Sample records for glass waste storage

  1. Idaho Waste Vitrification Facilities Project Vitrified Waste Interim Storage Facility

    SciTech Connect (OSTI)

    Bonnema, Bruce Edward

    2001-09-01T23:59:59.000Z

    This feasibility study report presents a draft design of the Vitrified Waste Interim Storage Facility (VWISF), which is one of three subprojects of the Idaho Waste Vitrification Facilities (IWVF) project. The primary goal of the IWVF project is to design and construct a treatment process system that will vitrify the sodium-bearing waste (SBW) to a final waste form. The project will consist of three subprojects that include the Waste Collection Tanks Facility, the Waste Vitrification Facility (WVF), and the VWISF. The Waste Collection Tanks Facility will provide for waste collection, feed mixing, and surge storage for SBW and newly generated liquid waste from ongoing operations at the Idaho Nuclear Technology and Engineering Center. The WVF will contain the vitrification process that will mix the waste with glass-forming chemicals or frit and turn the waste into glass. The VWISF will provide a shielded storage facility for the glass until the waste can be disposed at either the Waste Isolation Pilot Plant as mixed transuranic waste or at the future national geological repository as high-level waste glass, pending the outcome of a Waste Incidental to Reprocessing determination, which is currently in progress. A secondary goal is to provide a facility that can be easily modified later to accommodate storage of the vitrified high-level waste calcine. The objective of this study was to determine the feasibility of the VWISF, which would be constructed in compliance with applicable federal, state, and local laws. This project supports the Department of Energy’s Environmental Management missions of safely storing and treating radioactive wastes as well as meeting Federal Facility Compliance commitments made to the State of Idaho.

  2. The use of glass matrices for solidification of radioactive wastes

    SciTech Connect (OSTI)

    Gromov, V.V.; Minaev, A.A. [Russian Academy of Sciences, Moscow (Russian Federation). Inst. of Physical Chemistry

    1993-12-31T23:59:59.000Z

    The physico-chemical aspects of the solidification of nuclear wastes have been studied at the Institute of Physical Chemistry of the Russian Academy of Sciences for a number of years. This method is viewed as the most reliable method of storage of nuclear wastes. Various glass systems have been studied, including phosphate, borosilicate glasses etc. The data obtained allow optimal glass compositions to be chosen for solidification of various nuclear wastes.

  3. Laboratory Waste Disposal HAZARDOUS GLASS

    E-Print Network [OSTI]

    Sheridan, Jennifer

    Laboratory Waste Disposal HAZARDOUS GLASS Items that could cut or puncture skin or trash- can without any treatment. Hazardous Glass and Plastic: Items that can puncture, cut or scratch if disposed of in normal trash containers. Pasteur pipettes Other pipettes and tips (glass or plastic) Slides and cover

  4. Micro-Continuum Modeling of Nuclear Waste Glass Corrosion

    E-Print Network [OSTI]

    Steefel, Carl

    2014-01-01T23:59:59.000Z

    21. Grambow, B. (2006). Nuclear waste glasses – How durable?Continuum Modeling of Nuclear Waste Glass Corrosion AugustContinuum Modeling of Nuclear Waste Glass Corrosion Prepared

  5. Natural analogues of nuclear waste glass corrosion.

    SciTech Connect (OSTI)

    Abrajano, T.A. Jr.; Ebert, W.L.; Luo, J.S.

    1999-01-06T23:59:59.000Z

    This report reviews and summarizes studies performed to characterize the products and processes involved in the corrosion of natural glasses. Studies are also reviewed and evaluated on how well the corrosion of natural glasses in natural environments serves as an analogue for the corrosion of high-level radioactive waste glasses in an engineered geologic disposal system. A wide range of natural and experimental corrosion studies has been performed on three major groups of natural glasses: tektite, obsidian, and basalt. Studies of the corrosion of natural glass attempt to characterize both the nature of alteration products and the reaction kinetics. Information available on natural glass was then compared to corresponding information on the corrosion of nuclear waste glasses, specifically to resolve two key questions: (1) whether one or more natural glasses behave similarly to nuclear waste glasses in laboratory tests, and (2) how these similarities can be used to support projections of the long-term corrosion of nuclear waste glasses. The corrosion behavior of basaltic glasses was most similar to that of nuclear waste glasses, but the corrosion of tektite and obsidian glasses involves certain processes that also occur during the corrosion of nuclear waste glasses. The reactions and processes that control basalt glass dissolution are similar to those that are important in nuclear waste glass dissolution. The key reaction of the overall corrosion mechanism is network hydrolysis, which eventually breaks down the glass network structure that remains after the initial ion-exchange and diffusion processes. This review also highlights some unresolved issues related to the application of an analogue approach to predicting long-term behavior of nuclear waste glass corrosion, such as discrepancies between experimental and field-based estimates of kinetic parameters for basaltic glasses.

  6. Crystallization in High-Level Waste Glasses

    SciTech Connect (OSTI)

    Hrma, Pavel R. (BATTELLE (PACIFIC NW LAB)); Dane R Spearing, Gary L Smith, SK Sundaram

    2002-01-01T23:59:59.000Z

    This review outlines important aspects of crystallization in HLW glasses, such as equilibrium, nucleation, growth, and dissolution. The impact of crystallization on continuous melters and the chemical durability of high-level waste glass are briefly discussed.

  7. Crystallization during processing of nuclear waste glass

    SciTech Connect (OSTI)

    Hrma, Pavel R.

    2010-12-01T23:59:59.000Z

    In glass processing situations involving glass crystallization, various crystalline forms nucleate, grow, and dissolve, typically in a nonuniform temperature field of molten glass subjected to convection. Nuclear waste glasses are remarkable examples of multicomponent vitrified mixtures involving partial crystallization. In the glass melter, crystals form and dissolve during batch-to-glass conversion, melter processing, and product cooling. Crystals often agglomerate and sink, and they may settle at the melter bottom. Within the body of cooling glass, multiple phases crystallize in a non-uniform time-dependent temperature field. Self-organizing periodic distribution (the Liesegnang effect) is common. Various crystallization phenomena that occur in glassmaking are reviewed.

  8. Direct conversion of halogen-containing wastes to borosilicate glass

    SciTech Connect (OSTI)

    Forsberg, C.W.; Beahm, E.C.; Rudolph, J.C.

    1996-12-09T23:59:59.000Z

    Glass has become a preferred waste form worldwide for radioactive wastes: however, there are limitations. Halogen-containing wastes can not be converted to glass because halogens form poor-quality waste glasses. Furthermore, halides in glass melters often form second phases that create operating problems. A new waste vitrification process, the Glass Material Oxidation and dissolution System (GMODS), removes these limitations by converting halogen-containing wastes into borosilicate glass and a secondary, clean, sodium-halide stream.

  9. HGMS: Glasses and Nanocomposites for Hydrogen Storage.

    SciTech Connect (OSTI)

    Lipinska, Kris [PI] [PI; Hemmers, Oliver

    2013-02-17T23:59:59.000Z

    The primary goal of this project is to fabricate and investigate different glass systems and glass-derived nanocrystalline composite materials. These glass-based, two-phased materials will contain nanocrystals that can attract hydrogen and be of potential interest as hydrogen storage media. The glass materials with intrinsic void spaces that are able to precipitate functional nanocrystals capable to attract hydrogen are of particular interest. Proposed previously, but never practically implemented, one of promising concepts for storing hydrogen are micro-containers built of glass and shaped into hollow microspheres. The project expanded this concept to the exploration of glass-derived nanocrystalline composites as potential hydrogen storage media. It is known that the most desirable materials for hydrogen storage do not interact chemically with hydrogen and possess a high surface area to host substantial amounts of hydrogen. Glasses are built of disordered networks with ample void spaces that make them permeable to hydrogen even at room temperature. Glass-derived nanocrystalline composites (two-phased materials), combination of glasses (networks with ample voids) and functional nanocrystals (capable to attract hydrogen), appear to be promising candidates for hydrogen storage media. Key advantages of glass materials include simplicity of preparation, flexibility of composition, chemical durability, non-toxicity and mechanical strength, as well as low production costs and environmental friendliness. This project encompasses a fundamental research into physics and chemistry of glasses and nanocrystalline composite materials, derived from glass. Studies are aimed to answer questions essential for considering glass-based materials and composites as potential hydrogen storage media. Of particular interest are two-phased materials that combine glasses with intrinsic voids spaces for physisorption of hydrogen and nanocrystals capable of chemisorption. This project does not directly address any hydrogen storage technical barriers or targets in terms of numbers. Specifically, hydrogen sorption and desorption tests or kinetics measurements were not part of the project scope. However, the insights gained from these studies could help to answer fundamental questions necessary for considering glass-based materials as hydrogen storage media and could be applied indirectly towards the DOE hydrogen storage technical targets such as system weight and volume, system cost and energy density. Such questions are: Can specific macro-crystals, proven to attract hydrogen when in a macroscopic form (bulk), be nucleated in glass matrices as nanocrystals to create two-phased materials? What are suitable compositions that enable to synthetize glass-based, two-phase materials with nanocrystals that can attract hydrogen via surface or bulk interactions? What are the limits of controlling the microstructure of these materials, especially limits for nanocrystals density and size? Finally, from a technological point of view, the fabrication of glass-derived nanocomposites that we explore is a very simple, fast and inexpensive process that does not require costly or specialized equipment which is an important factor for practical applications.

