Vehicle Manufacturers Association supports the phase-out of CFC use provided that safe substitutes are available and that adequate lead time is allowed for.They suggest that reduction of greenhouse gases would require planning on a global scope to be effective. One alternative they suggest for further study is a carbon fee for reducing emissions of carbon dioxide. This fee would be levied on each type of fossil fuel, proportional to its carbon content per unit of energy.

Halberstadt, M.L.

1990-03-01T23:59:59.000Z

422

Forest Restoration Carbon Analysis of Baseline Carbon Emissions and Removal in Tropical Rainforest at La Selva Central, Peru  

DOE Green Energy (OSTI)

Conversion of tropical forest to agricultural land and pasture has reduced forest extent and the provision of ecosystem services, including watershed protection, biodiversity conservation, and carbon sequestration. Forest conservation and reforestation can restore those ecosystem services. We have assessed forest species patterns, quantified deforestation and reforestation rates, and projected future baseline carbon emissions and removal in Amazon tropical rainforest at La Selva Central, Peru. The research area is a 4800 km{sup 2} buffer zone around the Parque Nacional Yanachaga-Chemillen, Bosque de Proteccion San Matias-San Carlos, and the Reserva Comunal Yanesha. A planned project for the period 2006-2035 would conserve 4000 ha of forest in a proposed 7000 ha Area de Conservacion Municipale de Chontabamba and establish 5600 ha of natural regeneration and 1400 ha of native species plantations, laid out in fajas de enriquecimiento (contour plantings), to reforest 7000 ha of agricultural land. Forest inventories of seven sites covering 22.6 ha in primary forest and 17 sites covering 16.5 ha in secondary forest measured 17,073 trees of diameter {ge} 10 cm. The 24 sites host trees of 512 species, 267 genera, and 69 families. We could not identify the family of 7% of the trees or the scientific species of 21% of the trees. Species richness is 346 in primary forest and 257 in the secondary forest. In primary forest, 90% of aboveground biomass resides in old-growth species. Conversely, in secondary forest, 66% of aboveground biomass rests in successional species. The density of trees of diameter {ge} 10 cm is 366 trees ha{sup -1} in primary forest and 533 trees ha{sup -1} in secondary forest, although the average diameter is 24 {+-} 15 cm in primary forest and 17 {+-} 8 cm in secondary forest. Using Amazon forest biomass equations and wood densities for 117 species, aboveground biomass is 240 {+-} 30 t ha{sup -1} in the primary sites and 90 {+-} 10 t ha{sup -1} in the secondary sites. Aboveground carbon density is 120 {+-} 15 t ha{sup -1} in primary forest and 40 {+-} 5 t ha{sup -1} in secondary forest. Forest stands in the secondary forest sites range in age from 10 to 42 y. Growth in biomass (t ha{sup -1}) as a function of time (y) follows the relation: biomass = 4.09-0.017 age{sup 2} (p < 0.001). Aboveground biomass and forest species richness are positively correlated (r{sup 2} = 0.59, p < 0.001). Analyses of Landsat data show that the land cover of the 3700 km{sup 2} of non-cloud areas in 1999 was: closed forest 78%; open forest 12%, low vegetation cover 4%, sparse vegetation cover 6%. Deforestation from 1987 to 1999 claimed a net 200 km{sup 2} of forest, proceeding at a rate of 0.005 y{sup -1}. Of those areas of closed forest in 1987, only 89% remained closed forest in 1999. Consequently, closed forests experienced disruption in the time period at double the rate of net deforestation. The three protected areas experienced negligible deforestation or slight reforestation. Based on 1987 forest cover, 26,000 ha are eligible for forest carbon trading under the Clean Development Mechanism, established by the Kyoto Protocol to the United Nations Framework Convention on Climate Change. Principal components analysis showed that distance to nonforest was the factor that best explained observed patterns of deforestation while distance to forest best explained observed patterns of reforestation, more significant than elevation, distance to rivers, distance to roads, slope, and distance to towns of population > 400. Aboveground carbon in live vegetation in the project area decreased from 35 million {+-} 4 million t in 1987 to 34 million {+-} 4 million t in 1999. Projected aboveground carbon in live vegetation would fall to 33 million {+-} 4 million t in 2006, 32 million {+-} 4 million t in 2011, and 29 million {+-} 3 million t in 2035. Projected net deforestation in the research area would total 13,000 {+-} 3000 ha in the period 1999-2011, proceeding at a rate of 0.003 {+-} 0.0007 y{sup -1}, and would total 33,000 {+-} 7000

