National Library of Energy BETA

Sample records for global aerosol products

  1. Evaluating Global Aerosol Models and Aerosol and Water Vapor Properties Near Clouds

    SciTech Connect (OSTI)

    Turner, David, D.; Ferrare, Richard, A.

    2011-07-06

    The 'Evaluating Global Aerosol Models and Aerosol and Water Vapor Properties Near Clouds' project focused extensively on the analysis and utilization of water vapor and aerosol profiles derived from the ARM Raman lidar at the Southern Great Plains ARM site. A wide range of different tasks were performed during this project, all of which improved quality of the data products derived from the lidar or advanced the understanding of atmospheric processes over the site. These activities included: upgrading the Raman lidar to improve its sensitivity; participating in field experiments to validate the lidar aerosol and water vapor retrievals; using the lidar aerosol profiles to evaluate the accuracy of the vertical distribution of aerosols in global aerosol model simulations; examining the correlation between relative humidity and aerosol extinction, and how these change, due to horizontal distance away from cumulus clouds; inferring boundary layer turbulence structure in convective boundary layers from the high-time-resolution lidar water vapor measurements; retrieving cumulus entrainment rates in boundary layer cumulus clouds; and participating in a field experiment that provided data to help validate both the entrainment rate retrievals and the turbulent profiles derived from lidar observations.

  2. Global distribution and climate forcing of marine organic aerosol: 1. Model improvements and evaluation

    SciTech Connect (OSTI)

    Meskhidze, N.; Xu, J.; Gantt, Brett; Zhang, Yang; Nenes, Athanasios; Ghan, Steven J.; Liu, Xiaohong; Easter, Richard C.; Zaveri, Rahul A.

    2011-11-23

    Marine organic aerosol emissions have been implemented and evaluated within the National Center of Atmospheric Research (NCAR)'s Community Atmosphere Model (CAM5) with the Pacific Northwest National Laboratory's 7-mode Modal Aerosol Module (MAM-7). Emissions of marine primary organic aerosols (POA), phytoplanktonproduced isoprene- and monoterpenes-derived secondary organic aerosols (SOA) and methane sulfonate (MS{sup -}) are shown to affect surface concentrations of organic aerosols in remote marine regions. Global emissions of submicron marine POA is estimated to be 7.9 and 9.4 Tg yr{sup -1}, for the Gantt et al. (2011) and Vignati et al. (2010) emission parameterizations, respectively. Marine sources of SOA and particulate MS{sup -} (containing both sulfur and carbon atoms) contribute an additional 0.2 and 5.1 Tg yr{sup -1}, respectively. Widespread areas over productive waters of the Northern Atlantic, Northern Pacific, and the Southern Ocean show marine-source submicron organic aerosol surface concentrations of 100 ngm{sup -3}, with values up to 400 ngm{sup -3} over biologically productive areas. Comparison of long-term surface observations of water insoluble organic matter (WIOM) with POA concentrations from the two emission parameterizations shows that despite revealed discrepancies (often more than a factor of 2), both Gantt et al. (2011) and Vignati et al. (2010) formulations are able to capture the magnitude of marine organic aerosol concentrations, with the Gantt et al. (2011) parameterization attaining better seasonality. Model simulations show that the mixing state of the marine POA can impact the surface number concentration of cloud condensation nuclei (CCN). The largest increases (up to 20 %) in CCN (at a supersaturation (S) of 0.2 %) number concentration are obtained over biologically productive ocean waters when marine organic aerosol is assumed to be externally mixed with sea-salt. Assuming marine organics are internally-mixed with sea-salt provides diverse results with increases and decreases in the concentration of CCN over different parts of the ocean. The sign of the CCN change due to the addition of marine organics to seasalt aerosol is determined by the relative significance of the increase in mean modal diameter due to addition of mass, and the decrease in particle hygroscopicity due to compositional changes in marine aerosol. Based on emerging evidence for increased CCN concentration over biologically active surface ocean areas/periods, our study suggests that treatment of sea spray in global climate models (GCMs) as an internal mixture of marine organic aerosols and sea-salt will likely lead to an underestimation in CCN number concentration.

  3. Going Global: Tight Oil Production

    U.S. Energy Information Administration (EIA) Indexed Site

    ... Thin target zone Disconnected target zones Controlled fractures GOING GLOBAL: TIGHT OIL PRODUCTION Tight Oil has Significant Energy Security Impacts Tight oil production growth ...

  4. ARM - Evaluation Product - Organic Aerosol Component VAP

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    mass spectral matrix data collected by the aerosol chemical speciation monitor and multivariate analysis to obtain an estimate of the types of organic aerosols. Currently, time...

  5. Global production through 2005

    SciTech Connect (OSTI)

    Foreman, N.E.

    1996-12-01

    Two companion studies released recently should provide great food for thought among geo-political strategists and various national governments. If predictions contained in these Petroconsultants studies of oil and gas production trends for the next 10 years are realized, there will be great repercussions for net exporters and importers, alike. After analyzing and predicting trends within each of the world`s significant producing nations for the 1996--2005 period, the crude oil and condensate report concludes tat global production will jump nearly 24%. By contrast, worldwide gas output will leap 40%. The cast of characters among producers and exporters that will benefit from these increases varies considerably for each fuel. On the oil side, Russia and the OPEC members, particularly the Persian Gulf nations, will be back in the driver`s seat in terms of affecting export and pricing patterns. On the gas side, the leading producers will be an interesting mix of mostly non-OPEC countries. The reemergence of Persian Gulf oil producers, coupled with an anticipated long-term decline among top non-OPEC producing nations should present a sobering picture to government planners within large net importers, such as the US. They are likely to find themselves in much the same supply trap as was experienced in the 1970s, only this time the dependence on foreign oil supplies will be much worse. Gas supplies will not be similarly constrained, and some substitution for oil is probable. Here, two articles, ``World oil industry is set for transition`` and ``Worldwide gas surges forward in next decade,`` present a summary of the findings detailed in Petroconsultants` recent studies.

  6. ARM - PI Product - Aerosol Retrievals from ARM SGP MFRSR Data

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    love to hear from you Send us a note below or call us at 1-888-ARM-DATA. Send PI Product : Aerosol Retrievals from ARM SGP MFRSR Data The Multi-Filter Rotating Shadowband...

  7. ARM - Evaluation Product - Aerosol Modeling Testbed

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and satellite aerosol optical depth data is included to supplement and enhance the value of the CARES data. The software that is provided in AMT extracts model output from...

  8. Assessing the Effects of Anthropogenic Aerosols on Pacific Storm Track Using a Multiscale Global Climate Model

    SciTech Connect (OSTI)

    Wang, Yuan; Wang, Minghuai; Zhang, Renyi; Ghan, Steven J.; Lin, Yun; Hu, Jiaxi; Pan, Bowen; Levy, Misti; Jiang, Jonathan; Molina, Mario J.

    2014-05-13

    Atmospheric aerosols impact weather and global general circulation by modifying cloud and precipitation processes, but the magnitude of cloud adjustment by aerosols remains poorly quantified and represents the largest uncertainty in estimated forcing of climate change. Here we assess the impacts of anthropogenic aerosols on the Pacific storm track using a multi-scale global aerosol-climate model (GCM). Simulations of two aerosol scenarios corresponding to the present day and pre-industrial conditions reveal long-range transport of anthropogenic aerosols across the north Pacific and large resulting changes in the aerosol optical depth, cloud droplet number concentration, and cloud and ice water paths. Shortwave and longwave cloud radiative forcing at the top of atmosphere are changed by - 2.5 and + 1.3 W m-2, respectively, by emission changes from pre-industrial to present day, and an increased cloud-top height indicates invigorated mid-latitude cyclones. The overall increased precipitation and poleward heat transport reflect intensification of the Pacific storm track by anthropogenic aerosols. Hence, this work provides for the first time a global perspective of the impacts of Asian pollution outflows from GCMs. Furthermore, our results suggest that the multi-scale modeling framework is essential in producing the aerosol invigoration effect of deep convective clouds on the global scale.

  9. Organic Aerosol Component (OACOMP) Value-Added Product Report

    SciTech Connect (OSTI)

    Fast, J; Zhang, Q; Tilp, A; Shippert, T; Parworth, C; Mei, F

    2013-08-23

    Significantly improved returns in their aerosol chemistry data can be achieved via the development of a value-added product (VAP) of deriving OA components, called Organic Aerosol Components (OACOMP). OACOMP is primarily based on multivariate analysis of the measured organic mass spectral matrix. The key outputs of OACOMP are the concentration time series and the mass spectra of OA factors that are associated with distinct sources, formation and evolution processes, and physicochemical properties.

  10. Evaluating Global Aerosol Models and Aerosol and Water Vapor Properties Near Clouds

    SciTech Connect (OSTI)

    Richard A. Ferrare; David D. Turner

    2011-09-01

    Project goals: (1) Use the routine surface and airborne measurements at the ARM SGP site, and the routine surface measurements at the NSA site, to continue our evaluations of model aerosol simulations; (2) Determine the degree to which the Raman lidar measurements of water vapor and aerosol scattering and extinction can be used to remotely characterize the aerosol humidification factor; (3) Use the high temporal resolution CARL data to examine how aerosol properties vary near clouds; and (4) Use the high temporal resolution CARL and Atmospheric Emitted Radiance Interferometer (AERI) data to quantify entrainment in optically thin continental cumulus clouds.

  11. On modification of global warming by sulfate aerosols

    SciTech Connect (OSTI)

    Mitchell, J.F.B.; Johns, T.C.

    1997-02-01

    There is increasing evidence that the response of climate to increasing greenhouse gases may be modified by accompanying increases in sulfate aerosols. In this study, the patterns of response in the surface climatology of a coupled ocean-atmosphere general circulation model forced by increases in carbon dioxide alone is compared with those obtained by increasing carbon dioxide and aerosol forcing. The simulations are run from early industrial times using the estimated historical forcing and continued to the end of the twenty-first century assuming a nonintervention emissions scenario for greenhouse gases and aerosols. The comparison is made for the period 2030-2050 when the aerosol forcing is a maximum. In winter, the cooling due to aerosols merely tends to reduce the response to carbon dioxide, whereas in summer, it weakens the monsoon circulations and reverses some of the changes in the hydrological cycle on increasing carbon dioxide. This response is in some respects similar to that found in simulations with changed orbital parameters, as between today and the middle Holocene. The hydrological response in the palaeosimulations is supported by palaeoclimatic reconstructions. The results of changes in aerosol concentrations of the magnetic projected in the scenarios would have a major effect on regional climate, especially over Europe and Southeast Asia. 74 refs., 12 figs., 6 tabs.

  12. Aerosol Optical Depth Value-Added Product for the SAS-He Instrument...

    Office of Scientific and Technical Information (OSTI)

    Aerosol Optical Depth Value-Added Product for the SAS-He Instrument Citation Details In-Document Search Title: Aerosol Optical Depth Value-Added Product for the SAS-He Instrument ...

  13. Evaluation of Black Carbon Estimations in Global Aerosol Models

    SciTech Connect (OSTI)

    Koch, D.; Schulz, M.; Kinne, Stefan; McNaughton, C. S.; Spackman, J. R.; Balkanski, Y.; Bauer, S.; Berntsen, T.; Bond, Tami C.; Boucher, Olivier; Chin, M.; Clarke, A. D.; De Luca, N.; Dentener, F.; Diehl, T.; Dubovik, O.; Easter, Richard C.; Fahey, D. W.; Feichter, J.; Fillmore, D.; Freitag, S.; Ghan, Steven J.; Ginoux, P.; Gong, S.; Horowitz, L.; Iversen, T.; Kirkevag, A.; Klimont, Z.; Kondo, Yutaka; Krol, M.; Liu, Xiaohong; Miller, R.; Montanaro, V.; Moteki, N.; Myhre, G.; Penner, J.; Perlwitz, Ja; Pitari, G.; Reddy, S.; Sahu, L.; Sakamoto, H.; Schuster, G.; Schwarz, J. P.; Seland, O.; Stier, P.; Takegawa, Nobuyuki; Takemura, T.; Textor, C.; van Aardenne, John; Zhao, Y.

    2009-11-27

    We evaluate black carbon (BC) model predictions from the AeroCom model intercomparison project by considering the diversity among year 2000 model simulations and comparing model predictions with available measurements. These model-measurement intercomparisons include BC surface and aircraft concentrations, aerosol absorption optical depth (AAOD) from AERONET and OMI retrievals and BC column estimations based on AERONET. In regions other than Asia, most models are biased high compared to surface concentration measurements. However compared with (column) AAOD or BC burden retreivals, the models are generally biased low. The average ratio of model to retrieved AAOD is less than 0.7 in South American and 0.6 in African biomass burning regions; both of these regions lack surface concentration measurements. In Asia the average model to observed ratio is 0.6 for AAOD and 0.5 for BC surface concentrations. Compared with aircraft measurements over the Americas at latitudes between 0 and 50N, the average model is a factor of 10 larger than observed, and most models exceed the measured BC standard deviation in the mid to upper troposphere. At higher latitudes the average model to aircraft BC is 0.6 and underestimate the observed BC loading in the lower and middle troposphere associated with springtime Arctic haze. Low model bias for AAOD but overestimation of surface and upper atmospheric BC concentrations at lower latitudes suggests that most models are underestimating BC absorption and should improve estimates for refractive index, particle size, and optical effects of BC coating. Retrieval uncertainties and/or differences with model diagnostic treatment may also contribute to the model-measurement disparity. Largest AeroCom model diversity occurred in northern Eurasia and the remote Arctic, regions influenced by anthropogenic sources. Changing emissions, aging, removal, or optical properties within a single model generated a smaller change in model predictions than the range represented by the full set of AeroCom models. Upper tropospheric concentrations of BC mass from the aircraft measurements are suggested to provide a unique new benchmark to test scavenging and vertical dispersion of BC in global models.

  14. On the characteristics of aerosol indirect effect based on dynamic regimes in global climate models

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Zhang, S.; Wang, M.; Ghan, S. J.; Ding, A.; Wang, H.; Zhang, K.; Neubauer, D.; Lohmann, U.; Ferrachat, S.; Takeamura, T.; et al

    2015-09-02

    Aerosol-cloud interactions continue to constitute a major source of uncertainty for the estimate of climate radiative forcing. The variation of aerosol indirect effects (AIE) in climate models is investigated across different dynamical regimes, determined by monthly mean 500 hPa vertical pressure velocity (?500), lower-tropospheric stability (LTS) and large-scale surface precipitation rate derived from several global climate models (GCMs), with a focus on liquid water path (LWP) response to cloud condensation nuclei (CCN) concentrations. The LWP sensitivity to aerosol perturbation within dynamic regimes is found to exhibit a large spread among these GCMs. It is in regimes of strong large-scale ascendmore(?500 ?1) and low clouds (stratocumulus and trade wind cumulus) where the models differ most. Shortwave aerosol indirect forcing is also found to differ significantly among different regimes. Shortwave aerosol indirect forcing in ascending regimes is as large as that in stratocumulus regimes, which indicates that regimes with strong large-scale ascend are as important as stratocumulus regimes in studying AIE. It is further shown that shortwave aerosol indirect forcing over regions with high monthly large-scale surface precipitation rate (> 0.1 mm d?1) contributes the most to the total aerosol indirect forcing (from 64 to nearly 100 %). Results show that the uncertainty in AIE is even larger within specific dynamical regimes than that globally, pointing to the need to reduce the uncertainty in AIE in different dynamical regimes.less

  15. FY 2011 Second Quarter: Demonstration of New Aerosol Measurement Verification Testbed for Present-Day Global Aerosol Simulations

    SciTech Connect (OSTI)

    Koch, D

    2011-03-20

    The regional-scale Weather Research and Forecasting (WRF) model is being used by a DOE Earth System Modeling (ESM) project titled Improving the Characterization of Clouds, Aerosols and the Cryosphere in Climate Models to evaluate the performance of atmospheric process modules that treat aerosols and aerosol radiative forcing in the Arctic. We are using a regional-scale modeling framework for three reasons: (1) It is easier to produce a useful comparison to observations with a high resolution model; (2) We can compare the behavior of the CAM parameterization suite with some of the more complex and computationally expensive parameterizations used in WRF; (3) we can explore the behavior of this parameterization suite at high resolution. Climate models like the Community Atmosphere Model version 5 (CAM5) being used within the Community Earth System Model (CESM) will not likely be run at mesoscale spatial resolutions (1020 km) until 510 years from now. The performance of the current suite of physics modules in CAM5 at such resolutions is not known, and current computing resources do not permit high-resolution global simulations to be performed routinely. We are taking advantage of two tools recently developed under PNNL Laboratory Directed Research and Development (LDRD) projects for this activity. The first is the Aerosol Modeling Testbed (Fast et al., 2011b), a new computational framework designed to streamline the process of testing and evaluating aerosol process modules over a range of spatial and temporal scales. The second is the CAM5 suite of physics parameterizations that have been ported into WRF so that their performance and scale dependency can be quantified at mesoscale spatial resolutions (Gustafson et al., 2010; with more publications in preparation).

  16. Effect of Terrestrial and Marine Organic Aerosol on Regional and Global Climate: Model Development, Application, and Verification with Satellite Data

    SciTech Connect (OSTI)

    Meskhidze, Nicholas; Zhang, Yang; Kamykowski, Daniel

    2012-03-28

    In this DOE project the improvements to parameterization of marine primary organic matter (POM) emissions, hygroscopic properties of marine POM, marine isoprene derived secondary organic aerosol (SOA) emissions, surfactant effects, new cloud droplet activation parameterization have been implemented into Community Atmosphere Model (CAM 5.0), with a seven mode aerosol module from the Pacific Northwest National Laboratory (PNNL)’s Modal Aerosol Model (MAM7). The effects of marine aerosols derived from sea spray and ocean emitted biogenic volatile organic compounds (BVOCs) on microphysical properties of clouds were explored by conducting 10 year CAM5.0-MAM7 model simulations at a grid resolution 1.9°×2.5° with 30 vertical layers. Model-predicted relationship between ocean physical and biological systems and the abundance of CCN in remote marine atmosphere was compared to data from the A-Train satellites (MODIS, CALIPSO, AMSR-E). Model simulations show that on average, primary and secondary organic aerosol emissions from the ocean can yield up to 20% increase in Cloud Condensation Nuclei (CCN) at 0.2% Supersaturation, and up to 5% increases in droplet number concentration of global maritime shallow clouds. Marine organics were treated as internally or externally mixed with sea salt. Changes associated with cloud properties reduced (absolute value) the model-predicted short wave cloud forcing from -1.35 Wm-2 to -0.25 Wm-2. By using different emission scenarios, and droplet activation parameterizations, this study suggests that addition of marine primary aerosols and biologically generated reactive gases makes an important difference in radiative forcing assessments. All baseline and sensitivity simulations for 2001 and 2050 using global-through-urban WRF/Chem (GU-WRF) were completed. The main objective of these simulations was to evaluate the capability of GU-WRF for an accurate representation of the global atmosphere by exploring the most accurate configuration of physics options in GWRF for global scale modeling in 2001 at a horizontal grid resolution of 1° x 1°. GU-WRF model output was evaluated using observational datasets from a variety of sources including surface based observations (NCDC and BSRN), model reanalysis (NCEP/ NCAR Reanalysis and CMAP), and remotely-sensed data (TRMM) to evaluate the ability of GU-WRF to simulate atmospheric variables at the surface as well as aloft. Explicit treatment of nanoparticles produced from new particle formation in GU-WRF/Chem-MADRID was achieved by expanding particle size sections from 8 to 12 to cover particles with the size range of 1.16 nm to 11.6 µm. Simulations with two different nucleation parameterizations were conducted for August 2002 over a global domain at a 4º by 5º horizontal resolution. The results are evaluated against field measurement data from the 2002 Aerosol Nucleation and Real Time Characterization Experiment (ANARChE) in Atlanta, Georgia, as well as satellite and reanalysis data. We have also explored the relationship between “clean marine” aerosol optical properties and ocean surface wind speed using remotely sensed data from the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) on board the CALIPSO satellite and the Advanced Microwave Scanning Radiometer (AMSR-E) on board the AQUA satellite. Detailed data analyses were carried out over 15 regions selected to be representative of different areas of the global ocean for the time period from June 2006 to April 2011. We show that for very low (less than 4 m s-1) and very high (more than 12 m s-1) wind speed conditions the mean CALIPSO-derived aerosol optical depth (AOD) has little dependency on the surface wind speed. For an intermediate (between 4 and 12 m s-1) marine AOD was linearly correlated with the surface wind speed values, with a slope of 0.0062 s m-1. Results of our study suggest that considerable improvements to both optical properties of marine aerosols and their production mechanisms can be achieved by discriminating “clean marine” aerosols (or sea salt particles) from all other types of aerosols present over the ocean.

  17. Evaluating Clouds, Aerosols, and their Interactions in Three Global Climate Models using COSP and Satellite Observations

    SciTech Connect (OSTI)

    Ban-Weiss, George; Jin, Ling; Bauer, S.; Bennartz, Ralph; Liu, Xiaohong; Zhang, Kai; Ming, Yi; Guo, Huan; Jiang, Jonathan

    2014-09-23

    Accurately representing aerosol-cloud interactions in global climate models is challenging. As parameterizations evolve, it is important to evaluate their performance with appropriate use of observations. In this work we compare aerosols, clouds, and their interactions in three climate models (AM3, CAM5, ModelE) to MODIS satellite observations. Modeled cloud properties were diagnosed using the CFMIP Observations Simulator Package (COSP). Cloud droplet number concentrations (N) were derived using the same algorithm for both satellite-simulated model values and observations. We find that aerosol optical depth tau simulated by models is similar to observations. For N, AM3 and CAM5 capture the observed spatial pattern of higher values in near-coast versus remote ocean regions, though modeled values in general are higher than observed. In contrast, ModelE simulates lower N in most near-coast versus remote regions. Aerosol- cloud interactions were computed as the sensitivity of N to tau for marine liquid clouds off the coasts of South Africa and Eastern Asia where aerosol pollution varies in time. AM3 and CAM5 are in most cases more sensitive than observations, while the sensitivity for ModelE is statistically insignificant. This widely used sensitivity could be subject to misinterpretation due to the confounding influence of meteorology on both aerosols and clouds. A simple framework for assessing the N tau sensitivity at constant meteorology illustrates that observed sensitivity can change from positive to statistically insignificant when including the confounding influence of relative humidity. Satellite simulated values of N were compared to standard model output and found to be higher with a bias of 83 cm-3.

  18. Changing Global Petroleum Product Trade Flows

    U.S. Energy Information Administration (EIA) Indexed Site

    Changing Global Petroleum Product Trade Flows For U.S. Energy Information Administration Conference July 14, 2014 | Washington, D.C. By Susan Grissom, U.S. Energy Information Administration In 2011, the U.S. became a net exporter of petroleum products Changing Global Petroleum Product Trade Flows, EIA Conference 2014 2 U.S. petroleum product imports and exports million barrels per day Source: EIA, Annual Energy Outlook 2014 Early Release -4 -3 -2 -1 0 1 2 3 4 1950 1960 1970 1980 1990 2000 2010

  19. Global fish production and climate change

    SciTech Connect (OSTI)

    Brander, K.M.

    2007-12-11

    Current global fisheries production of {approx}160 million tons is rising as a result of increases in aquaculture production. A number of climate-related threats to both capture fisheries and aquaculture are identified, but there is low confidence in predictions of future fisheries production because of uncertainty over future global aquatic net primary production and the transfer of this production through the food chain to human consumption. Recent changes in the distribution and productivity of a number of fish species can be ascribed with high confidence to regional climate variability, such as the El Nino-Southern Oscillation. Future production may increase in some high-latitude regions because of warming and decreased ice cover, but the dynamics in low-latitude regions are giverned by different processes, and production may decline as a result of reduced vertical mixing of the water column and, hence, reduced recycling of nutrients. There are strong interactions between the effects of fishing and the effects of climate because fishing reduces the age, size, and geographic diversity of populations and the biodiversity of marine ecosystems, making both more sensitive to additional stresses such as climate change. Inland fisheries are additionally threatened by changes in precipiation and water management. The frequency and intensity of extreme climate events is likely to have a major impact on future fisheries production in both inland and marine systems. Reducing fishing mortality in the majority of fisheries, which are currently fully exploited or overexploited, is the pricipal feasible means of reducing the impacts of climate change.

  20. Global Distribution and Climate Forcing of Marine Organic Aerosol - Part 2: Effects on Cloud Properties and Radiative Forcing

    SciTech Connect (OSTI)

    Gantt, Brett; Xu, Jun; Meskhidze, N.; Zhang, Yang; Nenes, Athanasios; Ghan, Steven J.; Liu, Xiaohong; Easter, Richard C.; Zaveri, Rahul A.

    2012-07-25

    A series of simulations with the Community Atmosphere Model version 5 (CAM5) with a 7-mode Modal Aerosol Model were conducted to assess the changes in cloud microphysical properties and radiative forcing resulting from marine organic aerosols. Model simulations show that the anthropogenic aerosol indirect forcing (AIF) predicted by CAM5 is decreased in absolute magnitude by up to 0.09 Wm{sup -2} (7 %) when marine organic aerosols are included. Changes in the AIF from marine organic aerosols are associated with small global increases in low-level incloud droplet number concentration and liquid water path of 1.3 cm{sup -3} (1.5 %) and 0.22 gm{sup -2} (0.5 %), respectively. Areas especially sensitive to changes in cloud properties due to marine organic aerosol include the Southern Ocean, North Pacific Ocean, and North Atlantic Ocean, all of which are characterized by high marine organic emission rates. As climate models are particularly sensitive to the background aerosol concentration, this small but non-negligible change in the AIF due to marine organic aerosols provides a notable link for ocean-ecosystem marine low-level cloud interactions and may be a candidate for consideration in future earth system models.

  1. ARM - PI Product - Black Carbon aerosol mass concentration in snow and rain

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    samples over Barrow in the Arctic ProductsBlack Carbon aerosol mass concentration in snow and rain samples over Barrow in the Arctic ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send PI Product : Black Carbon aerosol mass concentration in snow and rain samples over Barrow in the Arctic [ ARM research ] Deposition of black carbon aerosol (BC) on snow (i.e. wet deposition) is considered to lower snow albedo and

  2. Aerosol Optical Depth Value-Added Product Report

    SciTech Connect (OSTI)

    Koontz, A; Hodges, G; Barnard, J; Flynn, C; Michalsky, J

    2013-03-17

    This document describes the process applied to retrieve aerosol optical depth (AOD) from multifilter rotating shadowband radiometers (MFRSR) and normal incidence multifilter radiometers (NIMFR) operated at the ARM Climate Research Facility’s ground-based facilities.

  3. Final Report, The Influence of Organic-Aerosol Emissions and Aging on Regional and Global Aerosol Size Distributions and the CCN Number Budget

    SciTech Connect (OSTI)

    Donahue, Neil M.

    2015-12-23

    We conducted laboratory experiments and analyzed data on aging of organic aerosol and analysis of field data on volatility and CCN activity. With supplemental ASR funding we participated in the FLAME-IV campaign in Missoula MT in the Fall of 2012, deploying a two-chamber photochemical aging system to enable experimental exploration of photochemical aging of biomass burning emissions. Results from that campaign will lead to numerous publications, including demonstration of photochemical production of Brown Carbon (BrC) from secondary organic aerosol associated with biomass burning emissions as well as extensive characterization of the effect of photochemical aging on the overall concentrations of biomass burning organic aerosol. Excluding publications arising from the FLAME-IV campaign, project research resulted in 8 papers: [11, 5, 3, 10, 12, 4, 8, 7], including on in Nature Geoscience addressing the role of organic compounds in nanoparticle growth [11

  4. Changing Global Petroleum Product Trade Flows

    U.S. Energy Information Administration (EIA) Indexed Site

    OECD/IEA 2014 © OECD/IEA 2014 Antoine Halff 2014 EIA Energy Conference Changing Global Petroleum Product Trade Flows Washington, DC July 14, 2014 © OECD/IEA 2014 Crude trade shifts further east  Asia imports increase by 2.6 mb/d to 22.1 mb, or 65% of the international crude market Crude Exports in 2019 and Growth in 2013-19 for Key Trade Routes 1 (million barrels per day) 0.2 0.3 (0) 2.0 (0.2) (-0.6) 4.1 (-0.6) 0.1 (-0.7) 3.1 1.2 (0.3) 1.0 (+0.1) -0.6 2.2 1.8 (+0.8) (-0.6) 1.1 (+0.3) Red

  5. The AeroCom evaluation and intercomparison of organic aerosol in global models

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Tsigaridis, K.; Daskalakis, N.; Kanakidou, M.; Adams, P. J.; Artaxo, P.; Bahadur, R.; Balkanski, Y.; Bauer, S. E.; Bellouin, N.; Benedetti, A.; et al

    2014-10-15

    This paper evaluates the current status of global modeling of the organic aerosol (OA) in the troposphere and analyzes the differences between models as well as between models and observations. Thirty-one global chemistry transport models (CTMs) and general circulation models (GCMs) have participated in this intercomparison, in the framework of AeroCom phase II. The simulation of OA varies greatly between models in terms of the magnitude of primary emissions, secondary OA (SOA) formation, the number of OA species used (2 to 62), the complexity of OA parameterizations (gas-particle partitioning, chemical aging, multiphase chemistry, aerosol microphysics), and the OA physical, chemicalmore » and optical properties. The diversity of the global OA simulation results has increased since earlier AeroCom experiments, mainly due to the increasing complexity of the SOA parameterization in models, and the implementation of new, highly uncertain, OA sources. Diversity of over one order of magnitude exists in the modeled vertical distribution of OA concentrations that deserves a dedicated future study. Furthermore, although the OA / OC ratio depends on OA sources and atmospheric processing, and is important for model evaluation against OA and OC observations, it is resolved only by a few global models. The median global primary OA (POA) source strength is 56 Tg a–1 (range 34–144 Tg a−1) and the median SOA source strength (natural and anthropogenic) is 19 Tg a–1 (range 13–121 Tg a−1). Among the models that take into account the semi-volatile SOA nature, the median source is calculated to be 51 Tg a–1 (range 16–121 Tg a−1), much larger than the median value of the models that calculate SOA in a more simplistic way (19 Tg a–1; range 13–20 Tg a–1, with one model at 37 Tg a−1). The median atmospheric burden of OA is 1.4 Tg (24 models in the range of 0.6–2.0 Tg and 4 between 2.0 and 3.8 Tg), with a median OA lifetime of 5.4 days (range 3.8–9.6 days). In models that reported both OA and sulfate burdens, the median value of the OA/sulfate burden ratio is calculated to be 0.77; 13 models calculate a ratio lower than 1, and 9 models higher than 1. For 26 models that reported OA deposition fluxes, the median wet removal is 70 Tg a–1 (range 28–209 Tg a−1), which is on average 85% of the total OA deposition. Fine aerosol organic carbon (OC) and OA observations from continuous monitoring networks and individual field campaigns have been used for model evaluation. At urban locations, the model–observation comparison indicates missing knowledge on anthropogenic OA sources, both strength and seasonality. The combined model–measurements analysis suggests the existence of increased OA levels during summer due to biogenic SOA formation over large areas of the USA that can be of the same order of magnitude as the POA, even at urban locations, and contribute to the measured urban seasonal pattern. Global models are able to simulate the high secondary character of OA observed in the atmosphere as a result of SOA formation and POA aging, although the amount of OA present in the atmosphere remains largely underestimated, with a mean normalized bias (MNB) equal to –0.62 (–0.51) based on the comparison against OC (OA) urban data of all models at the surface, –0.15 (+0.51) when compared with remote measurements, and –0.30 for marine locations with OC data. The mean temporal correlations across all stations are low when compared with OC (OA) measurements: 0.47 (0.52) for urban stations, 0.39 (0.37) for remote stations, and 0.25 for marine stations with OC data. The combination of high (negative) MNB and higher correlation at urban stations when compared with the low MNB and lower correlation at remote sites suggests that knowledge about the processes that govern aerosol processing, transport and removal, on top of their sources, is important at the remote stations. There is no clear change in model skill with increasing model complexity with regard to OC or OA mass concentration. As a result, the complexity is needed in models in order to distinguish between anthropogenic and natural OA as needed for climate mitigation, and to calculate the impact of OA on climate accurately.« less

  6. The AeroCom Evaluation and Intercomparison of Organic Aerosol in Global Models

    SciTech Connect (OSTI)

    Tsigaridis, Kostas; Daskalakis, N.; Kanakidou, M.; Adams, P. J.; Artaxo, Paulo; Bahadur, R.; Balkanski, Y.; Bauer, S.; Bellouin, N.; Benedetti, Angela; Bergman, T.; Berntsen, T.; Beukes, J. P.; Bian, Huisheng; Carslaw, K. S.; Chin, M.; Curci, Gabriele; Diehl, Thomas; Easter, Richard C.; Ghan, Steven J.; Gong, S.; Hodzic, Alma; Hoyle, Christopher R.; Iversen, T.; Jathar, S.; Jimenez, J. L.; Kaiser, J. W.; Kirkevag, A.; Koch, Dorothy; Kokkola, H.; Lee, Y. H.; Lin, G.; Liu, Xiaohong; Luo, Gan; Ma, Xiaoyan; Mann, G. W.; Mihalopoulos, Nikos; Morcrette, J. -J.; Muller, J. F.; Myhre, G.; Myriokefalitakis, S.; Ng, Nga L.; O'Donell, D.; Penner, J. E.; Pozzoli, L.; Pringle, K. J.; Russell, Lynn; Schulz, M.; Sciare, J.; Seland, O.; Shindell, Drew; Sillman, S.; Skeie, R. B.; Spracklen, D. V.; Stavrakou, T.; Steenrod, Stephen D.; Takemura, T.; Tiitta, P.; Tilmes, S.; Tost, H.; van Noije, T.; van Zyl, P. G.; von Salzen, Knut; Yu, Fangqun; Wang, Zaizi; Wang, Zhilli; Zaveri, Rahul A.; Zhang, Hua; Zhang, Kai; Zhang, Qi; Zhang, Xiaoye

    2014-10-15

    This paper evaluates the current status of global modeling of the organic aerosol (OA) occurrence in the troposphere and analyzes the differences calculated between models as well as between models and observations. Thirty-one global chemistry/transport and general circulation models have participated in this intercomparison, in the framework of AeroCom phase II. The simulation of OA varies greatly between models in terms of the magnitude of primary emissions, secondary OA (SOA) formation, the number of OA species used (2 to 62), the complexity of OA parameterizations (gas-particle partitioning, chemical aging, multiphase chemistry, aerosol microphysics), and the OA physical, chemical and optical properties. The diversity of the global OA simulation results has increased since earlier AeroCom experiments, mainly due to the increasing complexity of the SOA parameterization in models, and the implementation of new, highly uncertain, OA sources. Diversity of over an order of magnitude exists in the modeled vertical distribution of OA that deserves a dedicated future study. Furthermore, although the OA/OC ratio depends on OA sources and atmospheric processing and is important for model evaluation against OA and OC observations, it is resolved only by few global models. The median global primary OA source strength is 56 Tg a-1 (range 34 - 144 Tg a-1) and the median secondary OA source strength (natural and anthropogenic) is 19 Tg a-1 (range 13-121 Tg a-1). Among the models that take into account the semi-volatile SOA nature, the median source is calculated to be 51 Tg a-1 (range 16-121 Tg a-1), much larger than the median value of the models that calculate SOA in a more simplistic way (19 Tg a-1; range 13-20 Tg a-1, with one model at 37 Tg a-1). The median atmospheric burden of OA is 1.4 Tg (24 models in the range of 0.6-2.0 Tg and 4 between 2.4-3.8 Tg) with a median OA lifetime of 5.4 days (range 3.8-9.6 days). In models that reported both OA and sulfate burdens, the median value of the OA/sulfate burden ratio of is calculated to be 0.77; 13 models calculate a ratio lower than 1, and 9 models higher than 1. For 26 models that reported OA deposition fluxes, the median wet removal is 70 Tg a-1 (range 28-209 Tg a-1), which is on average 85% of the total OA deposition.

  7. AERONET: The Aerosol Robotic Network

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    AERONET collaboration provides globally distributed observations of spectral aerosol optical Depth (AOD), inversion products, and precipitable water in diverse aerosol regimes. Aerosol optical depth data are computed for three data quality levels: Level 1.0 (unscreened), Level 1.5 (cloud-screened), and Level 2.0 (cloud screened and quality-assured). Inversions, precipitable water, and other AOD-dependent products are derived from these levels and may implement additional quality checks.[Copied from http://aeronet.gsfc.nasa.gov/new_web/system_descriptions.html

  8. DOE/SC-ARM/TR-115 Aerosol Best Estimate (AEROSOLBE) Value-Added Product

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    5 Aerosol Best Estimate (AEROSOLBE) Value-Added Product C Flynn D Turner A Koontz D Chand C Sivaraman July 2012 DISCLAIMER This report was prepared as an account of work sponsored by the U.S. Government. Neither the United States nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that

  9. DOE/SC-ARM/TR-129 Aerosol Optical Depth Value-Added Product

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    9 Aerosol Optical Depth Value-Added Product A Koontz C Flynn G Hodges J Michalsky J Barnard March 2013 DISCLAIMER This report was prepared as an account of work sponsored by the U.S. Government. Neither the United States nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use

  10. Sensitivity of global-scale climate change attribution results to inclusion of fossil fuel black carbon aerosol - article no. L14701

    SciTech Connect (OSTI)

    Jones, G.S.; Jones, A.; Roberts, D.L.; Stott, P.A.; Williams, K.D.

    2005-07-16

    It is likely that greenhouse gas emissions caused most of the global mean warming observed during the 20th century, and that sulphate aerosols counteracted this warming to some extent, by reflecting solar radiation to space and thereby cooling the planet. However, the importance of another aerosol, namely black carbon, could be underestimated. Here we include fossil fuel black carbon aerosol in a detection and attribution analysis with greenhouse gas and sulphate aerosols. We find that most of the warming of the 20th Century is attributable to changes in greenhouse gases offset by net aerosol cooling. However the pattern of temperature change due to black carbon is currently indistinguishable from the sulphate aerosol pattern of temperature change. The attribution of temperature change due to greenhouse gases is not sensitive to the inclusion of black carbon. We can be confident about the overall attribution of total aerosols, but less so about the contributions of black carbon emissions to 20th century climate change. This work presents no evidence that black carbon aerosol forcing outweighed the cooling due to sulphate aerosol.

  11. Unattended Monitoring of HEU Production in Gaseous Centrifuge Enrichment Plants using Automated Aerosol Collection and Laser-based Enrichment Assay

    SciTech Connect (OSTI)

    Anheier, Norman C.; Bushaw, Bruce A.

    2010-08-11

    Nuclear power is enjoying rapid growth as government energy policies and public demand shift toward low carbon energy production. Pivotal to the global nuclear power renaissance is the development and deployment of robust safeguards instrumentation that allows the limited resources of the IAEA to keep pace with the expansion of the nuclear fuel cycle. Undeclared production of highly enriched uranium (HEU) remains a primary proliferation concern for modern gaseous centrifuge enrichment plants (GCEPs), due to their massive separative work unit (SWU) processing power and comparably short cascade equilibrium timescale. The Pacific Northwest National Laboratory is developing an unattended safeguards instrument, combining continuous aerosol particulate collection with uranium isotope assay, to provide timely detection of HEU production within a GCEP. This approach is based on laser vaporization of aerosol particulates, followed by laser spectroscopy to characterize the uranium enrichment level. Our prior investigation demonstrated single-shot detection sensitivity approaching the femtogram range and relative isotope ratio uncertainty better than 10% using gadolinium as a surrogate for uranium. In this paper we present measurement results on standard samples containing traces of depleted, natural, and low enriched uranium, as well as measurements on aerodynamic size uranium particles mixed in background materials (e.g., dust, minerals, soils). Improvements and optimizations in the detection electronics, signal timing, calibration, and laser alignment have lead to significant improvements in detection sensitivity and enrichment accuracy, contributing to an overall reduction in the false alarm probability. The sample substrate media was also found to play a significant role in facilitating laser-induced vaporization and the production of energetic plasma conditions, resulting in ablation optimization and further improvements in the isotope abundance sensitivity.

  12. Global and regional modeling of clouds and aerosols in the marine boundary layer during VOCALS: the VOCA intercomparison

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Wyant, M. C.; Bretherton, Christopher S.; Wood, Robert; Carmichael, Gregory; Clarke, A. D.; Fast, Jerome D.; George, R.; Gustafson, William I.; Hannay, Cecile; Lauer, Axel; et al

    2015-01-09

    A diverse collection of models are used to simulate the marine boundary layer in the southeast Pacific region during the period of the October–November 2008 VOCALS REx (VAMOS Ocean Cloud Atmosphere Land Study Regional Experiment) field campaign. Regional models simulate the period continuously in boundary-forced free-running mode, while global forecast models and GCMs (general circulation models) are run in forecast mode. The models are compared to extensive observations along a line at 20° S extending westward from the South American coast. Most of the models simulate cloud and aerosol characteristics and gradients across the region that are recognizably similar tomore » observations, despite the complex interaction of processes involved in the problem, many of which are parameterized or poorly resolved. Some models simulate the regional low cloud cover well, though many models underestimate MBL (marine boundary layer) depth near the coast. Most models qualitatively simulate the observed offshore gradients of SO2, sulfate aerosol, CCN (cloud condensation nuclei) concentration in the MBL as well as differences in concentration between the MBL and the free troposphere. Most models also qualitatively capture the decrease in cloud droplet number away from the coast. However, there are large quantitative intermodel differences in both means and gradients of these quantities. Many models are able to represent episodic offshore increases in cloud droplet number and aerosol concentrations associated with periods of offshore flow. Most models underestimate CCN (at 0.1% supersaturation) in the MBL and free troposphere. The GCMs also have difficulty simulating coastal gradients in CCN and cloud droplet number concentration near the coast. The overall performance of the models demonstrates their potential utility in simulating aerosol–cloud interactions in the MBL, though quantitative estimation of aerosol–cloud interactions and aerosol indirect effects of MBL clouds with these models remains uncertain.« less

  13. Global and regional modeling of clouds and aerosols in the marine boundary layer during VOCALS: the VOCA intercomparison

    SciTech Connect (OSTI)

    Wyant, M. C.; Bretherton, Christopher S.; Wood, Robert; Carmichael, Gregory; Clarke, A. D.; Fast, Jerome D.; George, R.; Gustafson, William I.; Hannay, Cecile; Lauer, Axel; Lin, Yanluan; Morcrette, J. -J.; Mulcahay, Jane; Saide, Pablo; Spak, S. N.; Yang, Qing

    2015-01-09

    A diverse collection of models are used to simulate the marine boundary layer in the southeast Pacific region during the period of the October–November 2008 VOCALS REx (VAMOS Ocean Cloud Atmosphere Land Study Regional Experiment) field campaign. Regional models simulate the period continuously in boundary-forced free-running mode, while global forecast models and GCMs (general circulation models) are run in forecast mode. The models are compared to extensive observations along a line at 20° S extending westward from the South American coast. Most of the models simulate cloud and aerosol characteristics and gradients across the region that are recognizably similar to observations, despite the complex interaction of processes involved in the problem, many of which are parameterized or poorly resolved. Some models simulate the regional low cloud cover well, though many models underestimate MBL (marine boundary layer) depth near the coast. Most models qualitatively simulate the observed offshore gradients of SO2, sulfate aerosol, CCN (cloud condensation nuclei) concentration in the MBL as well as differences in concentration between the MBL and the free troposphere. Most models also qualitatively capture the decrease in cloud droplet number away from the coast. However, there are large quantitative intermodel differences in both means and gradients of these quantities. Many models are able to represent episodic offshore increases in cloud droplet number and aerosol concentrations associated with periods of offshore flow. Most models underestimate CCN (at 0.1% supersaturation) in the MBL and free troposphere. The GCMs also have difficulty simulating coastal gradients in CCN and cloud droplet number concentration near the coast. The overall performance of the models demonstrates their potential utility in simulating aerosol–cloud interactions in the MBL, though quantitative estimation of aerosol–cloud interactions and aerosol indirect effects of MBL clouds with these models remains uncertain.

  14. Multiday production of condensing organic aerosol mass in urban and forest outflow

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Lee-Taylor, J.; Hodzic, A.; Madronich, S.; Aumont, B.; Camredon, M.; Valorso, R.

    2014-07-03

    Secondary organic aerosol (SOA) production in air masses containing either anthropogenic or biogenic (terpene-dominated) emissions is investigated using the explicit gas-phase chemical mechanism generator GECKO-A. Simulations show several-fold increases in SOA mass continuing for several days in the urban outflow, even as the initial air parcel is diluted into the regional atmosphere. The SOA mass increase in the forest outflow is more modest (∼50%) and of shorter duration (1–2 days). The production in the urban outflow stems from continuing oxidation of gas-phase precursors which persist in equilibrium with the particle phase, and can be attributed to multigenerational reaction products ofmore » both aromatics and alkanes. In particular we find large contributions from substituted maleic anhydrides and multi-substituted peroxide-bicyclic alkenes. The results show that the predicted production is a robust feature of our model even under changing atmospheric conditions, and contradict the notion that SOA undergoes little mass production beyond a short initial formation period. The results imply that anthropogenic aerosol precursors could influence the chemical and radiative characteristics of the atmosphere over an extremely wide region, and that SOA measurements near precursor sources may routinely underestimate this influence.« less

  15. Multiday production of condensing organic aerosol mass in urban and forest outflow

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Lee-Taylor, J.; Hodzic, A.; Madronich, S.; Aumont, B.; Camredon, M.; Valorso, R.

    2015-01-16

    Secondary organic aerosol (SOA) production in air masses containing either anthropogenic or biogenic (terpene-dominated) emissions is investigated using the explicit gas-phase chemical mechanism generator GECKO-A. Simulations show several-fold increases in SOA mass continuing for multiple days in the urban outflow, even as the initial air parcel is diluted into the regional atmosphere. The SOA mass increase in the forest outflow is more modest (~50%) and of shorter duration (1–2 days). The multiday production in the urban outflow stems from continuing oxidation of gas-phase precursors which persist in equilibrium with the particle phase, and can be attributed to multigenerational reaction productsmore » of both aromatics and alkanes, especially those with relatively low carbon numbers (C4–15). In particular we find large contributions from substituted maleic anhydrides and multi-substituted peroxide-bicyclic alkenes. The results show that the predicted production is a robust feature of our model even under changing atmospheric conditions and different vapor pressure schemes, and contradict the notion that SOA undergoes little mass production beyond a short initial formation period. The results imply that anthropogenic aerosol precursors could influence the chemical and radiative characteristics of the atmosphere over an extremely wide region, and that SOA measurements near precursor sources may routinely underestimate this influence.« less

  16. The Statistical Evolution of Multiple Generations of Oxidation Products in the Photochemical Aging of Chemically Reduced Organic Aerosol

    SciTech Connect (OSTI)

    Wilson, Kevin R.; Smith, Jared D.; Kessler, Sean; Kroll, Jesse H.

    2011-10-03

    The heterogeneous reaction of hydroxyl radicals (OH) with squalane and bis(2-ethylhexyl) sebacate (BES) particles are used as model systems to examine how distributions of reactionproducts evolve during the oxidation of chemically reduced organic aerosol. A kinetic model of multigenerational chemistry, which is compared to previously measured (squalane) and new(BES) experimental data, reveals that it is the statistical mixtures of different generations of oxidation products that control the average particle mass and elemental composition during thereaction. The model suggests that more highly oxidized reaction products, although initially formed with low probability, play a large role in the production of gas phase reaction products.In general, these results highlight the importance of considering atmospheric oxidation as a statistical process, further suggesting that the underlying distribution of molecules could playimportant roles in aerosol formation as well as in the evolution of key physicochemical properties such as volatility and hygroscopicity.

  17. Changes in U.S. Participation in Global Product Markets: Increases and Changes in Product Exports

    U.S. Energy Information Administration (EIA) Indexed Site

    in U.S. Participation in Global Product Markets: Increases and Changes in Product Exports 2014 EIA Energy Conference Hart Energy Research and Consulting Washington DC July 14, 2014 2 © 2014 Hart Energy. All rights reserved. Emerging Characteristics of Global Petroleum Product Markets Growth in Demand Focused in Pacific. Incremental demand oriented toward distillate Source: Hart Energy Research & Consulting, 2014 26% 25% 24% 24% 15% 7% 7% 7% 7% 8% 7% 7% 7% 7% 5% 29% 31% 32% 33% 49% 9% 8% 8%

  18. Risks to global biodiversity from fossil-fuel production exceed those from biofuel production

    SciTech Connect (OSTI)

    Dale, Virginia H; Parish, Esther S; Kline, Keith L

    2015-01-01

    Potential global biodiversity impacts from near-term gasoline production are compared to biofuel, a renewable liquid transportation fuel expected to substitute for gasoline in the near term (i.e., from now until c. 2030). Petroleum exploration activities are projected to extend across more than 5.8 billion ha of land and ocean worldwide (of which 3.1 billion is on land), much of which is in remote, fragile terrestrial ecosystems or off-shore oil fields that would remain relatively undisturbed if not for interest in fossil fuel production. Future biomass production for biofuels is projected to fall within 2.0 billion ha of land, most of which is located in areas already impacted by human activities. A comparison of likely fuel-source areas to the geospatial distribution of species reveals that both energy sources overlap with areas with high species richness and large numbers of threatened species. At the global scale, future petroleum production areas intersect more than double the area and higher total number of threatened species than future biofuel production. Energy options should be developed to optimize provisioning of ecosystem services while minimizing negative effects, which requires information about potential impacts on critical resources. Energy conservation and identifying and effectively protecting habitats with high-conservation value are critical first steps toward protecting biodiversity under any fuel production scenario.

  19. Risks to global biodiversity from fossil-fuel production exceed those from biofuel production

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Dale, Virginia H; Parish, Esther S; Kline, Keith L

    2015-01-01

    Potential global biodiversity impacts from near-term gasoline production are compared to biofuel, a renewable liquid transportation fuel expected to substitute for gasoline in the near term (i.e., from now until c. 2030). Petroleum exploration activities are projected to extend across more than 5.8 billion ha of land and ocean worldwide (of which 3.1 billion is on land), much of which is in remote, fragile terrestrial ecosystems or off-shore oil fields that would remain relatively undisturbed if not for interest in fossil fuel production. Future biomass production for biofuels is projected to fall within 2.0 billion ha of land, most ofmore » which is located in areas already impacted by human activities. A comparison of likely fuel-source areas to the geospatial distribution of species reveals that both energy sources overlap with areas with high species richness and large numbers of threatened species. At the global scale, future petroleum production areas intersect more than double the area and higher total number of threatened species than future biofuel production. Energy options should be developed to optimize provisioning of ecosystem services while minimizing negative effects, which requires information about potential impacts on critical resources. Energy conservation and identifying and effectively protecting habitats with high-conservation value are critical first steps toward protecting biodiversity under any fuel production scenario.« less

  20. Water Treatment in Oil and Gas Production | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Water Treatment and Reuse in Unconventional Gas Production Click to email this to a friend (Opens in new window) Share on Facebook (Opens in new window) Click to share (Opens in new window) Click to share on LinkedIn (Opens in new window) Click to share on Tumblr (Opens in new window) Water Treatment and Reuse in Unconventional Gas Production A key challenge in tapping vast reserves of natural gas from shale deposits is treating the water that is used to bring this gas to the surface. GE

  1. Direct Aerosol Forcing Uncertainty

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Mccomiskey, Allison

    2008-01-15

    Understanding sources of uncertainty in aerosol direct radiative forcing (DRF), the difference in a given radiative flux component with and without aerosol, is essential to quantifying changes in Earth's radiation budget. We examine the uncertainty in DRF due to measurement uncertainty in the quantities on which it depends: aerosol optical depth, single scattering albedo, asymmetry parameter, solar geometry, and surface albedo. Direct radiative forcing at the top of the atmosphere and at the surface as well as sensitivities, the changes in DRF in response to unit changes in individual aerosol or surface properties, are calculated at three locations representing distinct aerosol types and radiative environments. The uncertainty in DRF associated with a given property is computed as the product of the sensitivity and typical measurement uncertainty in the respective aerosol or surface property. Sensitivity and uncertainty values permit estimation of total uncertainty in calculated DRF and identification of properties that most limit accuracy in estimating forcing. Total uncertainties in modeled local diurnally averaged forcing range from 0.2 to 1.3 W m-2 (42 to 20%) depending on location (from tropical to polar sites), solar zenith angle, surface reflectance, aerosol type, and aerosol optical depth. The largest contributor to total uncertainty in DRF is usually single scattering albedo; however decreasing measurement uncertainties for any property would increase accuracy in DRF. Comparison of two radiative transfer models suggests the contribution of modeling error is small compared to the total uncertainty although comparable to uncertainty arising from some individual properties.