  10. Glass science tutorial: Lecture No. 7, Waste glass technology for Hanford

    SciTech Connect (OSTI)

    Kruger, A.A.

    1995-07-01T23:59:59.000Z

    This paper presents the details of the waste glass tutorial session that was held to promote knowledge of waste glass technology and how this can be used at the Hanford Reservation. Topics discussed include: glass properties; statistical approach to glass development; processing properties of nuclear waste glass; glass composition and the effects of composition on durability; model comparisons of free energy of hydration; LLW glass structure; glass crystallization; amorphous phase separation; corrosion of refractories and electrodes in waste glass melters; and glass formulation for maximum waste loading.

  11. Molten Glass for Thermal Storage: Advanced Molten Glass for Heat Transfer and Thermal Energy Storage

    SciTech Connect (OSTI)

    None

    2012-01-01T23:59:59.000Z

    HEATS Project: Halotechnics is developing a high-temperature thermal energy storage system using a new thermal-storage and heat-transfer material: earth-abundant and low-melting-point molten glass. Heat storage materials are critical to the energy storage process. In solar thermal storage systems, heat can be stored in these materials during the day and released at night—when the sun is not out—to drive a turbine and produce electricity. In nuclear storage systems, heat can be stored in these materials at night and released to produce electricity during daytime peak-demand hours. Halotechnics new thermal storage material targets a price that is potentially cheaper than the molten salt used in most commercial solar thermal storage systems today. It is also extremely stable at temperatures up to 1200°C—hundreds of degrees hotter than the highest temperature molten salt can handle. Being able to function at high temperatures will significantly increase the efficiency of turning heat into electricity. Halotechnics is developing a scalable system to pump, heat, store, and discharge the molten glass. The company is leveraging technology used in the modern glass industry, which has decades of experience handling molten glass.

  12. Waste Glass Corrosion: Some Open Questions

    SciTech Connect (OSTI)

    Hrma, Pavel R.; Vienna, John D.; Yeager, John D.

    2003-05-21T23:59:59.000Z

    An equation for time evolution of glass corrosion in a closed system is proposed. Examples of fitting this equation to vapor-hydration test (VHT) and product consistency test data are shown. It is argued that the stage of accelerated corrosion of waste glass is a temporary spike caused by a transition to a different mechanism (not associated solely with high-alumina content in glass) and followed by slower steady corrosion. The effect of temperature and glass composition on the VHT rate of corrosion is evaluated. Results of different corrosion tests are compared. Progress towards a frame-indifferent rate equation is outlined.

  13. Retention of Halogens in Waste Glass

    SciTech Connect (OSTI)

    Hrma, Pavel R.

    2010-05-01T23:59:59.000Z

    In spite of their potential roles as melting rate accelerators and foam breakers, halogens are generally viewed as troublesome components for glass processing. Of five halogens, F, Cl, Br, I, and At, all but At may occur in nuclear waste. A nuclear waste feed may contain up to 10 g of F, 4 g of Cl, and ?100 mg of Br and I per kg of glass. The main concern is halogen volatility, producing hazardous fumes and particulates, and the radioactive iodine 129 isotope of 1.7x10^7-year half life. Because F and Cl are soluble in oxide glasses and tend to precipitate on cooling, they can be retained in the waste glass in the form of dissolved constituents or as dispersed crystalline inclusions. This report compiles known halogen-retention data in both high-level waste (HLW) and low-activity waste (LAW) glasses. Because of its radioactivity, the main focus is on I. Available data on F and Cl were compiled for comparison. Though Br is present in nuclear wastes, it is usually ignored; no data on Br retention were found.

  14. 5D Data Storage by Ultrafast Laser Nanostructuring in Glass

    E-Print Network [OSTI]

    Anderson, Jim

    5D Data Storage by Ultrafast Laser Nanostructuring in Glass Jingyu Zhang* , Mindaugas Gecevicius-assembled form birefringence and retrieved in glass opening the era of unlimited lifetime data storage. © 2013 laser writing in glass were proposed for the polarization multiplexed optical memory, where

  15. Lead iron phosphate glass as a containment medium for disposal of high-level nuclear waste

    DOE Patents [OSTI]

    Boatner, Lynn A. (Oak Ridge, TN); Sales, Brian C. (Oak Ridge, TN)

    1989-01-01T23:59:59.000Z

    Lead-iron phosphate glasses containing a high level of Fe.sub.2 O.sub.3 for use as a storage medium for high-level radioactive nuclear waste. By combining lead-iron phosphate glass with various types of simulated high-level nuclear waste, a highly corrosion resistant, homogeneous, easily processed glass can be formed. For corroding solutions at 90.degree. C., with solution pH values in the range between 5 and 9, the corrosion rate of the lead-iron phosphate nuclear waste glass is at least 10.sup.2 to 10.sup.3 times lower than the corrosion rate of a comparable borosilicate nuclear waste glass. The presence of Fe.sub.2 O.sub.3 in forming the lead-iron phosphate glass is critical. Lead-iron phosphate nuclear waste glass can be prepared at temperatures as low as 800.degree. C., since they exhibit very low melt viscosities in the 800.degree. to 1050.degree. C. temperature range. These waste-loaded glasses do not readily devitrify at temperatures as high as 550.degree. C. and are not adversely affected by large doses of gamma radiation in H.sub.2 O at 135.degree. C. The lead-iron phosphate waste glasses can be prepared with minimal modification of the technology developed for processing borosilicate glass nuclear wasteforms.

  16. Natural glass analogues to alteration of nuclear waste glass: A review and recommendations for further study

    SciTech Connect (OSTI)

    McKenzie, W.F.

    1990-01-01T23:59:59.000Z

    The purpose of this report is to review previous work on the weathering of natural glasses; and to make recommendations for further work with respect to studying the alteration of natural glasses as it relates quantifying rates of dissolution. the first task was greatly simplified by the published papers of Jercinovic and Ewing (1987) and Byers, Jercinovic, and Ewing (1987). The second task is obviously the more difficult of the two and the author makes no claim of completeness in this regard. Glasses weather in the natural environment by reacting with aqueous solutions producing a rind of secondary solid phases. It had been proposed by some workers that the thickness of this rind is a function of the age of the glass and thus could be used to estimate glass dissolution rates. However, Jercinovic and Ewing (1987) point out that in general the rind thickness does not correlate with the age of the glass owing to the differences in time of contact with the solution compared to the actual age of the sample. It should be noted that the rate of glass dissolution is also a function of the composition of both the glass and the solution, and the temperature. Quantification of the effects of these parameters (as well as time of contact with the aqueous phase and flow rates) would thus permit a prediction of the consequences of glass-fluid interactions under varying environmental conditions. Defense high- level nuclear waste (DHLW), consisting primarily of liquid and sludge, will be encapsulated by and dispersed in a borosilicate glass before permanent storage in a HLW repository. This glass containing the DHLW serves to dilute the radionuclides and to retard their dispersion into the environment. 318 refs.

  17. Irradiation effects on borosilicate waste glasses

    SciTech Connect (OSTI)

    Roberts, F.P.

    1980-06-01T23:59:59.000Z

    The effects of alpha decay on five borosilicate glasses containing simulated nuclear high-level waste oxides were studied. Irradiations carried out at room temperature were achieved by incorporating 1 to 8 wt % /sup 244/Cm/sub 2/O/sub 3/ in the glasses. Density changes and stored-energy build-up saturated at doses less than 2 x 10/sup 21/ alpha decays/kg. Damage manifested by stored energy was completely annealed at 633/sup 0/K. Positive and negative density changes were observed which never exceeded 1%. Irradiation had very little effect on mechanical strength or on chemical durability as measured by aqueous leach rates. Also, no effects were observed on the microstructure for vitreous waste glasses, although radiation-induced microcracking could be achieved on specimens that had been devitrified prior to irradiation.

  18. INVESTIGATIONS IN GRANITE AT STRIPA, SWEDEN FOR NUCLEAR WASTE STORAGE

    E-Print Network [OSTI]

    Witherspoon, P.A.