Patrick Gonzalez; Benjamin Kroll; Carlos R. Vargas

2006-01-10T23:59:59.000Z

423

Global Assessment of Hydrogen Technologies - Task 2 Report Comparison of Performance and Emissions from Near-Term Hydrogen Fueled Light Duty Vehicles  

Science Conference Proceedings (OSTI)

An investigation was conducted on the emissions and efficiency from hydrogen blended compressed natural gas (CNG) in light duty vehicles. The different blends used in this investigation were 0%, 15%, 30%, 50%, 80%, 95%, and ~100% hydrogen, the remainder being compressed natural gas. The blends were tested using a Ford F-150 and a Chevrolet Silverado truck supplied by Arizona Public Services. Tests on emissions were performed using four different driving condition tests. Previous investigation by Don Karner and James Frankfort on a similar Ford F-150 using a 30% hydrogen blend showed that there was substantial reduction when compared to gasoline in carbon monoxide (CO), nitrogen oxide (NOx), and carbon dioxide (CO2) emissions while the reduction in hydrocarbon (HC) emissions was minimal. This investigation was performed using different blends of CNG and hydrogen to evaluate the emissions reducing capabilities associated with the use of the different fuel blends. The results were then tested statistically to confirm or reject the hypotheses on the emission reduction capabilities. Statistically analysis was performed on the test results to determine whether hydrogen concentration in the HCNG had any effect on the emissions and the fuel efficiency. It was found that emissions from hydrogen blended compressed natural gas were a function of driving condition employed. Emissions were found to be dependent on the concentration of hydrogen in the compressed natural gas fuel blend.

Fouad, Fouad H.; Peters, Robert W.; Sisiopiku, Virginia P.; Sullivan Andrew J.; Ng, Henry K.; Waller, Thomas

2007-12-01T23:59:59.000Z

424

The Carbon Cycle  

NLE Websites -- All DOE Office Websites (Extended Search)

The Carbon Cycle The Carbon Cycle The global carbon cycle involves the carbon in and exchanging between the earth's atmosphere, fossil fuels, the oceans, and the vegetation and soils of the earth's terrestrial ecosystems. image Each year, the world's terrestrial ecosystems withdraw carbon from the atmosphere through photosynthesis and add it again through respiration and decay. A more detailed look at the global carbon cycle for the 1990s is shown below. The main annual fluxes in GtC yr-1 are: pre-industrial "natural" fluxes in black and "anthropogenic" fluxes in red (modified from Sarmiento and Gruber, 2006, with changes in pool sizes from Sabine et al., 2004a). The net terrestrial loss of -39 GtC is inferred from cumulative fossil fuel emissions minus atmospheric increase minus ocean storage. The loss of

425

Manufacturing sector carbon dioxide emissions in nine OECD countries 1973--87: A Divisia index decomposition to changes in fuel mix, emission coefficients, industry structure, energy intensities, and international structure  

DOE Green Energy (OSTI)

In this paper the reduction in energy-related manufacturing carbon dioxide emissions for nine OECD countries in the period 1973 to 1987 is analyzed. Carbon dioxide emissions are estimated from energy use data. The emphasis is on carbon dioxide intensities, defined as emissions divided by value added. The overall manufacturing carbon dioxide intensity for the nine OECD countries was reduced by 42% in the period 1973--1987. Five fuels are specified together with six subsectors of manufacturing. Carbon dioxide emissions are estimated from fossil fuel consumption, employing emissions coefficients for gas, oil and solids. In addition, electricity consumption is specified. For electricity use an emission coefficient index is calculated from the shares of fossil fuels, nuclear power and hydro power used to generate electricity, and the efficiency in electricity generation from these energy sources. A Divisia index approach is used to sort out the contribution to reduced carbon dioxide intensity from different components. The major finding is that the main contribution to reduced carbon dioxide intensity is from the general reduction in manufacturing energy intensity, most likely driven by economic growth and increased energy prices, giving incentives to invest in new technology and new industrial processes. There is also a significant contribution from reduced production in the most carbon dioxide intensive subsectors, and a contribution from higher efficiency in electricity generation together with a larger nuclear power share at the expense of oil. 19 refs., 5 figs., 11 tabs.

Torvanger, A. (Senter for Anvendt Forskning, Oslo (Norway) Lawrence Berkeley Lab., CA (USA))

1990-11-01T23:59:59.000Z

426

Table 11.1 Carbon Dioxide Emissions From Energy Consumption by ...  

