Powered by Deep Web Technologies
Note: This page contains sample records for the topic "glen canyon dam" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

A review of proposed Glen Canyon Dam interim operating criteria  

DOE Green Energy (OSTI)

Three sets of interim operating criteria for Glen Canyon Dam on the Colorado River have been proposed for the period of November 1991, to the completion of the record of decision for the Glen Canyon Dam environmental impact statement (about 1993). These criteria set specific limits on dam releases, including maximum and minimum flows, up-ramp and down-ramp rates, and maximum daily fluctuation. Under the proposed interim criteria, all of these parameters would be reduced relative to historical operating criteria to protect downstream natural resources, including sediment deposits, threatened and endangered fishes, trout, the aquatic food base, and riparian plant communities. The scientific bases of the three sets of proposed operating criteria are evaluated in the present report:(1) criteria proposed by the Research/Scientific Group, associated with the Glen Canyon Environmental Studies (GCES); (2) criteria proposed state and federal officials charged with managing downstream resources; and (3) test criteria imposed from July 1991, to November 1991. Data from Phase 1 of the GCES and other sources established that the targeted natural resources are affected by dam operations, but the specific interim criteria chosen were not supported by any existing studies. It is unlikely that irreversible changes to any of the resources would occur over the interim period if historical operating criteria remained in place. It is likely that adoption of any of the sets of proposed interim operating criteria would reduce the levels of sediment transport and erosion below Glen Canyon Dam; however, these interim criteria could result in some adverse effects, including the accumulation of debris at tributary mouths, a shift of new high-water-zone vegetation into more flood-prone areas, and further declines in vegetation in the old high water zone.

LaGory, K.; Hlohowskyj, I.; Tomasko, D.; Hayse, J.; Durham, L.

1992-04-01T23:59:59.000Z

2

Glen Canyon Dam Long-Term Experimental and Management Plan EIS  

NLE Websites -- All DOE Office Websites (Extended Search)

Glen Canyon LTEMP EIS Glen Canyon LTEMP EIS Glen Canyon Dam, a 1,300-MW water-storage and hydroelectric facility is located on the Colorado River upstream of the Grand Canyon. EVS is evaluating the effects of dam operations on the Colorado River. A comprehensive evaluation of Glen Canyon Dam operations and their effects on the Colorado River through the Grand Canyon is being conducted by the Department of the Interior with EVS assistance. The Long-Term Experimental and Management Plan (LTEMP) Environmental Impact Statement (EIS) - the first such evaluation in over 15 years - will examine flow regimes to meet the goals of supplying water for communities, agriculture, and industry and will protect the resources of the Grand Canyon, while providing clean hydropower. The LTEMP EIS, which is expected to be completed by the end of 2013, will

3

EIS-0480: Long-Term Experimental and Management Plan for the Operation of Glen Canyon Dam  

Energy.gov (U.S. Department of Energy (DOE))

Two agencies of the Department of the Interior, Bureau of Reclamation and National Park Service, are jointly preparing a Long-Term Experimental and Management Plan for the Glen Canyon Dam and an EIS for adoption of the Plan. The Glen Canyon Dam, on the Colorado River in northern, Arizona, generates hydroelectric power that is marketed by DOE's Western Area Power Administration, a cooperating agency.

4

Ex post power economic analysis of record of decision operational restrictions at Glen Canyon Dam.  

DOE Green Energy (OSTI)

On October 9, 1996, Bruce Babbitt, then-Secretary of the U.S. Department of the Interior signed the Record of Decision (ROD) on operating criteria for the Glen Canyon Dam (GCD). Criteria selected were based on the Modified Low Fluctuating Flow (MLFF) Alternative as described in the Operation of Glen Canyon Dam, Colorado River Storage Project, Arizona, Final Environmental Impact Statement (EIS) (Reclamation 1995). These restrictions reduced the operating flexibility of the hydroelectric power plant and therefore its economic value. The EIS provided impact information to support the ROD, including an analysis of operating criteria alternatives on power system economics. This ex post study reevaluates ROD power economic impacts and compares these results to the economic analysis performed prior (ex ante) to the ROD for the MLFF Alternative. On the basis of the methodology used in the ex ante analysis, anticipated annual economic impacts of the ROD were estimated to range from approximately $15.1 million to $44.2 million in terms of 1991 dollars ($1991). This ex post analysis incorporates historical events that took place between 1997 and 2005, including the evolution of power markets in the Western Electricity Coordinating Council as reflected in market prices for capacity and energy. Prompted by ROD operational restrictions, this analysis also incorporates a decision made by the Western Area Power Administration to modify commitments that it made to its customers. Simulated operations of GCD were based on the premise that hourly production patterns would maximize the economic value of the hydropower resource. On the basis of this assumption, it was estimated that economic impacts were on average $26.3 million in $1991, or $39 million in $2009.

Veselka, T. D.; Poch, L. A.; Palmer, C. S.; Loftin, S.; Osiek, B; Decision and Information Sciences; Western Area Power Administration

2010-07-31T23:59:59.000Z

5

Effects of hydropower operations on recreational use and nonuse values at Glen Canyon and Flaming Gorge Dams  

DOE Green Energy (OSTI)

Increases in streamflows are generally positively related to the use values of angling and white-water boating, and constant flows tend to increase the use values more than fluctuating flows. In most instances, however, increases in streamflows beyond some threshold level cause the use values to decrease. Expenditures related to angling and white-water boating account for about $24 million of activity in the local economy around Glen Canyon Dam and $24.8 million in the local economy around flaming Gorge Dam. The range of operational scenarios being considered in the Western Area Power Administration`s Electric Power Marketing Environmental Impact Statement, when use rates are held constant, could change the combined use value of angling and white-water boating below Glen Canyon Dam, increasing it by as much as 50%, depending on prevailing hydrological conditions. Changes in the combined use value below Flaming Gorge Dam could range from a decrease of 9% to an increase of 26%. Nonuse values, such as existence and bequest values, could also make a significant contribution to the total value of each site included in this study; however, methodological and data limitations prevented estimating how each operational scenario could change nonuse values.

Carlson, J.L.

1995-03-01T23:59:59.000Z

6

Financial analysis of experimental releases conducted at Glen Canyon Dam during water year 2011  

DOE Green Energy (OSTI)

This report examines the financial implications of experimental flows conducted at the Glen Canyon Dam (GCD) in water year 2011. It is the third report in a series examining financial implications of experimental flows conducted since the Record of Decision (ROD) was adopted in February 1997 (Reclamation 1996). A report released in January 2011 examined water years 1997 to 2005 (Veselka et al. 2011), and a report released in August 2011 examined water years 2006 to 2010 (Poch et al. 2011). An experimental release may have either a positive or negative impact on the financial value of energy production. This study estimates the financial costs of experimental releases, identifies the main factors that contribute to these costs, and compares the interdependencies among these factors. An integrated set of tools was used to compute the financial impacts of the experimental releases by simulating the operation of the GCD under two scenarios, namely, (1) a baseline scenario that assumes both that operations comply with the ROD operating criteria and the experimental releases that actually took place during the study period, and (2) a 'without experiments' scenario that is identical to the baseline scenario of operations that comply with the GCD ROD, except it assumes that experimental releases did not occur. The Generation and Transmission Maximization (GTMax) model was the main simulation tool used to dispatch GCD and other hydropower plants that comprise the Salt Lake City Area Integrated Projects (SLCA/IP). Extensive data sets and historical information on SLCA/IP powerplant characteristics, hydrologic conditions, and Western Area Power Administration's (Western's) power purchase prices were used for the simulation. In addition to estimating the financial impact of experimental releases, the GTMax model was also used to gain insights into the interplay among ROD operating criteria, exceptions that were made to criteria to accommodate the experimental releases, and Western operating practices. Experimental releases conducted in water year 2011 resulted only in financial costs; the total cost of all experimental releases was about $622,000.

Poch, L. A.; Veselka, T. D.; Palmer, C. S.; Loftin, S.; Osiek, B. (Decision and Information Sciences); (Western Area Power Administration)

2012-07-16T23:59:59.000Z

7

Financial analysis of experimental releases conducted at Glen Canyon Dam during water years 2006 through 2010.  

SciTech Connect

Because of concerns about the impact that Glen Canyon Dam (GCD) operations were having on downstream ecosystems and endangered species, the Bureau of Reclamation (Reclamation) conducted an Environmental Impact Statement (EIS) on dam operations (DOE 1996). New operating rules and management goals for GCD that had been specified in the Record of Decision (ROD) (Reclamation 1996) were adopted in February 1997. In addition to issuing new operating criteria, the ROD mandated experimental releases for the purpose of conducting scientific studies. A report released in January 2011 examined the financial implications of the experimental flows that were conducted at the GCD from 1997 to 2005. This report continues the analysis and examines the financial implications of the experimental flows conducted at the GCD from 2006 to 2010. An experimental release may have either a positive or negative impact on the financial value of energy production. This study estimates the financial costs of experimental releases, identifies the main factors that contribute to these costs, and compares the interdependencies among these factors. An integrated set of tools was used to compute the financial impacts of the experimental releases by simulating the operation of the GCD under two scenarios, namely, (1) a baseline scenario that assumes both that operations comply with the ROD operating criteria and the experimental releases that actually took place during the study period, and (2) a 'without experiments' scenario that is identical to the baseline scenario of operations that comply with the GCD ROD, except it assumes that experimental releases did not occur. The Generation and Transmission Maximization (GTMax) model was the main simulation tool used to dispatch GCD and other hydropower plants that comprise the Salt Lake City Area Integrated Projects (SLCA/IP). Extensive data sets and historical information on SLCA/IP powerplant characteristics, hydrologic conditions, and Western Area Power Administration's (Western's) power purchase prices were used for the simulation. In addition to estimating the financial impact of experimental releases, the GTMax model was also used to gain insights into the interplay among ROD operating criteria, exceptions that were made to criteria to accommodate the experimental releases, and Western operating practices. Experimental releases in some water years resulted in financial benefits to Western while others resulted in financial costs. During the study period, the total financial costs of all experimental releases were more than $4.8 million.

Poch, L. A.; Veselka, T. D.; Palmer, C. S.; Loftin, S.; Osiek, B. (Decision and Information Sciences); (Western Area Power Administration, Colorado River Storage Project Management Center)

2011-08-22T23:59:59.000Z

8

Revised financial analysis of experimental releases conducted at Glen Canyon Dam during water years 1997 through 2005.  

Science Conference Proceedings (OSTI)

Because of concerns about the impact that Glen Canyon Dam (GCD) operations were having on downstream ecosystems and endangered species, the Bureau of Reclamation (Reclamation) conducted an Environmental Impact Statement (EIS) on dam operations (DOE 1996). New operating rules and management goals for GCD that had been specified in the Record of Decision (ROD) (Reclamation 1996) were adopted in February 1997. In addition to issuing new operating criteria, the ROD mandated experimental releases for the purpose of conducting scientific studies. This paper examines the financial implications of the experimental flows that were conducted at the GCD from 1997 to 2005. An experimental release may have either a positive or negative impact on the financial value of energy production. This study estimates the financial costs of experimental releases, identifies the main factors that contribute to these costs, and compares the interdependencies among these factors. An integrated set of tools was used to compute the financial impacts of the experimental releases by simulating the operation of the GCD under two scenarios, namely, (1) a baseline scenario that assumes operations comply with the ROD operating criteria and experimental releases that actually took place during the study period, and (2) a 'without experiments' scenario that is identical to the baseline scenario of operations that comply with the GCD ROD, except it assumes that experimental releases did not occur. The Generation and Transmission Maximization (GTMax) model was the main simulation tool used to dispatch GCD and other hydropower plants that comprise the Salt Lake City Area Integrated Projects (SLCA/IP). Extensive data sets and historical information on SLCA/IP power plant characteristics, hydrologic conditions, and Western Area Power Administration's (Western's) power purchase prices were used for the simulation. In addition to estimating the financial impact of experimental releases, the GTMax model was also used to gain insights into the interplay among ROD operating criteria, exceptions that were made to criteria to accommodate the experimental releases, and Western operating practices. Experimental releases in some water years resulted in financial benefits to Western whileothers resulted in financial costs. During the study period, the total financial costs of all experimental releases were more than $23 million.

Veselka, T. D.; Poch, L. A.; Palmer, C. S.; Loftin, S.; Osiek, B.; Decision and Information Sciences; Western Area Power Administration, Colorado River Storage Project Management Center

2011-01-11T23:59:59.000Z

9

EA-1863: Vegetation Management on the Glen Canyon-Pinnacle Peak  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

63: Vegetation Management on the Glen Canyon-Pinnacle Peak 63: Vegetation Management on the Glen Canyon-Pinnacle Peak Transmission Lines Spanning the Coconino National Forest, Coconino County, Arizona EA-1863: Vegetation Management on the Glen Canyon-Pinnacle Peak Transmission Lines Spanning the Coconino National Forest, Coconino County, Arizona Summary DOE's Western Area Power Administration is preparing this EA to evaluate the environmental impacts of updating the vegetation management and right-of-way maintenance program for Western's Glen Canyon to Pinnacle Peak 345-kV transmission lines, which cross the Coconino National Forest, Coconino County, Arizona. For more information on this EA, contact: Ms. Linette King at: lking@wapa.gov. Public Comment Opportunities No public comment opportunities available at this time.

10

EA-1863: Vegetation Management on the Glen Canyon-Pinnacle Peak  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

3: Vegetation Management on the Glen Canyon-Pinnacle Peak 3: Vegetation Management on the Glen Canyon-Pinnacle Peak Transmission Lines Spanning the Coconino National Forest, Coconino County, Arizona EA-1863: Vegetation Management on the Glen Canyon-Pinnacle Peak Transmission Lines Spanning the Coconino National Forest, Coconino County, Arizona Summary DOE's Western Area Power Administration is preparing this EA to evaluate the environmental impacts of updating the vegetation management and right-of-way maintenance program for Western's Glen Canyon to Pinnacle Peak 345-kV transmission lines, which cross the Coconino National Forest, Coconino County, Arizona. For more information on this EA, contact: Ms. Linette King at: lking@wapa.gov. Public Comment Opportunities No public comment opportunities available at this time.

11

Glen Ganyon Dam, Colorado River Storage Project, Arizona. The short-run economic cost of environmental constraints on hydropower operations. Final report  

Science Conference Proceedings (OSTI)

In October of 1995, the Secretary of the Interior announced that Glen Canyon Dam would be operated under the Modified Low Fluctuating Flow (MLFF) criteria to protect downstream archeological, cultural, aquatic and riparian resources. Although the annual and monthly amounts of water released downstream remain the same, MLFF imposes a unique and complex set of constraints on hourly and daily hydropower operations. These constraints include restrictions on ramp rates (hourly rate of change in release), minimum flows, maximum flows, and the daily change in flow. In addition, a key component of MLFF operations is adaptive management which establishes a framework of research and monitoring on which future changes in operation will be based. Consequently, MLFF operations are not static and variants of these hourly constraints may be contemplated in the future. This paper summarizes the environmental concerns which led to MLFF, reviews some pertinent electric power concepts, and describes current institutional and market conditions. A generalized method for simulating and valuing hourly hydroelectric generation under various operational constraints is then introduced.

Harpman, D.A.

1997-06-01T23:59:59.000Z

12

Annotated bibliography for the humpback chub (Gila cypha) with emphasis on the Grand Canyon population.  

DOE Green Energy (OSTI)

Glen Canyon Dam is a hydroelectric facility located on the Colorado River in Arizona that is operated by the U.S. Bureau of Reclamation (Reclamation) for multiple purposes including water storage, flood control, power generation, recreation, and enhancement of fish and wildlife. Glen Canyon Dam operations have been managed for the last several years to improve conditions for the humpback chub (Gila cypha) and other ecosystem components. An extensive amount of literature has been produced on the humpback chub. We developed this annotated bibliography to assist managers and researchers in the Grand Canyon as they perform assessments, refine management strategies, and develop new studies to examine the factors affecting humpback chub. The U.S. Geological Survey recently created a multispecies bibliography (including references on the humpback chub) entitled Bibliography of Native Colorado River Big Fishes (available at www.fort.usgs.gov/Products/data/COFishBib). That bibliography, while quite extensive and broader in scope than ours, is not annotated, and, therefore, does not provide any of the information in the original literature. In developing this annotated bibliography, we have attempted to assemble abstracts from relevant published literature. We present here abstracts taken unmodified from individual reports and articles except where noted. The bibliography spans references from 1976 to 2009 and is organized in five broad topical areas, including: (1) biology, (2) ecology, (3) impacts of dam operations, (4) other impacts, and (5) conservation and management, and includes twenty subcategories. Within each subcategory, we present abstracts alphabetically by author and chronologically by year. We present relevant articles not specific to either the humpback chub or Glen Canyon Dam, but cited in other included reports, under the Supporting Articles subcategory. We provide all citations in alphabetical order in Section 7.

Goulet, C. T.; LaGory, K. E.; Environmental Science Division

2009-10-05T23:59:59.000Z

13

Numerical modelling of Colorado sandbar growth: An improved formulation of sediment transport and underwater slope slumping.  

E-Print Network (OSTI)

??In the Colorado River the Glen Canyon dam is located. The Glen Canyon dam is constructed in the Colorado river for the production of electricity. (more)

Nieuwboer, B.J.

2012-01-01T23:59:59.000Z

14

Environmental Planning and Resource Analysis  

NLE Websites -- All DOE Office Websites (Extended Search)

FinalReport Glen Canyon Dam ROD & Operating Constraints Glen Canyon Operations White Paper Grand Canyon Protection Act of 1992 Replacement Resources & Methods Report...

15

Glen Wattman | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Glen Wattman Glen Wattman About Us Glen Wattman - Director, Office of Aviation Management A native of New York, Glen Wattman has served as a civilian Airline Pilot for more than thirteen years flying Boeing 757, 767 and 727 transport category aircraft. He has extensive experience operating flights domestically and throughout Central and South America and Europe. Mr. Wattman is currently a Major in the United States Air Force Reserve and serves as a subject matter expert as a liaison to the Florida Wing of the Civil Air Patrol. Mr. Wattman has expertise in all aspects of the CAP mission to include Disaster Relief, Search and Rescue, Civil Defense, Homeland Security, Drug Interdiction, and Aerospace Education. Prior to becoming an Airline Pilot, Mr. Wattman served as an Air Force Officer,

16

Evaluate Potential Means of Rebuilding Sturgeon Populations in the Snake River between Lower Granite and Hells Canyon Dams, 1997 Annual Report.  

DOE Green Energy (OSTI)

During 1997 the first phase of the Nez Perce Tribe White Sturgeon Project was completed and the second phase was initiated. During Phase I the ''Upper Snake River White Sturgeon Biological Assessment'' was completed, successfully: (1) compiling regional white sturgeon management objectives, and (2) identifying potential mitigation actions needed to rebuild the white sturgeon population in the Snake River between Hells Canyon and Lower Granite dams. Risks and uncertainties associated with implementation of these potential mitigative actions could not be fully assessed because critical information concerning the status of the population and their habitat requirements were unknown. The biological risk assessment identified the fundamental information concerning the white sturgeon population that is needed to fully evaluate the effectiveness of alternative mitigative strategies. Accordingly, a multi-year research plan was developed to collect specific biological and environmental data needed to assess the health and status of the population and characterize habitat used for spawning and rearing. In addition, in 1997 Phase II of the project was initiated. White sturgeon were captured, marked, and population data were collected between Lower Granite Dam and the mouth of the Salmon River. During 1997, 316 white sturgeon were captured in the Snake River. Of these, 298 were marked. Differences in the fork length frequency distributions of the white sturgeon were not affected by collection method. No significant differences in length frequency distributions of sturgeon captured in Lower Granite Reservoir and the mid- and upper free-flowing reaches of the Snake River were detected. The length frequency distribution indicated that white sturgeon between 92 and 183 cm are prevalent in the reaches of the Snake River that were sampled. However, white sturgeon >183 have not changed markedly since 1970. I would speculate that some factor other than past over-fishing practices is limiting the recruitment of white sturgeon into larger size classes (>183 cm). Habitat, food resources, and migration have been severely altered by the impoundment of the Snake River and it appears that the recruitment of young may not be severely affected as recruitment of fish into size classes > 183 cm.

Hoefs, Nancy (Nez Perce Tribe, Department of Fisheries Resource Management, Lapwai, ID)

2004-02-01T23:59:59.000Z

17

The Oak Glen Wind Farm Story  

Wind Powering America (EERE)

* Oak Glen Wind Farm - Contracting Approach - Financing - Community Relations * Energy Education MMPA Overview 3 * Population Served: 125,000 * Retail Customers: 60,000 *...

18

White Sturgeon Management Plan in the Snake River between Lower Granite and Hells Canyon Dams; Nez Perce Tribe, 1997-2005 Final Report.  

DOE Green Energy (OSTI)

White sturgeon in the Hells Canyon reach (HCR) of the Snake River are of cultural importance to the Nez Perce Tribe. However, subsistence and ceremonial fishing opportunities have been severely limited as a result of low numbers of white sturgeon in the HCR. Hydrosystem development in the Columbia River Basin has depressed numbers and productivity of white sturgeon in the HCR by isolating fish in impounded reaches of the basin, restricting access to optimal rearing habitats, reducing the anadromous forage base, and modifying early life-history habitats. Consequently, a proactive management plan is needed to mitigate for the loss of white sturgeon production in the HCR, and to identify and implement feasible measures that will restore and rebuild the white sturgeon population to a level that sustains viability and can support an annual harvest. This comprehensive and adaptive management plan describes the goals, objectives, strategies, actions, and expected evaluative timeframes for restoring the white sturgeon population in the HCR. The goal of this plan, which is to maintain a viable, persistent population that can support a sustainable fishery, is supported by the following objectives: (1) a natural, stable age structure comprising both juveniles and a broad spectrum of spawning age-classes; (2) stable or increasing numbers of both juveniles and adults; (3) consistent levels of average recruitment to ensure future contribution to reproductive potential; (4) stable genetic diversity comparable to current levels; (5) a minimum level of abundance of 2,500 adults to minimize extinction risk; and (6) provision of an annual sustainable harvest of 5 kg/ha. To achieve management objectives, potential mitigative actions were developed by a Biological Risk Assessment Team (BRAT). Identified strategies and actions included enhancing growth and survival rates by restoring anadromous fish runs and increasing passage opportunities for white sturgeon, reducing mortality rates of early life stages by modifying flows in the HCR, reducing mortality imposed by the catch and release fishery, augmenting natural production through translocation or hatchery releases, and assessing detrimental effects of contaminants on reproductive potential. These proposed actions were evaluated by assessing their relative potential to affect population growth rate and by determining the feasibility of their execution, including a realistic timeframe (short-term, mid-term, long-term) for their implementation and evaluation. A multi-pronged approach for management was decided upon whereby various actions will be implemented and evaluated under different timeframes. Priority management actions include: Action I- Produce juvenile white sturgeon in a hatchery and release into the management area; Action G- Collect juvenile white sturgeon from other populations in the Snake or Columbia rivers and release them into the management area; and Action D- Restore white sturgeon passage upriver and downriver at Lower Snake and Idaho Power dams. An integral part of this approach is the continual monitoring of performance measures to assess the progressive response of the population to implemented actions, to evaluate the actions efficacy toward achieving objectives, and to refine and redirect strategies if warranted.

Nez Perce Tribe Resources Management Staff, (Nez Perce Tribe, Department of Fisheries Resource Management, Lapwai, ID)

2005-09-01T23:59:59.000Z

19

Notice of Intent To Prepare a Draft Environmental Impact Statement and Conduct Public Scoping on the Adoption of a Long-Term Experimental and Management Plan for the Operation of Glen Canyon Dam  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

35 Federal Register 35 Federal Register / Vol. 76, No. 129 / Wednesday, July 6, 2011 / Notices should be 4-wheel drive and have heavy-duty tires due to the terrain. To sign on for the tour, contact Sherry Foot, Special Programs Coordinator, (801) 539-4195, no later than close of business July 25, 201l. On August 5, a business meeting will be held to discuss the ecological, social, and economic values that can be created by the proposed grazing strategy (follow-up to the field tour); RAC voting in support of the Rich County Project subgroup report; RAC subgroup report on the draft BLM Utah Instruction Memorandum on the Statewide Travel Management Planning Policy; Air Quality status update; a conference call with BLM's Director Abbey on the RAC's involvement with the America's

20

Mr. Glen Sjoblom Deputy Director  

Office of Legacy Management (LM)

J-UN 2 0 1590 J-UN 2 0 1590 Mr. Glen Sjoblom Deputy Director Di.vision of Industrial and Medical Nuclear Safety Office of Nuclear Materials Safety and Safeguards. U. S. Nuclear Regulatory C&iitii'&&; Washington, D.C. 20555 Dear Mr. Sjoblom: As a part of its Formerly Utilized Sites Remedial Action Program (FUSRAP), the U. S. Department of Energy (DOE) is trying to identify all sites and facilities where radioactive materials were handled, processed or used in support of Manhattan Engineer. District (MED) and Atomic Energy Commission (AEC) activities from 1942 through the mid-1960's. ,The authority to conduct remed,ial action under FUSRAP, derived from the Atomic Energy Act of 1954, as amended, is limited,to those sites operated prior to the establishment of AEC licensing requirements and at sites that were

Note: This page contains sample records for the topic "glen canyon dam" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Mr. Glen Sjoblom Deputy Director  

Office of Legacy Management (LM)

Washington, Df: 20545 Washington, Df: 20545 ,J.LlN 2 0 19% Mr. Glen Sjoblom Deputy Director Division of Industrial and Medical Nuclear Safety Office of Nuclear Materials Safety and Safeguards U. S. Nuclear Regulatory Commission r " Washington, D.C. 20555 Dear Mr. Sjoblom: As a part of its Formerly Utilized Sites Remedial Action Program (FUSRAP), the U. S. Department of Energy (DOE) is trying to identify all sites and facilities where radioactive materials were handled, processed or used in support of Manhattan Engineer District (MED) and Atomic Energy Commission (AEC) activities from 1942 through the mid-1960's. The authority to conduct remedial action under FUSRAP, derived from the Atomic Energy Act of 1954, as amendedi is limited to those sites operated prior to the

22

EIS-0427: Grapevine Canyon Wind Project, Coconino County, Arizona |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

27: Grapevine Canyon Wind Project, Coconino County, Arizona 27: Grapevine Canyon Wind Project, Coconino County, Arizona EIS-0427: Grapevine Canyon Wind Project, Coconino County, Arizona Summary This EIS evaluates the environmental impacts of a proposed wind energy generation project in Coconino County, Arizona, on privately owned ranch lands and trust lands administered by the Arizona State Land Department. The proposed project includes a new transmission tie-line that would cross lands administered by Coconino National Forest and interconnect with DOE's Western Area Power Administration's existing Glen Canyon-Pinnacle Peak transmission lines. Public Comment Opportunities No public comment opportunities available at this time. Documents Available for Download September 11, 2012 EIS-0427: Record of Decision Interconnection of the Grapevine Canyon Wind Project, Coconino County,

23

Evaluate Potential Means of Rebuilding Sturgeon Populations in the Snake River between Lower Granite and Hells Canyon Dams, 1998 Annual Report.  

DOE Green Energy (OSTI)

In 1998 white sturgeon (Acipenser transmontanus) were captured, marked, and population data were collected in the Snake River between Lower Granite Dam and the mouth of the Salmon River. A total of 13,785 hours of setline effort and 389 hours of hook-and-line effort was employed in 1998. Of the 278 white sturgeon captured in the Snake River, 238 were marked for future identification. Three sturgeon were captured in the Salmon River and none were captured in the Clearwater River. Since 1997, 6.9% of the tagged fish have been recovered. Movement of recaptured white sturgeon ranged from 98.5 kilometers downstream to 60.7 kilometers upstream, however, less than 25% of the fish moved more than 16 kilometers (10 miles). In the Snake River, white sturgeon ranged in total length from 51.5 cm to 286 cm and averaged 118.9 cm. Differences were detected in the length frequency distributions of sturgeon in Lower Granite Reservoir and the free-flowing Snake River (Chi-Square test, P < 0.05). In addition, the proportion of white sturgeon greater than 92 cm (total length) in the free-flowing Snake River has shown an increase of 37% since the 1970's. Analysis of the length-weight relationship indicated that white sturgeon in Lower Granite Reservoir were slightly larger than white sturgeon in the free-flowing Snake River.

Everett, Scott R.; Tuell, Michael A. (Nez Perce Tribe, Department of Fisheries Resource Management, Lapwai, ID)

2002-03-01T23:59:59.000Z

24

Evaluate Potential Means of Rebuilding Sturgeon Populations in the Snake River between Lower Granite and Hells Canyon Dams, 2001 Annual Report.  

DOE Green Energy (OSTI)

The specific research goal of this project is to identify means to restore and rebuild the Snake River white sturgeon (Acipenser transmontanus) population to support a sustainable annual subsistence harvest equivalent to 5 kg/ha/yr (CBFWA 1997). Based on data collected, a white sturgeon adaptive management plan will be developed. This 2001 annual report covers the fifth year of sampling of this multi-year study. In 2001 white sturgeon were captured, marked, and population data were collected in the Snake and Salmon rivers. The Snake River was sampled between Lower Granite Dam (rkm 174) and the mouth of the Salmon River (rkm 303), and the Salmon River was sampled from its mouth upstream to Hammer Creek (rkm 84). A total of 45,907 hours of setline effort and 186 hours of hook-and-line effort was employed in 2001. A total of 390 white sturgeon were captured and tagged in the Snake River and 12 in the Salmon River. Since 1997, 36.1 percent of the tagged white sturgeon have been recaptured. In the Snake River, white sturgeon ranged in total length from 42 cm to 307 cm and averaged 107 cm. In the Salmon River, white sturgeon ranged in total length from 66 cm to 235 cm and averaged 160 cm. Using the Jolly-Seber model, the abundance of white sturgeon <60 cm, between Lower Granite Dam and the mouth of the Salmon River, was estimated at 2,483 fish, with a 95% confidence interval of 1,208-7,477. An additional 10 white sturgeon were fitted with radio-tags during 2001. The locations of 17 radio-tagged white sturgeon were monitored in 2001. The movement of these fish ranged from 38.6 km (24 miles) downstream to 54.7 km (34 miles) upstream; however, 62.6 percent of the detected movement was less than 0.8 km (0.5 mile). Both radio-tagged fish and recaptured white sturgeon in Lower Granite Reservoir appear to move more than fish in the free-flowing segment of the Snake River. No seasonal movement pattern was detected, and no movement pattern was detected for different size fish. Differences were detected in the length frequency distributions of white sturgeon in Lower Granite Reservoir and the free-flowing Snake River (Chi-Square test, P<0.05). The proportion of white sturgeon greater than 92 cm (total length) in the free-flowing Snake River has shown an increase of 30 percent since the 1970's. Analysis of the length-weight relationship indicated that white sturgeon in Lower Granite Reservoir had a higher relative weight factor than white sturgeon in the free-flowing Snake River. A von Bertalanffy growth curve was fitted to 309 aged white sturgeon. The results suggest fish are currently growing faster than fish historically inhabiting the study area, as well as other Columbia River basin white sturgeon populations. Artificial substrate mats were used to document white sturgeon spawning. A total of 14 white sturgeon eggs were recovered in the Snake River in 2001.

Everett, Scott R.; Tuell, Michael A. (Nez Perce Tribe, Department of Fisheries Resource Management, Lapwai, ID)

2003-03-01T23:59:59.000Z

25

Evaluate Potential Means of Rebuilding Sturgeon Populations in the Snake River between Lower Granite and Hells Canyon Dams, 2000 Annual Report.  

DOE Green Energy (OSTI)

The specific research goal of this project is to identify means to restore and rebuild the Snake River white sturgeon (Acipenser transmontanus) population to support a sustainable annual subsistence harvest equivalent to 5 kg/ha/yr (CBFWA 1997). Based on data collected, a white sturgeon adaptive management plan will be developed. This 2000 annual report covers the fourth year of sampling of this multi-year study. In 2000 white sturgeon were captured, marked, and population data were collected in the Snake and Salmon rivers. The Snake River was sampled between Lower Granite Dam (rkm 174) and the mouth of the Salmon River (rkm 303), and the Salmon River was sampled from its mouth upstream to Hammer Creek (rkm 84). A total of 53,277 hours of setline effort and 630 hours of hook-and-line effort was employed in 2000. A total of 538 white sturgeon were captured and tagged in the Snake River and 25 in the Salmon River. Since 1997, 32.8 percent of the tagged white sturgeon have been recaptured. In the Snake River, white sturgeon ranged in total length from 48 cm to 271 cm and averaged 107 cm. In the Salmon River, white sturgeon ranged in total length from 103 cm to 227 cm and averaged 163 cm. Using the Jolly-Seber open population estimator, the abundance of white sturgeon <60 cm, between Lower Granite Dam and the mouth of the Salmon River, was estimated at 2,725 fish, with a 95% confidence interval of 1,668-5,783. A total of 10 white sturgeon were fitted with radio-tags. The movement of these fish ranged from 54.7 km (34 miles) downstream to 78.8 km (49 miles) upstream; however, 43.6 percent of the detected movement was less than 0.8 km (0.5 mile). Both radio-tagged fish and recaptured white sturgeon in Lower Granite Reservoir appear to move more than fish in the free-flowing segment of the Snake River. No seasonal movement pattern was detected, and no movement pattern was detected for different size fish. Differences were detected in the length frequency distributions of white sturgeon in Lower Granite Reservoir and the free-flowing Snake River (Chi-Square test, P<0.05). The proportion of white sturgeon greater than 92 cm (total length) in the free-flowing Snake River has shown an increase of 31 percent since the 1970's. Analysis of the length-weight relationship indicated that white sturgeon in Lower Granite Reservoir had a higher relative weight factor than white sturgeon in the free-flowing Snake River. A von Bertalanffy growth curve was fitted to 138 aged white sturgeon. The results suggests fish are currently growing faster than fish historically inhabiting the study area, as well as other Columbia River basin white sturgeon populations. Artificial substrate mats were used to document white sturgeon spawning. A total of 34 white sturgeon eggs were recovered: 27 in the Snake River, and seven in the Salmon River.

Everett, Scott R.; Tuell, Michael A. (Nez Perce Tribe, Department of Fishereis Resource Management, Lapwai, ID)

2003-03-01T23:59:59.000Z

26

Evaluate Potential Means of Rebuilding Sturgeon Populations in the Snake River between Lower Granite and Hells Canyon Dams, 1999 Annual Report.  

DOE Green Energy (OSTI)

The specific research goal of this project is to identify means to restore and rebuild the Snake River white sturgeon (Acipenser transmontanus) population to support a sustainable annual subsistence harvest equivalent to 5 kg/ha/yr (CBFWA 1997). Based on data collected, a white sturgeon adaptive management plan will be developed. This 1999 annual report covers the third year of sampling of this multi-year study. In 1999 white sturgeon were captured, marked and population data were collected in the Snake and Salmon rivers. A total of 33,943 hours of setline effort and 2,112 hours of hook-and-line effort was employed in 1999. A total of 289 white sturgeon were captured and tagged in the Snake River and 29 in the Salmon River. Since 1997, 11.1 percent of the tagged white sturgeon have been recaptured. In the Snake River, white sturgeon ranged in total length from 27 cm to 261 cm and averaged 110 cm. In the Salmon River, white sturgeon ranged in total length from 98 cm to 244 cm and averaged 183.5 cm. Using the Jolly-Seber model, the abundance of white sturgeon < 60 cm, between Lower Granite Dam and the mouth of the Salmon River, was estimated at 1,823 fish, with a 95% confidence interval of 1,052-4,221. A total of 15 white sturgeon were fitted with radio-tags. The movement of these fish ranged from 6.4 km (4 miles) downstream to 13.7 km (8.5 miles) upstream; however, 83.6 percent of the detected movement was less than 0.8 kilometers (0.5 miles). Both radio-tagged fish and recaptured white sturgeon in Lower Granite Reservoir appear to move more than fish in the free-flowing segment of the Snake River. No seasonal movement pattern was detected, and no movement pattern was detected for different size fish. Differences were detected in the length frequency distributions of white sturgeon in Lower Granite Reservoir and the free-flowing Snake River (Chi-Square test, P < 0.05). The proportion of white sturgeon greater than 92 cm (total length) in the free-flowing Snake River has shown an increase of 29 percent since the 1970's. Analysis of the length-weight relationship indicated that white sturgeon in Lower Granite Reservoir were slightly larger than white sturgeon in the free-flowing Snake River. A von Bertalanffy growth curve was fitted to 49 aged white sturgeon. The results suggests the fish are currently growing faster than fish historicly inhabiting the study area, as well as other Columbia River basin white sturgeon populations. Artificial substrate mats were used to document white sturgeon spawning. Five white sturgeon eggs were recovered in the Snake River.

Tuell, Michael A.; Everett, Scott R. (Nez Perce Tribe, Department of Fisheries Resource Management, Lapwai, ID)

2003-03-01T23:59:59.000Z

27

Evaluate Potenial Means of Rebuilding Sturgeon Populations in the Snake River between Lower Granite and Hells Canyon Dams, 2002 Annual Report.  

DOE Green Energy (OSTI)

The specific research goal of this project is to identify means to restore and rebuild the Snake River white sturgeon (Acipenser transmontanus) population to support a sustainable annual subsistence harvest equivalent to 5 kg/ha/yr (CBFWA 1997). Based on data collected, a white sturgeon adaptive management plan will be developed. This report presents a summary of results from the 1997-2002 Phase II data collection and represents the end of phase II. From 1997 to 2001 white sturgeon were captured, marked, and population data were collected in the Snake and Salmon. A total of 1,785 white sturgeon were captured and tagged in the Snake River and 77 in the Salmon River. Since 1997, 25.8 percent of the tagged white sturgeon have been recaptured. Relative density of white sturgeon was highest in the free-flowing segment of the Snake River, with reduced densities of fish in Lower Granite Reservoir, and low densities the Salmon River. Differences were detected in the length frequency distributions of white sturgeon in Lower Granite Reservoir, the free-flowing Snake River and the Salmon River (Chi-Square test, P<0.05). The proportion of white sturgeon greater than 92 cm (total length) in the free-flowing Snake River has shown an increase of 30 percent since the 1970's. Using the Jolly-Seber model, the abundance of white sturgeon <60 cm, between Lower Granite Dam and the mouth of the Salmon River, was estimated at 2,483 fish, with a 95% confidence interval of 1,208-7,477. Total annual mortality rate was estimated to be 0.14 (95% confidence interval of 0.12 to 0.17). A total of 35 white sturgeon were fitted with radio-tags during 1999-2002. The movement of these fish ranged from 53 km (33 miles) downstream to 77 km (48 miles) upstream; however, 38.8 percent of the detected movement was less than 0.8 km (0.5 mile). Both radio-tagged fish and recaptured white sturgeon in Lower Granite Reservoir appear to move more than fish in the free-flowing segment of the Snake River. No seasonal movement pattern was detected, and no movement pattern was detected for different size fish. Analysis of the length-weight relationship indicated that white sturgeon in Lower Granite Reservoir had a higher relative weight factor than white sturgeon in the free-flowing Snake River. The results suggest fish are currently growing faster than fish historically inhabiting the study area, as well as other Columbia River basin white sturgeon populations. Artificial substrate egg mats documented white sturgeon spawning in four consecutive years. A total of 49 white sturgeon eggs were recovered in the Snake River from 1999-2002, and seven from the Salmon River during 2000.

Everett, Scott R.; Tuell, Michael A.; Hesse, Jay A. (Nez Perce Tribe, Department of Fisheries Management, Lapwai, ID)

2004-02-01T23:59:59.000Z

28

Oak Glen Wind Project | Open Energy Information  

Open Energy Info (EERE)

Wind Project Wind Project Jump to: navigation, search Name Oak Glen Wind Project Facility Oak Glen Wind Project Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Minnesota Municipal Power Authority Developer Avant Energy Energy Purchaser Minnesota Municipal Power Authority Location Blooming Prairie MN Coordinates 43.91659835°, -93.12385082° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.91659835,"lon":-93.12385082,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

29

EIS-0480: Long-Term Experimental and Management Plan for the Operation of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

0: Long-Term Experimental and Management Plan for the 0: Long-Term Experimental and Management Plan for the Operation of Glen Canyon Dam EIS-0480: Long-Term Experimental and Management Plan for the Operation of Glen Canyon Dam SUMMARY Two agencies of the Department of the Interior, Bureau of Reclamation and National Park Service, are jointly preparing a Long-Term Experimental and Management Plan for the Glen Canyon Dam and an EIS for adoption of the Plan. The Glen Canyon Dam, on the Colorado River in northern, Arizona, generates hydroelectric power that is marketed by DOE's Western Area Power Administration, a cooperating agency. PUBLIC COMMENT OPPORTUNITIES None available at this time. DOCUMENTS AVAILABLE FOR DOWNLOAD July 6, 2011 EIS-0480: Notice of Intent to Prepare a Draft Environmental Impact Statement Long-Term Experimental and Management Plan for the Operation of Glen Canyon

30

Power Economic Analysis  

NLE Websites -- All DOE Office Websites (Extended Search)

CRSP Management Center CRSP Management Center Western Area Power Administration January 2011 Power Economic Analysis of Operational Restrictions at Glen Canyon Dam In February, 1997, the operating criteria for Glen Canyon Dam were changed. Operation was restricted to a Modified Low Fluctuating Flow as described in the Operation of Glen Canyon Dam, Colorado River Storage Project, Arizona, Final Environmental Impact Statement, March, 1995. These restrictions reduced the operating flexibility of the hydroelectric power plant and therefore the economic value of the electricity it produced. The Environmental Impact Statement provided impact information to support the Record of Decision governing dam operations. The impact

31

City of Glen Elder, Kansas (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

Glen Elder Glen Elder Place Kansas Utility Id 7287 Utility Location Yes Ownership M NERC Location SPP Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Rural Commercial Service Commercial Rural Power Demand Service Industrial Rural Residential Service Residential Urban Commercial Service Commercial Urban Power Demand Service Industrial Urban Residential Service Residential Average Rates Residential: $0.1100/kWh Commercial: $0.1140/kWh References ↑ "EIA Form EIA-861 Final Data File for 2010 - File1_a" Retrieved from "http://en.openei.org/w/index.php?title=City_of_Glen_Elder,_Kansas_(Utility_Company)&oldid=409659

32

Glen F. Wattman Director, Office of Aviation Management  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Glen F. Wattman Glen F. Wattman Director, Office of Aviation Management A native of New York, Glen Wattman has served as a civilian Airline Pilot for more than thirteen years flying Boeing 757, 767 and 727 transport category aircraft. He has extensive experience operating flights domestically and throughout Central and South America and Europe. Mr. Wattman is currently a Major in the United States Air Force Reserve and serves as a subject matter expert as a liaison to the Florida Wing of the Civil Air Patrol. Mr. Wattman has expertise in all aspects of the CAP mission to include Disaster Relief, Search and Rescue, Civil Defense, Homeland Security, Drug Interdiction, and Aerospace Education. Prior to becoming an Airline Pilot, Mr. Wattman served as an Air Force Officer, Detachment Commander, Fighter Pilot, and

33

Village of Watkins Glen, New York (Utility Company) | Open Energy  

Open Energy Info (EERE)

Watkins Glen, New York (Utility Company) Watkins Glen, New York (Utility Company) Jump to: navigation, search Name Village of Watkins Glen Place New York Utility Id 20193 Utility Location Yes Ownership M NERC Location NPCC NERC NPCC Yes ISO NY Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Cargill Rates Commercial Commercial Rates Commercial Industrial Rates Industrial Residential Rates Residential Wal-Mart Rates Commercial Average Rates Residential: $0.0473/kWh Commercial: $0.0642/kWh Industrial: $0.0462/kWh References ↑ "EIA Form EIA-861 Final Data File for 2010 - File1_a"

34

Cedar Glen Lakes, New Jersey: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Glen Lakes, New Jersey: Energy Resources Glen Lakes, New Jersey: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 39.952339°, -74.3998711° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.952339,"lon":-74.3998711,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

35

Gloria Glens Park, Ohio: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Glens Park, Ohio: Energy Resources Glens Park, Ohio: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 41.0583883°, -81.8979171° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.0583883,"lon":-81.8979171,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

36

Cedar Glen West, New Jersey: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Glen West, New Jersey: Energy Resources Glen West, New Jersey: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 40.0420605°, -74.2926458° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.0420605,"lon":-74.2926458,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

37

Robin Glen-Indiantown, Michigan: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Robin Glen-Indiantown, Michigan: Energy Resources Robin Glen-Indiantown, Michigan: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 43.4643365°, -83.8340441° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.4643365,"lon":-83.8340441,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

38

Arizona | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

the Operation of Glen Canyon Dam, AZ June 30, 2011 Loan Guarantees for Three California PV Solar Plants Expected to Create 1,400 Jobs The Energy Department announced 4.5 billion...

39

Upper Los Alamos Canyon Cleanup  

NLE Websites -- All DOE Office Websites (Extended Search)

Upper Los Alamos Canyon Cleanup Upper Los Alamos Canyon Cleanup Upper Los Alamos Canyon Cleanup The Upper Los Alamos Canyon Project involves cleaning up hazardous materials left over from some of the Laboratory's earliest activities. Contact Environmental Communication & Public Involvement P.O. Box 1663 MS M996 Los Alamos, NM 87545 (505) 667-0216 Email Located along Los Alamos Canyon from 7th Street to the Pajarito Ski Hill, the Upper Los Alamos Canyon Project involves examining sites in present and former Laboratory technical areas to see if any further environmental cleanup actions are needed. If not, the Laboratory can apply to have these sites removed permanently from LANL's Hazardous Waste Permit, meaning that no further actions are needed at those sites. Among the 115 sites included in the Upper LA Canyon Project, 54 have been

40

Dam Safety Program (Maryland)  

Energy.gov (U.S. Department of Energy (DOE))

The Dam Safety Division within the Department of the Environment is responsible for administering a dam safety program to regulate the construction, operation, and maintenance of dams to prevent...

Note: This page contains sample records for the topic "glen canyon dam" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Dam Safety (Pennsylvania)  

Energy.gov (U.S. Department of Energy (DOE))

The Pennsylvania Department of Environmental Protection's Division of Dam Safety provides for the regulation and safety of dams and reservoirs throughout the Commonwealth in order to protect the...

42

FIA-13-0023 - In the Matter of Glen Bowers | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

3 - In the Matter of Glen Bowers 3 - In the Matter of Glen Bowers FIA-13-0023 - In the Matter of Glen Bowers On April 29, 2013, the Office of Hearings and Appeals (OHA) issued a decision denying an appeal (Appeal) from a Freedom of Information Act (FOIA) determination issued by the Department of Energy's Environmental Management Consolidated Business Center (EMCBC). The Appellant, Glen Bowers, contested the adequacy of EMCBC's search of for documents responsive to his FOIA Request. The OHA reviewed EMCBC's description of its search, and determined that it conducted an adequate search for responsive documents. Therefore, the OHA denied the Appeal. FIA-13-0023.pdf More Documents & Publications FIA-13-0050 - In the Matter of Letitia A. Murphy FIA-13-0008 - In the Matter of Michael J. Kelly

43

Upper Los Alamos Canyon Cleanup  

NLE Websites -- All DOE Office Websites (Extended Search)

septic tanks, sanitary and industrial waste lines, storm drains, incinerators, transformer sites, and areas in which soil has been contaminated. The Upper Los Alamos Canyon...

44

California Nuclear Profile - Diablo Canyon  

U.S. Energy Information Administration (EIA) Indexed Site

Diablo Canyon" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License expiration date"...

45

Dams Fishways (Iowa)  

Energy.gov (U.S. Department of Energy (DOE))

No permanent dam or obstruction may be placed in the waters of the state without providing for fish passage.

46

INTERNATIONAL COMMISSION ON LARGE DAMS  

E-Print Network (OSTI)

earthquake. The dam was designed as a concrete gravity dam constructed using roller-compacted concrete (RCC a week. The Olivenhain Dam is the first RCC gravity dam permitted by the state of California and), is the tallest RCC dam in the North America. The Olivenhain Dam has the typical geometry for concrete gravity

Bowles, David S.

47

New York Canyon Stimulation  

Science Conference Proceedings (OSTI)

The New York Canyon Stimulation Project was to demonstrate the commercial application of Enhanced Geothermal System techniques in Buena Vista Valley area of Pershing County, Nevada. From October 2009 to early 2012, TGP Development Company aggressively implemented Phase I of Pre-Stimulation and Site/Wellbore readiness. This included: geological studies; water studies and analyses and procurement of initial permits for drilling. Oversubscription of water rights and lack of water needed for implementation of EGS were identified and remained primary obstacles. Despite extended efforts to find alternative solutions, the water supply circumstances could not be overcome and led TGP to determine a "????No Go"??? decision and initiate project termination in April 2012.

