Powered by Deep Web Technologies
Note: This page contains sample records for the topic "glazings glazing type" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Measured Performance of Selective Glazings  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Measured Performance of Selective Glazings Measured Performance of Selective Glazings Title Measured Performance of Selective Glazings Publication Type Conference Paper LBNL Report Number LBL-37747 Year of Publication 1995 Authors Klems, Joseph H., Mehry Yazdanian, and Guy O. Kelley Conference Name Thermal Performance of the Exterior Envelopes of Buildings VI Conference Date Published 12/1995 Conference Location Clearwater Beach, FL Call Number LBL-37747 Abstract Measurements of the net heat flow through four selective glazings in comparison with clear double glazing under late summer outdoor conditions are presented. The solar heat gain coefficient (SHGC) for each glazing is extracted from the data and shown to be angle-dependent. Good agreement is found between measured properties and calculations with WINDOW 4.1.

2

Complex Glazing Database  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

1.2 1.2 This is a Beta version of the Complex Glazing Database (CGDB) for WINDOW 6. The data in the list below was measured by LBNL for this first data set. In the future, LBNL will publish measurement and submittal procedures so that manufacturers can submit their own data to LBNL for review and inclusion in subsequent databases, in a similar fashion to the International Glazing Database (IGDB). The numbering scheme for each manufacturer is a Beta scheme and will be further developed in the next few months. Alkenz USA Inc Shading Material Name BSDF XML File Shading Layer Name ID Type Sunshadow 3000, N901 Charcoal (SA-31) 2011-SA31.XML Sunshadow 3000, N901 Charcoal (WS) 7000 BSDF File Sunshadow 3100, N002 white/bone (SA-30) 2011-SA30.XML Sunshadow 3100, N002 white/bone (WS)

3

Electrochromic Glazings: Animation Parameters  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Glazings Glazings Animation Simulation Parameters The Electrochromic Glazing Office Animation is created using an image compositing method whereby separate images of the office generated with only one source of illumination are added together in variable percentages to come up with the final image. This method assumes that the sources of illumination do not change position through the animation sequence. Although the sun does move approximately 5 degrees during the span of this 20 minute animation sequence, because this movement is not the focus of the simulation and does not significantly change the intensity of the solar exposure, it is ignored. This method takes advantage of the principal of the scalability of light to avoid the significant time involved in calculating separate Radiance renderings for each combination of sky condition (direct sun versus no direct sun) and electrochromic glazing transmission.

4

Electrochromic Glazings: How they Work  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

How they Work How they Work Electrochromic glazings have great potential to improve the energy efficiency and occupant comfort afforded by architectural windows. These smart windows can dynamically control light transmission by windows in buildings, automobiles, and aircraft. Electrochromic glazings are the most significant members of a family of chromogenic light-control technologies that includes large-area dispersed liquid crystals, dispersed particle windows, and photochromic and thermochromic materials. Electrochromic devices represent the most versatile window technology of this type, exhibiting the best combination of switching properties for chromogenic window applications. Electrochromic glazings typically have a change in visible light transmission from 10% to 70%, moderately fast switching times, and low dc power consumption. These glazings have memory, so they only need power to make a change in transmission. Electrochromic technology can be coupled with smart control systems to give constant lighting levels, blending artificial lighting with daylighting for improved building energy efficiency. Energy simulations of office buildings indicate that smart windows with lighting controls in arid climates can provide 30-40% energy savings over conventional windows. Savings are realized in cooling, lighting, and peak utility electric loads. Other benefits include smaller heating, ventilating, and air-conditioning (HVAC) systems and greater thermal and visual comfort.

5

Acoustic behavior of triple glazings  

Science Journals Connector (OSTI)

Making of triple glazings is the only way to still improve thermal performances of Insulating Glass Units. Possible ways with double glazings are already in use: increase the space between glasses use low emissivity coatings and special gas with lower thermal conductivity as argon or krypton. Specific acoustic weak point of double glazings is the resonance between the two panes which works as a mass spring mass system and coupling of eigenmodes of panes through the air (gas) cavity. These phenomena are of course still more important with triple glazings as there are two resonances. The paper will give all comparative data concerning thermal and acoustic performances and describe a way to achieve the same single number values of sound transmission loss with triple glazing that with double glazing by adding absorption in the gas cavities.

Marc Rehfeld; David Fournier

2008-01-01T23:59:59.000Z

6

Measured performance of selective glazings  

SciTech Connect (OSTI)

Measurements of the net heat flow through four selective glazings in comparison with clear double glazing under late summer outdoor conditions are presented. The SHGC for each glazing is extracted from the data and shown to be angle-dependent. The method of extracting the angle-dependent SHGC from the data is checked by comparing the measured SHGC for the clear double glazing to the calculation of OW 4. 1, which is assumed to be correct. Good agreement between the two is found. The measured angle-dependent SHGC`s of the selective glazings are then used to test the OW 4.1 selective glazing calculation and good agreement is again found.

Klems, J.H.; Yazdanian, M.; Kelley, G.O.

1995-07-01T23:59:59.000Z

7

Microsoft PowerPoint - WINDOW6-ComplexGlazingTypeSummary-ForPresentation.ppt  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Christian Kohler, Mike Rubin, Jacob Jonsson Christian Kohler, Mike Rubin, Jacob Jonsson Dariush Arasteh, Robin Mitchell Windows & Daylighting Research Group March 2008 Complex Glazing Summary Complex Glazing Summary Environmental Energy Technologies Division Software Tools Overview Design / Simulation Tools DOE-2, EnergyPlus Radiance THERM (Window Frame) Optics (Window Glass) IGDB (Specular Glass Data Source) RESFEN (Whole Building Residential) COMFEN (Whole Building Commercial) CGDB (Complex Glazing Data Base) calculation calculation calculation WINDOW (Whole Window) Environmental Energy Technologies Division WINDOW6 Design / Simulation Tools DOE-2, EnergyPlus Radiance THERM (Window Frame) Optics (Window Glass) IGDB (Specular Glass Data Source) RESFEN (Whole Building Residential) COMFEN (Whole Building Commercial) CGDB (Complex Glazing

8

CALCULATING OPTICAL CONSTANTS OF GLAZING MATERIALS  

E-Print Network [OSTI]

Solar Energy CALCULATING OPTICAL CONSTANTS OF GLAZING MATERIALS Michael Rub August 1981 TWO-WEEK LOAN

Rubin, Michael

2013-01-01T23:59:59.000Z

9

Highly Insulating Glazing Systems using Non-Structural Center Glazing Layers  

E-Print Network [OSTI]

has been funded under a DOE-NETL grant. - Vacuum glazingsin the U.S. through a DOE-NETL grant. Vacuum glazing is now

Arasteh, Dariush

2008-01-01T23:59:59.000Z

10

Vacuum Glazing; A Thermally Insulating Window Technology  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Vacuum Glazing; A Thermally Insulating Window Technology Vacuum Glazing; A Thermally Insulating Window Technology Speaker(s): Cenk Kocer Date: May 31, 2012 - 12:00pm Location: 90-3122 Seminar Host/Point of Contact: Sunnie Lim The vacuum glazing consists of two panes of glass separated by a sub-millimetre vacuum gap. Under the action of atmospheric pressure the separation of the panes is maintained by an array of high strength spacers in the gap. The glass panes are hermetically sealed at the edge using a low melting point glass frit (solder glass). Since 1913 many have worked on a practical implementation of such a flat insulating glass structure, with success finally being reported in 1989 by Collins et al. at the University of Sydney. The purpose of this talk is to present a brief history of the vacuum glazing research at the University of Sydney, and outline in detail

11

Laser Glazing of Railroad Rails [Laser Applications Laboratory] - Nuclear  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Laser Glazing of Railroad Laser Glazing of Railroad Rails Capabilities Engineering Experimentation Reactor Safety Experimentation Aerosol Experiments System Components Laser Applications Overview Laser Oil & Gas Well Drilling Laser Heat Treatment Laser Welding of Metals On-line Monitoring Laser Beam Delivery Laser Glazing of Railroad Rails High Power Laser Beam Delivery Decontamination and Decommissioning Refractory Alloy Welding Robots Applications Other Facilities Other Capabilities Work with Argonne Contact us For Employees Site Map Help Join us on Facebook Follow us on Twitter NE on Flickr Laser Applications Laboratory Laser Glazing of Railroad Rails Project description: Laser glazing of rails. Category: Project with industrial partner (American Association of Railroads) Bookmark and Share

12

Experimental performance evaluation of aerogel glazing systems  

Science Journals Connector (OSTI)

Energy savings for heating, air conditioning and illuminating plants could be improved by innovative Transparent Insulation Materials (TIMs), which aim to optimize two opposite requirements: transparency and thermal insulation. Aerogel is one of the most promising materials for use in highly energy-efficient windows: in addition to the low thermal conductivity (down to 0.010 W/(m K) in evacuated conditions), a high solar energy and daylight transmittance is achieved. Eight samples were manufactured, by assembling several types of glass with monolithic and granular aerogel in the interspace. U-values slightly higher than 1 W/m2 K were obtained for all the samples. The monolithic aerogel introduced a better light transmittance (?v = 0.60) than granular one (?v = 0.27), while U-values were comparable in non-evacuated conditions. With respect to a conventional window (double glazing with a low-e layer), 55% reduction in heat losses was achieved by monolithic aerogel, with only a 25% reduction in light transmittance; for the granular systems, the reduction was about 25% in heat losses, but 66% in light transmission. In order to evaluate the aerogel employing in buildings, a prototype of an aluminum frame window with granular aerogel in interspace was realized. Thermal and acoustic properties of the prototype were evaluated according to the standards. The thermal transmittance of the innovative glazing system was little lower than 1 W/(m2 K) and it showed also good acoustic properties: the Rw index was 3 dB higher than the one of a conventional window with air in interspace.

C. Buratti; E. Moretti

2012-01-01T23:59:59.000Z

13

Dynamic Glazing from a Material Science Perspective  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Dynamic Glazing from a Material Science Perspective Dynamic Glazing from a Material Science Perspective Speaker(s): Sunnie Lim Date: February 16, 2012 - 12:00pm Location: 90-3122 Seminar Host/Point of Contact: Dragan Charlie Curcija Advanced window technology has been identified as a component which can greatly reduce the energy consumption of the building envelope. The next generation of advanced windows will involve a "smart-coating" technology where the optical and solar properties can be dynamically controlled. The performance of such coating is ultimately linked to its materials properties such as chemical composition and microstructure. These properties are directly influenced by the deposition process conditions. A promising dynamic windows technology is based upon the electrochromism process. An electrochromic window system consists of a sandwich of

14

Design and Evaluation of Daylighting Applications of Holographic Glazings  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Design and Evaluation of Daylighting Applications of Holographic Glazings Design and Evaluation of Daylighting Applications of Holographic Glazings Title Design and Evaluation of Daylighting Applications of Holographic Glazings Publication Type Report LBNL Report Number LBNL-44167 Year of Publication 1996 Authors Papamichael, Konstantinos M., Charles K. Ehrlich, and Gregory J. Ward Call Number LBNL-44167 Abstract When combined with appropriate electric lighting dimming controls, the use of daylight for ambient and task illumination can significantly reduce energy requirements in commercial buildings. While skylights can effectively illuminate any part of one-story buildings, conventional side windows can illuminate only a 15 ft - 20 ft (4.6 m - 6.1 m) depth of the building perimeter. Even so, the overall efficacy of daylight is limited, because side windows produce uneven distributions of daylight. Achieving adequate illumination at distances further away from the window results in excessive illumination near the window, which increases cooling loads from the associated solar heat gain. As a result, the use of larger apertures and/or higher transmittance glazings, to introduce daylight deeper than 15 ft - 20 ft (4.6 m - 6.1 m), may prove ineffective with respect to saving energy, because cooling load penalties may exceed the electric lighting savings.

15

Impact of Different Glazing Systems on Cooling Load of a Detached Residential Building at Bhubaneswar, India  

E-Print Network [OSTI]

assuming north?south and east?west facings of the building. For each orientation, different types of glazing (Table 4) and different glazing areas are considered. The first case(the base case) assumes a single clear glazing with a window-to-wall ratio.... Floor plan of the east-west oriented residential building taken for study (not to scale) Table 1. The zones basic characteristics Zone Area (m2) Volume (m3) Occupancy (people/m2) Venti- lation (l/s) HVAC system Bed room1 15.12 52...

Sahoo, P. K.; Sahoo, R.

2010-01-01T23:59:59.000Z

16

Fabricate-on-Demand Vacuum Insulating Glazings | Department of...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

glazing units (IGUs) 25 years ago. Over 125 PPG-licensed Intercept Spacer System lines are in operation in the US. Currently in use in more than 600 million residential...

17

Predicting optical and thermal characteristics of transparent single-glazed domed skylights  

SciTech Connect (OSTI)

Optical and thermal characteristics of domed skylights are important to solve the trade-off between daylighting and thermal design. However, there is a lack of daylighting and thermal design tools for domed skylights. Optical and thermal characteristics of transparent single-glazed hemispherical domed skylights under sun and sky light are evaluated based on an optical model for domed skylights. The optical model is based on tracing the beam and diffuse radiation transmission through the dome surface. A simple method is proposed to replace single-glazed hemispherical domed skylights by optically and thermally equivalent single-glazed planar skylights to accommodate limitations of energy computer programs. Under sunlight, single-glazed hemispherical domed skylights yield slightly lower equivalent solar transmittance and solar heat gain coefficient (SHGC) at near normal zenith angles than those of single-glazed planar skylights. However, single-glazed hemispherical domed skylights yield substantially higher equivalent solar transmittance and SHGC at high zenith angles and around the horizon. Under isotropic skylight, single-glazed hemispherical domed skylights yield slightly lower equivalent solar transmittance and SHGC than those of single-glazed planar skylights. Daily solar heat gains of single-glazed hemispherical domed skylights are higher than those of single-glazed horizontal planar skylights in both winter and summer. In summer, the solar heat gain of single-glazed hemispherical domed skylights can reach 3% to 9% higher than those of horizontal single-glazed planar skylights for latitudes varying between 0 and 55{degree} (north/south). In winter, however, the solar heat gains of single-glazed hemispherical domed skylights increase significantly with the increase of the site latitude and can reach 232% higher than those of horizontal single-glazed planar skylights, particularly for high latitude countries.

Laouadi, A.; Atif, M.R.

1999-07-01T23:59:59.000Z

18

Flexible edge seal for vacuum insulating glazing units  

SciTech Connect (OSTI)

A flexible edge seal is provided for a vacuum insulating glazing unit having a first glass pane and a second glass pane spaced-apart from the first. The edge seal comprises a seal member formed of a hermetically bondable material and having a first end, a second end and a center section disposed therebetween. The first end is hermetically bondable to a first glass pane. The second end is hermetically bondable to a second glass pane. The center section comprises a plurality of convolutes.

Bettger, Kenneth J.; Stark, David H.

2012-12-11T23:59:59.000Z

19

Performance criteria for center layer of triple glazing  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Performance criteria for center layer of triple glazing Performance criteria for center layer of triple glazing Traditional highly insulating windows are made of three pieces of glass. Alternatively, the center layer can be a thin layer of coated plastic. (See Figure 1). In both cases, the center layer is sealed between two spacers, creating two completely separate spaces, and extending through the edge of the insulating glass unit. Recent research has shown that a simple "convection" barrier, as shown in Figure 2, which does not extend through the edge of the insulating glass unit, is as effective an insulator as traditional designs. Advantages include a simpler and more reliable edge design and potentially reduced manufacturing costs. We have investigated various plastics and edge constraint designs and are now focused on the use of an acrylic layer, between 1mm and 3mm thick. Bent edges will help keep the layer in place (see Figure 3a,b,c). In order to commercialize such a product, several issues remain to be addressed. These issues, as they relate to acrylic, are defined below. Other plastics and designs can still be explored.

20

Laser Glazing of Railroad Rail Materials Procedure R & D Zhiyue Xu and Claude B. Reed  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Glazing of Railroad Rail Materials Glazing of Railroad Rail Materials Procedure R & D Zhiyue Xu and Claude B. Reed Laser Applications Laboratory Argonne National Laboratory Argonne, Illinois November 15, 2001 Outline * R & D work on further improving ANL's laser glazing technique - Goals ----faster & better surface finish * Preliminary feasibility study on using laser to heal the service-cracked rails Experimental Setup 1.6 kW Pulsed Nd:YAG laser with fiber-optic beam delivery & optics Nitrogen @ 50 CFH as shielding gas Rotational stage A wheel being laser-glazed Recent Procedure R&D Focusing on Increasing Processing Speed and Smoothening Surface Smoother surface by avoiding deep surface melting by lower laser power density and faster feeding. Old procedure New procedure Faster processing speed by

Note: This page contains sample records for the topic "glazings glazing type" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Energy Performance and Comfort Level in High Rise and Highly Glazed Office Buildings  

E-Print Network [OSTI]

Thermal and visual comfort in buildings play a significant role on occupants' performance but on the other hand achieving energy savings and high comfort levels can be a quite difficult task especially in high rise buildings with highly glazed...

Bayraktar, M.; Perino, M.; Yilmaz, A. Z.

2010-01-01T23:59:59.000Z

22

A cost and benefit analysis of future end-of-life vehicle glazing recycling in France: a  

E-Print Network [OSTI]

1 A cost and benefit analysis of future end-of- life vehicle glazing recycling in France-of-life vehicle glazing recycling in France: a system dynamics approach," Resources, Conservation and Recycling, published in "Resources, Conservation and Recycling (2013) xx" DOI : 10.1016/j.resconrec.2013.02.013 #12;2 1

Paris-Sud XI, Université de

23

Sound transmission loss of double?glazed window panes—an empirical approach  

Science Journals Connector (OSTI)

There are only a few contributions to the theory of sound transmission loss (STL) of double?glazed window panes e.g. by M. Rehfeld et al. (1996). The situation is nearly the same with the empirical approach of reducing data from laboratory measurements to a simple formula as done by K. Goesele (1977). Goesele inferred a result in terms of the single?number rating according to ISO 717 based on many laboratory STL measurements as described in DIN 52210 and ISO 140. In particular measurements of air?filled double?glazed window panes had been used. Meanwhile the gas fillings changed because the thermal insulation of the window panes had to be increased. In the last five years a large number of STL measurements of double?glazed window panes with different dimensions (pane thicknesses gap between the panes) and gas fillings have been carried out at the Fraunhofer?Institut fuer Bauphysik. From these measurements some typical behaviors of STL versus frequency belonging to specific pane configurations could be derived. This should allow an approximate prediction of the STL for given physical dimensions of double?glazed window panes.

Siegfried Koch

1999-01-01T23:59:59.000Z

24

Evaluation of solar heat gain coefficient for solar-control glazings and shading devices  

SciTech Connect (OSTI)

The determination of solar heat gain coefficient (SHGC) values for complex fenestration systems is required to evaluate building energy performance, to estimate peak electrical loads, and to ensure occupant comfort. In the past, simplified techniques have been used to calculate the values of SHGC for fenestration systems. As glazing systems that incorporate complex geometries become more common, test methods are required to evaluate these products and to aid in the development of new computational tools. Recently, a unique facility and test method for the experimental determination of SHGC values were developed and demonstrated for simple fenestration systems. The study described in this paper further applies this method to a variety of commercially available glazing and shading systems (e.g., heat-absorbing insulated glazing units (IGUs), reflective film and suspended film IGUs), and shading devices (i.e., slat blinds and shades). Testing was conducted in a solar simulator facility using a specially designed window calorimeter. The results of this study demonstrate the feasibility of the solar simulator-based test method for the evaluation of SHGC values for solar-control glazings and shading devices.

Harrison, S.J. [Queen`s Univ., Kingston, Ontario (Canada). Dept. of Mechanical Engineering; Wonderen, S.J. van [Arvin Industries, Inc., Toronto, Ontario (Canada)

1998-10-01T23:59:59.000Z

25

International Symposium on Daylighting Buildings (IEA SHC TASK 31) Integrating Automated Shading and Smart Glazings with Daylight  

E-Print Network [OSTI]

technologies on the market today. The challenge of controlling solar gain and managing daylight, view and glare systems and in the other we explore the use of electrochromic glazings. Each study involves both

26

Exploring the possibility of low temperature glazing in faience from the Djoser Step Pyramid through compositional analysis  

E-Print Network [OSTI]

Egyptian faience, a glazed, non-clay based ceramic material, is found throughout Egypt in a time range pre-dating the Predynastic Period (5500 - 3100 BCE) and extending well beyond the Roman Period (30 BCE - 641 CE). One ...

Whisenant, Lawrence A

2012-01-01T23:59:59.000Z

27

Thermal solar collector with VO2 absorber coating and thermochromic glazing – Temperature matching and triggering  

Science Journals Connector (OSTI)

Abstract Overheating is a common problem both with the use of active and passive solar energy in thermal solar energy systems and in highly glazed buildings, even in central European latitudes. In solar thermal collectors, the elevated temperatures occurring during stagnation result in reduced lifetime of the collector materials. They lead to water evaporation, glycol degradation and stresses in the collector with increasing vapor pressure. Special precautions are necessary to release this pressure; only mechanical solutions exist nowadays. The temperature of degradation of glycols is above 160–170 °C. However, it would be preferable to limit the temperature of the collector to approximately 100 °C, avoiding likewise the evaporation of the used water-glycol mixture. Additionally, the elevated temperatures lead to degradation of the materials that compose the collector, such as sealing, thermal insulation and the selective absorber coating. A new way of protecting solar thermal systems without any mechanical device (e.g. for shading or for pressure release) is proposed. A durable inorganic thermochromic material, which exhibits a change in optical properties at a transition temperature T t , is vanadium dioxide (VO2). At 68 °C, VO2 undergoes a reversible crystal structural phase transition accompanied by a strong variation in optical properties. Therefore, a dynamical switching of the thermal emittance ? th can be achieved by VO2. By doping the material with tungsten, it is possible to lower the transition temperature making it suitable as a glazing coating. The possibility of using the switch in emittance of the absorber coating in order to trigger the transition of a thermochromic coating on the glazing of the solar collector has been studied. An analytical approach yielded the required transition temperature of such a switching glazing. The fascinating optical properties of these switchable films elucidate the way towards novel intelligent thermal solar collector materials.

Antonio Paone; Mario Geiger; Rosendo Sanjines; Andreas Schüler

2014-01-01T23:59:59.000Z

28

Spectral effects on the transmittance, solar heat gain, and performance rating of glazing systems  

Science Journals Connector (OSTI)

This study investigates the potential changes in Solar Heat Gain Coefficient (SHGC) and Visible Transmittance (VT) ratings of vertical or tilted glazing systems that would result from a deliberate change in the reference spectrum used as Spectral Weighting Function (SWF). This SWF is necessary to evaluate broadband-average optical properties from their spectral values, and obtain the desired rating of such bulk properties. The \\{SWFs\\} currently specified by rating institutions in Europe and North America for SHGC and VT are now outdated, and their inadequacies are discussed. Six potential replacements, which have been recently adopted by ASTM are described, including three direct irradiance spectra and three global irradiance spectrum incident on tilted surfaces of various tilts (20°, 37° and 90°). Some of these spectra have been tailored for use in building energy applications, including Building-Integrated Photovoltaics (BIPV). The effect of tilt on the U-factor and hence SHGC of glazing systems used for skylights on roofs is discussed, using a representative dataset of 37 glazing system specimens. The spectral effects on SHGC induced by a change in the current North American SWF are also obtained for this dataset, and show small to moderate deviations from current ratings (?2% to +7% for windows, and ?3% to +11% for skylights). The variations in VT are within ±2% for most glazing systems. To remove the current inconsistency in the \\{SWFs\\} used for SHGC and VT, it is recommended that a single SWF be used for both properties. For improved accuracy and reliance on active standards, it is also recommended that the SWF for SHGC and VT be either one of the two recent ASTM G197-08 global irradiance spectra, depending on application (incidence on a vertical surface for window applications, and incidence on a 20°-tilted surface for skylight applications). No change in colorimetric calculations (based on the D65 illuminant) is recommended, however.

Christian A. Gueymard; William C. duPont

2009-01-01T23:59:59.000Z

29

Spectrally selective laminated glazing consisting of solar control and heat mirror coated glass: preparation, characterization and modelling of heat transfer  

Science Journals Connector (OSTI)

In this study, solar control coatings were prepared by sequential depositions of thin films of ZnS (40 nm)–CuS (150 nm) and ZnS (40 nm)–Bi2S3 (75 nm)–CuS (150 nm) from chemical baths on 3 mm thick commercial sheet glass. These were laminated to 3 mm thick clear glass or commercially available SnO2 based heat mirror coating of sheet resistance 15 ? on float glass of 3 mm thickness using a poly(ethylene vinyl acetate), EVA, sheet of 0.36 mm thickness in a vacuum process at 120 °C for 30 min. In total, the thickness of the glazing was 6.35 mm. The glazings possess visible transmittance, weighted for D65 solar spectra and sensitivity of the human eye for daylight vision, of 36% or 14% with solar absorptance of 71% or 78% depending on the coating type, i.e ZnS–CuS or ZnS–Bi2S3–CuS-heat mirror respectively. The solar heat gain coefficient (SHGC) was evaluated for these glazings at exterior temperatures of 15 and 32 °C for an exterior convective heat transfer coefficient (hex) of 6–100 Wm?2 K?1 using a mathematical model. The model predicts the extent of reduction in SHGC through the presence of the heat mirror coating as a function of hex and hence helps to decide on the relative benefit, which may be derived through their use in different locations. Though the deposition technique mentioned here involves longer duration compared with vacuum techniques, it may be developed into a low throughput, low-capital alternate technology for small-scale production.

G. Alvarez; J.J. Flores; J.O. Aguilar; O. Gómez-Daza; C.A. Estrada; M.T.S. Nair; P.K. Nair

2005-01-01T23:59:59.000Z

30

Reduction in Vehicle Temperatures and Fuel Use from Cabin Ventilation, Solar-Reflective Paint, and a New Solar-Reflective Glazing  

SciTech Connect (OSTI)

An analysis to determine the impact of reducing the thermal load on a vehicle using solar-reflective paint and glazing.

Rugh, J.; Chaney, L.; Meyer, J.; Rustagi, M.; Olson, K.; Kogler, R.

2007-05-01T23:59:59.000Z

31

On the feasibility of colored glazed thermal solar collectors based on thin film interference filters  

Science Journals Connector (OSTI)

Glazed thermal solar collectors, typically equipped with black, optical selective absorber sheets, exhibit good energy conversion efficiency. However, the black color, and sometimes the visibility of tubes and corrugations of the metal sheets, limit the architectural integration into buildings. In order to overcome this drawback, interference filters are considered as a promising approach. Multilayered thin film stacks deposited on the cover glass can produce a colored reflection hiding the black absorber without a great loss of energy. These interference filters are designed and optimized by numerical simulation. Such coatings are deposited by vacuum processes (e.g. magnetron sputtering) and also via the SolGel method. Optical measurements, such as real-time laser-reflectometry and spectrophotometry, are suitable to determine film thicknesses and optical constants of individual layers, and to measure color coordinates and solar transmittance for the multilayer stacks. Advantages and disadvantages of the different coating processes are discussed.

A. Schüler; C. Roecker; J.-L. Scartezzini; J. Boudaden; I.R. Videnovic; R.S.-C. Ho; P. Oelhafen

2004-01-01T23:59:59.000Z

32

Filament-strung stand-off elements for maintaining pane separation in vacuum insulating glazing units  

DOE Patents [OSTI]

A vacuum insulating glazing unit (VIGU) comprises first and second panes of transparent material, first and second anchors, a plurality of filaments, a plurality of stand-off elements, and seals. The first and second panes of transparent material have edges and inner and outer faces, are disposed with their inner faces substantially opposing one another, and are separated by a gap having a predetermined height. The first and second anchors are disposed at opposite edges of one pane of the VIGU. Each filament is attached at one end to the first anchor and at the other end to the second anchor, and the filaments are collectively disposed between the panes substantially parallel to one another. The stand-off elements are affixed to each filament at predetermined positions along the filament, and have a height substantially equal to the predetermined height of the gap such that the each stand-off element touches the inner surfaces of both panes. The seals are disposed about the edges of the panes, enclosing the stand-off elements within a volume between the panes from which the atmosphere may be evacuated to form a partial vacuum.

Bettger, Kenneth J; Stark, David H

2013-08-20T23:59:59.000Z

33

Conjugate heat transfer in a room with a laminated glazing with CuS or CuS–Cu2?xSe  

Science Journals Connector (OSTI)

Abstract A numerical study of the heat transfer in a room with a laminated glazing wall with solar control films is presented. The thermal evaluation was performed on three different configurations of the laminated glazing, with films of CuS–Cu2?xSe or CuS using polyvinyl butyral (PVB) and/or polyethylene terephthalate (PET). For a reference case, a single glazing was evaluated. In order to observe the effect of the conjugate heat transfer on the inside environment of the system, thermal efficiency (?t) was defined; this is the ratio between the total heat flux towards the inside environment regarding the incident solar energy on glazing. The results show that the adhesion of two solar control films at laminated glazing presents better values of thermal efficiency for different values of solar radiation (G) and outside temperature (Text). Also, with the aim of applying these results to other contexts, we computed the values obtained for the solar heat gain coefficient (SHGC). The SHGC was determined for the summer conditions stated in ISO 15099 and ASHRAE. The SHGC results were predicted in a range of 0.360 ? SHGC ? 0.499 and 0.504 ? SHGC ? 0.595 for the conditions of ISO 15099 and ASHRAE, respectively.

J. Xamán; I. Zavala-Guillén; J.O. Aguilar; G. Álvarez; C. López-Mata; J. Arce

2014-01-01T23:59:59.000Z

34

Appraisal of thermal performance of a glazed office with a solar control coating: Cases in Mexico and Canada  

Science Journals Connector (OSTI)

The use of solar passive strategies such as new solar control coatings on windows for buildings with large glazed areas, have recently become important and helpful tools, mainly because these developments help to reduce heat gains and/or losses through transparent materials, diminishing energy loads, and improving the environment inside buildings. This paper shows an assessment of the thermal performance for an office on top of a building with four different configurations of window glass, and their influence on the indoor conditions. The window glass configurations are: clear glass, glass-film (SnS–CuxS solar control coating), double-glass-film, and double clear glass. The simulations were carried out using weather data from Mexico City and Ottawa, which are a good representation of two extreme weather conditions, in order to assess the thermal behaviour inside offices, such as energy loads, costs for air conditioning, and the influence of interior heat transfer coefficient correlations. The results indicate that the glass-film proves to be the less appropriate configuration due to the high temperatures reached on the film surface, which has an impact on the air temperatures inside the office and contributes to increase the energy consumption. In general, the double glass-film configuration results to be adequate for both climates, nevertheless it shows a better performance for Ottawa than Mexico City, where a simple double clear glass would work the same way.

M. Gijón-Rivera; G. Álvarez; I. Beausoleil-Morrison; J. Xamán

2011-01-01T23:59:59.000Z

35

Microstructures and properties of laser-glazed plasma-sprayed ZrO{sub 2}-YO{sub 1.5}/Ni-22Cr-10Al-1Y thermal barrier coatings  

SciTech Connect (OSTI)

Thermal barrier coatings (TBCs) consisting of two layers with various yttria contents (ZrO{sub 2}-YO{sub 1.5}/Ni-22Cr-10Al-1Y) were plasma sprayed, and parts of the various specimens were glazed by using a pulsed CO{sub 2} laser. All the specimens were then subjected to furnace thermal cycling tests at 1,100 C; the effect of laser glazing on the durability and failure mechanism of the TBCs was then evaluated. From these results, two models were developed to show the failure mechanism of as-sprayed and laser-glazed TBCs: model A, which is thermal-stress dominant, and model V, which is oxidation-stress dominant. For top coats containing cubic phase, cubic and monoclinic phases, or tetragonal and a relatively larger amount of monoclinic phases, whose degradation is thermal-stress dominant, laser glazing improved the durability of TBCs by a factor of about 2 to 6. Segmented cracks that occurred during glazing proved beneficial for accommodating thermal stress and raising the tolerance to oxidation, which resulted in a higher durability. Thermal barrier coatings with top coats containing tetragonal phase had the highest durability. Degradation of such TBCs resulted mainly from oxidation of the bond coats. For top coats with a greater amount of monoclinic phase, thermal mismatch stress occurred during cooling and detrimentally affected durability.

Tsai, H.L.; Tsai, P.C. [National Taiwan Inst. of Tech., Taipei (Taiwan, Province of China). Dept. of Mechanical Engineering and Technology

1995-12-01T23:59:59.000Z

36

Multipurpose characterization of glazing systems with silica aerogel: In-field experimental analysis of thermal-energy, lighting and acoustic performance  

Science Journals Connector (OSTI)

Abstract Thermal-energy, acoustic and lighting performance of innovative glazing systems with aerogel inclusion is evaluated through in-field experiments. The study is carried out by monitoring two dedicated prototype buildings located in central Italy, and the consistency of results with in-lab analyses is investigated. Analyses showed that aerogel can decrease energy consumption for heating by up to 50% in winter, and its capability to keep the thermal zone warmer even several days after that the heating system is switched off. Acoustic analyses confirmed in-lab measurements, showing aerogel capability to increase the façade acoustic insulation index by 3 dB. Lighting analyses showed aerogel effect to lower the daily average illuminance level by about 10% during sunny days. In cloudy weather conditions, with low level of solar radiation and indoor illuminance, the effect was relatively higher. In those cases when windows include shading elements such as protruding roof or deep window pad, aerogel effect was not clearly identified through continuous monitoring. The results of this integrated in-field experimental campaign showed that aerogel filled glazing cameras represent effective and innovative solutions for energy saving in winter, useful for improving acoustic façade performance with limited penalties in terms of daylighting.

Franco Cotana; Anna Laura Pisello; Elisa Moretti; Cinzia Buratti

2014-01-01T23:59:59.000Z

37

Window Types | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Window Types Window Types Window Types June 18, 2012 - 8:06am Addthis A wood-frame window with insulated window glazing. | Photo courtesy of ©iStockphoto/chandlerphoto A wood-frame window with insulated window glazing. | Photo courtesy of ©iStockphoto/chandlerphoto What does this mean for me? If you have old windows, they are likely losing large amounts of energy through the frames and glazing. By upgrading old windows, you can reduce heating and cooling costs in your home. Windows come in a number of different frame and glazing types. By combining an energy-efficient frame choice with a glazing type tailored to your climate and application, you can customize each of your home's windows. Types of Window Frames Improving the thermal resistance of the frame can contribute to a window's

38

Window Types | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Window Types Window Types Window Types June 18, 2012 - 8:06am Addthis A wood-frame window with insulated window glazing. | Photo courtesy of ©iStockphoto/chandlerphoto A wood-frame window with insulated window glazing. | Photo courtesy of ©iStockphoto/chandlerphoto What does this mean for me? If you have old windows, they are likely losing large amounts of energy through the frames and glazing. By upgrading old windows, you can reduce heating and cooling costs in your home. Windows come in a number of different frame and glazing types. By combining an energy-efficient frame choice with a glazing type tailored to your climate and application, you can customize each of your home's windows. Types of Window Frames Improving the thermal resistance of the frame can contribute to a window's

39

Daylighting performance of electrochromic glazing system  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

52E 52E Lighting energy savings potential of split- pane electrochromic windows controlled for daylighting with visual comfort L.L. Fernandes Lawrence Berkeley National Laboratory E.S. Lee Lawrence Berkeley National Laboratory G. Ward Anyhere Software Windows and Envelope Materials Group Building Technology and Urban Systems Department Environmental Energy Technologies Division February 2013 Published in Energy and Buildings 61 (2013) 8-20 10.1016/j.enbuild.2012.10.057 ! DISCLAIMER This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor The Regents of the University of

40

CALCULATING OPTICAL CONSTANTS OF GLAZING MATERIALS  

E-Print Network [OSTI]

Conservation and Renewable Energy, Office of Buildings andConservation and Renewable Energy, Office of Buildings and

Rubin, Michael

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "glazings glazing type" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Establishing the value of advanced glazings  

E-Print Network [OSTI]

market introduction and penetration. With electrochromicmarket and reduce development costs. For example, developers of electrochromic

Lee, Eleanor S.; Selkowitz, Stephen E.

1999-01-01T23:59:59.000Z

42

Establishing the value of advanced glazings  

E-Print Network [OSTI]

electrochromic window would yield a simple payback of six years, based on recovery of annual operating costs alone, if its price

Lee, Eleanor S.; Selkowitz, Stephen E.

1999-01-01T23:59:59.000Z

43

Detailed heat balance analysis of the thermal load variations depending on the blind location and glazing type  

Science Journals Connector (OSTI)

Abstract Nowadays, curtain wall is the norm, due to which there is an increase in direct solar gain and heat loss through the window inside the building, causing massive thermal load. Use of blinds has been one of the best counter measures for this. In this study, EnergyPlus modeling has been used to measure the effect of reflectance of blind on heating and cooling load when the blind is located inside or outside for winter and summer condition. Modeling showed that in summer, as blind reflectance increased, cooling load decreased in case of internal blind and increased in case of external blind whereas in winter, the opposite was true for heating load. However, solar energy transmittance increased proportionately with the increase in reflectance of blind irrespective of position in either season. In addition, the heating load profiles under different window material compositions were determined mainly by the U-value variations, which were directly connected to the infrared and convective heat flows from the window into the space. SHGC also showed effect on the heating load to some extent by affecting the solar transmittance and convective and radiant heat flows from the blind into the space.

Yeo Beom Yoon; Dong Soo Kim; Kwang Ho Lee

2014-01-01T23:59:59.000Z

44

Integrated cost-estimation methodology to support high-performance building design  

Science Journals Connector (OSTI)

Glazing U-factor, glazing solar heat gain coefficient (SHGC), glazing visible transmittance (vt), window...

Prasad Vaidya; Lara Greden; David Eijadi; Tom McDougall; Ray Cole

2009-02-01T23:59:59.000Z

45

Surface Temperatures of Insulated Glazing Units: Infrared Thermography Laboratory Measurements  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Infrared Thermography Measurements of Window Thermal Test Specimen Infrared Thermography Measurements of Window Thermal Test Specimen Surface Temperatures Brent T. Griffith ASHRAE Member, Howdy Goudey, and Dariush Arasteh P.E. ASHRAE Member Building Technologies Program Environment Energy Technologies Division Lawrence Berkeley National Laboratory University of California Berkeley CA 94720 USA August 2, 2001 This work was supported by the Assistant Secretary for Energy Efficiency and Renewable Energy, Office of Building Technology, State and Community Programs, Office of Building Systems of the U.S. Department of Energy under Contract No. DE-AC03-76SF00098. Surface Temperatures of Window Specimens: Infrared Thermography Laboratory Measurements Brent T. Griffith 1 , Howdy Goudey, and Dariush Arasteh

46

2.1E Supplement  

E-Print Network [OSTI]

GLAZING Introduction Electrochromic Switchable GlazingsP r o g r a m . T h e electrochromic glazing entries i n theGLAZING Introduction Electrochromic Switchable Glazings

Winkelmann, F.C.

2010-01-01T23:59:59.000Z

47

Welcome to the Efficient Windows Collaborative  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Glazing Glazing Double-Glazed, Clear Glass This figure illustrates the performance of a typical double-glazed unit with two lites of clear glass. The inner and outer layers of glass are both clear and separated by an air gap. Double glazing, compared to single glazing, cuts heat loss in half due to the insulating air space between the glass layers. In addition to reducing the heat flow, a double-glazed unit with clear glass will allow the transmission of high visible light and high solar heat gain. Double Clear Center of Glass Properties Note: These values are for the center of glass only. They should only be used to compare the effect of different glazing types, not to compare total window products. Frame choice can drastically affect performance. These values represent double glazing with a 1/2" air gap.

48

The thermal performance of fixed and variable selective transmitters in commercial architecture  

E-Print Network [OSTI]

A parametric model is developed for use in evaluating the relative thermal and lighting performance of a variety of existing and proposed types of commercial glazing materials. The glazing materials considered are divided ...

Bartovics, William A

1984-01-01T23:59:59.000Z

49

Welcome to the Efficient Windows Collaborative  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Window Technologies: Glazing Types Window Technologies: Glazing Types Glazing Improvements There are three fundamental approaches to improving the energy performance of glazing products (two or more of these approaches may be combined). The first approach is to alter the glazing material itself by changing its chemical composition or physical characteristics. An example of this is tinted glazing. The second approach is to apply a coating to the glazing material surface. Reflective coatings and films were developed to reduce heat gain and glare, and more recently, low-emittance coatings have been developed to improve both heating and cooling season performance. The third approach is to assemble various layers of glazing and control the properties of the spaces between the layers. These strategies include the use of two or more panes or films,

50

Welcome to the Efficient Windows Collaborative  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Single Glazing Single Glazing Single-Glazed, Clear Glass This figure illustrates the performance of a typical single-glazed unit with clear glass. Relative to all other glazing options, single-glazed with clear glass allows the highest transfer of energy (i.e. heat loss or heat gain depending on local climate conditions) while permitting the highest daylight transmission. Single Clear Center of Glass Properties Note: These values are for the center of glass only. They should only be used to compare the effect of different glazing types, not to compare total window products. Frame choice can drastically affect performance. Whole Window Properties - Single-Glazed, Clear Glass Metal Frame Non-metal Frame Metal Frame Metal Frame with Thermal Break Non-metal Frame Non-metal Frame, Thermally Improved

51

Tuning the surface-plasmon resonance in nanoparticles for glazing applications  

Science Journals Connector (OSTI)

Issues affecting the performance of polymers doped with conducting nanoparticles for use with windows are examined in terms of impact on visible and solar transmittance solar heat gain and residual scattering. Emphasis is on visible transmittance fixed in the range of 30%–75% combined with maximal blocking of the near-infrared (NIR) component of solar energy in the wavelength range of 750 – 1300 nm . Spectral data and surface-plasmon resonance (SPR) models of absorbance for La B 6 and indium tin oxide nanoparticles embedded in polymer are quite distinct from each other but both can be used and each material has its advantages and disadvantages. The SPR of La B 6 nanoparticles is very efficient at NIR blocking as it lies near 1000 nm but as a result its tail overlaps the visible. In contrast the SPR of ITO lies well beyond 1000 nm and is thus far less efficient only relying on its SPR tail. However this means it only weakly affects the visible. Results of a quasistatic model for the optical properties are presented along with comparisons to full Mie scattering calculations. It is found that ellipsoidal particles are required to explain the properties of the studied La B 6 particles and that scattering can be significant in the NIR while weak in the visible. Furthermore the forward-to-backward-scattering ratio is different for Rayleigh scattering in the visible and scattering near the SPR. The latter is much more isotropic even for larger particles.

S. Schelm; G. B. Smith; P. D. Garrett; W. K. Fisher

2005-01-01T23:59:59.000Z

52

Simulation of complex glazing products; from optical data measurements to model based predictive controls  

E-Print Network [OSTI]

papers/4414.pdf Wetter, M. Modelica Library for Buildingfor (day)lighting, Modelica (Wetter 2009) (for complex HVAC

Kohler, Christian

2014-01-01T23:59:59.000Z

53

Performance of High-Performance Glazing in IECC Compliant Building Simulation Model  

E-Print Network [OSTI]

windows with evacuated or low-conductance gas-filled gaps (Carmody et al. 2004), and aerogel windows to reduce the heat loss (V-factor) of windows (Hartman et al. 1987). Technologies to reduce solar heat gain include improvements to existing low.../12-04, [CDROM]. College Station, TX: Energy Systems Laboratory, Texas A&M University. Hartman, J., M.Rubin, and D. Arasteh. 1987. Thermal and solar-optical properties of silica aerogel for use in insulated windows. Proceedings of the 12th - 138 ? ESL-PA-06...

Mukhopadhyay, J.; Haberl, J. S.