  2. Global Simulation of Bioenergy Crop Productivity: Analytical framework and Case Study for Switchgrass

    SciTech Connect (OSTI)

    Nair, S. Surendran; Nichols, Jeff A. {Cyber Sciences}; Post, Wilfred M; Wang, Dali; Wullschleger, Stan D; Kline, Keith L; Wei, Yaxing; Singh, Nagendra; Kang, Shujiang

    2014-01-01

    Contemporary global assessments of the deployment potential and sustainability aspects of biofuel crops lack quantitative details. This paper describes an analytical framework capable of meeting the challenges associated with global scale agro-ecosystem modeling. We designed a modeling platform for bioenergy crops, consisting of five major components: (i) standardized global natural resources and management data sets, (ii) global simulation unit and management scenarios, (iii) model calibration and validation, (iv) high-performance computing (HPC) modeling, and (v) simulation output processing and analysis. A case study with the HPC- Environmental Policy Integrated Climate model (HPC-EPIC) to simulate a perennial bioenergy crop, switchgrass (Panicum virgatum L.) and global biomass feedstock analysis on grassland demonstrates the application of this platform. The results illustrate biomass feedstock variability of switchgrass and provide insights on how the modeling platform can be expanded to better assess sustainable production criteria and other biomass crops. Feedstock potentials on global grasslands and within different countries are also shown. Future efforts involve developing databases of productivity, implementing global simulations for other bioenergy crops (e.g. miscanthus, energycane and agave), and assessing environmental impacts under various management regimes. We anticipated this platform will provide an exemplary tool and assessment data for international communities to conduct global analysis of biofuel biomass feedstocks and sustainability.

  3. Phase partitioning and volatility of secondary organic aerosol components formed from α-pinene ozonolysis and OH oxidation: the importance of accretion products and other low volatility compounds

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Lopez-Hilfiker, F. D.; Mohr, C.; Ehn, M.; Rubach, F.; Kleist, E.; Wildt, J.; Mentel, Th. F.; Carrasquillo, A.; Daumit, K.; Hunter, J.; et al

    2015-02-18

    We measured a large suite of gas and particle phase multi-functional organic compounds with a Filter Inlet for Gases and AEROsols (FIGAERO) coupled to a high-resolution time-of-flight chemical ionization mass spectrometer (HR-ToF-CIMS) developed at the University of Washington. The instrument was deployed on environmental simulation chambers to study monoterpene oxidation as a secondary organic aerosol (SOA) source. We focus here on results from experiments utilizing an ionization method most selective towards acids (acetate negative ion proton transfer), but our conclusions are based on more general physical and chemical properties of the SOA. Hundreds of compounds were observed in both gasmore » and particle phases, the latter being detected upon temperature programmed thermal desorption of collected particles. Particulate organic compounds detected by the FIGAERO HR-ToF-CIMS are highly correlated with, and explain at least 25–50% of, the organic aerosol mass measured by an Aerodyne Aerosol Mass Spectrometer (AMS). Reproducible multi-modal structures in the thermograms for individual compounds of a given elemental composition reveal a significant SOA mass contribution from large molecular weight organics and/or oligomers (i.e. multi-phase accretion reaction products). Approximately 50% of the HR-ToF-CIMS particle phase mass is associated with compounds having effective vapor pressures 4 or more orders of magnitude lower than commonly measured monoterpene oxidation products. The relative importance of these accretion-type and other extremely low volatility products appears to vary with photochemical conditions. We present a desorption temperature based framework for apportionment of thermogram signals into volatility bins. The volatility-based apportionment greatly improves agreement between measured and modeled gas–particle partitioning for select major and minor components of the SOA, consistent with thermal decomposition during desorption causing the conversion of lower volatility components into the detected higher volatility compounds.« less

  4. Phase partitioning and volatility of secondary organic aerosol components formed from α-pinene ozonolysis and OH oxidation: the importance of accretion products and other low volatility compounds

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Lopez-Hilfiker, F. D.; Mohr, C.; Ehn, M.; Rubach, F.; Kleist, E.; Wildt, J.; Mentel, Th. F.; Carrasquillo, A. J.; Daumit, K. E.; Hunter, J. F.; et al

    2015-07-16

    We measured a large suite of gas- and particle-phase multi-functional organic compounds with a Filter Inlet for Gases and AEROsols (FIGAERO) coupled to a high-resolution time-of-flight chemical ionization mass spectrometer (HR-ToF-CIMS) developed at the University of Washington. The instrument was deployed on environmental simulation chambers to study monoterpene oxidation as a secondary organic aerosol (SOA) source. We focus here on results from experiments utilizing an ionization method most selective towards acids (acetate negative ion proton transfer), but our conclusions are based on more general physical and chemical properties of the SOA. Hundreds of compounds were observed in both gas andmore » particle phases, the latter being detected by temperature-programmed thermal desorption of collected particles. Particulate organic compounds detected by the FIGAERO–HR-ToF-CIMS are highly correlated with, and explain at least 25–50 % of, the organic aerosol mass measured by an Aerodyne aerosol mass spectrometer (AMS). Reproducible multi-modal structures in the thermograms for individual compounds of a given elemental composition reveal a significant SOA mass contribution from high molecular weight organics and/or oligomers (i.e., multi-phase accretion reaction products). Approximately 50 % of the HR-ToF-CIMS particle-phase mass is associated with compounds having effective vapor pressures 4 or more orders of magnitude lower than commonly measured monoterpene oxidation products. The relative importance of these accretion-type and other extremely low volatility products appears to vary with photochemical conditions. We present a desorption-temperature-based framework for apportionment of thermogram signals into volatility bins. The volatility-based apportionment greatly improves agreement between measured and modeled gas-particle partitioning for select major and minor components of the SOA, consistent with thermal decomposition during desorption causing the conversion of lower volatility components into the detected higher volatility compounds.« less

  5. Phase partitioning and volatility of secondary organic aerosol components formed from α-pinene ozonolysis and OH oxidation: the importance of accretion products and other low volatility compounds

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Lopez-Hilfiker, F. D.; Mohr, C.; Ehn, M.; Rubach, F.; Kleist, E.; Wildt, J.; Mentel, Th. F.; Carrasquillo, A.; Daumit, K.; Hunter, J.; et al

    2015-02-18

    We measured a large suite of gas and particle phase multi-functional organic compounds with a Filter Inlet for Gases and AEROsols (FIGAERO) coupled to a high-resolution time-of-flight chemical ionization mass spectrometer (HR-ToF-CIMS) developed at the University of Washington. The instrument was deployed on environmental simulation chambers to study monoterpene oxidation as a secondary organic aerosol (SOA) source. We focus here on results from experiments utilizing an ionization method most selective towards acids (acetate negative ion proton transfer), but our conclusions are based on more general physical and chemical properties of the SOA. Hundreds of compounds were observed in both gasmore »and particle phases, the latter being detected upon temperature programmed thermal desorption of collected particles. Particulate organic compounds detected by the FIGAERO HR-ToF-CIMS are highly correlated with, and explain at least 25–50% of, the organic aerosol mass measured by an Aerodyne Aerosol Mass Spectrometer (AMS). Reproducible multi-modal structures in the thermograms for individual compounds of a given elemental composition reveal a significant SOA mass contribution from large molecular weight organics and/or oligomers (i.e. multi-phase accretion reaction products). Approximately 50% of the HR-ToF-CIMS particle phase mass is associated with compounds having effective vapor pressures 4 or more orders of magnitude lower than commonly measured monoterpene oxidation products. The relative importance of these accretion-type and other extremely low volatility products appears to vary with photochemical conditions. We present a desorption temperature based framework for apportionment of thermogram signals into volatility bins. The volatility-based apportionment greatly improves agreement between measured and modeled gas–particle partitioning for select major and minor components of the SOA, consistent with thermal decomposition during desorption causing the conversion of lower volatility components into the detected higher volatility compounds.« less

  6. Global

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Permalink EC, DHS's S&T Directorate, Federal Emergency Management Agency: SUMMIT Analysis, Capabilities, Facilities, Global, Infrastructure Security, Modeling, Modeling & Analysis, NISAC, Partnership, Research & Capabilities EC, DHS's S&T Directorate, Federal Emergency Management Agency: SUMMIT Natural disasters create emergency situations that must be dealt with quickly and effectively in order to minimize injury and loss of life. Simulating such events before they occur can

  7. Global

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Global axisymmetric simulations of two-fluid reconnection in an experimentally relevant geometry N. A. Murphy 1,2,a͒ and C. R. Sovinec 2,3 1 Department of Astronomy, University of Wisconsin, Madison, Wisconsin 53706, USA 2 Center for Magnetic Self-Organization in Laboratory and Astrophysical Plasmas, University of Wisconsin, Madison, Wisconsin 53706, USA 3 Department of Engineering Physics, University of Wisconsin, Madison, Wisconsin 53706, USA ͑Received 18 January 2008; accepted 12 March

  8. Modelling estimation on the impacts of global warming on rice production in China

    SciTech Connect (OSTI)

    Wang Futang

    1997-12-31

    In this paper, based on the validation and sensitivity analyses of two rice growth models (ORYZA1 and DRISIC--Double Rice Cropping Simulation Model for China), and their joining with global warming scenarios projected by GCMs (GFDL, UKMO-H, MPI and DKRZ OPYC, DKRZ LSG, respectively), the modelling experiments were carried out on the potential impacts of global warming on rice production in China. The results show that although there are the some features for each rice cropping patterns because of different models and estimated methods, the rice production for all cropping patterns in China will trend to decrease with different degrees. In average, early, middle and later rice production, as well as, double-early and double-later rice production in different areas of China will decrease 3.7%, 10.5% and 10.4%, as well as, 15.9% and 14.4%, respectively. It do illustrates that the advantage effects induced by elevated CO{sub 2} concentration on photosynthesis does not compensate the adverse effects of temperature increase. Thus, it is necessary to adjusting rice cropping patterns, cultivars and farming techniques to the global warming timely.

  9. Stratospheric aerosol geoengineering

    SciTech Connect (OSTI)

    Robock, Alan

    2015-03-30

    The Geoengineering Model Intercomparison Project, conducting climate model experiments with standard stratospheric aerosol injection scenarios, has found that insolation reduction could keep the global average temperature constant, but global average precipitation would reduce, particularly in summer monsoon regions around the world. Temperature changes would also not be uniform; the tropics would cool, but high latitudes would warm, with continuing, but reduced sea ice and ice sheet melting. Temperature extremes would still increase, but not as much as without geoengineering. If geoengineering were halted all at once, there would be rapid temperature and precipitation increases at 5–10 times the rates from gradual global warming. The prospect of geoengineering working may reduce the current drive toward reducing greenhouse gas emissions, and there are concerns about commercial or military control. Because geoengineering cannot safely address climate change, global efforts to reduce greenhouse gas emissions and to adapt are crucial to address anthropogenic global warming.

  10. Composition and Reactions of Atmospheric Aerosol Particles

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Composition and Reactions of Atmospheric Aerosol Particles Print Microscopic aerosol particles in the atmosphere contain carbonaceous components from mineral dust and combustion emissions released from around the world. How long these tiny particles remain in the atmosphere can have a huge impact on the global climate. Measurements based on high-resolution scanning transmission x-ray images obtained at the ALS have revealed chemical reactions on and in atmospheric aerosol particles that caused

  11. Composition and Reactions of Atmospheric Aerosol Particles

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Composition and Reactions of Atmospheric Aerosol Particles Print Microscopic aerosol particles in the atmosphere contain carbonaceous components from mineral dust and combustion emissions released from around the world. How long these tiny particles remain in the atmosphere can have a huge impact on the global climate. Measurements based on high-resolution scanning transmission x-ray images obtained at the ALS have revealed chemical reactions on and in atmospheric aerosol particles that caused

  12. Composition and Reactions of Atmospheric Aerosol Particles

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Composition and Reactions of Atmospheric Aerosol Particles Print Microscopic aerosol particles in the atmosphere contain carbonaceous components from mineral dust and combustion emissions released from around the world. How long these tiny particles remain in the atmosphere can have a huge impact on the global climate. Measurements based on high-resolution scanning transmission x-ray images obtained at the ALS have revealed chemical reactions on and in atmospheric aerosol particles that caused

  13. Composition and Reactions of Atmospheric Aerosol Particles

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Composition and Reactions of Atmospheric Aerosol Particles Composition and Reactions of Atmospheric Aerosol Particles Print Wednesday, 29 June 2005 00:00 Microscopic aerosol particles in the atmosphere contain carbonaceous components from mineral dust and combustion emissions released from around the world. How long these tiny particles remain in the atmosphere can have a huge impact on the global climate. Measurements based on high-resolution scanning transmission x-ray images obtained at the

  14. Composition and Reactions of Atmospheric Aerosol Particles

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Composition and Reactions of Atmospheric Aerosol Particles Print Microscopic aerosol particles in the atmosphere contain carbonaceous components from mineral dust and combustion emissions released from around the world. How long these tiny particles remain in the atmosphere can have a huge impact on the global climate. Measurements based on high-resolution scanning transmission x-ray images obtained at the ALS have revealed chemical reactions on and in atmospheric aerosol particles that caused

  15. Composition and Reactions of Atmospheric Aerosol Particles

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Composition and Reactions of Atmospheric Aerosol Particles Print Microscopic aerosol particles in the atmosphere contain carbonaceous components from mineral dust and combustion emissions released from around the world. How long these tiny particles remain in the atmosphere can have a huge impact on the global climate. Measurements based on high-resolution scanning transmission x-ray images obtained at the ALS have revealed chemical reactions on and in atmospheric aerosol particles that caused

  16. Carbonaceous Aerosols and Radiative...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    carbon, primary organic aerosols (POA), and secondary organic aerosols (SOA) from both man-made and biogenic sources. Black carbon and primary organic aerosols are emitted...

  17. Composition and Reactions of Atmospheric Aerosol Particles

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    refine the computer models used to predict climate change. Tiny Specks with Large Effects Most people equate aerosols with hairspray and household cleaning products, but a...

  18. he Impact of Primary Marine Aerosol on Atmospheric Chemistry, Radiation and Climate: A CCSM Model Development Study

    SciTech Connect (OSTI)

    Keene, William C.; Long, Michael S.

    2013-05-20

    This project examined the potential large-scale influence of marine aerosol cycling on atmospheric chemistry, physics and radiative transfer. Measurements indicate that the size-dependent generation of marine aerosols by wind waves at the ocean surface and the subsequent production and cycling of halogen-radicals are important but poorly constrained processes that influence climate regionally and globally. A reliable capacity to examine the role of marine aerosol in the global-scale atmospheric system requires that the important size-resolved chemical processes be treated explicitly. But the treatment of multiphase chemistry across the breadth of chemical scenarios encountered throughout the atmosphere is sensitive to the initial conditions and the precision of the solution method. This study examined this sensitivity, constrained it using high-resolution laboratory and field measurements, and deployed it in a coupled chemical-microphysical 3-D atmosphere model. First, laboratory measurements of fresh, unreacted marine aerosol were used to formulate a sea-state based marine aerosol source parameterization that captured the initial organic, inorganic, and physical conditions of the aerosol population. Second, a multiphase chemical mechanism, solved using the Max Planck Institute for Chemistry??s MECCA (Module Efficiently Calculating the Chemistry of the Atmosphere) system, was benchmarked across a broad set of observed chemical and physical conditions in the marine atmosphere. Using these results, the mechanism was systematically reduced to maximize computational speed. Finally, the mechanism was coupled to the 3-mode modal aerosol version of the NCAR Community Atmosphere Model (CAM v3.6.33). Decadal-scale simulations with CAM v.3.6.33, were run both with and without reactive-halogen chemistry and with and without explicit treatment of particulate organic carbon in the marine aerosol source function. Simulated results were interpreted (1) to evaluate influences of marine aerosol production on the microphysical properties of aerosol populations and clouds over the ocean and the corresponding direct and indirect effects on radiative transfer; (2) atmospheric burdens of reactive halogen species and their impacts on O3, NOx, OH, DMS, and particulate non-sea-salt SO42-; and (3) the global production and influences of marine-derived particulate organic carbon. The model reproduced major characteristics of the marine aerosol system and demonstrated the potential sensitivity of global, decadal-scale climate metrics to multiphase marine-derived components of Earth??s troposphere. Due to the combined computational burden of the coupled system, the currently available computational resources were the limiting factor preventing the adequate statistical analysis of the overall impact that multiphase chemistry might have on climate-scale radiative transfer and climate.

  19. Laboratory Studies of Processing of Carbonaceous Aerosols by Atmospheric Oxidants/Hygroscopicity and CCN Activity of Secondary & Processed Primary Organic Aerosols

    SciTech Connect (OSTI)

    Ziemann, P.J.; Arey, J.; Atkinson, R.; Kreidenweis, S.M.; Petters, M.D.

    2012-06-13

    The atmosphere is composed of a complex mixture of gases and suspended microscopic aerosol particles. The ability of these particles to take up water (hygroscopicity) and to act as nuclei for cloud droplet formation significantly impacts aerosol light scattering and absorption, and cloud formation, thereby influencing air quality, visibility, and climate in important ways. A substantial, yet poorly characterized component of the atmospheric aerosol is organic matter. Its major sources are direct emissions from combustion processes, which are referred to as primary organic aerosol (POA), or in situ processes in which volatile organic compounds (VOCs) are oxidized in the atmosphere to low volatility reaction products that subsequent condense to form particles that are referred to as secondary organic aerosol (SOA). POA and VOCs are emitted to the atmosphere from both anthropogenic and natural (biogenic) sources. The overall goal of this experimental research project was to conduct laboratory studies under simulated atmospheric conditions to investigate the effects of the chemical composition of organic aerosol particles on their hygroscopicity and cloud condensation nucleation (CCN) activity, in order to develop quantitative relationships that could be used to more accurately incorporate aerosol-cloud interactions into regional and global atmospheric models. More specifically, the project aimed to determine the products, mechanisms, and rates of chemical reactions involved in the processing of organic aerosol particles by atmospheric oxidants and to investigate the relationships between the chemical composition of organic particles (as represented by molecule sizes and the specific functional groups that are present) and the hygroscopicity and CCN activity of oxidized POA and SOA formed from the oxidation of the major classes of anthropogenic and biogenic VOCs that are emitted to the atmosphere, as well as model hydrocarbons. The general approach for this project was to carry out reactions of representative anthropogenic and biogenic VOCs and organic particles with ozone (O3), and hydroxyl (OH), nitrate (NO3), and chlorine (Cl) radicals, which are the major atmospheric oxidants, under simulated atmospheric conditions in large-volume environmental chambers. A combination of on-line and off-line analytical techniques were used to monitor the chemical and physical properties of the particles including their hygroscopicity and CCN activity. The results of the studies were used to (1) improve scientific understanding of the relationships between the chemical composition of organic particles and their hygroscopicity and CCN activity, (2) develop an improved molecular level theoretical framework for describing these relationships, and (3) establish a large database that is being used to develop parameterizations relating organic aerosol chemical properties and SOA sources to particle hygroscopicity and CCN activity for use in regional and global atmospheric air quality and climate models.

  20. ARM - Measurement - Aerosol concentration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    CSPHOT : Cimel Sunphotometer CPC : Condensation Particle Counter HTDMA : Humidified Tandem Differential Mobility Analyzer IAP : In-situ Aerosol Profiles (Cessna Aerosol Flights)...

  1. Aerosol Characterization Data from the Asian Pacific Regional Aerosol Characterization Project (ACE-Asia)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    The Aerosol Characterization Experiments (ACE) were designed to increase understanding of how atmospheric aerosol particles affect the Earth's climate system. These experiments integrated in-situ measurements, satellite observations, and models to reduce the uncertainty in calculations of the climate forcing due to aerosol particles and improve the ability of models to predict the influences of aerosols on the Earth's radiation balance. ACE-Asia was the fourth in a series of experiments organized by the International Global Atmospheric Chemistry (IGAC) Program (A Core Project of the International Geosphere Biosphere Program). The Intensive Field Phase for ACE-Asia took place during the spring of 2001 (mid-March through early May) off the coast of China, Japan and Korea. ACE-Asia pursued three specific objectives: 1) Determine the physical, chemical, and radiative properties of the major aerosol types in the Eastern Asia and Northwest Pacific region and investigate the relationships among these properties. 2) Quantify the physical and chemical processes controlling the evolution of the major aerosol types and in particular their physical, chemical, and radiative properties. 3) Develop procedures to extrapolate aerosol properties and processes from local to regional and global scales, and assess the regional direct and indirect radiative forcing by aerosols in the Eastern Asia and Northwest Pacific region [Edited and shortened version of summary at http://data.eol.ucar.edu/codiac/projs?ACE-ASIA]. The Ace-Asia collection contains 174 datasets.

  2. Particulate Matter Aerosols

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Particulate Matter Aerosols The study of atmospheric aerosols is important because of its adverse effects on health, air quality, visibility, cultural heritage, and Earth's radiation balance. Techniques that can help better characterize particulate matter are required to better understand the constituents, causes and sources of particulate matter (PM) aerosols. Carbon is one of the main constituents of atmospheric aerosols. Radiocarbon (14C) measurement performed on aerosol particulate matter

  3. Aerosol Simulations by LLNL IMPACT and Comparisons with Field Measurements

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Simulations by LLNL IMPACT and Comparisons with Field Measurements C. C. Chuang, D. Bergman, J. Dignon, and P. Connell Lawrence Livermore National Laboratory Livermore, California Introduction The first step needed to assess aerosol climate effects is to provide the global concentrations and vertical profiles of different aerosol components. These distributions cannot be easily obtained from satellite retrievals or field measurements but are key to estimating the magnitude of aerosol forcing. A

  4. Advancing Climate Science with Global Research Facilities | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Research at the facilities focuses on four areas: how aerosols affect the global climate; the various stages of cloud evolution; the impact of aerosols on the radiative balance of ...

  5. Two Hundred Fifty Years of Aerosols and Climate: The End of the Age of Aerosols

    SciTech Connect (OSTI)

    Smith, Steven J.; Bond, Tami C.

    2014-01-20

    Carbonaceous and sulfur aerosols have a substantial global and regional influence on climate in addition to their impact on health and ecosystems. The magnitude of this influence has changed substantially over the past and is expected to continue to change into the future. An integrated picture of the changing climatic influence of black carbon, organic carbon and sulfate over the period 1850 through 2100, focusing on uncertainty, is presented using updated historical inventories and a coordinated set of emission projections. While aerosols have had a substantial impact on climate over the past century, by the end of the 21st century aerosols will likely be only a minor contributor to radiative forcing due to increases in greenhouse gas forcing and a global decrease in pollutant emissions. This outcome is even more certain under a successful implementation of a policy to limit greenhouse gas emissions as low-carbon energy technologies that do not emit appreciable aerosol or SO2 are deployed.

  6. Aerosol mobility size spectrometer

    DOE Patents [OSTI]

    Wang, Jian; Kulkarni, Pramod

    2007-11-20

    A device for measuring aerosol size distribution within a sample containing aerosol particles. The device generally includes a spectrometer housing defining an interior chamber and a camera for recording aerosol size streams exiting the chamber. The housing includes an inlet for introducing a flow medium into the chamber in a flow direction, an aerosol injection port adjacent the inlet for introducing a charged aerosol sample into the chamber, a separation section for applying an electric field to the aerosol sample across the flow direction and an outlet opposite the inlet. In the separation section, the aerosol sample becomes entrained in the flow medium and the aerosol particles within the aerosol sample are separated by size into a plurality of aerosol flow streams under the influence of the electric field. The camera is disposed adjacent the housing outlet for optically detecting a relative position of at least one aerosol flow stream exiting the outlet and for optically detecting the number of aerosol particles within the at least one aerosol flow stream.

  7. Chemistry of α-pinene and naphthalene oxidation products generated in a Potential Aerosol Mass (PAM) chamber as measured by acetate chemical ionization mass spectrometry

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Chhabra, P. S.; Lambe, A. T.; Canagaratna, M. R.; Stark, H.; Jayne, J. T.; Onasch, T. B.; Davidovits, P.; Kimmel, J. R.; Worsnop, D. R.

    2014-07-01

    Recent developments in high resolution, time-of-flight chemical ionization mass spectrometry (HR-ToF-CIMS) have made possible the direct detection of atmospheric organic compounds in real-time with high sensitivity and with little or no fragmentation, including low volatility, highly oxygenated organic vapors that are precursors to secondary organic aerosol formation. Here, for the first time, we examine gas-phase O3 and OH oxidation products of α-pinene and naphthalene formed in the PAM flow reactor with an HR-ToF-CIMS using acetate reagent ion chemistry. Integrated OH exposures ranged from 1.2 × 1011 to 9.7 × 1011 molec cm−3 s, corresponding to approximately 1.0 to 7.5 daysmore » of equivalent atmospheric oxidation. Measured gas-phase organic acids are similar to those previously observed in environmental chamber studies. For both precursors, we find that acetate-CIMS spectra capture both functionalization (oxygen addition) and fragmentation (carbon loss) as a function of OH exposure. The level of fragmentation is observed to increase with increased oxidation. We present a method that estimates vapor pressures of organic molecules using the measured O/C ratio, H/C ratio, and carbon number for each compound detected by the CIMS. The predicted condensed-phase SOA average acid yields and O/C and H/C ratios agree within uncertainties with previous AMS measurements and ambient CIMS results. While acetate reagent ion chemistry is used to selectively measure organic acids, in principle this method can be applied to additional reagent ion chemistries depending on the application.« less

  8. ARM - Measurement - Aerosol extinction

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Aerosol extinction The removal of radiant energy from an incident beam by the process of aerosol absorption ...

  9. ARM - Measurement - Aerosol image

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    would love to hear from you Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Aerosol image Images of aerosols from which one can derive characteristics such...

  10. ARM - Measurement - Aerosol scattering

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    : Nephelometer PASS : Photoacoustic Soot Spectrometer RL : Raman Lidar TDMA : Tandem Differential Mobility Analyzer Field Campaign Instruments AMT : Aerosol Modeling...

  11. Aerosol Observing System Upgraded

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2 Aerosol Observing System Upgraded The Aerosol Observing System (AOS) at the SGP central facility recently received maintenance and was upgraded to improve its performance. The AOS measures the properties of the aerosol particles around it. Several AOS components were removed, repaired, and calibrated to operate within specifications. The system continuously gathers information about the way minute aerosol particles interact with solar radiation. A better understanding of these interactions

  12. Aerosol distribution apparatus

    DOE Patents [OSTI]

    Hanson, W.D.

    An apparatus for uniformly distributing an aerosol to a plurality of filters mounted in a plenum, wherein the aerosol and air are forced through a manifold system by means of a jet pump and released into the plenum through orifices in the manifold. The apparatus allows for the simultaneous aerosol-testing of all the filters in the plenum.

  13. Solid aerosol generator

    DOE Patents [OSTI]

    Prescott, Donald S.; Schober, Robert K.; Beller, John

    1992-01-01

    An improved solid aerosol generator used to produce a gas borne stream of dry, solid particles of predetermined size and concentration. The improved solid aerosol generator nebulizes a feed solution of known concentration with a flow of preheated gas and dries the resultant wet heated aerosol in a grounded, conical heating chamber, achieving high recovery and flow rates.

  14. Improved solid aerosol generator

    DOE Patents [OSTI]

    Prescott, D.S.; Schober, R.K.; Beller, J.

    1988-07-19

    An improved solid aerosol generator used to produce a gas borne stream of dry, solid particles of predetermined size and concentration. The improved solid aerosol generator nebulizes a feed solution of known concentration with a flow of preheated gas and dries the resultant wet heated aerosol in a grounded, conical heating chamber, achieving high recovery and flow rates. 2 figs.

  15. Solid aerosol generator

    DOE Patents [OSTI]

    Prescott, D.S.; Schober, R.K.; Beller, J.

    1992-03-17

    An improved solid aerosol generator used to produce a gas borne stream of dry, solid particles of predetermined size and concentration is disclosed. The improved solid aerosol generator nebulizes a feed solution of known concentration with a flow of preheated gas and dries the resultant wet heated aerosol in a grounded, conical heating chamber, achieving high recovery and flow rates. 2 figs.

  16. Total aerosol effect: forcing or radiative flux perturbation?

    SciTech Connect (OSTI)

    Lohmann, Ulrike; Storelvmo, Trude; Jones, Andy; Rotstayn, Leon; Menon, Surabi; Quaas, Johannes; Ekman, Annica; Koch, Dorothy; Ruedy, Reto

    2009-09-25

    Uncertainties in aerosol forcings, especially those associated with clouds, contribute to a large extent to uncertainties in the total anthropogenic forcing. The interaction of aerosols with clouds and radiation introduces feedbacks which can affect the rate of rain formation. Traditionally these feedbacks were not included in estimates of total aerosol forcing. Here we argue that they should be included because these feedbacks act quickly compared with the time scale of global warming. We show that for different forcing agents (aerosols and greenhouse gases) the radiative forcings as traditionally defined agree rather well with estimates from a method, here referred to as radiative flux perturbations (RFP), that takes these fast feedbacks and interactions into account. Thus we propose replacing the direct and indirect aerosol forcing in the IPCC forcing chart with RFP estimates. This implies that it is better to evaluate the total anthropogenic aerosol effect as a whole.

  17. Electrically Driven Technologies for Radioactive Aerosol Abatement

    SciTech Connect (OSTI)

    David W. DePaoli; Ofodike A. Ezekoye; Costas Tsouris; Valmor F. de Almeida

    2003-01-28

    The purpose of this research project was to develop an improved understanding of how electriexecy driven processes, including electrocoalescence, acoustic agglomeration, and electric filtration, may be employed to efficiently treat problems caused by the formation of aerosols during DOE waste treatment operations. The production of aerosols during treatment and retrieval operations in radioactive waste tanks and during thermal treatment operations such as calcination presents a significant problem of cost, worker exposure, potential for release, and increased waste volume.

  18. Modeling global atmospheric CO2 with improved emission inventories and CO2 production from the oxidation of other carbon species

    SciTech Connect (OSTI)

    Nassar, Ray; Jones, DBA; Suntharalingam, P; Chen, j.; Andres, Robert Joseph; Wecht, K. J.; Yantosca, R. M.; Kulawik, SS; Bowman, K; Worden, JR; Machida, T; Matsueda, H

    2010-01-01

    The use of global three-dimensional (3-D) models with satellite observations of CO2 in inverse modeling studies is an area of growing importance for understanding Earth s carbon cycle. Here we use the GEOS-Chem model (version 8-02-01) CO2 mode with multiple modifications in order to assess their impact on CO2 forward simulations. Modifications include CO2 surface emissions from shipping (0.19 PgC yr 1), 3-D spatially-distributed emissions from aviation (0.16 PgC yr 1), and 3-D chemical production of CO2 (1.05 PgC yr 1). Although CO2 chemical production from the oxidation of CO, CH4 and other carbon gases is recognized as an important contribution to global CO2, it is typically accounted for by conversion from its precursors at the surface rather than in the free troposphere. We base our model 3-D spatial distribution of CO2 chemical production on monthly-averaged loss rates of CO (a key precursor and intermediate in the oxidation of organic carbon) and apply an associated surface correction for inventories that have counted emissions of CO2 precursors as CO2. We also explore the benefit of assimilating satellite observations of CO into GEOS-Chem to obtain an observation-based estimate of the CO2 chemical source. The CO assimilation corrects for an underestimate of atmospheric CO abundances in the model, resulting in increases of as much as 24% in the chemical source during May June 2006, and increasing the global annual estimate of CO2 chemical production from 1.05 to 1.18 Pg C. Comparisons of model CO2 with measurements are carried out in order to investigate the spatial and temporal distributions that result when these new sources are added. Inclusion of CO2 emissions from shipping and aviation are shown to increase the global CO2 latitudinal gradient by just over 0.10 ppm (3%), while the inclusion of CO2 chemical production (and the surface correction) is shown to decrease the latitudinal gradient by about 0.40 ppm (10%) with a complex spatial structure generally resulting in decreased CO2 over land and increased CO2 over the oceans. Since these CO2 emissions are omitted or misrepresented in most inverse modeling work to date, their implementation in forward simulations should lead to improved inverse modeling estimates of terrestrial biospheric fluxes.

  19. Impacts of aerosol-cloud interactions on past and future changes in tropospheric composition

    SciTech Connect (OSTI)

    Unger, N.; Menon, S.; Shindell, D. T.; Koch, D. M.

    2009-02-02

    The development of effective emissions control policies that are beneficial to both climate and air quality requires a detailed understanding of all the feedbacks in the atmospheric composition and climate system. We perform sensitivity studies with a global atmospheric composition-climate model to assess the impact of aerosols on tropospheric chemistry through their modification on clouds, aerosol-cloud interactions (ACI). The model includes coupling between both tropospheric gas-phase and aerosol chemistry and aerosols and liquid-phase clouds. We investigate past impacts from preindustrial (PI) to present day (PD) and future impacts from PD to 2050 (for the moderate IPCC A1B scenario) that embrace a wide spectrum of precursor emission changes and consequential ACI. The aerosol indirect effect (AIE) is estimated to be -2.0 Wm{sup -2} for PD-PI and -0.6 Wm{sup -2} for 2050-PD, at the high end of current estimates. Inclusion of ACI substantially impacts changes in global mean methane lifetime across both time periods, enhancing the past and future increases by 10% and 30%, respectively. In regions where pollution emissions increase, inclusion of ACI leads to 20% enhancements in in-cloud sulfate production and {approx}10% enhancements in sulfate wet deposition that is displaced away from the immediate source regions. The enhanced in-cloud sulfate formation leads to larger increases in surface sulfate across polluted regions ({approx}10-30%). Nitric acid wet deposition is dampened by 15-20% across the industrialized regions due to ACI allowing additional re-release of reactive nitrogen that contributes to 1-2 ppbv increases in surface ozone in outflow regions. Our model findings indicate that ACI must be considered in studies of methane trends and projections of future changes to particulate matter air quality.

  20. Sensitivity of Global Terrestrial Gross Primary Production to Hydrologic States Simulated by the Community Land Model Using Two Runoff Parameterizations

    SciTech Connect (OSTI)

    Lei, Huimin; Huang, Maoyi; Leung, Lai-Yung R.; Yang, Dawen; Shi, Xiaoying; Mao, Jiafu; Hayes, Daniel J.; Schwalm, C.; Wei, Yaxing; Liu, Shishi

    2014-09-01

    The terrestrial water and carbon cycles interact strongly at various spatio-temporal scales. To elucidate how hydrologic processes may influence carbon cycle processes, differences in terrestrial carbon cycle simulations induced by structural differences in two runoff generation schemes were investigated using the Community Land Model 4 (CLM4). Simulations were performed with runoff generation using the default TOPMODEL-based and the Variable Infiltration Capacity (VIC) model approaches under the same experimental protocol. The comparisons showed that differences in the simulated gross primary production (GPP) are mainly attributed to differences in the simulated leaf area index (LAI) rather than soil moisture availability. More specifically, differences in runoff simulations can influence LAI through changes in soil moisture, soil temperature, and their seasonality that affect the onset of the growing season and the subsequent dynamic feedbacks between terrestrial water, energy, and carbon cycles. As a result of a relative difference of 36% in global mean total runoff between the two models and subsequent changes in soil moisture, soil temperature, and LAI, the simulated global mean GPP differs by 20.4%. However, the relative difference in the global mean net ecosystem exchange between the two models is small (2.1%) due to competing effects on total mean ecosystem respiration and other fluxes, although large regional differences can still be found. Our study highlights the significant interactions among the water, energy, and carbon cycles and the need for reducing uncertainty in the hydrologic parameterization of land surface models to better constrain carbon cycle modeling.

  1. Climate implications of carbonaceous aerosols: An aerosol microphysical study using the GISS/MATRIX climate model

    SciTech Connect (OSTI)

    Bauer, Susanne E.; Menon, Surabi; Koch, Dorothy; Bond, Tami; Tsigaridis, Kostas

    2010-04-09

    Recently, attention has been drawn towards black carbon aerosols as a likely short-term climate warming mitigation candidate. However the global and regional impacts of the direct, cloud-indirect and semi-direct forcing effects are highly uncertain, due to the complex nature of aerosol evolution and its climate interactions. Black carbon is directly released as particle into the atmosphere, but then interacts with other gases and particles through condensation and coagulation processes leading to further aerosol growth, aging and internal mixing. A detailed aerosol microphysical scheme, MATRIX, embedded within the global GISS modelE includes the above processes that determine the lifecycle and climate impact of aerosols. This study presents a quantitative assessment of the impact of microphysical processes involving black carbon, such as emission size distributions and optical properties on aerosol cloud activation and radiative forcing. Our best estimate for net direct and indirect aerosol radiative forcing change is -0.56 W/m{sup 2} between 1750 and 2000. However, the direct and indirect aerosol effects are very sensitive to the black and organic carbon size distribution and consequential mixing state. The net radiative forcing change can vary between -0.32 to -0.75 W/m{sup 2} depending on these carbonaceous particle properties. Assuming that sulfates, nitrates and secondary organics form a coating shell around a black carbon core, rather than forming a uniformly mixed particles, changes the overall net radiative forcing from a negative to a positive number. Black carbon mitigation scenarios showed generally a benefit when mainly black carbon sources such as diesel emissions are reduced, reducing organic and black carbon sources such as bio-fuels, does not lead to reduced warming.

  2. ARM - AOS Aerosol Properties Plots

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ViewersAOS Aerosol Properties Plots XDC Data Viewers Aerosol Properties Plots SGP AMF NSA (BRW) AOS Aerosol Properties Plots These plots are designed to provide a quick look at the...

  3. ARM - Measurement - Aerosol composition

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    quality assurance purposes. ARM Instruments PILS : Particle Into Liquid Sampler TDMA : Tandem Differential Mobility Analyzer Field Campaign Instruments AEROSMASSSPEC : Aerosol Mass...

  4. ARM - Measurement - Aerosol optical properties

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    : Aerosol optical properties The optical properties of aerosols, including asymmetry factor, phase-function, single-scattering albedo, refractive index, and backscatter...

  5. Limited effect of anthropogenic nitrogen oxides on secondary organic aerosol formation

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Zheng, Y.; Unger, N.; Hodzic, A.; Emmons, L.; Knote, C.; Tilmes, S.; Lamarque, J.-F.; Yu, P.

    2015-12-08

    Globally, secondary organic aerosol (SOA) is mostly formed from emissions of biogenic volatile organic compounds (VOCs) by vegetation, but it can be modified by human activities as demonstrated in recent research. Specifically, nitrogen oxides (NOx = NO + NO2) have been shown to play a critical role in the chemical formation of low volatility compounds. We have updated the SOA scheme in the global NCAR (National Center for Atmospheric Research) Community Atmospheric Model version 4 with chemistry (CAM4-chem) by implementing a 4-product volatility basis set (VBS) scheme, including NOx-dependent SOA yields and aging parameterizations. Small differences are found for themore » no-aging VBS and 2-product schemes; large increases in SOA production and the SOA-to-OA ratio are found for the aging scheme. The predicted organic aerosol amounts capture both the magnitude and distribution of US surface annual mean measurements from the Interagency Monitoring of Protected Visual Environments (IMPROVE) network by 50 %, and the simulated vertical profiles are within a factor of 2 compared to aerosol mass spectrometer (AMS) measurements from 13 aircraft-based field campaigns across different regions and seasons. We then perform sensitivity experiments to examine how the SOA loading responds to a 50 % reduction in anthropogenic nitric oxide (NO) emissions in different regions. We find limited SOA reductions of 0.9–5.6, 6.4–12.0 and 0.9–2.8 % for global, southeast US and Amazon NOx perturbations, respectively. The fact that SOA formation is almost unaffected by changes in NOx can be largely attributed to a limited shift in chemical regime, to buffering in chemical pathways (low- and high-NOx pathways, O3 versus NO3-initiated oxidation) and to offsetting tendencies in the biogenic versus anthropogenic SOA responses.« less

  6. Global climate change and maize production in Spain: Risk assessment and impacts of weather on yields

    SciTech Connect (OSTI)

    Feijoo, M.L.; Mestre, F.; Iglesias, A.; Rosenzweig, C.

    1996-12-31

    The study evaluates the potential effect of climate change on maize production in Spain, combining climate models, a crop productivity model, a decision support system and a yield-response model. The study was carried out for two agricultural regions that include the largest areas of Spain where maize is grown as a high input crop. The paper combines the output from a crop model with different techniques of analysis. The scenarios used in this study were generated from the output of two General Circulation Models (GCMs): the Goddard Institute for Space Studies model (GISS) and the Canadian Climate Change Model (CCCM). The study also includes a preliminary evaluation of the potential changes in monetary returns taking into account the possible variability of grain yields and prices, using mean-Gini stochastic dominance (MGSD). A yield response model was estimated using simulated data from the crop model. Weather variables are included. Typically, temperature and precipitation are the only weather variables included in these models. However, solar radiation is another important climate factor for plant growth and development and were included in the yield response model.

  7. Portable Aerosol Contaminant Extractor

    DOE Patents [OSTI]

    Carlson, Duane C.; DeGange, John J.; Cable-Dunlap, Paula

    2005-11-15

    A compact, portable, aerosol contaminant extractor having ionization and collection sections through which ambient air may be drawn at a nominal rate so that aerosol particles ionized in the ionization section may be collected on charged plate in the collection section, the charged plate being readily removed for analyses of the particles collected thereon.

  8. Implementing marine organic aerosols into the GEOS-Chem model

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Gantt, B.; Johnson, M. S.; Crippa, M.; Prévôt, A. S. H.; Meskhidze, N.

    2015-03-17

    Marine-sourced organic aerosols (MOAs) have been shown to play an important role in tropospheric chemistry by impacting surface mass, cloud condensation nuclei, and ice nuclei concentrations over remote marine and coastal regions. In this work, an online marine primary organic aerosol emission parameterization, designed to be used for both global and regional models, was implemented into the GEOS-Chem (Global Earth Observing System Chemistry) model. The implemented emission scheme improved the large underprediction of organic aerosol concentrations in clean marine regions (normalized mean bias decreases from -79% when using the default settings to -12% when marine organic aerosols are added). Modelmore » predictions were also in good agreement (correlation coefficient of 0.62 and normalized mean bias of -36%) with hourly surface concentrations of MOAs observed during the summertime at an inland site near Paris, France. Our study shows that MOAs have weaker coastal-to-inland concentration gradients than sea-salt aerosols, leading to several inland European cities having >10% of their surface submicron organic aerosol mass concentration with a marine source. The addition of MOA tracers to GEOS-Chem enabled us to identify the regions with large contributions of freshly emitted or aged aerosol having distinct physicochemical properties, potentially indicating optimal locations for future field studies.« less

  9. ARM: 10-minute Raman Lidar: aerosol extinction profiles and aerosol optical thickness, from first Ferrare algorithm

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Chitra Sivaraman; Connor Flynn

    1998-03-01

    10-minute Raman Lidar: aerosol extinction profiles and aerosol optical thickness, from first Ferrare algorithm

  10. ARM: 1-minute Raman Lidar: aerosol extinction profiles and aerosol optical thickness, from first Ferrare algorithm

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Chitra Sivaraman; Connor Flynn

    2004-10-01

    1-minute Raman Lidar: aerosol extinction profiles and aerosol optical thickness, from first Ferrare algorithm

  11. ARM: 10-minute Raman Lidar: aerosol extinction profiles and aerosol optical thickness, from first Ferrare algorithm

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Chitra Sivaraman; Connor Flynn

    10-minute Raman Lidar: aerosol extinction profiles and aerosol optical thickness, from first Ferrare algorithm

  12. ARM: 1-minute Raman Lidar: aerosol extinction profiles and aerosol optical thickness, from first Ferrare algorithm

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Chitra Sivaraman; Connor Flynn

    1-minute Raman Lidar: aerosol extinction profiles and aerosol optical thickness, from first Ferrare algorithm

  13. Prediction of global solar irradiance based on time series analysis: Application to solar thermal power plants energy production planning

    SciTech Connect (OSTI)

    Martin, Luis; Marchante, Ruth; Cony, Marco; Zarzalejo, Luis F.; Polo, Jesus; Navarro, Ana

    2010-10-15

    Due to strong increase of solar power generation, the predictions of incoming solar energy are acquiring more importance. Photovoltaic and solar thermal are the main sources of electricity generation from solar energy. In the case of solar thermal energy plants with storage energy system, its management and operation need reliable predictions of solar irradiance with the same temporal resolution as the temporal capacity of the back-up system. These plants can work like a conventional power plant and compete in the energy stock market avoiding intermittence in electricity production. This work presents a comparisons of statistical models based on time series applied to predict half daily values of global solar irradiance with a temporal horizon of 3 days. Half daily values consist of accumulated hourly global solar irradiance from solar raise to solar noon and from noon until dawn for each day. The dataset of ground solar radiation used belongs to stations of Spanish National Weather Service (AEMet). The models tested are autoregressive, neural networks and fuzzy logic models. Due to the fact that half daily solar irradiance time series is non-stationary, it has been necessary to transform it to two new stationary variables (clearness index and lost component) which are used as input of the predictive models. Improvement in terms of RMSD of the models essayed is compared against the model based on persistence. The validation process shows that all models essayed improve persistence. The best approach to forecast half daily values of solar irradiance is neural network models with lost component as input, except Lerida station where models based on clearness index have less uncertainty because this magnitude has a linear behaviour and it is easier to simulate by models. (author)

  14. Biogenic Aerosols-Effects on Clouds and Climate (BAECC) Final Campaign

    Office of Scientific and Technical Information (OSTI)

    Summary (Technical Report) | SciTech Connect Biogenic Aerosols-Effects on Clouds and Climate (BAECC) Final Campaign Summary Citation Details In-Document Search Title: Biogenic Aerosols-Effects on Clouds and Climate (BAECC) Final Campaign Summary Atmospheric aerosol particles impact human health in urban environments, while on regional and global scales they can affect climate patterns, the hydrological cycle, and the intensity of radiation that reaches the Earth's surface. In spite of recent

  15. Black carbon contribution to global warming

    SciTech Connect (OSTI)

    Chylek, P.; Johnson, B.; Kou, L.; Wong, J.

    1996-12-31

    Before the onset of industrial revolution the only important source of black carbon in the atmosphere was biomass burning. Today, black carbon production is divided between the biomass and fossil fuel burning. Black carbon is a major agent responsible for absorption of solar radiation by atmospheric aerosols. Thus black carbon makes other aerosols less efficient in their role of reflecting solar radiation and cooling the earth-atmosphere system. Black carbon also contributes to the absorption of solar radiation by clouds and snow cover. The authors present the results of black carbon concentrations measurements in the atmosphere, in cloud water, in rain and snow melt water collected during the 1992--1996 time period over the southern Nova Scotia. Their results are put into the global and historical perspective by comparing them with the compilation of past measurements at diverse locations and with their measurements of black carbon concentrations in the Greenland and Antarctic ice cores. Black carbon contribution to the global warming is estimated, and compared to the carbon dioxide warming, using the radiative forcing caused by the black carbon at the top of the atmosphere.

  16. ARM - Measurement - Aerosol absorption

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    absorption ARM Data Discovery Browse Data Comments? We would love to hear from you Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Aerosol absorption The...

  17. Improvement in Clouds and the Earth's Radiant Energy System/Surface and Atmosphere Radiation Budget Dust Aerosol Properties, Effects on Surface Validation of Clouds and Radiative Swath

    SciTech Connect (OSTI)

    Rutan, D.; Rose, F.; Charlock, T.P.

    2005-03-18

    Within the Clouds and the Earth's Radiant Energy System (CERES) science team (Wielicki et al. 1996), the Surface and Atmospheric Radiation Budget (SARB) group is tasked with calculating vertical profiles of heating rates, globally, and continuously, beneath CERES footprint observations of Top of Atmosphere (TOA) fluxes. This is accomplished using a fast radiative transfer code originally developed by Qiang Fu and Kuo-Nan Liou (Fu and Liou 1993) and subsequently highly modified by the SARB team. Details on the code and its inputs can be found in Kato et al. (2005) and Rose and Charlock (2002). Among the many required inputs is characterization of the vertical column profile of aerosols beneath each footprint. To do this SARB combines aerosol optical depth information from the moderate-resolution imaging spectroradiometer (MODIS) instrument along with aerosol constituents specified by the Model for Atmosphere and Chemical Transport (MATCH) of Collins et al. (2001), and aerosol properties (e.g. single scatter albedo and asymmetry parameter) from Tegen and Lacis (1996) and OPAC (Hess et al. 1998). The publicly available files that include these flux profiles, called the Clouds and Radiative Swath (CRS) data product, available from the Langley Atmospheric Sciences Data Center (http://eosweb.larc.nasa.gov/). As various versions of the code are completed, publishable results are named ''Editions.'' After CRS Edition 2A was finalized it was found that dust aerosols were too absorptive. Dust aerosols have subsequently been modified using a new set of properties developed by Andy Lacis and results have been released in CRS Edition 2B. This paper discusses the effects of changing desert dust aerosol properties, which can be significant for the radiation budget in mid ocean, a few thousand kilometers from the source regions. Resulting changes are validated via comparison of surface observed fluxes from the Saudi Solar Village surface site (Myers et al. 1999), and the E13 site at the Atmospheric Radiation Measurement (ARM), Southern Great Plains (SGP) central facility.

  18. Monodisperse aerosol generator

    DOE Patents [OSTI]

    Ortiz, Lawrence W.; Soderholm, Sidney C.

    1990-01-01

    An aerosol generator is described which is capable of producing a monodisperse aerosol within narrow limits utilizing an aqueous solution capable of providing a high population of seed nuclei and an organic solution having a low vapor pressure. The two solutions are cold nebulized, mixed, vaporized, and cooled. During cooling, particles of the organic vapor condense onto the excess seed nuclei, and grow to a uniform particle size.

  19. Implementing marine organic aerosols into the GEOS-Chem model

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Gantt, B.; Johnson, M. S.; Crippa, M.; Prévôt, A. S. H.; Meskhidze, N.