U.S. Energy Information Administration (EIA)

1 Metric tons of carbon dioxide can be converted to metric tons of carbon equivalent by multiplying by 12/44. 9 Includes electric power sector use of ...

427

Table 11.2d Carbon Dioxide Emissions From Energy Consumption ...  

U.S. Energy Information Administration (EIA)

1 Metric tons of carbon dioxide can be converted to metric tons of carbon equivalent by multiplying by 12/44. 8 Fuel ethanol minus denaturant. 2 Carbo ...

428

Carbon Dioxide and Hydrogen Sulfide Emission Factors Applicable to Wastewater Wet Wells.  

E-Print Network (OSTI)

??Transport of wastewater in sewer networks causes potential problems associated with gases which include ammonia, carbon dioxide, carbon monoxide, hydrogen sulfide and methane, in regard (more)

Mudragaddam, Madhuri

2010-01-01T23:59:59.000Z

429

Global Proteomics Reveal An Atypical Strategy for Carbon/Nitrogen Assimilation by a Cyanobacterium Under Diverse Environmental Perturbations  

SciTech Connect

Cyanobacteria, the only prokaryotes capable of oxygenic photosynthesis, are present in diverse ecological niches and play crucial roles in global carbon and nitrogen cycles. To proliferate in nature, cyanobacteria utilize a host of stress responses to accommodate periodic changes in environmental conditions. A detailed knowledge of the composition of, as well as the dynamic changes in, the proteome is necessary to gain fundamental insights into such stress responses. Toward this goal, we have performed a largescale proteomic analysis of the widely studied model cyanobacterium Synechocystis sp. PCC 6803 under 33 different environmental conditions. The resulting high-quality dataset consists of 22,318 unique peptides corresponding to 1,955 proteins, a coverage of 53% of the predicted proteome. Quantitative determination of protein abundances has led to the identification of 1,198 differentially regulated proteins. Notably, our analysis revealed that a common stress response under various environmental perturbations, irrespective of amplitude and duration, is the activation of atypical pathways for the acquisition of carbon and nitrogen from urea and arginine. In particular, arginine is catabolized via putrescine to produce succinate and glutamate, sources of carbon and nitrogen, respectively. This study provides the most comprehensive functional and quantitative analysis of the Synechocystis proteome to date, and shows that a significant stress response of cyanobacteria involves an uncommon mode of acquisition of carbon and nitrogen. Oxygenic phototrophic prokaryotes, the progenitors of the chloroplast, are crucial to global oxygen production and worldwide carbon and nitrogen cycles. These microalgae are robust organisms capable carbon neutral biofuel production. Synechocystis sp. PCC 6803 has historically been a model cyanobacterium for photosynthetic research and is emerging as a promising biofuel platform. Cellular responses are severely modified by environmental conditions, such as temperature and nutrient availability. However the global protein responses of Synechocystis 6803 under physiological relevant environmental stresses have not been characterized. Here we present the first global proteome analysis of a photoautotrophic bacteria and the most complete coverage to date of a photosynthetic prokaryotic proteome. To obtain a more complete description of the protein components of Synechocystis 6803, we have performed an in-depth proteome analysis of this organism utilizing the Accurate Mass and Time (AMT) tag approach1 utilizing 33 growth conditions and timepoints. The resulting proteome consists of 22,318 unique peptides, corresponding to 2,369 unique proteins, covering 65% of the predicted proteins. Quantitative analysis of protein abundance ratios under nutrient stress revealed that Synechocystis 6803 resorts to a universal mechanism for nitrogen utilization under phosphate, sulfate, iron, and nitrogen depletion. Comparison of this proteomic data with previously published microarray studies under similar environmental conditions showed that the general response predicted by both types of analyses are common but that the actual levels of protein expression can not be inferred from gene expression data. Our results demonstrate a global nitrogen response to multiple stressors that may be similar to that used by other cyanobacteria under various stress conditions. We anticipate that this protein expression data will be a foundation for the photosynthetic and biofuel communities to better understand metabolic changes under physiological conditions relevant to global productivity. Further more, this comparison of correlation between gene and protein expression data provides deeper insight into the ongoing debate as to whether gene expression can be used to infer cellular response.

Wegener, Kimberly M.; Singh, Abhay K.; Jacobs, Jon M.; Elvitigala, Thanura R.; Welsh, Eric A.; Keren, Nir S.; Gritsenko, Marina A.; Ghosh, Bijoy K.; Camp, David G.; Smith, Richard D.; Pakrasi, Himadri B.