54

Improving the Thermal Performance of Single Glazed Windows using Translucent Granular Aerogel  

E-Print Network [OSTI]

This paper is made available in accordance with Taylor & Francis publisher policies. Please cite the original published version only using the following reference:

Mark Dowson; David Harrison; Salmaan Craig; Zachary Gill

55

Simulation of complex glazing products; from optical data measurements to model based predictive controls  

E-Print Network [OSTI]

Heat Gain Coefficient (SHGC) and Visibile Transmittance (VT)Whole Window •WINDOW6 •U+SHGC+VT •BSDF Measure Properties •system performance numbers (U, SHGC, VT) and bi- directional

Kohler, Christian

2014-01-01T23:59:59.000Z

56

Thermal Performance Impacts of Center-of-Glass Deflections in Installed Insulating Glazing Units  

E-Print Network [OSTI]

6] M. Bernier, Effects of Glass Plate Curvature on the U-Selkowitz, Research Needs: Glass Solar Reflectance and VinylAnalysis of Insulating Glass Units, Journal of Structural

Hart, Robert

2014-01-01T23:59:59.000Z

57

High-performance facades design strategies and applications in North America and Northern Europe  

E-Print Network [OSTI]

solar heat gain coefficient (SHGC) is typically accompaniedby dividing glazing VT by the SHGC. For projects seeking toprovided that the glazing SHGC meets the project glazing

Zelenay, Krystyna; Perepelitza, Mark; Lehrer, David

2011-01-01T23:59:59.000Z

58

Buildings Energy Data Book: 5.2 Windows  

Buildings Energy Data Book [EERE]

8 8 Typical Thermal Performance of Residential Windows, by Type Single-Glazed Clear Single-Glazed with Bronze Tint Double-Glazed Clear Double-Glazed with grey/Bronze Tint Double-Glazed with High Performance Tint Double-Glazed with High-Solar Gain Low-e Glass, Argon/Krypton Gas Double-Glazed with Moderate-Solar Gain Low-e Glass, Argon/Krypton Gas Double-Glazed with Low-Solar Gain Low-e (1) Glass, Argon/Krypton Gas Triple-Glazed (2) with High-Solar Gain Low-e Glass, Argon/Krypton Gas (3) Triple-Glazed (2) with Low-Solar Gain Low-e (1) Glass, Argon/Krypton Gas (3) Note(s): Source(s): The Efficient Windows Collaborative (http://www.efficientwindows.org) 0.14 0.33 0.56 1) Spectrally selective. 2) Includes double glazing with suspended film. 3) Center of glass properties, does not include frame or installation

59

STATE OF CALIFORNIA --THE RESOURCES AGENCY Edmund G. Brown Jr., Governor CALIFORNIA ENERGY COMMISSION 1516 Ninth Street Sacramento, California 95814  

E-Print Network [OSTI]

. Rural areas, as defined by the 2000 2010 U.S. Census. Urban areas, as defined by the 2000 2010 U. with less than 50 percent glazed area. When that operable opening has 50 percent or more glazed area it is fenestration a glazed door. See Fenestration: Glazed Door. Doors with a glazed area, see Glazed Door. Doors

60

Windows, Doors, & Skylights | Department of Energy  

Energy Savers [EERE]

Logan Architects. Windows affect home aesthetics as well as energy use. Window Types A wood-frame window with insulated window glazing. | Photo courtesy of iStockphoto...

Note: This page contains sample records for the topic "glazings glazing type" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Procedure for measuring simultaneously the solar and visible properties of glazing with complex internal or external structures  

Science Journals Connector (OSTI)

Accurate solar and visual transmittances of materials in which surfaces or internal structures are complex are often not easily amenable to standard procedures with laboratory-based...

Gentle, A R; Smith, G B

2014-01-01T23:59:59.000Z

62

LBNL Windows & Daylighting Software -- WINDOW Documentation  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Vertical Louvered Blind Shading Systems Vertical Louvered Blind Shading Systems It is now possible to model Vertical Louvered Blinds in the Shading Layer Library, and then add them to a glazing system in the Glazing System Library. Shading Layer Library In the Shading Layer Library, set the Type to "Venetian blind, vertical" and then input values for the slat width, slat spacing and tilt will appear. The graphic image is a "plan" view of the vertical louvered blinds and will display the geometry of the blind based on the input values. Glazing System Library Once the Vertical Louvered Blind is defined in the Shading Layer Library, it can be added to a glazing system in the Glazing System Library. The blind in the screen shot below has been added to the inside of a double-glazed IGU.

63

Demand Shifting With Thermal Mass in Large Commercial Buildings: Field Tests, Simulation and Audits  

E-Print Network [OSTI]

or C Window glazing U and SHGC Window to wall ratio Internalor C Window glazing U and SHGC Window to wall ratio Internalor C Window glazing U and SHGC Window to wall ratio Kaiser

Xu, Peng; Haves, Philip; Piette, Mary Ann; Zagreus, Leah

2005-01-01T23:59:59.000Z

64

Fenestration of Today and Tomorrow: A State-of-the-Art Review and Future  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Fenestration of Today and Tomorrow: A State-of-the-Art Review and Future Fenestration of Today and Tomorrow: A State-of-the-Art Review and Future Research Opportunities Title Fenestration of Today and Tomorrow: A State-of-the-Art Review and Future Research Opportunities Publication Type Journal Article LBNL Report Number LBNL-5304E Year of Publication 2011 Authors Jelle, Bjørn Petter, Andrew Hynd, Arlid Gustavsen, Dariush K. Arasteh, Howdy Goudey, and Robert Hart Journal Solar Energy Materials and Solar Cells Volume 96 Start Page 1 Pagination 1-28 Date Published 01/2012 Keywords Fenestration, Low-e, Multilayer glazing, Smart window, Solar cell glazing, Vacuum glazing Abstract Fenestration of today is continuously being developed into the fenestration of tomorrow, hence offering a steadily increase of daylight and solar energy utilization and control, and at the same time providing a necessary climate screen with a satisfactory thermal comfort. Within this work a state of the art market review of the best performing fenestration products has been carried out, along with an overview of possible future research opportunities for the fenestration industry. The focus of the market review was low thermal transmittance (U-value). The lowest centre of glass Ug-values found was 0.28 W/(m2K) and 0.30 W/(m2K), which was from a suspended coating glazing product and an aerogel glazing product, respectively. However, the majority of high performance products found were triple glazed. The lowest frame U-value was 0.61 W/(m2K). Vacuum glazing, smart windows, solar cell glazing, window frames, self cleaning glazing, low-emissivity coatings and spacers were also reviewed, thus also representing possibilities for controlling and harvesting the solar radiation energy. Currently, vacuum glazing, new spacer materials and solutions, electrochromic windows and aerogel glazing seem to have the largest potential for improving the thermal performance and daylight and solar properties in fenestration products. Aerogel glazing has the lowest potential U-values, ~ 0.1 W/(m2K), but requires further work to improve the visible transmittance. Electrochromic vaccum glazing and evacuated aerogel glazing are two vacuum related solutions which have a large potential. There may also be opportunities for completely new material innovations which could revolutionize the fenestration industry.

65

High Performance Building Facade Solutions PIER Final Project Report  

E-Print Network [OSTI]

such as electrochromic glazings will have major market andsuch as electrochromic glazings will have major market andMarket Program”. These insights were summarized in a document: “Electrochromic

Lee, Eleanor

2011-01-01T23:59:59.000Z

66

Daylight metrics and energy savings  

E-Print Network [OSTI]

Mardaljevic and A. Nabil. Electrochromic glazing and facadeoptimiza- tion of electrochromic operations for occupantmodulating materials (e.g. electrochromic glazing), blinds,

Mardaljevic, John

2011-01-01T23:59:59.000Z

67

State-of-the-Art Highly Insulating Window Frames - Research and Market Review  

E-Print Network [OSTI]

through vacuum and electrochromic vacuum glazed windows,technologies, such as an electrochromic vacuum glazedof rebate depth on an electrochromic vacuum glazed window.

Gustavsen, Arild

2008-01-01T23:59:59.000Z

68

Welcome to the Efficient Windows Collaborative  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Window Technologies Window Technologies Operator Types Traditional operable window types include the projected or hinged types such as casement, awning, and hopper, and the sliding types such as double- and single-hung and horizontal sliding. This section on Operator Types describes how these typical windows work. Operator Types Glazing Types Traditionally, windows have been made from clear glass, but advanced technologies have significantly improved the thermal performance of glass. This section on Glazing Types describes some of these technologies. Glazing Types Gas Fills Gas fills improve the thermal performance of insulating glazing units by reducing the conductance of the air space between the layers. This section on Gas Fills describes the thermal performance benefits of adding gas to an IGU.

69

Energy Efficient Residential Building Code for Arab Countries  

E-Print Network [OSTI]

of building envelope and weather data in reducing electrical energy consumption. The impacts of the following parameters were studied namely; walls and roof constructions, window size and glazing type for different geographical locations in the Arab Countries...

Hanna, G. B.

2010-01-01T23:59:59.000Z

70

Strategies and Challenges for Energy Efficient Retrofitting: Study of the Empire State Building  

Science Journals Connector (OSTI)

The double glazed windows of SHGC 0.61 retrofitted on site as super- ... and South windows is SC 75 type (SHGC 0.27) and in the North windows, TC 88 film (SHGC 0.36) used.

B. De; M. Mukherjee

2013-11-01T23:59:59.000Z

71

Appendix B 1BStandards Tables 116-A and 116-B Page 1 2008 Residential Compliance Manual August 2009  

E-Print Network [OSTI]

Residential Compliance Manual August 2009 TABLE 116-B DEFAULT SOLAR HEAT GAIN COEFFICIENT (SHGC) FRAME TYPE PRODUCT GLAZING TOTAL WINDOW SHGC Single Pane Double Pane Glass Block 1 Metal Operable Clear 0.80 0.70 0

72

Active load management with advanced window wall systems: Research and industry perspectives  

E-Print Network [OSTI]

Electrochromic glazings are commercially available in Germany. US products are anticipated to enter the market

2002-01-01T23:59:59.000Z

73

Performance of Solar Facade Components  

E-Print Network [OSTI]

glazing (i.e., electrochromic, gasochromic and thermochromic devices, thermotropic and other dispersed

74

Impact of Fixed Exterior Shading on Daylighting: A Case Study of the David Brower Center  

E-Print Network [OSTI]

to-wall ratio, electrochromic glazing, etc. considered? 5.shading systems, switchable electrochromic and thermochromic

Zelenay, Krystyna

2011-01-01T23:59:59.000Z

75

An indoorâ??outdoor building energy simulator to study urban modification effects on building energy use â?? Model description and validation  

E-Print Network [OSTI]

absorptance, transmittance, and SHGC of the glazing dependHeat Gain Coefficient (SHGC), absorptance and transmittance 

Yaghoobian, Neda; Kleissl, Jan

2012-01-01T23:59:59.000Z

76

Effect of window type, size and orientation on the total energy demand for a building in Indian climatic conditions  

Science Journals Connector (OSTI)

Windows in a building allow daylight to enter a building space but simultaneously they also result in heat gains and losses affecting energy balance. This requires an optimisation of window area from the point of view of total energy demand viz., for lighting and cooling/heating. This paper is devoted to this kind of study for Indian climatic conditions, which are characterised by six climatic zones varying from extreme cold to hot, dry and humid conditions. Different types of windows have been considered because the optimised size will also depend on the thermo-optical parameters like heat transfer coefficient (U-value), solar heat gain coefficient (g), visual (?), and total transmittance (T) of the glazing in the window. It is observed that in a non-insulated building, cooling/heating energy demand far exceeds lighting energy demand, making the optimisation of window area a futile exercise from the point of view of total energy demand. Only for buildings with U-value below 0.6 W/m²K can optimisation be achieved. The optimised window area and the corresponding specific energy consumption have been calculated for different climates in India, for different orientations, and for three different advanced window systems.

Inderjeet Singh; N.K. Bansal

2004-01-01T23:59:59.000Z

77

Welcome to the Efficient Windows Collaborative  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Low-E Glazing Low-E Glazing Double-Glazed, High-solar-gain Low-E Glass This figure illustrates the characteristics of a typical double-glazed window with a high-solar gain low-E glass with argon gas fill. These windows are designed to reduce heat loss but admit solar gain. High-solar-gain low-E glass products are best suited for buildings located in heating-dominated climates and are the product of choice for passive solar design projects. High-solar-gain low-E glass is often made with pyrolytic low-E coatings, although sputtered high-solar-gain low-E is also available. Double HSG Low-E Center of Glass Properties Note: These values are for the center of glass only. They should only be used to compare the effect of different glazing types, not to compare total window products. Frame choice can drastically affect performance. These values represent double glazing with a 1/2" air gap.

78

Welcome to the Efficient Windows Collaborative  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Triple Low-E Glazing Triple Low-E Glazing Triple-Glazed, High-solar-gain Low-E Glass This figure illustrates the performance of a window with a very low heat loss rate (low U-factor). In this case there are three glazing layers and two low-E coatings, ½" argon gas or ¼" krypton gas fill between glazings, and low-conductance edge spacers. The middle glazing layer can be glass or suspended plastic film. Some windows use four glazing layers (two glass layers and two suspended plastic films). This product is suited for buildings located in very cold climates. Both Low-E coatings in this product have high solar heat and visible light transmittance, which is ideal for passive solar design. The use of three layers, however, results in lower solar heat gain relative to double glazing with high-solar-gain Low-E.

79

Impact of Fixed Exterior Shading on Daylighting: A Case Study of the David Brower Center  

E-Print Network [OSTI]

solar heat gain coefficient (SHGC) is always accompanied bydividing glazing VT by its SHGC, serves as an indicator ofuse glazing with a higher SHGC, and the LSR in these cases

Zelenay, Krystyna

2011-01-01T23:59:59.000Z

80

CDM as a Solution for the Present World Energy Problems (An Overview with Respect to the Building and Construction Sector)  

E-Print Network [OSTI]

? Insulated glazing and selective glazing films ? Night and cold-weather movable insulation ? On site electric power generation by renewable energy in the form of photovoltaics (PV) ? Wind generators ? Micro-hydro (either with fully-independent systems...

Sudarsan, N.; Jayaraj, S.; Sreekanth, K. J.

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "glazings glazing type" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Fenestration of Today and Tomorrow: A State-of-the-Art Review and Future Research Opportunities  

E-Print Network [OSTI]

Lampert, ”Chromogenic smart materials”, Materials Today, 7,Smart switchable glazing for solar energy and daylight control”, Solar Energy Materials &Smart window; Electrochromic window; Solar cell glazing; Aerogel; Low-emissivity coating; Low-e; Window frame; Phase change material;

Petter Jelle, Bjorn

2013-01-01T23:59:59.000Z

82

Assessment of Unglazed Solar Domestic Water Heaters  

SciTech Connect (OSTI)

Conference paper investigating cost-performance tradeoffs in replacing glazed collectors with unglazed collectors in solar domestic water heating systems.

Burch, J.; Salasovich, J.; Hillman, T.

2005-12-01T23:59:59.000Z

83

Fenestration of Today and Tomorrow: A State-of-the-Art Review and Future Research Opportunities  

E-Print Network [OSTI]

17 3.3.2. Electrochromic Vacuumthe visible transmittance. Electrochromic vaccum glazing andglazing; Smart window; Electrochromic window; Solar cell

Petter Jelle, Bjorn

2013-01-01T23:59:59.000Z

84

All banquet functions are subject to a 22% facility charge and applicable taxes. The Knight Center is a non-tipping facility.  

E-Print Network [OSTI]

with your choice of Hot, Mild, BBQ, or Sweet Teriyaki Glaze served with Ranch Dressing Mini Boursin, Spinach

Subramanian, Venkat

85

Method and apparatus for filling thermal insulating systems  

DOE Patents [OSTI]

A method for filling insulated glazing units is disclosed. The method utilizes a vacuum chamber in which the insulated glazing units are placed. The insulated glazing units and vacuum chamber are evacuated simultaneously. The units are then refilled with a low conductance gas such as Krypton while the chamber is simultaneously refilled with air. 3 figs.

Arasteh, D.K.

1992-01-14T23:59:59.000Z

86

LBNL Windows & Daylighting Software -- WINDOW Documentation  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Cellular / Honeycomb Shades Cellular / Honeycomb Shades Updated 09/30/2013 It is now possible to model cellular / honeycomb shading systems in the Shading System Library and then add them to a glazing system in the Glazing System Library. NOTE: Before attempting to calculate a glazing system with a cellular shade, you must make the following change to the THERM7.ini file, which is located in C:\Users\Public\LBNL\Settings. Close WINDOW7 before making this change. DocPath=C:\Users\Public\LBNL\WINDOW7\debug Shading Layer Library A cellular / honeycomb shade can now be defined in the Shading Layer Library. Defining this type of shading system requires an XML file which contains information about the cell geometry and the material thermal and optical properties. WINDOW can model two different types of cellular shades:

87

OPTICS 5  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

OPTICS (Version 5.1.02) OPTICS (Version 5.1.02) Release notes NOTE: See the Optics Knowledge Base for how to run this version of Optics on the Microsoft Vista and Microsoft Windows 7 operating systems March 5, 2003: Release Maintenance Pack 2 New ! January 7, 2003: Release Maintenance Pack 1 October 23, 2002: Release Optics 5.1.01 September 27, 2002: Release Optics 5.1.00 (only released on CDs at NFRC Annual Fall Meeting) Release notes Maintenance Pack 2 Bug fixes: New features: bullet Applied films that were created could not be saved or exported. This has been fixed. bullet Exporting glazing systems generated a message that the operation failed because the glazing system type is unknown. Glazing systems can now be exported to file (e.g. to view the spectral data), but the structure information will be lost.

88

8  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

COMPLEX GLAZING COMPLEX GLAZING 9.1. Overview The following special cases are covered in this section: 9.2. Integral Venetian Blinds page 9-2 9.3. Frits page 9-37 9.2 Integral Venetian Blinds Integral venetian blinds (venetian blinds between two glazing layers in a glazing system) fall into the category of a dynamic glazing product. The rules for rating dynamic glazing products, according to NFRC 100 and 200, state that they must be rated in both their fully open and fully closed positions. In the case of modeling retractable integral venetian blinds as part of a dynamic glazing product, the fully open position is when the venetian blind is completely retracted. However, even when completely retracted, the stacked venetian blind slats become a "block" of material that must be modeled.

89

LBNL Windows & Daylighting Software -- WINDOW Documentation  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Specular Glazing Systems Specular Glazing Systems NFRC THERM 6.3 / WINDOW 6.3 Simulation Manual July 2013: bullet Entire Manual in PDF Format approximate 8 MB Comparison of WINDOW 5 / THERM 5 and WINDOW 6 / THERM 6 Results for Specular Glazing Systems (PDF Format) NFRC WINDOW 6 / THERM 6 Training for Specular Systems (Power Point Presentation, Oct/Nov 2010) Tutorials Complex Glazing Systems bullet WINDOW 6.2 / THERM 6.2 Research Version User Manual (Documents features in WINDOW6 and THERM 6 for modeling complex glazing systems) bullet WINDOW 6.2 / THERM 6.2 Simulation Manual Chapter for Complex Glazing (Draft) This was used for NFRC Simulator training in June 2009, and includes detailed descriptions for modeling venetian blinds between glass and frits. bullet Complex Glazing Summary -- PDF File

90

STATE OF CALIFORNIA FENESTRATION ACCEPTANCE  

E-Print Network [OSTI]

Daylighting Device (TDD) Skylight Dynamic Glazing Window Film Block Glass B. STATEMENT Certificate of NRCCENV05E FC1 matches the building plans window schedule of efficiencies. Cross

91

Rules of thumb for passive solar heating  

SciTech Connect (OSTI)

Rules of thumb are given for passive solar systems for: (1) sizing solar glazing for 219 cities, (2) sizing thermal storage mass, and (3) building orientation.

Balcomb, J.D.

1980-01-01T23:59:59.000Z

92

A Smart Window for Solar Energy Co-utilization  

Science Journals Connector (OSTI)

Aiming at thermal comfort and integrated to the building envelope, a low-emissivity, double-glazed window is presented, with adjustable blinds and spectrally selective heat reflection,...

Horowitz, Flavio; de Azambuja, Giovane; Pereira, Marcelo B

93

Photo Galleries | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Quadrennial Technology Review Gallery New Town Builders Deputy Secretary Elizabeth Sherwood-Randall Swearing-In Ceremony Fabricate-on-Demand Vacuum Insulating Glazings 2014...

94

STATEMENT OF CONSIDERATIONS REQUEST BY SCHOTT DONNELLY, LLC,...  

Broader source: Energy.gov (indexed) [DOE]

agreement for the performance of work entitled, "Development of Durable Large Area Electrochromic (EC) Glazing". The purpose of the cooperative agreement is to address the...

95

NETL F 451.1-1/1 Categorical Exclusion (CX) Designation Form  

Broader source: Energy.gov (indexed) [DOE]

Inc. EE DE-EE0003926 BETD 2010 Nicholas D'Amico 24 months Faribault, MN Electrochromic Glazing Technology: Improved Performance, Lower Price SAGE Electrochromics...

96

Processing and Behavior of Fe-Based Metallic Glass Components via Laser-Engineered Net Shaping  

E-Print Network [OSTI]

laser glazing [17,18] and laser cladding of MGs [19–22] havestereolithog- raphy and laser cladding, using a computer-

Zheng, B.; Zhou, Y.; Smugeresky, J. E.; Lavernia, E. J.

2009-01-01T23:59:59.000Z

97

Top 4 Energy Department Inventions Saving You Energy & Money...  

Broader source: Energy.gov (indexed) [DOE]

an insulating gas between two window panes, researchers were able to further decrease heat loss through windows in cold climates. They then added an additional glazing layer...

98

Fermilab Today  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

fishcakes with aioli couscous - Grilled asparagus - Carottes rapees - Praline pumpkin pie Wednesday, Oct. 15 Lunch - Orange glazed pork tenderloin - Cranberry tabbouleh - Snap...

99

Nomadic and domestic: dwelling on the edge of Ulaanbaatar, Mongolia  

E-Print Network [OSTI]

what allows the house to store both passive solar energy andhouse, 129   Figure 23: Integrating the stove and pishin wall, 133   Figure 24: Glazing permits passive

Miller, Joel Eric

2013-01-01T23:59:59.000Z

100

ENTRY LOBBY ENERGY EFFICIENCY  

E-Print Network [OSTI]

ENTRY LOBBY ENERGY EFFICIENCY Clerestory windows provide natural day-lighting.· Exterior roof SUSTAINABILITY FEATURES #12;ADMINISTRATION ENERGY EFFICIENCY High performance window glazing· minimizes heat gain ENERGY EFFICIENCY High performance window glazing· minimizes heat gain. Light-colored roofing reflects

Escher, Christine

Note: This page contains sample records for the topic "glazings glazing type" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

The Science of Sentiment  

E-Print Network [OSTI]

the models were completed I then took plaster molds of the heads and prepared the molds to be filled with glaze. I filled the molds with a glaze and silica sand... the kiln with the plaster mold included. When the pieces were removed from the kiln the chemical water was no longer present in the plaster and the mold crumbled...

Bates, Jamie M.

2012-05-31T23:59:59.000Z

102

Fabrication and Optimization of Properties of Polymer Laminated Nanoreinforced Automobile Glasses: Experiments and Modeling  

SciTech Connect (OSTI)

This paper describes the fabrication process for the thin cast-in-place laminate glazing systems to be used in cars of the future to achieve the weight reduction goals of FreedomCAR. The primary objective of the project is to reduce vehicle weight, improve fuel economy, and reduce vehicle emissions through the use of structurally reliable, high acoustic performance and lightweight glazing systems with low manufacturing costs. Energy savings come from reducing weight by using thinner glazing: prior studies at Pacific Northwest National Laboratory (PNNL) have demonstrated a potential of 30% weight reductions compared with standard glazing system. Energy savings will also come from reducing interior heat loads; that, in turn, will reduce the demand for air conditioning. The evaluation of alternative glazing concepts seek to improve acoustical performance such that reduced interior noise levels can be achieved while maintaining glazing at minimal thickness and weight levels. The most important factor in utilizing laminated glazing systems as vehicle side glass is its advantage in cost savings for material and manufacturing processes. To this end, a new, innovative manufacturing process is developed such that laminated glazing systems can be made with low cost in terms of raw materials and process-related equipment/facility investment.

Khaleel, Mohammad A.; Sun, Xin; Simmons, Kevin L.

2008-05-01T23:59:59.000Z

103

Thin films for solar control applications  

Science Journals Connector (OSTI)

...properly cited. Thin films for solar control applications Sapna Shrestha...performance of vacuum glazing. Solar Energy 81, 8. ( doi:10...mirrors produced by plasma ion assisted deposition. J. Non-Cryst...and cost of vacuum glazing. Solar Energy 55, 151. ( doi:10...

2010-01-01T23:59:59.000Z

104

THE TORREY BOTANICAL CLUB  

Science Journals Connector (OSTI)

...to resist wear. The ordinary salt glaze on stoneware and the hard...com-mon use: alkaline or salt glaze, feldspathic, lead...value in fixing the dunes. The scrub-oak and black-oak soon appear...a short time, from extreme desert conditions through successive...

C. Stuart Gager

1907-06-14T23:59:59.000Z

105

LBNL Windows & Daylighting Software -- WINDOW Documentation  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Vacuum Glazing Modeling Vacuum Glazing Modeling It is now possible to model vacuum glazing in WINDOW 7. The first step is to define a new vacuum "gap" in the "Gap Library" (formerly the Gas Library). Then that vacuum gap is used in a glazing system to calculate the thermal characteristics of the glazing system with a vacuum gap. Gap Library The Gas Library has been renamed the Gap Library. To define a vacuum gap, check the "Vacuum" checkbox (this is only available for single gases, not gas mixtures). When this box is checked, new input variables will appear, including the vacuum pressure, the specific heat ratio and molecular weight of the vacuum gas. It is also necessary to define a pillar system for the vacuum gap. Pillar Definition Double click the double arrow to the right of the Pillar Definition pulldown to define a new pillar system. Define the shape and dimensions of the pillar system.

106

LBNL Window & Daylighting Software -- COMFEN  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

5 Beta 5 Beta (5.0.05 -- January 1, 2013) Last Updated: 01/01/2013 Screen Shots Opening Screen, Overview Tab Climate Tab Facade Edit Screen The Facade Library screen allows the user to define a facade with windows, and overhangs and fins for each window. COMFEN displays the geometry of each window that is defined as well as the position in the facade. Each window can be defined with a different glazing system and frame combination if desired. Multiple facades can be defined on this screen, and then compared in the Project screen, described below. Glazed Wall Assembly Definition Glazing System Library The Glazing System Library allows the user to make new glazing systems or import them from a WINDOW 6 database. Shading Control Scheme Library The Shading Control Scheme Library screen allows the user to define interior, exterior and between glass shading systems for

107

LBNL Windows & Daylighting Software -- WINDOW Documentation  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Deflection Modeling Deflection Modeling It is now possible to model the effects of glass deflection in WINDOW 7. Glazing System Library The Glazing System Library is where the deflection modeling input values are entered. When the "Model Deflection" box is checked, a Deflection input box appears. When the Glazing System is calculated, two rows of results, one for the undeflected state and one for the deflected state, appear for Center of Glass Results, Temperature Data and Angular data. In addition, a Deflection tab appears, which shows the deflection of each glass layer and the resulting gap width for each gap. Glazing System Deflect Input There are two options for defining the deflection in a glazing system, by choosing from the "Input" pulldown list:

108

LBNL Windows & Daylighting Software -- WINDOW5.02: Feature List  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

System Non-Convergence System Non-Convergence Last update:05/19/08 05:03 PM There are some circumstances where WINDOW 5 will give the following error message: This error can occur either in the Window or Glazing System calculation, but it is actually an error that occurs when the program tries to calculate the glazing system thermal properties -- it occurs in the Window Library because the program recalculates the center-of-glass U-value based on the window height. It will happen in rare circumstances because of a problem with the discontinuity in correlations that calculate convective heat transfer in glazing cavities. The solution is to change either the glazing system height or width. In general, the most practical solution is to change the glazing system height rather than the width..

109

LBNL Window & Daylighting Software -- COMFEN  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

1 1 Last Updated: 10/04/2012 Screen Shots Opening Screen, Overview Tab Climate Tab Facade Edit Screen The Facade Library screen allows the user to define a facade with windows, and overhangs and fins for each window. COMFEN displays the geometry of each window that is defined as well as the position in the facade. Each window can be defined with a different glazing system and frame combination if desired. Multiple facades can be defined on this screen, and then compared in the Project screen, described below. Glazed Wall Assembly Definition Glazing System Library The Glazing System Library allows the user to make new glazing systems or import them from a WINDOW 6 database. Shading Control Scheme Library The Shading Control Scheme Library screen allows the user to define interior, exterior and between glass shading systems for

110

I  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Highly Insulating Glazing Systems using Non-Structural Center Glazing Highly Insulating Glazing Systems using Non-Structural Center Glazing Layers Dariush Arasteh, Howdy Goudey, and Christian Kohler Lawrence Berkeley National Laboratory ABSTRACT Three layer insulating glass units with two low-e coatings and an effective gas fill are known to be highly insulating, with center-of-glass U-factors as low as 0.57 W/m 2 -K (0.10 Btu/h-ft 2 -°F). Such units have historically been built with center layers of glass or plastic which extend all the way through the spacer system. This paper shows that triple glazing systems with non-structural center layers which do not create a hermetic seal at the edge have the potential to be as thermally efficient as standard designs, while potentially removing some of the production and product integration issues that have

111

NFRC Interlaboratory Comparison on Optical Properties  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

NFRC Interlaboratory Comparison on Optical Properties NFRC Interlaboratory Comparison on Optical Properties Title NFRC Interlaboratory Comparison on Optical Properties Publication Type Conference Paper LBNL Report Number LBNL-501E Year of Publication 2007 Authors Jonsson, Jacob C., and Michael D. Rubin Conference Name NFRC Conference Date Published 03/2006 Conference Location San Diego, CA Call Number LBNL-501E Abstract As part of the NFRC rating process, optical data on glazing materials is combined with other information to calculate various properties of a window product. The administrative procedure for gathering such optical data is governed by NFRC 3021, which in turn refers to NFRC 3002 and NFRC 3013 for the technical procedures by which the optical properties are determined in the solar and infrared ranges, respectively. In practice, the data is compiled by the Lawrence Berkeley National Laboratory (LBNL) and becomes part of the International Glazing Database (IGDB).

112

Introduction  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Phoenix, Arizona. The energy use was Phoenix, Arizona. The energy use was calculated for many window design variations including 5 orientations, 3 glazing areas, 5 shading types, and 20 window Key Issues Orientation: Homes with windows facing predominately north use less energy than homes facing east, south, or west. With high-performance windows and shading strategies, these differences can be considerably less. Window Area: Energy use increases with window area using windows with clear and high-solar-gain glazing. With high-performance windows, energy use may not increase at all when using a larger window area. Shading Condition: On north-facing homes, shading devices will have little impact. On south-facing homes, overhangs can be effective to block the hot summer sun. Shading devices have less impact when using high-

113

Introduction  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Washington, DC. The energy use was Washington, DC. The energy use was calculated for many window design variations including 5 orientations, 3 glazing areas, 5 shading types, and 20 window Key Issues Orientation: Homes with windows facing predominately south use less energy than homes facing north, east, or west. With high-performance windows and shading strategies, these differences can be considerably less. Window Area: Energy use increases with window area using windows with clear glazing. With high-performance windows, energy use may not increase at all when using a larger window area. Shading Condition: On south-facing homes, overhangs can be effective to block the hot summer sun while allowing for passive solar gain in winter months. Shading devices have less impact when using high-performance windows with low-

114

Publications  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

4 results: 4 results: BibTex RIS RTF XML Sort by: Author Title Type [ Year (Desc) ] Filters: Author is Guy O. Kelley [Clear All Filters] 1995 Klems, Joseph H., Mehry Yazdanian, and Guy O. Kelley. "Measured Performance of Selective Glazings." In Thermal Performance of the Exterior Envelopes of Buildings VI Conference . Clearwater Beach, FL, 1995. Klems, Joseph H., Jeffrey L. Warner, and Guy O. Kelley. "A Comparison Between Calculated and Measured SHGC For Complex Fenestration Systems." In ASHRAE Transactions. Vol. 102, Part 1. Atlanta, GA, 1995. Klems, Joseph H., and Guy O. Kelley. "Calorimetric Measurements of Inward-Flowing Fraction for Complex Glazing and Shading Systems." In ASHRAE Transactions. Vol. 102, Part 1., 1995. 1991 Yazdanian, Mehry, J. Randy Michelson, and Guy O. Kelley. "A Complex

115

Coated glass in the automotive industry  

Science Journals Connector (OSTI)

Inorganic coatings on glasses have reached the level where they will certainly be applied in the automotive industry in order to solve such glazing problems as heat load, heat loss, glare, UV adsorption, disturbed reflections, electromagnetic influence and thermal insulation. Their widespread use will depend on optimising the solution to problems of solar control and heatable glasses while the glass is also capable of the other functions required of it, thus justifying the relatively high cost that is predicted. There remain unsolved problems in optical limits and colour matching. When these are solved solar control glasses are likely to give real advantages in terms of air conditioning and comfort, and heatable glasses will be used in association with electrical power for demisting and deicing. Particular attention is being directed to a class of infrared reflecting and heatable glasses, obtained by selectively coating transparent plastic films that are embedded or bonded in laminated or tempered glasses. Fabricating this type of glasses has mainly been useful for two reasons: (I) to develop versatile techniques to make solar control IR reflecting and heatable glasses for all kinds and dimensions of vehicle glazing; and (2) to assess whether these glasses are really feasible alternatives to directly coated glasses. This paper describes results of some solar control experiments in Fiat cars: to ascertain the actual internal temperature differences found when glazing vehicles with the absorbing and reflecting IR glasses currently available; and to obtain results with a similar purpose using heatable glasses. There is also discussion of how the glasses could be used in glazing all or parts of a car's windows / especially addressing problems of glare. Suggestions are made of the directions of this research in the future.

G. Manfre

1991-01-01T23:59:59.000Z

116

Energy audit, an approach to apply the concept of green building for a building in Jordan  

Science Journals Connector (OSTI)

Abstract An energy audit for one department at the faculty of Engineering and Technology at the University of Jordan has been conducted as a way to apply the concept of green building to an existing structure. According to the Jordanian green building code, a classification for the green building has been carried out according to its saving in energy and water in addition to the other factors such as indoor quality and material. The heating and cooling loads were calculated and the results were compared with the values for the same building after amendments to the windows and walls. The insulation for external walls of the building has been introduced in addition the double glazing instead of the current single glass windows for the building. The electricity for the lighting consumption of this building was obtained and analyzed and the potential of utilizing a lighting sensor for different halls and rooms was studied and analyzed. The boiler performance has been studied and an estimation of efficiency enhancement was proposed. It has been found that choosing a larger window area facing south, east and west can save more energy in winter and decreasing the heating costs using a certain types of double glazing, while decreasing the glazing area facing north can save money and energy. Also, it has been found that the payback period for the annual saving in fuel and electricity bills is less than 3 years. The needed investment for obtaining the energy saving is shown in the paper.

K. Hassouneh; A. Al-Salaymeh; J. Qoussous

2015-01-01T23:59:59.000Z

117

Surface Temperature of IGUs  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

117 117 Surface Temperatures of Insulated Glazing Units: Infrared Thermography Laboratory Measurements Brent T. Griffith, Daniel Türler, and Dariush Arasteh Building Technologies Program Environmental Energy Technologies Division Lawrence Berkeley National Laboratory University of California Berkeley, CA 94720 USA Fax: 510-486-6046, email: D_Arasteh@lbl.gov Abstract Data are presented for the distribution of surface temperatures on the warm-side surface of seven different insulated glazing units. Surface temperatures are measured using infrared thermography and an external referencing technique. This technique allows detailed mapping of surface temperatures that is non-intrusive. The glazings were placed between warm and cold environmental chambers that were operated at conditions

118

Multifamily Home Energy Solutions Program | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

You are here You are here Home » Multifamily Home Energy Solutions Program Multifamily Home Energy Solutions Program < Back Eligibility Commercial Multi-Family Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heating Home Weatherization Commercial Weatherization Appliances & Electronics Sealing Your Home Design & Remodeling Windows, Doors, & Skylights Manufacturing Water Heating Program Info Funding Source Public Benefit Fund State Oregon Program Type State Rebate Program Rebate Amount Windows: $2-$3/sq ft, depending on U-value, glazing and type of heating Heat Pumps: $200 - $600, varies by efficiency and original heating type High-Efficiency Gas Boiler: $200 Gas Furnace: $150 Insulation: $0.30-$4 per square foot Exterior Doors: $25

119

LBNL Windows & Daylighting Software -- WINDOW  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

WINDOW WINDOW NFRC Certification Version Release Version Beta Version WINDOW 6.3 (For NFRC Certification and modeling Complex Glazing Systems) WINDOW 7.1 For modeling vacuum glazing, deflected glass, vertical venetian blinds and perforated screens WINDOW 7.2 For modeling Cellular Shades, in addition to vacuum glazing, deflected glass, vertical venetian blinds and perforated screens Download WINDOW 6.3 (for NFRC Certification and complex glazing systems) Download WINDOW 7.1 Download WINDOW 7.2 Knowledge Base (Check here first if you are experiencing a problem with the software) Knowledge Base (Check here first if you are experiencing a problem with the software) Knowledge Base (Check here first if you are experiencing a problem with the software) New Features

120

LBNL Window & Daylighting Software -- WINDOW 6 Research Version  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

(6.3.9) (6.3.9) October 2010 Last Updated: 11/07/2010 Complex Glazing Features for WINDOW6 The Research Version of WINDOW 6 has the following modeling capabilities: Shading Layer Library: A Shading Layer Library has been added to define shading systems, such as venetian blinds and diffusing layers, which can then be added as layers in the Glazing System Library. Shade Material Library: A Shading Material Library has been added to define materials to be used in the Shading Layer Library. Properties defined in this library include shade material reflectance and absorptance (in the solar, visible and IR wavelengths ranges), as well as the conductivity of the material. Glazing System Library In the “Layers” section of the Glazing System definition, it is now possible to specify either a glass layer or a shading layer. The shading system is chosen from the Shading Layer Library.

Note: This page contains sample records for the topic "glazings glazing type" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Software Tools  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Software Tools WINDOW for analyzing window thermal and optical performance THERM for analyzing two-dimensional heat transfer through building products Optics for analyzing optical properties of glazing systems International Glazing Database Optical data for glazing products used by WINDOW 5.2 and Optics5.1 including NFRC approved products Complex Glazing Database A database of shading materials and systems, such as roller shades and venetian blinds, that can be used by WINDOW 6 to calculate thermal and optical characteristics of window products with these shading systems. COMFEN A PC Program for calculating the heating and cooling energy use, and visual and thermal comfort, of commercial building facades. RESFEN A PC program for calculating the heating and cooling energy use of windows in residential buildings

122

Energy Savings Resulting from Shading Devices on Single-Family Residences in Austin, Texas  

E-Print Network [OSTI]

windows) and exterior (solar screens, awnings, overhangs, and the effects of recessed windows and vegetation) shading devices. The analysis was conducted with the DOE-2 building energy analysis computer program. Nominal baseline cases (single glazing, gas...

Pletzer, R. K.; Jones, J. W.; Hunn, B. D.

1987-01-01T23:59:59.000Z

123

Analysis of improved fenestration for code-compliant residential buildings in hot and humid climates  

E-Print Network [OSTI]

glazing technologies were developed, tested and subsequently adopted by the building industry. The underlying goal that has been carried through to present day research has been to develop the potential of windows as net energy suppliers (Arasteh 1994...

Mukhopadhyay, Jaya

2006-10-30T23:59:59.000Z

124

Conduction and convection heat transfer in composite solar collector systems with porous absorber  

Science Journals Connector (OSTI)

Steady natural convection and conduction heat transfer has been studied in composite solar collector systems. The system consists of a glazing ... bounding wall isothermal at different temperatures, two horizontal

M. Mbaye; E. Bilgen

1993-01-01T23:59:59.000Z

125

851 S.W. Sixth Avenue, Suite 1100 Steve Crow 503-222-5161 Portland, Oregon 97204-1348 Executive Director 800-452-5161  

E-Print Network [OSTI]

Commercial Real Estate Residential New Construction Commercial New Construction Commercial Lighting Irrigated Secondary Glazing Commercial New Construction/ Integrated Design Support ***Commercial Real Estate Goals Vision: Energy efficiency is a cornerstone of a vibrant sustainable Northwest Mission: Mobilize

126

Atria and Canopies  

Science Journals Connector (OSTI)

Glazed roofs have been a characteristic of modern architecture since the mid-19th century. The quest for light attains the maximum expression when the sky can be made part of the inside building (Fig. 10.1). Of c...

2009-01-01T23:59:59.000Z

127

Energy Research and Development Division FINAL PROJECT REPORT  

E-Print Network [OSTI]

insightful technical and market-related input into the direction of this R&D: 3M Advanced Glazings Alanod University Pilkington Glass Sacramento Municipal Utility District Sage Electrochromics, Inc. Saint Gobain

128

Analysis of the Benefits of Photovoltaic in High Rise Commercial Buildings  

E-Print Network [OSTI]

further, recent studies have integrated photovoltaic glazed window systems into the building shell. To understand the relationship between photovoltaic windows, energy use and human satisfaction, this paper presents a study of the effects of photovoltaic...

Sylvester, K. E.; Haberl, J. S.

2000-01-01T23:59:59.000Z

129

Urinary Lead Exposure and Breast Cancer Risk in a Population-Based Case-Control Study  

Science Journals Connector (OSTI)

...modern-day human exposure as a result of past and continuing use in automobiles and aviation fuels and in a myriad of common uses (e.g., batteries, paints, solders, glazes, plastics). Arguably, the degree of environmental lead contamination...

Jane A. McElroy; Martin M. Shafer; Ronald E. Gangnon; Luis A. Crouch; and Polly A. Newcomb

2008-09-01T23:59:59.000Z

130

Spectrally Solar Selective Coatings for Colored Flat Plate Solar Thermal Collectors  

Science Journals Connector (OSTI)

The paper is a review on the state-of-the-art on colored materials (absorbers and glazings) for solar thermal flat plate collectors obtained world-wide. The ... input for novel, market-acceptable flat plate solar

Luminita Isac; Alexandru Enesca…

2014-01-01T23:59:59.000Z

131

Modeling Windows in Energy Plus with Simple Performance Indices  

E-Print Network [OSTI]

Clear. Primarily residential. SHGC>.55 for 3mm clear.Commercial products will be SHGC>.45 for few – angular Lowsimilar. (Angular Curve A. ) .6SHGC<.45 Single Glazing. for

Arasteh, Dariush

2010-01-01T23:59:59.000Z

132

Raising High Energy Performance Glass Block from Waste Glasses with Cavity and Interlayer  

Science Journals Connector (OSTI)

The main glazing energy performance measure in warm humid climates is light-to-solar-gain ratio (LSG), which denotes the ratio of the visible light transmittance (VT) and its solar heat gain coefficient (SHGC). I...

Floriberta Binarti; Agustinus D. Istiadji…

2013-01-01T23:59:59.000Z

133

Effects of Overhangs on the Performance of Electrochromic Windows  

E-Print Network [OSTI]

Outer layer Inner layer Clear Clear U U SHGC (W/m2K COGoverall overall SHGC COG Tv overall Tv COG CRI Spac ers Alumelectrochromic glazing; SHGC: solar heat gain coefficient;

Tavil, Aslihan; Lee, Eleanor S.

2005-01-01T23:59:59.000Z

134

Models and methods for recovering shape, reflectance, and illumination from images  

E-Print Network [OSTI]

FIGURES Figure 1.1: Images of the Utah teapot and StanfordImage of the original Utah teapot at the Computer Historyis, say, a glazed ceramic teapot which does not satisfy the

Alldrin, Neil Gordon

2008-01-01T23:59:59.000Z

135

Desiccant cooling using unglazed transpired solar collectors  

SciTech Connect (OSTI)

The use of unglazed solar collectors for desiccant regeneration in a solid desiccant cooling cycle was investigated because these collectors are lower in cost than conventional glazed flat-plate collectors. Using computer models, the performance of a desiccant cooling ventilation cycle integrated with either unglazed transpired collectors or conventional glazed flat-plate collectors was obtained. We found that the thermal performance of the unglazed system was lower than the thermal performance of the glazed system because the unglazed system could not take advantage of the heat of adsorption released during the dehumidification process. For a 3-ton cooling system, although the area required for the unglazed collector was 69% more than that required for the glazed collector, the cost of the unglazed collector array was 44% less than the cost of the glazed collector array. The simple payback period of the unglazed system was half of the payback period of the glazed collector when compared to an equivalent gas-fired system. Although the use of unglazed transpired collectors makes economic sense, some practical considerations may limit their use in desiccant regeneration. 8 refs.

