National Library of Energy BETA

Sample records for global carbon bank

  1. The Global Carbon Bank | Open Energy Information

    Open Energy Info (EERE)

    Global Carbon Bank Jump to: navigation, search Name: The Global Carbon Bank Place: Houston, Texas Zip: 77025 Sector: Carbon, Services Product: Houston-based provider of advisory...

  2. Carbon Bank Ireland | Open Energy Information

    Open Energy Info (EERE)

    Ireland Jump to: navigation, search Name: Carbon Bank Ireland Place: Nevada Zip: 89411 Product: Investment bank focused on CDM projects. References: Carbon Bank Ireland1 This...

  3. Global Climate Change: Risk to Bank Loans | Open Energy Information

    Open Energy Info (EERE)

    Risk to Bank Loans Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Global Climate Change: Risk to Bank Loans AgencyCompany Organization: United Nations...

  4. Global Carbon Budget 2015

    SciTech Connect (OSTI)

    Le Quéré, C.; Moriarty, R.; Andrew, R. M.; Canadell, J. G.; Sitch, S.; Korsbakken, J. I.; Friedlingstein, P.; Peters, G. P.; Andres, R. J.; Boden, T. A.; Houghton, R. A.; House, J. I.; Keeling, R. F.; Tans, P.; Arneth, A.; Bakker, D. C. E.; Barbero, L.; Bopp, L.; Chang, J.; Chevallier, F.; Chini, L. P.; Ciais, P.; Fader, M.; Gkritzalis, T.; Harris, I.; Hauck, J.; Ilyina, T.; Jain, A. K.; Kato, E.; Kitidis, V.; Klein Goldewijk, K.; Landschützer, P.; Lauvset, S. K.; Lefèvre, N.; Lenton, A.; Lima, I. D.; Metzl, N.; Millero, F.; Munro, D. R.; Murata, A.; Nabel, J. E. M. S.; Nakaoka, S.; Nojiri, Y.; O'Brien, K.; Olsen, A.; Ono, T.; Pérez, F. F.; Pfeil, B.; Pierrot, D.; Poulter, B.; Rehder, G.; Rödenbeck, C.; Saito, S.; Schuster, U.; Schwinger, J.; Séférian, R.; Steinhoff, T.; Stocker, B. D.; Sutton, A. J.; Takahashi, T.; Tilbrook, B.; van der Laan-Luijkx, I. T.; van der Werf, G. R.; van Heuven, S.; Vandemark, D.; Viovy, N.; Wiltshire, A.; Zaehle, S.; Zeng, N.

    2015-12-07

    Accurate assessment of anthropogenic carbon dioxide (CO2) emissions and their redistribution among the atmosphere, ocean, and terrestrial biosphere is important to better understand the global carbon cycle, support the development of climate policies, and project future climate change. Here we describe data sets and a methodology to quantify all major components of the global carbon budget, including their uncertainties, based on the combination of a range of data, algorithms, statistics, and model estimates and their interpretation by a broad scientific community. We also discuss changes compared to previous estimates as well as consistency within and among components, alongside methodology and data limitations. CO2 emissions from fossil fuels and industry (EFF) are based on energy statistics and cement production data, while emissions from land-use change (ELUC), mainly deforestation, are based on combined evidence from land-cover-change data, fire activity associated with deforestation, and models. The global atmospheric CO2 concentration is measured directly and its rate of growth (GATM) is computed from the annual changes in concentration. Moreover, the mean ocean CO2 sink (SOCEAN) is based on observations from the 1990s, while the annual anomalies and trends are estimated with ocean models. The variability in SOCEAN is evaluated with data products based on surveys of ocean CO2 measurements. The global residual terrestrial CO2 sink (SLAND) is estimated by the difference of the other terms of the global carbon budget and compared to results of independent dynamic global vegetation models forced by observed climate, CO2, and land-cover change (some including nitrogen–carbon interactions). We compare the mean land and ocean fluxes and their variability to estimates from three

  5. Global Carbon Budget 2015

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Le Quéré, C.; Moriarty, R.; Andrew, R. M.; Canadell, J. G.; Sitch, S.; Korsbakken, J. I.; Friedlingstein, P.; Peters, G. P.; Andres, R. J.; Boden, T. A.; et al

    2015-12-07

    Accurate assessment of anthropogenic carbon dioxide (CO2) emissions and their redistribution among the atmosphere, ocean, and terrestrial biosphere is important to better understand the global carbon cycle, support the development of climate policies, and project future climate change. Here we describe data sets and a methodology to quantify all major components of the global carbon budget, including their uncertainties, based on the combination of a range of data, algorithms, statistics, and model estimates and their interpretation by a broad scientific community. We also discuss changes compared to previous estimates as well as consistency within and among components, alongside methodology andmore » data limitations. CO2 emissions from fossil fuels and industry (EFF) are based on energy statistics and cement production data, while emissions from land-use change (ELUC), mainly deforestation, are based on combined evidence from land-cover-change data, fire activity associated with deforestation, and models. The global atmospheric CO2 concentration is measured directly and its rate of growth (GATM) is computed from the annual changes in concentration. Moreover, the mean ocean CO2 sink (SOCEAN) is based on observations from the 1990s, while the annual anomalies and trends are estimated with ocean models. The variability in SOCEAN is evaluated with data products based on surveys of ocean CO2 measurements. The global residual terrestrial CO2 sink (SLAND) is estimated by the difference of the other terms of the global carbon budget and compared to results of independent dynamic global vegetation models forced by observed climate, CO2, and land-cover change (some including nitrogen–carbon interactions). We compare the mean land and ocean fluxes and their variability to estimates from three atmospheric inverse methods for three broad latitude bands. All uncertainties are reported as ±1σ, reflecting the current capacity to characterise the annual estimates of each

  6. Global carbon budget 2014

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Le Quéré, C.; Moriarty, R.; Andrew, R. M.; Peters, G. P.; Ciais, P.; Friedlingstein, P.; Jones, S. D.; Sitch, S.; Tans, P.; Arneth, A.; et al

    2015-05-08

    Accurate assessment of anthropogenic carbon dioxide (CO2) emissions and their redistribution among the atmosphere, ocean, and terrestrial biosphere is important to better understand the global carbon cycle, support the development of climate policies, and project future climate change. Here we describe data sets and a methodology to quantify all major components of the global carbon budget, including their uncertainties, based on the combination of a range of data, algorithms, statistics, and model estimates and their interpretation by a broad scientific community. We discuss changes compared to previous estimates, consistency within and among components, alongside methodology and data limitations. CO2 emissionsmore » from fossil fuel combustion and cement production (EFF) are based on energy statistics and cement production data, respectively, while emissions from land-use change (ELUC), mainly deforestation, are based on combined evidence from land-cover-change data, fire activity associated with deforestation, and models. The global atmospheric CO2 concentration is measured directly and its rate of growth (GATM) is computed from the annual changes in concentration. The mean ocean CO2 sink (SOCEAN) is based on observations from the 1990s, while the annual anomalies and trends are estimated with ocean models. The variability in SOCEAN is evaluated with data products based on surveys of ocean CO2 measurements. The global residual terrestrial CO2 sink (SLAND) is estimated by the difference of the other terms of the global carbon budget and compared to results of independent dynamic global vegetation models forced by observed climate, CO2, and land-cover-change (some including nitrogen–carbon interactions). We compare the mean land and ocean fluxes and their variability to estimates from three atmospheric inverse methods for three broad latitude bands. All uncertainties are reported as ±1σ;, reflecting the current capacity to characterise the annual estimates

  7. Global carbon budget 2014

    SciTech Connect (OSTI)

    Le Quéré, C.; Moriarty, R.; Andrew, R. M.; Peters, G. P.; Ciais, P.; Friedlingstein, P.; Jones, S. D.; Sitch, S.; Tans, P.; Arneth, A.; Boden, T. A.; Bopp, L.; Bozec, Y.; Canadell, J. G.; Chini, L. P.; Chevallier, F.; Cosca, C. E.; Harris, I.; Hoppema, M.; Houghton, R. A.; House, J. I.; Jain, A. K.; Johannessen, T.; Kato, E.; Keeling, R. F.; Kitidis, V.; Klein Goldewijk, K.; Koven, C.; Landa, C. S.; Landschützer, P.; Lenton, A.; Lima, I. D.; Marland, G.; Mathis, J. T.; Metzl, N.; Nojiri, Y.; Olsen, A.; Ono, T.; Peng, S.; Peters, W.; Pfeil, B.; Poulter, B.; Raupach, M. R.; Regnier, P.; Rödenbeck, C.; Saito, S.; Salisbury, J. E.; Schuster, U.; Schwinger, J.; Séférian, R.; Segschneider, J.; Steinhoff, T.; Stocker, B. D.; Sutton, A. J.; Takahashi, T.; Tilbrook, B.; van der Werf, G. R.; Viovy, N.; Wang, Y.-P.; Wanninkhof, R.; Wiltshire, A.; Zeng, N.

    2015-05-08

    Accurate assessment of anthropogenic carbon dioxide (CO2) emissions and their redistribution among the atmosphere, ocean, and terrestrial biosphere is important to better understand the global carbon cycle, support the development of climate policies, and project future climate change. Here we describe data sets and a methodology to quantify all major components of the global carbon budget, including their uncertainties, based on the combination of a range of data, algorithms, statistics, and model estimates and their interpretation by a broad scientific community. We discuss changes compared to previous estimates, consistency within and among components, alongside methodology and data limitations. CO2 emissions from fossil fuel combustion and cement production (EFF) are based on energy statistics and cement production data, respectively, while emissions from land-use change (ELUC), mainly deforestation, are based on combined evidence from land-cover-change data, fire activity associated with deforestation, and models. The global atmospheric CO2 concentration is measured directly and its rate of growth (GATM) is computed from the annual changes in concentration. The mean ocean CO2 sink (SOCEAN) is based on observations from the 1990s, while the annual anomalies and trends are estimated with ocean models. The variability in SOCEAN is evaluated with data products based on surveys of ocean CO2 measurements. The global residual terrestrial CO2 sink (SLAND) is estimated by the difference of the other terms of the global carbon budget and compared to results of independent dynamic global vegetation models forced by observed climate, CO2, and land-cover-change (some including nitrogen–carbon interactions). We compare the mean land and ocean fluxes and their variability to estimates from

  8. Mandarin Global Carbon Ltd | Open Energy Information

    Open Energy Info (EERE)

    Mandarin Global Carbon Ltd Jump to: navigation, search Name: Mandarin Global Carbon Ltd Place: Londaon, Greater London, United Kingdom Zip: W1S 1TD Sector: Carbon, Hydro Product:...

  9. Carbon Markets Global Ltd | Open Energy Information

    Open Energy Info (EERE)

    Markets Global Ltd Jump to: navigation, search Name: Carbon Markets Global Ltd Place: London, United Kingdom Zip: NW4 2HT Product: Assist project originators develop and finance...

  10. World Bank eAtlas of Global Development | Open Energy Information

    Open Energy Info (EERE)

    World Bank eAtlas of Global Development1 "This eAtlas, a new online companion to Atlas of Global Development, third edition, builds on the Atlas topics, allowing you to...

  11. Atmospheric carbon dioxide and the global carbon cycle

    SciTech Connect (OSTI)

    Trabalka, J R

    1985-12-01

    This state-of-the-art volume presents discussions on the global cycle of carbon, the dynamic balance among global atmospheric CO2 sources and sinks. Separate abstracts have been prepared for the individual papers. (ACR)

  12. Estimating Carbon Supply Curves for Global Forests and Other...

    Open Energy Info (EERE)

    Estimating Carbon Supply Curves for Global Forests and Other Land Uses Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Estimating Carbon Supply Curves for Global Forests...

  13. Black carbon contribution to global warming

    SciTech Connect (OSTI)

    Chylek, P.; Johnson, B.; Kou, L.; Wong, J.

    1996-12-31

    Before the onset of industrial revolution the only important source of black carbon in the atmosphere was biomass burning. Today, black carbon production is divided between the biomass and fossil fuel burning. Black carbon is a major agent responsible for absorption of solar radiation by atmospheric aerosols. Thus black carbon makes other aerosols less efficient in their role of reflecting solar radiation and cooling the earth-atmosphere system. Black carbon also contributes to the absorption of solar radiation by clouds and snow cover. The authors present the results of black carbon concentrations measurements in the atmosphere, in cloud water, in rain and snow melt water collected during the 1992--1996 time period over the southern Nova Scotia. Their results are put into the global and historical perspective by comparing them with the compilation of past measurements at diverse locations and with their measurements of black carbon concentrations in the Greenland and Antarctic ice cores. Black carbon contribution to the global warming is estimated, and compared to the carbon dioxide warming, using the radiative forcing caused by the black carbon at the top of the atmosphere.

  14. Global Ocean Storage of Anthropogenic Carbon (GOSAC)

    SciTech Connect (OSTI)

    Orr, J C

    2002-04-02

    GOSAC was an EC-funded project (1998-2001) focused on improving the predictive capacity and accelerating development of global-scale, three-dimensional, ocean carbon-cycle models by means of standardized model evaluation and model intercomparison. Through the EC Environment and Climate Programme, GOSAC supported the participation of seven European modeling groups in the second phase of the larger international effort OCMIP (the Ocean Carbon-Cycle Model Intercomparison Project). OCMIP included model comparison and validation for both CO{sub 2} and other ocean circulation and biogeochemical tracers. Beyond the international OCMIP effort, GOSAC also supported the same EC ocean carbon cycle modeling groups to make simulations to evaluate the efficiency of purposeful sequestration of CO{sub 2} in the ocean. Such sequestration, below the thermocline has been proposed as a strategy to help mitigate the increase of CO{sub 2} in the atmosphere. Some technical and scientific highlights of GOSAC are given.

  15. Strategic Analysis of the Global Status of Carbon Capture and...

    Open Energy Info (EERE)

    Summary LAUNCH TOOL Name: Strategic Analysis of the Global Status of Carbon Capture and Storage (CCS): Country Studies, United Arab Emirates Focus Area: Clean Fossil Energy...

  16. A Global Technology Roadmap on Carbon Capture and Storage in...

    Open Energy Info (EERE)

    industry sectors, and complements ongoing technology road-mapping exercises for other key energy technologies." References "A Global Technology Roadmap on Carbon Capture and...

  17. Investigations into Wetland Carbon Sequestration as Remediation for Global Warming

    SciTech Connect (OSTI)

    Thom, Ronald M.; Blanton, Susan L.; Borde, Amy B.; Williams, Greg D.; Woodruff, Dana L.; Huesemann, Michael H.; KW Nehring and SE Brauning

    2002-01-01

    Wetlands can potentially sequester vast amounts of carbon. However, over 50% of wetlands globally have been degraded or lost. Restoration of wetland systems may therefore result in increased sequestration of carbon. Preliminary results of our investigations into atmospheric carbon sequestration by restored coastal wetlands indicate that carbon can be sequestered in substantial quantities in the first 2-50 years after restoration of natural hydrology and sediment accretion processes.

  18. Global Impacts (Carbon Cycle 2.0)

    ScienceCinema (OSTI)

    Gadgil, Ashok [EETD and UC Berkeley

    2011-06-08

    Ashok Gadgil, Faculty Senior Scientist and Acting Director, EETD, also Professor of Environmental Engineering, UC Berkeley, speaks at the Carbon Cycle 2.0 kick-off symposium Feb. 2, 2010. We emit more carbon into the atmosphere than natural processes are able to remove - an imbalance with negative consequences. Carbon Cycle 2.0 is a Berkeley Lab initiative to provide the science needed to restore this balance by integrating the Labs diverse research activities and delivering creative solutions toward a carbon-neutral energy future. http://carboncycle2.lbl.gov/

  19. Biogenic carbon fluxes from global agricultural production and consumption

    SciTech Connect (OSTI)

    Wolf, Julie; West, Tristram O.; Le Page, Yannick LB; Kyle, G. Page; Zhang, Xuesong; Collatz, George; Imhoff, Marc L.

    2015-10-01

    Quantification of biogenic carbon fluxes from agricultural lands is needed to generate comprehensive bottom-up estimates of net carbon exchange for global and regional carbon monitoring. We estimated global agricultural carbon fluxes associated with annual crop net primary production (NPP), harvested biomass, and consumption of biomass by humans and livestock. These estimates were combined for a single estimate of net carbon exchange (NCE) and spatially distributed to 0.05 degree resolution using MODIS satellite land cover data. Global crop NPP in 2011 was estimated at 5.25 ± 0.46 Pg C yr-1, of which 2.05 ± 0.05 Pg C yr-1 was harvested and 0.54 Pg C yr-1 was collected from crop residues for livestock fodder. Total livestock feed intake in 2011 was 2.42 ± 0.21 Pg C yr-1, of which 2.31 ± 0.21 Pg C yr-1 was emitted as CO2, 0.07 ± 0.01 Pg C yr-1 was emitted as CH4, and 0.04 Pg C yr-1 was contained within milk and egg production. Livestock grazed an estimated 1.27 Pg C yr-1 in 2011, which constituted 52.4% of total feed intake. Global human food intake was 0.57 ± 0.03 Pg C yr-1 in 2011, the majority of which is respired as CO2. Completed global cropland carbon budgets accounted for the ultimate use of ca. 80% of harvested biomass. The spatial distribution of these fluxes may be used for global carbon monitoring, estimation of regional uncertainty, and for use as input to Earth system models.

  20. From Microbes to Global Carbon Models | U.S. DOE Office of Science...

    Office of Science (SC) Website

    Understanding microbial community processes improves predictions of soil carbon dynamics. ... from Wieder, Bonan, and Allison. "Global soil carbon projections are improved by ...

  1. Can reducing black carbon emissions counteract global warming?

    SciTech Connect (OSTI)

    Tami C. Bond; Haolin Sun

    2005-08-15

    Field measurements and model results have recently shown that aerosols may have important climatic impacts. One line of inquiry has investigated whether reducing climate-warming soot or black carbon aerosol emissions can form a viable component of mitigating global warming. Black carbon is produced by poor combustion, from our example hard coal cooking fires for and industrial pulverized coal boilers. The authors review and acknowledge scientific arguments against considering aerosols and greenhouse gases in a common framework, including the differences in the physical mechanisms of climate change and relevant time scales. It is argued that such a joint consideration is consistent with the language of the United Nations Framework Convention on Climate Change. Results from published climate-modeling studies are synthesized to obtain a global warming potential for black carbon relative to that of CO{sub 2} (680 on a 100 year basis). This calculation enables a discussion of cost-effectiveness for mitigating the largest sources of black carbon. It is found that many emission reductions are either expensive or difficult to enact when compared with greenhouse gases, particularly in Annex I countries. Finally, a role for black carbon in climate mitigation strategies is proposed that is consistent with the apparently conflicting arguments raised during the discussion. Addressing these emissions is a promising way to reduce climatic interference primarily for nations that have not yet agreed to address greenhouse gas emissions and provides the potential for a parallel climate agreement. 31 refs., 3 figs., 1 tab.

  2. Global Biogeochemistry Models and Global Carbon Cycle Research at Lawrence Livermore National Laboratory

    SciTech Connect (OSTI)

    Covey, C; Caldeira, K; Guilderson, T; Cameron-Smith, P; Govindasamy, B; Swanston, C; Wickett, M; Mirin, A; Bader, D

    2005-05-27

    The climate modeling community has long envisioned an evolution from physical climate models to ''earth system'' models that include the effects of biology and chemistry, particularly those processes related to the global carbon cycle. The widely reproduced Box 3, Figure 1 from the 2001 IPCC Scientific Assessment schematically describes that evolution. The community generally accepts the premise that understanding and predicting global and regional climate change requires the inclusion of carbon cycle processes in models to fully simulate the feedbacks between the climate system and the carbon cycle. Moreover, models will ultimately be employed to predict atmospheric concentrations of CO{sub 2} and other greenhouse gases as a function of anthropogenic and natural processes, such as industrial emissions, terrestrial carbon fixation, sequestration, land use patterns, etc. Nevertheless, the development of coupled climate-carbon models with demonstrable quantitative skill will require a significant amount of effort and time to understand and validate their behavior at both the process level and as integrated systems. It is important to consider objectively whether the currently proposed strategies to develop and validate earth system models are optimal, or even sufficient, and whether alternative strategies should be pursued. Carbon-climate models are going to be complex, with the carbon cycle strongly interacting with many other components. Off-line process validation will be insufficient. As was found in coupled atmosphere-ocean GCMs, feedbacks between model components can amplify small errors and uncertainties in one process to produce large biases in the simulated climate. The persistent tropical western Pacific Ocean ''double ITCZ'' and upper troposphere ''cold pole'' problems are examples. Finding and fixing similar types of problems in coupled carbon-climate models especially will be difficult, given the lack of observations required for diagnosis and validation

  3. Global Carbon Budget from the Carbon Dioxide Information Analysis Center (CDIAC)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    The Global Carbon Project (GCP) was established in 2001 in recognition of the scientific challenge and critical importance of the carbon cycle for Earth's sustainability. The growing realization that anthropogenic climate change is a reality has focused the attention of the scientific community, policymakers and the general public on the rising concentration of greenhouse gases, especially carbon dioxide (CO2) in the atmosphere, and on the carbon cycle in general. Initial attempts, through the United Nations Framework Convention on Climate Change and its Kyoto Protocol, are underway to slow the rate of increase of greenhouse gases in the atmosphere. These societal actions require a scientific understanding of the carbon cycle, and are placing increasing demands on the international science community to establish a common, mutually agreed knowledge base to support policy debate and action. The Global Carbon Project is responding to this challenge through a shared partnership between the International Geosphere-Biosphere Programme (IGBP), the International Human Dimensions Programme on Global Environmental Change (IHDP), the World Climate Research Programme (WCRP) and Diversitas. This partnership constitutes the Earth Systems Science Partnership (ESSP). This CDIAC collection includes datasets, images, videos, presentations, and archived data from previous years.

  4. Global Coastal Carbon Program Data from the Carbon Dioxide Information Analysis Center (CDIAC)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    CDIAC provides data management support for the Global Coastal Carbon Data Project. The coastal regions data are very important for the understanding of carbon cycle on the continental margins. The Coastal Project data include the bottle (discrete) and surface (underway) carbon-related measurements from coastal research cruises, the data from time series cruises, and coastal moorings. The data from US East Coast, US West Coast, and European Coastal areas are available. CDIAC provides a map interface with vessel or platform names. Clicking on the name brings up information about the vessel or the scientific platform, the kinds of measurements collected and the timeframe, links to project pages, when available, and the links to the data files themselves.