    2010-01-01T23:59:59.000Z

    STRIPA, SWEDEN FOR NUCLEAR WASTE STORAGE P. A. tfitherspoon,GRANITE AT STRIPA, SWEDEN FOR NUCLEAR WASTE STORAGE by P. A.Final and safe storage of nuclear waste materials is one of

  19. Site Visit Report, Hanford Waste Encapsulation Storage Facility...

    Energy Savers [EERE]

    Site Visit Report, Hanford Waste Encapsulation Storage Facility - January 2011 Site Visit Report, Hanford Waste Encapsulation Storage Facility - January 2011 January 2011 Hanford...

  20. Glass Property Data and Models for Estimating High-Level Waste Glass Volume

    SciTech Connect (OSTI)

    Vienna, John D.; Fluegel, Alexander; Kim, Dong-Sang; Hrma, Pavel R.

    2009-10-05T23:59:59.000Z

    This report describes recent efforts to develop glass property models that can be used to help estimate the volume of high-level waste (HLW) glass that will result from vitrification of Hanford tank waste. The compositions of acceptable and processable HLW glasses need to be optimized to minimize the waste-form volume and, hence, to save cost. A database of properties and associated compositions for simulated waste glasses was collected for developing property-composition models. This database, although not comprehensive, represents a large fraction of data on waste-glass compositions and properties that were available at the time of this report. Glass property-composition models were fit to subsets of the database for several key glass properties. These models apply to a significantly broader composition space than those previously publised. These models should be considered for interim use in calculating properties of Hanford waste glasses.

  1. Simulation of Self-Irradiation of High-Sodium Content Nuclear Waste Glasses

    SciTech Connect (OSTI)

    Pankov, Alexey S.; Ojovan, Michael I. [Immobilisation Science Laboratory, Department of Engineering Materials, University of Sheffield, Sir Robert Hadfield Building, Mappin Street, Sheffield, S1 3JD (United Kingdom); Batyukhnova, Olga G. [International Education Training Centre, SUE SIA 'Radon', The 7-th Rostovsky Lane 2/14, Moscow, 119121 (Russian Federation); Lee, William E. [Department of Materials, Imperial College London, South Kensington Campus, Exhibition Road, London, SW7 2AZ (United Kingdom)

    2007-07-01T23:59:59.000Z

    Alkali-borosilicate glasses are widely used in nuclear industry as a matrix for immobilisation of hazardous radioactive wastes. Durability or corrosion resistance of these glasses is one of key parameters in waste storage and disposal safety. It is influenced by many factors such as composition of glass and surrounding media, temperature, time and so on. As these glasses contain radioactive elements most of their properties including corrosion resistance are also impacted by self-irradiation. The effect of external gamma-irradiation on the short-term (up to 27 days) dissolution of waste borosilicate glasses at moderate temperatures (30 deg. to 60 deg. C) was studied. The glasses studied were Magnox Waste glass used for immobilisation of HLW in UK, and K-26 glass used in Russia for ILW immobilisation. Glass samples were irradiated under {gamma}-source (Co-60) up to doses 1 and 11 MGy. Normalised rates of elemental release and activation energy of release were measured for Na, Li, Ca, Mg, B, Si and Mo before and after irradiation. Irradiation up to 1 MGy results in increase of leaching rate of almost all elements from both MW and K-26 with the exception of Na release from MW glass. Further irradiation up to a dose of 11 MGy leads to the decrease of elemental release rates to nearly initial value. Another effect of irradiation is increase of activation energies of elemental release. (authors)

  2. Advanced radioactive waste-glass melters

    SciTech Connect (OSTI)

    Bickford, D.F.

    1990-12-31T23:59:59.000Z

    During pilot scale operations of the Scale Glass Melter for the US Department of Energy a team of engineers and scientists was formed to assess the need for continued melter design development to support the Defense Waste Processing Facility (DWPF), and prioritize future efforts. Recently this has taken on new importance because of selection of the DWPF Melter design as the reference for the Hanford Waste Vitrification Project (HWVP), and increased interest at the West Valley Demonstration Project on melter life and replacement. Results of the study are summarized, and goals produced by the study are compared to the results of current programs at the Savannah River Laboratory (SRL).

  3. Advanced radioactive waste-glass melters

    SciTech Connect (OSTI)

    Bickford, D.F.

    1990-01-01T23:59:59.000Z

    During pilot scale operations of the Scale Glass Melter for the US Department of Energy a team of engineers and scientists was formed to assess the need for continued melter design development to support the Defense Waste Processing Facility (DWPF), and prioritize future efforts. Recently this has taken on new importance because of selection of the DWPF Melter design as the reference for the Hanford Waste Vitrification Project (HWVP), and increased interest at the West Valley Demonstration Project on melter life and replacement. Results of the study are summarized, and goals produced by the study are compared to the results of current programs at the Savannah River Laboratory (SRL).

  4. Direction of CRT waste glass processing: Electronics recycling industry communication

    SciTech Connect (OSTI)

    Mueller, Julia R., E-mail: mueller.143@osu.edu [Ohio State University, William G. Lowrie Department of Chemical and Biomolecular Engineering, OH (United States) and University of Queensland, School of Chemical Engineering (Australia) and Ohio State University, Materials Science and Engineering, OH (United States); Boehm, Michael W. [University of Queensland, School of Chemical Engineering (Australia); Drummond, Charles [Ohio State University, Materials Science and Engineering, OH (United States)

    2012-08-15T23:59:59.000Z

    Highlights: Black-Right-Pointing-Pointer Given a large flow rate of CRT glass {approx}10% of the panel glass stream will be leaded. Black-Right-Pointing-Pointer The supply of CRT waste glass exceeded demand in 2009. Black-Right-Pointing-Pointer Recyclers should use UV-light to detect lead oxide during the separation process. Black-Right-Pointing-Pointer Recycling market analysis techniques and results are given for CRT glass. Black-Right-Pointing-Pointer Academic initiatives and the necessary expansion of novel product markets are discussed. - Abstract: Cathode Ray Tube, CRT, waste glass recycling has plagued glass manufacturers, electronics recyclers and electronics waste policy makers for decades because the total supply of waste glass exceeds demand, and the formulations of CRT glass are ill suited for most reuse options. The solutions are to separate the undesirable components (e.g. lead oxide) in the waste and create demand for new products. Achieving this is no simple feat, however, as there are many obstacles: limited knowledge of waste glass composition; limited automation in the recycling process; transportation of recycled material; and a weak and underdeveloped market. Thus one of the main goals of this paper is to advise electronic glass recyclers on how to best manage a diverse supply of glass waste and successfully market to end users. Further, this paper offers future directions for academic and industry research. To develop the recommendations offered here, a combination of approaches were used: (1) a thorough study of historic trends in CRT glass chemistry; (2) bulk glass collection and analysis of cullet from a large-scale glass recycler; (3) conversations with industry members and a review of potential applications; and (4) evaluation of the economic viability of specific uses for recycled CRT glass. If academia and industry can solve these problems (for example by creating a database of composition organized by manufacturer and glass source) then the reuse of CRT glass can be increased.

  5. Thermal Predictions of the Cooling of Waste Glass Canisters

    SciTech Connect (OSTI)

    Donna Post Guillen

    2014-11-01T23:59:59.000Z

    Radioactive liquid waste from five decades of weapons production is slated for vitrification at the Hanford site. The waste will be mixed with glass forming additives and heated to a high temperature, then poured into canisters within a pour cave where the glass will cool and solidify into a stable waste form for disposal. Computer simulations were performed to predict the heat rejected from the canisters and the temperatures within the glass during cooling. Four different waste glass compositions with different thermophysical properties were evaluated. Canister centerline temperatures and the total amount of heat transfer from the canisters to the surrounding air are reported.

  6. Nuclear Waste Glasses: Beautiful Simplicity of Complex Systems

    SciTech Connect (OSTI)

    Hrma, Pavel R.

    2009-01-01T23:59:59.000Z

    The behavior of glasses with a large number of components, such as waste glasses, is not more complex than the behavior of simple glasses. On the contrary, the presence of many components restricts the composition region of these glasses in a way that allows approximating composition-property relationships by linear functions. This has far-reaching practical consequences for formulating nuclear waste glasses. On the other hand, processing high-level and low-activity waste glasses presents various problems, such as crystallization, foaming, and salt segre-gation in the melter. The need to decrease the settling of solids in the melter to an acceptable level and to maximize the rate of melting presents major challenges to processing technology. However, the most important property of the glass product is its chemical durability, a somewhat vague concept in lieu of the assessment of the glass resistance to aqueous attack while the radioactivity decays over tens of thousands of years.