Pesaran, A.A. [National Renewable Energy Lab., Golden, CO (United States)] [National Renewable Energy Lab., Golden, CO (United States); Wipke, K. [Stanford Univ., CA (United States)] [Stanford Univ., CA (United States)

1992-05-01T23:59:59.000Z

136

Calculating center-glass performance indices of windows  

SciTech Connect (OSTI)

Building envelope performance is strongly influenced by solar gain and heat transfer through windows. The majority of this energy gain or loss passes through the center-glass area of the glazing system. Various methods have been devised to calculate the corresponding center-glass performance indices. Solar heat gain coefficient (SHGC) and U-factor are the quantities most frequently sought. Hand calculations have given way to computer-based techniques. Computer simulation offers the opportunity to employ more detailed models plus the ability to model the large number of glazing systems made possible by design options, such as low-emissivity or solar-control coatings, selective glass tints, substitute fill gases, and glazing layers, that partially transmit longwave radiation. A new, more accurate method is presented in this paper for manipulating spectral optical data while calculating the energy related optical properties of glazing layers and glazing systems. The use of the same technique to track visible and ultraviolet radiation is also demonstrated. In addition, more refined methods are documented for calculating SHGC and U-factor while accounting for the thermal resistance of individual glazings.

Wright, J.L. [Univ. of Waterloo, Ontario (Canada). Dept. of Mechanical Engineering

1998-10-01T23:59:59.000Z

137

Cooling Energy Demand Evaluation by Meansof Regression Models Obtained From Dynamic Simulations  

E-Print Network [OSTI]

was calculated to be -8.78oC (Moscow in January) and maximum of 42.9 oC (Abu-Dhabi in August). The hourly values of outdoor air temperature and solar radiation were obtained using Trnsys (Trnsys, 2006) meteonorm files. b) Glazing surface and distribution... the ,,black-box,, function, dynamic simulations were conducted using Trnsys 16 software (Trnsys, 2005). The Trnsys building model, known as, Type 56, is compliant with general requirements of European Directive on the energy performance of buildings...

Catalina, T.; Virgone, J.

2011-01-01T23:59:59.000Z

138

Development of a Humid Climate Definition  

E-Print Network [OSTI]

levels. The buildings modeled were a retail store (similar to a K-Mart or Wal-Mart), a large office building, and a fast food restaurant. Existing building models were employed for this study with ventilation rates in accordance with ASHRAE Don B.... 1 Kitchen I 1 ROO^ U-value, ~tu/ft~- OF (WI~~.T) I 0.07 (0.40j 0.07 (0.40j I 0.07 (0.40j Glazing Characteristics: I I Percent Glass in Exterior Walls (%, avg.) 25 (equally distributed) 1 2.7 (south entrance only) I 2 1 Glass Type ( Double...

Hedrick, R. L.; Shirey, D. B.

1998-01-01T23:59:59.000Z

139

Windows, Doors, & Skylights | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Windows, Doors, & Skylights Windows, Doors, & Skylights Windows, Doors, & Skylights Windows affect home aesthetics as well as energy use. Learn more about energy-efficient windows. Windows affect home aesthetics as well as energy use. Learn more about energy-efficient windows. Energy-efficient windows, doors, and skylights-also known as fenestration-can help lower a home's heating, cooling, and lighting costs. Learn about the energy performance ratings to consider when selecting windows, doors, and skylights, and how to maximize their energy efficiency in your home. Featured Window Types A wood-frame window with insulated window glazing. | Photo courtesy of ©iStockphoto/chandlerphoto

140

Thermal Performance Impacts of Center-of-Glass Deflections in Installed  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Thermal Performance Impacts of Center-of-Glass Deflections in Installed Thermal Performance Impacts of Center-of-Glass Deflections in Installed Insulating Glazing Units Title Thermal Performance Impacts of Center-of-Glass Deflections in Installed Insulating Glazing Units Publication Type Journal Article LBNL Report Number LBNL-5800E Year of Publication 2012 Authors Hart, Robert, Howdy Goudey, Dariush K. Arasteh, and Dragan C. Curcija Journal Energy and Buildings Volume 54 Issue November 2012 Pagination 453-460 Date Published 11/2012 Keywords concave, convex, deflection, field test, gap, insulating glass unit, thermal performance, thermal transmittance, u-factor Abstract This study examines the thermal performance impact of center-of-glass (COG) deflections in double- and triple-pane insulating glass units (IGUs) installed at several locations throughout the US. Deflection was measured during summer and winter temperatures; the results show that outdoor temperature variations can be represented a linear change in COG gap width in double- and triple-pane IGUs within the temperature ranges measured. However, the summer-winter temperature-induced deflection is similar in magnitude to the observed spread in COG deflection of similar units at the same temperature, which suggests that factors other than temperature are of equal importance in determining the in-situ deflection of windows. The effect of deflection on thermal performance depends on the IGU's designed gap. Units constructed with smaller-than-optimal gaps often exhibit significant U-factor change due to temperature-induced reduction in gap width. This effect is particularly problematic in high-performance triple glazing where small gap dimension changes can have a large impact on performance.

Note: This page contains sample records for the topic "glazings glazing type" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Methodology of CO{sub 2} emission evaluation in the life cycle of office building facades  

SciTech Connect (OSTI)

The construction industry is one of the greatest sources of pollution because of the high level of energy consumption during its life cycle. In addition to using energy while constructing a building, several systems also use power while the building is operating, especially the air-conditioning system. Energy consumption for this system is related, among other issues, to external air temperature and the required internal temperature of the building. The facades are elements which present the highest level of ambient heat transfer from the outside to the inside of tall buildings. Thus, the type of facade has an influence on energy consumption during the building life cycle and, consequently, contributes to buildings' CO{sub 2} emissions, because these emissions are directly connected to energy consumption. Therefore, the aim is to help develop a methodology for evaluating CO{sub 2} emissions generated during the life cycle of office building facades. The results, based on the parameters used in this study, show that facades using structural glazing and uncolored glass emit the most CO{sub 2} throughout their life cycle, followed by brick facades covered with compound aluminum panels or ACM (Aluminum Composite Material), facades using structural glazing and reflective glass and brick facades with plaster coating. On the other hand, the typology of facade that emits less CO{sub 2} is brickwork and mortar because its thermal barrier is better than structural glazing facade and materials used to produce this facade are better than brickwork and ACM. Finally, an uncertainty analysis was conducted to verify the accuracy of the results attained. - Highlights: Black-Right-Pointing-Pointer We develop a methodology for evaluating CO{sub 2} emissions generated during the life cycle of office building facades. Black-Right-Pointing-Pointer This methodology is based in LCA. Black-Right-Pointing-Pointer We use an uncertainty analysis to verify the accuracy of the results attained. Black-Right-Pointing-Pointer We study three typologies of facades. Black-Right-Pointing-Pointer Facades using structural glazing and uncolored glass emit the most CO{sub 2} throughout their life cycle.

Taborianski, Vanessa Montoro; Prado, Racine T.A., E-mail: racine.prado@poli.usp.br

2012-02-15T23:59:59.000Z

142

Quantitative Thermography  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Quantitative Thermography Quantitative Thermography Images collected with infrared thermography can be very useful for gaining insight into thermal phenomena such as thermal bridging and natural convection. But as a research tool it is even more valuable to extract numerical data from the images and produce maps of surface temperature. This is called quantitative infrared thermography and can be very challenging. We have developed procedures that allow collecting and processing the infrared data to enable obtaining results that are as accurate as possible. The main difficulties in using infrared to measure temperature are correcting the measurement for reflected radiation and proper referencing of the relative radiometric measurement. Efforts are underway to develop standardized test procedures for using infrared to quantify surface temperatures in the types of thermal test chambers used to test building products. But for now, information on how we perform quantitative thermography is available in some of our technical papers. One of these papers presents temperature results for a series of insulated glazing units. This is an example of our goal to make available a database of surface temperatures results for various types of windows. These data sets are available for download at the link below. The data are for the warm side surface of various types of air-filled insulating glazing units subjected to ASHRAE winter design conditions and are similar to the graph below.

143

Welcome to the Efficient Windows Collaborative  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Windows for New Construction Windows for New Construction Window Selection Tool Use the Window Selection Tool for new construction to compare performance of 20 different window types in your location. The Window Selection Tool will take you through a series of design conditions pertaining to your design and location. It is a step-by-step decision-making tool to help determine the most energy efficient window for your house. Window Selection Tool Window Selection Process This section provides step-by-step guidance on the window selection process for new construction windows including issues of code, energy, durability, and installation. Design Guidance This section provides Design Guides that examine the energy use impacts of new windows for homes in hot, mixed and cold climates. They show the the impact of orientation, window area, and shading. The energy use has been calculated for various window design variations including 5 orientations (equal, north, east, south, and west), 3 glazing areas, 20 glazing types, and 5 shading conditions.

144

Advanced Systems  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Optimal gap width for double and triple glazing systems Optimal gap width for double and triple glazing systems Glazing systems in the US are commonly designed with a 1/2 " (12.7 mm) gap. The optimal gap width depends on many factors, such as gas fill (air, argon, krypton), the use of Low-e coatings, the environmental conditions (temperature difference across the window), and the calculation standard used. NFRC standard conditions are -18 C (-0.4 F) outside, and 21 C (69.8 F) inside. The calculation standard used in the US is based on the ISO 15099 standard. European standard conditions are 0 C (32 F) outside, and 20 C (68 F) inside. The calculation standard is based on the EN 673 standard. A number of common glazing configurations both with and without Low-e coatings, and with a variety of gas fills were evaluated using both the North American NFRC standard and the European EN 673 standard. All results were calculated using WINDOW 6.3 from LBNL. All IGU's (Insulated Glazing Units) have a standard height of 1 meter.

145

A characterization of the nonresidential fenestration market  

SciTech Connect (OSTI)

The purpose of this report is to characterize the nonresidential fenestration market in order to better understand market barriers to, and opportunities for, energy-efficient fenestration products. In particular, the goal is to: (1) Better understand how glazing products flow between industry groups. (2) Identify major decision makers directing the product flow. (3) Understand industry trends for certain technologies or products. (4) Characterize the role of energy codes and standards in influencing industry trends. (5) Assess the impact of product testing and certification programs on the industry. The U.S. glass industry is a $27 billion enterprise with both large producers and small firms playing pivotal roles in the industry. While most sectors of the glass industry have restructured and consolidated in the past 20 years, the industry still employs 150,000 workers. Nonresidential glazing accounts for approximately 18% of overall U.S. glass production. In 1999, nonresidential glazing was supplied to approximately 2.2 billion ft{sup 2} of new construction and additions. That same year, nonresidential glazing was also supplied to approximately 1.1 billion ft{sup 2} of remodeling construction. With an industry this large and complex, it is to be expected that many market participants can influence fenestration selection. If market barriers to the selection of high performance fenestration products are better understood, then the U. S. Department of Energy (USDOE), the Northwest Energy Efficiency Alliance (NEEA), and others can develop programs and policies that promote greater energy efficiency in commercial glazing products.

Shehabi, Arman; Eley, Charles; Arasteh, Dariush; Degens, Phil

2002-07-25T23:59:59.000Z

146

Sensitivity of fenestration solar gain to source spectrum and angle of incidence  

SciTech Connect (OSTI)

The solar heat gain coefficient (SHGC) is the fraction of solar radiant flux incident on a fenestration system entering a building as heat gain. In general it depends on both the angle of incidence and the spectral distribution of the incident solar radiation. In attempts to improve energy performance and user acceptance of high-performance glazing systems, manufacturers are producing glazing systems with increasing spectral selectivity. This poses potential difficulties for calculations of solar heat gain through windows based upon the use of a single solar spectral weighting function. The sensitivity of modern high-performance glazing systems to both the angle of incidence and the shape of the incident solar spectrum is examined using a glazing performance simulation program. It is found that as the spectral selectivity of the glazing system increases, the SHGC can vary as the incident spectral distribution varies. The variations can be as great as 50% when using several different representative direct-beam spectra. These include spectra having low and high air masses and a standard spectrum having an air mass of 1.5. The variations can be even greater if clear blue diffuse skylight is considered. It is recommended that the current broad-band shading coefficient method of calculating solar gain be replaced by one that is spectral based.

McCluney, W.R. [Florida Solar Energy Center, Cocoa, FL (United States)

1996-12-31T23:59:59.000Z

147

WINDOW 6.2/THERM 6.2 Research Version User Manual  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

WINDOW 6.2/THERM 6.2 Research Version User Manual WINDOW 6.2/THERM 6.2 Research Version User Manual Title WINDOW 6.2/THERM 6.2 Research Version User Manual Publication Type Report LBNL Report Number LBNL-813E Year of Publication 2008 Authors Mitchell, Robin, Christian Kohler, Joseph H. Klems, Michael D. Rubin, Dariush K. Arasteh, Charlie Huizenga, Tiefeng Yu, and Dragan C. Curcija Call Number LBNL-813E Abstract WINDOW 6 and THERM 6 Research Versions are software programs developed at Lawrence Berkeley National Laboratory (LBNL) for use by manufacturers, engineers, educators, students, architects, and others to determine the thermal and solar optical properties of glazing and window systems. WINDOW 6 and THERM 6 are significant updates to LBNL's WINDOW 5 and THERM 5 computer program because of the added capability to model complex glazing systems, such as windows with shading systems, in particular venetian blinds. Besides a specific model for venetian blinds and diffusing layers, WINDOW 6 also includes the generic ability to model any complex layer if the Transmittance and Reflectance are known as a function of incoming and outgoing angles.

148

Infrared Thermography Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Dual Glazing vs. Single Pane Dual Glazing vs. Single Pane On the left is a normal double glazed window. On the right is a single pane window. The single pane window is only slightly warmer than the cold air behind it. The dual pane window is considerably warmer which indicates that less heat is flowing out through the window and that the indoor space will be more comfortable. The two windows here are being cooled on the back side with wind at 0°C (32°F). (The other thermograms in this series are taken with colder conditions on the back side so don't try to cross compare these pictures. Too much frost builds up on the single pane window to allow testing it at the temperatures used for the other images). For more information contact: Howdy Goudey Building Technologies Program

149

Building Energy Software Tools Directory: GLASTRUCT  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

GLASTRUCT GLASTRUCT GLASTRUCT Analyzes structural performance of glass and glazing systems. The calculations are done using industry standard ASTM E1300-02. GLASTRUCT's main screen includes support for single or double glazed units, glass thicknesses up to 22 mm, laminated glass, heat strengthened glass, etc. GLASTRUCT calculates glazing load resistance and deflection and also displays Pass/Fail criteria. Calculations are done for short and long load durations, which are determined from the wind loading or other static and dynamic loadings. Standard reports are generated and are available for printing or pdf file generation. Screen Shots Keywords structural performance, fenestration, deflection, stress, ASTM Validation/Testing Compliant with ASTM E1300-02 standard.

150

Glossary | Building Energy Codes Program  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Daylight Glazing Daylight Glazing Exterior glazing over 6 feet above the finished floor. DDC See Direct Digital Control. Deadband The temperature range in which no heating or cooling is used. Decorative Lighting Lighting that is purely ornamental and installed for aesthetic effect. Decorative lighting shall not include general lighting. Degree Day See "Heating Degree Days." Degree Day Base 50F For any one day, when the mean temperature is more than 50°F, there are as many degree days as degrees Fahrenheit temperature difference between the mean temperature for the day and 50°F. Annual cooling degree days (CDDs) are the sum of the degree days over a calendar year. Demand The highest amount of power (average kilowatt over an interval) recorded for a building or facility in a selected time frame.

151

Welcome to the Efficient Windows Collaborative  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Glass Glass Vacuum-insulated Glass Vacuum-insulated glazing units are made up of 2 panes of glass with a very small air space. The air space contains spacers which help maintain the separation between the panes. Most of the emerging glass technologies are available or nearly on the market. These include insulation-filled and evacuated glazings to improve heat transfer by lowering U-factors. Evacuated Windows The most thermally efficient gas fill would be no gas at all-a vacuum. The window industry is pursuing the development of vacuum-insulated glass (VIG) for use in window units in which the space between the panes is evacuated. If the vacuum pressure is low enough, there would be no conductive or convective heat exchange between the panes of glass, thus lowering the U-factor. A vacuum glazing must have a good low-E coating to

152

Welcome to the Efficient Windows Collaborative  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Glossary Glossary A B C D E F G H I J K L M N O P R S T U V W A AAMA. American Architectural Manufacturers Association. A national trade association that establishes voluntary standards for the window, door, storefront, curtain wall, and skylight industries. Absorptance. The ratio of radiant energy absorbed to total incident radiant energy in a glazing system. Acrylic. A thermoplastic with good weather resistance, shatter resistance, and optical clarity, used for glazing. Aerogel. A microporous, transparent silicate foam used as a glazing cavity fill material, offering possible U-values below 0.10 BTU/(h-sq ft-°F) or 0.56 W/(sq m-°C). Air infiltration. The amount of air leaking in and out of a building through cracks in walls, windows and doors.

153

Blood Types  

E-Print Network [OSTI]

Broadcast Transcript: According to the Japanese, you can tell a lot about a person by their blood type: Type A is the farmer, calm and responsible; Type B is the hunter, independent and creative; Type AB is humanistic, ...

Hacker, Randi; Tsutsui, William

2007-03-14T23:59:59.000Z

154

Welcome to the Efficient Windows Collaborative  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Operator Types-Skylights Operator Types-Skylights Choosing Skylights for Your Home Check the pitch roof and determine what skylight product would work best (deck-mounted, curb-mounted, pan-flashed). Determine what type of skylight operation is wanted (electric venting, manual venting, fixed). Identify the ceiling and roof style for optimal size and configuration of the skylight shaft (flat ceiling, cathedral ceiling, sloped wall, flat or sloped roof) Select the glazing type (high-performance, tempered, laminated, impact, snow load). Select screen accessories if wanted (solar blinds, blackout blinds, Venetian blinds, roller shades). Select manual or electric controls to operate operable skylights and accessories. Roof windows have become increasingly popular as homeowners and designers

155

U.S. Department of Energy NEPA Categorical Exclusion Determination Form  

Broader source: Energy.gov (indexed) [DOE]

CA-City-Montebello CA-City-Montebello Location: City Montebello CA American Recovery and Reinvestment Act: Proposed Action or Project Description 1) Development of an energy efficiency and conservation strategy (completed); and 2) implementation of the City of Montebello Energy Project including: (a) retrofit of the Police Department Building (1991) - addition of a "cool roof" system, replacement of the cooling tower; (b) retrofit of the City Hall (1962) - replacement of exterior window glazing with Low-E glazing; (c) implement the Green Campaign outreach

156

Resources  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Resources / Related Web Sites Resources / Related Web Sites Buildings-Related Resources Windows & Glazing Resources Energy-Related Resources International Resources Telephone Directories Buildings-Related Resources California Institute for Energy Efficiency (CIEE) Center for Building Science (CBS) at LBNL Department of Energy (DOE) DOE Energy Efficiency home page Energy Efficiency and Renewable Energy Clearinghouse Fact sheets in both HTML for standard web browsers and PDF format using Adobe Acrobat Reader (free). National Fenestration Rating Council home page Office of Energy Efficiency and Renewable Energy (EREN) back to top... Windows & Glazing Resources National Glass Association (NGA) LBNL Building Technologies Fenestration R&D news LBNL Center for Building Science (CBS) Newsletter

157

A performance correlation of horizontal solar heaters  

E-Print Network [OSTI]

The solar heaters are shown tn Figure VI, page 31 30 Figure VI Horizontal Solar Heaters ~GLAZING AND FRAME ~~ POLYETHYLENE HEATERS THERMAL IN S U LA T I N 8 CELLS THERMOCOUPLES HORIZONTAL TABLE TOP THERMOCOUPLES COPPER LEADS TO CONTROL... The solar heaters are shown tn Figure VI, page 31 30 Figure VI Horizontal Solar Heaters ~GLAZING AND FRAME ~~ POLYETHYLENE HEATERS THERMAL IN S U LA T I N 8 CELLS THERMOCOUPLES HORIZONTAL TABLE TOP THERMOCOUPLES COPPER LEADS TO CONTROL...

Gopffarth, Wilford Hugo

2012-06-07T23:59:59.000Z

158

Solar heat gain coefficient of complex fenestrations with a venetian blind for differing slat tilt angles  

SciTech Connect (OSTI)

Measured bidirectional transmittances and reflectances of a buff-colored venetian blind together with a layer calculation scheme developed in previous publications are utilized to produce directional-hemispherical properties for the venetian blind layer and solar heat gain coefficients for the blind in combination with clear double glazing. Results are presented for three blind slat tilt angles and for the blind mounted either interior to the double glazing or between the glass panes. Implications of the results for solar heat gain calculations are discussed in the context of sun positions for St. Louis, MO.

Klems, J.H.; Warner, J.L.

1996-08-01T23:59:59.000Z

159

Passive solar construction handbook  

SciTech Connect (OSTI)

Many of the basic elements of passive solar design are reviewed. The unique design constraints presented in passive homes are introduced and many of the salient issues influencing design decisions are described briefly. Passive solar construction is described for each passive system type: direct gain, thermal storage wall, attached sunspace, thermal storage roof, and convective loop. For each system type, important design and construction issues are discussed and case studies illustrating designed and built examples of the system type are presented. Construction details are given and construction and thermal performance information is given for the materials used in collector components, storage components, and control components. Included are glazing materials, framing systems, caulking and sealants, concrete masonry, concrete, brick, shading, reflectors, and insulators. The Load Collector Ratio method for estimating passive system performance is appended, and other analysis methods are briefly summarized. (LEW)

Levy, E.; Evans, D.; Gardstein, C.

1981-08-01T23:59:59.000Z

160

Madico Inc | Open Energy Information  

Open Energy Info (EERE)

Madico Inc Madico Inc Jump to: navigation, search Name Madico Inc Place Woburn, Massachusetts Zip 1888 Product Manufactures glass glazing films and backsheets for photovoltaic cells and panels, as well as other glass products. Coordinates 42.479195°, -71.150604° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.479195,"lon":-71.150604,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

Note: This page contains sample records for the topic "glazings glazing type" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Development of a Software Design Tool for Hybrid Solar-Geothermal Heat Pump  

Open Energy Info (EERE)

Software Design Tool for Hybrid Solar-Geothermal Heat Pump Software Design Tool for Hybrid Solar-Geothermal Heat Pump Systems in Heating- and Cooling-Dominated Buildings Geothermal Project Jump to: navigation, search Last modified on July 22, 2011. Project Title Development of a Software Design Tool for Hybrid Solar-Geothermal Heat Pump Systems in Heating- and Cooling-Dominated Buildings Project Type / Topic 1 Recovery Act - Geothermal Technologies Program: Ground Source Heat Pumps Project Type / Topic 2 Topic Area 2: Data Gathering and Analysis Project Description In heating-dominated buildings, the proposed design approach takes advantage of glazed solar collectors to effectively balance the annual thermal loads on the ground with renewable solar energy. In cooling-dominated climates, the design approach takes advantage of relatively low-cost, unglazed solar collectors as the heat rejecting component.

162

Thermal simulation of buildings with double-skin façades  

Science Journals Connector (OSTI)

Highly glazed commercial buildings with double-skin façades may overheat during summertime due to a coincidence of high outside temperatures, solar gains and internal heat gains. To optimize thermal comfort and minimize cooling loads, the thermal behaviour of this type of building, therefore, requires careful investigation at the design stage. However, complex physical phenomena—notably optical, thermodynamic and fluid dynamic processes—are involved and as yet, no single simulation tool is able to handle all these processes while remaining an efficient design tool. This paper presents a method based on the coupling of three different types of simulation models that is economical in terms of computing time, and thereby, suitable for design purposes. These models are: spectral optical model, computational fluid dynamics model and building energy simulation model. Various tools are available at each modelling level. The method is demonstrated on a commercial building with double-skin façades and additionally, night-time ventilation.

H. Manz; Th. Frank

2005-01-01T23:59:59.000Z

163

Type Fusion  

Science Journals Connector (OSTI)

Fusion is an indispensable tool in the arsenal ... Less well-known, but equally valuable is type fusion, which states conditions for fusing an application ... algebra. We provide a novel proof of type fusion base...

Ralf Hinze

2011-01-01T23:59:59.000Z

164

Publications  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

5 results: 5 results: BibTex RIS RTF XML Sort by: Author Title Type [ Year (Desc) ] Filters: Author is Robert Hart [Clear All Filters] 2013 Bergh, Sofie Van Den, Robert Hart, Bjørn Petter Jelle, and Arlid Gustavsen. "Window Spacers and Edge Seals in Insulating Glass Units: A State-of-the-Art Review and Future Perspectives." Energy and Buildings 58 (2013). 2012 Hart, Robert, Howdy Goudey, Dariush K. Arasteh, and Dragan C. Curcija. "Thermal Performance Impacts of Center-of-Glass Deflections in Installed Insulating Glazing Units." Energy and Buildings 54, no. November 2012 (2012): 453-460. Arasteh, Dariush K., Robert Hart, Cezary Misiopecki, Arlid Gustavsen, and Bjørn Petter Jelle. "Impacts of Operating Hardware on Window Thermal Performance." In BEST3 Conference. Atlanta, GA, 2012.

165

Building Energy Software Tools Directory: Sefaira  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Sefaira Sefaira tool_sefaira.jpg Sefaira allows architects to focus on performance from the beginning of their design process with software that provides them with real-time feedback for their buildingÂ’s design. Architects can directly use that feedback to influence their design, instead of validating a design at the end of their process. Architects can study form & facade design, compare design options and strategies, find the strategies with the biggest impact and optimize key design parameters, such as shading, glazing ratios, and orientation. Screen Shots Keywords Early-stage performance analysis of building envelope, HVAC, water & renewables , Real-time building performance analysis, Parametric analysis, Thermal comfort analysis Validation/Testing Sefaira leverages two energy analysis engines for different types of

166

Welcome to the Efficient Windows Collaborative  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Measuring Performance: Visible Transmittance (VT) Measuring Performance: Visible Transmittance (VT) How to maximize daylight? Historically, only clear glass was used to maximize the amount of light entering through a window. Especially in cooling-dominated climate, this desirable daylight also came with undesirable solar heat gain. With the advancement of high-performance glazing systems, it is possible for low-E coatings to reject the solar heat gain while allowing the visible light to pass through the glass. The type of low-E coating that is appropriate for your specific house depends on location, orientation, window area, and shading strategies. The visible transmittance (VT) is an optical property that indicates the fraction of visible light transmitted through the window. This is separate from the Solar Heat Gain Coefficient (SHGC), since many modern windows

167

Building Energy Software Tools Directory: ParaSol  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

ParaSol ParaSol ParaSol logo. A design tool to study the potential of solar protection for different types of sunshades and glazing systems and their influence on the building energy performance at an early design stage. ParaSol is based on dynamic energy simulations and provides monthly results for the total and direct solar energy transmittance (g- and T- values) of the sunshade and the combination of sunshade and window system and calculates their influence on the building energy performance. The program has post-processors for studies of daylight and thermal comfort. The user can select between external, interpane and internal sunshades. Within each such group, a number of different geometries and material properties can be selected. A simple geometric model, which can symbolize a rectangular office module,

168

Detroit Public Lighting Department - Commercial and Industrial Energy Wise  

Broader source: Energy.gov (indexed) [DOE]

Detroit Public Lighting Department - Commercial and Industrial Detroit Public Lighting Department - Commercial and Industrial Energy Wise Program Detroit Public Lighting Department - Commercial and Industrial Energy Wise Program < Back Eligibility Commercial Industrial Savings Category Heating & Cooling Commercial Heating & Cooling Heating Home Weatherization Commercial Weatherization Cooling Other Sealing Your Home Design & Remodeling Windows, Doors, & Skylights Manufacturing Heat Pumps Appliances & Electronics Commercial Lighting Lighting Insulation Maximum Rebate $50,000 per customer/facility, or 100% of the project cost Program Info State Michigan Program Type Utility Rebate Program Rebate Amount Light Fixtures: $2-$200 Lighting Controls: $0.10-$65 HVAC Equipment: $10-$30/ton Programmable Thermostat: $80 Window Glazing: $0.30/square foot

169

Publications  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

120 results: 120 results: BibTex RIS RTF XML Sort by: Author Title Type [ Year (Desc) ] Filters: Author is Dariush K. Arasteh [Clear All Filters] 2012 Hart, Robert, Howdy Goudey, Dariush K. Arasteh, and Dragan C. Curcija. "Thermal Performance Impacts of Center-of-Glass Deflections in Installed Insulating Glazing Units." Energy and Buildings 54, no. November 2012 (2012): 453-460. Arasteh, Dariush K., Robert Hart, Cezary Misiopecki, Arlid Gustavsen, and Bjørn Petter Jelle. "Impacts of Operating Hardware on Window Thermal Performance." In BEST3 Conference. Atlanta, GA, 2012. 2011 Gustavsen, Arlid, Steinar Grynning, Dariush K. Arasteh, Bjørn Petter Jelle, and Howdy Goudey. "Key Elements of and Materials Performance Targets for Highly Insulating Window Frames." Energy and Buildings 43, no. 10

170

Recommended U-factors for swinging, overhead, and revolving doors  

SciTech Connect (OSTI)

Doors are often an overlooked component in the thermal integrity of the building envelope. Although swinging doors represent a small portion of the shell in residential buildings, their U-factor is usually many times higher than those of walls or ceilings. In some commercial buildings, loading (overhead) doors represent a significant area of high heat loss. Contrary to common perception, there is a wide range in the design, type, and therefore thermal performance of doors. The 1997 ASHRAE Handbook of Fundamentals will contain expanded tables of door U-factors to account for these product variations. This paper presents the results of detailed computer simulations of door U-factors. Recommended U-factors for glazed and unglazed residential and commercial swinging doors and commercial/industrial overhead and revolving doors are presented.

Carpenter, S.C. [Enermodal Engineering Ltd., Waterloo, Ontario (Canada); Hogan, J. [Seattle Dept. of Construction and Land Use, WA (United States)

1996-11-01T23:59:59.000Z

171

Publications  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

15 results: 15 results: BibTex RIS RTF XML Sort by: Author Title Type [ Year (Desc) ] Filters: Author is Arman Shehabi [Clear All Filters] 2013 Masanet, Eric R., Yuan Chang, Anand R. Gopal, Peter H. Larsen, William R. Morrow, Roger Sathre, Arman Shehabi, and Pei Zhai. "Life-Cycle Assessment of Electric Power Systems." Annual Review of Environment and Resources 38 (2013). Masanet, Eric R., Arman Shehabi, and Jonathan G. Koomey. "Characteristics of Low-Carbon Computing in the Cloud." Nature Climate Change 7 (2013): 627-630. DeForest, Nicholas, Arman Shehabi, Guillermo Garcia, J. Greenblatt, Eric R. Masanet, Eleanor S. Lee, Stephen E. Selkowitz, and Delia J. Milliron. "Regional performance targets for transparent near-infrared switching electrochromic window glazings." Building and Environment 61 (2013):

172

UNC Charlotte PORTAL Building Trade Package Base Bid  

E-Print Network [OSTI]

UNC Charlotte PORTAL Building Trade Package Base Bid Alternate #1 Office curtains/ double glazing Telecom cabling system Prefered Alternate #7 Pedestrian lighting fixture P and P Bond 02001 Site Work,000 SteelFab, Inc. 2,554,007 21,709 Page 1 of 4 #12;UNC Charlotte PORTAL Building Trade Package Base Bid

Kelly, Scott David

173

For natural ventilation to work, solar gains through the facade needed to be reduced by approximately 80% from  

E-Print Network [OSTI]

For natural ventilation to work, solar gains through the facade needed to be reduced area of the facade by 41%. The team undertook studies of options to reduce glazing area, while%. project overview and sustainability approach The new Molecular Engineering Building is centrally located

Hochberg, Michael

174

Passive-solar techniques for the mobile/modular housing industry  

SciTech Connect (OSTI)

Using a fairly typical mobile home design, it is shown that state-of-the-art mobile/modular housing and passive solar techniques can be used together. Computer simulations are used to analyze the concept. Size conditions at a mobile home park are considered. Glazing orientation, shading, and thermal storage are included in the analysis. (LEW)

Osborn, D.C.

1983-01-31T23:59:59.000Z

175

The Future of Material Science & Engineering A Polymer Industry Perspective  

E-Print Network [OSTI]

Polymers6 We're We've Been US Production of Synthetic Polymers (semi-log scale) DuPont, 1994 Hollywood Insulation Phenol-Formaldehyde Electrical Housings ~10y 1920s Antifreeze Polysulfide Rubber Rocket Fuel ~10y 1920s Rubber Substitute IR, SBR, NBR, etc. Tires & Rubber goods ~ 5y 1920s Coatings PMA, PMMA Glazing

Li, Mo

176

Experimental Investigation on Thermal Properties of a Steel-jacketed Steam Heating Pipeline with Vacuum Insulation  

E-Print Network [OSTI]

. Vacuum insulation panel [J]. Vacuum. v46,1995: 839?842 [4] R. E. COLLINS, T. M. SIMKO. Current status of the science and technology of vacuum glazing [J]. Solar Energy. V62, 1998(3):189?213 [5] Douglas M. Smith, Alok Maskar, Ulrich Boes. Aerogel...

Na, W.; Zou, P.

2006-01-01T23:59:59.000Z

177

Energy and Buildings 1264 (2000) 1-10 This work was supported by the Assistant Secretary for Energy Efficiency and Renewable Energy, Office of  

E-Print Network [OSTI]

-AC03-76SF00098. Net Energy Performance Measurements on Electrochromic Skylights J. H. Klems Windows February 1999 #12;1 Net Energy Performance Measurements on Electrochromic Skylights J. H. Klems Windows Abstract Tests of skylights made from prototype electrochromic glazings were performed in a room

178

CX-003799: Categorical Exclusion Determination  

Broader source: Energy.gov [DOE]

Electrochromic Glazing Technology: Improved Performance, Lower PriceCX(s) Applied: A9, B2.2, B5.1Date: 09/16/2010Location(s): Faribault, MinnesotaOffice(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory

179

Electrochromic devices  

DOE Patents [OSTI]

An electrochromic device is disclosed having a selective ion transport layer which separates an electrochemically active material from an electrolyte containing a redox active material. The devices are particularly useful as large area architectural and automotive glazings due to there reduced back reaction.

Allemand, Pierre M. (Tucson, AZ); Grimes, Randall F. (Ann Arbor, MI); Ingle, Andrew R. (Tucson, AZ); Cronin, John P. (Tucson, AZ); Kennedy, Steve R. (Tuscon, AZ); Agrawal, Anoop (Tucson, AZ); Boulton, Jonathan M. (Tucson, AZ)

2001-01-01T23:59:59.000Z

180

To be presented at the 2000 ACEEE Summer Study on Energy Efficiency in Buildings, August 20-25, 2000, Pacific Grove, CA and to be published in the Proceedings.  

E-Print Network [OSTI]

-76SF00098. Additional support was provided by the U.S. General Services Administration. Electrochromic, California 94720 April 2000 #12;1 Electrochromic Windows for Commercial Buildings: Monitored Results from National Laboratory ABSTRACT Electrochromic glazings promise to be the next major advance in energy

Note: This page contains sample records for the topic "glazings glazing type" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

TFI: RTEfuST, T{ ftd rDl-.I: 91.1.1.41493997  

E-Print Network [OSTI]

, windows, ventilators and partitions with extruded built up standard tubular sections/ appropriate Z for glazing I paneling, C.p. Oiass / stainless steel screws, all complete as per archjtectural drawings in aluminum doors, windows shutters and partition frames with C.p. brass / stainless steel screws etc

Bandyopadhyay, Antar

182

Building America Technology Solutions for New and Existing Homes: Ground Source Heat Pump Research, TaC Studios Residence, Atlanta, Georigia (Fact Sheet),  

Broader source: Energy.gov [DOE]

This case study describes the construction of a new test home in Atlanta, GA, that demonstrates current best practices for the mixed-humid climate, including a building envelope featuring advanced air sealing details and low density spray foam insulation, glazing that exceeds ENERGY STAR requirements, and a high performance heating and cooling system.

183

The Five-Phase Method for Simulating Complex Fenestration with Radiance  

E-Print Network [OSTI]

component to achieve better accuracy of the distribution of direct solar light in a room for complex glazing, the five-phase method handles the direct solar component separately from the sky and inter- reflected solar. Subtract the direct solar contribution (leaving the inter-reflected solar component) 3. Add direct solar

184

SUSTAINABLE DEVELOPMENT  

Science Journals Connector (OSTI)

SUSTAINABLE DEVELOPMENT ... Say the words "sustainable development" in most chemical industry offices and you are likely to observe a response of glazed eyes, furrowed brows, and inattentive expressions. ... "You are not going to find an extensive understanding and a thorough discourse about sustainable development taking place in a lot of companies." ...

PAIGE MARIE MORSE

1998-08-03T23:59:59.000Z

185

Proceedings of the ASHRAE/DOE/BTECC Conference, Thermal Performance of the Exterior Envelopes of Buildings VII, Clearwater Beach, Florida, December 7-11, 1998  

E-Print Network [OSTI]

Australia, Canada, Japan, Sweden, and the United States (Smith 1997; Mbise et al.; Bader and Truong 1994 over the subse- quent solar-optical characteristics of the glass. Angular selective glazings are designed to at- tenuate direct solar radiation, the main source of solar heat gains and glare, while

186

Melanin Types  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Melanin Types Melanin Types Name: Irfan Location: N/A Country: N/A Date: N/A Question: What are different types of melanins? And what are the functions of these types? Replies: Hi Irfan! Melanin is a dark compound or better a photoprotective pigment. Its major role in the skin is to absorb the ultraviolet (UV) light that comes from the sun so the skin is not damaged. Sun exposure usually produces a tan at the skin that represents an increase of melanin pigment in the skin. Melanin is important also in other areas of the body, as the eye and the brain., but it is not completely understood what the melanin pigment does in these areas. Melanin forms a special cell called melanocyte. This cell is found in the skin, in the hair follicle, and in the iris and retina of the eye.

187

Type: Renewal  

Broader source: Energy.gov (indexed) [DOE]

1 INCITE Awards 1 INCITE Awards Type: Renewal Title: -Ab Initio Dynamical Simulations for the Prediction of Bulk Properties‖ Principal Investigator: Theresa Windus, Iowa State University Co-Investigators: Brett Bode, Iowa State University Graham Fletcher, Argonne National Laboratory Mark Gordon, Iowa State University Monica Lamm, Iowa State University Michael Schmidt, Iowa State University Scientific Discipline: Chemistry: Physical INCITE Allocation: 10,000,000 processor hours Site: Argonne National Laboratory Machine (Allocation): IBM Blue Gene/P (10,000,000 processor hours) Research Summary: This project uses high-quality electronic structure theory, statistical mechanical methods, and

188

Bacteria Types  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Bacteria Types Bacteria Types Name: Evelyn Location: N/A Country: N/A Date: N/A Question: What is the significance of S. marcescens,M.luteus, S.epidermidis, and E. Coli? Which of these are gram-positive and gram-negative, and where can these be found? Also, what problems can they cause? When we culture these bacteria, we used four methods: plates, broth, slants, and pour plates. The media was made of TSB, TSA, NAP, and NAD. What is significant about these culturing methods? Replies: I could give you the answer to that question but it is more informative, and fun, to find out yourself. Start with the NCBI library online (http://www.ncbi.nlm.nih.gov/) and do a query with the species name, and 'virulence' if you want to know what they're doing to us. Have a look at the taxonomy devision to see how they are related. To find out if they're gram-pos or neg you should do a gram stain if you can. Otherwise you'll find that information in any bacteriology determination guide. Your question about the media is not specific enough so I can't answer it.

189

Facility Type!  

Office of Legacy Management (LM)

ITY: ITY: --&L~ ----------- srct-r~ -----------~------~------- if yee, date contacted ------------- cl Facility Type! i I 0 Theoretical Studies Cl Sample 84 Analysis ] Production 1 Diepasal/Storage 'YPE OF CONTRACT .--------------- 1 Prime J Subcontract&- 1 Purchase Order rl i '1 ! Other information (i.e., ---------~---~--~-------- :ontrait/Pirchaee Order # , I C -qXlJ- --~-------~~-------~~~~~~ I I ~~~---~~~~~~~T~~~ FONTRACTING PERIODi IWNERSHIP: ,I 1 AECIMED AECMED GOVT GOUT &NTtiAC+OR GUN-I OWNED ----- LEEE!? M!s LE!Ps2 -LdJG?- ---L .ANDS ILJILDINGS X2UIPilENT IRE OR RAW HA-I-L :INAL PRODUCT IASTE Z. RESIDUE I I kility l pt I ,-- 7- ,+- &!d,, ' IN&"E~:EW AT SITE -' ---------------- , . Control 0 AEC/tlED managed operations

190

Environmental Energy Technologies Division News  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

lectrochromic glazings promise to be the next major advance in energy-efficient window technology, helping to achieve the goal of transforming windows and skylights from an energy liability in buildings to an energy source for the nation's building stock. The glazing can be reversibly switched from clear to a transparent, colored state by applying a low volt- age, resulting in dynamically controllable thermal and optical properties ("smart windows"). Incorporating electrochromic glaz- ings could reduce peak electric loads by 20 to 30% in many com- mercial buildings and increase daylighting benefits throughout the U.S., as well as improve comfort and potentially enhance pro- ductivity in our homes and offices. These technologies will pro- vide maximum flexibility

191

Welcome to the Efficient Windows Collaborative  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Gas Fills Gas Fills Why use a gas fill? An improvement that can be made to the thermal performance of insulating glazing units is to reduce the conductance of the air space between the layers. Originally, the space was filled with air or flushed with dry nitrogen just prior to sealing. In a sealed-glass insulating unit, air currents between the two panes of glazing carry heat to the top of the unit along the inner pane and settle down the outer pane into cold pools at the bottom. Filling the space with a less conductive, more viscous, or slow-moving gas minimizes the convection currents within the space, reducing conduction through the gas and the overall heat transfer between the interior and exterior. Manufacturers generally use argon or krypton gas fills, with measurable

192

arch layout 11.21.98  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

DesignAssistance DesignAssistance IMAGE imgs/esl363.jpg This multi-year project provided a mechanism for inves- tigating advanced daylighting technologies, strategies, commercial prototypes, and demonstrations in collabo- ration with designers, manufacturers, owners, and re- searchers. Guidance was provided to industry to ensure that their market perspective was sufficiently broad--we found that many material or technology developers were solving problems from either a lighting or windows discipline and therefore had a limited approach. In general, we provided detailed analyses of product performance; e.g., holographic glazings, advanced skylights, angular-selec- tive glazings, etc. In one case, we worked with a skylight manufacturer to develop and evaluate new skylighting

193

Building Energy Software Tools Directory: SkyVision  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

SkyVision SkyVision SkyVision logo. Calculates the overall optical characteristics (transmittance, absorptance, reflectance and Solar Heat Gain Coefficient) of conventional and tubular skylights, performance indicators of skylight/room interfaces (well efficiency and coefficient of utilization), indoor daylight availability (daylight factor and illuminance) and daily/annual lighting energy savings. SkyVision accounts for the skylight shape and glazing, geometry of the indoor space (curb, well, room), skylight layouts, lighting and shading controls, site location and sky/ground conditions. SkyVision is unique--it uses the state-of-art glazing models and ray-tracing-based methods to compute the optical characteristics of skylights and indoor daylight availability. Screen Shots

194

Microsoft Word - 44167.Holographic.doc  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

167 167 DA-409 This work was supported by the Physical Optics Corporation through the U.S. Department of Energy under Contract No. DE-AC03-76SF00098. Design and Evaluation of Daylighting Applications of Holographic Glazings Final Report prepared for Physical Optics Corporation under Contract Agreement Number BG-95037 K. Papamichael, C. Ehrlich and G. Ward Building Technologies Program Environmental Energy Technologies Division University of California 1 Cyclotron Road Berkeley, CA 94720 December 1996 1 Design and Evaluation of Daylighting Applications of Holographic Glazings Final Report prepared for Physical Optics Corporation under Contract Agreement Number BG-95037 K. Papamichael, C. Ehrlich and G. Ward ,QWURGXFWLRQ This is the final report on a study performed by Lawrence Berkeley National Laboratory for Physical Optics

195

NON  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

NON-ENERGY BENEFITS OF ADVANCED WINDOWS NON-ENERGY BENEFITS OF ADVANCED WINDOWS Objectives: The project aims to discover and quantify the correlations between advanced windows and human comfort. This project builds on comfort research and applies it to fenestration products. When properly selected and operated, high-performance windows reduce energy use and greenhouse gas emissions. Individual designers and consumers, who are not easily persuaded that operational energy savings justify a capital cost premium, would probably respond well if improved comfort were recognized and quantified. High-performance glazing systems also provide improved protection for interior furnishings against fading damage caused by ultraviolet and short-wave visible light. This project builds on ongoing LBNL research on glazing properties to provide technical information to window specifiers regarding fading protection and advanced windows.