  5. Formulating Energy Policies Related to Fossil Fuel Use: Critical Uncertainties in the Global Carbon Cycle

    DOE R&D Accomplishments [OSTI]

    Post, W. M.; Dale, V. H.; DeAngelis, D. L.; Mann, L. K.; Mulholland, P. J.; O`Neill, R. V.; Peng, T. -H.; Farrell, M. P.

    1990-02-01

    The global carbon cycle is the dynamic interaction among the earth's carbon sources and sinks. Four reservoirs can be identified, including the atmosphere, terrestrial biosphere, oceans, and sediments. Atmospheric CO{sub 2} concentration is determined by characteristics of carbon fluxes among major reservoirs of the global carbon cycle. The objective of this paper is to document the knowns, and unknowns and uncertainties associated with key questions that if answered will increase the understanding of the portion of past, present, and future atmospheric CO{sub 2} attributable to fossil fuel burning. Documented atmospheric increases in CO{sub 2} levels are thought to result primarily from fossil fuel use and, perhaps, deforestation. However, the observed atmospheric CO{sub 2} increase is less than expected from current understanding of the global carbon cycle because of poorly understood interactions among the major carbon reservoirs.

  6. Carbon Cycle 2.0: Ashok Gadgil: global impact

    ScienceCinema (OSTI)

    Ashok Gadgi

    2010-09-01

    Ashok Gadgil speaks at the Carbon Cycle 2.0 kick-off symposium Feb. 2, 2010. We emit more carbon into the atmosphere than natural processes are able to remove - an imbalance with negative consequences. Carbon Cycle 2.0 is a Berkeley Lab initiative to provide the science needed to restore this balance by integrating the Labs diverse research activities and delivering creative solutions toward a carbon-neutral energy future. http://carboncycle2.lbl.gov/

  7. World Bank-Low-carbon Energy Projects for Development in Sub...

    Open Energy Info (EERE)

    Low-carbon Energy Projects for Development in Sub-Saharan Africa Jump to: navigation, search Name Low-carbon Energy Projects for Development in Sub-Saharan Africa AgencyCompany...

  8. Atmospheric Carbon Dioxide and the Global Carbon Cycle: The Key Uncertainties

    DOE R&D Accomplishments [OSTI]

    Peng, T. H.; Post, W. M.; DeAngelis, D. L.; Dale, V. H.; Farrell, M. P.

    1987-12-01

    The biogeochemical cycling of carbon between its sources and sinks determines the rate of increase in atmospheric CO{sub 2} concentrations. The observed increase in atmospheric CO{sub 2} content is less than the estimated release from fossil fuel consumption and deforestation. This discrepancy can be explained by interactions between the atmosphere and other global carbon reservoirs such as the oceans, and the terrestrial biosphere including soils. Undoubtedly, the oceans have been the most important sinks for CO{sub 2} produced by man. But, the physical, chemical, and biological processes of oceans are complex and, therefore, credible estimates of CO{sub 2} uptake can probably only come from mathematical models. Unfortunately, one- and two-dimensional ocean models do not allow for enough CO{sub 2} uptake to accurately account for known releases. Thus, they produce higher concentrations of atmospheric CO{sub 2} than was historically the case. More complex three-dimensional models, while currently being developed, may make better use of existing tracer data than do one- and two-dimensional models and will also incorporate climate feedback effects to provide a more realistic view of ocean dynamics and CO{sub 2} fluxes. The instability of current models to estimate accurately oceanic uptake of CO{sub 2} creates one of the key uncertainties in predictions of atmospheric CO{sub 2} increases and climate responses over the next 100 to 200 years.

  9. The Impact of Global Warming on the Carbon Cycle of Arctic Permafrost...

    Office of Scientific and Technical Information (OSTI)

    Technical Report: The Impact of Global Warming on the Carbon Cycle of Arctic Permafrost: An Experimental and Field Based Study Citation Details In-Document Search Title: The Impact...

  10. Evaluation of Black Carbon Estimations in Global Aerosol Models

    SciTech Connect (OSTI)

    Koch, D.; Schulz, M.; Kinne, Stefan; McNaughton, C. S.; Spackman, J. R.; Balkanski, Y.; Bauer, S.; Berntsen, T.; Bond, Tami C.; Boucher, Olivier; Chin, M.; Clarke, A. D.; De Luca, N.; Dentener, F.; Diehl, T.; Dubovik, O.; Easter, Richard C.; Fahey, D. W.; Feichter, J.; Fillmore, D.; Freitag, S.; Ghan, Steven J.; Ginoux, P.; Gong, S.; Horowitz, L.; Iversen, T.; Kirkevag, A.; Klimont, Z.; Kondo, Yutaka; Krol, M.; Liu, Xiaohong; Miller, R.; Montanaro, V.; Moteki, N.; Myhre, G.; Penner, J.; Perlwitz, Ja; Pitari, G.; Reddy, S.; Sahu, L.; Sakamoto, H.; Schuster, G.; Schwarz, J. P.; Seland, O.; Stier, P.; Takegawa, Nobuyuki; Takemura, T.; Textor, C.; van Aardenne, John; Zhao, Y.

    2009-11-27

    We evaluate black carbon (BC) model predictions from the AeroCom model intercomparison project by considering the diversity among year 2000 model simulations and comparing model predictions with available measurements. These model-measurement intercomparisons include BC surface and aircraft concentrations, aerosol absorption optical depth (AAOD) from AERONET and OMI retrievals and BC column estimations based on AERONET. In regions other than Asia, most models are biased high compared to surface concentration measurements. However compared with (column) AAOD or BC burden retreivals, the models are generally biased low. The average ratio of model to retrieved AAOD is less than 0.7 in South American and 0.6 in African biomass burning regions; both of these regions lack surface concentration measurements. In Asia the average model to observed ratio is 0.6 for AAOD and 0.5 for BC surface concentrations. Compared with aircraft measurements over the Americas at latitudes between 0 and 50N, the average model is a factor of 10 larger than observed, and most models exceed the measured BC standard deviation in the mid to upper troposphere. At higher latitudes the average model to aircraft BC is 0.6 and underestimate the observed BC loading in the lower and middle troposphere associated with springtime Arctic haze. Low model bias for AAOD but overestimation of surface and upper atmospheric BC concentrations at lower latitudes suggests that most models are underestimating BC absorption and should improve estimates for refractive index, particle size, and optical effects of BC coating. Retrieval uncertainties and/or differences with model diagnostic treatment may also contribute to the model-measurement disparity. Largest AeroCom model diversity occurred in northern Eurasia and the remote Arctic, regions influenced by anthropogenic sources. Changing emissions, aging, removal, or optical properties within a single model generated a smaller change in model predictions than the

  11. Global Carbon Fiber Composites Supply Chain Competitiveness Analysis

    Broader source: Energy.gov [DOE]

    This analysis identifies key opportunities in the carbon fiber supply chain where resources and investments can help advance the clean energy economy. The report focuses on four application areas...

  12. Building a Global Low-Carbon Technology Pathway

    Office of Energy Efficiency and Renewable Energy (EERE)

    At COP 20 in Lima, Peru, Department of Energy staff will discuss actions we're taking to help implement the United States' commitments to fight global climate change.

  13. Multi-century Changes to Global Climate and Carbon Cycle: Results from a Coupled Climate and Carbon Cycle Model

    SciTech Connect (OSTI)

    Bala, G; Caldeira, K; Mirin, A; Wickett, M; Delire, C

    2005-02-17

    In this paper, we use a coupled climate and carbon cycle model to investigate the global climate and carbon cycle changes out to year 2300 that would occur if CO{sub 2} emissions from all the currently estimated fossil fuel resources were released to the atmosphere. By year 2300, the global climate warms by about 8 K and atmospheric CO{sub 2} reaches 1423 ppmv. The warming is higher than anticipated because the sensitivity to radiative forcing increases as the simulation progresses. In our simulation, the rate of emissions peak at over 30 PgC yr{sup -1} early in the 22nd century. Even at year 2300, nearly 50% of cumulative emissions remain in the atmosphere. In our simulations both soils and living biomass are net carbon sinks throughout the simulation. Despite having relatively low climate sensitivity and strong carbon uptake by the land biosphere, our model projections suggest severe long-term consequences for global climate if all the fossil-fuel carbon is ultimately released to the atmosphere.

  14. Effects of welding fumes on nuclear air cleaning system carbon adsorber banks

    SciTech Connect (OSTI)

    Roberson, P.W.

    1997-08-01

    Standard Technical Specifications for nuclear air cleaning systems include requirements for surveillance tests following fire, painting, or chemical release in areas communicating with the affected system. To conservatively implement this requirement, many plants categorize welding as a chemical release process, and institute controls to ensure that welding fumes do not interact with carbon adsorbers in a filter system. After reviewing research data that indicated welding had a minimal impact on adsorber iodine removal efficiency, further testing was performed with the goal of establishing a welding threshold. It was anticipated that some quantity of weld electrodes could be determined that had a corresponding detrimental impact on iodine removal efficiency for the exposed adsorber. This value could be used to determine a conservative sampling schedule that would allow the station to perform laboratory testing to ensure system degradation did not occur without a full battery of surveillance tests. A series of tests was designed to demonstrate carbon efficiency versus cumulative welding fume exposure. Three series of tests were performed, one for each of three different types of commonly used weld electrodes. Carbon sampling was performed at baseline conditions, and every five pounds of electrode thereafter. Two different laboratory tests were performed for each sample; one in accordance with ASTM 3803/1989 at 95% relative humidity and 30 degrees C, and another using the less rigorous conditions of 70% relative humidity and 80 degrees C. Review of the test data for all three types of electrodes failed to show a significant correlation between carbon efficiency degradation and welding fume exposure. Accordingly, welding is no longer categorized as a `chemical release process` at McGuire Nuclear Station, and limits on welding fume interaction with ventilation systems have been eliminated. 4 refs., 3 figs., 1 tab.

  15. Modeling the role of terrestrial ecosystems in the global carbon cycle

    SciTech Connect (OSTI)

    Emanuel, W.R.; Post, W.M.; Shugart, H.H. Jr.

    1980-01-01

    A model for the global biogeochemical cycle of carbon which includes a five-compartment submodel for circulation in terrestrial ecosystems of the world is presented. Although this terrestrial submodel divides carbon into compartments with more functional detail than previous models, the variability in carbon dynamics among ecosystem types and in different climatic zones is not adequately treated. A new model construct which specifically treats this variability by modeling the distribution of ecosystem types as a function of climate on a 0.5/sup 0/ latitude by 0.5/sup 0/ longitude scale of resolution is proposed.

  16. Integrating Natural Gas Hydrates in the Global Carbon Cycle

    SciTech Connect (OSTI)

    David Archer; Bruce Buffett

    2011-12-31

    We produced a two-dimensional geological time- and basin-scale model of the sedimentary margin in passive and active settings, for the simulation of the deep sedimentary methane cycle including hydrate formation. Simulation of geochemical data required development of parameterizations for bubble transport in the sediment column, and for the impact of the heterogeneity in the sediment pore fluid flow field, which represent new directions in modeling methane hydrates. The model is somewhat less sensitive to changes in ocean temperature than our previous 1-D model, due to the different methane transport mechanisms in the two codes (pore fluid flow vs. bubble migration). The model is very sensitive to reasonable changes in organic carbon deposition through geologic time, and to details of how the bubbles migrate, in particular how efficiently they are trapped as they rise through undersaturated or oxidizing chemical conditions and the hydrate stability zone. The active margin configuration reproduces the elevated hydrate saturations observed in accretionary wedges such as the Cascadia Margin, but predicts a decrease in the methane inventory per meter of coastline relative to a comparable passive margin case, and a decrease in the hydrate inventory with an increase in the plate subduction rate.

  17. Carbon dioxide and global climate change: The birth and arrested development of an idea

    SciTech Connect (OSTI)

    Mudge, F.B.

    1996-12-31

    G.S. Callendar (1897--1964) is regarded the originator of the modern theory of carbon dioxide and global climate change. However, this paper shows that the theory was developed and became well accepted during the nineteenth century. Carbon dioxide was discovered by Black in 1752. From 1820 to 1890 a steadily growing number of measurements of its atmospheric concentration were made using steadily improving techniques; the average results fell from around 500 ppm in 1820 to about 300 ppm in 1890. By the end of the following decade the greenhouse theory of global climate change seemed widely accepted. However in 1900 and 1901 Aangstroem appeared to demolish the theory when he reported that changes in the carbon dioxide level can have little effect because of the overlap of the water and carbon dioxide spectral bands. At a stroke, all interest in the measurement of atmospheric carbon dioxide levels seemed to disappear, although during the 1920s and 1930s a few workers resumed the work but for reasons unconnected to climate change. Over the next thirty years the writers of authoritative textbooks dismissed the theory of carbon dioxide and climate change as an example of misguided speculation. Then in 1938 Callendar`s first paper appeared, reviving the theory which had lain forgotten for nearly forty years.

  18. Nitrogen attenuation of terrestrial carbon cycle response to global environmental factors

    SciTech Connect (OSTI)

    Jain, Atul; Yang, Xiaojuan; Kheshgi, Haroon; Mcguire, David; Post, Wilfred M

    2009-01-01

    Nitrogen cycle dynamics have the capacity to attenuate the magnitude of global terrestrial carbon sinks and sources driven by CO2 fertilization and changes in climate. In this study, two versions of the terrestrial carbon and nitrogen cycle components of the Integrated Science Assessment Model (ISAM) are used to evaluate how variation in nitrogen availability influences terrestrial carbon sinks and sources in response to changes over the 20th century in global environmental factors including atmospheric CO2 concentration, nitrogen inputs, temperature, precipitation and land use. The two versions of ISAM vary in their treatment of nitrogen availability: ISAM-NC has a terrestrial carbon cycle model coupled to a fully dynamic nitrogen cycle while ISAM-C has an identical carbon cycle model but nitrogen availability is always in sufficient supply. Overall, the two versions of the model estimate approximately the same amount of global mean carbon uptake over the 20th century. However, comparisons of results of ISAM-NC relative to ISAM-C reveal that nitrogen dynamics: (1) reduced the 1990s carbon sink associated with increasing atmospheric CO2 by 0.53 PgC yr1 (1 Pg = 1015g), (2) reduced the 1990s carbon source associated with changes in temperature and precipitation of 0.34 PgC yr1 in the 1990s, (3) an enhanced sink associated with nitrogen inputs by 0.26 PgC yr1, and (4) enhanced the 1990s carbon source associated with changes in land use by 0.08 PgC yr1 in the 1990s. These effects of nitrogen limitation influenced the spatial distribution of the estimated exchange of CO2 with greater sink activity in high latitudes associated with climate effects and a smaller sink of CO2 in the southeastern United States caused by N limitation associated with both CO2 fertilization and forest regrowth. These results indicate that the dynamics of nitrogen availability are important to consider in assessing the spatial distribution and temporal dynamics of terrestrial carbon sources and

  19. Stabilization Wedges and the Management of Global Carbon for the next 50 years

    ScienceCinema (OSTI)

    Socolow, Robert [Princeton University, Princeton, New Jersey, United States

    2009-09-01

    More than 40 years after receiving a Ph.D. in physics, I am still working on problems where conservation laws matter. In particular, for the problems I work on now, the conservation of the carbon atom matters. I will tell the saga of an annual flow of 8 billion tons of carbon associated with the global extraction of fossil fuels from underground. Until recently, it was taken for granted that virtually all of this carbon will move within weeks through engines of various kinds and then into the atmosphere. For compelling environmental reasons, I and many others are challenging this complacent view, asking whether the carbon might wisely be directed elsewhere. To frame this and similar discussions, Steve Pacala and I introduced the 'stabilization wedge' in 2004 as a useful unit for discussing climate stabilization. Updating the definition, a wedge is the reduction of CO2 emissions by one billion tons of carbon per year in 2057, achieved by any strategy generated as a result of deliberate attention to global carbon. Each strategy uses already commercialized technology, generally at much larger scale than today. Implementing seven wedges should enable the world to achieve the interim goal of emitting no more CO2 globally in 2057 than today. This would place humanity, approximately, on a path to stabilizing CO2 at less than double the pre-industrial concentration, and it would put those at the helm in the following 50 years in a position to drive CO2 emissions to a net of zero in the following 50 years. Arguably, the tasks of the two half-centuries are comparably difficult.

  20. Global warming and the future of coal carbon capture and storage

    SciTech Connect (OSTI)

    Ken Berlin; Robert M. Sussman

    2007-05-15

    The paper considers how best to change the economic calculus of power plant developers so they internalize CCS costs when selecting new generation technologies. Five policy tools are analyzed: establishing a greenhouse gas cap-and-trade program; imposing carbon taxes; defining CCS systems as a so-called Best Available Control Technology for new power plants under the USA Clean Air Act's New Source Review program; developing a 'low carbon portfolio' standard that requires utilities to provide an increasing proportion of power from low-carbon generation sources over time; and requiring all new coal power plants to meet an 'emission performance' standard that limits CO{sub 2} emissions to levels achievable with CCS systems. Each of these tools has advantages and drawbacks but an emission performance standard for new power plants is likely to be most effective in spurring broad-scale adoption of CCS systems. Chapter headings are: global warming and the future of coal; new coal-fired power plants threaten all other efforts to combat global warming; a potential path to zero emissions through carbon capture and storage; CO{sub 2} capture at coal plants: the promise of IGCC and other technologies; barriers to commercialization of IGCC technology; crossing the chasm: a new policy framework to push ccs implementation forward; encouraging CCS systems with carbon caps and trading programs; using the existing Clean Air Act to require CCS systems for new coal plants; retail low carbon portfolio standard; carbon tax; emission performance standards for new coal power plants; and conclusions. 16 figs.

  1. Numerical evaluation of mechanisms driving Early Jurassic changes in global carbon cycling

    SciTech Connect (OSTI)

    Beerling, D.J.; Brentnall, S.J.

    2007-03-15

    The Early Jurassic (early Toarcian, ca. 183 Ma) carbon cycle perturbation is characterized by aabout -5 parts per thousand {delta} {sup 13}C excursion in the exogenic carbon reservoirs, a 1000 ppm rise in atmospheric CO{sub 2}, and a 6-7 degrees warming. Two proposed explanations for this presumed global carbon cycle perturbation are the liberation of massive amounts of isotopically light CH4 from (1) Gondwanan coals by heating during the intrusive eruption of the Karoo-Ferrar large igneous province (LIP) or (2) the thermal dissociation of gas hydrates. Carbon cycle modeling indicates that the release of CH4 from Gondwanan coals synchronous with the eruption of the Karoo-Ferrar LIP fails to reproduce the magnitude or timing of the CO{sub 2} and {delta} {sup 13}C excursions. However, sensitivity analyses constrained by a marine cyclostratigraphically dated {delta}{sup 13}C record indicate that both features of geologic record can be explained with the huge input of about 15,340-24,750 Gt C over about 220 k.y., a result possibly pointing to the involvement of hydrothermal vent complexes in the Karoo Basin. The simulated release of > 6000 Gt C from gas hydrates also reproduces aspects of the early Toarcian rock record, but the large mass involved raises fundamental questions about its formation, storage, and release.

  2. A Data-Centered Collaboration Portal to Support Global Carbon-Flux Analysis

    SciTech Connect (OSTI)

    Agarwal, Deborah A.; Humphrey, Marty; Beekwilder, Norm; Jackson, Keith; Goode, Monte; van Ingen, Catharine

    2009-04-07

    Carbon-climate, like other environmental sciences, has been changing. Large-scalesynthesis studies are becoming more common. These synthesis studies are often conducted by science teams that are geographically distributed and on datasets that are global in scale. A broad array of collaboration and data analytics tools are now available that could support these science teams. However, building tools that scientists actually use is hard. Also, moving scientists from an informal collaboration structure to one mediated by technology often exposes inconsistencies in the understanding of the rules of engagement between collaborators. We have developed a scientific collaboration portal, called fluxdata.org, which serves the community of scientists providing and analyzing the global FLUXNET carbon-flux synthesis dataset. Key things we learned or re-learned during our portal development include: minimize the barrier to entry, provide features on a just-in-time basis, development of requirements is an on-going process, provide incentives to change leaders and leverage the opportunity they represent, automate as much as possible, and you can only learn how to make it better if people depend on it enough to give you feedback. In addition, we also learned that splitting the portal roles between scientists and computer scientists improved user adoption and trust. The fluxdata.org portal has now been in operation for ~;;1.5 years and has become central to the FLUXNET synthesis efforts.

  3. Ocean Carbon Cycle Data from the Joint Global Ocean Flux Study (JGOFS)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    The U.S. JGOFS program, a component of the U.S Global Change Research Program, grew out of the recommendations of a National Academy of Sciences workshop in 1984. An ambitious goal was set to understand the controls on the concentrations and fluxes of carbon and associated nutrients in the ocean. A new field of ocean biogeochemistry emerged with an emphasis on quality measurements of carbon system parameters and interdisciplinary field studies of the biological, chemical and physical process which control the ocean carbon cycle. U.S. JGOFS, ended in 2005 with the conclusion of the Synthesis and Modeling Project (SMP). Data are available throughout the U.S. JGOFS web site at http://usjgofs.whoi.edu/ and from the U.S. JGOFS Data System at http://usjgofs.whoi.edu/jg/dir/jgofs/. Major named segments of the project are: Bermuda Atlantic Time Series (BATS) Study, Hawaii Ocean Time-series (HOT) Study, Equatorial Pacific Process Study, North Atlantic Bloom Experiment (1989), Arabian Sea Process Study, and the Southern Ocean Process Study.