Raemy, B. Principal Investigator, TGP Development Company, LLC

2012-06-21T23:59:59.000Z

48

Post-project appraisal of Martin Canyon Creek restoration  

E-Print Network (OSTI)

Haltiner, Jeffery. 1997. Martin Canyon Stream Stabilization:Williams & Associates, Ltd. 1999. Martin Canyon Creek StreamPost-Project Appraisal of Martin Canyon Creek Restoration

Wagner, Wayne; Roseman, Jesse

2006-01-01T23:59:59.000Z

49

Hudson Canyon | Open Energy Information  

Open Energy Info (EERE)

Canyon Canyon Jump to: navigation, search Name Hudson Canyon Facility Hudson Canyon Sector Wind energy Facility Type Offshore Wind Facility Status Proposed Owner Deepwater Wind Long Island Developer Deepwater Wind Location Atlantic Ocean NY Coordinates 40.151°, -73.53° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.151,"lon":-73.53,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

50

Juniper Canyon | Open Energy Information  

Open Energy Info (EERE)

Juniper Canyon Juniper Canyon Jump to: navigation, search Name Juniper Canyon Facility Juniper Canyon Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Iberdrola Developer Iberdrola Energy Purchaser Merchant Location In Klickitat County 4.6 miles Southeast of Goldendale Coordinates 45.910223°, -120.224317° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":45.910223,"lon":-120.224317,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

51

Monitoring and Evaluation of Yearling Fall Chinook Salmon Released from Acclimation Facilities Upstream of Lower Granite Dam; 1998 Annual Report.  

DOE Green Energy (OSTI)

The Nez Perce Tribe, in cooperation with the U.S. Fish and Wildlife Service and Washington Department of Fish and Wildlife, conducted monitoring and evaluation studies on Lyons Ferry Hatchery (Snake River stock) yearling fall chinook salmon that were acclimated and released at three Fall Chinook Acclimation Project sites upstream of Lower Granite Dam along with yearlings released on-station from Lyons Ferry Hatchery in 1998. The three fall chinook acclimation facilities are operated by the Nez Perce Tribe and located at Pittsburg Landing and Captain John Rapids on the Snake River and at Big Canyon Creek on the Clearwater River. Yearlings at the Big Canyon facility consisted of two size classes that are referred to in this report as 9.5 fish per pound (fpp) and 30 fpp. The Big Canyon 9.5 fpp were comparable to the yearlings at Pittsburg Landing, Captain John Rapids and Lyons Ferry Hatchery. A total of 9,942 yearlings were PIT tagged and released at Pittsburg Landing. PIT tagged yearlings had a mean fork length of 159.9 mm and mean condition factor of 1.19. Of the 9,942 PIT tagged fish released, a total of 6,836 unique tags were detected at mainstem Snake and Columbia River dams (Lower Granite, Little Goose, Lower Monumental and McNary). A total of 4,926 9.5 fpp and 2,532 30 fpp yearlings were PIT tagged and released at Big Canyon. PIT tagged 9.5 fpp yearlings had a mean fork length of 156.9 mm and mean condition factor of 1.13. PIT tagged 30 fpp yearlings had a mean fork length of 113.1 mm and mean condition factor of 1.18. Of the 4,926 PIT tagged 9.5 fpp yearlings released, a total of 3,042 unique tags were detected at mainstem Snake and Columbia River dams. Of the 2,532 PIT tagged 30 fpp yearlings released, a total of 1,130 unique tags were detected at mainstem Snake and Columbia River dams. A total of 1,253 yearlings were PIT tagged and released at Captain John Rapids. PIT tagged yearlings had a mean fork length of 147.5 mm and mean condition factor of 1.09. Of the 1,253 PIT tagged fish released, a total of 719 unique tags were detected at mainstem Snake and Columbia River dams. A total of 2,420 yearlings were PIT tagged and released at Lyons Ferry Hatchery. PIT tagged yearlings had a mean fork length of 159.0 mm and mean condition factor of 1.10. Of the 2,420 PIT tagged fish released, a total of 979 unique tags were detected at mainstem Snake and Columbia River dams (Lower Monumental and McNary). Median travel times, based on all detections, of PIT tagged fish released from Pittsburg Landing were 10.5 days to Lower Granite Dam, 21.7 days to McNary Dam and 29.8 days to Bonneville Dam. Median migration rates were 16.4 rkm/d to Lower Granite Dam, 18.3 rkm/d to McNary Dam and 18.9 rkm/d to Bonneville Dam. The median arrival dates were April 25 at Lower Granite Dam, May 6 at McNary Dam and May 14 at Bonneville Dam. The 90% passage dates were May 5 at Lower Granite Dam, May 20 at McNary Dam and May 25 at Bonneville Dam. Median travel times, based on all detections, of PIT tagged 9.5 fpp yearlings released from Big Canyon were 13.3 days to Lower Granite Dam, 26.0 days to McNary Dam and 30.8 days to Bonneville Dam. Median migration rates were 13.0 rkm/d to Lower Granite Dam, 15.3 rkm/d to McNary Dam and 18.3 rkm/d to Bonneville Dam. The median arrival dates were April 27 at Lower Granite Dam, May 11 at McNary Dam and May 15 at Bonneville Dam. The 90% passage dates were May 9 at Lower Granite Dam, May 24 at McNary Dam and May 25 at Bonneville Dam. Median travel times, based on all detections, of PIT tagged 30 fpp yearlings released from Big Canyon were 20.8 days to Lower Granite Dam, 37.6 days to McNary Dam and 43.5 days to Bonneville Dam. Median migration rates were 8.3 rkm/d to Lower Granite Dam, 10.6 rkm/d to McNary Dam and 12.9 rkm/d to Bonneville Dam. The median arrival dates were May 5 at Lower Granite Dam, May 23 at McNary Dam and May 28 at Bonneville Dam. The 90% passage dates were May 22 at Lower Granite Dam, May 31 at McNary Dam and June 5 at Bonneville Dam. Median arrival dates, based on all detections, of PIT tagge

Rocklage, Stephen J. (Nez Perce Tribe, Department of Fisheries Resource Management, Lapwai, ID)

2004-01-01T23:59:59.000Z

52

Dam Safety Program (Florida)  

Energy.gov (U.S. Department of Energy (DOE))

Dam safety in Florida is a shared responsibility among the Florida Department of Environmental Protection (FDEP), the regional water management districts, the United States Army Corps of Engineers ...

53

Pacific Gas & Electric Company, Diablo Canyon Nuclear ...  

Science Conference Proceedings (OSTI)

Pacific Gas & Electric Company, Diablo Canyon Nuclear Power Plant. NVLAP Lab Code: 100537-0. Address and Contact Information: ...

2013-11-08T23:59:59.000Z

54

Pacific Gas & Electric Company, Diablo Canyon Nuclear ...  

Science Conference Proceedings (OSTI)

Pacific Gas & Electric Company, Diablo Canyon Nuclear Power Plant. NVLAP Lab Code: 100537-0. Address and Contact Information: ...

2013-08-23T23:59:59.000Z

55

Internal Tides in Monterey Submarine Canyon  

Science Conference Proceedings (OSTI)

The M2 internal tide in Monterey Submarine Canyon is simulated using a modified version of the Princeton Ocean Model. Most of the internal tide energy entering the canyon is generated to the south, on Sur Slope and at the head of Carmel Canyon. ...

Rob A. Hall; Glenn S. Carter

2011-01-01T23:59:59.000Z

56

Dam Safety Standards (New Jersey)  

Energy.gov (U.S. Department of Energy (DOE))

These rules set forth procedures for application to construct, repair or modify a dam and set standards for design and maintenance of dams. These rules also establish a dam inspection procedure....

57

Explaining the relationship between prehistoric agriculture and environment at Chaco Canyon, New Mexico  

E-Print Network (OSTI)

Chaco Canyon, the Pueblo settlement of New Mexico, represents one of the major cultural developments in the prehistoric Southwest. Between A.D. 900 and A.D. 1100 Chaco reached its peak of cultural florescence. This period was characterized by considerable building activities, appearance of Chaco outliers, and the construction of an extensive road system. After this period a dramatic decline in population and a cessation of building activity took place. Archaeologists call this phenomenon abandonment. In general, development and abandonment of Chaco Canyon coincided with changes in climatic conditions. Between A.D. 900 and A.D. 1100 there was a gradual increase in effective moisture and warmer temperature which proved favorable for agriculture there. With these optimal climatic conditions,development of Chaco Canyon witnessed a great increase in population. However, the Chaco Canyon region could not support a large population indefinitely because of its agricultural marginality. To solve this population-resource imbalance, Chacoan farmers of this period intensified their agricultural activities by constructing water control systems such as check dams, contour terraces, canals, and ditches. These measures worked for a while and the influence of Chaco Canyon was felt in the political, economic, and religious life of a broad geographic region. However, summer moisture began to decrease in the years between A.D. 1130 and A.D. 1180. This decrease became a full scale drought from A.D. 1157 to A.D. 1179 that seems to have severely affected agriculture and wild food resources available for the Chacoans. In addition, the Chacoan water control system designed to capture runoff probably proved to be inadequate as a buffering mechanism. Consequently, population at Chaco Canyon began to decrease and the region was abandoned after A.D. 1140. In an attempt at explaining the specific abandonment of Chaco Canyon, this thesis focuses on relationship between prehistoric agriculture and environment.

Gang, G-Young

1993-01-01T23:59:59.000Z

58

Glen Ivy Hot Springs Pool & Spa Low Temperature Geothermal Facility | Open  

Open Energy Info (EERE)

Ivy Hot Springs Pool & Spa Low Temperature Geothermal Facility Ivy Hot Springs Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Glen Ivy Hot Springs Pool & Spa Low Temperature Geothermal Facility Facility Glen Ivy Hot Springs Sector Geothermal energy Type Pool and Spa Location Riverside County, California Coordinates 33.6825587°, -115.4733554° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

59

Dam Safety (Michigan)  

Energy.gov (U.S. Department of Energy (DOE))

This rule requires that anyone who desires to construct a dam that is 6 feet or more in height and impounds 5 surface acres or more at the design flood elevation, must first obtain a permit from...

60

Regulation of Dams (Indiana)  

Energy.gov (U.S. Department of Energy (DOE))

The owner of a dam is required to maintain the structure in good condition, and notify the Department of Environmental Management upon the sale or transfer of ownership of the structure. The...

Note: This page contains sample records for the topic "glen canyon dam" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Dam Safety (North Carolina)  

Energy.gov (U.S. Department of Energy (DOE))

North Carolina Administrative Code Title 15A, Subchapter 2K lays out further regulations for the design, approval, construction, maintenance, and inspection of dams to ensure public safety and...

62

Horizontal drilling in the Lower Glen Rose Formation, Maverick County, Texas  

Science Conference Proceedings (OSTI)

This paper presents preliminary results of a project to assess the economic viability of horizontal drilling in the Lower Glen Rose Formation of Maverick County, Texas. This project is part of an ongoing Department of Energy investigation of directional drilling in the development of gas resources within the United States. The paper includes: project description; results covering geologic setting, reservoir engineering, and seismic surveys; and future work on drilling location selection, drilling, and well completion. (AT)

Drimal, C.E.; Muncey, G.

1992-01-01T23:59:59.000Z

63

Horizontal drilling in the Lower Glen Rose Formation, Maverick County, Texas  

Science Conference Proceedings (OSTI)

This paper presents preliminary results of a project to assess the economic viability of horizontal drilling in the Lower Glen Rose Formation of Maverick County, Texas. This project is part of an ongoing Department of Energy investigation of directional drilling in the development of gas resources within the United States. The paper includes: project description; results covering geologic setting, reservoir engineering, and seismic surveys; and future work on drilling location selection, drilling, and well completion. (AT)

Drimal, C.E.; Muncey, G.

1992-10-01T23:59:59.000Z

64

Intense, Variable Mixing near the Head of Monterey Submarine Canyon  

Science Conference Proceedings (OSTI)

A microstructure survey near the head of Monterey Submarine Canyon, the first in a canyon, confirmed earlier inferences that coastal submarine canyons are sites of intense mixing. The data collected during two weeks in August 1997 showed ...

Glenn S. Carter; Michael C. Gregg

2002-11-01T23:59:59.000Z

65

Pages that link to "Coyote Canyon Steam Plant Biomass Facility...  

Open Energy Info (EERE)

Share this page on Facebook icon Twitter icon Pages that link to "Coyote Canyon Steam Plant Biomass Facility" Coyote Canyon Steam Plant Biomass Facility Jump to:...

66

Changes related to "Coyote Canyon Steam Plant Biomass Facility...  

Open Energy Info (EERE)

Share this page on Facebook icon Twitter icon Changes related to "Coyote Canyon Steam Plant Biomass Facility" Coyote Canyon Steam Plant Biomass Facility Jump to:...

67

DOE - Office of Legacy Management -- Burro Canyon Disposal Cell...  

Office of Legacy Management (LM)

Burro Canyon Disposal Cell - 007 FUSRAP Considered Sites Site: Burro Canyon Disposal Cell (007) Designated Name: Alternate Name: Location: Evaluation Year: Site Operations: Site...

68

DOE - Office of Legacy Management -- Bodo Canyon Cell - 006  

Office of Legacy Management (LM)

Bodo Canyon Cell - 006 FUSRAP Considered Sites Site: Bodo Canyon Cell (006) Designated Name: Alternate Name: Location: Evaluation Year: Site Operations: Site Disposition:...

69

EIS-0219: F-Canyon Plutonium Solutions | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

of Plutonium Solutions Stored in the F-Canyon Facility, Savannah River Site, Aiken, SC December 1, 1994 EIS-0219: Final Environmental Impact Statement F-Canyon Plutonium...

70

Flood Protection and Dam Safety (Virginia)  

Energy.gov (U.S. Department of Energy (DOE))

All dams in Virginia are subject to the Dam Safety Act and Dam Safety Regulations unless specifically excluded. A dam is excluded if it: (a) is less than six feet high; (b) has a maximum capacity...

71

ACCELERATED PILOT PROJECT FOR U CANYON DEMOLITION  

SciTech Connect

At the U.S. Department of Energy's Hanford Site in southeast Washington State, CH2M HILL Plateau Remediation Company (CH2M HILL) is underway on a first-of-a-kind project with the decommissioning and demolition of the U Canyon. Following the U.S. Environmental Protection Agency's Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA) Record of Decision for the final remediation of the canyon, CH2M HILL is combining old and new technology and techniques to prepare U Canyon for demolition. The selected remedial action called first for consolidating and grouting equipment currently in the canyon into lower levels of the plant (openings called cells), after which the cell galleries, hot pipe trench, ventilation tunnel, drains and other voids below the operating deck and crane-way deck levels will be filled with approximately 20,000 cubic yards of grout and the canyon roof and walls demolished down to the approximate level of the canyon deck. The remaining canyon structure will then be buried beneath an engineered barrier designed to control potential contaminant migration for a 500-year life. Methods and lessons learned from this project will set the stage for the future demolition of Hanford's four other canyon-type processing facilities.

KEHLER KL

2011-01-13T23:59:59.000Z

72

MERLIN Analysis of Leesville Dam  

Science Conference Proceedings (OSTI)

Three sections of American Electric Power's (AEP's) Leesville Dam were analyzed with MERLIN, EPRI's fracture mechanics program. The Leesville Dam had previously been found to be unstable under probable maximum flood (PMF) loadings when analyzed using traditional gravity methods.

2000-06-27T23:59:59.000Z

73

Bear Canyon Geothermal Facility | Open Energy Information  

Open Energy Info (EERE)

Canyon Geothermal Facility Canyon Geothermal Facility Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Bear Canyon Geothermal Facility General Information Name Bear Canyon Geothermal Facility Facility Bear Canyon Sector Geothermal energy Location Information Location Clear Lake, California, Coordinates 38.762851116528°, -122.69217967987° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.762851116528,"lon":-122.69217967987,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

74

Monitoring and Evaluation of Yearling Fall Chinook Salmon (Oncorhynchus tshawytscha) Released from Acclimation Facilities Upstream of Lower Granite Dam; 1999 Annual Report.  

DOE Green Energy (OSTI)

The Nez Perce Tribe, in cooperation with the U.S. Fish and Wildlife Service and Washington Department of Fish and Wildlife, conducted monitoring and evaluation studies on Lyons Ferry Hatchery reared yearling fall Chinook salmon Oncorhynchus tshawytscha that were acclimated and released at three Fall Chinook Acclimation Project (FCAP) sites upstream of Lower Granite Dam along with yearlings released on-station from Lyons Ferry Hatchery in 1999. This was the fourth year of a long-term project to supplement natural spawning populations of Snake River stock fall Chinook salmon upstream of Lower Granite Dam. The 453,117 yearlings released from the Fall Chinook Acclimation Project facilities not only slightly exceeded the 450,000 fish quota, but a second release of 76,386 yearlings (hereafter called Surplus) were acclimated at the Big Canyon facility and released about two weeks after the primary releases. We use Passive Integrated Transponder (PIT) tag technology to monitor the primary performance measures of survival to mainstem dams and migration timing. We also monitor size, condition and tag/mark retention at release. We released 9,941 PIT tagged yearlings from Pittsburg Landing, 9,583 from Big Canyon, 2,511 Big Canyon Surplus and 2,494 from Captain John Rapids. The Washington Department of Fish and Wildlife released 983 PIT tagged yearlings from Lyons Ferry Hatchery. Fish health sampling indicated that, overall, bacterial kidney disease levels could be considered relatively low and did not appear to increase after transport to the acclimation facilities. Compared to prior years, Quantitative Health Assessment Indices were relatively low at Pittsburg Landing and Lyons Ferry Hatchery and relatively high at Big Canyon and Captain John Rapids. Mean fork lengths (95% confidence interval) of the release groups ranged from 147.4 mm (146.7-148.1 mm) at Captain John Rapids to 163.7 mm (163.3-164.1 mm) at Pittsburg Landing. Mean condition factors ranged from 1.04 at Pittsburg Landing to 1.23 at Captain John Rapids. Estimated survival (95% confidence interval) of PIT tagged yearlings from release to Lower Granite Dam ranged from 87.8% (82.1-93.4%) for Big Canyon Surplus to 94.1% (90.1-98.1%) for Captain John Rapids. Estimated survival from release to McNary Dam ranged from 58.7% (49.3-68.1%) for Big Canyon Surplus to 71.3% (60.1-82.5%) for Captain John Rapids. Median migration rates to Lower Granite Dam, based on all observations of PIT tagged yearlings from the FCAP facilities, ranged from 9.3 river kilometers per day (rkm/d) for Captain John Rapids to 18.7 rkm/d for Pittsburg Landing. Median migration rates to McNary Dam ranged from 9.0 rkm/d for Lyons Ferry Hatchery to 17.3 rkm/d for Pittsburg Landing. Median travel times from the FCAP facilities were about 7-10 days to Lower Granite Dam and 21-23 days to McNary Dam. Median arrival dates at Lower Granite Dam, based on all observations of PIT tagged yearling groups from the FCAP facilities, were all from April 23-25. The median arrival date for Big Canyon Surplus was May 4. Median arrival dates at McNary Dam for Pittsburg Landing, Big Canyon and Captain John Rapids groups were all from May 7-8. Median arrival dates at McNary Dam were May 17 for Big Canyon Surplus and April 26 for Lyons Ferry Hatchery.

Rocklage, Stephen J.; Kellar, Dale S. (Nez Perce Tribe, Department of Fisheries Resource Management, ID)

2005-07-01T23:59:59.000Z

75

Fall Chinook Acclimation Project; Pittsburg Landing, Captain John Rapids, and Big Canyon, Annual Report 2003.  

DOE Green Energy (OSTI)

Fisheries co-managers of U.S. v Oregon supported and directed the construction and operation of acclimation and release facilities for Snake River fall Chinook from Lyons Ferry Hatchery at three sites above Lower Granite Dam. In 1996, Congress instructed the U.S. Army Corps of Engineers (USCOE) to construct, under the Lower Snake River Compensation Plan (LSRCP), final rearing and acclimation facilities for fall Chinook in the Snake River basin to complement their activities and efforts in compensating for fish lost due to construction of the lower Snake River dams. The Nez Perce Tribe (NPT) played a key role in securing funding and selecting acclimation sites, then assumed responsibility for operation and maintenance of the facilities. In 1997, Bonneville Power Administrative (BPA) was directed to fund operations and maintenance (O&M) for the facilities. Two acclimation facilities, Captain John Rapids and Pittsburg Landing, were located on the Snake River between Asotin, WA and Hells Canyon Dam and one facility, Big Canyon, was located on the Clearwater River at Peck. The Capt. John Rapids facility is a single pond while the Pittsburg Landing and Big Canyon sites consist of portable fish rearing tanks assembled and disassembled each year. Acclimation of 450,000 yearling smolts (150,000 each facility) begins in March and ends 6 weeks later. When available, an additional 2,400,000 fall Chinook sub-yearlings may be acclimated for 6 weeks, following the smolt release. The project goal is to increase the naturally spawning population of Snake River fall Chinook salmon upstream of Lower Granite Dam. This is a supplementation project; in that hatchery produced fish are acclimated and released into the natural spawning habitat for the purpose of returning a greater number of spawners to increase natural production. Only Snake River stock is used and production of juveniles occurs at Lyons Ferry Hatchery. This is a long-term project, targeted to work towards achieving delisting goals established by National Marine Fisheries Service (NMFS or NOAA Fisheries) and ultimately to provide fall Chinook adults through the Lower Snake River Compensation Plan program as mitigation for construction and operation of the four lower Snake River dams. Complete adult returns (all age classes) for all three acclimation facilities occurred in the year 2002. Progeny (which would then be natural origin fish) would be counted towards achieving Endangered Species Act delisting criteria. In 2003, a total of 2,138,391 fish weighing 66,201 pounds were released from the three acclimation facilities. The total includes 437,633 yearling fish weighing 44,330 pounds and 1,700,758 sub-yearling fish weighing 21,871 pounds.

McLeod, Bruce

2004-01-01T23:59:59.000Z

76

Hay Canyon Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Hay Canyon Wind Farm Hay Canyon Wind Farm Jump to: navigation, search Name Hay Canyon Wind Farm Facility Hay Canyon Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Iberdrola Renewables Developer Iberdrola Renewables Energy Purchaser Snohomish Public Utility District Location Near Moro OR Coordinates 45.479548°, -120.741491° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":45.479548,"lon":-120.741491,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

77

Spring Canyon Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Spring Canyon Wind Farm Spring Canyon Wind Farm Jump to: navigation, search Name Spring Canyon Wind Farm Facility Spring Canyon Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Invenergy Developer Invenergy Energy Purchaser Xcel Energy Location Near Peetz CO Coordinates 40.95366°, -103.166993° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.95366,"lon":-103.166993,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

78

Threemile Canyon Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Threemile Canyon Wind Farm Threemile Canyon Wind Farm Jump to: navigation, search Name Threemile Canyon Wind Farm Facility Threemile Canyon Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner John Deere Wind Developer John Deere Wind Energy Purchaser PacifiCorp Location Morrow County OR Coordinates 45.837861°, -119.701286° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":45.837861,"lon":-119.701286,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

79

Three Mile Canyon | Open Energy Information  

Open Energy Info (EERE)

Mile Canyon Mile Canyon Jump to: navigation, search Name Three Mile Canyon Facility Three Mile Canyon Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner John Deere Wind Developer Momentum RE Energy Purchaser PacifiCorp Location Morrow County OR Coordinates 45.717419°, -119.502258° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":45.717419,"lon":-119.502258,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

80

Turbulent Kinetic Energy Dissipation in Barrow Canyon  

Science Conference Proceedings (OSTI)

Pacific Water flows across the shallow Chukchi Sea before reaching the Arctic Ocean, where it is a source of heat, freshwater, nutrients, and carbon. A substantial portion of Pacific Water is routed through Barrow Canyon, located in the northeast ...

E. L. Shroyer

2012-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "glen canyon dam" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Internal Waves in Monterey Submarine Canyon  

Science Conference Proceedings (OSTI)

Velocity, temperature, and salinity profile surveying in Monterey Submarine Canyon during spring tide reveals an internal wave field almost an order of magnitude more energetic than that in the open ocean. Semidiurnal fluctuations and their ...

Eric Kunze; Leslie K. Rosenfeld; Glenn S. Carter; Michael C. Gregg

2002-06-01T23:59:59.000Z

82

Rectified Barotropic Flow over a Submarine Canyon  

Science Conference Proceedings (OSTI)

The effect of an isolated canyon interrupting a long continental shelf of constant cross section on the along-isobath, oscillatory motion of a homogeneous, incompressible fluid is considered by employing laboratory experiments (physical models) ...

Nicolas Pernne; Jacques Verron; Dominique Renouard; Don L. Boyer; Xiuzhang Zhang

1997-09-01T23:59:59.000Z

83

Fish Passage Assessment: Big Canyon Creek Watershed, Technical Report 2004.  

DOE Green Energy (OSTI)

This report presents the results of the fish passage assessment as outlined as part of the Protect and Restore the Big Canyon Creek Watershed project as detailed in the CY2003 Statement of Work (SOW). As part of the Northwest Power Planning Council's Columbia Basin Fish and Wildlife Program (FWP), this project is one of Bonneville Power Administration's (BPA) many efforts at off-site mitigation for damage to salmon and steelhead runs, their migration, and wildlife habitat caused by the construction and operation of federal hydroelectric dams on the Columbia River and its tributaries. The proposed restoration activities within the Big Canyon Creek watershed follow the watershed restoration approach mandated by the Fisheries and Watershed Program. Nez Perce Tribal Fisheries/Watershed Program vision focuses on protecting, restoring, and enhancing watersheds and treaty resources within the ceded territory of the Nez Perce Tribe under the Treaty of 1855 with the United States Federal Government. The program uses a holistic approach, which encompasses entire watersheds, ridge top to ridge top, emphasizing all cultural aspects. We strive toward maximizing historic ecosystem productive health, for the restoration of anadromous and resident fish populations. The Nez Perce Tribal Fisheries/Watershed Program (NPTFWP) sponsors the Protect and Restore the Big Canyon Creek Watershed project. The NPTFWP has the authority to allocate funds under the provisions set forth in their contract with BPA. In the state of Idaho vast numbers of relatively small obstructions, such as road culverts, block thousands of miles of habitat suitable for a variety of fish species. To date, most agencies and land managers have not had sufficient, quantifiable data to adequately address these barrier sites. The ultimate objective of this comprehensive inventory and assessment was to identify all barrier crossings within the watershed. The barriers were then prioritized according to the amount of habitat blocked at each site and the fish life history stages impacted. This assessment protocol will hopefully prove useful to other agencies and become a model for use in other watersheds.

Christian, Richard

2004-02-01T23:59:59.000Z

84

Development of dam safety management system  

Science Conference Proceedings (OSTI)

Recently, we can see an increasing amount of dam damage or failure due to aging, earthquakes occurrence and unusual changes in weather. For this reason, dam safety is gaining more importance than ever before in terms of disaster management at a national ... Keywords: Dam safety, Dam safety issue, Dam safety management system, Field inspection, Instrumentation, Monitoring, Safety evaluation

Jesung Jeon; Jongwook Lee; Donghoon Shin; Hangyu Park

2009-08-01T23:59:59.000Z

85

Fall Chinook Aclimation Project; Pittsburg Landing, Captain John Rapids, and Big Canyon, Annual Report 2001.  

DOE Green Energy (OSTI)

Fisheries co-managers of U.S. v Oregon supported and directed the construction and operation of acclimation and release facilities for Snake River fall Chinook from Lyons Ferry Hatchery at three sites above Lower Granite Dam. In 1996, Congress instructed the U.S. Army Corps of Engineers (USCOE) to construct, under the Lower Snake River Compensation Plan (LSRCP), final rearing and acclimation facilities for fall Chinook in the Snake River basin to complement their activities and efforts in compensating for fish lost due to construction of the lower Snake River dams. The Nez Perce Tribe (NPT) played a key role in securing funding and selecting acclimation sites, then assumed responsibility for operation and maintenance of the facilities. In 1997, Bonneville Power Administrative (BPA) was directed to fund operations and maintenance (O&M) for the facilities. Two acclimation facilities, Captain John Rapids and Pittsburg Landing, are located on the Snake River between Asotin, WA and Hells Canyon Dam and one facility, Big Canyon, is located on the Clearwater River at Peck. The Capt. John Rapids facility is a single pond while the Pittsburg Landing and Big Canyon sites consist of portable fish rearing tanks assembled and disassembled each year. Acclimation of 450,000 yearling smolts (150,000 each facility) begins in March and ends 6 weeks later. When available, an additional 2,400,000 fall Chinook sub-yearlings may be acclimated for 6 weeks, following the smolt release. The project goal is to increase the naturally spawning population of Snake River fall Chinook salmon upstream of Lower Granite Dam. This is a supplementation project; in that hatchery produced fish are acclimated and released into the natural spawning habitat for the purpose of returning a greater number of spawners to increase natural production. Only Snake River stock is used and production of juveniles occurs at Lyons Ferry Hatchery. This is a long-term project, and will ultimately work towards achieving delisting goals established by National Marine Fisheries Service (NMFS). Complete returns for all three acclimation facilities will not occur until the year 2002. Progeny (which would then be natural origin fish protected under the Endangered Species Act) from those returns will be returning for the next five years. In 2001, a total of 2,051,099 fish weighing 59,647 pounds were released from the three acclimation facilities. The total includes 318,932 yearling fish weighing 31,128 pounds and 1,732,167 sub-yearling fish weighing 28,519 pounds. Yearling fish numbers were reduced by Bacterial Kidney Disease (BKD) and sub-yearling acclimation time was limited by record low river water flows.

McLeod, Bruce

2004-01-01T23:59:59.000Z

86

Regulations and Permits Related to Dams (Vermont)  

Energy.gov (U.S. Department of Energy (DOE))

Vermont law requires a permit, or a dam order, for the construction, alteration, or removal of dams impounding more than 500,000 cubic feet of water, including any accumulated sediments. Dam...

87

Dams, Dikes, and Other Devices; Dam Safety Program (North Dakota) |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Dikes, and Other Devices; Dam Safety Program (North Dakota) Dikes, and Other Devices; Dam Safety Program (North Dakota) Dams, Dikes, and Other Devices; Dam Safety Program (North Dakota) < Back Eligibility Utility Fed. Government Commercial Agricultural Investor-Owned Utility State/Provincial Govt Industrial Construction Municipal/Public Utility Local Government Residential Installer/Contractor Rural Electric Cooperative Tribal Government Low-Income Residential Schools Retail Supplier Institutional Multi-Family Residential Systems Integrator Fuel Distributor Nonprofit General Public/Consumer Transportation Savings Category Water Buying & Making Electricity Home Weatherization Program Info State North Dakota Program Type Siting and Permitting These regulations govern the permitting, construction, operation, inspection, and hazard classifications of dams, dikes, and other water

88

Safety of Dams and Reservoirs Act (Nebraska)  

Energy.gov (U.S. Department of Energy (DOE))

This act regulates dams and associated reservoirs to protect health and public safety and minimize adverse consequences associated with potential dam failure. The act describes the responsibilities...

89

Monitoring and Evaluation of Yearling Fall Chinook Salmon (Oncorhynchus tshawytscha) Released from Acclimation Facilities Upstream of Lower Granite Dam; 2001 Annual Report.  

DOE Green Energy (OSTI)

The Nez Perce Tribe, in cooperation with the U.S. Fish and Wildlife Service and Washington Department of Fish and Wildlife, conducted monitoring and evaluation studies on Lyons Ferry Hatchery reared yearling fall Chinook salmon Oncorhynchus tshawytscha that were acclimated and released at three Fall Chinook Acclimation Project sites upstream of Lower Granite Dam along with yearlings released on-station from Lyons Ferry Hatchery in 2001. This was the sixth year of a long-term project to supplement natural spawning populations of Snake River stock fall Chinook salmon upstream of Lower Granite Dam. The 318,932 yearlings released from the Fall Chinook Acclimation Project facilities were short of the 450,000 fish quota. We use Passive Integrated Transponder (PIT) tag technology to monitor the primary performance measures of survival to mainstem dams and migration timing. We also monitor size, condition and tag/mark retention at release. We released 7,503 PIT tagged yearlings from Pittsburg Landing, 7,499 from Big Canyon and 2,518 from Captain John Rapids. The Washington Department of Fish and Wildlife released 991 PIT tagged yearlings from Lyons Ferry Hatchery. Fish health sampling indicated that, overall, bacterial kidney disease levels could be considered relatively low. Compared to prior years, Quantitative Health Assessment Indices were relatively low at Big Canyon and Captain John Rapids and about average at Pittsburg Landing and Lyons Ferry Hatchery. Mean fork lengths (95% confidence interval) of the PIT tagged groups ranged from 155.4 mm (154.7-156.1 mm) at Captain John Rapids to 171.6 mm (170.7-172.5 mm) at Lyons Ferry Hatchery. Mean condition factors ranged from 1.02 at Lyons Ferry Hatchery to 1.16 at Big Canyon and Captain John Rapids. Estimated survival (95% confidence interval) of PIT tagged yearlings from release to Lower Granite Dam ranged from 74.4% (73.2-75.5%) for Big Canyon to 85.2% (83.5-87.0%) for Captain John Rapids. Estimated survival from release to McNary Dam ranged from 37.9% (36.0-40.0%) for Pittsburg Landing to 57.9% (53.0-62.8%) for Lyons Ferry Hatchery. Median migration rates to Lower Granite Dam, based on all observations of PIT tagged yearlings from the FCAP facilities, ranged from 6.3 river kilometers per day (rkm/d) for Big Canyon to 10.8 rkm/d for Pittsburg Landing. Median migration rates to McNary Dam ranged from 5.2 rkm/d for Lyons Ferry Hatchery to 10.9 rkm/d for Pittsburg Landing. Median travel times from the FCAP facilities were about 13-17 days to Lower Granite Dam and 31-37 days to McNary Dam. Median arrival dates at Lower Granite Dam, based on all observations of PIT tagged yearling groups from Pittsburg Landing, Big Canyon and Captain John Rapids, were all from April 26-27. Median arrival dates at McNary Dam for Pittsburg Landing, Big Canyon and Captain John Rapids groups were all from May 14-18. The median arrival date at McNary Dam was May 13 for Lyons Ferry Hatchery yearlings.

Rocklage, Stephen J.; Kellar, Dale S. (Nez Perce Tribe, Department of Fisheries Resource Management, ID)

2005-07-01T23:59:59.000Z

90

Physical Modeling of Flow Field inside Urban Street Canyons  

Science Conference Proceedings (OSTI)

The flow characteristics inside urban street canyons were studied in a laboratory water channel. The approaching flow direction was horizontal and perpendicular to the street axis. The street width was adjusted to form street canyons of aspect ...

Xian-Xiang Li; Dennis Y. C. Leung; Chun-Ho Liu; K. M. Lam

2008-07-01T23:59:59.000Z

91

Wintertime Boundary Layer Structure in the Grand Canyon  

Science Conference Proceedings (OSTI)

Wintertime temperature profiles in the Grand Canyon exhibit a neutral to isothermal stratification during both daytime and nighttime, with only rare instances of actual temperature inversions. The canyon warms during daytime and cools during ...

C. David Whiteman; Shiyuan Zhong; Xindi Bian

1999-08-01T23:59:59.000Z

92

Coyote Canyon Geothermal Project | Open Energy Information  

Open Energy Info (EERE)

Coyote Canyon Geothermal Project Coyote Canyon Geothermal Project Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Development Project: Coyote Canyon Geothermal Project Project Location Information Coordinates 39.723055555556°, -118.08027777778° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.723055555556,"lon":-118.08027777778,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

93

Red Canyon Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Red Canyon Wind Farm Red Canyon Wind Farm Facility Red Canyon Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner NextEra Energy Resources Developer Florida Power & Light Co. Location Borden TX Coordinates 32.95326011°, -101.215539° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":32.95326011,"lon":-101.215539,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

94

Devil's Canyon Geothermal Project | Open Energy Information  

Open Energy Info (EERE)

Devil's Canyon Geothermal Project Devil's Canyon Geothermal Project Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Development Project: Devil's Canyon Geothermal Project Project Location Information Coordinates 40.938333333333°, -117.53916666667° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.938333333333,"lon":-117.53916666667,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

95

Biglow Canyon Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Biglow Canyon Wind Farm Biglow Canyon Wind Farm Facility Biglow Canyon Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Portland General Electric Developer Orion/Portland General Electric Energy Purchaser Portland General Electric Location Sherman County OR Coordinates 45.629003°, -120.605607° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":45.629003,"lon":-120.605607,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

96

A Laboratory Model of Urban Street-Canyon Flows  

Science Conference Proceedings (OSTI)

A circulating water channel is constructed to examine urban street-canyon flow. In the cases of an even-notch street canyon in which model buildings on both sides of the street have equal heights, one vortex is observed in model canyons with ...

Jong-Jin Baik; Rae-Seol Park; Hye-Yeong Chun; Jae-Jin Kim

2000-09-01T23:59:59.000Z

97

Microsoft Word - Badger Canyon CXWEB.doc  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

KEC-4 KEC-4 SUBJECT: Environmental Clearance Memorandum David Tripp Project Manager - TEP-CSB-1 Proposed Action: Badger Canyon Substation Radio Communication Tower Project Budget Information: Work Order 00253262 Task 03 Categorical Exclusions Applied (from Subpart D, 10 C.F.R. Part 1021: B1.7 "Acquisition, installation, operation, and removal of communication systems..." B1.19 "Siting, construction, and operation of microwave and radio communication towers and associated facilities..." Location: Badger Canyon Substation, Benton County, Washington - Township 8 North, Range 28 East, Section 1 Proposed by: Bonneville Power Administration (BPA) Description of the Proposed Action: BPA proposes to replace a 40-foot monopole communication

98

Coyote Canyon Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Coyote Canyon Geothermal Area Coyote Canyon Geothermal Area (Redirected from Coyote Canyon Geothermal Resource Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Coyote Canyon Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (6) 9 Exploration Activities (0) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.927105,"lon":-117.927225,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

99

Monitoring and Evaluation of Yearling Fall Chinook Salmon (Oncorhynchus tshawytscha) Released from Acclimation Facilities Upstream of Lower Granite Dam; 2000 Annual Report.  

DOE Green Energy (OSTI)

The Nez Perce Tribe, in cooperation with the U.S. Fish and Wildlife Service and Washington Department of Fish and Wildlife, conducted monitoring and evaluation studies on Lyons Ferry Hatchery reared yearling fall Chinook salmon Oncorhynchus tshawytscha that were acclimated and released at three Fall Chinook Acclimation Project sites upstream of Lower Granite Dam along with yearlings released on-station from Lyons Ferry Hatchery in 2000. This was the fifth year of a long-term project to supplement natural spawning populations of Snake River stock fall Chinook salmon upstream of Lower Granite Dam. The 397,339 yearlings released from the Fall Chinook Acclimation Project facilities were short of the 450,000 fish quota. We use Passive Integrated Transponder (PIT) tag technology to monitor the primary performance measures of survival to mainstem dams and migration timing. We also monitor size, condition and tag/mark retention at release. We released 7,477 PIT tagged yearlings from Pittsburg Landing, 7,421 from Big Canyon and 2,488 from Captain John Rapids. The Washington Department of Fish and Wildlife released 980 PIT tagged yearlings from Lyons Ferry Hatchery. Fish health sampling indicated that, overall, bacterial kidney disease levels could be considered relatively low. Compared to prior years, Quantitative Health Assessment Indices were relatively low at Big Canyon and Captain John Rapids and about average at Pittsburg Landing and Lyons Ferry Hatchery. Mean fork lengths (95% confidence interval) of the PIT tagged groups ranged from 157.7 mm (157.3-158.1 mm) at Big Canyon to 172.9 mm (172.2-173.6 mm) at Captain John Rapids. Mean condition factors ranged from 1.06 at Captain John Rapids and Lyons Ferry Hatchery to 1.12 at Big Canyon. Estimated survival (95% confidence interval) of PIT tagged yearlings from release to Lower Granite Dam ranged from 87.0% (84.7-89.4%) for Pittsburg Landing to 95.2% (91.5-98.9%) for Captain John Rapids. Estimated survival from release to McNary Dam ranged from 65.8% (58.5-73.1%) for Lyons Ferry Hatchery to 84.0% (76.2-91.8%) for Captain John Rapids. Median migration rates to Lower Granite Dam, based on all observations of PIT tagged yearlings from the FCAP facilities, ranged from 10.1 river kilometers per day (rkm/d) for Captain John Rapids to 19.1 rkm/d for Pittsburg Landing. Median migration rates to McNary Dam ranged from 6.0 rkm/d for Lyons Ferry Hatchery to 17.3 rkm/d for Pittsburg Landing. Median travel times from the FCAP facilities were about 9-10 days to Lower Granite Dam and 22-25 days to McNary Dam. Median arrival dates at Lower Granite Dam, based on all observations of PIT tagged yearling groups from Pittsburg Landing, Big Canyon and Captain John Rapids, were all from April 21-22. Median arrival dates at McNary Dam for Pittsburg Landing, Big Canyon and Captain John Rapids groups were all from May 5-6. The median arrival date at McNary Dam was April 24 for Lyons Ferry Hatchery yearlings.

Rocklage, Stephen J.; Kellar, Dale S. (Nez Perce Tribe, Department of Fisheries Resource Management, ID)

2005-07-01T23:59:59.000Z

100

Use, Maintenance, Removal, Inspections, and Safety of Dams (Iowa)  

Energy.gov (U.S. Department of Energy (DOE))

This section describes operating plans for dams with movable structures, as well as procedures for raising or lowering of impoundment levels, dam removal, and dam safety inspections.

Note: This page contains sample records for the topic "glen canyon dam" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Big Canyon Creek Ecological Restoration Strategy.  

DOE Green Energy (OSTI)

He-yey, Nez Perce for steelhead or rainbow trout (Oncorhynchus mykiss), are a culturally and ecologically significant resource within the Big Canyon Creek watershed; they are also part of the federally listed Snake River Basin Steelhead DPS. The majority of the Big Canyon Creek drainage is considered critical habitat for that DPS as well as for the federally listed Snake River fall chinook (Oncorhynchus tshawytscha) ESU. The Nez Perce Soil and Water Conservation District (District) and the Nez Perce Tribe Department of Fisheries Resources Management-Watershed (Tribe), in an effort to support the continued existence of these and other aquatic species, have developed this document to direct funding toward priority restoration projects in priority areas for the Big Canyon Creek watershed. In order to achieve this, the District and the Tribe: (1) Developed a working group and technical team composed of managers from a variety of stakeholders within the basin; (2) Established geographically distinct sub-watershed areas called Assessment Units (AUs); (3) Created a prioritization framework for the AUs and prioritized them; and (4) Developed treatment strategies to utilize within the prioritized AUs. Assessment Units were delineated by significant shifts in sampled juvenile O. mykiss (steelhead/rainbow trout) densities, which were found to fall at fish passage barriers. The prioritization framework considered four aspects critical to determining the relative importance of performing restoration in a certain area: density of critical fish species, physical condition of the AU, water quantity, and water quality. It was established, through vigorous data analysis within these four areas, that the geographic priority areas for restoration within the Big Canyon Creek watershed are Big Canyon Creek from stream km 45.5 to the headwaters, Little Canyon from km 15 to 30, the mainstem corridors of Big Canyon (mouth to 7km) and Little Canyon (mouth to 7km). The District and the Tribe then used data collected from the District's stream assessment and inventory, utilizing the Stream Visual Assessment Protocol (SVAP), to determine treatment necessary to bring 90% of reaches ranked Poor or Fair through the SVAP up to good or excellent. In 10 year's time, all reaches that were previously evaluated with SVAP will be reevaluated to determine progress and to adapt methods for continued success. Over 400 miles of stream need treatment in order to meet identified restoration goals. Treatments include practices which result in riparian habitat improvements, nutrient reductions, channel condition improvements, fish habitat improvements, invasive species control, water withdrawal reductions, improved hydrologic alterations, upland sediment reductions, and passage barrier removal. The Nez Perce Soil and Water Conservation District (District) and the Nez Perce Tribe Department of Fisheries Resource Management Watershed Division (Tribe) developed this document to guide restoration activities within the Big Canyon Creek watershed for the period of 2008-2018. This plan was created to demonstrate the ongoing need and potential for anadromous fish habitat restoration within the watershed and to ensure continued implementation of restoration actions and activities. It was developed not only to guide the District and the Tribe, but also to encourage cooperation among all stakeholders, including landowners, government agencies, private organizations, tribal governments, and elected officials. Through sharing information, skills, and resources in an active, cooperative relationships, all concerned parties will have the opportunity to join together to strengthen and maintain a sustainable natural resource base for present and future generations within the watershed. The primary goal of the strategy is to address aquatic habitat restoration needs on a watershed level for resident and anadromous fish species, promoting quality habitat within a self-sustaining watershed. Seven objectives have been developed to support this goal: (1) Identify factors limiting quality

Rasmussen, Lynn; Richardson, Shannon

2007-10-01T23:59:59.000Z

102

Big Canyon Creek Ecological Restoration Strategy.  

Science Conference Proceedings (OSTI)

He-yey, Nez Perce for steelhead or rainbow trout (Oncorhynchus mykiss), are a culturally and ecologically significant resource within the Big Canyon Creek watershed; they are also part of the federally listed Snake River Basin Steelhead DPS. The majority of the Big Canyon Creek drainage is considered critical habitat for that DPS as well as for the federally listed Snake River fall chinook (Oncorhynchus tshawytscha) ESU. The Nez Perce Soil and Water Conservation District (District) and the Nez Perce Tribe Department of Fisheries Resources Management-Watershed (Tribe), in an effort to support the continued existence of these and other aquatic species, have developed this document to direct funding toward priority restoration projects in priority areas for the Big Canyon Creek watershed. In order to achieve this, the District and the Tribe: (1) Developed a working group and technical team composed of managers from a variety of stakeholders within the basin; (2) Established geographically distinct sub-watershed areas called Assessment Units (AUs); (3) Created a prioritization framework for the AUs and prioritized them; and (4) Developed treatment strategies to utilize within the prioritized AUs. Assessment Units were delineated by significant shifts in sampled juvenile O. mykiss (steelhead/rainbow trout) densities, which were found to fall at fish passage barriers. The prioritization framework considered four aspects critical to determining the relative importance of performing restoration in a certain area: density of critical fish species, physical condition of the AU, water quantity, and water quality. It was established, through vigorous data analysis within these four areas, that the geographic priority areas for restoration within the Big Canyon Creek watershed are Big Canyon Creek from stream km 45.5 to the headwaters, Little Canyon from km 15 to 30, the mainstem corridors of Big Canyon (mouth to 7km) and Little Canyon (mouth to 7km). The District and the Tribe then used data collected from the District's stream assessment and inventory, utilizing the Stream Visual Assessment Protocol (SVAP), to determine treatment necessary to bring 90% of reaches ranked Poor or Fair through the SVAP up to good or excellent. In 10 year's time, all reaches that were previously evaluated with SVAP will be reevaluated to determine progress and to adapt methods for continued success. Over 400 miles of stream need treatment in order to meet identified restoration goals. Treatments include practices which result in riparian habitat improvements, nutrient reductions, channel condition improvements, fish habitat improvements, invasive species control, water withdrawal reductions, improved hydrologic alterations, upland sediment reductions, and passage barrier removal. The Nez Perce Soil and Water Conservation District (District) and the Nez Perce Tribe Department of Fisheries Resource Management Watershed Division (Tribe) developed this document to guide restoration activities within the Big Canyon Creek watershed for the period of 2008-2018. This plan was created to demonstrate the ongoing need and potential for anadromous fish habitat restoration within the watershed and to ensure continued implementation of restoration actions and activities. It was developed not only to guide the District and the Tribe, but also to encourage cooperation among all stakeholders, including landowners, government agencies, private organizations, tribal governments, and elected officials. Through sharing information, skills, and resources in an active, cooperative relationships, all concerned parties will have the opportunity to join together to strengthen and maintain a sustainable natural resource base for present and future generations within the watershed. The primary goal of the strategy is to address aquatic habitat restoration needs on a watershed level for resident and anadromous fish species, promoting quality habitat within a self-sustaining watershed. Seven objectives have been developed to support this goal: (1) Identify factors limiting quality

Rasmussen, Lynn; Richardson, Shannon

2007-10-01T23:59:59.000Z

103

Assessment of Native Salmonids Above Hells Canyon Dam, Idaho, 2001 Annual Report.  

Science Conference Proceedings (OSTI)

We investigated factors affecting the distribution and abundance of Yellowstone cutthroat trout (YCT), the abundance of all trout, and species richness in several drainages in the upper Snake River basin in Idaho. A total of 326 randomly selected sites were visited within the four study drainages, and of these, there was sufficient water to inventory fish and habitat in 56 of the sites in the Goose Creek drainage, 64 in the Raft River drainage, 54 in the Blackfoot River drainage, and 27 in the Willow Creek drainage. Fish were captured in 36, 55, 49, and 22 of the sites, respectively, and YCT were present at 17, 37, 32, and 13 of the sites, respectively. There was little consistency or strength in the models developed to predict YCT presence/absence and density, trout density, or species richness. Typically, the strongest models had the lowest sample sizes. In the Goose Creek drainage, sites with YCT were higher in elevation and lower in conductivity. In the Raft River drainage, trout cover was more abundant at sites with YCT than without YCT. In the Blackfoot River drainage, there was less fine substrate and more gravel substrate at sites with YCT than at sites without YCT. In the Willow Creek drainage, 70% of the sites located on public land contained YCT, but only 35% of private land contained YCT. The differences in variable importance between drainages suggests that factors that influence the distribution of YCT vary between drainages, and that for the most part the variables we measured had little influence on YCT distribution. n sites containing YCT, average cutthroat trout density was 0.11/m{sup 2}, 0.08/m{sup 2}, 0.10/m{sup 2}, and 0.08/m{sup 2} in the Goose Creek, Raft River, Blackfoot River, and Willow Creek drainages, respectively. In sites containing trout in general, average total trout density in these same drainages was 0.16/m{sup 2}, 0.15/m{sup 2}, 0.10/m{sup 2}, and 0.10/m{sup 2}. Models to predict YCT density, total trout density, and species richness were either weak (i.e., explained little variation) or contained small sample sizes. Based on our results, it appears that factors other than those we measured are affecting fish populations in these drainages.