196

Building Energy Software Tools Directory: VISION4  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

VISION4 VISION4 VISION4 logo. Models the combined optical and thermal performance of glazing systems and provides information on the energy flow and temperatures which result from imposed environmental conditions. VISION4 is part of the FRAMEplus Toolkit for the thermal analysis of windows, walls and doors. VISION4 can also calculate the velocity field within window glazing cavities to better predict condensation resistance. VISION4 simulations (when combined with FRAME) are an equal alternative to testing to determine the U-value, condensation resistance and solar heat gain coefficient of windows and doors. VISION4 was used to produce the window information in the ASHRAE Handbook of Fundamentals and is referenced in several national window standards. Keywords fenestration, solar optical characteristics, thermal performance, windows,

197

Welcome to the Efficient Windows Collaborative  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Reduced Condensation Reduced Condensation Condensation High performance windows with new glazing technologies not only reduce energy costs but make homes more comfortable as well. High-performance windows create warmer interior glass surfaces, reducing frost and condensation. High-performance windows with warm edge technology and insulating frames have such a warm interior surface that condensation on any interior surfaces is significantly reduced under all conditions. Condensation occurs when the interior surface temperature of the glass drops below either the dewpoint or frost point. A window's frame and/or glazing system can contribute to the possibility of condensation if they are poor performers for a specific climate. High-performance windows create warmer interior glass surfaces, reducing condensation and frost.

198

Environmental Energy Technologies Division News  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

2000: 2000: Vol. 2, No. 1 Electrochromic Window Tests in U.S. Office Show Promise CLASP Helps Developing Nations Implement Energy Standards EETD Scientists Aid Research Efforts Leading to MTBE Ban Power Outage Study Team Examines Electricity Reliability Research Highlights Sources and Credits PDF of EETD News Electrochromic Window Tests in U.S. Office Show Promise Electrochromic glazings promise to be the next major advance in energy-efficient window technology, helping to achieve the goal of transforming windows and skylights from an energy liability in buildings to an energy source for the nation's building stock. The glazing can be reversibly switched from clear to a transparent, colored state by applying a low voltage, resulting in dynamically controllable thermal and optical

199

CX-001760: Categorical Exclusion Determination | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

60: Categorical Exclusion Determination 60: Categorical Exclusion Determination CX-001760: Categorical Exclusion Determination California-City-Montebello Energy Efficiency and Conservation Strategy Project CX(s) Applied: A9, A11, B2.5, B5.1 Date: 04/20/2010 Location(s): Montebello City, California Office(s): Energy Efficiency and Renewable Energy Energy Efficiency and Conservation Block Grant for: 1) Development of an energy efficiency and conservation strategy (completed); and 2) implementation of the City of Montebello Energy Project including: (a) retrofit of the Police Department Building (1991) ? addition of a ?cool roof? system, replacement of the cooling tower; (b) retrofit of the City Hall (1962) ? replacement of exterior window glazing with Low-E (low-emissivity) glazing; (c) implement the Green Campaign outreach

200

LBNL Windows & Daylighting Software -- WINDOW Documentation  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

2 2 (7.2.29 -- December 29 2013) Release Notes Updated: 12/29/13 If you find bugs, or have comments about this version, please do not hesitate to send an email to WINDOWHelp@lbl.gov to report your findings. Getting feedback from users is how we improve the program. WINDOW 7.2.29 (December 29, 2013) Program Changes Glazing System Shading System Details For shading system in a Glazing System Library construction, the emittances, conductance and TIR are not displayed, as they are only available after a calculation has been completed. Perforated Screens An input value for "Effective Openness Factor" has been added to the Shading Layer Library for perforated screens. At a future date, we will update the program to calculate this value automatically.

Note: This page contains sample records for the topic "glazings glazing type" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Advanced Windows Test Facility  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Exterior of Advanced Windows Test Facility Exterior of Advanced Windows Test Facility Advanced Windows Test Facility This multi-room laboratory's purpose is to test the performance and properties of advanced windows and window systems such as electrochromic windows, and automatically controlled shutters and blinds. The lab simulates real-world office spaces. Embedded instrumentation throughout the lab records solar gains and losses for specified time periods, weather conditions, energy use, and human comfort indicators. Electrochromic glazings promise to be a major advance in energy-efficient window technology, helping to achieve the goal of transforming windows and skylights from an energy liability in buildings to an energy source. The glazing can be reversibly switched from a clear to a transparent, colored

202

STATEMENT OF CONSIDERATIONS REQUEST BY SCHOTT DONNELLY, LLC, FOR AN ADVANCE WAIVER OF  

Broader source: Energy.gov (indexed) [DOE]

SCHOTT DONNELLY, LLC, FOR AN ADVANCE WAIVER OF SCHOTT DONNELLY, LLC, FOR AN ADVANCE WAIVER OF DOMESTIC AND FOREIGN INVENTION RIGHTS UNDER DOE COOPERATIVE AGREEMENT NO. DE-FC26-00NT40996 W(A)-00-030, CH-1043 The Petitioner, Schott Donnelly, LLC (Schott), was awarded this cooperative agreement for the performance of work entitled, "Development of Durable Large Area Electrochromic (EC) Glazing". The purpose of the cooperative agreement is to address the technical issues necessary to make electrochromic (EC) technology usable for large-area architectural windows and to demonstrate both the reliability and the lifetime of the glazing. The work under this project will investigate electrode materials, internal busbars, electrolytes, seals and cell assembly, and will demonstrate a prototype EC window that meets the needs of architectural applications.

203

Maryland Daylighting Report  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Day Lighting Quality Day Lighting Quality M a r y l a n d The most dramatic effect is the horizontal ribbon of square windows placed high on the north wall. This clerestory floods the primary spaces of the house with natural light by reflecting off of the curved white ceiling. The clearstory also turns the corner on both the east and west end walls adding dimension to the space with a hints of direct light depending on the season and time of day. The natural lighting scheme continues on the south façade with large glazed sliding doors that open into the bedroom. This sliding door unit also features glazed sidelights for a panoramic affect. The kitchen offers an accommodating counterpart to this design language in the form of two glider windows which run the length of the

204

Movable insulation. A guide to reducing heating and cooling losses through the windows in your home  

SciTech Connect (OSTI)

A typical house loses 25 to 30% of its heat through windows, and a house with large windows may lose as much as 50%. Numerous movable-insulation systems that will cut the heat loss through windows in half are described. Chapters are: The Energy-Responsive Dwelling, Past to Present; Window Heat Losses and Gains; Enhanced Glazing Systems; Choosing a Window-Insulation Design for Your Home; Pop-In Shutters; Thermal Curtains - Blankets that Fold; Thermal Shades - Blankets that Roll; Thermal Shutters and Folding Screens; Insulation Between Glazing and Interior Louvers; Exterior Hinged and Sliding Shutters; Sun-Shading Screens; Exterior Roll Shutters; Shutters for Skylights; Shutters for Clerestory Windows; Interior Greenhouse Insulation Systems; Exterior Insulation for Greenhouses; Movable Insulation to Assist Passive Space Heating; and Movable Insulation to Assist Solar Water Heaters. Appendices include the following: insulated shade and shutter construction; the economics of window insulation; movable insulation products, hardware, and components; further technical information; and design sources. (MCW)

Langdon, W.K.

1980-01-01T23:59:59.000Z

205

Sunspace basics  

SciTech Connect (OSTI)

Anyone who lives in a home with a sunspace will tell you that the sunspace is the most enjoyable room in the house. Many times the homeowner`s only regret is that the sunspace is not larger. Although aesthetics often drive the decision to add a sunspace or include one in a new home design, sunspaces can also provide supplemental space heating and a healthy environment for plants and people. In fact, a well-designed sunspace can provide up to 60% of a home`s winter heating requirements. This publication addresses basic elements of sunspace design; design considerations for supplemental space heating, growing plants, and use as a living space; design guidelines including siting, heat distribution, and glazing angles; and major sunspace components including glazing options, thermal mass, insulation, and climate controls. A list of sources for more information is also provided.

Not Available

1994-11-01T23:59:59.000Z

206

Building Energy Software Tools Directory: Window  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Window Window WINDOW screenshot. Calculates thermal performance of fenestration products; heat transfer analysis method consistent with the rating procedure developed by the National Fenestration Rating Council (NFRC). Screen Shots Keywords fenestration, thermal performance, solar optical characteristics, windows, glazing Validation/Testing N/A Expertise Required Some knowledge about windows. Users 2000+ in the U.S. and abroad. Audience Manufacturers, engineers, architects, researchers, sales personnel. Input Interactive program: user-provided data files for frames (from the THERM program) and glazing layers (from the Optics program) optional. Output Reports for the total window can be saved to disk or printed; files can be generated to be used as input to the DOE-2 and EnergyPlus programs;

207

Advanced Systems  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Advanced Systems: Advanced Systems: high Performance fenestration systems Research areas: Research activities to improve the performance of windows and other fenestration products must address window systems issues as well as Glazing Materials research. LBNL activities in the area of Advanced Systems include research at both the product level and the building envelope and building systems levels. Highly insulating windows - using non structural center layers Lower cost solutions to more insulating three layer glazing systems, with the potential to turn windows in U.S. heating dominated residential applications into net-energy gainers. Highly Insulating Window Frames In collaboration with the Norwegian University of Science and Technology, we are researching the potentials for highly insulating window frames. Our initial work examines European frames with reported U-factors under 0.15 Btu/hr-ft2-F. Future research aims to analyze these designs, verify these performance levels and ensure that procedures used to calculate frame performance are accurate.

208

Highly Insulating Window Technology  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Window Technology Window Technology Temperature differentials across a window, particularly with cold exterior environments in residential buildings, can lead to significant energy losses. Currently available low-emissivity coatings, gas-fills, and insulating frames provide significant energy savings over typical single or double glazed products. The EWC website provides information on how double glazed low-e gas-filled windows work as well as information on commercially available superwindows (three layer, multiple low-e coatings, high performance gas-fills). The next generation of highly insulating window systems will benefit from incremental improvements being made to current components (i.e. more insulating spacers and frame materials/designs, low-e coatings with improved performance properties). LBNL uses its experimental facilities and software tools to collaborate with window and glass industry representatives to better understand the impacts of new components on overall product performance.

209

Window Daylighting Demo  

Broader source: Energy.gov (indexed) [DOE]

Window Daylighting Demo: Window Daylighting Demo: Accelerated Deployment of Daylighting and Shading Systems Stephen Selkowitz Lawrence Berkeley National Laboratory seselkowitz@lbl.gov 510-486-5064 April 4, 2013 2 | Building Technologies Office eere.energy.gov Purpose & Objectives Problem Statement: * Façade has large energy impacts. Cooling and lighting average ~ 40% of energy use in commercial buildings and often >50% in peak electric demand. * Many glazing/shading/daylighting options exist, but selecting the "best" solution is

210

Window Daylighting Demo  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Window Daylighting Demo: Window Daylighting Demo: Accelerated Deployment of Daylighting and Shading Systems Stephen Selkowitz Lawrence Berkeley National Laboratory seselkowitz@lbl.gov 510-486-5064 April 4, 2013 2 | Building Technologies Office eere.energy.gov Purpose & Objectives Problem Statement: * Façade has large energy impacts. Cooling and lighting average ~ 40% of energy use in commercial buildings and often >50% in peak electric demand. * Many glazing/shading/daylighting options exist, but selecting the "best" solution is

211

Commercial Performance  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Commercial Performance Commercial Performance Objectives: To review the market potential for improvements in commercial building glazings, quantify the energy savings potentials, explore potential design solutions, and develop guidelines and tools for building designers so that systems are specified and used in an optimal manner. A special emphasis is placed on the daylighting performance of glazings in commercial buildings since lighting is the single largest energy end use and daylighting can improve both visual performance and the quality of the indoor space as well as saving energy. Technical Approach: This project has two major complementary elements. The first is the exploration and assessment of glazing performance in commercial buildings leading to development of design strategies that reduce unnecessary energy use. The final step is creating design guides and tools that make this design knowledge accessible to practitioners, typically carried out in partnership with others. Although the emphasis is energy impacts, e.g. annual energy use, the performance issues addressed in the guides and tools include all that impact the final glazing selection process, e.g. appearance, glare. The second element is an exploration of daylighting strategies for commercial buildings since lighting energy use is the major energy end use in most buildings. This work develops and evaluates new daylighting devices and designs, assesses performance in commercial buildings, and demonstrates system performance using test cells, test rooms and case study buildings. All energy-related aspects of the design solutions, as well as other critical performance issues, are addressed in this work. Results of this work are integrated into the guides and tools described above. Much of this work has been co-supported by utilities and has been carried on in conjunction with participants in an International Energy Agency Daylighting Task.

212

Impact of the Implementation of the 2000/2001 IECC on Residential Energy Use in Texas: Analysis of Residential Energy Savings  

E-Print Network [OSTI]

of envelope construction and HVAC equipment typically used in residences. The characteristics published by the National Association of Home Builders (NAHB 2004) for typical residential construction in East and West Texas for 1999, was used as the base... construction requirement of the 2000/2001 IECC. The pre-code NAHB characteristics are different for counties situated in east or west Texas for single-family construction, the main difference being the window-to-wall area ratio and the glazing...

Im, P.; Culp, C.; Ahmad, M.; Malhotra, M.; Haberl, J. S.; Yazdani, B.; Mukhopadhyay, J.

2006-01-01T23:59:59.000Z

213

Analysis of selected surface characteristics and latent heat storage for passive solar space heating  

SciTech Connect (OSTI)

Results are presented of an analysis of the value of various technical improvements in the solar collector and thermal storage subsystems of passive solar residential, agricultural, and industrial systems for two regions of the country. The evaluated improvements are: decreased emissivity and increased absorptivity of absorbing surfaces, decreased reflectivity, and decreased emissivity of glazing surface, and the substitution of sensible heat storage media with phase change materials. The value of each improvement is estimated by the additional energy savings resulting from the improvement.

Fthenakis, V.; Leigh, R.

1981-12-01T23:59:59.000Z

214

A statistical analysis of lead concentrations in human lung samples  

E-Print Network [OSTI]

has been recognized for many years, it is still widely used in commercial products such as insecticides, paint pigments, glazed pottery, storage batteries, and as an automobile gasoline additive. The symptoms of overt lead intoxication... is characteristic of the action of lead in physiological The citations on the following pages follow the style of Archives of Environmental Health. systems. The active site of this enzyme is actually lipoic acid, a coenzyme bound to the enzyme by a peptide...

Stringer, Claude Allen

2012-06-07T23:59:59.000Z

215

Proceedings of the 5th ISES Europe Solar Conf., Freiburg (2004), vol. 2 591 Solar utilisation in low-energy buildings  

E-Print Network [OSTI]

and Solar Energy Walter-Flex-Str. 3, D-57068 Siegen, Germany http://nesa1.uni-siegen.de, e-mail: heidt@physik.uni-siegen.de Abstract For low-energy buildings, passive solar gains can contribute significantly to the heat bal- ance losses, the energy flux through the glazing of windows is denoted as "passive solar gains". In low-energy

Gieseler, Udo D. J.

216

Artifacts recovered off the southwestern Turkish coast by Institute of Nautical Archaeology shipwreck surveys in 1973 and 1980  

E-Print Network [OSTI]

, but the entire collection extends from a twelfth-century B. C. skyphos to a fifteenth-century A. C. glazed Mamluk fragment, emphasizing the long history , of sea trade in the area. There are examples of Rhodian amphoras of nearly the complete range... her research); and Barbara L. Johnson. Margo Camp kindly facilitated the study of some finds from the Athenian Agora. Netia Piercy was a skilled and patient instructor in the art of artifact drawing. Donald A. Frey offered valuable suggestions...

Cowin, Margaret Mary

2012-06-07T23:59:59.000Z

217

Experiments on solar absorption using a greenhouse-effect gas in a thermal solar collector  

Science Journals Connector (OSTI)

This paper investigates an augmentation to the thermal solar absorption of solar collectors by introducing a greenhouse gas between the glazing and the absorber part of the solar collector. Experiments are designed and conducted to compare the effect of adding the gas on the efficiency of the collector without that addition. The maximum temperature rise of the absorber the time of heat retention before reaching room temperature and the energy conversion efficiency in heating up water for domestic use were all studied.

Abdul Hai M. B. Alami

2010-01-01T23:59:59.000Z

218

State-of-the-art Building Integrated Photovoltaics  

Science Journals Connector (OSTI)

Building integrated photovoltaic (BIPV) systems may represent a powerful and versatile tool for achieving the ever increasing demand for zero energy and zero emission buildings of the near future. In this respect \\{BIPVs\\} offer an aesthetical, economical and technical solution to integrate solar cells harvesting solar radiation to produce electricity within the climate envelopes of buildings. This work summarizes the current state-of-the-art of BIPVs, including both BIPV foil, tile, module and solar cell glazing products.

Bjørn Petter Jelle; Christer Breivik

2012-01-01T23:59:59.000Z

219

Solar space and water heating system at Stanford University Central Food Services Building. Final report  

SciTech Connect (OSTI)

This active hydronic domestic hot water and space heating system was 840 ft/sup 2/ of single-glazed, liquid, flat plate collectors and 1550 gal heat storage tanks. The following are discussed: energy conservation, design philosophy, operation, acceptance testing, performance data, collector selection, bidding, costs, economics, problems, and recommendations. An operation and maintenance manual and as-built drawings are included in appendices. (MHR)

Not Available

1980-05-01T23:59:59.000Z

220

Integrating Acclimated Kinetic Envelopes into Sustainable Building Design  

E-Print Network [OSTI]

-efficient Envelopes CGI CIE Glare Index DGI Daylight Glare Index DGP Daylight Glare Probability DGR Daylight Glare Rating DOAS dedicated outdoor air system DOE Department of Energy EC electrochromic coatings vii EMS Energy Management Simulation....11. Retractable roof of the High Court of Justice and Supreme Court (Foster+Partners, 2012) ................................................................ 33 Figure 2.12. Examples of electrochromic glazing by LBNL (Lee, DiBartolomeo, xiii...

Wang, Jialiang

2014-05-28T23:59:59.000Z

Note: This page contains sample records for the topic "glazings glazing type" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

A medium-rise 1970’s maternity hospital in the east of England: resilience and adaptation to climate change  

E-Print Network [OSTI]

.Thomas’s tower on the Thames and Oxford’s John Radcliffe Hospital. The essential framed, glazed treatment is consistent. Writing particularly of F.R.S.Yorke, YRM’S founder and an important publicist for modern architecture, Worsley wrote,” it was the rise... a huge barrier to achieving adaptation of the public non-domestic building stock, unfortunate given that the NHS Retained Estate would seem to be a particularly promising place to implement a public sector adaptation scheme...

Short, C. Alan; Giridharan, Renganathan; Lomas, Kevin J.

2014-01-01T23:59:59.000Z

222

Analytical determination of propeller performance degradation due to ice accretion  

E-Print Network [OSTI]

trajectory code. Unlike the Bragg code, the effects of compressibility, kinetic heating, and water runback are taken into account in this code, thus making it applicable to both rime and glaze ice conditions. Designed to be applied to helicopter config...- ' urations, the code employs a heat balance analysis to calculate the kinetic heating and runback effects. The authors have reported good agreement between predicted and experimentally obtained ice shapes, tem- perature distributions, and icing threshold...

Miller, Thomas Lloyd

1984-01-01T23:59:59.000Z

223

Solar heating and cooling system installed at RKL Controls Company, Lumberton, New Jersey. Final report  

SciTech Connect (OSTI)

Solar heating and cooling of a 40,000 square foot manufacturing building, sales offices and the solar computer control center/display room are described. Information on system description, test data, major problems and resolutions, performance, operation and maintenance manual, manufacturer's literature and as-built drawings are provided also. The solar system is composed of 6000 square feet of Sunworks double glazed flat plate collectors, external above ground storage subsystem, controls, ARKLA absorption chiller, heat recovery and a cooling tower.

None

1981-03-01T23:59:59.000Z

224

Types of Commissioning  

Broader source: Energy.gov [DOE]

Several commissioning types exist to address the specific needs of equipment and systems across both new and existing buildings. The following commissioning types provide a good overview.

225

Granuloma annulare, patch type  

E-Print Network [OSTI]

Granuloma annulare, patch type Frank C Victor MD, Stephaniewas consistent with patch-type granuloma annulare. He wascm, annular, erythematous patch without scale was present on

Victor, Frank C; Mengden, Stephanie

2008-01-01T23:59:59.000Z

226

LBNL Window & Daylighting Software -- CGDB  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Overview Overview The LBNL WINDOW and THERM simulation programs (versions 6 and higher) have the capability to model "complex glazing systems" which include woven shades, venetian blinds, fritted glass, and other systems that can be characterized by BSDF (Bi-Directional Scattering Distribution Function) files. To support the modeling of these complex systems, it is necessary to characterize the optical and thermal properties of the materials and the systems being modeled. The Complex Glazing Database (CGDB) contains the data needed to model various manufacturers' systems. LBNL is still developing the measuring and submittal procedures so that manufacturers can submit measured data for review and inclusion in future CGDB releases. When these procedures are complete, it is hoped that manufacturers will measure and submit data for their products to LBNL for inclusion in the CGDB. In a similar process to the IGDB (International Glazing Database) it is envisioned that the CGDB will be released multiple times per year as new materials and systems are measured and added to the database.

227

Advanced Systems  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Glazing Systems Glazing Systems Using Non-Structural Center Glazing Layers Windows in the United States use aproximately 2 quads a year in heating energy, approximately one third of all building space heating energy used and the largest single end use attributed to windows. Even if all existing windows were replaced with todayÂ’s ENERGY STAR low-e products (U values < 0.35 Btu/hr-ft2-F), windows related heating would still be over 1 Quad. Because heating loads are strongly tied to conductive losses, technologies which lead to lower window U-factors are the key to reducing heating energy. A 0.1 Btu/hr-ft2-F window is targeted as a product, which will meet the requirements of zero-energy homes. Dynamic control of solar gains will further reduce heating needs by allowing winter solar heat gains to be effectively utilized while limiting cooling season gains. Significant cooling load savings can also be expected from lower U-factor windows in certain climates and from dynamic windows in all climates.

228

LBNL Windows & Daylighting Software -- WINDOW Documentation  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Release Notes Release Notes Updated: 11/07/11 History of COMFEN 3.1 Releases New Features Glazed Wall Assembly In addition to modeling individual windows, COMFEN now has the capability of modeling "Glazed Wall Assemblies" which allow you to specify the number of horizontal and vertical framing members, as well as their spacing, and the program automatically generates the facade. Click here for more details. Material Library COMFEN now has a Material Library, which can be used in the Wall Construction and Spandrel Libraries. See the User Manual for more details. Wall Library COMFEN now has a Wall Library which can be used to build up layers from the Material Library to define a wall. See the User Manual for more details. Spandrel Library COMFEN now has a Spandrel Library which can be used to build up layers from the Material Library to define a spandrel, including glass and glazing systems as the outer-most layers. See the User Manual for more details.

229

Preliminary control technology assessment of Mansfield Sanitary, Incorporated, Errysville, Ohio  

SciTech Connect (OSTI)

A visit was made to the Mansfield Sanitary Facility, Perrysville, Ohio to evaluate control methods in place at the site to protect workers from on the job hazards. This facility used a variety of clays, parting compounds, and color additives to blend, form, dry, fire, package, and ship as ceramic plumbing products. Clays used include feldspar, pearless china clay, and nepheline syenite from various suppliers. Other raw materials included Millwood sand, gum, cultozine-fuchsine, industrial plaster, stain, glaze, magnesium aluminum silicate, talc, feldspar, and zirconium silicate. The company made good use of several ventilation techniques at loading stations, transfer points, automatic assembly lines, and the glazing stations. Parting dust became airborne when applied to the molds and while the mold was being dried. Exhaust-ventilation booths used for the spraying of glaze appeared to be very effective. Several areas in which dust-control methods appeared inadequate were noted. The author recommends that some of the work practices and personal protective equipment used as controls should be examined in an in-depth evaluation and documentation.

Cooper, T.

1982-03-01T23:59:59.000Z

230

Types of Costs Types of Cost Estimates  

E-Print Network [OSTI]

first cost or capital investment): ­ Expenditures made to acquire or develop capital assets ­ Three main· Types of Costs · Types of Cost Estimates · Methods to estimate capital costs MIN E 408: Mining-site management or corporate level expenditure · Direct vs. Indirect Costs ­ Direct (or variable) costs apply

Boisvert, Jeff

231

Types of Costs Types of Cost Estimates  

E-Print Network [OSTI]

-Revenue Relationships · Capital Costs (or first cost or capital investment): ­ Expenditures made to acquire or develop05-1 · Types of Costs · Types of Cost Estimates · Methods to estimate capital costs MIN E 408 ­ off-site management or corporate level expenditure · Direct vs. Indirect Costs ­ Direct (or variable

Boisvert, Jeff

232

Types of Hydropower Plants  

Broader source: Energy.gov [DOE]

There are three types of hydropower facilities: impoundment, diversion, and pumped storage. Some hydropower plants use dams and some do not. The images below show both types of hydropower plants.

233

Typing aspects for MATLAB  

Science Journals Connector (OSTI)

The MATLAB programming language is heavily used in many scientific and engineering domains. Part of the appeal of the language is that one can quickly prototype numerical algorithms without requiring any static type declarations. However, this lack of ... Keywords: MATLAB, dynamic type assertions, typing aspects

Laurie Hendren

2011-03-01T23:59:59.000Z

234

Energy Performance Analysis of Electrochromic Windows in New York  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Energy Performance Analysis of Electrochromic Windows in New York Energy Performance Analysis of Electrochromic Windows in New York Commercial Office Buildings Title Energy Performance Analysis of Electrochromic Windows in New York Commercial Office Buildings Publication Type Report LBNL Report Number LBNL-50096 Year of Publication 2002 Authors Lee, Eleanor S., L. Zhou, Mehry Yazdanian, Vorapat Inkarojrit, Jonathan L. Slack, Michael D. Rubin, and Stephen E. Selkowitz Call Number LBNL-50096 Abstract A DOE-2.1E energy simulation analysis of a switchable electrochromic (EC) glazing with daylighting controls has been conducted for prototypical office buildings in New York (NY). The modeling included four types of office buildings: old and New vintages and large (10,405 m2, 112,000 ft2) and small (502m2, 5400 ft2) buildings. Five commercially available, base case windows with and without interior shades were modeled. Window area varied from 0 to 60% of the exterior floor-to-floor wall area. The electric lighting had either no controls or continuous daylighting controls. The prototypes were modeled in New York City or Buffalo.

235

Buildings Energy Data Book: 5.2 Windows  

Buildings Energy Data Book [EERE]

7 7 Nonresidential Window Stock and Sales, by Glass Type Existing U.S. Stock Vision Area of New Windows (Million Square Feet) Type (% of buildings) 1995 2001 2003 2005 2007 2009 Single Pane 56 57 48 56 60 48 Insulating Glass (1) 294 415 373 407 476 389 Total 350 472 421 463 536 437 Clear 36% 49% 43% 44% 38% 33% Tinted 40% 24% 17% 15% 11% 10% Reflective 7% 8% 6% 4% 3% 3% Low-e 17% 19% 34% 37% 48% 54% Total 100% 100% 100% 100% 100% 100% 100% Note(s): Source(s): (2) 1) Includes double- and triple-pane sealed units and stock glazing with storm windows. 2) Included as part of the Tinted category. EIA, 2003 Commercial Buildings Energy Consumption and Expenditures: Consumption and Expenditures Tables, June 2006, Table B1 for stock data; AAMA/NWWDA, 1996 Study of the U.S. Market for Windows and Doors, Table 27, p. 60 for 1995 usage values; 2003 AAMA/WDMA Study of the U.S. Market

236

Variable g value of transparent façade collectors  

Science Journals Connector (OSTI)

Transparent solar thermal collectors (TSTC) represent a new development. An adequate model is needed to predict their performance. This paper presents a collector model with an advanced calculation of the transmission of diffuse radiation and a connection to the building which allows analysis of the collector gains and of the g value, also called “solar factor”, “solar heat gain coefficient (SHGC)” or “total solar energy transmittance”. The model is implemented as a TRNSYS Type and a coupled simulation between a collector and a room is presented for different façade constructions. Façade areas with glazing and venetian blinds are simulated with a second new TRNSYS Type which introduces high modelling accuracy for façades with solar control systems. An HVAC system is presented together with a first estimate of possible reductions of primary energy. It indicates primary energy savings of about 30% by replacing opaque walls with transparent collectors. The g values prove to depend not only on the irradiation, but also on the operation of the solar collectors and vary e.g. between 0.04 and 0.21. Detailed modelling of active façades like TSTC is therefore essential for accurate predictions of the collector gain, the heating and cooling loads and the thermal comfort.

Christoph Maurer; Tilmann E. Kuhn

2012-01-01T23:59:59.000Z

237

Chapter 3 - Solar Energy Collectors  

Science Journals Connector (OSTI)

Abstract Chapter 3 gives a review of solar collectors which are the main components of any solar system. The review includes various types of stationary and sun-tracking collectors. The stationary collectors include flat-plate collectors (FPCs), under which glazing materials, collector absorbing plates, and collector construction are presented; compound parabolic collectors (CPCs) and evacuated tube collectors (ETCs). The sun-tracking concentrating collectors section cover parabolic trough collectors (PTCs), which include parabola construction and tracking mechanisms; Fresnel collectors; parabolic dish reflector and heliostat field collector. This review is followed by the optical and thermal analysis of both \\{FPCs\\} and concentrating collectors. The analysis for \\{FPCs\\} includes both water and air type systems whereas the analysis for concentrating collectors includes the CPC and the PTC. The analysis of flat-plate water collectors starts with an analysis of the absorbed solar radiation followed by collector energy losses, temperature distribution between the tubes, collector efficiency factor, heat removal factor, flow factor, and thermal efficiency. This is followed by practical considerations concerning FPCs. Subsequently, concentrating collectors are considered which include optical and thermal analysis of a CPC and optical and thermal analysis of PTCs. The chapter includes also the second law analysis of solar thermal systems and includes minimum entropy generation rate, optimum collector temperature, and non-isothermal collector analysis.

Soteris A. Kalogirou

2014-01-01T23:59:59.000Z

238

Rock types, pore types, and hydrocarbon exploration  

SciTech Connect (OSTI)

A proposed exploration-oriented method of classifying porosity in sedimentary rocks is based on microscopic examination cores or cuttings. Factors include geometry, size, abundance, and connectivity of the pores. The porosity classification is predictive of key petrophysical characteristics: porosity-permeability relationships, capillary pressures, and (less certainly) relative permeabilities. For instance, intercrystalline macroporosity typically is associated with high permeability for a given porosity, low capillarity, and favorable relative permeabilities. This is found to be true whether this porosity type occurs in a sucrosic dolomite or in a sandstone with pervasive quartz overgrowths. This predictive method was applied in three Rocky Mountain oil plays. Subtle pore throat traps could be recognized in the J sandstone (Cretaceous) in the Denver basin of Colorado by means of porosity permeability plotting. Variations in hydrocarbon productivity from a Teapot Formation (Cretaceous) field in the Powder River basin of Wyoming were related to porosity types and microfacies; the relationships were applied to exploration. Rock and porosity typing in the Red River Formation (Ordovician) reconciled apparent inconsistencies between drill-stem test, log, and mud-log data from a Williston basin wildcat. The well was reevaluated and completed successfully, resulting in a new field discovery. In each of these three examples, petrophysics was fundamental for proper evaluation of wildcat wells and exploration plays.

Coalson, E.B.; Hartmann, D.J.; Thomas, J.B.

1985-05-01T23:59:59.000Z

239

Document Type: Subject Terms  

E-Print Network [OSTI]

Title: Authors: Source: Document Type: Subject Terms: Abstract: Full Text Word Count: ISSN the department back on track. The action is to call a meeting of the team leaders and stress the urgency o

Major, Arkady

240

Type I Tanks  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

I Tanks I Tanks * 12 Type I tanks were built between 1951-53 * 750,000 gallon capacity; 75 feet in diameter by 24 ½ feet high * Partial secondary containment with leak detection * Contain approximately 10 percent of the waste volume * 7 Type I tanks have leaked waste into the tank annulus; the amount of waste stored in these tanks is kept below the known leak sites that have appeared over the decades of

Note: This page contains sample records for the topic "glazings glazing type" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Light-scattering properties of a woven shade-screen material used for  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Light-scattering properties of a woven shade-screen material used for Light-scattering properties of a woven shade-screen material used for daylighting and solar heat-gain control Title Light-scattering properties of a woven shade-screen material used for daylighting and solar heat-gain control Publication Type Conference Paper LBNL Report Number LBNL-828E Year of Publication 2008 Authors Jonsson, Jacob C., Eleanor S. Lee, and Michael D. Rubin Conference Name SPIE Optics+Photonics Date Published 08/2008 Conference Location San Diego, CA Call Number LBNL-828E Abstract Shade-screens are widely used in commercial buildings as a way to limit the amount of direct sunlight that can disturb people in the building. The shade screens also reduce the solar heat-gain through glazing the system. Modern energy and daylighting analysis software such as EnergyPlus and Radiance require complete scattering properties of the scattering materials in the system.

242

A Comparison Between Calculated and Measured SHGC For Complex Fenestration  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Comparison Between Calculated and Measured SHGC For Complex Fenestration Comparison Between Calculated and Measured SHGC For Complex Fenestration Systems Title A Comparison Between Calculated and Measured SHGC For Complex Fenestration Systems Publication Type Conference Paper LBNL Report Number LBL-37037 Year of Publication 1995 Authors Klems, Joseph H., Jeffrey L. Warner, and Guy O. Kelley Conference Name ASHRAE Transactions Volume 102, Part 1 Date Published 02/1996 Conference Location Atlanta, GA Call Number LBL-37037 Abstract Calorimetric measurements of the dynamic net heat flow through a complex fenestration system consisting of a buff venetian blind inside clear double glazing are used to derive the direction-dependent beam SHGC of the fenestration. These measurements are compared with calculations according to a proposed general method for deriving complex fenestration system SHGCs from bidirectional layer optical properties and generic calorimetric properties. Previously published optical measurements of the same venetian blind and generic inward-flowing fraction measurements are used in the calculation. The authors find satisfactory agreement between the SHGC measurements and the calculation.

243

Advanced Optical Materials for Daylighting in Office Buildings  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Advanced Optical Materials for Daylighting in Office Buildings Advanced Optical Materials for Daylighting in Office Buildings Title Advanced Optical Materials for Daylighting in Office Buildings Publication Type Conference Paper LBNL Report Number LBL-20080 Year of Publication 1985 Authors Johnson, Russell, Deborah J. Connell, Stephen E. Selkowitz, and Dariush K. Arasteh Conference Name 10th Passive Solar Conference Date Published 10/1985 Conference Location Raleigh, NC Call Number LBL-20080 Abstract The use of daylighting to supplant electric light in office buildings offers substantial energy savings and peak electrical demand reductions. The benefits from electric lighting reductions can, however, be easily offset by increased cooling loads if solar gains are not controlled.sThe use of advanced glazing materials having optical switching propertiesscan facilitate solar control and, with proper design, maximize energy and cost benefits. The potential net annual performance of these materials, based on simulation studies using DOE-2.1C, are discussed insthis paper. Actively and passively controlled response functions aresanalyzed for the cooling-load-dominated climate of Lake Charles. The effects of advanced materials on net annual energy consumption, peak electrical demand, and chiller size are compared with those of conventional materials. The results demonstrate the importance of operable solar control to achieve energy-effective daylighting design. Advanced optical materials that provide the necessary level of control are shown to minimize peak electrical demand and electricity consumption.

244

Experimental and Numerical Examination of the Thermal Transmittance of High  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Experimental and Numerical Examination of the Thermal Transmittance of High Experimental and Numerical Examination of the Thermal Transmittance of High Performance Window Frames Title Experimental and Numerical Examination of the Thermal Transmittance of High Performance Window Frames Publication Type Conference Paper LBNL Report Number LBNL-3886E Year of Publication 2010 Authors Gustavsen, Arlid, Goce Talev, Dariush K. Arasteh, Howdy Goudey, Christian Kohler, Sivert Uvsløkk, and Bjørn Petter Jelle Conference Name Thermal Performance of the Exterior Envelopes of Whole Buildings XI International Conference Date Published Dec 5-9, 2010 Conference Location Clearwater Beach, FL Call Number LBNL-3886E Abstract While window frames typically represent 20-30% of the overall window area, their impact on the total window heat transfer rates may be much larger. This effect is even greater in low-conductance (highly insulating) windows which incorporate very low conductance glazings. Developing low-conductance window frames requires accurate simulation tools for product research and development.

245

A Study of the Filling of Wall Cavities With Retrofit Wall Insulation.  

SciTech Connect (OSTI)

The Pacific Northwest Power Marketing Agency, the Bonneville Power Administration (BPA), conducted a retrofit wall insulation study to determine the effects of various obstructions within a wall cavity, where voids are likely to occur, and preferred filling methods and material types. The insulation test structure was composed of four 8-foot /times/ 12-foot walls, and was built using standard construction practices. The inside walls were clear plastic glazing, instead of gypsum board, to enable viewing of the filling process. A total of eight tests were performed: four cellulose, two rockwool, and two fiberglass. One- and two-hole filling methods were observed. All insulations were found to perform in the same basic manner with all experiencing the same problem areas. Common installer problems were empty spaces at the tops of cavities and missed cavities, especially above headers. Wiring and lath and plaster consistently caused reduced insulation densities in cavities. The problems with wiring, lath and plaster, and other features in the wall cavities were avoided with the use of a filler tube. The filler tube also provided a more consistent fill along the length of the entire cavity. 2 figs., 3 tabs.

Flores, Joseph A.; Grill, Alan R.

1988-08-01T23:59:59.000Z

246

Solar passive ceiling system. Final report. [Passive solar heating system with venetian blind reflectors and latent heat storage in ceiling  

SciTech Connect (OSTI)

The construction of a 1200 square foot building, with full basement, built to be used as a branch library in a rural area is described. The primary heating source is a passive solar system consisting of a south facing window system. The system consists of: a set of windows located in the south facing wall only, composed of double glazed units; a set of reflectors mounted in each window which reflects sunlight up to the ceiling (the reflectors are similar to venetian blinds); a storage area in the ceiling which absorbs the heat from the reflected sunlight and stores it in foil salt pouches laid in the ceiling; and an automated curtain which automatically covers and uncovers the south facing window system. The system is totally passive and uses no blowers, pumps or other active types of heat distribution equipment. The building contains a basement which is normally not heated, and the north facing wall is bermed four feet high around the north side.

Schneider, A.R.

1980-01-01T23:59:59.000Z

247

Measurement of the solar heat gain coefficient and U value of windows with insect screens  

SciTech Connect (OSTI)

Energy ratings are currently being used in a number of countries to assist in the selection of windows and doors based on energy performance. Developed for simple comparison purposes, these rating numbers do not take into account window removable attachments such as insect screens that are, nevertheless, widely used. Research was carried out to assess the effect of insect screens on the heat gains and losses of windows. The work reported in this paper deals with the effect of one screen type on the performance of a base-case, double-glazed window. Using an indoor solar simulator facility, measurements of the window solar heat gain coefficient (SHGC) and U value were made for different screen attachment configurations and climatic conditions. Results with the sample window tested indicate that insect screens placed on the outdoor side can reduce its SHGC by 46% with only a 7% reduction in its U value (0.19 W/m{sup 2}{center_dot}C), and that insect screens placed on the indoor side can reduce its SHGC by 15% while reducing its U value by 14% (0.38 W/m{sup 2}{center_dot}C).

Brunger, A.; Dubrous, F.M.; Harrison, S.

1999-07-01T23:59:59.000Z

248

Developing Low-Conductance Window Frames: Capabilities and Limitations of  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Developing Low-Conductance Window Frames: Capabilities and Limitations of Developing Low-Conductance Window Frames: Capabilities and Limitations of Current Window Heat Transfer Design Tools Title Developing Low-Conductance Window Frames: Capabilities and Limitations of Current Window Heat Transfer Design Tools Publication Type Journal Article LBNL Report Number LBNL-1022E Year of Publication 2008 Authors Gustavsen, Arlid, Dariush K. Arasteh, Bjørn Petter Jelle, Dragan C. Curcija, and Christian Kohler Journal Journal of Building Physics Volume 32 Pagination 131-153 Call Number LBNL-1022E Abstract While window frames typically represent 20-30% of the overall window area, their impact on the total window heat transfer rates may be much larger. This effect is even greater in low-conductance (highly insulating) windows which incorporate very low conductance glazings. Developing low-conductance window frames requires accurate simulation tools for product research and development. Based on a literature review and an evaluation of current methods of modeling heat transfer through window frames, we conclude that current procedures specified in ISO standards are not sufficiently adequate for accurately evaluating heat transfer through the low-conductance frames.

249

A First-Generation Prototype Dynamic Residential Window  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

A First-Generation Prototype Dynamic Residential Window A First-Generation Prototype Dynamic Residential Window Title A First-Generation Prototype Dynamic Residential Window Publication Type Report LBNL Report Number LBNL-56075 Year of Publication 2004 Authors Kohler, Christian, Howdy Goudey, and Dariush K. Arasteh Call Number LBNL-56075 Abstract We present the concept for a smart highly efficient dynamic window that maximizes solar heat gain during the heating season and minimizes solar heat gain during the cooling season in residential buildings. We describe a prototype dynamic window that relies on an internal shade, which deploys automatically in response to solar radiation and temperature. This prototype was built at Lawrence Berkeley National Laboratory from commercially available off-the-shelf components. It is a stand-alone, standard-size product, so it can be easily installed in place of standard window products. Our design shows promise for near-term commercialization. Improving thermal performance of this prototype by incorporating commercially available highly efficient glazing technologies could result in the first window that could be suitable for use in zero-energy homes. The units predictable deployment of shading could help capture energy savings that are not possible with manual shading. Installation of dynamically shaded windows in the field will allow researchers to better quantify the energy effects of shades, which could lead to increased efficiency in the sizing of heating, ventilation, and air conditioning equipment for residences.

250

Jansen type of spondylometaphyseal dysplasia  

Science Journals Connector (OSTI)

Metaphyseal dysplasia, type Jansen (JMD), is a rare skeletal dysplasia ... we propose the term spondylometaphyseal dysplasia, type Jansen.