  7. Leaching assessments of toxic metals in waste plasma display panel glass.

    E-Print Network [OSTI]

    Chen, M; Jiang, P; Chen, H; Ogunseitan, OA; Li, Y

    2015-01-01T23:59:59.000Z

    of waste cathode-ray tube glass. Waste Manage. 26:1468–76.leachability from waste PDP glass in order to determinewaste plasma display panel glass ab a a b a Mengjun Chen ,

  8. Spectroscopic investigation of simulated low-level nuclear waste glass

    SciTech Connect (OSTI)

    Rong, Chaoying; Li, Hong; Hrma, P.R.; Cho, H.M. [Pacific Northwest National Lab., Richland, WA (United States)

    1996-12-31T23:59:59.000Z

    Borosilicate glasses with high sodium concentrations, formulated to simulate vitrified Hanford low-level wastes (LLW), were investigated by {sup 31}P magic angle spinning (MAS) nuclear magnetic resonance (NMR). Phase separation, glass homogeneity changes during remelting, and the form of phosphate in glass following product consistency tests (PCT) were also examined by NMR. The results show that a distinct orthophosphate phase not part of the glass network is present in the glass. The effect of glass composition on phosphate chemical environments in the glass is discussed.

  9. DEVELOPMENT OF GLASS MATRICES FOR HLW RADIOACTIVE WASTES

    SciTech Connect (OSTI)

    Jantzen, C.

    2010-03-18T23:59:59.000Z

    Vitrification is currently the most widely used technology for the treatment of high level radioactive wastes (HLW) throughout the world. Most of the nations that have generated HLW are immobilizing in either borosilicate glass or phosphate glass. One of the primary reasons that glass has become the most widely used immobilization media is the relative simplicity of the vitrification process, e.g. melt waste plus glass forming frit additives and cast. A second reason that glass has become widely used for HLW is that the short range order (SRO) and medium range order (MRO) found in glass atomistically bonds the radionuclides and governs the melt properties such as viscosity, resistivity, sulphate solubility. The molecular structure of glass controls contaminant/radionuclide release by establishing the distribution of ion exchange sites, hydrolysis sites, and the access of water to those sites. The molecular structure is flexible and hence accounts for the flexibility of glass formulations to waste variability. Nuclear waste glasses melt between 1050-1150 C which minimizes the volatility of radioactive components such as Tc{sup 99}, Cs{sup 137}, and I{sup 129}. Nuclear waste glasses have good long term stability including irradiation resistance. Process control models based on the molecular structure of glass have been mechanistically derived and have been demonstrated to be accurate enough to control the world's largest HLW Joule heated ceramic melter in the US since 1996 at 95% confidence.

  10. Phosphate Glasses for Vitrification of Waste with High Sulfur Content

    SciTech Connect (OSTI)

    Kim, Dong-Sang; Vienna, John D.; Hrma, Pavel R.; Cassingham, Nathan J.

    2002-10-31T23:59:59.000Z

    The low solubility of sulfate in silicate-based glasses, approximately 1 mass% as SO3, limits the loading of high-level waste (HLW) and low-activity waste (LAW) containing high concentrations of sulfur. Based on crucible melting studies, we have shown that the phosphate glasses may incorporate more than 5 mass% SO3; hence, the waste loading can be increased until another constraint is met, such as glass durability. A high-sulfate HLW glass has been formulated and tested to demonstrate the advantages of phosphate glasses. The effect of waste loading on the chemical durability of quenched and slow-cooled phosphate glasses was determined using the Product Consistency Test.

  11. activity waste storage: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of distributed storage systems Engelmann, Christian 13 Waste-Lithium-Liquid (WLL) Flow Battery for Stationary Energy Storage Applications Youngsik Kim* and Nina MahootcheianAsl...

  12. THERMAL ANALYSIS OF WASTE GLASS MELTER FEEDS

    SciTech Connect (OSTI)

    KRUGER AA; HRMA PR; POKORNY R; PIERCE DA

    2011-10-21T23:59:59.000Z

    Melter feeds for high-level nuclear waste (HLW) typically contain a large number of constituents that evolve gas on heating, Multiple gas-evolving reactions are both successive and simultaneous, and include the release of chemically bonded water, reactions of nitrates with organics, and reactions of molten salts with solid silica. Consequently, when a sample of a HLW feed is subjected to thermogravimetric analysis (TGA), the rate of change of the sample mass reveals multiple overlapping peaks. In this study, a melter feed, formulated for a simulated high-alumina HLW to be vitrified in the Waste Treatment and Immobilization Plant, currently under construction at the Hanford Site in Washington State, USA, was subjected to TGA. In addition, a modified melter feed was prepared as an all-nitrate version of the baseline feed to test the effect of sucrose addition on the gas-evolving reactions. Activation energies for major reactions were determined using the Kissinger method. The ultimate aim of TGA studies is to obtain a kinetic model of the gas-evolving reactions for use in mathematical modeling of the cold cap as an element of the overall model of the waste-glass melter. In this study, we focused on computing the kinetic parameters of individual reactions without identifying their actual chemistry, The rough provisional model presented is based on the first-order kinetics.

  13. Glass Ceramic Waste Forms for Combined CS+LN+TM Fission Products Waste Streams

    SciTech Connect (OSTI)

    Crum, Jarrod V.; Turo, Laura A.; Riley, Brian J.; Tang, Ming; Kossoy, Anna; Sickafus, Kurt E.

    2010-09-23T23:59:59.000Z

    In this study, glass ceramics were explored as an alternative waste form for glass, the current baseline, to be used for immobilizing alkaline/alkaline earth + lanthanide (CS+LN) or CS+LN+transition metal (TM) fission-product waste streams generated by a uranium extraction (UREX+) aqueous separations type process. Results from past work on a glass waste form for the combined CS+LN waste streams showed that as waste loading increased, large fractions of crystalline phases precipitated upon slow cooling.[1] The crystalline phases had no noticeable impact on the waste form performance by the 7-day product consistency test (PCT). These results point towards the development of a glass ceramic waste form for treating CS+LN or CS+LN+TM combined waste streams. Three main benefits for exploring glass ceramics are: (1) Glass ceramics offer increased solubility of troublesome components in crystalline phases as compared to glass, leading to increased waste loading; (2) The crystalline network formed in the glass ceramic results in higher heat tolerance than glass; and (3) These glass ceramics are designed to be processed by the same melter technology as the current baseline glass waste form. It will only require adding controlled canister cooling for crystallization into a glass ceramic waste form. Highly annealed waste form (essentially crack free) with up to 50X lower surface area than a typical High-Level Waste (HLW) glass canister. Lower surface area translates directly into increased durability. This was the first full year of exploring glass ceramics for the Option 1 and 2 combined waste stream options. This work has shown that dramatic increases in waste loading are achievable by designing a glass ceramic waste form as an alternative to glass. Table S1 shows the upper limits for heat, waste loading (based on solubility), and the decay time needed before treatment can occur for glass and glass ceramic waste forms. The improvements are significant for both combined waste stream options in terms of waste loading and/or decay time required before treatment. For Option 1, glass ceramics show an increase in waste loading of 15 mass % and reduction in decay time of 24 years. Decay times of {approx}50 years or longer are close to the expected age of the fuel that will be reprocessed when the modified open or closed fuel cycle is expected to be put into action. Option 2 shows a 2x to 2.5x increase in waste loading with decay times of only 45 years. Note that for Option 2 glass, the required decay time before treatment is only 35 years because of the waste loading limits related to the solubility of MoO{sub 3} in glass. If glass was evaluated for similar waste loadings as those achieved in Option 2 glass ceramics, the decay time would be significantly longer than 45 years. These glass ceramics are not optimized, but already they show the potential to dramatically reduce the amount of waste generated while still utilizing the proven processing technology used for glass production.

  14. Compositional threshold for Nuclear Waste Glass Durability

    SciTech Connect (OSTI)

    Kruger, Albert A. [Pacific Northwest National Lab., Richland, WA (United States); Farooqi, Rahmatullah [Pohang Univ. of Science and Technology, (Korea, Republic of); Hrma, Pavel R. [Pacific Northwest National Lab., Richland, WA (United States), Pohang Univ. of Science and Technology, (Korea, Republic of)

    2013-04-24T23:59:59.000Z

    Within the composition space of glasses, a distinct threshold appears to exist that separates "good" glasses, i.e., those which are sufficiently durable, from "bad" glasses of a low durability. The objective of our research is to clarify the origin of this threshold by exploring the relationship between glass composition, glass structure and chemical durability around the threshold region.

  15. Nuclear waste vitrification: electric melting and glass formulation

    SciTech Connect (OSTI)

    Hrma, Pavel R.

    2007-07-10T23:59:59.000Z

    The Hanford Site contains 177 underground tanks with radioactive waste that will be vitrified, i.e., immobilized by converting it to glass in electric melters. After pretreatment, the waste slurry will be mixed with glass-forming minerals, and the resulting feed will be charged into the melter. For each waste composition, the glass must be formulated to possess acceptable processing and product behavior defined in terms of physical properties that guarantee that the glass is easily made and resists environmental degradation. On heating, the feed undergoes complex reactions. The large variability of waste compositions presents numerous technological challenges: undesirable insoluble solids and molten salts may segregate; foam may hinder heat transfer and slows down the process; and on cooling, the glass may precipitate crystalline phases.