  4. A global analysis of soil microbial biomass carbon, nitrogen and phosphorus in terrestrial ecosystems

    SciTech Connect (OSTI)

    Xu, Xiaofeng; Thornton, Peter E; Post, Wilfred M

    2013-01-01

    Soil microbes play a pivotal role in regulating land-atmosphere interactions; the soil microbial biomass carbon (C), nitrogen (N), phosphorus (P) and C:N:P stoichiometry are important regulators for soil biogeochemical processes; however, the current knowledge on magnitude, stoichiometry, storage, and spatial distribution of global soil microbial biomass C, N, and P is limited. In this study, 3087 pairs of data points were retrieved from 281 published papers and further used to summarize the magnitudes and stoichiometries of C, N, and P in soils and soil microbial biomass at global- and biome-levels. Finally, global stock and spatial distribution of microbial biomass C and N in 0-30 cm and 0-100 cm soil profiles were estimated. The results show that C, N, and P in soils and soil microbial biomass vary substantially across biomes; the fractions of soil nutrient C, N, and P in soil microbial biomass are 1.6% in a 95% confidence interval of (1.5%-1.6%), 2.9% in a 95% confidence interval of (2.8%-3.0%), and 4.4% in a 95% confidence interval of (3.9%-5.0%), respectively. The best estimates of C:N:P stoichiometries for soil nutrients and soil microbial biomass are 153:11:1, and 47:6:1, respectively, at global scale, and they vary in a wide range among biomes. Vertical distribution of soil microbial biomass follows the distribution of roots up to 1 m depth. The global stock of soil microbial biomass C and N were estimated to be 15.2 Pg C and 2.3 Pg N in the 0-30 cm soil profiles, and 21.2 Pg C and 3.2 Pg N in the 0-100 cm soil profiles. We did not estimate P in soil microbial biomass due to data shortage and insignificant correlation with soil total P and climate variables. The spatial patterns of soil microbial biomass C and N were consistent with those of soil organic C and total N, i.e. high density in northern high latitude, and low density in low latitudes and southern hemisphere.

  5. Acting Globally: Potential Carbon Emissions Mitigation Impacts from an International Standards and Labelling Program

    SciTech Connect (OSTI)

    McNeil, Michael A; Letschert, Virginie E.; de la Rue du Can, Stephane; Egan, Christine

    2009-05-29

    This paper presents an analysis of the potential impacts of an international initiative designed to support and promote the development and implementation of appliances standards and labelling programs throughout the world. As part of previous research efforts, LBNL developed the Bottom Up Energy Analysis System (BUENAS), an analysis framework that estimates impact potentials of energy efficiency policies on a global scale. In this paper, we apply this framework to an initiative that would result in the successful implementation of programs focused on high priority regions and product types, thus evaluating the potential impacts of such an initiative in terms of electricity savings and carbon mitigation in 2030. In order to model the likely parameters of such a program, we limit impacts to a five year period starting in 2009, but assume that the first 5 years of a program will result in implementation of 'best practice' minimum efficiency performance standards by 2014. The 'high priority' regions considered are: Brazil, China, the European Union,India, Mexico and the United States. The products considered are: refrigerators, air conditioners, lighting (both fluorescent and incandescent), standby power (for consumer electronics) and televisions in the residential sector, and air conditioning and lighting in commercial buildings. In 2020, these regions and enduses account for about 37percent of global residential electricity and 29percent of electricity in commercial buildings. We find that 850Mt of CO2 could be saved in buildings by 2030 compared to the baseline forecast.

  6. Estimating Carbon Supply Curves for Global Forests and Other Land Uses April 2001, Discussion Paper 01-19

    SciTech Connect (OSTI)

    Sedjo, Roger; Sohngen, Brent; Mendelsohn, Robert

    2001-04-05

    This study develops cumulative carbon ''supply curves'' for global forests utilizing a dynamic timber supply model for sequestration of forest carbon. Because the period of concern is the next century, and particular time points within that century, the curves are not traditional Marshallian supply curves or steady-state supply curves. Rather, the focus is on cumulative carbon cost curves (quasi-supply curves) at various points in time over the next 100 years. The research estimates a number of long-term, cumulative, carbon quasi-supply curves under different price scenarios and for different time periods. The curves trace out the relationship between an intertemporal price path for carbon, as given by carbon shadow prices, and the cumulative carbon sequestered from the initiation of the shadow prices, set at 2000, to a selected future year (2010, 2050, 2100). The timber supply model demonstrates that cumulative carbon quasi-supply curves that can be generated through forestry significantly depend on initial carbon prices and expectations regarding the time profile of future carbon prices. Furthermore, long-run quasi-supply curves generated from a constant price will have somewhat different characteristics from quasi-supply curves generated with an expectation of rising carbon prices through time.The ?least-cost? curves vary the time periods under consideration and the time profile of carbon prices. The quasi-supply curves suggest that a policy of gradually increasing carbon prices will generate the least costly supply curves in the shorter periods of a decade or so. Over longer periods of time, however, such as 50 or 100 years, these advantages appear to dissipate.

  7. The National Academies of Sciences, Engineering, and Medicine Release Commercial Aircraft Propulsion and Energy Systems Research: Reducing Global Carbon Emissions

    Broader source: Energy.gov [DOE]

    The National Academies of Sciences, Engineering, and Medicine releases the Commercial Aircraft Propulsion and Energy Systems Research: Reducing Global Carbon Emissions report, which focuses on large (single- and twin-aisle) planes that transport more than 100 people. These aircraft account for more than 90% of greenhouse gas emissions from all commercial aircraft.

  8. Models of carbon flow in tropical ecosystems with emphasis on their role in the global carbon cycle. Final report, September 15, 1978-September 14, 1980

    SciTech Connect (OSTI)

    Brown, S.; Lugo, A.E.

    1980-01-01

    The role of tropical forests on the carbon balance of the world is studied with four different approaches: (1) to quantify the area of tropical forests and the changes in forest cover; (2) to calculate the storage and production of organic carbon in tropical forests; (3) the modelling of land use changes in tropical countries using computer simulation models; and (4) the synthesis of information from many sources into conceptual schemes using Life Zone and energy use concepts. Results are not yet conclusive but indicate that tropical forests play a significant role in the global carbon cycle, and they are likely to be small sources of carbon to the atmosphere. The basis for this statement is: (1) the large area of tropical forests do not appear to be changing as fast as suggested earlier; (2) the storage of carbon in the tropics is about one half as previously suggested; (3) the turnover of carbon in the tropics is very fast with large exports to the ocean via rivers; and (4) models of land use change using data from Bolivia show only a small net addition of carbon to the atmosphere.

  9. Global

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Permalink EC, DHS's S&T Directorate, Federal Emergency Management Agency: SUMMIT Analysis, Capabilities, Facilities, Global, Infrastructure Security, Modeling, Modeling & Analysis, NISAC, Partnership, Research & Capabilities EC, DHS's S&T Directorate, Federal Emergency Management Agency: SUMMIT Natural disasters create emergency situations that must be dealt with quickly and effectively in order to minimize injury and loss of life. Simulating such events before they occur can

  10. Agriculture, Land Use, Energy and Carbon Emission Impacts of Global Biofuel Mandates to Mid-Century

    SciTech Connect (OSTI)

    Wise, Marshall A.; Dooley, James J.; Luckow, Patrick; Calvin, Katherine V.; Kyle, G. Page

    2014-02-01

    Three potential future scenarios of expanded global biofuel production are presented here utilizing the GCAM integrated assessment model. These scenarios span a range that encompasses on the low end a continuation of existing biofuel production policies to two scenarios that would require an expansion of current targets as well as an extension of biofuels targets to other regions of the world. Conventional oil use is reduced by 4-8% in the expanded biofuel scenarios, which results in a decrease of in CO2 emissions on the order of 1-2 GtCO2/year by mid-century from the global transportation sector. The regional distribution of crop production is relatively unaffected, but the biofuels targets do result in a marked increase in the production of conventional crops used for energy. Producer prices of sugar and corn reach levels about 12% and 7% above year 2005 levels, while the increased competition for land causes the price of food crops such as wheat, although not used for bioenergy in this study, to increase by 1 to 2%. The amount of land devoted to growing all food crops and dedicated bioenergy crops is increased by about 10% by 2050 in the High biofuel case, with concurrent decreases in other uses of land such as forest and pasture. In both of the expanded biofuels cases studied, there is an increase in net cumulative carbon emissions for the first couple of decades due to these induced land use changes. However, the difference in net cumulative emissions from the biofuels expansion decline by about 2035 as the reductions in energy system emissions exceed further increases in emissions from land use change. Even in the absence of a policy that would limit emissions from land use change, the differences in net cumulative emissions from the biofuels scenarios reach zero by 2050, and are decreasing further over time in both cases.

  11. Divergent predictions of carbon storage between two global land models: attribution of the causes through traceability analysis

    SciTech Connect (OSTI)

    Rafique, Rashid; Xia, Jianyang; Hararuk, Oleksandra; Asrar, Ghassem R.; Wang, Yingping; Luo, Yiqi

    2015-08-27

    Representations of the terrestrial carbon cycle in land models are becoming increasingly complex. It is crucial to develop approaches for critical assessment of the complex model properties in order to understand key factors contributing to models’ performance. In this study, we applied a traceability analysis, which decomposes carbon cycle models into traceable components, to two global land models (CABLE and CLM-CASA’) to diagnose the causes of their differences in simulating ecosystem carbon storage capacity. Driven with similar forcing data, the CLM-CASA’ model predicted ~31% larger carbon storage capacity than the CABLE model. Since ecosystem carbon storage capacity is a product of net primary productivity (NPP) and ecosystem residence time (τE), the predicted difference in the storage capacity between the two models results from differences in either NPP or τE or both. Our analysis showed that CLM-CASA’ simulated 37% higher NPP than CABLE due to higher rates of carboxylation (Vcmax) in CLM-CASA’. On the other hand, τE , which was a function the baseline carbon residence time (τ´E) and environmental effect on carbon residence time, was on average 11 years longer in CABLE than CLM-CASA’. The difference in τE was mainly found to be caused by longer τ´E in CABLE than CLM-CASA’. This difference in τE was mainly caused by longer τ´E of woody biomass (23 vs. 14 years in CLM-CASA’) and higher proportion of NPP allocated to woody biomass (23% vs. 16%). Differences in environmental effects on carbon residence times had smaller influences on differences in ecosystem carbon storage capacities compared to differences in NPP and τ´E. Overall; the traceability analysis is an effective method for identifying sources of variations between the two models.

  12. Structural analysis of three global land models on carbon cycle simulations using a traceability framework

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Rafique, R.; Xia, J.; Hararuk, O.; Luo, Y.

    2014-06-27

    Modeled carbon (C) storage capacity is largely determined by the C residence time and net primary productivity (NPP). Extensive research has been done on NPP dynamics but the residence time and their relationships with C storage are much less studied. In this study, we implemented a traceability analysis to understand the modeled C storage and residence time in three land surface models: CSIRO's Atmosphere Biosphere Land Exchange (CABLE) with 9 C pools, Community Land Model (version 3.5) combined with Carnegie-Ames-Stanford Approach (CLM3.5-CASA) with 12 C pools and Community Land Model (version 4) (CLM4) with 26 C pools. The globally averagedmoreC storage and residence time was computed at both individual pool and total ecosystem levels. The spatial distribution of total ecosystem C storage and residence time differ greatly among the three models. The CABLE model showed a closer agreement with measured C storage and residence time in plant and soil pools than CLM3.5-CASA and CLM4. However, CLM3.5-CASA and CLM4 were close to each other in modeled C storage but not with measured data. CABLE stores more C in root whereas CLM3.5-CASA and CLM4 store more C in woody pools, partly due to differential NPP allocation in respective pools. The C residence time in individual C pools is greatly different among models, largely because of different transfer coefficient values among pools. CABLE had higher bulk residence time for soil C pools than the other two models. Overall, the traceability analysis used in this study can help fully characterizes the behavior of complex land models.less

  13. Global Carbon Emissions in the Coming Decades: The Case of China

    SciTech Connect (OSTI)

    Levine, Mark; Levine, Mark D.; Aden, Nathaniel T.

    2008-05-01

    China's annual energy-related carbon emissions surpassed those of the United States in In order to build a more robust understanding of China's energy-related carbon emissions, emissions after 2001? The divergence between actual and forecasted carbon emissions international trade, and central government policies in driving emissions growth. so greatly in error and what drove the rapid growth of China's energy-related carbon this article reviews the role of economic restructuring, urbanization, coal dependence, underscores the rapid changes that have taken place in China's energy system since 2001.

  14. Geologic carbon sequestration as a global strategy to mitigate CO2 emissions: Sustainability and environmental risk

    SciTech Connect (OSTI)

    Oldenburg, C.M.

    2011-04-01

    Fossil fuels are abundant, inexpensive to produce, and are easily converted to usable energy by combustion as demonstrated by mankind's dependence on fossil fuels for over 80% of its primary energy supply (13). This reliance on fossil fuels comes with the cost of carbon dioxide (CO{sub 2}) emissions that exceed the rate at which CO{sub 2} can be absorbed by terrestrial and oceanic systems worldwide resulting in increases in atmospheric CO{sub 2} concentration as recorded by direct measurements over more than five decades (14). Carbon dioxide is the main greenhouse gas linked to global warming and associated climate change, the impacts of which are currently being observed around the world, and projections of which include alarming consequences such as water and food shortages, sea level rise, and social disruptions associated with resource scarcity (15). The current situation of a world that derives the bulk of its energy from fossil fuel in a manner that directly causes climate change equates to an energy-climate crisis. Although governments around the world have only recently begun to consider policies to avoid the direst projections of climate change and its impacts, sustainable approaches to addressing the crisis are available. The common thread of feasible strategies to the energy climate crisis is the simultaneous use of multiple approaches based on available technologies (e.g., 16). Efficiency improvements (e.g., in building energy use), increased use of natural gas relative to coal, and increased development of renewables such as solar, wind, and geothermal, along with nuclear energy, are all available options that will reduce net CO{sub 2} emissions. While improvements in efficiency can be made rapidly and will pay for themselves, the slower pace of change and greater monetary costs associated with increased use of renewables and nuclear energy suggests an additional approach is needed to help bridge the time period between the present and a future when

  15. Storing Carbon in Agricultural Soils to Help Head-Off Global Warming and to Combat Desertification

    SciTech Connect (OSTI)

    Rosenberg, Norman J.; Izaurralde, Roberto C.

    2001-12-31

    We know for sure that addition of organic matter to soil increases water-holding capacity, imparts fertility with the addition of nutrients, increases soil aggregation and improves tilth. Depeing on it's type, organic matter contains between 40 and 60% carbon. Using agricultural management practices to increase the amount of organic matter and carbon in soils can be an effective strategy to offset carbon dioxide emissions to the atmosphere as well as to improve the quality of the soil and slow or prevent desertification.

  16. Modeling global atmospheric CO2 with improved emission inventories and CO2 production from the oxidation of other carbon species

    SciTech Connect (OSTI)

    Nassar, Ray; Jones, DBA; Suntharalingam, P; Chen, j.; Andres, Robert Joseph; Wecht, K. J.; Yantosca, R. M.; Kulawik, SS; Bowman, K; Worden, JR; Machida, T; Matsueda, H

    2010-01-01

    The use of global three-dimensional (3-D) models with satellite observations of CO2 in inverse modeling studies is an area of growing importance for understanding Earth s carbon cycle. Here we use the GEOS-Chem model (version 8-02-01) CO2 mode with multiple modifications in order to assess their impact on CO2 forward simulations. Modifications include CO2 surface emissions from shipping (0.19 PgC yr 1), 3-D spatially-distributed emissions from aviation (0.16 PgC yr 1), and 3-D chemical production of CO2 (1.05 PgC yr 1). Although CO2 chemical production from the oxidation of CO, CH4 and other carbon gases is recognized as an important contribution to global CO2, it is typically accounted for by conversion from its precursors at the surface rather than in the free troposphere. We base our model 3-D spatial distribution of CO2 chemical production on monthly-averaged loss rates of CO (a key precursor and intermediate in the oxidation of organic carbon) and apply an associated surface correction for inventories that have counted emissions of CO2 precursors as CO2. We also explore the benefit of assimilating satellite observations of CO into GEOS-Chem to obtain an observation-based estimate of the CO2 chemical source. The CO assimilation corrects for an underestimate of atmospheric CO abundances in the model, resulting in increases of as much as 24% in the chemical source during May June 2006, and increasing the global annual estimate of CO2 chemical production from 1.05 to 1.18 Pg C. Comparisons of model CO2 with measurements are carried out in order to investigate the spatial and temporal distributions that result when these new sources are added. Inclusion of CO2 emissions from shipping and aviation are shown to increase the global CO2 latitudinal gradient by just over 0.10 ppm (3%), while the inclusion of CO2 chemical production (and the surface correction) is shown to decrease the latitudinal gradient by about 0.40 ppm (10%) with a complex spatial structure

  17. Quantifying the role of fire in the Earth system - Part 2: Impact on the net carbon balance of global terrestrial ecosystems for the 20th century

    SciTech Connect (OSTI)

    Li, Fang; Bond-Lamberty, Benjamin; Levis, Samuel

    2014-03-07

    Fire is the primary terrestrial ecosystem disturbance agent on a global scale. It affects carbon balance of global terrestrial ecosystems by emitting carbon to atmosphere directly and immediately from biomass burning (i.e., fire direct effect), and by changing net ecosystem productivity and land-use carbon loss in post-fire regions due to biomass burning and fire-induced vegetation mortality (i.e., fire indirect effect). Here, we provide the first quantitative assessment about the impact of fire on the net carbon balance of global terrestrial ecosystems for the 20th century, and investigate the roles of fire direct and indirect effects. This study is done by quantifying the difference between the 20th century fire-on and fire-off simulations with NCAR community land model CLM4.5 as the model platform. Results show that fire decreases net carbon gain of the global terrestrial ecosystems by 1.0 Pg C yr-1 average across the 20th century, as a results of fire direct effect (1.9 Pg C yr-1) partly offset by indirect effect (-0.9 Pg C yr-1). Fire generally decreases the average carbon gains of terrestrial ecosystems in post-fire regions, which are significant over tropical savannas and part of forests in North America and the east of Asia. The general decrease of carbon gains in post-fire regions is because fire direct and indirect effects have similar spatial patterns and the former (to decrease carbon gain) is generally stronger. Moreover, the effect of fire on net carbon balance significantly declines prior to ~1970 with trend of 8 Tg C yr-1 due to increasing fire indirect effect and increases afterward with trend of 18 Tg C yr-1 due to increasing fire direct effect.

  18. Microsoft PowerPoint - GlobalOilEcon.ppt

    Gasoline and Diesel Fuel Update (EIA)

    Globalization, Oil Prices and U.S. Economic Activity Stephen Brown Federal Reserve Bank of Dallas 2008 Energy Conference U.S. Energy Information Administration Globalization, Oil ...

  19. Final Report for ''SOURCES AND SINKS OF CARBON FROM LAND-USE CHANGE AND MANAGEMENT: A GLOBAL SYNTHESIS'' Project Period September 15, 2001--September 14, 2003

    SciTech Connect (OSTI)

    Houghton, R.A.

    2003-12-12

    Land management and land-use change can either release carbon (as CO{sub 2}) to the atmosphere, for example when forests are converted to agricultural lands, or withdraw carbon from the atmosphere as forests grow on cleared lands or as management practices sequester carbon in soil. The purpose of this work was to calculate the annual sources and sinks of carbon from changes in land use and management, globally and for nine world regions, over the period 1850 to 2000. The approach had three components. First, rates of land-use change were reconstructed from historical information on the areas of croplands, pastures, forests, and other lands and from data on wood harvests. In most regions, land-use change included the conversion of natural ecosystems to cultivated lands and pastures, including shifting cultivation, harvest of wood (for timber and fuel), and the establishment of tree plantations. In the U.S., woody encroachment and woodland thickening as a result of fire suppression were also included. Second, the amount of carbon per hectare in vegetation and soils and changes in that carbon as a result of land-use change were determined from data obtained in the ecological and forestry literature. These data on land-use change and carbon stocks were then used in a bookkeeping model (third component) to calculate regional and global changes in terrestrial carbon. The results indicate that for the period 1850-2000 the net flux of carbon from changes in land use was 156 PgC. For comparison, emissions of carbon from combustion of fossil fuels were approximately 280 PgC during the same interval. Annual emissions from land-use change exceeded emissions from fossil fuels before about 1920. Somewhat more that half (60%) of the long-term flux was from the tropics. Average annual fluxes during the 1980s and 1990s were 2.0 and 2.2 ({+-}0.8) PgC yr{sup -1} (30-40% of fossil fuel emissions), respectively. In these decades, the global sources of carbon were almost entirely from

  20. Banking on Solar: An Analysis of Banking Opportunities in the...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Banking on Solar: An Analysis of Banking Opportunities in the U.S. Distributed ... 303-275-3000 * www.nrel.gov Banking on Solar: An Analysis of Banking Opportunities in ...

  1. Comparison of Global Model Results from the Carbon-Land Model Intercomparison Project (C-LAMP) with Free-Air Carbon Dioxide Enrichment (FACE) Manipulation Experiments

    SciTech Connect (OSTI)

    Hoffman, Forrest M; Randerson, Jim; Fung, Inez; Thornton, Peter E; Covey, Curtis; Bonan, Gordon; Running, Steven; Norby, Richard J

    2008-01-01

    Free-Air CO{sub 2} Enrichment (FACE) manipulation experiments have been carried out at a handful of sites to gauge the response of the biosphere to significant increases in atmospheric [CO{sub 2}]. Early synthesis results from four temperate forest sites suggest that the response of net primary productivity (NPP) is conserved across a broad range of productivity with a stimulation at the median of 23 {+-} 2% when the surrounding air [CO{sub 2}] was raised to 550{approx}ppm. As a part of the Carbon-Land Model Intercomparison Project (C-LAMP), a community-based model-data comparison activity, the authors have performed a global FACE modeling experiment using two terrestrial biogeochemistry modules, CLM3-CASA and CLM3-CN, coupled to the National Center for Atmospheric Research (NCAR) Community Climate System Model (CCSM). The two models were forced with an improved NCEP/NCAR reanalysis data set and reconstructed atmospheric [CO{sub 2}] and N deposition data through 1997. At the beginning of 1997 in the transient simulations, global atmospheric [CO{sub 2}] was abruptly raised to 550{approx}ppm, the target value used at the FACE sites. In the control runs, [CO{sub 2}] continued to rise following observations until 2004, after which it was held constant out to year 2100. In both simulations, the last 25 years of reanalysis forcing and a constant N deposition were applied after year 2004. Across all forest biomes, the NPP responses from both models are weaker than those reported for the four FACE sites. Moreover, model responses vary widely geographically with a decreasing trend of NPP increases from 40{sup o}N to 70{sup o}N. For CLM3-CASA, the largest responses occur in arid regions of western North America and central Asia, suggesting that responses are most strongly influenced by increased water use efficiency for this model. CLM3-CN exhibits consistently weaker responses than CLM3-CASA' with the strongest responses in central Asia, but significantly constrained by N

  2. Simulations of the global carbon cycle and anthropogenic CO{sub 2} transient. Final report, September 15, 1993--September 14, 1997

    SciTech Connect (OSTI)

    Sarmiento, J.L.; Pacala, S.W.