    2014-09-09

    Marine organic aerosols (MOA) have been shown to play an important role in tropospheric chemistry by impacting surface mass, cloud condensation nuclei, and ice nuclei concentrations over remote marine and coastal regions. In this work, an online marine primary organic aerosol emission parameterization, designed to be used for both global and regional models, was implemented into the GEOS-Chem model. The implemented emission scheme improved the large underprediction of organic aerosol concentrations in clean marine regions (normalized mean bias decreases from -79% when using the default settings to -12% when marine organic aerosols are added). Model predictions were also in goodmore » agreement (correlation coefficient of 0.62 and normalized mean bias of -36%) with hourly surface concentrations of MOA observed during the summertime at an inland site near Paris, France. Our study shows that MOA have weaker coastal-to-inland concentration gradients than sea-salt aerosols, leading to several inland European cities having > 10% of their surface submicron organic aerosol mass concentration with a marine source. The addition of MOA tracers to GEOS-Chem enabled us to identify the regions with large contributions of freshly-emitted or aged aerosol having distinct physicochemical properties, potentially indicating optimal locations for future field studies.« less

  20. Limited effect of anthropogenic nitrogen oxides on Secondary Organic Aerosol formation

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Zheng, Y.; Unger, N.; Hodzic, A.; Emmons, L.; Knote, C.; Tilmes, S.; Lamarque, J.-F.; Yu, P.

    2015-08-28

    Globally, secondary organic aerosol (SOA) is mostly formed from emissions of biogenic volatile organic compounds (VOCs) by vegetation, but can be modified by human activities as demonstrated in recent research. Specifically, nitrogen oxides (NOx = NO + NO2) have been shown to play a critical role in the chemical formation of low volatility compounds. We have updated the SOA scheme in the global NCAR Community Atmospheric Model version 4 with chemistry (CAM4-chem) by implementing a 4-product Volatility Basis Set (VBS) scheme, including NOx-dependent SOA yields and aging parameterizations. The predicted organic aerosol amounts capture both the magnitude and distribution ofmore » US surface annual mean measurements from the Interagency Monitoring of Protected Visual Environments (IMPROVE) network by 50 %, and the simulated vertical profiles are within a factor of two compared to Aerosol Mass Spectrometer (AMS) measurements from 13 aircraft-based field campaigns across different region and seasons. We then perform sensitivity experiments to examine how the SOA loading responds to a 50 % reduction in anthropogenic nitric oxide (NO) emissions in different regions. We find limited SOA reductions of 0.9 to 5.6, 6.4 to 12.0 and 0.9 to 2.8 % for global, the southeast US and the Amazon NOx perturbations, respectively. The fact that SOA formation is almost unaffected by changes in NOx can be largely attributed to buffering in chemical pathways (low- and high-NOx pathways, O3 versus NO3-initiated oxidation) and to offsetting tendencies in the biogenic versus anthropogenic SOA responses.« less

  1. ARM - Field Campaign - In-situ Aerosol Profiles (Cessna Aerosol...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    would love to hear from you Send us a note below or call us at 1-888-ARM-DATA. Send Campaign : In-situ Aerosol Profiles (Cessna Aerosol Flights) 2000.03.01 - 2007.10.31 Lead...

  2. Global Renewable Power International Global RPI | Open Energy...

    Open Energy Info (EERE)

    to: navigation, search Name: Global Renewable Power International (Global RPI) Place: Spain Sector: Wind energy Product: Spain-based developer of wind projects in Poland, Croatia...

  3. FY 2011 Third Quarter Report Estimate of Historical Aerosol Direct and Indirect Effects

    SciTech Connect (OSTI)

    Koch, D

    2011-06-22

    The global and annual mean aerosol direct and indirect effects estimated from Community Earth System Model (CESM) simulations are -0.06 W m-2 and -1.39 W m-2, respectively.

  4. Perihelion Global | Open Energy Information

    Open Energy Info (EERE)

    Perihelion Global Jump to: navigation, search Name: Perihelion Global Place: Port Jefferson, New York Zip: 11776 Product: A company focused on the acquisition, development and...

  5. Regional Climate Effects of Aerosols Over China: Modeling and Observation

    SciTech Connect (OSTI)

    Qian, Yun; Leung, Lai R.; Ghan, Steven J.; Giorgi, Filippo

    2003-09-01

    We present regional simulations of aerosol properties, direct radiative forcing and aerosol climatic effects over China, and compare the simulations with observed aerosol characteristics and climatic data over the region. The climate simulations are performed with a regional climate model, which is shown to capture the spatial distribution and seasonal pattern of temperature and precipitation. Aerosol concentrations are obtained from a global tracer-transport model and are provided to the regional model for the calculation of radiative forcing. Different aerosols are included: sulfate, organic carbon, black carbon, mineral dust, and sea salt and MSA particles. Generally, the aerosol optical depth is well simulated in both magnitude and spatial distribution. The direct radiative forcing of the aerosol is in the range of –1 to –14 W m-2 in autumn and summer and -1 to –9 W m-2 in spring and winter, with substantial spatial variability at the regional scale. A strong maximum in aerosol optical depth and negative radiative forcing is found over the Sichuan Basin. The negative radiative forcing of aerosol induces a surface cooling in the range of –0.6 to –1.2oC in autumn and winter, –0.3 to –0.6oC in spring and 0.0 to –0.9oC in summer throughout East China. The aerosol-induced cooling is mainly due to a decrease in day-time maximum temperature. The cooling is maximum and is statistically significant over the Sichuan Basin. The effect of aerosol on precipitation is not evident in our simulations. The temporal and spatial patterns of the temperature trends observed in the second half of the twentieth century, including different trends for daily maximum and minimum temperature, are at least qualitatively consistent with the simulated aerosol-induced cooling over the Sichuan Basin and East China. This result supports the hypothesis that the observed temperature trends during the latter decades of the twentieth century, especially the cooling trends over the Sichuan Basin and some parts of East China, are at least partly related to the cooling induced by increasing atmospheric aerosol loadings over the region.

  6. ARM - Measurement - Aerosol effective radius

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    would love to hear from you Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Aerosol effective radius Aerosol effective radius is the ratio of the third and...

  7. Cloud/Aerosol Parameterizations: Application and Improvement of General Circulation Models

    SciTech Connect (OSTI)

    Penner, Joyce

    2012-06-30

    One of the biggest uncertainties associated with climate models and climate forcing is the treatment of aerosols and their effects on clouds. The effect of aerosols on clouds can be divided into two components: The first indirect effect is the forcing associated with increases in droplet concentrations; the second indirect effect is the forcing associated with changes in liquid water path, cloud morphology, and cloud lifetime. Both are highly uncertain. This project applied a cloud-resolving model to understand the response of clouds under a variety of conditions to changes in aerosols. These responses are categorized according to the large-scale meteorological conditions that lead to the response. Meteorological conditions were sampled from various fields, which, together with a global aerosol model determination of the change in aerosols from present day to pre-industrial conditions, was used to determine a first order estimate of the response of global cloud fields to changes in aerosols. The response of the clouds in the NCAR CAM3 GCM coupled to our global aerosol model were tested by examining whether the response is similar to that of the cloud resolving model and methods for improving the representation of clouds and cloud/aerosol interactions were examined.

  8. Science Plan Biogenic Aerosols – Effects on Clouds and Climate (BAECC)

    SciTech Connect (OSTI)

    Petäjä, T

    2013-12-01

    Atmospheric aerosol particles impact human health in urban environments, while on regional and global scales they can affect climate patterns, the hydrological cycle, and the intensity of radiation that reaches the Earth’s surface. In spite of recent advances in the understanding of aerosol formation processes and the links between aerosol dynamics and biosphere-atmosphere-climate interactions, great challenges remain in the analysis of related processes on a global scale. Boreal forests, situated in a circumpolar belt in the northern latitudes throughout the United States, Canada, Russia and Scandinavia, are among the most active areas of atmospheric aerosol formation among all biomes. The formation of aerosol particles and their growth to the sizes of cloud condensation nuclei in these areas are associated with biogenic volatile organic emissions from vegetation and soil.

  9. Highly stable aerosol generator

    DOE Patents [OSTI]

    DeFord, H.S.; Clark, M.L.

    1981-11-03

    An improved compressed air nebulizer has been developed such that a uniform aerosol particle size and concentration may be produced over long time periods. This result is achieved by applying a vacuum pressure to the makeup assembly and by use of a vent tube between the atmosphere and the makeup solution. By applying appropriate vacuum pressures to the makeup solution container and by proper positioning of the vent tube, a constant level of aspirating solution may be maintained within the aspirating assembly with aspirating solution continuously replaced from the makeup solution supply. This device may also be adapted to have a plurality of aerosol generators and only one central makeup assembly. 2 figs.

  10. Highly stable aerosol generator

    DOE Patents [OSTI]

    DeFord, Henry S.; Clark, Mark L.

    1981-01-01

    An improved compressed air nebulizer has been developed such that a uniform aerosol particle size and concentration may be produced over long time periods. This result is achieved by applying a vacuum pressure to the makeup assembly and by use of a vent tube between the atmosphere and the makeup solution. By applying appropriate vacuum pressures to the makeup solution container and by proper positioning of the vent tube, a constant level of aspirating solution may be maintained within the aspirating assembly with aspirating solution continuously replaced from the makeup solution supply. This device may also be adapted to have a plurality of aerosol generators and only one central makeup assembly.

  11. Investigating ice nucleation in cirrus clouds with an aerosol-enabled Multiscale Modeling Framework

    SciTech Connect (OSTI)

    Zhang, Chengzhu; Wang, Minghuai; Morrison, H.; Somerville, Richard C.; Zhang, Kai; Liu, Xiaohong; Li, J-L F.

    2014-11-06

    In this study, an aerosol-dependent ice nucleation scheme [Liu and Penner, 2005] has been implemented in an aerosol-enabled multi-scale modeling framework (PNNL MMF) to study ice formation in upper troposphere cirrus clouds through both homogeneous and heterogeneous nucleation. The MMF model represents cloud scale processes by embedding a cloud-resolving model (CRM) within each vertical column of a GCM grid. By explicitly linking ice nucleation to aerosol number concentration, CRM-scale temperature, relative humidity and vertical velocity, the new MMF model simulates the persistent high ice supersaturation and low ice number concentration (10 to 100/L) at cirrus temperatures. The low ice number is attributed to the dominance of heterogeneous nucleation in ice formation. The new model simulates the observed shift of the ice supersaturation PDF towards higher values at low temperatures following homogeneous nucleation threshold. The MMF models predict a higher frequency of midlatitude supersaturation in the Southern hemisphere and winter hemisphere, which is consistent with previous satellite and in-situ observations. It is shown that compared to a conventional GCM, the MMF is a more powerful model to emulate parameters that evolve over short time scales such as supersaturation. Sensitivity tests suggest that the simulated global distribution of ice clouds is sensitive to the ice nucleation schemes and the distribution of sulfate and dust aerosols. Simulations are also performed to test empirical parameters related to auto-conversion of ice crystals to snow. Results show that with a value of 250 ?m for the critical diameter, Dcs, that distinguishes ice crystals from snow, the model can produce good agreement to the satellite retrieved products in terms of cloud ice water path and ice water content, while the total ice water is not sensitive to the specification of Dcs value.

  12. Investigating ice nucleation in cirrus clouds with an aerosol-enabled Multiscale Modeling Framework

    SciTech Connect (OSTI)

    Zhang, Chengzhu; Wang, Minghuai; Morrison, H.; Somerville, Richard C.; Zhang, Kai; Liu, Xiaohong; Li, J-L F.

    2014-12-01

    In this study, an aerosol-dependent ice nucleation scheme [Liu and Penner, 2005] has been implemented in an aerosol-enabled multi-scale modeling framework (PNNL MMF) to study ice formation in upper troposphere cirrus clouds through both homogeneous and heterogeneous nucleation. The MMF model represents cloud scale processes by embedding a cloud-resolving model (CRM) within each vertical column of a GCM grid. By explicitly linking ice nucleation to aerosol number concentration, CRM-scale temperature, relative humidity and vertical velocity, the new MMF model simulates the persistent high ice supersaturation and low ice number concentration (10 to 100/L) at cirrus temperatures. The low ice number is attributed to the dominance of heterogeneous nucleation in ice formation. The new model simulates the observed shift of the ice supersaturation PDF towards higher values at low temperatures following homogeneous nucleation threshold. The MMF models predict a higher frequency of midlatitude supersaturation in the Southern hemisphere and winter hemisphere, which is consistent with previous satellite and in-situ observations. It is shown that compared to a conventional GCM, the MMF is a more powerful model to emulate parameters that evolve over short time scales such as supersaturation. Sensitivity tests suggest that the simulated global distribution of ice clouds is sensitive to the ice nucleation schemes and the distribution of sulfate and dust aerosols. Simulations are also performed to test empirical parameters related to auto-conversion of ice crystals to snow. Results show that with a value of 250 ?m for the critical diameter, Dcs, that distinguishes ice crystals from snow, the model can produce good agreement to the satellite retrieved products in terms of cloud ice water path and ice water content, while the total ice water is not sensitive to the specification of Dcs value.

  13. Investigating ice nucleation in cirrus clouds with an aerosol-enabled Multiscale Modeling Framework

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Zhang, Chengzhu; Wang, Minghuai; Morrison, H.; Somerville, Richard C.; Zhang, Kai; Liu, Xiaohong; Li, J-L F.

    2014-11-06

    In this study, an aerosol-dependent ice nucleation scheme [Liu and Penner, 2005] has been implemented in an aerosol-enabled multi-scale modeling framework (PNNL MMF) to study ice formation in upper troposphere cirrus clouds through both homogeneous and heterogeneous nucleation. The MMF model represents cloud scale processes by embedding a cloud-resolving model (CRM) within each vertical column of a GCM grid. By explicitly linking ice nucleation to aerosol number concentration, CRM-scale temperature, relative humidity and vertical velocity, the new MMF model simulates the persistent high ice supersaturation and low ice number concentration (10 to 100/L) at cirrus temperatures. The low ice numbermore » is attributed to the dominance of heterogeneous nucleation in ice formation. The new model simulates the observed shift of the ice supersaturation PDF towards higher values at low temperatures following homogeneous nucleation threshold. The MMF models predict a higher frequency of midlatitude supersaturation in the Southern hemisphere and winter hemisphere, which is consistent with previous satellite and in-situ observations. It is shown that compared to a conventional GCM, the MMF is a more powerful model to emulate parameters that evolve over short time scales such as supersaturation. Sensitivity tests suggest that the simulated global distribution of ice clouds is sensitive to the ice nucleation schemes and the distribution of sulfate and dust aerosols. Simulations are also performed to test empirical parameters related to auto-conversion of ice crystals to snow. Results show that with a value of 250 μm for the critical diameter, Dcs, that distinguishes ice crystals from snow, the model can produce good agreement to the satellite retrieved products in terms of cloud ice water path and ice water content, while the total ice water is not sensitive to the specification of Dcs value.« less

  14. Quantifying Aerosol Direct Effects from Broadband Irradiance and Spectral Aerosol Optical Depth Observations

    SciTech Connect (OSTI)

    Creekmore, Torreon N.; Joseph, Everette; Long, Charles N.; Li, Siwei

    2014-05-16

    We outline a methodology using broadband and spectral irradiances to quantify aerosol direct effects on the surface diffuse shortwave (SW) irradiance. Best Estimate Flux data span a 13 year timeframe at the Department of Energy Atmospheric Radiation Measurement Program’s Southern Great Plains (SGP) site. Screened clear-sky irradiances and aerosol optical depth (AOD), for solar zenith angles ≤ 65°, are used to estimate clear-sky diffuse irradiances. We validate against detected clear-sky observations from SGP’s Basic Radiation System (BRS). BRS diffuse irradiances were in accordance with estimates, producing a root-mean-square error and mean bias errors of 4.0 W/m2 and -1.4 W/m2, respectively. Absolute differences show 99% of estimates within ±10 W/m2 (10%) of the mean BRS observations. Clear-sky diffuse estimates are used to derive quantitative estimates of aerosol radiative effects, represented as the aerosol diffuse irradiance (ADI). ADI is the contribution of diffuse SW to global SW, attributable to scattering of atmospheric transmission by natural plus anthropogenic aerosols. Estimated slope for the ADI as a function of AOD indicates an increase of ~22 W/m2 in diffuse SW for every 0.1 increase in AOD. Such significant increases in the diffuse fraction could possibly increase photosynthesis. Annual mean ADI is 28.2 W/m2, and heavy aerosol loading at SGP provides up to a maximum increase of 120 W/m2 in diffuse SW over background conditions. With regard to seasonal variation, the mean diffuse forcings are 17.2, 33.3, 39.0, and 23.6 W/m2 for winter, spring, summer, and fall, respectively.

  15. Laboratory Experiments and Instrument Development for the Study of Atmospheric Aerosols

    SciTech Connect (OSTI)

    Davidovits, Paul

    2011-12-10

    Soot particles are generated by incomplete combustion of fossil and biomass fuels. Through direct effects clear air aerosols containing black carbon (BC) such as soot aerosols, absorb incoming light heating the atmosphere, while most other aerosols scatter light and produce cooling. Even though BC represents only 1-2% of the total annual emissions of particulate mass to the atmosphere, it has been estimated that the direct radiative effect of BC is the second-most important contributor to global warming after absorption by CO2. Ongoing studies continue to underscore the climate forcing importance of black carbon. However, estimates of the radiative effects of black carbon on climate remain highly uncertain due to the complexity of particles containing black carbon. Quantitative measurement of BC is challenging because BC often occurs in highly non-spherical soot particles of complex morphology. Freshly emitted soot particles are typically fractal hydrophobic aggregates. The aggregates consist of black carbon spherules with diameters typically in the range of about 15-40 nm, and they are usually coated by adsorbed polyaromatic hydrocarbons (PAHs) produced during combustion. Diesel-generated soot particles are often emitted with an organic coating composed primarily of lubricating oil and unburned fuel, as well as well as PAH compounds. Sulfuric acid has also been detected in diesel and aircraft-emitted soot particles. In the course of aging, these particle coatings may be substantially altered by chemical reactions and/or the deposition of other materials. Such processes transform the optical and CCN properties of the soot aerosols in ways that are not yet well understood. Our work over the past seven years consisted of laboratory research, instrument development and characterization, and field studies with the central focus of improving our understanding of the black carbon aerosol climate impacts. During the sixth year as well as during this seventh year (no-cost extension period) of our grant, we extended our studies to perform experiments on the controlled production and characterization of secondary organic aerosol.

  16. A Physically Based Framework for Modelling the Organic Fractionation of Sea Spray Aerosol from Bubble Film Langmuir Equilibria

    SciTech Connect (OSTI)

    Burrows, Susannah M.; Ogunro, O.; Frossard, Amanda; Russell, Lynn M.; Rasch, Philip J.; Elliott, S.

    2014-12-19

    The presence of a large fraction of organic matter in primary sea spray aerosol (SSA) can strongly affect its cloud condensation nuclei activity and interactions with marine clouds. Global climate models require new parameterizations of the SSA composition in order to improve the representation of these processes. Existing proposals for such a parameterization use remotely-sensed chlorophyll-a concentrations as a proxy for the biogenic contribution to the aerosol. However, both observations and theoretical considerations suggest that existing relationships with chlorophyll-a, derived from observations at only a few locations, may not be representative for all ocean regions. We introduce a novel framework for parameterizing the fractionation of marine organic matter into SSA based on a competitive Langmuir adsorption equilibrium at bubble surfaces. Marine organic matter is partitioned into classes with differing molecular weights, surface excesses, and Langmuir adsorption parameters. The classes include a lipid-like mixture associated with labile dissolved organic carbon (DOC), a polysaccharide-like mixture associated primarily with semi-labile DOC, a protein-like mixture with concentrations intermediate between lipids and polysaccharides, a processed mixture associated with recalcitrant surface DOC, and a deep abyssal humic-like mixture. Box model calculations have been performed for several cases of organic adsorption to illustrate the underlying concepts. We then apply the framework to output from a global marine biogeochemistry model, by partitioning total dissolved organic carbon into several classes of macromolecule. Each class is represented by model compounds with physical and chemical properties based on existing laboratory data. This allows us to globally map the predicted organic mass fraction of the nascent submicron sea spray aerosol. Predicted relationships between chlorophyll-\\textit{a} and organic fraction are similar to existing empirical parameterizations, but can vary between biologically productive and non-productive regions, and seasonally within a given region. Major uncertainties include the bubble film thickness at bursting and the variability of organic surfactant activity in the ocean, which is poorly constrained. In addition, marine colloids and cooperative adsorption of polysaccharides may make important contributions to the aerosol, but are not included here. This organic fractionation framework is an initial step towards a closer linking of ocean biogeochemistry and aerosol chemical composition in Earth system models. Future work should focus on improving constraints on model parameters through new laboratory experiments or through empirical fitting to observed relationships in the real ocean and atmosphere, as well as on atmospheric implications of the variable composition of organic matter in sea spray.

  17. Global and regional evolution of short-lived radiatively-active gases and

    Office of Scientific and Technical Information (OSTI)

    aerosols in the Representative Concentration Pathways (Journal Article) | SciTech Connect Global and regional evolution of short-lived radiatively-active gases and aerosols in the Representative Concentration Pathways Citation Details In-Document Search Title: Global and regional evolution of short-lived radiatively-active gases and aerosols in the Representative Concentration Pathways In this paper, we discuss the results of 2000-2100 simulations with a chemistry-climate model, focusing on

  18. Climate Impacts of Atmospheric Sulfate and Black Carbon Aerosols

    SciTech Connect (OSTI)

    Qian, Yun; Song, Qingyuan; Menon, Surabi; Yu, Shaocai; Liu, Shaw C.; Shi, Guangyu; Leung, Lai R.; Luo, Yunfeng

    2008-09-19

    Although the global average surface temperature has increased by about 0.6°C during the last century (IPCC, 2001), some regions such as East Asia, Eastern North America, and Western Europe have cooled rather than warmed during the past decades (Jones, 1988; Qian and Giorgi, 2000). Coherent changes at the regional scale may reflect responses to different climate forcings that need to be understood in order to predict the future net climate response at the global and regional scales under different emission scenarios. Atmospheric aerosols play an important role in global climate change (IPCC 2001). They perturb the earth’s radiative budget directly by scattering and absorbing solar and long wave radiation, and indirectly by changing cloud reflectivity, lifetime, and precipitation efficiency via their role as cloud condensation nuclei. Because aerosols have much shorter lifetime (days to weeks) compared to most greenhouse gases, they tend to concentrate near their emission sources and distribute very unevenly both in time and space. This non-uniform distribution of aerosols, in conjunction with the greenhouse effect, may lead to differential net heating in some areas and net cooling in others (Penner et al. 1994). Sulfate aerosols come mainly from the oxidation of sulfur dioxide (SO2) emitted from fossil fuel burning. Black carbon aerosols are directly emitted during incomplete combustion of biomass, coal, and diesel derived sources. Due to the different optical properties, sulfate and black carbon affect climate in different ways. Because of the massive emissions of sulfur and black carbon that accompany the rapid economic expansions in East Asia, understanding the effects of aerosols on climate is particularly important scientifically and politically in order to develop adaptation and mitigation strategies.

  19. Aerosol specification in single-column CAM5

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Lebassi-Habtezion, B.; Caldwell, P.

    2014-11-17

    The ability to run a global climate model in single-column mode is very useful for testing model improvements because single-column models (SCMs) are inexpensive to run and easy to interpret. A major breakthrough in Version 5 of the Community Atmosphere Model (CAM5) is the inclusion of prognostic aerosol. Unfortunately, this improvement was not coordinated with the SCM version of CAM5 and as a result CAM5-SCM initializes aerosols to zero. In this study we explore the impact of running CAM5-SCM with aerosol initialized to zero (hereafter named Default) and test three potential fixes. The first fix is to use CAM5's prescribedmore » aerosol capability, which specifies aerosols at monthly climatological values. The second method is to prescribe aerosols at observed values. The third approach is to fix droplet and ice crystal numbers at prescribed values. We test our fixes in four different cloud regimes to ensure representativeness: subtropical drizzling stratocumulus (based on the DYCOMS RF02 case study), mixed-phase Arctic stratocumulus (using the MPACE-B case study), tropical shallow convection (using the RICO case study), and summertime mid-latitude continental convection (using the ARM95 case study). Stratiform cloud cases (DYCOMS RF02 and MPACE-B) were found to have a strong dependence on aerosol concentration, while convective cases (RICO and ARM95) were relatively insensitive to aerosol specification. This is perhaps expected because convective schemes in CAM5 do not currently use aerosol information. Adequate liquid water content in the MPACE-B case was only maintained when ice crystal number concentration was specified because the Meyers et al. (1992) deposition/condensation ice nucleation scheme used by CAM5 greatly overpredicts ice nucleation rates, causing clouds to rapidly glaciate. Surprisingly, predicted droplet concentrations for the ARM95 region in both SCM and global runs were around 25 cm−3, which is much lower than observed. This finding suggests that CAM5 has problems capturing aerosol effects in this climate regime.« less

  20. Advancing Models and Evaluation of Cumulus, Climate and Aerosol Interactions

    SciTech Connect (OSTI)

    Gettelman, Andrew

    2015-10-27

    This project was successfully able to meet its’ goals, but faced some serious challenges due to personnel issues. Nonetheless, it was largely successful. The Project Objectives were as follows: 1. Develop a unified representation of stratifom and cumulus cloud microphysics for NCAR/DOE global community models. 2. Examine the effects of aerosols on clouds and their impact on precipitation in stratiform and cumulus clouds. We will also explore the effects of clouds and precipitation on aerosols. 3. Test these new formulations using advanced evaluation techniques and observations and release

  1. Aerosol Observing System (AOS) Handbook

    SciTech Connect (OSTI)

    Jefferson, A

    2011-01-17

    The Aerosol Observing System (AOS) is a suite of in situ surface measurements of aerosol optical and cloud-forming properties. The instruments measure aerosol properties that influence the earths radiative balance. The primary optical measurements are those of the aerosol scattering and absorption coefficients as a function of particle size and radiation wavelength and cloud condensation nuclei (CCN) measurements as a function of percent supersaturation. Additional measurements include those of the particle number concentration and scattering hygroscopic growth. Aerosol optical measurements are useful for calculating parameters used in radiative forcing calculations such as the aerosol single-scattering albedo, asymmetry parameter, mass scattering efficiency, and hygroscopic growth. CCN measurements are important in cloud microphysical models to predict droplet formation.

  2. Ganges Valley Aerosol Experiment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ganges Valley Aerosol Experiment In northeastern India, the fertile land around the Ganges River supports several hundred million people. This river, the largest in India, is fed by monsoon rains and runoff from the nearby Himalayan Mountains. Through an intergovernmental agreement with India, the U.S. Department of Energy's Atmospheric Radiation Measurement (ARM) Climate Research Facility deployed its portable laboratory, the ARM Mobile Facility (AMF), to Nainital, India, in June 2011. During

  3. Cantera Aerosol Dynamics Simulator

    Energy Science and Technology Software Center (OSTI)

    2004-09-01

    The Cantera Aerosol Dynamics Simulator (CADS) package is a general library for aerosol modeling to address aerosol general dynamics, including formation from gas phase reactions, surface chemistry (growth and oxidation), bulk particle chemistry, transport by Brownian diffusion, thermophoresis, and diffusiophoresis with linkage to DSMC studies, and thermal radiative transport. The library is based upon Cantera, a C++ Cal Tech code that handles gas phase species transport, reaction, and thermodynamics. The method uses a discontinuous galerkinmore » formulation for the condensation and coagulation operator that conserves particles, elements, and enthalpy up to round-off error. Both O-D and 1-D time dependent applications have been developed with the library. Multiple species in the solid phase are handled as well. The O-D application, called Tdcads (Time Dependent CADS) is distributed with the library. Tdcads can address both constant volume and constant pressure adiabatic homogeneous problems. An extensive set of sample problems for Tdcads is also provided.« less

  4. ARM Cloud Aerosol Precipitation Experiment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Aerosol Precipitation Experiment a NOAA ship in the Pacific Ocean and on a DOE- sponsored plane over land and sea. These researchers will study: (1) water sources, evolution and structure of atmospheric rivers over the Pacific Ocean (2) long range transport of aerosols over the Pacific Ocean between Hawaii and the U.S. West Coast, and how aerosols interact with atmospheric rivers (3) the point where atmospheric rivers make landfall on the U.S. West Coast, especially how clouds form where

  5. Aerosol Oxidation Speeds Up in Smoggy Air

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Aerosol Oxidation Speeds Up in Smoggy Air Aerosol Oxidation Speeds Up in Smoggy Air Print Wednesday, 17 February 2016 11:37 Organic aerosols (nanometer-sized liquid or solid ...

  6. General circulation model calculations of the direct radiative forcing by anthropogenic sulfate and fossil-fuel soot aerosol

    SciTech Connect (OSTI)

    Haywood, J.M.; Roberts, D.L.; Slingo, A.

    1997-07-01

    A new radiation code within a general circulation model is used to assess the direct solar and thermal radiative forcing by sulfate aerosol of anthropogenic origin and soot aerosol from fossil-fuel burning. The radiative effects of different aerosol profiles, relative humidity parameterizations, chemical compositions, and internal and external mixtures of the two aerosol types are investigated. The contribution to the radiative forcing from cloudy sky regions is found to be negligible for sulfate aerosol; this is in contrast to recent studies where the cloudy sky contribution was estimated using a method in which the spatial correlation between cloud amount and sulfate burden was ignored. However, the radiative forcing due to fossil-fuel soot aerosol is enhanced in cloudy regions if soot aerosol exists within or above the cloud. The global solar radiative forcing due to sulfate aerosol is estimated to be -0.38 W m{sup -2} and the global thermal radiative forcing is estimated to be +0.01 W m{sup -2}. The hemispheric mean radiative forcings vary by only about 10% for reasonable assumptions about the chemical form of the sulfate aerosol and the relative humidity dependence; the uncertainties in the aerosol loading are far more significant. If a soot/sulfate mass ratio of 0.075 is assumed, then the global solar radiative forcing weakens to -0.18 W m{sup -2} for an external mixture and weakens further for an internal mixture. Additionally, the spatial distribution of the radiative forcing shows strong negative/positive forcing contrasts that may influence the dynamical response of the atmosphere. Although these results are extremely sensitive to the adopted soot/sulfate ratio and the assumed vertical profile, they indicate that fossil-fuel soot aerosol may exert a nonnegligible radiative forcing and emphasize the need to consider each anthropogenic aerosol species. 58 refs., 8 figs., 1 tab.

  7. ARM - Measurement - Aerosol optical depth

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Modeling Testbed AOD : Aerosol Optical Depth, derived from atmospheric extinction of solar irradiance AATS : Ames Airborne Tracking Sunphotometer CSPHOT : Cimel Sunphotometer...

  8. ARM: 10-minute TEMPORARY Raman Lidar: aerosol extinction profiles and aerosol optical thickness, from first Ferrare algorithm

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Sivaraman, Chitra; Flynn, Connor

    2010-12-15

    10-minute TEMPORARY Raman Lidar: aerosol extinction profiles and aerosol optical thickness, from first Ferrare algorithm

  9. ARM: 10-minute TEMPORARY Raman Lidar: aerosol extinction profiles and aerosol optical thickness, from first Ferrare algorithm

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Sivaraman, Chitra; Flynn, Connor

    10-minute TEMPORARY Raman Lidar: aerosol extinction profiles and aerosol optical thickness, from first Ferrare algorithm

  10. Composition and Reactions of Atmospheric Aerosol Particles

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Composition and Reactions of Atmospheric Aerosol Particles Print Microscopic aerosol particles in the atmosphere contain carbonaceous components from mineral dust and combustion...

  11. ARM - Campaign Instrument - aerosol-tower-eml

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (AEROSOL-TOWER-EML) Instrument Categories Aerosols Campaigns Remote Cloud Sensing (RCS) Field Evaluation Download Data Southern Great Plains, 1994.04.01 - 1994.05.31...

  12. ARM - Field Campaign - MASRAD - Aerosol Optical Properties

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govCampaignsMASRAD - Aerosol Optical Properties Campaign Links AMF Point Reyes Website ARM Data Discovery Browse Data Related Campaigns MArine Stratus Radiation Aerosol and Drizzle...

  13. Aerosol Oxidation Speeds Up in Smoggy Air

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Aerosol Oxidation Speeds Up in Smoggy Air Print Organic aerosols (nanometer-sized liquid or solid particles suspended in air) are important constituents of the troposphere, and ...

  14. The impact of atmospheric aerosols on trace metal chemistry in open ocean surface seawater 3. Lead

    SciTech Connect (OSTI)

    Maring, H.B.; Duce, R.A. )

    1990-04-15

    Atmospheric aerosols collected at Enewetak Atoll in the tropical North Pacific were exposed to seawater in laboratory experiments to assess the impact of atmospheric aerosols on lead chemistry in surface seawater. The net atmospheric flux of soluble lead to the ocean is between 16 and 32 pmol cm{sup {minus}2}/yr at Enewetak. The stable lead isotopic composition of soluble aerosol lead indicates that it is of anthropogenic origin. Anthropogenic aerosol lead from Central and North America appears to be less soluble and/or to dissolve less rapidly than that from Asia. Dissolved organic matter and possibly lower pH appear to increase the nonaluminosilicate aerosol lead solubility and/or dissolution rate. The isotopic composition of lead in air, seawater and dry deposition suggests that after deposition in the ocean, nonaluminosilicate particulate lead can be reinjected into the atmosphere during sea salt aerosol production.

  15. Distinguishing Aerosol Impacts on Climate Over the Past Century

    SciTech Connect (OSTI)

    Koch, Dorothy; Menon, Surabi; Del Genio, Anthony; Ruedy, Reto; Alienov, Igor; Schmidt, Gavin A.

    2008-08-22

    Aerosol direct (DE), indirect (IE), and black carbon-snow albedo (BAE) effects on climate between 1890 and 1995 are compared using equilibrium aerosol-climate simulations in the Goddard Institute for Space Studies General Circulation Model coupled to a mixed layer ocean. Pairs of control(1890)-perturbation(1995) with successive aerosol effects allow isolation of each effect. The experiments are conducted both with and without concurrent changes in greenhouse gases (GHG's). A new scheme allowing dependence of snow albedo on black carbon snow concentration is introduced. The fixed GHG experiments global surface air temperature (SAT) changed -0.2, -1.0 and +0.2 C from the DE, IE, and BAE. Ice and snow cover increased 1.0% from the IE and decreased 0.3% from the BAE. These changes were a factor of 4 larger in the Arctic. Global cloud cover increased by 0.5% from the IE. Net aerosol cooling effects are about half as large as the GHG warming, and their combined climate effects are smaller than the sum of their individual effects. Increasing GHG's did not affect the IE impact on cloud cover, however they decreased aerosol effects on SAT by 20% and on snow/ice cover by 50%; they also obscure the BAE on snow/ice cover. Arctic snow, ice, cloud, and shortwave forcing changes occur mostly during summer-fall, but SAT, sea level pressure, and long-wave forcing changes occur during winter. An explanation is that aerosols impact the cryosphere during the warm-season but the associated SAT effect is delayed until winter.

  16. Laboratory Experiments and Instrument Intercomparison Studies of Carbonaceous Aerosol Particles

    SciTech Connect (OSTI)

    Davidovits, Paul

    2015-10-20

    Aerosols containing black carbon (and some specific types of organic particulate matter) directly absorb incoming light, heating the atmosphere. In addition, all aerosol particles backscatter solar light, leading to a net-cooling effect. Indirect effects involve hydrophilic aerosols, which serve as cloud condensation nuclei (CCN) that affect cloud cover and cloud stability, impacting both atmospheric radiation balance and precipitation patterns. At night, all clouds produce local warming, but overall clouds exert a net-cooling effect on the Earth. The effect of aerosol radiative forcing on climate may be as large as that of the greenhouse gases, but predominantly opposite in sign and much more uncertain. The uncertainties in the representation of aerosol interactions in climate models makes it problematic to use model projections to guide energy policy. The objective of our program is to reduce the uncertainties in the aerosol radiative forcing in the two areas highlighted in the ASR Science and Program Plan. That is, (1) addressing the direct effect by correlating particle chemistry and morphology with particle optical properties (i.e. absorption, scattering, extinction), and (2) addressing the indirect effect by correlating particle hygroscopicity and CCN activity with particle size, chemistry, and morphology. In this connection we are systematically studying particle formation, oxidation, and the effects of particle coating. The work is specifically focused on carbonaceous particles where the uncertainties in the climate relevant properties are the highest. The ongoing work consists of laboratory experiments and related instrument inter-comparison studies both coordinated with field and modeling studies, with the aim of providing reliable data to represent aerosol processes in climate models. The work is performed in the aerosol laboratory at Boston College. At the center of our laboratory setup are two main sources for the production of aerosol particles: (a) two well-characterized source of soot particles and (b) a flow reactor for controlled OH and/or O3 oxidation of relevant gas phase species to produce well-characterized SOA particles. After formation, the aerosol particles are subjected to physical and chemical processes that simulate aerosol growth and aging. A suite of instruments in our laboratory is used to characterize the physical and chemical properties of aerosol particles before and after processing. The Time of Flight Aerosol Mass Spectrometer (ToF-AMS) together with a Scanning Mobility Particle Sizer (SMPS) measures particle mass, volume, density, composition (including black carbon content), dynamic shape factor, and fractal dimension. The–ToF-AMS was developed at ARI with Boston College participation. About 120 AMS instruments are now in service (including 5 built for DOE laboratories) performing field and laboratory studies world-wide. Other major instruments include a thermal denuder, two Differential Mobility Analyzers (DMA), a Cloud Condensation Nuclei Counter (CCN), a Thermal desorption Aerosol GC/MS (TAG) and the new Soot Particle Aerosol Mass Spectrometer (SP-AMS). Optical instrumentation required for the studies have been brought to our laboratory as part of ongoing and planned collaborative projects with colleagues from DOE, NOAA and university laboratories. Optical instruments that will be utilized include a Photoacoustic Spectrometer (PAS), a Cavity Ring Down Aerosol Extinction Spectrometer (CRD-AES), a Photo Thermal Interferometer (PTI), a new 7-wavelength Aethalometer and a Cavity Attenuated Phase Shift Extinction Monitor (CAPS). These instruments are providing aerosol absorption, extinction and scattering coefficients at a range of atmospherically relevant wavelengths. During the past two years our work has continued along the lines of our original proposal. We report on 12 completed and/or continuing projects conducted during the period 08/14 to 0814/2015. These projects are described in 17 manuscripts published in refereed journals.

  17. The oceanic cycle and global atmospheric budget of carbonyl sulfide

    SciTech Connect (OSTI)

    Weiss, P.S.

    1994-12-31

    A significant portion of stratospheric air chemistry is influenced by the existence of carbonyl sulfide (COS). This ubiquitous sulfur gas represents a major source of sulfur to the stratosphere where it is converted to sulfuric acid aerosol particles. Stratospheric aerosols are climatically important because they scatter incoming solar radiation back to space and are able to increase the catalytic destruction of ozone through gas phase reactions on particle surfaces. COS is primarily formed at the surface of the earth, in both marine and terrestrial environments, and is strongly linked to natural biological processes. However, many gaps in the understanding of the global COS cycle still exist, which has led to a global atmospheric budget that is out of balance by a factor of two or more, and a lack of understanding of how human activity has affected the cycling of this gas. The goal of this study was to focus on COS in the marine environment by investigating production/destruction mechanisms and recalculating the ocean-atmosphere flux.

  18. Impact of aerosol size representation on modeling aerosol-cloud interactions: AEROSOL SIZE REPRESENTATION

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Zhang, Y.; Easter, R. C.; Ghan, S. J.; Abdul-Razzak, H.

    2002-11-07

    We use a 1-D version of a climate-aerosol-chemistry model with both modal and sectional aerosol size representations to evaluate the impact of aerosol size representation on modeling aerosol-cloud interactions in shallow stratiform clouds observed during the 2nd Aerosol Characterization Experiment. Both the modal (with prognostic aerosol number and mass or prognostic aerosol number, surface area and mass, referred to as the Modal-NM and Modal-NSM) and the sectional approaches (with 12 and 36 sections) predict total number and mass for interstitial and activated particles that are generally within several percent of references from a high resolution 108-section approach. The modal approachmore » with prognostic aerosol mass but diagnostic number (referred to as the Modal-M) cannot accurately predict the total particle number and surface areas, with deviations from the references ranging from 7-161%. The particle size distributions are sensitive to size representations, with normalized absolute differences of up to 12% and 37% for the 36- and 12-section approaches, and 30%, 39%, and 179% for the Modal-NSM, Modal-NM, and Modal-M, respectively. For the Modal-NSM and Modal-NM, differences from the references are primarily due to the inherent assumptions and limitations of the modal approach. In particular, they cannot resolve the abrupt size transition between the interstitial and activated aerosol fractions. For the 12- and 36-section approaches, differences are largely due to limitations of the parameterized activation for non-log-normal size distributions, plus the coarse resolution for the 12-section case. Differences are larger both with higher aerosol (i.e., less complete activation) and higher SO2 concentrations (i.e., greater modification of the initial aerosol distribution).« less

  19. Electrospray neutralization process and apparatus for generation of nano-aerosol and nano-structured materials

    DOE Patents [OSTI]

    Bailey, Charles L.; Morozov, Victor; Vsevolodov, Nikolai N.

    2010-08-17

    The claimed invention describes methods and apparatuses for manufacturing nano-aerosols and nano-structured materials based on the neutralization of charged electrosprayed products with oppositely charged electrosprayed products. Electrosprayed products include molecular ions, nano-clusters and nano-fibers. Nano-aerosols can be generated when neutralization occurs in the gas phase. Neutralization of electrospan nano-fibers with molecular ions and charged nano-clusters may result in the formation of fibrous aerosols or free nano-mats. Nano-mats can also be produced on a suitable substrate, forming efficient nano-filters.

  20. The impact of biogenic carbon emissions on aerosol absorption inMexico City

    SciTech Connect (OSTI)

    Marley, N; Gaffney, J; Tackett, M J; Sturchio, N; Hearty, L; Martinez, N; Hardy, K D; Machany-Rivera, A; Guilderson, T P; MacMillan, A; Steelman, K

    2009-02-24

    In order to determine the wavelength dependence of atmospheric aerosol absorption in the Mexico City area, the absorption angstrom exponents (AAEs) were calculated from aerosol absorption measurements at seven wavelengths obtained with a seven-channel aethalometer during two field campaigns, the Mexico City Metropolitan Area study in April 2003 (MCMA 2003) and the Megacity Initiative: Local and Global Research Observations in March 2006 (MILAGRO). The AAEs varied from 0.76 to 1.56 in 2003 and from 0.54 to 1.52 in 2006. The AAE values determined in the afternoon were consistently higher than the corresponding morning values, suggesting the photochemical formation of absorbing secondary organic aerosols (SOA) in the afternoon. The AAE values were compared to stable and radiocarbon isotopic measurements of aerosol samples collected at the same time to determine the sources of the aerosol carbon. The fraction of modern carbon (fM) in the aerosol samples, as determined from {sup 14}C analysis, showed that 70% of the carbonaceous aerosols in Mexico City were from modern sources, indicating a significant impact from biomass burning during both field campaigns. The {sup 13}C/{sup 12}C ratios of the aerosol samples illustrate the significant impact of Yucatan forest fires (C-3 plants) in 2003 and local grass fires (C-4 plants) at site T1 in 2006. A direct comparison of the fM values, stable carbon isotope ratios, and calculated aerosol AAEs suggested that the wavelength dependence of the aerosol absorption was controlled by the biogenically derived aerosol components.

  1. Aerosol reactor production of uniform submicron powders

    DOE Patents [OSTI]

    Flagan, Richard C.; Wu, Jin J.

    1991-02-19

    A method of producing submicron nonagglomerated particles in a single stage reactor includes introducing a reactant or mixture of reactants at one end while varying the temperature along the reactor to initiate reactions at a low rate. As homogeneously small numbers of seed particles generated in the initial section of the reactor progress through the reactor, the reaction is gradually accelerated through programmed increases in temperature along the length of the reactor to promote particle growth by chemical vapor deposition while minimizing agglomerate formation by maintaining a sufficiently low number concentration of particles in the reactor such that coagulation is inhibited within the residence time of particles in the reactor. The maximum temperature and minimum residence time is defined by a combination of temperature and residence time that is necessary to bring the reaction to completion. In one embodiment, electronic grade silane and high purity nitrogen are introduced into the reactor and temperatures of approximately 770.degree. K. to 1550.degree. K. are employed. In another embodiment silane and ammonia are employed at temperatures from 750.degree. K. to 1800.degree. K.

  2. ARM - PI Product - Direct Aerosol Forcing Uncertainty

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    although comparable to uncertainty arising from some individual properties. Data Details Contact Allison Mccomiskey CIRES NOAA allison.mccomiskey@noaa.gov 303-497-6189 NOAA ...

  3. ARM - PI Product - Niamey Aerosol Optical Depths

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    connor.flynn@pnnl.gov (509) 375-2041 PO Box 999, MS K9-24 Richland, WA 99352 US Resource(s) Data Directory ReadMe Site Information NIM Content Time Range 2005.11.01 - 2007.01...

  4. Caused? A Monsoon Example: India Ganges Valley Aerosol Experiment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    issue: What is a Monsoon? How are Monsoons Caused? A Monsoon Example: India Ganges Valley Aerosol Experiment Definitions Activity About ARM: The Atmospheric Radiation Measurement (ARM) Climate Research Facility is a U.S. Department of Energy scientific user facility for the study of global climate change. As part of its outreach program, ARM provides education resources for students, teachers, and communities. www.arm.gov EDUCATION NEWS Monsoons: Bring on the Rain Imagine weeks of hot, dry heat,

  5. ARM - Campaign Instrument - drum-aerosol

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govInstrumentsdrum-aerosol Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Campaign Instrument : Drum Aerosol Sampler (DRUM-AEROSOL) Instrument Categories Aerosols Campaigns Aerosol IOP [ Download Data ] Southern Great Plains, 2003.05.01 - 2003.05.31 Primary Measurements Taken The following measurements are those considered scientifically relevant. Refer to the datastream (netcdf) file headers for the list of all available measurements, including

  6. CO2 Global Solutions International | Open Energy Information

    Open Energy Info (EERE)

    Global Solutions International Jump to: navigation, search Name: CO2 Global Solutions International Place: Madrid, Spain Zip: 28001 Sector: Carbon Product: CO2 Global Solutions is...

  7. Two-Column Aerosol Project

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Column Aerosol Project Tiny particles in the sky known as "aerosols" come in many forms-dust, soot, and sea salt, for example. Depending on the type of aerosol, it can either absorb or reflect sunlight, which in turn can cause either a warming or cooling effect in the atmosphere. But to what extent? The answer to this question is critical for scientists trying to envision what Earth's climate could be like 10, 50, and even 100 years from now. To help find the answer, the Department of

  8. eDPS Aerosol Collection

    SciTech Connect (OSTI)

    Venzie, J.

    2015-10-13

    The eDPS Aerosol Collection project studies the fundamental physics of electrostatic aerosol collection for national security applications. The interpretation of aerosol data requires understanding and correcting for biases introduced from particle genesis through collection and analysis. The research and development undertaken in this project provides the basis for both the statistical correction of existing equipment and techniques; as well as, the development of new collectors and analytical techniques designed to minimize unwanted biases while improving the efficiency of locating and measuring individual particles of interest.

  9. Global Celsius SL | Open Energy Information

    Open Energy Info (EERE)

    search Name: Global Celsius SL Place: Madrid, Spain Sector: Wind energy Product: Spanish wind project developer. References: Global Celsius SL1 This article is a stub. You...

  10. Digilog Global Environmental LLC | Open Energy Information

    Open Energy Info (EERE)

    Digilog Global Environmental LLC Jump to: navigation, search Name: Digilog Global Environmental LLC Place: Chicago, Illinois Zip: 60606 Product: TradeLink is registered as a...

  11. Global Alternative Fuels | Open Energy Information

    Open Energy Info (EERE)

    Alternative Fuels Jump to: navigation, search Name: Global Alternative Fuels Place: El Paso, Texas Zip: 79922 Product: Global Alternative Fuels processes virgin oils (palm,...

  12. Global Power Solutions LLC | Open Energy Information

    Open Energy Info (EERE)

    Global Power Solutions LLC Jump to: navigation, search Name: Global Power Solutions LLC Place: Colorado Zip: CO 80401 Sector: Geothermal energy Product: String representation...

  13. Sunrise Global Solar Energy | Open Energy Information

    Open Energy Info (EERE)

    Global Solar Energy Jump to: navigation, search Name: Sunrise Global Solar Energy Place: Taoyuan County, Taiwan Zip: 330 Sector: Solar Product: Engaged in solar monocrystalline...

  14. Sky Solar Global SA | Open Energy Information

    Open Energy Info (EERE)

    Global SA Jump to: navigation, search Name: Sky Solar Global SA Place: Madrid, Spain Zip: 28046 Product: Project developer, and distributor of Chinese PV modules to Spain and...

  15. Global Climate Change Institute | Open Energy Information

    Open Energy Info (EERE)

    Change Institute Jump to: navigation, search Name: Global Climate Change Institute Place: Tsinghua University, Beijing Municipality, China Zip: 100084 Product: Global Climate...

  16. Eco Fuel Global | Open Energy Information

    Open Energy Info (EERE)

    Fuel Global Jump to: navigation, search Name: Eco-Fuel Global Place: California, California Zip: 94596 Sector: Services Product: California-based environmental engineering and...

  17. Carbon Markets Global Ltd | Open Energy Information

    Open Energy Info (EERE)

    Markets Global Ltd Jump to: navigation, search Name: Carbon Markets Global Ltd Place: London, United Kingdom Zip: NW4 2HT Product: Assist project originators develop and finance...

  18. The Global Carbon Bank | Open Energy Information

    Open Energy Info (EERE)

    Global Carbon Bank Jump to: navigation, search Name: The Global Carbon Bank Place: Houston, Texas Zip: 77025 Sector: Carbon, Services Product: Houston-based provider of advisory...

  19. Global change and the value of biodiversity for new product research. Final project report, September 1, 1995--August 31, 1996

    SciTech Connect (OSTI)

    Simpson, R.D.; Sedjo, R.A.

    1997-06-01

    A number of biologists believe that human activities are causing species extinctions at alarming rates. The only precedents, they claim, are to be found in the mass extinctions associated with a handful of apocalyptic volcanic eruptions and/or meteorite strikes distributed over geological time scales. Slowing the rates of greenhouse gas emissions, natural habitat destruction, and other factors that are believed to be inducing modem extinctions could be very expensive, however. It is natural to ask, then, what is the value of preserving biodiversity. One (although admittedly, among many) argument frequently made is that biodiversity is a source of new industrial, agricultural, and, particularly, pharmaceutical products. Natural organisms, it is argued, are great repositories of genetic information. Wild species, in their struggle to capture prey, escape predators, resist infection, and enhance reproductive success have evolved chemical mechanisms more elaborate and inventive than those synthetic chemists can now create. If these chemical mechanisms could be adapted and refined for human use, they could be of great value. There has, therefore, been considerable interest among natural scientists and conservation advocates in {open_quotes}biodiversity prospecting{close_quotes} the search for new commercial products among naturally occurring organisms-as both a mechanism and an argument for preserving biodiversity. In recent years economists and others have attempted to estimate the value of biodiversity for use in new product development. These studies vary considerably in their data, methods, and estimates. The Simpson, Sedjo and Reid and Polasky and Solow papers differ from previous work in that they focus on what is arguably the economically relevant issue: what is the value of biodiversity on the margin.