  16. Hollow porous-wall glass microspheres for hydrogen storage

    DOE Patents [OSTI]

    Heung, Leung K. (Aiken, SC); Schumacher, Ray F. (Aiken, SC); Wicks, George G. (Aiken, SC)

    2010-02-23T23:59:59.000Z

    A porous wall hollow glass microsphere is provided having a diameter range of between 1 to 200 microns, a density of between 1.0 to 2.0 gm/cc, a porous-wall structure having wall openings defining an average pore size of between 10 to 1000 angstroms, and which contains therein a hydrogen storage material. The porous-wall structure facilitates the introduction of a hydrogen storage material into the interior of the porous wall hollow glass microsphere. In this manner, the resulting hollow glass microsphere can provide a membrane for the selective transport of hydrogen through the porous walls of the microsphere, the small pore size preventing gaseous or liquid contaminants from entering the interior of the hollow glass microsphere.

  17. Formulation and Characterization of Waste Glasses with Varying Processing Temperature

    SciTech Connect (OSTI)

    Kim, Dong-Sang; Schweiger, M. J.; Rodriguez, Carmen P.; Lepry, William C.; Lang, Jesse B.; Crum, Jarrod V.; Vienna, John D.; Johnson, Fabienne; Marra, James C.; Peeler, David K.

    2011-10-17T23:59:59.000Z

    This report documents the preliminary results of glass formulation and characterization accomplished within the finished scope of the EM-31 technology development tasks for WP-4 and WP-5, including WP-4.1.2: Glass Formulation for Next Generation Melter, WP-5.1.2.3: Systematic Glass Studies, and WP-5.1.2.4: Glass Formulation for Specific Wastes. This report also presents the suggested studies for eventual restart of these tasks. The initial glass formulation efforts for the cold crucible induction melter (CCIM), operating at {approx}1200 C, with selected HLW (AZ-101) and LAW (AN-105) successfully developed glasses with significant increase of waste loading compared to that is likely to be achieved based on expected reference WTP formulations. Three glasses formulated for AZ-101HLW and one glass for AN-105 LAW were selected for the initial CCIM demonstration melter tests. Melter tests were not performed within the finished scope of the WP-4.1.2 task. Glass formulations for CCIM were expanded to cover additional HLWs that have high potential to successfully demonstrate the unique advantages of the CCIM technologies based on projected composition of Hanford wastes. However, only the preliminary scoping tests were completed with selected wastes within the finished scope. Advanced glass formulations for the reference WTP melter, operating at {approx}1200 C, were initiated with selected specific wastes to determine the estimated maximum waste loading. The incomplete results from these initial formulation efforts are summarized. For systematic glass studies, a test matrix of 32 high-aluminum glasses was completed based on a new method developed in this study.

  18. Glass Formulations for Immobilizing Hanford Low-Activity Wastes

    SciTech Connect (OSTI)

    Kim, Dong-Sang; Elliott, Michael L.; Smith, Harry D.; Bagaasen, Larry M.; Hrma, Pavel R.

    2006-02-28T23:59:59.000Z

    Researchers at Pacific Northwest National Laboratory (PNNL) are developing and testing glasses for immobilizing low-activity wastes (LAW) for the full Hanford mission. PNNL is performing testing for low-activity waste glasses for both the Hanford Waste Treatment Plant (WTP) and the Bulk Vitrification Plant. The objective of this work is to increase the waste content of the glasses and ultimately increase the waste throughput of the LAW vitrification plants. This paper focuses on PNNL’s development and testing of glasses for the Bulk Vitrification process. Bulk Vitrification was selected as a potential supplemental treatment to accelerate the cleanup of LAW at Hanford. Also known as In-Container Vitrification™ (ICV™), the Bulk Vitrification process combines soil, LAW, and chemical amendments; dries the mixture; and then vitrifies the material in a batch process in a refractory lined box. The process was developed by AMEC Earth and Environmental, Inc. (AMEC). Working with AMEC, PNNL developed a glass formulation that could incorporate a broad range of Hanford LAW. The initial glass development involved a “nominal” waste composition, and a baseline glass was formulated and tested at crucible, engineering, and full scales. The performance of the baseline glass was then verified using a battery of laboratory tests as well as engineering-scale and full-scale ICV™ tests. Future testing is planned for optimizing the glass waste loading and qualifying a broader range of waste streams for treatment in the Bulk Vitrification process. This paper reviews the glass development and qualification process completed to date. This includes several series of crucible studies as well as confirmation testing at engineering-scale and full-scale. This formulation paper complements information presented by AMEC in an ICV™ processing paper.

  19. RETENTION OF SULFATE IN HIGH LEVEL RADIOACTIVE WASTE GLASS

    SciTech Connect (OSTI)

    Fox, K.

    2010-09-07T23:59:59.000Z

    High level radioactive wastes are being vitrified at the Savannah River Site for long term disposal. Many of the wastes contain sulfate at concentrations that can be difficult to retain in borosilicate glass. This study involves efforts to optimize the composition of a glass frit for combination with the waste to improve sulfate retention while meeting other process and product performance constraints. The fabrication and characterization of several series of simulated waste glasses are described. The experiments are detailed chronologically, to provide insight into part of the engineering studies used in developing frit compositions for an operating high level waste vitrification facility. The results lead to the recommendation of a specific frit composition and a concentration limit for sulfate in the glass for the next batch of sludge to be processed at Savannah River.

  20. 2401-W Waste storage building closure plan

    SciTech Connect (OSTI)

    LUKE, S.M.

    1999-07-15T23:59:59.000Z

    This plan describes the performance standards met and closure activities conducted to achieve clean closure of the 2401-W Waste Storage Building (2401-W) (Figure I). In August 1998, after the last waste container was removed from 2401-W, the U.S. Department of Energy, Richland Operations Office (DOE-RL) notified Washington State Department of Ecology (Ecology) in writing that the 2401-W would no longer receive waste and would be closed as a Resource Conservation and Recovery Act (RCRA) of 1976 treatment, storage, and/or disposal (TSD) unit (98-EAP-475). Pursuant to this notification, closure activities were conducted, as described in this plan, in accordance with Washington Administrative Code (WAC) 173-303-610 and completed on February 9, 1999. Ecology witnessed the closure activities. Consistent with clean closure, no postclosure activities will be necessary. Because 2401-W is a portion of the Central Waste Complex (CWC), these closure activities become the basis for removing this building from the CWC TSD unit boundary. The 2401-W is a pre-engineered steel building with a sealed concrete floor and a 15.2-centimeter concrete curb around the perimeter of the floor. This building operated from April 1988 until August 1998 storing non-liquid containerized mixed waste. All waste storage occurred indoors. No potential existed for 2401-W operations to have impacted soil. A review of operating records and interviews with cognizant operations personnel indicated that no waste spills occurred in this building (Appendix A). After all waste containers were removed, a radiation survey of the 2401-W floor for radiological release of the building was performed December 17, 1998, which identified no radiological contamination (Appendix B).

  1. DM100 AND DM1200 MELTER TESTING WITH HIGH WASTE LOADING GLASS FORMULATIONS FOR HANFORD HIGH-ALUMINUM HLW STREAMS

    SciTech Connect (OSTI)