Meyer, Kevin A.; Lamansky, Jr., James A. (Idaho Department of Fish and Game, Boise, ID)

2002-11-01T23:59:59.000Z

104

Assessment of Native Salmonids Above Hells Canyon Dam, Idaho, 2004-2005 Annual Report.  

Science Conference Proceedings (OSTI)

In the western United States, exotic brook trout Salvelinus fontinalis frequently have a deleterious effect on native salmonids, and biologists often attempt to remove brook trout in streams using electrofishing. Although the success of electrofishing removal projects typically is low, few studies have assessed the underlying mechanisms of failure, especially in terms of compensatory responses. We evaluated the effectiveness of a three-year removal project in reducing brook trout and enhancing native salmonids in 7.8 km of an Idaho stream and looked for brook trout compensatory responses such as decreased natural mortality, increased growth, increased fecundity at length, or earlier maturation. Due to underestimates of the distribution of brook trout in the first year and personnel shortages in the third year, the multiagency watershed advisory group that performed the project fully treated the stream (i.e. multipass removals over the entire stream) in only one year. In 1998, 1999, and 2000, a total of 1,401, 1,241, and 890 brook trout were removed, respectively. For 1999 and 2000, an estimated 88 and 79% of the total number of brook trout in the stream were removed. For the section of stream that was treated in all years, the abundance of age-1 and older brook trout decreased by 85% from 1998 to 2003. In the same area, the abundance of age-0 brook trout decreased 86% from 1998 to 1999 but by 2003 had rebounded to near the original abundance. Abundance of native redband trout Oncorhynchus mykiss decreased for age-1 and older fish but did not change significantly for age-0 fish. Despite high rates of removal, total annual survival rate for brook trout increased from 0.08 {+-} 0.02 in 1998 to 0.20 {+-} 0.04 in 1999 and 0.21 {+-} 0.04 in 2000. Growth of age-0 brook trout was significantly higher in 2000 (the year after their abundance was lowest) compared to other years, and growth of age-1 and age-2 brook trout was significantly lower following the initial removal years but recovered by 2003. Few other brook trout demographic parameters changed appreciably over the course of the project. Electrofishing removals required 210 person-days of effort. Despite experiencing slight changes in abundance, growth, and survival, brook trout in Pikes Fork appeared little affected by three years of intensive removal efforts, most likely because mortality within the population was high prior to initiation of the project such that the removal efforts merely replaced natural mortality with exploitation.

Meyer, Kevin A.; Lamansky, Jr., James A. (Idaho Department of Fish and Game, Boise, ID)

2005-08-01T23:59:59.000Z

105

Perspectives on Dam Removal: York Creek Dam and the Water Framework Directive  

E-Print Network (OSTI)

Retirement of Dams and Hydroelectric Facilities. ASCE, Newon the Allier River, a hydroelectric plant in France. Thethe dam generating hydroelectric power versus the ecological

Lawrence, Justin E; Pollak, Josh D; Richmond, Sarah F

2008-01-01T23:59:59.000Z

106

Monitoring and Evaluation of Yearling Fall Chinook Salmon (Oncorhynchus tshawytscha) Released from Acclimation Facilities Upstream of Lower Granite Dam; 2004 Annual Report.  

DOE Green Energy (OSTI)

The Nez Perce Tribe, in cooperation with the U.S. Fish and Wildlife Service and Washington Department of Fish and Wildlife, conducted monitoring and evaluation studies on Lyons Ferry Hatchery reared yearling fall Chinook salmon Oncorhynchus tshawytscha that were acclimated and released at three Fall Chinook Acclimation Project (FCAP) sites upstream of Lower Granite Dam in 2004. This was the ninth year of a long-term project to supplement natural spawning populations of Snake River stock fall Chinook salmon upstream of Lower Granite Dam. The 414,452 yearlings released from the Fall Chinook Acclimation Project facilities were short of the 450,000 fish quota. We use Passive Integrated Transponder (PIT) tag technology to monitor the primary performance measures of survival to mainstem dams and migration timing. We also monitor size, condition and tag/mark retention at release. We released 4,983 PIT tagged yearlings from Pittsburg Landing, 4,984 from Big Canyon and 4,982 from Captain John Rapids. Fish health sampling indicated that, overall, bacterial kidney disease levels could be considered low with 53-94% rating not detected to low. Mean fork lengths (95% confidence interval) of the PIT tagged groups ranged from 154.6 mm (154.0-155.2 mm) at Pittsburg Landing to 163.0 mm (162.6-163.4 mm) at Captain John Rapids. Mean condition factors ranged from 1.06 at Lyons Ferry Hatchery to 1.16 at Big Canyon. Estimated survival (95% confidence interval) of PIT tagged yearlings from release to Lower Granite Dam ranged from 74.7% (72.9-76.5%) for Big Canyon to 88.1% (85.7-90.6%) for Captain John Rapids. Estimated survival from release to McNary Dam ranged from 45.3% (39.2-51.5%) for Pittsburg Landing to 52.1% (42.9-61.2%) for Big Canyon. Median migration rates to Lower Granite Dam, based on all observations of PIT tagged yearlings from the FCAP facilities, ranged from 5.5 river kilometers per day (rkm/d) for Captain John Rapids to 12.8 rkm/d for Pittsburg Landing. Median migration rates to McNary Dam ranged from 10.9 rkm/d for Captain John Rapids to 17.6 rkm/d for Pittsburg Landing. Median travel times from the FCAP facilities were about 13-16 days to Lower Granite Dam and 23-29 days to McNary Dam. Median arrival dates at Lower Granite Dam, based on all observations of PIT tagged yearling groups from Pittsburg Landing, Big Canyon and Captain John Rapids, ranged from April 18-29. Median arrival dates at McNary Dam for Pittsburg Landing, Big Canyon and Captain John Rapids groups ranged from May 1-8.

Rocklage, Stephen J. Nez Perce Tribe, Department of Fisheries Resource Management, Lapawi, ID)

2005-07-01T23:59:59.000Z

107

Dam Safety Regulation (Mississippi) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Dam Safety Regulation (Mississippi) Dam Safety Regulation (Mississippi) Dam Safety Regulation (Mississippi) < Back Eligibility Agricultural Commercial Construction Developer Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Investor-Owned Utility Municipal/Public Utility Transportation Utility Savings Category Water Buying & Making Electricity Home Weatherization Program Info State Mississippi Program Type Environmental Regulations Siting and Permitting Provider Mississippi Department of Environmental Quality The purpose of the Dam Safety Regulation is to ensure that all dams constructed in the state of Mississippi are permitted and thus do not potentially harm wildlife, water supplies and property. Any person or entity proposing to construct, enlarge, repair, or alter a dam or reservoir

108

Restoring Anadromous Fish Habitat in Big Canyon Creek Watershed, 2004-2005 Annual Report.  

DOE Green Energy (OSTI)

The ''Restoring Anadromous Fish Habitat in the Big Canyon Creek Watershed'' is a multi-phase project to enhance steelhead trout in the Big Canyon Creek watershed by improving salmonid spawning and rearing habitat. Habitat is limited by extreme high runoff events, low summer flows, high water temperatures, poor instream cover, spawning gravel siltation, and sediment, nutrient and bacteria loading. Funded by the Bonneville Power Administration (BPA) as part of the Northwest Power Planning Council's Fish and Wildlife Program, the project assists in mitigating damage to steelhead runs caused by the Columbia River hydroelectric dams. The project is sponsored by the Nez Perce Soil and Water Conservation District. Target fish species include steelhead trout (Oncorhynchus mykiss). Steelhead trout within the Snake River Basin were listed in 1997 as threatened under the Endangered Species Act. Accomplishments for the contract period September 1, 2004 through October 31, 2005 include; 2.7 riparian miles treated, 3.0 wetland acres treated, 5,263.3 upland acres treated, 106.5 riparian acres treated, 76,285 general public reached, 3,000 students reached, 40 teachers reached, 18 maintenance plans completed, temperature data collected at 6 sites, 8 landowner applications received and processed, 14 land inventories completed, 58 habitat improvement project designs completed, 5 newsletters published, 6 habitat plans completed, 34 projects installed, 2 educational workshops, 6 displays, 1 television segment, 2 public service announcements, a noxious weed GIS coverage, and completion of NEPA, ESA, and cultural resources requirements.

Rasmussen, Lynn (Nez Perce Soil and Conservation District, Lewiston, ID)

2006-07-01T23:59:59.000Z

109

Trail Canyon Geothermal Project | Open Energy Information  

Open Energy Info (EERE)

Trail Canyon Geothermal Project Trail Canyon Geothermal Project Project Location Information Coordinates 38.325555555556°, -114.29388888889° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.325555555556,"lon":-114.29388888889,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

110

Panther Canyon Geothermal Project | Open Energy Information  

Open Energy Info (EERE)

Panther Canyon Geothermal Project Panther Canyon Geothermal Project Project Location Information Coordinates 40.549444444444°, -117.57666666667° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.549444444444,"lon":-117.57666666667,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

111

Blue Canyon VI | Open Energy Information  

Open Energy Info (EERE)

VI VI Jump to: navigation, search Name Blue Canyon VI Facility Blue Canyon VI Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner EDP Renewables North America LLC Developer EDP Renewables North America LLC Energy Purchaser Merchant Location Lawton OK Coordinates 34.8582°, -98.54752° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":34.8582,"lon":-98.54752,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

112

Fall Chinook Acclimation Project; Pittsburg Landing, Captain John Rapids, and Big Canyon, Annual Report 2002.  

DOE Green Energy (OSTI)

Fisheries co-managers of U.S. v Oregon supported and directed the construction and operation of acclimation and release facilities for Snake River fall Chinook from Lyons Ferry Hatchery at three sites above Lower Granite Dam. In 1996, Congress instructed the U.S. Army Corps of Engineers (USCOE) to construct, under the Lower Snake River Compensation Plan (LSRCP), final rearing and acclimation facilities for fall Chinook in the Snake River basin to complement their activities and efforts in compensating for fish lost due to construction of the lower Snake River dams. The Nez Perce Tribe (NPT) played a key role in securing funding and selecting acclimation sites, then assumed responsibility for operation and maintenance of the facilities. In 1997, Bonneville Power Administrative (BPA) was directed to fund operations and maintenance (O&M) for the facilities. Two acclimation facilities, Captain John Rapids and Pittsburg Landing, are located on the Snake River between Asotin, WA and Hells Canyon Dam and one facility, Big Canyon, is located on the Clearwater River at Peck. The Capt. John Rapids facility is a single pond while the Pittsburg Landing and Big Canyon sites consist of portable fish rearing tanks assembled and disassembled each year. Acclimation of 450,000 yearling smolts (150,000 each facility) begins in March and ends 6 weeks later. When available, an additional 2,400,000 fall Chinook sub-yearlings may be acclimated for 6 weeks, following the smolt release. The project goal is to increase the naturally spawning population of Snake River fall Chinook salmon upstream of Lower Granite Dam. This is a supplementation project; in that hatchery produced fish are acclimated and released into the natural spawning habitat for the purpose of returning a greater number of spawners to increase natural production. Only Snake River stock is used and production of juveniles occurs at Lyons Ferry Hatchery. This is a long-term project, targeted to work towards achieving delisting goals established by National Marine Fisheries Service (NMFS or NOAA Fisheries) and ultimately to provide fall Chinook adults through the Lower Snake River Compensation Plan program as mitigation for construction and operation of the four lower Snake River dams. Complete adult returns (all age classes) for all three acclimation facilities occurred in the year 2002. Progeny (which would then be natural origin fish) would be counted towards achieving Endangered Species Act delisting criteria. In 2002, a total of 2,877,437 fish weighing 47,347 pounds were released from the three acclimation facilities. The total includes 479,358 yearling fish weighing 33,930 pounds and 2,398,079 sub-yearling fish weighing 19,115 pounds. This is the largest number of fish ever released in one year from the acclimation facilities.

McLeod, Bruce

2003-01-01T23:59:59.000Z

113

DOE - Office of Legacy Management -- Acid Pueblo Canyon - NM 03  

NLE Websites -- All DOE Office Websites (Extended Search)

Acid Pueblo Canyon - NM 03 Acid Pueblo Canyon - NM 03 FUSRAP Considered Sites Acid/Pueblo Canyon, NM Alternate Name(s): Radioactive Liquid Waste Treatment Plant (TA-45) Acid/Pueblo and Los Alamos Canyon NM.03-3 Location: Canyons in the Pajarito Plateau Region in Los Alamos County, Los Alamos, NM NM.03-3 Historical Operations: Late 1943 or early 1944, head of the south fork of Acid Canyon received untreated liquid waste containing tritium and isotopes of strontium, cesium, uranium, plutonium, and americium discharged from main acid sewer lines and subsequently from the TA-3 plutonium treatment plant. NM.03-3 Eligibility Determination: Radiological Survey(s): Verification Surveys NM.03-5 NM.03-6 Site Status: Certified- Certification Basis and Federal Register Notice NM.03-2

114

Coyote Canyon Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Coyote Canyon Geothermal Area Coyote Canyon Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Coyote Canyon Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (6) 9 Exploration Activities (0) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.927105,"lon":-117.927225,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

115

Seismic fracture analysis of concrete gravity dams including dam-reservoir interaction  

Science Conference Proceedings (OSTI)

In this study, the seismic fracture response of concrete gravity dams is investigated with considering the effects of dam-reservoir interaction. A co-axial rotating crack model (CRCM), which includes the strain softening behavior, is selected for concrete ... Keywords: Concrete gravity dam, Dam-reservoir interaction, Non-linear analysis, Seismic fracture

Yusuf Calayir; Muhammet Karaton

2005-07-01T23:59:59.000Z

116

Klondike III / Biglow Canyon Wind Integration Project  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Proposed Action and Alternatives 2-3 Proposed Action and Alternatives 2-3 Figure 1 Proposed 230-kV Towers and Rights-of-Way Klondike III/Biglow Canyon Wind Integration Project Bonneville Power Administration Proposed Action and Alternatives 2-4 Figure 1, continued CUMULATIVE IMPACTS ANALYSIS, PROPOSED WIND PROJECTS, SHERMAN COUNTY, WASHINGTON March 2006 WEST, Inc. 32 Figure 1. Region map of wind projects proposed for Sherman County. D e s c h u t e s Ri ver C a n y o n C o l u m b ia R i v e r Hwy 19 H w y 2 0 6 H w y 9 7 I 8 4 Grass Valley Moro Wasco Biggs Arlington Condon Fourmile Canyon McDonald Ferry Biggs Junction Deschutes River Crossing The Dalles Complex RM 15.9-16.8 RM 40 Sherman Co Wasco Co G i l l i a m C o Gilliam Co Morrow Co Rowena Plateau Historic Columbia River Highway John D a y R i v e r C a n y o n P:\B\BPAX00000324\0600INFO\GS\arcmap\figures\visiblity_tech_report\fig2_visual_resources_or.mxd January 9, 2006

117

Dam Safety (Delaware) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Dam Safety (Delaware) Dam Safety (Delaware) Dam Safety (Delaware) < Back Eligibility Construction Fed. Government Investor-Owned Utility Local Government Municipal/Public Utility State/Provincial Govt Tribal Government Utility Savings Category Water Buying & Making Electricity Program Info Start Date 2004 State Delaware Program Type Safety and Operational Guidelines Provider Delaware Department of Natural Resources and Environmental Control The Delaware Dam Safety Law was adopted in 2004 and provides the framework for proper design, construction, operation, maintenance, and inspection of dams in the interest of public health, safety, and welfare. The law requires licensing, inspections and preparation of emergency action plans (EAPs) for publicly owned dams with a high or significant hazard potential.

118

Power Plant Dams (Kansas) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Power Plant Dams (Kansas) Power Plant Dams (Kansas) Power Plant Dams (Kansas) < Back Eligibility Commercial Investor-Owned Utility Local Government Municipal/Public Utility Rural Electric Cooperative Utility Savings Category Water Buying & Making Electricity Program Info State Kansas Program Type Environmental Regulations Provider Health and Environment This act states the provisions for erection and maintenance of dams. When any person, corporation or city may be desirous of erecting and maintaining a milldam or dam for generating power across any watercourse, the party so desiring to do the same may run the stream over the land of any other person by ditching or otherwise, and he, she or it may obtain the right to erect and maintain said dam and keep up and maintain the necessary ditches

119

Monitoring and Evaluation of Yearling Fall Chinook Salmon (Oncorhynchus tshawytscha) Released from Acclimation Facilities Upstream of Lower Granite Dam; 2003 Annual Report.  

DOE Green Energy (OSTI)

The Nez Perce Tribe, in cooperation with the U.S. Fish and Wildlife Service and Washington Department of Fish and Wildlife, conducted monitoring and evaluation studies on Lyons Ferry Hatchery reared yearling fall Chinook salmon Oncorhynchus tshawytscha that were acclimated and released at three Fall Chinook Acclimation Project (FCAP) sites upstream of Lower Granite Dam in 2003. This was the eighth year of a long-term project to supplement natural spawning populations of Snake River stock fall Chinook salmon upstream of Lower Granite Dam. The 437,633 yearlings released from the Fall Chinook Acclimation Project facilities were short of the 450,000 fish quota. We use Passive Integrated Transponder (PIT) tag technology to monitor the primary performance measures of survival to mainstem dams and migration timing. We also monitor size, condition and tag/mark retention at release. We released 7,492 PIT tagged yearlings from Pittsburg Landing, 7,494 from Big Canyon and 2,497 from Captain John Rapids. Fish health sampling indicated that, overall, bacterial kidney disease levels at the acclimation facilities could be considered medium with 37-83% of the fish sampled rating medium to very high. Mean fork lengths (95% confidence interval) of the PIT tagged groups ranged from 153.7 mm (153.2-154.2 mm) at Captain John Rapids to 164.2 mm (163.9-164.5 mm) at Pittsburg Landing. Mean condition factors ranged from 1.06 at Lyons Ferry Hatchery to 1.22 at Captain John Rapids. Estimated survival (95% confidence interval) of PIT tagged yearlings from release to Lower Granite Dam ranged from 83.1% (80.7-85.5%) for Big Canyon to 91.7% (87.7-95.7%) for Captain John Rapids. Estimated survival from release to McNary Dam ranged from 59.9% (54.6-65.2%) for Big Canyon to 69.4% (60.5-78.4%) for Captain John Rapids. Median migration rates to Lower Granite Dam, based on all observations of PIT tagged yearlings from the FCAP facilities, ranged from 5.8 river kilometers per day (rkm/d) for Captain John Rapids to 16.2 rkm/d for Pittsburg Landing. Median migration rates to McNary Dam ranged from 11.7 rkm/d for Captain John Rapids to 17.6 rkm/d for Pittsburg Landing. Median travel times from the FCAP facilities were about 8-15 days to Lower Granite Dam and 22-27 days to McNary Dam. Median arrival dates at Lower Granite Dam, based on all observations of PIT tagged yearling groups from the FCAP facilities, ranged from April 23-25. Median arrival dates at McNary Dam for Pittsburg Landing, Big Canyon and Captain John Rapids groups ranged from May 4-10.

Rocklage, Stephen J. (Nez Perce Tribe, Department of Fisheries Resource Management, Lapwai, ID)

2005-07-01T23:59:59.000Z

120

EA-1863: Final Environmental Assessment  

Energy.gov (U.S. Department of Energy (DOE))

Vegetation Management Plan for Glen Canyon to Pinnacle Peak 345-kV transmission line, Coconino National Forest, Arizona

Note: This page contains sample records for the topic "glen canyon dam" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Speakers: Glen Sweetnam, EIA Michelle Michot Foss, Chief Energy Economist and Head, Center for Energy Economics, Bureau of  

U.S. Energy Information Administration (EIA) Indexed Site

7: "Natural Gas: U.S. Markets in a Global Context" 7: "Natural Gas: U.S. Markets in a Global Context" Speakers: Glen Sweetnam, EIA Michelle Michot Foss, Chief Energy Economist and Head, Center for Energy Economics, Bureau of Economic Geology, Jackson School of Geosciences, University of Texas Benjamin Schlesinger, Benjamin Schlesinger and Associates, Inc. Andrew Slaughter, Shell [Note: Recorders did not pick up introduction of panel (see biographies for details on the panelists) or introduction of session.] Glenn: Let me welcome you to the Natural Gas Session. This is the only session in this conference that's devoted exclusively to natural gas [laughs]. I'm Glenn Sweetnam and I'm with the Energy Information Administration, and we're very fortunate this morning to have 3 very astute and long-time observers of the natural gas market to

122

Dam Safety Program (Florida) | Open Energy Information  

Open Energy Info (EERE)

Summary Dam safety in Florida is a shared responsibility among the Florida Department of Environmental Protection (FDEP), the regional water management districts, the United...

123

Destruction or Alteration of a Dam (Iowa)  

Energy.gov (U.S. Department of Energy (DOE))

Permission from the Environmental Protection Commission is required prior to the removal, destruction, or alteration that results in a lower water level of any existing dam.

124

Nine Canyon Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Wind Farm Wind Farm Facility Nine Canyon Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Energy Northwest Developer Energy Northwest Energy Purchaser Energy Northwest Location Benton County Coordinates 46.286065°, -119.425532° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":46.286065,"lon":-119.425532,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

125

Blue Canyon Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Wind Farm Wind Farm Facility Blue Canyon Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Babcock & Brown/Horizon Developer Zilkha Renewable/Kirmart Corp. Energy Purchaser Western Farmers' Electric Cooperative Location North of Lawton OK Coordinates 34.852678°, -98.551807° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":34.852678,"lon":-98.551807,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

126

Beneficial Reuse at Bodo Canyon Site | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Services » Environmental Justice » Beneficial Reuse at Bodo Services » Environmental Justice » Beneficial Reuse at Bodo Canyon Site Beneficial Reuse at Bodo Canyon Site The George Washington University Environmental Resource Policy Graduate Program Capstone Project Beneficial Reuse at Bodo Canyon Site Feasibility and Community Support for Photovoltaic Array May 2012 The George Washington University Environmental Resource Policy Graduate Program Capstone Project was an analysis of LM's efforts to support the installation of a commercial solar photovoltaic system at the former uranium mill site near Durango, Colorado. Beneficial Reuse at Bodo Canyon Site More Documents & Publications EA-1770: Final Environmental Assessment Performance of a Permeable Reactive Barrier Using Granular Zero-Valent Iron: FY 2004 Annual Report Durango, Colorado, Disposal Site

127

Olowalu-Ukumehame Canyon Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Olowalu-Ukumehame Canyon Geothermal Area Olowalu-Ukumehame Canyon Geothermal Area (Redirected from Olowalu-Ukumehame Canyon Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Olowalu-Ukumehame Canyon Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (4) 10 References Area Overview Geothermal Area Profile Location: Hawaii Exploration Region: Hawaii Geothermal Region GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0

128

Canyon Bloomers, Inc Greenhouse Low Temperature Geothermal Facility | Open  

Open Energy Info (EERE)

Canyon Bloomers, Inc Greenhouse Low Temperature Geothermal Facility Canyon Bloomers, Inc Greenhouse Low Temperature Geothermal Facility Jump to: navigation, search Name Canyon Bloomers, Inc Greenhouse Low Temperature Geothermal Facility Facility Canyon Bloomers, Inc Sector Geothermal energy Type Greenhouse Location Buhl, Idaho Coordinates 42.5990714°, -114.7594946° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

129

Tidal Motion in Submarine CanyonsA Laboratory Experiment  

Science Conference Proceedings (OSTI)

The reasons for the large-amplitude tidal motion observed in oceanic submarine canyons have been explored with a laboratory experiment. A barotropic tide was forced in a stratified tank, containing continental shelf-slope topography into which a ...

Peter G. Baines

1983-02-01T23:59:59.000Z

130

Observations of the Internal Tide in Monterey Canyon  

Science Conference Proceedings (OSTI)

Data from two shipboard experiments in 1994, designed to observe the semidiurnal internal tide in Monterey Canyon, reveal semidiurnal currents of about 20 cm s?1, which is an order of magnitude larger than the estimated barotropic tidal currents. ...

Emil T. Petruncio; Leslie K. Rosenfeld; Jeffrey D. Paduan

1998-10-01T23:59:59.000Z

131

Flow Variability in a North American Downtown Street Canyon  

Science Conference Proceedings (OSTI)

Previous field and laboratory studies have indicated that flow and turbulence inside urban areas and, in particular, in street canyons, is very complex and is associated with wakes and vortices developing near buildings. However, a number of open ...

Petra Klein; James V. Clark

2007-06-01T23:59:59.000Z

132

EIS-0480: Notice of Intent to Prepare a Draft Environmental Impact  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

0: Notice of Intent to Prepare a Draft Environmental Impact 0: Notice of Intent to Prepare a Draft Environmental Impact Statement EIS-0480: Notice of Intent to Prepare a Draft Environmental Impact Statement Long-Term Experimental and Management Plan for the Operation of Glen Canyon Dam, AZ Two agencies of the Department of Interior, the Bureau of Reclamation and the National Park Service announces their intent to prepare an EIS for a Long-Term Experimental and Management Plan for the operation of the Glen Canyon Dam. DOE's Western Area Power Administration is a cooperating agency. EIS-0480-NOI-2011.pdf More Documents & Publications EIS-0150: Final Environmental Impact Statement 2013 Annual Planning Summary for the Western Area Power Administration Environmental Impact Statements and Environmental Assessments Status Chart

133

Page not found | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

41 - 17250 of 26,764 results. 41 - 17250 of 26,764 results. Page EIS-0476: Vogtle Electric Generating Plant, Units 3 and 4 This EIS evaluates the environmental impacts of construction and startup of the proposed Units 3 and 4 at the Vogtle Electric Generating Plant in Burke County, Georgia. DOE adopted two Nuclear Regulatory Commission EISs associated with this project (i.e., NUREG-1872, issued 8/2008, and NUREG-1947, issued 3/2011). http://energy.gov/nepa/eis-0476-vogtle-electric-generating-plant-units-3-and-4 Page EIS-0480: Long-Term Experimental and Management Plan for the Operation of Glen Canyon Dam Two agencies of the Department of the Interior, Bureau of Reclamation and National Park Service, are jointly preparing a Long-Term Experimental and Management Plan for the Glen Canyon Dam and an EIS for adoption of the

134

H CANYON PROCESSING IN CORRELATION WITH FH ANALYTICAL LABS  

Science Conference Proceedings (OSTI)

Management of radioactive chemical waste can be a complicated business. H Canyon and F/H Analytical Labs are two facilities present at the Savannah River Site in Aiken, SC that are at the forefront. In fact H Canyon is the only large-scale radiochemical processing facility in the United States and this processing is only enhanced by the aid given from F/H Analytical Labs. As H Canyon processes incoming materials, F/H Labs provide support through a variety of chemical analyses. Necessary checks of the chemical makeup, processing, and accountability of the samples taken from H Canyon process tanks are performed at the labs along with further checks on waste leaving the canyon after processing. Used nuclear material taken in by the canyon is actually not waste. Only a small portion of the radioactive material itself is actually consumed in nuclear reactors. As a result various radioactive elements such as Uranium, Plutonium and Neptunium are commonly found in waste and may be useful to recover. Specific processing is needed to allow for separation of these products from the waste. This is H Canyon's specialty. Furthermore, H Canyon has the capacity to initiate the process for weapons-grade nuclear material to be converted into nuclear fuel. This is one of the main campaigns being set up for the fall of 2012. Once usable material is separated and purified of impurities such as fission products, it can be converted to an oxide and ultimately turned into commercial fuel. The processing of weapons-grade material for commercial fuel is important in the necessary disposition of plutonium. Another processing campaign to start in the fall in H Canyon involves the reprocessing of used nuclear fuel for disposal in improved containment units. The importance of this campaign involves the proper disposal of nuclear waste in order to ensure the safety and well-being of future generations and the environment. As processing proceeds in the fall, H Canyon will have a substantial number of samples being sent to F/H Labs. All analyses of these samples are imperative to safe and efficient processing. The important campaigns to occur would be impossible without feedback from analyses such as chemical makeup of solutions, concentrations of dissolution acids and nuclear material, as well as nuclear isotopic data. The necessity of analysis for radiochemical processing is evident. Processing devoid of F/H Lab's feedback would go against the ideals of a safety-conscious and highly accomplished processing facility such as H Canyon.

Weinheimer, E.

2012-08-06T23:59:59.000Z

135

McNary Dam, Ice Harbor Dam, and Lower Monumental Dam Smolt Monitoring Program; 1996 Annual Report.  

DOE Green Energy (OSTI)

The Washington Department of Fish & Wildlife (WDFW) assumed responsibility for the Smolt Monitoring Program at McNary Dam on the Columbia River in 1990 and at the new juvenile collection facility at Lower Monumental Dam on the Snake River in 1993. In 1996, Smolt Monitoring Program activities also began at the new juvenile collection facility located at Ice Harbor Dam. This report summarizes the 1996 Smolt Monitoring work at all three sites. The work at Ice Harbor consisted of Gas Bubble Trauma (GBT) monitoring only. In general, the 1996 passage season at both the McNary and Lower Monumental sites can be characterized by reduced passage of juveniles through the collection systems due to elevated river flows and spill, and low (<1%) overall facility mortality rates most likely resulting from cooler water temperatures. In accordance with the National Marine Fisheries Service recommendations (NMFS, 1995) all spring migrants were bypassed at McNary Dam in 1996. Mechanical problems within the McNary collection system resulted in collection and sampling activities being delayed until April 18 at this site, while sampling and collection began on the scheduled starting date of April 1 at Lower Monumental Dam. Monitoring operations were conducted through December 14 at McNary Dam and through October 28 at Lower Monumental Dam. An ongoing transportation evaluation summer migrant marking program was conducted at McNary Dam in 1996 by the NMFS. This necessitated the sampling of 394,211 additional fish beyond the recommended sampling guidelines. All total, 509,237 and 31,219 juvenile salmonids were anesthetized and individually counted, examined for scale loss, injuries, and brands by WDFW Smolt Monitoring personnel in 1996 at McNary Dam and Lower Monumental Dam, respectively.

Hillson, Todd; Lind, Sharon; Price, William (Washington Department of Fish and Wildlife, Olympia, WA)

1997-07-01T23:59:59.000Z

136

Multifractal scaling behavior analysis for existing dams  

Science Conference Proceedings (OSTI)

The fractal theory was used to describe long term behavior of dam structures by means of determining (mono-) fractal exponents. Many records do not exhibit a simple monofractal scaling behavior, which can be accounted for by a single scaling exponent. ... Keywords: Dam, Long term behavior, Multifractal detrended fluctuation analysis, Observation time series

Huaizhi Su, Zhiping Wen, Feng Wang, Bowen Wei, Jiang Hu

2013-09-01T23:59:59.000Z

137

Seismic Analysis of Morrow Point Dam  

DOE Green Energy (OSTI)

The main objective of this study is to perform nonlinear dynamic earthquake time history analyses on Morrow Point Dam, which is located 263 km southwest of Denver, Colorado. This project poses many significant technical challenges, one of which is to model the entire Morrow Point Dam/Foundation Rock/Reservoir system which includes accurate geology topography. In addition, the computational model must be initialized to represent the existing dead loads on the structure and the stress field caused by the dead loads. To achieve the correct dead load stress field due to gravity and hydrostatic load, the computer model must account for the manner in which the dams were constructed. Construction of a dam finite element model with the correct as-built geometry of the dam structure and simply ''turning on'' gravity in the computer model will generally lead to an incorrect initial stress field in the structure. The sequence of segmented lifts typical of dam construction has a significant impact on the static stress fields induced in the dam. In addition, the dam model must also account for the interaction between the adjacent dam segments across the dam contraction joints. As a result of these challenges, it was determined that a significant amount of code development was required in order to accurately simulate the motion of the dam structure. Modifications to the existing slide surfaces are needed to allow for appropriate modeling of the shear keys across the contraction joints. Furthermore, a model for hydrodynamic interaction was also implemented into NIKE3D and DYNA3D for fluid representation in the 3D dam system finite element model. Finally, the modeling of the 3D dam system results in a very large computational model, which makes it difficult to perform a static initialization using an implicit code. Traditionally, for these large models, the model has been initialized over a long time scale using an explicit code. However, recent advancements have made it possible to run NIKE3D in ''parallel'' on relatively small parallel machines as well as on the ASCI platforms.

Noble, C R

2002-04-01T23:59:59.000Z

138

Monitoring and Evaluation of Yearling Fall Chinook Salmon (Oncorhynchus tshawytscha) Released from Acclimation Facilities Upstream of Lower Granite Dam; 2002 Annual Report.  

DOE Green Energy (OSTI)

The Nez Perce Tribe, in cooperation with the U.S. Fish and Wildlife Service and Washington Department of Fish and Wildlife, conducted monitoring and evaluation studies on Lyons Ferry Hatchery reared yearling fall Chinook salmon Oncorhynchus tshawytscha that were acclimated and released at three Fall Chinook Acclimation Project sites upstream of Lower Granite Dam in 2002. This was the seventh year of a long-term project to supplement natural spawning populations of Snake River stock fall Chinook salmon upstream of Lower Granite Dam. The 479,358 yearlings released from the Fall Chinook Acclimation Project facilities exceeded the 450,000 fish quota. We use Passive Integrated Transponder (PIT) tag technology to monitor the primary performance measures of survival to mainstem dams and migration timing. We also monitor size, condition and tag/mark retention at release. We released 7,545 PIT tagged yearlings from Pittsburg Landing, 7,482 from Big Canyon and 2,487 from Captain John Rapids. Fish health sampling indicated that, overall, bacterial kidney disease levels at the acclimation facilities could be considered medium to high with 43-62% of fish sampled rating medium to very high. Mean fork lengths (95% confidence interval) of the PIT tagged groups ranged from 146.7 mm (146.2-147.2 mm) at Captain John Rapids to 164.8 mm (163.5-166.1 mm) at Lyons Ferry Hatchery. Mean condition factors ranged from 1.06 at Lyons Ferry Hatchery to 1.14 at Pittsburg Landing and Captain John Rapids. Estimated survival (95% confidence interval) of PIT tagged yearlings from release to Lower Granite Dam ranged from 88.6% (86.0-91.1%) for Pittsburg Landing to 97.0% (92.4-101.7%) for Captain John Rapids. Estimated survival from release to McNary Dam ranged from 54.3% (50.2-58.3%) for Big Canyon to 70.5% (65.4-75.5%) for Pittsburg Landing. Median migration rates to Lower Granite Dam, based on all observations of PIT tagged yearlings from the FCAP facilities, ranged from 8.1 river kilometers per day (rkm/d) for Captain John Rapids to 14.1 rkm/d for Pittsburg Landing. Median migration rates to McNary Dam ranged from 10.9 rkm/d for Big Canyon to 15.9 rkm/d for Pittsburg Landing. Median travel times from the FCAP facilities were about 9-12 days to Lower Granite Dam and 25-30 days to McNary Dam. Median arrival dates at Lower Granite Dam, based on all observations of PIT tagged yearling groups from the FCAP facilities, ranged from April 20-28. Median arrival dates at McNary Dam for the FCAP groups were all May 11. The objectives of this project are to quantify and evaluate pre-release fish health, condition and mark retention as well as post-release survival, migration timing, migration rates, travel times and movement patterns of fall Chinook salmon from supplementation releases at the FCAP facilities, then provide feedback to co-managers for project specific and basin wide management decision-making.

Rocklage, Stephen J.; Kellar, Dale S. (Nez Perce Tribe, Department of Fisheries Resource Management, ID)

2005-07-01T23:59:59.000Z

139

Dam Safety Regulations (Connecticut) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Safety Regulations (Connecticut) Safety Regulations (Connecticut) Dam Safety Regulations (Connecticut) < Back Eligibility Agricultural Commercial Construction Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Savings Category Water Buying & Making Electricity Program Info State Connecticut Program Type Siting and Permitting Provider Department of Energy and Environmental Protection All dams, except those owned by the U.S., are under the jurisdiction of these regulations. These dams will be classified by hazard rating, and may

140

Perspectives on Dam Removal: York Creek Dam and the Water Framework Directive  

E-Print Network (OSTI)

Figure 4. Water Framework Directive decision-making processand the Water Framework Directive LA 222 UC Berkeley May 16Dam and the Water Framework Directive Justin Lawrence, Josh

Lawrence, Justin E; Pollak, Josh D; Richmond, Sarah F

2008-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "glen canyon dam" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Milner Dam Wind Park | Open Energy Information  

Open Energy Info (EERE)

Milner Dam Wind Park Milner Dam Wind Park Jump to: navigation, search Name Milner Dam Wind Park Facility Milner Dam Wind Park Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Exergy Developer Exergy Energy Purchaser Idaho Power Location Cassia County ID Coordinates 42.495962°, -114.021106° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.495962,"lon":-114.021106,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

142

Dams (South Dakota) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

You are here You are here Home » Dams (South Dakota) Dams (South Dakota) < Back Eligibility Agricultural Commercial Construction Fed. Government General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Municipal/Public Utility Rural Electric Cooperative State/Provincial Govt Tribal Government Utility Savings Category Water Buying & Making Electricity Home Weatherization Program Info State South Dakota Program Type Siting and Permitting Provider South Dakota Department of Environment and Natural Resources Dam construction in South Dakota requires a Location Notice or a Water Right Permit. A Location Notice is a form that must be filed with the County Register of Deeds, and is the only paperwork required if (a) the proposed dam will impound 25 acre feet of water or less at the primary

143

Roller-Compacted Concrete for Dams  

Science Conference Proceedings (OSTI)

Placing mass concrete by the roller-compacted method improves the economics of hydroelectric dam construction. Many sites previously considered uneconomical for embankment or conventional concrete construction may now prove feasible.

1986-09-29T23:59:59.000Z

144

Dams and Energy Sectors Interdependency Study  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

[Type text] [Type text] Dams and Energy Sectors Interdependency Study September 2011 September 2011 Page 2 Abstract The U.S. Department of Energy (DOE) and the U.S. Department of Homeland Security (DHS) collaborated to examine the interdependencies between two critical infrastructure sectors - Dams and Energy. 1 The study highlights the importance of hydroelectric power generation, with a particular emphasis on the variability of weather patterns and competing demands for water which determine the water available for hydropower production. In recent years, various regions of the Nation suffered drought, impacting stakeholders in both the Dams and Energy Sectors. Droughts have the potential to affect the operation of dams and reduce hydropower production,

145

Dams (South Dakota) | Open Energy Information  

Open Energy Info (EERE)

Page Edit with form History Share this page on Facebook icon Twitter icon Dams (South Dakota) This is the approved revision of this page, as well as being the most...

146

Nine Canyon III Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Nine Canyon III Wind Farm Nine Canyon III Wind Farm Facility Nine Canyon III Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Energy Northwest Developer Energy Northwest/RES Americas Energy Purchaser Energy Northwest Coordinates 46.286065°, -119.425532° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":46.286065,"lon":-119.425532,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

147

Olowalu-Ukumehame Canyon Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Olowalu-Ukumehame Canyon Geothermal Area Olowalu-Ukumehame Canyon Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Olowalu-Ukumehame Canyon Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (4) 10 References Area Overview Geothermal Area Profile Location: Hawaii Exploration Region: Hawaii Geothermal Region GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed. Add a new Operating Power Plant

148

Microsoft Word - Final_NineCanyon_CommunicationTowerInstall_CX  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

1, 2013 1, 2013 REPLY TO ATTN OF: KEC-4 SUBJECT: Environmental Clearance Memorandum Kelly Gardner, PMP Project Manager, TEP-TPP-1 Proposed Action: Nine Canyon Substation Communication Tower Addition: 331800 McNary Sub Bus Tie Relay Replacements and 310427 McNary-Badger Canyon Transfer Trip Install Categorical Exclusion Applied (from Subpart D, 10 C.F.R. Part 1021): B4.6 - Additions and modifications to transmission facilities Location: Kennewick, Benton County, Washington Proposed by: Bonneville Power Administration (BPA) Description of the Proposed Action: BPA proposes to install a 60-foot communications tower and associated communication equipment at the Benton County Public Utility District's Nine Canyon Substation in Benton County, Washington. The upgrade would involve replacing the

149

Review of the Diablo Canyon probabilistic risk assessment  

SciTech Connect

This report details the review of the Diablo Canyon Probabilistic Risk Assessment (DCPRA). The study was performed under contract from the Probabilistic Risk Analysis Branch, Office of Nuclear Reactor Research, USNRC by Brookhaven National Laboratory. The DCPRA is a full scope Level I effort and although the review touched on all aspects of the PRA, the internal events and seismic events received the vast majority of the review effort. The report includes a number of independent systems analyses sensitivity studies, importance analyses as well as conclusions on the adequacy of the DCPRA for use in the Diablo Canyon Long Term Seismic Program.

Bozoki, G.E.; Fitzpatrick, R.G.; Bohn, M.P. [Sandia National Lab., Albuquerque, NM (United States); Sabek, M.G. [Atomic Energy Authority, Nuclear Regulatory and Safety Center, Cairo (Egypt); Ravindra, M.K.; Johnson, J.J. [EQE Engineering, San Francisco, CA (United States)

1994-08-01T23:59:59.000Z

150

Blue Canyon II Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Blue Canyon II Wind Farm Blue Canyon II Wind Farm Jump to: navigation, search Name Blue Canyon II Wind Farm Facility Blue Canyon II Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Horizon Wind Energy Developer Horizon Wind Energy Energy Purchaser American Electric Power Location North of Lawton OK Coordinates 34.8582°, -98.54752° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":34.8582,"lon":-98.54752,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

151

Biglow Canyon Phase III Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Biglow Canyon Phase III Wind Farm Biglow Canyon Phase III Wind Farm Jump to: navigation, search Name Biglow Canyon Phase III Wind Farm Facility Biglow Canyon Phase III Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Portland General Electric Developer Orion Energy Group Energy Purchaser Portland General Electric Location Sherman County OR Coordinates 45.6375°, -120.605278° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":45.6375,"lon":-120.605278,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

152

Thirty-five years at Pajarito Canyon Site  

SciTech Connect

A history of the research activities performed at the Pajarito Canyon Site from 1946 to 1981 is presented. Critical assemblies described include: the Topsy assembly; Lady Godiva; Godiva 2; Jezebel; Flattop; the Honeycomb assembly for Rover studies; Kiwi-TNT; PARKA reactor; Big Ten; and Plasma Cavity Assembly.

Paxton, H.C.

1981-05-01T23:59:59.000Z

153

Properties of Saltstone Prepared Containing H-Canyon Waste  

Science Conference Proceedings (OSTI)

Saltstone slurries were prepared from solutions made from H-Canyon waste and evaluated for processing properties. Salt solutions prepared with a 1:1 ratio of Tank 50H simulant and H-Canyon blended waste produced slurries that met the processing requirements in Table 2 of the Task Technical and Quality Assurance Plan (TTQAP). Additions of set retarder and antifoam were necessary to meet these processing requirements. The water to premix ratio used to achieve acceptable processing properties was 0.63. Slurries prepared solely with H-Canyon blended waste as the salt solution met the gel time and bleed water requirements, but did not set in the allotted time. Compressive strength samples prepared from the mix with acceptable processing properties had an average compressive strength of 814 psi (Samples with a compressive strength value of >200 psi are acceptable.). Analysis for mercury of the leachate of samples analyzed by the Toxic Characteristic Leaching Procedure (TCLP) indicated a concentration of mercury in the leachate <0.11 mg/L (The limit set by the Environmental Protection Agency (EPA) Resource Conservation and Recovery Act (RCRA) for mercury to require treatment is 0.2 mg/L.). It is recommended that without further testing; Tank 50H be limited to no more than 50 wt% H-Canyon material. It is also recommended that prior to the transfer of Tank 50H to the Saltstone Processing Facility; a sample of the Tank 50H waste be evaluated for processing properties.

Cozzi, A

2005-04-05T23:59:59.000Z

154

Grand River Dam Authority | Open Energy Information  

Open Energy Info (EERE)

Dam Authority Dam Authority Jump to: navigation, search Name Grand River Dam Authority Place Oklahoma Utility Id 7490 Utility Location Yes Ownership S NERC Location SPP NERC SPP Yes Operates Generating Plant Yes Activity Generation Yes Activity Transmission Yes Activity Buying Transmission Yes Activity Distribution Yes Activity Wholesale Marketing Yes Alt Fuel Vehicle Yes Alt Fuel Vehicle2 Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] Energy Information Administration Form 826[2] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png general service Commercial general service commercial Commercial large general servic time of use distributional Commercial

155

"1. Palo Verde","Nuclear","Arizona Public Service Co",3937 "2. Navajo","Coal","Salt River Project",2250  

U.S. Energy Information Administration (EIA) Indexed Site

Arizona" Arizona" "1. Palo Verde","Nuclear","Arizona Public Service Co",3937 "2. Navajo","Coal","Salt River Project",2250 "3. Gila River Power Station","Gas","Gila River Power Station LP",2060 "4. Springerville","Coal","Tucson Electric Power Co",1618 "5. Glen Canyon Dam","Hydroelectric","U S Bureau of Reclamation",1312 "6. Santan","Gas","Salt River Project",1227 "7. Mesquite Generating Station","Gas","Mesquite Power LLC",1073 "8. Harquahala Generating Project","Gas","New Harquahala Generating Co, LLC",1054 "9. Hoover Dam","Hydroelectric","U S Bureau of Reclamation",1040

156

Energy-Efficient Retrofits at the Carl Hayden Visitors Center; Federal Energy Management Program: Technical Assistance, Case Study (Fact sheet)  

NLE Websites -- All DOE Office Websites (Extended Search)

Assistance Case Study FEM? . . ( 1 , Energy-Efficient Retrofits at the Carl Hayden Visitors Center With help from FEMP, the Bureau of Reclamation retrofits the Carl Hayden Visitors Center at Glan Canyon Dam- saving energy, waterr and money. Located on the north end o f the Grand Canyon, the Glen Canyon Dam is one of the 20th cen ing marvelb, drawing lion tourists from around t h e world The Carl Hayden Viitom Center was built in 1966 to accommodate these visitms Sittingatop one of the country's most impressive sources of hydropower, the 2l,OC@qmre-foot (1951 square metem) building houses exhibits, gift shops, bathrooms, an audiiorium, and administr ative affices. In 1993, B w u of Reclamation officials saw oppoaUnities to improve energy efficiency and reduce water

157

Energy-Efficient Retrofits at the Carl Hayden Visitors Center; Federal Energy Management Program: Technical Assistance, Case Study (Fact sheet)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Assistance Case Study FEM? . . ( 1 , Energy-Efficient Retrofits at the Carl Hayden Visitors Center With help from FEMP, the Bureau of Reclamation retrofits the Carl Hayden Visitors Center at Glan Canyon Dam- saving energy, waterr and money. Located on the north end o f the Grand Canyon, the Glen Canyon Dam is one of the 20th cen ing marvelb, drawing lion tourists from around t h e world The Carl Hayden Viitom Center was built in 1966 to accommodate these visitms Sittingatop one of the country's most impressive sources of hydropower, the 2l,OC@qmre-foot (1951 square metem) building houses exhibits, gift shops, bathrooms, an audiiorium, and administr ative affices. In 1993, B w u of Reclamation officials saw oppoaUnities to improve energy efficiency and reduce water

158

Making an automated monitoring system work at Tolt Dam  

SciTech Connect

A major upgrade of the dam safety program at Tolt Dam in Seattle, Washington is described. The upgrade was prompted by the age (30 years) of the dam, the addition of a hydroelectric plant, and public concern. The program is based on an automated condition monitoring and advance warning system. The design, implementation, and operating experience of the system are described.

Marilley, J.M. [Seattle Water Dept., WA (United States); Myers, B.K. [Woodward-Clyde Consultants, Seattle, WA (United States)

1996-10-01T23:59:59.000Z

159

WINDAM: modules to analyze overtopping of earth embankment dams  

Science Conference Proceedings (OSTI)

Windows Dam Analysis Modules (WINDAM) is a set of modular software components under development for the analysis of overtopped earth embankments. The initial modules address the routing of floods through reservoirs with dam overtopping and evaluation ... Keywords: dam design and analysis, erosion, flood control, hydraulic modelling, numerical analysis, simulation

Mitchell L. Neilsen; Darrel M. Temple; Gregory J. Hanson

2007-08-01T23:59:59.000Z

160

Construction of high embankment dam material flow equilibrium system  

Science Conference Proceedings (OSTI)

As high embankment dam engineering is often large-scale, how to achieve equilibrium of material flow is a critical factor affecting the construction progress of embankment dam engineering and an important approach to save resource and reduce construction ... Keywords: Embankment dam, Material flow equilibrium, Traffic network

Yan Zhang; Guo-Ping Xia

2009-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "glen canyon dam" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Executive Summary The Report of the World Commission on Dams  

E-Print Network (OSTI)

in drainage applications. Also, dams often have vertical or near-vertical facing, so gravity has a differentGEOSYNTHETIC DAM LINING SYSTEMS By: Christine T. Weber1 and Jorge Zornberg, Advisor Abstract: The overall goal of this project is to contribute towards the use of geosynthetics in the design of dams

Kammen, Daniel M.