J. B. Campbell; Kazimierz Kozlowski; Tadeusz Lejman; J. Sulko

2000-04-01T23:59:59.000Z

251

TYPE OF OPERATION  

Office of Legacy Management (LM)

3!NEEi_S1 3!NEEi_S1 past: -~~~-~~~~~-~~~---------- current: ------------_------------- Owner contacted q yes g no; if ye=, date contacted TYPE OF OPERATION --~~__--~-~~~---- 5 Research & Development 5 Facility Type 0 Production scale testing c1 Pilot Scale 0 Bench Scale Process z Theareti cal Studi es Sample Sr Analysis 0 Production D Disposal/Storage TYPE OF CONTRACT ---------------- 0 Manufacturing 0 University 0 Research Clrganization B Government Cpanaored Faci 1 i ty 0 Other ~~---~~---_--~~-----_ a Prime 13 Subcontract& D PurcSase Order 0 Other information (i.e., cost + fixed fee, unit price, time & material, +z) ----_----------------------- Cantract/Purchaae Order #-d-z=&-/) -2_7~-------------Is_------------ PERIOD: CONTRACTING I%~(?) - 1465

252

Types of quantum information  

E-Print Network [OSTI]

Quantum, in contrast to classical, information theory, allows for different incompatible types (or species) of information which cannot be combined with each other. Distinguishing these incompatible types is useful in understanding the role of the two classical bits in teleportation (or one bit in one-bit teleportation), for discussing decoherence in information-theoretic terms, and for giving a proper definition, in quantum terms, of ``classical information.'' Various examples (some updating earlier work) are given of theorems which relate different incompatible kinds of information, and thus have no counterparts in classical information theory.

Robert B. Griffiths

2007-07-25T23:59:59.000Z

253

Types of quantum information  

Science Journals Connector (OSTI)

Quantum, in contrast to classical, information theory, allows for different incompatible types (or species) of information which cannot be combined with each other. Distinguishing these incompatible types is useful in understanding the role of the two classical bits in teleportation (or one bit in one-bit teleportation), for discussing decoherence in information-theoretic terms, and for giving a proper definition, in quantum terms, of “classical information.” Various examples (some updating earlier work) are given of theorems which relate different incompatible kinds of information, and thus have no counterparts in classical information theory.

Robert B. Griffiths

2007-12-21T23:59:59.000Z

254

Fusion systems of -type  

Science Journals Connector (OSTI)

We prove results on 2-fusion systems related to the 2-fusion systems of groups of Lie type over the field of order 2 and certain sporadic groups. The results are used in a later paper to determine the N-systems: the 2-fusion systems of N-groups.

Michael Aschbacher

2013-01-01T23:59:59.000Z

255

Pruning Simply Typed -terms  

Science Journals Connector (OSTI)

......looking for the smallest pout > r /) 6out > //_ gout > B,, c/) pout > p such that: pout...and pout h ^out . Bout b y minimaiKy o f tout gout pout w e deduce; 6out gout gout^ pout < pout Pruning Simply Typed A-terms......

STEFANO BERARDI

1996-10-01T23:59:59.000Z

256

TYPE OF OPERATION  

Office of Legacy Management (LM)

Owner c:ontacted Owner c:ontacted TYPE OF OPERATION ----------------_ jJ Research & Development 0 Production scale testing Cl Pilot Scale 0 Bench Scale Process i Theoretical Studies Sample & Analysis B Production 0 Disposal/Storage $r Prime 0 Subcontract& 0 Purchase Order 0 Facility Type 0 Manufacturing 0 University 0 Research Organization a Other information (i.e., cost + fixed fern, unit price,' time & mate ~r~~-r~~tf~-_~_-_~-~f-~~J~ d ial, etc)_kl/Jlfits ---- -7---- -- Contract/Purchase Order # w?@7-e?-b $ 6, i;,_~~~~~----------------- - ----- C_O!!IF!KXYE-PEELEg: -lTlL-/L?~J --------------------------- OWNERSHXP: AEWHEC AEC/HED' GOVT GB' JT SiXiRACTOR CONiRkCiGR WEE LEAs_EE a!!!%? IEEE!? --------_ ..---LEASED ._ OWNED LANDS BUILDINGS EQUIPMENT

257

TYPE OF OPERATION  

Office of Legacy Management (LM)

OWNEF? (S) OWNEF? (S) Current: ____ LcrcJksLG! _________ Owner contacted n yes WI-IO; if yes, date contacted-- TYPE OF OPERATION ----_-------_---- m Research & Development Cl Pilot Scale Cl Disposal/Storaqe TYPE OF CDNTRACT ---__------__--- q Prime 0 Subcnntractor Cl Purchase Order 0 Other infcrmation (i.e., cnst + fixed fee, unit price, time 84 materi+, e.tc) v-7Y07-&G-W ---------------------------- Contract/Pur&aae Order # 0 -?+7- FJc-(CL --___--------~----_______________ CONTRACTING PEXIOD: fl& ,&I;'"'-?;': (&e-?)_-- ' ------------------ OWNERSHIP: AEC/MED GEC/MED SOVT GOVT CONTRACTOR CCNTRACTOR OWNE3 LEASE3 OWNE3 LEASED OWNE3 ----- ------ ----- ------ -__------- LE.352 LANDS u u q BUILDINGS EQUIPMENT 0 FINAL PRODUCT WASTE G RESIDUE a

258

TYPE OF OPERATION  

Office of Legacy Management (LM)

~~__--------_____ ~~__--------_____ q Research & Development q Production scale testing Cl Pilat Scale 0 Bench Scale Process 0 Theoretical Studies a Sample & Analysis c] Production 0 Disposal/Storage TYPE OF CONTRACT ~~__-------_--__ 0 Prime 0 Subcontractor 0 Purchase Order a d//F- a Faci 1 i ty Type a tlanuf acturi ng 0 University q Research Organization 0 Government Sponsored Facility a other --------------__----- Other information (i.e., cost + fixed fee, unit price, time & material, qtr) ------- -1------------------_L______ Contract/Purchase Order # CONTRACTING PE?IOD- 42 --------------L---- --------- ----------------_---______ OWNERSHIP: AEC/MED AEC/tlED OWNED ----- LE_A_sEE GOUT GO' JT CONTRACTOR E!!!!E!z LEASED - ----_ ---_OW_E!L LANDS BUILDINGS

259

TYPE OF OPERATION  

Office of Legacy Management (LM)

_---------_-- _---------_-- Research & Development 0 Production scale testing Cl Pilat Scale 0 Bench Scale Process 0 Theoretical Studies Cl Sample SC Analysis !J Production 0 Dis.posal/Storage 0 Prime ." 0 Subcontract& 0 Purchase Order 0 Facility Type 0 Manufacturing 0 University 0 Research Org&ization 0 Government Sponsored Facility Cl Other ---------_---__-____- Other information (i.e., cost + fixed fee, unit price, time & material, gtr) Coni+act/Purchase Order # ---------------------_--_________ C!2kEE~_CIL_N_G-EE~LE~: /5J--L-,r4 53 -------------------------------------- OWNERSHIP: AEC/MED AEC/MED GOVT GOVT CONTRACTOR CONTRACTOR !w!!E? ___--- " EWNED LEASED L_EesEE OWNED LEASED ---------_ --_------ LANDS BUILDINGS ' EQUIPMENT

260

Rate types for stream programs  

Science Journals Connector (OSTI)

We introduce RATE TYPES, a novel type system to reason about and optimize data-intensive programs. Built around stream languages, RATE TYPES performs static quantitative reasoning about stream rates -- the frequency of data items in a stream being ... Keywords: data processing rates, data throughput, performance reasoning, stream programming, type systems

Thomas W. Bartenstein, Yu David Liu

2014-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "glazings glazing type" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

TYPE OF OPERATION  

Office of Legacy Management (LM)

----------------- ----------------- 0 Research & Development .a Production scale testing 0 Pilat Scale 0 Bench Scale Process 0 Thearetical Studies Cl Sample 84 Analysis 0 Production *i DiaposalKitorage Cl Facility Tybe q Government Sponsored Facility Other R.L- 6:e 14 1 1 ---------- --------- I I I TYPE OF CONTRACT ~-__-----------_ fl Prime *I 0 Subcantractbr Other infuriation (i.e., L.t + fixed fee, kit price, 0 Purchase Order time k mat*iik, gtc) /I -~---------'-t-----------~- ----------II---------------- Contract/Purchase Order # I EP!EBEII!G-PEEI9E: ---------------------------------~---- , OWNERSHiP: : I I j ,' / 1 AEC/tlED AEC/MED GOUT GOUT E!!NE_D LEASEI! !z%!NE_D CONTTACTOR CONTf?qCTOR LEASE?? ---w!En- ---LEL3SEI! i I I I LANDS BUILDINGS EIXIIPMENT

262

TYPE OF OPERATION  

Office of Legacy Management (LM)

______ ______ 0 Research & Development 9 Faciiity Type 0 Production scale testing Cl Pilot Scale 0 Bench Scale Process 0 Theoretical Studies Cl Sample 84 Analysis Production Di aposal /Storage g ;E:"V',;=:;;';"" IJ Research Organization 0 Government Sponeored Facility q Other --------------------- 0 Prime q ,@ Subcontract& Other information (i.e., cost 0 Purchase Order + fixed fee, unit price, time ?8 material, etc) -------mm----+------------- Contract/Purchase Order # CONTRACTING PERIODr c&L&.& rqs-z i i -----~_--~~~_----_ -------------------------------------- OWNERSHIP8 CIEC/tlED CIEC/MED GOUT WNED LE&xU _o!!EED LANDS BUILDINGS EQUIPMENT iii E : ORE OR RAW MATL IJ : E FINCIL PRODUCT [7 WCISTE b RESIDUE q GOUT

263

Development and testing of a photometric method to identify non-operating solar hot water systems in field settings.  

SciTech Connect (OSTI)

This report presents the results of experimental tests of a concept for using infrared (IR) photos to identify non-operational systems based on their glazing temperatures; operating systems have lower glazing temperatures than those in stagnation. In recent years thousands of new solar hot water (SHW) systems have been installed in some utility districts. As these numbers increase, concern is growing about the systems dependability because installation rebates are often based on the assumption that all of the SHW systems will perform flawlessly for a 20-year period. If SHW systems routinely fail prematurely, then the utilities will have overpaid for grid-energy reduction performance that is unrealized. Moreover, utilities are responsible for replacing energy for loads that failed SHW system were supplying. Thus, utilities are seeking data to quantify the reliability of SHW systems. The work described herein is intended to help meet this need. The details of the experiment are presented, including a description of the SHW collectors that were examined, the testbed that was used to control the system and record data, the IR camera that was employed, and the conditions in which testing was completed. The details of the associated analysis are presented, including direct examination of the video records of operational and stagnant collectors, as well as the development of a model to predict glazing temperatures and an analysis of temporal intermittency of the images, both of which are critical to properly adjusting the IR camera for optimal performance. Many IR images and a video are presented to show the contrast between operating and stagnant collectors. The major conclusion is that the technique has potential to be applied by using an aircraft fitted with an IR camera that can fly over an area with installed SHW systems, thus recording the images. Subsequent analysis of the images can determine the operational condition of the fielded collectors. Specific recommendations are presented relative to the application of the technique, including ways to mitigate and manage potential sources of error.

He, Hongbo (University of New Mexico, Albuquerque, NM); Vorobieff, Peter V. (University of New Mexico, Albuquerque, NM); Menicucci, David (University of New Mexico, Albuquerque, NM); Mammoli, Andrea A. (University of New Mexico, Albuquerque, NM); Carlson, Jeffrey J.

2012-06-01T23:59:59.000Z

264

Solar heat gain coefficient measurement of semi-transparent photovoltaic modules with indoor calorimetric hot box and solar simulator  

Science Journals Connector (OSTI)

In tropical Singapore, buildings receive a high amount of solar radiation. Windows should therefore consist of solar control glazing with a low solar heat gain coefficient (SHGC) and high visible light transmittance to reduce the energy consumption for air-conditioning and electrical lighting respectively. Due to the rising demand for on-site electricity generation, photovoltaic modules are increasingly used in buildings, initially as roof-top systems, but in recent years there are also semi-transparent photovoltaic (STPV) being integrated into the façade or overhead glazing. However, their SHGC is usually not reported, potentially preventing STPV from widespread adoption. The paper presents measurements and novel presentations of SHGC for selected thin-film STPV glazing. It introduces SERIS’ indoor calorimetric hot box and solar simulator including a documentation of environmental conditions and calibrations. A sensitivity analysis concluded that the SHGC measurement is mainly sensitive to the spectrum of the solar simulator and reflection properties of the absorber plate. A correction factor was introduced and the measured results compare well with simulations. In addition, SHGC values for selected STPV are presented as (a) angular dependent and (b) load dependent. The results show that the SHGC is sensitive to the incident angle of solar radiation. Particularly for incident angles above 45°, which would be typical for facades in the tropics, the SHGC reduces significantly, compared to the default at 0°. The SHGC reduces only marginally when an electrical load is connected. Higher PV efficiencies would result in more energy being converted into electricity and not into re-radiating heat and therefore producing a lower SHGC.

Fangzhi Chen; Stephen K. Wittkopf; Poh Khai Ng; Hui Du

2012-01-01T23:59:59.000Z

265

Attributive types for proof erasure  

Science Journals Connector (OSTI)

Proof erasure plays an essential role in the paradigm of programming with theorem proving. In this paper, we introduce a form of attributive types that carry an attribute to determine whether expressions assigned such types are eligible for erasure before ...

Hongwei Xi

2007-05-01T23:59:59.000Z

266

Tornado type wind turbines  

DOE Patents [OSTI]

A tornado type wind turbine has a vertically disposed wind collecting tower with spaced apart inner and outer walls and a central bore. The upper end of the tower is open while the lower end of the structure is in communication with a wind intake chamber. An opening in the wind chamber is positioned over a turbine which is in driving communication with an electrical generator. An opening between the inner and outer walls at the lower end of the tower permits radially flowing air to enter the space between the inner and outer walls while a vertically disposed opening in the wind collecting tower permits tangentially flowing air to enter the central bore. A porous portion of the inner wall permits the radially flowing air to interact with the tangentially flowing air so as to create an intensified vortex flow which exits out of the top opening of the tower so as to create a low pressure core and thus draw air through the opening of the wind intake chamber so as to drive the turbine.

Hsu, Cheng-Ting (Ames, IA)

1984-01-01T23:59:59.000Z

267

arch layout 11.21.98  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Production Readiness Production Readiness Weprogressed towardmarketadoptionby developing, build- ing and testing prototype systems using numerical simula- tion tools andfield tests,by working with industry andmanu- facturing partners, and by demonstrating the technologies in full-scalecommercialbuildings. Thisprovidedabroad,highly defensible record of documented performance. Prototypeswere developed in cooperationwith industrypart- ners to speed commercializationand to work out market bar- riers to full-scaleadoption.Industrypartners in glazing, win- dow systems, shading systems, controls hardware and light- ing were solicited to participate. Feedback through trade as- sociations, conferences and industry associations helped to identify potential obstaclessuch asdifficulties with cross-dis-

268

rail inspections matrix  

Broader source: Energy.gov (indexed) [DOE]

COMPARISON OF COMMERCIAL VEHICLE SAFETY ALLIANCE RECOMMENDED NATIONAL PROCEDURES COMPARISON OF COMMERCIAL VEHICLE SAFETY ALLIANCE RECOMMENDED NATIONAL PROCEDURES AND OUT-OF-SERVICE CRITERIA FOR THE ENHANCED SAFETY INSPECTION OF COMERCIAL HIGHWAY VEHICLES TRANSPORTING TRANSURANICS, SPENT NUCLEAR FUEL, AND HIGH LEVEL WASTE TO RAIL INSPECTION STANDARDS -TEC-WG, RAIL TOPIC GROUP 1 Commercial Vehicle Safety Alliance Requirement Applicable Federal Regulation (All 49CFR unless otherwise noted) AAR Rule or Standard Applicable Industry / Regulatory Initiatives / Recommended Practices 1.0 GENERAL 215-RAILROAD FREIGHT CAR SAFETY STANDARDS 221-REAR END MARKING DEVICE-PASSENGER, COMMUTER AND FREIGHT TRAINS 223-SAFETY GLAZING STANDARDS-LOCOMOTIVES, PASSENGER CARS AND CABOOSES 229-RAILROAD LOCOMOTIVE

269

Emerging Technologies Activities | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Emerging Technologies Activities Emerging Technologies Activities Emerging Technologies Activities The Emerging Technologies team focuses on the development and testing of next-generation technologies that can increase the energy efficiency of existing technologies and help support the goal of reducing energy consumption by at least 50%. By partnering with industry, researchers, and other stakeholders, the Department of Energy (DOE) acts as a catalyst in driving research in energy efficient technologies, including: Refrigerators, washers, dryers, and other appliances Parts of the building envelope, including insulation, roofing and attics, foundations, and walls Window, skylight, and door technologies, such as highly-insulating windows, glazings and films, window frames, and daylighting and shading

270

Other Projects [Laser Applications Laboratory] - Nuclear Engineering  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Other Projects Other Projects Capabilities Engineering Experimentation Reactor Safety Experimentation Aerosol Experiments System Components Laser Applications Overview Laser Oil & Gas Well Drilling Laser Heat Treatment Laser Welding of Metals On-line Monitoring Laser Beam Delivery Laser Glazing of Railroad Rails High Power Laser Beam Delivery Decontamination and Decommissioning Refractory Alloy Welding Robots Applications Other Facilities Other Capabilities Work with Argonne Contact us For Employees Site Map Help Join us on Facebook Follow us on Twitter NE on Flickr Laser Applications Laboratory Other projects Bookmark and Share HIGH POWER LASER BEAM DELIVERY High-power laser-beam delivery with conventional and fiber optics DECONTAMINATION & DECOMMISSIONING Laser processing technology for decontamination of surfaces

271

Laser Heat Treatment [Laser Applications Laboratory] - Nuclear Engineering  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Heat Treatment Heat Treatment Capabilities Engineering Experimentation Reactor Safety Experimentation Aerosol Experiments System Components Laser Applications Overview Laser Oil & Gas Well Drilling Laser Heat Treatment Laser Welding of Metals On-line Monitoring Laser Beam Delivery Laser Glazing of Railroad Rails High Power Laser Beam Delivery Decontamination and Decommissioning Refractory Alloy Welding Robots Applications Other Facilities Other Capabilities Work with Argonne Contact us For Employees Site Map Help Join us on Facebook Follow us on Twitter NE on Flickr Laser Applications Laboratory Laser Heat Treatment Project description: Optimization of laser beam heat treatment. Category: Project with industrial partner (Caterpillar and USCAR) Bookmark and Share Heat treatment optics

272

Building Energy Software Tools Directory: FRESA  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

FRESA FRESA A first-order screening tool to identify potentially cost-effective applications of renewable energy technology on a building and facility level. FRESA (Federal Renewable Energy Screening Assistant) is useful for determining which renewable energy applications require further investigation. Technologies represented include: active solar heating, active solar cooling, solar hot water, daylighting with windows, daylighting with skylights, photovoltaic, solar thermal electric (parabolic dish, parabolic trough, central power tower), wind electricity, small hydropower, biomass electricity (wood, waste, etc.), and cooling load avoidance (multiple glazing, window shading, increased wall insulation, infiltration control). Life-cycle cost calculations comply with 10 CFR 436.

273

Building Energy Software Tools Directory: FRAMEplus  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

FRAMEplus FRAMEplus FRAMEplus logo. The FRAMEplus toolkit has three modules: VISION4 (glazing heat transfer and solar optical properties), FRAME4 (heat transfer through building components), and FRAMEplus (combines VISION and FRAME results and reports total building product performance). FRAMEplus checks all VISION and FRAME input files for consistency, combines the building component cross-sections to compute total product properties, and produces a simulation report. The simulation reports are suitable to show compliance with National Fenestration Rating Council and Canadian Standards Association window and door standards. The FRAMEplus Toolkit is a low cost alternative to testing to determine the U-value and solar heat gain coefficient of walls, windows and doors.

274

Title  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Site Map Site Map Home Publications Software Facilities Links Staff Glazing Materials Chromogenics LowE and Spectrally Selective Deposition Processes Characterization New Materials Advanced Systems Superwindows Integrated Window Systems Gas-Filled Panels Window Properties Infrared Laboratory and Traversing System MoWiTT Window+5 Development Therm Development Film Coefficients Condensation Resistance Comfort Models Field Measurements LBNL Role in NFRC Optics Database Daylighting IEA Task 21 Lightshelves/Lightpipes Tools for Daylighting Prediction Demonstrations Daylighting Controls Residential Performance Energy Star ResFen Development ECW Demonstrations Annual Energy Rating Field Tests and Monitoring Projects

275

Laser Welding of Metals [Laser Applications Laboratory] - Nuclear  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Laser Welding of Metals Laser Welding of Metals Capabilities Engineering Experimentation Reactor Safety Experimentation Aerosol Experiments System Components Laser Applications Overview Laser Oil & Gas Well Drilling Laser Heat Treatment Laser Welding of Metals On-line Monitoring Laser Beam Delivery Laser Glazing of Railroad Rails High Power Laser Beam Delivery Decontamination and Decommissioning Refractory Alloy Welding Robots Applications Other Facilities Other Capabilities Work with Argonne Contact us For Employees Site Map Help Join us on Facebook Follow us on Twitter NE on Flickr Laser Applications Laboratory Laser Welding of Metals Project description: High-speed laser welding of metals. Category: Project with industrial partner (Delphi Energy and Engine Management Systems) Bookmark and Share

276

Cost Effectiveness for Solar Control Film for Residential Applications  

E-Print Network [OSTI]

and first week of October. Data for 16th September, without the solar control film and for 1st October, with solar control film are analyzed. Incidental and transmitted global solar radiations on the east and west windows for these two days are shown... for 16th Sep/ Ii for 1st Oct)* It for 1st Oct (2) The hourly average values of the incident radiation, the transmitted radiation without the film and the transmitted readjusted radiation for the east and the west glazing are shown in Figs 3 and 4...

Al-Taqi, H. H.; Maheshwari, G. P.; Alasseri, R.

2010-01-01T23:59:59.000Z

277

Calculation of NOx Emission Reduction from Implementation of the 2000 IECC/IRC Conservation Code in Texas  

E-Print Network [OSTI]

building prototypes, which will be constructed to be representative of the new building construction in Texas. 12 The NAHB characteristics divided the state into east (E), and west (W) divisions: window-to-wall area E=15.28%, W=20.6%, glazing U.... Division (East and West Texas): From NAHB survey data. 17. AFUE (%),SEER and Water Heater Efficiency for 1999 standard and IECC 2000 house are 80%, 11 and 76%, respectively. Table 1: 2002 NOx emissions reductions from implementation of the 2000 IECC...

Turner, W. D.; Yazdani, B.; Im, P.; Verdict, M.; Bryant, J.; Fitzpatrick, T.; Haberl, J. S.; Culp, C.

2003-01-01T23:59:59.000Z

278

Solar energy system performance evaluation, July 1979 through June 1980  

SciTech Connect (OSTI)

The Loudoun County site is the Charles S. Monroe Vocational Technical School in Leesburg, Virginia. The active solar energy system is designed to supply 26% of the domestic hot water demand. It is equipped with 1225 square feet of double glazed flat-plate collectors manufactured by Southwest Enertech, a 2056 gallon liquid storage tank located in the school's mechanical room, and a backup electric immersion heater, 2 stage, 20 kW per stage. The system performance for the period July 1979 through June 1980 is presented, and the meteorological conditions are included. (WHK)

Missal, D.

1980-01-01T23:59:59.000Z

279

Experimental Evaluation of Innovative Wall Daylighting Systems  

E-Print Network [OSTI]

to deliver most of the light from the projecting mirror to the two inner spaces. One way of doing this without causing glare to the occupants is to project the light on the area of ceiling over the two spaces and allow the ceiling to serve aa a secondary... those two spaces (see Figure 10). To achieve this optical behavior, the appropriate cross- sectional shape for the projecting mirror would be an ellipse with one of its foci at the line souree (i.e., at the center of the glazing) and one of its foci...

Place, J. W.; Howard, T. C.; Paulos, S.; Chung, K.

1988-01-01T23:59:59.000Z

280

Extracting High Temperature Event radiance from satellite images and correcting for saturation using Independent Component Analysis  

E-Print Network [OSTI]

.Barnie@opgc.univ-bpclermont.fr (C. Oppenheimer). http://dx.doi.org/10.1016/j.rse.2014.10.023 0034-4257/© 2014 The Authors. Published by Elsevier Incyon, & Nordberg, 1965; 1979; Harris et al., 1997; al., 2002; Kaufman et al., HTE processes can be explicitly modelled, for instance... including back- ground surface temperature as a free parameter in subpixel thermal unmixing (although this is usually assumed a priori, e.g. Oppenheimer,Glaze, Francis, & Rothery, 1989; Hanel et al., Oppenheimer, 1991), wildfires (e.g. Justice et1...

Barnie, Talfan; Oppenheimer, Clive

2014-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "glazings glazing type" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Electrochromic material and electro-optical device using same  

DOE Patents [OSTI]

An oxidatively coloring electrochromic layer of composition M[sub y]CrO[sub 2+x] (0.33[le]y[le]2.0 and x[le]2) where M=Li, Na or K with improved transmittance modulation, improved thermal and environmental stability, and improved resistance to degradation in organic liquid and polymeric electrolytes. The M[sub y]CrO[sub 2+x] provides complementary optical modulation to cathodically coloring materials in thin-film electrochromic glazings and electrochromic devices employing polymeric Li[sup +] ion conductors. 12 figs.

Cogan, S.F.; Rauh, R.D.

1992-01-14T23:59:59.000Z

282

Electrochromic material and electro-optical device using same  

DOE Patents [OSTI]

An oxidatively coloring electrochromic layer of composition M.sub.y CrO.sub.2+x (0.33.ltoreq.y.ltoreq.2.0 and x.ltoreq.2) where M=Li, Na or K with improved transmittance modulation, improved thermal and environmental stability, and improved resistance to degradation in organic liquid and polymeric electrolytes. The M.sub.y CrO.sub.2+x provides complementary optical modulation to cathodically coloring materials in thin-film electrochromic glazings and electrochromic devices employing polymeric Li.sup.+ ion conductors.

Cogan, Stuart F. (Sudbury, MA); Rauh, R. David (Newton, MA)

1992-01-01T23:59:59.000Z

283

Thermal performance of a cubic cavity with a solar control coating deposited to a vertical semitransparent wall  

Science Journals Connector (OSTI)

We present a theoretical and experimental study of combined heat transfer in a cubic cavity containing non-participating air. The cubic cavity has a vertical semitransparent wall (glazing) with a solar control coating (SCC); an opaque black isothermal wall forms its opposite side. The top, bottom and side walls are opaque, gray and adiabatic. In the theoretical study, the 3-D steady state conservation equations for the mass, momentum and energy, along with the coupled radiation and conduction equations, were solved numerically by the finite volume method. The conduction for the semitransparent wall and the radiative energy flux were coupled through their boundary conditions at the convection model. Also, the semitransparent wall with SCC exchanges heat by convection and radiation to the exterior of the cavity. In the experimental study, the solar absorptance of the SCC was simulated experimentally using a thin film electrical resistance located on the glazing surface. Infrared imaging thermography was used to measure the temperature of the exterior surface temperature of the glazing. The interior air temperatures of the cavity were measured using thermocouples. The measured exterior surface temperatures of the glazing were introduced into the theoretical model as a boundary condition and the temperatures of the air at the interior of the cavity were compared with the theoretical ones predicted from the computational code for Ra = 2.3 × 106. Their average difference was 1.86%. Through these results, detailed descriptions of the air flow and temperature profiles in the cubic cavity are presented. The influence of radiative process on the overall heat transfer in the cavity is given particular attention, thus distinguishing the convective and radiative heat transfer in the cavity was shown separately. A parametric study was carried out for SCC absorptances of 0.08, 0.50 and 0.64 and exterior temperatures of 15 °C, 25 °C and 30 °C. It was found that for an exterior temperature of 25 °C, the radiative heat flux increases as the absorptance of the SCC increases from 0.08 to 0.64, but the solar heat gain coefficient (SHGC) decreases from 0.94 to 0.52. A new correlation for the Nusselt number as a function of the SCC absorptance is introduced as Nu = 0.9525? + 10.985 for an ambient temperature of 25 °C.

J.J. Flores; G. Alvarez; J.P. Xaman

2008-01-01T23:59:59.000Z

284

Simulating the Daylight Performance of Complex Fenestration Systems Using Bidirectional Scattering Distribution Functions within Radiance  

SciTech Connect (OSTI)

We describe two methods which rely on bidirectional scattering distribution functions (BSDFs) to model the daylighting performance of complex fenestration systems (CFS), enabling greater flexibility and accuracy in evaluating arbitrary assemblies of glazing, shading, and other optically-complex coplanar window systems. Two tools within Radiance enable a) efficient annual performance evaluations of CFS, and b) accurate renderings of CFS despite the loss of spatial resolution associated with low-resolution BSDF datasets for inhomogeneous systems. Validation, accuracy, and limitations of the methods are discussed.

Ward, Gregory; Mistrick, Ph.D., Richard; Lee, Eleanor; McNeil, Andrew; Jonsson, Ph.D., Jacob

2011-01-21T23:59:59.000Z

285

 

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Questions and Comments: Questions and Comments: Contacts for Technical Issues For questions about web content or other technical information: For glazing materials coatings, substrates, deposition systems and characterization, contact Jacob Jonsson. For the DOE Electrochromic Initiative contact Eleanor Lee. For high performance fenestration systems contact Howdy Goudey. For window properties, measurements, simulations and ratings, contact Charlie Curcija. For software contact OpticsHelp@lbl.gov, RESFENHelp@lbl.gov, THERMHelp@lbl.gov or WINDOWHelp@lbl.gov For daylighting materials, systems, simulation tools and performance issues, contact Eleanor Lee. For residential window performance guidelines, analysis and measurements of window and skylight performance contact Charlie Curcija.

286

On the asymptotic homotopy type of inductive limit Type ...  

E-Print Network [OSTI]

In this note we exhibit large classes of (projeetionless) stable, nuclear C*- algebras whose asymptotic homotopy type is determined by K-theoretical data.

287

Portfolio Manager Space Type Discussion  

Broader source: Energy.gov [DOE]

This presentation, given through the DOE's Technical Assitance Program (TAP), provides a discussion about space/type in regards to the Portfolio Manager Initiative.

288

Types of Lighting in Commercial Buildings - Lighting Types  

U.S. Energy Information Administration (EIA) Indexed Site

Lighting Types Lighting Types The following are the most widely used types of lighting equipment used in commercial buildings. Characteristics such as energy efficiency, light quality, and lifetime vary by lamp type. Standard Fluorescent A fluorescent lamp consists of a sealed gas-filled tube. The gas in the tube consists of a mixture of low pressure mercury vapor and an inert gas such as argon. The inner surface of the tube has a coating of phosphor powder. When an electrical current is applied to electrodes in the tube, the mercury vapor emits ultraviolet radiation which then causes the phosphor coating to emit visible light (the process is termed fluorescence). A ballast is required to regulate and control the current and voltage. Two types of ballasts are used, magnetic and electronic. Electronic ballasts

289

Classification of GHZ-type, W-type and GHZ-W-type multiqubit entanglements  

E-Print Network [OSTI]

We propose the concept of SLOCC-equivalent basis (SEB) in the multiqubit space. In particular, two special SEBs, the GHZ-type and the W-type basis are introduced. They can make up a more general family of multiqubit states, the GHZ-W-type states, which is a useful kind of entanglement for quantum teleporatation and error correction. We completely characterize the property of this type of states, and mainly classify the GHZ-type states and the W-type states in a regular way, which is related to the enumerative combinatorics. Many concrete examples are given to exhibit how our method is used for the classification of these entangled states.

Lin Chen; Yi-Xin Chen

2006-05-23T23:59:59.000Z

290

Archived Reference Building Type: Hospital  

Broader source: Energy.gov [DOE]

Here you will find past versions of the commercial reference building models for existing buildings constructed in or after 1980, organized by building type and location. A summary of building types and climate zones is available for reference. Current versions are also available.

291

Archived Reference Building Type: Hospital  

Broader source: Energy.gov [DOE]

Here you will find past versions of the commercial reference building models for existing buildings constructed before 1980, organized by building type and location. A summary ofbuilding types and climate zones is available for reference. Current versions are also available.

292

Archived Reference Building Type: Warehouse  

Broader source: Energy.gov [DOE]

Here you will find past versions of the commercial reference building models for existing buildings constructed in or after 1980, organized by building type and location. A summary of building types and climate zones is available for reference. Current versions are also available.

293

Archived Reference Building Type: Warehouse  

Broader source: Energy.gov [DOE]

Here you will find past versions of the commercial reference building models for existing buildings constructed before 1980, organized by building type and location. A summary ofbuilding types and climate zones is available for reference. Current versions are also available.

294

Soft Typing PHP Patrick Camphuijsen  

E-Print Network [OSTI]

Soft Typing PHP Patrick Camphuijsen Jurriaan Hage Stefan Holdermans Technical Report UU-CS-2009.O. Box 80.089 3508 TB Utrecht The Netherlands #12;Soft Typing PHP with PHP-validator Patrick Camphuijsen@cs.uu.nl Abstract PHP is a popular language for building websites, but also notori- ously lax in that almost every

Utrecht, Universiteit

295

Cofinal types of directed orders  

E-Print Network [OSTI]

, ) directed partial orders #12;Cofinal types (P, ), (Q, ) directed partial orders Tukey reducibility: (P orders Tukey reducibility: (P, ) T (Q, ) if f : P Q X P unbounded = f [X] Q unbounded g : Q P Y Q cofinal = g[Y ] P cofinal #12;Cofinal types (P, ), (Q, ) directed partial orders Tukey reducibility: (P

Mátrai, Tamás

296

Theoretical models for Type I and Type II supernova  

SciTech Connect (OSTI)

Recent theoretical progress in understanding the origin and nature of Type I and Type II supernovae is discussed. New Type II presupernova models characterized by a variety of iron core masses at the time of collapse are presented and the sensitivity to the reaction rate /sup 12/C(..cap alpha..,..gamma..)/sup 16/O explained. Stars heavier than about 20 M/sub solar/ must explode by a ''delayed'' mechanism not directly related to the hydrodynamical core bounce and a subset is likely to leave black hole remnants. The isotopic nucleosynthesis expected from these massive stellar explosions is in striking agreement with the sun. Type I supernovae result when an accreting white dwarf undergoes a thermonuclear explosion. The critical role of the velocity of the deflagration front in determining the light curve, spectrum, and, especially, isotopic nucleosynthesis in these models is explored. 76 refs., 8 figs.

Woosley, S.E.; Weaver, T.A.

1985-01-01T23:59:59.000Z

297

P-type gallium nitride  

DOE Patents [OSTI]

Several methods have been found to make p-type gallium nitride. P-type gallium nitride has long been sought for electronic devices. N-type gallium nitride is readily available. Discovery of p-type gallium nitride and the methods for making it will enable its use in ultraviolet and blue light-emitting diodes and lasers. pGaN will further enable blue photocathode elements to be made. Molecular beam epitaxy on substrates held at the proper temperatures, assisted by a nitrogen beam of the proper energy produced several types of p-type GaN with hole concentrations of about 5{times}10{sup 11} /cm{sup 3} and hole mobilities of about 500 cm{sup 2} /V-sec, measured at 250 K. P-type GaN can be formed of unintentionally-doped material or can be doped with magnesium by diffusion, ion implantation, or co-evaporation. When applicable, the nitrogen can be substituted with other group III elements such as Al. 9 figs.

Rubin, M.; Newman, N.; Fu, T.; Ross, J.; Chan, J.

1997-08-12T23:59:59.000Z

298

Types of Reuse | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Services » Property » Property Reuse » Types of Reuse Services » Property » Property Reuse » Types of Reuse Types of Reuse Types of Reuse Types of Reuse Types of Reuse Types of Reuse Types of Reuse Types of Reuse Types of Reuse Types of Reuse Types of Reuse Types of Reuse The following provides greater detail regarding the types of reuse pursued for LM sites. It should be noted that many actual reuses combine several types of the uses listed below. Agriculture Many of the LM lands in the west are surrounded by open rangeland administered by the Bureau of Land Management or large ranches that are primarily used for grazing. LM promotes agricultural uses of lands that are surrounded by existing agricultural operations. Agricultural uses, such as cultivation of crops, could be combined with habitat improvements or

299

Chromogenics  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Chromogenic Materials Chromogenic Materials Glazing materials that selectively control the spectral aspect of radiation are now commonplace. Low-emittance coatings supress infrared radiation transfer thereby imparting additional thermal insulation. Modified low-emittance coatings can also reject unwanted heat gain due to solar infrared. Additional energy savings result with dynamic control over the spectral characteristics of the glazing. There are a variety of technologies that can produce the desired effect: Transition Metal Switchable Mirror The switchable-mirrors technology was developed by Tom Richardson and Jonathan Slack of Berkeley Lab's Environmental Energy Technologies Division. By using transition metals rather than the rare earth metals used in the first metal-hydride switchable mirrors, Richardson and Slack were able to lower the cost and simplify the manufacturing process. Energy performance is improved as well, because the new windows can reflect or transmit both visible and infrared light. Besides windows for offices and homes, possible applications include automobile sunroofs, signs and displays, aircraft windows, and spacecraft. To see the mirror windows in action, click on the image below:

300

Simulation and testing of pyramid and barrel vault skylights  

SciTech Connect (OSTI)

The thermal performance of fenestration in commercial buildings can have a significant effect on building loads--yet there is little information on the performance of these products. With this in mind, ASHRAE TC 4.5, Fenestration, commissioned a research project involving test and simulation of commercial fenestration systems. The objectives of ASHRAE Research Project 877 were: to evaluate the thermal performance (U-factors) of commonly used commercial glazed roof and wall assemblies; to obtain a better fundamental understanding of the heat transfer processes that occur in these specialty fenestration products; to develop correlations for natural-convection heat transfer in complex glazing cavities; to develop a methodology for evaluating complex fenestration products, suitable for inclusion in ASHRAE Standard 142P (ASHRAE 1996); and to generate U-factors for common commercial fenestration products, suitable for inclusion in the ASHRAE Handbook--Fundamentals. This paper describes testing and simulation of pyramid and barrel vault skylight specimens and provides guidelines for modeling these systems based on the validated results.

McGowan, A.G. [Enermodal Engineering, Ltd., Kitchener, Ontario (Canada); Desjarlais, A.O. [Oak Ridge National Lab. TN (United States); Wright, J.L. [Univ. of Waterloo, Ontario (Canada)

1998-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "glazings glazing type" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Coaxial extrusion conversion concept for polymeric flat plate solar collectors. Final technical report, September 30, 1978-December 31, 1979  

SciTech Connect (OSTI)

This study investigated materials and processes for fundamental improvements in flat-plate solar collector cost and performance. The goal was to develop a process for direct conversion of inexpensive raw materials into a completed solar collector unit, without labor intensive assembly operations. It was thought that materials carefully matched to the process and end-use environment would substantially reduce collector costs, as compared to conventional industry practice. The project studied the feasibility of a cost-effective, glazed solar collector, with low labor input, utilizing a coaxial extrusion of compatible polymeric materials. This study evaluated all considered materials for the desired application. In addition, there was a trial extrusion of the leading candidate glazing and absorber materials, which resulted in successfully performing a coaxial extrusion of one cell. At the time the study was conducted, there were no materials available that met the necessary requirements for the specified utilization. It was recommended that, if potentially compatible materials become available, further investigation into the suitability of those materials be researched. Then, if a suitable material was found, proceeding into Phase II would be recommended.

Rhodes, R.O.; Chapman, N.J.; Chao, K.C.; Sorenson, K.F.

1980-01-01T23:59:59.000Z

302

Solar skylight  

DOE Patents [OSTI]

A reflective shutter rotates within a skylight housing in such a fashion as to control solar energy thereby providing a combination of heating, lighting, and ventilation. The skylight housing has three faces: a glazed southern face, a glazed northern face, and an open downwardly oriented face to the interior of the structure. Counter-weighted pivot arms support the shutter at either end causing the center of rotation to pass through the center of gravity. The shutter has three basic positions: In the first position, during the winter day, the shutter closes off the northern face, allowing solar energy to enter directly into the supporting structure providing heat gain and daylighting. In the second position, during the winter night, the shutter closes off the open face to the interior, providing insulation between the structure and the skylight housing. In the third position, during the non-heating season, the shutter closes off the southern face blocking unwanted heat gain but allowing diffuse northern light to penetrate for daylighting. In this last position, a means is provided for ventilating by natural convection. The apparatus can be operated either manually or by motor.

Adamson, James C. (Osprey La., Rumson, NJ 07760)

1984-01-01T23:59:59.000Z

303

The harmonization of Canadian and U.S. window programs and standards. Impact on U-factor and SHGC of differences in simulation styles and assumptions  

SciTech Connect (OSTI)

The thermal performance of a window is currently characterized by the window`s thermal transmittance (U-factor) and its solar heat gain coefficient. The National Fenestration Rating Council (NFRC) has established a system for rating the thermal performance of windows. the U-factor is determined through computer simulation and validated with physical tests. The solar heat gain coefficient is determined for homogeneous products through computer simulation. Test methods exist for measuring solar heat gain through more complex products, although there is currently no standard. Under the NFRC`s rating program, a window must be simulated using the Window 4.1 and Frame 3.1 computer programs. There is some debate as to how accurately these computer programs simulate actual windows. This report addresses the differences in simulation styles and assumptions and what impact these differences have on the U-factor and solar heat gain coefficient. Section 2.0 covers center-of-glass modeling, section 3.0 covers spacer modeling, section 4.0 covers frame modeling, and section 5.0 concludes by weight the relative importance of the assumptions discussed. The focus of this research is on U-factor. For a more detailed study of solar heat gain coefficients refer to Wright (1995). This report also addresses the efficacy of various techniques, such as increasing glazing gap width or applying low-emittance coatings to interior glazing surfaces, at reducing total window U-factors.

NONE

1995-05-31T23:59:59.000Z

304

Federal Energy Management Program: Maintenance Types  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Maintenance Types Maintenance Types to someone by E-mail Share Federal Energy Management Program: Maintenance Types on Facebook Tweet about Federal Energy Management Program: Maintenance Types on Twitter Bookmark Federal Energy Management Program: Maintenance Types on Google Bookmark Federal Energy Management Program: Maintenance Types on Delicious Rank Federal Energy Management Program: Maintenance Types on Digg Find More places to share Federal Energy Management Program: Maintenance Types on AddThis.com... Sustainable Buildings & Campuses Operations & Maintenance Federal Requirements Program Management Commissioning Metering Computerized Maintenance Management Systems Maintenance Types Reactive Preventive Predictive Reliability-Centered Major Equipment Types Resources Contacts

305

Requirements for Foreign National Payments Type of Payment Visa Type  

E-Print Network [OSTI]

8233 36% 36% Royalty* NA NA NA NA Yes NA* No Yes W8BEN Varies 1. The visa types listed are the most related to the field of study on the I-20. 10. For Royalty payments the visa doc is not needed when

Wolpert, Robert L

306

Description of CBECS Building Types  

U.S. Energy Information Administration (EIA) Indexed Site

Description of Building Types Description of Building Types Description of CBECS Building Types In the Commercial Buildings Energy Consumption Survey (CBECS), buildings are classified according to principal activity, which is the primary business, commerce, or function carried on within each building. Buildings used for more than one of the activities described below are assigned to the activity occupying the most floorspace at the time of the interview. Thus, a building assigned to a particular principal activity category may be used for other activities in a portion of its space or at some time during the year. In the 1999 CBECS, respondents were asked to place their building into a sub-category that was a more specific activity than has been collected in prior surveys. This was done to ensure the quality of the data; after data collection, the subcategories were combined into these more general building categories, which are consistent with prior CBECS surveys.