2010-12-01T23:59:59.000Z

430

Review of Test Methods for Stack Emissions of Amines and Degradation Products from Post-Combustion Carbon Capture Processes  

Science Conference Proceedings (OSTI)

Amine-based solvents have emerged as one technology for removing CO2 from post-combustion process streams. However, concern remains regarding the effects of emissions of the amine solvents and their degradation products on the environment and human health. This concern may eventually lead to emission regulations if amine-based post-combustion carbon capture (PCCC) is implemented on a large scale. While amine-based solvents are being considered for CO2 control, measurement methods that are capable of accu...

2012-06-21T23:59:59.000Z

431

System level performance analysis of carbon nanotube global interconnects for emerging chip multiprocessors  

Science Conference Proceedings (OSTI)

Although carbon nanotubes (CNTs) have been widely proposed as interconnect fabrics for future ultra deep submicron (UDSM) technologies, there is a lack of system-level performance analysis using these interconnects. In this paper, we investigate the ...

Sudeep Pasricha; Fadi Kurdahi; Nikil Dutt

2008-06-01T23:59:59.000Z

432

Carbon Dioxide Information Analysis Center (CDIAC)  

NLE Websites -- All DOE Office Websites (Extended Search)

Latest Estimates Latest Estimates Atmos CO2 Level 397.31 ppm Fossil CO2 Emissions 9,167 MMT Carbon Global Temp Anomaly +0.56°C / +1.01°F Global Sea Level Rise +2.9 ± 0.4 mm/y Carbon Dioxide Information Analysis Center The Carbon Dioxide Information Analysis Center (CDIAC) is the primary climate-change data and information analysis center of the U.S. Department of Energy (DOE). CDIAC is located at DOE's Oak Ridge National Laboratory (ORNL) and includes the World Data Center for Atmospheric Trace Gases. CDIAC's data holdings include estimates of carbon dioxide emissions from fossil-fuel consumption and land-use changes; records of atmospheric concentrations of carbon dioxide and other radiatively active trace gases; carbon cycle and terrestrial carbon management datasets and analyses; and

433

Emissions Scenarios, Costs, and Implementation Considerations of REDD Programs  

E-Print Network (OSTI)

Global potential for carbon sequestration: geographicalGlobal forest carbon sequestration and climate policyand Sedjo, R. (2006), Carbon sequestration costs in global

Sathaye, Jayant

2011-01-01T23:59:59.000Z

434

The 7. global warming international conference and expo: Abstracts  

SciTech Connect

This conference was held April 1--3, 1996 in Vienna, Austria. The purpose of this conference was to provide a multidisciplinary forum for exchange of state-of-the-art information on global warming. Topics of interest include the following: global and regional natural resource management; energy, transportation, minerals and natural resource management; industrial technology and greenhouse gas emission; strategies for the mitigation of greenhouse gas emission; greenhouse gas production/utilization and carbon budgets; strategies for promoting the understanding of global change; international policy strategy and economics; and global warming and public health. Individual papers have been processed separately for inclusion in the appropriate data bases.

NONE

1996-12-31T23:59:59.000Z

435

Global Energy Management System  

E-Print Network (OSTI)

Exxon Mobil Corporation has undertaken voluntary actions to continuously improve energy efficiency in our operations for many years. From 1973 to 1999, we improved the energy efficiency of our refineries and chemical plants by over 35 percent - saving the cumulative equivalent of 1.8 billion barrels of oil and reducing carbon dioxide emissions by over 200 million tonnes. In 2000, we redoubled our efforts with deployment of our Global Energy Management System (GEMS), which utilizes international best practices and benchmarking to identify energy efficiencies at each of our refineries and chemical plants. Thus far, we have identified opportunities to improve the energy efficiency of these facilities by an additional 15 to 20 percent. At full implementation, savings are expected to total $500 million to $1 billion per year, with an associated reduction in carbon dioxide emissions of about 10 million tonnes per year - roughly equivalent to removing 1.5 million cars from the world's roads.

Eidt, B. D.