    KRUGER AA; MATLACK KS; KOT WK; PEGG IL; JOSEPH I

    2009-12-30T23:59:59.000Z

    This Test Plan describes work to support the development and testing of high waste loading glass formulations that achieve high glass melting rates for Hanford high aluminum high level waste (HLW). In particular, the present testing is designed to evaluate the effect of using low activity waste (LAW) waste streams as a source of sodium in place ofchemical additives, sugar or cellulose as a reductant, boehmite as an aluminum source, and further enhancements to waste processing rate while meeting all processing and product quality requirements. The work will include preparation and characterization of crucible melts in support of subsequent DuraMelter 100 (DM 100) tests designed to examine the effects of enhanced glass formulations, glass processing temperature, incorporation of the LAW waste stream as a sodium source, type of organic reductant, and feed solids content on waste processing rate and product quality. Also included is a confirmatory test on the HLW Pilot Melter (DM1200) with a composition selected from those tested on the DM100. This work builds on previous work performed at the Vitreous State Laboratory (VSL) for Department of Energy's (DOE's) Office of River Protection (ORP) to increase waste loading and processing rates for high-iron HLW waste streams as well as previous tests conducted for ORP on the same waste composition. This Test Plan is prepared in response to an ORP-supplied statement of work. It is currently estimated that the number of HLW canisters to be produced in the Hanford Tank Waste Treatment and Immobilization Plant (WTP) is about 12,500. This estimate is based upon the inventory ofthe tank wastes, the anticipated performance of the sludge treatment processes, and current understanding of the capability of the borosilicate glass waste form. The WTP HLW melter design, unlike earlier DOE melter designs, incorporates an active glass bubbler system. The bubblers create active glass pool convection and thereby improve heat transfer and glass melting rate. The WTP HLW melter has a glass surface area of 3.75 m{sup 2} and depth of {approx}1.1 m. The two melters in the HLW facility together are designed to produce up to 7.5 MT of glass per day at 100% availability. Further increases in HLW waste processing rates can potentially be achieved by increasing the melter operating temperature above 1150 C and by increasing the waste loading in the glass product Increasing the waste loading also has the added benefit of decreasing the number of canisters for storage. The current estimates and glass formulation efforts have been conservative in terms of achievable waste loadings. These formulations have been specified to ensure that the glasses are homogenous, contain essentially no crystalline phases, are processable in joule-heated, ceramic-lined melters and meet WTP contract requirements. The WTP's overall mission will require the immobilization oftank waste compositions that are dominated by mixtures of aluminum (Al), chromium (Cr), bismuth (Bi), iron (Fe), phosphorous (P), zirconium (Zr), and sulfur (S) compounds as waste-limiting components. Glass compositions for these waste mixtures have been developed based upon previous experience and current glass property models. Recently, DOE has initiated a testing program to develop and characterize HLW glasses with higher waste loadings. Results of this work have demonstrated the feasibility of increases in waste-loading from about 25 wt% to 33-50 wt% (based on oxide loading) in the glass depending on the waste stream. It is expected that these higher waste loading glasses will reduce the HLW canister production requirement by about 25% or more.

  2. NUCLEAR WASTE GLASSES CONTINUOUS MELTING AND BULK VITRIFICAITON

    SciTech Connect (OSTI)

    KRUGER AA; HRMA PR

    2008-03-24T23:59:59.000Z

    This contribution addresses various aspects of nuclear waste vitrification. Nuclear wastes have a variety of components and composition ranges. For each waste composition, the glass must be formulated to possess acceptable processing and product behavior defined in terms of physical and chemical properties that guarantee the glass can be easily made and resist environmental degradation. Glass formulation is facilitated by developing property-composition models, and the strategy of model development and application is reviewed. However, the large variability of waste compositions presents numerous additional challenges: insoluble solids and molten salts may segregate; foam may hinder heat transfer and slow down the process; molten salts may accumulate in container refractory walls; the glass on cooling may precipitate crystalline phases. These problems need targeted exploratory research. Examples of specific problems and their possible solutions are discussed.

  3. Nuclear Waste Glasses: Continuous Melting and Bulk Vitrification

    SciTech Connect (OSTI)

    Hrma, Pavel R.; Kruger, Albert A.

    2008-02-25T23:59:59.000Z

    This contribution addresses various aspects of nuclear waste vitrification. Nuclear wastes have a variety of components and composition ranges. For each waste composition, the glass must be formulated to possess acceptable processing and product behavior defined in terms of physical and chemical properties that guarantee that the glass can be easily made and resist environmental degradation. Glass formulation is facilitated by developing property-composition models, and the strategy of model development and application is reviewed. However, the large variability of waste compositions presents numerous additional challenges: insoluble solids and molten salts may segregate; foam may hinder heat transfer and slow down the process; molten salts may accumulate in container refractory walls; on cooling, the glass may precipitate crystalline phases. These problems need targeted exploratory research. Examples of specific problems and their possible solutions are discussed.

  4. Nuclear Waste Glasses: Continuous Melting and Bulk Vitrification

    SciTech Connect (OSTI)

    Hrma, Pavel R.; Kruger, Albert A.

    2009-01-15T23:59:59.000Z

    This contribution addresses various aspects of nuclear waste vitrification. Composition of nuclear wastes varies in the number of components and their composition ranges. For each waste composition, the glass must be formulated to possess acceptable processing and product behavior defined in terms of physical and chemical properties that guarantee that the glass is easily made and resists environmental degradation. Glass formulation is facilitated by developing property-composition models. The strategy of model development and application is reviewed. However, the large variability of waste composition presents numerous additional challenges: insoluble solids and molten salts may segregate; foam may hinder heat transfer and slows down the process; molten salts may accumulate in container refractory walls; on cooling, the glass may precipitate crystalline phases. These problems need targeted exploratory research. Examples of specific problems and their possible solutions are discussed.

  5. PLUTONIUM SOLUBILITY IN HIGH-LEVEL WASTE ALKALI BOROSILICATE GLASS

    SciTech Connect (OSTI)

    Marra, J.; Crawford, C.; Fox, K.; Bibler, N.

    2011-01-04T23:59:59.000Z

    The solubility of plutonium in a Sludge Batch 6 (SB6) reference glass and the effect of incorporation of Pu in the glass on specific glass properties were evaluated. A Pu loading of 1 wt % in glass was studied. Prior to actual plutonium glass testing, surrogate testing (using Hf as a surrogate for Pu) was conducted to evaluate the homogeneity of significant quantities of Hf (Pu) in the glass, determine the most appropriate methods to evaluate homogeneity for Pu glass testing, and to evaluate the impact of Hf loading in the glass on select glass properties. Surrogate testing was conducted using Hf to represent between 0 and 1 wt % Pu in glass on an equivalent molar basis. A Pu loading of 1 wt % in glass translated to {approx}18 kg Pu per Defense Waste Processing Facility (DWPF) canister, or about 10X the current allowed limit per the Waste Acceptance Product Specifications (2500 g/m{sup 3} of glass or about 1700 g/canister) and about 30X the current allowable concentration based on the fissile material concentration limit referenced in the Yucca Mountain Project License Application (897 g/m{sup 3}3 of glass or about 600 g Pu/canister). Based on historical process throughput data, this level was considered to represent a reasonable upper bound for Pu loading based on the ability to provide Pu containing feed to the DWPF. The task elements included evaluating the distribution of Pu in the glass (e.g. homogeneity), evaluating crystallization within the glass, evaluating select glass properties (with surrogates), and evaluating durability using the Product Consistency Test -- Method A (PCT-A). The behavior of Pu in the melter was evaluated using paper studies and corresponding analyses of DWPF melter pour samples.The results of the testing indicated that at 1 wt % Pu in the glass, the Pu was homogeneously distributed and did not result in any formation of plutonium-containing crystalline phases as long as the glass was prepared under 'well-mixed' conditions. The incorporation of 1 wt % Pu in the glass did not adversely impact glass viscosity (as assessed using Hf surrogate) or glass durability. Finally, evaluation of DWPF glass pour samples that had Pu concentrations below the 897 g/m{sup 3} limit showed that Pu concentrations in the glass pour stream were close to targeted compositions in the melter feed indicating that Pu neither volatilized from the melt nor stratified in the melter when processed in the DWPF melter.

  6. MELT RATE ENHANCEMENT FOR HIGH ALUMINUM HLW (HIGH LEVEL WASTE) GLASS FORMULATION FINAL REPORT 08R1360-1

    SciTech Connect (OSTI)