    1998-06-01

    The primary accomplishment of this research was the development of an ocean biogeochemistry model for the carbon cycle, and the application of this model to studies of anthropogenic CO{sub 2} uptake and the global carbon cycle. The model has been used to study the oceanic uptake that would occur if future atmospheric CO{sub 2} were to be stabilized with the ocean circulation remaining constant. The authors also modeled how oceanic uptake would be affected by changes in ocean circulation that are predicted to occur due to global warming. The research resulted in 21 publications, and an additional 5 papers either in press or in preparation. The accomplishments of this research served as the foundation on which the Carbon Modeling Consortium was built. The CMC is a NOAA funded collaborative program involving principal investigators from various NOAA laboratories and universities. It has the goal of developing techniques to monitor the global carbon cycle on land as well as the ocean, and to predict its future course.

  3. Ocean acidification over the next three centuries using a simple global climate carbon-cycle model: projections and sensitivities

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Hartin, Corinne A.; Bond-Lamberty, Benjamin; Patel, Pralit; Mundra, Anupriya

    2016-08-01

    Continued oceanic uptake of anthropogenic CO2 is projected to significantly alter the chemistry of the upper oceans over the next three centuries, with potentially serious consequences for marine ecosystems. Relatively few models have the capability to make projections of ocean acidification, limiting our ability to assess the impacts and probabilities of ocean changes. In this study we examine the ability of Hector v1.1, a reduced-form global model, to project changes in the upper ocean carbonate system over the next three centuries, and quantify the model's sensitivity to parametric inputs. Hector is run under prescribed emission pathways from the Representative Concentrationmore » Pathways (RCPs) and compared to both observations and a suite of Coupled Model Intercomparison (CMIP5) model outputs. Current observations confirm that ocean acidification is already taking place, and CMIP5 models project significant changes occurring to 2300. Hector is consistent with the observational record within both the high- (> 55°) and low-latitude oceans (< 55°). The model projects low-latitude surface ocean pH to decrease from preindustrial levels of 8.17 to 7.77 in 2100, and to 7.50 in 2300; aragonite saturation levels (ΩAr) decrease from 4.1 units to 2.2 in 2100 and 1.4 in 2300 under RCP 8.5. These magnitudes and trends of ocean acidification within Hector are largely consistent with the CMIP5 model outputs, although we identify some small biases within Hector's carbonate system. Of the parameters tested, changes in [H+] are most sensitive to parameters that directly affect atmospheric CO2 concentrations – Q10 (terrestrial respiration temperature response) as well as changes in ocean circulation, while changes in ΩAr saturation levels are sensitive to changes in ocean salinity and Q10. We conclude that Hector is a robust tool well suited for rapid ocean acidification projections and sensitivity analyses, and it is capable of emulating both current observations

  4. Sensitivity of global-scale climate change attribution results to inclusion of fossil fuel black carbon aerosol - article no. L14701

    SciTech Connect (OSTI)

    Jones, G.S.; Jones, A.; Roberts, D.L.; Stott, P.A.; Williams, K.D.

    2005-07-16

    It is likely that greenhouse gas emissions caused most of the global mean warming observed during the 20th century, and that sulphate aerosols counteracted this warming to some extent, by reflecting solar radiation to space and thereby cooling the planet. However, the importance of another aerosol, namely black carbon, could be underestimated. Here we include fossil fuel black carbon aerosol in a detection and attribution analysis with greenhouse gas and sulphate aerosols. We find that most of the warming of the 20th Century is attributable to changes in greenhouse gases offset by net aerosol cooling. However the pattern of temperature change due to black carbon is currently indistinguishable from the sulphate aerosol pattern of temperature change. The attribution of temperature change due to greenhouse gases is not sensitive to the inclusion of black carbon. We can be confident about the overall attribution of total aerosols, but less so about the contributions of black carbon emissions to 20th century climate change. This work presents no evidence that black carbon aerosol forcing outweighed the cooling due to sulphate aerosol.

  5. Spatial and temporal patterns of biotic exchanges of CO sub 2 between the atmosphere and tropical landscapes and their role in the global carbon balance

    SciTech Connect (OSTI)

    Not Available

    1992-01-01

    At SUNY ESF, our overall objective for this year was to finish refining the methods used to convert our previous models of global carbon flux and land use change into a GIS-compatible format. We now have the ability to obtain, convert, and incorporate geographic data into spatial simulation models that describe past carbon exchange patterns, as well as predict future landuse change and carbon exchange. Our initial tests of this model in Peninsula Malaysia have been very promising, in that we are able to successfully predict land use from 1972 to 1982 and even from 1870 to 1970. In this context successful'' means that we classify in the model from 80 to 95 percent of the cells correctly, depending upon the number of land use types we try to predict. We are now preparing to apply this model to the entire continent of Africa and to Central America.

  6. Think Green Global Inc | Open Energy Information

    Open Energy Info (EERE)

    Green Global Inc Jump to: navigation, search Name: Think Green Global, Inc. Place: New York, New York Zip: 10010 Sector: Renewable Energy Product: New York-based investment bank...

  7. NY Green Bank

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Bank Panel 1: Attracting and Maintaining Capital for Energy Transmission, Storage, and ... clean energy capital markets for large scale infrastructure are deep and robust. ...

  8. EBRD-The Low Carbon Transition | Open Energy Information

    Open Energy Info (EERE)

    The Low Carbon Transition Jump to: navigation, search Tool Summary LAUNCH TOOL Name: EBRD-The Low Carbon Transition AgencyCompany Organization: European Bank for Reconstruction...

  9. A Study of the Abundance and 13C/12C Ratio of Atmospheric Carbon Dioxide to Advance the Scientific Understanding of Terrestrial Processes Regulating the Global Carbon Cycle

    SciTech Connect (OSTI)

    Stephen C. Piper

    2005-10-15

    The primary goal of our research program, consistent with the goals of the U.S. Climate Change Science Program and funded by the terrestrial carbon processes (TCP) program of DOE, has been to improve understanding of changes in the distribution and cycling of carbon among the active land, ocean and atmosphere reservoirs, with particular emphasis on terrestrial ecosystems. Our approach is to systematically measure atmospheric CO2 to produce time series data essential to reveal temporal and spatial patterns. Additional measurements of the 13C/12C isotopic ratio of CO2 provide a basis for distinguishing organic and inorganic processes. To pursue the significance of these patterns further, our research also involved interpretations of the observations by models, measurements of inorganic carbon in sea water, and of CO2 in air near growing land plants.

  10. Green Investment Bank | Open Energy Information

    Open Energy Info (EERE)

    Name: Green Investment Bank Place: United Kingdom Product: UK-based investment bank that will focus on clean energy investment. References: Green Investment Bank1 This article...

  11. CO2 Global Solutions International | Open Energy Information

    Open Energy Info (EERE)

    Global Solutions International Jump to: navigation, search Name: CO2 Global Solutions International Place: Madrid, Spain Zip: 28001 Sector: Carbon Product: CO2 Global Solutions is...

  12. Greenhouse Gas Mitigation Options in ISEEM Global Energy Model: 2010-2050 Scenario Analysis for Least-Cost Carbon Reduction in Iron and Steel Sector

    SciTech Connect (OSTI)

    Karali, Nihan; Xu, Tengfang; Sathaye, Jayant

    2013-12-01

    The goal of the modeling work carried out in this project was to quantify long-term scenarios for the future emission reduction potentials in the iron and steel sector. The main focus of the project is to examine the impacts of carbon reduction options in the U.S. iron and steel sector under a set of selected scenarios. In order to advance the understanding of carbon emission reduction potential on the national and global scales, and to evaluate the regional impacts of potential U.S. mitigation strategies (e.g., commodity and carbon trading), we also included and examined the carbon reduction scenarios in China’s and India’s iron and steel sectors in this project. For this purpose, a new bottom-up energy modeling framework, the Industrial Sector Energy Efficiency Modeling (ISEEM), (Karali et al. 2012) was used to provide detailed annual projections starting from 2010 through 2050. We used the ISEEM modeling framework to carry out detailed analysis, on a country-by-country basis, for the U.S., China’s, and India’s iron and steel sectors. The ISEEM model applicable to iron and steel section, called ISEEM-IS, is developed to estimate and evaluate carbon emissions scenarios under several alternative mitigation options - including policies (e.g., carbon caps), commodity trading, and carbon trading. The projections will help us to better understand emission reduction potentials with technological and economic implications. The database for input of ISEEM-IS model consists of data and information compiled from various resources such as World Steel Association (WSA), the U.S. Geological Survey (USGS), China Steel Year Books, India Bureau of Mines (IBM), Energy Information Administration (EIA), and recent LBNL studies on bottom-up techno-economic analysis of energy efficiency measures in the iron and steel sector of the U.S., China, and India, including long-term steel production in China. In the ISEEM-IS model, production technology and manufacturing details are

  13. TECHNOLOGY IN AN INTEGRATED ASSESSMENT MODEL: THE POTENTIAL REGIONAL DEPLOYMENT OF CARBON CAPTURE AND STORAGE IN THE CONTEXT OF GLOBAL CO2 STABILIZATION

    SciTech Connect (OSTI)

    Edmonds, James A.; Dooley, James J.; Kim, Son H.; Friedman, S. Julio; Wise, Marshall A.

    2007-11-19

    Technology is a critically important determinant of the cost of meeting any environmental objective. In this paper we examine the role of a particular technology, carbon dioxide capture and storage (CCS), in the stabilization of the concentration of atmospheric carbon dioxide (CO2). While CCS is not presently deployed at scale, it has the potential to deploy extensively during the course of the 21st century if concentrations of atmospheric CO2 are to be stabilized. The existing research literature has focused largely on the cost of capturing CO2, with the implicit assumption that storage options would be relatively cheap, plentiful and located in close proximity to future CO2 point sources. However, CO2 capture and storage will take place at the local and regional scale and will compete with other mitigation options that also exhibit local or regional differences. This paper provides an initial examination of the implications of regionally disaggregated demand for and supply of CO2 storage reservoirs within the context of a globally disaggregated, long-term analysis of both the geology and economics of CCS. This analysis suggests that some regions will see their ability to deploy CCS systems constrained by a lack of quality target reservoirs relative to the demand for storage placed upon these candidate geologic storage reservoirs by large stationary CO2 point sources within the region. Other regions appear to have sufficient storage capacity to easily carry them into the 22nd century. We examined the regional and global economic implications of the distribution of these sources and sinks in meeting various potential limits to atmospheric CO2 concentrations. This analysis confirms that CCS is an important potential response to climate change throughout the 21st century and a technology that can play a key role in controlling the cost of addressing climate change.

  14. Global patterns and controls of soil organic carbon dynamics as simulated by multiple terrestrial biosphere models. Current status and future directions

    SciTech Connect (OSTI)

    Tian, Hanqin; Lu, Chaoqun; Yang, Jia; Banger, Kamaljit; Huntzinger, Deborah N.; Schwalm, Christopher R.; Michalak, A. M.; Cook, Robert B.; Ciais, Philippe; Hayes, Daniel J.; Huang, Maoyi; Ito, Akihiko; Jain, Atul K.; Lei, Huimin; Mao, Jiafu; Pan, Shufen; Post, W. M.; Peng, Shushi; Poulter, Benjamin; Ren, Wei; Ricciuto, Daniel M.; Schaefer, Kevin; Shi, Xiaoying; Tao, Bo; Wang, Weile; Wei, Yaxing; Yang, Qichun; Zhang, Bowen; Zeng, Ning

    2015-06-05

    Soil is the largest organic carbon (C) pool of terrestrial ecosystems, and loss from soil accounts for a large pro portion of land-atmosphere C exchange. Due to large pool size and variable residence time from years to millennia, even small changes in soil organic C(SOC) have substantial effects on the terrestrial C budget, thereby affecting atmospheric carbon dioxide (CO2)concentration and climate change. In the past decades, a wide variety of studies have been conducted to quantify global SOC stocks and soil exchange with the atmosphere through site measurements, inventories, and empirical/process-based modeling. However, these estimates are highly uncertain and identifying major driving forces controlling soil C storage and fluxes remains a key research challenge his study has compiled century-long (1901-2010)estimates of SOC storage and heterotrophic respiration (Rh) from ten terrestrial biosphere models (TBMs) in the Multi-scale Synthesis and Terrestrial Model Intercomparison Project (MsTMIP) and two observation based datasets. The ten-TBM ensemble shows that global SOC estimate range from 4 to 2111 Pg C (1 Pg = 1015g) with a median value of 1158 Pg C33 in 2010. Modeling approach estimates a broad range of Rh from 35 to 69 Pg C yr-1 with a median value of 51Pg C yr-1 during 200–2010. The largest uncertainty in SOC stocks exists in the 40–65°N latitude band while Rh differences are the largest in the tropics. All the models agreed that climate and land use changes have decreased SOC stocks while elevated CO2 and atmospheric nitrogen deposition have increased SOC stocks though the response varied significantly among models. Model representations of temperature and moisture sensitivity,nutrient limitation and land use partially explain the divergent estimates of global SOC stocks and soil fluxes in this study. In addition, major sources of uncertainty from model estimation include exclusion of SOC storage in

  15. Global patterns and controls of soil organic carbon dynamics as simulated by multiple terrestrial biosphere models: Current status and future directions

    SciTech Connect (OSTI)

    Tian, Hanqin; Lu, Chaoqun; Yang, Jia; Banger, Kamaljit; Huntzinger, Deborah N.; Schwalm, Christopher R.; Michalak, Anna M.; Cook, Robert; Ciais, Philippe; Hayes, Daniel; Huang, Maoyi; Ito, Akihiko; Jain, Atul K.; Lei, Huimin; Mao, Jiafu; Pan, Shufen; Post, Wilfred M.; Peng, Shushi; Poulter, Benjamin; Ren, Wei; Ricciuto, Daniel; Schaefer, Kevin; Shi, Xiaoying; Tao, Bo; Wang, Weile; Wei, Yaxing; Yang, Qichun; Zhang, Bowen; Zeng, Ning

    2015-06-05

    Soil is the largest organic carbon (C) pool of terrestrial ecosystems, and C loss from soil accounts for a large proportion of land-atmosphere C exchange. Therefore, a small change in soil organic C (SOC) can affect atmospheric carbon dioxide (CO₂) concentration and climate change. In the past decades, a wide variety of studies have been conducted to quantify global SOC stocks and soil C exchange with the atmosphere through site measurements, inventories, and empirical/process-based modeling. However, these estimates are highly uncertain, and identifying major driving forces controlling soil C dynamics remains a key research challenge. This study has compiled century-long (1901–2010) estimates of SOC storage and heterotrophic respiration (Rh) from 10 terrestrial biosphere models (TBMs) in the Multi-scale Synthesis and Terrestrial Model Intercomparison Project and two observation-based data sets. The 10 TBM ensemble shows that global SOC estimate ranges from 425 to 2111 Pg C (1 Pg = 10¹⁵ g) with a median value of 1158 Pg C in 2010. The models estimate a broad range of Rh from 35 to 69 Pg C yr⁻¹ with a median value of 51 Pg C yr⁻¹ during 2001–2010. The largest uncertainty in SOC stocks exists in the 40–65°N latitude whereas the largest cross-model divergence in Rh are in the tropics. The modeled SOC change during 1901–2010 ranges from –70 Pg C to 86 Pg C, but in some models the SOC change has a different sign from the change of total C stock, implying very different contribution of vegetation and soil pools in determining the terrestrial C budget among models. The model ensemble-estimated mean residence time of SOC shows a reduction of 3.4 years over the past century, which accelerate C cycling through the land biosphere. All the models agreed that climate and land use changes decreased SOC stocks, while elevated atmospheric CO₂ and nitrogen deposition over intact ecosystems increased SOC stocks—even though the responses varied significantly

  16. Global patterns and controls of soil organic carbon dynamics as simulated by multiple terrestrial biosphere models: Current status and future directions

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Tian, Hanqin; Lu, Chaoqun; Yang, Jia; Banger, Kamaljit; Huntzinger, Deborah N.; Schwalm, Christopher R.; Michalak, Anna M.; Cook, Robert; Ciais, Philippe; Hayes, Daniel; et al

    2015-06-05

    Soil is the largest organic carbon (C) pool of terrestrial ecosystems, and C loss from soil accounts for a large proportion of land-atmosphere C exchange. Therefore, a small change in soil organic C (SOC) can affect atmospheric carbon dioxide (CO₂) concentration and climate change. In the past decades, a wide variety of studies have been conducted to quantify global SOC stocks and soil C exchange with the atmosphere through site measurements, inventories, and empirical/process-based modeling. However, these estimates are highly uncertain, and identifying major driving forces controlling soil C dynamics remains a key research challenge. This study has compiled century-longmore » (1901–2010) estimates of SOC storage and heterotrophic respiration (Rh) from 10 terrestrial biosphere models (TBMs) in the Multi-scale Synthesis and Terrestrial Model Intercomparison Project and two observation-based data sets. The 10 TBM ensemble shows that global SOC estimate ranges from 425 to 2111 Pg C (1 Pg = 10¹⁵ g) with a median value of 1158 Pg C in 2010. The models estimate a broad range of Rh from 35 to 69 Pg C yr⁻¹ with a median value of 51 Pg C yr⁻¹ during 2001–2010. The largest uncertainty in SOC stocks exists in the 40–65°N latitude whereas the largest cross-model divergence in Rh are in the tropics. The modeled SOC change during 1901–2010 ranges from –70 Pg C to 86 Pg C, but in some models the SOC change has a different sign from the change of total C stock, implying very different contribution of vegetation and soil pools in determining the terrestrial C budget among models. The model ensemble-estimated mean residence time of SOC shows a reduction of 3.4 years over the past century, which accelerate C cycling through the land biosphere. All the models agreed that climate and land use changes decreased SOC stocks, while elevated atmospheric CO₂ and nitrogen deposition over intact ecosystems increased SOC stocks—even though the responses varied

  17. Regional versus global? -- Will strategies for reduction of sulfur dioxide emissions from electric utilities increase carbon dioxide emissions?

    SciTech Connect (OSTI)

    Randolph, J.C.; Dolsak, N.

    1996-12-31

    Electric utilities, which are dependent on high-sulfur coal are expected to reduce their SO{sub 2} emissions. The strategies for reduction of SO{sub 2} emissions may result in increased CO{sub 2} emissions. Thereby decrease of regional pollution may cause increase of global pollution. Environmental, political, moral, and economic consequences of the two types of pollution differ significantly. Midwestern electric utilities, USA, which are dependent on high-sulfur coal, are analyzed in the paper. However, the same problem is relevant for some European coal fueled power plants. Strategies for reduction of SO{sub 2} emissions, employed by Midwestern electric utilities to comply with the clean Air Act amendments (CAAA) of 1990 and their possible affects on CO{sub 2} emissions, are presented. The paper focuses on two general strategies for reduction of SO{sub 2} emissions. First is coal-switching or blending with a low-sulfur coal. Second is construction and use of flue-gas desulfurization devices (scrubbers). A combination of both strategies is also a viable option. Switching to low-sulfur coal may result in larger CO{sub 2} emissions because that coal has different characteristics and has to be transported much greater distances. Scrubbers require significant amounts of energy for their operation which requires burning more coal. This increases the level of CO{sub 2} emissions.

  18. Global Climate & Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sandia Participated in the 2013 Domenici Public Policy Conference Carbon Capture & Storage, Carbon Storage, Climate, Earth Sciences Research Center, Energy, Global Climate & Energy, Global Climate & Energy, News, News & Events, Systems Analysis, Systems Engineering, Water Security Sandia Participated in the 2013 Domenici Public Policy Conference Marianne Walck, Director of Sandia's Geoscience, Climate, and Consequence Effects Center, spoke on "Hydraulic Fracturing: The Role

  19. India-Options for Low Carbon Development | Open Energy Information

    Open Energy Info (EERE)

    Low Carbon Growth Country Studies Program AgencyCompany Organization Energy Sector Management Assistance Program of the World Bank Sector Energy, Land Focus Area Energy...

  20. Development of the Electricity Carbon Emission Factors for Russia...

    Open Energy Info (EERE)

    Russia Jump to: navigation, search Name Development of the Electricity Carbon Emission Factors for Russia AgencyCompany Organization European Bank for Reconstruction and...

  1. Low Carbon Development: Planning & Modelling Course | Open Energy...

    Open Energy Info (EERE)

    & Modelling Course Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Low Carbon Development: Planning & Modelling Course AgencyCompany Organization: World Bank...

  2. Carbon Initiative for Development (Ci-Dev) | Open Energy Information

    Open Energy Info (EERE)

    Initiative for Development (Ci-Dev) Jump to: navigation, search Name Carbon Initiative for Development (Ci-Dev) AgencyCompany Organization World Bank Sector Climate Topics...

  3. Minority Banks | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Banks Minority Banks Our Bank Deposit Financial Assistance Program was developed for the purpose of strengthening and expanding the Nation's minority and women-owned small business enterprises. In order to classify as "minority" the institution's majority ownership must include African Americans, Hispanic Americans, Asian Americans, American Indians, Eskimos, Aleuts, and women. The minority institution must certify minority ownership with the Department of the Treasury and appear on

  4. Using an Explicit Emission Tagging Method in Global Modeling of Source-Receptor Relationships for Black Carbon in the Arctic: Variations, Sources and Transport Pathways

    SciTech Connect (OSTI)

    Wang, Hailong; Rasch, Philip J.; Easter, Richard C.; Singh, Balwinder; Zhang, Rudong; Ma, Po-Lun; Qian, Yun; Ghan, Steven J.; Beagley, Nathaniel

    2014-11-27

    We introduce an explicit emission tagging technique in the Community Atmosphere Model to quantify source-region-resolved characteristics of black carbon (BC), focusing on the Arctic. Explicit tagging of BC source regions without perturbing the emissions makes it straightforward to establish source-receptor relationships and transport pathways, providing a physically consistent and computationally efficient approach to produce a detailed characterization of the destiny of regional BC emissions and the potential for mitigation actions. Our analysis shows that the contributions of major source regions to the global BC burden are not proportional to the respective emissions due to strong region-dependent removal rates and lifetimes, while the contributions to BC direct radiative forcing show a near-linear dependence on their respective contributions to the burden. Distant sources contribute to BC in remote regions mostly in the mid- and upper troposphere, having much less impact on lower-level concentrations (and deposition) than on burden. Arctic BC concentrations, deposition and source contributions all have strong seasonal variations. Eastern Asia contributes the most to the wintertime Arctic burden. Northern Europe emissions are more important to both surface concentration and deposition in winter than in summer. The largest contribution to Arctic BC in the summer is from Northern Asia. Although local emissions contribute less than 10% to the annual mean BC burden and deposition within the Arctic, the per-emission efficiency is much higher than for major non-Arctic sources. The interannual variability (1996-2005) due to meteorology is small in annual mean BC burden and radiative forcing but is significant in yearly seasonal means over the Arctic. When a slow aging treatment of BC is introduced, the increase of BC lifetime and burden is source-dependent. Global BC forcing-per-burden efficiency also increases primarily due to changes in BC vertical distributions. The

  5. Central Bank of India | Open Energy Information

    Open Energy Info (EERE)

    India Jump to: navigation, search Name: Central Bank of India Place: DELHI, Delhi (NCT), India Zip: 110002 Product: Retail bank closely conencted with social development through...