  20. Effects of Ocean Ecosystem on Marine Aerosol-Cloud Interaction

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Meskhidze, Nicholas; Nenes, Athanasios

    2010-01-01

    Using smore » atellite data for the surface ocean, aerosol optical depth (AOD), and cloud microphysical parameters, we show that statistically significant positive correlations exist between ocean ecosystem productivity, the abundance of submicron aerosols, and cloud microphysical properties over different parts of the remote oceans. The correlation coefficient for remotely sensed surface chlorophyll a concentration ([Chl- a ]) and liquid cloud effective radii over productive areas of the oceans varies between − 0.2 and − 0.6 . Special attention is given to identifying (and addressing) problems from correlation analysis used in the previous studies that can lead to erroneous conclusions. A new approach (using the difference between retrieved AOD and predicted sea salt aerosol optical depth, AOD diff ) is developed to explore causal links between ocean physical and biological systems and the abundance of cloud condensation nuclei (CCN) in the remote marine atmosphere. We have found that over multiple time periods, 550 nm AOD diff (sensitive to accumulation mode aerosol, which is the prime contributor to CCN) correlates well with [Chl- a ] over the productive waters of the Southern Ocean. Since [Chl- a ] can be used as a proxy of ocean biological productivity, our analysis demonstrates the role of ocean ecology in contributing CCN, thus shaping the microphysical properties of low-level marine clouds.« less

  1. Estimates of global, regional, and national annual CO{sub 2} emissions from fossil-fuel burning, hydraulic cement production, and gas flaring: 1950--1992

    SciTech Connect (OSTI)

    Boden, T.A.; Marland, G.; Andres, R.J.

    1995-12-01

    This document describes the compilation, content, and format of the most comprehensive C0{sub 2}-emissions database currently available. The database includes global, regional, and national annual estimates of C0{sub 2} emissions resulting from fossil-fuel burning, cement manufacturing, and gas flaring in oil fields for 1950--92 as well as the energy production, consumption, and trade data used for these estimates. The methods of Marland and Rotty (1983) are used to calculate these emission estimates. For the first time, the methods and data used to calculate CO, emissions from gas flaring are presented. This C0{sub 2}-emissions database is useful for carbon-cycle research, provides estimates of the rate at which fossil-fuel combustion has released C0{sub 2} to the atmosphere, and offers baseline estimates for those countries compiling 1990 C0{sub 2}-emissions inventories.

  2. ARM Evaluation Product : Droplet Number Concentration Value-Added Product

    Office of Scientific and Technical Information (OSTI)

    (Dataset) | Data Explorer Evaluation Product : Droplet Number Concentration Value-Added Product Title: ARM Evaluation Product : Droplet Number Concentration Value-Added Product Cloud droplet number concentration is an important factor in understanding aerosol-cloud interactions. As aerosol concentration increases, it is expected that droplet number concentration, Nd, will increase and droplet size decrease, for a given liquid water path (Twomey 1977), which will greatly affect cloud albedo

  3. ARM - Measurement - Aerosol backscattered radiation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Aerosol backscattered radiation The scattering of radiant energy into the hemisphere of space bounded by a ...

  4. Method for producing monodisperse aerosols

    DOE Patents [OSTI]

    Ortiz, Lawrence W.; Soderholm, Sidney C.

    1990-01-01

    An aerosol generator is described which is capable of producing a monodisperse aerosol within narrow limits utilizing an aqueous solution capable of providing a high population of seed nuclei and an organic solution having a low vapor pressure. The two solutions are cold nebulized, mixed, vaporized, and cooled. During cooling, particles of the organic vapor condense onto the excess seed nuclei, and grow to a uniform particle size.

  5. ARM Aerosol Working Group Meeting

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Report ARM STM 2008 Norfolk, VA Connor Flynn for B Schmid and AWG Members AWG Instruments * Raman Lidar - SGP * Micropulse Lidars - all sites * Aerosol Sampling - SGP, NSA, AMF - scattering, absorption, number, size distribution, hygroscopicity, CCN, composition (major ions). * In situ Aerosol Profile (Cessna) - scattering, absorption, number, hygroscopicity, * Radiometers: - MFRSR, NIMFR, RSS, Cimel, AERI, SWS AWG-related Field Campaigns * Recent Past: - MASRAD (Marine Stratus Radiation,

  6. Building | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Read More Electric Submersible Pumps (ESPs) Surface More Oil and Gas A technology used in 60% of global oil production today, ESPs extract oil by pumping it to the surface. In ...

  7. The MESSy aerosol submodel MADE3 (v2.0b): description and a box model test

    SciTech Connect (OSTI)

    Kaiser, J. C.; Hendricks, J.; Righi, M.; Riemer, Nicole; Zaveri, Rahul A.; Metzger, S.; Aquila, Valentino

    2014-06-17

    We introduce MADE3 (Modal Aerosol Dynamics for Europe, adapted for global applications, version 3), an aerosol dynamics submodel for application in a global chemistry general circulation model, that builds on the predecessor aerosol submodels MADE and MADE-in. The main new features of MADE3 are the explicit representation of coarse particle interactions with fine particles and gases, and the inclusion of the hydrochloric acid (HCl)/chloride (Cl􀀀) partitioning between the gas and condensed phases. The aerosol size distribution is represented in the new model as a superposition of nine lognormal modes: one for fully soluble particles, one for insoluble particles, and one for mixed particles in each of three size ranges (Aitken, accumulation, and coarse mode size ranges). In order to assess MADE3s performance we compare it to its predecessor MADE and to the much more detailed particle-resolved aerosol model PartMC-MOSAIC in a box model application. MADE3 and MADE results are very similar, except when the aerosol is dominated by sea spray particles. In such cases, Cl􀀀 concentrations are lower in MADE3 than in MADE due to the HCl/Cl􀀀 partitioning. Additionally, the aerosol nitrate concentration is higher in MADE3 due to the uptake on coarse particles. MADE3 and PartMCMOSAIC show substantial differences in the fine particle size distributions (sizes . 2?m) that could be relevant when simulating climate effects on a global scale. Nevertheless, the agreement between MADE3 and PartMC-MOSAIC is very good when it comes to coarse particle size distribution, and also in terms of aerosol composition. Considering these results and the well-established ability of MADE in reproducing observed aerosol loadings and composition, MADE3 seems suitable for application within a global model.

  8. GS Global Biodiesel JV | Open Energy Information

    Open Energy Info (EERE)

    Global Biodiesel JV Jump to: navigation, search Name: GS Global Biodiesel JV Place: Iowa Product: JV between GS AgriFuels and Global Ethanol set-up to develop a plant that will...

  9. ARM: Tandem Differential Mobility Analyzer Aerosol Particle Sizer...

    Office of Scientific and Technical Information (OSTI)

    Subject: 54 Environmental Sciences Aerosol concentration; Aerosol particle size distribution; Hygroscopic growth; Particle number concentration; Particle size distribution Dataset ...

  10. Production

    Broader source: Energy.gov [DOE]

    Algae production R&D focuses on exploring resource use and availability, algal biomass development and improvements, characterizing algal biomass components, and the ecology and engineering of...

  11. ARM - Field Campaign - Fall 1997 Aerosol IOP

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Send Campaign : Fall 1997 Aerosol IOP 1997.09.15 - 1997.10.05 Lead Scientist : Stephen Schwartz For data sets, see below. Summary The Aerosol IOP was highlighted by the...

  12. Production of extremely low volatile organic compounds from biogenic emissions: Measured yields and atmospheric implications

    SciTech Connect (OSTI)

    Jokinen, Tuija; Berndt, Torsten; Makkonen, Risto; Kerminen, Veli-Matti; Junninen, Heikki; Paasonen, Pauli; Stratmann, Frank; Herrmann, Hartmut; Guenther, Alex B.; Worsnop, Douglas R.; Kulmala, M.; Ehn, Mikael K.; Sipila, Mikko

    2015-06-09

    Extremely low volatility organic compounds (ELVOC) are suggested to promote aerosol particle formation and cloud condensation nuclei (CCN) production in the atmosphere. We show that the capability of biogenic VOC (BVOC) to produce ELVOC depends strongly on their chemical structure and relative oxidant levels. BVOC with an endocyclic double bond, representative emissions from, e.g., boreal forests, efficiently produce ELVOC from ozonolysis. Compounds with exocyclic double bonds or acyclic compounds including isoprene, emission representative of the tropics, produce minor quantities of ELVOC, and the role of OH radical oxidation is relatively larger. Implementing these findings into a global modeling framework shows that detailed assessment of ELVOC production pathways is crucial for understanding biogenic secondary organic aerosol and atmospheric CCN formation.

  13. Global climate feedbacks

    SciTech Connect (OSTI)

    Manowitz, B.

    1990-10-01

    The important physical, chemical, and biological events that affect global climate change occur on a mesoscale -- requiring high spatial resolution for their analysis. The Department of Energy has formulated two major initiatives under the US Global Change Program: ARM (Atmospheric Radiation Measurements), and CHAMMP (Computer Hardware Advanced Mathematics and Model Physics). ARM is designed to use ground and air-craft based observations to document profiles of atmospheric composition, clouds, and radiative fluxes. With research and models of important physical processes, ARM will delineate the relationships between trace gases, aerosol and cloud structure, and radiative transfer in the atmosphere, and will improve the parameterization of global circulation models. The present GCMs do not model important feedbacks, including those from clouds, oceans, and land processes. The purpose of this workshop is to identify such potential feedbacks, to evaluate the uncertainties in the feedback processes (and, if possible, to parameterize the feedback processes so that they can be treated in a GCM), and to recommend research programs that will reduce the uncertainties in important feedback processes. Individual reports are processed separately for the data bases.

  14. ARM - Measurement - Aerosol particle size distribution

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AOS : Aerosol Observing System CSPHOT : Cimel Sunphotometer HTDMA : Humidified Tandem Differential Mobility Analyzer SMPS : Scanning mobility particle sizer TDMA : Tandem...

  15. Aerosol Oxidation Speeds Up in Smoggy Air

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Aerosol Oxidation Speeds Up in Smoggy Air Aerosol Oxidation Speeds Up in Smoggy Air Print Wednesday, 17 February 2016 11:37 Organic aerosols (nanometer-sized liquid or solid particles suspended in air) are important constituents of the troposphere, and their chemistry has large-scale impacts on climate, pollution, and health. Accurate predictions of these aerosol impacts require a robust microphysical understanding of all relevant chemical reaction mechanisms and time scales, including those

  16. Aerosol Remote Sealing System - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Aerosol Remote Sealing System Lawrence Berkeley National Laboratory Contact LBL About This Technology Technology Marketing SummaryMark Modera and Francois Remi Carrie from Berkeley National Laboratory have developed a rapid, economical technique to seal duct and other enclosed systems by means of an internally injected aerosol. DescriptionBerkeley National Laboratory's aerosol compound seals holes in enclosed systems and is effective even after bends and junctions. A unique, in situ aerosol

  17. Investigation of warm-cloud microphysics using a multi-component cloud model: Interactive effects of the aerosol spectrum. Master's thesis

    SciTech Connect (OSTI)

    Zahn, S.G.

    1993-12-01

    Clouds, especially low, warm, boundary-layer clouds, play an important role in regulating the earth's climate due to their significant contribution to the global albedo. The radiative effects of individual clouds are controlled largely by cloud microstructure, which is itself sensitive to the concentration and spectral distribution of the atmospheric aerosol. Increases in aerosol particle concentrations from anthropogenic activity could result in increased cloud albedo and global cloudiness, increasing the amount of reflected solar radiation. However, the effects of increased aerosol particle concentrations could be offset by the presence of giant or ultragiant aerosol particles. A one-dimensional, multi-component microphysical cloud model has been used to demonstrate the effects of aerosol particle spectral variations on the microstructure of warm clouds. Simulations performed with this model demonstrate that the introduction of increased concentrations of giant aerosol particles has a destabilizing effect on the cloud microstructure. Also, it is shown that warm-cloud microphysical processes modify the aerosol particle spectrum, favoring the generation of the largest sized particles via the collision-coalescence process. These simulations provide further evidence that the effect of aerosol particles on cloud microstructure must be addressed when considering global climate forecasts.

  18. Production

    Broader source: Energy.gov [DOE]

    Algae production R&D focuses on exploring resource use and availability, algal biomass development and improvements, characterizing algal biomass components, and the ecology and engineering of cultivation systems.

  19. Real time infrared aerosol analyzer

    DOE Patents [OSTI]

    Johnson, Stanley A.; Reedy, Gerald T.; Kumar, Romesh

    1990-01-01

    Apparatus for analyzing aerosols in essentially real time includes a virtual impactor which separates coarse particles from fine and ultrafine particles in an aerosol sample. The coarse and ultrafine particles are captured in PTFE filters, and the fine particles impact onto an internal light reflection element. The composition and quantity of the particles on the PTFE filter and on the internal reflection element are measured by alternately passing infrared light through the filter and the internal light reflection element, and analyzing the light through infrared spectrophotometry to identify the particles in the sample.

  20. Aerosol indirect effects -- general circulation model intercomparison and evaluation with satellite data

    SciTech Connect (OSTI)

    Quaas, Johannes; Ming, Yi; Menon, Surabi; Takemura, Toshihiko; Wang, Minghuai; Penner, Joyce E.; Gettelman, Andrew; Lohmann, Ulrike; Bellouin, Nicolas; Boucher, Olivier; Sayer, Andrew M.; Thomas, Gareth E.; McComiskey, Allison; Feingold, Graham; Hoose, Corinna; Kristjansson, Jon Egill; Liu, Xiaohong; Balkanski, Yves; Donner, Leo J.; Ginoux, Paul A.; Stier, Philip; Feichter, Johann; Sednev, Igor; Bauer, Susanne E.; Koch, Dorothy; Grainger, Roy G.; Kirkevag, Alf; Iversen, Trond; Seland, Oyvind; Easter, Richard; Ghan, Steven J.; Rasch, Philip J.; Morrison, Hugh; Lamarque, Jean-Francois; Iacono, Michael J.; Kinne, Stefan; Schulz, Michael

    2009-04-10

    Aerosol indirect effects continue to constitute one of the most important uncertainties for anthropogenic climate perturbations. Within the international AEROCOM initiative, the representation of aerosol-cloud-radiation interactions in ten different general circulation models (GCMs) is evaluated using three satellite datasets. The focus is on stratiform liquid water clouds since most GCMs do not include ice nucleation effects, and none of the model explicitly parameterizes aerosol effects on convective clouds. We compute statistical relationships between aerosol optical depth (Ta) and various cloud and radiation quantities in a manner that is consistent between the models and the satellite data. It is found that the model-simulated influence of aerosols on cloud droplet number concentration (Nd) compares relatively well to the satellite data at least over the ocean. The relationship between Ta and liquid water path is simulated much too strongly by the models. It is shown that this is partly related to the representation of the second aerosol indirect effect in terms of autoconversion. A positive relationship between total cloud fraction (fcld) and Ta as found in the satellite data is simulated by the majority of the models, albeit less strongly than that in the satellite data in most of them. In a discussion of the hypotheses proposed in the literature to explain the satellite-derived strong fcld - Ta relationship, our results indicate that none can be identified as unique explanation. Relationships similar to the ones found in satellite data between Ta and cloud top temperature or outgoing long-wave radiation (OLR) are simulated by only a few GCMs. The GCMs that simulate a negative OLR - Ta relationship show a strong positive correlation between Ta and fcld The short-wave total aerosol radiative forcing as simulated by the GCMs is strongly influenced by the simulated anthropogenic fraction of Ta, and parameterisation assumptions such as a lower bound on Nd. Nevertheless, the strengths of the statistical relationships are good predictors for the aerosol forcings in the models. An estimate of the total short-wave aerosol forcing inferred from the combination of these predictors for the modelled forcings with the satellite-derived statistical relationships yields a global annual mean value of -1.5+-0.5 Wm-2. An alternative estimate obtained by scaling the simulated clear- and cloudy-sky forcings with estimates of anthropogenic Ta and satellite-retrieved Nd - Ta regression slopes, respectively, yields a global annual mean clear-sky (aerosol direct effect) estimate of -0.4+-0.2 Wm-2 and a cloudy-sky (aerosol indirect effect) estimate of -0.7+-0.5 Wm-2, with a total estimate of -1.2+-0.4 Wm-2.

  1. Hyperspectral Aerosol Optical Depths from TCAP Flights

    SciTech Connect (OSTI)

    Shinozuka, Yohei; Johnson, Roy R.; Flynn, Connor J.; Russell, P. B.; Schmid, Beat; Redemann, Jens; Dunagan, Stephen; Kluzek, Celine D.; Hubbe, John M.; Segal-Rosenheimer, Michal; Livingston, J. M.; Eck, T.; Wagener, Richard; Gregory, L.; Chand, Duli; Berg, Larry K.; Rogers, Ray; Ferrare, R. A.; Hair, John; Hostetler, Chris A.; Burton, S. P.

    2013-11-13

    4STAR (Spectrometer for Sky-Scanning, Sun-Tracking Atmospheric Research), the worlds first hyperspectral airborne tracking sunphotometer, acquired aerosol optical depths (AOD) at 1 Hz during all July 2012 flights of the Two Column Aerosol Project (TCAP). Root-mean square differences from AERONET ground-based observations were 0.01 at wavelengths between 500-1020 nm, 0.02 at 380 and 1640 nm and 0.03 at 440 nm in four clear-sky fly-over events, and similar in ground side-by-side comparisons. Changes in the above-aircraft AOD across 3-km-deep spirals were typically consistent with integrals of coincident in situ (on DOE Gulfstream 1 with 4STAR) and lidar (on NASA B200) extinction measurements within 0.01, 0.03, 0.01, 0.02, 0.02, 0.02 at 355, 450, 532, 550, 700, 1064 nm, respectively, despite atmospheric variations and combined measurement uncertainties. Finer vertical differentials of the 4STAR measurements matched the in situ ambient extinction profile within 14% for one homogeneous column. For the AOD observed between 350-1660 nm, excluding strong water vapor and oxygen absorption bands, estimated uncertainties were ~0.01 and dominated by (then) unpredictable throughput changes, up to +/-0.8%, of the fiber optic rotary joint. The favorable intercomparisons herald 4STARs spatially-resolved high-frequency hyperspectral products as a reliable tool for climate studies and satellite validation.

  2. Global Energy Inc | Open Energy Information

    Open Energy Info (EERE)

    Global Energy Inc Place: Cincinnati, Ohio Zip: 45202-4048 Sector: Hydro, Hydrogen Product: Gasification technology and engineering firm, with activities in hydrogen production and...

  3. Spent fuel sabotage aerosol test program :FY 2005-06 testing and aerosol data summary.

    SciTech Connect (OSTI)

    Gregson, Michael Warren; Brockmann, John E.; Nolte, O. (Fraunhofer institut fur toxikologie und experimentelle Medizin, Germany); Loiseau, O. (Institut de radioprotection et de Surete Nucleaire, France); Koch, W. (Fraunhofer institut fur toxikologie und experimentelle Medizin, Germany); Molecke, Martin Alan; Autrusson, Bruno (Institut de radioprotection et de Surete Nucleaire, France); Pretzsch, Gunter Guido (Gesellschaft fur anlagen- und Reaktorsicherheit, Germany); Billone, M. C. (Argonne National Laboratory, USA); Lucero, Daniel A.; Burtseva, T. (Argonne National Laboratory, USA); Brucher, W (Gesellschaft fur anlagen- und Reaktorsicherheit, Germany); Steyskal, Michele D.

    2006-10-01

    This multinational, multi-phase spent fuel sabotage test program is quantifying the aerosol particles produced when the products of a high energy density device (HEDD) interact with and explosively particulate test rodlets that contain pellets of either surrogate materials or actual spent fuel. This program has been underway for several years. This program provides source-term data that are relevant to some sabotage scenarios in relation to spent fuel transport and storage casks, and associated risk assessments. This document focuses on an updated description of the test program and test components for all work and plans made, or revised, primarily during FY 2005 and about the first two-thirds of FY 2006. It also serves as a program status report as of the end of May 2006. We provide details on the significant findings on aerosol results and observations from the recently completed Phase 2 surrogate material tests using cerium oxide ceramic pellets in test rodlets plus non-radioactive fission product dopants. Results include: respirable fractions produced; amounts, nuclide content, and produced particle size distributions and morphology; status on determination of the spent fuel ratio, SFR (the ratio of respirable particles from real spent fuel/respirables from surrogate spent fuel, measured under closely matched test conditions, in a contained test chamber); and, measurements of enhanced volatile fission product species sorption onto respirable particles. We discuss progress and results for the first three, recently performed Phase 3 tests using depleted uranium oxide, DUO{sub 2}, test rodlets. We will also review the status of preparations and the final Phase 4 tests in this program, using short rodlets containing actual spent fuel from U.S. PWR reactors, with both high- and lower-burnup fuel. These data plus testing results and design are tailored to support and guide, follow-on computer modeling of aerosol dispersal hazards and radiological consequence assessments. This spent fuel sabotage--aerosol test program, performed primarily at Sandia National Laboratories, with support provided by both the U.S. Department of Energy and the Nuclear Regulatory Commission, had significant inputs from, and is strongly supported and coordinated by both the U.S. and international program participants in Germany, France, and the U.K., as part of the international Working Group for Sabotage Concerns of Transport and Storage Casks, WGSTSC.

  4. Aerosol sampling system

    DOE Patents [OSTI]

    Masquelier, Donald A.

    2004-02-10

    A system for sampling air and collecting particulate of a predetermined particle size range. A low pass section has an opening of a preselected size for gathering the air but excluding particles larger than the sample particles. An impactor section is connected to the low pass section and separates the air flow into a bypass air flow that does not contain the sample particles and a product air flow that does contain the sample particles. A wetted-wall cyclone collector, connected to the impactor section, receives the product air flow and traps the sample particles in a liquid.

  5. Aerosol Properties Downwind of Biomass Burns Field Campaign Report

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    6 Aerosol Properties Downwind of Biomass Burns Field Campaign Report April 2016 PR Buseck DISCLAIMER This report was prepared as an account of work sponsored by the U.S. Government. Neither the United States nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not

  6. Aerosol Observing System Greenhouse Gas (AOS GHG) Handbook

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    5 Aerosol Observing System Greenhouse Gas (AOS GHG) Monitor Handbook SC Biraud K Reichl March 2016 DISCLAIMER This report was prepared as an account of work sponsored by the U.S. Government. Neither the United States nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would

  7. Overview of the 2010 Carbonaceous Aerosols and Radiative Effects Study (CARES)

    SciTech Connect (OSTI)

    Zaveri, Rahul A.; Shaw, William J.; Cziczo, D. J.; Schmid, Beat; Ferrare, R.; Alexander, M. L.; Alexandrov, Mikhail; Alvarez, R. J.; Arnott, W. P.; Atkinson, D.; Baidar, Sunil; Banta, Robert M.; Barnard, James C.; Beranek, Josef; Berg, Larry K.; Brechtel, Fred J.; Brewer, W. A.; Cahill, John F.; Cairns, Brian; Cappa, Christopher D.; Chand, Duli; China, Swarup; Comstock, Jennifer M.; Dubey, Manvendra K.; Easter, Richard C.; Erickson, Matthew H.; Fast, Jerome D.; Floerchinger, Cody; Flowers, B. A.; Fortner, Edward; Gaffney, Jeffrey S.; Gilles, Mary K.; Gorkowski, K.; Gustafson, William I.; Gyawali, Madhu S.; Hair, John; Hardesty, Michael; Harworth, J. W.; Herndon, Scott C.; Hiranuma, Naruki; Hostetler, Chris A.; Hubbe, John M.; Jayne, J. T.; Jeong, H.; Jobson, Bertram T.; Kassianov, Evgueni I.; Kleinman, L. I.; Kluzek, Celine D.; Knighton, B.; Kolesar, K. R.; Kuang, Chongai; Kubatova, A.; Langford, A. O.; Laskin, Alexander; Laulainen, Nels S.; Marchbanks, R. D.; Mazzoleni, Claudio; Mei, F.; Moffet, Ryan C.; Nelson, Danny A.; Obland, Michael; Oetjen, Hilke; Onasch, Timothy B.; Ortega, Ivan; Ottaviani, M.; Pekour, Mikhail S.; Prather, Kimberly A.; Radney, J. G.; Rogers, Ray; Sandberg, S. P.; Sedlacek, Art; Senff, Christoph; Senum, Gunar; Setyan, Ari; Shilling, John E.; Shrivastava, ManishKumar B.; Song, Chen; Springston, S. R.; Subramanian, R.; Suski, Kaitlyn; Tomlinson, Jason M.; Volkamer, Rainer M.; Wallace, Hoyt A.; Wang, J.; Weickmann, A. M.; Worsnop, Douglas R.; Yu, Xiao-Ying; Zelenyuk, Alla; Zhang, Qi

    2012-08-22

    Substantial uncertainties still exist in the scientific understanding of the possible interactions between urban and natural (biogenic) emissions in the production and transformation of atmospheric aerosol and the resulting impact on climate change. The U.S. Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) program's Carbonaceous Aerosol and Radiative Effects Study (CARES) carried out in June 2010 in Central Valley, California, was a comprehensive effort designed to improve this understanding. The primary objective of the field study was to investigate the evolution of secondary organic and black carbon aerosols and their climate-related properties in the Sacramento urban plume as it was routinely transported into the forested Sierra Nevada foothills area. Urban aerosols and trace gases experienced significant physical and chemical transformations as they mixed with the reactive biogenic hydrocarbons emitted from the forest. Two heavily-instrumented ground sites - one within the Sacramento urban area and another about 40 km to the northeast in the foothills area - were set up to characterize the evolution of meteorological variables, trace gases, aerosol precursors, aerosol size, composition, and climate-related properties in freshly polluted and 'aged' urban air. On selected days, the DOE G-1 aircraft was deployed to make similar measurements upwind and across the evolving Sacramento plume in the morning and again in the afternoon. The NASA B-200 aircraft, carrying remote sensing instruments, was also deployed to characterize the vertical and horizontal distribution of aerosols and aerosol optical properties within and around the plume. This overview provides: a) the scientific background and motivation for the study, b) the operational and logistical information pertinent to the execution of the study, c) an overview of key observations and initial results from the aircraft and ground-based sampling platforms, and d) a roadmap of planned data analyses and focused modeling efforts that will facilitate the integration of new knowledge into improved representations of key aerosol processes in climate models.

  8. Microsoft Word - Global Harmonization Classifications.docx

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Harmonization Classifications: The following is prepared for your understanding of the new Global Harmonization System Physical hazards  H200: Unstable explosive  H201: Explosive; mass explosion hazard  H202: Explosive; severe projection hazard  H203: Explosive; fire, blast or projection hazard  H204: Fire or projection hazard  H205: May mass explode in fire  H220: Extremely flammable gas  H221: Flammable gas  H222: Extremely flammable aerosol  H223: Flammable

  9. Linearity of Climate Response to Increases in Black Carbon Aerosols

    SciTech Connect (OSTI)

    Mahajan, Salil; Evans, Katherine J.; Hack, James J.; Truesdale, John

    2013-04-19

    The impact of absorbing aerosols on global climate are not completely understood. Here, we present results of idealized experiments conducted with the Community Atmosphere Model (CAM4) coupled to a slab ocean model (CAM4-SOM) to simulate the climate response to increases in tropospheric black carbon aerosols (BC) by direct and semi-direct effects. CAM4-SOM was forced with 0, 1x, 2x, 5x and 10x an estimate of the present day concentration of BC while maintaining their estimated present day global spatial and vertical distribution. The top of the atmosphere (TOA) radiative forcing of BC in these experiments is positive (warming) and increases linearly as the BC burden increases. The total semi-direct effect for the 1x experiment is positive but becomes increasingly negative for higher BC concentrations. The global average surface temperature response is found to be a linear function of the TOA radiative forcing. The climate sensitivity to BC from these experiments is estimated to be 0.42 K $ W^{-1} m^{2}$ when the semi-direct effects are accounted for and 0.22 K $ W^{-1} m^{2}$ with only the direct effects considered. Global average precipitation decreases linearly as BC increases, with a precipitation sensitivity to atmospheric absorption of 0.4 $\\%$ $W^{-1}m^{2}$ . The hemispheric asymmetry of BC also causes an increase in southward cross-equatorial heat transport and a resulting northward shift of the inter-tropical convergence zone in the simulations at a rate of 4$^{\\circ}$N $ PW^{-1}$. Global average mid- and high-level clouds decrease, whereas the low-level clouds increase linearly with BC. The increase in marine stratocumulus cloud fraction over the south tropical Atlantic is caused by increased BC-induced diabatic heating of the free troposphere.

  10. ARM - Surface Aerosol Observing System

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    FacilitiesSurface Aerosol Observing System AMF Information Science Architecture Baseline Instruments AMF1 AMF2 AMF3 MAOS Data Operations AMF Fact Sheet Images Contacts AMF Deployments McMurdo Station, Antarctica, 2015-2016 Pearl Harbor, Hawaii, to San Francisco, California, 2015 Hyytiälä, Finland, 2014 Manacapuru, Brazil, 2014 Oliktok Point, Alaska, 2013 Los Angeles, California, to Honolulu, Hawaii, 2012 Cape Cod, Massachusetts, 2012 Gan Island, Maldives, 2011 Ganges Valley, India, 2011

  11. ARM Aerosol Working Group Meeting

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and MFRSR Measurements ARM STM 2008 Norfolk, VA Connor Flynn 1 , Annette Koontz 1 , Anne Jefferson 2 , Jim Barnard 1 , Sally McFarlane 1 1 Pacific Northwest National Laboratory 2 CIRES, University of Colorado, Boulder Progress towards ARM DOE 2008 Performance Metric 3 & 4 * Produce and make available new continuous time series of aerosol total column depth, based on results from the AMF deployment in Niger, Africa. * Produce and make available new continuous time series of retrieved dust

  12. Two-Column Aerosol Project (TCAP): Ground-Based Radiation and Aerosol

    Office of Scientific and Technical Information (OSTI)

    Validation Using the NOAA Mobile SURFRAD Station Field Campaign Report (Technical Report) | SciTech Connect SciTech Connect Search Results Technical Report: Two-Column Aerosol Project (TCAP): Ground-Based Radiation and Aerosol Validation Using the NOAA Mobile SURFRAD Station Field Campaign Report Citation Details In-Document Search Title: Two-Column Aerosol Project (TCAP): Ground-Based Radiation and Aerosol Validation Using the NOAA Mobile SURFRAD Station Field Campaign Report The National

  13. Sources and composition of submicron organic mass in marine aerosol particles: Marine Aerosol Organic Mass Composition

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Frossard, Amanda A.; Russell, Lynn M.; Burrows, Susannah M.; Elliott, Scott M.; Bates, Timothy S.; Quinn, Patricia K.

    2014-11-26

    Recent studies have proposed a variety of interpretations of the sources and composition of atmospheric marine aerosol particles (aMA) based on a range of physical and chemical measurements collected during open-ocean research cruises. To investigate the processes that affect marine organic particles, this study uses the characteristic functional group composition (from Fourier transform infrared (FTIR) spectroscopy) of aMAP from five ocean regions to show that: (i) The organic functional group composition of aMAP that can be identified as atmospheric primary marine (ocean-derived) aerosol (aPMA) is 6512% hydroxyl, 219% alkane, 66% amine, and 78% carboxylic acid functional groups. Contributions from photochemicalmorereactions add carboxylic acid groups (15%-25%), shipping effluent in seawater and ship emissions add additional alkane groups (up to 70%), and coastal emissions mix in alkane and carboxylic acid groups from coastal pollution sources. (ii) The organic composition of aPMA is nearly identical to model generated primary marine aerosol particles (gPMA) from bubbled seawater (55% hydroxyl, 32% alkane, and 13% amine functional groups), indicating that its overall functional group composition is the direct consequence of the organic constituents of the seawater source. (iii) While the seawater organic functional group composition was nearly invariant across all three ocean regions studied, the gPMA alkane group fraction increased with chlorophyll-a concentrations (r = 0.79). gPMA from productive seawater had a larger fraction of alkane functional groups (35%) compared to gPMA from non-productive seawater (16%), likely due to the presence of surfactants in productive seawater that stabilize the bubble film and lead to preferential drainage of the more soluble (lower alkane group fraction) organic components. gPMA has a hydroxyl group absorption peak location characteristic of monosaccharides and disaccharides, where the seawater OM hydroxyl group peak location is closer to that of polysaccharides. This may result from the larger saccharides preferentially remaining in the seawater during gPMA and aPMA productionless

  14. The LANL Cloud-Aerosol Model

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The K-25 Story The K-25 Story Addthis Description The K-25 Story

    The LANL Cloud-Aerosol Model Reisner, Jon Los Alamos National Laboratory Category: Modeling Additional Authors: Dubey Manvendra, Chris Jeffery, Miroslaw Andrejczuk, and Dave Moulton A cloud-aerosol modeling framework is being developed at Los Alamos National Laboratory that incorporates two unique aspects in its formulation. First, the model employs a nonlinear solver that requires cloud-aerosol parameterizations be smooth or

  15. Researchers Model Impact of Aerosols Over California

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Researchers Model Impact of Aerosols Over California Researchers Model Impact of Aerosols Over California Research may clarify the effectiveness of regional pollution controls May 28, 2013 Contact: Linda Vu, lvu@lbl.gov, (510) 495-2404 LosAngelesSmogv1.jpg Smog over downtown Los Angeles. Aerosols are microscopic particles-like dust, pollen and soot-that ubiquitously float around in our atmosphere. Despite their tiny stature, these particles can have a huge impact on human health, climate and the

  16. Aerosol Oxidation Speeds Up in Smoggy Air

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Aerosol Oxidation Speeds Up in Smoggy Air Print Organic aerosols (nanometer-sized liquid or solid particles suspended in air) are important constituents of the troposphere, and their chemistry has large-scale impacts on climate, pollution, and health. Accurate predictions of these aerosol impacts require a robust microphysical understanding of all relevant chemical reaction mechanisms and time scales, including those involving highly reactive free-radical molecules. However, detailed modeling is

  17. Aerosol Oxidation Speeds Up in Smoggy Air

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Aerosol Oxidation Speeds Up in Smoggy Air Print Organic aerosols (nanometer-sized liquid or solid particles suspended in air) are important constituents of the troposphere, and their chemistry has large-scale impacts on climate, pollution, and health. Accurate predictions of these aerosol impacts require a robust microphysical understanding of all relevant chemical reaction mechanisms and time scales, including those involving highly reactive free-radical molecules. However, detailed modeling is

  18. Aerosol Oxidation Speeds Up in Smoggy Air

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Aerosol Oxidation Speeds Up in Smoggy Air Print Organic aerosols (nanometer-sized liquid or solid particles suspended in air) are important constituents of the troposphere, and their chemistry has large-scale impacts on climate, pollution, and health. Accurate predictions of these aerosol impacts require a robust microphysical understanding of all relevant chemical reaction mechanisms and time scales, including those involving highly reactive free-radical molecules. However, detailed modeling is

  19. Aerosol Working Group Contributions Accomplishments for 2006

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Contributions Accomplishments for 2006 Aerosol IOP '03 Field Campaign Yields 18-Paper Special Issue of JGR The ARM Aerosol Intensive Operation Period (IOP) field campaign in 2003 has yielded an unprecedented eighteen peer-reviewed papers published in a special issue of the Journal of Geophysical Research. These papers capture the state of the science in terms of measurement of the optical properties of ambient-state aerosols. This special issue includes results from successful

  20. Potential Aerosol Indirect Effects on Atmospheric Circulation...

    Office of Scientific and Technical Information (OSTI)

    We further elucidated how aerosols change convective intensity, diabatic heating, and regional circulation under different environmental conditions and concluded that wind shear ...

  1. Composition and Reactions of Atmospheric Aerosol Particles

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    high-resolution scanning transmission x-ray images obtained at the ALS have revealed chemical reactions on and in atmospheric aerosol particles that caused particle growth while...

  2. ARM: Ultrahigh Sensitivity Aerosol Spectrometer (Dataset) | Data...

    Office of Scientific and Technical Information (OSTI)

    Ultrahigh Sensitivity Aerosol Spectrometer Authors: Cynthia Salwen ; Derek Hageman ; Bill Behrens ; Scott Smith ; Janek Uin ; Janek Uin ; Cynthia Salwen ; Annette Koontz ; Annette ...

  3. Composition and Reactions of Atmospheric Aerosol Particles

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    results will help climate scientists refine the computer models used to predict climate change. Tiny Specks with Large Effects Most people equate aerosols with hairspray and...

  4. Composition and Reactions of Atmospheric Aerosol Particles

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    will help climate scientists refine the computer models used to predict climate change. Tiny Specks with Large Effects Most people equate aerosols with hairspray and...

  5. Aerosol indirect effects - general circulation model intercomparison...

    Office of Scientific and Technical Information (OSTI)

    We compute statistical relationships between aerosol optical depth (a) and various cloud ... Nevertheless, the strengths of the statistical relationships are good predictors for the ...

  6. ARM - Two-Column Aerosol Project (TCAP)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    science objectives, the Atmospheric Radiation Measurement (ARM) Climate Research Facility will deploy the ARM Mobile Facility and the Mobile Aerosol Observing System on Cape...

  7. GWPS Global Wind Power Systems | Open Energy Information

    Open Energy Info (EERE)

    GWPS Global Wind Power Systems Jump to: navigation, search Name: GWPS (Global Wind Power Systems) Place: Hamburg, Germany Zip: 20095 Sector: Wind energy Product: Company...

  8. Pew Center on Global Climate Change | Open Energy Information

    Open Energy Info (EERE)

    Pew Center on Global Climate Change Jump to: navigation, search Name: Pew Center on Global Climate Change Place: Arlington, Virginia Zip: 22201 Product: Established in 1998 as a...

  9. Global Waste to Energy Conversion Company GWECC | Open Energy...

    Open Energy Info (EERE)

    Waste to Energy Conversion Company GWECC Jump to: navigation, search Name: Global Waste to Energy Conversion Company (GWECC) Place: Washington, DC Product: GWECC is a global...

  10. Accord Global Environment Technology Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Accord Global Environment Technology Co Ltd Place: Beijing, China Zip: 100022 Sector: Services Product: Accord Global Environmental Technology Co Ltd (AGET) is an independent...

  11. Aerosol indirect effects ? general circulation model intercomparison and evaluation with satellite data

    SciTech Connect (OSTI)

    Quaas, Johannes; Ming, Yi; Menon, Surabi; Takemura, Toshihiko; Wang, Minghuai; Penner, Joyce E.; Gettelman, Andrew; Lohmann, Ulrike; Bellouin, Nicolas; Boucher, Olivier; Sayer, Andrew M.; Thomas, Gareth E.; McComiskey, Allison; Feingold, Graham; Hoose, Corinna; Kristansson, Jon Egill; Liu, Xiaohong; Balkanski, Yves; Donner, Leo J.; Ginoux, Paul A.; Stier, Philip; Grandey, Benjamin; Feichter, Johann; Sednev, Igor; Bauer, Susanne E.; Koch, Dorothy; Grainger, Roy G.; Kirkevag, Alf; Iversen, Trond; Seland, Oyvind; Easter, Richard; Ghan, Steven J.; Rasch, Philip J.; Morrison, Hugh; Lamarque, Jean-Francois; Iacono, Michael J.; Kinne, Stefan; Schulz, Michael

    2010-03-12

    Aerosol indirect effects continue to constitute one of the most important uncertainties for anthropogenic climate perturbations. Within the international AEROCOM initiative, the representation of aerosol-cloud-radiation interactions in ten different general circulation models (GCMs) is evaluated using three satellite datasets. The focus is on stratiform liquid water clouds since most GCMs do not include ice nucleation effects, and none of the model explicitly parameterises aerosol effects on convective clouds. We compute statistical relationships between aerosol optical depth ({tau}{sub a}) and various cloud and radiation quantities in a manner that is consistent between the models and the satellite data. It is found that the model-simulated influence of aerosols on cloud droplet number concentration (N{sub d}) compares relatively well to the satellite data at least over the ocean. The relationship between {tau}{sub a} and liquid water path is simulated much too strongly by the models. This suggests that the implementation of the second aerosol indirect effect mainly in terms of an autoconversion parameterisation has to be revisited in the GCMs. A positive relationship between total cloud fraction (f{sub cld}) and {tau}{sub a} as found in the satellite data is simulated by the majority of the models, albeit less strongly than that in the satellite data in most of them. In a discussion of the hypotheses proposed in the literature to explain the satellite-derived strong f{sub cld} - {tau}{sub a} relationship, our results indicate that none can be identified as a unique explanation. Relationships similar to the ones found in satellite data between {tau}{sub a} and cloud top temperature or outgoing long-wave radiation (OLR) are simulated by only a few GCMs. The GCMs that simulate a negative OLR - {tau}{sub a} relationship show a strong positive correlation between {tau}{sub a} and f{sub cld} The short-wave total aerosol radiative forcing as simulated by the GCMs is strongly influenced by the simulated anthropogenic fraction of {tau}{sub a}, and parameterization assumptions such as a lower bound on N{sub d}. Nevertheless, the strengths of the statistical relationships are good predictors for the aerosol forcings in the models. An estimate of the total short-wave aerosol forcing inferred from the combination of these predictors for the modelled forcings with the satellite-derived statistical relationships yields a global annual mean value of -1.5 {+-} 0.5 Wm{sup -2}. In an alternative approach, the radiative flux perturbation due to anthropogenic aerosols can be broken down into a component over the cloud-free portion of the globe (approximately the aerosol direct effect) and a component over the cloudy portion of the globe (approximately the aerosol indirect effect). An estimate obtained by scaling these simulated clear- and cloudy-sky forcings with estimates of anthropogenic {tau}{sub a} and satellite-retrieved Nd - {tau}{sub a} regression slopes, respectively, yields a global, annual-mean aerosol direct effect estimate of -0.4 {+-} 0.2 Wm{sup -2} and a cloudy-sky (aerosol indirect effect) estimate of -0.7 {+-} 0.5 Wm{sup -2}, with a total estimate of -1.2 {+-} 0.4 Wm{sup -2}.

  12. Global Warming

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (Optimizing the GTC Code for Blue Gene/Q): ALCF-2 Early Science Program Technical Report (Technical Report) | SciTech Connect Global Simulation of Plasma Microturbulence at the Petascale & Beyond (Optimizing the GTC Code for Blue Gene/Q): ALCF-2 Early Science Program Technical Report Citation Details In-Document Search Title: Global Simulation of Plasma Microturbulence at the Petascale & Beyond (Optimizing the GTC Code for Blue Gene/Q): ALCF-2 Early Science Program Technical Report

  13. ARM - Field Campaign - Measurement of Aerosols, Radiation and...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the Southern Ocean Clouds Radiation Transport Aerosol Transport Experimental Study (SOCRATES) has been proposed to improve our understanding of clouds, aerosols, air-sea...

  14. Natural Aerosols Explain Seasonal and Spatial Patterns of Southern...

    Office of Scientific and Technical Information (OSTI)

    that modeled natural aerosols, principally marine biogenic primary and secondary aerosol sources, explain more than half of the spatiotemporal variability in satellite-observed Nd. ...

  15. ARM: 10-minute TEMPORARY Raman Lidar: aerosol extinction profiles...

    Office of Scientific and Technical Information (OSTI)

    extinction profiles and aerosol optical thickness, from first Ferrare algorithm Citation Details In-Document Search Title: ARM: 10-minute TEMPORARY Raman Lidar: aerosol extinction ...

  16. ARM - Field Campaign - Pajarito Aerosol Coupling to Ecosystems...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (PJ) woodland site used for DOE sponsored ecosystem research to measure the aerosol life cycle of biogenic (secondary organic aerosol formation from sesquiterpenes) and smoke...

  17. Aerosol Retrievals from ARM SGP MFRSR Data (Dataset) | Data Explorer

    Office of Scientific and Technical Information (OSTI)

    Aerosol Retrievals from ARM SGP MFRSR Data Title: Aerosol Retrievals from ARM SGP MFRSR Data The Multi-Filter Rotating Shadowband Radiometer (MFRSR) makes precise simultaneous ...

  18. Long-term measurements of submicrometer aerosol chemistry at...

    Office of Scientific and Technical Information (OSTI)

    Great Plains (SGP) using an Aerosol Chemical Speciation Monitor (ACSM) Citation ... Great Plains (SGP) using an Aerosol Chemical Speciation Monitor (ACSM) In this study ...

  19. Science Plan Biogenic Aerosols - Effects on Clouds and Climate...

    Office of Scientific and Technical Information (OSTI)

    In spite of recent advances in the understanding of aerosol formation processes and the links between aerosol dynamics and biosphere-atmosphere-climate interactions, great ...

  20. Biogenic Aerosols-Effects on Clouds and Climate (BAECC) Final...

    Office of Scientific and Technical Information (OSTI)

    In spite of recent advances in the understanding of aerosol formation processes and the links between aerosol dynamics and biosphere-atmosphere-climate interactions, great ...

  1. The Indirect and Semi-Direct Aerosol Campaign

    SciTech Connect (OSTI)

    Ghan, Steve

    2014-03-24

    Research projects like the Indirect and Semi-Direct Aerosol Campaign, or ISDAC, increase our knowledge of atmospheric aerosol particles and cloud physics.

  2. ARM - Field Campaign - Aerosol and Cloud Experiments in the Eastern...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    horizontal variabilities of aerosol, trace gases, cloud, drizzle, and atmospheric thermodynamics are critically needed for understanding and quantifying the budget of MBL aerosol,...

  3. ARM - Field Campaign - Carbonaceous Aerosol and Radiative Effects...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govCampaignsCarbonaceous Aerosol and Radiative Effects Study (CARES) Campaign Links CARES Website ARM Data Discovery Browse Data Related Campaigns Carbonaceous Aerosol and...

  4. ARM - Field Campaign - Carbonaceous Aerosol and Radiation Effects...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Photo-Acoustic Aerosol Light Absorption and Scattering Campaign Links ARM Data Discovery Browse Data Related Campaigns Carbonaceous Aerosol and Radiative Effects Study (CARES)...

  5. The Indirect and Semi-Direct Aerosol Campaign

    ScienceCinema (OSTI)

    Ghan, Steve

    2014-06-12

    Research projects like the Indirect and Semi-Direct Aerosol Campaign, or ISDAC, increase our knowledge of atmospheric aerosol particles and cloud physics.

  6. ARM: Aerosol Observing System (AOS): cloud condensation nuclei...

    Office of Scientific and Technical Information (OSTI)

    Title: ARM: Aerosol Observing System (AOS): cloud condensation nuclei data Aerosol Observing System (AOS): cloud condensation nuclei data Authors: Scott Smith ; Cynthia Salwen ; ...

  7. Cloud Condensation Nuclei Activity of Aerosols during GoAmazon...

    Office of Scientific and Technical Information (OSTI)

    microphysical properties of the aerosol." The Observations and Modeling of the Green Ocean Amazon (GoAmazon 201415) study seeks to understand how aerosol and cloud life cycles ...

  8. Aerosol specification in single-column Community Atmosphere Model...

    Office of Scientific and Technical Information (OSTI)

    Aerosol specification in single-column Community Atmosphere Model version 5 Title: Aerosol specification in single-column Community Atmosphere Model version 5 Single-column model ...

  9. Discrimination between thin cirrus and and tropospheric aerosol...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Discrimination between thin cirrus and and tropospheric aerosol using multiple measurements from Darwin ARCS Mitchell, Ross CSIRO Category: Aerosols Thin cirrus cloud occurs...

  10. Unintended consequences of atmospheric injection of sulphate aerosols.

    SciTech Connect (OSTI)

    Brady, Patrick Vane; Kobos, Peter Holmes; Goldstein, Barry

    2010-10-01

    Most climate scientists believe that climate geoengineering is best considered as a potential complement to the mitigation of CO{sub 2} emissions, rather than as an alternative to it. Strong mitigation could achieve the equivalent of up to -4Wm{sup -2} radiative forcing on the century timescale, relative to a worst case scenario for rising CO{sub 2}. However, to tackle the remaining 3Wm{sup -2}, which are likely even in a best case scenario of strongly mitigated CO{sub 2} releases, a number of geoengineering options show promise. Injecting stratospheric aerosols is one of the least expensive and, potentially, most effective approaches and for that reason an examination of the possible unintended consequences of the implementation of atmospheric injections of sulphate aerosols was made. Chief among these are: reductions in rainfall, slowing of atmospheric ozone rebound, and differential changes in weather patterns. At the same time, there will be an increase in plant productivity. Lastly, because atmospheric sulphate injection would not mitigate ocean acidification, another side effect of fossil fuel burning, it would provide only a partial solution. Future research should aim at ameliorating the possible negative unintended consequences of atmospheric injections of sulphate injection. This might include modeling the optimum rate and particle type and size of aerosol injection, as well as the latitudinal, longitudinal and altitude of injection sites, to balance radiative forcing to decrease negative regional impacts. Similarly, future research might include modeling the optimum rate of decrease and location of injection sites to be closed to reduce or slow rapid warming upon aerosol injection cessation. A fruitful area for future research might be system modeling to enhance the possible positive increases in agricultural productivity. All such modeling must be supported by data collection and laboratory and field testing to enable iterative modeling to increase the accuracy and precision of the models, while reducing epistemic uncertainties.

  11. Clouds and climate: Unraveling a key piece of global warming

    SciTech Connect (OSTI)

    Seinfeld, J.H.

    2000-02-01

    Federal policy decisions relating to mitigation of greenhouse gas and other emissions have the potential to exert an enormous impact on industries in which chemical engineers play a prominent role. Many in these industries keep close watch on the development of scientific understanding associated with predictions of global climate change. The authors review one of the most critical, and most uncertain, pieces of the climate puzzle, the role of aerosols and clouds in the global energy balance.

  12. Contour Global L P | Open Energy Information

    Open Energy Info (EERE)

    Global L P Jump to: navigation, search Name: Contour Global L.P. Place: New York, New York Zip: 10022 Sector: Renewable Energy Product: New York-based energy development company,...

  13. T Solar Global SA | Open Energy Information

    Open Energy Info (EERE)

    Solar Global SA Jump to: navigation, search Name: T-Solar Global SA Place: Madrid, Spain Zip: 28042 Product: Spain-based thin-film silicon PV cell and module maker, using Applied...

  14. Ardour Global Indexes LLC | Open Energy Information

    Open Energy Info (EERE)

    Name: Ardour Global Indexes LLC Place: New York City, New York Zip: 10016 Product: New-York based company that manages the Ardour Global Indexes, a set of alternative energy...

  15. Crest Global Green Energy | Open Energy Information

    Open Energy Info (EERE)

    Global Green Energy Jump to: navigation, search Name: Crest Global Green Energy Place: County Durham, England, United Kingdom Zip: SR7 7EU Product: UK-based biofuel company with...

  16. Think Green Global Inc | Open Energy Information

    Open Energy Info (EERE)

    Green Global Inc Jump to: navigation, search Name: Think Green Global, Inc. Place: New York, New York Zip: 10010 Sector: Renewable Energy Product: New York-based investment bank...

  17. Mandarin Global Carbon Ltd | Open Energy Information

    Open Energy Info (EERE)

    Mandarin Global Carbon Ltd Jump to: navigation, search Name: Mandarin Global Carbon Ltd Place: Londaon, Greater London, United Kingdom Zip: W1S 1TD Sector: Carbon, Hydro Product:...

  18. Working at GE Global Research | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    products and working on lots of different things, and I was convinced that this ideal job didn't exist. I came to find out about the Sensor & Signal Analytics Lab at GE Global...

  19. THE INFLUENCE OF BENZENE AS A TRACE REACTANT IN TITAN AEROSOL ANALOGS

    SciTech Connect (OSTI)

    Trainer, Melissa G.; Sebree, Joshua A.; Heidi Yoon, Y.; Tolbert, Margaret A.