2005-01-01T23:59:59.000Z

436

The Potential for Energy-Efficient Technologies to Reduce Carbon Emissions in the United States: Transport Sector  

SciTech Connect

The world is searching for a meaningful answer to the likelihood that the continued build-up of greenhouse gases in the atmosphere will cause significant changes in the earth`s climate. If there is to be a solution, technology must play a central role. This paper presents the results of an assessment of the potential for cost-effective technological changes to reduce greenhouse gas emissions from the U.S. transportation sector by the year 2010. Other papers in this session address the same topic for buildings and industry. U.S.transportation energy use stood at 24.4 quadrillion Btu (Quads) in 1996, up 2 percent over 1995 (U.S. DOE/EIA, 1997, table 2.5). Transportation sector carbon dioxide emissions amounted to 457.2 million metric tons of carbon (MmtC) in 1995, almost one third of total U.S. greenhouse gas emissions (U.S. DOE/EIA,1996a, p. 12). Transport`s energy use and CO{sub 2} emissions are growing, apparently at accelerating rates as energy efficiency improvements appear to be slowing to a halt. Cost-effective and nearly cost-effective technologies have enormous potential to slow and even reverse the growth of transport`s CO{sub 2} emissions, but technological changes will take time and are not likely to occur without significant, new public policy initiatives. Absent new initiatives, we project that CO{sub 2} emissions from transport are likely to grow to 616 MmtC by 2010, and 646 MmtC by 2015. An aggressive effort to develop and implement cost-effective technologies that are more efficient and fuels that are lower in carbon could reduce emissions by about 12% in 2010 and 18% in 2015, versus the business-as- usual projection. With substantial luck, leading to breakthroughs in key areas, reductions over the BAU case of 17% in 2010 and 25% in 2015,might be possible. In none of these case are CO{sub 2} emissions reduced to 1990 levels by 2015.

Greene, D.L.

1997-07-01T23:59:59.000Z

437

FINAL REPORT: An Integrated Inter-temporal Analysis of Land Use Change in Forestry and Agriculture: An Assessment of the Influence of Technological Change on Carbon Sequestration and Land Use.  

SciTech Connect

This project built a global land use model to examine the implications of land based carbon sequestration on land uses. The model also can be used to assess the costs of different land-based actions to reduce carbon emissions.

Brent Sohngen

2008-10-30T23:59:59.000Z

438

The Carbon Footprint of Bioenergy Sorghum Production in Central Texas: Production Implications on Greenhouse Gas Emissions, Carbon Cycling, and Life Cycle Analysis  

E-Print Network (OSTI)

Enhanced interest in biofuel production has renewed interest in bioenergy crop production within the United States. Agricultures role in biofuel production is critical because it has the potential to supply renewable energy while minimizing greenhouse gas (GHG) emissions. However, agronomic management practices influence direct and indirect GHG emissions, and both can have a significant impact on biofuel production efficiency. Our overall objective was to determine the carbon (C) footprint of bioenergy sorghum (Sorghum bicolor L.) production in central Texas. Specifically, we determined the impacts of crop rotation, nitrogen (N) fertilization, and residue return on direct and indirect GHG emissions, theoretical biofuel yield, C pools, and life cycle GHG emissions from bioenergy sorghum production in 2010 and 2011. An experiment established in 2008 near College Station, TX to quantify the impacts of crop management practices on bioenergy sorghum yield and soil properties was utilized, and included two crop rotations (sorghum-sorghum or corn-sorghum), two fertilization levels (0 or 280 kg N ha^(-1) annually), and two residue return rates (0 or 50% biomass residue returned) to assess management impacts on sorghum production, C cycling, and life cycle GHGs. Corn production was poor under moderate drought conditions, while bioenergy sorghum produced relatively large yields under both moderate and severe drought conditions. Nitrogen addition increased crop yields, and rotated sorghum had higher yield than monoculture sorghum. Fluxes of CO_(2) and N_(2)O were higher than those reported in literature and highest soil fluxes were frequently observed following precipitation events during the growing season. Residue return increased cumulative CO_(2) emissions and N fertilization increased N_(2)O emissions. Residue return also increased soil microbial biomass-C, an important indicator of soil quality. Continuous sorghum significantly increased soil organic C (SOC) concentrations near the soil surface and at two depths below 30 cm. Analysis of change in SOC across time to estimate net CO_(2) emissions to the atmosphere revealed bioenergy sorghum production accrued high amounts of SOC annually. Most treatments accrued more than 4 Mg C ha^(-1) yr^(-1) from 2008 to 2012, which indicated great potential for C sequestration and offsetting GHG emissions. Life cycle GHG emissions (as g CO_(2)-eq MJ^(-1)) were all negative due to high SOC increases each year and indicated all bioenergy sorghum production treatments sequestered atmospheric CO_(2) per unit of theoretical energy provided. Despite its relatively low production efficiency, rotated sorghum with N addition and residue return was selected as the ideal bioenergy sorghum production scenario due to a number of sustainability factors. Bioenergy sorghum may offer great benefit as a high-yielding biofuel feedstock with minimal impacts to net GHG emissions.