  6. UCEAO: Energy Knowledge Bank | Open Energy Information

    Open Energy Info (EERE)

    UCEAO: Energy Knowledge Bank Jump to: navigation, search Name: UCEAO: Energy Knowledge Bank Place: Ohio Website: knowledgebank.uso.edu References: University Clean Energy Alliance...

  7. European Investment Bank | Open Energy Information

    Open Energy Info (EERE)

    Logo: European Investment Bank Name: European Investment Bank Address: 98-100, boulevard Konrad Adenauer L-2950 Place: Luxembourg Product: Microfinance, Loans, Venture Capital...

  8. Spatial and temporal patterns of biotic exchanges of CO{sub 2} between the atmosphere and tropical landscapes and their role in the global carbon balance. Progress report of SUNY-ESF Group

    SciTech Connect (OSTI)

    Not Available

    1992-09-01

    At SUNY ESF, our overall objective for this year was to finish refining the methods used to convert our previous models of global carbon flux and land use change into a GIS-compatible format. We now have the ability to obtain, convert, and incorporate geographic data into spatial simulation models that describe past carbon exchange patterns, as well as predict future landuse change and carbon exchange. Our initial tests of this model in Peninsula Malaysia have been very promising, in that we are able to successfully predict land use from 1972 to 1982 and even from 1870 to 1970. In this context ``successful`` means that we classify in the model from 80 to 95 percent of the cells correctly, depending upon the number of land use types we try to predict. We are now preparing to apply this model to the entire continent of Africa and to Central America.

  9. Kevin Banks | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Kevin Banks By Justin H.S. Breaux * October 6, 2014 Tweet EmailPrint Kevin Banks is a freshman at the Milwaukee School of Engineering, where he studies biomedical engineering. As an intern within the Chicago Scholars Argonne Future Research Program, Kevin conducted research this summer in Argonne's Energy Systems division. His research seeks to increase energy efficiency by reducing friction and wear on machines using engine oils. "What I liked most about my internship experience was

  10. Global Green Partners | Open Energy Information

    Open Energy Info (EERE)

    Partners Jump to: navigation, search Name: Global Green Partners Place: Los Altos, California Zip: 94024 Sector: Carbon Product: California-based investment fund prioritizing trade...

  11. Republic of Macedonia-World Bank Climate Projects | Open Energy...

    Open Energy Info (EERE)

    World Bank Climate Projects Jump to: navigation, search Name Republic of Macedonia-World Bank Climate Projects AgencyCompany Organization World Bank Sector Energy, Land Focus...

  12. Gabon-World Bank Climate Activities | Open Energy Information

    Open Energy Info (EERE)

    World Bank Climate Activities Jump to: navigation, search Name Gabon-World Bank Climate Activities AgencyCompany Organization World Bank Sector Land Focus Area Forestry Topics...

  13. Ukraine-World Bank Climate Projects | Open Energy Information

    Open Energy Info (EERE)

    World Bank Climate Projects Jump to: navigation, search Name Ukraine-World Bank Climate Projects AgencyCompany Organization World Bank Sector Energy Focus Area Energy Efficiency...

  14. Residential Network Members Unite to Form Green Bank Network...

    Broader source: Energy.gov (indexed) [DOE]

    The NY Green Bank logo. Residential Network members Connecticut Green Bank and NY Green Bank, a division of Residential Network member New York State Energy Research and ...

  15. Select Bank Plc | Open Energy Information

    Open Energy Info (EERE)

    Bank Plc Jump to: navigation, search Name: Select Bank Plc Place: Mayfair, England, United Kingdom Zip: W1J 8LQ Sector: Renewable Energy Product: England-based firm that promotes...

  16. EA-342 Royal Bank of Canada | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Royal Bank of Canada EA-342 Royal Bank of Canada Order authorizing Royal Bank of Canada to export electric energy to Canada EA-342 Royal Bank of Canada (3.17 MB) More Documents & ...

  17. DOE's Disposition of Excess Real Property Status of Banked Square...

    Broader source: Energy.gov (indexed) [DOE]

    ... Banked 4,045 EM ETTP Site Net Banked 4,465,778 EM ETEC Site Net Banked 96,315 EM Grand Junction Net Banked 0 EM INL Site Net Banked 657,823 EM LLNL Site Net Banked 27,371 EM LANL ...

  18. Coastal-zone biogeochemical dynamics under global warming

    SciTech Connect (OSTI)

    Mackenzie, F.T.; Ver, L.M.; Lerman, A.

    2000-03-01

    The coastal zone, consisting of the continental shelves to a depth of 200 meters, including bays, lagoons, estuaries, and near-shore banks, is an environment that is strongly affected by its biogeochemical and physical interactions with reservoirs in the adjacent domains of land, atmosphere, open ocean, and marine sediments. Because the coastal zone is smaller in volume and area coverage relative to the open ocean, it traditionally has been studied as an integral part of the global oceans. In this paper, the authors show by numerical modeling that it is important to consider the coastal zone as an entity separate from the open ocean in any assessment of future Earth-system response under human perturbation. Model analyses for the early part of the 21st century suggest that the coastal zone plays a significant modifying role in the biogeochemical dynamics of the carbon cycle and the nutrient cycles coupled to it. This role is manifested in changes in primary production, storage, and/or export of organic matter, its remineralization, and calcium carbonate precipitation--all of which determine the state of the coastal zone with respect to exchange of CO{sub 2} with the atmosphere. Under a scenario of future reduced or complete cessation of the thermohaline circulation (THC) of the global oceans, coastal waters become an important sink for atmospheric CO{sub 2}, as opposed to the conditions in the past and present, when coastal waters are believed to be a source of CO{sub 2} to the atmosphere. Profound changes in coastal-zone primary productivity underscore the important role of phosphorus as a limiting nutrient. In addition, calculations indicate that the saturation state of coastal waters with respect to carbonate minerals will decline by {approximately}15% by the year 2030. Any future slowdown in the THC of the oceans will increase slightly the rate of decline in saturation state.

  19. Spatial and temporal patterns of biotic exchanges of CO{sub 2} between the atmosphere and tropical landscapes and their role in the global carbon balance. Progress report

    SciTech Connect (OSTI)

    Richards, J.F.; Flint, E.P.

    1993-10-01

    Since mid-September we have been engaged in final revision of the data base for South and Southeast Asia. In October we revised our second chapter for the forthcoming volume Effects of Land Use Change on Atmospheric Carbon Dioxide Concentrations, edited by Virginia Dale. ``Trends in Carbon Content of Vegetation in South and Southeast Asia Associated with Changes in Land Use``, in response to a second round of reviews. Both this chapter and `` Century of Land Use Change in South and Southeast Asia`` (submitted in revised form in July) are have been accepted and are now in the hands of the technical editor. our time series of land use data and carbon content estimates for live vegetation in 93 zones comprising thirteen Asian nations at four dates was finalized in the course of manuscript revision. We sent machine-readable copies of the spreadsheets containing tabular data for Southeast Asia to CDIAC in October, and the following month delivered the South Asian data. At the same time, we sent these files to the research groups of Sandra Brown and Charlie Hall, who have entered this information in their geographic information systems, and also to Skee Houghton.

  20. Forestry-based Carbon Sequestration Projects in Africa: Potential...

    Open Energy Info (EERE)

    Abstract "Carbon sequestration through forestry and agroforestry can help mitigate global warming. For Africa, carbon sequestration also represents an opportunity to fund...

  1. Investing in Minority Banks | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Investing in Minority Banks Investing in Minority Banks Our Bank Deposit Financial Assistance Program was developed for the purpose of strengthening and expanding the Nation's minority and women-owned small business enterprises. In order to classify as "minority" the institution's majority ownership must include African Americans, Hispanic Americans, Asian Americans, American Indians, Eskimos, Aleuts, and women. The minority institution must certify minority ownership with the

  2. The World Bank - Transport | Open Energy Information

    Open Energy Info (EERE)

    provides relevant information about transport, focusing on The World Bank Transport Strategy - Safe, Clean and Affordable - Transport for Development. The website includes...

  3. NY Green Bank | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    sector to address and alleviate market and financial barriers preventing a thriving clean energy marketplace. NY Green Bank does not accept deposits or offer retail loans, and...

  4. Building Green in Greensburg: The Peoples Bank

    Broader source: Energy.gov [DOE]

    This poster highlights energy efficiency, renewable energy, and sustainable features of the high-performing Peoples Bank building in Greensburg, Kansas.

  5. Intern Spotlight: Kevin Banks | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Kevin Banks is a freshman at the Milwaukee School of Engineering, where he studies biomedical engineering. As an intern within the Chicago Scholars Argonne Future Research...

  6. Bank of America | Open Energy Information

    Open Energy Info (EERE)

    America Jump to: navigation, search Name: Bank of America Place: Charlotte, NC Zip: 28202 Website: www.bankofamerica.com References: NREL & Industry: National Account Companies1...

  7. Building Green in Greensburg: Greensburg State Bank

    Broader source: Energy.gov [DOE]

    This poster highlights energy efficiency, renewable energy, and sustainable features of the high-performing Greensburg State Bank building in Greensburg, Kansas.

  8. Building Green in Greensburg: Centera Bank

    Broader source: Energy.gov [DOE]

    This poster highlights energy efficiency, renewable energy, and sustainable features of the high-performing Centera Bank building in Greensburg, Kansas.

  9. Global Solutions

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Global Solutions Our Vision National User Facilities Research Areas In Focus Global Solutions ⇒ Navigate Section Our Vision National User Facilities Research Areas In Focus Global Solutions A-Z Index Berkeley Lab masthead U.S. Department of Energy logo Phone Book Jobs Search BANGLADESH INDIA CHINA DAYA BAY CHINA RUSSIA SIBERIA JAPAN SAMOA HAWAII SOUTH POLE ANTARCTICA NEW MEXICO SOUTH DAKOTA TEXAS GULF OF MEXICO NEW YORK PUERTO RICO AMAZON RAIN FOREST CANARY ISLANDS SWITZERLAND ETHIOPIA

  10. World Bank | Open Energy Information

    Open Energy Info (EERE)

    interested in REDD+. The FCPF thus seeks to create an enabling environment and garner a body of knowledge and experiences that can facilitate development of a much larger global...

  11. A Review of the World Bank Forest Carbon Partnership Facility...

    Open Energy Info (EERE)

    submitted by Democratic Republic of Congo, Ghana, Guyana, Indonesia, Madagascar, Mexico, Panama and Suriname can be accessed online at: http:www.wri.orggfi ." To access...

  12. India-World Bank Climate Projects | Open Energy Information

    Open Energy Info (EERE)

    Name India-World Bank Climate Projects AgencyCompany Organization World Bank Sector Energy, Land Focus Area Energy Efficiency, Renewable Energy Topics Background analysis...

  13. Philippines-World Bank Climate Projects | Open Energy Information

    Open Energy Info (EERE)

    Philippines-World Bank Climate Projects AgencyCompany Organization World Bank Sector Energy, Land Focus Area Renewable Energy, Energy Efficiency, Geothermal Topics Background...

  14. Colorado State Bank and Trust | Open Energy Information

    Open Energy Info (EERE)

    Bank and Trust Jump to: navigation, search Name: Colorado State Bank and Trust Place: Denver, Colorado Zip: 80202 Sector: Renewable Energy Product: Leasing and lending for...

  15. Georgia-World Bank Climate Projects | Open Energy Information

    Open Energy Info (EERE)

    Projects Jump to: navigation, search Name Georgia-World Bank Climate Projects AgencyCompany Organization World Bank Focus Area Renewable Energy, Hydro Topics Background analysis...

  16. PNC Bank Equipment Finance and Energy Group | Open Energy Information

    Open Energy Info (EERE)

    to: navigation, search Name: PNC Bank - Equipment Finance and Energy Group Place: Valencia, California Zip: 91355 Product: Energy and Equipment Finance arm of PNC Bank...

  17. World Bank-Climate Change Knowledge Portal | Open Energy Information

    Open Energy Info (EERE)

    Climate Change Knowledge Portal Jump to: navigation, search Logo: World Bank-Climate Change Knowledge Portal Name World Bank-Climate Change Knowledge Portal AgencyCompany...

  18. LNJ Bhilwara Group Glitnir Bank JV | Open Energy Information

    Open Energy Info (EERE)

    - Glitnir Bank JV Place: Noida, India Zip: 201 301 Sector: Geothermal energy Product: Joint venture established by LNJ Bhilwara Group and Glitnir Bank, for the development of...

  19. Impact of the Global Forest Industry on Atmospheric Greenhouse...

    Open Energy Info (EERE)

    or for non wood forest products may also have a considerable role in the global carbon balance, but these are beyond the scope of this publication." References "Forestry...

  20. Call for emission limits heats debate on global warming

    SciTech Connect (OSTI)

    Singer, S.F.

    1997-08-01

    Emission limits on carbon dioxide is recommended by an Intergovernmental Panel in a discussion on global warming. (AIP) {copyright} {ital 1997 American Institute of Physics.}

  1. Global Solar Photovoltaic (PV) Installation Market to be Propelled...

    Open Energy Info (EERE)

    Global Solar Photovoltaic (PV) Installation Market to be Propelled by Greater Concerns over Carbon Footprint Home > Groups > Renewable Energy RFPs John55364's picture Submitted by...

  2. Global Collaborations | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Global Collaborations The Global Collaborations element includes ongoing partnerships with numerous international organizations to leverage U.S. expertise with other large-scale projects. The Carbon Storage Program relies on international collaborations to complement the program's approach to reducing CO2 emissions. DOE is partnering with the International Energy Agency's Greenhouse Gas R&D Program (IEAGHG), the Carbon Sequestration Leadership Forum (CSLF), the U.S.-China Clean Energy

  3. Grameen Bank`s experience with energy related microenterprise development

    SciTech Connect (OSTI)

    Barua, D.C.

    1997-12-01

    Increased population and growth of industry have resulted in greater demand for energy worldwide. Most of this energy is derived from fossil fuel (coal, gas, oil and nuclear) which will soon be depleted. In this context the need for developing renewable sources of energy has taken on a greater sense of importance and urgency. Over the years significant technological advances have been made in the area of renewable energies especially in the field of solar photovoltaics (PV), wind energy and bio-gas technology. In addition, for remote rural areas where there exists no infrastructure for conventional energy supply, these forms of decentralized alternative energy systems will be far more adaptable and well suited. Grameen Shakti (Energy) is an addition to the family of companies of Grameen Bank, to promote and supply renewable energy sources to rural households. GS, a not-for-profit company, expects not only to supply renewable energy services, but also to create employment and income generation opportunities in rural Bangladesh. GS will focus on supply, marketing, sales, testing and development of renewable energy systems of solar pv, biogas, wind turbines and windpumps.

  4. Global warming, global research, and global governing

    SciTech Connect (OSTI)

    Preining, O.

    1997-12-31

    The anticipated dangers of Global Warming can be mitigated by reducing atmospheric greenhouse gas concentrations, especially CO{sub 2}. To reach acceptable, constant levels within the next couple of centuries it might be necessary to accept stabilization levels higher than present ones, The annual CO{sub 2} emissions must be reduced far below today`s values. This is a very important result of the models discussed in the 1995 IPCC report. However, any even very modest scenario for the future must take into account a substantial increase in the world population which might double during the 21st century, There is a considerable emission reduction potential of the industrialized world due to efficiency increase, However, the demand for energy services by the growing world population will, inspite of the availability of alternative energy resources, possibly lead to a net increase in fossil fuel consumption. If the climate models are right, and the science community believes they are, we will experience a global warming of the order of a couple of degrees over the next century; we have to live with it. To be prepared for the future it is essential for us to use new research techniques embracing not only the familiar fields of hard sciences but also social, educational, ethical and economic aspects, We must find a way to build up the essential intellectual capacities needed to deal with these kinds of general problems within all nations and all societies. But this is not Although, we also have to find the necessary dynamical and highly flexible structures for a global governing using tools such as the environmental regime. The first step was the Framework Convention On Climate Change, UN 1992; for resolution of questions regarding implementations the Conference of the Parties was established.

  5. Global decarbonization strategies

    SciTech Connect (OSTI)

    Messner, S.

    1996-12-31

    The presentation covers a brief summary of the research activities of the Environmentally Compatible Energy Strategies Project (ECS) at IIASA. The overall research focuses on long-term global energy development and emissions of greenhouse gases (GHG). The ultimate goal is to analyze strategies that achieve decarbonization of global energy systems during the next century. The specific activities range from mitigation of GHG emissions to an integrated assessment of climate change. One focal point is the GHG mitigation technology inventory CO{sub 2}DB, which presently covers approximately 1,400 technologies related to energy and the greenhouse effect. Another integral part is the development of global energy and emissions scenarios, an effort involving a number of formal models to assess the implications. A large number of global scenarios for the next century has been developed, that could be grouped into three families. All of them include energy efficiency improvements and some degree of decarbonization in the world. They are based on different economic and technological development trajectories, and their emissions range from very high to a stabilization of atmospheric carbon dioxide emissions. The presentation will outline the salient characteristics of the three scenario families and provide some regional implications of these alternative futures.

  6. The DOE/DOD Environmental Data Bank

    SciTech Connect (OSTI)

    C de Baca, J.E.

    1996-07-01

    The DOE/DOD Environmental Data Bank was established in 1959 as a central location for storing weapons and equipment environments information from a variety of DOE, DOD, and industrial sources and continues to be maintained by Sandia National Laboratories. The Environmental Data Bank contains approximately 2,900 documents regarding normal and abnormal environments that describe the handling, storage, transportation, use, and general phases, which occur during the life of a weapon system. The Environmental Data Bank contains a vast assortment of resources that document crash, fire, and chemical environments resulting from aircraft, rail, ship, and truck accidents, as well as crash and thermal tests conducted on shipping containers. Also included are studies on the hazards of exposure to liquid natural gas fireballs, chemical fireballs, and hydrogen fireballs. This paper describes the DOE/DOD Environmental Data Bank system, its structure, data sources, and usage, with particular emphasis on its use for safety assessments at Sandia National Laboratories.

  7. Global environmental markets: Equity and efficiency

    SciTech Connect (OSTI)

    Chichilnisky, G.

    1997-12-31

    Global markets trading rights to emit greenhouse gases are now actively considered by the United Nations. This leads to a new phenomenon: environmental markets in a global scale. Is this new, or are these markets simply a global manifestation of a trend towards market solutions? This paper will show that there is a fundamental difference between global environmental markets and standard stock exchanges. Because the atmosphere of the planet is one and the same for all, these markets trade {open_quotes}public goods{close_quotes} which are, however, privately produced. These are different from all the goods that are traded in markets today. Efficiency in these markets dictates different rules, involving a more equitable allocation of property rights on environmental use, and this requires new institutional arrangements. There is a need for a new institution, an International Bank for Environmental Settlements (IBES), which can lead to organized trading and ensures market integrity and efficiency.

  8. ARM - What is the Carbon Cycle?

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Outreach Home Room News Publications Traditional Knowledge Kiosks Barrow, Alaska Tropical Western Pacific Site Tours Contacts Students Study Hall About ARM Global Warming FAQ Just for Fun Meet our Friends Cool Sites Teachers Teachers' Toolbox Lesson Plans What is the Carbon Cycle? Oceanic Properties Future Trends Carbon Cycle Balance Destination of Atmospheric Carbon Sources of Atmospheric Carbon The cycling of carbon from the atmosphere to organic compounds and back again not only involves

  9. Carbonyl sulfide: No remedy for global warming

    SciTech Connect (OSTI)

    Taubman, S.J.; Kasting, J.F. [Pennsylvania State Univ., University Park, PA (United States)] [Pennsylvania State Univ., University Park, PA (United States)

    1995-04-01

    The authors look at the possibility of counteracting global warming forces by the injection of carbonyl sulfide (OCS) into the stratosphere at levels high enough to balance the impact say of a doubling of carbon dioxide concentrations, which are projected to result in a global 3{degrees} C warming. OCS injections at densities to provide such cooling will result a 30 percent impact of global ozone, whereas the carbon dioxide only made a 5% impact. In addition levels which would be found on the earths surface would be in the range 10 ppmv which is questionable as a safe exposure limit for humans, in addition to its impact on the ph of rainwater.

  10. Carbon Capture and Storage, 2008

    SciTech Connect (OSTI)

    2009-03-19

    The U.S. Department of Energy is researching the safe implementation of a technology called carbon sequestration, also known as carbon capture and storage, or CCS. Based on an oilfield practice, this approach stores carbon dioxide, or CO2 generated from human activities for millennia as a means to mitigate global climate change. In 2003, the Department of Energys National Energy Technology Laboratory formed seven Regional Carbon Sequestration Partnerships to assess geologic formations suitable for storage and to determine the best approaches to implement carbon sequestration in each region. This video describes the work of these partnerships.

  11. Carbon Capture and Storage, 2008

    ScienceCinema (OSTI)

    None

    2010-01-08

    The U.S. Department of Energy is researching the safe implementation of a technology called carbon sequestration, also known as carbon capture and storage, or CCS. Based on an oilfield practice, this approach stores carbon dioxide, or CO2 generated from human activities for millennia as a means to mitigate global climate change. In 2003, the Department of Energys National Energy Technology Laboratory formed seven Regional Carbon Sequestration Partnerships to assess geologic formations suitable for storage and to determine the best approaches to implement carbon sequestration in each region. This video describes the work of these partnerships.