    2013-03-20

    Benzene has been detected in Titan's atmosphere by Cassini instruments, with concentrations ranging from sub-ppb in the stratosphere to ppm in the ionosphere. Sustained levels of benzene in the haze formation region could signify that it is an important reactant in the formation of Titan's organic aerosol. To date, there have not been laboratory investigations to assess the influence of benzene on aerosol properties. We report a laboratory study on the chemical composition of organic aerosol formed from C{sub 6}H{sub 6}/CH{sub 4}/N{sub 2} via far ultraviolet irradiation (120-200 nm). The compositional results are compared to those from aerosol generated by a more ''traditional Titan'' mixture of CH{sub 4}/N{sub 2}. Our results show that even a trace amount of C{sub 6}H{sub 6} (10 ppm) has significant impact on the chemical composition and production rates of organic aerosol. There are several pathways by which photolyzed benzene may react to form larger molecules, both with and without the presence of CH{sub 4}, but many of these reaction mechanisms are only beginning to be explored for the conditions at Titan. Continued work investigating the influence of benzene in aerosol growth will advance understanding of this previously unstudied reaction system.

  20. Assessing historical global sulfur emission patterns for the period 1850--1990

    SciTech Connect (OSTI)

    Lefohn, A.S.; Husar, J.D.; Husar, R.B.; Brimblecombe, P.

    1996-07-19

    Anthropogenic sulfur dioxide emissions from energy-producing and metal production activities have become an important factor in better understanding the relationship between humans and the environment. Concerns about (1) acid rain effects on the environment and (2) anthropogenic aerosols affecting possible global change have prompted interest in the transformation and fate of sulfur in the environment. One step in assessing the importance of sulfur emissions is the development of a reliable regional emission inventory of sulfur as a function of time. The objective of this research effort was to create a homogeneous database for historical sulfur emission estimates for the world. The time from 1850--1990 was selected to include the period of industrialization form the time the main production of fuels and minerals began until the most recent year for which complete production data exist. This research effort attempts to correct some of the deficiencies associated with previous global sulfur emission estimates by (1) identifying those production activities that resulted in sulfur emissions by country and (2) calculating historical emission trends by country across years. An important component of this study was the comparison of the sulfur emission results with those of previous studies.

  1. In situ measurements of heterogeneous reactions on ambient aerosol particles: Impacts on atmospheric chemistry and climate

    SciTech Connect (OSTI)

    Bertram, Timothy

    2015-02-11

    Aerosol particles play a critical role in the Earth’s energy budget through the absorption and scattering of radiation, and/or through their ability to form clouds and alter cloud lifetime. Heterogeneous and multi-phase reactions alter the climate-relevant properties of aerosol particles and catalyze reaction pathways that are energetically unfavorable in the gas phase. The chemical composition of aerosol particles dictates the kinetics of heterogeneous and multi-phase reactions. At present, the vast majority of the molecular level information on these processes has been determined in laboratory investigations on model aerosol systems. The work described here provides a comprehensive investigation into the reactivity of complex, ambient aerosol particles is proposed to determine: 1) how representative laboratory investigations of heterogeneous and multi-phase processes conducted on model, simple systems are of the real atmosphere, and 2) the impact of heterogeneous and multi-phase processes on ambient particle optical properties and their ability to nucleate clouds. This work has focused on the uptake kinetics for ammonia (NH3) and dinitrogen pentoxide (N2O5). The results of these investigations will be used to directly improve the representation of heterogeneous and multi-phase processes in global climate models, by identifying the key mechanistic drivers that control the variability in the observed kinetics.

  2. Aerosol specification in single-column Community Atmosphere Model version 5

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Lebassi-Habtezion, B.; Caldwell, P. M.

    2015-03-27

    Single-column model (SCM) capability is an important tool for general circulation model development. In this study, the SCM mode of version 5 of the Community Atmosphere Model (CAM5) is shown to handle aerosol initialization and advection improperly, resulting in aerosol, cloud-droplet, and ice crystal concentrations which are typically much lower than observed or simulated by CAM5 in global mode. This deficiency has a major impact on stratiform cloud simulations but has little impact on convective case studies because aerosol is currently not used by CAM5 convective schemes and convective cases are typically longer in duration (so initialization is less important).more » By imposing fixed aerosol or cloud-droplet and crystal number concentrations, the aerosol issues described above can be avoided. Sensitivity studies using these idealizations suggest that the Meyers et al. (1992) ice nucleation scheme prevents mixed-phase cloud from existing by producing too many ice crystals. Microphysics is shown to strongly deplete cloud water in stratiform cases, indicating problems with sequential splitting in CAM5 and the need for careful interpretation of output from sequentially split climate models. Droplet concentration in the general circulation model (GCM) version of CAM5 is also shown to be far too low (~ 25 cm−3) at the southern Great Plains (SGP) Atmospheric Radiation Measurement (ARM) site.« less

  3. Global warming, global research, and global governing

    SciTech Connect (OSTI)

    Preining, O.

    1997-12-31

    The anticipated dangers of Global Warming can be mitigated by reducing atmospheric greenhouse gas concentrations, especially CO{sub 2}. To reach acceptable, constant levels within the next couple of centuries it might be necessary to accept stabilization levels higher than present ones, The annual CO{sub 2} emissions must be reduced far below today`s values. This is a very important result of the models discussed in the 1995 IPCC report. However, any even very modest scenario for the future must take into account a substantial increase in the world population which might double during the 21st century, There is a considerable emission reduction potential of the industrialized world due to efficiency increase, However, the demand for energy services by the growing world population will, inspite of the availability of alternative energy resources, possibly lead to a net increase in fossil fuel consumption. If the climate models are right, and the science community believes they are, we will experience a global warming of the order of a couple of degrees over the next century; we have to live with it. To be prepared for the future it is essential for us to use new research techniques embracing not only the familiar fields of hard sciences but also social, educational, ethical and economic aspects, We must find a way to build up the essential intellectual capacities needed to deal with these kinds of general problems within all nations and all societies. But this is not Although, we also have to find the necessary dynamical and highly flexible structures for a global governing using tools such as the environmental regime. The first step was the Framework Convention On Climate Change, UN 1992; for resolution of questions regarding implementations the Conference of the Parties was established.

  4. Solar Global | Open Energy Information

    Open Energy Info (EERE)

    Republic Zip: 10100 Product: Czech PV developer and investor seeking partnership for its 200MW PV porfolio in the Czech Republic. References: Solar Global1 This article is a...

  5. AEROSOL PARTICLE COLLECTOR DESIGN STUDY

    SciTech Connect (OSTI)

    Lee, S; Richard Dimenna, R

    2007-09-27

    A computational evaluation of a particle collector design was performed to evaluate the behavior of aerosol particles in a fast flowing gas stream. The objective of the work was to improve the collection efficiency of the device while maintaining a minimum specified air throughput, nominal collector size, and minimal power requirements. The impact of a range of parameters was considered subject to constraints on gas flow rate, overall collector dimensions, and power limitations. Potential improvements were identified, some of which have already been implemented. Other more complex changes were identified and are described here for further consideration. In addition, fruitful areas for further study are proposed.

  6. EMSP Final Report: Electrically Driven Technologies for Radioactive Aerosol Abatement

    SciTech Connect (OSTI)

    DePaoli, D.W.

    2003-01-22

    The purpose of this research project was to develop an improved understanding of how electrically driven processes, including electrocoalescence, acoustic agglomeration, and electric filtration, may be employed to efficiently treat problems caused by the formation of aerosols during DOE waste treatment operations. The production of aerosols during treatment and retrieval operations in radioactive waste tanks and during thermal treatment operations such as calcination presents a significant problem of cost, worker exposure, potential for release, and increased waste volume. There was anecdotal evidence in the literature that acoustic agglomeration and electrical coalescence could be used together to change the size distribution of aerosol particles in such a way as to promote easier filtration and less frequent maintenance of filtration systems. As such, those electrically driven technologies could potentially be used as remote technologies for improved treatment; however, existing theoretical models are not suitable for prediction and design. To investigate the physics of such systems, and also to prototype a system for such processes, a collaborative project was undertaken between Oak Ridge National Laboratory (ORNL) and the University of Texas at Austin (UT). ORNL was responsible for the larger-scale prototyping portion of the project, while UT was primarily responsible for the detailed physics in smaller scale unit reactors. It was found that both electrical coalescence and acoustic agglomeration do in fact increase the rate of aggregation of aerosols. Electrical coalescence requires significantly less input power than acoustic agglomeration, but it is much less effective in its ability to aggregate/coalesce aerosols. The larger-scale prototype showed qualitatively similar results as the unit reactor tests, but presented more difficulty in interpretation of the results because of the complex multi-physics coupling that necessarily occur in all larger-scale system tests. An additional finding from this work is that low-amplitude oscillation may provide an alternative, non-invasive, non-contact means of controlling settling and/or suspension of solids. Further investigation would be necessary to evaluate its utility for radioactive waste treatment applications. This project did not uncover a new technology for radioactive waste treatment. While it may be possible that an efficient electrically driven technology for aerosol treatment could be developed, it appears that other technologies, such as steel and ceramic HEPA filters, can suitably solve this problem. If further studies are to be undertaken, additional fundamental experimentation and modeling is necessary to fully capture the physics; in addition, larger-scale tests are needed to demonstrate the treatment of flowing gas streams through the coupling of acoustic agglomeration with electrocoalescence.

  7. Assessing regional scale predictions of aerosols, marine stratocumulus, and their interactions during VOCALS-REx using WRF-Chem

    SciTech Connect (OSTI)

    Yang Q.; Lee Y.; Gustafson Jr., W. I.; Fast, J. D.; Wang, H.; Easter, R. C.; Morrison, H.; Chapman, E. G.; Spak, S. N.; Mena-Carrasco, M. A.

    2011-12-02

    This study assesses the ability of the recent chemistry version (v3.3) of the Weather Research and Forecasting (WRF-Chem) model to simulate boundary layer structure, aerosols, stratocumulus clouds, and energy fluxes over the Southeast Pacific Ocean. Measurements from the VAMOS Ocean-Cloud-Atmosphere-Land Study Regional Experiment (VOCALS-REx) and satellite retrievals (i.e., products from the MODerate resolution Imaging Spectroradiometer (MODIS), Clouds and Earth's Radiant Energy System (CERES), and GOES-10) are used for this assessment. The Morrison double-moment microphysics scheme is newly coupled with interactive aerosols in the model. The 31-day (15 October-16 November 2008) WRF-Chem simulation with aerosol-cloud interactions (AERO hereafter) is also compared to a simulation (MET hereafter) with fixed cloud droplet number concentrations in the microphysics scheme and simplified cloud and aerosol treatments in the radiation scheme. The well-simulated aerosol quantities (aerosol number, mass composition and optical properties), and the inclusion of full aerosol-cloud couplings lead to significant improvements in many features of the simulated stratocumulus clouds: cloud optical properties and microphysical properties such as cloud top effective radius, cloud water path, and cloud optical thickness. In addition to accounting for the aerosol direct and semi-direct effects, these improvements feed back to the simulation of boundary-layer characteristics and energy budgets. Particularly, inclusion of interactive aerosols in AERO strengthens the temperature and humidity gradients within the capping inversion layer and lowers the marine boundary layer (MBL) depth by 130 m from that of the MET simulation. These differences are associated with weaker entrainment and stronger mean subsidence at the top of the MBL in AERO. Mean top-of-atmosphere outgoing shortwave fluxes, surface latent heat, and surface downwelling longwave fluxes are in better agreement with observations in AERO, compared to the MET simulation. Nevertheless, biases in some of the simulated meteorological quantities (e.g., MBL temperature and humidity) and aerosol quantities (e.g., underestimations of accumulation mode aerosol number) might affect simulated stratocumulus and energy fluxes over the Southeastern Pacific, and require further investigation. The well-simulated timing and outflow patterns of polluted and clean episodes demonstrate the model's ability to capture daily/synoptic scale variations of aerosol and cloud properties, and suggest that the model is suitable for studying atmospheric processes associated with pollution outflow over the ocean. The overall performance of the regional model in simulating mesoscale clouds and boundary layer properties is encouraging and suggests that reproducing gradients of aerosol and cloud droplet concentrations and coupling cloud-aerosol-radiation processes are important when simulating marine stratocumulus over the Southeast Pacific.

  8. RP Global Spain S A Minicentrales | Open Energy Information

    Open Energy Info (EERE)

    RP Global Spain S A Minicentrales Jump to: navigation, search Name: RP Global Spain S.A. (Minicentrales) Place: Madrid, Spain Zip: E - 28036 Product: The Spanish arm of RP Global,...

  9. Parameterizations of Cloud Microphysics and Indirect Aerosol Effects

    SciTech Connect (OSTI)

    Tao, Wei-Kuo

    2014-05-19

    1. OVERVIEW Aerosols and especially their effect on clouds are one of the key components of the climate system and the hydrological cycle [Ramanathan et al., 2001]. Yet, the aerosol effect on clouds remains largely unknown and the processes involved not well understood. A recent report published by the National Academy of Science states "The greatest uncertainty about the aerosol climate forcing - indeed, the largest of all the uncertainties about global climate forcing - is probably the indirect effect of aerosols on clouds [NRC, 2001]." The aerosol effect on clouds is often categorized into the traditional "first indirect (i.e., Twomey)" effect on the cloud droplet sizes for a constant liquid water path [Twomey, 1977] and the "semi-direct" effect on cloud coverage [e.g., Ackerman et al., 2000]. Enhanced aerosol concentrations can also suppress warm rain processes by producing a narrow droplet spectrum that inhibits collision and coalescence processes [e.g., Squires and Twomey, 1961; Warner and Twomey, 1967; Warner, 1968; Rosenfeld, 1999]. The aerosol effect on precipitation processes, also known as the second type of aerosol indirect effect [Albrecht, 1989], is even more complex, especially for mixed-phase convective clouds. Table 1 summarizes the key observational studies identifying the microphysical properties, cloud characteristics, thermodynamics and dynamics associated with cloud systems from high-aerosol continental environments. For example, atmospheric aerosol concentrations can influence cloud droplet size distributions, warm-rain process, cold-rain process, cloud-top height, the depth of the mixed phase region, and occurrence of lightning. In addition, high aerosol concentrations in urban environments could affect precipitation variability by providing an enhanced source of cloud condensation nuclei (CCN). Hypotheses have been developed to explain the effect of urban regions on convection and precipitation [van den Heever and Cotton, 2007 and Shepherd, 2005]. Recently, a detailed spectral-bin microphysical scheme was implemented into the Goddard Cumulus Ensemble (GCE) model. Atmospheric aerosols are also described using number density size-distribution functions. A spectral-bin microphysical model is very expensive from a computational point of view and has only been implemented into the 2D version of the GCE at the present time. The model is tested by studying the evolution of deep tropical clouds in the west Pacific warm pool region and summertime convection over a mid-latitude continent with different concentrations of CCN: a low "clean" concentration and a high "dirty" concentration. The impact of atmospheric aerosol concentration on cloud and precipitation will be investigated. 2. MODEL DESCRIPTION AND CASE STUDIES 2.1 GCE MODEL The model used in this study is the 2D version of the GCE model. Modeled flow is anelastic. Second- or higher-order advection schemes can produce negative values in the solution. Thus, a Multi-dimensional Positive Definite Advection Transport Algorithm (MPDATA) has been implemented into the model. All scalar variables (potential temperature, water vapor, turbulent coefficient and all five hydrometeor classes) use forward time differencing and the MPDATA for advection. Dynamic variables, u, v and w, use a second-order accurate advection scheme and a leapfrog time integration (kinetic energy semi-conserving method). Short-wave (solar) and long-wave radiation as well as a subgrid-scale TKE turbulence scheme are also included in the model. Details of the model can be found in Tao and Simpson (1993) and Tao et al. (2003). 2.2 Microphysics (Bin Model) The formulation of the explicit spectral-bin microphysical processes is based on solving stochastic kinetic equations for the size distribution functions of water droplets (cloud droplets and raindrops), and six types of ice particles: pristine ice crystals (columnar and plate-like), snow (dendrites and aggregates), graupel and frozen drops/hail. Each type is described by a special size distribution function containing 33 categories (bins). Atmospheric aerosols are also described using number density size-distribution functions (containing 33 bins). Droplet nucleation (activation) is derived from the analytical calculation of super-saturation, which is used to determine the sizes of aerosol particles to be activated and the corresponding sizes of nucleated droplets. Primary nucleation of each type of ice crystal takes place within certain temperature ranges. A detailed description of these explicitly parameterized processes can be found in Khain and Sednev (1996) and Khain et al. (1999, 2001). 2.3 Case Studies Three cases, a tropical oceanic squall system observed during TOGA COARE (Tropical Ocean and Global Atmosphere Coupled Ocean-Atmosphere Response Experiment, which occurred over the Pacific Ocean warm pool from November 1992 to February 1993), a midlatitude continental squall system observed during PRESTORM (Preliminary Regional Experiment for STORM-Central, which occurred in Kansas and Oklahoma during May-June 1985), and mid-afternoon convection observed during CRYSTAL-FACE (Cirrus Regional Study of Tropical Anvils and Cirrus Layers – Florida Area Cumulus Experiment, which occurred in Florida during July 2002), will be used to examine the impact of aerosols on deep, precipitating systems. 3. SUMMARY of RESULTS • For all three cases, higher CCN produces smaller cloud droplets and a narrower spectrum. Dirty conditions delay rain formation, increase latent heat release above the freezing level, and enhance vertical velocities at higher altitude for all cases. Stronger updrafts, deeper mixed-phase regions, and more ice particles are simulated with higher CCN in good agreement with observations. • In all cases, rain reaches the ground early with lower CCN. Rain suppression is also evident in all three cases with high CCN in good agreement with observations (Rosenfeld, 1999, 2000 and others). Rain suppression, however, only occurs during the first hour of simulation. This result suggests that microphysical processes dominate the impact of aerosols on precipitation in the early stage of precipitation development. • During the mature stage of the simulations, the effect of increasing aerosol concentration ranges from rain suppression in the PRESTORM case to little effect on surface rainfall in the CRYSTAL-FACE case to rain enhancement in the TOGA COARE case. • The model results suggest that evaporative cooling is a key process in determining whether higher CCN reduces or enhances precipitation. Cold pool strength can be enhanced by stronger evaporation. When cold pool interacts with the near surface wind shear, the low-level convergence can be stronger, facilitating secondary cloud formation and more vigorous precipitation processes. Evaporative cooling is more than two times stronger at low levels with higher CCN for the TOGA COARE case during the early stages of precipitation development. However, evaporative cooling is slightly stronger at lower levels with lower CCN for the PRESTORM case. The early formation of rain in the clean environment could allow for the formation of an earlier and stronger cold pool compared to a dirty environment. PRESTORM has a very dry environment and both large and small rain droplets can evaporate. Consequently, the cold pool is relatively weaker, and the system is relatively less intense with higher CCN. • Sensitivity tests are conducted to determine the impact of ice processes on aerosol-precipitation interaction. The results suggested that ice processes are crucial for suppressing precipitation due to high CCN for the PRESTORM case. More and smaller ice particles are generated in the dirty case and transported to the trailing stratiform region. This reduces the heavy convective rain and contributes to the weakening of the cold pool. Warm rain processes dominate the TOGA COARE case. Therefore, ice processes only play a secondary role in terms of aerosol-precipitation interaction. • Two of the three cloud systems presented in this paper formed a line structure (squall system). A 2D simulation, therefore, gives a good approximation to such a line of convective clouds. Since the real atmosphere is 3D, further 3D cloud-resolving simulations are needed to address aerosol-precipitation interactions. 4. REFERENCES Tao, W.-K., X. Li, A. Khain, T. Matsui, S. Lang, and J. Simpson, 2007: The role of atmospheric aerosol concentration on deep convective precipitation: Cloud-resolving model simulations. J. Geophy. Res., 112, D24S18, doi:10.1029/2007JD008728. All other references can be found in above paper. 5. Acknowledgements The GCE model is mainly supported by the NASA Headquarters Atmospheric Dynamics and Thermodynamics Program and the NASA Tropical Rainfall Measuring Mission (TRMM). The research was also supported by the Office of Science (BER), U. S. Department of Energy/Atmospheric Radiation Measurement (DOE/ARM) Interagency. The authors acknowledge NASA Goddard Space Flight Center for computer time used in this research.

  10. Pathways of sulfate enhancement by natural and anthropogenic mineral aerosols in China

    SciTech Connect (OSTI)

    Huang, Xin; Song, Yu; Zhao, Chun; Li, Mengmeng; Zhu, Tong; Zhang, Qiang; Zhang, Xiaoye

    2014-12-27

    China, the world’s largest consumer of coal, emits approximately 30 million tons of sulfur dioxide (SO₂) per year. SO₂ is subsequently oxidized to sulfate in the atmosphere. However, large gaps exist between model-predicted and measured sulfate levels in China. Long-term field observations and numerical simulations were integrated to investigate the effect of mineral aerosols on sulfate formation. We found that mineral aerosols contributed a nationwide average of approximately 22% to sulfate production in 2006. The increased sulfate concentration was approximately 2 μg m⁻³ in the entire China. In East China and the Sichuan Basin, the increments reached 6.3 μg m⁻³ and 7.3 μg m⁻³, respectively. Mineral aerosols led to faster SO₂ oxidation through three pathways. First, more SO₂ was dissolved as cloud water alkalinity increased due to water-soluble mineral cations. Sulfate production was then enhanced through the aqueous-phase oxidation of S(IV) (dissolved sulfur in oxidation state +4). The contribution to the national sulfate production was 5%. Second, sulfate was enhanced through S(IV) catalyzed oxidation by transition metals. The contribution to the annual sulfate production was 8%, with 19% during the winter that decreased to 2% during the summer. Third, SO₂ reacts on the surface of mineral aerosols to produce sulfate. The contribution to the national average sulfate concentration was 9% with 16% during the winter and a negligible effect during the summer. The inclusion of mineral aerosols does resolve model discrepancies with sulfate observations in China, especially during the winter. These three pathways, which are not fully considered in most current chemistry-climate models, will significantly impact assessments regarding the effects of aerosol on climate change in China.

  11. Ener t Global SA | Open Energy Information

    Open Energy Info (EERE)

    navigation, search Name: Ener-t Global SA Place: Valencia, Spain Zip: 46870 Product: Spanish developer of parabolic trough thermal plants on a turnkey basis. Coordinates:...

  12. Global Change Associates | Open Energy Information

    Open Energy Info (EERE)

    Change Associates Jump to: navigation, search Name: Global Change Associates Place: New York City, New York Zip: 10025-5657 Product: Consulting firm focusing on the convergence...

  13. Global Flex Group Inc | Open Energy Information

    Open Energy Info (EERE)

    search Name: Global-Flex Group Inc. Place: Temple, Texas Zip: 76501 Product: Texas based trade and financial solutions company consisting of three operating divisions....

  14. Global Electric Motorcars | Open Energy Information

    Open Energy Info (EERE)

    Product: Global Electric Motorcars (GEM), a Chrysler Company, develops and manufactures electric vehicles. Coordinates: 36.37617, -99.622804 Show Map Loading map......

  15. Global Electric Corporation | Open Energy Information

    Open Energy Info (EERE)

    company in the development and marketing of electric vehicles, garden equipment and Lithium powered products. References: Global Electric Corporation1 This article is a stub....

  16. Hexagon Global Energy | Open Energy Information

    Open Energy Info (EERE)

    navigation, search Name: Hexagon Global Energy Place: Istanbul, Turkey Sector: Solar, Wind energy Product: Istanbul-based project developer with a focus on wind, solar and solid...

  17. Pioneer Global Renewables | Open Energy Information

    Open Energy Info (EERE)

    Renewables Jump to: navigation, search Name: Pioneer Global Renewables Place: San Rafael, California Zip: 94901 Sector: Renewable Energy Product: Pioneer develops, finances...

  18. Global Energias Renovables SL | Open Energy Information

    Open Energy Info (EERE)

    Energias Renovables SL Jump to: navigation, search Name: Global Energias Renovables SL Place: Madrid, Spain Sector: Wind energy Product: Spanish wind power developer. References:...

  19. Global Capital Finance | Open Energy Information

    Open Energy Info (EERE)

    Finance Jump to: navigation, search Name: Global Capital Finance Place: Purchase, New York Zip: 10577 Sector: Renewable Energy, Services Product: New York-based international...

  20. Global Green Partners | Open Energy Information

    Open Energy Info (EERE)

    Partners Jump to: navigation, search Name: Global Green Partners Place: Los Altos, California Zip: 94024 Sector: Carbon Product: California-based investment fund prioritizing trade...

  1. Global Industry Analysts | Open Energy Information

    Open Energy Info (EERE)

    search Name: Global Industry Analysts Address: 6150 Hellyer Avenue Place: San Jose, California Zip: 95138 Region: Bay Area Product: Market research services Year Founded:...

  2. FY 2011 4th Quarter Metric: Estimate of Future Aerosol Direct and Indirect Effects

    SciTech Connect (OSTI)

    Koch, D

    2011-09-21

    The global and annual mean aerosol direct and indirect effects, relative to 1850 conditions, estimated from CESM simulations are 0.02 W m-2 and -0.39 W m-2, respectively, for emissions in year 2100 under the IPCC RCP8.5 scenario. The indirect effect is much smaller than that for 2000 emissions because of much smaller SO2 emissions in 2100; the direct effects are small due to compensation between warming by black carbon and cooling by sulfate.

  3. CARES: Carbonaceous Aerosol and Radiative Effects Study Science Plan

    SciTech Connect (OSTI)

    Zaveri, RA; Shaw, WJ; Cziczo, DJ

    2010-05-27

    Carbonaceous aerosol components, which include black carbon (BC), urban primary organic aerosols (POA), biomass burning aerosols, and secondary organic aerosols (SOA) from both urban and biogenic precursors, have been previously shown to play a major role in the direct and indirect radiative forcing of climate. The primary objective of the CARES 2010 intensive field study is to investigate the evolution of carbonaceous aerosols of different types and their effects on optical and cloud formation properties.

  4. Aerosol, Cloud, and Climate: From Observation to Model (457th Brookhaven Lecture)

    ScienceCinema (OSTI)

    Wang, Jian [Ph.D., Environmental Sciences Department

    2010-09-01

    In the last 100 years, the Earth has warmed by about 1ºF, glaciers and sea ice have been melting more quickly than previously, especially during the past decade, and the level of the sea has risen about 6-8 inches worldwide. Scientists have long been investigating this phenomenon of ?global warming,? which is believed to be at least partly due to the increased carbon dioxide (CO2) concentration in the air from burning fossil fuels. Funded by DOE, teams of researchers from BNL and other national labs have been gathering data in the U.S. and internationally to build computer models of climate and weather to help in understanding general patterns, causes, and perhaps, solutions. Among many findings, researchers observed that atmospheric aerosols, minute particles in the atmosphere, can significantly affect global energy balance and climate. Directly, aerosols scatter and absorb sunlight. Indirectly, increased aerosol concentration can lead to smaller cloud droplets, changing clouds in ways that tend to cool global climate and potentially mask overall warming from man-made CO2.

  5. Aerosol, Cloud, and Climate: From Observation to Model (457th Brookhaven Lecture)

    SciTech Connect (OSTI)

    Wang, Jian

    2010-05-12

    In the last 100 years, the Earth has warmed by about 1F, glaciers and sea ice have been melting more quickly than previously, especially during the past decade, and the level of the sea has risen about 6-8 inches worldwide. Scientists have long been investigating this phenomenon of global warming, which is believed to be at least partly due to the increased carbon dioxide (CO2) concentration in the air from burning fossil fuels. Funded by DOE, teams of researchers from BNL and other national labs have been gathering data in the U.S. and internationally to build computer models of climate and weather to help in understanding general patterns, causes, and perhaps, solutions. Among many findings, researchers observed that atmospheric aerosols, minute particles in the atmosphere, can significantly affect global energy balance and climate. Directly, aerosols scatter and absorb sunlight. Indirectly, increased aerosol concentration can lead to smaller cloud droplets, changing clouds in ways that tend to cool global climate and potentially mask overall warming from man-made CO2.

  6. Natural Radionuclides and Isotopic Signatures for Determining Carbonaceous Aerosol Sources, Aerosol Lifetimes, and Washout Processes

    SciTech Connect (OSTI)

    Gaffney, Jeffrey

    2012-12-12

    This is the final technical report. The project description is as follows: to determine the role of aerosol radiative forcing on climate, the processes that control their atmospheric concentrations must be understood, and aerosol sources need to be determined for mitigation. Measurements of naturally occurring radionuclides and stable isotopic signatures allow the sources, removal and transport processes, as well as atmospheric lifetimes of fine carbonaceous aerosols, to be evaluated.

  7. ARM - Field Campaign - 2006 MAX-Mex-Megacity Aerosol eXperiment...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    characterization of the aerosols, on aerosol transformations including aging of the black carbon during outflow from the region, and on the effects of the megacity aerosol plume on...

  8. Moving | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Moving We're always working on planes, trains and automobiles-and specialized ways to move people and products efficiently and sustainably. Home > Impact > Moving Green Skies of Brazil Improves Airspace Efficiency It's not uncommon for planes approaching some of Brazil's busiest airports to travel miles out of the way while pilots wait... Read More » Reducing Emissions in the New Tier 4 Locomotive GE Global Research Internal Combustion lab manager Omowoleola "Wole" Akinyemi

  9. Global Assessment of Hydrogen Technologies – Tasks 3 & 4 Report Economic, Energy, and Environmental Analysis of Hydrogen Production and Delivery Options in Select Alabama Markets: Preliminary Case Studies

    SciTech Connect (OSTI)

    Fouad, Fouad H.; Peters, Robert W.; Sisiopiku, Virginia P.; Sullivan Andrew J.; Gillette, Jerry; Elgowainy, Amgad; Mintz, Marianne

    2007-12-01

    This report documents a set of case studies developed to estimate the cost of producing, storing, delivering, and dispensing hydrogen for light-duty vehicles for several scenarios involving metropolitan areas in Alabama. While the majority of the scenarios focused on centralized hydrogen production and pipeline delivery, alternative delivery modes were also examined. Although Alabama was used as the case study for this analysis, the results provide insights into the unique requirements for deploying hydrogen infrastructure in smaller urban and rural environments that lie outside the DOE’s high priority hydrogen deployment regions. Hydrogen production costs were estimated for three technologies – steam-methane reforming (SMR), coal gasification, and thermochemical water-splitting using advanced nuclear reactors. In all cases examined, SMR has the lowest production cost for the demands associated with metropolitan areas in Alabama. Although other production options may be less costly for larger hydrogen markets, these were not examined within the context of the case studies.

  10. Global Arrays

    Energy Science and Technology Software Center (OSTI)

    2006-02-23

    The Global Arrays (GA) toolkit provides an efficient and portable “shared-memory” programming interface for distributed-memory computers. Each process in a MIMD parallel program can asynchronously access logical blocks of physically distributed dense multi-dimensional arrays, without need for explicit cooperation by other processes. Unlike other shared-memory environments, the GA model exposes to the programmer the non-uniform memory access (NUMA) characteristics of the high performance computers and acknowledges that access to a remote portion of the sharedmore » data is slower than to the local portion. The locality information for the shared data is available, and a direct access to the local portions of shared data is provided. Global Arrays have been designed to complement rather than substitute for the message-passing programming model. The programmer is free to use both the shared-memory and message-passing paradigms in the same program, and to take advantage of existing message-passing software libraries. Global Arrays are compatible with the Message Passing Interface (MPI).« less

  11. Climatological simulations of ozone and atmospheric aerosols in the Greater Cairo region

    SciTech Connect (OSTI)

    Steiner, A. L.; Tawfik, A. B.; Shalaby, A.; Zakey, A. S.; Abdel Wahab, M. M.; Salah, Z.; Solmon, F.; Sillman, S.; Zaveri, Rahul A.

    2014-04-16

    An integrated chemistry-climate model (RegCM4-CHEM) simulates present-day climate, ozone and tropospheric aerosols over Egypt with a focus on Greater Cairo (GC) region. The densley populated GC region is known for its severe air quality issues driven by high levels of anthropogenic pollution in conjuction with natural sources such as dust and agricultural burning events. We find that current global emission inventories underestimate key pollutants such as nitrogen oxides and anthropogenic aerosol species. In the GC region, average-ground-based NO2 observations of 40-60 ppb are substantially higher than modeled estimates (5-10 ppb), likely due to model grid resolution, improper boundary layer representation, and poor emissions inventories. Observed ozone concentrations range from 35 ppb (winter) to 80 ppb (summer). The model reproduces the seasonal cycle fairly well, but modeled summer ozone is understimated by approximately 15 ppb and exhibits little interannual variability. For aerosols, springtime dust events dominate the seasonal aerosol cycle. The chemistry-climate model captures the springtime peak aerosol optical depth (AOD) of 0.7-1 but is slightly greater than satellite-derived AOD. Observed AOD decreases in the summer and increases again in the fall due to agricultural burning events in the Nile Delta, yet the model underestimates this fall observed AOD peak, as standard emissions inventories underestimate this burning and the resulting aerosol emissions. Our comparison of modeled gas and particulate phase atmospheric chemistry in the GC region indicates that improved emissions inventories of mobile sources and other anthropogenic activities are needed to improve air quality simulations in this region.

  12. A reanalysis of carbonyl sulfide as a source of stratospheric background sulfur aerosol

    SciTech Connect (OSTI)

    Chin, M.; Davis, D.D. [Georgia Institute of Technology, Atlanta, GA (United States)] [Georgia Institute of Technology, Atlanta, GA (United States)

    1995-05-20

    The authors present an analysis of carbonyl sulfide (OCS) in the earth`s atmosphere, with the objective being to assess its role in the formation of sulfate aerosols in the stratosphere. They review the amount of OCS in the atmosphere, its distribution between the troposphere and stratosphere, the estimated source term for emission to the atmosphere, and from one-dimensional model calculations infer a stratospheric lifetime to photochemical reactions of ten years. Calculations infer a sulfur production rate from OCS oxidation which is a factor of 2 to 5 less than recent sulfur aerosol estimates would infer. They discuss a number of possible explanations for the discrepancy.

  13. Characterizing Aerosol Distributions and Optical Properties Using the NASA Langley High Spectral Resolution Lidar

    SciTech Connect (OSTI)

    Hostetler, Chris; Ferrare, Richard

    2013-02-14

    The objective of this project was to provide vertically and horizontally resolved data on aerosol optical properties to assess and ultimately improve how models represent these aerosol properties and their impacts on atmospheric radiation. The approach was to deploy the NASA Langley Airborne High Spectral Resolution Lidar (HSRL) and other synergistic remote sensors on DOE Atmospheric Science Research (ASR) sponsored airborne field campaigns and synergistic field campaigns sponsored by other agencies to remotely measure aerosol backscattering, extinction, and optical thickness profiles. Synergistic sensors included a nadir-viewing digital camera for context imagery, and, later in the project, the NASA Goddard Institute for Space Studies (GISS) Research Scanning Polarimeter (RSP). The information from the remote sensing instruments was used to map the horizontal and vertical distribution of aerosol properties and type. The retrieved lidar parameters include profiles of aerosol extinction, backscatter, depolarization, and optical depth. Products produced in subsequent analyses included aerosol mixed layer height, aerosol type, and the partition of aerosol optical depth by type. The lidar products provided vertical context for in situ and remote sensing measurements from other airborne and ground-based platforms employed in the field campaigns and was used to assess the predictions of transport models. Also, the measurements provide a data base for future evaluation of techniques to combine active (lidar) and passive (polarimeter) measurements in advanced retrieval schemes to remotely characterize aerosol microphysical properties. The project was initiated as a 3-year project starting 1 January 2005. It was later awarded continuation funding for another 3 years (i.e., through 31 December 2010) followed by a 1-year no-cost extension (through 31 December 2011). This project supported logistical and flight costs of the NASA sensors on a dedicated aircraft, the subsequent analysis and archival of the data, and the presentation of results in conferences, workshops, and publications. DOE ASR field campaigns supported under this project included - MAX-Mex /MILAGRO (2006) - TexAQS 2006/GoMACCS (2006) - CHAPS (2007) - RACORO (2009) - CARE/CalNex (2010) In addition, data acquired on HSRL airborne field campaigns sponsored by other agencies were used extensively to fulfill the science objectives of this project and the data acquired have been made available to other DOE ASR investigators upon request.

  14. Long-Term Measurements of Submicrometer Aerosol

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    non-refractory submicron particulate matter (NR-PM1) including organic aerosol (OA), sulfate (SO 4 2- ), nitrate (NO 3 - ), ammonium (NH 4 + ), and chloride (Cl-). In this study,...

  15. ARM - Field Campaign - Aerosol Lidar Validation Experiment -...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govCampaignsAerosol Lidar Validation Experiment - ALIVE Campaign Links ALIVE Website ARM Data Discovery Browse Data Comments? We would love to hear from you Send us a note below...

  16. ARM - Field Campaign - MASRAD: Marine Aerosol Properties

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govCampaignsMASRAD: Marine Aerosol Properties Campaign Links AMF Point Reyes Website Comments? We would love to hear from you Send us a note below or call us at 1-888-ARM-DATA....

  17. A New WRF-Chem Treatment for Studying Regional Scale Impacts of Cloud-Aerosol Interactions in Parameterized Cumuli

    SciTech Connect (OSTI)

    Berg, Larry K.; Shrivastava, ManishKumar B.; Easter, Richard C.; Fast, Jerome D.; Chapman, Elaine G.; Liu, Ying

    2015-01-01

    A new treatment of cloud-aerosol interactions within parameterized shallow and deep convection has been implemented in WRF-Chem that can be used to better understand the aerosol lifecycle over regional to synoptic scales. The modifications to the model to represent cloud-aerosol interactions include treatment of the cloud dropletnumber mixing ratio; key cloud microphysical and macrophysical parameters (including the updraft fractional area, updraft and downdraft mass fluxes, and entrainment) averaged over the population of shallow clouds, or a single deep convective cloud; and vertical transport, activation/resuspension, aqueous chemistry, and wet removal of aerosol and trace gases in warm clouds. Thesechanges have been implemented in both the WRF-Chem chemistry packages as well as the Kain-Fritsch cumulus parameterization that has been modified to better represent shallow convective clouds. Preliminary testing of the modified WRF-Chem has been completed using observations from the Cumulus Humilis Aerosol Processing Study (CHAPS) as well as a high-resolution simulation that does not include parameterized convection. The simulation results are used to investigate the impact of cloud-aerosol interactions on the regional scale transport of black carbon (BC), organic aerosol (OA), and sulfate aerosol. Based on the simulations presented here, changes in the column integrated BC can be as large as -50% when cloud-aerosol interactions are considered (due largely to wet removal), or as large as +35% for sulfate in non-precipitating conditions due to the sulfate production in the parameterized clouds. The modifications to WRF-Chem version 3.2.1 are found to account for changes in the cloud drop number concentration (CDNC) and changes in the chemical composition of cloud-drop residuals in a way that is consistent with observations collected during CHAPS. Efforts are currently underway to port the changes described here to WRF-Chem version 3.5, and it is anticipated that they will be included in a future public release of WRF-Chem.

  18. Aerosol remote sensing in polar regions

    SciTech Connect (OSTI)

    Tomasi, Claudio; Kokhanovsky, Alexander A.; Lupi, Angelo; Ritter, Christoph; Smirnov, Alexander; O'Neill, Norman T.; Stone, Robert S.; Holben, Brent N.; Nyeki, Stephan; Mazzola, Mauro; Lanconelli, Christian; Vitale, Vito; Stebel, Kerstin; Aaltonen, Veijo; de Leeuw, Gerrit; Rodriguez, Edith; Herber, Andreas B.; Radionov, Vladimir F.; Zielinski, Tymon; Petelski, Tomasz; Sakerin, Sergey M.; Kabanov, Dmitry M.; Xue, Yong; Mei, Linlu; Istomina, Larysa; Wagener, Richard; McArthur, Bruce; Sobolewski, Piotr S.; Kivi, Rigel; Courcoux, Yann; Larouche, Pierre; Broccardo, Stephen; Piketh, Stuart J.

    2015-01-01

    Multi-year sets of ground-based sun-photometer measurements conducted at 12 Arctic sites and 9 Antarctic sites were examined to determine daily mean values of aerosol optical thickness ?(?) at visible and near-infrared wavelengths, from which best-fit values of ngstrm's exponent ? were calculated. Analysing these data, the monthly mean values of ?(0.50 ?m) and ? and the relative frequency histograms of the daily mean values of both parameters were determined for winterspring and summerautumn in the Arctic and for austral summer in Antarctica. The Arctic and Antarctic covariance plots of the seasonal median values of ? versus ?(0.50 ?m) showed: (i) a considerable increase in ?(0.50 ?m) for the Arctic aerosol from summer to winterspring, without marked changes in ?; and (ii) a marked increase in ?(0.50 ?m) passing from the Antarctic Plateau to coastal sites, whereas ? decreased considerably due to the larger fraction of sea-salt aerosol. Good agreement was found when comparing ground-based sun-photometer measurements of ?(?) and ? at Arctic and Antarctic coastal sites with Microtops measurements conducted during numerous AERONET/MAN cruises from 2006 to 2013 in three Arctic Ocean sectors and in coastal and off-shore regions of the Southern Atlantic, Pacific, and Indian Oceans, and the Antarctic Peninsula. Lidar measurements were also examined to characterise vertical profiles of the aerosol backscattering coefficient measured throughout the year at Ny-lesund. Satellite-based MODIS, MISR, and AATSR retrievals of ?(?) over large parts of the oceanic polar regions during spring and summer were in close agreement with ship-borne and coastal ground-based sun-photometer measurements. An overview of the chemical composition of mode particles is also presented, based on in-situ measurements at Arctic and Antarctic sites. Fourteen log-normal aerosol number size-distributions were defined to represent the average features of nuclei, accumulation and coarse mode particles for Arctic haze, summer background aerosol, Asian dust and boreal forest fire smoke, and for various background austral summer aerosol types at coastal and high-altitude Antarctic sites. The main columnar aerosol optical characteristics were determined for all 14 particle modes, based on in-situ measurements of the scattering and absorption coefficients. Diurnally averaged direct aerosol-induced radiative forcing and efficiency were calculated for a set of multimodal aerosol extinction models, using various Bidirectional Reflectance Distribution Function models over vegetation-covered, oceanic and snow-covered surfaces. These gave a reliable measure of the pronounced effects of aerosols on the radiation balance of the surfaceatmosphere system over polar regions.

  19. Study of Aerosol Indirect Effects in China

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Aerosol Indirect Effects in China In 2008, the U.S. Department of Energy (DOE)'s Atmospheric Radiation Measurement (ARM) Climate Research Facility is providing the ARM Mobile Facility (AMF) to conduct a comprehensive investigation of regional aerosol impacts in China as part of a joint program with the Institute of Atmospheric Physics, Chinese Academy of Sciences. The joint program is under the "Climate Sciences" agreement established in 1987 between the DOE and China Ministry of

  20. Apparatus for sampling and characterizing aerosols

    DOE Patents [OSTI]

    Dunn, P.F.; Herceg, J.E.; Klocksieben, R.H.

    1984-04-11

    Apparatus for sampling and characterizing aerosols having a wide particle size range at relatively low velocities may comprise a chamber having an inlet and an outlet, the chamber including: a plurality of vertically stacked, successive particle collection stages; each collection stage includes a separator plate and a channel guide mounted transverse to the separator plate, defining a labyrinthine flow path across the collection stage. An opening in each separator plate provides a path for the aerosols from one collection stage t

  1. Aerosol fabrication methods for monodisperse nanoparticles

    DOE Patents [OSTI]

    Jiang, Xingmao; Brinker, C Jeffrey

    2014-10-21

    Exemplary embodiments provide materials and methods for forming monodisperse particles. In one embodiment, the monodisperse particles can be formed by first spraying a nanoparticle-containing dispersion into aerosol droplets and then heating the aerosol droplets in the presence of a shell precursor to form core-shell particles. By removing either the shell layer or the nanoparticle core of the core-shell particles, monodisperse nanoparticles can be formed.

  2. Impact of aerosol size representation on modeling aerosol-cloud interactions

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Zhang, Y.; Easter, R. C.; Ghan, S. J.; Abdul-Razzak, H.

    2002-11-07

    In this study, we use a 1-D version of a climate-aerosol-chemistry model with both modal and sectional aerosol size representations to evaluate the impact of aerosol size representation on modeling aerosol-cloud interactions in shallow stratiform clouds observed during the 2nd Aerosol Characterization Experiment. Both the modal (with prognostic aerosol number and mass or prognostic aerosol number, surface area and mass, referred to as the Modal-NM and Modal-NSM) and the sectional approaches (with 12 and 36 sections) predict total number and mass for interstitial and activated particles that are generally within several percent of references from a high resolution 108-section approach.more » The modal approach with prognostic aerosol mass but diagnostic number (referred to as the Modal-M) cannot accurately predict the total particle number and surface areas, with deviations from the references ranging from 7-161%. The particle size distributions are sensitive to size representations, with normalized absolute differences of up to 12% and 37% for the 36- and 12-section approaches, and 30%, 39%, and 179% for the Modal-NSM, Modal-NM, and Modal-M, respectively. For the Modal-NSM and Modal-NM, differences from the references are primarily due to the inherent assumptions and limitations of the modal approach. In particular, they cannot resolve the abrupt size transition between the interstitial and activated aerosol fractions. For the 12- and 36-section approaches, differences are largely due to limitations of the parameterized activation for non-log-normal size distributions, plus the coarse resolution for the 12-section case. Differences are larger both with higher aerosol (i.e., less complete activation) and higher SO2 concentrations (i.e., greater modification of the initial aerosol distribution).« less

  3. WRF-Chem Simulations of Aerosols and Anthropogenic Aerosol Radiative Forcing in East Asia

    SciTech Connect (OSTI)

    Gao, Yi; Zhao, Chun; Liu, Xiaohong; Zhang, Meigen; Leung, Lai-Yung R.

    2014-08-01

    This study aims to provide a first comprehensive evaluation of WRF-Chem for modeling aerosols and anthropogenic aerosol radiative forcing (RF) over East Asia. Several numerical experiments were conducted from November 2007 to December 2008. Comparison between model results and observations shows that the model can generally reproduce the observed spatial distributions of aerosol concentration, aerosol optical depth (AOD) and single scattering albedo (SSA) from measurements at different sites, including the relatively higher aerosol concentration and AOD over East China and the relatively lower AOD over Southeast Asia, Korean, and Japan. The model also depicts the seasonal variation and transport of pollutions over East Asia. Particulate matter of 10 um or less in the aerodynamic diameter (PM10), black carbon (BC), sulfate (SO42-), nitrate (NO3-) and ammonium (NH4+) concentrations are higher in spring than other seasons in Japan due to the pollutant transport from polluted area of East Asia. AOD is high over Southwest and Central China in winter, spring and autumn and over North China in summer while is low over South China in summer due to monsoon precipitation. SSA is lowest in winter and highest in summer. The model also captures the dust events at the Zhangye site in the semi-arid region of China. Anthropogenic aerosol RF is estimated to range from -5 to -20 W m-2 over land and -20 to -40 W m-2 over ocean at the top of atmosphere (TOA), 5 to 30 W m-2 in the atmosphere (ATM) and -15 to -40 W m-2 at the bottom (BOT). The warming effect of anthropogenic aerosol in ATM results from BC aerosol while the negative aerosol RF at TOA is caused by scattering aerosols such as SO4 2-, NO3 - and NH4+. Positive BC RF at TOA compensates 40~50% of the TOA cooling associated with anthropogenic aerosol.

  4. The First Aerosol Indirect Effect: Beyond Twomey

    SciTech Connect (OSTI)

    Liu, Y.; Dunn, M.; Daum, P.

    2008-03-10

    The traditional first aerosol indirect effect or the Twomey effect involves several fundamental assumptions. Some of the assumptions (e.g., constant liquid water content) are explicitly stated in studies of the Twomey effect whereas others are only implicitly embedded in the quantitative formulation. This work focuses on examining the implicit assumptions. In particular, we will show that anthropogenic pollution not only increases aerosol loading and droplet concentrations but also alters the relative dispersions of both the aerosol and subsequent droplet size distributions. The indirect effects resulting from the two altered relative dispersions (aerosol dispersion effect and droplet dispersion effect) are likely opposite in sign and proportional in magnitude to the conventional Twomey effect. This result suggests that the outstanding problems of the Twomey effect (i.e., large uncertainty and overestimation reported in literature) may lie with violation of the constant spectral shapes of aerosol and droplet size distributions implicitly assumed in evaluation of the Twomey effect, and therefore, further progress in understanding and quantification of the first aerosol indirect effect demands moving beyond the traditional paradigm originally conceived by Twomey.

  5. The Availability and Price of Petroleum and Petroleum Products...

    Gasoline and Diesel Fuel Update (EIA)

    1.3-million-bbld decline in global stocks in November and December, global surplus crude oil production capacity remains low and unplanned global supply disruptions remain...

  6. Project Overview: Cumulus Humilis Aerosol Processing Study (CHAPS): Proposed Summer 2007 ASP Field Campaign

    SciTech Connect (OSTI)

    Berkowitz, Carl M.; Berg, Larry K.; Ogren, J. A.; Hostetler, Chris A.; Ferrare, Richard

    2006-05-18

    This white paper presents the scientific motivation and preliminary logistical plans for a proposed ASP field campaign to be carried out in the summer of 2007. The primary objective of this campaign is to use the DOE Gulfstream-1 aircraft to make measurements characterizing the chemical, physical and optical properties of aerosols below, within and above large fields of fair weather cumulus and to use the NASA Langley Research Centers High Spectral Resolution Lidar (HSRL) to make independent measurements of aerosol backscatter and extinction profiles in the vicinity of these fields. Separate from the science questions to be addressed by these observations will be information to add in the development of a parameterized cumulus scheme capable of including multiple cloud fields within a regional or global scale model. We will also be able to compare and contrast the cloud and aerosol properties within and outside the Oklahoma City plume to study aerosol processes within individual clouds. Preliminary discussions with the Cloud and Land Surface Interaction Campaign (CLASIC) science team have identified overlap between the science questions posed for the CLASIC Intensive Operation Period (IOP) and the proposed ASP campaign, suggesting collaboration would benefit both teams.

  7. DOE/SC-ARM-TR-131 Organic Aerosol Component (OACOMP) Value-

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    31 Organic Aerosol Component (OACOMP) Value- Added Product J Fast T Shippert Q Zhang C Parworth A Tilp F Mei August 2013 DISCLAIMER This report was prepared as an account of work sponsored by the U.S. Government. Neither the United States nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or

  8. Study of Mechanisms of Aerosol Indirect Effects on Glaciated Clouds: Progress during the Project Final Technical Report

    SciTech Connect (OSTI)

    2013-10-18

    This 3-year project has studied how aerosol pollution influences glaciated clouds. The tool applied has been an 'aerosol-cloud model'. It is a type of Cloud-System Resolving Model (CSRM) modified to include 2-moment bulk microphysics and 7 aerosol species, as described by Phillips et al. (2009, 2013). The study has been done by, first, improving the model and then performing sensitivity studies with validated simulations of a couple of observed cases from ARM. These are namely the Tropical Warm Pool International Cloud Experiment (TWP-ICE) over the tropical west Pacific and the Cloud and Land Surface Interaction Campaign (CLASIC) over Oklahoma. During the project, sensitivity tests with the model showed that in continental clouds, extra liquid aerosols (soluble aerosol material) from pollution inhibited warm rain processes for precipitation production. This promoted homogeneous freezing of cloud droplets and aerosols. Mass and number concentrations of cloud-ice particles were boosted. The mean sizes of cloud-ice particles were reduced by the pollution. Hence, the lifetime of glaciated clouds, especially ice-only clouds, was augmented due to inhibition of sedimentation and ice-ice aggregation. Latent heat released from extra homogeneous freezing invigorated convective updrafts, and raised their maximum cloud-tops, when aerosol pollution was included. In the particular cases simulated in the project, the aerosol indirect effect of glaciated clouds was twice than of (warm) water clouds. This was because glaciated clouds are higher in the troposphere than water clouds and have the first interaction with incoming solar radiation. Ice-only clouds caused solar cooling by becoming more extensive as a result of aerosol pollution. This 'lifetime indirect effect' of ice-only clouds was due to higher numbers of homogeneously nucleated ice crystals causing a reduction in their mean size, slowing the ice-crystal process of snow production and slowing sedimentation. In addition to the known indirect effects (glaciation, riming and thermodynamic), new indirect effects were discovered and quantified due to responses of sedimentation, aggregation and coalescence in glaciated clouds to changing aerosol conditions. In summary, the change in horizontal extent of the glaciated clouds ('lifetime indirect effects'), especially of ice-only clouds, was seen to be of higher importance in regulating aerosol indirect effects than changes in cloud properties ('cloud albedo indirect effects').