162

"Deadman Island Lock and Dam, Ohio River" The Military Engineer  

E-Print Network (OSTI)

of a concrete gravity dam. It is important to use best estimates of loadings and properties and masonry gravity dams for all failure modes including overtopping (Douglas et al 1999). Table 4 Historic annual frequency of failure of concrete and masonry gravity dams Frequency of Failure x 10-5 Concrete

US Army Corps of Engineers

163

GEOSYNTHETIC DAM LINING SYSTEMS By: Christine T. Weber1  

E-Print Network (OSTI)

). Finally, the fish ladder at Little Goose Dam uses pumped river water rather than a gravity flow. Of all GOOSE DAM ON UPSTREAM MOVEMENTS OF ADULT CHINOOK SALMON, ONCORHYNCHUS TSHAWYTSCHA A major environmental effects of hydroelectric dams (Figure 1) on the upstream movements of adult salmonids. Results indicated

Zornberg, Jorge G.

164

A Theoretical Study of Cold Air Damming  

Science Conference Proceedings (OSTI)

The dynamics of cold air damming are examined analytically with a two-layer steady state model. The upper layer is a warm and saturated cross-mountain (easterly or southeasterly onshore) flow. The lower layer is a cold mountain-parallel (...

Qin Xu

1990-12-01T23:59:59.000Z

165

New York Canyon Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

form form View source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit with form History Facebook icon Twitter icon » New York Canyon Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: New York Canyon Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (6) 9 Exploration Activities (1) 10 References Area Overview Geothermal Area Profile Location: Lovelock, NV Exploration Region: Central Nevada Seismic Zone Geothermal Region GEA Development Phase: None"None" is not in the list of possible values (Phase I - Resource Procurement and Identification, Phase II - Resource Exploration and Confirmation, Phase III - Permitting and Initial Development, Phase IV - Resource Production and Power Plant Construction) for this property.

166

American Canyon Power Plant Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Biomass Facility Biomass Facility Jump to: navigation, search Name American Canyon Power Plant Biomass Facility Facility American Canyon Power Plant Sector Biomass Facility Type Landfill Gas Location Napa County, California Coordinates 38.5024689°, -122.2653887° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.5024689,"lon":-122.2653887,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

167

Coyote Canyon Steam Plant Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Steam Plant Biomass Facility Steam Plant Biomass Facility Jump to: navigation, search Name Coyote Canyon Steam Plant Biomass Facility Facility Coyote Canyon Steam Plant Sector Biomass Facility Type Landfill Gas Location Orange County, California Coordinates 33.7174708°, -117.8311428° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":33.7174708,"lon":-117.8311428,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

168

New York Canyon Geothermal Project | Open Energy Information  

Open Energy Info (EERE)

New York Canyon Geothermal Project New York Canyon Geothermal Project Project Location Information Coordinates 40.056111111111°, -118.01083333333° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.056111111111,"lon":-118.01083333333,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

169

Blue Canyon V Wind Farm | Open Energy Information  

Open Energy Info (EERE)

V Wind Farm V Wind Farm Jump to: navigation, search Name Blue Canyon V Wind Farm Facility Blue Canyon V Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Horizon-EDPR Developer Horizon-EDPR Energy Purchaser Public Service of Oklahoma Location Caddo & Comanche Counties OK Coordinates 34.8582°, -98.54752° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":34.8582,"lon":-98.54752,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

170

New York Canyon Stimulation Geothermal Project | Open Energy Information  

Open Energy Info (EERE)

Stimulation Geothermal Project Stimulation Geothermal Project Jump to: navigation, search Last modified on July 22, 2011. Project Title New York Canyon Stimulation Project Type / Topic 1 Recovery Act: Enhanced Geothermal System Demonstrations Project Type / Topic 2 EGS Demonstration Project Description The projects expected outcomes and benefits are; - Demonstrated commercial viability of the EGS-stimulated reservoir by generating electricity using fluids produced from the reservoir at economic costs. - Significant job creation and preservation and economic development in support of the Recovery Act of 2009. State Nevada Objectives Demonstrate the commercial application of EGS techniques at the New York Canyon (NYC) site in a way that minimizes cost and maximizes opportunities for repeat applications elsewhere.

171

Box Canyon Motel Space Heating Low Temperature Geothermal Facility | Open  

Open Energy Info (EERE)

Motel Space Heating Low Temperature Geothermal Facility Motel Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Box Canyon Motel Space Heating Low Temperature Geothermal Facility Facility Box Canyon Motel Sector Geothermal energy Type Space Heating Location Ouray, Colorado Coordinates 38.0227716°, -107.6714487° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

172

Harbison Canyon, California: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Harbison Canyon, California: Energy Resources Harbison Canyon, California: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 32.8203296°, -116.8300236° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":32.8203296,"lon":-116.8300236,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

173

Net Force on a Dam Consider a dam holding back an incompressible fluid such as water. Let us suppose that  

E-Print Network (OSTI)

and dams Research dealing with the interaction between a gravity cur- rent and obstacles is scare. A first catching dam heights. For the reference avalanche, the veloc- ity just behind the nose in the head% for the 2-D simulation. The reduction in front velocity due to the presence of dams was an increasing

Keesling, James

174

The Dissolution of Desicooler Residues in H-Canyon Dissolvers  

Science Conference Proceedings (OSTI)

A series of dissolution and characterization studies has been performed to determine if FB-Line residues stored in desicooler containers will dissolve using a modified H-Canyon processing flowsheet. Samples of desicooler materials were used to evaluate dissolving characteristics in the low-molar nitric acid solutions used in H-Canyon dissolvers. The selection for the H-Canyon dissolution of desicooler residues was based on their high-enriched uranium content and trace levels of plutonium. Test results showed that almost all of the enriched uranium will dissolve from the desicooler materials after extended boiling in one molar nitric acid solutions. The residue that contained uranium after completion of the extended boiling cycle consisted of brown solids that had agglomerated into large pieces and were floating on top of the dissolver solution. Addition of tenth molar fluoride to a three molar nitric acid solution containing boron did not dissolve remaining uranium from the brown solids. Only after boiling in an eight molar nitric acid-tenth molar fluoride solution without boron did remaining uranium and aluminum dissolve from the brown solids. The amount of uranium associated with brown solids would be approximately 1.4 percent of the total uranium content of the desicooler materials. The brown solids that remain in the First Uranium Cycle feed will accumulate at the organic/aqueous interface during solvent extraction operations. Most of the undissolved white residue that remained after extended boiling was aluminum oxide containing additional trace quantities of impurities. However, the presence of mercury used in H-Canyon dissolvers should complete the dissolution of these aluminum compounds.

Gray, J.H.

2003-06-23T23:59:59.000Z

175

DOE - Office of Legacy Management -- Bayo Canyon NM Site - NM 01  

NLE Websites -- All DOE Office Websites (Extended Search)

Bayo Canyon NM Site - NM 01 Bayo Canyon NM Site - NM 01 FUSRAP Considered Sites Bayo Canyon, NM Alternate Name(s): Bayo Canyon Area Bayo Canyon (TA-10) Site NM.01-2 Location: Canyon in the Pajarito Plateau Region in Los Alamos County, Los Alamos, NM NM.01-3 Historical Operations: Used in 1944-1961 by the MED and later AEC at Los Alamos National Laboratory as a firing site for conventional and high-explosives experiments involving natural and depleted uranium, strontium, and lanthanum as a radiation source for blast diagnosis. NM.01-3 NM.01-5 Eligibility Determination: Eligible NM.01-1 Radiological Survey(s): Assessment Survey NM.01-3 Site Status: Certified- Certification Basis NM.01-5 NM.01-6 Long-term Care Requirements: Long-Term Surveillance and Maintenance Requirements for Remediated FUSRAP Sites S07566_FUSRAP

176

Nine Canyon Wind Farm Phase II | Open Energy Information  

Open Energy Info (EERE)

Page Page Edit with form History Facebook icon Twitter icon » Nine Canyon Wind Farm Phase II Jump to: navigation, search Name Nine Canyon Wind Farm Phase II Facility Nine Canyon Wind Farm Phase II Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Energy Northwest Developer Energy Northwest Energy Purchaser Energy Northwest Location Benton County Coordinates 46.286065°, -119.425532° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":46.286065,"lon":-119.425532,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

177

Simulating infiltration tests in fractured basalt at the Box Canyon Site, Idaho  

E-Print Network (OSTI)

in the unsaturated zone at the Idaho National Engineeringzone: Box Canyon Site, Idaho. , Rep. LBNL-42925, Lawrencethe U.S. Department of Energy, Idaho Operations Office, DOE

Unger, Andre J.A.; Faybishenko, Boris; Bodvarsson, Gudmundur S.; Simmons, Ardyth M.

2003-01-01T23:59:59.000Z

178

Sustainable Energy Dam: research into possible improvement of dam/dike safety by application of sustainable energy on dams/dikes.  

E-Print Network (OSTI)

??A study on the use of the Afsluitdijk (or more generic, enclosure dams in general) for the generation of energy. Focus in this study in (more)

Wondergem, D.

2008-01-01T23:59:59.000Z

179

Microsoft Word - GCPPK Draft EA_Comment Tracking Sheet.docx  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Glen Canyon-Pinnacle Peak 345 kV Transmission Lines 1 EPG Vegetation Management Project Draft EA November 2011 Comment Tracking Table for Western Area Power Administration Glen...

180

Geologic Investigation of a Potential Site for a Next-Generation Reactor Neutrino Oscillation Experiment -- Diablo Canyon, San Luis Obispo County, CA  

E-Print Network (OSTI)

reactions of a nuclear power plant. Diablo Canyon wasmeters from the nuclear power plant) while having suitableThe Diablo Canyon Nuclear Power Plant site in San Luis

Onishi, Celia Tiemi; Dobson, Patrick; Nakagawa, Seiji; Glaser, Steven; Galic, Dom

2004-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "glen canyon dam" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Hoover Dam Bypass Project Phase II  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DOE/EA-1478 DOE/EA-1478 ENVIRONMENTAL ASSESSMENT Western' s Hoover Dam Bypass Project Phase II (Double-Circuiting a Portion of the Hoover-Mead #5 and #7 230-kV Transmission Lines with the Henderson-Mead #1 230-kV Transmission Line, Clark County, Nevada) Prepared for: U.S. Department of Energy Western Area Power Administration 615 S. 43 rd Avenue Phoenix, Arizona 85009 Prepared by: Transcon Environmental 3740 East Southern Avenue, Suite 218 Mesa, Arizona 85206 (480) 807-0095 October 2003 Western Area Power Administration Hoover Dam Bypass Project Phase II page i Environmental Assessment TABLE OF CONTENTS 1.0 INTRODUCTION ............................................................................................................................1 1.1 Background..................................................................................................................................1

182

Small mammal study of Sandia Canyon, 1994 and 1995  

SciTech Connect

A wide range of plant and wildlife species utilize water discharged from facilities at Los Alamos National Laboratory (LANL). The purpose of this study was to gather baseline data of small mammal populations and compare small mammal characteristics within three areas of Sandia Canyon, which receives outfall effluents from multiple sources. Three small mammal trapping webs were placed in the upper portion of Sandia Canyon, the first two were centered in a cattail-dominated marsh with a ponderosa pine overstory and the third web was placed in a much drier transition area with a ponderosa pine overstory. Webs 1 and 2 had the highest species diversity indices with deer mice the most commonly captured species in all webs. However, at Web 1, voles, shrews, and harvest mice, species more commonly found in moist habitats, made up a much greater overall percentage (65.6%) than did deer mice and brush mice (34.5%). The highest densities and biomass of animals were found in Web 1 with a continual decrease in density estimates in each web downstream. There is no statistical difference between the mean body weights of deer mice and brush mice between sites. Mean body length was also determined not to be statistically different between the webs (GLM [deer mouse], F = 0.89, p = 0.4117; GLM [brush mouse], F = 2.49, p = 0.0999). Furthermore, no statistical difference between webs was found for the mean lean body masses of deer and brush mice (GLM [deer mouse], F = 2.54, p = 0.0838; GLM [brush mouse], F = 1.60, p = 0.2229). Additional monitoring studies should be conducted in Sandia Canyon so comparisons over time can be made. In addition, rodent tissues should be sampled for contaminants and then compared to background or control populations elsewhere at the Laboratory or at an off-site location.

Bennett, K.; Biggs, J.

1996-11-01T23:59:59.000Z

183

DOE/EA-1521; Environmental Assessment for Spring Canyon Wind Project, Logan County, Colorado  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

EA, Spring Canyon Wind Project ix EA, Spring Canyon Wind Project ix TABLE OF CONTENTS Page 1.0 PURPOSE AND NEED......................................................................................................... 1 1.1 INTRODUCTION ..................................................................................................... 1 1.2 PURPOSE AND NEED............................................................................................. 3 1.2.1 Federal Agency Action ............................................................................... 3 1.2.2 Applicant's Purpose and Need .................................................................... 3 1.3 SCOPING .................................................................................................................. 3

184

Wind-Flow Patterns in the Grand Canyon as Revealed by Doppler Lidar  

Science Conference Proceedings (OSTI)

Many interesting flow patterns were found in the Grand Canyon by a scanning Doppler lidar deployed to the south rim during the 1990 Wintertime Visibility Study. Three are analyzed in this study: 1) flow reversal in the canyon, where the flow in ...

Robert M. Banta; Lisa S. Darby; Pirmin Kaufmann; David H. Levinson; Cui-Juan Zhu

1999-08-01T23:59:59.000Z

185

Debris flow deposition and reworking by the Colorado River in Grand Canyon, Arizona  

E-Print Network (OSTI)

Debris flow deposition and reworking by the Colorado River in Grand Canyon, Arizona Brian J Canyon, Arizona, transport coarse-grained sediment onto debris fans adjacent to the Colorado River and Monument Creeks using photogrammetry of aerial photography taken from 1965 to 2000 and supplemented

186

Ice Climbing in Clear Creek Canyon A climbing trip report by Glenn Murray  

E-Print Network (OSTI)

Ice Climbing in Clear Creek Canyon A climbing trip report by Glenn Murray SUMMARY: I climb ice in to ask about local climbing. The guys there told me there was ice nearby, in Clear Creek Canyon. I. Four pitches? Five? It was time to find a partner. The only ice climber I knew in Denver was a friend

187

Green Canyon Hot Springs Greenhouse Low Temperature Geothermal Facility |  

Open Energy Info (EERE)

Greenhouse Low Temperature Geothermal Facility Greenhouse Low Temperature Geothermal Facility Facility Green Canyon Hot Springs Sector Geothermal energy Type Greenhouse Location Newdale, Idaho Coordinates 43.8832463°, -111.6063483° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

188

Safe Dams Act of 1972 (Tennessee) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Safe Dams Act of 1972 (Tennessee) Safe Dams Act of 1972 (Tennessee) Safe Dams Act of 1972 (Tennessee) < Back Eligibility Agricultural Commercial Construction General Public/Consumer Industrial Installer/Contractor Investor-Owned Utility Transportation Utility Savings Category Water Buying & Making Electricity Home Weatherization Program Info State Tennessee Program Type Environmental Regulations Siting and Permitting Provider Tennessee Department Of Environment and Conservation The Safe Dams Act of 1973 (SDA) gives the Commissioner of the Department of Environment and Conservation the power to issue certificates authorizing the construction, alteration, or operation of a dam. A dam is defined as any artificial barrier, together with appurtenant works, which does or may impound or divert water, and which either (1) is or will be twenty (20)

189

Women @ Energy: Kerstin Kleese van Dam | Department of Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

Kerstin Kleese van Dam Kerstin Kleese van Dam Women @ Energy: Kerstin Kleese van Dam March 27, 2013 - 3:41pm Addthis Kerstin Kleese van Dam is an associate division director of the Computational Science and Mathematics Division and leads the Scientific Data Management Group at Pacific Northwest National Laboratory. Kerstin Kleese van Dam is an associate division director of the Computational Science and Mathematics Division and leads the Scientific Data Management Group at Pacific Northwest National Laboratory. Check out other profiles in the Women @ Energy series and share your favorites on Pinterest. Kerstin Kleese van Dam has led the charge at Pacific Northwest National Laboratory to resolve data management, analysis, and knowledge discovery challenges in extreme-scale data environments. She also directs data

190

Dams and Reservoirs Safety Act (South Carolina) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Dams and Reservoirs Safety Act (South Carolina) Dams and Reservoirs Safety Act (South Carolina) Dams and Reservoirs Safety Act (South Carolina) < Back Eligibility Utility Commercial Agricultural Investor-Owned Utility Industrial Construction Municipal/Public Utility Local Government Installer/Contractor Rural Electric Cooperative Tribal Government Institutional Savings Category Water Buying & Making Electricity Program Info State South Carolina Program Type Siting and Permitting Provider South Carolina Department of Health and Environmental Control The Dams and Reservoirs Safety Act provides for the certification and inspection of dams in South Carolina and confers regulatory authority on the Department of Health and Environmental Control. Owners of dams and reservoirs are responsible for maintaining the safety of the structures,

191

Gas Flux Sampling At Olowalu-Ukumehame Canyon Area (Thomas, 1986) | Open  

Open Energy Info (EERE)

Gas Flux Sampling At Olowalu-Ukumehame Canyon Area (Thomas, 1986) Gas Flux Sampling At Olowalu-Ukumehame Canyon Area (Thomas, 1986) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Gas Flux Sampling At Olowalu-Ukumehame Canyon Area (Thomas, 1986) Exploration Activity Details Location Olowalu-Ukumehame Canyon Area Exploration Technique Gas Flux Sampling Activity Date Usefulness could be useful with more improvements DOE-funding Unknown Notes Soil mercury concentration and radon emanometry surveys were conducted along the stream beds in both Olowalu and Ukumehame Canyons and on the coastal alluvial fans (Cox and Cuff, 1981a). The results of these surveys indicated that a few minor -nomalies might be present. However, the extreme topographic relief in the area did not permit sufficient coverage of the

192

Georgia Safe Dams Act of 1978 (Georgia) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Safe Dams Act of 1978 (Georgia) Safe Dams Act of 1978 (Georgia) Georgia Safe Dams Act of 1978 (Georgia) < Back Eligibility Agricultural Commercial Construction Developer Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Savings Category Water Buying & Making Electricity Home Weatherization Program Info State Georgia Program Type Environmental Regulations Siting and Permitting Provider Georgia Department of Natural Resources The purpose of the Georgia Safe Dams Act is to provide regulation,

193

Montana Dam Safety Act (Montana) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Montana Dam Safety Act (Montana) Montana Dam Safety Act (Montana) Montana Dam Safety Act (Montana) < Back Eligibility Utility Fed. Government Commercial Agricultural Investor-Owned Utility State/Provincial Govt Industrial Construction Municipal/Public Utility Local Government Residential Installer/Contractor Rural Electric Cooperative Tribal Government Retail Supplier Institutional Systems Integrator Fuel Distributor Nonprofit General Public/Consumer Savings Category Water Buying & Making Electricity Home Weatherization Program Info Start Date 1985 State Montana Program Type Siting and Permitting Provider Montana Department of Natural Resources and Conservation This Act establishes the state's interest in the construction of dams for water control and regulation and for hydropower generation purposes. It

194

Dam Design and Construction (Wisconsin) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Dam Design and Construction (Wisconsin) Dam Design and Construction (Wisconsin) Dam Design and Construction (Wisconsin) < Back Eligibility Agricultural Commercial Construction Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Savings Category Water Buying & Making Electricity Home Weatherization Program Info Start Date 1985 State Wisconsin Program Type Safety and Operational Guidelines Provider Department of Natural Resources These regulations apply to dams that are not owned by the U.S. government

195

Permission for Dam Construction and Operation (Iowa) | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

maintain, or operate a dam on a stream for manufacturing or industrial purposes. Other powers of the Department pertaining to such construction are listed in this section...

196

Patterns in biodiversity and distribution of benthic Polychaeta in the Mississippi Canyon, Northern Gulf of Mexico  

E-Print Network (OSTI)

The distribution of benthic polychaetes in the Mississippi Canyon was examined to evaluate impacts of environmental variables on species assemblages. Environmental variables considered included depth, bathymetric slope, hydrographic features, sediment grain size, food availability and sediment contamination. Samples were collected using GOMEX boxcorer. Density decreased with increasing depth exponentially. Diversity exhibited a unimodal pattern with depth with a maximum value in the intermediate depth range (about 1269 m). Deposit feeders were the most abundant feeding guild. Both the feeding guilds and faunal composition could be divided into three groups along the depth gradient: shallow (300 ? 800 m), intermediate (800 ? 1500 m) and deep (> 1500 m). Results of statistical analyses revealed that depth was the most important determinant in organizing polychaete assemblages in the study area. The Mississippi Canyon and the Central Transect (a non-canyon area) were found not contaminated by trace metals or Polynuclear Aromatic Hydrocarbons (PAHs) in sediments, although the highest PAHs concentration occurred at the head of the Canyon, MT1. The mean density was higher in the Mississippi Canyon (1668 N/m2) than in the Central Transect (979 N/m2), while the mean diversity in the Canyon (ES(100) = 26.9 ) was lower than the Central Transect (ES(100) = 33.1). Large amounts of terrigenous input from the Mississippi River to the Canyon could enhance polychaete density and accelerate competitive exclusion, and thus lead to lower diversity. The faunal composition was significantly different between the two transects, with higher species richness in the Mississippi Canyon (301 species). This could be attributed to structure complexity in the Mississippi Canyon. The distribution of feeding guilds was similar between two transects. The differences observed in polychaete assemblages between two transects may be largely due to high terrigenous sediment and organic matter input to the Mississippi Canyon by the Mississippi River.

Wang, Yuning

2004-12-01T23:59:59.000Z

197

Sediment transport in the Mississippi Canyon: the role of currents and storm events on optical variability  

E-Print Network (OSTI)

Two modes of sediment transport were found to exist in the Mississippi Canyon: the offshelf transport of material in intermediate nepheloid layers originating at depths of 50-175 m and the resuspension and transport of material within the canyon. Large- and small-particle intermediate nepheloid layers were consistently present in the canyon axis and were not observed on the slope to either side of the canyon. The temporal variability in currents, temperature, and particulate matter was measured at a station located at 300 m depth in the canyon axis during consecutive deployments in May-July and August-November 1998. Two moored current meters, one at 3.5 mab and one at 50 mab, recorded flow, while thermographs, a light-scattering sensor, and sediment traps gathered information about the characteristics of the flow and movement of particulate matter. Currents in the upper Mississippi Canyon were oscillatory, with alternating periods of up-canyon and down-canyon flow. Harmonic analysis revealed that the diurnal tidal signal was the dominant component of the flow. Currents were most intense at 3.5 mab. Mean current speed at this depth was approximately 8 cm s? during both deployments, reaching maximum speeds of over 50 cm s?. Current velocities generated sufficient shear stress to resuspend canyon floor sediments about 30% of the time during both deployments. During the second mooring deployment, Hurricane Georges passed 150 km NE of the study site. Near-bottom current velocities and temperature fluctuations were intensified. As the hurricane passed, maximum current speed reached 68 cm s? and a temperature decrease of approximately 7 degrees C occurred in less than 2 hours. Conditions were favorable for sediment resuspension approximately 50% of the time during the five days of hurricane influence. Further evidence for sediment resuspension was provided by similarities between canyon floor core samples and sediment trap collections.

Burden, Cheryl A

1999-01-01T23:59:59.000Z

198

Biglow Canyon Phase II Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Phase II Wind Farm Phase II Wind Farm Jump to: navigation, search Name Biglow Canyon Phase II Wind Farm Facility Biglow Canyon Phase II Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Portland General Electric Developer Orion Energy Group Energy Purchaser Portland General Electric Location Sherman County OR Coordinates 45.6375°, -120.605278° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":45.6375,"lon":-120.605278,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

199

ORISE: Helping Bureau of Reclamation with National Security Exercises at  

NLE Websites -- All DOE Office Websites (Extended Search)

plans full-scale exercises to test security at major U.S. Bureau of plans full-scale exercises to test security at major U.S. Bureau of Reclamation dams ORISE has served as lead exercise planner for the U.S. Department of the Interior, Bureau of Reclamation's Critical Infrastructure Exercise Program since its inception in 2003. Six of the dams operated by BOR are designated as National Critical Infrastructure facilities: Flaming Gorge, Folsom, Glen Canyon, Grand Coulee, Hoover and Shasta. The program helps BOR answer an important question-are these massive dams secure in the event of a terrorist attack? Exercise programs for each of these critical facilities typically extend over a 12-month period during which ORISE facilitates a series of exercise events that test emergency response plans. ORISE guides the dam's staff,

200

The Downstream Geomorphic Effects of Dams: A Comprehensive and Comparative Approach  

E-Print Network (OSTI)

costs of dredging or decommissioning such structures. Whilegreatest component of dam decommissioning costs (e.g. , U.S.operation and ultimate decommissioning. Many of the dams on

Minear, Justin Toby

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "glen canyon dam" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

A topography of dams in China : impacts to agriculture, labor, and migration.  

E-Print Network (OSTI)

??Dams are often promoted as a tool to reduce poverty and spur economic development. Dam construction worldwide, and particularly in China, which has built nearly (more)

[No author

2011-01-01T23:59:59.000Z

202

Dams and Energy Sectors Interdependency Study, September 2011 | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Dams and Energy Sectors Interdependency Study, September 2011 Dams and Energy Sectors Interdependency Study, September 2011 Dams and Energy Sectors Interdependency Study, September 2011 The U.S. Department of Energy (DOE) and the U.S. Department of Homeland Security (DHS) collaborated to examine the interdependencies between two critical infrastructure sectors - Dams and Energy. The study highlights the importance of hydroelectric power generation, with a particular emphasis on the variability of weather patterns and competing demands for water which determine the water available for hydropower production. Dams-Energy Interdependency Study.pdf More Documents & Publications Hydroelectric Webinar Presentation Slides and Text Version Impacts of Long-term Drought on Power Systems in the U.S. Southwest - July 2012 Before the Senate Energy and Natural Resources Committee

203

Dam Safety and Encroachments Act (Pennsylvania) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Dam Safety and Encroachments Act (Pennsylvania) Dam Safety and Encroachments Act (Pennsylvania) Dam Safety and Encroachments Act (Pennsylvania) < Back Eligibility Utility Investor-Owned Utility State/Provincial Govt Construction Municipal/Public Utility Local Government Installer/Contractor Rural Electric Cooperative Savings Category Water Buying & Making Electricity Program Info State Pennsylvania Program Type Safety and Operational Guidelines Provider Pennsylvania Department of Environmental Protection This act sets the standards and criteria for the siting and design of dams, water obstructions and encroachments considering both existing and projected conditions. It requires operational plans to be prepared and implemented by owners and also requires monitoring, inspection and reporting of conditions affecting the safety of dams, water obstructions

204

CX-007153: Categorical Exclusion Determination | Department of...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Determination CX-007153: Categorical Exclusion Determination Glen Canyon substation Transformer Addition CX(s) Applied: B4.6 Date: 05052011 Location(s): Coconino County, Arizona...

205

Decision-making in Electricity Generation Based on Global Warming Potential and Life-cycle Assessment for Climate Change  

E-Print Network (OSTI)

A case study of a hydroelectric power plant (Glen Canyon)over time. In the case of hydroelectric plants, besidesthe decommissioning of hydroelectric power plants. Although

Horvath, Arpad

2005-01-01T23:59:59.000Z

206

Microsoft Word - canyon disposition rpt 2 01 05.doc  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Department of Energy Efforts to Department of Energy Efforts to Dispose of Hanford's Chemical Separation Facilities DOE/IG-0672 February 2005 -2- benefits of using the facility as a disposal site. Instead, the study focused on characterizing and performing technical analysis on the structural integrity of the facility. In studying the merits of the Initiative, the Department did not ensure that the cost study was sufficient in scope, and once completed, never reviewed the study to determine whether it was accurate and complete or adequately supported the preferred alternative. As a result of not thoroughly evaluating the feasibility of using canyon facilities for waste disposal, the Department may not realize savings ranging up to $500 million. This report highlights the importance of the Department's oversight of its contractors' activities to

207

RECALIBRATION OF H CANYON ONLINE SPECTROPHOTOMETER AT EXTENDED URANIUM CONCENTRATION  

SciTech Connect

The H Canyon online spectrophotometers are calibrated for measurement of the uranium and nitric acid concentrations of several tanks in the 2nd Uranium Cycle.[1] The spectrometers, flow cells, and prediction models are currently optimized for a process in which uranium concentrations are expected to range from 0-15 g/L and nitric acid concentrations from 0.05-6 M. However, an upcoming processing campaign will involve 'Super Kukla' material, which has a lower than usual enrichment of fissionable uranium. Total uranium concentrations will be higher, spanning approximately 0-30 g/L U, with no change in the nitric acid concentrations. The new processing conditions require the installation of new flow cells with shorter path lengths. As the process solutions have a higher uranium concentration, the shorter path length is required to decrease the absorptivity to values closer to the optimal range for the instrument. Also, new uranium and nitric acid prediction models are required to span the extended uranium concentration range. The models will be developed for the 17.5 and 15.4 tanks, for which nitric acid concentrations will not exceed 1 M. The restricted acid range compared to the original models is anticipated to reduce the measurement uncertainty for both uranium and nitric acid. The online spectrophotometers in H Canyon Second Uranium Cycle were modified to allow measurement of uranium and nitric acid for the Super Kukla processing campaign. The expected uranium concentrations, which are higher than those that have been recently processed, required new flow cells with one-third the optical path length of the existing cells. Also, new uranium and nitric acid calibrations were made. The estimated reading uncertainties (2{sigma}) for Tanks 15.4 and 17.5 are {approx}5% for uranium and {approx}25% for nitric acid.

Lascola, R

2008-10-29T23:59:59.000Z

208

Record of Decision - Klondike III/ Biglow Canyon Wind Integration Project - 10-25-06  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Klondike III/Biglow Canyon Wind Integration Project Klondike III/Biglow Canyon Wind Integration Project DECISION The Bonneville Power Administration (BPA) has decided to implement the Proposed Action identified in the Klondike III/Biglow Canyon Wind Integration Project Final Environmental Impact Statement (FEIS) (DOE/EIS-0374, September 2006). Under the Proposed Action, BPA will offer PPM Energy, Inc. (PPM) contract terms for interconnection of the proposed Klondike III Wind Project, located in Sherman County, Oregon, with the Federal Columbia River Transmission System (FCRTS). BPA will also offer Portland General Electric (PGE) 1 contract terms for interconnection of its proposed Biglow Canyon Wind Farm, also located in Sherman County, Oregon, with the FCRTS, as proposed in the FEIS. To interconnect these wind projects,

209

Recovery Act Begins Box Remediation Operations at F Canyon | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Recovery Act Begins Box Remediation Operations at F Canyon Recovery Act Begins Box Remediation Operations at F Canyon Recovery Act Begins Box Remediation Operations at F Canyon May 17, 2011 - 12:00pm Addthis Media Contacts Jim Giusti, DOE (803) 952-7697 james-r.giusti@srs.gov Paivi Nettamo, SRNS (803) 646-6075 paivi.nettamo@srs.gov AIKEN, S.C. - The F Canyon box remediation program, an American Recovery and Reinvestment Act project at Savannah River Site (SRS), has come online to process legacy transuranic (TRU) waste for off-site shipment and permanent disposal at the Waste Isolation Pilot Plant (WIPP), a geological repository in New Mexico. The $40-million facility will process approximately 330 boxes containing TRU waste with a radiological risk higher than seen in the rest of the Site's original 5,000-cubic-meter

210

On Line Spectrophotometric Measurement of Uranium and Nitrate in H Canyon  

SciTech Connect

This report describes the on-line instrumentation developed by the Analytical Development Section of Savannah River Technology Center in support of Highly Enriched Uranium Blend Down processing in H Canyon.

Lascola, R.J.

2002-10-15T23:59:59.000Z

211

Impulsively Started Flow in a Submarine Canyon: Comparison of Results from Laboratory and Numerical Models  

Science Conference Proceedings (OSTI)

Intercomparisons have been made of results from laboratory experiments and a numerical model for the flow in the vicinity of an idealized submarine canyon located along an otherwise continuous shelf. Motion in the rotating and continuously ...

Nicolas Prenne; J. William Lavelle; David C. Smith IV; Don L. Boyer

2001-10-01T23:59:59.000Z

212

Mercury Vapor At Olowalu-Ukumehame Canyon Area (Thomas, 1986) | Open Energy  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Mercury Vapor At Olowalu-Ukumehame Canyon Area (Thomas, 1986) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Mercury Vapor At Olowalu-Ukumehame Canyon Area (Thomas, 1986) Exploration Activity Details Location Olowalu-Ukumehame Canyon Area Exploration Technique Mercury Vapor Activity Date Usefulness could be useful with more improvements DOE-funding Unknown Notes Soil mercury concentration and radon emanometry surveys were conducted along the stream beds in both Olowalu and Ukumehame Canyons and on the coastal alluvial fans (Cox and Cuff, 1981a). The results of these surveys

213

Field Mapping At Olowalu-Ukumehame Canyon Area (Thomas, 1986) | Open Energy  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Field Mapping At Olowalu-Ukumehame Canyon Area (Thomas, 1986) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Field Mapping At Olowalu-Ukumehame Canyon Area (Thomas, 1986) Exploration Activity Details Location Olowalu-Ukumehame Canyon Area Exploration Technique Field Mapping Activity Date Usefulness not useful DOE-funding Unknown Notes Geologic mapping (Diller, 1982) in this area has identified several trachitic and alkalic dikes, plugs, and vents within the area bounded by the canyons (Fig. 21). The frequency distribution of those dikes in the two

214

Savannah River Site's H Canyon Begins 2012 with New and Continuing  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Site's H Canyon Begins 2012 with New and Site's H Canyon Begins 2012 with New and Continuing Missions - Transuranic waste remediation, new mission work are the focus of the nation's only active nuclear chemical separations facility in 2012 Savannah River Site's H Canyon Begins 2012 with New and Continuing Missions - Transuranic waste remediation, new mission work are the focus of the nation's only active nuclear chemical separations facility in 2012 January 1, 2012 - 12:00pm Addthis H Canyon, above, and HB-Line are scheduled to soon begin dissolving and purifying plutonium currently stored at the Savannah River Site to demonstrate the capability to produce oxide material that meets the Mixed Oxide Facility (MOX) feedstock specifications. The production process at MOX, which is now under construction, will eventually create fuel pellets for U.S. commercial reactor fuel assemblies.

215

Micro-Earthquake At New York Canyon Geothermal Area (2011) | Open Energy  

Open Energy Info (EERE)

York Canyon Geothermal Area (2011) York Canyon Geothermal Area (2011) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Micro-Earthquake At New York Canyon Geothermal Area (2011) Exploration Activity Details Location New York Canyon Geothermal Area Exploration Technique Micro-Earthquake Activity Date 2011 Usefulness not indicated DOE-funding Unknown Exploration Basis Determine seismicity before and after reservoir stimulation for EGS Notes The overall goal is to gather high resolution seismicity data before, during and after stimulation activities at the EGS projects. This will include both surface and borehole deployments (as necessary in available boreholes) to provide high quality seismic data for improved processing and interpretation methodologies. This will allow the development and testing

216

Internal Tides and Mixing in a Submarine Canyon with Time-Varying Stratification  

Science Conference Proceedings (OSTI)

The time variability of the energetics and turbulent dissipation of internal tides in the upper Monterey Submarine Canyon (MSC) is examined with three moored profilers and five ADCP moorings spanning FebruaryApril 2009. Highly resolved time ...

Zhongxiang Zhao; Matthew H. Alford; Ren-Chieh Lien; Michael C. Gregg; Glenn S. Carter

2012-12-01T23:59:59.000Z

217

Fire modeling for Building 221-T - T Plant Canyon Deck and Railroad Tunnel  

Science Conference Proceedings (OSTI)

This report was prepared by Hughes Associates, Inc. to document the results of fire models for building 221-T Canyon Deck and Railroad Tunnel. Backup data is contained in document No. WHC-SD-CP-ANAL-010, Rev. 0.

Oar, D.L.

1994-09-29T23:59:59.000Z

218

Transport of a Power Plant Tracer Plume over Grand Canyon National Park  

Science Conference Proceedings (OSTI)

Meteorological and air-quality data, as well as surface tracer concentration values, were collected during 1990 to assess the impacts of Navajo Generating Station (NGS) emissions on Grand Canyon National Park (GCNP) air quality. These data have ...

Jun Chen; Robert Bornstein; Charles G. Lindsey

1999-08-01T23:59:59.000Z

219

MSHA issues Crandall Canyon investigation report, fines owners $1.6 million  

Science Conference Proceedings (OSTI)

The paper summarises the findings of the Mine Safety and Health Administration report (available at www.msha.gov) into the death of six people at the Crandall Canyon Mine on 6 August 2007.

NONE

2008-08-15T23:59:59.000Z

220

A Numerical Study of Flow and Pollutant Dispersion Characteristics in Urban Street Canyons  

Science Conference Proceedings (OSTI)

The flow and pollutant dispersion in urban street canyons are investigated using a two-dimensional numerical model with the k? turbulent closure scheme. It is shown that the flow field is characterized mainly by the number and intensity of ...

Jong-Jin Baik; Jae-Jin Kim

1999-11-01T23:59:59.000Z

Note: This page contains sample records for the topic "glen canyon dam" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Aspects of the Load Circulation at the Grand Canyon during the Fall Season  

Science Conference Proceedings (OSTI)

The atmosphere and circulation of air within, above, and around the Grand Canyon of the Colorado River was studied from an instrumented aircraft and from ground-based instruments in September and October 1984. Several patterns were identified. ...

L. P. Stearns

1987-10-01T23:59:59.000Z

222

A Numerical Study of Thermal Effects on Flow and Pollutant Dispersion in Urban Street Canyons  

Science Conference Proceedings (OSTI)

This study investigates thermal effects on the flow and pollutant dispersion in urban street canyons. A two-dimensional numerical model with a k? turbulent closure scheme is developed, and the heat transfer between the air and the building wall ...

Jae-Jin Kim; Jong-Jin Baik

1999-09-01T23:59:59.000Z

223

Sediment-Driven Downslope Flow in Submarine Canyons and Channels: Three-Dimensional Numerical Experiments  

Science Conference Proceedings (OSTI)

The role of submarine canyons and channels in sediment-driven downslope flow (sediment plumes) is examined, using a three-dimensional, rotational numerical model that couples the hydrodynamics and sediment transport. The model domain consists of ...

Jochen Kmpf; Hermann Fohrmann

2000-09-01T23:59:59.000Z

224

Cross-Shelf Exchange Driven by Oscillatory Barotropic Currents at an Idealized Coastal Canyon  

Science Conference Proceedings (OSTI)

Numerical simulations are used to study on-shelf transport of dense water by oscillatory barotropic currents incident upon an isolated coastal canyon. The physical system is a laboratory-scale annulus in which forcing is provided by an ...

D. B. Haidvogel

2005-06-01T23:59:59.000Z

225

LaboratoryNumerical Model Comparisons of Canyon Flows: A Parameter Study  

Science Conference Proceedings (OSTI)

An integrated set of laboratory and numerical-model experiments has been conducted to understand the development of residual circulation surrounding a coastal canyon and to explore further the degree to which laboratory experiments can provide ...

Don L. Boyer; Dale B. Haidvogel; Nicolas Prenne

2004-07-01T23:59:59.000Z

226

Dams, Mills, and Electric Power (Missouri) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Mills, and Electric Power (Missouri) Mills, and Electric Power (Missouri) Dams, Mills, and Electric Power (Missouri) < Back Eligibility Commercial Industrial Institutional Investor-Owned Utility Local Government Municipal/Public Utility Retail Supplier Rural Electric Cooperative State/Provincial Govt Tribal Government Utility Savings Category Water Buying & Making Electricity Home Weatherization Program Info State Missouri Program Type Siting and Permitting Provider Missouri Department of Natural Resources The Water Resources Center of the Missouri Department of Natural Resources is responsible for implementing regulations pertaining to dam and reservoir safety. Any person or corporation may erect a dam across any watercourse, provided that: (a) the entity is chartered to construct, operate and

227

Regulation of Dams and Bridges Affecting Navigable Waters (Wisconsin) |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Dams and Bridges Affecting Navigable Waters Dams and Bridges Affecting Navigable Waters (Wisconsin) Regulation of Dams and Bridges Affecting Navigable Waters (Wisconsin) < Back Eligibility Agricultural Commercial Construction Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Savings Category Water Buying & Making Electricity Home Weatherization Program Info Start Date 2007 State Wisconsin Program Type Siting and Permitting Provider Department of Natural Resources Chapter 31 of the Wisconsin Statutes lays out the regulations relevant to

228

Dams have played an important role in human development throughout the world for thousands  

E-Print Network (OSTI)

Academy of Sciences, Beijing 100093, PR China; 3 Department of Renewable Resources, University of Alberta than 22 000 large dams (but only 22 before 1949), China is the largest dam-building country; by way , and Zehao Shen7 The Three Gorges Dam in China is the largest dam ever built. Its impacts on the biodiversity

Wu, Jianguo "Jingle"

229

Uplift Pressures, Shear Strengths, and Tensile Strengths for Stability Analysis of Concrete Gravity Dams: Volume 1  

Science Conference Proceedings (OSTI)

Using generic values in stability analyses of existing concrete dams can result in expensive and unnecessary remedial work. The information in this report will help dam owners predict dam stability under extreme loading conditions and identify the conditions that control uplift pressure distributions at study dams.

1992-08-01T23:59:59.000Z

230

Under consideration for publication in J. Fluid Mech. 1 Dam breaking seiches  

E-Print Network (OSTI)

of the dam is m, and g is gravity, the equation of motion for the dam's position can be written #12;Seiches Benjamin (1955), if the dam's edge is relatively sharp, gravity is negligible, and the outflow is similar assembly. As the dam moves up and down, and the assembly rotates, the component of gravity acting

Balmforth, Neil

231

Program Highlights Index  

NLE Websites -- All DOE Office Websites (Extended Search)

Program Highlights Index Program Highlights Index Disposal of Greater-than-Class C Low-Level Radioactive Waste Ecological Risk Assessment of Chemically and Radiologically Contaminated Federal Sites Energy Zone Planning Tool for the Eastern United States Environmental Site Characterization and Remediation at Former Grain Storage Sites Evaluation of Risks of Aquatic Nuisance Species Transfer via the Chicago Area Waterway System Formerly Utilized Sites Remedial Action Program (FUSRAP) Glen Canyon Dam Long-Term Experimental and Management Plan EIS Highly Enriched Uranium Transparency Program Management of Naturally Occurring Radioactive Material (NORM) Generated by the Petroleum Industry Mobile Climate Observatory for Atmospheric Aerosols in India Mobile Climate Observatory on the Pacific

232

Route-Specific Passage Proportions and Survival Rates for Fish Passing through John Day Dam, The Dalles Dam, and Bonneville Dam in 2010 and 2011  

DOE Green Energy (OSTI)

This report fulfills a request of the U.S. Army Engineer District, Portland, Oregon, to produce an interim report of estimates of route-specific fish passage proportions and survival rates for lower Columbia River dams in 2010 and 2011. The estimates are needed to update the Compass Model for the Columbia River Treaty and the new Biological Opinion before detail technical reports are published in late 2012. This report tabulates route-specific fish-passage proportions and survival rates for steelhead and Chinook salmon smolts passing through various sampled routes at John Day Dam, The Dalles Dam, and Bonneville Dam in 2010 and 2011. Results were compiled from analyses of data acquired in spring 2010 and 2011 studies that were specifically designed to estimate dam-passage and forebay-to-tailrace survival rates, travel time metrics, and spill passage efficiency, as stipulated by the 2008 Federal Columbia River Power System Biological Opinion and the Columbia Basin Fish Accords. The study designs allowed for estimation of route-specific fish passage proportions and survival rates as well as estimation of forebay-passage survival, all of which are summarized herein.

Ploskey, Gene R.; Weiland, Mark A.; Carlson, Thomas J.

2012-06-04T23:59:59.000Z

233

Rules and Regulations for Dam Safety (Rhode Island)  

Energy.gov (U.S. Department of Energy (DOE))

These rules and regulations seek to provide for the safety of dams to protect the public, real property, and natural resources by establishing reasonable standards and creating a public record for...

234

Libby Dam Wildlife Habitat Enhancement, 1992 Final Report.  

DOE Green Energy (OSTI)

This is the final report of a project that was initiated in September, 1984 to mitigate for the loss of big game winter and spring range by the Libby Dam hydroelectric facility.

Holifield, Jennifer; Komac, Ron (Kootenai National Forest, Fisher River Ranger District, Libby MT)

1993-03-01T23:59:59.000Z

235

Microsoft Word - Appendix H - Emergency Response Plan for Dams...  

Office of Legacy Management (LM)

H Emergency Response Plan for the Rocky Flats Site Dams This page intentionally left blank LMSRFSS04533-3.0 Rocky Flats, Colorado, Site Emergency Response Plan for the Rocky...

236

Centrifuge Modeling and Analysis of Concrete Gravity Dams  

Science Conference Proceedings (OSTI)

This report contains general background information on centrifuge experimentation and linear elastic fracture mechanics pertaining to concrete gravity dam models, and explains in detail the experimental methodology and procedures developed for testing concrete gravity dam models in centrifuges. An important detail in the experimental procedure is that the models are loaded upstream with water and, at fracture, have water uplift pressure within any cracks. Finally, test results and comparisons to analytic...

1995-12-14T23:59:59.000Z

237

Tertiary oxidation in Westwater Canyon member of Morrison formation  

SciTech Connect

Hematitic oxidation in the Westwater Canyon Sandstone Member of the Morrison Formation extends along the outcrop from the Pipeline fault northeast of Gallup, New Mexico, to the San Mateo fault north of Grants, New Mexico. The hematitic sandstone forms a broad lobe in the subsurface to a depth of 2,400 ft (730 m). The downdip edge of this sandstone arcs eastward from northeast Church Rock through Crownpoint, and southeastward to the west edge of the Ambrosia Lake district. The red sandstone is bordered on the downdip side by a band of limonitic oxidation, which interfingers with reduced sandstones basinward. The limonitic oxidation forms a relatively narrow band along the north and west sides of the hematitic lobe but expands progressively in an east and southeast direction. Weak limonitic oxidation, as indicated by the absence of pyrite and by a bleached to faint yellowish-gray color, appears to extend from the San Mateo fault eastward under Mount Taylor to the Rio Puerco of the east. The hematitic oxidation is epigenetic and is believed to be of early Miocene to late Pliocene age. The limonitic oxidation follows the present ground-water flow pattern and probably dates from late Pliocene to the Holocene. The oxidation patterns are important in uranium exploration because the hematitic area is essentially barren, whereas the limonitic areas contain ore deposits that are in the process of being destroyed by oxidation.

Saucier, A.E.

1980-01-01T23:59:59.000Z

238

"1. Nine Mile Point","Gas","Entergy Louisiana Inc",1756 "2. Willow Glen","Gas","Entergy Gulf States Louisiana LLC",1752  

U.S. Energy Information Administration (EIA) Indexed Site

Louisiana" Louisiana" "1. Nine Mile Point","Gas","Entergy Louisiana Inc",1756 "2. Willow Glen","Gas","Entergy Gulf States Louisiana LLC",1752 "3. Big Cajun 2","Coal","Louisiana Generating LLC",1743 "4. Brame Energy Center","Coal","Cleco Power LLC",1423 "5. R S Nelson","Coal","Entergy Gulf States Louisiana LLC",1366 "6. Little Gypsy","Gas","Entergy Louisiana Inc",1170 "7. Waterford 3","Nuclear","Entergy Louisiana Inc",1168 "8. Acadia Energy Center","Gas","Acadia Power Partners",1063 "9. River Bend","Nuclear","Entergy Gulf States Louisiana LLC",974

239

Temporary Restoration of Bull Trout Passage at Albeni Falls Dam  

DOE Green Energy (OSTI)

This study was designed to monitor movements of bull trout that were provided passage above Albeni Falls Dam, Pend Oreille River. Electrofishing and angling were used to collect bull trout below the dam. Tissue samples were collected from each bull trout and sent to the U. S. Fish and Wildlife Service Abernathy Fish Technology Center Conservation Genetics Lab, Washington. The DNA extracted from tissue samples were compared to a catalog of bull trout population DNA from the Priest River drainage, Lake Pend Oreille tributaries, and the Clark Fork drainage to determine the most probable tributary of origin. A combined acoustic radio or radio tag was implanted in each fish prior to being transported and released above the dam. Bull trout relocated above the dam were able to volitionally migrate into their natal tributary, drop back downstream, or migrate upstream to the next dam. A combination of stationary radio receiving stations and tracking via aircraft, boat, and vehicle were used to monitor the movement of tagged fish to determine if the spawning tributary it selected matched the tributary assigned from the genetic analysis. Seven bull trout were captured during electrofishing surveys in 2008. Of these seven, four were tagged and relocated above the dam. Two were tagged and left below the dam as part of a study monitoring movements below the dam. One was immature and too small at the time of capture to implant a tracking tag. All four fish released above the dam passed by stationary receivers stations leading into Lake Pend Oreille and no fish dropped back below the dam. One of the radio tags was recovered in the tributary corresponding with the results of the genetic test. Another fish was located in the vicinity of its assigned tributary, which was impassable due to low water discharge at its mouth. Two fish have not been located since entering the lake. Of these fish, one was immature and not expected to enter its natal tributary in the fall of 2008. The other fish was large enough to be mature, but at the time of capture its sex was unable to be determined, indicating it may not have been mature at the time of capture. These fish are expected to enter their natal tributaries in early summer or fall of 2009.