    KRUGER AA; MATLACK KS; KOT W; PEGG IL; JOSEPH I; BARDAKCI T; GAN H; GONG W; CHAUDHURI M

    2010-01-04T23:59:59.000Z

    This report describes the development and testing of new glass formulations for high aluminum waste streams that achieve high waste loadings while maintaining high processing rates. The testing was based on the compositions of Hanford High Level Waste (HLW) with limiting concentrations of aluminum specified by the Office of River Protection (ORP). The testing identified glass formulations that optimize waste loading and waste processing rate while meeting all processing and product quality requirements. The work included preparation and characterization of crucible melts and small scale melt rate screening tests. The results were used to select compositions for subsequent testing in a DuraMelter 100 (DM100) system. These tests were used to determine processing rates for the selected formulations as well as to examine the effects of increased glass processing temperature, and the form of aluminum in the waste simulant. Finally, one of the formulations was selected for large-scale confirmatory testing on the HLW Pilot Melter (DM1200), which is a one third scale prototype of the Hanford Tank Waste Treatment and Immobilization Plant (WTP) HLW melter and off-gas treatment system. This work builds on previous work performed at the Vitreous State Laboratory (VSL) for Department of Energy (DOE) to increase waste loading and processing rates for high-iron HLW waste streams as well as previous tests conducted for ORP on the same high-aluminum waste composition used in the present work and other Hanford HLW compositions. The scope of this study was outlined in a Test Plan that was prepared in response to an ORP-supplied statement of work. It is currently estimated that the number of HLW canisters to be produced in the WTP is about 13,500 (equivalent to 40,500 MT glass). This estimate is based upon the inventory of the tank wastes, the anticipated performance of the sludge treatment processes, and current understanding of the capability of the borosilicate glass waste form. The WTP HLW melter design, unlike earlier DOE melter designs, incorporates an active glass bubbler system. The bubblers create active glass pool convection and thereby improve heat transfer and glass melting rate. The WTP HLW melter has a glass surface area of 3.75 m{sup 2} and depth of {approx}1.1 m. The two melters in the HLW facility together are designed to produce up to 7.5 MT of glass per day at 100% availability. Further increases in HLW waste processing rates can potentially be achieved by increasing the melter operating temperature above 1150 C and by increasing the waste loading in the glass product. Increasing the waste loading also has the added benefit of decreasing the number of canisters for storage. The current estimates and glass formulation efforts have been conservative in terms of achievable waste loadings. These formulations have been specified to ensure that the glasses are homogenous, contain essentially no crystalline phases, are processable in joule-heated, ceramic-lined melters and meet WTP Contract terms. The WTP's overall mission will require the immobilization of tank waste compositions that are dominated by mixtures of aluminum (Al), chromium (Cr), bismuth (Bi), iron (Fe), phosphorous (P), zirconium (Zr), and sulfur (S) compounds as waste-limiting components. Glass compositions for these waste mixtures have been developed based upon previous experience and current glass property models. Recently, DOE has initiated a testing program to develop and characterize HLW glasses with higher waste loadings. Results of this work have demonstrated the feasibility of increases in wasteloading from about 25 wt% to 33-50 wt% (based on oxide loading) in the glass depending on the waste stream. It is expected that these higher waste loading glasses will reduce the HLW canister production requirement by about 25% or more.

  7. Solid low level waste forms and extended storage

    SciTech Connect (OSTI)

    Kohout, R. [R. Kohout & Associates, Ltd., Toronto, Ontario (Canada)

    1995-11-01T23:59:59.000Z

    This paper presents regulatory, technical, and economic aspects of selecting solid waste forms for the extended on-site storage of power plant low level wastes (LLW) in the United States. The author explains current uncertainties and disposal site shortages, defines power plant waste types, addresses regulatory requirements for disposal, discusses basic waste form storage considerations, outlines possible strategies for the management of individual waste types, and offers methodological steps for selecting a waste form for extended storage. Broader issues closely associated with waste form selection are also presented.

  8. Eco-efficient waste glass recycling: Integrated waste management and green product development through LCA

    SciTech Connect (OSTI)

    Blengini, Gian Andrea, E-mail: blengini@polito.it [DISPEA - Department of Production Systems and Business Economics, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Turin (Italy); CNR-IGAG, Institute of Environmental Geology and Geo-Engineering, Corso Duca degli Abruzzi 24, 10129 Turin (Italy); Busto, Mirko, E-mail: mirko.busto@polito.it [DISPEA - Department of Production Systems and Business Economics, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Turin (Italy); Fantoni, Moris, E-mail: moris.fantoni@polito.it [DITAG - Department of Land, Environment and Geo-Engineering, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Turin (Italy); Fino, Debora, E-mail: debora.fino@polito.it [DISMIC - Department of Materials Science and Chemical Engineering, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Turin (Italy)

    2012-05-15T23:59:59.000Z

    Highlights: Black-Right-Pointing-Pointer A new eco-efficient recycling route for post-consumer waste glass was implemented. Black-Right-Pointing-Pointer Integrated waste management and industrial production are crucial to green products. Black-Right-Pointing-Pointer Most of the waste glass rejects are sent back to the glass industry. Black-Right-Pointing-Pointer Recovered co-products give more environmental gains than does avoided landfill. Black-Right-Pointing-Pointer Energy intensive recycling must be limited to waste that cannot be closed-loop recycled. - Abstract: As part of the EU Life + NOVEDI project, a new eco-efficient recycling route has been implemented to maximise resources and energy recovery from post-consumer waste glass, through integrated waste management and industrial production. Life cycle assessment (LCA) has been used to identify engineering solutions to sustainability during the development of green building products. The new process and the related LCA are framed within a meaningful case of industrial symbiosis, where multiple waste streams are utilised in a multi-output industrial process. The input is a mix of rejected waste glass from conventional container glass recycling and waste special glass such as monitor glass, bulbs and glass fibres. The green building product is a recycled foam glass (RFG) to be used in high efficiency thermally insulating and lightweight concrete. The environmental gains have been contrasted against induced impacts and improvements have been proposed. Recovered co-products, such as glass fragments/powders, plastics and metals, correspond to environmental gains that are higher than those related to landfill avoidance, whereas the latter is cancelled due to increased transportation distances. In accordance to an eco-efficiency principle, it has been highlighted that recourse to highly energy intensive recycling should be limited to waste that cannot be closed-loop recycled.

  9. Towards Increased Waste Loading in High Level Waste Glasses: Developing a Better Understanding of Crystallization Behavior

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Marra, James C. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Kim, Dong -Sang [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2014-01-01T23:59:59.000Z

    A number of waste components in US defense high level radioactive wastes (HLW) have proven challenging for current Joule heated ceramic melter (JCHM) operations and have limited the ability to increase waste loadings beyond already realized levels. Many of these ''troublesome'' waste species cause crystallization in the glass melt that can negatively impact product quality or have a deleterious effect on melter processing. Recent efforts at US Department of Energy laboratories have focused on understanding crystallization behavior within HLW glass melts and investigating approaches to mitigate the impacts of crystallization so that increases in waste loading can be realized. Advanced glass formulations have been developed to highlight the unique benefits of next-generation melter technologies such as the Cold Crucible Induction Melter (CCIM). Crystal-tolerant HLW glasses have been investigated to allow sparingly soluble components such as chromium to crystallize in the melter but pass out of the melter before accumulating. The Hanford site AZ-101 tank waste composition represents a waste group that is waste loading limited primarily due to high concentrations of Fe2O3 (with higher Al2O3). Systematic glass formulation development utilizing slightly higher process temperatures and higher tolerance to spinel crystals demonstrated that an increase in waste loading of more than 20% could be achieved for this waste composition, and by extension higher loadings for wastes in the same group.

  10. Towards Increased Waste Loading in High Level Waste Glasses: Developing a Better Understanding of Crystallization Behavior

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Marra, James C.; Kim, Dong -Sang

    2014-01-01T23:59:59.000Z

    A number of waste components in US defense high level radioactive wastes (HLW) have proven challenging for current Joule heated ceramic melter (JCHM) operations and have limited the ability to increase waste loadings beyond already realized levels. Many of these ''troublesome'' waste species cause crystallization in the glass melt that can negatively impact product quality or have a deleterious effect on melter processing. Recent efforts at US Department of Energy laboratories have focused on understanding crystallization behavior within HLW glass melts and investigating approaches to mitigate the impacts of crystallization so that increases in waste loading can be realized. Advancedmore »glass formulations have been developed to highlight the unique benefits of next-generation melter technologies such as the Cold Crucible Induction Melter (CCIM). Crystal-tolerant HLW glasses have been investigated to allow sparingly soluble components such as chromium to crystallize in the melter but pass out of the melter before accumulating. The Hanford site AZ-101 tank waste composition represents a waste group that is waste loading limited primarily due to high concentrations of Fe2O3 (with higher Al2O3). Systematic glass formulation development utilizing slightly higher process temperatures and higher tolerance to spinel crystals demonstrated that an increase in waste loading of more than 20% could be achieved for this waste composition, and by extension higher loadings for wastes in the same group.« less

  11. Development of high-waste loaded high-level nuclear waste glasses for high-temperature melter

    SciTech Connect (OSTI)

    Kim, D.S.; Hrma, P.; Lamar, D.A.; Elliott, M.L. [Pacific Northwest Lab., Richland, WA (United States)

    1994-12-31T23:59:59.000Z

    This paper describes the approach taken in formulating glasses that can be processed at 1150 to 1500{degrees}C by applying glass property/composition models developed at Pacific Northwest Laboratory. Compositions and melting temperatures for glasses with high waste loading that are acceptable and able to be processed were determined for two different Hanford waste types. The glasses meet high-level waste glass acceptability criteria and are suitable for processing in a continuous Joule-heated melter.

  12. Development of high-waste loaded high-level nuclear waste glasses for high-temperature melter

    SciTech Connect (OSTI)

    Kim, D.S.; Hrma, P.R.; Lamar, D.A.; Elliott, M.L.

    1994-04-01T23:59:59.000Z

    This paper describes the approach taken in formulating glasses that can be processed at 1150 to 1500{degrees}C by applying glass property/composition models developed at Pacific Northwest Laboratory. Compositions and melting temperatures for glasses with high waste loading that are acceptable and able to be processed were determined for two different Hanford waste types. The glasses meet high-level waste glass acceptability criteria and are suitable for processing in a continuous Joule-heated melter.