  12. Global Arrays

    Energy Science and Technology Software Center (OSTI)

    2006-02-23

    The Global Arrays (GA) toolkit provides an efficient and portable “shared-memory” programming interface for distributed-memory computers. Each process in a MIMD parallel program can asynchronously access logical blocks of physically distributed dense multi-dimensional arrays, without need for explicit cooperation by other processes. Unlike other shared-memory environments, the GA model exposes to the programmer the non-uniform memory access (NUMA) characteristics of the high performance computers and acknowledges that access to a remote portion of the sharedmore » data is slower than to the local portion. The locality information for the shared data is available, and a direct access to the local portions of shared data is provided. Global Arrays have been designed to complement rather than substitute for the message-passing programming model. The programmer is free to use both the shared-memory and message-passing paradigms in the same program, and to take advantage of existing message-passing software libraries. Global Arrays are compatible with the Message Passing Interface (MPI).« less

  13. ARM - Sources of Atmospheric Carbon

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sources of Atmospheric Carbon Outreach Home Room News Publications Traditional Knowledge Kiosks Barrow, Alaska Tropical Western Pacific Site Tours Contacts Students Study Hall About ARM Global Warming FAQ Just for Fun Meet our Friends Cool Sites Teachers Teachers' Toolbox Lesson Plans Sources of Atmospheric Carbon Atmospheric carbon represented a steady state system, where influx equaled outflow, before the Industrial Revolution. Currently, it is no longer a steady state system because the

  14. Regional geology of Georges Bank basin - OCS Sale 42 drilling results

    SciTech Connect (OSTI)

    High, L.R. Jr.

    1985-02-01

    Industry bid aggressively in OCS Sale 42, spending $816 million. Eight wildcats were drilled in 1981-82 to test 5 major plays. All wells were dry; no potential reservoir or source rocks were found. The tectonic-stratigraphic framework of the Georges Bank basin is that of an Atlantic-type plate margin. Two major unconformities divide the section into prerift, synrift, and postrift sequences. The prerift sequence consists of Paleozoic metasediments in basement fault blocks. Synrift sediments consist of Newark Group equivalents: the Argo Salt and the Iroquoi Formation. The postrift sequence consists of Mohican red beds overlain by progradational wedges, with the carbonate Abenaki Formation at the base. The objective in 4 of the 8 wildcats was the Iroquois Formation. Mobil 312-1 and Shell 357-1 were drilled into a seismic anomaly interpreted to be a reef. This structure was found to be a complex carbonate mound. Exxon 975-1 was drilled on a seismic amplitude anomaly variously interpreted to be the result of salt, coal, or porous carbonates. This anomaly proved to be caused by a salt bed. The objective in Shell 410-1R was carbonate banks over a basement horst block. No significant zones of porosity were found. The remaining 4 wildcats were drilled on Abenaki prospects. Mobil 273-1, Tenneco 187-1d, and Conoco 145-1 were drilled for possible carbonate banks over a salt structure. Only thin oolitic grainstone intervals were found. Exxon 133-1 was based on a seismic anomaly interpreted to be a patch reef. This feature was found to be a volcanic cone.

  15. The future of carbon sequestration. 2nd ed.

    SciTech Connect (OSTI)

    2007-04-15

    The report is an overview of the opportunities for carbon sequestration to reduce greenhouse gas emissions. It provides a concise look at what is driving interest in carbon sequestration, the challenges faced in implementing carbon sequestration projects, and the current and future state of carbon sequestration. Topics covered in the report include: Overview of the climate change debate; Explanation of the global carbon cycle; Discussion of the concept of carbon sequestration; Review of current efforts to implement carbon sequestration; Analysis and comparison of carbon sequestration component technologies; Review of the economic drivers of carbon sequestration project success; and Discussion of the key government and industry initiatives supporting carbon sequestration.

  16. Extractive industries and sustainable development: an evaluation of World Bank Group experience

    SciTech Connect (OSTI)

    Andres Liebenthal; Roland Michelitsch; Ethel Tarazona

    2005-07-01

    How effectively has the World Bank Group assisted its clients in enhancing the contribution of the extractive industries to sustainable development? (Extractive industries include oil, gas, and mining of minerals including coals and metals.) This evaluation finds that with its global mandate and experience, comprehensive country development focus, and overarching mission to fight poverty, the World Bank Group is well positioned to help countries overcome the policy, institutional, and technical challenges that prevent them from transforming resource endowments into sustainable benefits. Furthermore, the World Bank Group's achievements are many. On the whole, its extractive industries projects have produced positive economic and financial results, though compliance with its environmental and social safeguards remains a challenge. Its research has broadened and deepened understanding of the causes for the disappointing performance of resource-rich countries. Its guidelines for the mitigation of adverse environmental and social impacts have been widely used and appreciated. More recently, it has begun to address the challenge of country governance with a variety of instruments. The World Bank Group can, however, do much to improve its performance in enhancing the extractive industry sector's contribution to sustainable development and poverty reduction. The report identifies three main areas for improvement - formulating an integrated strategy, strengthening implementation and engagement of stakeholders. 5 annexes.

  17. Energy Secretary Moniz and Export-Import Bank Chairman Hochberg...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Secretary Moniz and Export-Import Bank Chairman Hochberg to Visit First Solar Facility in Perrysburg, Ohio Energy Secretary Moniz and Export-Import Bank Chairman Hochberg to Visit ...

  18. EA-331 The Royal Bank of Scotland plc | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The Royal Bank of Scotland plc EA-331 The Royal Bank of Scotland plc Order authorizing The Royal Bank of Scotland plc to export electric energy to Mexico EA-331 The Royal Bank of ...

  19. EA-330 The Royal Bank of Scotland plc | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The Royal Bank of Scotland plc EA-330 The Royal Bank of Scotland plc Order authorizing The Royal Bank of Scotland plc to export electric energy to Canada EA-330 The Royal Bank of ...

  20. Employees give to local food bank | Department of Energy

    Energy Savers [EERE]

    Employees give to local food bank Employees give to local food bank September 12, 2014 - 11:00am Addthis This is the fifth year OREM employees have participated in the annual Feds Feed Families summer campaign that helps replenish local food banks and raises awareness about the prevalence of hunger. This is the fifth year OREM employees have participated in the annual Feds Feed Families summer campaign that helps replenish local food banks and raises awareness about the prevalence of hunger. OAK

  1. World Bank Good Practice Guidelines: Financial Analysis of Revenue...

    Open Energy Info (EERE)

    AgencyCompany Organization: World Bank Topics: Finance Resource Type: Guidemanual Website: siteresources.worldbank.orgINTRANETFINANCIALMGMTResourcesFMB-Notes...

  2. Global Climate Change and Agriculture

    SciTech Connect (OSTI)

    Izaurralde, Roberto C.

    2009-01-01

    The Fourth Assessment Report of the Intergovernmental Panel on Climate Change released in 2007 significantly increased our confidence about the role that humans play in forcing climate change. There is now a high degree of confidence that the (a) current atmospheric concentrations of carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O) far exceed those of the pre-industrial era, (b) global increases in CO2 arise mainly from fossil fuel use and land use change while those of CH4 and N2O originate primarily from agricultural activities, and (c) the net effect of human activities since 1750 has led to a warming of the lower layers of the atmosphere, with an increased radiative forcing of 1.6 W m-2. Depending on the scenario of human population growth and global development, mean global temperatures could rise between 1.8 and 4.0 C by the end of the 21st century.

  3. (Chemistry of the global atmosphere)

    SciTech Connect (OSTI)

    Marland, G.

    1990-09-27

    The traveler attended the conference The Chemistry of the Global Atmosphere,'' and presented a paper on the anthropogenic emission of carbon dioxide (CO{sub 2}) to the atmosphere. The conference included meetings of the International Global Atmospheric Chemistry (IGAC) programme, a core project of the International Geosphere/Biosphere Programme (IGBP) and the traveler participated in meetings on the IGAC project Development of Global Emissions Inventories'' and agreed to coordinate the working group on CO{sub 2}. Papers presented at the conference focused on the latest developments in analytical methods, modeling and understanding of atmospheric CO{sub 2}, CO, CH{sub 4}, N{sub 2}O, SO{sub 2}, NO{sub x}, NMHCs, CFCs, and aerosols.

  4. Residential Network Members Unite to Form Green Bank Network

    Broader source: Energy.gov [DOE]

    Residential Network members Connecticut Green Bank and NY Green Bank, a division of Residential Network member New York State Energy Research and Development Authority, have helped launch the Green Bank Network, a new international organization focused on collaborating to scale up private financing to meet the challenge of climate change.

  5. New Species of Cyanobacteria Forms Intracellular Carbonates

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    New Species of Cyanobacteria Forms Intracellular Carbonates Print A new species of cyanobacteria-photosynthetic bacteria that occupy a wide array of habitats-was discovered in the Mexican Lake of Alchichica where massive carbonate rocks form. Cyanobacteria have been impacting the global carbon cycle of the Earth for more than 2.3 billion years by assimilating CO2 into organic compounds and triggering calcium carbonate (CaCO3) precipitation. Despite the importance of this cyanobacteria-mediated

  6. New Species of Cyanobacteria Forms Intracellular Carbonates

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    New Species of Cyanobacteria Forms Intracellular Carbonates Print A new species of cyanobacteria-photosynthetic bacteria that occupy a wide array of habitats-was discovered in the Mexican Lake of Alchichica where massive carbonate rocks form. Cyanobacteria have been impacting the global carbon cycle of the Earth for more than 2.3 billion years by assimilating CO2 into organic compounds and triggering calcium carbonate (CaCO3) precipitation. Despite the importance of this cyanobacteria-mediated

  7. New Species of Cyanobacteria Forms Intracellular Carbonates

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    New Species of Cyanobacteria Forms Intracellular Carbonates Print A new species of cyanobacteria-photosynthetic bacteria that occupy a wide array of habitats-was discovered in the Mexican Lake of Alchichica where massive carbonate rocks form. Cyanobacteria have been impacting the global carbon cycle of the Earth for more than 2.3 billion years by assimilating CO2 into organic compounds and triggering calcium carbonate (CaCO3) precipitation. Despite the importance of this cyanobacteria-mediated

  8. New Species of Cyanobacteria Forms Intracellular Carbonates

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    New Species of Cyanobacteria Forms Intracellular Carbonates New Species of Cyanobacteria Forms Intracellular Carbonates Print Wednesday, 30 January 2013 00:00 A new species of cyanobacteria-photosynthetic bacteria that occupy a wide array of habitats-was discovered in the Mexican Lake of Alchichica where massive carbonate rocks form. Cyanobacteria have been impacting the global carbon cycle of the Earth for more than 2.3 billion years by assimilating CO2 into organic compounds and triggering

  9. New Species of Cyanobacteria Forms Intracellular Carbonates

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    New Species of Cyanobacteria Forms Intracellular Carbonates Print A new species of cyanobacteria-photosynthetic bacteria that occupy a wide array of habitats-was discovered in the Mexican Lake of Alchichica where massive carbonate rocks form. Cyanobacteria have been impacting the global carbon cycle of the Earth for more than 2.3 billion years by assimilating CO2 into organic compounds and triggering calcium carbonate (CaCO3) precipitation. Despite the importance of this cyanobacteria-mediated

  10. COLLOQUIUM: The Fate of the Land Carbon Sink | Princeton Plasma...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Models of the global terrestrial biosphere in current Earth system models (climate models with coupled atmosphere, ocean and biosphere) uniformly predict a large current carbon ...

  11. Carbon Smackdown: Carbon Capture

    SciTech Connect (OSTI)

    Jeffrey Long

    2010-07-12

    In this July 9, 2010 Berkeley Lab summer lecture, Lab scientists Jeff Long of the Materials Sciences and Nancy Brown of the Environmental Energy Technologies Division discuss their efforts to fight climate change by capturing carbon from the flue gas of power plants, as well as directly from the air

  12. Carbon Smackdown: Carbon Capture

    ScienceCinema (OSTI)

    Jeffrey Long

    2010-09-01

    In this July 9, 2010 Berkeley Lab summer lecture, Lab scientists Jeff Long of the Materials Sciences and Nancy Brown of the Environmental Energy Technologies Division discuss their efforts to fight climate change by capturing carbon from the flue gas of power plants, as well as directly from the air

  13. Modeling Global Wetlands and Their Methane Emissions | U.S. DOE...

    Office of Science (SC) Website

    Summary To study the importance of wetlands in the global water and carbon cycles, a variety of hydrological and biogeochemical models have been developed over the last three ...

  14. Asian Development Bank | Open Energy Information

    Open Energy Info (EERE)

    Kazakhstan-Clean Technology Fund (CTF) Malaysia-Strengthening Planning Capacity for Low Carbon Growth in Developing Asia Mekong Brahmaputra Clean Development Fund L.P....

  15. Carbon sequestration research and development

    SciTech Connect (OSTI)

    Reichle, Dave; Houghton, John; Kane, Bob; Ekmann, Jim; and others

    1999-12-31

    Predictions of global energy use in the next century suggest a continued increase in carbon emissions and rising concentrations of carbon dioxide (CO{sub 2}) in the atmosphere unless major changes are made in the way we produce and use energy--in particular, how we manage carbon. For example, the Intergovernmental Panel on Climate Change (IPCC) predicts in its 1995 ''business as usual'' energy scenario that future global emissions of CO{sub 2} to the atmosphere will increase from 7.4 billion tonnes of carbon (GtC) per year in 1997 to approximately 26 GtC/year by 2100. IPCC also projects a doubling of atmospheric CO{sub 2} concentration by the middle of next century and growing rates of increase beyond. Although the effects of increased CO{sub 2} levels on global climate are uncertain, many scientists agree that a doubling of atmospheric CO{sub 2} concentrations could have a variety of serious environmental consequences. The goal of this report is to identify key areas for research and development (R&D) that could lead to an understanding of the potential for future use of carbon sequestration as a major tool for managing carbon emissions. Under the leadership of DOE, researchers from universities, industry, other government agencies, and DOE national laboratories were brought together to develop the technical basis for conceiving a science and technology road map. That effort has resulted in this report, which develops much of the information needed for the road map.

  16. Global Home Filesystem

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Global Home Global Home Filesystem Overview Global home directories (or "global homes") provide a convenient means for a user to have access to dotfiles, source files, input files, configuration files, etc., regardless of the platform the user is logged in to. Quotas, Performance, and Usage Default global home quotas are 40 GB and 1,000,000 inodes. Quota increases in global homes are approved only in extremely unusual circumstances; users are encouraged to use the various scratch,

  17. Clean energy for development investment framework: the World Bank Group action plan

    SciTech Connect (OSTI)

    2007-03-06

    In September 2005 the Development Committee requested the World Bank to develop an Investment Framework for Clean Energy and Development - in the context of the Gleneagles Communique on Climate Change, Clean Energy and Sustainable Development which was issued in July 2005. This Action Plan provides an update of work undertaken to date as well as actions planned by the World Bank Group (WBG) in support of the Clean Energy for Development Investment Framework (CEIF). The Action Plan relies on partnerships, including with the International Financial Institutions (IFIs) and the private sector. While it concentrates on maximizing and extending existing instruments, it provides for continued dialogue with governments and the private sector on new approaches to accelerate the transition to a low carbon economy. In addition to increased investments, the private sector has an important role to play in closing the investment gap in many countries. Projects such as Bujagali (Uganda), Nam Theun II (Laos) and China and India Thermal Power Plant Rehabilitation projects are examples of how partnerships with the private sector can work, both on financing but also on enhancing the overall regulatory framework for enhanced partnerships. The report was prepared for the 15 April 2007 Development Committee meeting, a joint committee of the Board of Governors of the World Bank and the International Monetary Fund on the transfer of real resources to developing countries. 3 figs., 3 tabs., 5 annexes.

  18. Global Climate & Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    SunShot Grand Challenge: Regional Test Centers Global Climate & Energy HomeTag:Global Climate & Energy Electricity use by water service sector and county. Shown are electricity ...

  19. Sandia Energy - Global

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Global Home Analysis Permalink Gallery Results from the Human Resilience Index and Modeling project were reported recently in the National Intelligence Council's Global Trends 2030...

  20. Cleantech Professional Resource Global Limited CPR Global | Open...

    Open Energy Info (EERE)

    Professional Resource Global Limited CPR Global Jump to: navigation, search Name: Cleantech Professional Resource Global Limited (CPR Global) Place: London, United Kingdom Zip:...

  1. Sharing Knowledge for a Low-Carbon Future: Zoellick and Chu in "live"

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    discussion | Department of Energy Sharing Knowledge for a Low-Carbon Future: Zoellick and Chu in "live" discussion Sharing Knowledge for a Low-Carbon Future: Zoellick and Chu in "live" discussion July 13, 2011 - 12:00am Addthis On Wednesday July 13, World Bank President Robert B. Zoellick and US Energy Secretary Steven Chu will discuss how technology and policy can help the world move toward a low-carbon future. Their half-hour discussion at the World Bank's Washington

  2. Carbon Capture

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Carbon capture involves the separation of carbon dioxide (CO2) from coal-based power plant ... are not ready for implementation on coal-based power plants because they have not ...

  3. Nitrogen Deposition: A Component of Global Change Analyses

    SciTech Connect (OSTI)

    Norby, Richard J.

    1997-12-31

    The global cycles of carbon and nitrogen are being perturbed by human activities that increase the transfer from large pools of nonreactive forms of the elements to reactive forms that are essential to the functioning of the terrestrial biosphere. The cycles are closely linked at all scales, and global change analyses must consider carbon and nitrogen cycles together. The increasing amount of nitrogen originating from fossil fuel combustion and deposited to terrestrial ecosystems as nitrogen oxides could increase the capacity of ecosystems to sequester carbon thereby removing some of the excess carbon dioxide from the atmosphere and slowing the development of greenhouse warming. Several global and ecosystem models have calculated the amount of carbon sequestration that can be attributed to nitrogen deposition based on assumptions about the allocation of nitrogen among ecosystem components with different carbon-nitrogen ratios. They support the premise that nitrogen deposition is responsible for a an increasing terrestrial carbon sink since industrialization began, but there are large uncertainties related to the continued capacity of ecosystems to retain exogenous nitrogen. Whether terrestrial ecosystems continue to sequester additional carbon will depend in part on their response to increasing atmospheric carbon dioxide concentrations, which is widely thought to be constrained by limited nitrogen availability. Ecosystem models generally support the conclusion that the responses of ecosystems to increasing concentrations of carbon dioxide will be larger, and the range of possible responses will be wider, in ecosystems with increased nitrogen inputs originating as atmospheric deposition.

  4. Carbon Storage

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Storage Fact Sheet Research Team Members Key Contacts Carbon Storage Carbon capture and storage (CCS) is a key component of the U.S. carbon management portfolio. Numerous studies have shown that CCS can account for up to 55 percent of the emissions reductions needed to stabilize and ultimately reduce atmospheric concentrations of CO2. NETL's Carbon Storage Program is readying CCS technologies for widespread commercial deployment by 2020. The program's goals are: By 2015, develop technologies

  5. EA-342-A Royal Bank of Canada | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    -A Royal Bank of Canada EA-342-A Royal Bank of Canada Order authorizing Royal Bank of Canada to export electric energy to Canada. EA-342-A RBC (CN).pdf (1.03 MB) More Documents & Publications EA-328-A RBC Energy Services LP Application to Export Electric Energy OE Docket No. EA-328-A RBC Energy Services LP EA-97-D Portland General Electric Company

  6. World Bank Climate Innovation Centers | Open Energy Information

    Open Energy Info (EERE)

    America and the Caribbean) for this property. References Climate Innovation Center Business Plans1 InfoDev2 World Bank Climate Innovation Centers Screenshot "The CIC works...

  7. Making Development Climate Resilient: A World Bank Strategy for...

    Open Energy Info (EERE)

    Development Climate Resilient: A World Bank Strategy for Sub-Saharan Africa Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Making Development Climate Resilient: A World...

  8. Ex-Im Bank Environmental Export Finance Program | Open Energy...

    Open Energy Info (EERE)

    Environmental Export Financing Webpage 1 "Ex-Im Bank's financing helps mitigate risk for U.S. environmental companies and also offers competitive financing terms to...

  9. Red Bank, New Jersey: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    (Redirected from Red Bank, NJ) Jump to: navigation, search Equivalent URI DBpedia Coordinates 40.3470543, -74.0643065 Show Map Loading map... "minzoom":false,"mappingservice":...

  10. IADG Energy Bank Revolving Loan Program | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Authority and Iowa Area Development Group Website http:www.iadg.comservicesfinancial-assistanceiadg-energy-bank.aspx Funding Source American Recovery and...

  11. GE Global Research Leadership | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    About GE Global Research > Leadership Leadership GE Global Research Centers rely on the guidance of visionary leaders with deep technical knowledge on the ground at each of our sites. A photo of Vic Abate Vic Abate Chief Technology Officer GE Global Research As senior vice president and chief technology officer for GE, Vic is responsible for one of the world's largest and most diversified industrial research and technology organizations. Vic leads GE's 50,000 engineers and scientists and G...

  12. GE Global Research Locations | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Locations GE Global Research is innovating around the clock. Select one of our locations to learn more about operations there.GE Global Research is innovating around the clock. Select a location to learn more about our operations. Home > Locations GE Global Research is ALWAYS OPEN Already know about our locations? Experience a special look at a day in our life around the world! See What We're Doing Dhahran, Saudi Arabia Founded: 2015 Employees: 15 Focus Areas: Material Characterization,

  13. ARM - Possible Benefits of Global Warming on Agriculture

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ListPossible Benefits of Global Warming on Agriculture Outreach Home Room News Publications Traditional Knowledge Kiosks Barrow, Alaska Tropical Western Pacific Site Tours Contacts Students Study Hall About ARM Global Warming FAQ Just for Fun Meet our Friends Cool Sites Teachers Teachers' Toolbox Lesson Plans Possible Benefits of Global Warming on Agriculture Pros and Cons Given the need for caution, it may still be possible to make a few general comments. With more carbon dioxide in the

  14. EA-330-A The Royal Bank of Scotland plc | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    -A The Royal Bank of Scotland plc EA-330-A The Royal Bank of Scotland plc Order authorizing The Royal Bank of Scotland plc to export electric energy to Canada EA-330-A The Royal ...

  15. EA-331-A The Royal Bank of Scotland plc | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    -A The Royal Bank of Scotland plc EA-331-A The Royal Bank of Scotland plc Order authorizing The Royal Bank of Scotland plc to export eelctric energy to Mexico EA-331-A The Royal ...