307

Empirical assessment of a prismatic daylight-redirecting window film in a  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Empirical assessment of a prismatic daylight-redirecting window film in a Empirical assessment of a prismatic daylight-redirecting window film in a full-scale office testbed Title Empirical assessment of a prismatic daylight-redirecting window film in a full-scale office testbed Publication Type Conference Paper LBNL Report Number LBNL-6496E Year of Publication 2013 Authors Thanachareonkit, Anothai, Eleanor S. Lee, and Andrew McNeil Conference Name Illuminating Engineering Society (IES) Annual Conference 2013 Date Published 10/2013 Conference Location Huntington Beach, California Keywords building energy efficiency., daylighting, microstructure film, prismatic film, windows Abstract Daylight redirecting systems with vertical windows have the potential to offset lighting energy use in deep perimeter zones. Microstructured prismatic window films can be manufactured using low-cost, roll-to-roll fabrication methods and adhered to the inside surface of existing windows as a retrofit measure or installed as a replacement insulating glass unit in the clerestory portion of the window wall. A clear film patterned with linear, 50-250 micrometer high, four-sided asymmetrical prisms was fabricated and installed in the south-facing, clerestory low-e, clear glazed windows of a full-scale testbed facility. Views through the film were distorted. The film was evaluated in a sunny climate over a two-year period to gauge daylighting and visual comfort performance. The daylighting aperture was small (window-to-wall ratio of 0.18) and the lower windows were blocked off to isolate the evaluation to the window film. Workplane illuminance measurements were made in the 4.6 m (15 ft) deep room furnished as a private office. Analysis of discomfort glare was conducted using high dynamic range imaging coupled with the evalglare software tool, which computes the daylight glare= probability and other metrics used to evaluate visual discomfort.

308

Buildings Energy Data Book: 5.2 Windows  

Buildings Energy Data Book [EERE]

5 5 Residential Prime Window Sales, by Glass Type (Million Units) 1980 8.6 34% 0.0 0% 16.6 66% 25.2 100% 1990 4.9 14% 12.0 34% 18.7 53% 35.6 100% 1993 2.8 14% 17.2 84% 0.4 2% 20.4 100% 1995 5.5 12% 37.8 85% 1.3 3% 44.5 100% 1999 4.8 8% 55.2 89% 2.0 3% 62.0 100% 2001 3.9 7% 50.9 90% 1.5 3% 56.3 100% 2003 4.7 7% 55.9 89% 2.2 4% 62.8 100% 2005 4.2 6% 63.8 91% 2.5 3% 70.5 100% 2007 2.7 5% 55.0 93% 1.4 2% 59.1 100% 2009 1.6 4% 36.2 93% 1.2 3% 38.9 100% Note(s): 1) IG = insulated glazing. Source(s): Double Pane Single Pane Sealed IG (1) Other Total AAMA/NWWDA, Study of the U.S. Market for Windows and Doors, 1996, Table 22, p.49; AAMA/WDMA, Study of U.S. and Canadian Market for Windows and Doors, Apr. 2000, Exhibit E.7, p. 55; AAMA/WDMA, Study of the Market for U.S. Doors, Windows and Skylights, Apr. 2004, Exhibit D.4, p. 46; AAMA/WDMA, Study of U.S. Market for Windows, Doors, and Skylights, Apr. 2006, Exhibit D.8 Conventional Window Glass Usage, p. 50; AAMA/WDMA, Study of U.S.

309

DOE-2 supplement: Version 2.1E  

SciTech Connect (OSTI)

This publication updates the DOE-2 Supplement form version 2.1D to version to 2.1E. It contains detailed discussions and instructions for using the features and enhancements introduced into the 2.1B, 2.1C, 2.1D, and 2.1E versions of the program. The building description section contains information on input functions in loads and systems, hourly report frequencies, saving files of hourly output for post processing, sharing hourly report data among program modules, the metric option, and input macros and general library features. The loads section contains information on sunspaces, sunspace modeling, window management and solar radiation, daylighting, trombe walls, fixed shades, fins and overhangs, shade schedules, self shades, heat distribution from lights, the Sherman-Grimsrud infiltrations method. terrain and height modification to wind speed, floor multipliers and interior wall types, improved exterior infrared radiation loss calculation, improved outside air film conductance calculation, window library, window frames, and switchable glazing. The systems section contains information on energy end use and meters, powered induction units, a packaged variable volume -- variable temperature system, a residential variable volume -- variable temperature system, air source heat pump enhancements, water loop heat pump enhancements, variable speed electric heat pump, gas heat pumps, hot water heaters, evaporative cooling, total gas solid-desiccant systems, add on desiccant cooling, water cooled condensers, evaporative precoolers outside air economizer control, optimum fan start, heat recovery from refrigerated case work, night ventilation, baseboard heating, moisture balance calculations, a residential natural ventilation algorithm, improved cooling coil model, system sizing and independent cooling and heating sizing ratios. The plant section contains information on energy meters, gas fired absorption chillers, engine driven compressor chillers, and ice energy storage.

Winkelmann, F.C.; Birdsall, B.E.; Buhl, W.F.; Ellington, K.L.; Erdem, A.E. [Lawrence Berkeley Lab., CA (United States); Hirsch, J.J.; Gates, S. [Hirsch (James J.) and Associates, Camarillo, CA (United States)

1993-11-01T23:59:59.000Z

310

Direct expansion solar assisted heat pumps – A clean steady state approach for overall performance analysis  

Science Journals Connector (OSTI)

Abstract Traditional thermal solar panel technologies have limited efficiency and the required economic investments make them noncompetitive in the space heating market. The greatest limit to the diffusion of thermal solar systems is the characteristic temperatures they can reach: the strong connection between the user temperature and the collector temperature makes it possible to achieve high thermal (collector) efficiency only at low, often useless, user temperatures. By using solar collectors as thermal exchange units (evaporators) in a heat pump system (direct expansion solar assisted heat pump, DX-SAHP), the overall efficiency greatly increases with a significative cut of the associated investment in terms of pay-back time. In this study, an approach is proposed to the steady state analysis of DX-SAHP, which is based on the simplified inverse Carnot cycle and on the second law efficiency concept. This method, without the need of calculating the refrigerant fluid properties and the detailed processes occurring in the refrigeration device, allows us to link the main features of the plant to its relevant interactions with the surroundings. The very nature of the proposed method makes the relationship explicit and meaningful among all the involved variables. The paper, after the description of the method, presents an explanatory application of this technique by reviewing various aspects of the performance of a typical DX-SAHP in which the savings on primary energy consumption is regarded as the main feature of the plant and highlighted in a monthly averaged analysis. Results agree to those coming from a common standard steady state thermodynamic analysis. The application to a typical DX-SAHP system demonstrates that a mean saved primary energy of about 50% with respect to standard gas burner can be achieved for the same user needs. Such a result is almost independent from the type of flat plate solar panel used (double or single glazed, or even bare panels) as a result of using an optimal collector working temperature.

Luca A. Tagliafico; Federico Scarpa; Federico Valsuani

2014-01-01T23:59:59.000Z

311

Type-1.5 Superconductivity  

Science Journals Connector (OSTI)

We demonstrate the existence of a novel superconducting state in high quality two-component MgB2 single crystalline superconductors where a unique combination of both type-1 (?1/?11/2) superconductor conditions is realized for the two components of the order parameter. This condition leads to a vortex-vortex interaction attractive at long distances and repulsive at short distances, which stabilizes unconventional stripe- and gossamerlike vortex patterns that we have visualized in this type-1.5 superconductor using Bitter decoration and also reproduced in numerical simulations.

Victor Moshchalkov; Mariela Menghini; T. Nishio; Q. H. Chen; A. V. Silhanek; V. H. Dao; L. F. Chibotaru; N. D. Zhigadlo; J. Karpinski

2009-03-16T23:59:59.000Z

312

Models for Type I supernovae  

SciTech Connect (OSTI)

Two rather disjoint scenarios for Type I supernovae are presented. One is based upon mass accretion by a white dwarf in a binary system. The second involves a star having some 8 to 10 times the mass of the sun which may or may not be a solitary star. Despite the apparent dissimilarities in the models it may be that each occurs to some extent in nature for they both share the possibility of producing substantial quantities of /sup 56/Ni and explosions in stars devoid of hydrogen envelopes. These are believed to be two properties that must be shared by any viable Type I model.

Woosley, S.E.; Weaver, T.A.; Taam, R.E.

1980-06-17T23:59:59.000Z

313

Dark fleshed varieties (Bing type) in regular type, light fleshed varieties (Rainier type) in italics Sweet Cherries  

E-Print Network [OSTI]

Dark fleshed varieties (Bing type) in regular type, light fleshed varieties (Rainier type and Royalton. For more information about these and other varieties, visit our web site at www

314

Type I background fields in terms of type IIB ones  

E-Print Network [OSTI]

We choose such boundary conditions for open IIB superstring theory which preserve N=1 SUSY. The explicite solution of the boundary conditions yields effective theory which is symmetric under world-sheet parity transformation $\\Omega:\\sigma\\to-\\sigma$. We recognize effective theory as closed type I superstring theory. Its background fields,beside known $\\Omega$ even fields of the initial IIB theory, contain improvements quadratic in $\\Omega$ odd ones.

B. Nikolic; B. Sazdovic

2008-04-16T23:59:59.000Z

315

Description of CBECS Building Types  

U.S. Energy Information Administration (EIA) Indexed Site

Energy Energy Consumption Survey (CBECS) > Description of Building Types Description of CBECS Building Types In the Commercial Buildings Energy Consumption Survey (CBECS), buildings are classified according to principal activity, which is the primary business, commerce, or function carried on within each building. Buildings used for more than one of the activities described below are assigned to the activity occupying the most floorspace at the time of the interview. Thus, a building assigned to a particular principal activity category may be used for other activities in a portion of its space or at some time during the year. In the 1999 and 2003 CBECS, respondents were asked to place their building into a sub-category that was a more specific activity than has been collected in prior surveys. This was done to ensure the quality of the data; after data collection, the subcategories were combined into these more general building categories, which are consistent with prior CBECS surveys.

316

Types of Fuel Cells | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Fuel Cells Current Technology Types of Fuel Cells Types of Fuel Cells Fuel cells are classified primarily by the kind of electrolyte they employ. This classification...

317

Lie racks of type D: Unipotent conjugacy classes in finite groups of Lie type Lie racks of type D  

E-Print Network [OSTI]

Lie racks of type D: Unipotent conjugacy classes in finite groups of Lie type Lie racks of type D de C´ordoba, Argentina CIEM-CONICET CMS Summer Meeting June 2-4, 2012, Regina, Canada #12;Lie racks. Andruskiewitsch and G. Carnovale. #12;Lie racks of type D: Unipotent conjugacy classes in finite groups of Lie

Argerami, Martin

318

Wheel-type magnetic refrigerator  

DOE Patents [OSTI]

The disclosure is directed to a wheel-type magnetic refrigerator capable of cooling over a large temperature range. Ferromagnetic or paramagnetic porous materials are layered circumferentially according to their Curie temperature. The innermost layer has the lowest Curie temperature and the outermost layer has the highest Curie temperature. The wheel is rotated through a magnetic field perpendicular to the axis of the wheel and parallel to its direction of rotation. A fluid is pumped through portions of the layers using inner and outer manifolds to achieve refrigeration of a thermal load. 7 figs.

Barclay, J.A.

1983-10-11T23:59:59.000Z

319

Spatial Data Types: Conceptual Foundation for  

E-Print Network [OSTI]

Spatial Data Types: Conceptual Foundation for the Design and Implementation of Spatial Database markus.schneider@fernuni-hagen.de #12;Markus Schneider, Tutorial "Spatial Data Types" 2 Abstract Spatial are usually called spatial data types, such as point, line, and region but also include more complex types

Güting, Ralf Hartmut

320

Property:ProjectType | Open Energy Information  

Open Energy Info (EERE)

ProjectType ProjectType Jump to: navigation, search Property Name ProjectType Property Type Page Description A descriptive type for a project. This property uses pages as for its values, each of which should describe the type in detail. Pages using the property "ProjectType" Showing 25 pages using this property. (previous 25) (next 25) A Akutan Geothermal Project + Hydrothermal System + Alligator Geothermal Geothermal Project + Hydrothermal System + Alum Geothermal Project + Hydrothermal System + Aurora Geothermal Project + Hydrothermal System + B Bald Mountain Geothermal Project + Hydrothermal System + Baltazor Springs Geothermal Project + Hydrothermal System + Barren Hills Geothermal Project + Hydrothermal System + Black Rock I Geothermal Project + Hydrothermal System +

Note: This page contains sample records for the topic "glazings glazing type" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Federal Energy Management Program: Lighting Control Types  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Lighting Control Lighting Control Types to someone by E-mail Share Federal Energy Management Program: Lighting Control Types on Facebook Tweet about Federal Energy Management Program: Lighting Control Types on Twitter Bookmark Federal Energy Management Program: Lighting Control Types on Google Bookmark Federal Energy Management Program: Lighting Control Types on Delicious Rank Federal Energy Management Program: Lighting Control Types on Digg Find More places to share Federal Energy Management Program: Lighting Control Types on AddThis.com... Energy-Efficient Products Federal Requirements Covered Product Categories Product Designation Process Low Standby Power Energy & Cost Savings Calculators Model Acquisitions Language Working Group Resources Technology Deployment Renewable Energy

322

An Introduction to Type Theory Dan Christensen  

E-Print Network [OSTI]

: Type a : A B : Type inl(a) : A + B A : Type b : B inr(b) : A + B C : Type p : A + B , x : A cA : C , y : B cB : C case(p, cA, cB) : C C : Type a : A , x : A cA : C , y : B cB : C case(inl(a), c

Christensen, Dan

323

Hydrogen in Type Ic Supernovae?  

E-Print Network [OSTI]

By definition, a Type Ic supernova (SN Ic) does not have conspicuous lines of hydrogen or helium in its optical spectrum. SNe Ic usually are modelled in terms of the gravitational collapse of bare carbon-oxygen cores. We consider the possibility that the spectra of ordinary (SN 1994I-like) SNe Ic have been misinterpreted, and that SNe Ic eject hydrogen. An absorption feature usually attributed to a blend of Si II 6355 and C II 6580 may be produced by H-alpha. If SN 1994I-like SNe Ic eject hydrogen, the possibility that hypernova (SN 1998bw-like) SNe Ic, some of which are associated with gamma-ray bursts, also eject hydrogen should be considered. The implications of hydrogen for SN Ic progenitors and explosion models are briefly discussed.

David Branch; David J. Jeffery; Timothy R. Young; E. Baron

2006-05-09T23:59:59.000Z

324

Type C: Caldera Resource | Open Energy Information  

Open Energy Info (EERE)

C: Caldera Resource C: Caldera Resource Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Type C: Caldera Resource Dictionary.png Type C: Caldera Resource: No definition has been provided for this term. Add a Definition Brophy Occurrence Models This classification scheme was developed by Brophy, as reported in Updating the Classification of Geothermal Resources. Type A: Magma-heated, Dry Steam Resource Type B: Andesitic Volcanic Resource Type C: Caldera Resource Type D: Sedimentary-hosted, Volcanic-related Resource Type E: Extensional Tectonic, Fault-Controlled Resource Type F: Oceanic-ridge, Basaltic Resource Caldera resources may be found in many tectonic settings but are defined by their caldera structures which control the flow of the fluids in the system.

325

New approaches for modeling type Ia supernovae  

E-Print Network [OSTI]

ich and J. Stein. On the thermonuclear runaway in Type IaSmall-Scale Stability of Thermonuclear Flames o in Type IaS. E. Woosley. The thermonuclear explosion of chandrasekhar

Zingale, Michael; Almgren, Ann S.; Bell, John B.; Day, Marcus S.; Rendleman, Charles A.; Woosley, Stan

2007-01-01T23:59:59.000Z

326

Archive Reference Buildings by Building Type: Warehouse  

Broader source: Energy.gov [DOE]

Here you will find past versions of the reference buildings for new construction commercial buildings, organized by building type and location. A summary of building types and climate zones is...

327

Archive Reference Buildings by Building Type: Supermarket  

Broader source: Energy.gov [DOE]

Here you will find past versions of the reference buildings for new construction commercial buildings, organized by building type and location. A summary of building types and climate zones is...

328

Crystal of GTP Cyclohydrolase Type IB  

DOE Patents [OSTI]

This invention relates to a novel, bacterial GTP Cyclohydrolase Type IB enzyme, and the crystal structure thereof.

Swairjo, Manal A.; Iwata-Reuyl, Dirk; de Crecy-Lagard, Valerie

2012-12-11T23:59:59.000Z

329

Dependent types for JavaScript  

Science Journals Connector (OSTI)

We present Dependent JavaScript (DJS), a statically typed dialect of the imperative, object-oriented, dynamic language. DJS supports the particularly challenging features such as run-time type-tests, higher-order functions, extensible objects, prototype ... Keywords: JavaScript, arrays, prototype inheritance, refinement types, strong updates

Ravi Chugh; David Herman; Ranjit Jhala

2012-11-01T23:59:59.000Z

330

Type IV Pilin Proteins: Versatile Molecular Modules  

Science Journals Connector (OSTI)

...2012 review-article Reviews Type IV Pilin Proteins...adaptable functional plan. The type IV pilin is...substrates. In this review, we consider recent...adaptable functional plan. The type IV pilin is...substrates. In this review, we consider recent...

Carmen L. Giltner; Ylan Nguyen; Lori L. Burrows

2012-12-01T23:59:59.000Z

331

Aspectual Session Types Nicolas Tabareau Mario Sdholt  

E-Print Network [OSTI]

Aspectual Session Types Nicolas Tabareau Mario Südholt ASCOLA Team Mines Nantes & Inria & LINA locally in each peer. Well-typed processes behave accordingly to the global protocol specification to support modular extensions with aspectual session types, a static pointcut/advice mechanism at the session

Paris-Sud XI, Université de

332

Types of Commissioning | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Types of Commissioning Types of Commissioning Types of Commissioning October 7, 2013 - 9:17am Addthis Several commissioning types exist to address the specific needs of equipment and systems across both new and existing buildings. The following commissioning types provide a good overview. New Building Commissioning New building commissioning happens during the design and construction of new facilities. The process ensures that systems and equipment in new buildings operate properly. This is done through design reviews, functional testing, system documentation, and operator training. Federal agencies should consider new building commissioning when building new facilities or undergoing major facility renovations. The process is best implemented through all phases of construction.

333

Property:Water Type | Open Energy Information  

Open Energy Info (EERE)

Type Type Jump to: navigation, search Property Name Water Type Property Type String Pages using the property "Water Type" Showing 25 pages using this property. (previous 25) (next 25) 1 1.5-ft Wave Flume Facility + Freshwater + 10-ft Wave Flume Facility + Freshwater + 11-ft Wave Flume Facility + Freshwater + 2 2-ft Flume Facility + Freshwater + 3 3-ft Wave Flume Facility + Freshwater + 5 5-ft Wave Flume Facility + Freshwater + 6 6-ft Wave Flume Facility + Freshwater + A Alden Large Flume + Freshwater + Alden Small Flume + Freshwater + Alden Tow Tank + Freshwater + Alden Wave Basin + Freshwater + B Breakwater Research Facility + Freshwater + Bucknell Hydraulic Flume + Freshwater + C Carderock 2-ft Variable Pressure Cavitation Water Tunnel + Freshwater +

334

Property Types, Definitions, and Use Detail  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Types, Definitions, and Use Details Types, Definitions, and Use Details The property types listed on pages 1 through 7 are eligible to receive the 1-100 ENERGY STAR score. The Use Details marked with an asterisk are required in order to receive a score. Portfolio Manager now contains more than 80 property types to choose from when setting up your property, in order to best identify the primary use of your property. Although the building types for which the 1-100 ENERGY STAR score is currently available will not change, the expanded list of property types that can be selected will offer users more specific and accurate categorization for comparison. See below for the full list of property types available in Portfolio Manager, along with their definitions and the property use details that you will need to enter.

335

Property:Incentive/Type | Open Energy Information  

Open Energy Info (EERE)

Type Type Jump to: navigation, search Property Name Incentive/Type Property Type Page Description Incentive Type. Subproperties This property has the following 1 subproperty: I Filter:Incentives By Type Pages using the property "Incentive/Type" Showing 25 pages using this property. (previous 25) (next 25) 2 2003 Climate Change Fuel Cell Buy-Down Program (Federal) + Federal Grant Program + 3 30% Business Tax Credit for Solar (Vermont) + Corporate Tax Credit + 4 401 Certification (Vermont) + Environmental Regulations + A AEP (Central and North) - CitySmart Program (Texas) + Utility Rebate Program + AEP (Central and North) - Residential Energy Efficiency Programs (Texas) + Utility Rebate Program + AEP (Central and SWEPCO) - Coolsaver A/C Tune Up (Texas) + Utility Rebate Program +

336

Property:Document type | Open Energy Information  

Open Energy Info (EERE)

Document type Document type Jump to: navigation, search Property Name Document type Property Type String Description The type of document as a string. This property is used by a variety of concepts including Reference Materials and may contain document types appropriate for multiple concepts. Allows Values Book;Book Review;Book Section;Conference Paper;Conference Proceedings;General;Info Graphic/Map/Chart;Journal Article;Legal;Memorandum;Periodical;Personal Communication;Poster;Report;Thesis/Dissertation;Web Site Pages using the property "Document type" Showing 25 pages using this property. (previous 25) (next 25) 2 2-D Magnetotellurics At The Geothermal Site At Soultz-Sous-Forets- Resistivity Distribution To About 3000 M Depth + Journal Article + 2.8-Ma Ash-Flow Caldera At Chegem River In The Northern Caucasus Mountains (Russia), Contemporaneous Granites, And Associated Ore Deposits + Journal Article +

337

Empirical assessment of a prismatic daylight-redirecting window film in a full-scale office testbed  

SciTech Connect (OSTI)

Daylight redirecting systems with vertical windows have the potential to offset lighting energy use in deep perimeter zones. Microstructured prismatic window films can be manufactured using low-cost, roll-to-roll fabrication methods and adhered to the inside surface of existing windows as a retrofit measure or installed as a replacement insulating glass unit in the clerestory portion of the window wall. A clear film patterned with linear, 50-250 micrometer high, four-sided asymmetrical prisms was fabricated and installed in the south-facing, clerestory low-e, clear glazed windows of a full-scale testbed facility. Views through the film were distorted. The film was evaluated in a sunny climate over a two-year period to gauge daylighting and visual comfort performance. The daylighting aperture was small (window-towall ratio of 0.18) and the lower windows were blocked off to isolate the evaluation to the window film. Workplane illuminance measurements were made in the 4.6 m (15 ft) deep room furnished as a private office. Analysis of discomfort glare was conducted using high dynamic range imaging coupled with the evalglare software tool, which computes the daylight glare probability and other metrics used to evaluate visual discomfort. The window film was found to result in perceptible levels of discomfort glare on clear sunny days from the most conservative view point in the rear of the room looking toward the window. Daylight illuminance levels at the rear of the room were significantly increased above the reference window condition, which was defined as the same glazed clerestory window but with an interior Venetian blind (slat angle set to the cut-off angle), for the equinox to winter solstice period on clear sunny days. For partly cloudy and overcast sky conditions, daylight levels were improved slightly. To reduce glare, the daylighting film was coupled with a diffusing film in an insulating glazing unit. The diffusing film retained the directionality of the redirected light spreading it within a small range of outgoing angles. This solution was found to reduce glare to imperceptible levels while retaining for the most part the illuminance levels achieved solely by the daylighting film.

Thanachareonkit, Anothai; Lee, Eleanor S.; McNeil, Andrew

2013-08-31T23:59:59.000Z

338

Property:TypeOf | Open Energy Information  

Open Energy Info (EERE)

TypeOf TypeOf Jump to: navigation, search Property Name TypeOf Property Type Page Description Similar to Property:PartOf, this property identifies pages that represent a less specific concept or idea than the subject page. For example, CSP is a TypeOf Solar Power Generation. Pages using the property "TypeOf" Showing 25 pages using this property. (previous 25) (next 25) 2 2-M Probe Survey + Data Collection and Mapping + A Acoustic Logs + Well Log Techniques + Active Seismic Techniques + Seismic Techniques + Active Sensors + Remote Sensing Techniques + Aerial Photography + Passive Sensors + Aeromagnetic Survey + Magnetic Techniques + Airborne Electromagnetic Survey + Electromagnetic Techniques + Airborne Gravity Survey + Gravity Techniques + Analytical Modeling + Modeling Techniques +

339

Type II Einstein spacetimes in higher dimensions  

E-Print Network [OSTI]

This short note shows that many of the results derived by Pravda et al (Class. Quant. Grav. 24 4407-4428) for higher-dimensional Type D Einstein spacetimes can be generalized to all Einstein spacetimes admitting a multiple WAND; the main new result being the extension to include the Type II case. Examples of Type D Einstein spacetimes admitting non-geodesic multiple WANDs are given in all dimensions greater than 4.

Mark Durkee

2009-04-28T23:59:59.000Z

340

Property:Geothermal/Type | Open Energy Information  

Open Energy Info (EERE)

Type Type Jump to: navigation, search This is a property of type String. Pages using the property "Geothermal/Type" Showing 25 pages using this property. (previous 25) (next 25) 4 4 UR Guest Ranch Pool & Spa Low Temperature Geothermal Facility + Pool and Spa + A Ace Development Aquaculture Low Temperature Geothermal Facility + Aquaculture + Agua Calientes Trailer Park Space Heating Low Temperature Geothermal Facility + Space Heating + Alive Polarity's Murrietta Hot Spring Pool & Spa Low Temperature Geothermal Facility + Pool and Spa + Americulture Aquaculture Low Temperature Geothermal Facility + Aquaculture + Aq Dryers Agricultural Drying Low Temperature Geothermal Facility + Agricultural Drying + Aqua Caliente County Park Pool & Spa Low Temperature Geothermal Facility + Pool and Spa +

Note: This page contains sample records for the topic "glazings glazing type" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Type B Accident Investigation, Subcontractor Employee Personal...  

Broader source: Energy.gov (indexed) [DOE]

ignited the right leg of his 100% cotton anticontamination (anti-c) coveralls and the plastic bootie. Type B Accident Investigation, Subcontractor Employee Personal Protective...

342

Type Inferencing and MATLAB to Modelica Translation.  

E-Print Network [OSTI]

?? Matlab is a proprietary, interactive, dynamically-typed language for technical computing. It is widely used for prototyping algorithms and applications of scientific computations. Since it… (more)

Mohammad, Jahanzeb

2014-01-01T23:59:59.000Z

343

Playing games with EPR-type experiments  

E-Print Network [OSTI]

An approach towards quantum games is proposed that uses the unusual probabilities involved in EPR-type experiments directly in two-player games.

Azhar Iqbal

2005-07-17T23:59:59.000Z

344

Advanced Topics in Types and Programming Languages  

E-Print Network [OSTI]

Advanced Topics in Types and Programming Languages Benjamin C. Pierce, editor The MIT Press Advanced Topics in Types and programming languages / Benjamin C. Pierce, editor p. cm. Includes bibliographical references and index. ISBN 0-262-16228-8 (hc.: alk. paper) 1. Programming languages (Electronic

Pitts, Andrew

345

WASTE DESCRIPTION TYPE OF PROJECT POUNDS REDUCED,  

E-Print Network [OSTI]

Fuel oil and Turkey Based Biofuel Energy Rocovery 12,000 Industrial Waste $30,000 $500 $29,500 1500WASTE DESCRIPTION TYPE OF PROJECT POUNDS REDUCED, REUSED, RECYCLED OR CONSERVED IN 2006 WASTE TYPE DESCRIPTION DETAILS * Aerosol Can Disposal System Recycling 528 66 pounds of hazardous waste per unit $7

346

GPUs Neutron Sensitivity Dependence on Data Type  

Science Journals Connector (OSTI)

Graphics Processing Units are very prone to be corrupted by neutrons. Experimental results obtained irradiating the GPU with high energy neutrons show that the input data type has a strong influence on the neutron-induced error-rate of the executed algorithms. ... Keywords: Data types, GPU, Neutron radiation testing, Precision, Reliability

P. Rech, C. Frost, L. Carro

2014-06-01T23:59:59.000Z

347

Archived Reference Building Type: Medium office  

Broader source: Energy.gov [DOE]

Here you will find past versions of the commercial reference building models for existing buildings constructed before 1980, organized by building type and location. A summary ofbuilding types and climate zones is available for reference. Current versions are also available.

348

Archived Reference Building Type: Medium office  

Broader source: Energy.gov [DOE]

Here you will find past versions of the commercial reference building models for existing buildings constructed in or after 1980, organized by building type and location. A summary of building types and climate zones is available for reference. Current versions are also available.

349

Estimate Greenhouse Gas Emissions by Building Type  

Broader source: Energy.gov [DOE]

Starting with the programs contributing the greatest proportion of building greenhouse gas (GHG) emissions, the agency should next determine which building types operated by those programs use the most energy (Figure 1). Energy intensity is evaluated instead of emissions in this approach because programs may not have access to emissions data by building type.

350

Notes on Typing Mathematical Michael A. Covington  

E-Print Network [OSTI]

but requires some effort to learn; I recommend buying, and working through, the handbook by Leslie Lamport. 2 Physical format of your paper When you type a scholarly paper, do not invent a new format; follow ex in charts, tables, and illustrations, but not in ordinary text. Underlined type does not normally appear

Covington, Michael A.

351

Archived Reference Building Type: Midrise Apartment  

Broader source: Energy.gov [DOE]

Here you will find past versions of the commercial reference building models for existing buildings constructed in or after 1980, organized by building type and location. A summary of building types and climate zones is available for reference. Current versions are also available.

352

Archived Reference Building Type: Midrise Apartment  

Broader source: Energy.gov [DOE]

Here you will find past versions of the commercial reference building models for existing buildings constructed before 1980, organized by building type and location. A summary ofbuilding types and climate zones is available for reference. Current versions are also available.

353

Archived Reference Building Type: Outpatient health care  

Broader source: Energy.gov [DOE]

Here you will find past versions of the commercial reference building models for existing buildings constructed in or after 1980, organized by building type and location. A summary of building types and climate zones is available for reference. Current versions are also available.

354

Archived Reference Building Type: Outpatient health care  

Broader source: Energy.gov [DOE]

Here you will find past versions of the commercial reference building models for existing buildings constructed before 1980, organized by building type and location. A summary ofbuilding types and climate zones is available for reference. Current versions are also available.

355

Serum markers for type II diabetes mellitus  

DOE Patents [OSTI]

A method for identifying persons with increased risk of developing type 2 diabetes mellitus utilizing selected biomarkers described hereafter either alone or in combination. The present invention allows for broad based, reliable, screening of large population bases and provides other advantages, including the formulation of effective strategies for characterizing, archiving, and contrasting data from multiple sample types under varying conditions.

Metz, Thomas O; Qian, Wei-Jun; Jacobs, Jon M; Polpitiya, Ashoka D; Camp, II, David G; Smith, Richard D

2014-03-18T23:59:59.000Z

356

Office Buildings - Types of Office Buildings  

U.S. Energy Information Administration (EIA) Indexed Site

PDF Office Buildings PDF Office Buildings Types of Office Buildings | Energy Consumption | End-Use Equipment Although no one building type dominates the commercial buildings sector, office buildings are the most common and account for more than 800,000 buildings or 17 percent of total commercial buildings. Offices comprised more than 12 billion square feet of floorspace, 17 percent of total commercial floorspace, the most of any building type. Types of Office Buildings The 2003 CBECS Detailed Tables present data for office buildings along with other principal building activities (see Detailed Tables B13 and B14, for example). Since office buildings comprise a wide range of office-related activities, survey respondents were presented with a follow-up list of specific office types to choose from. Although we have not presented the

357

CBECS Building Types | Open Energy Information  

Open Energy Info (EERE)

CBECS Building Types CBECS Building Types Jump to: navigation, search The list below contains the Building Type classifications, also known as Principal Building Activity, established by the Commercial Buildings Energy Consumption Survey (CBECS) performed by the U.S. Energy Information Administration (EIA)[1]. Education Food Sales Food Service Health Care (Inpatient) Health Care (Outpatient) Lodging Mercantile (Enclosed and Strip Malls) Mercantile (Retail Other Than Mall) Office Other Public Assembly Public Order and Safety Religious Worship Service Vacant Warehouse and Storage References ↑ EIA CBECS Building Types U.S. Energy Information Administration (Oct 2008) Retrieved from "http://en.openei.org/w/index.php?title=CBECS_Building_Types&oldid=270205" What links here Related changes

358

Types of Lighting | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Types of Lighting Types of Lighting Types of Lighting October 17, 2013 - 5:36pm Addthis When it comes to lighting options, you have a number of choices. | Photo courtesy of Clean Energy Resource Teams. When it comes to lighting options, you have a number of choices. | Photo courtesy of Clean Energy Resource Teams. You have several options to consider when selecting what type of lighting you should use in your home. When selecting energy-efficient lighting, it's a good idea to understand basic lighting terms and principles. Also, it helps to explore your lighting design options if you haven't already. This will help narrow your selection. Types of lighting include: Fluorescent

359

Property:DIA/Type | Open Energy Information  

Open Energy Info (EERE)

DIA/Type DIA/Type Jump to: navigation, search Property Name DIA/Types Property Type String Description Development Impacts Assessment Toolkit property to help filter pages Used in Form/Template Tool Allows Values Case Studies;Online Tools;Reports;Spreadsheet;Software;Guidebook/Manual Subproperties This property has the following 1 subproperty: E Energy Forecasting Framework and Emissions Consensus Tool (EFFECT) Pages using the property "DIA/Type" Showing 15 pages using this property. A Alternative Fuel and Advanced Technology Vehicles Pilot Program Emissions Benefit Tool + Online Tools + Applied Dynamic Analysis of the Global Economy (ADAGE) Model + Software + C COMMUTER Model + Spreadsheet + E E3MG + Software + Electricity Markets Analysis (EMA) Model + Software +

360

Property:CompanyType | Open Energy Information  

Open Energy Info (EERE)

CompanyType CompanyType Jump to: navigation, search Property Name CompanyType Property Type String Description Describes whether the company is for profit or non profit. Allows Values For Profit;For profit;Non Profit;Non profit Subproperties This property has the following 4 subproperties: A Able Energy Co. C Canary Investments Ltd. H Hyperion Green Energy India Pvt. Ltd. P PowerIt Renewable Energy Pvt Ltd Pages using the property "CompanyType" Showing 25 pages using this property. (previous 25) (next 25) 4 4C Offshore Limited + For Profit + A AEE Renewables + For Profit + ALDACOR INC + For Profit + Ads-tec GmbH + For Profit + Advanced Energy Solutions + For Profit + All Solar, Inc. + For Profit + B Buffalo Software + For Profit + C Community Energy Inc + For Profit +

Note: This page contains sample records for the topic "glazings glazing type" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Job Types | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

Types | National Nuclear Security Administration Types | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Job Types Home > Federal Employment > Our Jobs > Job Types Job Types NNSA's workforce is comprised of a diverse and dynamic blend of individuals. We are a staff of top-performing program and technical experts with unbounded potential, a dedication to public service and a commitment

362

Overload permit rules applicable to H-type and HS-type bridges.  

E-Print Network [OSTI]

??This document defines standards for issuing permits for overweight vehicles crossing standard H-type and HS-type Texas highway bridges. A general formula and a bridge specific… (more)

Litchfield, Stephen Charles

2012-01-01T23:59:59.000Z

363

Hardy-Sobolev type inequalities on the H-type group  

Science Journals Connector (OSTI)

Motivated by the idea of Badiale and Tarantello who have found Hardy-Sobolev inequalities on R n , a class of Hardy-Sobolev type inequalities on H-type groups is...

Yazhou Han; Pengcheng Niu

2005-10-01T23:59:59.000Z

364

Property:FacilityType | Open Energy Information  

Open Energy Info (EERE)

FacilityType FacilityType Jump to: navigation, search This is a property of type Page. Pages using the property "FacilityType" Showing 25 pages using this property. (previous 25) (next 25) 3 3-D Metals + Small Scale Wind + A AB Tehachapi Wind Farm + Commercial Scale Wind + AFCEE MMR Turbines + Commercial Scale Wind + AG Land 1 + Community Wind + AG Land 2 + Community Wind + AG Land 3 + Community Wind + AG Land 4 + Community Wind + AG Land 5 + Community Wind + AG Land 6 + Community Wind + AV Solar Ranch I Solar Power Plant + Photovoltaics + AVTEC + Small Scale Wind + Acme Landfill Biomass Facility + Landfill Gas + Adair Wind Farm I + Commercial Scale Wind + Adair Wind Farm II + Commercial Scale Wind + Adams Wind Project + Commercial Scale Wind + Adrian Energy Associates LLC Biomass Facility + Landfill Gas +

365

Lighting Control Types | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Lighting Control Types Lighting Control Types Lighting Control Types October 7, 2013 - 11:27am Addthis Characteristics of the most common lighting controls for offices and other public buildings are outlined below. Also provided is a portable document format version of How to Select Lighting Controls for Offices and Public Buildings. Typical Lighting Control Applications Type of Control Private Office Open Office - Daylit Open Office - Interior Occupancy Sensors ++ ++ ++ Time Scheduling + ++ ++ Daylight Dimming ++ ++ 0 Bi-Level Switching ++ + + Demand Lighting + ++ ++ ++ = good savings potential + = some savings potential 0 = not applicable Back to Top Occupancy Sensors Occupancy sensors are the most common lighting control used in buildings today. Two technologies dominate: infrared and ultrasonic. Infrared sensors

366

Why Sequence Type I and II Methanotrophs?  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Type I and II Methanotrophs? Type I and II Methanotrophs? Methanotrophic bacteria are absolutely vital for the global carbon cycle and to carbon sequestration, as they constitute the largest known biological methane sink. Methanotrophs are also central to the bioremediation and biofuel development goals of the DOE. To date, only two methanotrophic bacteria have undergone complete genome sequencing, and only one sequence is available to the public. Methanotrophs are distinguished from other microorganisms by their ability to utilize methane as a sole carbon and energy source, yet they are physiologically and phylogenetically diverse, affiliating with both Gammaproteobacteria (type I methanotrophs) and Alphaproteobacteria (type II methanotrophs). Methanotrophs are ubiquitous and play a major role in the

367

Property:Technology Type | Open Energy Information  

Open Energy Info (EERE)

Technology Type Technology Type Property Type Text Pages using the property "Technology Type" Showing 25 pages using this property. (previous 25) (next 25) M MHK Technologies/14 MW OTECPOWER + OTEC - Closed Cycle MHK Technologies/Aegir Dynamo + Point Absorber - Floating MHK Technologies/Anaconda bulge tube drives turbine + Oscillating Wave Surge Converter MHK Technologies/AquaBuoy + Point Absorber MHK Technologies/Aquanator + Cross Flow Turbine MHK Technologies/Aquantis + Axial Flow Turbine MHK Technologies/Archimedes Wave Swing + Point Absorber MHK Technologies/Atlantis AN 150 + Axial Flow Turbine MHK Technologies/Atlantis AR 1000 + Axial Flow Turbine MHK Technologies/Atlantis AS 400 + Axial Flow Turbine MHK Technologies/Atlantisstrom + Cross Flow Turbine MHK Technologies/BOLT Lifesaver + Oscillating Wave Surge Converter

368

Types of Hydropower Turbines | Department of Energy  

Energy Savers [EERE]

type of hydropower turbine selected for a project is based on the height of standing water-referred to as "head"-and the flow, or volume of water, at the site. Other deciding...

369

Operations and Maintenance for Major Equipment Types  

Broader source: Energy.gov [DOE]

Equipment lies at the heart of all operations and maintenance (O&M) activities. This equipment varies greatly across the Federal sector in age, size, type, model, condition, etc.

370

Experimental Investigation of a New Type Expander  

Science Journals Connector (OSTI)

An experimental study of a new type of expander, the Rotary Jet Expander (RJE), has been conducted to advance ... cryogenic engineering. In contrast to reciprocating and turbo-expanders, an RJE is simple in const...

Jian Shao; Yudi Bao; Yongnian Shen; Yangpu Feng…

1986-01-01T23:59:59.000Z

371

Principal Types of Volcanoes | Open Energy Information  

Open Energy Info (EERE)

Volcanoes Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Principal Types of Volcanoes Abstract Abstract unavailable. Author John Watson Published U.S....

372

Property:Study Type | Open Energy Information  

Open Energy Info (EERE)

Type Type Jump to: navigation, search This is a property of type Page. Pages using the property "Study Type" Showing 22 pages using this property. D Distributed Generation Study/10 West 66th Street Corp + Long-term Monitoring + Distributed Generation Study/615 kW Waukesha Packaged System + Laboratory Test + Distributed Generation Study/Aisin Seiki G60 at Hooligans Bar and Grille + Field Test + Distributed Generation Study/Arrow Linen + Long-term Monitoring + Distributed Generation Study/Dakota Station (Minnegasco) + Case Study + Distributed Generation Study/Elgin Community College + Case Study + Distributed Generation Study/Emerling Farm + Long-term Monitoring + Distributed Generation Study/Floyd Bennett + Long-term Monitoring + Distributed Generation Study/Harbec Plastics + Long-term Monitoring +

373

Amendment 1 - Dry-type power transformers  

E-Print Network [OSTI]

Specifies requirements for dry-type power transformers (including auto-transformers) having values of highest voltage for equipment up to and including 36 kV. The following small and special dry-type transformers are not covered by this standard: -instrument transformers (covered by IEC 60185 and 60186); -transformers for static convertors (covered by IEC 60084, 60119 and 60146). Where IEC standards do not exist for other special transformers, this standard may be applicable as a whole or in part.

International Electrotechnical Commission. Geneva

1986-01-01T23:59:59.000Z

374

Transformateurs de puissance de type sec  

E-Print Network [OSTI]

Specifies requirements for dry-type power transformers (including auto-transformers) having values of highest voltage for equipment up to and including 36 kV. The following small and special dry-type transformers are not covered by this standard: -instrument transformers (covered by IEC 60185 and 60186); -transformers for static convertors (covered by IEC 60084, 60119 and 60146). Where IEC standards do not exist for other special transformers, this standard may be applicable as a whole or in part.

International Electrotechnical Commission. Geneva

1982-01-01T23:59:59.000Z

375

Types of Land Degradation in Bhutan  

E-Print Network [OSTI]

of other nutrients Possible eutrophication or contamination of streams Excessive P fertiliser (potato and apple crops) Possible excess P fertiliser applied to apples in W Bhutan Eutrophicatio n unlikely in fast flowing streams... highly vulnerable to surface erosion Effluents from plants, workshops & urban waste Not extensive – but some cases around Thimphu & in South Table 2: Types of Degradation (In Situ Degradation-Physical) 1. Soil Type: Topsoil...

Chencho Norbu et al,

2003-01-01T23:59:59.000Z

376

Step-by-Step Instructions  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Hawaii Hawaii based upon the simple prescriptive option of the 2012 IECC. It does not provide a guarantee for meeting the IECC. This guide is not designed to reflect the actual energy code, with amendments, if any, adopted in Hawaii and does not, therefore, provide a guarantee for meeting the state energy code. For details on the energy code adopted by Hawaii, including how it may differ from the IECC, please contact your local building code official. Additional copies of this guide are available on www.reca-codes.com. CLIMATE ZONE 1 Hawaii Honolulu Kauai Maui Windows Insulation Foundation Fenestration U-Factor Skylight U-Factor Glazed Fenestration SHGC Ceiling R-Value Wood Frame Wall R-Value Mass Wall R-Value Floor

377

LBNL Window & Daylighting Software -- WINDOW 6 Research Version  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

2 2 Last Updated: 12/29/2013 If you find bugs, or have comments about this version, please do not hesitate to send an email to WINDOWHelp@lbl.gov to report your findings. Getting feedback from users is how we improve the program. WINDOW 7.2 (7.2.29) (12/29/2013) Release Notes -- Please read these before running this version ! This version contains these new modeling features Honeycomb shades Dynamic Glazing (Thermochromic and Electrochromic) This version is compatible with THERM 7.1 Please send us emails as you find issues in the program -- that is the only way that we can make it more robust. We hope to iterate versions fairly quickly in the next month or so to get the bugs ironed out. Radiance for WINDOW 7 Get a copy of Radiance for WINDOW 7.2 Must be used with WINDOW 7.0.59 or later

378

Overview : Daylighting The New York Times Building  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Overview Overview Overview The architectural approach The owner's approach Daylighting field study Daylighting control systems Automated roller shades Procurement specifications Shades and Shade Controls Lighting Controls Visualizing daylight Commissioning/ verification Demand response Mainstream solutions Post-occupancy evaluation Publications Sponsors Project team Overview "Despite the growing interest in daylighting, "getting it right" remains a challenge. Elegant images in architectural magazines don't automatically translate into sustainable designs with proven comfort and energy performance. Controlling thermal heat loss and gain can be largely addressed with highly insulating glazing technologies on the market today. However, controlling solar gain and managing daylight, view, and glare is at a much earlier stage in terms of cost-effective, available solutions."