Storlien, Joseph Orgean

2013-08-01T23:59:59.000Z

439

State-Level Energy-Related Carbon Dioxide Emissions, 2000-2009  

U.S. Energy Information Administration (EIA)

Environment. Greenhouse gas data, voluntary report- ing, electric power plant emissions. Highlights Short-Term Energy Outlook ...

440

NETL: IEP – Post-Combustion CO2 Emissions Control - Carbon Dioxide  

NLE Websites -- All DOE Office Websites (Extended Search)

Carbon Dioxide Recovery from Flue Gas using Carbon-Supported Amine Sorbents Carbon Dioxide Recovery from Flue Gas using Carbon-Supported Amine Sorbents Project No.: FG02-04ER83885 SBIR Virtual Depiction of a Carbon-Supported Amine Sorbent Virtual Depiction of a Carbon-Supported Amine Sorbent Advanced Fuel Research, Inc. has completed a small business innovative research (SBIR) project that initiated development of a novel sorbent for the removal of carbon dioxide (CO2) from combustion flue gas. The primary goal of this project wa s to develop a process using a supported amine for CO2 capture that exhibits better system efficiency, lower cost, and less corrosion than current aqueous amine-based processes. The project was to demonstrate performance of carbon-supported amine sorbents under simulated flue gas conditions. Three tasks were undertaken:

Note: This page contains sample records for the topic "global carbon emissions" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

The potential for control of carbon dioxide emissions from integrated gasification/combined-cycle systems  

SciTech Connect

Initiatives to limit carbon dioxide (CO{sub 2}) emissions have drawn considerable interest to integrated gasification/combined-cycle (IGCC) power generation, a process that reduces CO{sub 2} production through efficient fuel used is amenable to CO{sub 2} capture. This paper presents a comparison of energy systems that encompass fuel supply, an IGCC system, CO{sub 2} recovery using commercial technologies, CO{sub 2} transport by pipeline, and land-based sequestering in geological reservoirs. The intent is to evaluate the energy-efficiency impacts of controlling CO{sub 2} in such systems and to provide the CO{sub 2} budget, or an to equivalent CO{sub 2}`` budget, associated with each of the individual energy-cycle steps. The value used for the ``equivalent CO{sub 2}`` budget is 1 kg/kWh CO{sub 2}. The base case for the comparison is a 457-MW IGCC system that uses an air-blown Kellogg-Rust-Westinghouse (KRW) agglomerating fluidized-bed gasifier, Illinois No. 6 bituminous coal, and in-bed sulfur removal. Mining, preparation, and transportation of the coal and limestone result in a net system electric power production of 454 MW with a 0.835 kg/kwh CO{sub 2} release rate. For comparison, the gasifier output is taken through a water-gas shift to convert CO to CO{sub 2} and then processed in a glycol-based absorber unit to recover CO{sub 2} Prior to the combustion turbine. A 500-km pipeline then transports the CO{sub 2} for geological sequestering. The net electric power production for the system with CO{sub 2} recovery is 381 MW with a 0.156 kg/kwh CO{sub 2} release rate.

Livengood, C.D.; Doctor, R.D.; Molburg, J.C.; Thimmapuram, P.; Berry, G.F.

1994-06-01T23:59:59.000Z

442

Carbon permit prices in the European emissions trading system : a stochastic analysis  

E-Print Network (OSTI)

The Emission Trading Scheme (ETS) is a cornerstone for European efforts to reduce greenhouse gas emissions, and in its test phase will operate from 2005-2007. It is a cap-and-trade system where an aggregate cap on emissions ...

See, Wee Chiang

2005-01-01T23:59:59.000Z

443

A farm-focused calculator for emissions from crop and livestock production  

Science Conference Proceedings (OSTI)

Agriculture and deforestation contribute approximately one third of global greenhouse gas emissions. Major sources of emissions in this sector are from loss of soil carbon due to repeated soil disturbance under typical crop cultivation, fossil fuel use ... Keywords: Agriculture, Cool farm tool, Emissions, GHG

Jonathan Hillier; Christof Walter; Daniella Malin; Tirma Garcia-Suarez; Lloren Mila-i-Canals; Pete Smith

2011-09-01T23:59:59.000Z

444

ECONOMIC MODELING OF THE GLOBAL ADOPTION OF CARBON CAPTURE AND SEQUESTRATION TECHNOLOGIES  

E-Print Network (OSTI)

and sequestration as natural gas prices rise. INTRODUCTION Heightened concerns about global climate change have were added to EPPA for 1) coal power generation with CCS (coal capture), 2) natural gas combined cycle pulverized coal technology and the 3 #12;advanced natural gas technology. Compared with the pulverized coal