  16. Permafrost soils and carbon cycling

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Ping, C. L.; Jastrow, J. D.; Jorgenson, M. T.; Michaelson, G. J.; Shur, Y. L.

    2015-02-05

    Knowledge of soils in the permafrost region has advanced immensely in recent decades, despite the remoteness and inaccessibility of most of the region and the sampling limitations posed by the severe environment. These efforts significantly increased estimates of the amount of organic carbon stored in permafrost-region soils and improved understanding of how pedogenic processes unique to permafrost environments built enormous organic carbon stocks during the Quaternary. This knowledge has also called attention to the importance of permafrost-affected soils to the global carbon cycle and the potential vulnerability of the region's soil organic carbon (SOC) stocks to changing climatic conditions. Inmore » this review, we briefly introduce the permafrost characteristics, ice structures, and cryopedogenic processes that shape the development of permafrost-affected soils, and discuss their effects on soil structures and on organic matter distributions within the soil profile. We then examine the quantity of organic carbon stored in permafrost-region soils, as well as the characteristics, intrinsic decomposability, and potential vulnerability of this organic carbon to permafrost thaw under a warming climate. Overall, frozen conditions and cryopedogenic processes, such as cryoturbation, have slowed decomposition and enhanced the sequestration of organic carbon in permafrost-affected soils over millennial timescales. Due to the low temperatures, the organic matter in permafrost soils is often less humified than in more temperate soils, making some portion of this stored organic carbon relatively vulnerable to mineralization upon thawing of permafrost.« less

  17. Carbon Sequestration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the atmosphere by injecting it into subsurface salt acquifers. This is a key potential global warming mitigation strategy. Key Challenges: A variety of geochemical processes can...

  18. Carbon-Fuelled Future

    SciTech Connect (OSTI)

    Appel, Aaron M.

    2014-09-12

    Whether due to changes in policy or consumption of available fossil fuels, alternative sources of energy will be required, especially given the rising global energy demand. However, one of the main factors limiting the widespread utilization of renewable energy, such as wind, solar, wave or geothermal, is our ability to store energy. Storage of energy from carbon-neutral sources, such as electricity from solar or wind, can be accomplished through many routes. One approach is to store energy in the form of chemical bonds, as fuels. The conversion of low-energy compounds, such as water and carbon dioxide, to higher energy molecules, such as hydrogen or carbon-based fuels, enables the storage of carbon-neutral energy on a very large scale. The author¹s work in this area is supported by the US Department of Energy Basic Energy Sciences, Division of Chemical Sciences, Geosciences & Biosciences. Pacific Northwest National Laboratory is operated by Battelle for the US Department of Energy.

  19. Climate Effects of Global Land Cover Change

    SciTech Connect (OSTI)

    Gibbard, S G; Caldeira, K; Bala, G; Phillips, T; Wickett, M

    2005-08-24

    There are two competing effects of global land cover change on climate: an albedo effect which leads to heating when changing from grass/croplands to forest, and an evapotranspiration effect which tends to produce cooling. It is not clear which effect would dominate in a global land cover change scenario. We have performed coupled land/ocean/atmosphere simulations of global land cover change using the NCAR CAM3 atmospheric general circulation model. We find that replacement of current vegetation by trees on a global basis would lead to a global annual mean warming of 1.6 C, nearly 75% of the warming produced under a doubled CO{sub 2} concentration, while global replacement by grasslands would result in a cooling of 0.4 C. These results suggest that more research is necessary before forest carbon storage should be deployed as a mitigation strategy for global warming. In particular, high latitude forests probably have a net warming effect on the Earth's climate.

  20. New Global Research Website | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    I Want to See... the New Global Research Website Click to email this to a friend (Opens in new window) Share on Facebook (Opens in new window) Click to share (Opens in new window) ...

  1. Forensic DNA data banking by state crime labortaories

    SciTech Connect (OSTI)

    McEwen, J.E.

    1995-06-01

    This article reports the results of a survey of the responsible crime laboratories in the first 19 states with legislation establishing forensic DNA data banks. The survey inquired into the labs` policies and procedures regarding the collection, storage, and analysis of samples; the retention of samples and data; search protocols; access to samples and data by third parties; and related matters. The research suggests that (1) the number of samples collected from convicted offenders for DNA data banking has far surpassed the number that have been analyzed; (2) data banks have already been used in a small but growing number of cases, to locate suspects and to identify associations between unresolved cases; (3) crime labs currently plan to retain indefinitely the samples collected for their data banks; and (4) the nature and extent of security safeguards that crime labs have implemented for their data banks vary among states. The recently enacted DNA Identification Act (1994) will provide $40 million in federal matching grants to states for DNA analysis activities, so long as states comply with specified quality-assurance standards, submit to external proficiency testing, and limit access to DNA information. Although these additional funds should help to ease some sample backlogs, it remains unclear how labs will allocate the funds, as between analyzing samples for their data banks and testing evidence samples in cases without suspects. The DNA Identification Act provides penalties for the disclosure or obtaining of DNA data held by data banks that participate in CODIS, the FBI`s evolving national network of DNA data banks, but individual crime labs must also develop stringent internal safeguards to prevent breaches of data-bank security. 9 refs., 3 tabs.

  2. Carbon Constraints and the Electric Power Industry

    SciTech Connect (OSTI)

    2007-11-15

    The report is designed to provide a thorough understanding of the type of carbon constraints that are likely to be imposed, when they are likely to take effect, and how they will impact the electric power industry. The main objective of the report is to provide industry participants with the knowledge they need to plan for and react to a future in which carbon emissions are restricted. The main goal of the report is to ensure an understanding of the likely restrictions that will be placed on carbon emissions, the methods available for reducing their carbon emissions, and the impact that carbon reductions will have on the electric power industry. A secondary goal of the report is to provide information on key carbon programs and market participants to enable companies to begin participating in the international carbon marketplace. Topics covered in the report include: overview of what climate change and the Kyoto Protocol are; analysis of the impacts of climate change on the U.S. and domestic efforts to mandate carbon reductions; description of carbon reduction mechanisms and the types of carbon credits that can be created; evaluation of the benefits of carbon trading and the rules for participation under Kyoto; Description of the methods for reducing carbon emissions available to the U.S. electric power industry; analysis of the impact of carbon restrictions on the U.S. electric power industry in terms of both prices and revenues; evaluation of the impact of carbon restrictions on renewable energy; overview of the current state of the global carbon market including descriptions of the three major marketplaces; descriptions of the industry and government programs already underway to reduce carbon emissions in the U.S. electric power industry; and, profiles of the major international carbon exchanges and brokers.

  3. Long-term monitoring of reef corals at the Flower Garden Banks (northwest Gulf of Mexico): Reef coral population changes and historical incorporation of barium in Montastrea annularis

    SciTech Connect (OSTI)

    Deslarzes, K.J.P.

    1992-01-01

    Reef coral populations were monitored from 1988 to 1991 at the Flower Garden Banks located in the northwestern Gulf of Mexico. The status of reef coral populations, and natural or man-made factors potentially affecting their well-being were determined. Man-made chronic disturbances are degrading coral reef resources on a global scale. Yet, the Flower Garden coral reefs seem to have been sheltered from the effects of regional stresses generated by population growth and increased industrial activity. Since 1974, reef coral population levels have remained unchanged in the Montastrea-Diploria Zones at the Flower Garden Banks. Live coral cover ranges between 46 and 46.5%. Montastrea annularis and Diploria strigosa comprise 80% of the coral cover on either bank. The remainder of the cover is mostly shared by eight other taxa. Coral taxa appear to be more homogeneously distributed on the West Bank. The relatively greater number of Agaricia spp., Madracis decastis, and P. astreoides colonies on the East Bank may be the source of a decreased evenness. The health of reef corals was assessed using repetitive and non-repetitive photographic methods, and accretionary growth measurements of M. annularis. Reef corals have undergone small scale changes at the Flower Gardens probably reflecting natural disturbance, predation, disease, and inter-specific competition. White mat disease (ridge disease) is shown to generate more tissue loss than any of the three bleaching events that took place at the Flower Gardens (1989, 1990, and 1991). Advance to retreat linear ratios of encrusting growth revealed a net tissue gain on the East Bank and a net tissue loss on the West Bank. Growth rates of M. annularis were highly variable. The annual barium content from 1910 in 1989 in a M. annularis colony from the West Flower Garden did not reveal trends associated with the extensive oil and gas exploration in the northern Gulf of Mexico.

  4. The 7. global warming international conference and expo: Abstracts

    SciTech Connect (OSTI)

    1996-12-31

    This conference was held April 1--3, 1996 in Vienna, Austria. The purpose of this conference was to provide a multidisciplinary forum for exchange of state-of-the-art information on global warming. Topics of interest include the following: global and regional natural resource management; energy, transportation, minerals and natural resource management; industrial technology and greenhouse gas emission; strategies for the mitigation of greenhouse gas emission; greenhouse gas production/utilization and carbon budgets; strategies for promoting the understanding of global change; international policy strategy and economics; and global warming and public health. Individual papers have been processed separately for inclusion in the appropriate data bases.

  5. Going Global: Tight Oil Production

    Gasoline and Diesel Fuel Update (EIA)

    GOING GLOBAL: TIGHT OIL PRODUCTION Leaping out of North America and onto the World Stage JULY 2014 GOING GLOBAL: TIGHT OIL PRODUCTION Jamie Webster, Senior Director Global Oil ...

  6. Carbon Capture and Storage

    SciTech Connect (OSTI)

    Friedmann, S

    2007-10-03

    Carbon capture and sequestration (CCS) is the long-term isolation of carbon dioxide from the atmosphere through physical, chemical, biological, or engineered processes. This includes a range of approaches including soil carbon sequestration (e.g., through no-till farming), terrestrial biomass sequestration (e.g., through planting forests), direct ocean injection of CO{sub 2} either onto the deep seafloor or into the intermediate depths, injection into deep geological formations, or even direct conversion of CO{sub 2} to carbonate minerals. Some of these approaches are considered geoengineering (see the appropriate chapter herein). All are considered in the 2005 special report by the Intergovernmental Panel on Climate Change (IPCC 2005). Of the range of options available, geological carbon sequestration (GCS) appears to be the most actionable and economic option for major greenhouse gas reduction in the next 10-30 years. The basis for this interest includes several factors: (1) The potential capacities are large based on initial estimates. Formal estimates for global storage potential vary substantially, but are likely to be between 800 and 3300 Gt of C (3000 and 10,000 Gt of CO{sub 2}), with significant capacity located reasonably near large point sources of the CO{sub 2}. (2) GCS can begin operations with demonstrated technology. Carbon dioxide has been separated from large point sources for nearly 100 years, and has been injected underground for over 30 years (below). (3) Testing of GCS at intermediate scale is feasible. In the US, Canada, and many industrial countries, large CO{sub 2} sources like power plants and refineries lie near prospective storage sites. These plants could be retrofit today and injection begun (while bearing in mind scientific uncertainties and unknowns). Indeed, some have, and three projects described here provide a great deal of information on the operational needs and field implementation of CCS. Part of this interest comes from several

  7. Building umbrellas or arks? three alternatives to carbon credits and offsets

    SciTech Connect (OSTI)

    Sovacool, Benjamin K.

    2010-03-15

    Carbon credit markets suffer seemingly inescapable flaws that may justify alternative approaches such as carbon taxes, a complete phase-out of carbon dioxide emissions, or a global carbon fund. In the years to come, we must remember that credits are not the only sensible policy options for responding to climate change. (author)

  8. Venture Global Calcasieu Pass, LLC - (Formerly Venture Global...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Venture Global Calcasieu Pass, LLC - (Formerly Venture Global LNG, LLC) - 14-88-LNG Venture Global Calcasieu Pass, LLC - (Formerly Venture Global LNG, LLC) - 14-88-LNG The Office ...

  9. Red Bank, New Jersey: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Hide Map This article is a stub. You can help OpenEI by expanding it. Red Bank is a borough in Monmouth County, New Jersey. It falls under New Jersey's 6th...

  10. Red Bank, Tennessee: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Hide Map This article is a stub. You can help OpenEI by expanding it. Red Bank is a city in Hamilton County, Tennessee. It falls under Tennessee's 3rd...

  11. BankInvest Technology AS | Open Energy Information

    Open Energy Info (EERE)

    that manages the BankInvest New Energy Solutions fund as well as funds in IT and biotechnology. Coordinates: 55.67631, 12.569355 Show Map Loading map......

  12. Data banks for risk assessment at the Savannah River Site

    SciTech Connect (OSTI)

    Durant, W.S.; Lux, C.R.; Baughman, D.F.

    1990-01-01

    The Savannah River Site maintains a compilation of operating problems and equipment failures that have occurred in the fuel reprocessing and other areas in the form of computerized data banks. 14 refs., 25 figs.

  13. Carbon Fiber

    ScienceCinema (OSTI)

    McGetrick, Lee

    2014-07-23

    Lee McGetrick leads ORNL's effort to produce light, durable carbon fiber at lower cost -- a key to improvements in manufacturing that will produce more fuel-efficient vehicles and other advances.

  14. Carbon Fiber

    SciTech Connect (OSTI)

    McGetrick, Lee

    2014-04-17

    Lee McGetrick leads ORNL's effort to produce light, durable carbon fiber at lower cost -- a key to improvements in manufacturing that will produce more fuel-efficient vehicles and other advances.

  15. Carbon Sequestration

    SciTech Connect (OSTI)

    2013-05-06

    Carbon Sequestration- the process of capturing the CO2 released by the burning of fossil fuels and storing it deep withing the Earth, trapped by a non-porous layer of rock.

  16. Building America Expert Meeting: Energy Savings You Can Bank On |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Energy Savings You Can Bank On Building America Expert Meeting: Energy Savings You Can Bank On On October 12, 2011, Building America team Alliance for Residential Building Innovation conducted an Expert Meeting on the topic of performance guarantees and financing vehicles for Energy Efficiency Upgrades. The meeting brought together technical, policy, and financial experts, including researchers, experienced installation contractors, and innovative energy business

  17. Carbon Capture

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Capture Fact Sheet Key Contacts Carbon Capture Research & Development Carbon capture and storage from fossil-based power generation is a critical component of realistic strategies for arresting the rise in atmospheric CO2 concentrations, but capturing substantial amounts of CO2 using current technology would result in a prohibitive rise in the cost of producing energy. The National Energy Technology Laboratory Office of Research and Development (NETL-ORD), in collaboration with researchers

  18. Before House Subcommittee on Africa, Global Health, Global Human Rights,

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and International Organizations, Committee on Foreign Affairs | Department of Energy House Subcommittee on Africa, Global Health, Global Human Rights, and International Organizations, Committee on Foreign Affairs Before House Subcommittee on Africa, Global Health, Global Human Rights, and International Organizations, Committee on Foreign Affairs Testimony of Jonathan Elkind, Acting Assistant Secretary, Office of International Affairs Before House Subcommittee on Africa, Global Health, Global

  19. Tube Bank C - metal wastage: status report, August 1983

    SciTech Connect (OSTI)

    Not Available

    1984-01-01

    The Experimental Pressurised Fluidized Bed Combustion Facility at Grimethorpe, South Yorkshire, UK incorporates an in-bed tube bank. During the operation of the facility between June and September 1982, an unexpectedly high degree of metal wastage occurred from the external surfaces of this tube bank. Measures were taken to reduce the rate of metal wastage and extend the life of the tube bank, which was subsequently replaced in July 1983 after a total operating period of 1222 hours of coal burning. Using small-scale fluidized bed cold models, experimental investigations were carried out to determine measures to reduce the metal wastage. The results indicated that metal wastage would be reduced by the following changes: a reduction in the fluidizing velocity; the attachment of studs or axial fins to the tubes; a reduction in the height of the space between the distributor plate and the bottom of the tube bank; and the elimination, where possible of any large gaps within the tube bank. Such changes have been incorporated into the design of the replacement tube bank. This has now been installed and has experienced significantly less metal wastage. 9 references, 6 tables, 34 figures.

  20. GE Global Research Careers | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Careers The best and brightest minds in science and technology make breakthroughs daily at GE Global Research. Are you ready to join our team? Job Search Location Location Bangalore, India Dhahran, Saudi Arabia Munich, Germany Niskayuna, USA Oklahoma City, USA Rio de Janeiro, Brazil Shanghai, China Tirat Carmel, Israel Keyword Search Jobs » View All Jobs Keep in Touch With GE Global Research Careers Home > Careers Why GE careers_why_GE GE works on things that matter. The best people and the

  1. GE Global Research Contact | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Contact Us Looking for more details? Please contact one of these individuals or visit the Newsroom for the latest information. Home > About GE Global Research > Contact Us GE Global Research 1 Research Circle, Niskayuna, NY 12309, USA Todd Alhart +1.518.387.7914 todd.alhart@ge.com Communications and Public Relations GE Brazil Technology Center Rua Trinta e Seis (Praia dos Coqueiros), s/n, Supl. Ilha do Bom Jesus 840 Ilha do Fundão - Cidade Universitária Rio de Janeiro, RJ - CEP 21941-593

  2. Building | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Building We're creating infrastructure, refining materials and assembling technologies that accommodate our constantly changing world. Home > Impact > Building Global Research and GE Capital: Middle Market Collaboration In 2013, a partnering initiative between Global Research and GE Capital resulted in dozens of middle market companies... Read More » How Green Is Green? GE's Global Research Center's Ecoassessment Center of Excellence was created to study the impact of GE products and

  3. Global Climate Models

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable ... Climate & Earth Systems Climate Measurement & Modeling Arctic Climate Measurements Global ...

  4. Global Climate & Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Team Attends World Water Week in Stockholm Climate, Energy, Global Climate & Energy, Modeling, Modeling & Analysis, News, News & Events, Water Security Sandia Team Attends World ...

  5. Moving | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Read More GE Scientists Demonstrate Promising Anti-icing Nano Surfaces GE Global Research today presented new research findings on its nanotextured anti-icing surfaces. In ...

  6. ARM - Global Warming

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Barrow, Alaska Tropical Western Pacific Site Tours Contacts Students Study Hall About ARM Global Warming FAQ Just for Fun Meet our Friends Cool Sites Teachers Teachers' Toolbox ...

  7. ARM - Global Experts

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Barrow, Alaska Tropical Western Pacific Site Tours Contacts Students Study Hall About ARM Global Warming FAQ Just for Fun Meet our Friends Cool Sites Teachers Teachers' Toolbox ...

  8. ARM - Global Thinkers

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Barrow, Alaska Tropical Western Pacific Site Tours Contacts Students Study Hall About ARM Global Warming FAQ Just for Fun Meet our Friends Cool Sites Teachers Teachers' Toolbox ...

  9. ARM - Global Beginners

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Barrow, Alaska Tropical Western Pacific Site Tours Contacts Students Study Hall About ARM Global Warming FAQ Just for Fun Meet our Friends Cool Sites Teachers Teachers' Toolbox ...

  10. Kenya-World Bank Climate Activities | Open Energy Information

    Open Energy Info (EERE)

    Kengen, Kiambere, Tana, Eburru (2.77 M) Carbon Offset 1.4 Kenya KenGen Carbon Finance umbrella, Carbon Offset 1.5 Western Kenya Integrated Ecosystem Management Project (4.1M)...

  11. Chemical sensing and imaging in microfluidic pore network structures relevant to natural carbon cycling and industrial carbon sequestration

    SciTech Connect (OSTI)

    Grate, Jay W.; Zhang, Changyong; Wilkins, Michael J.; Warner, Marvin G.; Anheier, Norman C.; Suter, Jonathan D.; Kelly, Ryan T.; Oostrom, Martinus

    2013-06-11

    Energy and climate change represent significant factors in global security. Atmospheric carbon dioxide levels, while global in scope, are influenced by pore-scale phenomena in the subsurface. We are developing tools to visualize and investigate processes in pore network microfluidic structures with transparent covers as representations of normally-opaque porous media. In situ fluorescent oxygen sensing methods and fluorescent cellulosic materials are being used to investigate processes related to terrestrial carbon cycling involving cellulytic respiring microorganisms. These structures also enable visualization of water displacement from pore spaces by hydrophobic fluids, including carbon dioxide, in studies related to carbon sequestration.

  12. Engineering change in global climate

    SciTech Connect (OSTI)

    Schneider, S.H.

    1996-12-31

    {open_quotes}With increased public focus on global warming and in the wake of the intense heat waves, drought, fires, and super-hurricanes that occurred in 1988 and 1989, interest in geoengineering has surged,{close_quotes} says Stephen H. Schneider, professor of biological science at Stanford University in Stanford, California. One scheme set forth in a National Research Council report proposes using 16-inch naval guns to fire aerosol shells into the stratosphere in hopes of offsetting {open_quotes}the radiative effects of increasing carbon dioxide,{close_quotes} Schneider says. Schneider, however, would prefer that we {open_quotes}seek measures that can cure our global {open_quote}addiction{close_quote} to polluting practices.{close_quotes} Rather than playing God, he says we should {open_quotes}stick to being human and pursue problem - solving methods currently within our grasp.{close_quotes} Such strategies include efforts to promote energy efficiency and reduce our reliance on automobiles.

  13. Global warming and nuclear power

    SciTech Connect (OSTI)

    Wood, L., LLNL

    1998-07-10

    Nuclear fission power reactors represent a potential solution to many aspects of global change possibly induced by inputting of either particulate or carbon or sulfur oxides into the Earth`s atmosphere. Of proven technological feasibility, they presently produce high-grade heat for large-scale electricity generation, space heating and industrial process-energizing around the world, without emitting greenhouse gases or atmospheric particulates; importantly, electricity production costs from the best nuclear plants presently are closely comparable with those of the best fossil-fired plants. However, a substantial number of issues currently stand between nuclear power and widespread substitution for large stationary fossil fuel-fired systems. These include perceptual ones regarding both long-term and acute operational safety, plant decommissioning, fuel reprocessing, radwaste disposal, fissile materials diversion to military purposes and - perhaps most seriously- readily quantifiable concerns regarding long-term fuel supply and total unit electrical energy cost. We sketch a road-map for proceeding from the present situation toward a nuclear power-intensive world, addressing along the way each of the concerns which presently impede widespread nuclear substitution for fossil fuels, particularly for coal in the most populous and rapidly developing portions of the world, e.g., China and India. This `design to societal specifications` approach to large-scale nuclear fission power systems may lead to energy sources meeting essentially all stationary demands for high-temperature heat. Such advanced options offer a human population of ten billion the electricity supply levels currently enjoyed by Americans for 10,000 years. Nuclear power systems tailored to local needs-and-interests and having a common advanced technology base could reduce present-day world-wide C0{sub 2} emissions by two-fold, if universally employed. By application to small mobile demands, a second two

  14. Global climate change: Mitigation opportunities high efficiency large chiller technology

    SciTech Connect (OSTI)

    Stanga, M.V.