Paluch, Mark; Scholz, Allan; McLellan, Holly [Eastern Washington University Department of Biology; Olson, Jason [Kalispel Tribe of Indians Natural Resources Department

2009-07-13T23:59:59.000Z

240

Division of Water, Part 673: Dam Safety Regulations (New York) | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

3: Dam Safety Regulations (New York) 3: Dam Safety Regulations (New York) Division of Water, Part 673: Dam Safety Regulations (New York) < Back Eligibility Fed. Government Industrial Investor-Owned Utility Local Government Municipal/Public Utility Rural Electric Cooperative State/Provincial Govt Tribal Government Utility Savings Category Water Buying & Making Electricity Home Weatherization Program Info State New York Program Type Safety and Operational Guidelines Provider NY Department of Environmental Conservation These regulations address dam safety, define dam hazard categories and inspection procedures, and apply to any owner of a dam. Dam owners are required to maintain dams in a safe condition at all times and to comply with Department inquiries for information on the status of a given dam

Note: This page contains sample records for the topic "glen canyon dam" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Resident Fish Stock Status above Chief Joseph and Grand Coulee Dams; 2002-2003 Annual Report.  

DOE Green Energy (OSTI)

In 1980, the United States Congress enacted the Northwest Power Planning and Conservation Act (PL 96-501, 1980), which established the Northwest Power and Conservation Council (NPCC), formerly the Northwest Power Planning Council. The NPCC was directed by Congress to develop a regional Power Plan and also the Columbia River Basin Fish and Wildlife Program (FWP) to restore or replace losses of fish caused by construction and operation of hydroelectric dams in the Columbia River Basin. In developing the FWP, Congress specifically directed NPCC to solicit recommendations for measures to be included in the Program from the region's fish and wildlife agencies and Indian tribes. All measures adopted by the Council were also required to be consistent with the management objectives of the agencies and tribes [Section 4.(h)(6)(A)], the legal rights of Indian tribes in the region [Section 4.(h)(6)(D)] and be based upon and supported by the best available scientific knowledge [Section 4.(h)(6)(B)]. The Resident Fish Stock Status above Chief Joseph and Grand Coulee Dams Project, also known as the Joint Stock Assessment Project (JSAP) specifically addresses NPPC Council measure 10.8B.26 of the 1994 program. The Joint Stock Assessment Project is a management tool using ecosystem principles to manage artificial and native fish assemblages in altered environments existing in the Columbia River System above Chief Joseph and Grand Coulee Dams (Blocked Area). A three-phase approach of this project will enhance the fisheries resources of the Blocked Area by identifying data gaps, filling data gaps with research, and implementing management recommendations based on research results. The Blocked Area fisheries information is housed in a central location, allowing managers to view the entire system while making decisions, rather than basing management decisions on isolated portions of the system. The JSAP is designed and guided jointly by fisheries managers in the Blocked Area. The initial year of the project (1997) identified the need for a central data storage and analysis facility, coordination with the StreamNet project, compilation of Blocked Area fisheries information, and a report on the ecological condition of the Spokane River System. These needs were addressed in 1998 by acquiring a central location with a data storage and analysis system, coordinating a pilot project with StreamNet, compiling fisheries distribution data throughout the Blocked Area, identifying data gaps based on compiled information, and researching the ecological condition of the Spokane River. In order to ensure that any additional information collected throughout the life of this project will be easily stored and manipulated by the central storage facility, it was necessary to develop standardized methodologies between the JSAP fisheries managers. Common collection and analytical methodologies were developed in 1999. The project began addressing identified data gaps throughout the Blocked Area in 1999. Data collection of established projects and a variety of newly developed sampling projects are ongoing. Projects developed and undertaken by JSAP fisheries managers include investigations of the Pend Orielle River and its tributaries, the Little Spokane River and its tributaries, and water bodies within and near the Spokane Indian Reservation. Migration patterns of adfluvial and reservoir fish in Box Canyon Reservoir and its tributaries, a baseline assessment of Boundary Reservoir and its tributaries, ecological assessment of mountain lakes in Pend Oreille County, and assessments of streams and lakes on the Spokane Indian Reservation were completed by 2001. Assessments of the Little Spokane River and its tributaries, Spokane River below Spokane Falls, tributaries to the Pend Oreille River, small lakes in Pend Oreille County, WA, and water bodies within and near the Spokane Indian Reservation were conducted in 2002 and 2003. This work was done in accordance with the scope of work approved by Bonneville Power Administration (BPA).

Connor, Jason M. (Kalispel Tribe of Indians, Usk, WA); McLellan, Jason G. (Washington Department of Fish and Wildlife); Butler, Chris (Spokane Tribe of Indians, Wellpinit, WA)

2006-02-01T23:59:59.000Z

242

Resident Fish Stock above Chief Joseph and Grand Coulee Dams; 2002 Annual Report.  

DOE Green Energy (OSTI)

In 1980, the United States Congress enacted the Northwest Power Planning and Conservation Act (PL 96-501, 1980), which established the Northwest Power and Conservation Council (NPCC), formerly the Northwest Power Planning Council. The NPCC was directed by Congress to develop a regional Power Plan and also the Columbia River Basin Fish and Wildlife Program (FWP) to restore or replace losses of fish caused by construction and operation of hydroelectric dams in the Columbia River Basin. In developing the FWP, Congress specifically directed NPCC to solicit recommendations for measures to be included in the Program from the region's fish and wildlife agencies and Indian tribes. All measures adopted by the Council were also required to be consistent with the management objectives of the agencies and tribes [Section 4.(h)(6)(A)], the legal rights of Indian tribes in the region [Section 4.(h)(6)(D)] and be based upon and supported by the best available scientific knowledge [Section 4.(h)(6)(B)]. The Resident Fish Stock Status above Chief Joseph and Grand Coulee Dams Project, also known as the Joint Stock Assessment Project (JSAP) specifically addresses NPPC Council measure 10.8B.26 of the 1994 program. The Joint Stock Assessment Project is a management tool using ecosystem principles to manage artificial fish assemblages and native fish in altered environments existing in the Columbia River System above Chief Joseph and Grand Coulee Dams (Blocked Area). A three-phase approach of this project will enhance the fisheries resources of the Blocked Area by identifying data gaps, filling data gaps with research, and implementing management recommendations based on research results. The Blocked Area fisheries information is housed in a central location, allowing managers to view the entire system while making decisions, rather than basing management decisions on isolated portions of the system. The JSAP is designed and guided jointly by fisheries managers in the Blocked Area. The initial year of the project (1997) identified the need for a central data storage and analysis facility, coordination with the StreamNet project, compilation of Blocked Area fisheries information, and a report on the ecological condition of the Spokane River System. These needs were addressed in 1998 by acquiring a central location with a data storage and analysis system, coordinating a pilot project with StreamNet, compiling fisheries distribution data throughout the Blocked Area, identifying data gaps based on compiled information, and researching the ecological condition of the Spokane River. In order to ensure that any additional information collected throughout the life of this project will be easily stored and manipulated by the central storage facility, it was necessary to develop standardized methodologies between the JSAP fisheries managers. Common collection and analytical methodologies were developed in 1999. In 1999, 2000, and 2001 the project began addressing some of the identified data gaps throughout the Blocked Area. Data collection of established projects and a variety of newly developed sampling projects are ongoing. Projects developed and undertaken by JSAP fisheries managers include investigations of the Pend Orielle River and its tributaries, the Little Spokane River and its tributaries, and water bodies within and near the Spokane Indian Reservation. Migration patterns of adfluvial and reservoir fish in Box Canyon Reservoir and its tributaries, a baseline assessment of Boundary Reservoir and its tributaries, ecological assessment of mountain lakes in Pend Oreille County, and assessments of streams and lakes on the Spokane Indian Reservation were completed by 2001. Assessments of the Little Spokane River and its tributaries, tributaries to the Pend Oreille River, small lakes in Pend Oreille County, WA, and water bodies within and near the Spokane Indian Reservation were conducted in 2002. This work was done in accordance with the scope of work approved by Bonneville Power Administration (BPA).

Connor, Jason M. (Kalispel Department of Natural Resources, Usk, WA); McLellan, Jason G. (Washington Department of Fish and Wildlife, Spokane, WA); Butler, Chris (Spokane Tribe of Indians, Department of Natural Resources, Wellpinit, WA)

2003-09-01T23:59:59.000Z

243

Resident Fish Stock above Chief Joseph and Grand Coulee Dams; 2003-2004 Annual Report.  

DOE Green Energy (OSTI)

In 1980, the United States Congress enacted the Northwest Power Planning and Conservation Act (PL 96-501, 1980), which established the Northwest Power and Conservation Council (NPCC), formerly the Northwest Power Planning Council. The NPCC was directed by Congress to develop a regional Power Plan and also the Columbia River Basin Fish and Wildlife Program (FWP) to restore or replace losses of fish caused by construction and operation of hydroelectric dams in the Columbia River Basin. In developing the FWP, Congress specifically directed NPCC to solicit recommendations for measures to be included in the Program from the region's fish and wildlife agencies and Indian tribes. All measures adopted by the Council were also required to be consistent with the management objectives of the agencies and tribes [Section 4.(h)(6)(A)], the legal rights of Indian tribes in the region [Section 4.(h)(6)(D)] and be based upon and supported by the best available scientific knowledge [Section 4.(h)(6)(B)]. The Resident Fish Stock Status above Chief Joseph and Grand Coulee Dams Project, also known as the Joint Stock Assessment Project (JSAP) specifically addresses NPPC Council measure 10.8B.26 of the 1994 program. The Joint Stock Assessment Project is a management tool using ecosystem principles to manage artificial and native fish assemblages in altered environments existing in the Columbia River System above Chief Joseph and Grand Coulee Dams (Blocked Area). A three-phase approach of this project will enhance the fisheries resources of the Blocked Area by identifying data gaps, filling data gaps with research, and implementing management recommendations based on research results. The Blocked Area fisheries information is housed in a central location, allowing managers to view the entire system while making decisions, rather than basing management decisions on isolated portions of the system. The JSAP is designed and guided jointly by fisheries managers in the Blocked Area. The initial year of the project (1997) identified the need for a central data storage and analysis facility, coordination with the StreamNet project, compilation of Blocked Area fisheries information, and a report on the ecological condition of the Spokane River System. These needs were addressed in 1998 by acquiring a central location with a data storage and analysis system, coordinating a pilot project with StreamNet, compiling fisheries distribution data throughout the Blocked Area, identifying data gaps based on compiled information, and researching the ecological condition of the Spokane River. In order to ensure that any additional information collected throughout the life of this project will be easily stored and manipulated by the central storage facility, it was necessary to develop standardized methodologies between the JSAP fisheries managers. Common collection and analytical methodologies were developed in 1999. The project began addressing identified data gaps throughout the Blocked Area in 1999. Data collection of established projects and a variety of newly developed sampling projects are ongoing. Projects developed and undertaken by JSAP fisheries managers include investigations of the Pend Orielle River and its tributaries, the Little Spokane River and its tributaries, and water bodies within and near the Spokane Indian Reservation. Migration patterns of adfluvial and reservoir fish in Box Canyon Reservoir and its tributaries, a baseline assessment of Boundary Reservoir and its tributaries, ecological assessment of mountain lakes in Pend Oreille County, and assessments of streams and lakes on the Spokane Indian Reservation were completed by 2001. Assessments of the Little Spokane River and its tributaries, Spokane River below Spokane Falls, tributaries to the Pend Oreille River, small lakes in Pend Oreille County, WA, and water bodies within and near the Spokane Indian Reservation were conducted in 2002 and 2003. This work was done in accordance with the scope of work approved by Bonneville Power Administration (BPA).

Connor, Jason M. (Kalispel Tribe of Indians, Usk, WA); McLellan, Jason G. (Washington Department of Fish and Wildlife, Olympia, WA); Butler, Chris (Spokane Tribe of Indians, Wellpinit, WA)

2005-11-01T23:59:59.000Z

244

Resident Fish Stock Status above Chief Joseph and Grand Coulee Dams; 2001 Annual Report.  

DOE Green Energy (OSTI)

In 1980, the United States Congress enacted the Northwest Power Planning and Conservation Act (PL 96-501, 1980), which established the Northwest Power Planning Council (NPPC). The NPPC was directed by Congress to develop a regional Power Plan and also the Columbia River Basin Fish and Wildlife Program (FWP) to restore or replace losses of fish caused by construction and operation of hydroelectric dams in the Columbia River Basin. In developing the FWP, Congress specifically directed NPPC to solicit recommendations for measures to be included in the Program from the region's fish and wildlife agencies and Indian tribes. All measures adopted by the Council were also required to be consistent with the management objectives of the agencies and tribes [Section 4.(h)(6)(A)], the legal rights of Indian tribes in the region [Section 4.(h)(6)(D)] and be based upon and supported by the best available scientific knowledge [Section 4.(h)(6)(B)]. The Resident Fish Stock Status above Chief Joseph and Grand Coulee Dams Project, also known as the Joint Stock Assessment Project (JSAP) specifically addresses NPPC Council measure 10.8B.26 of the 1994 program. The Joint Stock Assessment Project is a management tool using ecosystem principles to manage artificial fish assemblages and native fish in altered environments existing in the Columbia River System above Chief Joseph and Grand Coulee Dams (Blocked Area). A three-phase approach of this project will enhance the fisheries resources of the Blocked Area by identifying data gaps, filling data gaps with research, and implementing management recommendations based on research results. The Blocked Area fisheries information is housed in a central location, allowing managers to view the entire system while making decisions, rather than basing management decisions on isolated portions of the system. The JSAP is designed and guided jointly by fisheries managers in the Blocked Area and the Columbia Basin Blocked Area Management Plan (1998). The initial year of the project (1997) identified the need for a central data storage and analysis facility, coordination with the StreamNet project, compilation of Blocked Area fisheries information, and a report on the ecological condition of the Spokane River System. These needs were addressed in 1998 by acquiring a central location with a data storage and analysis system, coordinating a pilot project with StreamNet, compiling fisheries distribution data throughout the Blocked Area, identifying data gaps based on compiled information, and researching the ecological condition of the Spokane River. In order to ensure that any additional information collected throughout the life of this project will be easily stored and manipulated by the central storage facility, it was necessary to develop standardized methodologies between the JSAP fisheries managers. Common collection and analytical methodologies were developed in 1999. In 1999, 2000, and 2001 the project began addressing some of the identified data gaps throughout the Blocked Area. Data collection of established projects and a variety of newly developed sampling projects are ongoing. Projects developed and undertaken by JSAP fisheries managers include investigations of the Pend Orielle River and its tributaries, the Little Spokane River and its tributaries, and water bodies within and near the Spokane Indian Reservation. Migration patterns of adfluvial and reservoir fish in Box Canyon Reservoir and its tributaries, a baseline assessment of Boundary Reservoir and its tributaries, ecological assessment of mountain lakes in Pend Oreille County, and assessments of seven streams and four lakes on the Spokane Indian Reservation were completed by 2000. Assessments of the Little Spokane River and its tributaries, tributaries to the Pend Oreille River, small lakes in southern Pend Oreille County, and water bodies within and near the Spokane Indian Reservation were conducted in 2001. This work was done in accordance with the scope of work approved by Bonneville Power Administration (BPA).

Connor, Jason M. (Kalispell Department of Natural Resources, Usk, WA); McLellan, Jason G. (Washington Department of Fish and Wildlife, Spokane, WA); O'Connor, Dick (Washington Department of Fish and Wildlife, Olympia, WA)

2003-01-01T23:59:59.000Z

245

Flow Patterns at the Ends of a Street Canyon: Measurements from the Joint Urban 2003 Field Experiment  

Science Conference Proceedings (OSTI)

During the Joint Urban 2003 experiment held in Oklahoma City, Oklahoma, an eastwest-running street canyon was heavily instrumented with wind sensors. In this paper, the flow patterns at the street canyon ends are investigated by looking at sonic ...

Suhas U. Pol; Michael J. Brown

2008-05-01T23:59:59.000Z

246

Green Canyon Hot Springs Pool & Spa Low Temperature Geothermal Facility |  

Open Energy Info (EERE)

Green Canyon Hot Springs Pool & Spa Low Temperature Geothermal Facility Green Canyon Hot Springs Pool & Spa Low Temperature Geothermal Facility Facility Green Canyon Hot Springs Sector Geothermal energy Type Pool and Spa Location Newdale, Idaho Coordinates 43.8832463°, -111.6063483° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

247

DOE - Office of Legacy Management -- White Canyon AEC Ore Buying Station -  

NLE Websites -- All DOE Office Websites (Extended Search)

White Canyon AEC Ore Buying Station White Canyon AEC Ore Buying Station - UT 04 FUSRAP Considered Sites Site: White Canyon AEC Ore Buying Station (UT.04) Designated Name: Alternate Name: Location: Evaluation Year: Site Operations: Site Disposition: Radioactive Materials Handled: Primary Radioactive Materials Handled: Radiological Survey(s): Site Status: The history of domestic uranium procurement under U.S. Atomic Energy Commission (AEC) contracts identifies a number of ore buying stations (sampling and storage sites) that were operated during the period late-1949 through the mid-1960s. During this period the AEC established ore-buying stations in new uranium producing areas where it appeared that ore production would be sufficient to support a uranium milling operation. The

248

Microsoft Word - CX-BadgerCanyon-RichlandNo1_WoodPoles_FY13.docx  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

7, 2013 7, 2013 REPLY TO ATTN OF: KEPR/Pasco SUBJECT: Environmental Clearance Memorandum Walker Miller Electrical Engineer - TPCF-W RICHLAND Proposed Action: Wood pole replacements on the Badger Canyon-Richland #1 transmission line PP&A Project No.: 2670 Categorical Exclusion Applied (from Subpart D, 10 C.F.R. Part 1021): B1.3 Routine maintenance activities. Location: City of Richland, Benton County, WA Transmission Line/ROW Structure # Township Range Section County, State Badger Canyon-Richland #1 4/9 and 4/10 9N 28E 26 Benton, WA Proposed by: Bonneville Power Administration (BPA) Description of the Proposed Action: BPA, at the expense of the City of Richland, proposes to raise structures 4/9 and 4/10 of the Badger Canyon-Richland #1 115-kilovolt transmission line to

249

Attachments for fire modeling for Building 221-T, T Plant canyon deck and railroad tunnel  

SciTech Connect

The purpose of this attachment is to provide historical information and documentation for Document No. WHC-SD-CP-ANAL-008 Rev 0, ``Fire Modeling for Building 221-T--T Plant Canyon Deck and Railroad Tunnel``, dated September 29, 1994. This data compilation contains the following: Resumes of the Technical Director, Senior Engineer and Junior Engineer; Review and Comment Record; Software Files; CFAST Input and Output Files; Calculation Control Sheets; and Estimating Sprinkler Actuation Time in the Canyon and Railroad Tunnel. The T Plant was originally a fuel reprocessing facility. It was modified later to decontaminate and repair PuRex process equipment.

Oar, D.L. [Westinghouse Hanford Co., Richland, WA (United States)

1995-01-23T23:59:59.000Z

250

Four Dam Pool Power Agency FDPPA | Open Energy Information  

Open Energy Info (EERE)

Dam Pool Power Agency FDPPA Dam Pool Power Agency FDPPA Jump to: navigation, search Name Four Dam Pool Power Agency (FDPPA) Place Anchorage, Alaska Zip 99515 Sector Hydro Product Joint action agency consisting of four hydroelectric projects that was organized by five electric cooperatives that purchase power from the facilities. Coordinates 38.264985°, -85.539014° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.264985,"lon":-85.539014,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

251

Ninety-Nine-Year Sediment Yield Record of the Middle Cuyahoga River Watershed Contained Within the Ohio Edison Dam Pool.  

E-Print Network (OSTI)

??The 17.4 m tall Ohio Edison Dam was constructed in 1912 on the Cuyahoga River near the city of Akron, Ohio. The dam was installed (more)

Mann, Kristofer Clayton

2012-01-01T23:59:59.000Z

252

Canyon dissolution of sand, slag, and crucible residues  

Science Conference Proceedings (OSTI)

An alternative to the FB-Line scrap recovery dissolver was desired for the dissolution of sand, slag, and crucible (SS{ampersand}C) residues from the plutonium reduction process due to the potential generation of hydrogen gas concentrations above the lower flammability limit. To address this concern, a flowsheet was developed for the F-Canyon dissolvers. The dissolvers are continually purged with nominally 33 SCFM of air; therefore the generation of flammable gas concentrations should not be a concern. Following removal of crucible fragments, small batches of the remaining sand fines or slag chunks containing less than approximately 350 grams of plutonium can be dissolved using the center insert in each of the four annular dissolver ports to address nuclear criticality safety concerns. Complete dissolution of the sand fines and slag chunks was achieved in laboratory experiments by heating between 75 and 85 degrees Celsius in a 9.3M nitric acid/0.013M (hydrogen) fluoride solution. Under these conditions, the sand and slag samples dissolved between 1 and 3 hours. Complete dissolution of plutonium and calcium fluorides in the slag required adjusting the dissolver solution to 7.5 wt% aluminum nitrate nonahydrate (ANN). Once ANN was added to a dissolver solution, further dissolution of any plutonium oxide (PuO2) in successive charges was not practical due to complexation of the fluoride by aluminum. During the laboratory experiments, well mixed solutions were necessary to achieve rapid dissolution rates. When agitation was not provided, sand fines dissolved very slowly. Measurement of the hydrogen gas generation rate during dissolution of slag samples was used to estimate the amount of metal in the chunks. Depending upon the yield of the reduction, the values ranged between approximately 1 (good yield) and 20% (poor yield). Aging of the slag will reduce the potential for hydrogen generation as calcium metal oxidizes over time. The potential for excessive corrosion in the dissolvers was evaluated using experimental data reported in the literature. Corrosion data at the exact flowsheet conditions were not available; however, the corrosion rate for 304L stainless steel (wrought material) corrosion coupons in 10M nitric acid/0.01M hydrofluoric acid at 95 degrees Celsius was reported as 21 mils per year. If the fluoride in the dissolver is complexed with aluminum, the corrosion rate will decrease to approximately 5 mils per year.

Rudisill, T.S.; Gray, J.H.; Karraker, D.G.; Chandler, G.T.

1997-12-01T23:59:59.000Z

253

The Effects of Subcloud-Layer Diabatic Processes on Cold Air Damming  

Science Conference Proceedings (OSTI)

The hypothesis that clouds and precipitation enhance cold air damming is examined. A case example of cloud/precipitation-induced enhancement of damming is presented and a conceptual model is proposed.

J. M. Fritsch; J. Kapolka; P. A. Hirschberg

1992-01-01T23:59:59.000Z

254

Mills, Dams, and Reservoirs (Massachusetts) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

You are here You are here Home » Mills, Dams, and Reservoirs (Massachusetts) Mills, Dams, and Reservoirs (Massachusetts) < Back Eligibility Agricultural Commercial Construction Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Savings Category Water Buying & Making Electricity Home Weatherization Program Info State Massachusetts Program Type Siting and Permitting Provider Department of Conservation and Recreation This chapter of the Massachusetts General Laws outlines procedures to

255

The Sensor Fish - Making Dams More Salmon-Friendly  

DOE Green Energy (OSTI)

This article describes the Sensor Fish, an instrument package that travels through hydroelectric dams collecting data on the hazardous conditions that migrating salmon smolt encounter. The Sensor Fish was developed by Pacific Northwest National Laboratory with funding from DOE and the US Army Corps of Engineers and has been used at several federal and utility-run hydroelectric projects on the Snake and Columbia Rivers of the US Pacific Northwest. The article describes the evolution of the Sensor Fish design and provides examples of its use at McNary and Ice Harbor dams.

Carlson, Thomas J.; Duncan, Joanne P.; Gilbride, Theresa L.; Keilman, Geogre

2004-07-31T23:59:59.000Z

256

Compliance Monitoring of Subyearling Chinook Salmon Smolt Survival and Passage at Bonneville Dam, Summer 2012  

SciTech Connect

The purpose of this compliance study was to estimate dam passage survival of subyearling Chinook salmon at Bonneville Dam during summer 2012, as required by the 2008 Federal Columbia River Power System Biological Opinion. The study also estimated smolt passage survival from the forebay 2 km upstream of the dam to the tailrace 1 km below the dam, as well as forebay residence time, tailrace egress, and spill passage efficiency, as required in the 2008 Columbia Basin Fish Accords.

Skalski, J. R.; Townsend, Richard L.; Seaburg, Adam; Ploskey, Gene R.; Weiland, Mark A.; Hughes, James S.; Woodley, Christa M.; Deng, Zhiqun; Carlson, Thomas J.

2013-05-01T23:59:59.000Z

257

Proposed construction of Priest Rapids Dam in relation to Hanford Works  

DOE Green Energy (OSTI)

This paper summarizes the proposed construction of the Priest Rapids Dam on the Columbia River by the Atomic Energy Commission. Power generation to the Hanford Works and flood control for the surrounding area is the main goal for the construction of the dam. The summary covers the feasibility of the dam from its design, operation, benefits, security, drawbacks, etc.

Smothers, S.A.

1953-01-07T23:59:59.000Z

258

Location-based services to control roller compaction quality for rock-fill dams  

Science Conference Proceedings (OSTI)

It is very important for rock-fill dams to carry out more accurately monitoring and remotely quality controlling in real time. Based on location based services, an integration platform, with the name of CRCQ-DAM, is proposed to control roller compaction ... Keywords: RTK, WebGIS, location-based services, rock-fill dams, roller compaction quality

Hao Wu; Qiankun Wang; Jiru Zhang; Qin Chen; Xupeng Wang

2009-09-01T23:59:59.000Z

259

ANCOLD 2000 Conference on Dams 1 ADVANCES IN THE PRACTICE AND USE OF  

E-Print Network (OSTI)

in 1934, · 200-foot-high by 381-foot-long concrete arch dam, over 500 long with gravity and earth fill Montana Energy Policy Analyst SUBJECT: Briefing on the transfer of Kerr Dam The Confederated Salish and Kootenai Tribes (CSKT) have been the co-licensee for Kerr Dam since 1985. This relationship has been

Bowles, David S.

260

PORTFOLIO RISK ASSESSMENT OF SA WATER'S LARGE DAMS by David S. Bowles1  

E-Print Network (OSTI)

dimensions [5] and high pressure and gravity die-casting [6,7]. Since the two-dimensional dam ridges. Water from the dam flows through the valley and into the sea under gravity. Immediately after-14 December 2001 Three-dimensional modelling of dam-break induced flows using Smoothed Particle Hydrodynamics

Bowles, David S.

Note: This page contains sample records for the topic "glen canyon dam" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

The Influence of Canyon Winds on Flow Fields near Colorado's Front Range  

Science Conference Proceedings (OSTI)

A network of sodars was operated in the late summer and fall of 1993 to monitor the occurrence of nocturnal winds from a canyon in Colorado's Front Range near the Rocky Flats Plant and to determine the influence of those winds on the flow fields ...

J. C. Doran

1996-04-01T23:59:59.000Z

262

Functional design criteria, Project W-059, B Plant Canyon ventilation upgrade  

SciTech Connect

This document outlines the essential functions and requirements to be included in the design of the proposed B Plant canyon exhaust system upgrade. The project will provide a new exhaust air filter system and isolate the old filters from the airstream.

Roege, P.E.

1995-03-02T23:59:59.000Z

263

Observations of Thermally Driven Wind Jets at the Exit of Weber Canyon, Utah  

Science Conference Proceedings (OSTI)

Thermally driven valley-exit jets were investigated at Utahs Weber Canyon, a main tributary of the Great Salt Lake basin. An intensive measurement campaign during JulySeptember 2010 supplemented longer-term measurements to characterize the wind ...

Morgan F. Chrust; C. David Whiteman; Sebastian W. Hoch

2013-05-01T23:59:59.000Z

264

The Dependence of Canyon Winds on Surface Cooling and External Forcing in Colorado's Front Range  

Science Conference Proceedings (OSTI)

The atmospheric katabatic flow in the foothills of the Front Range of the Rocky Mountains has been monitored by a network of towers and sodars for several years as part of the ASCOT program. The dependence of the outflow from Coal Creek Canyon on ...

Richard L. Coulter; Paul Gudiksen

1995-06-01T23:59:59.000Z

265

Optimizing hourly hydro operations at the Salt Lake City Area integrated projects  

DOE Green Energy (OSTI)

The Salt Lake City Area (SLCA) office of the Western Area Power Administration (Western) is responsible for marketing the capacity and energy generated by the Colorado Storage, Collbran, and Rio Grande hydropower projects. These federal resources are collectively called the Salt Lake City Area Integrated Projects (SLCA/IP). In recent years, stringent operational limitations have been placed on several of these hydropower plants including the Glen Canyon Dam, which accounts for approximately 80% of the SLCA/IP resources. Operational limitations on SLCA/IP hydropower plants continue to evolve as a result of decisions currently being made in the Glen Canyon Dam Environmental Impact Statement (EIS) and the Power Marketing EIS. To analyze a broad range of issues associated with many possible future operational restrictions, Argonne National Laboratory (ANL), with technical assistance from Western has developed the Hydro LP (Linear Program) Model. This model simulates hourly operations at SLCA/IP hydropower plants for weekly periods with the objective of maximizing Western`s net revenues. The model considers hydropower operations for the purpose of serving SLCA firm loads, loads for special projects, Inland Power Pool (IPP) spinning reserve requirements, and Western`s purchasing programs. The model estimates hourly SLCA/IP generation and spot market activities. For this paper, hourly SLCA/IP hydropower plant generation is simulated under three operational scenarios and three hydropower conditions. For each scenario an estimate of Western`s net revenue is computed.

Veselka, T.D.; Hamilton, S. [Argonne National Lab., IL (United States); McCoy, J. [Western Area Power Administration, Salt Lake City, UT (United States)

1995-06-01T23:59:59.000Z

266

Amphipods of the deep Mississippi Canyon, northern Gulf of Mexico: ecology and bioaccumulation of organic contaminants  

E-Print Network (OSTI)

In five summer cruises during the period 2000-2004, seventy-four box cores were collected from eleven locations from the Mississippi Canyon (480- 2750m, northern Gulf of Mexico), and an adjacent transect (336-2920) to understand the community structure and trophic function of amphipods and for measuring the bioaccumulation of polycyclic aromatic hydrocarbons, (PAHs). Amphipods were discovered to be an important component of the macrofauna of the Mississippi Canyon (40 % of the total faunal abundance). Seventy two species, belonging to nineteen families, were collected from the study area with 61 species from the canyon and only 38 species from the non-Canyon transect. The head of the canyon (480m) was dominated by dense mats (15,880 ind/m2) of a new amphipod (Ampelisca mississippiana). The logarithm of the amphipod abundance decreased linearly with depth. The species diversity (H`) exhibited a parabolic pattern with a maximum at 1100m. The differences in amphipod abundances and biodiversities were correlated with the variation in the amount of available organic matter. The depression in diversity in the canyon head is thought to be competitive exclusion resulting from the dominance by A.mississippiana, but the high species richness is presumed to be a function of the structural complexity of the canyon. Annual secondary production of A. mississippiana was 6.93 g dry wt m-2, based on size-frequency method and corresponding to an estimated univoltine generation from a regression model. The production/biomass ratio (P/B) was 3.11. Production of this magnitude is comparable to shallow marine ampeliscids but are high for the depauperate northern Gulf of Mexico. The effect of the organic contaminants and the bioavailability to the amphipods was determined through measuring the bioaccumulation of the PAHs. The distribution of PAHs in sediments was different from the distribution in the organisms suggesting preferential uptake/depuration or uptake from pore or bottom waters. The average bioaccumulation factor (4.36 2.55) and the biota sediment accumulation factor (0.240.13) for the total PAHs by the ampeliscids were within the range reported for other benthic invertebrates. The average bioaccumulation factors were highest for dibenzothiophenes (up to 132) and alkylated PAHs and lowest for parent high molecular weight PAHs.

Soliman, Yousria Soliman

2007-05-01T23:59:59.000Z

267

Enloe Dam Passage Project, Volume I, 1984 Annual Report.  

DOE Green Energy (OSTI)

This report discusses issues related to the provision of fish passage facilities at Enloe Dam and the introduction of anadromous salmonid fish to the upper Similkameen River basin. The species of fish being considered is a summer run of steelhead trout adapted to the upper Columbia basin. (ACR)

Fanning, M.L.

1985-07-01T23:59:59.000Z

268

REVIEW PLAN John Redmond Dam Reservoir, Coffee County, Kansas  

E-Print Network (OSTI)

............................................................................................................1 2. REVIEW MANAGEMENT ORGANIZATION (RMO) COORDINATION Report with Responses to HQ Comments and support for John Redmond Dam and Reservoir, Kansas. (6) CEWSL Statement (HQ Policy Compliance Review). (8) SWT-PE-P Memorandum 29 June 2009; Response to HQ Policy

US Army Corps of Engineers

269

An Analytic Model of Cold Air Damming and Its Applications  

Science Conference Proceedings (OSTI)

It is shown that the geometric shape of the cold dome in the two-layer model of cold air damming of Xu can be described approximately by a cubic polynomial and thus a set of coupled algebraic equations can be derived to quantify the scale and ...

Qin Xu; Shouting Gao

1995-02-01T23:59:59.000Z

270

Effects of the Ben Franklin Dam on the Hanford Site  

DOE Green Energy (OSTI)

A previous assessment of the effects of a Ben Franklin Dam on the Hanford Site made in 1967 was updated so that the potential adverse effects may be better understood in light of existing operations, current environmental and safety standards, and proposed facilities and operations. The major effects would probably arise from flooding of portions of the site by the reservoir associated with the dam and by the raising of the ground water table under the site. A preliminary analysis of the effects of the dam is presented, and a number of studies are recommended in order to fully evaluate and understand these potential impacts. The following seven tasks are identified and discussed: groundwater - hydrology analysis; soil liquefaction analysis; hydrostatic uplift and soil effects on structures; assessment of the potential for landsliding and sloughing; facility decommissioning; hydrothermal analysis; and, meteorological effects. Four other aspects commented upon in this report are: aquatic ecology, terrestrial ecology, socioeconomic effects, and public interaction. Possible effects on ongoing DOE-sponsored R and D are also noted. To the extent possible, cost estimates are developed for corrective actions which must be taken on the Hanford Site to accommodate the dam. Where this was not possible, appropriate courses of action leading to cost estimates are presented.

Harty, H.

1979-04-01T23:59:59.000Z

271

Hydroelectric power potential, Woonsocket Falls Dam, Woonsocket, Rhode Island  

DOE Green Energy (OSTI)

The feasibility of developing a hydroelectric power plant at an existing flood control dam of the city of Woonsocket, RI was examined considering environmental, economic, technical and engineering factors. It was concluded that the City should proceed with plans to develop a hydro plant. (LCL)

Daly, J C; Dowdell, R B; Kelly, W E; Koveos, P E; Krikorian, Jr, J S; Lengyel, G; Prince, M J; Seely, S; Tromp, L; Urish, D W

1979-01-01T23:59:59.000Z

272

No Van Dam-Veltman-Zakharov Discontinuity in Ads Space  

E-Print Network (OSTI)

We prove that the van Dam-Veltman-Zakharov discontinuity arising in the massless limit of massive gravity theories is peculiar to Minkowski space and it is not present in Anti De Sitter space, where the massless limit is smooth. More generally, the massless limit is smooth whenever the square of the graviton mass vanishes faster than the cosmological constant.

M. Porrati

2000-11-16T23:59:59.000Z

273

Aquatic macroinvertebrates and water quality of Sandia Canyon, Los Alamos National Laboratory, 1995  

Science Conference Proceedings (OSTI)

The Biology Team of ESH-20 (the Ecology Group) at Los Alamos National Laboratory (LANL) has collected samples from the stream within Sandia Canyon since the summer of 1990. These field studies measure water quality parameters and collect aquatic macroinvertebrates from sampling sites within the upper canyon stream. Reports by Bennett and Cross discuss previous aquatic studies in Sandia Canyon. This report updates and expands the previous findings. The Biology Team collected water quality data and aquatic macroinvertebrates monthly at three sampling stations within Sandia Canyon in 1995. The two upstream stations occur near a cattail (Typha latifolia) dominated marsh downstream from outfalls that discharge industrial and sanitary waste effluent into the stream, thereby maintaining year-round flow. The third station is approximately 1.5 miles downstream from the outfalls within a mixed conifer forest. All water chemistry parameters measured in Sandia Canyon during 1995 fell within acceptable State limits and scored in the {open_quotes}good{close_quotes} or {open_quotes}excellent{close_quotes} ranges when compared to an Environmental Quality Index. However, aquatic macroinvertebrates habitats have been degraded by widespread erosion, channelization, loss of wetlands due to deposition and stream lowering, scour, limited acceptable substrates, LANL releases and spills, and other stressors. Macroinvertebrate communities at all the stations had low diversities, low densities, and erratic numbers of individuals. These results indicate that although the stream possesses acceptable water chemistry, it has reduced biotic potential. The best developed aquatic community occurs at the sampling station with the best habitat and whose downstream location partially mitigates the effects of upstream impairments.

Cross, S.; Nottelman, H.

1997-01-01T23:59:59.000Z

274

Compliance Monitoring of Subyearling Chinook Salmon Survival and Passage at The Dalles Dam, Summer 2012  

SciTech Connect

The purpose of this compliance study was to estimate dam passage survival of subyearling Chinook salmon at The Dalles Dam during summer 2012. Under the 2008 Federal Columbia River Power System Biological Opinion, dam passage survival is required to be greater than or equal to 0.93 and estimated with a standard error (SE) less than or equal to 0.015. The study also estimated survival from the forebay 2 km upstream of the dam and through the tailrace to 2 km downstream of the dam, forebay residence time, tailrace egress time, spill passage efficiency (SPE), and fish passage efficiency (FPE), as required by the 2008 Columbia Basin Fish Accords.

Skalski, J. R.; Townsend, Richard L.; Seaburg, Adam; Ploskey, Gene R.; Weiland, Mark A.; Hughes, James S.; Woodley, Christa M.; Deng, Zhiqun; Carlson, Thomas J.; Johnson, Gary E.

2013-05-01T23:59:59.000Z

275

Proposed study program of the effects on Hanford of a dam at Columbia River mile 348  

DOE Green Energy (OSTI)

At the request of Hanford Operations Office, Atomic Energy Commission, a study was made of the effects on the Hanford Facilities of a navigation and power dam at Columbia River mile 348, about five miles upstream of the 300 Area. The original study was based on a nominal slack-water pool elevation of 395 to 400 feet at the dam location. A supplemental study evaluated the effects on plant facilities of a dam at the same location but with slack-water pool elevation of 385 feet. In addition to effects of the dam on Hanford, a study was performed to evaluate the effects the dam would have on the environment.

Jasko, R.T.

1959-06-30T23:59:59.000Z

276

10 Questions for a Computational Scientist: Kerstin Kleese-Van Dam |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

a Computational Scientist: Kerstin Kleese-Van Dam a Computational Scientist: Kerstin Kleese-Van Dam 10 Questions for a Computational Scientist: Kerstin Kleese-Van Dam June 9, 2011 - 4:35pm Addthis Kerstin Kleese-Van Dam Kerstin Kleese-Van Dam Niketa Kumar Niketa Kumar Public Affairs Specialist, Office of Public Affairs Science gave me the opportunity to contribute to addressing some of society's big challenges - climate change, environmental remediation, sustainable clean energy and secure power. Kerstin Kleese-Dam, Computational Scientist Meet Kerstin Kleese-Van Dam. At Pacific Northwest National Lab, she's a master of computers and data - covering a wide span of projects from genomic sciences and climate change to nanometer-scale imaging and power grids. She recently spent some time to give us the download on her many

277

Mr. Glen Sjoblom Deputy Director  

Office of Legacy Management (LM)

Safeguards. Safeguards. U. S. Nuclear Regulatory Comrii~~ibn .' Washington, D.C. 20555 Dear Mr. Sjoblom: Y As a part of its Formerly Utilized Sites Remedial Action Program (FUSRAP), the U. S. Department of Energy (DOE) is trying to identify all sites and facilities where radioactive materials were handled, processed or used in support of Manhattan Engineer. District (MED) and Atomic Energy Commission (AEC) activities from 1942 through the mid-1960's. ,The authority to conduct remed~ial action under FUSRAP, derived from the Atomic Energy Act of 1954, as amended, is limited to those sites operated prior to the establishment of AEC licensing requirements and at sites that were subsequently used but not licensed. The purpose of this'letter is .to advise of.actions being considered by the Department with

278

Mr. Glen Sjoblom Deputy Director  

Office of Legacy Management (LM)

Safeguards Safeguards U. S. Nuclear Regulatory Commission Washington, D.C. 20555 Dear Mr. Sjoblom: As a part of its Formerly Utilized Sites Remedial Action Progr; (FUSRAP), the U. S. Department of Energy (DOE) is trying to identify all sites and facilities where radioactive materials v handled, processed or used in support of Mahhattan Engineer District (MED) and Atomic Energy Commission (AEC) activities fl 1942 through the mid-1960's. The authority to conduct remedia' action under FUSRAP, derived from the Atomic Energy Act of 1951 as amended, is limited to those sites operated prior to the establishment of AEC licensing requirements and at sites that v subsequently used but not licensed. The purpose of this letter to advise of actions being considered by the Department with

279

Properties of the Wind Field within the Oklahoma City Park Avenue Street Canyon. Part I: Mean Flow and Turbulence Statistics  

Science Conference Proceedings (OSTI)

Velocity data were obtained from sonic anemometer measurements within an eastwest-running street canyon located in the urban core of Oklahoma City, Oklahoma, during the Joint Urban 2003 field campaign. These data were used to explore the ...

M. A. Nelson; E. R. Pardyjak; J. C. Klewicki; S. U. Pol; M. J. Brown

2007-12-01T23:59:59.000Z

280

Characterization of the Thermal Structure inside an Urban Canyon: Field Measurements and Validation of a Simple Model  

Science Conference Proceedings (OSTI)

The results of measurement campaigns are analyzed to investigate the thermal structure in an urban canyon and to validate a simplified model simulating the air and surface temperatures from surface energy budgets. Starting from measurements at ...

Lorenzo Giovannini; Dino Zardi; Massimiliano de Franceschi

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "glen canyon dam" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Observations of a Terrain-Forced Mesoscale Vortex and Canyon Drainage Flows along the Front Range of Colorado  

Science Conference Proceedings (OSTI)

Observations taken during the February 1991 Atmospheric Studies in Complex Terrain (ASCOT) Winter Validation Study are used to describe the wind field associated with a terrain-forced mesoscale vortex and thermally forced canyon drainage flows ...

David H. Levinson; Robert M. Banta

1995-07-01T23:59:59.000Z

282

Meteorological Processes Affecting the Transport of Emissions from the Navajo Generating Station to Grand Canyon National Park  

Science Conference Proceedings (OSTI)

During the 1990 Navajo Generating Station (NGS) Winter Visibility Study, a network of surface and upper-air meteorological measurement systems was operated in and around Grand Canyon National Park to investigate atmospheric processes in complex ...

Charles G. Lindsey; Jun Chen; Timothy S. Dye; L. Willard Richards; Donald L. Blumenthal

1999-08-01T23:59:59.000Z

283

A Large-Eddy Simulation Study of Thermal Effects on Turbulent Flow and Dispersion in and above a Street Canyon  

Science Conference Proceedings (OSTI)

Thermal effects on turbulent flow and dispersion in and above an idealized street canyon with a street aspect ratio of 1 are numerically investigated using the parallelized large-eddy simulation model (PALM). Each of upwind building wall, street ...

Seung-Bu Park; Jong-Jin Baik; Siegfried Raasch; Marcus Oliver Letzel

2012-05-01T23:59:59.000Z

284

Dam Construction and Maintenance (Minnesota) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Construction and Maintenance (Minnesota) Construction and Maintenance (Minnesota) Dam Construction and Maintenance (Minnesota) < Back Eligibility Utility Fed. Government Commercial Agricultural Investor-Owned Utility State/Provincial Govt Industrial Construction Municipal/Public Utility Local Government Residential Installer/Contractor Rural Electric Cooperative Tribal Government Low-Income Residential Schools Retail Supplier Institutional Multi-Family Residential Systems Integrator Fuel Distributor Nonprofit General Public/Consumer Transportation Savings Category Water Buying & Making Electricity Program Info State Minnesota Program Type Siting and Permitting Dams may be constructed, improved, or repaired on private, non-navigable waters subject to certain timelines; however, previously-developed hydropower mechanisms cannot be disrupted. The State may also choose to

285

Turbocharger with sliding piston, and having vanes and leakage dams  

Science Conference Proceedings (OSTI)

A turbocharger having a sliding piston for regulating exhaust gas flow into the turbine wheel includes a set of first vanes mounted on a fixed first wall of the turbine nozzle and projecting axially toward an opposite second wall of the nozzle, and/or a set of second vanes mounted on the end of the piston and projecting in an opposite axial direction toward the first wall of the nozzle. For the/each set of vanes, there are leakage dams formed on the wall that is adjacent the vane tips when the piston is closed. The leakage dams are closely adjacent the vane tips and discourage exhaust gas from leaking in a generally radial direction past the vane tips as the piston just begins to open from its fully closed position.

Roberts, Quentin (Nancy, FR); Alnega, Ahmed (Thaon Les Vosges, FR)

2011-12-06T23:59:59.000Z

286

Microsoft Word - CX-Franklin-BadgerCanyonGrandview-RedMtnsDisconnectSwitch_WEB.docx  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

8, 2012 8, 2012 REPLY TO ATTN OF: KEPR-4 SUBJECT: Environmental Clearance Memorandum Richard Heredia Project Manager - TEP-TPP-1 Proposed Action: Franklin-Badger Canyon and Grandview-Red Mountain switch replacements PP&A Project No.: 2,349 / 2,350 Categorical Exclusion Applied (from Subpart D, 10 C.F.R. Part 1021): B1.3 Routine maintenance Location: Benton County, Washington Proposed by: Bonneville Power Administration (BPA) Description of the Proposed Action: BPA proposes to replace disconnect switches and related equipment on the Franklin-Badger Canyon No.2 and Grandview-Red Mountain No.1 115- kilovolt transmission lines. The switch stands will be replaced in the same locations as the existing structures, and related load break equipment will be upgraded in-kind to existing. Both

287

Klondike III/Biglow Canyon Wind Integration Project; Record of Decision, October 25, 2006.  

DOE Green Energy (OSTI)

The Bonneville Power Administration (BPA) has decided to implement the Proposed Action identified in the Klondike III/Biglow Canyon Wind Integration Project Final Environmental Impact Statement (FEIS) (DOE/EIS-0374, September 2006). Under the Proposed Action, BPA will offer PPM Energy, Inc. (PPM) contract terms for interconnection of the proposed Klondike III Wind Project, located in Sherman County, Oregon, with the Federal Columbia River Transmission System (FCRTS). BPA will also offer Portland General Electric (PGE)1 contract terms for interconnection of its proposed Biglow Canyon Wind Farm, also located in Sherman County, Oregon, with the FCRTS, as proposed in the FEIS. To interconnect these wind projects, BPA will build and operate a 12-mile long, 230-kilovolt (kV) double-circuit transmission line between the wind projects and BPA's new 230-kV John Day Substation in Sherman County, Oregon. BPA will also expand its existing 500-kV John Day Substation.

United States. Bonneville Power Administration

2006-10-25T23:59:59.000Z

288

Potential of breccia pipes in the Mohawk Canyon Area, Hualapai Indian Reservation, Arizona  

Science Conference Proceedings (OSTI)

The Hualapai Indian Reservation is on the southwestern corner of the Colorado Plateau in northern Arizona. Hundreds of solution-collapse breccia pipes crop out in the canyons and on the plateaus of northern Arizona. The pipes originated in the Mississippian Redwall Limestone and stoped their way upward through the upper Paleozoic strata, locally extending into the Triassic Moenkopi and Chinle Formations. The occurrence of high-grade U ore, associated with potentially economic concentrations of Cu, Ag, Pb, Zn, V, Co, and Ni in some of these pipes, has stimulated mining activity in northern Arizona despite the depressed market for most of these metals. Two breccia pipes, 241, and 242, have significant mineralized rock exposed on the Esplanade erosion surface; unfortunately, their economic potential is questionable because of their inaccessibility at the bottom of Mohawk Canyon. All warrant further exploration.

Wenrich, K.J.; Billingsley, G.H.; Van Gosen, B.S.