445

Tendencies in scientific output on carbon nanotubes and graphene in global centers of excellence for nanotechnology  

Science Conference Proceedings (OSTI)

A change has been taking place in the world of nanotechnologies since 2009, marking the beginning of a new era of end consumer goods related to these new technologies. In this article, our aim is to know the dominant tendencies observed in scientific ... Keywords: Carbon nanotubes (CNTs), Graphene, Nanotechnology applications, Scientific output

Goio Etxebarria; Mikel Gomez-Uranga; Jon Barrutia

2012-04-01T23:59:59.000Z

446

Speaker to Address Impact of Natural Gas Production on Greenhouse Gas Emissions When used for power generation, Marcellus Shale natural gas can significantly reduce carbon  

E-Print Network (OSTI)

generation, Marcellus Shale natural gas can significantly reduce carbon dioxide emissions, but questions have been raised whether development of shale gas resources results in an overall lower greenhouse gas, "Life Cycle Greenhouse Gas Emissions of Marcellus Shale Gas," appeared in Environmental Research Letters

Boyer, Elizabeth W.

447

Evaluation of Sludge Characteristics and Carbon Dioxide Emissions of Full-scale Wastewater Treatment Plants in China by Mass and Energy Balances  

Science Conference Proceedings (OSTI)

Energy balances were used to evaluate the characteristics of sludge and to calculate the carbon dioxide emissions in the WWTPs in this study. To avoid the errors, mass balances by TP have been used to calibrate the relating data before making energy ... Keywords: Sludge, CEP, mass balance, energy balance, carbon dioxide

Gan Wang; Yongzhen Peng; Shuying Wang; Gan Wang; Hongxun Hou

2012-05-01T23:59:59.000Z

448

EIA - AEO2013 Early Release Energy-Related Carbon Dioxide Emissions  

Gasoline and Diesel Fuel Update (EIA)

Energy-Related CO2 Emissions Energy-Related CO2 Emissions Total U.S. energy-related CO2 emissions do not return to their 2005 level (5,997 million metric tons) by the end of the AEO2013 projection period.6 Growth in demand for transportation fuels is moderated by rising fuel prices and new, stricter federal CAFE standards for model years 2017 to 2025, which reduce transportation emissions from 2018 until they begin to rise near the end of the projection period. Transportation emissions in 2040 are 26 million metric tons below the 2011 level. Largely as a result of the inclusion of the new CAFE standards in AEO2013, transportation-related CO2 emissions in 2035 are 94 million metric tons below their level in the AEO2012 Reference case. State RPS requirements and abundant low-cost natural gas help shift the

449

(Chemistry of the global atmosphere)  

SciTech Connect

The traveler attended the conference The Chemistry of the Global Atmosphere,'' and presented a paper on the anthropogenic emission of carbon dioxide (CO{sub 2}) to the atmosphere. The conference included meetings of the International Global Atmospheric Chemistry (IGAC) programme, a core project of the International Geosphere/Biosphere Programme (IGBP) and the traveler participated in meetings on the IGAC project Development of Global Emissions Inventories'' and agreed to coordinate the working group on CO{sub 2}. Papers presented at the conference focused on the latest developments in analytical methods, modeling and understanding of atmospheric CO{sub 2}, CO, CH{sub 4}, N{sub 2}O, SO{sub 2}, NO{sub x}, NMHCs, CFCs, and aerosols.

Marland, G.

1990-09-27T23:59:59.000Z

450

Carbon dioxide disposal in solid form  

SciTech Connect

Coal reserves can provide for the world`s energy needs for centuries. However, coal`s long term use may be severely curtailed if the emission of carbon dioxide into the atmosphere is not eliminated. We present a safe and permanent method of carbon dioxide disposal that is based on combining carbon dioxide chemically with abundant raw materials to form stable carbonate minerals. We discuss the availability of raw materials and potential process designs. We consider our initial rough cost estimate of about 3{cents}/kWh encouraging. The availability of a carbon dioxide fixation technology would serve as insurance in case global warming, or the perception of global warming, causes severe restrictions on carbon dioxide emissions. If the increased energy demand of a growing world population is to be satisfied from coal, the implementation of such a technology would quite likely be unavoidable.