    1997-12-31

    This paper, comprised of presentation viewgraphs, examines the impact of high efficiency large chiller technology on world electricity consumption and carbon dioxide emissions. Background data are summarized, and sample calculations are presented. Calculations show that presently available high energy efficiency chiller technology has the ability to substantially reduce energy consumption from large chillers. If this technology is widely implemented on a global basis, it could reduce carbon dioxide emissions by 65 million tons by 2010.

  15. Carbon supercapacitors

    SciTech Connect (OSTI)

    Delnick, F.M.

    1993-11-01

    Carbon supercapacitors are represented as distributed RC networks with transmission line equivalent circuits. At low charge/discharge rates and low frequencies these networks approximate a simple series R{sub ESR}C circuit. The energy efficiency of the supercapacitor is limited by the voltage drop across the ESR. The pore structure of the carbon electrode defines the electrochemically active surface area which in turn establishes the volume specific capacitance of the carbon material. To date, the highest volume specific capacitance reported for a supercapacitor electrode is 220F/cm{sup 3} in aqueous H{sub 2}SO{sub 4} (10) and {approximately}60 F/cm{sup 3} in nonaqueous electrolyte (8).

  16. Carbon particles

    DOE Patents [OSTI]

    Hunt, Arlon J.

    1984-01-01

    A method and apparatus whereby small carbon particles are made by pyrolysis of a mixture of acetylene carried in argon. The mixture is injected through a nozzle into a heated tube. A small amount of air is added to the mixture. In order to prevent carbon build-up at the nozzle, the nozzle tip is externally cooled. The tube is also elongated sufficiently to assure efficient pyrolysis at the desired flow rates. A key feature of the method is that the acetylene and argon, for example, are premixed in a dilute ratio, and such mixture is injected while cool to minimize the agglomeration of the particles, which produces carbon particles with desired optical properties for use as a solar radiant heat absorber.

  17. COVER PLACEHOLDER Carbon Capture, Utilization, and Storage: Climate...

    Broader source: Energy.gov (indexed) [DOE]

    ... one- sixth of global CO2 emission reductions in ... 2,000 500 megawatt coal-fired power plants, each emitting 3.5 ... term while significantly reducing carbon emissions. ...

  18. DOE White Paper: Carbon Capture, Utilization, and Storage

    Office of Energy Efficiency and Renewable Energy (EERE)

    Carbon capture, utilization, and storage (CCUS) technologies provide a key pathway to address the urgent U.S. and global need for affordable, secure, resilient, and reliable sources of clean energy...

  19. Carbon microtubes

    DOE Patents [OSTI]

    Peng, Huisheng (Shanghai, CN); Zhu, Yuntian Theodore (Cary, NC); Peterson, Dean E. (Los Alamos, NM); Jia, Quanxi (Los Alamos, NM)

    2011-06-14

    A carbon microtube comprising a hollow, substantially tubular structure having a porous wall, wherein the microtube has a diameter of from about 10 .mu.m to about 150 .mu.m, and a density of less than 20 mg/cm.sup.3. Also described is a carbon microtube, having a diameter of at least 10 .mu.m and comprising a hollow, substantially tubular structure having a porous wall, wherein the porous wall comprises a plurality of voids, said voids substantially parallel to the length of the microtube, and defined by an inner surface, an outer surface, and a shared surface separating two adjacent voids.

  20. Carbon | Open Energy Information

    Open Energy Info (EERE)

    Carbon Jump to: navigation, search TODO: Add description Related Links List of Companies in Carbon Sector Retrieved from "http:en.openei.orgwindex.php?titleCarbon&oldid271960...

  1. The NERSC Global File System

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    scientific impact of computational science: "as easy as online banking" * NEWT - NERSC Web ToolkitAPI - Building blocks for science on the web - Write a Science Gateway by using...

  2. CARBON DIOXIDE AS A FEEDSTOCK.

    SciTech Connect (OSTI)

    CREUTZ,C.; FUJITA,E.

    2000-12-09

    This report is an overview on the subject of carbon dioxide as a starting material for organic syntheses of potential commercial interest and the utilization of carbon dioxide as a substrate for fuel production. It draws extensively on literature sources, particularly on the report of a 1999 Workshop on the subject of catalysis in carbon dioxide utilization, but with emphasis on systems of most interest to us. Atmospheric carbon dioxide is an abundant (750 billion tons in atmosphere), but dilute source of carbon (only 0.036 % by volume), so technologies for utilization at the production source are crucial for both sequestration and utilization. Sequestration--such as pumping CO{sub 2} into sea or the earth--is beyond the scope of this report, except where it overlaps utilization, for example in converting CO{sub 2} to polymers. But sequestration dominates current thinking on short term solutions to global warming, as should be clear from reports from this and other workshops. The 3500 million tons estimated to be added to the atmosphere annually at present can be compared to the 110 million tons used to produce chemicals, chiefly urea (75 million tons), salicylic acid, cyclic carbonates and polycarbonates. Increased utilization of CO{sub 2} as a starting material is, however, highly desirable, because it is an inexpensive, non-toxic starting material. There are ongoing efforts to replace phosgene as a starting material. Creation of new materials and markets for them will increase this utilization, producing an increasingly positive, albeit small impact on global CO{sub 2} levels. The other uses of interest are utilization as a solvent and for fuel production and these will be discussed in turn.

  3. A global warning for global warming

    SciTech Connect (OSTI)

    Paepe, R.

    1996-12-31

    The problem of global warming is a complex one not only because it is affecting desert areas such as the Sahel leading to famine disasters of poor rural societies, but because it is an even greater threat to modern well established industrial societies. Global warming is a complex problem of geographical, economical and societal factors together which definitely are biased by local environmental parameters. There is an absolute need to increase the knowledge of such parameters, especially to understand their limits of variance. The greenhouse effect is a global mechanism which means that in changing conditions at one point of the Earth, it will affect all other regions of the globe. Industrial pollution and devastation of the forest are quoted as similar polluting anthropogenic activities in far apart regions of the world with totally different societies and industrial compounds. The other important factor is climatic cyclicity which means that droughts are bound to natural cycles. These natural cycles are numerous as is reflected in the study of geo-proxydata from several sequential geological series on land, ice and deepsea. Each of these cycles reveals a drought cycle which occasionally interfere at the same time. It is believed that the present drought might well be a point of interference between the natural cycles of 2,500 and 1,000 years and the man induced cycle of the last century`s warming up. If the latter is the only cycle involved, man will be able to remediate. If not, global warming will become even more disastrous beyond the 21st century.

  4. GE Global Research News | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Newsroom Our technologies transform GE's businesses and the world. Learn about them, meet our experts and read news coverage about our work. Home > Newsroom Meet Our Experts Our scientists are global leaders in their fields. They welcome media inquiries. Find an Expert » Media Contacts A photograph of Natalia Albuquerque Rio de Janeiro Natalia Albuquerque +55 21 3548-6193 A photograph of Todd Alhart Niskayuna, Oklahoma City, Munich Todd Alhart +1.518.387.7914 A photograph of Laura Bauer

  5. GE Global Research News | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Newsroom Our technologies transform GE's businesses and the world. Learn about them, meet our experts and read news coverage about our work. Home > Newsroom Meet Our Experts Our scientists are global leaders in their fields. They welcome media inquiries. Find an Expert » Media Contacts A photograph of Natalia Albuquerque Rio de Janeiro Natalia Albuquerque +55 21 3548-6193 A photograph of Todd Alhart Niskayuna, Oklahoma City, Munich Todd Alhart +1.518.387.7914 A photograph of Laura Bauer

  6. On carbon footprints and growing energy use

    SciTech Connect (OSTI)

    Oldenburg, C.M.

    2011-06-01

    Could fractional reductions in the carbon footprint of a growing organization lead to a corresponding real reduction in atmospheric CO{sub 2} emissions in the next ten years? Curtis M. Oldenburg, head of the Geologic Carbon Sequestration Program of LBNLs Earth Sciences Division, considers his own organization's carbon footprint and answers this critical question? In addressing the problem of energy-related greenhouse gas (GHG) emissions and climate change, it is essential that we understand which activities are producing GHGs and the scale of emission for each activity, so that reduction efforts can be efficiently targeted. The GHG emissions to the atmosphere of an individual or group are referred to as the carbon footprint. This terminology is entirely appropriate, because 85% of the global marketed energy supply comes from carbon-rich fossil fuel sources whose combustion produces CO{sub 2}, the main GHG causing global climate change. Furthermore, the direct relation between CO2 emissions and fossil fuels as they are used today makes energy consumption a useful proxy for carbon footprint. It would seem to be a simple matter to reduce energy consumption across the board, both individually and collectively, to help reduce our carbon footprints and therefore solve the energyclimate crisis. But just how much can we reduce carbon footprints when broader forces, such as growth in energy use, cause the total footprint to simultaneously expand? In this feature, I present a calculation of the carbon footprint of the Earth Sciences Division (ESD), the division in which I work at Lawrence Berkeley National Laboratory (LBNL), and discuss the potential for reducing this carbon footprint. It will be apparent that in terms of potential future carbon footprint reductions under projections of expected growth, ESD may be thought of as a microcosm of the situation of the world as a whole, in which alternatives to the business-as-usual use of fossil fuels are needed if absolute

  7. NATIVE PLANTS FOR OPTIMIZING CARBON SEQUESTRATION IN RECLAIMED LANDS

    SciTech Connect (OSTI)

    P. UNKEFER; M. EBINGER; ET AL

    2001-02-01

    Carbon emissions and atmospheric concentrations are expected to continue to increase through the next century unless major changes are made in the way carbon is managed. Managing carbon has emerged as a pressing national energy and environmental need that will drive national policies and treaties through the coming decades. Addressing carbon management is now a major priority for DOE and the nation. One way to manage carbon is to use energy more efficiently to reduce our need for major energy and carbon source-fossil fuel combustion. Another way is to increase our use of low-carbon and carbon free fuels and technologies. A third way, and the focus of this proposal, is carbon sequestration, in which carbon is captured and stored thereby mitigating carbon emissions. Sequestration of carbon in the terrestrial biosphere has emerged as the principle means by which the US will meet its near-term international and economic requirements for reducing net carbon emissions (DOE Carbon Sequestration: State of the Science. 1999; IGBP 1998). Terrestrial carbon sequestration provides three major advantages. First, terrestrial carbon pools and fluxes are of sufficient magnitude to effectively mitigate national and even global carbon emissions. The terrestrial biosphere stores {approximately}2060 GigaTons of carbon and transfers approximately 120 GigaTons of carbon per year between the atmosphere and the earth's surface, whereas the current global annual emissions are about 6 GigaTons. Second, we can rapidly and readily modify existing management practices to increase carbon sequestration in our extensive forest, range, and croplands. Third, increasing soil carbon is without negative environment consequences and indeed positively impacts land productivity. The terrestrial carbon cycle is dependent on several interrelationships between plants and soils. Because the soil carbon pool ({approximately}1500 Giga Tons) is approximately three times that in terrestrial vegetation

  8. Photonics | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Home > Impact > The Photonics Lab at GE Global Research Click to email this to a friend (Opens in new window) Share on Facebook (Opens in new window) Click to share (Opens in new window) Click to share on LinkedIn (Opens in new window) Click to share on Tumblr (Opens in new window) The Photonics Lab at GE Global Research Loucas Tsakalakos, the Photonics lab manager at GE Global Research, introduces photonics and shares the lab's work on innovative ways to use light. You Might Also Like

  9. Autonomous observations of the ocean biological carbon pump

    SciTech Connect (OSTI)

    Bishop, James K.B.

    2009-03-01

    Prediction of the substantial biologically mediated carbon flows in a rapidly changing and acidifying ocean requires model simulations informed by observations of key carbon cycle processes on the appropriate space and time scales. From 2000 to 2004, the National Oceanographic Partnership Program (NOPP) supported the development of the first low-cost fully-autonomous ocean profiling Carbon Explorers that demonstrated that year-round real-time observations of particulate organic carbon (POC) concentration and sedimentation could be achieved in the world's ocean. NOPP also initiated the development of a sensor for particulate inorganic carbon (PIC) suitable for operational deployment across all oceanographic platforms. As a result, PIC profile characterization that once required shipboard sample collection and shipboard or shore based laboratory analysis, is now possible to full ocean depth in real time using a 0.2W sensor operating at 24 Hz. NOPP developments further spawned US DOE support to develop the Carbon Flux Explorer, a free-vehicle capable of following hourly variations of particulate inorganic and organic carbon sedimentation from near surface to kilometer depths for seasons to years and capable of relaying contemporaneous observations via satellite. We have demonstrated the feasibility of real time - low cost carbon observations which are of fundamental value to carbon prediction and when further developed, will lead to a fully enhanced global carbon observatory capable of real time assessment of the ocean carbon sink, a needed constraint for assessment of carbon management policies on a global scale.

  10. Global Cool Cities Alliance

    Broader source: Energy.gov [DOE]

    The Department of Energy (DOE) is currently supporting the Global Cool Cities Alliance (GCCA), a non-profit organization that works with cities, regions, and national governments to speed the...

  11. Fast Global File Status

    Energy Science and Technology Software Center (OSTI)

    2013-01-01

    Fast Global File Status (FGFS) is a system software package that implimints a scalable mechanism to retrieve file information, such as its degree of distribution or replication and consistency.

  12. NASA/Ames Global Emissions Data Set (GLEMIS) | Open Energy Information

    Open Energy Info (EERE)

    sets include global maps for predicted fluxes of soil nitrogen gases (N2O and NO), methane (CH4), and carbon monoxide (CO), plus predictions of net primary production (NPP) and...

  13. Moving | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Moving We're always working on planes, trains and automobiles-and specialized ways to move people and products efficiently and sustainably. Home > Impact > Moving Rail Networks Are Getting Smarter Sources: 2012 GE Annual Report (page 12); Norfolk Southern 2010 sustainability reporter (page 17) North American Freight Railroad... Read More » The GE Store for Technology is Open for Business Welcome to GE Global Research, also known as the GE Store for Technology. Across our global network of

  14. Curing | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Curing We're pioneering medical developments, from robotic healthcare assistants to diagnostic tools and specialized, globally deployed gear. Home > Impact > Curing Crowdsourcing Software Platform Wins Award GE Global Research, the technology development arm of the General Electric Company (NYSE: GE) today announced that it has won a... Read More » GE Unveils High-Tech Superhero, GENIUS MAN Created on earth to inspire the next generation of scientists and engineers, a team of GE

  15. Global Renewable Power International Global RPI | Open Energy...

    Open Energy Info (EERE)

    to: navigation, search Name: Global Renewable Power International (Global RPI) Place: Spain Sector: Wind energy Product: Spain-based developer of wind projects in Poland, Croatia...

  16. Before House Subcommittee on Africa, Global Health, Global Human...

    Broader source: Energy.gov (indexed) [DOE]

    Testimony of Jonathan Elkind, Acting Assistant Secretary, Office of International Affairs Before House Subcommittee on Africa, Global Health, Global Human Rights, and International ...

  17. Terrestrial Carbon Management Data from the Carbon Dioxide Information Analysis Center (CDIAC)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    CDIAC products are indexed and searchable through a customized interface powered by ORNL's Mercury search engine. Products include numeric data packages, publications, trend data, atlases, and models and can be searched for by subject area, keywords, authors, product numbers, time periods, collection sites, spatial references, etc. Some of the collections may also be included in the CDIAC publication Trends Online: A Compendium of Global Change Data. Most data sets, many with numerous data files, are free to download from CDIAC's ftp area. Collections under the broad heading of Terrestrial Carbon Management are organized as Carbon Accumulation with Cropland Management, Carbon Accumulation with Grassland Management, Carbon Loss Following Cultivation, Carbon Accumulation Following Afforestation, and Carbon Sources and Sinks Associated with U.S. Cropland Production.

  18. Head of UN Economic Commission for Europe: "Capture the Carbon"

    Broader source: Energy.gov [DOE]

    The increased urgency of global climate change has focused the attention of many leaders around the world. While the Department of Energy remains a global leader in carbon capture and storage (CCS) research and development, CCS has grown in prominence as one international solution to an "all-of-the-above" problem.

  19. The President's Plan to Reduce Carbon Pollution: Myths v. Reality |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy The President's Plan to Reduce Carbon Pollution: Myths v. Reality The President's Plan to Reduce Carbon Pollution: Myths v. Reality June 26, 2013 - 4:59pm Addthis President Obama lays out his vision for a comprehensive plan to reduce carbon pollution, prepare our country for the impacts of climate change and lead global efforts to fight it. Heather Zichal Deputy Assistant to the President for Energy and Climate Change More information on President Obama's Climate Action

  20. 8th Global warming international conference and exposition

    SciTech Connect (OSTI)

    1997-12-31

    Abstracts are presented from The 8th Annual Global Warming international conference and expo. Topics centered around greenhouse gas emission and disposal methods, policy and economics, carbon budget, and resource management. Individual reports have been processed separately for the United States Department of Energy databases.

  1. JGI's Carbon Cycling Studies on Restored Marshes

    SciTech Connect (OSTI)

    Tringe, Susannah; Theroux, Susanna

    2015-06-02

    DOE Joint Genome Institute Metagenome Program Head, Susannah Tringe, and postdoc, Susie Theroux, discuss the lessons to be learned from studying the microbial diversity of marshes that have been converted to other uses, and are now being restored, as well as the potential impacts on the global carbon cycle.

  2. Development of the Cummins 5.9 L for the Gale Banks Engineering...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    the Cummins 5.9 L for the Gale Banks Engineering Dodge Dakota Sidewinder Development of the Cummins 5.9 L for the Gale Banks Engineering Dodge Dakota Sidewinder 2003 DEER ...

  3. Perihelion Global | Open Energy Information

    Open Energy Info (EERE)

    Perihelion Global Jump to: navigation, search Name: Perihelion Global Place: Port Jefferson, New York Zip: 11776 Product: A company focused on the acquisition, development and...

  4. ARM - Lesson Plans: Global Warming

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Global Warming Outreach Home Room News Publications Traditional Knowledge Kiosks Barrow, Alaska Tropical Western Pacific Site Tours Contacts Students Study Hall About ARM Global ...

  5. Carbon dioxide and climate

    SciTech Connect (OSTI)

    Not Available

    1990-10-01

    Scientific and public interest in greenhouse gases, climate warming, and global change virtually exploded in 1988. The Department's focused research on atmospheric CO{sub 2} contributed sound and timely scientific information to the many questions produced by the groundswell of interest and concern. Research projects summarized in this document provided the data base that made timely responses possible, and the contributions from participating scientists are genuinely appreciated. In the past year, the core CO{sub 2} research has continued to improve the scientific knowledge needed to project future atmospheric CO{sub 2} concentrations, to estimate climate sensitivity, and to assess the responses of vegetation to rising concentrations of CO{sub 2} and to climate change. The Carbon Dioxide Research Program's goal is to develop sound scientific information for policy formulation and governmental action in response to changes of atmospheric CO{sub 2}. The Program Summary describes projects funded by the Carbon Dioxide Research Program during FY 1990 and gives a brief overview of objectives, organization, and accomplishments.

  6. Global warming and changes in ocean circulation

    SciTech Connect (OSTI)

    Duffy, P.B.; Caldeira, K.C.

    1998-02-01

    This final report provides an overview of the goals and accomplishments of this project. Modeling and observational work has raised the possibility that global warming may cause changes in the circulation of the ocean. If such changes would occur they could have important climatic consequences. The first technical goal of this project was to investigate some of these possible changes in ocean circulation in a quantitative way, using a state-of -the-art numerical model of the ocean. Another goal was to develop our ocean model, a detailed three-dimensional numerical model of the ocean circulation and ocean carbon cycles. A major non-technical goal was to establish LLNL as a center of excellence in modelling the ocean circulation and carbon cycle.

  7. Global Volunteer Observing Ship (VOS) Program Data

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    CDIAC provides data management support for the Global Volunteer Observing Ship (VOS) Program. The VOS project is coordinated by the UNESCO International Ocean Carbon Coordination Project (IOCCP). The international groups from 14 countries have been outfitting research ships and commercial vessels with automated CO2 sampling equipment to analyze the carbon exchange between the ocean and atmosphere. [copied from http://cdiac.ornl.gov/oceans/genInfo.html] CDIAC provides a map interface with the shipping routes of the 14 countries involved marked in different colors. Clicking on the ship's name on that route brings up information about the vessel, the kinds of measurements collected and the timeframe, links to project pages, and, most important, the links to the data files themselves. The 14 countries are: United States, United Kingdom, Japan, France, Germany, Australia, Canada, Spain, Norway, New Zealand, China (including Taiwan), Iceland, and the Netherlands. Both archived and current, underway data can be accessed from the CDIAC VOS page.

  8. Carbon investment funds

    SciTech Connect (OSTI)

    2007-01-15

    The report is a study of the development of funds to invest in the purchase of carbon credits. It takes a look at the growing market for carbon credits, the rise of carbon investment funds, and the current state of carbon investing. Topics covered in the report include: Overview of climate change, greenhouse gases, and the Kyoto Protocols. Analysis of the alternatives for reducing carbon emissions including nitrous oxide reduction, coal mine methane capture and carbon capture and storage; Discussion of the different types of carbon credits; Discussion of the basics of carbon trading; Evaluation of the current status of carbon investing; and Profiles of 37 major carbon investment funds worldwide.

  9. PUHCA's Repeal Appeal: Analogies to Banking and Telecom

    SciTech Connect (OSTI)

    Higgins, Mark D.

    2005-11-01

    There are many possible scenarios for the future of electric utility consolidation, but experiences in banking and telecommunications deregulation and consolidation suggest one as the most likely: larger players will continue to consolidate, smaller players will be acquired or focus on niche markets, and new, non-utility investors will enter utility markets, with varying degrees of success.

  10. Banking on Solar: New Opportunities for Lending (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2014-08-01

    The U.S. solar industry is a $13.7 billion market with roughly 450,000 systems in place. Bank and credit union lending for solar system deployment represents a valuable new opportunity for lenders to expand their consumer and commercial customer relationships, bring on new relationships and open a new asset class category.