1990-09-21T23:59:59.000Z

289

Draft Environmental Impact Statement Klondike III/Biglow Canyon Wind Integration Project  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Summary S-1 Summary S-1 Summary In this Summary: * Purpose and Need for Action * Alternatives * Affected Environment * Impacts This summary covers the major points of the draft Environmental Impact Statement (EIS) prepared for the Klondike III/Biglow Canyon Wind Integration Project proposed by the Bonneville Power Administration (BPA). The project includes constructing a new double-circuit 230-kilovolt (kV) transmission line in northern Sherman County, Oregon. The new line would connect the Klondike III Wind Project and the Biglow Canyon Wind Farm to BPA's existing John Day 500-kV Substation. The project would also require expansion of BPA's existing John Day 500-kV Substation and a new 230-kV substation to integrate the two wind projects. As a federal agency, BPA is required by the National Environmental Policy Act

290

Rock Island Dam Smolt Monitoring; 1994-1995 Annual Report.  

DOE Green Energy (OSTI)

Downstream migrating salmon and steelhead trout (Oncorhynchus spp.) smolts were monitored at the Rock Island Dam bypass trap from April 1 - August 31, 1954. This was the tenth consecutive year that the bypass trap was monitored. Data collected included: (1) number of fish caught by species, (2) number of adipose clipped and/or Passive Integrated Transponder (PIT) tagged fish caught by species, (3) daily average riverflow, (4) daily average powerhouse No. 1 and No. 2 flows and daily average spill. These data were transmitted to the Fish Passage Center, which manages the Smolt Monitoring Program throughout the Columbia River Basin. The Smolt Monitoring Program is used to manage the {open_quotes}water budget{close_quotes}, releasing upstream reservoir water storage allocated to supplement river flows to enhance survival of downstream migrating juvenile salmonids. The Rock Island Dam trapping facility collected 37,795 downstream migrating salmonids in 1994. Collected fish included 4 yearling and 4 sub-yearling chinook salmon (O. tshawytscha) that had been previously PIT tagged to help determine migration rates. Additionally, 1,132 sub-yearling chinook, 4,185 yearling chinook, 6,627 steelhead, (O. mykiss) and 422 sockeye (O. nerka) with clipped adipose fins were collected. The middle 80% of the 1994 spring migration (excluding sub-yearling chinooks) passed Rock Island Dam during a 34 day period, April 25 - May 28. Passage rates of chinook and steelhead smolts released from hatcheries and the downstream migration timing of all salmonids are presented. The spring migration timing of juvenile salmonids is strongly influenced by hatchery releases above Rock Island Dam.

Truscott, Keith B.; Fielder, Paul C. (Chelan County Public Utility District No. 1, Power Operations Department, Wenatchee, WA)

1995-10-01T23:59:59.000Z

291

Dam Removal Decisions: Science and Decision-Making  

Science Conference Proceedings (OSTI)

This report is the result of a two-year collaborative effort partially supported by EPRI and managed by the Heinz Center for Science, Economics, and the Environment. Other project supporters included FEMA, the Department of the Interior, the Army Corps of Engineers, and nongovernmental environmental organizations. The report concludes that dams continue to be extremely important to our nation's infrastructure by providing water supply, flood protection, hydroelectric power production, and recreation. How...

2002-05-04T23:59:59.000Z

292

Hydroacoustic Evaluation of Fish Passage through Bonneville Dam in 2004  

DOE Green Energy (OSTI)

The Portland District of the U.S. Army Corps of Engineers requested that the Pacific Northwest National Laboratory (PNNL) conduct fish-passage studies at Bonneville Dam in 2004. These studies support the Portland District's goal of maximizing fish-passage efficiency (FPE) and obtaining 95% survival for juvenile salmon passing Bonneville Dam. Major passage routes include 10 turbines and a sluiceway at Powerhouse 1 (B1), an 18-bay spillway, and eight turbines and a sluiceway at Powerhouse 2 (B2). In this report, we present results of four studies related to juvenile salmonid passage at Bonneville Dam. The studies were conducted between April 15 and July 15, 2004, encompassing most of the spring and summer migrations. Studies included evaluations of (1) Project fish passage efficiency and other major passage metrics, (2) B2 fish guidance efficiency and gap loss, (3) smolt approach and fate at the B2 Corner Collector (B2CC), and (4) B2 vertical barrier screen head differential.

Ploskey, Gene R.; Weiland, Mark A.; Schilt, Carl R.; Kim, Jina; Johnson, Peter N.; Hanks, Michael E.; Patterson, Deborah S.; Skalski, John R.; Hedgepeth, J

2005-12-22T23:59:59.000Z

293

Hydroacoustic Evaluation of Fish Passage Through Bonneville Dam in 2002  

DOE Green Energy (OSTI)

The Portland District of the U.S. Army Corps of Engineers requested that the Pacific Northwest National Laboratory (PNNL) and the U.S. Army Engineer Research and Development Center (ERDC) conduct fish-passage studies at Bonneville Dam in 2002. The ERDC contracted with MEVATEC Corporation to provide staff ranging from scientists to technicians to help conduct the study. This study supports the Portland-District goal of maximizing fish-passage efficiency (FPE) and obtaining 95% survival for juvenile salmon passing Bonneville Dam. In this report, we present results of two studies of juvenile salmonid passage at Bonneville Dam that we carried out in the 2002 downstream passage season April 20 through July 15, 2002. The first study of Project-wide FPE provides hourly estimates of fish passage and associated variances for all operating turbine units, spill bays, and the two sluiceway entrances at Powerhouse 1 (B1), as well as estimates of a variety of fish-passage efficiency and effectiveness measures. This was the third consecutive year of full-project hydroacoustic sampling and passage estimation. The second study was more narrowly focused on B2 turbines and had two components: (1) to sample the FGE at two modified turbine intakes and compare them with efficiencies of other B2 units that were sampled in the first study, and (2) to evaluate proportions of fish passing up into gatewell slots versus through screen gaps at a few B2 turbine intakes.

Ploskey, Gene R. (BATTELLE (PACIFIC NW LAB)); Schilt, Carl R. (MEVATEC); Kim, J (Lynntech); Escher, Charles (MEVATEC Corporation); Skalski, John R.

2003-08-15T23:59:59.000Z

294

DISSOLUTION OF FB-LINE METAL RESIDUES CONTAINING BERYLLIUM IN H-CANYON  

DOE Green Energy (OSTI)

Scrap materials containing plutonium (Pu) metal from FB-Line vaults are currently being dissolved in HB-Line for subsequent disposition through the H-Canyon facility. However, milestone and schedule commitments may require the dissolution of material containing Pu and beryllium (Be) metals in H-Canyon. To support this option, a flowsheet for dissolving Pu and Be metals in H-Canyon was demonstrated using a 4 M nitric acid (HNO{sub 3}) solution containing 0.3 M fluoride (F{sup -}). The F{sup -} was added as calcium fluoride (CaF{sub 2}). The dissolving solution also contained 2.5 g/L boron (B), a nuclear safety contingency for the H-Canyon dissolver, and 3.9 g/L iron (Fe) to represent the dissolution of carbon steel cans. The solution was heated to 90-95 C during the 8 h dissolution cycle. Dissolution of the Be metal appeared to begin as soon as the samples were added to the dissolver. Clear, colorless bubbles generated on the surface were observed and were attributed primarily to the generation of hydrogen (H{sub 2}) gas. The generation of nitrogen dioxide (NO{sub 2}) gas was also evident from the color of the solution. Essentially all of the Pu and Be dissolved during the first hour of the dissolution as the solution was heated to 90-95 C. The amount of residual solids collected following the dissolution was < 2% of the total metal charged to the dissolver. Examination of residual solids by scanning electron microscopy (SEM) showed that the largest dimension of the particles was less than 50 {micro}m with particles of smaller dimensions being more abundant. Energy dispersive spectra from spots on some of the particles showed the solids consisted of a small amount of undissolved material, corrosion products from the glassware, and dried salts from the dissolving solution.

Rudisill, T; Mark Crowder, M; Michael Bronikowski, M

2005-07-15T23:59:59.000Z

295

Steam Generator Tube Integrity Risk Assessment: Volume 2: Application to Diablo Canyon Power Plant  

Science Conference Proceedings (OSTI)

Damage to steam generator tubing can impair its ability to adequately perform the required safety functions in terms of structural stability and leakage. This report describes the Diablo Canyon Power Plant application of a method for calculating risk for severe accidents involving steam generator tube failure. The method helps utilities determine risks associated with application of alternate repair criteria and/or operation with degraded tubing.

2000-08-08T23:59:59.000Z

296

Dissolution of Plutonium Scrub Alloy and Anode Heel Materials in H-Canyon  

SciTech Connect

H-Canyon has a ''gap'' in dissolver operations during the last three months of FY03. One group of material to be processed during the gap is pre-existing scrub alloy material. There are 14 cans of material containing approximately 3.8 kilograms of plutonium. Of the 14 cans, it was anticipated that four cans contain salts, two cans contain anode heel materials, and eight cans contain scrub alloy buttons. H-Canyon desires to process the materials using a flowsheet similar to the SS and C (sand, slag and crucible) dissolution flowsheet used in F-Canyon. The materials will be loaded into carbon steel cans and then placed into aluminum metal charging bundles. Samples were sent to Savannah River Technology Center (SRTC) for characterization and flowsheet testing -- four MSE salts, two anode heels, and seven scrub alloy buttons. SRTC dissolved and characterized each of the samples. Two of them, originally thought to be MSE salts, were found to be graphite mold materials and were unsuitable for processing in H-Canyon. Characterization studies confirmed that the identification of the remaining items as MSE salts, scrub alloy buttons, and anode heel materials was correct. The MSE salts and anode heels solids are comprised primarily of plutonium, potassium, sodium and chloride. Both the MSE salts and anode heels left behind small amounts of residual solids. The scrub alloy buttons are comprised primarily of plutonium and aluminum. The solids dissolve readily with light, effervescent gas generation at the material surface and only trace amounts of NOx generation. Of the seven button samples, four dissolved completely. Two button samples contained small amounts of tantalum that did not dissolve. The last of the seven scrub alloy samples left a trace amount of residual plutonium solids. It is anticipated that the presence of undissolved fissile material is a function of where the sample was located relative to the button surface.

PIERCE, RA

2004-04-12T23:59:59.000Z

297

Evaluation of Zinc Addition During Cycle 9 at Diablo Canyon Unit 1  

Science Conference Proceedings (OSTI)

Laboratory studies have shown that zinc addition to primary coolant can mitigate primary water stress corrosion cracking (PWSCC) of Alloy 600 and reduce radiation fields in PWRs. This report documents experience with zinc addition during Cycle 9 at Diablo Canyon Power Plant Unit 1 (DCPP-1), operated by Pacific Gas & Electric. This project evaluated the effect of zinc addition on PWSCC initiation and propagation. It also examined the impact of zinc addition on radiation fields and fuel cladding deposition...

1999-10-27T23:59:59.000Z

298

Aquatic macroinvertebrates and water quality of Sandia Canyon, Los Alamos National Laboratory, November 1993--October 1994  

SciTech Connect

The Ecological Studies Team (EST) of ESH-20 at Los Alamos National Laboratory (LANL) has collected samples from the stream within Sandia Canyon since the summer of 1990. These field studies gather water quality measurements and collect aquatic macroinvertebrates from permanent sampling sites. Reports by Bennett (1994) and Cross (1994) discuss previous EST aquatic studies in Sandia Canyon. This report updates and expands those findings. EST collected water quality data and aquatic macroinvertebrates at five permanent stations within the canyon from November 1993 through October 1994. The two upstream stations are located below outfalls that discharge industrial and sanitary waste effluent into the stream, thereby maintaining year-round flow. Some water quality parameters are different at the first three stations from those expected of natural streams in the area, indicating degraded water quality due to effluent discharges. The aquatic habitat at the upper stations has also been degraded by sedimentation and channelization. The macroinvertebrate communities at these stations are characterized by low diversities and unstable communities. In contrast, the two downstream stations appear to be in a zone of recovery, where water quality parameters more closely resemble those found in natural streams of the area. The two lower stations have increased macroinvertebrate diversity and stable communities, further indications of downstream water quality improvement.

Cross, S.

1995-08-01T23:59:59.000Z

299

Operational Readiness Review Final Report For F-Canyon Restart. Phase 1  

SciTech Connect

An independent WSRC Operational Readiness Review was performed for the restart of Phase 1 processing in F-Canyon, Building 221-F. Readiness to restart the Second Plutonium Cycle process and solvent recovery was assessed. The ORR was conducted by an ORR board of ten members with the support of a subject matter expert. The chairman and four members were drawn from the Operational Safety Evaluation Department, ESH& QA Division; additional members were drawn from other WSRC divisions, independent of the F-Canyon operating division (NMPD). Based on the results of the readiness verification assessments performed according to the ORR plan and the validation of pre-restart corrective actions, the WSRC independent ORR Board has concluded that the facility has achieved the state of readiness committed to in the Restart Plan. Also, based on the scope of the ORR, it is the opinion of the board that F-Canyon Phase 1 processes can be restarted without undue risk to the safety of the public and onsite workers and without undue risk to the environment.

McFarlane, A.F.; Spangler, J.B.

1995-04-05T23:59:59.000Z

300

Environmenal analysis of the Bayo Canyon (TA-10) Site, Los Alamos, New Mexico  

SciTech Connect

The radiological survey of the old TA-10 site in Bayo Canyon found low levels of surface contamination in the vicinity of the firing sites and subsurface contamination in the old waste disposal area. The three alternatives proposed for the site are: (1) to take no action; (2) to restrict usage of the area of subsurface contamination to activities that cause no subsurface disturbance (minimal action); and (3) to remove the subsurface conamination to levels below the working criteria. Dose calculations indicate that doses from surface contamination for recreational users of the canyon, permanent residents, and construction workers and doses for workers involved in excavation of contaminated soil under the clean up alternative are only small percentages of applicable guidelines. No environmental impacts are associated with either the no-action or minimal action alternatives. The impact associated with the cleanup alternative is small, especially considering that the area already has been affected by the original TA-10 decommissioning action, but nevertheless, the preferred alternative is the minimal action alternative, where 0.6 hectare of land is restricted to surface activities. This leaves the rest of the canyon available for development with up to 400 homes. The restricted area can be used for a park, tennis courts, etc., and the /sup 90/Sr activity will decay to levels permitting unrestricted usage in about 160 y.

Ferenbaugh, R.W.; Buhl, T.E.; Stoker, A.K.; Hansen, W.R.

1982-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "glen canyon dam" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Compliance Monitoring of Juvenile Subyearling Chinook Salmon Survival and Passage at The Dalles Dam, Summer 2010  

SciTech Connect

The purpose of this compliance study was to estimate dam passage survival of subyearling Chinook salmon smolts at The Dalles Dam during summer 2010. Under the 2008 Federal Columbia River Power System (FCRPS) Biological Opinion (BiOp), dam passage survival should be greater than or equal to 0.93 and estimated with a standard error (SE) less than or equal 0.015. The study also estimated smolt passage survival from the forebay 2 km upstream of the dam to the tailrace 2 km below the dam The forebay-to-tailrace survival estimate satisfies the BRZ-to-BRZ survival estimate called for in the Fish Accords. , as well as the forebay residence time, tailrace egress time, and spill passage efficiency, as required in the Columbia Basin Fish Accords. The estimate of dam survival for subyearling Chinook salmon at The Dalles in 2010 was 0.9404 with an associated standard error of 0.0091.

Johnson, Gary E.; Carlson, Thomas J.; Skalski, John R.

2010-12-21T23:59:59.000Z

302

The Conscious Landscape: Reinterpreting and Reinhabiting the La Colle Falls Hydro Dam.  

E-Print Network (OSTI)

??The ruins of the La Colle Falls Hydro Dam encompass two very distinct topographies: the physical landscape of the vast Canadian Northwest, and the complex (more)

Hurd, Jason John

2007-01-01T23:59:59.000Z

303

Dam Safety Rules (West Virginia) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Safety Rules (West Virginia) Safety Rules (West Virginia) Dam Safety Rules (West Virginia) < Back Eligibility Utility Fed. Government Commercial Agricultural Investor-Owned Utility State/Provincial Govt Industrial Construction Municipal/Public Utility Local Government Residential Installer/Contractor Rural Electric Cooperative Tribal Government Low-Income Residential Schools Retail Supplier Institutional Multi-Family Residential Systems Integrator Fuel Distributor Nonprofit General Public/Consumer Transportation Savings Category Water Buying & Making Electricity Home Weatherization Program Info State West Virginia Program Type Safety and Operational Guidelines Provider Department of Environmental Protection This establishes requirements relating to the design, placement, construction, enlargement, alteration, removal, abandonment, and repair of

304

Internal structure of the Kern Canyon Fault, California: a deeply exhumed strike-slip fault  

E-Print Network (OSTI)

Deformation and mineral alteration adjacent to a 2 km long segment of the Kern Canyon fault near Lake Isabella, California are studied to characterize the internal structure of the fault zone and to understand the development of fault structure and constitution and the mechanical and chemical processes responsible for them. The 140 km long Kern Canyon fault (KCF) is a fault of 15 km right-lateral separation exhumed from seismogenic depth that cuts batholithic and metamorphic rocks of the southern Sierra Nevada. The fault consists of at least three distinct phases: an early phase of lower-greenschist-grade ductile shear with an S-C' phyllonite, a subsequent, dominant phase of brittle faulting characterized by a through-going zone of cataclastic rock, and a late stage of minor faulting along discontinuous, thin, hematitic gouge zones. The S-C' fabric and subsidiary fault-slip data indicate that both the phyllonitic and cataclastic zones are approximately vertical and strike-slip; slip lineations within the hematitic gouge suggest oblique-slip. The phyllonite zone trends N20-40E and accommodated ~175 m of separation. The cataclastic zone cuts the phyllonite, trends N21E, and consists of foliated and non-foliated cataclasites; it accommodates the majority of displacement along the fault. Abundant veins and fluid-assisted alteration in the rock surrounding the fault zone attest to the presence of fluids of evolving chemistry during both ductile and brittle faulting. Mass balance calculations indicate quartz loss during phyllonite faulting and imply that the fault system was open and experienced a negative change in volume during phyllonite faulting. Mesoscale and microscale fracture intensities decrease with log distance from the foliated cataclasites and approach a relatively low level at approximately 500 m. The internal structure of the Kern Canyon fault is similar to other large displacement faults in that it consists of a broad zone of fractured and altered rock and a narrow zone of intense cataclasis.

Neal, Leslie Ann

2002-01-01T23:59:59.000Z

305

Seismic stratigraphy and salt tectonics of the Alaminos Canyon area, Gulf of Mexico.  

E-Print Network (OSTI)

The Alaminos Canyon region is located at the change in the bathymetric trend between the slope and rise. Over 6,435 km of migrated seismic reflection profiles were analyzed to produce two structure and two isopach maps. Maps of the seafloor morphology, salt structure, and suprasalt sediments indicate the majority of the slope is covered by a shallow salt canopy. The salt structure map indicates that the Alaminos Canyon study area represents a transition from a semi-continuous salt sheet in the east to a less continuous salt sheet in the western margin. Salt lobe canopies are located within the eastern and western margins of the study area, while the central region represents a transition zone between the two lobate canopies. The sediment isochron maps show that the salt has played an important role in the sediment deposition and the formation of intraslope basins. The salt sheet interacted with slope sediment deposition by acting as a barrier to downslope sediment transport and by influencing the direction of mass transport. The uplift of the salt has formed topographic lows in which sediment is transported from the shelf beyond the slope. Within the study area, intraslope basins consist of remnants of submarine canyons blocked by diapiric uplift and closed depressions formed by subsidence in response to salt withdrawal. These intraslope basins have trapped thick deposits of sediment, thereby reducing the sediment transport beyond the slope region. Pleistocene sealevel fluctuations appear to be the dominant force in the depostional record. As the lowering of relative sealevel ended, the transport of sandy material decreased and hemipelagic sedimentation increased. Eustatic sealevel fluctuations during the Pleistocene led to cyclic seismic depostional sequences throughout the study area.

Mechler, Suzanne Marie

1994-01-01T23:59:59.000Z

306

Water quality and sedimentation implications of installing a hydroelectric dam on the Ro Baker in Chilean Patagonia  

E-Print Network (OSTI)

HidroAysen, a Chilean corporation operated by energy giant Endesa, has proposed to build two hydroelectric dams on the Rio Baker in the Aysin Region of Chilean Patagonia. The proposed dams have been met with a variety of ...

Leandro, Gianna Dee

2009-01-01T23:59:59.000Z

307

SURVEY OF LOS ALAMOS AND PUEBLO CANYON FOR RADIOACTIVE CONTAMINATION AND RADIOASSAY TESTS RUN ON SEWER-WATER SAMPLES AND WATER AND SOIL SAMPLES TAKEN FROM LOS ALAMOS AND PUEBLO CANYONS  

SciTech Connect

Chemical sewers and sanitary lines draining the Tech Area, D. P. Site, CMR-12 Laundry, and surrounding residential areas flow into Pueblo and Los Alamos Canyon streams. In order to determine the extent and sources of radioactive contamination in these localities, fluid samples from each of the sewers, soil samples from each of the sewers, soil samples from the ground surrounding the sewer exits, and water and soil samples from selected spots in or near each of the two canyon streams were collected and analyzed for polonium and . plutonium. (W.D.M.)

Kingsley, W.H.; Fox, A.; Tribby, J.F.

1947-02-20T23:59:59.000Z

308

NOAA's Rapid Response to the Howard A. Hanson Dam Flood Risk Management Crisis  

Science Conference Proceedings (OSTI)

The Howard A. Hanson Dam (HHD) has brought flood protection to Washington's Green River Valley for more than 40 years and opened the way for increased valley development near Seattle. However, following a record high level of water behind the dam in ...

Allen B. White; Brad Colman; Gary M. Carter; F. Martin Ralph; Robert S. Webb; David G. Brandon; Clark W. King; Paul J. Neiman; Daniel J. Gottas; Isidora Jankov; Keith F. Brill; Yuejian Zhu; Kirby Cook; Henry E. Buehner; Harold Opitz; David W. Reynolds; Lawrence J. Schick

2012-02-01T23:59:59.000Z

309

Mangla Dam Raising Project (Pakistan): General Review and Socio-Spatial Impact Assessment  

E-Print Network (OSTI)

Mangla Dam Raising Project (Pakistan): General Review and Socio-Spatial Impact Assessment Saheeb, National University of Sciences and Technology, Islamabad-44000, Pakistan saheebk@ceme.nust.edu.pk Abstract. INTRODUCTION Pakistan has recently successfully completed the raising of Mangla dam, a major water works system

Paris-Sud XI, Université de

310

Van Dam-Veltman-Zakharov discontinuity in topologically new massive gravity  

E-Print Network (OSTI)

We study van Dam-Veltman-Zakharov discontinuity in the topologically new massive gravity (TNMG). The reduction from 2 degrees of freedom to one is interpreted as van Dam-Veltman-Zakharov discontinuity appeared when going from anti-de Sitter spacetime to Minkowski spacetime in the linearized TNMG.

Yun Soo Myung

2012-12-31T23:59:59.000Z

311

Effect of Flow Pulses on Degradation Downstream of Hapcheon Dam, South Korea  

E-Print Network (OSTI)

and the vertical and horizontal mixing of dye as the fluid slumps under gravity immediately after removal of dam gravity numerical model initialized with a finite length dammed region and periodic boundary conditions (reduced gravity = g , Coriolis parameter = f) propagating alongshore (y = 0). The potential vorticity q

Julien, Pierre Y.

312

Toward Net Energy Buildings: Design, Construction, and Performance of the Grand Canyon House  

DOE Green Energy (OSTI)

The Grand Canyon house is a joint project of the DOE's National Renewable Energy Laboratory and the U.S. National Park Service and is part of the International Energy Agency Solar Heating and Cooling Programme Task 13 (Advanced Solar Low-Energy Buildings). Energy consumption of the house, designed using a whole-building low-energy approach, was reduced by 75% compared to an equivalent house built in accordance with American Building Officials Model Energy Code and the Home Energy Rating System criteria.

Balcomb, J. D.; Hancock, C. E.; Barker, G.

1999-06-23T23:59:59.000Z

313

B Plant canyon sample TK-21-1 analytical results for the final report  

Science Conference Proceedings (OSTI)

This document is the analytical laboratory report for the TK-21-1 sample collected from the B Plant Canyon on February 18, 1998. The sample was analyzed in accordance with the Sampling and Analysis Plan for B Plant Solutions (SAP) (Simmons, 1997) in support of the B Plant decommissioning project. Samples were analyzed to provide data both to describe the material which would remain in the tanks after the B Plant transition is complete and to determine Tank Farm compatibility. The analytical results are included in the data summary table (Table 1).

Steen, F.H.

1998-04-10T23:59:59.000Z

314

PREDICTION OF TOTAL DISSOLVED GAS EXCHANGE AT HYDROPOWER DAMS  

DOE Green Energy (OSTI)

Total dissolved gas (TDG) supersaturation in waters released at hydropower dams can cause gas bubble trauma in fisheries resulting in physical injuries and eyeball protrusion that can lead to mortality. Elevated TDG pressures in hydropower releases are generally caused by the entrainment of air in spillway releases and the subsequent exchange of atmospheric gasses into solution during passage through the stilling basin. The network of dams throughout the Columbia River Basin (CRB) are managed for irrigation, hydropower production, flood control, navigation, and fish passage that frequently result in both voluntary and involuntary spillway releases. These dam operations are constrained by state and federal water quality standards for TDG saturation which balance the benefits of spillway operations designed for Endangered Species Act (ESA)-listed fisheries versus the degradation to water quality as defined by TDG saturation. In the 1970s, the United States Environmental Protection Agency (USEPA), under the federal Clean Water Act (Section 303(d)), established a criterion not to exceed the TDG saturation level of 110% in order to protect freshwater and marine aquatic life. The states of Washington and Oregon have adopted special water quality standards for TDG saturation in the tailrace and forebays of hydropower facilities on the Columbia and Snake Rivers where spillway operations support fish passage objectives. The physical processes that affect TDG exchange at hydropower facilities have been studied throughout the CRB in site-specific studies and routine water quality monitoring programs. These data have been used to quantify the relationship between project operations, structural properties, and TDG exchange. These data have also been used to develop predictive models of TDG exchange to support real-time TDG management decisions. These empirically based predictive models have been developed for specific projects and account for both the fate of spillway and powerhouse flows in the tailrace channel and resultant exchange in route to the next downstream dam. Currently, there exists a need to summarize the general finding from operational and structural TDG abatement programs conducted throughout the CRB and for the development of a generalized prediction model that pools data collected at multiple projects with similar structural attributes. A generalized TDG exchange model can be tuned to specific projects and coupled with water regulation models to allow the formulation of optimal daily water regulation schedules subject to water quality constraints for TDG supersaturation. A generalized TDG exchange model can also be applied to other hydropower dams that affect TDG pressures in tailraces and can be used to develop alternative operational and structural measures to minimize TDG generation. It is proposed to develop a methodology for predicting TDG levels downstream of hydropower facilities with similar structural properties as a function of a set of variables that affect TDG exchange; such as tailwater depth, spill discharge and pattern, project head, and entrainment of powerhouse releases. TDG data from hydropower facilities located throughout the northwest region of the United States will be used to identify relationships between TDG exchange and relevant dependent variables. Data analysis and regression techniques will be used to develop predictive TDG exchange expressions for various structural categories.

Hadjerioua, Boualem [ORNL; Pasha, MD Fayzul K [ORNL; Stewart, Kevin M [ORNL; Bender, Merlynn [Bureau of Reclamation; Schneider, Michael L. [U.S. Army Corps of Engineers

2012-07-01T23:59:59.000Z

315

Hungry Horse Dam Fisheries Mitigation; Aquatic Modeling of the Selective Withdrawal System, Hungry Horse Dam, Montana, 1991-1993 Technical Report.  

DOE Green Energy (OSTI)

Hungry Horse Dam presently releases frigid water from the bottom of the reservoir all year long. Cold water effects insect production and fish growth downstream. Rapid temperature changes of up to 8.3 C (14 F) have been measured in the Flathead River downstream of the South Fork confluence, controlled by dam discharges. Thermal effects from Hungry Horse Dam are detectable for over 64 Km downstream to Flathead Lake. The installation of a selective withdrawal structure on each of the dam`s discharge penstocks was determined to be the most cost-effective means to provide constant, permanent temperature control without impacting power production and flexibility in dam operation. The thermal model presented herein revealed that fish growth potential in the river would increase two to five times through selective withdrawal, temperature control. Temperature control is possible over the entire range of turbine discharge capacity, with very little effect on power production. Findings indicate that angling would improve through higher catch rates and larger fish. Temperature control will solve the most serious impact to river health. However, flow fluctuations will continue to effect insect production and usable fishery habitat in the Flathead River. A natural thermal regime combined with moderated flow fluctuation would further enhance riverine food production, trout growth and recreation potential.

Marotz, Brian L.; Althen, Craig; Gustafson, Daniel

1994-04-01T23:59:59.000Z

316

Advanced Oil Recovery Technologies for Improved Recovery from Slope Basin Clastic Reservoirs, Nash Draw Brushy Canyon Pool, Eddy County, NM  

Science Conference Proceedings (OSTI)

Advanced reservoir characterization techniques are being used at the Nash Draw Brushy Canyon Pool project to develop reservoir management strategies for optimizing oil recovery from this Delaware reservoir. The reservoir characterization, geologic modeling, 3-D seismic interpretation, and simulation studies have provided a detailed model of the Brushy Canyon zones. This model was used to predict the success of different reservoir management scenarios and to aid in determining the most favorable combination of targeted drilling, pressure maintenance, well stimulation, and well spacing to improve recovery from this reservoir.

Murphy, M.B.

1999-02-01T23:59:59.000Z

317

CRFLOOD: A Numerical Model to Estimate Uplift Pressure Distribution in Cracks in Concrete Gravity Dams: Volume 4  

Science Conference Proceedings (OSTI)

Uplift pressure forms an overturning force on dams that must be minimized so that dams can meet the required safety factors. CRFLOOD is a PC code that permits evaluation of different drain designs by selecting suitable combinations of drain diameter, spacing, and location for specific dam conditions.

1992-11-26T23:59:59.000Z

318

Estimating Overall Risk of Dam Failure: Practical Considerations in Combining Failure Probabilities ANCOLD 2003 Risk Workshop Page 1  

E-Print Network (OSTI)

% 80% 90% 100% M N P Q R P AP ANP NP DAM: D E F G H - - - Flood Concrete Gravity Section Under drainDAM SAFETY DECISION-MAKING: COMBINING ENGINEERING ASSESSMENTS WITH RISK INFORMATION David S. Bowles breaching a dam; so drop the matter before a dispute breaks out. Proverbs 17:14 (NIV) ABSTRACT A decision

Bowles, David S.

319

Detection of Gas Hydrates in Garden Banks and Keathley Canyon from Seismic Data  

E-Print Network (OSTI)

Gas hydrate is a potential energy source that has recently been the subject of much academic and industrial research. The search for deep-water gas hydrate involves many challenges that are especially apparent in the northwestern Gulf of Mexico, where the sub-seafloor is a complex structure of shallow salt diapirs and sheets underlying heavily deformed shallow sediments and surrounding diverse minibasins. Here, we consider the effect these structural factors have on gas hydrate occurrence in Garden Banks and Keathley Canyon blocks of the Gulf of Mexico. This was accomplished by first mapping the salt and shallow deformation structures throughout the region using a 2D grid of seismic reflection data. In addition, major deep-rooted faults and shallow-rooted faults were mapped throughout the area. A shallow sediment deformation map was generated that defined areas of significant faulting. We then quantified the thermal impact of shallow salt to better estimate the gas hydrate stability zone (GHSZ) thickness. The predicted base of the GHSZ was compared to the seismic data, which showed evidence for bottom simulating reflectors and gas chimneys. These BSRs and gas chimneys were used to ground-truth the calculated depth of the base of GHSZ. Finally, the calculated GHSZ thickness was used to estimate the volume of the gas hydrate reservoir in the area after determining the most reasonable gas hydrate concentrations in sediments within the GHSZ. An estimate of 5.5 trillion cubic meters of pure hydrate methane in Garden Banks and Keathley Canyon was obtained.

Murad, Idris

2009-05-01T23:59:59.000Z

320

Source Characterization of the August 6, 2007 Crandall Canyon Mine Seismic Event in Central Utah  

SciTech Connect

On August 6, 2007 a local magnitude 3.9 seismic event occurred at 08:48:40 UTC in central Utah. The epicenter is within the boundaries of the Crandall Canyon coal mine (c.f. Pechmann et al., this volume). We performed a moment tensor analysis with complete, three-component seismic recordings from stations operated by the USGS, the University of Utah, and EarthScope. The analysis method inverts the seismic records to retrieve the full seismic moment tensor, which allows for interpretation of both shearing (e.g., earthquakes) and volume-changing (e.g., explosions and collapses) seismic events. The results show that most of the recorded seismic wave energy is consistent with an underground collapse in the mine. We contrast the waveforms and moment tensor results of the Crandall Canyon Mine seismic event to a similar sized tectonic earthquake about 200 km away near Tremonton, Utah, that occurred on September 1, 2007. Our study does not address the actual cause of the mine collapse.

Ford, S R; Dreger, D S; Walter, W R

2008-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "glen canyon dam" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Carbon Steel and Magnesium Oxide Dissolution for H-Canyon Process Applications  

DOE Green Energy (OSTI)

H Area Operations is planning to process plutonium-contaminated uranium metal scrap in its efforts to de-inventory excess nuclear materials. The Savannah River Technology Center (SRTC) performed flowsheet development to support the decision to process the scrap in H-Canyon using 2M nitric acid (HNO3) / 0.025M potassium fluoride (KF) and 2 g/L boron. The scrap will be charged to the H-Canyon dissolver via a stainless steel charging bundle with a carbon steel end cap that must dissolve in an appropriate time frame. Experimental work was performed with a range of potential materials to be used to fabricate the bundle end cap. Testing was conducted with samples of metal plate, wire, cans, rods, and rivets to assess their dissolution characteristics in 2M HNO3/ 0.025M KF and 2 g/L boron. Experiments also measured the amount of hydrogen gas generated during carbon steel dissolution using the above dissolver solution. Each material type and its associated dissolution characteristic relate to specific bundle end cap designs being considered. Supplemental studies were conducted to evaluate the behavior and effect of magnesium oxide (MgO) sand on dissolution of uranium metal in 2M HNO3/ 0.025M KF and 2 g/L boron. The potential exists for a small quantity of MgO to be introduced into the dissolution flowsheet due to the use of MgO sand to extinguish uranium metal fires.

PIERCE, RA

2004-04-12T23:59:59.000Z

322

Radionuclide contaminant analysis of small mammels, plants and sediments within Mortandad Canyon, 1994  

SciTech Connect

Small mammals, plants and sediments were sampled at one upstream location (Site 1) and two downstream locations (Site 2 and Site 3) from the National Pollution Discharge Elimination System outfall {number_sign}051-051 in Mortandad Canyon, Los Alamos County, New Mexico. The purpose of the sampling was to identify radionuclides potentially present, to quantitatively estimate and compare the amount of radionuclide uptake at specific locations (Site 2 and Site 3) within Mortandad Canyon to an upstream site (Site 1), and to identify the primary mode (inhalation ingestion, or surface contact) of contamination to small mammals. Three composite samples of at least five animals per sample were collected at each site. Pelts and carcasses of each animal were separated and analyzed independently. In addition, three composite samples were also collected for plants and sediments at each site. Samples were analyzed for {sup 241}Am, {sup 90}Sr, {sup 238}Pu, {sup 239}Pu, and total U. With the exception of total U, all mean radionuclide concentrations in small mammal carcasses and sediments were significantly higher at Site 2 than Site 1 or Site 3. No differences were detected in the mean radionuclide concentration of plant samples between sites. However, some radionuclide concentrations found at all three sites were higher than regional background. No differences were found between mean carcass radionuclide concentrations and mean pelt radionuclide concentrations, indicating that the two primary modes of contamination may be equally occurring.

Bennett, K.; Biggs, J.; Fresquez, P.

1996-01-01T23:59:59.000Z

323

Simulations of The Dalles Dam Proposed Full Length Spillwall  

DOE Green Energy (OSTI)

This report presents results of a computational fluid dynamics (CFD) modeling study to evaluatethe impacts of a full-length spillwall at The Dalles Dam. The full-length spillwall is being designed and evaluated as a structural means to improve tailrace egress and thus survival of juvenile fish passing through the spillway. During the course of this study, a full-length spillwall at Bays 6/7 and 8/9 were considered. The U.S. Army Corps of Engineers (USACE) has proposed extending the spillwall constructed in the stilling basin between spillway Bays 6 and 7 about 590 ft farther downstream. It is believed that the extension of the spillwall will improve egress conditions for downstream juvenile salmonids by moving them more rapidly into the thalweg of the river hence reducing their exposure to predators. A numerical model was created, validated, and applied the The Dalles Dam tailrace. The models were designed to assess impacts to flow, tailrace egress, navigation, and adult salmon passage of a proposed spill wall extension. The more extensive model validation undertaken in this study greatly improved our confidence in the numerical model to represent the flow conditions in The Dalles tailrace. This study used these validated CFD models to simulate the potential impacts of a spillwall extension for The Dalles Dam tailrace for two locations. We determined the following: (1)The construction of an extended wall (between Bays 6/7) will not adversely impact entering or exiting the navigation lock. Impact should be less if a wall were constructed between Bays 8/9. (2)The construction of a wall between Bays 6/7 will increase the water surface elevation between the wall and the Washington shore. Although the increased water surface elevation would be beneficial to adult upstream migrants in that it decreases velocities on the approach to the adult ladder, the increased flow depth would enhance dissolved gas production, impacting potential operations of the project because of water quality. A wall between Bays 8/9 should have a lesser impact as the confined spill would be across more bays and the relative flow constriction less. (3) The 405 kcfs case was used for the rapid assessment of flow conditions and hydraulic mechanisms that might be responsible for the unexpected erosion at the end of the shelf downstream of Bay 7.

Rakowski, Cynthia L.; Perkins, William A.; Richmond, Marshall C.; Serkowski, John A.

2008-02-25T23:59:59.000Z

324

ORNL Trusted Corridors Project: Watts Bar Dam Inland Waterway Project  

Science Conference Proceedings (OSTI)

Radiation has existed everywhere in the environment since the Earth's formation - in rocks, soil, water, and plants. The mining and processing of naturally occurring radioactive materials for use in medicine, power generation, consumer products, and industry inevitably generate emissions and waste. Radiological measuring devices have been used by industry for years to measure for radiation in undesired locations or simply identify radioactive materials. Since the terrorist attacks on the United States on 9-11-01 these radiation measuring devices have proliferated in many places in our nation's commerce system. DOE, TVA, the Army Corps and ORNL collaborated to test the usefulness of these devices in our nation's waterway system on this project. The purpose of the Watts Bar Dam ORNL Trusted Corridors project was to investigate the security, safety and enforcement needs of local, state and federal government entities for state-of-the-art sensor monitoring in regards to illegal cargo including utilization of the existing infrastructure. TVA's inland waterways lock system is a recognized and accepted infrastructure by the commercial carrier industry. Safety Monitoring activities included tow boat operators, commercial barges and vessels, recreational watercraft and their cargo, identification of unsafe vessels and carriers, and, monitoring of domestic and foreign commercial vessels and cargo identification. Safety Enforcement activities included cargo safety, tracking, identification of hazardous materials, waterway safety regulations, and hazardous materials regulations. Homeland Security and Law Enforcement Applications included Radiological Dispersive Devices (RDD) identification, identification of unsafe or illicit transport of hazardous materials including chemicals and radiological materials, and screening for shipments of illicit drugs. In the Fall of 2005 the SensorNet funding for the project expired. After several unsuccessful attempts to find a Federal sponsor to continue with the project, the Watts Bar Dam Project was canceled and the Exploranium radiation monitors were removed from the doors of Watts Bar Dam in early 2006. The DHS Domestic Nuclear Detection Office decided to proceed with a Pilot building on the ORNL work performed at the TN and SC weigh stations in the highway sector of the Trusted Corridors project and eventually expanded it to other southern states under the name of Southeastern Corridor Pilot Project (SETCP). Many of the Phase I goals were achieved however real-world test data of private watercraft and barges was never obtained.

Walker, Randy M [ORNL; Gross, Ian G [ORNL; Smith, Cyrus M [ORNL; Hill, David E [ORNL

2011-11-01T23:59:59.000Z

325

Dam Control and Safety Act (West Virginia) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Control and Safety Act (West Virginia) Control and Safety Act (West Virginia) Dam Control and Safety Act (West Virginia) < Back Eligibility Utility Fed. Government Commercial Agricultural Investor-Owned Utility State/Provincial Govt Industrial Construction Municipal/Public Utility Local Government Residential Installer/Contractor Rural Electric Cooperative Tribal Government Low-Income Residential Schools Retail Supplier Institutional Multi-Family Residential Systems Integrator Fuel Distributor Nonprofit General Public/Consumer Transportation Savings Category Water Buying & Making Electricity Home Weatherization Program Info State West Virginia Program Type Safety and Operational Guidelines Provider Department of Environmental Protection This law grants authority to the secretary of the Department of Environmental Protection to control and exercise regulatory jurisdiction

326

Lower Granite Dam Smolt Monitoring Program, 1999 Annual Report.  

DOE Green Energy (OSTI)

The 1999 fish collection season at Lower Granite was characterized by high spring flows and spill, low levels of debris, cool water temperatures, increased hatchery chinook numbers, and an overall decrease in numbers of smolts collected and transported. A total of 5,882,872 juvenile salmonids were collected at Lower Granite. Of these, 5,466,057 were transported to release sites below Bonneville Dam, 5,232,105 by barge and 233,952 by truck. An additional 339,398 fish were bypassed back to the river. A total of 117,609 salmonids were examined in daily samples. Nine research projects conducted by four agencies impacted a total of 440,810 smolts (7.5% of the total collected) of which 247,268 were PIT tagged and 572 were recorded as incidental mortalities.

Verhey, Peter; Morrill, Charles; Mensik, Fred

1999-01-01T23:59:59.000Z

327

Monitoring of Juvenile Yearling Chinook Salmon and Steelhead Survival and Passage at Bonneville Dam, Spring 2010  

Science Conference Proceedings (OSTI)

The purpose of this study was to estimate the survival for yearling Chinook salmon and steelhead smolts during spring 2010 in a portion of the Columbia River that includes Bonneville Dam. The study estimated smolt survival from a virtual release at Bonneville Dam to a survival array 81 km downstream of Bonneville Dam. We also estimated median forebay residence time, median tailrace egress time, and spill passage efficiency (SPE), as required in the Columbia Basin Fish Accords. A single release design was used to estimate survival from Bonneville Dam to a primary array located 81 km downstream of Bonneville. The approach did not include a reference tailrace release. Releases of acoustic-tagged smolts above John Day Dam to Hood River contributed to the formation of virtual releases at a Bonneville Dam forebay entrance array and at the face of the dam. A total of 3,880 yearling Chinook salmon and 3,885 steelhead smolts were tagged and released in the investigation. The Juvenile Salmon Acoustic Telemetry System (JSATS) tag model number ATS-156dB, weighing 0.438 g in air, was used in this investigation.

Ploskey, Gene R.; Faber, Derrek M.; Weiland, Mark A.; Carlson, Thomas J.

2012-09-01T23:59:59.000Z

328

Monitoring of Juvenile Yearling Chinook Salmon and Steelhead Survival and Passage at Bonneville Dam, Spring 2010  

SciTech Connect

The purpose of this study was to estimate the survival for yearling Chinook salmon and steelhead smolts during spring 2010 in a portion of the Columbia River that includes Bonneville Dam. The study estimated smolt survival from a virtual release at Bonneville Dam to a survival array 81 km downstream of Bonneville Dam. We also estimated median forebay residence time, median tailrace egress time, and spill passage efficiency (SPE), as required in the Columbia Basin Fish Accords. A single release design was used to estimate survival from Bonneville Dam to a primary array located 81 km downstream of Bonneville. The approach did not include a reference tailrace release. Releases of acoustic-tagged smolts above John Day Dam to Hood River contributed to the formation of virtual releases at a Bonneville Dam forebay entrance array and at the face of the dam. A total of 3,880 yearling Chinook salmon and 3,885 steelhead smolts were tagged and released in the investigation. The Juvenile Salmon Acoustic Telemetry System (JSATS) tag model number ATS-156dB, weighing 0.438 g in air, was used in this investigation.

Ploskey, Gene R.; Faber, Derrek M.; Weiland, Mark A.; Carlson, Thomas J.

2011-02-01T23:59:59.000Z

329

Hungry Horse Dam Fisheries Mitigation, 1992-1993 Progress Report.  

DOE Green Energy (OSTI)

In February of 1900, over forty agency representatives and interested citizens began development of the 1991 Mitigation Plan. This effort culminated in the 1993 Implementation Plan for mitigation of fish losses attributable to the construction and operation of Hungry Horse Dam. The primary purpose of this biennial report is to inform the public of the status of ongoing mitigation activities resulting from those planning efforts. A habitat improvement project is underway to benefit bull trout in Big Creek in the North Fork drainage of the Flathead River and work is planned in Hay Creek, another North Fork tributary. Bull trout redd counts have been expanded and experimental programs involving genetic evaluation, outmigrant monitoring, and hatchery studies have been initiated, Cutthroat mitigation efforts have focused on habitat improvements in Elliott Creek and Taylor`s Outflow and improvements have been followed by imprint plants of hatchery fish and/or eyed eggs in those streams. Rogers Lake west of Kalispell and Lion Lake, near Hungry Horse, were chemically rehabilitated. Cool and warm water fish habitat has been improved in Halfmoon Lake and Echo Lake. Public education and public interest is important to the future success of mitigation activities. As part of the mitigation team`s public awareness responsibility we have worked with numerous volunteer groups, public agencies, and private landowners to stimulate interest and awareness of mitigation activities and the aquatic ecosystem. The purpose of this biennial report is to foster public awareness of, and support for, mitigation activities as we move forward in implementing the Hungry Horse Dam Fisheries Mitigation Implementation Plan.

DosSantos, Joe; Vashro, Jim; Lockard, Larry

1994-06-01T23:59:59.000Z

330

Numerical model to characterize the thermal comfort in new ecodistricts: methodology and validation through the canyon street case  

Science Conference Proceedings (OSTI)

In built-up areas, the urban structures affect the radiative and thermal environment. The numerical simulation models provide informations about urban thermal performance for many ranges of urban configurations. This paper presents a validation of a ... Keywords: CFD model, building heat transfers, coupling model, street canyon, thermo-radiative model

Khaled Athamena; Jean Francois Sini; Julien Guilhot; Jerome Vinet; Maeva Sabre; Jean-Michel Rosant

2011-01-01T23:59:59.000Z

331

Numerical model to characterize the thermal comfort in new eco-districts: methodology and validation through the canyon street case  

Science Conference Proceedings (OSTI)

In built-up areas, the urban structures affect the radiative and thermal environment. The numerical simulation models provide informations about urban thermal performance for many ranges of urban configurations. This paper presents a validation of a ... Keywords: CFD model, building heat transfers, coupling model, street canyon, thermo-radiative model

Khaled Athamena; Jean Francois Sini; Julien Guilhot; Jerome Vinet; Maeva Sabre; Jean-Michel Rosant

2011-01-01T23:59:59.000Z

332

Challenges When Predicting Reservoir Quality in the Subsalt K2/K2-North Field, Green Canyon, Gulf of Mexico  

E-Print Network (OSTI)

in the K2/ K2-North Field, Green Canyon, Gulf of Mexico, presents many challenges for planning primary for seismi- cally better-imaged deepwater reservoirs in the eastern Gulf of Mexico, we utilize well- log, we used depositional mod- els based on Gulf of Mexico shallow-seismic analogs of distributary channel

Greene, Todd J.

333

Monitoring of Subyearling Chinook Salmon Survival and Passage at Bonneville Dam, Summer 2010  

Science Conference Proceedings (OSTI)

The purpose of this study was to estimate dam passage and route specific survival rates for subyearling Chinook salmon smolts to a primary survival-detection array located 81 km downstream of the dam, evaluate a BGS located in the B2 forebay, and evaluate effects of two spill treatments. The 2010 study also provided estimates of forebay residence time, tailrace egress time, spill passage efficiency (SPE), and spill + B2 Corner Collector (B2CC) efficiency, as required in the Columbia Basin Fish Accords. In addition, the study estimated forebay passage survival and survival of fish traveling from the forebay entrance array, through the dam and downstream through 81 km of tailwater.

Ploskey, Gene R.; Weiland, Mark A.; Carlson, Thomas J.

2012-09-01T23:59:59.000Z

334

Wildlife Mitigation and Restoration for Grand Coulee Dam: Blue Creek Project, Phase 1.  

DOE Green Energy (OSTI)

This report is a recommendation from the Spokane Tribe to the Northwest Power Planning Council (NPPC) for partial mitigation for the extensive wildlife and wildlife habitat losses on the Spokane Indian Reservation caused by the construction of Grand Coulee Dam. NPPC`s interim wildlife goal over the next 7 years for the Columbia hydropower system, is to protect, mitigate and enhance approximately 35% basin wide of the lost habitat units. Grand Coulee Dam had the greatest habitat losses of any Dams of the Wildlife Rule.