  9. Chemical Composition and Sources of Coastal Marine Aerosol Particles during the 2008 VOCALS-REx Campaign

    SciTech Connect (OSTI)

    Lee, Y.- N.; Springston, S.; Jayne, John T.; Wang, Jian; Hubbe, John M.; Senum, Gunnar I.; Kleinman, Lawrence I.; Daum, Peter H.

    2014-05-23

    The chemical composition of aerosol particles (Dp 1.5 ?m) was measured over the southeast Pacific Ocean during the VAMOS (Variability of the American Monsoon Systems) Ocean-Cloud-Atmosphere-Land Study Regional Experiment (VOCALS-Rex) between 16 October and 15 November 2008 using the US Department of Energy (DOE) G-1 aircraft. The objective of these flights was to gain an understanding of the sources and evolution of these aerosols, and of how they interact with the marine stratus cloud layer that prevails in this region of the globe. Our measurements showed that the marine boundary layer (MBL) aerosol mass was dominated by non-sea-salt SO2?4, followed by Na+, Cl?, Org (total organics), NH+4 , and NO?3 , in decreasing order of importance; CH3SO?3 (MSA), Ca2+, and K+ rarely exceeded their limits of detection. Aerosols were strongly acidic with a NH+4 to SO2?4 equivalents ratio typically < 0.3. Sea-salt aerosol (SSA) particles, represented by NaCl, exhibited Cl? deficits caused by both HNO3 and H2SO4, but for the most part were externally mixed with particles, mainly SO2?4. SSA contributed only a small fraction of the total accumulation mode particle number concentration. It was inferred that all aerosol species (except SSA) were of predominantly continental origin because of their strong land-to-sea concentration gradient. Comparison of relative changes in median values suggests that (1) an oceanic source of NH3 is present between 72 W and 76 W, (2) additional organic aerosols from biomass burns or biogenic precursors were emitted from coastal regions south of 31 S, with possible cloud processing, and (3) free tropospheric (FT) contributions to MBL gas and aerosol concentrations were negligible. The very low levels of CH3SO?3 observed as well as the correlation between SO2?4 and NO?3 (which is thought primarily anthropogenic) suggest a limited contribution of DMS to SO2?4 aerosol production during VOCALS.

  10. Overview of 2007 ANL progress for conversion of HEU- based Mo-99 production as part of the U.S. global threat reduction--conversion program

    SciTech Connect (OSTI)

    Vandegrift, George F.; Bakel, Allen J.; Thomas, Justin W.

    2008-07-15

    ANL effort is divided into five areas: (1) cooperation with Argentina to demonstrate the use of LEU-foil targets in alkaline-based processes, (2) cooperation with Indonesia in converting their HEU-based Cintichem process to LEU-foil targets, (3) technical assistance to two potential U.S. domestic suppliers (MURR and BWTX), (4) responding to the National Academies Study, and (5) participation in the IAEA CRP for Indigenous Mo-99 production. This paper presents highlights of these activities. A short description of how the dose emitted by spent HEU target material compared to spent fuel is also included. (author)

  11. Overview of 2007 ANL progress for conversion of HEU-based Mo-99 production as part of the U.S. Global Threat Reduction--Conversion program.

    SciTech Connect (OSTI)

    Vandegrift, G. F.; Bakel, A. J.; Thomas, J. W.

    2007-01-01

    ANL effort is divided into five areas: (1) cooperation with Argentina to demonstrate the use of LEU-foil targets in alkaline-based processes, (2) cooperation with Indonesia in converting their HEU-based Cintichem process to LEU-foil targets, (3) technical assistance to two potential U.S. domestic suppliers (MURR and BWTX), (4) responding to the National Academies Study, and (5) participation in the IAEA CRP for Indigenous Mo-99 production. This paper presents highlights of these activities. A short description of how the dose emitted by spent HEU target material compared to spent fuel is also included.

  12. Engineering change in global climate

    SciTech Connect (OSTI)

    Schneider, S.H.

    1996-12-31

    {open_quotes}With increased public focus on global warming and in the wake of the intense heat waves, drought, fires, and super-hurricanes that occurred in 1988 and 1989, interest in geoengineering has surged,{close_quotes} says Stephen H. Schneider, professor of biological science at Stanford University in Stanford, California. One scheme set forth in a National Research Council report proposes using 16-inch naval guns to fire aerosol shells into the stratosphere in hopes of offsetting {open_quotes}the radiative effects of increasing carbon dioxide,{close_quotes} Schneider says. Schneider, however, would prefer that we {open_quotes}seek measures that can cure our global {open_quote}addiction{close_quote} to polluting practices.{close_quotes} Rather than playing God, he says we should {open_quotes}stick to being human and pursue problem - solving methods currently within our grasp.{close_quotes} Such strategies include efforts to promote energy efficiency and reduce our reliance on automobiles.

  13. The mixing state of carbonaceous aerosol particles in northern and southern California measured during CARES and CalNex 2010

    SciTech Connect (OSTI)

    Cahill, John F.; Suski, Kaitlyn; Seinfeld, John H.; Zaveri, Rahul A.; Prather, Kimberly A.

    2012-11-21

    Carbonaceous aerosols impact climate directly by scattering and absorbing radiation, and hence play a major, although highly uncertain, role in global radiative forcing. Commonly, ambient carbonaceous aerosols are internally mixed with secondary species such as nitrate, sulfate, and ammonium, which influence their climate impacts through optical properties, hygroscopicity, and atmospheric lifetime. Aircraft-aerosol time-of-flight mass spectrometry (A-ATOFMS), which measures single-particle mixing state, was used to determine the fraction of organic and soot aerosols that were internally mixed and the variability of their mixing state in California during the Carbonaceous Aerosol and Radiative Effects Study (CARES) and the Research at the Nexus of Air Quality and Climate Change (CalNex) field campaigns in the late spring and early summer of 2010. Nearly 88% of all A-ATOFMS measured particles (100-1000 nm in diameter) were internally mixed with secondary species, with 96% and 75% of particles internally mixed with nitrate and/or sulfate in southern and northern California, respectively. Even though atmospheric particle composition in both regions was primarily influenced by urban sources, the mixing state was found to vary greatly, with nitrate and soot being the dominant species in southern California, and sulfate and organic carbon in northern California. Furthermore, mixing state varied temporally in northern California, with soot becoming the prevalent particle type towards the end of the study as regional pollution levels increased. The results from these studies demonstrate that the majority of ambient carbonaceous particles are internally mixed and are heavily influenced by secondary species that are most predominant in each region. Based on these findings, considerations of regionally dominant sources and secondary species, as well as temporal variations of aerosol physical and optical properties, will be required to obtain more accurate predictions of the climate impacts of aerosol in California.

  14. Spent fuel sabotage test program, characterization of aerosol dispersal : interim final report.

    SciTech Connect (OSTI)

    Gregson, Michael Warren; Brockmann, John E.; Loiseau, Olivier; Klennert, Lindsay A.; Nolte, Oliver; Molecke, Martin Alan; Autrusson, Bruno A.; Koch, Wolfgang; Pretzsch, Gunter Guido; Brucher, Wenzel; Steyskal, Michele D.

    2008-03-01

    This multinational, multi-phase spent fuel sabotage test program is quantifying the aerosol particles produced when the products of a high energy density device (HEDD) interact with and explosively particulate test rodlets that contain pellets of either surrogate materials or actual spent fuel. This program provides source-term data that are relevant to plausible sabotage scenarios in relation to spent fuel transport and storage casks and associated risk assessments. We present details and significant results obtained from this program from 2001 through 2007. Measured aerosol results include: respirable fractions produced; amounts, nuclide content, and produced particle size distributions and morphology; measurements of volatile fission product species enhanced sorption--enrichment factors onto respirable particles; and, status on determination of the spent fuel ratio, SFR, needed for scaling studies. Emphasis is provided on recent Phase 3 tests using depleted uranium oxide pellets plus non-radioactive fission product dopants in surrogate spent fuel test rodlets, plus the latest surrogate cerium oxide results and aerosol laboratory supporting calibration work. The DUO{sub 2}, CeO{sub 2}, plus fission product dopant aerosol particle results are compared with available historical data. We also provide a status review on continuing preparations for the final Phase 4 in this program, tests using individual short rodlets containing actual spent fuel from U.S. PWR reactors, with both high- and lower-burnup fuel. The source-term data, aerosol results, and program design have been tailored to support and guide follow-on computer modeling of aerosol dispersal hazards and radiological consequence assessments. This spent fuel sabotage, aerosol test program was performed primarily at Sandia National Laboratories, with support provided by both the U.S. Department of Energy and the Nuclear Regulatory Commission. This program has significant input from, and is cooperatively supported and coordinated by both the U.S. and international program participants in Germany, France, and others, as part of the International Working Group for Sabotage Concerns of Transport and Storage Casks (WGSTSC).

  15. Aerosol beam-focus laser-induced plasma spectrometer device

    DOE Patents [OSTI]

    Cheng, Meng-Dawn

    2002-01-01

    An apparatus for detecting elements in an aerosol includes an aerosol beam focuser for concentrating aerosol into an aerosol beam; a laser for directing a laser beam into the aerosol beam to form a plasma; a detection device that detects a wavelength of a light emission caused by the formation of the plasma. The detection device can be a spectrometer having at least one grating and a gated intensified charge-coupled device. The apparatus may also include a processor that correlates the wavelength of the light emission caused by the formation of the plasma with an identity of an element that corresponds to the wavelength. Furthermore, the apparatus can also include an aerosol generator for forming an aerosol beam from bulk materials. A method for detecting elements in an aerosol is also disclosed.

  16. Apparatus for rapid measurement of aerosol bulk chemical composition

    DOE Patents [OSTI]

    Lee, Yin-Nan E.; Weber, Rodney J.; Orsini, Douglas

    2006-04-18

    An apparatus for continuous on-line measurement of chemical composition of aerosol particles with a fast time resolution is provided. The apparatus includes an enhanced particle size magnifier for producing activated aerosol particles and an enhanced collection device which collects the activated aerosol particles into a liquid stream for quantitative analysis by analytical means. Methods for on-line measurement of chemical composition of aerosol particles are also provided, the method including exposing aerosol carrying sample air to hot saturated steam thereby forming activated aerosol particles; collecting the activated aerosol particles by a collection device for delivery as a jet stream onto an impaction surface; and flushing off the activated aerosol particles from the impaction surface into a liquid stream for delivery of the collected liquid stream to an analytical instrument for quantitative measurement.

  17. Apparatus for rapid measurement of aerosol bulk chemical composition

    DOE Patents [OSTI]

    Lee, Yin-Nan E.; Weber, Rodney J.

    2003-01-01

    An apparatus and method for continuous on-line measurement of chemical composition of aerosol particles with a fast time resolution are provided. The apparatus includes a modified particle size magnifier for producing activated aerosol particles and a collection device which collects the activated aerosol particles into a liquid stream for quantitative analysis by analytical methods. The method provided for on-line measurement of chemical composition of aerosol particles includes exposing aerosol carrying sample air to hot saturated steam thereby forming activated aerosol particles; collecting the activated aerosol particles by a collection device for delivery as a jet stream onto an impaction surface; flushing off the activated aerosol particles from the impaction surface into a liquid stream for delivery of the collected liquid stream to an analytical instrument for quantitative measurement.

  18. Biogenic Aerosols„Effects on Clouds and Climate (BAECC)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Biogenic Aerosols-Effects on Clouds and Climate (BAECC) Final Campaign Summary T Petj ... DOESC-ARM-15-051 Biogenic Aerosols-Effects on Clouds and Climate (BAECC) Final Campaign ...

  19. ARM - Field Campaign - Two-Column Aerosol Project (TCAP): Aerial...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govCampaignsTwo-Column Aerosol Project (TCAP): Aerial Campaign ARM Data Discovery Browse Data Related Campaigns Two-Column Aerosol Project (TCAP) 2012.07.01, Berg, AMF Comments? We...

  20. ARM - Field Campaign - Two-Column Aerosol Project (TCAP)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Browse Data Related Campaigns Two-Column Aerosol Project (TCAP): Field Evaluation of Real-time Cloud OD Sensor TWST 2013.04.15, Scott, AMF Two-Column Aerosol Project (TCAP): Winter ...

  1. Parameterizations of Cloud Microphysics and Indirect Aerosol Effects

    Office of Scientific and Technical Information (OSTI)

    (Technical Report) | SciTech Connect Parameterizations of Cloud Microphysics and Indirect Aerosol Effects Citation Details In-Document Search Title: Parameterizations of Cloud Microphysics and Indirect Aerosol Effects 1. OVERVIEW Aerosols and especially their effect on clouds are one of the key components of the climate system and the hydrological cycle [Ramanathan et al., 2001]. Yet, the aerosol effect on clouds remains largely unknown and the processes involved not well understood. A

  2. Potential Aerosol Indirect Effects on Atmospheric Circulation and Radiative

    Office of Scientific and Technical Information (OSTI)

    Forcing through Deep Convection (Journal Article) | SciTech Connect Potential Aerosol Indirect Effects on Atmospheric Circulation and Radiative Forcing through Deep Convection Citation Details In-Document Search Title: Potential Aerosol Indirect Effects on Atmospheric Circulation and Radiative Forcing through Deep Convection Aerosol indirect effects, i.e., the interactions of aerosols with clouds by serving as cloud condensation nuclei (CCN) or ice nuclei (IN), constitute the largest

  3. Direct Aerosol Forcing: Calculation from Observables and Sensitivities to

    Office of Scientific and Technical Information (OSTI)

    Inputs (Journal Article) | SciTech Connect Direct Aerosol Forcing: Calculation from Observables and Sensitivities to Inputs Citation Details In-Document Search Title: Direct Aerosol Forcing: Calculation from Observables and Sensitivities to Inputs Understanding sources of uncertainty in aerosol direct radiative forcing (DRF), the difference in a given radiative flux component with and without aerosol, is essential to quantifying changes in Earth's radiation budget. We examine the uncertainty

  4. Pajarito Aerosol Couplings to Ecosystems (PACE) Field Campaign Report

    Office of Scientific and Technical Information (OSTI)

    (Technical Report) | SciTech Connect Pajarito Aerosol Couplings to Ecosystems (PACE) Field Campaign Report Citation Details In-Document Search Title: Pajarito Aerosol Couplings to Ecosystems (PACE) Field Campaign Report Laboratory (LANL) worked on the Pajarito Aerosol Couplings to Ecosystems (PACE) intensive operational period (IOP). PACE's primary goal was to demonstrate routine Mobile Aerosol Observing System (MAOS) field operations and improve instrumental and operational performance.

  5. The Global Energy Challenge

    ScienceCinema (OSTI)

    Crabtree, George

    2010-01-08

    The expected doubling of global energy demand by 2050 challenges our traditional patterns of energy production, distribution and use.   The continued use of fossil fuels raises concerns about supply, security, environment and climate.  New routes are needed for the efficient conversion of energy from chemical fuel, sunlight, and heat to electricity or hydrogen as an energy carrier and finally to end uses like transportation, lighting, and heating. Opportunities for efficient new energy conversion routes based on nanoscale materials will be presented, with emphasis on the sustainable energy technologies they enable.

  6. Indirect and semi-direct aerosol campaign: The impact of Arctic aerosols on clouds

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    McFarquhar, Greg M.; Ghan, Steven; Verlinde, Johannes; Korolev, Alexei; Strapp, J. Walter; Schmid, Beat; Tomlinson, Jason M.; Wolde, Menqistu; Brooks, Sarah D.; Cziczo, Dan; et al

    2011-02-01

    A comprehensive dataset of microphysical and radiative properties of aerosols and clouds in the boundary layer in the vicinity of Barrow, Alaska, was collected in April 2008 during the Indirect and Semi-Direct Aerosol Campaign (ISDAC). ISDAC's primary aim was to examine the effects of aerosols, including those generated by Asian wildfires, on clouds that contain both liquid and ice. ISDAC utilized the Atmospheric Radiation Measurement Pro- gram's permanent observational facilities at Barrow and specially deployed instruments measuring aerosol, ice fog, precipitation, and radiation. The National Research Council of Canada Convair-580 flew 27 sorties and collected data using an unprecedented 41more » stateof- the-art cloud and aerosol instruments for more than 100 h on 12 different days. Aerosol compositions, including fresh and processed sea salt, biomassburning particles, organics, and sulfates mixed with organics, varied between flights. Observations in a dense arctic haze on 19 April and above, within, and below the single-layer stratocumulus on 8 and 26 April are enabling a process-oriented understanding of how aerosols affect arctic clouds. Inhomogeneities in reflectivity, a close coupling of upward and downward Doppler motion, and a nearly constant ice profile in the single-layer stratocumulus suggests that vertical mixing is responsible for its longevity observed during ISDAC. Data acquired in cirrus on flights between Barrow and Fairbanks, Alaska, are improving the understanding of the performance of cloud probes in ice. Furthermore, ISDAC data will improve the representation of cloud and aerosol processes in models covering a variety of spatial and temporal scales, and determine the extent to which surface measurements can provide retrievals of aerosols, clouds, precipitation, and radiative heating.« less

  7. Aerosol can puncture device test report

    SciTech Connect (OSTI)

    Leist, K.J.

    1994-10-01

    This test report documents the evaluation of an aerosol can puncture device to replace a system currently identified for use in the WRAP-1 facility. The new system is based upon a commercially available puncture device, as recommended by WHC Fire Protection. With modifications found necessary through the testing program, the Aerosol Can Puncture Device was found able to puncture and drain aerosol cans without incident. Modifications include the addition of a secondary collection bottle and the modification of the can puncture needle. In the course of testing, a variety of absorbents were tested to determine their performance in immobilizing drained fluids. The visibility of the puncture with Non-Destructive Examination techniques were also reviewed.

  8. Long-term Measurements of Submicrometer Aerosol Chemistry at the Southern Great Plains (SGP) Using an Aerosol Chemical Speciation Monitor (ACSM)

    SciTech Connect (OSTI)

    Parworth, Caroline; Fast, Jerome D.; Mei, Fan; Shippert, Timothy R.; Sivaraman, Chitra; Tilp, Alison; Watson, Thomas; Zhang, Qi

    2015-04-01

    In this study the long-term trends of non-refractory submicrometer aerosol (NR-PM1) composition and mass concentration measured by an Aerosol Chemical Speciation Monitor (ACSM) at the U.S. Department of Energy’s Southern Great Plains (SGP) site are discussed. Over the period of 19 months (Nov. 20, 2010 – June 2012) highly time resolved (~30 min.) NR-PM1 data was recorded. Using this dataset the value-added product (VAP) of deriving organic aerosol components (OACOMP) is introduced. With this VAP, multivariate analysis of the measured organic mass spectral matrix can be performed on long term data to return organic aerosol (OA) factors that are associated with distinct sources, evolution processes, and physiochemical properties. Three factors were obtained from this VAP including two oxygenated OA (OOA) factors, differing in degrees of oxidation, and a biomass burning OA (BBOA) factor. Back trajectory analyses were performed to investigate possible sources of major NR-PM1 species at the SGP site. Organics dominated NR-PM1 mass concentration for the majority of the study with the exception of winter, when nitrate increased due to transport of precursor species from surrounding urban and agricultural areas and also due to cooler temperatures. Sulfate mass concentrations showed little seasonal variation with mixed regional and local sources. In the spring BBOA emissions increased and were mainly associated with local fires. Isoprene and carbon monoxide emission rates were computed by the Model of Emissions of Gases and Aerosols from Nature (MEGAN) to represent the spatial distribution of biogenic and anthropogenic sources, respectively. From this model there is evidence to support that biogenic emissions from the southeast contribute to SOA formation at the SGP site during the summer.

  9. Aerodynamic Focusing Of High-Density Aerosols

    SciTech Connect (OSTI)

    Ruiz, D. E.; Fisch, Nathaniel

    2014-02-24

    High-density micron-sized particle aerosols might form the basis for a number of applications in which a material target with a particular shape might be quickly ionized to form a cylindrical or sheet shaped plasma. A simple experimental device was built in order to study the properties of high-density aerosol focusing for 1#22; m silica spheres. Preliminary results recover previous findings on aerodynamic focusing at low densities. At higher densities, it is demonstrated that the focusing properties change in a way which is consistent with a density dependent Stokes number.

  10. Apparatus for sampling and characterizing aerosols

    DOE Patents [OSTI]

    Dunn, Patrick F. (Downers Grove, IL); Herceg, Joseph E. (Naperville, IL); Klocksieben, Robert H. (Park Forest, IL)

    1986-01-01

    Apparatus for sampling and characterizing aerosols having a wide particle size range at relatively low velocities may comprise a chamber having an inlet and an outlet, the chamber including: a plurality of vertically stacked, successive particle collection stages; each collection stage includes a separator plate and a channel guide mounted transverse to the separator plate, defining a labyrinthine flow path across the collection stage. An opening in each separator plate provides a path for the aerosols from one collection stage to the next. Mounted within each collection stage are one or more particle collection frames.

  11. Global Energy Futures Model

    Energy Science and Technology Software Center (OSTI)

    2004-01-01

    The Global Energy Futures Model (GEFM) is a demand-based, gross domestic product (GDP)-driven, dynamic simulation tool that provides an integrated framework to model key aspects of energy, nuclear-materials storage and disposition, environmental effluents from fossil and non fossil energy and global nuclear-materials management. Based entirely on public source data, it links oil, natural gas, coal, nuclear and renewable energy dynamically to greenhouse-gas emissions and 13 other measures of environmental impact. It includes historical data frommore » 1990 to 2000, is benchmarked to the DOE/EIA/IEO 2002 [5] Reference Case for 2000 to 2020, and extrapolates energy demand through the year 2050. The GEFM is globally integrated, and breaks out five regions of the world: United States of America (USA), the Peoples Republic of China (China), the former Soviet Union (FSU), the Organization for Economic Cooperation and Development (OECD) nations excluding the USA (other industrialized countries), and the rest of the world (ROW) (essentially the developing world). The GEFM allows the user to examine a very wide range of what ir scenarios through 2050 and to view the potential effects across widely dispersed, but interrelated areas. The authors believe that this high-level learning tool will help to stimulate public policy debate on energy, environment, economic and national security issues.« less

  12. Aerosol remote sensing in polar regions

    SciTech Connect (OSTI)

    Tomasi, Claudio; Kokhanovsky, Alexander A.; Lupi, Angelo; Ritter, Christoph; Smirnov, Alexander; O'Neill, Norman T.; Stone, Robert S.; Holben, Brent N.; Nyeki, Stephan; Mazzola, Mauro; Lanconelli, Christian; Vitale, Vito; Stebel, Kerstin; Aaltonen, Veijo; de Leeuw, Gerrit; Rodriguez, Edith; Herber, Andreas B.; Radionov, Vladimir F.; Zielinski, Tymon; Petelski, Tomasz; Sakerin, Sergey M.; Kabanov, Dmitry M.; Xue, Yong; Mei, Linlu; Istomina, Larysa; Wagener, Richard; McArthur, Bruce; Sobolewski, Piotr S.; Kivi, Rigel; Courcoux, Yann; Larouche, Pierre; Broccardo, Stephen; Piketh, Stuart J.

    2015-01-01

    Multi-year sets of ground-based sun-photometer measurements conducted at 12 Arctic sites and 9 Antarctic sites were examined to determine daily mean values of aerosol optical thickness τ(λ) at visible and near-infrared wavelengths, from which best-fit values of Ångström's exponent α were calculated. Analysing these data, the monthly mean values of τ(0.50 μm) and α and the relative frequency histograms of the daily mean values of both parameters were determined for winter–spring and summer–autumn in the Arctic and for austral summer in Antarctica. The Arctic and Antarctic covariance plots of the seasonal median values of α versus τ(0.50 μm) showed: (i) a considerable increase in τ(0.50 μm) for the Arctic aerosol from summer to winter–spring, without marked changes in α; and (ii) a marked increase in τ(0.50 μm) passing from the Antarctic Plateau to coastal sites, whereas α decreased considerably due to the larger fraction of sea-salt aerosol. Good agreement was found when comparing ground-based sun-photometer measurements of τ(λ) and α at Arctic and Antarctic coastal sites with Microtops measurements conducted during numerous AERONET/MAN cruises from 2006 to 2013 in three Arctic Ocean sectors and in coastal and off-shore regions of the Southern Atlantic, Pacific, and Indian Oceans, and the Antarctic Peninsula. Lidar measurements were also examined to characterise vertical profiles of the aerosol backscattering coefficient measured throughout the year at Ny-Ålesund. Satellite-based MODIS, MISR, and AATSR retrievals of τ(λ) over large parts of the oceanic polar regions during spring and summer were in close agreement with ship-borne and coastal ground-based sun-photometer measurements. An overview of the chemical composition of mode particles is also presented, based on in-situ measurements at Arctic and Antarctic sites. Fourteen log-normal aerosol number size-distributions were defined to represent the average features of nuclei, accumulation and coarse mode particles for Arctic haze, summer background aerosol, Asian dust and boreal forest fire smoke, and for various background austral summer aerosol types at coastal and high-altitude Antarctic sites. The main columnar aerosol optical characteristics were determined for all 14 particle modes, based on in-situ measurements of the scattering and absorption coefficients. Diurnally averaged direct aerosol-induced radiative forcing and efficiency were calculated for a set of multimodal aerosol extinction models, using various Bidirectional Reflectance Distribution Function models over vegetation-covered, oceanic and snow-covered surfaces. These gave a reliable measure of the pronounced effects of aerosols on the radiation balance of the surface–atmosphere system over polar regions.

  13. Aerosol remote sensing in polar regions

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Tomasi, Claudio; Kokhanovsky, Alexander A.; Lupi, Angelo; Ritter, Christoph; Smirnov, Alexander; O'Neill, Norman T.; Stone, Robert S.; Holben, Brent N.; Nyeki, Stephan; Wehrli, Christoph; et al

    2015-01-01

    Multi-year sets of ground-based sun-photometer measurements conducted at 12 Arctic sites and 9 Antarctic sites were examined to determine daily mean values of aerosol optical thickness τ(λ) at visible and near-infrared wavelengths, from which best-fit values of Ångström's exponent α were calculated. Analysing these data, the monthly mean values of τ(0.50 μm) and α and the relative frequency histograms of the daily mean values of both parameters were determined for winter–spring and summer–autumn in the Arctic and for austral summer in Antarctica. The Arctic and Antarctic covariance plots of the seasonal median values of α versus τ(0.50 μm) showed: (i)more » a considerable increase in τ(0.50 μm) for the Arctic aerosol from summer to winter–spring, without marked changes in α; and (ii) a marked increase in τ(0.50 μm) passing from the Antarctic Plateau to coastal sites, whereas α decreased considerably due to the larger fraction of sea-salt aerosol. Good agreement was found when comparing ground-based sun-photometer measurements of τ(λ) and α at Arctic and Antarctic coastal sites with Microtops measurements conducted during numerous AERONET/MAN cruises from 2006 to 2013 in three Arctic Ocean sectors and in coastal and off-shore regions of the Southern Atlantic, Pacific, and Indian Oceans, and the Antarctic Peninsula. Lidar measurements were also examined to characterise vertical profiles of the aerosol backscattering coefficient measured throughout the year at Ny-Ålesund. Satellite-based MODIS, MISR, and AATSR retrievals of τ(λ) over large parts of the oceanic polar regions during spring and summer were in close agreement with ship-borne and coastal ground-based sun-photometer measurements. An overview of the chemical composition of mode particles is also presented, based on in-situ measurements at Arctic and Antarctic sites. Fourteen log-normal aerosol number size-distributions were defined to represent the average features of nuclei, accumulation and coarse mode particles for Arctic haze, summer background aerosol, Asian dust and boreal forest fire smoke, and for various background austral summer aerosol types at coastal and high-altitude Antarctic sites. The main columnar aerosol optical characteristics were determined for all 14 particle modes, based on in-situ measurements of the scattering and absorption coefficients. Diurnally averaged direct aerosol-induced radiative forcing and efficiency were calculated for a set of multimodal aerosol extinction models, using various Bidirectional Reflectance Distribution Function models over vegetation-covered, oceanic and snow-covered surfaces. These gave a reliable measure of the pronounced effects of aerosols on the radiation balance of the surface–atmosphere system over polar regions.« less

  14. Aerosol composition, chemistry, and source characterization during the 2008 VOCALS Experiment

    SciTech Connect (OSTI)

    Lee, Y.; Springston, S.; Jayne, J.; Wang, J.; Senum, G.; Hubbe, J.; Alexander, L.; Brioude, J.; Spak, S.; Mena-Carrasco, M.; Kleinman, L.; Daum, P.

    2010-03-15

    Chemical composition of fine aerosol particles over the northern Chilean coastal waters was determined onboard the U.S. DOE G-1 aircraft during the VOCALS (VAMOS Ocean-Cloud-Atmosphere-Land Study) field campaign between October 16 and November 15, 2008. SO42-, NO3-, NH4+, and total organics (Org) were determined using an Aerodyne Aerosol Mass Spectrometer, and SO42-, NO3-, NH4+, Na+, Cl-, CH3SO3-, Mg2+, Ca2+, and K+ were determined using a particle-into-liquid sampler-ion chromatography technique. The results show the marine boundary layer (MBL) aerosol mass was dominated by non- sea-salt SO42- followed by Na+, Cl-, Org, NO3-, and NH4+, in decreasing importance; CH3SO3-, Ca2+, and K+ rarely exceeded their respective limits of detection. The SO42- aerosols were strongly acidic as the equivalent NH4+ to SO42- ratio was only {approx}0.25 on average. NaCl particles, presumably of sea-salt origin, showed chloride deficits but retained Cl- typically more than half the equivalency of Na+, and are externally mixed with the acidic sulfate aerosols. Nitrate was observed only on sea-salt particles, consistent with adsorption of HNO3 on sea-salt aerosols, responsible for the Cl- deficit. Dust particles appeared to play a minor role, judging from the small volume differences between that derived from the observed mass concentrations and that calculated based on particle size distributions. Because SO42- concentrations were substantial ({approx}0.5 - {approx}3 {micro}g/m3) with a strong gradient (highest near the shore), and the ocean-emitted dimethylsulfide and its unique oxidation product, CH3SO3-, were very low (i.e., {le} 40 parts per trillion and <0.05 {micro}g/m3, respectively), the observed SO42- aerosols are believed to be primarily of terrestrial origin. Back trajectory calculations indicate sulfur emissions from smelters and power plants along coastal regions of Peru and Chile are the main sources of these SO4- aerosols. However, compared to observations, model calculations appeared to underestimate sulfate concentrations based on an existing emission inventory. The agreement between observations and model predictions of CO as well as total sulfur is reexamined in this work with a new emission inventory made available recently.

  15. Near real time vapor detection and enhancement using aerosol adsorption

    DOE Patents [OSTI]

    Novick, Vincent J.; Johnson, Stanley A.

    1999-01-01

    A vapor sample detection method where the vapor sample contains vapor and ambient air and surrounding natural background particles. The vapor sample detection method includes the steps of generating a supply of aerosol that have a particular effective median particle size, mixing the aerosol with the vapor sample forming aerosol and adsorbed vapor suspended in an air stream, impacting the suspended aerosol and adsorbed vapor upon a reflecting element, alternatively directing infrared light to the impacted aerosol and adsorbed vapor, detecting and analyzing the alternatively directed infrared light in essentially real time using a spectrometer and a microcomputer and identifying the vapor sample.

  16. Near real time vapor detection and enhancement using aerosol adsorption

    DOE Patents [OSTI]

    Novick, V.J.; Johnson, S.A.

    1999-08-03

    A vapor sample detection method is described where the vapor sample contains vapor and ambient air and surrounding natural background particles. The vapor sample detection method includes the steps of generating a supply of aerosol that have a particular effective median particle size, mixing the aerosol with the vapor sample forming aerosol and adsorbed vapor suspended in an air stream, impacting the suspended aerosol and adsorbed vapor upon a reflecting element, alternatively directing infrared light to the impacted aerosol and adsorbed vapor, detecting and analyzing the alternatively directed infrared light in essentially real time using a spectrometer and a microcomputer and identifying the vapor sample. 13 figs.

  17. Indirect and Semi-Direct Aerosol Campaign: The Impact of Arctic Aerosols on Clouds

    SciTech Connect (OSTI)

    McFarquhar, Greg; Ghan, Steven J.; Verlinde, J.; Korolev, Alexei; Strapp, J. Walter; Schmid, Beat; Tomlinson, Jason M.; Wolde, Mengistu; Brooks, Sarah D.; Cziczo, Daniel J.; Dubey, Manvendra K.; Fan, Jiwen; Flynn, Connor J.; Gultepe, Ismail; Hubbe, John M.; Gilles, Mary K.; Laskin, Alexander; Lawson, Paul; Leaitch, W. R.; Liu, Peter S.; Liu, Xiaohong; Lubin, Dan; Mazzoleni, Claudio; Macdonald, A. M.; Moffet, Ryan C.; Morrison, H.; Ovchinnikov, Mikhail; Shupe, Matthew D.; Turner, David D.; Xie, Shaocheng; Zelenyuk, Alla; Bae, Kenny; Freer, Matthew; Glen, Andrew

    2011-02-01

    A comprehensive dataset of microphysical and radiative properties of aerosols and clouds in the arctic boundary layer in the vicinity of Barrow, Alaska was collected in April 2008 during the Indirect and Semi-Direct Aerosol Campaign (ISDAC) sponsored by the Department of Energy Atmospheric Radiation Measurement (ARM) and Atmospheric Science Programs. The primary aim of ISDAC was to examine indirect effects of aerosols on clouds that contain both liquid and ice water. The experiment utilized the ARM permanent observational facilities at the North Slope of Alaska (NSA) in Barrow. These include a cloud radar, a polarized micropulse lidar, and an atmospheric emitted radiance interferometer as well as instruments specially deployed for ISDAC measuring aerosol, ice fog, precipitation and spectral shortwave radiation. The National Research Council of Canada Convair-580 flew 27 sorties during ISDAC, collecting data using an unprecedented 42 cloud and aerosol instruments for more than 100 hours on 12 different days. Data were obtained above, below and within single-layer stratus on 8 April and 26 April 2008. These data enable a process-oriented understanding of how aerosols affect the microphysical and radiative properties of arctic clouds influenced by different surface conditions. Observations acquired on a heavily polluted day, 19 April 2008, are enhancing this understanding. Data acquired in cirrus on transit flights between Fairbanks and Barrow are improving our understanding of the performance of cloud probes in ice. Ultimately the ISDAC data will be used to improve the representation of cloud and aerosol processes in models covering a variety of spatial and temporal scales, and to determine the extent to which long-term surface-based measurements can provide retrievals of aerosols, clouds, precipitation and radiative heating in the Arctic.

  18. Raman Lidar Measurements of Aerosols and Water Vapor During the May 2003 Aerosol IOP

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Raman Lidar Measurements of Aerosols and Water Vapor During the May 2003 Aerosol IOP R. A. Ferrare National Aeronautics and Space Administration Langley Research Center Hampton, Virginia D. D. Turner Pacific Northwest National Laboratory Richland, Washington M. Clayton Science Applications International Corporation National Aeronautics and Space Administration Langley Research Center Hampton, Virginia B. S. Schmid and J. Redemann BAER/NASA Ames Research Institute Moffett Field, California D.

  19. Modeling the global emission, transport and deposition of trace elements associated with mineral dust

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Zhang, Y.; Mahowald, N.; Scanza, R.; Journet, E.; Desboeufs, K.; Albani, S.; Kok, J.; Zhuang, G.; Chen, Y.; Cohen, D. D.; et al

    2014-12-17

    Trace element deposition from desert dust has important impacts on ocean primary productivity. In this study, emission inventories for 8 elements, which are primarily of soil origin, Mg, P, Ca, Mn, Fe, K, Al, and Si were determined based on a global mineral dataset and a soils dataset. Datasets of elemental fractions were used to drive the desert dust model in the Community Earth System Model (CESM) in order to simulate the elemental concentrations of atmospheric dust. Spatial variability of mineral dust elemental fractions was evident on a global scale, particularly for Ca. Simulations of global variations in the Camore » / Al ratio, which typically ranged from around 0.1 to 5.0 in soil sources, were consistent with observations, suggesting this ratio to be a good signature for dust source regions. The simulated variable fractions of chemical elements are sufficiently different that estimates of deposition should include elemental variations, especially for Ca, Al and Fe. The model results have been evaluated with observational elemental aerosol concentration data from desert regions and dust events in non-dust regions, providing insights into uncertainties in the modeling approach. The ratios between modeled and observed elemental fractions ranged from 0.7 to 1.6 except for 3.4 and 3.5 for Mg and Mn, respectivly. Using the soil data base improved the correspondence of the spatial hetereogeneity in the modeling of several elements (Ca, Al and Fe) compared to observations. Total and soluble dust associated element fluxes into different ocean basins and ice sheets regions have been estimated, based on the model results. Annual inputs of soluble Mg, P, Ca, Mn, Fe and K associated with dust using mineral dataset were 0.28 Tg, 16.89 Gg, 1.32 Tg, 22.84 Gg, 0.068 Tg, and 0.15 Tg to global oceans and ice sheets.« less

  20. Radiological/biological/aerosol removal system

    DOE Patents [OSTI]

    Haslam, Jeffery J

    2015-03-17

    An air filter replacement system for existing buildings, vehicles, arenas, and other enclosed airspaces includes a replacement air filter for replacing a standard air filter. The replacement air filter has dimensions and air flow specifications that allow it to replace the standard air filter. The replacement air filter includes a filter material that removes radiological or biological or aerosol particles.

  1. Organic Aerosol Component (OACOMP) Value-Added Product Report...

    Office of Scientific and Technical Information (OSTI)

    The key outputs of OACOMP are the concentration time series and the mass spectra of OA factors that are associated with distinct sources, formation and evolution processes, and ...

  2. Aerosol Optical Depth Value-Added Product Report (Technical Report...

    Office of Scientific and Technical Information (OSTI)

    Authors: Koontz, A ; Hodges, G ; Barnard, J ; Flynn, C ; Michalsky, J Publication Date: 2013-03-17 OSTI Identifier: 1092419 Report Number(s): DOESC-ARMTR-129 PNNL-22260 DOE ...

  3. Organic Aerosol Component (OACOMP) Value-Added Product (Technical...

    Office of Scientific and Technical Information (OSTI)

    But atmospheric OA is poorly characterized and its life cycle insufficiently represented in models. As a result, current models are unable to simulate OA concentrations and ...

  4. Aerosols released during large-scale integral MCCI tests in the ACE Program

    SciTech Connect (OSTI)

    Fink, J.K.; Thompson, D.H.; Spencer, B.W.; Sehgal, B.R.

    1992-04-01

    As part of the internationally sponsored Advanced Containment Experiments (ACE) program, seven large-scale experiments on molten core concrete interactions (MCCIs) have been performed at Argonne National Laboratory. One of the objectives of these experiments is to collect and characterize all the aerosols released from the MCCIs. Aerosols released from experiments using four types of concrete (siliceous, limestone/common sand, serpentine, and limestone/limestone) and a range of metal oxidation for both BWR and PWR reactor core material have been collected and characterized. Release fractions were determined for UO{sup 2}, Zr, the fission-products: BaO, SrO, La{sub 2}O{sub 3}, CeO{sub 2}, MoO{sub 2}, Te, Ru, and control materials: Ag, In, and B{sub 4}C. Release fractions of UO{sub 2} and the fission products other than Te were small in all tests. However, release of control materials was significant.

  5. Aerosols released during large-scale integral MCCI tests in the ACE Program

    SciTech Connect (OSTI)

    Fink, J.K.; Thompson, D.H.; Spencer, B.W. ); Sehgal, B.R. )

    1992-01-01

    As part of the internationally sponsored Advanced Containment Experiments (ACE) program, seven large-scale experiments on molten core concrete interactions (MCCIs) have been performed at Argonne National Laboratory. One of the objectives of these experiments is to collect and characterize all the aerosols released from the MCCIs. Aerosols released from experiments using four types of concrete (siliceous, limestone/common sand, serpentine, and limestone/limestone) and a range of metal oxidation for both BWR and PWR reactor core material have been collected and characterized. Release fractions were determined for UO{sup 2}, Zr, the fission-products: BaO, SrO, La{sub 2}O{sub 3}, CeO{sub 2}, MoO{sub 2}, Te, Ru, and control materials: Ag, In, and B{sub 4}C. Release fractions of UO{sub 2} and the fission products other than Te were small in all tests. However, release of control materials was significant.

  6. ARM - VAP Product - wsicloudsummarygif

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Productswsicloudwsicloudsummarygif Documentation Data Management Facility Plots (Quick Looks) Citation DOI: 10.5439/1027766 [ What is this? ] Generate Citation ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send VAP Output : WSICLOUDSUMMARYGIF WSI: images (GIF) relating to cloud, aerosol summary data Active Dates 1998.05.30 - 2001.07.30 Originating VAP Process Whole Sky Imager Cloud Products : WSICLOUD Measurements The

  7. Global Green Energy ApS | Open Energy Information

    Open Energy Info (EERE)

    ApS Jump to: navigation, search Name: Global Green Energy ApS Place: Aarhus C, Denmark Zip: DK- 8000 Sector: Wind energy Product: Wind farm project developer. References: Global...

  8. Global Home Filesystem

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Global Home Global Home Filesystem Overview Global home directories (or "global homes") provide a convenient means for a user to have access to dotfiles, source files, input files, configuration files, etc., regardless of the platform the user is logged in to. Quotas, Performance, and Usage Default global home quotas are 40 GB and 1,000,000 inodes. Quota increases in global homes are approved only in extremely unusual circumstances; users are encouraged to use the various scratch,

  9. Global Climate & Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    SunShot Grand Challenge: Regional Test Centers Global Climate & Energy HomeTag:Global Climate & Energy Electricity use by water service sector and county. Shown are electricity ...

  10. Sandia Energy - Global

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Global Home Analysis Permalink Gallery Results from the Human Resilience Index and Modeling project were reported recently in the National Intelligence Council's Global Trends 2030...

  11. Cleantech Professional Resource Global Limited CPR Global | Open...

    Open Energy Info (EERE)

    Professional Resource Global Limited CPR Global Jump to: navigation, search Name: Cleantech Professional Resource Global Limited (CPR Global) Place: London, United Kingdom Zip:...

  12. Biogenic Aerosols-Effects on Clouds and Climate: Snowfall Experiment Field Campaign Report

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    8 Biogenic Aerosols-Effects on Clouds and Climate: Snowfall Experiment Field Campaign Report D Moisseev April 2016 DISCLAIMER This report was prepared as an account of work sponsored by the U.S. Government. Neither the United States nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that

  13. Microsoft PowerPoint - 17_Li_ARM07_Aerosol_Breakout.ppt [Compatibility Mode]

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Separating Real Aerosol Effects from p g Artifacts Using Space-borne, Air-borne and Ground Measurements and Under- and Ground Measurements and Under standing Physical Processes Using a CRM Zhanqing Li Uni ersit of Mar land University of Maryland Contributors T. Yuan, M.-J. Jeong, R. Zhang and J. Fan Objectives j * Evaluate various effects on remote sensing products from satellite and g p f m ground sensors. * Separate artifacts from the real Separate artifacts from the real effects. * Eventually

  14. Cloud Condensation Nuclei Activity of Aerosols During GoAmazon 2014/15 Field Campaign Report

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    5 Cloud Condensation Nuclei Activity of Aerosols during GoAmazon 2014/15 Field Campaign Report J Wang ST Martin L Kleinman RM Thalman March 2016 DISCLAIMER This report was prepared as an account of work sponsored by the U.S. Government. Neither the United States nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process

  15. DOE/SC-ARM-10-018 CARES: Carbonaceous Aerosol and Radiative

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    8 CARES: Carbonaceous Aerosol and Radiative Effects Study Operations Plan June 2010 RA Zaveri Principal Investigator WJ Shaw DJ Cziczo DISCLAIMER This report was prepared as an account of work sponsored by the U.S. Government. Neither the United States nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process

  16. DOE/SC-ARM-10-019 Ganges Valley Aerosol Experiment: Science and

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    9 Ganges Valley Aerosol Experiment: Science and Operations Plan VR Kotamarthi, Argonne National Laboratory June 2010 DISCLAIMER This report was prepared as an account of work sponsored by the U.S. Government. Neither the United States nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents

  17. DOE/SC-ARM-14-011 Ganges Valley Aerosol Experiment (GVAX) Final Campaign Report

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1 Ganges Valley Aerosol Experiment (GVAX) Final Campaign Report VR Kotamarthi December 2013 DISCLAIMER This report was prepared as an account of work sponsored by the U.S. Government. Neither the United States nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not

  18. DOE/SC-ARM-TR-142 ARM Aerosol Measurement Science Group Charter

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2 ARM Aerosol Measurement Science Group Charter January 2015 DISCLAIMER This report was prepared as an account of work sponsored by the U.S. Government. Neither the United States nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights.

  19. Experimental Design for CMIP6: Aerosol, Land Use, and Future Scenarios Final Report

    SciTech Connect (OSTI)

    Arnott, James

    2015-10-30

    The Aspen Global Change Institute hosted a technical science workshop entitled, “Experimental design for CMIP6: Aerosol, Land Use, and Future Scenarios,” on August 3-8, 2014 in Aspen, CO. Claudia Tebaldi (NCAR) and Brian O’Neill (NCAR) served as co-chairs for the workshop. The Organizing committee also included Dave Lawrence (NCAR), Jean-Francois Lamarque (NCAR), George Hurtt (University of Maryland), & Detlef van Vuuren (PBL Netherlands Environmental Change). The meeting included the participation of 22 scientists representing many of the major climate modeling centers for a total of 110 participant days.

  20. Global carbon budget 2014

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Le Quéré, C.; Moriarty, R.; Andrew, R. M.; Peters, G. P.; Ciais, P.; Friedlingstein, P.; Jones, S. D.; Sitch, S.; Tans, P.; Arneth, A.; et al

    2015-05-08

    Accurate assessment of anthropogenic carbon dioxide (CO2) emissions and their redistribution among the atmosphere, ocean, and terrestrial biosphere is important to better understand the global carbon cycle, support the development of climate policies, and project future climate change. Here we describe data sets and a methodology to quantify all major components of the global carbon budget, including their uncertainties, based on the combination of a range of data, algorithms, statistics, and model estimates and their interpretation by a broad scientific community. We discuss changes compared to previous estimates, consistency within and among components, alongside methodology and data limitations. CO2 emissionsmore » from fossil fuel combustion and cement production (EFF) are based on energy statistics and cement production data, respectively, while emissions from land-use change (ELUC), mainly deforestation, are based on combined evidence from land-cover-change data, fire activity associated with deforestation, and models. The global atmospheric CO2 concentration is measured directly and its rate of growth (GATM) is computed from the annual changes in concentration. The mean ocean CO2 sink (SOCEAN) is based on observations from the 1990s, while the annual anomalies and trends are estimated with ocean models. The variability in SOCEAN is evaluated with data products based on surveys of ocean CO2 measurements. The global residual terrestrial CO2 sink (SLAND) is estimated by the difference of the other terms of the global carbon budget and compared to results of independent dynamic global vegetation models forced by observed climate, CO2, and land-cover-change (some including nitrogen–carbon interactions). We compare the mean land and ocean fluxes and their variability to estimates from three atmospheric inverse methods for three broad latitude bands. All uncertainties are reported as ±1σ;, reflecting the current capacity to characterise the annual estimates of each component of the global carbon budget. For the last decade available (2004–2013), EFF was 8.9 ± 0.4 GtC yr⁻¹,ELUC 0.9 ± 0.5 GtC yr⁻¹, GATM 4.3 ± 0.1 GtC yr⁻¹, SOCEAN 2.6 ± 0.5 GtC yr⁻¹, and SLAND 2.9 ± 0.8 GtC yr⁻¹. For year 2013 alone, EFF grew to 9.9 ± 0.5 GtC yr⁻¹, 2.3% above 2012, continuing the growth trend in these emissions, ELUC was 0.9 ± 0.5 GtC yr⁻¹, GATM was 5.4 ± 0.2 GtC yr⁻¹, SOCEAN was 2.9 ± 0.5 GtC yr⁻¹, and SLAND was 2.5 ± 0.9 GtC yr⁻¹. GATM was high in 2013, reflecting a steady increase in EFF and smaller and opposite changes between SOCEAN and SLAND compared to the past decade (2004–2013). The global atmospheric CO2 concentration reached 395.31 ± 0.10 ppm averaged over 2013. We estimate that EFF will increase by 2.5% (1.3–3.5%) to 10.1 ± 0.6 GtC in 2014 (37.0 ± 2.2 GtCO2 yr⁻¹), 65% above emissions in 1990, based on projections of world gross domestic product and recent changes in the carbon intensity of the global economy. From this projection of EFF and assumed constant ELUC for 2014, cumulative emissions of CO2 will reach about 545 ± 55 GtC (2000 ± 200 GtCO2) for 1870–2014, about 75% from EFF and 25% from ELUC. This paper documents changes in the methods and data sets used in this new carbon budget compared with previous publications of this living data set (Le Quéré et al., 2013, 2014). All observations presented here can be downloaded from the Carbon Dioxide Information Analysis Center (doi:10.3334/CDIAC/GCP_2014).« less

  1. Global carbon budget 2014

    SciTech Connect (OSTI)

    Le Quéré, C.; Moriarty, R.; Andrew, R. M.; Peters, G. P.; Ciais, P.; Friedlingstein, P.; Jones, S. D.; Sitch, S.; Tans, P.; Arneth, A.; Boden, T. A.; Bopp, L.; Bozec, Y.; Canadell, J. G.; Chini, L. P.; Chevallier, F.; Cosca, C. E.; Harris, I.; Hoppema, M.; Houghton, R. A.; House, J. I.; Jain, A. K.; Johannessen, T.; Kato, E.; Keeling, R. F.; Kitidis, V.; Klein Goldewijk, K.; Koven, C.; Landa, C. S.; Landschützer, P.; Lenton, A.; Lima, I. D.; Marland, G.; Mathis, J. T.; Metzl, N.; Nojiri, Y.; Olsen, A.; Ono, T.; Peng, S.; Peters, W.; Pfeil, B.; Poulter, B.; Raupach, M. R.; Regnier, P.; Rödenbeck, C.; Saito, S.; Salisbury, J. E.; Schuster, U.; Schwinger, J.; Séférian, R.; Segschneider, J.; Steinhoff, T.; Stocker, B. D.; Sutton, A. J.; Takahashi, T.; Tilbrook, B.; van der Werf, G. R.; Viovy, N.; Wang, Y.-P.; Wanninkhof, R.; Wiltshire, A.; Zeng, N.