Lackner, K.S.; Butt, D.P.; Sharp, D.H. [Los Alamos National Lab., NM (United States); Wendt, C.H. [Auxon Corp., (United States)

1995-12-31T23:59:59.000Z

451

How much of U.S. carbon dioxide emissions are associated with ...  

U.S. Energy Information Administration (EIA)

Financial market analysis and financial data for major energy companies. Environment. Greenhouse gas data, ... CO2 emissions from U.S. electricity generation by ...

452

Estimating carbon dioxide emissions factors for the California electric power sector  

E-Print Network (OSTI)

Energy Data Report; emissions from imports calculated using U.S.source of energy in the Southwest U.S. Thus, imports from

Marnay, Chris; Fisher, Diane; Murtishaw, Scott; Phadke, Amol; Price, Lynn; Sathaye, Jayant

2002-01-01T23:59:59.000Z

453

Carbon Emissions in the EE/FSU: IEO99 vs. IEO98  

U.S. Energy Information Administration (EIA)

Bulgaria and Romania are using 1989 as a base year; Poland is using 1988; and Hungary is using the average emissions for the years 1985 to 1987.

454

Buildings Energy Data Book: 6.4 Electric and Generic Quad Carbon Emissions  

Buildings Energy Data Book (EERE)

2 2 Electric Quad Average Carbon Dioxide Emissions with Average Utility Fuel Mix (Million Metric Tons) (1) Petroleum Natural Gas Coal Nuclear Renewable Total 2010 0.83 10.14 46.45 0.00 0.30 57.72 2011 0.00 0.21 0.00 0.00 0.00 0.21 2012 0.00 0.65 0.00 0.00 0.00 0.65 2013 0.00 0.16 0.00 0.00 0.00 0.16 2014 0.00 0.61 0.00 0.00 0.00 0.61 2015 0.00 1.04 0.00 0.00 0.00 1.04 2016 0.00 0.83 0.00 0.00 0.00 0.83 2017 0.00 0.58 0.00 0.00 0.00 0.58 2018 0.00 0.62 0.00 0.00 0.00 0.62 2019 0.00 0.70 0.00 0.00 0.00 0.70 2020 0.00 0.71 0.00 0.00 0.00 0.71 2021 0.00 0.76 0.00 0.00 0.00 0.76 2022 0.00 0.74 0.00 0.00 0.00 0.74 2023 0.00 0.60 0.00 0.00 0.00 0.60 2024 0.00 0.60 0.00 0.00 0.00 0.60 2025 0.00 0.43 0.00 0.00 0.00 0.43 2026 0.00 0.54 0.00 0.00 0.00 0.54 2027 0.00 0.63 0.00 0.00 0.00 0.63 2028 0.00 0.84 0.00 0.00 0.00 0.84 2029 0.00 1.05 0.00 0.00 0.00 1.05 2030 0.00 1.29 0.00 0.00 0.00 1.29 2031 0.00 1.46

455

China's sustainable energy future: Scenarios of energy and carbon emissions (Summary)  

E-Print Network (OSTI)

Sustainability Green Growth Energy Demand Elasticity of GDPSustainability Green Growth Energy Demand GDP CarbonFigure 15. In Green Growth, building energy use more than

2004-01-01T23:59:59.000Z

456

Energy use and carbon dioxide emissions in energy-intensive industries in key developing countries  

E-Print Network (OSTI)

rotary) Brazil China India Mexico Energy and Carbon Dioxideenergy intensity values for Brazil, China, India, and Mexico,energy intensity values for Brazil, China, India and Mexico,

Price, Lynn; Worrell, Ernst; Phylipsen, Dian

1999-01-01T23:59:59.000Z

457

Agricultural Carbon Mitigation in Europe  

NLE Websites -- All DOE Office Websites (Extended Search)

Agricultural Carbon Mitigation in Europe Agricultural Carbon Mitigation in Europe Agricultural Carbon Mitigation in Europe Smith P, Powlson DS, Smith JU, Falloon P, and Coleman K. 2000. Meeting Europe's climate change commitments: Quantitative estimates of the potential for carbon mitigation by agriculture. Global Climate Change 6:525-539. Abstract Under the Kyoto Protocol, the European Union is committed to a reduction in CO2 emissions to 92% of baseline (1990) levels during the first commitment period (2008-2012). The Kyoto Protocol allows carbon emissions to be offset by demonstrable removal of carbon from the atmosphere. Thus, land-use / land-management change and forestry activities that are shown to reduce atmospheric CO2 levels can be included in the Kyoto targets. These activities include afforestation, reforestation and deforestation (article