Merker, Christopher

1993-04-01T23:59:59.000Z

335

Monitoring of Subyearling Chinook Salmon Survival and Passage at Bonneville Dam, Summer 2010  

DOE Green Energy (OSTI)

The purpose of this study was to estimate dam passage and route specific survival rates for subyearling Chinook salmon smolts to a primary survival-detection array located 81 km downstream of the dam, evaluate a BGS located in the B2 forebay, and evaluate effects of two spill treatments. The 2010 study also provided estimates of forebay residence time, tailrace egress time, spill passage efficiency (SPE), and spill + B2 Corner Collector (B2CC) efficiency, as required in the Columbia Basin Fish Accords. In addition, the study estimated forebay passage survival and survival of fish traveling from the forebay entrance array, through the dam and downstream through 81 km of tailwater.

Ploskey, Gene R.; Weiland, Mark A.; Carlson, Thomas J.

2011-02-01T23:59:59.000Z

336

Grande Ronde Model Watershed Project; Dark Canyon Riparian Exclosure, Completion Report 2002.  

DOE Green Energy (OSTI)

The Baker Field Office, Vale District Bureau of Land Management (BLM) submitted a project proposal for funding in 2002 through the Grande Ronde Model Watershed Program (GRMWP). The project consisted of constructing two riparian exclosures to prevent livestock grazing in the riparian areas of Dark Canyon and Meadow Creek. The BLM completed the NEPA documentation and supplied the fencing materials. Funding from BPA through the GRMWP was used to complete the construction of the two exclosures. This project was completed in the fall of 2002. The project area is located in Union County, Oregon on BLM managed land adjacent to Dark Canyon and Meadow Creek, T. 3. S., R. 35 E., Section 24 and 25. Section 24 is along Dark Canyon Creek and section 25 is along Meadow Creek. Approximately 0.4 miles of stream would be protected from grazing with the construction of the two exclosures. A two person crew was hired to construct a four-strand barbed wire fence. The fence enclosed the riparian area on both sides of each creek so that no grazing would occur within the riparian area on BLM managed land. Total fence length is approximately 1.25 miles. Materials consisted of metal fence posts, barbed wire, rockjacks, fence stays, and 2 x 4's. The fence was constructed in the fall of 2002. The riparian area is effectively excluded from livestock grazing at this time. The construction of the exclosures should enhance riparian vegetation, increase bank stability, and improve riparian and in-stream habitat by exclusion of livestock in the riparian areas. Monitoring will ensure that the exclosures continues to be effective. Annual monitoring will include photo-points and compliance checks during the grazing season by BLM personnel. The BLM will submit a monitoring report, which includes the results of the annual monitoring, to the GRMWP in years 2005 and 2007. The exclosures do cross the creeks so maintenance may be needed on occasion, especially after high flow events in the creeks. Material such as logs which are mobilized during high stream flows may damage the exclosures requiring maintenance to keep cattle from grazing in the riparian areas. The BLM spent approximately $4,000 on fencing materials and $1,375 on NEPA compliance. In addition, the estimated cost of the monitoring over five years is expected to be approximately $1,600. The $5,050 that the BLM received from the BPA for the project was used to hire two temporary employees to construct the exclosures.

Kuck, Todd

2003-03-01T23:59:59.000Z

337

U.S. Department of Energy Categorical Exclusion Determination Form  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Glen Canyon Substation Stage 09- Glen Canyon Substation Stage 09- 50MVA 230/69KV Transformer addition Program or Field Office: DOE/Western/Desert Southwest Region Location(s) (City/County/State): Glen Canyon Substation, Page/Coconino County/Arizona Proposed Action Description: Submit by E-mail Western proposes to conduct electrical maintenance activities within the existing Glen Canyon Substation located at Page, Coconino County, Arizona. The project is on federal (Western-owned) property in Section 19 Township 41 N, Range 8 East, in every quarter sections 24 and 25, Coconino County, AZ, (Gila and Salt River Baseline and Meridian; Figure 1 ). The proposed scope of work includes the following (Figure 2): ·Install one 50MVA 230/69KV transformer to a new storage pad in the upper yard. The new pad will measure 26 feet 6 inches long by 16 feet

338

CX-010683: Categorical Exclusion Determination | Department of...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Categorical Exclusion Determination "Glen Canyon Substation Stage 09- 50MVA 23069KV Transformer addition CX(s) Applied: B4.11 Date: 07022013 Location(s): Arizona, Arizona...

339

ENVIRONMENTAL REVIEW for CATEGORICAL EXCLUSION DETERMINATION  

NLE Websites -- All DOE Office Websites (Extended Search)

Glen Canyon-Shiprock 230-kV Transmission Line Glen Canyon-Shiprock 230-kV Transmission Line Coconino, Navajo, and Apache Counties, Arizona, and San Juan County, New Mexico A. Brief Description of Proposal: Western Area Power Administration (Western) proposes to survey and inspect all areas along the Glen Canyon-Shiprock (Glen Canyon-Navajo, Kayenta-Navajo, and Kayenta-Shiprock) transmission line to conduct routine vegetation management inspection and danger tree removal on the transmission line. Trained crews will measure electrical clearance distances between the conductor and tree branches and cut down any trees that meet or exceed the allowable clearance distance. Any "danger" trees and vegetation that constitute an electrical hazard to the lines will be removed. Individual trees will be cut, lopped, and scattered within the existing

340

ENVIRONMENTAL REVIEW for CATEGORICAL EXCLUSION DETERMINATION  

NLE Websites -- All DOE Office Websites (Extended Search)

Glen Canyon-Shiprock 230-kV Transmission Line Coconino, Navajo, and Apache Counties, Arizona, and San Juan County, New Mexico A. Brief Description of Proposal: Western Area Power...

Note: This page contains sample records for the topic "glen canyon dam" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

The role of research scientists in adaptive management programs  

E-Print Network (OSTI)

This thesis investigates the effectiveness of the Glen Canyon Adaptive Management Program (GCDAMP) in improving and increasing the contributions of scientists to natural resource management decision-making. Natural resource ...

Lenard, Steven R. (Steven Robert), 1976-

2004-01-01T23:59:59.000Z

342

Arizona | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

May 5, 2011 CX-007153: Categorical Exclusion Determination Glen Canyon substation Transformer Addition CX(s) Applied: B4.6 Date: 05052011 Location(s): Coconino County, Arizona...

343

Draft Environmental Impact Statement Klondike III/Biglow Canyon Wind Integration Project  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

generated from the proposed Klondike III Wind Project to the Federal Columbia River Transmission System. Orion Energy LLC has also asked BPA to interconnect 400 MW of electricity from its proposed Biglow Canyon Wind Farm, located north and east of the proposed Klondike III Wind Project. To interconnect these projects, BPA would need to build and operate a 230-kV double-circuit transmission line about 12 miles long, expand one substation and build one new substation. The wind projects would require wind turbines, substation(s), access roads, and other facilities. Two routes for the transmission line are being considered. Both begin at PPM's Klondike Schoolhouse Substation then travel north (Proposed Action) or north and westerly (Middle Alternative) to a new BPA

344

Uranium ore rolls in Westwater Canyon sandstone, San Juan Basin, New Mexico  

SciTech Connect

Recent relatively deep uranium-exploration drilling in the Nose Rock area, San Juan Basin, McKinley County, New Mexico, has resulted in the discovery of previously unrecognized uranium ore rolls in gray, unoxidized Westwater Canyon Sandstone of the Morrison Formation. Both the Nose Rock ores and the primary Ambrosia Lake uranium ores were emplaced during the Late Jurassic-Early Cretaceous erosional interval under the same geologic conditions by the same geochemical-cell process. The red, altered interior ground resulting from the geochemical-cell process has been re-reduced by the subsequent entry of reductants into the formation. The original roll form of the Ambrosia Lake orebodies has been obscured and modified by redistribution related to the present-day active redox interface interweaving with the Ambrosia Lake ores.

Clark, D.S.

1980-01-01T23:59:59.000Z

345

Water-Power Development, Conservation of Hydroelectric Power Dams and Works  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Water-Power Development, Conservation of Hydroelectric Power Dams Water-Power Development, Conservation of Hydroelectric Power Dams and Works (Virginia) Water-Power Development, Conservation of Hydroelectric Power Dams and Works (Virginia) < Back Eligibility Commercial Construction Developer Industrial Investor-Owned Utility Municipal/Public Utility Rural Electric Cooperative Systems Integrator Utility Savings Category Water Buying & Making Electricity Home Weatherization Program Info State Virginia Program Type Siting and Permitting Provider Virginia State Corporation Commission It is the policy of the Commonwealth of Virginia to encourage the utilization of its water resources to the greatest practicable extent, to control the waters of the Commonwealth, and also to construct or reconstruct dams in any rivers or streams within the Commonwealth for the

346

Precipitation Changes near Three Gorges Dam, China. Part I: A Spatiotemporal Validation Analysis  

Science Conference Proceedings (OSTI)

In October 2010, the water level upstream of the Three Gorges Dam (TGD) reached the designated 175-m level. The associated inundation and land useland cover changes have important implications for water resource management, agriculture, ...

Fang Zhao; Marshall Shepherd

2012-04-01T23:59:59.000Z

347

Investigation of Uplift Pressures and Shear and Tensile Strengths for Concrete Gravity Dams  

Science Conference Proceedings (OSTI)

Concrete gravity dam stability depends on the characteristics of the rock foundation, strength of the concrete-to-rock bond, concrete strength, and uplift pressure forces. This interim report describes, with examples, how to assess these factors.

1990-12-17T23:59:59.000Z

348

Monitoring of Juvenile Subyearling Chinook Salmon Survival and Passage at John Day Dam, Summer 2010  

SciTech Connect

The purpose of this study was to evaluate dam passage survival of subyearling Chinook salmon (Oncorhynchus tshawytscha; CH0) at John Day Dam (JDA) during summer 2010. This study was conducted by researchers from the Pacific Northwest National Laboratory (PNNL) in collaboration with the Pacific States Marine Fisheries Commission (PSMFC) and the University of Washington (UW). The study was designed to estimate the effects of 30% and 40% spill treatment levels on single release survival rates of CH0 passing through two reaches: (1) the dam, and 40 km of tailwater, (2) the forebay, dam, and 40 km of tailwater. The study also estimated additional passage performance measures which are stipulated in the Columbia Basin Fish Accords.

Weiland, Mark A.; Ploskey, Gene R.; Hughes, James S.; Woodley, Christa M.; Deng, Zhiqun; Carlson, Thomas J.; Skalski, J. R.; Townsend, Richard L.

2012-11-15T23:59:59.000Z

349

Update of Columbia River flow and temperature data measured at Priest Rapids Dam and Vernita Bridge  

DOE Green Energy (OSTI)

Columbia River temperatures and flow rates are collected daily at Priest Rapids Dam and Vernita Bridge. These data are necessary for assessing trends or changes in river conditions downstream of Priest Rapids Dam. In order to analyze this data, Pacific Northwest Laboratory developed a computerized data base using existing US Geological Survey flow and temperature records at Priest Rapids Dam and Vernita Bridge. Daily-averaged temperature and daily flow information on the Columbia River just downstream of Priest Rapids Dam and upstream of river mile 380 were collected and stored in a data base. A newly developed computer model, COLSTAT (Columbia River Statistical Update), used the data base to statistically analyze temperature and flow conditions by computing the frequency of occurrence and duration of selected temperatures and flow rates for the Columbia River. Information regarding the data base is presented, as well as, a description of the COLSTAT model.

Whelan, G.; Newbill, C.A.

1983-09-01T23:59:59.000Z

350

Surface and subsurface soils at the Pond B dam: July 1998  

Science Conference Proceedings (OSTI)

Pond B, 685-13G, is an inactive reactor cooling impoundment built in 1961 on the Savannah River Site (SRS). Between 1961 and 1964, Pond B received R-Reactor cooling water discharges that were contaminated with {sup 137}Cs, {sup 90}Sr and plutonium. Though the pond has not been used since 1964, radionuclides from the contaminated cooling water remain in the water and in the surface sediments of the pond. The current proposal to fix and repair the Pond B dam structure includes installing a new drain system and monitoring equipment. The dam will be reinforced with additional previous material on the downstream face of the dam. The objectives of this report are to describe the sampling methodology used during the July 1998 sampling event at the downstream face of the Pond B dam and in Pond B, present the results of the sampling event, and compare, where possible, these results to related risk-based standards.

Halverson, N.V.

1999-12-03T23:59:59.000Z

351

Acoustic Doppler Current Profiler Surveys of Velocity Downstream of Albeni Falls Dam  

DOE Green Energy (OSTI)

The U.S. Army Corps of Engineers (USACE), Seattle District, is studying the potential to locate fish bypass systems at Albeni Falls Dam. The USACE requested Pacific Northwest National Laboratory (PNNL) to survey velocity magnitude and direction in the dam tailrace. The empirical data collected will be used to support future numerical modeling, physical modeling, and evaluation of fish bypass system alternatives. In May 2010, PNNL conducted velocity surveys of the Albeni Falls Dam using a boat-mounted acoustic Doppler current profiler. The surveys were conducted over three days (May 25 through 27). During the survey period, total river discharge at the dam varied between 30.2 and 31.0 kcfs. A small amount of spill discharge, 2 kcfs, was present on two days (May 26 and 27). This report presents data plots showing measured velocity direction and magnitude averaged over the entire depth and over 5-ft depth increments from 5 to 30 ft.

Perkins, William A.; Titzler, P. Scott; Richmond, Marshall C.; Serkowski, John A.; Kallio, Sara E.; Bellgraph, Brian J.

2010-09-30T23:59:59.000Z

352

CHARACTERIZATION OF H CANYON CONDUCTIVITY METER INDICATIONS WITH ELEVATED URANIUM IN NITRIC ACID  

SciTech Connect

Solution conductivity data from the 1CU conductivity meter in H-Canyon shows that uranium concentration in the 0 to 30 gram per liter (g/L) range has no statistically significant effect on the calibration of free nitric acid measurement. Based on these results, no additional actions are needed on the 1CU Conductivity Meter prior to or during the processing of uranium solutions in the 0 to 30 g/L range. A model based only on free nitric acid concentration is shown to be appropriate for explaining the data. Data uncertainties for the free acid measurement of uranium-bearing solutions are 8.5% or less at 95% confidence. The analytical uncertainty for calibrating solutions is an order of magnitude smaller only when uranium is not present, allowing use of a more accurate analytical procedure. Literature work shows that at a free nitric acid level of 0.33 M, uranium concentration of 30 g/L and 25 C, solution conductivity is 96.4% of that of a uranium-free solution. The level of uncertainties in the literature data and its fitting equation do not justify calibration changes based on this small depression in solution conductivity. This work supports preparation of H-Canyon processing of Super Kukla fuel; however, the results will be applicable to the processing of any similar concentration uranium and nitric acid solution. Super Kukla fuel processing will increase the uranium concentration above the nominal zero to 10 g/L level, though not above 30 g/L. This work examined free nitric acid levels ranging from 0.18 to 0.52 molar. Temperature ranged from 27.9 to 28.3 C during conductivity testing. The data indicates that sequential order of measurement is not a significant factor. The conductivity meter was thus flushed effectively between measurements as desired.

Nash, C

2007-10-31T23:59:59.000Z

353

Early Channel Evolution in the Middle Permian Brushy Canyon Formation, West Texas, USA  

E-Print Network (OSTI)

Submarine channels are important conduits for sediment in deep marine environments, and understanding their formation is critical to modeling basin fill processes. Most models describing channel evolution focus on turbidity currents as the erosive and constructive force in channel initiation. However, slope failure and slumping can be significant drivers of channelization, particularly in upper slope and ramp environments. Determining the relative roles of slumping and erosion by turbidity currents can provide important insight into the timing of channelization and the geometries of subsequent deposits. Samples were collected from Guadalupe Mountains National Park from two primary localities at Salt Flat Bench (Figure 2). Three vertical sections were measured at both locations. A total of 16 samples were collected for petrographic analysis and X-ray fluorescence (XRF) imaging. Spectacular outcrop quality makes the Middle Permian Brushy Canyon Formation in Guadalupe Mountains National Park an ideal location for the study of early channel evolution. A detailed facies analysis of fine-grained channel deposits was conducted in the Upper Brushy Canyon Formation in the Salt Flat Bench outcrops. After channelization, an interval of relative condensation dominated by hemipelagic settling of organic matter and silt was followed by an interval of incomplete sediment bypass by turbidity currents. This sequence of events suggests that sea level was at a relative highstand at the time of channel inception, whereas channel inception by turbidity currents is expected during a lowstand. Slumping rather than erosion by turbidity currents is the most likely mechanism to have initiated a channel at the study area. There is no evidence for the existence for high energy currents until after the interval of condensation. However, the action of weak contour currents during early channel evolution is observed in outcrop and microtextural features. Early carbonate cementation of channel-lining silts may have stabilized the slump surface with respect to erosion by later turbidity currents.

Gunderson, Spencer

2011-08-01T23:59:59.000Z

354

Occurrence of gas hydrate in Oligocene Frio sand: Alaminos Canyon Block 818: Northern Gulf of Mexico  

SciTech Connect

A unique set of high-quality downhole shallow subsurface well log data combined with industry standard 3D seismic data from the Alaminos Canyon area has enabled the first detailed description of a concentrated gas hydrate accumulation within sand in the Gulf of Mexico. The gas hydrate occurs within very fine grained, immature volcaniclastic sands of the Oligocene Frio sand. Analysis of well data acquired from the Alaminos Canyon Block 818 No.1 ('Tigershark') well shows a total gas hydrate occurrence 13 m thick, with inferred gas hydrate saturation as high as 80% of sediment pore space. Average porosity in the reservoir is estimated from log data at approximately 42%. Permeability in the absence of gas hydrates, as revealed from the analysis of core samples retrieved from the well, ranges from 600 to 1500 millidarcies. The 3-D seismic data reveals a strong reflector consistent with significant increase in acoustic velocities that correlates with the top of the gas-hydrate-bearing sand. This reflector extends across an area of approximately 0.8 km{sup 2} and delineates the minimal probable extent of the gas hydrate accumulation. The base of the inferred gas-hydrate zone also correlates well with a very strong seismic reflector that indicates transition into units of significantly reduced acoustic velocity. Seismic inversion analyses indicate uniformly high gas-hydrate saturations throughout the region where the Frio sand exists within the gas hydrate stability zone. Numerical modeling of the potential production of natural gas from the interpreted accumulation indicates serious challenges for depressurization-based production in settings with strong potential pressure support from extensive underlying aquifers.

Boswell, R.D.; Shelander, D.; Lee, M.; Latham, T.; Collett, T.; Guerin, G.; Moridis, G.; Reagan, M.; Goldberg, D.

2009-07-15T23:59:59.000Z

355

REDUCTIONS WITHOUT REGRET: AVOIDING WRONG TURNS, ROACH MOTELS, AND BOX CANYONS  

SciTech Connect

This is the third of three papers (in addition to an introductory summary) aimed at providing a framework for evaluating future reductions or modifications of the U.S. nuclear force, first by considering previous instances in which nuclear-force capabilities were eliminated; second by looking forward into at least the foreseeable future at the features of global and regional deterrence (recognizing that new weapon systems currently projected will have expected lifetimes stretching beyond our ability to predict the future); and third by providing examples of past or possible undesirable outcomes in the shaping of the future nuclear force, as well as some closing thoughts for the future. In this paper, we provide one example each of our judgments on what constitutes a box canyon, a roach motel, and a wrong turn: ? Wrong Turn: The Reliable Replacement Warhead ? Roach Motel: SRAM T vs the B61 ? A Possible Box Canyon: A Low-Yield Version of the W76 SLBM Warhead Recognizing that new nuclear missions or weapons are not demanded by current circumstances ? a development path that yields future capabilities similar to those of today, which are adequate if not always ideal, and a broader national-security strategy that supports nonproliferation and arms control by reducing the role for, and numbers, of nuclear weapons ? we briefly consider alternate, less desirable futures, and their possible effect on the complex problem of regional deterrence. In this regard, we discuss the issues posed by, and possible responses to, three example regional deterrence challenges: in-country defensive use of nuclear weapons by an adversary; reassurance of U.S. allies with limited strategic depth threatened by an emergent nuclear power; and extraterritorial, non-strategic offensive use of nuclear weapons by an adversary in support of limited military objectives against a U.S. ally.

Swegle, J.; Tincher, D.

2013-09-11T23:59:59.000Z

356

Association of State Dam Safety Officials (ASDSO)/EPRI Spillway Gate Workshop: January 5 & 6, 2000  

Science Conference Proceedings (OSTI)

Maintaining the integrity of dams at hydroelectric projects is essential to the protection of communities, the surrounding environment, and the power and resource management infrastructure. The Spillway Gate Workshop, sponsored by the Association of State Dam Safety Officials (ASDSO) and EPRI, and with funding from the Federal Emergency Management Agency (FEMA), focused on a critical aspect of the safety issues related to analysis, inspection, maintenance, and performance of spillway gates. The intent of...

2000-06-16T23:59:59.000Z

357

Water Velocity Measurement on an Extended-Length Submerged Bar Screen at John Day Dam  

DOE Green Energy (OSTI)

This report describes a study of water velocity around an extended-length submerged bar screen (ESBS) at John Day Dam. The study was conducted for the U.S. Army Corps of Engineers by AScI Corporation and MEVATEC Corporation in March of 2000. This report was prepared by Pacific Northwest National Laboratory. ESBS are being studied as one method for diverting juvenile migrating fish from the dam's turbine intakes into the gate well and through the juvenile fish bypass channels.

Weiland, Mark A

2001-04-02T23:59:59.000Z

358

Non-powered Dams: An untapped source of renewable electricity in the USA  

Science Conference Proceedings (OSTI)

Hydropower has been a source of clean, renewable electricity in the USA for more than 100 years. Today, approximately 2500 US dams provide 78 GW of conventional and 22 GW of pumped-storage hydropower. In contrast, another approximately 80 000 dams in the USA do not include hydraulic turbine equipment and provide non-energy related services, such as flood control, water supply, navigation, and recreation.

Hadjerioua, Boualem [ORNL; Kao, Shih-Chieh [ORNL; Wei, Yaxing [ORNL; Battey, Hoyt [Department of Energy; Smith, Brennan T [ORNL

2012-01-01T23:59:59.000Z

359

Study of the effects of a disaster at Grand Coulee Dam upon the Hanford Works  

SciTech Connect

Declassified 23 Nov 1973. It is assumed that the Grand Coulee Dam would be destroyed by one direct hit following detonation of an atomic bomb. Major effects of the explosion include flooding and isolation of Richland, flooding of Midway Substation, and flooding of surrounding areas. Maximum water elevations following a direct hit and indirect hits are estimated. Data are presented for flow through openings and flow through dam failure. (HLW)

Kramer, H.A.

1950-02-01T23:59:59.000Z

360

Optimization of Hydroacoustic Equipment Deployments at Lookout Point and Cougar Dams, Willamette Valley Project, 2010  

DOE Green Energy (OSTI)

The goal of the study was to optimize performance of the fixed-location hydroacoustic systems at Lookout Point Dam (LOP) and the acoustic imaging system at Cougar Dam (CGR) by determining deployment and data acquisition methods that minimized structural, electrical, and acoustic interference. The general approach was a multi-step process from mount design to final system configuration. The optimization effort resulted in successful deployments of hydroacoustic equipment at LOP and CGR.

Johnson, Gary E.; Khan, Fenton; Ploskey, Gene R.; Hughes, James S.; Fischer, Eric S.

2010-08-18T23:59:59.000Z

Note: This page contains sample records for the topic "glen canyon dam" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Compliance Monitoring of Juvenile Yearling Chinook Salmon and Steelhead Survival and Passage at The Dalles Dam, Spring 2010  

Science Conference Proceedings (OSTI)

The purpose of this compliance study was to estimate dam passage survival of yearling Chinook salmon and steelhead smolts at The Dalles Dam during spring 2010. Under the 2008 Federal Columbia River Power System (FCRPS) Biological Opinion (BiOp), dam passage survival should be greater than or equal to 0.96 and estimated with a standard error (SE) less than or equal 0.015. The study also estimated smolt passage survival from the forebay boat-restricted zone (BRZ) to the tailrace BRZ at The Dalles Dam, as well as the forebay residence time, tailrace egress, and spill passage efficiency (SPE), as required in the Columbia Basin Fish Accords. A virtual/paired-release design was used to estimate dam passage survival at The Dalles Dam. The approach included releases of acoustic-tagged smolts above John Day Dam that contributed to the formation of a virtual release at the face of The Dalles Dam. A survival estimate from this release was adjusted by a paired release below The Dalles Dam. A total of 4,298 yearling Chinook salmon and 4,309 steelhead smolts were tagged and released in the investigation. The Juvenile Salmon Acoustic Telemetry System (JSATS) tag model number ATS-156dB, weighing 0.438 g in air, was used in this investigation. The dam passage survival results are summarized as follows: Yearling Chinook Salmon 0.9641 (SE = 0.0096) and Steelhead 0.9535 (SE = 0.0097).

Carlson, Thomas J.; Skalski, John R.

2010-10-01T23:59:59.000Z

362

Optimization of Hydroacoustic Deployments at John Day Dam  

DOE Green Energy (OSTI)

This report describes short-term studies conducted in late November and early December 2001 to optimize hydroacoustic sampling techniques for John Day Dam before the 2002 fish passage efficiency (FPE) study. Knowledge gained in this study should significantly improve hydroacoustic sampling and the accuracy of estimates of fish passage at two locations that have presented problems in past studies. The spillway has been most problematic because many fish detected there were not entrained. Without correction, non-commitment of fish can result in multiple detections and overestimation of fish passage and FPE. Trash-rack-mounted, down-looking transducers for sampling unguided fish at a submerged traveling screen (STS) also have posed problems because the beam was aimed so far downstream that researchers had concerns about fish aspect and detectability. The deployments, aiming angles, and ping rates described here should eliminate all problems encountered in previous studies. This report describes hydroacoustic evaluations. The spill-bay deployment identified in this study should completely eliminate multiple detections of fish by limiting the sample volume for counting fish to the deep high-discharge volume adjacent to the gate. Results from testing of transducers deployed in a turbine intake with an STS suggest that, after testing in 2002, it may be possible to cut the number of powerhouse transducers sampling STS units by 50% or to double the spatial sampling coverage with the same number of transducers, all while improving detectability.

Ploskey, Gene R.; Cook, Christopher B.; Titzler, P. Scott; Moursund, Russell A.

2002-11-12T23:59:59.000Z

363

Operation of the Lower Granite Dam Adult Trap, 2008.  

DOE Green Energy (OSTI)

During 2008 we operated the adult salmonid trap at Lower Granite Dam from 7 March through 25 November, except during a short summer period when water temperatures were too high to safely handle fish. We collected and handled a total of 20,463 steelhead Oncorhynchus mykiss and radio-tagged 34 of the hatchery steelhead. We took scale samples from 3,724 spring/summer Chinook salmon O. tshawytscha for age and genetic analysis. We collected and handled a total of 8,254 fall Chinook salmon. Of those fish, 2,520 adults and 942 jacks were transported to Lyons Ferry Hatchery on the Snake River in Washington. In addition, 961 adults and 107 jacks were transported to the Nez Perce Tribal Hatchery on the Clearwater River in Idaho. The remaining 3,724 fall Chinook salmon were passed upstream. Scales samples were taken from 780 fall Chinook salmon tagged with passive integrated transponder (PIT) tags and collected by the sort-by-code system.

Harmon, Jerrel R.

2009-01-01T23:59:59.000Z

364

Priest Rapids Dam flow curtailment: Incident report, January 7, 1961  

SciTech Connect

This incident report deals with mechanical damage (caused by falling rocks) to the power line supplying station power, Priest Rapids Dam lost all generating flow at 4:23 p.m., cutting discharge from 71,700 cfs to about 12,000 cfs. Within five minutes, spillway gates were opened, bringing river flow back to greater than 36,000 cfs in about 10 minutes. The flow at 181-B dropped from 72,000 cfs to a minimum of 56,000 cfs at about 5:25 p.m. Priest Rapids generators returned to service at 4:45 p.m., the indicated flow at the gauge reaching 71,700 cfs again at about 8:00 p.m. River temperatures at the gauge increased 0.5 C following the interruption, but not at 181-B. Prompt HAPO notification of the flow reduction as provided for in the agreement between the PUD and the AEC was not made on this occasion; the first notice came from the 251 Substation.

Kramer, H.A.; Corley, J.P.

1961-01-20T23:59:59.000Z

365

Page not found | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

51 - 7360 of 26,764 results. 51 - 7360 of 26,764 results. Download EIS-0480: Notice of Intent to Prepare a Draft Environmental Impact Statement Long-Term Experimental and Management Plan for the Operation of Glen Canyon Dam, AZ http://energy.gov/nepa/downloads/eis-0480-notice-intent-prepare-draft-environmental-impact-statement Download EA-1644: Final Environmental Assessment Kildeer to Mountain Transmission Project http://energy.gov/nepa/downloads/ea-1644-final-environmental-assessment Download EA-1960: Finding of No Significant Impact Townsite Solar Project Transmission Line, Clark County, Nevada http://energy.gov/nepa/downloads/ea-1960-finding-no-significant-impact Download Key Events Timeline This document lists key events beginning with the April 20 fire on the Deepwater Horizon through July 28th. Updated July 28, 2010.

366

Latest Documents and Notices | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

August 11, 2011 August 11, 2011 EA-1800: Finding of No Significant Impact Monarch Warren County Wind Turbine Project Lenox Township Warren County, Illinois July 31, 2011 EA-1617: Draft Environmental Assessment Lovell-Yellowtail and Basin-Lovell Transmission Line Rebuild Project July 13, 2011 EA-1871: Finding of No Significant Impact Energy Efficiency Design Standards for New Federal Commercial and Multi-Family High-Rise Residential Buildings and New Federal Low-Rise Residential Buildings July 8, 2011 EIS-0240-SA-01: Supplement Analysis Disposition of Surplus Highly Enriched Uranium July 6, 2011 EIS-0480: Notice of Intent to Prepare a Draft Environmental Impact Statement Long-Term Experimental and Management Plan for the Operation of Glen Canyon Dam, AZ June 24, 2011 EA-1779: Draft Environmental Assessment

367

(DOE/EIS-0183-SA-05): Supplement Analysis for the Boise River Diversion Dam Powerplant Rehabilitation, 10/17/02  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

October 17, 2002 October 17, 2002 REPLY TO ATTN OF: KECP-4 SUBJECT: Supplement Analysis for the Boise River Diversion Dam Powerplant Rehabilitation, DOE/EIS-0183-SA-05 memorandum Mark A. Jones Program Analyst - PGF-6 TO : Proposed Action: Boise River Diversion Dam - Amendment to Capital Investment Sub-Agreement, Contract Number DE-MS79-94BP94618 Proposed By: Bonneville Power Administration (BPA) and Bureau of Reclamation (Reclamation) Location: Near Boise, in Ada County, Idaho Description of the Proposed Action: BPA proposes to fund Reclamation's rehabilitation of the powerplant at the existing Boise River Diversion Dam (Diversion Dam) to use the water resource at Diversion Dam for electrical power production. Analysis: The Diversion Dam is located about 7 miles southeast of Boise, Idaho on the Boise River, about

368

Synthesis of Juvenile Salmonid Passage Studies at The Dalles Dam, Volume II, 2001-05  

DOE Green Energy (OSTI)

The overall goal of juvenile salmonid research at The Dalles Dam is to provide data to inform decisions on strategies to improve smolt survival rates at the project. Survival improvement strategies address the three primary passage routes at The Dalles Dam -- spillway, sluiceway, and turbines with the general intent to increase spill and sluice passage and decrease turbine passage. Since the review by Ploskey et al. (2001a) of research during 1982-2000 at The Dalles Dam, the Corps funded over $20M of research in at least 39 studies during 2001-2006. The purpose of the current review is to synthesize juvenile salmonid passage data at The Dalles Dam (TDA) collected from 2001 through 2006. The data we synthesize comes from numerous research techniques employed to address particular study objectives at The Dalles Dam. The suite of techniques includes acoustic and radio telemetry, acoustic cameras, acoustic Doppler current profilers, balloon tags, computational fluid dynamics models, drogues, fixed and mobile hydroacoustics, fyke nets, physical scale models, PIT-tags, sensor fish, sonar trackers, and underwater video. Hydraulic data involves flow patterns and water velocities. Biological data involve forebay approach paths and residence times, horizontal and diel distributions, passage efficiencies and effectiveness, fish behaviors, tailrace egress and predation rates, and route-specific and total project survival rates. Data for 2001-2006 are synthesized in this report to provide, in conjunction with Ploskey et al. (2001a), resources for engineers, biologists, and dam operators to use when making decisions about fish protection measures for juvenile salmonids at The Dalles Dam. This review covers the major fish passage research efforts during 2001-2006 and includes sections on the Environmental Setting, Forebay and Project Passage Studies, Spill Studies, Sluiceway Studies, Turbine Studies, Smolt Survival Studies, and a Discussion.

Johnson, Gary E.; Beeman, John W.; Duran, Ian; Puls, Andrew

2007-08-15T23:59:59.000Z

369

Prognostic Prediction of Tracer Dispersion for the Diablo Canyon Experiments on August 31, September 2, and September 4, 1986  

DOE Green Energy (OSTI)

COAMPS/LODI simulations of the tracer experiments at Diablo Canyon on August 31, September 2, and September 4, 1986 had mixed results. Simulated tracer concentrations on August 31 differed significantly from the measured concentrations. The model transported SF{sub 6} too far south and did not predict transport of SF{sub 6} north along highway 101 or into See Canyon. Early in the day the model rapidly transported SF{sub 6} away from the release point while observations suggested the tracer stayed close to Diablo Canyon for 1-2 hours. For September 2, simulations agreed very well with the measurements. The model accurately predicted the change of wind direction from north northwest to east northeast at the release point. It also predicted the advection of tracer over Mot-r-0 Bay and through the Los Osos Valley toward San Luis Obispo in excellent agreement with the observations. On September 4, the calculated transport of SF{sub 6} from Diablo Canyon had defects similar to those on August 31, a trajectory too far south and limited intrusion of tracer north along highway 101. Conversely, simulations of the Freon release from Los Osos Cemetery on September 4 corresponded well with observations. Since the simulations used only global meteorological data and no local winds for input, even the limited success of COAMPS/LODI is a favorable result. COAMPS's inability to generate southerly winds through the highway 101 corridor on August 31 and September 4 is a symptom of its underestimate of the sea breeze. The weak sea breeze correlates with a small diurnal range of air temperature possibly associated with underestimates of surface solar heating and/or overestimates of surface wetness. Improvement of COAMPS/LODI simulations requires development of new data assimilation techniques to use the local surface and low altitude wind and temperature measurements. Also, quantitative methods are needed to assess the accuracy of the models.

Molenkamp, C.R.

1999-11-29T23:59:59.000Z

370

Assessment of the impacts of demand curtailments in the DAMs: issues in and proposed modifications of FERC Order No. 745.  

E-Print Network (OSTI)

??The Federal Energy Regulatory Commission (FERC), in its initiative to incentivize demand response resources (DRRs) to participate in the day-ahead markets (DAMs), enacted Order No. (more)

Castillo, Isaac

2013-01-01T23:59:59.000Z

371

Survival Estimates for the Passage of Yearling Chinook Salmon and Steelhead through Snake River Dams and Reservoirs, 1995 Annual Report.  

DOE Green Energy (OSTI)

Documentation is provided for the third of a multiyear study to estimate the survival of juvenile salmonids passing through dams and reservoirs on the Snake River.

Muir, William D.

1996-03-01T23:59:59.000Z

372

Water-induced displacement in Thua Thien Hue province: the impacts of hydropower dams on livelihood of forest dependent people.  

E-Print Network (OSTI)

??Thua Thien Hue province is one of provinces in Vietnam where a high potential for hydroelectricity has resulted in the construction of dams for energy (more)

Yustina Artati, ..

2011-01-01T23:59:59.000Z

373

PETROPHYSICAL INVESTIGATION OF THE SECONDARY RECOVERY POTENTIAL IN THE CHERRY CANYON FORMATION NE LEA FIELD LEA COUNTY, NEW MEXICO  

Science Conference Proceedings (OSTI)

Read and Stevens has proposed the evaluation of the waterflood potential from the Cherry Canyon formation in the NE Lea Field in lea County, New Mexico. Much of the development in this area is approaching primary recovery limitations; additional recovery of remaining oil reserves by waterflood needs to be evaluated. The Cherry Canyon formation is composed of fine grained sandstone, containing clay material which results in high water saturation, and also has the tendency to swell and reduce reservoir permeability--the ability of fluid to flow through the rock pores and fractures. There are also abundant organic materials that interfere with obtaining reliable well logs. These complications have limited oil in place calculations and identification of net pay zones, presenting a challenge to the planned waterflood. Core analysis of the Cherry Canyon should improve the understanding of existing well logs and possibly indicate secondary recovery measures, such as waterflood, to enhance field recovery. Lacking truly representative core to provide accurate analyses, Read and Stevens will obtain and preserve fresh core. The consulting firm of T. Scott Hickman and Associates will then collaborate on special core analyses and obtain additional well logs for a more detailed analysis of reservoir properties. The log interpretation will be compared to the core analysis results, and the entire collected data set will be used to assess the potential and economic viability of successfully waterflooding the identified oil zones. Successful results from the project will improve accuracy of log interpretation and establish a methodology for evaluating secondary recovery by waterflood.

T. Scott Hickman

2002-06-01T23:59:59.000Z

374

The Dalles Dam, Columbia River: Spillway Improvement CFD Study  

DOE Green Energy (OSTI)

This report documents development of computational fluid dynamics (CFD) models that were applied to The Dalles spillway for the US Army Corps of Engineers, Portland District. The models have been successfully validated against physical models and prototype data, and are suitable to support biological research and operations management. The CFD models have been proven to provide reliable information in the turbulent high-velocity flow field downstream of the spillway face that is typically difficult to monitor in the prototype. In addition, CFD data provides hydraulic information throughout the solution domain that can be easily extracted from archived simulations for later use if necessary. This project is part of an ongoing program at the Portland District to improve spillway survival conditions for juvenile salmon at The Dalles. Biological data collected at The Dalles spillway have shown that for the original spillway configuration juvenile salmon passage survival is lower than desired. Therefore, the Portland District is seeking to identify operational and/or structural changes that might be implemented to improve fish passage survival. Pacific Northwest National Laboratory (PNNL) went through a sequence of steps to develop a CFD model of The Dalles spillway and tailrace. The first step was to identify a preferred CFD modeling package. In the case of The Dalles spillway, Flow-3D was as selected because of its ability to simulate the turbulent free-surface flows that occur downstream of each spilling bay. The second step in development of The Dalles CFD model was to assemble bathymetric datasets and structural drawings sufficient to describe the dam (powerhouse, non-overflow dam, spillway, fish ladder entrances, etc.) and tailrace. These datasets are documented in this report as are various 3-D graphical representations of The Dalles spillway and tailrace. The performance of the CFD model was then validated for several cases as the third step. The validated model was then applied to address specific SIS design questions. Specifically, the CFD models were used to evaluate flow deflectors, baffle block removal and the effects of spillwalls. The CFD models were also used to evaluate downstream differences at other locations, such as at the Highway 197 bridge piers and Oregon shore islands, due to alterations in spill pattern. CFD model results were analyzed to quantitatively compare impacts of the spillwall that has subsequently been constructed between bays 6 and 7. CFD model results provided detailed information about how the spillwall would impact downstream flow patterns that complemented results from the 1:80 scale physical model. The CFD model was also used to examine relative differences between the juvenile spill pattern used in previous years and the anticipated spill pattern that will be applied once the wall is complete. In addition, the CFD model examined velocity magnitudes over the downstream basalt shelf to investigate potential for erosion under high flow conditions (e.g., 21 kcfs/bay for bays 1 through 6) with the spillwall in place. Several appendices follow the results and discussion sections of this report. These appendices document the large number of CFD simulations that have been performed by PNNL; both spillway improvement study (SIS) related and those performed for related biological tests.

Cook, Chris B.; Richmond, Marshall C.; Serkowski, John A.

2006-06-01T23:59:59.000Z

375

Klondike III/Biglow Canyon Wind Integration Project; Final Environmental Impact Statement, September 2006.  

DOE Green Energy (OSTI)

BPA has been asked by PPM Energy, Inc. to interconnect 300 megawatts (MW) of electricity generated from the proposed Klondike III Wind Project to the Federal Columbia River Transmission System. Orion Energy LLC has also asked BPA to interconnect 400 MW of electricity from its proposed Biglow Canyon Wind Farm, located north and east of the proposed Klondike III Wind Project. (Portland General Electric recently bought the rights to develop the proposed Biglow Canyon Wind Farm from Orion Energy, LLC.) Both wind projects received Site Certificates from the Oregon Energy Facility Siting Council on June 30, 2006. To interconnect these projects, BPA would need to build and operate a 230-kV double-circuit transmission line about 12 miles long, expand one substation and build one new substation. The wind projects would require wind turbines, substation(s), access roads, and other facilities. Two routes for the transmission line are being considered. Both begin at PPM's Klondike Schoolhouse Substation then travel north (Proposed Action) or north and westerly (Middle Alternative) to a new BPA 230-kV substation next to BPA's existing John Day 500-kV Substation. BPA is also considering a No Action Alternative in which BPA would not build the transmission line and would not interconnect the wind projects. The proposed BPA and wind projects would be located on private land, mainly used for agriculture. If BPA decides to interconnect the wind projects, construction of the BPA transmission line and substation(s) could commence as early as the winter of 2006-07. Both wind projects would operate for much of each year for at least 20 years. The proposed projects would generally create no or low impacts. Wildlife resources and local visual resources are the only resources to receive an impact rating other than ''none'' or ''low''. The low to moderate impacts to wildlife are from the expected bird and bat mortality and the cumulative impact of this project on wildlife when combined with other proposed wind projects in the region. The low to high impacts to visual resources reflect the effect that the transmission line and the turbine strings from both wind projects would have on viewers in the local area, but this impact diminishes with distance from the project.

United States. Bonneville Power Administration

2006-09-01T23:59:59.000Z

376

Evaluation of Fall Chinook and Chum Salmon Spawning below Bonneville Dam; 2003-2004 Annual Report.  

DOE Green Energy (OSTI)

In 2003 a total of 253 adult fall chinook and 113 chum were sampled for biological data in the Ives and Pierce islands area below Bonneville Dam. Vital statistics were developed from 221 fall chinook and 109 chum samples. The peak redd count for fall chinook was 190. The peak redd count for chum was 262. Peak spawning time for fall chinook was set at approximately 24 November. Peak spawning time for chum occurred approximately 24 November. There were estimated to be a total of 1,533 fall chinook spawning below Bonneville Dam in 2003. The study area's 2003 chum population was estimated to be 688 spawning fish. Temperature unit data suggests that below Bonneville Dam 2003 brood bright stock, fall chinook emergence began on January 6, 2004 and ended 28 April 2004, with peak emergence occurring 13 April. 2003 brood juvenile chum emergence below Bonneville Dam began 22 February and continued through 15 April 2004. Peak chum emergence took place 25 March. A total of 25,433 juvenile chinook and 4,864 juvenile chum were sampled between the dates of 20 January and 28 June 2004 below Bonneville Dam. Juvenile chum migrated from the study area in the 40-55 mm fork length range. Migration of chum occurred during the months of March, April and May. Sampling results suggest fall chinook migration from rearing areas took place during the month of June 2004 when juvenile fall chinook were in the 65 to 80 mm fork length size range. Adult and juvenile sampling below Bonneville Dam provided information to assist in determining the stock of fall chinook and chum spawning and rearing below Bonneville Dam. Based on observed spawning times, adult age and sex composition, juvenile emergence timing, juvenile migration timing and juvenile size at the time of migration, it appears that in 2003 all of the fall chinook using the area below Bonneville Dam were of a late-spawning, bright stock. Observed spawning times, adult age and sex composition, GSI and DNA analysis, juvenile emergence timing, juvenile migration timing and juvenile size at the time of migration suggests chum spawning and rearing below Bonneville dam are similar to stocks of chum found in Hamilton and Hardy creek and are part of the Lower Columbia River Chum ESU.

van der Naald, Wayne; Duff, Cameron; Brooks, Robert (Oregon Department of Fish and Wildlife, Columbia River Section, John Day, OR)

2005-01-01T23:59:59.000Z

377

Evaluation of Fall Chinook and Chum Salmon Spawning below Bonneville Dam; 2002-2003 Annual Report.  

DOE Green Energy (OSTI)

In 2002 a total of 364 adult fall chinook and 472 chum were sampled for biological data in the Ives and Pierce islands area below Bonneville Dam. Vital statistics were developed from 290 fall chinook and 403 chum samples. The peak redd count for fall chinook was 214. The peak redd count for chum was 776. Peak spawning time for fall chinook was set at approximately 15 November. Peak spawning time for chum occurred approximately 6 December. There were estimated to be a total of 1,881 fall chinook spawning below Bonneville Dam in 2002. The study area's 2002 chum population was estimated to be 4,232 spawning fish. Temperature unit data suggests that below Bonneville Dam 2002 brood bright stock, fall chinook emergence began on February 3 2003 and ended 7 May 2003, with peak emergence occurring 20 April. 2002 brood juvenile chum emergence below Bonneville Dam began 27 January and continued through 6 April 2003. Peak chum emergence took place 1 March. A total of 10,925 juvenile chinook and 1,577 juvenile chum were sampled between the dates of 24 January and 21 July 2003 below Bonneville Dam. Juvenile chum migrated from the study area in the 40-55 mm fork length range. Migration of chum occurred during the months of March, April and May. Sampling results suggest fall chinook migration from rearing areas took place during the month of June 2003 when juvenile fall chinook were in the 65 to 80 mm fork length size range. Adult and juvenile sampling below Bonneville Dam provided information to assist in determining the stock of fall chinook and chum spawning and rearing below Bonneville Dam. Based on observed spawning times, adult age and sex composition, juvenile emergence timing, juvenile migration timing and juvenile size at the time of migration, it appears that in 2002 and 2003 the majority of fall chinook using the area below Bonneville Dam were of a late-spawning, bright stock of fall chinook. Observed spawning times, adult age and sex composition, GSI and DNA analysis, juvenile emergence timing, juvenile migration timing and juvenile size at the time of migration suggests chum spawning and rearing below Bonneville dam are similar to stocks of chum found in Hamilton and Hardy creek and are part of the Lower Columbia River Chum ESU.

van der Naald, Wayne; Clark, Roy; Brooks, Robert (Oregon Department of Fish and Wildlife, Columbia River Section, John Day, OR)

2004-01-01T23:59:59.000Z

378

Feasibility report on the potential hydroelectric development at Combie Dam. [3. 5 MW, 70-ft head  

DOE Green Energy (OSTI)

The results of an investigation of the technical, environmental, economic and financial feasibility of installing a hydroelectric powerplant at the existing Combie Dam on the Bear River in Nevada and Placer Counties, California, are discussed. This dam is owned and operated by the Nevada Irrigation District (the District) to act as a diversion and provide some storage for District water supply. The power plant would utilize flows which presently pass over the dam's spillway. The project would involve expanding the existing four foot diameter outlet on the southern gravity portion of the dam, installing a penstock (approximately 175 feet long, 102 inches in diameter) and constructing a 3500 kilowatts (kW) power plant on the south bank of the river below the dam. The capital cost of the project, including interest during construction, would total approximately $4,500,000 in July 1980 dollars. The unit capacity cost of the project at the 1980 price level would be $1,285 per kilowatt. The energy production unit cost would be 41.4 mills per kilowatt hour in 1980, and 56.3 mills per kilowatt hour in 1984. Environmental impacts of the Combie Power Project would be minimal. The primary conclusion from this study is that the Combie Power Project is economically, environmentally and institutionally viable, at the present time if an adequate power purchase agreement can be reached. Continued escalation of energy values will make this project even more attractive. (WHK)

Not Available

1980-10-01T23:59:59.000Z

379

The Influence of Large Dams on Surrounding Climate and Precipitation Patterns  

DOE Green Energy (OSTI)

Understanding the forcings exerted by large dams on local climate is key to establishing if artificial reservoirs inadvertently modify precipitation patterns in impounded river basins. Using a 30 year record of reanalysis data, the spatial gradients of atmospheric variables related to precipitation formation are identified around the reservoir shoreline for 92 large dams of North America. Our study reports that large dams influence local climate most in Mediterranean, arid and semi-arid climates, while for humid climates the influence is least. During the growing season, large dams in Mediterranean climates increase CAPE 2-3 times near the reservoir compared to the non-growing season. Clear spatial gradients of CAPE, specific humidity and surface evaporation are also observed around the fringes between the reservoir shoreline and further from these dams. Because of the increasing correlation observed between higher percentile of rain and CAPE, our findings point to the possibility of storm intensification in impounded basins of the Mediterranean and arid climates of the United States.