    2015-05-08

    Accurate assessment of anthropogenic carbon dioxide (CO2) emissions and their redistribution among the atmosphere, ocean, and terrestrial biosphere is important to better understand the global carbon cycle, support the development of climate policies, and project future climate change. Here we describe data sets and a methodology to quantify all major components of the global carbon budget, including their uncertainties, based on the combination of a range of data, algorithms, statistics, and model estimates and their interpretation by a broad scientific community. We discuss changes compared to previous estimates, consistency within and among components, alongside methodology and data limitations. CO2 emissions from fossil fuel combustion and cement production (EFF) are based on energy statistics and cement production data, respectively, while emissions from land-use change (ELUC), mainly deforestation, are based on combined evidence from land-cover-change data, fire activity associated with deforestation, and models. The global atmospheric CO2 concentration is measured directly and its rate of growth (GATM) is computed from the annual changes in concentration. The mean ocean CO2 sink (SOCEAN) is based on observations from the 1990s, while the annual anomalies and trends are estimated with ocean models. The variability in SOCEAN is evaluated with data products based on surveys of ocean CO2 measurements. The global residual terrestrial CO2 sink (SLAND) is estimated by the difference of the other terms of the global carbon budget and compared to results of independent dynamic global vegetation models forced by observed climate, CO2, and land-cover-change (some including nitrogen–carbon interactions). We compare the mean land and ocean fluxes and their variability to estimates from three atmospheric inverse methods for three broad latitude bands. All uncertainties are reported as ±1σ;, reflecting the current capacity to characterise the annual estimates of each component of the global carbon budget. For the last decade available (2004–2013), EFF was 8.9 ± 0.4 GtC yr⁻¹,ELUC 0.9 ± 0.5 GtC yr⁻¹, GATM 4.3 ± 0.1 GtC yr⁻¹, SOCEAN 2.6 ± 0.5 GtC yr⁻¹, and SLAND 2.9 ± 0.8 GtC yr⁻¹. For year 2013 alone, EFF grew to 9.9 ± 0.5 GtC yr⁻¹, 2.3% above 2012, continuing the growth trend in these emissions, ELUC was 0.9 ± 0.5 GtC yr⁻¹, GATM was 5.4 ± 0.2 GtC yr⁻¹, SOCEAN was 2.9 ± 0.5 GtC yr⁻¹, and SLAND was 2.5 ± 0.9 GtC yr⁻¹. GATM was high in 2013, reflecting a steady increase in EFF and smaller and opposite changes between SOCEAN and SLAND compared to the past decade (2004–2013). The global atmospheric CO2 concentration reached 395.31 ± 0.10 ppm averaged over 2013. We estimate that EFF will increase by 2.5% (1.3–3.5%) to 10.1 ± 0.6 GtC in 2014 (37.0 ± 2.2 GtCO2 yr⁻¹), 65% above emissions in 1990, based on projections of world gross domestic product and recent changes in the carbon intensity of the global economy. From this projection of EFF and assumed constant ELUC for 2014, cumulative emissions of CO2 will reach about 545 ± 55 GtC (2000 ± 200 GtCO2) for 1870–2014, about 75% from EFF and 25% from ELUC. This paper documents changes in the methods and data sets used in this new carbon budget compared with previous publications of this living data set (Le Quéré et al., 2013, 2014). All observations presented here can be downloaded from the Carbon Dioxide Information Analysis Center (doi:10.3334/CDIAC/GCP_2014).

  2. GlobalWatt Inc | Open Energy Information

    Open Energy Info (EERE)

    search Name: GlobalWatt Inc Place: Dover, Delaware Zip: 19801 Product: Shell company, once planned to float on AIM to raise money in order to acquire the business of...

  3. Tri Global Energy LLC | Open Energy Information

    Open Energy Info (EERE)

    Name: Tri Global Energy LLC Place: Dallas, Texas Zip: 75248 Sector: Services, Solar, Wind energy Product: Texas-based developer that offers a full range of services in planning,...

  4. Global Energia Eletrica SA | Open Energy Information

    Open Energy Info (EERE)

    Eletrica SA Jump to: navigation, search Name: Global Energia Eletrica SA Place: Cuiab, Mato Grosso, Brazil Zip: 78020-800 Sector: Hydro Product: Mato Grosso-based small hydro...

  5. Global Wind Systems Inc | Open Energy Information

    Open Energy Info (EERE)

    Global Wind Systems, Inc. Place: Novi, Michigan Zip: 48375 Product: Michigan-based startup company that plans to develop a turbine assembly plant in the town of Novi, using a...

  6. Global Energy Investors | Open Energy Information

    Open Energy Info (EERE)

    Wind energy Product: Massachusetts-based Global Energy Investors was formed in 2009 to invest primarily in wind and solar power projects but it may also consider biomass and hydro...

  7. DEFRA Global Atmosphere Dept | Open Energy Information

    Open Energy Info (EERE)

    Kingdom Zip: SW1E 6DE Product: Atmosphere research department of the UK Department of Food and Rural Affairs. References: DEFRA - Global Atmosphere Dept.1 This article is a...

  8. GlobalSums, Version 1.x

    Energy Science and Technology Software Center (OSTI)

    2015-10-06

    This code is a set of global sums to support the paper "Computational Reproducibility for Production Physics Applications" submitted to the Numerical Reproducibility at Exascale (NRE 2015) workshop at the 2015 Supercomputing conference, Nov. 20, 2015

  9. Ginni Global Ltd | Open Energy Information

    Open Energy Info (EERE)

    Ltd. Place: New Delhi, Delhi (NCT), India Zip: 110005 Sector: Hydro Product: Delhi-based small hydro project developer. References: Ginni Global Ltd.1 This article is a stub....

  10. Large enhancement in the heterogeneous oxidation rate of organic aerosols by hydroxyl radicals in the presence of nitric oxide

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Richards-Henderson, Nicole K.; Goldstein, Allen H.; Wilson, Kevin R.

    2015-10-27

    In this paper we report an unexpectedly large acceleration in the effective heterogeneous OH reaction rate in the presence of NO. This 10–50 fold acceleration originates from free radical chain reactions, propagated by alkoxy radicals that form inside the aerosol by the reaction of NO with peroxy radicals, which do not appear to produce chain terminating products (e.g., alkyl nitrates), unlike gas phase mechanisms. Lastly, a kinetic model, constrained by experiments, suggests that in polluted regions heterogeneous oxidation plays a much more prominent role in the daily chemical evolution of organic aerosol than previously believed.

  11. Effect of Aerosol Humidification on the Column Aerosol Optical Thickness

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Metallic fuel contaminants such as sodium (Na), potassium (K), calcium (Ca) and magnesium (Mg) may be introduced into diesel fuel through a number of different sources. As one example, biodiesel production relies on sodium hydroxide or potassium hydroxide to catalyze the reaction of vegetable oils with methanol to form methyl esters. In this process, residual amounts of Na or K can be left behind. In addition, small amounts of Ca or Mg can be added to the fuel from the purifcation process [1,2].

  12. Can reducing black carbon emissions counteract global warming?

    SciTech Connect (OSTI)

    Tami C. Bond; Haolin Sun

    2005-08-15

    Field measurements and model results have recently shown that aerosols may have important climatic impacts. One line of inquiry has investigated whether reducing climate-warming soot or black carbon aerosol emissions can form a viable component of mitigating global warming. Black carbon is produced by poor combustion, from our example hard coal cooking fires for and industrial pulverized coal boilers. The authors review and acknowledge scientific arguments against considering aerosols and greenhouse gases in a common framework, including the differences in the physical mechanisms of climate change and relevant time scales. It is argued that such a joint consideration is consistent with the language of the United Nations Framework Convention on Climate Change. Results from published climate-modeling studies are synthesized to obtain a global warming potential for black carbon relative to that of CO{sub 2} (680 on a 100 year basis). This calculation enables a discussion of cost-effectiveness for mitigating the largest sources of black carbon. It is found that many emission reductions are either expensive or difficult to enact when compared with greenhouse gases, particularly in Annex I countries. Finally, a role for black carbon in climate mitigation strategies is proposed that is consistent with the apparently conflicting arguments raised during the discussion. Addressing these emissions is a promising way to reduce climatic interference primarily for nations that have not yet agreed to address greenhouse gas emissions and provides the potential for a parallel climate agreement. 31 refs., 3 figs., 1 tab.

  13. Aerosol Retrievals from ARM SGP MFRSR Data

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Alexandrov, Mikhail

    2008-01-15

    The Multi-Filter Rotating Shadowband Radiometer (MFRSR) makes precise simultaneous measurements of the solar direct normal and diffuse horizontal irradiances at six wavelengths (nominally 415, 500, 615, 673, 870, and 940 nm) at short intervals (20 sec for ARM instruments) throughout the day. Time series of spectral optical depth are derived from these measurements. Besides water vapor at 940 nm, the other gaseous absorbers within the MFRSR channels are NO2 (at 415, 500, and 615 nm) and ozone (at 500, 615, and 670 nm). Aerosols and Rayleigh scattering contribute atmospheric extinction in all MFRSR channels. Our recently updated MFRSR data analysis algorithm allows us to partition the spectral aerosol optical depth into fine and coarse modes and to retrieve the fine mode effective radius. In this approach we rely on climatological amounts of NO2 from SCIAMACHY satellite retrievals and use daily ozone columns from TOMS.

  14. Stackable differential mobility analyzer for aerosol measurement

    DOE Patents [OSTI]

    Cheng, Meng-Dawn; Chen, Da-Ren

    2007-05-08

    A multi-stage differential mobility analyzer (MDMA) for aerosol measurements includes a first electrode or grid including at least one inlet or injection slit for receiving an aerosol including charged particles for analysis. A second electrode or grid is spaced apart from the first electrode. The second electrode has at least one sampling outlet disposed at a plurality different distances along its length. A volume between the first and the second electrode or grid between the inlet or injection slit and a distal one of the plurality of sampling outlets forms a classifying region, the first and second electrodes for charging to suitable potentials to create an electric field within the classifying region. At least one inlet or injection slit in the second electrode receives a sheath gas flow into an upstream end of the classifying region, wherein each sampling outlet functions as an independent DMA stage and classifies different size ranges of charged particles based on electric mobility simultaneously.

  15. New Global Research Website | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    I Want to See... the New Global Research Website Click to email this to a friend (Opens in new window) Share on Facebook (Opens in new window) Click to share (Opens in new window) Click to share on LinkedIn (Opens in new window) Click to share on Tumblr (Opens in new window) I Want to See... the New Global Research Website GE Global Research 2014.03.17 Today, we are excited to unveil the brand new GE Global Research website. You can find this new web destination at geglobalresearch.com. The new

  16. Climate Engineering with Stratospheric Aerosols and Associated Engineering Parameters

    SciTech Connect (OSTI)

    Kravitz, Benjamin S.

    2013-02-12

    Climate engineering with stratospheric aerosols, an idea inspired by large volcaniceruptions, could cool the Earth’s surface and thus alleviate some of the predicted dangerous impacts of anthropogenic climate change. However, the effectiveness of climate engineering to achieve a particular climate goal, and any associated side effects, depend on certain aerosol parameters and how the aerosols are deployed in the stratosphere. Through the examples of sulfate and black carbon aerosols, this paper examines "engineering" parameters-aerosol composition, aerosol size, and spatial and temporal variations in deployment-for stratospheric climate engineering. The effects of climate engineering are sensitive to these parameters, suggesting that a particle could be found ordesigned to achieve specific desired climate outcomes. This prospect opens the possibility for discussion of societal goals for climate engineering.

  17. Indirect and Semi-Direct Aerosol Campaign

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Campaign (ISDAC) The Influence of Arctic Aerosol on Clouds PIs: Steve Ghan, Greg McFarquhar, Hans Verlinde ARM AVP: Beat Schmid, Greg McFarquhar, John Hubbe, Debbie Ronfeld In situ measurements: Sarah Brooks, Don Collins, Dan Cziczo, Manvendra Dubey, Greg Kok, Alexei Korolev, Alex Laskin, Paul Lawson, Peter Liu, Claudio Mazzoleni, Ann-Marie McDonald, Greg McFarquhar, Walter Strapp, Alla Zelenyuk Retrievals: Connor Flynn, Dan Lubin, Mengistu Wolde, David Mitchell, Matthew Shupe, David Turner

  18. Importance of Iron Mineralogy to Aerosol Solubility: Potential Effects of

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Aerosol Source on Ocean Photosynthesis Importance of Iron Mineralogy to Aerosol Solubility: Potential Effects of Aerosol Source on Ocean Photosynthesis figure 1 Figure 1. Dust storm blowing glacial dusts from the Copper River Basin of southeast Alaska into the North Pacific Ocean, which depends on this and other external iron sources to support its biological communities. (Image: NASA MODIS satellite image, Nov. 1, 2006. http://earthobservatory.nasa.gov/IOTD/view.php?id=7094) Iron is one of

  19. Microphysical Effects Determine Macrophysical Response for Aerosol Impacts

    Office of Scientific and Technical Information (OSTI)

    on Deep Convective Clouds (Journal Article) | SciTech Connect Microphysical Effects Determine Macrophysical Response for Aerosol Impacts on Deep Convective Clouds Citation Details In-Document Search Title: Microphysical Effects Determine Macrophysical Response for Aerosol Impacts on Deep Convective Clouds Deep convective clouds (DCCs) play a crucial role in the general circulation and energy and hydrological cycle of our climate system. Anthropogenic and natural aerosol particles can

  20. Natural Aerosols Explain Seasonal and Spatial Patterns of Southern Ocean

    Office of Scientific and Technical Information (OSTI)

    Cloud Albedo (Journal Article) | SciTech Connect Natural Aerosols Explain Seasonal and Spatial Patterns of Southern Ocean Cloud Albedo Citation Details In-Document Search Title: Natural Aerosols Explain Seasonal and Spatial Patterns of Southern Ocean Cloud Albedo Small particles called aerosols act as nucleation sites for cloud drop formation, affecting clouds and cloud properties - ultimately influencing the cloud dynamics, lifetime, water path and areal extent that determine the

  1. ARM Cloud-Aerosol-Precipitation Experiment (ACAPEX) Field Campaign Report

    Office of Scientific and Technical Information (OSTI)

    (Program Document) | SciTech Connect SciTech Connect Search Results Program Document: ARM Cloud-Aerosol-Precipitation Experiment (ACAPEX) Field Campaign Report Citation Details In-Document Search Title: ARM Cloud-Aerosol-Precipitation Experiment (ACAPEX) Field Campaign Report The U.S. Department of Energy (DOE)'s Atmospheric Radiation Measurement (ARM) Climate Research Facility's ARM Cloud-Aerosol-Precipitation Experiment (ACAPEX) field campaign contributes to CalWater 2015, a multi-agency

  2. Aerosol Properties Downwind of Biomass Burns Field Campaign Report (Program

    Office of Scientific and Technical Information (OSTI)

    Document) | SciTech Connect SciTech Connect Search Results Program Document: Aerosol Properties Downwind of Biomass Burns Field Campaign Report Citation Details In-Document Search Title: Aerosol Properties Downwind of Biomass Burns Field Campaign Report We determined the morphological, chemical, and thermal properties of aerosol particles generated by biomass burning during the Biomass Burning Observation Project (BBOP) campaign during the wildland fire season in the Pacific Northwest from

  3. ARM - Publications: Science Team Meeting Documents: The SGP Aerosol

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Best-Estimate Value-Added Procedure and Its Impact on the BBHRP Project The SGP Aerosol Best-Estimate Value-Added Procedure and Its Impact on the BBHRP Project Turner, David Pacific Northwest National Laboratory Sivaraman, Chitra Pacific Northwest National Laboratory Flynn, Connor Pacific Northwest National Laboratory Mlawer, Eli Atmospheric & Environmental Research, Inc. The objective of the Aerosol Best-Estimate (ABE) Value-Added Procedure (VAP) is to provide estimates of aerosol

  4. Toward a Minimal Representation of Aerosols in Climate Models: Description

    Office of Scientific and Technical Information (OSTI)

    and Evaluation in the Community Atmosphere Model CAM5 (Journal Article) | SciTech Connect Toward a Minimal Representation of Aerosols in Climate Models: Description and Evaluation in the Community Atmosphere Model CAM5 Citation Details In-Document Search Title: Toward a Minimal Representation of Aerosols in Climate Models: Description and Evaluation in the Community Atmosphere Model CAM5 A modal aerosol module (MAM) has been developed for the Community Atmosphere Model version 5 (CAM5), the

  5. Automated Sealing of Home Enclosures with Aerosol Particles | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Sealing of Home Enclosures with Aerosol Particles Automated Sealing of Home Enclosures with Aerosol Particles This presentation was delivered during a Building America webinar on October 14, 2011, by the Building Industry Research Alliance team member Mark Modera. PDF icon bira_webinar_10_14_11.pdf More Documents & Publications Building America Technology Solutions for New and Existing Homes: Apartment Compartmentalization with an Aerosol-Based Sealing Process Building America

  6. Global Clean Energy Holdings LLC GCEH | Open Energy Information

    Open Energy Info (EERE)

    Energy Holdings LLC GCEH Jump to: navigation, search Name: Global Clean Energy Holdings LLC (GCEH) Place: Los Angeles, California Zip: CA 90045 Product: Los Angeles-based biofuel...

  7. Zhejiang Global Solar Energy Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Co Ltd Jump to: navigation, search Name: Zhejiang Global Solar Energy Co Ltd Place: Zhejiang Province, China Product: Manufacturer of crystalline silicon PV cells in Zhejiang....

  8. Impact of the Global Forest Industry on Atmospheric Greenhouse...

    Open Energy Info (EERE)

    or for non wood forest products may also have a considerable role in the global carbon balance, but these are beyond the scope of this publication." References "Forestry...

  9. Direct Global Power Inc DGP | Open Energy Information

    Open Energy Info (EERE)

    Inc (DGP) Place: Claverack, New York Zip: 12513 Product: Direct Global Power is a photovoltaic market development and technology commercialization company. Coordinates:...

  10. Global Capital Finance Americas LLC | Open Energy Information

    Open Energy Info (EERE)

    Finance Americas LLC Jump to: navigation, search Name: Global Capital Finance Americas LLC Place: Purchase, New York Zip: 10577 Sector: Renewable Energy, Services Product: An...

  11. GATE Global Alternative Energy Holding AG | Open Energy Information

    Open Energy Info (EERE)

    Energy Holding AG Place: Wrzburg, Bavaria, Germany Zip: 97080 Product: Germany-based biodiesel producer. References: GATE Global Alternative Energy Holding AG1 This article...

  12. Study of in-duct spray drying using condensation aerosol

    SciTech Connect (OSTI)

    Chen, W.J.R.; Chang, S.M.; Adikesavalu, R. )

    1992-06-01

    Sulfur removal efficiency of in-duct spray drying is limited by sorbent content and surface properties of the sorbent-water aerosol. It was the purpose of this study to improve the sulfur removal efficiency for in-duct spray drying by injecting condensation aerosol instead of conventional dispersion aerosol. The program was composed of three phases. In Phase I, a novel pulsed fluid bed feeder was developed and was used to feed hydrated lime for subsequent experiments. A small condensation aerosol generator was then built, which produces a lime-water condensation aerosol by condensing steam on lime particles. The results show that novel lime-water aerosols less than 10 microns were generated. The central task in Phase II was to simulate experimentally in-duct spray drying using condensation aerosols and compare the results with those using dispersion aerosols reported in the literature. A small entrained-flow reactor was constructed to simulate an in-duct spray dryer. The condensation aerosol was then introduced to the reactor at various approach to saturation temperature, calcium/sulfur stoichiometry and sulfur dioxide concentration for desulfurization study. The results show that we have improved the sulfur removal efficiency for in-duct spray drying to 90 percent or above. Thus we have met and exceeded the stated project goal of 70 percent sulfur removal. A comprehensive computer code was employed to calculate sulfur removal efficiency in Phase III.

  13. ARM - Field Campaign - Aerosol Life Cycle IOP at BNL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Images Wiki 2011 ASR STM Presentation: Sedlacek 2011 ASR STM Presentation: Springston 2010 ASR Fall Meeting: Sedlacek News, June 14, 2011: Next-generation Aerosol-sampling Stations ...

  14. Overview of the COPS Aerosol and Cloud Microphysics (ACM) Subgroup...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    COPS Aerosol and Cloud Microphysics (ACM) Subgroup Activities Dave Turner Space Science ... (ACM) - Chairs: Susanne Crewell, Dave Turner, Stephen Mobbs ACM Scientific Questions * ...

  15. Preliminary Results of in-situ Measurements of Aerosol Optical...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of Aerosol Optical and Water Uptake Properties from the ARM Mobile Facility in Niger Jefferson, Anne NOAA CMDL Ogren, John NOAACMDL Category: Field Campaigns The second...

  16. ARM - Field Campaign - Two-Column Aerosol Project (TCAP): Winter...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    on atmospheric particulate matter. The effect of aerosol properties such as size, morphology and composition on cloud droplet formation has been studied theoretically as well as...

  17. Clouds, Aerosol, and Precipitation in the Marine Boundary Layer...

    Office of Scientific and Technical Information (OSTI)

    In addition, the response of low clouds to changes in atmospheric greenhouse gases and aerosols is a major source of uncertainty, which thwarts accurate prediction of future ...

  18. ARM - Field Campaign - Azores: Clouds, Aerosol and Precipitation...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Campaigns Azores: Above-Cloud Radiation Budget near Graciosa Island 2010.04.15, Miller, AMF Azores: Extension to Clouds, Aerosol and Precipitation in the Marine Boundary...

  19. Holistic Interactions of Shallow Clouds, Aerosols, and Land-Ecosystems...

    Office of Scientific and Technical Information (OSTI)

    Holistic Interactions of Shallow Clouds, Aerosols, and Land-Ecosystems (HI-SCALE) Science ... Current convective cloud parameterizations contain uncertainties resulting in part from ...

  20. Building America Webinar: Sealing of Home Enclosures with Aerosol...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    about a project that uses existing aerosol duct sealing technology to seal the entire building enclosure in order to achieve greater airtightness and energy and cost savings. ...

  1. Study of Mechanisms of Aerosol Indirect Effects on Glaciated...

    Office of Scientific and Technical Information (OSTI)

    ... clouds, was seen to be of higher importance in regulating aerosol indirect effects ... DOE Contract Number: SC0007396 Resource Type: Technical Report Research Org: Leeds ...

  2. ARM - Field Campaign - Biogenic Aerosols - Effects on Clouds...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    relevant to DOE's goals in understanding the impact of clouds and aerosols on climate change. TWST contributes significantly to the body of data used for extracting cloud...

  3. ARM - Field Campaign - 2004 NEAX (Northeast Aerosol Experiment...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Description Final Data Hubbe Passive Cavity Aerosol Spectrometer Probe Order Data Kleinman Gas Chromatography Mass Spectrometry Order Data Wang Differential Mobility Analyzer...

  4. Method of Preparing Super-Concentrated Jets From Dense Aerosol...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Method of Preparing Super-Concentrated Jets From Dense Aerosol Suspensions ----- Inventor(s): Michael J. Hay, Ernest J. Valeo, and Nathaniel J. Fisch This is improvement in...

  5. Determination of vertical profiles of aerosol extinction, single...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    profiles of aerosol extinction, single scatter albedo and asymmetry parameter at Barrow. Sivaraman, Chitra Pacific Northwest National Laboratory Flynn, Connor Pacific...

  6. ARM - Field Campaign - Carbonaceous Aerosol and Radiation Effects...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    - Surface Meteorological Sounding Campaign Links ARM Data Discovery Browse Data Related Campaigns Carbonaceous Aerosol and Radiative Effects Study (CARES) 2010.06.02, Zaveri, AAF...

  7. Light Absorption of Primary Organic Aerosol Paper Named ACS Editors...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Absorption of Primary Organic Aerosol Paper Named ACS Editors' Choice For original submission and image(s), see ARM Research Highlights http:www.arm.govsciencehighlights...

  8. Ganges Valley Aerosol Experiment (GVAX) Final Campaign Report...

    Office of Scientific and Technical Information (OSTI)

    ISM. However, increasing aerosol concentration, air pollution, and deforestation result in changes to surface albedo and insolation, potentially leading to low monsoon rainfall. ...

  9. BAECC Biogenic Aerosols - Effects on Clouds and Climate (Technical...

    Office of Scientific and Technical Information (OSTI)

    The main research goal was to understand the role of biogenic aerosols in cloud formation. ... Country of Publication: United States Language: English Subject: 54 ENVIRONMENTAL SCIENCES ...

  10. ARM - Field Campaign - Cirrus Clouds and Aerosol Properties Campaign

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Lead Scientist : Shadrian Strong For data sets, see below. Abstract Through the National Geospatial-Intelligence Agency Characterization of Cirrus and Aerosol Properties (CCAP) ...

  11. Parameterizing the Mixing State of Complex Submicron Aerosols...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    DA Knopf, MK Gilles, and RC Moffet. 2015. "Chemical imaging of ambient aerosol particles: Observational constraints on mixing state parameterization." Journal of Geophysical...

  12. ARM - Field Campaign - Carbonaceous Aerosol and Radiative Effects...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of representative organic aerosols within the boundary layer. By combining a SMPS and a dual column CCN counter, the size-resolved CCN concentrations were measured. This allowed...

  13. Airborne aerosol in situ measurements during TCAP: A closure...

    Office of Scientific and Technical Information (OSTI)

    of both non-absorbing and absorbing aerosol at ambient conditions from aircraft data. ... particles, and thus obtaining improved ambient size spectra derived from Optical ...

  14. Clouds, Aerosols and Precipitation in the Marine Boundary Layer...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Framework, extend to investigation of aerosol-cloud interactions in models - Ensemble Kalman Filter (DART) Satellite activities with CAP-MBL Minnis: CAP-MBL subset MBL depth,...

  15. Review: engineering particles using the aerosol-through-plasma method

    SciTech Connect (OSTI)

    Phillips, Jonathan; Luhrs, Claudia C; Richard, Monique

    2009-01-01

    For decades, plasma processing of materials on the nanoscale has been an underlying enabling technology for many 'planar' technologies, particularly virtually every aspect of modern electronics from integrated-circuit fabrication with nanoscale elements to the newest generation of photovoltaics. However, it is only recent developments that suggest that plasma processing can be used to make 'particulate' structures of value in fields, including catalysis, drug delivery, imaging, higher energy density batteries, and other forms of energy storage. In this paper, the development of the science and technology of one class of plasma production of particulates, namely, aerosol-through-plasma (A-T-P), is reviewed. Various plasma systems, particularly RF and microwave, have been used to create nanoparticles of metals and ceramics, as well as supported metal catalysts. Gradually, the complexity of the nanoparticles, and concomitantly their potential value, has increased. First, unique two-layer particles were generated. These were postprocessed to create unique three-layer nanoscale particles. Also, the technique has been successfully employed to make other high-value materials, including carbon nanotubes, unsupported graphene, and spherical boron nitride. Some interesting plasma science has also emerged from efforts to characterize and map aerosol-containing plasmas. For example, it is clear that even a very low concentration of particles dramatically changes plasma characteristics. Some have also argued that the local-thermodynamic-equilibrium approach is inappropriate to these systems. Instead, it has been suggested that charged- and neutral-species models must be independently developed and allowed to 'interact' only in generation terms.

  16. DOE/SC-ARM/TR-133 Aerosol Optical Depth Value-Added

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3 Aerosol Optical Depth Value-Added Product for the SAS-He Instrument B Ermold CJ Flynn J Barnard September 2013 Version 1.0 DISCLAIMER This report was prepared as an account of work sponsored by the U.S. Government. Neither the United States nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or

  17. Air Products Chemicals Inc | Open Energy Information

    Open Energy Info (EERE)

    Air Products & Chemicals Inc Place: Allentown, Pennsylvania Zip: 18195 Sector: Hydro, Hydrogen, Services Product: A global supplier of merchant hydrogen with a portfolio of...

  18. Final Report for ?¢????Cloud-Aerosol Physics in Super-Parameterized Atmospheric Regional Climate Simulations (CAP-SPARCS)?¢??? (DE-SC0002003) for 8/15/2009 through 8/14/2012

    SciTech Connect (OSTI)

    Lynn M. Russell; Richard C.J. Somerville

    2012-11-05

    Improving the representation of local and non-local aerosol interactions in state-of-the-science regional climate models is a priority for the coming decade (Zhang, 2008). With this aim in mind, we have combined two new technologies that have a useful synergy: (1) an aerosol-enabled regional climate model (Advanced Weather Research and Forecasting Model with Chemistry WRF-Chem), whose primary weakness is a lack of high quality boundary conditions and (2) an aerosol-enabled multiscale modeling framework (PNNL Multiscale Aerosol Climate Model (MACM)), which is global but captures aerosol-convection-cloud feedbacks, and thus an ideal source of boundary conditions. Combining these two approaches has resulted in an aerosol-enabled modeling framework that not only resolves high resolution details in a particular region, but crucially does so within a global context that is similarly faithful to multi-scale aerosol-climate interactions. We have applied and improved the representation of aerosol interactions by evaluating model performance over multiple domains, with (1) an extensive evaluation of mid-continent precipitation representation by multiscale modeling, (2) two focused comparisons to transport of aerosol plumes to the eastern United States for comparison with observations made as part of the International Consortium for Atmospheric Research on Transport and Transformation (ICARTT), with the first being idealized and the second being linked to an extensive wildfire plume, and (3) the extension of these ideas to the development of a new approach to evaluating aerosol indirect effects with limited-duration model runs by ?¢????nudging?¢??? to observations. This research supported the work of one postdoc (Zhan Zhao) for two years and contributed to the training and research of two graduate students. Four peer-reviewed publications have resulted from this work, and ground work for a follow-on project was completed.

  19. GE Global Research Contact | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1800 Cai Lun Road, Zhangjiang High-Tech Park, Pudong, Shanghai, 201203, China Joey Yang +86 21 38773407 joey.yang@ge.com Communications and Public Relations GE Global...

  20. GE Global Research Locations | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Inventio Always Open At GE Global Research, we work around the clock and across the globe to build, power, move and cure the world. Continue to the experience En Bp China...

  1. Method of dispersing particulate aerosol tracer

    DOE Patents [OSTI]

    O'Holleran, Thomas P.

    1988-01-01

    A particulate aerosol tracer which comprises a particulate carrier of sheet silicate composition having a particle size up to one micron, and a cationic dopant chemically absorbed in solid solution in the carrier. The carrier is preferably selected from the group consisting of natural mineral clays such as bentonite, and the dopant is selected from the group consisting of rare earth elements and transition elements. The tracers are dispersed by forming an aqueous salt solution with the dopant present as cations, dispersing the carriers in the solution, and then atomizing the solution under heat sufficient to superheat the solution droplets at a level sufficient to prevent reagglomeration of the carrier particles.

  2. Chemical distribution in high-solids paint overspray aerosols

    SciTech Connect (OSTI)

    D'Arcy, J.B.; Chan, T.L. )

    1990-03-01

    The chemical composition of high-solids basecoat paint overspray aerosols was determined as a function of particle size. Detailed information on the chemical composition of the overspray aerosols is important in health hazard evaluation since the composition and distribution within the airborne particles may differ significantly from the bulk paint material. This study was conducted in a typical down-draft paint booth equipped with air-atomized spray painting equipment. A fixed paint target was used to simulate typical overspray generation conditions and the aerosols were collected isokinetically with a seven-stage cascade impactor for size-fractionated analysis. The overspray aerosol from six paints consisted of organic paint binders with varying amounts of inorganic species as pigments or luster enhancers. These overspray aerosols had mass median aerodynamic diameters (MMAD) ranging from 2.9 to 9.7 microns. The size-fractionated paint samples collected on the impaction stages were analyzed by energy dispersive X-ray spectrometry on a scanning electron microscope (SEM-EDXRS) to identify the metallic elements. Atomic absorption spectrometry was used to determine the mass distribution of aluminum and iron as indicators of nonuniform distribution. Three of the aerosols containing aluminum were found to have bimodal distributions with most aluminum distributions having cumulative MMADs larger than the total aerosol. Iron in the aerosols was bimodal for three of the paints with all samples having an overall iron MMAD less than or equal to the overspray aerosol MMAD. Analysis using ultraviolet spectrometry revealed that the organic compounds present in the size-fractionated particulate samples consisted of a single, polydispersed mode with an MMAD similar to that of the total overspray aerosol.

  3. CARES Helps Explain Secondary Organic Aerosols

    ScienceCinema (OSTI)

    Zaveri, Rahul

    2014-06-02

    What happens when urban man-made pollution mixes with what we think of as pristine forest air? To know more about what this interaction means for the climate, the Carbonaceous Aerosol and Radiative Effects Study, or CARES, field campaign was designed in 2010. The sampling strategy during CARES was coordinated with CalNex 2010, another major field campaign that was planned in California in 2010 by the California Air Resources Board (CARB), the National Oceanic and Atmospheric Administration (NOAA), and the California Energy Commission (CEC). "We found two things. When urban pollution mixes with forest pollutions we get more secondary organic aerosols," said Rahul Zaveri, FCSD scientist and project lead on CARES. "SOAs are thought to be formed primarily from forest emissions but only when they interact with urban emissions. The data is saying that there will be climate cooling over the central California valley because of these interactions." Knowledge gained from detailed analyses of data gathered during the CARES campaign, together with laboratory experiments, is being used to improve existing climate models.

  4. CARES Helps Explain Secondary Organic Aerosols

    SciTech Connect (OSTI)

    Zaveri, Rahul

    2014-03-28

    What happens when urban man-made pollution mixes with what we think of as pristine forest air? To know more about what this interaction means for the climate, the Carbonaceous Aerosol and Radiative Effects Study, or CARES, field campaign was designed in 2010. The sampling strategy during CARES was coordinated with CalNex 2010, another major field campaign that was planned in California in 2010 by the California Air Resources Board (CARB), the National Oceanic and Atmospheric Administration (NOAA), and the California Energy Commission (CEC). "We found two things. When urban pollution mixes with forest pollutions we get more secondary organic aerosols," said Rahul Zaveri, FCSD scientist and project lead on CARES. "SOAs are thought to be formed primarily from forest emissions but only when they interact with urban emissions. The data is saying that there will be climate cooling over the central California valley because of these interactions." Knowledge gained from detailed analyses of data gathered during the CARES campaign, together with laboratory experiments, is being used to improve existing climate models.

  5. Asthmatic responses to airborne acid aerosols

    SciTech Connect (OSTI)

    Ostro, B.D.; Lipsett, M.J.; Wiener, M.B.; Selner, J.C. )

    1991-06-01

    Controlled exposure studies suggest that asthmatics may be more sensitive to the respiratory effects of acidic aerosols than individuals without asthma. This study investigates whether acidic aerosols and other air pollutants are associated with respiratory symptoms in free-living asthmatics. Daily concentrations of hydrogen ion (H+), nitric acid, fine particulates, sulfates and nitrates were obtained during an intensive air monitoring effort in Denver, Colorado, in the winter of 1987-88. A panel of 207 asthmatics recorded respiratory symptoms, frequency of medication use, and related information in daily diaries. We used a multiple regression time-series model to analyze which air pollutants, if any, were associated with health outcomes reported by study participants. Airborne H+ was found to be significantly associated with several indicators of asthma status, including moderate or severe cough and shortness of breath. Cough was also associated with fine particulates, and shortness of breath with sulfates. Incorporating the participants' time spent outside and exercise intensity into the daily measure of exposure strengthened the association between these pollutants and asthmatic symptoms. Nitric acid and nitrates were not significantly associated with any respiratory symptom analyzed. In this population of asthmatics, several outdoor air pollutants, particularly airborne acidity, were associated with daily respiratory symptoms.

  6. Venture Global Calcasieu Pass, LLC - (Formerly Venture Global...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Venture Global Calcasieu Pass, LLC - (Formerly Venture Global LNG, LLC) - 14-88-LNG Venture Global Calcasieu Pass, LLC - (Formerly Venture Global LNG, LLC) - 14-88-LNG The Office ...

  7. Modeling the global emission, transport and deposition of trace elements associated with mineral dust

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Zhang, Y.; Mahowald, N.; Scanza, R. A.; Journet, E.; Desboeufs, K.; Albani, S.; Kok, J. F.; Zhuang, G.; Chen, Y.; Cohen, D. D.; et al

    2015-10-12

    Trace element deposition from desert dust has important impacts on ocean primary productivity, the quantification of which could be useful in determining the magnitude and sign of the biogeochemical feedback on radiative forcing. However, the impact of elemental deposition to remote ocean regions is not well understood and is not currently included in global climate models. In this study, emission inventories for eight elements primarily of soil origin, Mg, P, Ca, Mn, Fe, K, Al, and Si are determined based on a global mineral data set and a soil data set. The resulting elemental fractions are used to drive themore » desert dust model in the Community Earth System Model (CESM) in order to simulate the elemental concentrations of atmospheric dust. Spatial variability of mineral dust elemental fractions is evident on a global scale, particularly for Ca. Simulations of global variations in the Ca / Al ratio, which typically range from around 0.1 to 5.0 in soils, are consistent with observations, suggesting that this ratio is a good signature for dust source regions. The simulated variable fractions of chemical elements are sufficiently different; estimates of deposition should include elemental variations, especially for Ca, Al and Fe. The model results have been evaluated with observations of elemental aerosol concentrations from desert regions and dust events in non-dust regions, providing insights into uncertainties in the modeling approach. The ratios between modeled and observed elemental fractions range from 0.7 to 1.6, except for Mg and Mn (3.4 and 3.5, respectively). Using the soil database improves the correspondence of the spatial heterogeneity in the modeling of several elements (Ca, Al and Fe) compared to observations. Total and soluble dust element fluxes to different ocean basins and ice sheet regions have been estimated, based on the model results. The annual inputs of soluble Mg, P, Ca, Mn, Fe and K associated with dust using the mineral data set are 0.30 Tg, 16.89 Gg, 1.32 Tg, 22.84 Gg, 0.068 Tg, and 0.15 Tg to global oceans and ice sheets.« less

  8. ARM: 10-second Raman Lidar: aerosol scattering ratio and backscattering coefficient profiles, from first Ferrare algorithm

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Chitra Sivaraman; Connor Flynn

    2004-10-01

    10-second Raman Lidar: aerosol scattering ratio and backscattering coefficient profiles, from first Ferrare algorithm

  9. ARM: 2-minute Raman Lidar: aerosol scattering ratio and backscattering coefficient profiles, from first Ferrare algorithm

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Chitra Sivaraman; Connor Flynn

    2004-10-01

    2-minute Raman Lidar: aerosol scattering ratio and backscattering coefficient profiles, from first Ferrare algorithm

  10. ARM: 1-minute Raman Lidar: aerosol scattering ratio and backscattering coefficient profiles, from first Ferrare algorithm

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Chitra Sivaraman; Connor Flynn

    2004-10-01

    1-minute Raman Lidar: aerosol scattering ratio and backscattering coefficient profiles, from first Ferrare algorithm

  11. ARM: 10-minute Raman Lidar: aerosol scattering ratio and backscattering coefficient profiles, from first Ferrare algorithm

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Newsom, Rob; Goldsmith, John

    1998-03-01

    10-minute Raman Lidar: aerosol scattering ratio and backscattering coefficient profiles, from first Ferrare algorithm

  12. ARM: 10-second Raman Lidar: aerosol scattering ratio and backscattering coefficient profiles, from first Ferrare algorithm

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Chitra Sivaraman; Connor Flynn

    10-second Raman Lidar: aerosol scattering ratio and backscattering coefficient profiles, from first Ferrare algorithm

  13. ARM: 10-minute Raman Lidar: aerosol scattering ratio and backscattering coefficient profiles, from first Ferrare algorithm

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Chitra Sivaraman; Connor Flynn

    10-minute Raman Lidar: aerosol scattering ratio and backscattering coefficient profiles, from first Ferrare algorithm

  14. ARM: 2-minute Raman Lidar: aerosol scattering ratio and backscattering coefficient profiles, from first Ferrare algorithm

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Sivaraman, Chitra; Flynn, Connor

    2-minute Raman Lidar: aerosol scattering ratio and backscattering coefficient profiles, from first Ferrare algorithm

  15. ARM: 1-minute Raman Lidar: aerosol scattering ratio and backscattering coefficient profiles, from first Ferrare algorithm

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Chitra Sivaraman; Connor Flynn

    1-minute Raman Lidar: aerosol scattering ratio and backscattering coefficient profiles, from first Ferrare algorithm

  16. (Managing the global environment)

    SciTech Connect (OSTI)

    Rayner, S.F.

    1989-10-03

    The conference was stimulated by concern that policy makers increasingly have to make environmental management decisions in the absence of solidly established scientific consensus about ecological processes and the consequences of human actions. Often, as in the case of climate change, some decisions may have to be made in the absence of information that is desirable but may not be available for years to come, if ever. Six topics were identified as running throughout the Congress. These were: the epistemology and history of the sciences or disciplines concerned with the environment, including the scientific basis of rationality and modes of dealing with uncertainty and complexity; the social, economic, and institutional conditions for the production of knowledge bearing on the environment, including the politics of research and the improvement of scientific data; the structuring and institutionalization of expert assessments on national and international levels, including the global distribution of expertise; the means of establishing scientific information, the role of the media in transmitting and processing knowledge about the environment, and the organization of public environmental debate; and decision making and management under conditions of uncertainty; and, finally the relationship between science and ethics. 13 refs.

  17. Before House Subcommittee on Africa, Global Health, Global Human Rights,

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and International Organizations, Committee on Foreign Affairs | Department of Energy Subcommittee on Africa, Global Health, Global Human Rights, and International Organizations, Committee on Foreign Affairs Before House Subcommittee on Africa, Global Health, Global Human Rights, and International Organizations, Committee on Foreign Affairs Testimony of Jonathan Elkind, Acting Assistant Secretary, Office of International Affairs Before House Subcommittee on Africa, Global Health, Global Human

  18. Development of an operational global ocean climatology through the use of remotely sensed sea surface temperature

    SciTech Connect (OSTI)

    Winter, T.M.

    1995-05-09

    Monthly mean satellite-derived sea surface temperature SST data have been derived globally using daytime and nighttime AVHRR (Advanced Very High Resolution Radiometer) multi-channel data. From a 12 year data set (1982-1993), valid monthly daytime and nighttime climatologies were created using an eight year subset (1984-1990, 1993). Based on buoy comparisons, four years were omitted due to volcanic aerosol corruption (El Chichon 1982/83, Mt. Pinatubo 1991/92). These resulting monthly climatologies provide SST fields at approximately 1/3rd degree latitude/longitude resolution. Difference fields have been created comparing the new satellite climatology with the older and coarser-resolution climatology constructed from conventional SST data. Regional and zonal climatology differences were also created to highlight the deficiencies, especially in the Southern Hemisphere, in the older climatology believed to result primarily from a lack of buoy/ship (in situ) data. Such comparisons made it clear that the satellite climatology provided a much better product. Ocean current systems, El Nino, La Nina, and other water mass characteristics all appear with better detail and accuracy within the high-resolution satellite climatology.

  19. Fire aerosol experiment and comparisons with computer code predictions

    SciTech Connect (OSTI)

    Gregory, W.S.; Nichols, B.D.; White, B.W.; Smith, P.R.; Leslie, I.H.; Corkran, J.R.

    1988-01-01

    Los Alamos National Laboratory, in cooperation with New Mexico State University, has carried on a series of tests to provide experimental data on fire-generated aerosol transport. These data will be used to verify the aerosol transport capabilities of the FIRAC computer code. FIRAC was developed by Los Alamos for the US Nuclear Regulatory Commission. It is intended to be used by safety analysts to evaluate the effects of hypothetical fires on nuclear plants. One of the most significant aspects of this analysis deals with smoke and radioactive material movement throughout the plant. The tests have been carried out using an industrial furnace that can generate gas temperatures to 300/degree/C. To date, we have used quartz aerosol with a median diameter of about 10 ..mu..m as the fire aerosol simulant. We also plan to use fire-generated aerosols of polystyrene and polymethyl methacrylate (PMMA). The test variables include two nominal gas flow rates (150 and 300 ft/sup 3//min) and three nominal gas temperatures (ambient, 150/degree/C, and 300/degree/C). The test results are presented in the form of plots of aerosol deposition vs length of duct. In addition, the mass of aerosol caught in a high-efficiency particulate air (HEPA) filter during the tests is reported. The tests are simulated with the FIRAC code, and the results are compared with the experimental data. 3 refs., 10 figs., 1 tab.

  20. GCM parameterization of radiative forcing by Pinatubo aerosols

    SciTech Connect (OSTI)

    Lacis, A.A.; Mishchenko, M.I.

    1996-12-31

    This paper addresses the question of whether the general circulation model (GCM) parameterization of volcanic aerosol forcing can be adequately described in terms of just two physical aerosol parameters: (1) the aerosol column optical thickness and (2) the effective radius of the aerosol size distribution. Data recorded from the eruption of Mt. Pinatubo in the Philippines in June 1991 was analyzed to attempt to answer this question. The spatial distribution of the particle size showed considerable variability and was found to increase steadily following the eruption. The time evolution of the Pinatubo aerosol particle size distribution as derived from satellite data differed significantly, particularly in the early phases of the eruption, from that assumed in the initial GCM simulation of the Pinatubo eruption. A bimodal distribution was used to examine the possibility that the actual size distribution of the volcanic aerosol was multimodal. However, results suggested that in most cases the aerosol size distribution was essentially monomodal in nature. Results from the radiative model used in the calculations are also presented. 11 refs., 6 figs.

  1. Global Threat Reduction Initiative

    Office of Environmental Management (EM)

    Department of Energy Minimize Nuclear Waste Global Nuclear Energy Partnership Fact Sheet - Minimize Nuclear Waste GNEP will increase the efficiency in the management of used nuclear fuel, also known as spent fuel, and defer the need for additional geologic nuclear waste repositories until the next century. PDF icon Global Nuclear Energy Partnership Fact Sheet - Minimize Nuclear Waste More Documents & Publications GNEP Element:Develop Enhanced Nuclear Safeguards Global Nuclear Energy

  2. Long-term measurements of submicrometer aerosol chemistry at the Southern

    Office of Scientific and Technical Information (OSTI)

    Great Plains (SGP) using an Aerosol Chemical Speciation Monitor (ACSM) (Journal Article) | SciTech Connect Long-term measurements of submicrometer aerosol chemistry at the Southern Great Plains (SGP) using an Aerosol Chemical Speciation Monitor (ACSM) Citation Details In-Document Search Title: Long-term measurements of submicrometer aerosol chemistry at the Southern Great Plains (SGP) using an Aerosol Chemical Speciation Monitor (ACSM) In this study the long-term trends of non-refractory

  3. Method of Producing Ultra-heavy Homogeneous Aerosol of Sub-micron Particles

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ernest J. Valeo and Nathaniel J. Fisch | Princeton Plasma Physics Lab Method of Producing Ultra-heavy Homogeneous Aerosol of Sub-micron Particles Ernest J. Valeo and Nathaniel J. Fisch This invention forms a heavy homogeneous aerosol by agitating sub-micron particles throughacoustic forces and then releasing the aerosol into a low-pressure reservoir. Through this method, the aerosol particulates comprise the dominant mass of the aerosol to produce plasma of the requisite homogeneity,

  4. Building | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Read More Ceramic Matrix Composites Improve Engine Efficiency Ceramic matrix composites (CMCs) are a breakthrough materials technology for jet engines that started at our Global ...

  5. ARM - Global Warming

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Barrow, Alaska Tropical Western Pacific Site Tours Contacts Students Study Hall About ARM Global Warming FAQ Just for Fun Meet our Friends Cool Sites Teachers Teachers' Toolbox ...

  6. ARM - Global Experts

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Barrow, Alaska Tropical Western Pacific Site Tours Contacts Students Study Hall About ARM Global Warming FAQ Just for Fun Meet our Friends Cool Sites Teachers Teachers' Toolbox ...

  7. ARM - Global Thinkers

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Barrow, Alaska Tropical Western Pacific Site Tours Contacts Students Study Hall About ARM Global Warming FAQ Just for Fun Meet our Friends Cool Sites Teachers Teachers' Toolbox ...

  8. ARM - Global Beginners

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Barrow, Alaska Tropical Western Pacific Site Tours Contacts Students Study Hall About ARM Global Warming FAQ Just for Fun Meet our Friends Cool Sites Teachers Teachers' Toolbox ...

  9. Global Climate Models

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable ... Climate & Earth Systems Climate Measurement & Modeling Arctic Climate Measurements Global ...

  10. Global Climate & Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Participated in the 2013 Domenici Public Policy Conference Carbon Capture & Storage, Carbon Storage, Climate, Earth Sciences Research Center, Energy, Global Climate & Energy, ...

  11. Global Climate & Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Team Attends World Water Week in Stockholm Climate, Energy, Global Climate & Energy, Modeling, Modeling & Analysis, News, News & Events, Water Security Sandia Team Attends World ...

  12. Curing | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Curing We're pioneering medical developments, from robotic healthcare assistants to diagnostic tools and specialized, globally deployed gear. Home > Impact > Curing Invention...

  13. Curing | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Curing We're pioneering medical developments, from robotic healthcare assistants to diagnostic tools and specialized, globally deployed gear. Home > Impact > Curing Crowdsourcing...

  14. The Radiative Role of Free Tropospheric Aerosols and Marine Clouds over the Central North Atlantic

    SciTech Connect (OSTI)

    Mazzoleni, Claudio; Kumar, Sumit; Wright, Kendra; Kramer, Louisa; Mazzoleni, Lynn; Owen, Robert; Helmig, Detlev

    2014-12-09

    The scientific scope of the project was to exploit the unique location of the Pico Mountain Observatory (PMO) located in the summit caldera of the Pico Volcano in Pico Island in the Azores, for atmospheric studies. The observatory, located at 2225m a.s.l., typically samples free tropospheric aerosols laying above the marine low-level clouds and long-range transported from North America. The broad purpose of this research was to provide the scientific community with a better understanding of fundamental physical processes governing the effects of aerosols on radiative forcing and climate; with the ultimate goal of improving our abilities to understand past climate and to predict future changes through numerical models. The project was 'exploratory' in nature, with the plan to demonstrate the feasibility of deploying for the first time, an extensive aerosol research package at PMO. One of the primary activities was to test the deployment of these instruments at the site, to collect data during the 2012 summer season, and to further develop the infrastructure and the knowledge for performing novel research at PMO in follow-up longer-term aerosol-cloud studies. In the future, PMO could provide an elevated research outpost to support the renewed DOE effort in the Azores that was intensified in 2013 with the opening of the new sea-level ARM-DOE Eastern North Atlantic permanent facility at Graciosa Island. During the project period, extensive new data sets were collected for the planned 2012 season. Thanks to other synergistic activities and opportunities, data collection was then successfully extended to 2013 and 2014. Highlights of the scientific findings during this project include: a) biomass burning contribute significantly to the aerosol loading in the North Atlantic free troposphere; however, long-range transported black carbon concentrations decreased substantially in the last decade. b) Single black carbon particles – analyzed off-line at the electron microscope – were often very compacted, suggesting cloud processing and exhibiting different optical properties from fresh emissions. In addition, black carbon was found to be sometimes mixed with mineral dust, affecting its optical properties and potential forcing. c) Some aerosols collected at PMO acted as ice nuclei, potentially contributing to cirrus cloud formation during their transport in the upper free troposphere. Identified good ice nuclei were often mineral dust particles. d) The free tropospheric aerosols studied at PMO have relevance to low level marine clouds due, for example, to synoptic subsidence entraining free tropospheric aerosols into the marine boundary layer. This has potentially large consequences on cloud condensation nuclei concentrations and compositions in the marine boundary layer; therefore, having an effect on the marine stratus clouds, with potentially important repercussions on the radiative forcing. The scientific products of this project currently include contributions to two papers published in the Nature Publishing group (Nature Communications and Scientific Reports), one paper under revision for Atmospheric Chemistry and Physics, one in review in Geophysical Research Letters and one recently submitted to Atmospheric Chemistry and Physics Discussion. In addition, four manuscripts are in advanced state of preparation. Finally, twenty-eight presentations were given at international conferences, workshops and seminars.