379

Welcome to the Efficient Windows Collaborative  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Considerations for Window Performance Considerations for Window Performance Advanced window technologies can have a major effect on comfort and on the annual energy performance of a house. However, there is a broader and possibly more significant impact of the recent revolution in window performance. Because the new glazing technologies provide highly effective insulating value and solar protection, there are important implications for how a house is designed. There is a long-established set of window design guidelines and assumptions intended to reduce heating and cooling energy use. These are based, in part, on the historical assumption that windows were the weak link in the building envelope. These assumptions frequently created limitations on design freedom or generated conflicts with other performance requirements,

380

Laser Applications Laboratory - Nuclear Engineering Division (Argonne)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Capabilities > Engineering Capabilities > Engineering Experimentation > Laser Applications Laboratory Capabilities Engineering Experimentation Reactor Safety Experimentation Aerosol Experiments System Components Laser Applications Overview Laser Oil & Gas Well Drilling Laser Heat Treatment Laser Welding of Metals On-line Monitoring Laser Beam Delivery Laser Glazing of Railroad Rails High Power Laser Beam Delivery Decontamination and Decommissioning Refractory Alloy Welding Robots Applications Other Facilities Other Capabilities Work with Argonne Contact us For Employees Site Map Help Join us on Facebook Follow us on Twitter NE on Flickr Laser Applications Laboratory The Laser Applications Laboratory (LAL) houses two high-power laser systems, complete with diagnostics for materials-processing functions - a 6 kW CO2 laser and a 1.6 kW pulsed Nd:YAG laser.

Note: This page contains sample records for the topic "glazings glazing type" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Market Transformation Efforts for Residential Energy-Efficient Windows: An Update of National Activities  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Transformation Efforts for Residential Energy Efficient Windows: Transformation Efforts for Residential Energy Efficient Windows: An Update of National Activities Alecia Ward, Alliance to Save Energy Margaret Suozzo, American Council for an Energy Efficient Economy Joseph Eto, Lawrence Berkeley National Laboratory ABSTRACT With the burst of recent initiatives to accelerate adoption of energy-efficient fenestration technologies in the marketplace, an update on window market transformation efforts is needed. Because of the impact of glazing on total home energy performance, the residential window market has received increasing attention over the past two years. National programs such as the ENERGY STAR Windows program, the Efficient Windows Collaborative, and regional initiatives such as the California Windows Initiative and the

382

 

Broader source: Energy.gov (indexed) [DOE]

This determination is limited to the activities listed This determination is limited to the activities listed above, as outlined in the applicants budget justification documents. X - B5.1 Actions to conserve energy Construction of the "Center of Excellence for Diabetes Care and Prevention" (Diabetes Center). Funds will specifically be used to cover costs of incorporating the following "green" technologies and energy efficiency components/features/processes into the separately funded new facility: * Increase insulation of walls and roofs above code minimums * Provide high efficiency (high R value & argon gas) glazing in windows * Provide Energy Star condensing (2) boilers used for in-slab radiant heating * Provide daylight where possible/practical to reduce electricity usage and shading devices to control daylight to interiors

383

Windows and Daylighting  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Office building exterior Office building exterior Windows and Daylighting Windows research is aimed at improving energy efficiency in buildings and homes across the nation. Research includes: New glazing materials Windows simulation software Advanced high-performance fenestration systems Daylighting technologies Measurement of window properties Windows performance in residential and commercial buildings. Contacts Stephen Selkowitz SESelkowitz@lbl.gov (510) 486-5064 Eleanor Lee ESLee@lbl.gov (510) 486-4997 Charlie Curcija DCCurcija@lbl.gov (510) 495-2602 Links Windows and Daylighting Daylighting the New York Times Headquarters Building Batteries and Fuel Cells Buildings Energy Efficiency Applications Commercial Buildings Cool Roofs and Heat Islands Demand Response Energy Efficiency Program and Market Trends

384

Fermilab Today  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

07 07 Subscribe | Contact Fermilab Today | Archive | Classifieds Search GO Calendar Mon., July 30 PARTICLE ASTROPHYSICS SEMINARS WILL RESUME IN THE FALL 3:30 p.m. DIRECTOR'S COFFEE BREAK - 2nd Flr X-Over 4:00 p.m. All Experimenters' Meeting - Curia II Tue., July 31 12:00 p.m. Summer Lecture Series - One West Speaker: M. Demarteau, Fermilab Title: Detectors 3:30 p.m. DIRECTOR'S COFFEE BREAK - 2nd Flr X-Over THERE WILL BE NO ACCELERATOR PHYSICS AND TECHNOLOGY SEMINAR TODAY Click here for NALCAL, a weekly calendar with links to additional information. Weather Weather Sunny 85°/63° Extended Forecast Weather at Fermilab Current Security Status Secon Level 3 Wilson Hall Cafe Monday, July 30 - No menu available Wilson Hall Cafe Menu Chez Leon Wednesday, August 1 Lunch - Parsley poblano salad w/orange glazed beef

385

Industry Related Projects [Laser Applications Laboratory] - Nuclear  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Industry Related Projects Industry Related Projects Capabilities Engineering Experimentation Reactor Safety Experimentation Aerosol Experiments System Components Laser Applications Overview Laser Oil & Gas Well Drilling Laser Heat Treatment Laser Welding of Metals On-line Monitoring Laser Beam Delivery Laser Glazing of Railroad Rails High Power Laser Beam Delivery Decontamination and Decommissioning Refractory Alloy Welding Robots Applications Other Facilities Other Capabilities Work with Argonne Contact us For Employees Site Map Help Join us on Facebook Follow us on Twitter NE on Flickr Laser Applications Laboratory Industry related projects Bookmark and Share LASER OIL & GAS WELL DRILLING Using high-power lasers to drill and complete gas & oil wells LASER HEAT TREATMENT Optimization of laser beam heat treatment (Caterpillar and USCAR)

386

arch layout 11.21.98  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Daylighting algorithms Daylighting algorithms IMAGE imgs/esl375.jpg The tools for describing the performance of daylighting systems are limited, in part because there is currently little research activity within industry and the business community to advance the science of daylighting with "advanced" window systems, such as automated blinds or holographic glazings. A new approach was devised that combined experimen- tal measurements with simulation tools to produce an accurate characterization of interior illuminance levels. This method is combined with an energy simulation engine such as DOE-2 to produce estimates of annual energy usage. The work provided a basis for more flex- ible daylight modeling tools that can ultimately be used by conventional engineering consultants.

387

Chapter 4 makefile file piece  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

. 1 . 1 Comparison of WINDOW 5 / THERM 5 and WINDOW 6 / THERM 6 Results for Specular Glazing Systems Robin Mitchell and Christian Kohler Windows and Daylighting Group Building Technologies Department Environmental Energy Technologies Division Lawrence Berkeley National Laboratory Berkeley, California 94720 http://windows.lbl.gov/software/software.html D. Charlie Curcija Carli, Inc Amherst, Massachusetts July 19, 2010  Regents of the University of California This work was supported by the Assistant Secretary for Energy Efficiency and Renewable Energy, Office of Building Technology, State and Community Programs, Office of Building Systems of the U.S. Department of Energy under Contract No. DE-AC03-76SF00098. JULY 19, 2010 1. Overview

388

Fermilab Today  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

8, 2003 8, 2003 Calendar Thursday, December 18 THERE WILL BE NO THEORETICAL PHYSICS SEMINAR THIS WEEK 3:30 p.m. DIRECTOR'S COFFEE BREAK - 2nd Flr X-Over THERE WILL BE NO ACCELERATOR PHYSICS AND TECHNOLOGY SEMINAR TODAY Friday, December 19 3:30 p.m. DIRECTOR'S COFFEE BREAK - 2nd Flr X-Over THERE WILL BE NO JOINT EXPERIMENTAL THEORETICAL PHYSICS SEMINAR THIS WEEK Cafeteria Thursday, December 18 Lentil soup Cider glazed chicken breast w/red potatoes and mixed vegetables (low in sodium) $3.50 Pasta arrabiata w/fennel, kalamata olives and spicy Italian sausage $3.50 Smoked salmon w/a dill caper cream cheese and red onion w/wild greens $5.50 Grilled chicken Cordon Bleu sandwich w/smoked Virginia ham and Swiss cheese on a toasted Kaiser roll $4.75 Hand rolled Hanabi sushi

389

Energy Blog | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

December 5, 2013 December 5, 2013 Researchers at Berkeley Lab helped develop the first energy-efficient dual-paned windows, now used in buildings and homes worldwide for billions of dollars in energy savings. Current windows research in the Environmental Energy Technologies Division at Berkeley Lab is aimed at developing new glazing materials, windows simulation software and other advanced high-performance window systems. The building shown here, located at Berkeley Lab, is a windows testing facility. | Photo courtesy of Roy Kaltschmidt, Lawrence Berkeley National Laboratory. Photo of the Week: The First Energy-Efficient Dual-Paned Windows Check out our favorite energy-related photos! December 4, 2013 In the photo above, a robot investigates a bomb threat at an arcade during the 2013 Robot Rodeo at Sandia Labs. The operators are not allowed to turn on the lights or turn off the machines, complicating the operation. | Photo by Randy Montoya, Sandia National Laboratories.

390

Welcome to the Efficient Windows Collaborative  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Fact Sheets & Publications: Books Fact Sheets & Publications: Books Residential Windows: A Guide to New Technology and Energy Performance Available from Norton Professional Books. exit disclaimer Single copy price: $35.00 USA; volume discounts available from publisher. Available from Amazon. exit disclaimer Window Systems for High-performance Buildings Available from Norton Professional Books. exit disclaimer Single copy price: $50.00 USA; volume discounts available from publisher. Available from Amazon. exit disclaimer Residential Windows: A Guide to New Technology and Energy Performance, 3rd Edition John Carmody, Stephen Selkowitz, Dariush Arasteh and Lisa Heschong Residential Windows The Department of Energy's Windows and Glazing Research Program supported the development of this book. Support was provided

391

OPTICS5  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Database Knowledge Base Database Knowledge Base Table of Contents GENERAL INFORMATION PRODUCT DATA ** Operating Systems -- Microsoft Windows 7 and Vista ** How do I keep the IGDB up to date with the latest product data? bullet Registration Issue: Can't Remember Account Password What is the International Glazing Database (IGDB)? How is the IGDB maintained? I have updated the database using the update wizard, but my Window5 database does not appear to be updated. How do I update my Window5 database? Why does the IGDB have two formats? How can I submit data from my company for public use? Where can I get the IGDB? How can I get my own measured data in the database for private use? What software do I need to use the IGDB? I would like to use the spectral data of a certain product but it is not in the database. Where can I get this data?

392

LBNL Windows & Daylighting Software -- COMFEN3: Knowledge Base  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

COMFEN 4.0 COMFEN 4.0 Knowledge Base Last update:09/11/13 11:38 AM Download COMFEN Release Notes (includes a list of changes to the program by version) Send feedback via email to COMFENHelp@lbl.gov. Also as bugs and comments are submitted by testers, they will be posted on this Knowledge Base, so check here for the latest information about the program. CONTENTS INSTALLATION KNOWN ISSUES Installation Issues -- Administrator Between Blind Slat Width Greater than Glazing System Gap Installation Issues -- Microsoft.NET Using COMFEN 3 databases in COMFEN 4 Installation Problems COMFEN 4 database is not compatible with COMFEN 3.1 program Installation Directories by Operating System Site To Source Multiplier -- changing it does not invalidate results Minimum computer requirements

393

DOE Solar Decathlon: Team Canada: Advancing Solar Technologies  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Northern Lights on the Concordia University campus. Enlarge image Northern Lights on the Concordia University campus. Enlarge image Team Canada's house features solar panels used as a roofing material and triple-glazed, south-facing windows to take advantage of the winter sun that shines on Concordia University's campus. (Courtesy of Concordia University) Who: Team Canada What: Northern Lights Where: Concordia University Loyola Campus 7141 Sherbrooke St. West Montréal, Quebec, Canada H4B 1R6 Map This House Public tours: Not available Solar Decathlon 2005 Team Canada: Advancing Solar Technologies The lone Canadian entry in the U.S. Department of Energy Solar Decathlon 2005 returned to the Loyola campus of Concordia University in Montreal, Quebec, following the competition. The solar-powered house, called Northern Lights, remains in good working order. It is used primarily for research.

394

LBNL Windows & Daylighting Software -- COMFEN3: Knowledge Base  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

5 5 (5.0.05 -- January 1, 2013) Last update:09/11/13 11:40 AM Download COMFEN Release Notes (includes a list of changes to the program by version) Send feedback via email to COMFENHelp@lbl.gov. Also as bugs and comments are submitted by testers, they will be posted on this Knowledge Base, so check here for the latest information about the program. CONTENTS INSTALLATION KNOWN ISSUES Installation Issues -- Administrator Between Blind Slat Width Greater than Glazing System Gap Installation Issues -- Microsoft.NET Site To Source Multiplier -- changing it does not invalidate results Installation Directories by Operating System Natural Ventilation -- heating load increases Minimum computer requirements Climate Data Does Not Display Project Database from Previous Versions -- where is it ?

395

Laser Welding and Post Weld Treatment of Modified 9Cr-1MoVNb Steel [Laser  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Laser Welding of Metals > Laser Welding of Metals > Laser Welding and Post Weld Treatment of Modified 9Cr-1MoVNb Steel Capabilities Engineering Experimentation Reactor Safety Experimentation Aerosol Experiments System Components Laser Applications Overview Laser Oil & Gas Well Drilling Laser Heat Treatment Laser Welding of Metals On-line Monitoring Laser Beam Delivery Laser Glazing of Railroad Rails High Power Laser Beam Delivery Decontamination and Decommissioning Refractory Alloy Welding Robots Applications Other Facilities Other Capabilities Work with Argonne Contact us For Employees Site Map Help Join us on Facebook Follow us on Twitter NE on Flickr Laser Applications Laboratory Laser Welding of Metals Laser Welding and Post Weld Treatment of Modified 9Cr-1MoVNb Steel Zhiyue Xu Nuclear Engineering Division of Argonne National Laboratory

396

Infrared Thermography Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Hollow vs. Foam-Filled Vinyl Windows Hollow vs. Foam-Filled Vinyl Windows Hollow vs. Foam-filled Vinyl Windows (100K) These two windows are the same except for what is inside the vinyl frames. The frame on the left is hollow, while the frame on the right is filled with insulating foam. The units have the same insulated glazing unit, a superwindow with R-8 center of glass. The hollow window frame allows air to circulate inside the frame; this convective effect is observed by noticing the frame temperatures are cooler at the bottom than at the top. The foam-filled window doesnÌt show this effect. These windows are being cooled on the back side with wind at -15°C (5°F). For more information contact: Howdy Goudey Building Technologies Program 510-486-6046 (fax) Return to the IRlab page Building Technologies | Energy & Environment Division | Lawrence Berkeley National Laboratory

397

Seeing Windows Through : Technologies : From the Lab to the  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Seeing Windows Through Seeing Windows Through From the Lab to the Marketplace Ten Years Later, Energy Efficient Technologies from Research at the Lawrence Berkeley National Laboratory Berkeley Lab logo (left) with six rows of gray dots transitioning to a line art drawing of a cityscape and residential houses. Seeing Windows Through Energy lost through residential and commercial windows costs U.S. consumers about $40 billion a year. Berkeley Lab pioneered the commercialization of "low-emissivity" windows and labeling systems, which reduce the energy lost through normal, double-glazed windows by 35%. Thanks to Berkeley Lab's close collaboration with window manufacturers, these advanced windows have a greater than 50- percent marketshare and save American consumers billions

398

NREL: Awards and Honors - PowerView Semi-Transparent Photovoltaic Module  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

PowerView(tm) Semi-Transparent Photovoltaic Module PowerView(tm) Semi-Transparent Photovoltaic Module Developers: Harrin Ullal, Ken Zweibel, and Bolko von Roedern, National Renewable Energy Laboratory; Robert S. Oswald and Frank Liu, BP Solar The PowerView(tm) module - a BP Solar commercial product - represents the coming of a new era in photovoltaics for buildings. Because it is semi-transparent, it can be used in lieu of architectural glass for many applications, particularly for those that call for sloped glazing, such as awnings, canopies, or slanted roofs. And because it is photovoltaics, the module uses sunlight to generate clean electricity to power a building's electrical needs. As testimony to the PowerView's utility BP Solar has already installed it on canopies of hundreds of its Connect stores -

399

High Performance Building Façade Solutions  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

High Performance Building Façade Solutions High Performance Building Façade Solutions High Performance Building Façade Solutions Buildings Technology Department, Environmental Energy Technologies Division, Lawrence Berkeley National Laboratory Glazing and façade systems have very large impacts on all aspects of commercial building performance. They directly influence peak heating and cooling loads, and indirectly influence lighting loads when daylighting is considered. In addition to being a major determinant of annual energy use, they can have significant impacts on peak cooling system sizing, electric load shape, and peak electric demand. Because they are prominent architectural and design elements and because they influence occupant preference, satisfaction and comfort, the design optimization challenge is

400

Glossary | Building Energy Codes Program  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

General Lighting General Lighting Lighting that provides a substantially uniform level of illumination throughout an area. General lighting shall not include decorative lighting or lighting that provides a dissimilar level of illumination to serve a specialized application or feature within an area. General Service Lamp A class of incandescent lamps that provide light in virtually all directions. General service lamps are typically characterized by bulb shapes such as A, standard; S, straight side; F, flame; G, globe; and PS, pear straight. Generally Accepted Engineering Standard A specification, rule, guide, or procedure in the field of engineering, or related thereto, recognized and accepted as authoritative. Glazed Wall System A category of site-assembled fenestration products, which includes, but is

Note: This page contains sample records for the topic "glazings glazing type" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

STATEMENT OF CONSIDERATIONS REQUEST BY PPG INDUSTRIES FOR AN ADVANCE WAIVER OF PATENT  

Broader source: Energy.gov (indexed) [DOE]

DE- DE- EE0001332; W(A)-10-05 ; CH-1544 PPG Industries requests an advance waiver of domestic and foreign patent rights for all subject inventions made under the referenced cooperative agreement. The purpose of the cooperative agreement is to research proof-of-concept into the design and fabrication of a glazing system that combines power generation and dynamic control of illumination into a single unit. Modeling and measurements of the light balance within the units will be performed to understand the operational b~havior of each subcomponent of the system and to evaluate the operation of such a unit in a building. Laboratory work will be done to develop the device structure, materials, and packaging for the PV sUbcomponent of the system. The methods and materials for fabrication of

402

Fermilab Today  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

8, 2004 8, 2004 Calendar Thursday, January 8 2:30 p.m. Theoretical Physics Seminar - Curia II Speaker: G. Kribs, Institute for Advanced Study Title: The Supersymmetric Composite "Fat Higgs" Model 3:30 p.m. DIRECTOR'S COFFEE BREAK - 2nd Flr X-Over 4:00 p.m. Accelerator Physics and Technology Seminar - 1 West Speaker: R. Thurman-Keup, Lucent Technologies Title: The World of Cellular Communications Friday, January 9 3:30 p.m. DIRECTOR'S COFFEE BREAK - 2nd Flr X-Over 4:00 p.m. Joint Experimental Theoretical Physics Seminar - 1 West Speaker: K. Hicks, Ohio University Title: Evidence for the Pentaquark: An Exotic Baryon Cafeteria Thursday, January 8 Old Fashioned Tomato soup Honely glazed pork chop w/two market sides $4.75 Chicken curry w/wild rice and apricots $3.50

403

Photo of the Week: The First Energy-Efficient Dual-Paned Windows |  

Broader source: Energy.gov (indexed) [DOE]

The First Energy-Efficient Dual-Paned Windows The First Energy-Efficient Dual-Paned Windows Photo of the Week: The First Energy-Efficient Dual-Paned Windows December 5, 2013 - 12:53pm Addthis Researchers at Berkeley Lab helped develop the first energy-efficient dual-paned windows, now used in buildings and homes worldwide for billions of dollars in energy savings. Current windows research in the Environmental Energy Technologies Division at Berkeley Lab is aimed at developing new glazing materials, windows simulation software and other advanced high-performance window systems. The building shown here, located at Berkeley Lab, is a windows testing facility. | Photo courtesy of Roy Kaltschmidt, Lawrence Berkeley National Laboratory. Researchers at Berkeley Lab helped develop the first energy-efficient

404

Smart Thermal Skins for Vehicles  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

8 8 Smart Thermal Skins for Vehicles With a modest effort, many of the energy-efficient technologies developed for buildings can be transferred to the transportation sector. The goal of vehicle thermal management research at LBL is to save the energy equivalent of one to two billion gallons of gasoline per year, and improve the marketability of next-generation vehicles using advanced solar control glazings and insulating shell components to reduce accessory loads. Spectrally selective and electrochromic window glass and lightweight insulating materials improve the fuel efficiency of conventional and hybrid vehicles and extend the range of electric vehicles by reducing the need for air conditioning and heating, and by allowing the downsizing of equipment.

405

Refractory Alloy Welding [Laser Applications Laboratory] - Nuclear  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Refractory Alloy Welding Refractory Alloy Welding Capabilities Engineering Experimentation Reactor Safety Experimentation Aerosol Experiments System Components Laser Applications Overview Laser Oil & Gas Well Drilling Laser Heat Treatment Laser Welding of Metals On-line Monitoring Laser Beam Delivery Laser Glazing of Railroad Rails High Power Laser Beam Delivery Decontamination and Decommissioning Refractory Alloy Welding Robots Applications Other Facilities Other Capabilities Work with Argonne Contact us For Employees Site Map Help Join us on Facebook Follow us on Twitter NE on Flickr Laser Applications Laboratory Refractory Alloy Welding Project description: Welding of refractory metals such as vanadium alloys. Category: internal R&D project Bookmark and Share Butt weld of two 4 mm thick V-4Cr-4Ti plates made by a pulsed Nd:YAG laser

406

Categorical Exclusion Determinations: American Recovery and Reinvestment  

Broader source: Energy.gov (indexed) [DOE]

6, 2010 6, 2010 CX-003804: Categorical Exclusion Determination Recovery Act: San Bernardino Associated Government Natural Gas Truck Project (Orange, California Infrastructure Modification) CX(s) Applied: B5.1 Date: 09/16/2010 Location(s): Orange, California Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory September 16, 2010 CX-003799: Categorical Exclusion Determination Electrochromic Glazing Technology: Improved Performance, Lower Price CX(s) Applied: A9, B2.2, B5.1 Date: 09/16/2010 Location(s): Faribault, Minnesota Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory September 16, 2010 CX-003798: Categorical Exclusion Determination Master Curriculum Development for Energy Auditors, Commissioning Agents and

407

LBNL Windows & Daylighting Software -- COMFEN3: Knowledge Base  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

4.1 4.1 (4.1.25 -- October 4, 2012) Last update:09/11/13 11:39 AM Download COMFEN Release Notes (includes a list of changes to the program by version) Send feedback via email to COMFENHelp@lbl.gov. Also as bugs and comments are submitted by testers, they will be posted on this Knowledge Base, so check here for the latest information about the program. CONTENTS INSTALLATION KNOWN ISSUES Installation Issues -- Administrator Between Blind Slat Width Greater than Glazing System Gap Installation Issues -- Microsoft.NET Site To Source Multiplier -- changing it does not invalidate results Installation Directories by Operating System Natural Ventilation -- heating load increases Minimum computer requirements Simulation Error When Calculating a Scenario Project Database from Previous Versions -- where is it ?

408

Step-by-Step Instructions  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Connecticut Connecticut based upon the simple prescriptive option of the 2012 IECC. It does not provide a guarantee for meeting the IECC. This guide is not designed to reflect the actual energy code, with amendments, if any, adopted in Connecticut and does not, therefore, provide a guarantee for meeting the state energy code. For details on the energy code adopted by Connecticut, including how it may differ from the IECC, please contact your local building code official. Additional copies of this guide are available on www.reca-codes.com. CLIMATE ZONE 5 Fairfield Hartford Litchfield Middlesex New Haven New London Tolland Windham Windows Insulation Foundation Fenestration U-Factor Skylight U-Factor Glazed Fenestration SHGC Ceiling

409

Surface Decontamination [Laser Applications Laboratory] - Nuclear  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Surface Decontamination Surface Decontamination Capabilities Engineering Experimentation Reactor Safety Experimentation Aerosol Experiments System Components Laser Applications Overview Laser Oil & Gas Well Drilling Laser Heat Treatment Laser Welding of Metals On-line Monitoring Laser Beam Delivery Laser Glazing of Railroad Rails High Power Laser Beam Delivery Decontamination and Decommissioning Refractory Alloy Welding Robots Applications Other Facilities Other Capabilities Work with Argonne Contact us For Employees Site Map Help Join us on Facebook Follow us on Twitter NE on Flickr Laser Applications Laboratory Surface Decontamination Project description: Laser processing technology for decontamination of surfaces. Category: internal R&D project Bookmark and Share Fiber-optic beam-delivery systems for multi-kilowatt Nd:YAG laser beams are

410

Slide 1  

U.S. Energy Information Administration (EIA) Indexed Site

Historical Perspective on Energy Historical Perspective on Energy Codes and Appliance Standards Discussion Outline * History of Energy Codes * History of Appliance Standards * Energy Savings due to Codes & Standards - So far... * Energy Savings - The Household Example Energy Codes Contain Minimum Energy Efficiency Thresholds for all New and Existing Buildings * Energy Codes - Lower Energy Bills - Reduce Need for New Utility Capacity, and have - Environmental Benefits * Energy Codes include - Lighting - Insulation - Glazing - Heating and Cooling Equipment - Other Energy Efficiency Measures Public Benefit Aspect Energy Codes Today * Energy codes (Like building codes in general) vary from State to State. * Some are State-developed to account for State-specific concerns such as the climate and the economy. * Some states adopt State-specific

411

LBNL-5800E Thermal Performance Impacts of Center-of- Glass Deflections in Installed Insulating  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

00E 00E Thermal Performance Impacts of Center-of- Glass Deflections in Installed Insulating Glazing Units R.G. Hart Lawrence Berkeley National Laboratory C.W. Goudey Lawrence Berkeley National Laboratory D.K. Arasteh Lawrence Berkeley National Laboratory D.C. Curcija Lawrence Berkeley National Laboratory Windows and Envelope Materials Group Building Technology and Urban Systems Department Environmental Energy Technologies Division June 2012 To be published in Energy and Buildings DISCLAIMER This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor The Regents of the University of

412

Welcome to the Efficient Windows Collaborative  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

About the EWC About the EWC Who are the EWC members? The EWC is made up of manufacturers, suppliers, and affiliates to the window industry Manufacturers: producers of whole fenestration products such as windows, doors and skylights. Suppliers: producers and suppliers of components such as glazing, lineals, spacers, and other components of the fenestration product. Affiliates: non-manufacturing interested parties such as trade associations, utilities, consultants, and government agencies. View the entire EWC membership list» For more information about EWC membership contact: Jacob Johnston (ewc@ase.org) Alliance to Save Energy 1850 M Street, NW, Suite 600 Washington, DC 20036 phone: 202-530-4343 fax: 202-331-9588 www.ase.org exit disclaimer The EWC is a coalition of window, door, skylight, and component

413

High Performance Building Façade Solutions  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Sponsors Sponsors High Performance Building Façade Solutions High Performance Building Façade Solutions Buildings Technology Department, Environmental Energy Technologies Division, Lawrence Berkeley National Laboratory Sponsors California Energy Commission Public Interest Energy Research (PIER) Buildings End-Use Energy Efficiency Program Michael Seaman, California Energy Commission Contract Manager http://www.energy.ca.gov/research/index.html U.S. Department of Energy Assistant Secretary for Energy Efficiency and Renewable Energy Office of Building Technology, State and Community Programs Office of Building Research and Standards Marc LaFrance, Program Manager http://www.eere.energy.gov/buildings/ In-kind Cost-share Advanced Glazings Ltd. Hunter Douglas Köster Lichplanung

414

Welcome to the Efficient Windows Collaborative  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Improved Comfort Improved Comfort Comfort High performance windows with new glazing technologies not only reduce energy costs but make homes more comfortable as well. During cold weather, exterior temperatures drive interior glass surface temperatures down below the room air temperature; how low the glass temperature drops depends on the window's insulating quality. If people are exposed to the effects of a cold surface, they can experience significant radiant heat loss to that cold surface and they feel uncomfortable, even if the room air temperature is comfortable. When the interior glass surface temperature is 52ËšF or less, it is most likely that there will be discomfort. During warm weather, solar radiation can cause discomfort. Just as people turn up the heat to compensate for cold windows in cold weather, they may use

415

BARTENDING  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

BARTENDING BARTENDING An introduction to mixed drinks, liquors & bar management.In-class practice ( simulated liquors ) lectures & demos. Includes book & certificate. SB Union room 081. ( N o Class March 20, 21, 27, 28 ) SEC A: Six Wednesdays, begin 2/13, FEE: 7:30pm-9:30pm [Liam Hudock] $80/SB Student SEC B: Six Thursdays, begin 2/28, $95/SB Staff 7:30pm-9:30pm [John Louis] $105/General Public H A N D B U I L D I N C L AY A great intro to ceramics! Explore alternatives to wheel throwing. Construct & combine forms to create vessels & sculptures using pinch, slab, coil, texture, glaze & stains. Includes Ceramic Membership. Five Tuesdays, begin 2/19; 7:00pm-9:00pm [Eileen Cassidy] FEE: $85/SB Student, $145/SB Staff, $155/General Public

416

On-line Monitoring [Laser Applications Laboratory] - Nuclear Engineering  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

On-line Monitoring On-line Monitoring Capabilities Engineering Experimentation Reactor Safety Experimentation Aerosol Experiments System Components Laser Applications Overview Laser Oil & Gas Well Drilling Laser Heat Treatment Laser Welding of Metals On-line Monitoring Laser Beam Delivery Laser Glazing of Railroad Rails High Power Laser Beam Delivery Decontamination and Decommissioning Refractory Alloy Welding Robots Applications Other Facilities Other Capabilities Work with Argonne Contact us For Employees Site Map Help Join us on Facebook Follow us on Twitter NE on Flickr Laser Applications Laboratory On-line Monitoring Project description: On-line process monitoring for laser-beam welding. Category: Project with industrial partner (USCAR) Bookmark and Share Simulated defects and associated responses from a weld sensor developed at Argonne

417

Solar space heating installed at Kansas City, Kansas. Final report  

SciTech Connect (OSTI)

The solar energy system was constructed with the new 48,800 square feet warehouse to heat the warehouse area of about 39,000 square feet while the auxiliary energy system heats the office area of about 9800 square feet. The building is divided into 20 equal units, and each has its own solar system. The modular design permits the flexibility of combining multiple units to form offices or warehouses of various size floor areas as required by a tenant. Each unit has 20 collectors which are mounted in a single row. The collectors, manufactured by Solaron Corporation, are double glazed flat plate collectors with a gross area of 7800 ft/sup 2/. Air is heated either through the collectors or by the electric resistance duct coils. No freeze protection or storage is required for this system. Extracts from the site files, specifications, drawings, installation, operation and maintenance instructions are included.

Not Available

1981-05-01T23:59:59.000Z

418

Inflow performance relationship for perforated wells producing from solution gas drive reservoir  

SciTech Connect (OSTI)

The IPR curve equations, which are available today, are developed for open hole wells. In the application of Nodal System Analysis in perforated wells, an accurate calculation of pressure loss in the perforation is very important. Nowadays, the equation which is widely used is Blount, Jones and Glaze equation, to estimate pressure loss across perforation. This equation is derived for single phase flow, either oil or gas, therefore it is not suitable for two-phase production wells. In this paper, an IPR curve equation for perforated wells, producing from solution gas drive reservoir, is introduced. The equation has been developed using two phase single well simulator combine to two phase flow in perforation equation, derived by Perez and Kelkar. A wide range of reservoir rock and fluid properties and perforation geometry are used to develop the equation statistically.

Sukarno, P. [Inst. Teknologi Bandung (Indonesia); Tobing, E.L.

1995-10-01T23:59:59.000Z

419

Baker Construction, Cincinnati, Ohio. Solar energy system performance evaluation, October 1980-May 1981  

SciTech Connect (OSTI)

The Baker Construction site is a single family residence in Ohio with a passive solar heating system, which consists of 302 square feet of 62 degree sloped greenhouse glazing, a 35,500-pound concrete mass wall, 10,400-pound concrete slab floor, 20 phase change storage rods, six 1-kW electric baseboard heaters, and a wood stove. A solar fraction of 55% is reported. Also the solar savings ratio and conventional fuel savings are given. The performance of the greenhouse collector subsystem, the heat storage subsystem, and the space heating subsystem are summarized as well as total system performance. Energy savings and weather data are also included. The design of the system, performance evaluation techniques, and sensor technology are also presented. (LEW)

Spears, J.W.

1981-01-01T23:59:59.000Z

420

Chapter 5 - Passive Utilization of Solar Energy in a Building  

Science Journals Connector (OSTI)

Abstract This chapter presents different passive solar technologies applied in buildings with a focus on technologies suitable for high-latitude countries. Direct and indirect solar gain systems are presented and described in detail. Examples of traditional and modern passive solar solutions are analyzed. Special attention is given to buffer spaces and different glazing technologies; their application depending on climatic conditions is analyzed, and some recommendations are given. Implementation of transparent insulation (TI) in the building envelope is considered. TI is transparent for solar radiation and is characterized by relatively high thermal resistance. Some examples of TI practical applications are presented, including their use for daylighting purposes. The idea of integrating phase-change materials (PCMs) into building structures is considered. Their storage role, high heat capacity, as well as cooling and heating functions are explained. Different forms of PCM integration technologies are presented.

Dorota Chwieduk

2014-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "glazings glazing type" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

SOLERAS - Solar Controlled Environment Agriculture Project. Final report, Volume 7. Science Applications, Incorporated field test facility preliminary design  

SciTech Connect (OSTI)

This report contains the preliminary design of an SCEAS Engineering Test Facility (ETF). The ETF is a 3600 m/sup 2/ fluid roof greenhouse with an inflated plastic film roof to maintain a clean environment for the fluid roof and to protect the inner glazing from hail and other small missiles. The objective of the design was the faithful scaling of the commercial facility to ensure that the ETF results could be extrapolated to a commercial facility of any size. Therefore, all major features, including the photovoltaic power system, an integral water desalination system and even the basic structural module have been retained. The design is described in substantial detail in the body of this report, with appendices giving the drawings and specifications.

Not Available

1985-01-01T23:59:59.000Z

422

Turning low solar heat gain windows into energy savers in winter  

SciTech Connect (OSTI)

The reduction in summer peak cooling loads of buildings with a large ratio of window to floor areas is often achieved by windows with a low solar heat gain coefficient (SHGC). These windows are typically double glazed with the exterior pane tinted or selectively absorbing. Absorbed solar radiation is rejected to the environment. This is undesirable in the cold season. The authors suggest that by turning south-facing windows by 180{degree} for the duration of the cold season, the solar heat gain of these windows can be increased significantly. By means of a computer simulation, they estimate seasonal energy savings for a model room in several climates. The effect of building heat capacity on the savings is also studied. Windows whose positions can be reversed for ease of cleaning are commercially available. This study shows that in a suitable climate the achievable savings easily compensate for the additional effort and possible investment over the lifetime of the window.

Feuermann, D.; Novoplansky, A. [Ben-Gurion Univ. of the Negev, Sede Boker (Israel). Jacob Blaustein Inst. for Desert Research

1996-10-01T23:59:59.000Z

423

A comparison between calculated and measured SHGC for complex fenestration systems  

SciTech Connect (OSTI)

Calorimetric measurements of dynamic net heat flow through a complex fenestration system consisting of a buff venetian blind inside clear double glazing are used to derive the direction-dependent beam SHGC (solar heat gain coefficient) of the fenestration. The data are compared with calculations according to a proposed general method for deriving complex fenestration system SHGC`s from bidirectional layer optical properties and generic calorimetric properties. Previously published optical data for the same venetian blind and generic inward-flowing fraction measurements are used in the calculation. Satisfactory agreement is found between SHGC measurements and calculation. Significant dependence on incident angle was found in the measured SHGC`s. Profile angle was not found to be a useful variable in characterizing the system performance. Predicted SHGC was found to be inherently dependent on two angles, although only the incident angle variations were observable under test conditions.

Klems, J.H.; Warner, J.L.; Kelley, G.O.

1995-09-01T23:59:59.000Z

424

Measure Guideline: Energy-Efficient Window Performance and Selection  

SciTech Connect (OSTI)

This document provides guidelines for the selection of energy-efficient windows in new and existing residential construction in all US climate zones. It includes information on window products, their attributes and performance. It provides cost/benefit information on window energy savings as well as information on non-energy benefits such as thermal comfort and reduced HVAC demands. The document also provides information on energy impacts of design decisions such as window orientation, total glazing area and shading devices and conditions. Information on resources for proper window installation is included as well. This document is for builders, homeowners, designers and anyone making decisions about selecting energy efficient window. It is intended to complement other Building America information and efforts.

Carmody, J.; Haglund, K.

2012-11-01T23:59:59.000Z

425

The cultural parameters of lead poisoning: A medical anthropologist's view of intervention in environmental lead exposure  

SciTech Connect (OSTI)

This article identifies four culturally shaped sources of lead exposure in human societies: modern and historic technological sources; food habits; culturally defined health beliefs; and beauty practices. Examples of these potential sources of lead poisoning are presented from current cultures. They include the use of lead-glazed cooking pottery in Mexican-American households; folk medical use of lead in Hispanic, Arabic, South Asian, Chinese, and Hmong communities; as well as the use of lead as a cosmetic in the Near East, Southeast Asia, and South Asia. Four interacting cultural conditions that create barriers to the reduction of lead exposure and lead poisoning are identified and discussed. These are knowledge deficiencies, communication resistance, cultural reinterpretations, and incongruity of explanatory models.

Trotter, R.T. II (Northern Arizona Univ., Flagstaff (USA))

1990-11-01T23:59:59.000Z

426

NREL: Vehicle Ancillary Loads Reduction - Integrated Modeling  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Integrated Modeling Integrated Modeling NREL's Vehicle Ancillary Loads Reduction (VALR) team predicts the impact of advanced vehicle cooling technologies before testing by using an integrated modeling process. Evaluating the heat load on a vehicle under real world conditions is a difficult task. An accepted method to evaluate passenger compartment airflow and heat transfer is computational fluid dynamics. (CFD). Combining analytical models with CFD provides a powerful tool to assist industry both on current vehicles and on future design studies. Flow chart showing the vehicle integrated modeling process which considers solar radiation, air conditioning, and vehicles with CAD, glazing, cabin thermal/fluid, and thermal comfort modeling tools. Results are provided for fuel economy, tailpipe emissions and occupant thermal comfort.

427

NREL: Buildings Research - SUNREL Energy Simulation Software  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Research Research Search More Search Options Site Map SUNREL® is a hourly building energy simulation program that aids in the design of small energy-efficient buildings where the loads are dominated by the dynamic interactions between the building's envelope, its environment, and its occupants. The program is based on fundamental models of physical behavior and includes algorithms specifically for passive technologies, such as Trombe walls, programmable window shading, advanced glazings, and natural ventilation. In addition, a simple graphical interface aids in creating input files. SUNREL is an upgrade of SERI-RES, which was released in the early 1980s by the Solar Energy Research Institute (SERI) that has since been incorporated into the National Renewable Energy Laboratory. The program has been used by

428

CX-003972: Categorical Exclusion Determination | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

72: Categorical Exclusion Determination 72: Categorical Exclusion Determination CX-003972: Categorical Exclusion Determination Municipal Energy Efficiency Retrofits CX(s) Applied: B5.1 Date: 09/21/2010 Location(s): Long Beach, California Office(s): Energy Efficiency and Renewable Energy, Golden Field Office The City of Long Beach, California proposes to use Energy Efficiency and Conservation Block Grant funding for the purchase and installation of their Municipal Energy Efficiency Retrofits Project which will include individual and whole system lighting change-outs; heating, ventilating, and air conditioning (HVAC) equipment updates; glazing/window tinting; and cool roof installations. Upon completion the Municipal energy efficiency retrofits will save money, reduce the City's electricity use, reduce

429

Step-by-Step Instructions  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Rhode Rhode Island based upon the simple prescriptive option of the 2012 IECC. It does not provide a guarantee for meeting the IECC. This guide is not designed to reflect the actual energy code, with amendments, if any, adopted in Rhode Island and does not, therefore, provide a guarantee for meeting the state energy code. For details on the energy code adopted by Rhode Island, including how it may differ from the IECC, please contact your local building code official. Additional copies of this guide are available on www.reca-codes.com. CLIMATE ZONE 5 Bristol Kent Newport Providence Washington Windows Insulation Foundation Fenestration U-Factor Skylight U-Factor Glazed Fenestration SHGC Ceiling R-Value Wood Frame Wall R-Value

430

Seeing Windows Through  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

8 8 Seeing Windows Through A profusion of gases, glazings, and gap sizes are among the factors that confound efforts to measure the energy performance of a window or skylight. The increasing variety of efficiency-enhancing options for windows and their frames poses a formidable challenge to builders, utilities, code officials, and consumers. Fortunately, a new system for accurately rating and labeling these products promises to help demystify them and to foster nationwide improvements in energy efficiency. NFRC is Born Window trade groups have historically organized around specific materials or components (such as glass or frames), and energy has rarely been their focal point. This changed in 1989 with the formation of the National Fenestration Rating Council. One impetus behind the industry's

431

Categorical Exclusion Determinations: A9 | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

6, 2010 6, 2010 CX-003799: Categorical Exclusion Determination Electrochromic Glazing Technology: Improved Performance, Lower Price CX(s) Applied: A9, B2.2, B5.1 Date: 09/16/2010 Location(s): Faribault, Minnesota Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory September 16, 2010 CX-003798: Categorical Exclusion Determination Master Curriculum Development for Energy Auditors, Commissioning Agents and Energy Engineers CX(s) Applied: A9, B5.1 Date: 09/16/2010 Location(s): Milwaukee, Wisconsin Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory September 16, 2010 CX-003740: Categorical Exclusion Determination Oak Ridge City Center Technology Demonstration Project CX(s) Applied: A9 Date: 09/16/2010

432

Influence of propane on CO2/CH4 and N2/CH4 separations in CHA zeolite membranes  

Science Journals Connector (OSTI)

Abstract Two types of CHA zeolite membranes (SAPO-34, SSZ-13) were used for CO2/CH4, N2/CH4, and CO2/i-butane separations at both low (270 and 350 kPa) and high (1.73 MPa) pressures. The SSZ-13 membranes were more selective, with CO2/CH4 separation selectivities as high as 280 and N2/CH4 separation selectivities of 12 at 270 kPa feed pressure. For both types of membranes, selectivities and permeances decreased as the feed pressure increased. The CO2/i-butane separation selectivities were greater than 500,000 for SAPO-34 membranes, indicating extremely low densities of defects because i-butane is too large to enter the CHA pores. The CO2/i-butane selectivities were smaller for SSZ-13 membranes (2,800–20,000), in part because the SSZ-13 layer was on the outside of the porous mullite tubes and sealing the membrane on the zeolite surface was more difficult than for the SAPO-34 membranes that were grown on the inside of glazed alumina tubes. Propane, in feed concentrations from 1 to 9%, significantly influenced separations by decreasing permeances in most cases. The effect was larger for N2/CH4 than for CO2/CH4 mixtures, apparently because the more strongly-adsorbing CO2 competes better than N2 with propane for adsorption sites. Although propane caused permeances to decrease significantly over time, selectivities decreased much less. Propane decreased permeances more for SAPO-34 membranes than for SSZ-13 membranes at 350 kPa, and at high pressure propane even increased CO2 permeances and decreased CH4 permeances in SSZ-13 membranes, thus significantly increasing CO2/CH4 selectivities. Propane permeances reached steady state relatively quickly because its permeation was mostly through defects, but CO2, N2, and CH4 permeances did not stabilize in the presence of propane, even after seven days. The effects of propane were reversible when it was removed from the feed and the membranes were heated.