Degu, Ahmed M.; Hossain, Faisal; Niyogi, Dev; Pielke, Roger; Shepherd, J. M.; Voisin, Nathalie; Chronis, Themis

2011-03-21T23:59:59.000Z

380

Evaluation of Behavioral Guidance Structure on Juvenile Salmonid Passage and Survival at Bonneville Dam in 2009  

DOE Green Energy (OSTI)

Pacific Northwest National Laboratory (PNNL) conducted an acoustic-telemetry study at Bonneville Dam in 2009 to evaluate the effects of a behavioral guidance structure (BGS) in the Bonneville Dam second powerhouse forebay on fish passage and survival through the second powerhouse (B2), the dam as a whole, and through the first powerhouse and spillway combined. The BGS was deployed to increase the survival of fish passing through B2 by increasing the percentage of outmigrating smolts entering the B2 Corner Collector (B2CC)a surface flow outlet known to be a relatively benign route for downstream passage at this dam. The study relied on releases of live Juvenile Salmon Acoustic Telemetry System tagged smolts in the Columbia River and used acoustic telemetry to evaluate the approach, passage, and survival of passing juvenile salmon. Study results indicated that having turbine 11 in service is important for providing flow conditions that are comparable to those observed in pre-BGS years (2004 and 2005) and in 2008. This study supports the U.S. Army Corps of Engineers continual effort to improve conditions for juvenile anadromous fish passing through Columbia River dams.

Faber, Derrek M.; Ploskey, Gene R.; Weiland, Mark A.; Deng, Zhiqun; Hughes, James S.; Kim, Jin A.; Fu, Tao; Fischer, Eric S.; Monter, Tyrell J.; Skalski, J. R.

2011-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "glen canyon dam" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

SAVANNAH RIVER SITE'S H-CANYON FACILITY: RECOVERY AND DOWN BLEND URANIUM FOR BENEFICIAL USE  

SciTech Connect

For over fifty years, the H Canyon facility at the Savannah River Site (SRS) has performed remotely operated radiochemical separations of irradiated targets to produce materials for national defense. Although the materials production mission has ended, the facility continues to play an important role in the stabilization and safe disposition of proliferable nuclear materials. As part of the US HEU Disposition Program, SRS has been down blending off-specification (off-spec) HEU to produce LEU since 2003. Off-spec HEU contains fission products not amenable to meeting the American Society for Testing and Material (ASTM) commercial fuel standards prior to purification. This down blended HEU material produced 301 MT of ~5% enriched LEU which has been fabricated into light water reactor fuel being utilized in Tennessee Valley Authority (TVA) reactors in Tennessee and Alabama producing economic power. There is still in excess of ~10 MT of off-spec HEU throughout the DOE complex or future foreign and domestic research reactor returns that could be recovered and down blended for beneficial use as either ~5% enriched LEU, or for use in subsequent LEU reactors requiring ~19.75% enriched LEU fuel.

Magoulas, V.

2013-05-27T23:59:59.000Z

382

Flowsheet modifications for dissolution of sand, slag, and crucible residues in the F-canyon dissolvers  

Science Conference Proceedings (OSTI)

An initial flowsheet for the dissolution of sand, slag, and crucible (SS{ampersand}C) was developed for the F- Canyon dissolvers as an alternative to dissolution in FB-Line. In that flowsheet, the sand fines were separated from the slag chunks and crucible fragments. Those two SS{ampersand}C streams were packaged separately in mild-steel cans for dissolution in the 6.4D dissolver. Nuclear safety constraints limited the dissolver charge to approximately 350 grams of plutonium in two of the three wells of the dissolver insert and required 0.23M (molar) boron as a soluble neutron poison in the 9.3M nitric acid/0.013M fluoride dissolver solution. During the first dissolution of SS{ampersand}C fines, it became apparent that a significant amount of the plutonium charged to the 6.4D dissolver did not dissolve in the time predicted by previous laboratory experiments. The extended dissolution time was attributed to fluoride complexation by boron. An extensive research and development (R{ampersand}D) program was initiated to investigate the dissolution chemistry and the physical configuration of the dissolver insert to understand what flowsheet modifications were needed to achieve a viable dissolution process.

Rudisill, T.S.; Karraker, D.G.; Graham, F.R.

1997-12-01T23:59:59.000Z

383

Electromagnetic (EM-60) survey in the Panther Canyon Area, Grass Valley, Nevada  

DOE Green Energy (OSTI)

Eight frequency domain electromagnetic soundings were measured over the Panther Canyon thermal anomaly in Grass Valley, Nevada. The data were collected with Lawrence Berkeley Laboratory's large moment horizontal loop system (EM-60). At the transmitter site located near the center of the thermal anomaly, square wave currents of up to 70 A were impressed into a fourturn 50 m radius coil at frequencies from 0.033 to 500 Hz. At the eight receiver sites, 0.5 to 1.5 km from the loop, magnetic fields were detected with a three-component SQUID magnetometer and vertical and radial magnetic field spectra were calculated. Data were interpreted with a computer program which fit filled spectra and associated ellipse polarization data to one-dimensional resistivity models and results were compared to interpretations from earlier dipole-dipole resistivity measurements. Comparison of these interpretations indicates fairly close agreement between the two, with both models clearly indicating the presence and dimensions of the conductivity anomaly associated with the thermal zone. Although the dc data was better able to resolve the high resistivity bedrock, the EM-data were able to resolve all major features without distortion at shorter transmitter receiver separations and in about one-third of the field time.

Wilt, M.; Goldstein, N.; Stark, M.; Haught, R.

1980-05-01T23:59:59.000Z

384

Treating high pressure zones in one trip in Canyon Reef area of Texas  

Science Conference Proceedings (OSTI)

In the Canyon Reef area near Snyder, Texas, Chevron U.S.A. Inc. is employing ratchet operated, packer type retrievable bridge plugs which have allowed operators to test, treat, or squeeze high pressure zones over a 35-day period on a single trip of the workstring. More zones could have been treated if necessary. The bridge plug was moved and set 31 times while treating the zones. Elapsed time is shown in days starting with T-date being the day tools were first run in for the treatment. The job was run with an average treating pressure of 1,000 psi, and a differential pressure of 2,500 psi that alternated from above the bridge plug to below and back each time the plug was moved to a new zone. The bridge plug used for the job seals by the action of a patented ratcheting mechanism which requires relatively light weight to set. Design of the ratchet enables the sealing elements to hold a seal against the casing wall while the hold-down slips are being set.

Cooley, G.; Mccowen, D.; Fore, M.

1984-03-01T23:59:59.000Z

385

Hungry Horse Dam Fisheries Mitigation Implementation Plan, 1990-2003 Progress (Annual) Report.  

DOE Green Energy (OSTI)

In this document the authors present mitigation implementation activities to protect and enhance resident fish and aquatic habitat affected by the construction and operation of Hungry Horse Dam. This plan only addresses non-operational actions (mitigation measures that do not affect dam operation) described in the 'Fisheries Mitigation Plan for Losses Attributable to the Construction and Operation of Hungry Horse Dam' (Mitigation Plan) submitted to the Northwest Power Planning Council (Council) in March 1991 and in accordance with subsequent Council action on that Mitigation Plan. Operational mitigation was deferred for consideration under the Columbia Basin System Operation Review (SOR) process. This document represents an implementation plan considered and conditionally approved by the Council in March of 1993.

Montana Department of Fish, Wildlife and Parks; Confederated Salish and Kootenai Tribes

1993-03-10T23:59:59.000Z

386

A Prehistoric Lahar-Dammed Lake And Eruption Of Mount Pinatubo Described In  

Open Energy Info (EERE)

Prehistoric Lahar-Dammed Lake And Eruption Of Mount Pinatubo Described In Prehistoric Lahar-Dammed Lake And Eruption Of Mount Pinatubo Described In A Philippine Aborigine Legend Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: A Prehistoric Lahar-Dammed Lake And Eruption Of Mount Pinatubo Described In A Philippine Aborigine Legend Details Activities (0) Areas (0) Regions (0) Abstract: The prehistoric eruptions of Mount Pinatubo have followed a cycle: centuries of repose terminated by a caldera-forming eruption with large pyroclastic flows; a post-eruption aftermath of rain-triggered lahars in surrounding drainages and dome-building that fills the caldera; and then another long quiescent period. During and after the eruptions lahars descending along volcano channels may block tributaries from watersheds

387

Effects of Flaming Gorge Dam hydropower operations on downstream flow, stage, and sediment transport  

DOE Green Energy (OSTI)

Hydropower operations at Flaming Gorge Dam, located on the Green River in Utah, can produce rapid downstream changes in flow and stage. These changes can in turn affect sediment transport and ecologic resources below the dam. To evaluate these effects, four hydropower operational scenarios with varying degrees of hydropower-release fluctuations were examined. This study demonstrates that the combined use of river-flow routing, water-surface profile, and sediment-transport models can provide useful information for evaluating the potential impacts of hydropower-operations on ecological and other resources downstream of the dam. Study results show that flow fluctuations may or may not persist for a long distance, depending on the initial magnitude of fluctuation and the duration of hydropower peaking. Stage fluctuations depend not only on flow fluctuations but also on river channel characteristics, such as channel width and longitudinal slope.

Yin, S.C.L.; Tomasko, D.; Cho, H.E.; Williams, G. [Argonne National Lab., IL (United States); McCoy, J.; Palmer, C. [USDOE Western Area Power Administration, Salt Lake City, UT (United States)

1996-11-01T23:59:59.000Z

388

Fish Migration, Dams, and Loss of Ecosystem Services in the Mekong Basin  

DOE Green Energy (OSTI)

The past decade has seen increased international recognition of the importance of the services provided by natural ecosystems. It is unclear however whether such international awareness will lead to improved environmental management in many regions. We explore this issue by examining the specific case of fish migration and dams on the Mekong river. We determine that dams on the Mekong mainstem and major tributaries will have a major impact on the basin's fisheries and the people who depend upon them for food and income. We find no evidence that current moves towards dam construction will stop, and consider two scenarios for the future of the fisheries and other ecosystems of the basin. We conclude that major investment is required in innovative technology to reduce the loss of ecosystem services, and alternative livelihood strategies to cope with the losses that do occur

Dugan, Patrick J. [WorldFish Center; Barlow, Chris [Australian Center for International Agricultural Research (ACIAR); Agostinho, Angelo A. [Fundacao University, Parana Brazil; Baran, Eric [WorldFish Center; Cada, Glenn F [ORNL; Chen, Daqing [Yangtze River Fisheries Research Institute, People's Republic of China; Cowx, Ian G. [Hull International Fisheries Research Institute, England; Ferguson, John W. [North West Fisheries Science Center, Seattle, WA; Jutagate, Tuantong [Ubon Ratchathani University, Ubon Ratchathani, Thailand; Mallen-Cooper, Martin [Fishway Consulting Service, Australia; Marmulla, Gerd [Food and Agriculture Organization of the United Nations (FAO), Rome, Italy; Nestler, John [USA Corps Engineers, Concord, MA USA; Petrere, Miquel [Universidade Estadual Paulista, Rio Claro, Brazil; Winemiller, Kirk O. [Texas A& M University

2010-06-01T23:59:59.000Z

389

Temporary Restoration of Bull Trout Passage at Albeni Falls Dam, 2008 Progress Report.  

DOE Green Energy (OSTI)

The goal of this project is to provide temporary upstream passage of bull trout around Albeni Falls Dam on the Pend Oreille River, Idaho. Our specific objectives are to capture fish downstream of Albeni Falls Dam, tag them with combination acoustic and radio transmitters, release them upstream of Albeni Falls Dam, and determine if genetic information on tagged fish can be used to accurately establish where fish are located during the spawning season. In 2007, radio receiving stations were installed at several locations throughout the Pend Oreille River watershed to detect movements of adult bull trout; however, no bull trout were tagged during that year. In 2008, four bull trout were captured downstream of Albeni Falls Dam, implanted with transmitters, and released upstream of the dam at Priest River, Idaho. The most-likely natal tributaries of bull trout assigned using genetic analyses were Grouse Creek (N = 2); a tributary of the Pack River, Lightning Creek (N = 1); and Rattle Creek (N = 1), a tributary of Lightning Creek. All four bull trout migrated upstream from the release site in Priest River, Idaho, were detected at monitoring stations near Dover, Idaho, and were presumed to reside in Lake Pend Oreille from spring until fall 2008. The transmitter of one bull trout with a genetic assignment to Grouse Creek was found in Grouse Creek in October 2008; however, the fish was not found. The bull trout assigned to Rattle Creek was detected in the Clark Fork River downstream from Cabinet Gorge Dam (approximately 13 km from the mouth of Lightning Creek) in September but was not detected entering Lightning Creek. The remaining two bull trout were not detected in 2008 after detection at the Dover receiving stations. This report details the progress by work element in the 2008 statement of work, including data analyses of fish movements, and expands on the information reported in the quarterly Pisces status reports.

Bellgraph, Brian J. [Pacific Northwest National Laboratory

2009-03-31T23:59:59.000Z

390

Libby Dam Hydro-electric Project Mitigation: Efforts for Downstream Ecosystem Restoration.  

DOE Green Energy (OSTI)

Construction of Libby Dam, a large hydropower and flood control dam occurred from 1966 to 1975 on the Kootenai River, near Libby, Montana in the Northwestern United States. Live reservoir storage is substantial, with water residence time of about 5 1/2 months (based on mean annual discharge of about 440 m{sup 3}/s). Downstream river discharge and thermal regimes and the dependent habitat conditions have been significantly altered by dam construction and operation relative to pre-dam conditions. Highly valued Kootenai River fish populations, including white sturgeon Acipenser transmontanus, burbot Lota lota and bull trout Salvelinus confluentus and their supporting ecological conditions have been deteriorating during post-dam years. Measurements of the presence of very low (ultraoligotrophic) concentrations of dissolved phosphorus in the river downstream from Libby Dam were identified as a critical limitation on primary production and overall ecosystem health. A decision was made to initiate the largest experimental river fertilization project to date in the Kootenai River at the Montana-Idaho border. Pre-treatment aquatic biomonitoring began in 2001; post-treatment monitoring began in 2005. A solar-powered nutrient addition system was custom designed and built to dose small releases of dissolved nutrients at rates from 10 to 40 L/hour, depending on river discharge, which averaged several hundred m3/s. Closely monitored experimental additions of ammonium polyphosphate solution (10-34-0) into the river occurred during the summers of 2005 through 2008. Targets for mixed in-river P concentrations were 1.5 {micro}g/L in 2005, and 3 {micro}g/L in subsequent years. Primary productivity and algal accrual rates along with invertebrate and fish community metrics and conditions were consistently measured annually, before and after experimental fertilization. Initial results from the program are very encouraging, and are reported.

Holderman, Charles

2009-02-10T23:59:59.000Z

391

Evaluation of a Behavioral Guidance Structure at Bonneville Dam Second Powerhouse including Passage Survival of Juvenile Salmon and Steelhead using Acoustic Telemetry, 2008  

DOE Green Energy (OSTI)

Summarizes research conducted at Bonneville Dam in 2008 to evaluate a prototype Behavioral Guidance Structure, that was deployed by the US Army Corps of Engineers in an effort to increase survival of outmigrating smolts at Bonneville Dam.

Faber, Derrek M.; Ploskey, Gene R.; Weiland, Mark A.; Deng, Zhiqun; Hughes, James S.; McComas, Roy L.; Kim, Jina; Townsend, R. L.; Fu, Tao; Skalski, J. R.; Fischer, Eric S.

2010-02-12T23:59:59.000Z

392

Compliance Monitoring of Yearling Chinook Salmon and Juvenile Steelhead Survival and Passage at John Day Dam, Spring 2011  

Science Conference Proceedings (OSTI)

The study was designed to estimate dam passage survival at John Day Dam as stipulated by the 2008 Federal Columbia River Power System (FCRPS) Biological Opinion (BiOp) and to provide additional fish passage performance measures at that site as stipulated in the Columbia Basin Fish Accords.

Skalski, J. R.; Townsend, Richard L.; Seaburg, Adam; Weiland, Mark A.; Woodley, Christa M.; Hughes, James S.; Carlson, Thomas J.

2012-06-01T23:59:59.000Z

393

Compliance Monitoring of Yearling Chinook Salmon and Juvenile Steelhead Survival and Passage at Bonneville Dam, Spring 2011  

Science Conference Proceedings (OSTI)

The study was designed to estimate dam passage survival at Bonneville Dam as stipulated by the 2008 Federal Columbia River Power System (FCRPS) Biological Opinion (BiOp) and to provide additional fish passage performance measures at that site as stipulated in the Columbia Basin Fish Accords.

Skalski, J. R.; Townsend, Richard L.; Seaburg, Adam; Ploskey, Gene R.; Carlson, Thomas J.

2012-03-01T23:59:59.000Z

394

Compliance Monitoring of Yearling Chinook Salmon and Juvenile Steelhead Survival and Passage at John Day Dam, Spring 2011  

Science Conference Proceedings (OSTI)

The study was designed to estimate dam passage survival at John Day Dam as stipulated by the 2008 Federal Columbia River Power System (FCRPS) Biological Opinion (BiOp) and to provide additional fish passage performance measures at that site as stipulated in the Columbia Basin Fish Accords.

Skalski, J. R.; Townsend, Richard L.; Seaburg, Adam; Weiland, Mark A.; Woodley, Christa M.; Hughes, James S.; Carlson, Thomas J.

2012-02-01T23:59:59.000Z

395

Compliance Monitoring of Juvenile Yearling Chinook Salmon and Steelhead Survival and Passage at The Dalles Dam, Spring 2011  

Science Conference Proceedings (OSTI)

The study estimated dam passage survival at The Dalles Dam as stipulated by the 2008 Federal Columbia River Power System (FCRPS) Biological Opinion (BiOp) and provided additional performance measures as stipulated in the Columbia Basin Fish Accords. This summary report focuses on spring run stocks, yearling Chinook salmon and steelhead.

Skalski, John R.; Townsend, Richard L.; Seaburg, Adam; Johnson, Gary E.; Ploskey, Gene R.; Carlson, Thomas J.

2012-06-12T23:59:59.000Z

396

Compliance Monitoring of Yearling Chinook Salmon and Juvenile Steelhead Survival and Passage at Bonneville Dam, Spring 2011  

Science Conference Proceedings (OSTI)

The study was designed to estimate dam passage survival at Bonneville Dam as stipulated by the 2008 Federal Columbia River Power System (FCRPS) Biological Opinion (BiOp) and to provide additional fish passage performance measures at that site as stipulated in the Columbia Basin Fish Accords.

Skalski, John R.; Townsend, Richard L.; Seaburg, Adam; Ploskey, Gene R.; Carlson, Thomas J.

2012-06-07T23:59:59.000Z

397

SUMMARY OF USSD EMERGING ISSUES WHITE PAPER ON DAM SAFETY RISK ASSESSMENT: WHAT IS IT? WHO'S USING IT  

E-Print Network (OSTI)

SUMMARY OF USSD EMERGING ISSUES WHITE PAPER ON DAM SAFETY RISK ASSESSMENT: WHAT IS IT? WHO'S USING White Paper on Dam Safety Risk Assessment. It also includes tables that summarize strengths and references that are summarized in the White Paper, technology transfer and training needs, and research

Bowles, David S.

398

Compliance Monitoring of Juvenile Yearling Chinook Salmon and Steelhead Survival and Passage at The Dales Dam, Spring 2011  

SciTech Connect

The study estimated dam passage survival at The Dalles Dam as stipulated by the 2008 Federal Columbia River Power System (FCRPS) Biological Opinion (BiOp) and provided additional performance measures as stipulated in the Columbia Basin Fish Accords. This summary report focuses on spring run stocks, yearling Chinook salmon and steelhead.

Skalski, John R.; Townsend, Richard L.; Seaburg, Adam; Johnson, Gary E.; Ploskey, Gene R.; Carlson, Thomas J.

2012-02-01T23:59:59.000Z

399

White Sturgeon Mitigation and Restoration in the Columbia and Snake Rivers Upstream from Bonneville Dam; 2001-2002 Annual Report.  

DOE Green Energy (OSTI)

We report on our progress from April 2001 through March 2002 on determining the effects of mitigative measures on productivity of white sturgeon populations in the Columbia River downstream from McNary Dam, and on determining the status and habitat requirements of white sturgeon populations in the Columbia and Snake rivers upstream from McNary Dam.

Ward, David L.; Kern, J. Chris; Hughes, Michele L.

2003-12-01T23:59:59.000Z

400

White Sturgeon Mitigation and Restoration in the Columbia and Snake Rivers Upstream from Bonneville Dam; 2002-2003 Annual Report.  

DOE Green Energy (OSTI)

We report on our progress from April 2002 through March 2003 on determining the effects of mitigative measures on productivity of white sturgeon populations in the Columbia River downstream from McNary Dam, and on determining the status and habitat requirements of white sturgeon populations in the Columbia and Snake rivers upstream from McNary Dam.

Ward, David L.; Kern, J. Chris; Hughes, Michele L. (Oregon Department of Fish and Wildlife)

2004-02-01T23:59:59.000Z

Note: This page contains sample records for the topic "glen canyon dam" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Comparison of coupled and decoupled modal approaches in seismic analysis of concrete gravity dams in time domain  

Science Conference Proceedings (OSTI)

Different methods are available for dynamic analysis of concrete dams. Among these, modal approach is highly popular due to the efficiency of the method. This becomes more significant if the response is to be calculated for several earthquake ground ... Keywords: Concrete gravity dam, Coupled modes, Decoupled modal approach, Dynamic analysis

Ali Samii; Vahid Lotfi

2007-09-01T23:59:59.000Z

402

White Sturgeon Mitigation & Restoration in the Columbia & Snake River Upstream from Bonneville Dam  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

BONNEVILLE POWER ADMINISTRATION BONNEVILLE POWER ADMINISTRATION White Sturgeon Mitigation and Restoration in the Columbia and Snake Rivers Upstream from Bonneville Dam Finding of No Significant Impact (FONSI) Summary: Bonneville Power Administration (BPA) is proposing to fund the White Sturgeon Mitigation and Restoration in the Columbia and Snake Rivers Upstream from Bonneville Dam Project. The project proposes to continue to carry out harvest monitoring and stock status updates coordinated with fisheries management planning, annual young-of-the year recruitment indexing, research, experimental artificial propagation, and transport of white sturgeon to less densely populated areas of the river(s). Additionally, release of hatchery-reared juveniles is proposed to evaluate release

403

Acoustic Telemetry Evaluation of Juvenile Salmonid Passage and Survival at John Day Dam, 2011  

Science Conference Proceedings (OSTI)

This report presents survival, behavioral, and fish passage results for tagged yearling Chinook salmon and juvenile steelhead as part of a survival study conducted at John Day Dam during spring 2011. This study was designed to evaluate the passage and survival of yearling Chinook salmon and juvenile steelhead to assist managers in identifying dam operations for compliance testing as stipulated by the 2008 Federal Columbia River Power System Biological Opinion and the 2008 Columbia Basin Fish Accords. Survival estimates were based on a paired-release survival model.

Weiland, Mark A.; Woodley, Christa M.; Ploskey, Gene R.; Hughes, James S.; Hennen, Matthew J.; Kim, Jin A.; Deng, Zhiqun; Fu, Tao; Skalski, J. R.; Townsend, Richard L.; Wagner, Katie A.; Fischer, Eric S.; Duncan, Joanne P.; Batten, G.; Carlson, Thomas J.; Carpenter, Scott M.; Cushing, Aaron W.; Elder, T.; Etherington, D. J.; Johnson, Gary E.; Khan, Fenton; Miracle, Ann L.; Mitchell, T. D.; Prather, K.; Rayamajhi, Bishes; Royer, Ida; Seaburg, Adam; Zimmerman, Shon A.

2013-06-21T23:59:59.000Z

404

Acoustic Telemetry Evaluation of Juvenile Salmonid Passage and Survival at John Day Dam, 2010  

SciTech Connect

This report presents survival, behavioral, and fish passage results for yearling and subyearling Chinook salmon smolts and juvenile steelhead tagged with JSATS acoustic micro-transmitters as part of a survival study conducted at John Day Dam during 2010. This study was designed to evaluate the passage and survival of yearling and subyearling Chinook salmon and juvenile steelhead to assist managers in identifying dam operations for compliance testing as stipulated by the 2008 Federal Columbia River Power System Biological Opinion and the 2008 Columbia Basin Fish Accords. Survival estimates were based on a single-release survival estimate model.

Weiland, Mark A.; Woodley, Christa M.; Ploskey, Gene R.; Hughes, James S.; Kim, Jin A.; Deng, Zhiqun; Fu, Tao; Fischer, Eric S.; Skalski, J. R.; Townsend, Richard L.; Duncan, Joanne P.; Hennen, Matthew J.; Wagner, Katie A.; Arntzen, Evan V.; Miller, Benjamin L.; Miracle, Ann L.; Zimmerman, Shon A.; Royer, Ida M.; Khan, Fenton; Cushing, Aaron W.; Etherington, D. J.; Mitchell, T. D.; Elder, T.; Batton, George; Johnson, Gary E.; Carlson, Thomas J.

2013-05-01T23:59:59.000Z

405

Survival and Passage of Yearling and Subyearling Chinook Salmon and Steelhead at The Dalles Dam, 2010  

DOE Green Energy (OSTI)

The acoustic telemetry study reported here was conducted by researchers at Pacific Northwest National Laboratory (PNNL) and the University of Washington (UW) for the U.S. Army Corps of Engineers, Portland District (USACE). The purpose of the study was to estimate dam passage survival and other performance measures for yearling and subyearling Chinook salmon and steelhead at The Dalles Dam as stipulated by the 2008 Biological Opinion on operation of the Federal Columbia River Power System (FCRPS) and 2008 Columbia Basin Fish Accords.

Johnson, Gary E.; Skalski, J. R.; Carlson, Thomas J.; Ploskey, Gene R.; Weiland, Mark A.; Deng, Zhiqun; Fischer, Eric S.; Hughes, James S.; Khan, Fenton; Kim, Jin A.; Townsend, Richard L.

2011-12-01T23:59:59.000Z

406

Survival of Juvenile Chinook Salmon Passing the Bonneville Dam Spillway in 2007  

DOE Green Energy (OSTI)

The U.S. Army Corps of Engineers Portland District (CENWP) funds numerous evaluations of fish passage and survival on the Columbia River. In 2007, the CENWP asked Pacific Northwest National Laboratory to conduct an acoustic telemetry study to estimate the survival of juvenile Chinook salmon passing the spillway at Bonneville Dam. This report documents the study results which are intended to be used to improve the conditions juvenile anadromous fish experience when passing through the dams that the Corps operates on the river.

Ploskey, Gene R.; Weiland, Mark A.; Hughes, James S.; Zimmerman, Shon A.; Durham, Robin E.; Fischer, Eric S.; Kim, Jina; Townsend, R. L.; Skalski, J. R.; Buchanan, Rebecca A.; McComas, Roy L.

2008-12-01T23:59:59.000Z

407

Outfall Site and Type Selection for a New Surface Flow Outlet to Pass Juvenile Salmonids at Bonneville Dams Second Powerhouse, Columbia River  

DOE Green Energy (OSTI)

A site near the downstream tip of Cascades Island with a mid-level chute outfall type was selected for the high flow (> 28.3 m3/s) outfall of the new surface flow outlet for juvenile salmonids at Bonneville Dams Second Powerhouse (B2). The new passage route and outfall are a result of modifications to the original ice and trash sluice chute to increase discharge capacity and improve passage conditions, including a new outfall type and site. Technical guidelines on high flow outfall location and design were established concurrently with the outfall development process. Critical design parameters for the new B2 outfall included discharge of 150 m3/s, jet entry velocities approaching 15.2 m/s, and a tailwater elevation range of 6.1 m. For outfall siting, the selection process began with identification of nine initial alternatives. Screening, evaluation, and selection stages narrowed the list to two outfall sites Range D 122 m directly downstream from the existing sluice chute outfall and Range F 760 m downstream near the end of Cascades Island. For outfall type, the selection process was initiated with conceptualization of 13 alternatives. Following successive screening, evaluation, consolidation, and selection stages, two outfall types became finalists Adjustable Cantilever and Mid-Level Cantilever. The four combinations of outfall site/type were evaluated in 1:30 and 1:100 scale physical hydraulic models and a Mid-Level Cantilever at the tip of Cascades Island in Range F was selected. During further engineering after our study, the cantilever was replaced with a monolith structure to reduce construction costs, resulting in a mid-level chute outfall that was installed in 2004. Post-construction evaluations indicated survival rates around 100% through the B2CC were the highest of all passage routes at Bonneville Dam. The B2CC surface flow outlet with its high flow outfall provided a major improvement to juvenile salmonid passage at Bonneville Dam.

Johnson, Gary E.; Ebberts, Blaine D.; Giorgi, Albert E.; Kuhn, Karen; Lee, Randall T.; Plump, John H.; Stensby, David A.; Sweeney, Charles E.

2008-01-01T23:59:59.000Z

408

Installation of the Monitoring Site at the Los Alamos Canyon Low-Head Weir  

Science Conference Proceedings (OSTI)

The Cerro Grande fire of 2000 had an enormously adverse impact on and around Los Alamos National Laboratory (LANL). Immediately there were concerns about the potential for enhanced runoff/offsite transport of contaminant-laden sediments because of watershed damage. In response to this concern, the U.S. Army Corps of Engineers installed a low-head weir in Los Alamos Canyon near the White Rock ''Y.'' However, the occurrence of fractured basalt at the surface and ponding of runoff behind the weir enhance the possibility of downward migration of contaminants. Therefore, three boreholes were drilled on the south bank of the channel by LANL to provide a means of monitoring the impact of the Cerro Grande fire and of the weir on water quality beneath the canyon. The boreholes and associated instrumentation are referred to as the Los Alamos Weir Site (LAWS). The three boreholes include a vertical hole and two angled holes (one at approximately 45{sup o} and one at approximately 30{sup o}). Since the basalt is highly fractured, the holes would not stay open. Plans called for inserting flexible liners into all holes. However, using liners in such unstable ground was problematic and, in the angled holes, required deployment through scalloped or perforated polyvinyl chloride (PVC) shield. The vertical hole (LAWS-01), drilled to a total depth of 281.5 ft below ground surface (bgs), was completed as a 278-ft deep monitoring well with four screens: one targeting shallow perched water encountered at 80 ft, two in what may correspond to the upper perched zone at regional groundwater characterization well R-9i (1/4 mi. to the west), and one in what may correspond to the lower perched zone at R-9i. A Water FLUTe{trademark} system deployed in the well isolates the screened intervals; associated transducers and sampling ports permit monitoring head and water quality in the screened intervals. The second hole (LAWS-02), drilled at an angle of 43{sup o} from horizontal, is 156 ft long and bottoms at a depth of 106 ft bgs. The shallow perched water seen at LAWS-01 (at 80 ft) was not encountered. A scalloped PVC shield was installed to keep the hole open while permitting flexible liners to contact the borehole wall. It was initially instrumented with a color-reactive liner to locate water-producing fractures. That was later replaced by an absorbent liner to collect water from the vadose zone. The third hole (LAWS-03), drilled at an angle of 34{sup o} from horizontal, initially had a length of 136 ft and bottomed at a depth of 76 ft bgs. However, the PVC shield rotated during installation such that scallops were at the top and rock debris repeatedly fell in, preventing liner insertion. While pulling the scalloped PVC to replace it with a perforated PVC shield that did not require orientation, the scalloped PVC broke and only 85 ft was recovered. The hole was blocked at that position and could not be drilled out with the equipment available. Thus, LAWS-03 was completed at a length of 85 ft and a depth of 40 ft bgs. An absorbent liner was installed at the outset in preparation for the 2002 summer monsoon season. The entire monitoring site is enclosed inside a locked, 8-ft-high chainlink fence for security. The liners used in the angled boreholes carry electrical wire pairs to detect soil-moisture changes. Surface-water data are provided by stream gages above and below the weir site. Depth of ponding behind the weir is provided by a gage installed just behind the structure.

W.J.Stone; D.L.Newell

2002-08-01T23:59:59.000Z

409

EXPERIMENTAL STUDY TO EVALUATE CORROSION OF THE F-CANYON DISSOLVER DURING THEUNIRRADIATED MARK-42 CAMPAIGN  

DOE Green Energy (OSTI)

Unirradiated Mark 42 fuel tubes are to be dissolved in an upcoming campaign in F-canyon. Savannah River Technology Center (SRTC)/Chemical & Hydrogen Technology Section (CHTS) identified a flow sheet for the dissolution of these Mark 42 fuel tubes which required a more aggressive dissolver solution than previously required for irradiated Mark 42 fuel tubes. Subsequently, SRTC/MTS was requested to develop and perform a corrosion testing program to assess the impact of new flow sheets on corrosion of the dissolver wall. The two primary variables evaluated were the fluoride and aluminum concentrations of the dissolver solution. Fluoride was added as Calcium Fluoride (CaF{sub 2}) while the aluminum was added either as metallic aluminum, which was subsequently dissolved, or as the chemical aluminum nitrate (Al(NO{sub 3}){sub 3}). The dissolved aluminum metal was used to simulate the dissolution of the aluminum from the Mark 42 cladding and fuel matrix. Solution composition for the corrosion tests bracketed the flow sheet for the Mark 42. Corrosion rates of AISI Type 304 stainless steel coupons, both welded and non-welded coupons, were calculated from measured weight losses and post-test concentrations of soluble Fe, Cr and Ni. The corrosion rates, which ranged between 2.7 and 32.5 mpy, were calculated from both the one day and the one week weight losses. These corrosion rates indicated a relatively mild corrosion on the dissolver vessel. The welded coupons consistently had a higher corrosion rate than the non-welded coupons. The difference between the two decreased as the solution aggressiveness decreased. In these test solutions, aggressiveness corresponded with the fluoride concentration. Based on the results of this study, any corrosion occurring during the Mark 42 Campaign is not expected to have a deleterious effect on the dissolver vessel.

Mickalonis, J; Kerry Dunn, K

1999-08-01T23:59:59.000Z

410

April 6, 2009 Submitted/Glen White  

E-Print Network (OSTI)

Meaghan C. Gragg e. John & yali C. Gregory LindaS.Griffin&RobertD.Keliher,Sr. Dustin G. Hall Whitney C remedies · Fassett, Anthony & Taylor, P.A. secured transactions · Avila Rodriguez Hernandez Mena & Ferri. Lawrence & elizabeth e. Heinkel Brett T. & Rhonda K. Hendee* eugenio Hernandez Hicks, Porter, ebenfeld

Peterson, Blake R.

411

Compliance Monitoring of Yearling and Subyearling Chinook Salmon and Juvenile Steelhead Survival and Passage at John Day Dam, 2012  

SciTech Connect

The purpose of this compliance study was to estimate dam passage survival of yearling and subyearling Chinook salmon and steelhead smolts at John Day Dam during the spring and summer outmigrations in 2012. Under the 2008 Federal Columbia River Power System (FCRPS) Biological Opinion (BiOp), dam passage survival should be greater than or equal to 0.96 for spring migrants and greater than or equal to 0.93 for summer migrants, estimated with a standard error (SE) less than or equal to 0.015. The study also estimated smolt passage survival from the forebay 2 km upstream of the dam to the tailrace 3 km downstream of the dam, as well as the forebay residence time, tailrace egress time, spill passage efficiency (SPE), and fish passage efficiency (FPE), as required in the Columbia Basin Fish Accords (Fish Accords). A virtual/paired-release design was used to estimate dam passage survival at John Day Dam. The approach included releases of smolts, tagged with acoustic micro-transmitters, above John Day Dam that contributed to the formation of a virtual release at the face of John Day Dam. A survival estimate from this release was adjusted by a paired release below John Day Dam. A total of 3376 yearling Chinook salmon, 5726 subyearling Chinook salmon, and 3239 steelhead smolts were used in the virtual releases. Sample sizes for the below-dam paired releases (R2 and R3, respectively) were 997 and 995 for yearling Chinook salmon smolts, 986 and 983 for subyearling Chinook salmon smolts, and 1000 and 1000 for steelhead smolts. The Juvenile Salmon Acoustic Telemetry System (JSATS) tags were manufactured by Advanced Telemetry Systems. Model SS300 tags, weighing 0.304 g in air, were surgically implanted in yearling and subyearling Chinook salmon, and Model SS130 tag, weighing 0.438 g in air, were surgically implanted in juvenile steelhead for this investigation. The intent of the spring study was to estimate dam passage survival during both 30% and 40% spill conditions. The two spill conditions were to be systematically performed in alternating 2-day test intervals over the course of the spring outmigration. High flow conditions in 2012 interrupted the spill study. Dam passage survival was therefore estimated season-wide regardless of spill conditions.

Skalski, J. R.; Townsend, Richard L.; Seaburg, Adam; Weiland, Mark A.; Woodley, Christa M.; Hughes, James S.; Ploskey, Gene R.; Deng, Zhiqun; Carlson, Thomas J.

2013-05-01T23:59:59.000Z

412

Finite element methods for unsaturated porous solids and their application to dam engineering problems  

Science Conference Proceedings (OSTI)

This work presents a finite element formulation of equations proposed in a companion paper to describe the hyperelastic response of three-phase porous media. Attention is paid to the development of consistent tangents required by the Newton-Raphson procedure ... Keywords: Concrete dams, Hydro-mechanical coupling, Multiphase porous media, Rock mass permeability, Unilateral constraints

C. Callari; A. Abati

2009-04-01T23:59:59.000Z

413

THE VALUE OF THE HIGH ASWAN DAM TO THE EGYPTIAN ECONOMY  

E-Print Network (OSTI)

The High Aswan Dam converted a variable and uncertain flow of river water into a predictable and controllable flow. We use a computable general equilibrium model of the Egyptian economy to estimate the economic impact of the High Aswan Dam. We compare the 1997 economy as it was to the 1997 economy as it would have been for 72 historical, pre-dam water flows. The steady water flow increased transport productivity, while the seasonal shift in water supply allowed for a shift towards more valuable summer crops. These static effects are worth LE 4.9 billion. Investments in transport and agriculture increased as a consequence. Assuming that Egypt is a small open economy, this is worth another LE 1.1 billion. The risk premium on the reduced variability is estimated to be LE 1.1 billion for a modest risk aversion, and perhaps LE 4.4 billion for a high risk aversion. The total gain of LE 7.1 billion equals 2.7 % of GDP. Key words Egypt, High Aswan Dam, computable general equilibrium model, risk premium, water supply

Kenneth M. Strzepek A; Gary W. Yohe D; Richard S. J. Tol E; Mark Rosegrant B

2006-01-01T23:59:59.000Z

414

Guidelines for Drilling and Testing Core Samples at Concrete Gravity Dams  

Science Conference Proceedings (OSTI)

Regulatory agencies for dam safety often require stability data on concrete and foundation conditions--data obtained by testing core samples and taking various site measurements. These guidelines offer field-proven methods for compiling reliable results, with adequate documentation to support utility claims.

1989-05-01T23:59:59.000Z

415

Grand Coulee Dam Wildlife Mitigation Program : Pygmy Rabbit Programmatic Management Plan, Douglas County, Washington.  

DOE Green Energy (OSTI)

The Northwest Power Planning Council and the Bonneville Power Administration approved the pygmy rabbit project as partial mitigation for impacts caused by the construction of Grand Coulee Dam. The focus of this project is the protection and enhancement of shrub-steppe/pygmy rabbit habitat in northeastern Washington.

Ashley, Paul

1992-06-01T23:59:59.000Z

416

A Theoretical Study of Cold Air Damming with Upstream Cold Air Inflow  

Science Conference Proceedings (OSTI)

The previously developed two-layer model of cold air damming is extended to include upstream cold air inflow. The upper layer is an isentropic cross-mountain flow. The lower layer is a cold boundary layer flow partially blocked by a two-...

Qin Xu; Shouting Gao; Brian H. Fiedler

1996-01-01T23:59:59.000Z

417

Spatial variability of sea level rise due to water impoundment behind dams  

E-Print Network (OSTI)

; Church and White, 2006]. This rate may be currently accelerating due to an increased influence of climate reservoirs (based on the work by Vorosmarty et al. [1997]), which are used in this paper's calculations. (b 1a), and added six additional post1997 dams from Chao et al. [2008] (specifically, the Three Gorges

Conrad, Clint

418

Sedimentology of Pennsylvanian sandstone from bedding-plane exposures, Laurel dam spillway, eastern Kentucky Coalfield  

SciTech Connect

Exposures of bedding planes in a coarsening-upward sequence of the Breathitt Formation at the Laurel Dam spillway in Whitley County, Kentucky, were analyzed by surveying a 250,000-ft{sup 2} area on a 10-ft grid and mapping within grids.

Greb, S.F.; Chesnut, D.R. Jr. (Kentucky Geological Survey, Lexington (USA))

1989-08-01T23:59:59.000Z

419

Juvenile Radio-Tag Study: Lower Granite Dam, 1985 Annual Report.  

DOE Green Energy (OSTI)

The concept of using mass releases of juvenile radio tags represents a new and potentially powerful research tool that could be effectively applied to juvenile salmonid passage problems at dams on the Columbia and Snake Rivers. A system of detector antennas, strategically located, would automatically detect and record individually tagged juvenile salmonids as they pass through the spillway, powerhouse, bypass system, or tailrace areas below the dam. Accurate measurements of spill effectiveness, fish guiding efficiency (FGE), collection efficiency (CE), spillway survival, powerhouse survival, and bypass survival would be possible without handling large numbers of unmarked fish. A prototype juvenile radio-tag system was developed and tested by the National Marine Fisheries Service (NMFS) and Bonneville Power Administration (BPA) at John Day Dam and at Lower Granite Dam. This report summarizes research to: (1) evaluate the effectiveness of the prototype juvenile radio-tag system in a field situation and (2) to test the basic assumptions inherent in using the juvenile radio tag as a research tool.

Stuehrenberg, Lowell C.

1986-06-01T23:59:59.000Z

420

Effect of superficial insulation on roller-compacted concrete dams in cold regions  

Science Conference Proceedings (OSTI)

Superficial insulation is often used to prevent cracking of concrete dams located in cold regions. In this study, surface temperatures with and without heat insulation during the overwintering period are calculated. Using the material properties of roller-compacted ... Keywords: Superficial crack, Superficial insulation, Temperature difference, Temperature field, Thermal stress, Three-dimensional finite element relocating mesh method

Xiao-fei Zhang; Shou-yi Li; Yan-long Li; Yao Ge; Hui Li

2011-11-01T23:59:59.000Z

Note: This page contains sample records for the topic "glen canyon dam" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Critical gravity as van Dam-Veltman-Zakharov discontinuity in anti de Sitter space  

E-Print Network (OSTI)

We consider critical gravity as van Dam-Vletman-Zakharov (vDVZ) discontinuity in anti de Sitter space. For this purpose, we introduce the higher curvature gravity. This discontinuity can be confirmed by calculating the residues of relevant poles explicitly. For the non-critical gravity of $0gravity.

Yun Soo Myung

2011-07-18T23:59:59.000Z

422

AN ESTIMATE OF MORTALITY OF CHINOOK SALMON IN THE COLUMBIA RIVER NEAR BONNEVILLE DAM DURING THE  

E-Print Network (OSTI)

et al., 1983) Offset Center of Gravity (OCOG) (Bamber, 1994) Leading edge position = Position-7 km does not provide a complete picture of the vector field of ocean currents and gravity anomalies CHINA'S POYANG LAKE (2002­2007) Long Kou Gauge Pass 163 Pass 980 #12;Satellite Altimetry Based Dam

423

Uplift Pressures in Cracks in Concrete Gravity Dams--An Experimental Study: Volume 8  

Science Conference Proceedings (OSTI)

Uplift pressure distribution in cracks in concrete dams is affected by a combination of several factors, such as crack properties, drain dimensions, and the type of flow in the crack. This study shows that most uplift pressure distributions can be controlled using a vertical drain system with diameters from two to four inches and spacing of about ten feet.

1992-12-20T23:59:59.000Z

424

Assessment of Natural Stream Sites for Hydroelectric Dams in the Pacific Northwest Region  

DOE Green Energy (OSTI)

This pilot study presents a methodology for modeling project characteristics using a development model of a stream obstructing dam. The model is applied to all individual stream reaches in hydrologic region 17, which encompasses nearly all of Idaho, Oregon, and Washington. Project site characteristics produced by the modeling technique include: capacity potential, principal dam dimensions, number of required auxiliary dams, total extent of the constructed impoundment boundary, and the surface area of the resulting reservoir. Aggregated capacity potential values for the region are presented in capacity categories including total, that at existing dams, within federal and environmentally sensitive exclusion zones, and the balance which is consider available for greenfield development within the limits of the study. Distributions of site characteristics for small hydropower sites are presented and discussed. These sites are screened to identify candidate small hydropower sites and distributions of the site characteristics of this site population are presented and discussed. Recommendations are made for upgrading the methodology and extensions to make the results more accessible and available on a larger scale.

Douglas G. Hall; Kristin L. Verdin; Randy D. Lee

2012-03-01T23:59:59.000Z

425

Survey of Potential Hanford Site Contaminants in the Upper Sediment for the Reservoirs at McNary, John Day, The Dalles, and Bonneville Dams, 2003  

DOE Green Energy (OSTI)

This report presents the results from a multi-agency cooperative environmental surveillance study. of the study looked at sediment from the pools upstream from dams on the Columbia River that are downstream from Hanford Site operations. The radiological and chemical conditions existing in the upper-level sediment found in the pools upstream from McNary Dam, John Day Dam, The Dalles Lock and Dam, and Bonneville Dam were evaluated. This study also evaluated beach sediment where available. Water samples were collected at McNary Dam to further evaluate potential Hanford contaminants in the lower Columbia River. Samples were analyzed for radionuclides, chemicals, and physical parameters. Results from this study were compared to background values from sediment and water samples collect from the pool upstream of Priest Rapids Dam (upstream of the Hanford Site) by the Hanford Site Surface Environmental Surveillance Project.

Patton, Gregory W.; Priddy, M; Yokel, Jerel W.; Delistraty, Damon A.; Stoops, Thomas M.

2005-02-01T23:59:59.000Z

426

Floodplain Assessment for the Proposed Engineered Erosion Controls at TA-72 in Lower Sandia Canyon, Los Alamos National Laboratory  

SciTech Connect

Los Alamos National Laboratory (LANL) is preparing to implement engineering controls in Sandia Canyon at Technical Area (TA) 72. Los Alamos National Security (LANS) biologists conducted a floodplain determination and this project is located within a 100-year floodplain. The proposed project is to rehabilitate the degraded channel in lower Sandia Canyon where it crosses through the outdoor firing range at TA-72 to limit the loss of sediment and dissipate floodwater leaving LANL property (Figure 1). The proposed construction of these engineered controls is part of the New Mexico Environment Department's (NMED) approved LANL Individual Storm Water Permit. The purpose of this project is to install storm water controls at Sandia Watershed Site Monitoring Area 6 (S-SMA-6). Storm water controls will be designed and installed to meet the requirements of NPDES Permit No. NM0030759, commonly referred to as the LANL Individual Storm Water Permit (IP). The storm water control measures address storm water mitigation for the area within the boundary of Area of Concern (AOC) 72-001. This action meets the requirements of the IP for S-SMA-6 for storm water controls by a combination of: preventing exposure of upstream storm water and storm water generated within the channel to the AOC and totally retaining storm water falling outside the channel but within the AOC.

Hathcock, Charles D. [Los Alamos National Laboratory

2012-08-27T23:59:59.000Z

427

Structural fabric of the Palisades Monocline: a study of positive inversion, Grand Canyon, Arizona  

E-Print Network (OSTI)

A field study of positive inversion is conducted to describe associated structural fabrics and to infer kinematic development of the Palisades Monocline, Grand Canyon, Arizona. These features are then compared to sand, clay and solid rock models of positive inversion to test model results and improve understanding of inversion processes. The N40W 90 oriented Palisades fault underlying the monocline has experienced northeast-southwest Precambrian extension and subsequent northeastsouthwest Laramide contraction. The magnitude of inversion is estimated to be 25% based on vertical offset across the fault, although this does not account for flexure or horizontal shortening. The preferred N50W 90 joint and vein orientation and N50W 68 NE and SW conjugate normal faults are consistent with the Palisades fault and northeastsouthwest extension. The N45E 90 joint orientation and approximately N40W 28 NE and SW conjugate thrust faults are consistent with northeast-southwest contraction. The deformation is characterized by three domains across the fault zone: 1) the hanging wall, 2) the footwall, and 3) an interior, fault-bounded zone between the hanging wall and footwall. Extensional features are preserved and dominate the hanging wall, contractional features define footwall deformation, and the interior, fault-bounded zone is marked by the co-existence of extensional and contractional features. Extension caused a master normal fault and hanging wall roll-over with distributed joints, veinsand normal faults. During inversion, contraction induced reverse reactivation of existing hanging wall faults, footwall folding and footwall thrust-faulting. Precambrian normal slip along the master normal fault and subsequent Laramide reverse slip along the new footwall bounding fault created an uplifted domain of relatively oldest strata between the hanging wall and footwall. Physical models of co-axial inversion suggest consistent development of the three domains of deformation described at the Palisades fault, however the models often require magnitudes of inversion greater than 50%. Although vertical block motion during horizontal compression is not predicted directly by the Mohr-Coulomb criterion, physical models and analytical solutions (incorporating Mohr- Coulomb criterion) suggest maximum stress trajectories and near vertical failure above high angle basement faults that compare favorably with the Palisades fault zone.

Orofino, James Cory

2006-05-01T23:59:59.000Z