  15. doe sc arm 14 038 Organic and Elemental Carbon Aerosol Particulate at the SGP_edited_formatted

    Office of Scientific and Technical Information (OSTI)

    8 Organic and Elemental Carbon Aerosol Particulates at the Southern Great Plains Site Field Campaign Report R Cary April 2016 CLIMATE RESEARCH FACILITY DISCLAIMER This report was prepared as an account of work sponsored by the U.S. Government. Neither the United States nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or

  16. Aerosol mass spectrometry systems and methods

    DOE Patents [OSTI]

    Fergenson, David P.; Gard, Eric E.

    2013-08-20

    A system according to one embodiment includes a particle accelerator that directs a succession of polydisperse aerosol particles along a predetermined particle path; multiple tracking lasers for generating beams of light across the particle path; an optical detector positioned adjacent the particle path for detecting impingement of the beams of light on individual particles; a desorption laser for generating a beam of desorbing light across the particle path about coaxial with a beam of light produced by one of the tracking lasers; and a controller, responsive to detection of a signal produced by the optical detector, that controls the desorption laser to generate the beam of desorbing light. Additional systems and methods are also disclosed.

  17. Final Report for “Simulating the Arctic Winter Longwave Indirect Effects. A New Parameterization for Frost Flower Aerosol Salt Emissions” (DESC0006679) for 9/15/2011 through 9/14/2015

    SciTech Connect (OSTI)

    Russell, Lynn M.; Somerville, Richard C.J.; Burrows, Susannah; Rasch, Phil

    2015-12-12

    Description of the Project: This project has improved the aerosol formulation in a global climate model by using innovative new field and laboratory observations to develop and implement a novel wind-driven sea ice aerosol flux parameterization. This work fills a critical gap in the understanding of clouds, aerosol, and radiation in polar regions by addressing one of the largest missing particle sources in aerosol-climate modeling. Recent measurements of Arctic organic and inorganic aerosol indicate that the largest source of natural aerosol during the Arctic winter is emitted from crystal structures, known as frost flowers, formed on a newly frozen sea ice surface [Shaw et al., 2010]. We have implemented the new parameterization in an updated climate model making it the first capable of investigating how polar natural aerosol-cloud indirect effects relate to this important and previously unrecognized sea ice source. The parameterization is constrained by Arctic ARM in situ cloud and radiation data. The modified climate model has been used to quantify the potential pan-Arctic radiative forcing and aerosol indirect effects due to this missing source. This research supported the work of one postdoc (Li Xu) for two years and contributed to the training and research of an undergraduate student. This research allowed us to establish a collaboration between SIO and PNNL in order to contribute the frost flower parameterization to the new ACME model. One peer-reviewed publications has already resulted from this work, and a manuscript for a second publication has been completed. Additional publications from the PNNL collaboration are expected to follow.

  18. Aerosol Plume Detection Algorithm Based on Image Segmentation of Scanning Atmospheric Lidar Data

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Weekley, R. Andrew; Goodrich, R. Kent; Cornman, Larry B.

    2016-04-01

    An image-processing algorithm has been developed to identify aerosol plumes in scanning lidar backscatter data. The images in this case consist of lidar data in a polar coordinate system. Each full lidar scan is taken as a fixed image in time, and sequences of such scans are considered functions of time. The data are analyzed in both the original backscatter polar coordinate system and a lagged coordinate system. The lagged coordinate system is a scatterplot of two datasets, such as subregions taken from the same lidar scan (spatial delay), or two sequential scans in time (time delay). The lagged coordinatemore » system processing allows for finding and classifying clusters of data. The classification step is important in determining which clusters are valid aerosol plumes and which are from artifacts such as noise, hard targets, or background fields. These cluster classification techniques have skill since both local and global properties are used. Furthermore, more information is available since both the original data and the lag data are used. Performance statistics are presented for a limited set of data processed by the algorithm, where results from the algorithm were compared to subjective truth data identified by a human.« less

  19. Global and regional modeling of clouds and aerosols in the marine...

    Office of Scientific and Technical Information (OSTI)

    A diverse collection of models are used to simulate the marine boundary layer in the southeast Pacific region during the period of the October-November 2008 VOCALS REx (VAMOS Ocean ...

  20. Aerosol Radiative Forcing Under Cloudless Conditions.in Winter...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ARF in the shortwave range is determined by the difference between the net fluxes of the solar radiation, calculated with and without the aerosol component of the atmosphere. The...

  1. Ganges Valley Aerosol Experiment (GVAX) Final Campaign Report

    SciTech Connect (OSTI)

    Kotamarthi, VR

    2013-12-01

    In general, the Indian Summer Monsoon (ISM) as well as the and the tropical monsoon climate is influenced by a wide range of factors. Under various climate change scenarios, temperatures over land and into the mid troposphere are expected to increase, intensifying the summer pressure gradient differential between land and ocean and thus strengthening the ISM. However, increasing aerosol concentration, air pollution, and deforestation result in changes to surface albedo and insolation, potentially leading to low monsoon rainfall. Clear evidence points to increasing aerosol concentrations over the Indian subcontinent with time, and several hypotheses regarding the effect on monsoons have been offered. The Ganges Valley Aerosol Experiment (GVAX) field study aimed to provide critical data to address these hypotheses and contribute to developing better parameterizations for tropical clouds, convection, and aerosol-cloud interactions. The primary science questions for the mission were as follows:

  2. Field Trial of an Aerosol-Based Enclosure Sealing Technology

    SciTech Connect (OSTI)

    Harrington, Curtis; Springer, David

    2015-09-01

    This report presents the results from several demonstrations of a new method for sealing building envelope air leaks using an aerosol sealing process developed by the Western Cooling Efficiency Center at UC Davis. The process involves pressurizing a building while applying an aerosol sealant to the interior. As air escapes through leaks in the building envelope, the aerosol particles are transported to the leaks where they collect and form a seal that blocks the leak. Standard blower door technology is used to facilitate the building pressurization, which allows the installer to track the sealing progress during the installation and automatically verify the final building tightness. Each aerosol envelope sealing installation was performed after drywall was installed and taped, and the process did not appear to interrupt the construction schedule or interfere with other trades working in the homes. The labor needed to physically seal bulk air leaks in typical construction will not be replaced by this technology.

  3. Science Overview Document Indirect and Semi-Direct Aerosol Campaign...

    Office of Scientific and Technical Information (OSTI)

    in October 2004, we will be able to contrast the arctic aerosol and cloud properties ... it can largely rely on the European Centre for Medium-Range Weather Forecasts analysis. ...

  4. Pressure-flow reducer for aerosol focusing devices

    DOE Patents [OSTI]

    Gard, Eric; Riot, Vincent; Coffee, Keith; Woods, Bruce; Tobias, Herbert; Birch, Jim; Weisgraber, Todd

    2008-04-22

    A pressure-flow reducer, and an aerosol focusing system incorporating such a pressure-flow reducer, for performing high-flow, atmosphere-pressure sampling while delivering a tightly focused particle beam in vacuum via an aerodynamic focusing lens stack. The pressure-flow reducer has an inlet nozzle for adjusting the sampling flow rate, a pressure-flow reduction region with a skimmer and pumping ports for reducing the pressure and flow to enable interfacing with low pressure, low flow aerosol focusing devices, and a relaxation chamber for slowing or stopping aerosol particles. In this manner, the pressure-flow reducer decouples pressure from flow, and enables aerosol sampling at atmospheric pressure and at rates greater than 1 liter per minute.

  5. ARM - Field Campaign - ARM Cloud Aerosol Precipitation Experiment...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    would love to hear from you Send us a note below or call us at 1-888-ARM-DATA. Send Campaign : ARM Cloud Aerosol Precipitation Experiment (ACAPEX) 2015.01.14 - 2015.02.12 Lead...

  6. ARM - Field Campaign - MArine Stratus Radiation Aerosol and Drizzle...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govCampaignsMArine Stratus Radiation Aerosol and Drizzle (MASRAD) IOP Campaign Links Science Plan AMF Point Reyes Website AMF Point Reyes Data Plots ARM Data Discovery Browse Data...

  7. ARM - Field Campaign - ARM Cloud Aerosol Precipitation Experiment...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    would love to hear from you Send us a note below or call us at 1-888-ARM-DATA. Send Campaign : ARM Cloud Aerosol Precipitation Experiment (ACAPEX): Aerial Observations 2015.01.14...

  8. ARM - Field Campaign - 2007 Cumulus Humilis Aerosol Process Study...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    would love to hear from you Send us a note below or call us at 1-888-ARM-DATA. Send Campaign : 2007 Cumulus Humilis Aerosol Process Study (CHAPS) 2007.06.04 - 2007.06.25 Lead...

  9. ARM - Field Campaign - Biogenic Aerosols - Effects on Clouds...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Climate Campaign Links BAECC Website ARM Data Discovery Browse Data Related Campaigns Biogenic Aerosols - Effects on Clouds and Climate: Cloud OD Sensor TWST 2014.06.15, Scott, AMF...

  10. ARM - Field Campaign - Two-Column Aerosol Project (TCAP): Airborne...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    would love to hear from you Send us a note below or call us at 1-888-ARM-DATA. Send Campaign : Two-Column Aerosol Project (TCAP): Airborne HSRL and RSP Measurements 2012.07.01 -...

  11. ARM - Field Campaign - Two-Column Aerosol Project (TCAP): Ground...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Discovery Browse Data Related Campaigns Two-Column Aerosol Project (TCAP) 2012.07.01, Berg, AMF Comments? We would love to hear from you Send us a note below or call us at...

  12. Microsoft Word - Aerosol Working Group_Norfolk 2008.doc

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Interactions Under Varying Meteorological Conditions: Southern Great Plains Vs. Pt. Reyes 15:52 0:13 Jefferson AOS mentor report 16:05 0:13 Kassianov Retrieval of Aerosol...

  13. Ganges Valley Aerosol Experiment (GVAX) Final Campaign Report (Program

    Office of Scientific and Technical Information (OSTI)

    Document) | SciTech Connect Ganges Valley Aerosol Experiment (GVAX) Final Campaign Report Citation Details In-Document Search Title: Ganges Valley Aerosol Experiment (GVAX) Final Campaign Report In general, the Indian Summer Monsoon (ISM) as well as the and the tropical monsoon climate is influenced by a wide range of factors. Under various climate change scenarios, temperatures over land and into the mid troposphere are expected to increase, intensifying the summer pressure gradient

  14. Hyperspectral aerosol optical depths from TCAP flights (Journal Article) |

    Office of Scientific and Technical Information (OSTI)

    SciTech Connect Journal Article: Hyperspectral aerosol optical depths from TCAP flights Citation Details In-Document Search Title: Hyperspectral aerosol optical depths from TCAP flights Authors: Shinozuka Y. ; Wagener R. ; Johnson, R. R. ; Flynn, C. J. ; Russell, P. B. ; Schmid, B. ; Redemann, J. ; Dunagan, S. E. ; Kluzek, C. D. ; Hubbe, J. M. ; Segal-Rosenheimer, M. ; Livingston, J. M. ; Eck, T. F. ; Gregory, L. ; Chand, D. ; Berg, L. K. ; Rogers, R. R. ; Ferrare, R. A. ; Hair, J. W. ;

  15. Observed Aerosol Radiative Forcings: Comparison for Natural and Anthropogenic Sources

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Aerosol Radiative Forcings: Comparison for Natural and Anthropogenic Sources A. M. Vogelmann Center for Atmospheric Sciences and Center for Clouds, Chemistry and Climate Scripps Institution of Oceanography University of California San Diego, California Introduction The modeling of radiative forcing, and aerosol radiative forcing in particular, is one of the largest uncertainties in predicting climate change (Hansen et al. 1998). Addressing this uncertainty first requires an accurate

  16. Understanding the Effect of Aerosol Properties on Cloud Droplet Formation

    Office of Scientific and Technical Information (OSTI)

    during TCAP Field Campaign Report (Technical Report) | SciTech Connect SciTech Connect Search Results Technical Report: Understanding the Effect of Aerosol Properties on Cloud Droplet Formation during TCAP Field Campaign Report Citation Details In-Document Search Title: Understanding the Effect of Aerosol Properties on Cloud Droplet Formation during TCAP Field Campaign Report The formation of clouds is an essential element in understanding the Earth's radiative budget. Liquid water clouds

  17. ARM Cloud Aerosol Precipitation Experiment (ACAPEX) Science Plan (Program

    Office of Scientific and Technical Information (OSTI)

    Document) | SciTech Connect ARM Cloud Aerosol Precipitation Experiment (ACAPEX) Science Plan Citation Details In-Document Search Title: ARM Cloud Aerosol Precipitation Experiment (ACAPEX) Science Plan The western U.S. receives precipitation predominantly during the cold season when storms approach from the Pacific Ocean. The snowpack that accumulates during winter storms provides about 70-90% of water supply for the region. Understanding and modeling the fundamental processes that govern the

  18. Comprehensive Mapping and Characteristic Regimes of Aerosol Effects on the

    Office of Scientific and Technical Information (OSTI)

    Formation and Evolution of Pyro-Convective Clouds (Journal Article) | SciTech Connect Comprehensive Mapping and Characteristic Regimes of Aerosol Effects on the Formation and Evolution of Pyro-Convective Clouds Citation Details In-Document Search Title: Comprehensive Mapping and Characteristic Regimes of Aerosol Effects on the Formation and Evolution of Pyro-Convective Clouds A recent parcel model study (Reutter et al., 2009) showed three deterministic regimes of initial cloud droplet

  19. Organic and Elemental Carbon Aerosol Particulates at the Southern Great

    Office of Scientific and Technical Information (OSTI)

    Plains Site Field Campaign Report (Program Document) | SciTech Connect Program Document: Organic and Elemental Carbon Aerosol Particulates at the Southern Great Plains Site Field Campaign Report Citation Details In-Document Search Title: Organic and Elemental Carbon Aerosol Particulates at the Southern Great Plains Site Field Campaign Report The purpose of this study was to measure the organic carbon (OC) and elemental carbon (EC) fractions of PM2.5 particulate matter at the U.S. Department

  20. Biogenic Aerosols - Effects on Climate and Clouds. Cloud Optical Depth

    Office of Scientific and Technical Information (OSTI)

    (COD) Sensor Three-Waveband Spectrally-Agile Technique (TWST) Field Campaign Report (Technical Report) | SciTech Connect Biogenic Aerosols - Effects on Climate and Clouds. Cloud Optical Depth (COD) Sensor Three-Waveband Spectrally-Agile Technique (TWST) Field Campaign Report Citation Details In-Document Search Title: Biogenic Aerosols - Effects on Climate and Clouds. Cloud Optical Depth (COD) Sensor Three-Waveband Spectrally-Agile Technique (TWST) Field Campaign Report This report describes

  1. Biogenic Aerosols-Effects on Clouds and Climate: Snowfall Experiment

    Office of Scientific and Technical Information (OSTI)

    Field Campaign Report (Program Document) | SciTech Connect SciTech Connect Search Results Program Document: Biogenic Aerosols-Effects on Clouds and Climate: Snowfall Experiment Field Campaign Report Citation Details In-Document Search Title: Biogenic Aerosols-Effects on Clouds and Climate: Snowfall Experiment Field Campaign Report The snowfall measurement campaign took place during deployment of the U.S. Department of Energy (DOE)'s Atmospheric Radiation Measurement (ARM) Climate Research

  2. Holistic Interactions of Shallow Clouds, Aerosols, and Land-Ecosystems

    Office of Scientific and Technical Information (OSTI)

    (HI-SCALE) Science Plan (Program Document) | SciTech Connect Holistic Interactions of Shallow Clouds, Aerosols, and Land-Ecosystems (HI-SCALE) Science Plan Citation Details In-Document Search Title: Holistic Interactions of Shallow Clouds, Aerosols, and Land-Ecosystems (HI-SCALE) Science Plan Cumulus convection is an important component in the atmospheric radiation budget and hydrologic cycle over the Southern Great Plains and over many regions of the world, particularly during the

  3. ARM AOS Processing Status and Aerosol Intensive Properties VAP

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AOS Processing Status and Aerosol Intensive Properties VAP A. S. Koontz and C. J. Flynn Pacific Northwest National Laboratory Richland, Washington J. A. Ogren, E. Andrews, and P. J. Sheridan National Oceanic and Atmospheric Administration Boulder, Colorado Abstract The Atmospheric Radiation Measurement (ARM) Aerosol Observing System (AOS) has been operating at the Southern Great Plains (SGP) Central Facility since 1996. In response to the cross-cutting broad- band heating rate profile value

  4. Atmospheric Science Program Cumulus Humilis Aerosol Processing Study (CHAPS)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Program Cumulus Humilis Aerosol Processing Study (CHAPS) General Description 'Cumulus humilis' is the scientific term used to describe the small fair weather clouds that dot the summer skies over Oklahoma. During the month of June, scientists sponsored by the U.S. Department of Energy's Atmospheric Science Program will use aircraft and ground based instruments to obtain information about the physical and chemical properties of these clouds and the small airborne particles - called aerosols -

  5. Inorganic aerosols responses to emission changes in Yangtze River Delta, China

    SciTech Connect (OSTI)

    Dong, Xinyi; Li, Juan; Fu, Joshua S.; Gao, Yang; Huang, Kan; Zhuang, Guoshun

    2014-05-15

    China announced the Chinese National Ambient Air Quality standards (CH-NAAQS) on Feb. 29th, 2012, and PM2.5 is for the very first time included in the standards as a criteria pollutant. In order to probe into PM2.5 pollution over Yangtze River Delta, which is one of the major urban clusters hosting more than 80 million people in China, the integrated MM5/CMAQ modeling system is applied for a full year simulation to examine the PM2.5 concentration and seasonality, and also the inorganic aerosols responses to precursor emission changes. Both simulation and observation demonstrated that, inorganic aerosols have substantial contributions to PM2.5 over YRD, ranging from 37.1% in November to 52.8% in May. Nocturnal production of nitrate (NO3-) through heterogeneous hydrolysis of N2O5 was found significantly contribute to high NO3-concentration throughout the year. We also found that in winter NO3- was even increased under nitrogen oxides (NOx) emission reduction due to higher production of N2O5 from the excessive ozone (O3) introduced by attenuated titration, which further lead to increase of ammonium (NH4+) and sulfate (SO42-), while other seasons showed decrease response of NO3-. Sensitivity responses of NO3- under anthropogenic VOC emission reduction was examined and demonstrated that in urban areas over YRD, NO3- formation was actually VOC sensitive due to the O3-involved nighttime chemistry of N2O5, while a reduction of NOx emission may have counter-intuitive effect by increasing concentrations of inorganic aerosols.

  6. Thermodynamic Characterization of Mexico City Aerosol during MILAGRO 2006

    SciTech Connect (OSTI)

    Fountoukis, C.; Nenes, A.; Sullivan, A.; Weber, R.; VanReken, T.; Fischer, M.; Matias, E.; Moya, M.; Farmer, D.; Cohen, R.C.

    2008-12-05

    Fast measurements of aerosol and gas-phase constituents coupled with the ISORROPIA-II thermodynamic equilibrium model are used to study the partitioning of semivolatile inorganic species and phase state of Mexico City aerosol sampled at the T1 site during the MILAGRO 2006 campaign. Overall, predicted semivolatile partitioning agrees well with measurements. PM{sub 2.5} is insensitive to changes in ammonia but is to acidic semivolatile species. For particle sizes up to 1 {micro}m diameter, semi-volatile partitioning requires 30-60 min to equilibrate; longer time is typically required during the night and early morning hours. When the aerosol sulfate-to-nitrate molar ratio is less than unity, predictions improve substantially if the aerosol is assumed to follow the deliquescent phase diagram. Treating crustal species as 'equivalent sodium' (rather than explicitly) in the thermodynamic equilibrium calculations introduces important biases in predicted aerosol water uptake, nitrate and ammonium; neglecting crustals further increases errors dramatically. This suggests that explicitly considering crustals in the thermodynamic calculations is required to accurately predict the partitioning and phase state of aerosols.

  7. A global warning for global warming

    SciTech Connect (OSTI)

    Paepe, R.

    1996-12-31

    The problem of global warming is a complex one not only because it is affecting desert areas such as the Sahel leading to famine disasters of poor rural societies, but because it is an even greater threat to modern well established industrial societies. Global warming is a complex problem of geographical, economical and societal factors together which definitely are biased by local environmental parameters. There is an absolute need to increase the knowledge of such parameters, especially to understand their limits of variance. The greenhouse effect is a global mechanism which means that in changing conditions at one point of the Earth, it will affect all other regions of the globe. Industrial pollution and devastation of the forest are quoted as similar polluting anthropogenic activities in far apart regions of the world with totally different societies and industrial compounds. The other important factor is climatic cyclicity which means that droughts are bound to natural cycles. These natural cycles are numerous as is reflected in the study of geo-proxydata from several sequential geological series on land, ice and deepsea. Each of these cycles reveals a drought cycle which occasionally interfere at the same time. It is believed that the present drought might well be a point of interference between the natural cycles of 2,500 and 1,000 years and the man induced cycle of the last century`s warming up. If the latter is the only cycle involved, man will be able to remediate. If not, global warming will become even more disastrous beyond the 21st century.

  8. GE Global Research News | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Newsroom Our technologies transform GE's businesses and the world. Learn about them, meet our experts and read news coverage about our work. Home > Newsroom Meet Our Experts Our scientists are global leaders in their fields. They welcome media inquiries. Find an Expert » Media Contacts A photograph of Natalia Albuquerque Rio de Janeiro Natalia Albuquerque +55 21 3548-6193 A photograph of Todd Alhart Niskayuna, Oklahoma City, Munich Todd Alhart +1.518.387.7914 A photograph of Tenzin Dechen

  9. Ganges Valley Aerosol Experiment: Science and Operations Plan

    SciTech Connect (OSTI)

    Kotamarthi, VR

    2010-06-21

    The Ganges Valley region is one of the largest and most rapidly developing sections of the Indian subcontinent. The Ganges River, which provides the region with water needed for sustaining life, is fed primarily by snow and rainfall associated with Indian summer monsoons. Impacts of changes in precipitation patterns, temperature, and the flow of the snow-fed rivers can be immense. Recent satellite-based measurements have indicated that the upper Ganges Valley has some of the highest persistently observed aerosol optical depth values. The aerosol layer covers a vast region, extending across the Indo-Gangetic Plain to the Bay of Bengal during the winter and early spring of each year. The persistent winter fog in the region is already a cause of much concern, and several studies have been proposed to understand the economic, scientific, and societal dimensions of this problem. During the INDian Ocean EXperiment (INDOEX) field studies, aerosols from this region were shown to affect cloud formation and monsoon activity over the Indian Ocean. This is one of the few regions showing a trend toward increasing surface dimming and enhanced mid-tropospheric warming. Increasing air pollution over this region could modify the radiative balance through direct, indirect, and semi-indirect effects associated with aerosols. The consequences of aerosols and associated pollution for surface insolation over the Ganges Valley and monsoons, in particular, are not well understood. The proposed field study is designed for use of (1) the ARM Mobile Facility (AMF) to measure relevant radiative, cloud, convection, and aerosol optical characteristics over mainland India during an extended period of 912 months and (2) the G-1 aircraft and surface sites to measure relevant aerosol chemical, physical, and optical characteristics in the Ganges Valley during a period of 612 weeks. The aerosols in this region have complex sources, including burning of coal, biomass, and biofuels; automobile emissions; and dust. The extended AMF deployment will enable measurements under different regimes of the climate and aerosol abundancein the wet monsoon period with low aerosol loading; in the dry, hot summer with aerosols dispersed throughout the atmospheric column; and in the cool, dry winter with aerosols confined mostly to the boundary later and mid-troposphere. Each regime, in addition, has its own distinct radiative and atmospheric dynamic drivers. The aircraft operational phase will assist in characterizing the aerosols at times when they have been observed to be at the highest concentrations. A number of agencies in India will collaborate with the proposed field study and provide support in terms of planning, aircraft measurements, and surface sites. The high concentration of aerosols in the upper Ganges Valley, together with hypotheses involving several possible mechanisms with direct impacts on the hydrologic cycle of the region, gives us a unique opportunity to generate data sets that will be useful both in understanding the processes at work and in providing answers regarding the effects of aerosols on climate in a region where the perturbation is the highest.

  10. Development of an aerosol microphysical module: Aerosol Two-dimensional bin module for foRmation and Aging Simulation (ATRAS)

    SciTech Connect (OSTI)

    Matsui, H.; Koike, Makoto; Kondo, Yutaka; Fast, Jerome D.; Takigawa, M.

    2014-09-30

    Number concentrations, size distributions, and mixing states of aerosols are essential parameters for accurate estimation of aerosol direct and indirect effects. In this study, we developed an aerosol module, designated Aerosol Two-dimensional bin module for foRmation and Aging Simulation (ATRAS), that can represent these parameters explicitly by considering new particle formation (NPF), black carbon (BC) aging, and secondary organic aerosol (SOA) processes. A two-dimensional bin representation is used for particles with dry diameters from 40 nm to 10 m to resolve both aerosol size (12 bins) and BC mixing state (10 bins) for a total of 120 bins. The particles with diameters from 1 to 40 nm are resolved using an additional 8 size bins to calculate NPF. The ATRAS module was implemented in the WRF-chem model and applied to examine the sensitivity of simulated mass, number, size distributions, and optical and radiative parameters of aerosols to NPF, BC aging and SOA processes over East Asia during the spring of 2009. BC absorption enhancement by coating materials was about 50% over East Asia during the spring, and the contribution of SOA processes to the absorption enhancement was estimated to be 10 20% over northern East Asia and 20 35% over southern East Asia. A clear north-south contrast was also found between the impacts of NPF and SOA processes on cloud condensation nuclei (CCN) concentrations: NPF increased CCN concentrations at higher supersaturations (smaller particles) over northern East Asia, whereas SOA increased CCN concentrations at lower supersaturations (larger particles) over southern East Asia. Application of ATRAS to East Asia also showed that the impact of each process on each optical and radiative parameter depended strongly on the process and the parameter in question. The module can be used in the future as a benchmark model to evaluate the accuracy of simpler aerosol models and examine interactions between NPF, BC aging, and SOA processes under different meteorological conditions and emissions.

  11. Photonics | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Home > Impact > The Photonics Lab at GE Global Research Click to email this to a friend (Opens in new window) Share on Facebook (Opens in new window) Click to share (Opens in new window) Click to share on LinkedIn (Opens in new window) Click to share on Tumblr (Opens in new window) The Photonics Lab at GE Global Research Loucas Tsakalakos, the Photonics lab manager at GE Global Research, introduces photonics and shares the lab's work on innovative ways to use light. You Might Also Like

  12. New understanding and quantification of the regime dependence of aerosol-cloud interaction for studying aerosol indirect effects

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Chen, Jingyi; Liu, Yangang; Zhang, Minghua; Peng, Yiran

    2016-02-28

    In this study, aerosol indirect effects suffer from large uncertainty in climate models and among observations. This study focuses on two plausible factors: regime dependence of aerosol-cloud interactions and the effect of cloud droplet spectral shape. We show, using a new parcel model, that combined consideration of droplet number concentration (Nc) and relative dispersion (ε, ratio of standard deviation to mean radius of the cloud droplet size distribution) better characterizes the regime dependence of aerosol-cloud interactions than considering Nc alone. Given updraft velocity (w), ε increases with increasing aerosol number concentration (Na) in the aerosol-limited regime, peaks in the transitionalmore » regime, and decreases with further increasing Na in the updraft-limited regime. This new finding further reconciles contrasting observations in literature and reinforces the compensating role of dispersion effect. The nonmonotonic behavior of ε further quantifies the relationship between the transitional Na and w that separates the aerosol- and updraft-limited regimes.« less

  13. Evaluation of the carbon content of aerosols from the burn- ing of biomass in the Brazilian Amazon using thermal, op- tical and thermal-optical analysis methods

    SciTech Connect (OSTI)

    Soto-Garcia, Lydia L.; Andreae, Meinrat O.; Andreae, Tracey W.; taxo, Paulo Ar-; Maenhaut, Willy; Kirchstetter, Thomas; Novakov, T.; Chow, Judith C.; Mayol-Bracero, Olga L.

    2011-06-03

    Aerosol samples were collected at a pasture site in the Amazon Basin as part of the project LBA-SMOCC-2002 (Large-Scale Biosphere-Atmosphere Experiment in Amazonia - Smoke Aerosols, Clouds, Rainfall and Climate: Aerosols from Biomass Burning Perturb Global and Regional Climate). Sampling was conducted during the late dry season, when the aerosol composition was dominated by biomass burning emissions, especially in the submicron fraction. A 13-stage Dekati low-pressure impactor (DLPI) was used to collect particles with nominal aerodynamic diameters (D{sub p}) ranging from 0.03 to 0.10 m. Gravimetric analyses of the DLPI substrates and filters were performed to obtain aerosol mass concentrations. The concentrations of total, apparent elemental, and organic carbon (TC, EC{sub a}, and OC) were determined using thermal and thermal-optical analysis (TOA) methods. A light transmission method (LTM) was used to determine the concentration of equivalent black carbon (BC{sub e}) or the absorbing fraction at 880 nm for the size-resolved samples. During the dry period, due to the pervasive presence of fires in the region upwind of the sampling site, concentrations of fine aerosols (D{sub p} < 2.5 {mu}m: average 59.8 {mu}g m{sup -3}) were higher than coarse aerosols (D{sub p} > 2.5 {mu}m: 4.1 {mu}g m{sup -3}). Carbonaceous matter, estimated as the sum of the particulate organic matter (i.e., OC x 1.8) plus BC{sub e}, comprised more than 90% to the total aerosol mass. Concentrations of EC{sub a} (estimated by thermal analysis with a correction for charring) and BCe (estimated by LTM) averaged 5.2 {+-} 1.3 and 3.1 {+-} 0.8 {mu}g m{sup -3}, respectively. The determination of EC was improved by extracting water-soluble organic material from the samples, which reduced the average light absorption {angstrom} exponent of particles in the size range of 0.1 to 1.0 {mu}m from > 2.0 to approximately 1.2. The size-resolved BC{sub e} measured by the LTM showed a clear maximum between 0.4 and 0.6 m in diameter. The concentrations of OC and BC{sub e} varied diurnally during the dry period, and this variation is related to diurnal changes in boundary layer thickness and in fire frequency.

  14. Global Cool Cities Alliance

    Broader source: Energy.gov [DOE]

    The Department of Energy (DOE) is currently supporting the Global Cool Cities Alliance (GCCA), a non-profit organization that works with cities, regions, and national governments to speed the...

  15. Invention | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Invention Our people drive every scientific advance we make, every day. Find out who they are and what they're thinking right now. Home > Invention Inventors GE Global Research...

  16. Building | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    how we work across supply chains. By... Read More What is the GE store? Mark Little, CTO & Head of Global Research at GE, describes what the GE Store means and why it's...

  17. Fast Global File Status

    Energy Science and Technology Software Center (OSTI)

    2013-01-01

    Fast Global File Status (FGFS) is a system software package that implimints a scalable mechanism to retrieve file information, such as its degree of distribution or replication and consistency.

  18. Before House Subcommittee on Africa, Global Health, Global Human...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Before House Subcommittee on Africa, Global Health, Global Human Rights, and International Organizations, Committee on Foreign Affairs Testimony of Jonathan Elkind, Acting ...

  19. A new WRF-Chem treatment for studying regional-scale impacts of cloud processes on aerosol and trace gases in parameterized cumuli

    SciTech Connect (OSTI)

    Berg, L. K.; Shrivastava, M.; Easter, R. C.; Fast, J. D.; Chapman, E. G.; Liu, Y.; Ferrare, R. A.

    2015-02-24

    A new treatment of cloud effects on aerosol and trace gases within parameterized shallow and deep convection, and aerosol effects on cloud droplet number, has been implemented in the Weather Research and Forecasting model coupled with Chemistry (WRF-Chem) version 3.2.1 that can be used to better understand the aerosol life cycle over regional to synoptic scales. The modifications to the model include treatment of the cloud droplet number mixing ratio; key cloud microphysical and macrophysical parameters (including the updraft fractional area, updraft and downdraft mass fluxes, and entrainment) averaged over the population of shallow clouds, or a single deep convective cloud; and vertical transport, activation/resuspension, aqueous chemistry, and wet removal of aerosol and trace gases in warm clouds. These changes have been implemented in both the WRF-Chem chemistry packages as well as the Kain–Fritsch (KF) cumulus parameterization that has been modified to better represent shallow convective clouds. Testing of the modified WRF-Chem has been completed using observations from the Cumulus Humilis Aerosol Processing Study (CHAPS). The simulation results are used to investigate the impact of cloud–aerosol interactions on regional-scale transport of black carbon (BC), organic aerosol (OA), and sulfate aerosol. Based on the simulations presented here, changes in the column-integrated BC can be as large as –50% when cloud–aerosol interactions are considered (due largely to wet removal), or as large as +40% for sulfate under non-precipitating conditions due to sulfate production in the parameterized clouds. The modifications to WRF-Chem are found to account for changes in the cloud droplet number concentration (CDNC) and changes in the chemical composition of cloud droplet residuals in a way that is consistent with observations collected during CHAPS. Efforts are currently underway to port the changes described here to the latest version of WRF-Chem, and it is anticipated that they will be included in a future public release of WRF-Chem.

  20. A new WRF-Chem treatment for studying regional-scale impacts of cloud processes on aerosol and trace gases in parameterized cumuli

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Berg, L. K.; Shrivastava, M.; Easter, R. C.; Fast, J. D.; Chapman, E. G.; Liu, Y.; Ferrare, R. A.

    2015-02-24

    A new treatment of cloud effects on aerosol and trace gases within parameterized shallow and deep convection, and aerosol effects on cloud droplet number, has been implemented in the Weather Research and Forecasting model coupled with Chemistry (WRF-Chem) version 3.2.1 that can be used to better understand the aerosol life cycle over regional to synoptic scales. The modifications to the model include treatment of the cloud droplet number mixing ratio; key cloud microphysical and macrophysical parameters (including the updraft fractional area, updraft and downdraft mass fluxes, and entrainment) averaged over the population of shallow clouds, or a single deep convectivemore » cloud; and vertical transport, activation/resuspension, aqueous chemistry, and wet removal of aerosol and trace gases in warm clouds. These changes have been implemented in both the WRF-Chem chemistry packages as well as the Kain–Fritsch (KF) cumulus parameterization that has been modified to better represent shallow convective clouds. Testing of the modified WRF-Chem has been completed using observations from the Cumulus Humilis Aerosol Processing Study (CHAPS). The simulation results are used to investigate the impact of cloud–aerosol interactions on regional-scale transport of black carbon (BC), organic aerosol (OA), and sulfate aerosol. Based on the simulations presented here, changes in the column-integrated BC can be as large as –50% when cloud–aerosol interactions are considered (due largely to wet removal), or as large as +40% for sulfate under non-precipitating conditions due to sulfate production in the parameterized clouds. The modifications to WRF-Chem are found to account for changes in the cloud droplet number concentration (CDNC) and changes in the chemical composition of cloud droplet residuals in a way that is consistent with observations collected during CHAPS. Efforts are currently underway to port the changes described here to the latest version of WRF-Chem, and it is anticipated that they will be included in a future public release of WRF-Chem.« less

  1. International conference on the role of the polar regions in global change: Proceedings. Volume 1

    SciTech Connect (OSTI)

    Weller, G.; Wilson, C.L.; Severin, B.A.B.

    1991-12-01

    The International Conference on the Role of the Polar Regions in Global Change took place on the campus of the University of Alaska Fairbanks on June 11--15, 1990. The goal of the conference was to define and summarize the state of knowledge on the role of the polar regions in global change, and to identify gaps in knowledge. To this purpose experts in a wide variety of relevant disciplines were invited to present papers and hold panel discussions. While there are numerous conferences on global change, this conference dealt specifically with polar regions which occupy key positions in the global system. These two volumes of conference proceedings include papers on (1) detection and monitoring of change; (2) climate variability and climate forcing; (3) ocean, sea ice, and atmosphere interactions and processes; (4) effects on biota and biological feedbacks; (5) ice sheet, glacier and permafrost responses and feedbacks; (6) paleoenvironmental studies; and, (7) aerosols and trace gases.

  2. International conference on the role of the polar regions in global change: Proceedings. Volume 2

    SciTech Connect (OSTI)

    Weller, G.; Wilson, C.L.; Severin, B.A.B.

    1991-12-01

    The International Conference on the Role of the Polar Regions in Global Change took place on the campus of the University of Alaska Fairbanks on June 11--15, 1990. The goal of the conference was to define and summarize the state of knowledge on the role of the polar regions in global change, and to identify gaps in knowledge. To this purpose experts in a wide variety of relevant disciplines were invited to present papers and hold panel discussions. While there are numerous conferences on global change, this conference dealt specifically with the polar regions which occupy key positions in the global system. These two volumes of conference proceedings include papers on (1) detection and monitoring of change; (2) climate variability and climate forcing; (3) ocean, sea ice, and atmosphere interactions and processes; and (4) effects on biota and biological feedbacks; (5) ice sheet, glacier and permafrost responses and feedbacks, (6) paleoenvironmental studies; and, (7) aerosol and trace gases.

  3. Design of an Unattended Environmental Aerosol Sampling and Analysis System for Gaseous Centrifuge Enrichment Plants

    SciTech Connect (OSTI)

    Anheier, Norman C.; Munley, John T.; Alexander, M. L.

    2011-07-19

    The resources of the IAEA continue to be challenged by the rapid, worldwide expansion of nuclear energy production. Gaseous centrifuge enrichment plants (GCEPs) represent an especially formidable dilemma to the application of safeguard measures, as the size and enrichment capacity of GCEPs continue to escalate. During the early part of the 1990's, the IAEA began to lay the foundation to strengthen and make cost-effective its future safeguard regime. Measures under Part II of 'Programme 93+2' specifically sanctioned access to nuclear fuel production facilities and environmental sampling by IAEA inspectors. Today, the Additional Protocol grants inspection and environmental sample collection authority to IAEA inspectors at GCEPs during announced and low frequency unannounced (LFUA) inspections. During inspections, IAEA inspectors collect environmental swipe samples that are then shipped offsite to an analytical laboratory for enrichment assay. This approach has proven to be an effective deterrence to GCEP misuse, but this method has never achieved the timeliness of detection goals set forth by IAEA. Furthermore it is questionable whether the IAEA will have the resources to even maintain pace with the expansive production capacity of the modern GCEP, let alone improve the timeliness in reaching current safeguards conclusions. New safeguards propositions, outside of familiar mainstream safeguard measures, may therefore be required that counteract the changing landscape of nuclear energy fuel production. A new concept is proposed that offers rapid, cost effective GCEP misuse detection, without increasing LFUA inspection access or introducing intrusive access demands on GCEP operations. Our approach is based on continuous onsite aerosol collection and laser enrichment analysis. This approach mitigates many of the constraints imposed by the LFUA protocol, reduces the demand for onsite sample collection and offsite analysis, and overcomes current limitations associated with the in-facility misuse detection devices. Onsite environmental sample collection offers the ability to collect fleeting uranium hexafluoride emissions before they are lost to the ventilation system or before they disperse throughout the facility, to become deposited onto surfaces that are contaminated with background and historical production material. Onsite aerosol sample collection, combined with enrichment analysis, provides the unique ability to quickly detect stepwise enrichment level changes within the facility, leading to a significant strengthening of facility misuse deterence. We report in this paper our study of several GCEP environmental sample release scenarios and simulation results of a newly designed aerosol collection and particle capture system that is fully integrated with the Laser Ablation, Absorbance Ratio Spectrometry (LAARS) uranium particle enrichment analysis instrument that was developed at the Pacific Northwest National Laboratory.

  4. ARM - Lesson Plans: Global Warming

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Global Warming Outreach Home Room News Publications Traditional Knowledge Kiosks Barrow, Alaska Tropical Western Pacific Site Tours Contacts Students Study Hall About ARM Global ...

  5. The Availability and Price of Petroleum and Petroleum Products...

    Gasoline and Diesel Fuel Update (EIA)

    impact demand for petroleum products. Together with robust levels of current global crude oil production, and the potential for additional Iranian exports in 2016, oil prices...

  6. CARES: Carbonaceous Aerosol and Radiative Effects Study Operations Plan

    SciTech Connect (OSTI)

    Zaveri, RA; Shaw, WJ; Cziczo, DJ

    2010-07-12

    The CARES field campaign is motivated by the scientific issues described in the CARES Science Plan. The primary objectives of this field campaign are to investigate the evolution and aging of carbonaceous aerosols and their climate-affecting properties in the urban plume of Sacramento, California, a mid-size, mid-latitude city that is located upwind of a biogenic volatile organic compound (VOC) emission region. Our basic observational strategy is to make comprehensive gas, aerosol, and meteorological measurements upwind, within, and downwind of the urban area with the DOE G-1 aircraft and at strategically located ground sites so as to study the evolution of urban aerosols as they age and mix with biogenic SOA precursors. The NASA B-200 aircraft, equipped with the High Spectral Resolution Lidar (HSRL), digital camera, and the Research Scanning Polarimeter (RSP), will be flown in coordination with the G-1 to characterize the vertical and horizontal distribution of aerosols and aerosol optical properties, and to provide the vertical context for the G-1 and ground in situ measurements.

  7. Indirect aerosol effect increases CMIP5 models projected Arctic warming

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Chylek, Petr; Vogelsang, Timothy J.; Klett, James D.; Hengartner, Nicholas; Higdon, Dave; Lesins, Glen; Dubey, Manvendra K.

    2016-02-20

    Phase 5 of the Coupled Model Intercomparison Project (CMIP5) climate models’ projections of the 2014–2100 Arctic warming under radiative forcing from representative concentration pathway 4.5 (RCP4.5) vary from 0.9° to 6.7°C. Climate models with or without a full indirect aerosol effect are both equally successful in reproducing the observed (1900–2014) Arctic warming and its trends. However, the 2014–2100 Arctic warming and the warming trends projected by models that include a full indirect aerosol effect (denoted here as AA models) are significantly higher (mean projected Arctic warming is about 1.5°C higher) than those projected by models without a full indirect aerosolmore » effect (denoted here as NAA models). The suggestion is that, within models including full indirect aerosol effects, those projecting stronger future changes are not necessarily distinguishable historically because any stronger past warming may have been partially offset by stronger historical aerosol cooling. In conclusion, the CMIP5 models that include a full indirect aerosol effect follow an inverse radiative forcing to equilibrium climate sensitivity relationship, while models without it do not.« less

  8. ARM - Field Campaign - Aerosol Life Cycle: UV-APS and Nano-SMPS

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govCampaignsAerosol Life Cycle: UV-APS and Nano-SMPS ARM Data Discovery Browse Data Related Campaigns Aerosol Life Cycle IOP at BNL 2011.06.01, Sedlacek, OSC Comments? We would...

  9. Long-term impacts of aerosols on the vertical development of...

    Office of Scientific and Technical Information (OSTI)

    Journal Article: Long-term impacts of aerosols on the vertical development of clouds and precipitation Citation Details In-Document Search Title: Long-term impacts of aerosols on ...

  10. Global Wind Power Ltd GWP | Open Energy Information

    Open Energy Info (EERE)

    Ltd GWP Jump to: navigation, search Name: Global Wind Power Ltd. (GWP) Place: Mumbai, Maharashtra, India Zip: 400 059 Sector: Wind energy Product: Mumbai-based firm involved in...

  11. Global Commodities UK Ltd defunct | Open Energy Information

    Open Energy Info (EERE)

    7LZ Product: UK-based biodiesel producer and developer of driveECO, a biodegradable diesel. Went into liquidation in 2006. References: Global Commodities UK Ltd (defunct)1...

  12. Global Solar Energy Inc GSE | Open Energy Information

    Open Energy Info (EERE)

    Inc GSE Jump to: navigation, search Name: Global Solar Energy Inc (GSE) Place: Tucson, Arizona Zip: 85747 Sector: Solar Product: US-based manufacturer of thin-film copper indium...

  13. The dependence of cloud particle size and precipitation probability on non-aerosol-loading related variables

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Explaining and reducing the uncertainties in the first aerosol i Explaining and reducing the uncertainties in the first aerosol indirect effect ndirect effect Hongfei Shao and Guosheng Liu Meteorology Department, Florida State University INTRODUCTION INTRODUCTION Anthropogenic aerosols enhance cloud reflectance of solar radiation by increasing the cloud droplet number concentrations. This so-called first Aerosol Indirect Effect (AIE) has a potentially large cooling tendency on our planet.

  14. "Lidar Investigations of Aerosol, Cloud, and Boundary Layer Properties

    Office of Scientific and Technical Information (OSTI)

    Over the ARM ACRF Sites" (Technical Report) | SciTech Connect Technical Report: "Lidar Investigations of Aerosol, Cloud, and Boundary Layer Properties Over the ARM ACRF Sites" Citation Details In-Document Search Title: "Lidar Investigations of Aerosol, Cloud, and Boundary Layer Properties Over the ARM ACRF Sites" Project goals; Characterize the aerosol and ice vertical distributions over the ARM NSA site, and in particular to discriminate between elevated aerosol

  15. Cloud Condensation Nuclei Activity of Aerosols during GoAmazon 2014/15

    Office of Scientific and Technical Information (OSTI)

    Field Campaign Report (Technical Report) | SciTech Connect Cloud Condensation Nuclei Activity of Aerosols during GoAmazon 2014/15 Field Campaign Report Citation Details In-Document Search Title: Cloud Condensation Nuclei Activity of Aerosols during GoAmazon 2014/15 Field Campaign Report Aerosol indirect effects, which represent the impact of aerosols on climate through influencing the properties of clouds, remain one of the main uncertainties in climate predictions (Stocker et al. 2013).

  16. Science Overview Document Indirect and Semi-Direct Aerosol Campaign (ISDAC)

    Office of Scientific and Technical Information (OSTI)

    April 2008 (Technical Report) | SciTech Connect Science Overview Document Indirect and Semi-Direct Aerosol Campaign (ISDAC) April 2008 Citation Details In-Document Search Title: Science Overview Document Indirect and Semi-Direct Aerosol Campaign (ISDAC) April 2008 The ARM Climate Research Facility's (ACRF) Aerial Vehicle Program (AVP) will deploy an intensive cloud and aerosol observing system to the ARM North Slope of Alaska (NSA) locale for a five week Indirect and Semi-Direct Aerosol

  17. The Two-Column Aerosol Project (TCAP) Science Plan (Program Document) |

    Office of Scientific and Technical Information (OSTI)

    SciTech Connect The Two-Column Aerosol Project (TCAP) Science Plan Citation Details In-Document Search Title: The Two-Column Aerosol Project (TCAP) Science Plan The Two-Column Aerosol Project (TCAP) field campaign will provide a detailed set of observations with which to (1) perform radiative and cloud condensation nuclei (CCN) closure studies, (2) evaluate a new retrieval algorithm for aerosol optical depth (AOD) in the presence of clouds using passive remote sensing, (3) extend a

  18. Emerging Technology for Measuring Atmospheric Aerosol Properties

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Department of Energy Technologies » Emerging Technologies Program Accomplishments and Outcomes - 2015 Emerging Technologies Program Accomplishments and Outcomes - 2015 Learn about DOE's Building Technologies Office's Emerging Technologies R&D program's accomplishments and progress toward its goals in 2015. 2015 Highlights HVAC, Water Heating, and Appliances Honeywell commercialized Solstice N40, a low-global warming potential (GWP) refrigerant that provides a 67% reduction in GWP and up

  19. Sources and composition of submicron organic mass in marine aerosol particles

    SciTech Connect (OSTI)

    Frossard, Amanda A.; Russell, Lynn M.; Burrows, Susannah M.; Elliott, Scott M.; Bates, Timothy S.; Quinn, Patricia K.

    2014-11-27

    Recent studies have proposed a variety of interpretations of the sources and composition of atmospheric marine aerosol particles (aMA) based on a range of physical and chemical measurements collected during open-ocean research cruises. To investigate the processes that affect marine organic particles, this study uses the characteristic functional group composition (from Fourier transform infrared (FTIR) spectroscopy) of aMAP from five ocean regions to show that: (i) The organic functional group composition of aMAP that can be identified as atmospheric primary marine (ocean-derived) aerosol (aPMA) is 65±12% hydroxyl, 21±9% alkane, 6±6% amine, and 7±8% carboxylic acid functional groups. Contributions from photochemical reactions add carboxylic acid groups (15%-25%), shipping effluent in seawater and ship emissions add additional alkane groups (up to 70%), and coastal emissions mix in alkane and carboxylic acid groups from coastal pollution sources. (ii) The organic composition of aPMA is nearly identical to model generated primary marine aerosol particles (gPMA) from bubbled seawater (55% hydroxyl, 32% alkane, and 13% amine functional groups), indicating that its overall functional group composition is the direct consequence of the organic constituents of the seawater source. (iii) While the seawater organic functional group composition was nearly invariant across all three ocean regions studied, the gPMA alkane group fraction increased with chlorophyll-a concentrations (r = 0.79). gPMA from productive seawater had a larger fraction of alkane functional groups (35%) compared to gPMA from non-productive seawater (16%), likely due to the presence of surfactants in productive seawater that stabilize the bubble film and lead to preferential drainage of the more soluble (lower alkane group fraction) organic components. gPMA has a hydroxyl group absorption peak location characteristic of monosaccharides and disaccharides, where the seawater OM hydroxyl group peak location is closer to that of polysaccharides. This may result from the larger saccharides preferentially remaining in the seawater during gPMA and aPMA production

  20. Sources and composition of submicron organic mass in marine aerosol particles

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Frossard, Amanda A.; Russell, Lynn M.; Burrows, Susannah M.; Elliott, Scott M.; Bates, Timothy S.; Quinn, Patricia K.

    2014-11-27

    Recent studies have proposed a variety of interpretations of the sources and composition of atmospheric marine aerosol particles (aMA) based on a range of physical and chemical measurements collected during open-ocean research cruises. To investigate the processes that affect marine organic particles, this study uses the characteristic functional group composition (from Fourier transform infrared (FTIR) spectroscopy) of aMAP from five ocean regions to show that: (i) The organic functional group composition of aMAP that can be identified as atmospheric primary marine (ocean-derived) aerosol (aPMA) is 65±12% hydroxyl, 21±9% alkane, 6±6% amine, and 7±8% carboxylic acid functional groups. Contributions from photochemicalmore » reactions add carboxylic acid groups (15%-25%), shipping effluent in seawater and ship emissions add additional alkane groups (up to 70%), and coastal emissions mix in alkane and carboxylic acid groups from coastal pollution sources. (ii) The organic composition of aPMA is nearly identical to model generated primary marine aerosol particles (gPMA) from bubbled seawater (55% hydroxyl, 32% alkane, and 13% amine functional groups), indicating that its overall functional group composition is the direct consequence of the organic constituents of the seawater source. (iii) While the seawater organic functional group composition was nearly invariant across all three ocean regions studied, the gPMA alkane group fraction increased with chlorophyll-a concentrations (r = 0.79). gPMA from productive seawater had a larger fraction of alkane functional groups (35%) compared to gPMA from non-productive seawater (16%), likely due to the presence of surfactants in productive seawater that stabilize the bubble film and lead to preferential drainage of the more soluble (lower alkane group fraction) organic components. gPMA has a hydroxyl group absorption peak location characteristic of monosaccharides and disaccharides, where the seawater OM hydroxyl group peak location is closer to that of polysaccharides. This may result from the larger saccharides preferentially remaining in the seawater during gPMA and aPMA production« less