Ting Wu; Merritt C. Diaz; Yihong Zheng; Rongfei Zhou; Hans H. Funke; John L. Falconer; Richard D. Noble

2015-01-01T23:59:59.000Z

433

SUPERGLASS. Engineering field tests - Phase 3. Production, market planning, and product evaluation for a high-thermal-performance insulating glass design utilizing HEAT MIRROR transparent insulation. Final report  

SciTech Connect (OSTI)

HEAT MIRROR transparent window insulation consists of a clear polyester film two mils (.002'') thick with a thin, clear low-emissivity (.15) coating deposited on one side by state-of-the-art vacuum deposition processes. This neutral-colored invisible coating reflects long-wave infrared energy (heat). When mounted by being stretched with a 1/2'' air-gap on each side of the film, the resulting unit reduces heat loss by 60% compared to dual insulating glass. Southwall Corporation produces HEAT MIRROR transparent insulation and markets it to manufacturers of sealed insulating glass (I.G.) units and window and building manufacturers who make their own I.G. These companies build and sell the SUPERGLASS sealed glazing units. Units made and installed in buildings by six customers were visited. These units were located in many geographic regions, including the Pacific Northwest, Rocky Mountains, New England, Southeast, and West Coast. As much as could be obtained of their history was recorded, as was their current condition and performance. These units had been in place from two weeks to over a year. All of the units were performing thermally very well, as measured by taking temperature profiles through them and through adjacent conventional I.G. units. Some units had minor visual defects (attributed to I.G. assembly techniques) which are discussed in detail. Overall occupant acceptance was enthusiastically positive. In addition to saving energy, without compromise of optical quality or appearance, the product makes rooms with large glazing areas comfortable to be in in cold weather. All defects observed were present when built; there appears to be no in-field degradation of quality at this time.

Tilford, C L

1982-11-01T23:59:59.000Z

434

Streamlined life cycle assessment of transparent silica aerogel made by supercritical drying  

Science Journals Connector (OSTI)

When developing sustainable building fabric technologies, it is essential that the energy use and CO2 burden arising from manufacture does not outweigh the respective in-use savings. This study investigates this paradigm by carrying out a streamlined life cycle assessment (LCA) of silica aerogel. This unique, nanoporous translucent insulation material has the lowest thermal conductivity of any solid, retaining up to four times as much heat as conventional insulation, whilst being highly transparent to light and solar radiation. Monolithic silica aerogel has been cited as the ‘holy grail’ of future glazing technology. Alternatively, translucent granular aerogel is now being produced on a commercial scale. In each case, many solvents are used in production, often accompanied by intensive drying processes, which may consume large amounts of energy and CO2. To date, there has been no peer-reviewed LCA of this material conducted to the ISO 14000 standard. Primary data for this ‘cradle-to-factory gate’ LCA is collected for silica aerogel made by low and high temperature supercritical drying. In both cases, the mass of raw materials and electricity usage for each process is monitored to determine the total energy use and CO2 burden. Findings are compared against the predicted operational savings arising from retrofitting translucent silica aerogel to a single glazed window to upgrade its thermal performance. Results should be treated as a conservative estimate as the aerogel is produced in a laboratory, which has not been developed for mass manufacture or refined to reduce its environmental impact. Furthermore, the samples are small and assumptions to upscale the manufacturing volume occur without major changes to production steps or equipment used. Despite this, parity between the CO2 burden and CO2 savings is achieved in less than 2 years, indicating that silica aerogel can provide a measurable environmental benefit.

Mark Dowson; Michael Grogan; Tim Birks; David Harrison; Salmaan Craig

2012-01-01T23:59:59.000Z

435

Integrated solar heating unit  

SciTech Connect (OSTI)

This patent describes an integral solar heating unit with an integral solar collector and hot water storage system, the unit comprising: (a) a housing; (b) a flat plate solar collector panel mounted in the housing and having a generally horizontal upper edge and an uninsulated, open back surface; (c) a cylindrical hot water tank operatively connected to the solar collector panel and mounted in the housing generally parallel to and adjacent to the upper edge; (d) the housing comprising a hood around the tank a pair of side skirts extending down at the sides of the panel. The hood and side skirts terminate at lower edges which together substantially define a plane such that upon placing the heating unit on a generally planar surface, the housing substantially encapsulates the collector panel and hot water tank in a substantially enclosed air space; (e) the collector including longitudinally extended U-shaped collector tubes and a glazed window to pass radiation through to the collector tubes, and a first cold water manifold connected to the tubes for delivering fresh water thereto and a second hot water manifold connected to the tubes to remove heated water therefrom. The manifolds are adjacent and at least somewhat above and in direct thermal contact with the tank; and, (f) the skirts and hood lapping around the collector panel, exposing only the glazed window, such that everything else in the heating unit is enclosed by the housing such that heat emanating from the uninsulated, open back face of the collector and tank is captured and retained by the housing to warm the manifolds.

Larkin, W.J.

1987-01-20T23:59:59.000Z

436

Experimental techniques for measuring temperature and velocity fields to improve the use and validation of building heat transfer models  

SciTech Connect (OSTI)

When modeling thermal performance of building components and envelopes, researchers have traditionally relied on average surface heat-transfer coefficients that often do not accurately represent surface heat-transfer phenomena at any specific point on the component being evaluated. The authors have developed new experimental techniques that measure localized surface heat-flow phenomena resulting from convection. The data gathered using these new experimental procedures can be used to calculate local film coefficients and validate complex models of room and building envelope heat flows. These new techniques use a computer-controlled traversing system to measure both temperatures and air velocities in the boundary layer near the surface of a building component, in conjunction with current methods that rely on infrared (IR) thermography to measure surface temperatures. Measured data gathered using these new experimental procedures are presented here for two specimens: (1) a Calibrated Transfer Standard (CTS) that approximates a constant-heat-flux, flat plate; and (2) a dual-glazed, low-emittance (low-e), wood-frame window. The specimens were tested under steady-state heat flow conditions in laboratory thermal chambers. Air temperature and mean velocity data are presented with high spatial resolution (0.25- to 25-mm density). Local surface heat-transfer film coefficients are derived from the experimental data by means of a method that calculates heat flux using a linear equation for air temperature in the inner region of the boundary layer. Local values for convection surface heat-transfer rate vary from 1 to 4.5 W/m{sup 2} {center_dot} K. Data for air velocity show that convection in the warm-side thermal chamber is mixed forced/natural, but local velocity maximums occur from 4 to 8 mm from the window glazing.

Griffith, Brent; Turler, Daniel; Goudey, Howdy; Arasteh, Dariush

1998-04-01T23:59:59.000Z

437

The use of least squares methods in functional optimization of energy use prediction models  

Science Journals Connector (OSTI)

The least squares method (LSM) is used to optimize the coefficients of a closed-form correlation that predicts the annual energy use of buildings based on key envelope design and thermal parameters. Specifically annual energy use is related to a number parameters like the overall heat transfer coefficients of the wall roof and glazing glazing percentage and building surface area. The building used as a case study is a previously energy-audited mosque in a suburb of Kuwait City Kuwait. Energy audit results are used to fine-tune the base case mosque model in the VisualDOE{trade mark serif} software. Subsequently 1625 different cases of mosques with varying parameters were developed and simulated in order to provide the training data sets for the LSM optimizer. Coefficients of the proposed correlation are then optimized using multivariate least squares analysis. The objective is to minimize the difference between the correlation-predicted results and the VisualDOE-simulation results. It was found that the resulting correlation is able to come up with coefficients for the proposed correlation that reduce the difference between the simulated and predicted results to about 0.81%. In terms of the effects of the various parameters the newly-defined weighted surface area parameter was found to have the greatest effect on the normalized annual energy use. Insulating the roofs and walls also had a major effect on the building energy use. The proposed correlation and methodology can be used during preliminary design stages to inexpensively assess the impacts of various design variables on the expected energy use. On the other hand the method can also be used by municipality officials and planners as a tool for recommending energy conservation measures and fine-tuning energy codes.

2012-01-01T23:59:59.000Z

438

Types of Insulation | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Types of Insulation Types of Insulation Types of Insulation May 30, 2012 - 11:43am Addthis In existing homes, cellulose (here) or other loose-fill materials can be installed in building cavities through holes drilled (usually) on the exterior of the house. After the installation, the holes are plugged and finish materials replaced. | Photo courtesy of Cellulose Insulation Manufacturers Association. In existing homes, cellulose (here) or other loose-fill materials can be installed in building cavities through holes drilled (usually) on the exterior of the house. After the installation, the holes are plugged and finish materials replaced. | Photo courtesy of Cellulose Insulation Manufacturers Association. Icynene plastic insulation blown into the walls of a home near Denver. Icynene fills cracks and crevices and adheres to the framing. | Photo courtesy of Paul Norton, NREL.

439

MEMORANDUM TO: FILE TYPE OF OPERATION  

Office of Legacy Management (LM)

TYPE OF OPERATION TYPE OF OPERATION _--__---~~--~---~ a Research & Development cl Facility Type 0 Production scale testing 0 Pilot Scale 0 Bench Scale Process 0 Theoretical Studies a Sample SC Analysis 0 Hanuf actuiing 0 University a Research Organization 0 Government Sponsored Facility 0 Other ~---~~--_--_~-___--~ 0 Production 0 Disposal/Storage IYPLPEs!b!Iw!EI 0 Prime a 0 Subcontract& Other information (i.e., cost + fixed fee. unit price, *! Purchase Order time & material, qtc) _------ -------------42-----__--_---- ContFact/Purchase Order # ud IdlijL1\^IIJ ---------------------------- --------------------------------- OWNERSHIP: GOUT GOVT CONTRACTOR -CONTRACTOR awED LE_ASED OWNED ---------- ~-~LE!sEn LANDS BUILDINGS EQUIPMENT ORE OR RAW MATL 0 FINAL PRODUCT 0

440

Vehicle Specifications Battery Type: Li-Ion  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Under hood above powertrain Under hood above powertrain Nominal System Voltage: 333 V Rated Capacity (C/3): 40 Ah Cooling Method: Glycol / Water mix Powertrain Motor Type: DC Brushless Number of Motors: One Motor Cooling Type: Glycol / Water mix Drive Wheels: Rear Wheel Drive Transmission: None (gear ratio only in rear axle) Charger Location: Underhood Charger Port: Driver's side, front quarter panel Type: Conductive (J1772 connector) Input Voltage(s): 120 or 240 VAC Chassis Aluminum Body on Steel Frame Rear Suspension: Solid Axle with Leaf Springs Front Suspension: Dual A-arm with Coil Springs Weights Design Curb Weight: 3250 lbs Delivered Curb Weight: 3310 lbs 7 Distribution F/R: 55.2/44.8% GVWR: 4450 lbs Max Payload: 940 lbs + 200 lbs driver 1 Performance Goal Payload: 1000 lbs + 200 lbs driver

Note: This page contains sample records for the topic "glazings glazing type" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

MEMORANDUM TO: FILE FROM: TYPE OF OPERATION  

Office of Legacy Management (LM)

, , TYPE OF OPERATION ~_--_-----_---___ 69 Research & Development a Facility. Type 0 Production scale testing Cl Pilat Scale IK Bench Scale Process 0 Theoretical Studies u Sample & Analysis q Production 0 Disposal/Storage a Manufacturing 0 University 0 Research Organization 0 Government Sponsored Facility 0 Other --------------__----- TYPE OF CONTRACT ---------------- 0 Prime 0 Other information (i.e., cost 0 Subcontractor + fixed fee, unit price, 5 Purchase Order ~SlvtM ay LuPo~l- time & material, r+c) _L-G~-~~~ ------GA------ Contract/Purchase Order # 3 I -? ciYl---------------------------- AZ. FG CONTRACTING PERIOD: --------__--_____- ----&-b&-f zw------ ______________ OWNERSHIP: AEC/MED AEC/MED OWE_3 LE_A_sEQ GOUT GOVT CONTRACTOR CONTRACTOR

442

Transformations of $W$-Type Entangled States  

E-Print Network [OSTI]

The transformations of $W$-type entangled states by using local operations assisted with classical communication are investigated. For this purpose, a parametrization of the $W$-type states which remains invariant under local unitary transformations is proposed and a complete characterization of the local operations carried out by a single party is given. These are used for deriving the necessary and sufficient conditions for deterministic transformations. A convenient upper bound for the maximum probability of distillation of arbitrary target states is also found.

S. K?nta?; S. Turgut

2010-03-10T23:59:59.000Z

443

Fiber-type dosimeter with improved illuminator  

DOE Patents [OSTI]

A single-piece, molded plastic, Cassigrainian-type condenser arrangement is incorporated in a tubular-shaped personal pocket dosimeter of the type which combines an ionization chamber with an optically-read fiber electrometer to provide improved illumination of the electrometer fiber. The condenser routes incoming light from one end of the dosimeter tubular housing around a central axis charging pin assembly and focuses the light at low angles to the axis so that it falls within the acceptance angle of the electrometer fiber objective lens viewed through an eyepiece lens disposed in the opposite end of the dosimeter. This results in improved fiber illumination and fiber image contrast.

Fox, Richard J. (Oak Ridge, TN)

1987-01-01T23:59:59.000Z

444

Fiber-type dosimeter with improved illuminator  

DOE Patents [OSTI]

A single-piece, molded plastic, Cassigrainian-type condenser arrangement is incorporated in a tubular-shaped personal pocket dosimeter of the type which combines an ionization chamber with an optically-read fiber electrometer to provide improved illumination of the electrometer fiber. The condenser routes incoming light from one end of the dosimeter tubular housing around a central axis charging pin assembly and focuses the light at low angles to the axis so that it falls within the acceptance angle of the electrometer fiber objective lens viewed through an eyepiece lens disposed in the opposite end of the dosimeter. This results in improved fiber illumination and fiber image contrast.

Fox, R.J.

1985-12-23T23:59:59.000Z

445

On Twisted homogeneous racks of type D  

E-Print Network [OSTI]

We develop some techniques to check when a twisted homogeneous rack of class (L,t,\\theta) is of type D. Then we apply the obtained results to the cases L an alternating group on n letters, n\\geq 5, or L a sporadic group.

Andruskiewitsch, N; Garcia, G A; Vendramin, L

2010-01-01T23:59:59.000Z

446

Reference Buildings by Building Type: Supermarket  

Broader source: Energy.gov [DOE]

In addition to the ZIP file for each building type, you can directly view the "scorecard" spreadsheet that summarizes the inputs and results for each location. This Microsoft Excel spreadsheet is also included in the ZIP file. For version 1.4, only the IDF file is included.

447

Reference Buildings by Building Type: Warehouse  

Broader source: Energy.gov [DOE]

In addition to the ZIP file for each building type, you can directly view the "scorecard" spreadsheet that summarizes the inputs and results for each location. This Microsoft Excel spreadsheet is also included in the ZIP file. For version 1.4, only the IDF file is included.

448

Reference Buildings by Building Type: Midrise Apartment  

Broader source: Energy.gov [DOE]

In addition to the ZIP file for each building type, you can directly view the "scorecard" spreadsheet that summarizes the inputs and results for each location. This Microsoft Excel spreadsheet is also included in the ZIP file. For version 1.4, only the IDF file is included.

449

Reference Buildings by Building Type: Primary school  

Office of Energy Efficiency and Renewable Energy (EERE)

In addition to the ZIP file for each building type, you can directly view the "scorecard" spreadsheet that summarizes the inputs and results for each location. This Microsoft Excel spreadsheet is also included in the ZIP file. For version 1.4, only the IDF file is included.

450

Reference Buildings by Building Type: Small office  

Office of Energy Efficiency and Renewable Energy (EERE)

In addition to the ZIP file for each building type, you can directly view the "scorecard" spreadsheet that summarizes the inputs and results for each location. This Microsoft Excel spreadsheet is also included in the ZIP file. For version 1.4, only the IDF file is included.

451

Reference Buildings by Building Type: Large office  

Office of Energy Efficiency and Renewable Energy (EERE)

In addition to the ZIP file for each building type, you can directly view the "scorecard" spreadsheet that summarizes the inputs and results for each location. This Microsoft Excel spreadsheet is also included in the ZIP file. For version 1.4, only the IDF file is included.

452

Reference Buildings by Building Type: Small Hotel  

Office of Energy Efficiency and Renewable Energy (EERE)

In addition to the ZIP file for each building type, you can directly view the "scorecard" spreadsheet that summarizes the inputs and results for each location. This Microsoft Excel spreadsheet is also included in the ZIP file. For version 1.4, only the IDF file is included.

453

Reference Buildings by Building Type: Secondary school  

Office of Energy Efficiency and Renewable Energy (EERE)

In addition to the ZIP file for each building type, you can directly view the "scorecard" spreadsheet that summarizes the inputs and results for each location. This Microsoft Excel spreadsheet is also included in the ZIP file. For version 1.4, only the IDF file is included.

454

Reference Buildings by Building Type: Large Hotel  

Office of Energy Efficiency and Renewable Energy (EERE)

In addition to the ZIP file for each building type, you can directly view the "scorecard" spreadsheet that summarizes the inputs and results for each location. This Microsoft Excel spreadsheet is also included in the ZIP file. For version 1.4, only the IDF file is included.

455

Reference Buildings by Building Type: Strip mall  

Office of Energy Efficiency and Renewable Energy (EERE)

In addition to the ZIP file for each building type, you can directly view the "scorecard" spreadsheet that summarizes the inputs and results for each location. This Microsoft Excel spreadsheet is also included in the ZIP file. For version 1.4, only the IDF file is included.

456

Human papillomaviruses: are we ready to type?  

Science Journals Connector (OSTI)

...primer technique is similar to that seen by nick translation, but the methodology is different...is of sufficient prognos- tic value to merit modification in therapy even if typing...acid to high specific activity in vitro by nick translation with DNA polymerase I. J...

A Roman; K H Fife

1989-04-01T23:59:59.000Z

457

Reference Buildings by Building Type: Hospital  

Broader source: Energy.gov [DOE]

In addition to the ZIP file for each building type, you can directly view the "scorecard" spreadsheet that summarizes the inputs and results for each location. This Microsoft Excel spreadsheet is also included in the ZIP file. For version 1.4, only the IDF file is included.

458

Title: Academic Advisor Employment Type: Administrative Professional  

E-Print Network [OSTI]

Title: Academic Advisor Employment Type: Administrative Professional College: Engineering is seeking a full time academic advisor to collaborate with faculty and ECE staff to coordinate and advise faculty, 250 undergraduate students and 150 graduate students. The advisor will work closely together

459

mathematics Study program cycle and type  

E-Print Network [OSTI]

mathematics academic study programmm 11 #12;12 #12;· Study program cycle and type: First cycle academic study program. · AAnnttiicciippaatteedd aaccaaddeemmiicc ttiittllee:: Bachelor in Mathematics ggooaallss:: The principal goal of the academic study program in Mathematics is to qualify its graduates

Â?umer, Slobodan

460

Ankle Injury TYPES OF ANKLE INJURIES  

E-Print Network [OSTI]

Ankle Injury TYPES OF ANKLE INJURIES: Ankle injuries can be acute or chronic in nature. Inverting (turning in) of the ankle, accounts for most acute injuries. Damage occurs when ankle is twisted or moved beyond its normal range. Overuse of the ankle can cause tearing of the ligaments or strain tendon fibers

Virginia Tech

Note: This page contains sample records for the topic "glazings glazing type" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Reference Buildings by Building Type: Medium office  

Broader source: Energy.gov [DOE]

In addition to the ZIP file for each building type, you can directly view the "scorecard" spreadsheet that summarizes the inputs and results for each location. This Microsoft Excel spreadsheet is also included in the ZIP file. For version 1.4, only the IDF file is included.

462

RECYCLING PROGRAM TYPE LOCATION ALLOWED NOT ALLOWED  

E-Print Network [OSTI]

RECYCLING PROGRAM TYPE LOCATION ALLOWED NOT ALLOWED Batteries, toner, ink cartridges & cell phones and recycling is an important part of that effort. Below is a guide to on-campus recycling at RSMAS: Visit http://www.rsmas.miami.edu/msgso/ for map of recycling bin locations. NOTE: This is not an exhaustive list. If unauthorized items are found

Miami, University of

463

Collaboration-Type Identification in Educational Datasets  

E-Print Network [OSTI]

Collaboration-Type Identification in Educational Datasets ANDREW E. WATERS Department of Electrical Engineering Rice University richb@sparfa.com Identifying collaboration between learners in a course is an important challenge in education for two reasons: First, depending on the courses' rules, collaboration can

464

Fiber type, meal frequency and colonic cytokinetics  

E-Print Network [OSTI]

The effects of dietary fiber type (cellulose, pectin or oat bran) and meal frequency (gorge or nibble) on colonic short chain fatty acids (SCFAs), in vivo colonic pH and epithelial cell proliferation were examined in male Sprague-Dawley rats...

Zhang, Jianhu

1993-01-01T23:59:59.000Z

465

Updated May 22, 2014 Equipment Type Type of Service Requested Est Hrs Est $  

E-Print Network [OSTI]

system 3 $165 "PM" service 1 $55 Research Equipment Support & Engineering Services Core List of Services $ Research Equipment Support & Engineering Services Core List of Services with Time and Cost EstimatesUpdated May 22, 2014 Equipment Type Type of Service Requested Est Hrs Est $ CO2 Incubator

466

[Type text] [Type text] Approved by Faculty Graduate Student Travel Grant Policy  

E-Print Network [OSTI]

[Type text] [Type text] Approved by Faculty Graduate Student Travel Grant Policy Computer Science Department To support graduate student research publications, the Computer Science Department will support dates will coincide with the Senate Scholarly Activities Committee (SSAC) Travel Grant application due

Delene, David J.

467

Aspen Ecology in the MixedAspen Ecology in the Mixed Conifer TypeConifer Type  

E-Print Network [OSTI]

Aspen Ecology in the MixedAspen Ecology in the Mixed Conifer TypeConifer Type Wayne D. Shepperd Colorado State University Fort Collins, CO Aspen Ecology in the MixedAspen Ecology in the Mixed ConiferAssumptions Mixed conifer forests are a collection of different species, each with different ecologic requirements

468

RESTRICTED MODULES AND CONJECTURES FOR MODULES OF CONSTANT JORDAN TYPE  

E-Print Network [OSTI]

RESTRICTED MODULES AND CONJECTURES FOR MODULES OF CONSTANT JORDAN TYPE SEMRA ¨OZT¨URK KAPTANO GLU give a method to construct new restricted k[E]-modules of constant Jordan type from k[E]-modules of constant Jordan type and use it to realize several Jordan types. The constraints on the Jordan type

Kaptanoglu, Semra Ozturk

469

Programming with Dependent Types in Coq Matthieu Sozeau  

E-Print Network [OSTI]

, generating Type-checking conditions. + Practical success ; t : T P[t/x] t : { x : T | P } t : { x : T | P, generating Type-checking conditions. + Practical success ; ­ No strong safety guarantee in PVS. t : T P typing algorithm for subset types, generating Type-checking conditions. + Practical success ; ­ No strong

Sozeau, Matthieu

470

Market Transformation Efforts for Residential Energy Efficient Windows: An  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Market Transformation Efforts for Residential Energy Efficient Windows: An Market Transformation Efforts for Residential Energy Efficient Windows: An Update of National Activities Title Market Transformation Efforts for Residential Energy Efficient Windows: An Update of National Activities Publication Type Report LBNL Report Number LBNL-46620 Year of Publication 2000 Authors Ward, Alecia, Margaret Suozzo, and Joseph H. Eto Date Published 01/2000 Publisher LBNL Abstract With the burst of recent initiatives to accelerate adoption of energy-efficient fenestration technologies in the marketplace, an update on window market transformation efforts is needed. Because of the impact of glazing on total home energy performance, the residential window market has received increasing attention over the past two years. National programs such as the ENERGY STAR Windows program, the Efficient Windows Collaborative, and regional initiatives such as the California Windows Initiative and the Northwest Collaborative have begun to move markets toward higher-efficiency windows. The results have included increasing sales of efficient products, stocking of more efficient/ENERGY STAR qualifying products, and price reductions of high-efficiency product, all of which secure dramatic energy savings at a national level. This paper takes stock of publicly supported national and regional transformation efforts for residential windows underway in the U.S. In particular, it documents ways in which National Fenestration Rating Council certification, Efficient Windows Collaborative education, and ENERGY STAR marketing, are working together to change window markets across the United States. Although it is too early to quantify the national-level impacts changes of these efforts, the authors offer a preliminary qualitative evaluation of efficient window promotion efforts to gain insight into the broader impacts that these and other future activities will achieve. Finally, the paper summarizes how other federally-funded building industry initiatives that emphasize "whole house" performance can complement these window technology-specific and component-specific initiatives. Demonstration houses from the Building America, ENERGY STAR Homes, and PATH projects all contribute to the success of windows-specific initiatives.

471

Outline Introduction Types Examples Conclusion Intrusion Detection Systems  

E-Print Network [OSTI]

Engineering - 2008 2 / 15 #12;Outline Introduction Types Examples Conclusion Overview History Need Computer Engineering Department, KFUPM Spring 2008 Ahmad Almulhem - Network Security Engineering - 2008 1 / 15 #12;Outline Introduction Types Examples Conclusion Outline 1 Introduction Overview History 2 Types

Almulhem, Ahmad

472

Types of Lighting in Commercial Buildings - Changes  

U.S. Energy Information Administration (EIA) Indexed Site

Changes in Lighting Changes in Lighting The percentage of commercial buildings with lighting was unchanged between 1995 and 2003; however, three lighting types did show change in usage. Compact fluorescent lamps and halogen lamps showed a significant increase between 1995 and 2003 while the use of incandescent lights declined. The lighting questions in the 1995, 1999, and 2003 CBECS questionnaires were virtually identical which facilitates comparison across survey years. The use of compact fluorescent lamps more than doubled, from just under 10 percent of lit buildings to more than 20 percent (Figure 17 and Table 5). The use of halogen lamps nearly doubled, from 7 percent to 13 percent of lit buildings. Use of incandescent lights was the only lighting type to decline; their use dropped from 59 percent to just over one-half of lit buildings.

473

Types of Lighting in Commercial Buildings - Introduction  

U.S. Energy Information Administration (EIA) Indexed Site

Introduction Introduction Lighting is a major consumer of electricity in commercial buildings and a target for energy savings through use of energy-efficient light sources along with other advanced lighting technologies. The Commercial Buildings Energy Consumption Survey (CBECS) collects information on types of lighting equipment, the amount of floorspace that is lit, and the percentage of floorspace lit by each type. In addition, CBECS data are used to model end-use consumption, including energy consumed for lighting in commercial buildings. CBECS building characteristics data can answer a wide range of questions about lighting from the most basic, "How many buildings are lit?" to more detailed questions such as, "How many office buildings have compact

474

Federal Energy Management Program: Maintenance Types  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Maintenance Types Maintenance Types Proper operations and maintenance (O&M) goes beyond repairing equipment after it breaks. Several maintenance strategies exist to prevent systems disrepair and degradation. A combination of the following can ensure an optimal blend of cost and life-cycle effectiveness: Reactive Maintenance: Follows a "run it until it breaks" strategy. No action or effort is taken to maintain equipment, prevent failure, or ensure life of the system - even if actions are suggested by the manufacturer. Preventive Maintenance: Refers to a series of actions performed on calendar time or machine run time schedules. Predictive Maintenance: Strives to detect the onset of equipment degradation and address the problems as they are identified. Several predictive maintenance technologies exist.

475

Manufacture of naphthenic type lubricating oils  

SciTech Connect (OSTI)

A process for making naphthenic type lubricating oils from a low viscosity waxy crude which comprises distilling said low viscosity waxy crude to 500 to 650/sup 0/F. At atmospheric pressure to separate distillable fractions therefrom, subjecting the residue to a vacuum distillation at about 25 to about 125 mm Hg absolute pressure to obtain one or more gas oil fractions, optionally hydrotreating said gas oil fractions in the presence of a Ni/Mo catalyst at 550 to 650/sup 0/F, 0.25 to 1.0 lhsv, and 700-1500 psig, and catalytically dewaxing said distillates in the presence of a H+ form mordenite catalyst containing a group VI or group VIII metal at 550 to 750/sup 0/F, 500 to 1500 psig and 0.25 to 5.0 lhsv, to obtain said naphthenic type oils having pour points of from about -60 to +20/sup 0/F.

Reynolds, R.W.

1981-02-24T23:59:59.000Z

476

Covering based approximation – a new type approach  

Science Journals Connector (OSTI)

The rough set theory, proposed by Pawlak is termed as basic (traditional) rough set theory and it has been extended in many directions. Covering based rough set is one of the extensions of the basic rough set theory. A covering is a generalisation of notion of partitioned rough set (Pawalk rough set) introduced by W. Zakowski. In this article it is introduced a new type of covering-based rough set in which both lower and upper approximation operators are improved.

Debadutta Mohanty

2010-01-01T23:59:59.000Z

477

Scattering Anisotropies in n-Type Silicon  

Science Journals Connector (OSTI)

Measurements have been made of magnetoresistance effects in several relatively pure samples of n-type silicon for the purpose of obtaining information on scattering anisotropies. The results indicate that the ratios of relaxation times parallel and perpendicular to a constant-energy-spheroid axis in the six-valley conduction band of silicon are ?II???23 for acoustic-mode intravalley lattice scattering and ?II??>1 for ionized-impurity scattering. Intervalley lattice scattering, important at higher temperatures, is isotropic.

Donald Long and John Myers

1960-10-01T23:59:59.000Z

478

Reference Buildings by Building Type: Strip mall | Department...  

Broader source: Energy.gov (indexed) [DOE]

Strip mall Reference Buildings by Building Type: Strip mall In addition to the ZIP file for each building type, you can directly view the "scorecard" spreadsheet that summarizes...

479

Reference Buildings by Building Type: Large Hotel | Department...  

Broader source: Energy.gov (indexed) [DOE]

Hotel Reference Buildings by Building Type: Large Hotel In addition to the ZIP file for each building type, you can directly view the "scorecard" spreadsheet that summarizes the...

480

Mechanism of Type IIA Photosensitivity in Optical Fibers  

Science Journals Connector (OSTI)

Formation of the type IIA Bragg gratings in germanosilicate optical fibers is studied. A mechanism for the type IIA photosensitivity is proposed which is based on nucleation and...

Shlyagin, Mikhail; Kukushkin, Sergei

Note: This page contains sample records for the topic "glazings glazing type" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

TABLE 1. Nuclear Reactor, State, Type, Net Capacity, Generation...  

U.S. Energy Information Administration (EIA) Indexed Site

TABLE 1. Nuclear Reactor, State, Type, Net Capacity, Generation, and Capacity Factor " "PlantReactor Name","Generator ID","State","Type","2009 Summer Capacity"," 2010 Annual...

482

Estimate Greenhouse Gas Emissions by Building Type | Department...  

Broader source: Energy.gov (indexed) [DOE]

Estimate Greenhouse Gas Emissions by Building Type Estimate Greenhouse Gas Emissions by Building Type YOU ARE HERE Step 2 Starting with the programs contributing the greatest...

483

Fact #802: November 4, 2013 Market Share by Transmission Type...  

Energy Savers [EERE]

2: November 4, 2013 Market Share by Transmission Type Fact 802: November 4, 2013 Market Share by Transmission Type The variety of transmission technologies has increased as...

484

Type B Accident Investigation Board Report on the October 8,...  

Broader source: Energy.gov (indexed) [DOE]

Type B Accident Investigation on the February 17, 2004, Personal Injury Accident, Bettis Atomic Power Laboratory Type B Accident Investigation of the Arc Flash at Brookhaven...

485

Operations and Maintenance for Major Equipment Types | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Types Operations and Maintenance for Major Equipment Types Equipment lies at the heart of all operations and maintenance (O&M) activities. This equipment varies greatly...

486

7 - Door Types and Door Frames  

Science Journals Connector (OSTI)

Publisher Summary This chapter covers the basics about Door Types and Door Frames. It provides an introduction about Doors and Security, information about the types of door construction and how they affect system performance and security. It is essential to understanding how to make security systems work reliably, and on other types of doors including roll-up doors and revolving doors. Doors have a tough job. A door can be evaluated on important criteria like they must block passage, they must open and close easily, they should be robust against intrusion, and they should fit the visual aesthetics of the environment in which they are mounted. The basic door is the standard Single- and Double-Leaf Swinging Door. This door includes a frame, hinges, door(s), a lock, and sometimes other hardware including a door closer, door coordinator, and kick plates. This chapter expands on the information contained in Chapter 5, Access Control Portals. Access Control is all about controlling access through portals. For pedestrians, most portals are at a door and door frame. This chapter explains the basics you need to know about how doors and frames are constructed and how they affect access control portal decisions. Author Information: Thomas L. Norman, CPP, PSP, CSC, Executive Vice President, Protection Partners International

Thomas Norman

2012-01-01T23:59:59.000Z

487

On the classification of type D spacetimes  

E-Print Network [OSTI]

We give a classification of the type D spacetimes based on the invariant differential properties of the Weyl principal structure. Our classification is established using tensorial invariants of the Weyl tensor and, consequently, besides its intrinsic nature, it is valid for the whole set of the type D metrics and it applies on both, vacuum and non-vacuum solutions. We consider the Cotton-zero type D metrics and we study the classes that are compatible with this condition. The subfamily of spacetimes with constant argument of the Weyl eigenvalue is analyzed in more detail by offering a canonical expression for the metric tensor and by giving a generalization of some results about the non-existence of purely magnetic solutions. The usefulness of these results is illustrated in characterizing and classifying a family of Einstein-Maxwell solutions. Our approach permits us to give intrinsic and explicit conditions that label every metric, obtaining in this way an operational algorithm to detect them. In particular a characterization of the Reissner-Nordstr\\"{o}m metric is accomplished.

J. J. Ferrando; J. A. Sáez

2002-12-20T23:59:59.000Z

488

Early Type Galaxy Core Phase Densities  

E-Print Network [OSTI]

Early type galaxies, ellipticals and S0's, have two distinct core density profiles, either a power law or nearly flat in projection. The two core types are distributed with substantial overlap in luminosity, radius, mass and velocity dispersion, however, the cores separate into two distinct distributions in their coarse grain phase density, Q_0 = rho/sigma^3,suggesting that dynamical processes played a dominant role in their origin. The transition phase density separating the two elliptical types is approximately 0.003 M_sun pc^-3 km^-3 s^3,. The Q_0*M_c^2 vs M_c diagram shows that globular clusters, nuclear star clusters and power-law cores fall on what is likely a "collisional" sequence of inspiralling globular clusters. on which the relative core mass excess varies as the bulk stellar mass to the -0.34+/-0.08 power, close to predictions, albeit with a correlation coefficient of -0.46. Both power-law and cored galaxies lie on a single sequence of approximately Q_0 ~r_c^-2.2, suggesting that transport proces...

Carlbeg, Raymond

2014-01-01T23:59:59.000Z

489

Estimate Greenhouse Gas Emissions by Building Type | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Estimate Greenhouse Gas Emissions by Building Type Estimate Greenhouse Gas Emissions by Building Type Estimate Greenhouse Gas Emissions by Building Type October 7, 2013 - 10:51am Addthis YOU ARE HERE Step 2 Starting with the programs contributing the greatest proportion of building greenhouse gas (GHG) emissions, the agency should next determine which building types operated by those programs use the most energy (Figure 1). Energy intensity is evaluated instead of emissions in this approach because programs may not have access to emissions data by building type. Figure 1 - An image of an organizational-type chart. A rectangle labeled 'Program 1' has lines pointing to three other rectangles below it labeled 'Building Type 1,' 'Building Type 2,' and 'Building Type 3.' Next to the building types it says, 'Step 2. Estimate emissions by building type.

490

Type Inference to Optimize a Hybrid Statically and Dynamically Typed Language  

Science Journals Connector (OSTI)

......a framework for building content management systems, intranets and custom applications) and the 8 Web application framework...static type-checking operation until runtime. With this new characteristic, it is possible to develop more flexible code, even in......

Francisco Ortin

2011-11-01T23:59:59.000Z

491

Down Type Isosinglet Quarks in ATLAS  

E-Print Network [OSTI]

We evaluate the discovery reach of the ATLAS experiment for down type isosinglet quarks, $D$, using both their neutral and charged decay channels, namely the process $pp\\to D\\bar{D}+X$ with subsequent decays resulting in $2\\ell+2j+E^{miss}_{T}$, $3\\ell+2j+E^{miss}_{T}$ and $2\\ell+4j$ final states. The integrated luminosity required for observation of a heavy quark is estimated for a mass range between 600 and 1000 GeV using the combination of results from different search channels.

R. Mehdiyev; A. Siodmok; S. Sultansoy; G. Unel

2007-11-07T23:59:59.000Z

492

The Boussinesq equation and Miura-type transformations  

Science Journals Connector (OSTI)

Several Miura-type transformations for the Boussinesq equation are found and the corresponding integrable...

M. V. Pavlov

2006-08-01T23:59:59.000Z

493

RESTRICTED MODULES AND CONJECTURES FOR MODULES OF CONSTANT JORDAN TYPE  

E-Print Network [OSTI]

RESTRICTED MODULES AND CONJECTURES FOR MODULES OF CONSTANT JORDAN TYPE SEMRA ¨OZT¨URK KAPTANO GLU Abstract. We introduce the class of restricted k[A]-modules and pt-Jordan types for a finite abelian p on Jordan types for modules of constant Jordan type when t is 1. We state conjectures giving constraints

Kaptanoglu, Semra Ozturk

494

Type Policy Title Here Effective Date: [Insert Date  

E-Print Network [OSTI]

Type Policy Title Here Effective Date: [Insert Date] Policy Statement [Type Statement Text Here] Reason(s) for the Policy [Type Reason Text Here] Primary Guidance to Which This Policy Responds [Type Primary Policy Here ­ If there is NOT a Primary Policy indicate that] Responsible University Office

Salzman, Daniel

495

The Ig-Like V-Type Domain of Paired Ig-Like Type 2 Receptor Alpha Is Critical for Herpes Simplex Virus Type 1-Mediated Membrane Fusion  

Science Journals Connector (OSTI)

...for Herpes Simplex Virus Type 1-Mediated Membrane Fusion Published ahead of print...does not confer wild-type-like cell fusion activity. Since previous...outside the Ig-like V-type domain contribute to fusion function of PILRa. As...

Qing Fan; Richard Longnecker

2010-06-23T23:59:59.000Z

496

Type E: Extensional Tectonic, Fault-Controlled Resource | Open Energy  

Open Energy Info (EERE)

Type E: Extensional Tectonic, Fault-Controlled Resource Type E: Extensional Tectonic, Fault-Controlled Resource Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Type E: Extensional Tectonic, Fault-Controlled Resource Dictionary.png Type E: Extensional Tectonic, Fault-Controlled Resource: No definition has been provided for this term. Add a Definition Brophy Occurrence Models This classification scheme was developed by Brophy, as reported in Updating the Classification of Geothermal Resources.[1] Type A: Magma-heated, Dry Steam Resource Type B: Andesitic Volcanic Resource Type C: Caldera Resource Type D: Sedimentary-hosted, Volcanic-related Resource Type E: Extensional Tectonic, Fault-Controlled Resource Type F: Oceanic-ridge, Basaltic Resource Extensional-tectonic, fault-controlled resources typically result from a

497

Type Ia Supernova Explosion: Gravitationally Confined Detonation  

Science Journals Connector (OSTI)

We present a new mechanism for Type Ia supernova explosions in massive white dwarfs. The scenario follows from relaxing assumptions of symmetry and involves a detonation born near the stellar surface. The explosion begins with an essentially central ignition of a deflagration that results in the formation of a buoyancy-driven bubble of hot material that reaches the stellar surface at supersonic speeds. The bubble breakout laterally accelerates fuel-rich outer stellar layers. This material, confined by gravity to the white dwarf, races along the stellar surface and is focused at the location opposite to the point of the bubble breakout. These streams of nuclear fuel carry enough mass and energy to trigger a detonation just above the stellar surface that will incinerate the white dwarf and result in an energetic explosion. The stellar expansion following the deflagration redistributes mass in a way that ensures production of intermediate-mass and iron group elements with ejecta having a strongly layered structure and a mild amount of asymmetry following from the early deflagration phase. This asymmetry, combined with the amount of stellar expansion determined by details of the evolution (principally the energetics of deflagration, timing of detonation, and structure of the progenitor), can be expected to create a family of mildly diverse Type Ia supernova explosions.

T. Plewa; A. C. Calder; D. Q. Lamb

2004-01-01T23:59:59.000Z

498

Practical kerogen typing for petroleum exploration  

SciTech Connect (OSTI)

The explorationist requires basic quantitative information on the size, gas-oil ratio (GOR), and timing of petroleum charges. Yet only a part of this crucial information is obtainable from the data currently used to define kerogen types. The authors describe here a practical approach and solution to this problem by defining kerogen type according to three fundamental criteria. One of these is total hydrocarbon-generating potential, as determined by Rock-Eval pyrolysis (S2). The other equally important criteria are source quality (GOR, wax content, etc), as determined by pyrolysis-gas chromatography (PY-GC), and thermal lability (response to thermal stress), as determined by PY-GC and microscale simulation pyrolysis techniques. With regard to source quality determination, paraffinic oil-generating potential (both high wax and low wax), paraffinic-naphthenic-aromatic oil-generating potential (both high wax and low wax), and gas condensate-generating potentials are readily discernible and quantifiable. Concerning thermal lability, the influence of extreme maturation levels on source rock and petroleum composition has been assessed. In the case of some kerogens, bulk compositional features can be preserved to high levels of thermal stress. This means that original oil-generating potential can sometimes be discerned from the analysis of overmature kerogens.

Horsfield, B.; Larter, S.R.

1989-03-01T23:59:59.000Z

499

Simultaneous acquisition of differing image types  

DOE Patents [OSTI]

A system in one embodiment includes an image forming device for forming an image from an area of interest containing different image components; an illumination device for illuminating the area of interest with light containing multiple components; at least one light source coupled to the illumination device, the at least one light source providing light to the illumination device containing different components, each component having distinct spectral characteristics and relative intensity; an image analyzer coupled to the image forming device, the image analyzer decomposing the image formed by the image forming device into multiple component parts based on type of imaging; and multiple image capture devices, each image capture device receiving one of the component parts of the image. A method in one embodiment includes receiving an image from an image forming device; decomposing the image formed by the image forming device into multiple component parts based on type of imaging; receiving the component parts of the image; and outputting image information based on the component parts of the image. Additional systems and methods are presented.

Demos, Stavros G

2012-10-09T23:59:59.000Z

500

The distant type Ia supernova rate  

SciTech Connect (OSTI)

We present a measurement of the rate of distant Type Ia supernovae derived using 4 large subsets of data from the Supernova Cosmology Project. Within this fiducial sample,which surveyed about 12 square degrees, thirty-eight supernovae were detected at redshifts 0.25--0.85. In a spatially flat cosmological model consistent with the results obtained by the Supernova Cosmology Project, we derive a rest-frame Type Ia supernova rate at a mean red shift z {approx_equal} 0.55 of 1.53 {sub -0.25}{sub -0.31}{sup 0.28}{sup 0.32} x 10{sup -4} h{sup 3} Mpc{sup -3} yr{sup -1} or 0.58{sub -0.09}{sub -0.09}{sup +0.10}{sup +0.10} h{sup 2} SNu(1 SNu = 1 supernova per century per 10{sup 10} L{sub B}sun), where the first uncertainty is statistical and the second includes systematic effects. The dependence of the rate on the assumed cosmological parameters is studied and the redshift dependence of the rate per unit comoving volume is contrasted with local estimates in the context of possible cosmic star formation histories and progenitor models.

Pain, R.; Fabbro, S.; Sullivan, M.; Ellis, R.S.; Aldering, G.; Astier, P.; Deustua, S.E.; Fruchter, A.S.; Goldhaber, G.; Goobar, A.; Groom, D.E.; Hardin, D.; Hook, I.M.; Howell, D.A.; Irwin, M.J.; Kim, A.G.; Kim, M.Y.; Knop, R.A.; Lee, J.C.; Perlmutter, S.; Ruiz-Lapuente, P.; Schahmaneche, K.; Schaefer, B.; Walton, N.A.

2002-05-20T23:59:59.000Z