  13. Glass Formulations for Immobilizing Hanford Low-Activity Wastes

    SciTech Connect (OSTI)

    Kim, D.S.; Elliott, M.L.; Smith, H.D.; Bagaasen, L.M.; Hrma, P.R. [Pacific Northwest National Laboratory, P.O. Box 999, Richland, WA 99352 (United States)

    2006-07-01T23:59:59.000Z

    Researchers at Pacific Northwest National Laboratory (PNNL) are developing and testing glasses for immobilizing low-activity wastes (LAW) for the full Hanford mission. PNNL is performing testing for low-activity waste glasses for both the Hanford Waste Treatment Plant (WTP) and the Bulk Vitrification Plant. The objective of this work is to increase the waste content of the glasses and ultimately increase the waste throughput of the LAW vitrification plants. This paper focuses on PNNL's development and testing of glasses for the Bulk Vitrification process. Collaborative studies are also being conducted with the Khlopin Radium Institute in St. Petersburg, Russia, to increase the solubility of sulfur in WTP glasses through the addition of trace chemicals to alter the glass chemistry. That research will be presented in a separate paper at this conference. Bulk Vitrification was selected as a potential supplemental treatment to accelerate the cleanup of LAW at Hanford. Also known as In-Container Vitrification{sup TM} (ICV{sup TM}), the Bulk Vitrification process combines soil, LAW, and chemical amendments; dries the mixture; and then vitrifies the material in a batch process in a refractory lined box. The process was developed by AMEC Earth and Environmental, Inc. (AMEC). Working with AMEC, PNNL developed a glass formulation that could incorporate a broad range of Hanford LAW. The initial glass development involved a 'nominal' waste composition, and a baseline glass was formulated and tested at crucible, engineering, and full scales. The performance of the baseline glass was then verified using a battery of laboratory tests as well as engineering-scale and full-scale ICV{sup TM} tests. Continued testing has focused on developing an acceptable operating envelope for the baseline glass. The current glass constraints are: - 17 {<=} Na{sub 2}O {<=} 22 mass%; - 3 {<=} B{sub 2}O{sub 3} {<=} 5 mass%; - 8 {<=} Al{sub 2}O{sub 3} {<=} 12.5 mass%; - 5.5 {<=} ZrO{sub 2} {<=} 8 mass%; 6.4 {<=} ZrO{sub 2} {<=} 8 mass% if Al{sub 2}O{sub 3} {>=} 9.5 mass%; - 40 {<=} SiO{sub 2} {<=} 48.5 mass%. Multiple samples from engineering-scale and full-scale ICV{sup TM} tests performed with a baseline glass formulation developed from crucible tests were analyzed for chemical composition, Product Consistency Test, Vapor Hydration Test, and the Toxicity Characteristic Leaching Procedure. The results show good agreement between glasses prepared in a crucible in the laboratory and the glasses from the larger scale tests. The results also show that the glass in the ICV{sup TM} box is homogeneous. Future testing is planned for optimizing the glass waste loading and qualifying a broader range of waste streams for treatment in the Bulk Vitrification process. This paper reviews the glass development and qualification process completed to date. This includes several series of crucible studies as well as confirmation testing at engineering-scale and full-scale. This formulation paper complements information presented by AMEC in an ICV{sup TM} processing paper. (authors)

  14. Glass formulation for phase 1 high-level waste vitrification

    SciTech Connect (OSTI)

    Vienna, J.D.; Hrma, P.R.

    1996-04-01T23:59:59.000Z

    The purpose of this study is to provide potential glass formulations for prospective Phase 1 High-Level Waste (HLW) vitrification at Hanford. The results reported here will be used to aid in developing a Phase 1 HLW vitrification request for proposal (RFP) and facilitate the evaluation of ensuing proposals. The following factors were considered in the glass formulation effort: impact on total glass volume of requiring the vendor to process each of the tank compositions independently versus as a blend; effects of imposing typical values of B{sub 2}O{sub 3} content and waste loading in HLW borosilicate glasses as restrictions on the vendors (according to WAPS 1995, the typical values are 5--10 wt% B{sub 2}O{sub 3} and 20--40 wt% waste oxide loading); impacts of restricting the processing temperature to 1,150 C on eventual glass volume; and effects of caustic washing on any of the selected tank wastes relative to glass volume.

  15. Technical Safety Requirements for the Waste Storage Facilities

    SciTech Connect (OSTI)

    Larson, H L

    2007-09-07T23:59:59.000Z

    This document contains Technical Safety Requirements (TSR) for the Radioactive and Hazardous Waste Management (RHWM) WASTE STORAGE FACILITIES, which include Area 612 (A612) and the Decontamination and Waste Treatment Facility (DWTF) Storage Area at Lawrence Livermore National Laboratory (LLNL). The TSRs constitute requirements regarding the safe operation of the WASTE STORAGE FACILITIES. These TSRs are derived from the Documented Safety Analysis for the Waste Storage Facilities (DSA) (LLNL 2006). The analysis presented therein determined that the WASTE STORAGE FACILITIES are low-chemical hazard, Hazard Category 2 non-reactor nuclear facilities. The TSRs consist primarily of inventory limits and controls to preserve the underlying assumptions in the hazard and accident analyses. Further, appropriate commitments to safety programs are presented in the administrative controls sections of the TSRs. The WASTE STORAGE FACILITIES are used by RHWM to handle and store hazardous waste, TRANSURANIC (TRU) WASTE, LOW-LEVEL WASTE (LLW), mixed waste, California combined waste, nonhazardous industrial waste, and conditionally accepted waste generated at LLNL as well as small amounts from other U.S. Department of Energy (DOE) facilities, as described in the DSA. In addition, several minor treatments (e.g., drum crushing, size reduction, and decontamination) are carried out in these facilities. The WASTE STORAGE FACILITIES are located in two portions of the LLNL main site. A612 is located in the southeast quadrant of LLNL. The A612 fenceline is approximately 220 m west of Greenville Road. The DWTF Storage Area, which includes Building 693 (B693), Building 696 Radioactive Waste Storage Area (B696R), and associated yard areas and storage areas within the yard, is located in the northeast quadrant of LLNL in the DWTF complex. The DWTF Storage Area fenceline is approximately 90 m west of Greenville Road. A612 and the DWTF Storage Area are subdivided into various facilities and storage areas, consisting of buildings, tents, other structures, and open areas as described in Chapter 2 of the DSA. Section 2.4 of the DSA provides an overview of the buildings, structures, and areas in the WASTE STORAGE FACILITIES, including construction details such as basic floor plans, equipment layout, construction materials, controlling dimensions, and dimensions significant to the hazard and accident analysis. Chapter 5 of the DSA documents the derivation of the TSRs and develops the operational limits that protect the safety envelope defined for the WASTE STORAGE FACILITIES. This TSR document is applicable to the handling, storage, and treatment of hazardous waste, TRU WASTE, LLW, mixed waste, California combined waste, nonhazardous industrial waste, and conditionally accepted waste received or generated in the WASTE STORAGE FACILITIES. Section 5, Administrative Controls, contains those Administrative Controls necessary to ensure safe operation of the WASTE STORAGE FACILITIES. Programmatic Administrative Controls are in Section 5.6. This Introduction to the WASTE STORAGE FACILITIES TSRs is not part of the TSR limits or conditions and contains no requirements related to WASTE STORAGE FACILITIES operations or to the safety analyses of the DSA.

  16. HIGH ALUMINUM HLW (HIGH LEVEL WASTE ) GLASSES FOR HANFORDS WTP (WASTE TREATMENT PROJECT)

    SciTech Connect (OSTI)

    KRUGER AA; BOWAN BW; JOSEPH I; GAN H; KOT WK; MATLACK KS; PEGG IL

    2010-01-04T23:59:59.000Z

    This paper presents the results of glass formulation development and melter testing to identify high waste loading glasses to treat high-Al high level waste (HLW) at Hanford. Previous glass formulations developed for this HLW had high waste loadings but their processing rates were lower that desired. The present work was aimed at improving the glass processing rate while maintaining high waste loadings. Glass formulations were designed, prepared at crucible-scale and characterized to determine their properties relevant to processing and product quality. Glass formulations that met these requirements were screened for melt rates using small-scale tests. The small-scale melt rate screening included vertical gradient furnace (VGF) and direct feed consumption (DFC) melter tests. Based on the results of these tests, modified glass formulations were developed and selected for larger scale melter tests to determine their processing rate. Melter tests were conducted on the DuraMelter 100 (DMIOO) with a melt surface area of 0.11 m{sup 2} and the DuraMelter 1200 (DMI200) HLW Pilot Melter with a melt surface area of 1.2 m{sup 2}. The newly developed glass formulations had waste loadings as high as 50 wt%, with corresponding Al{sub 2}O{sub 3} concentration in the glass of 26.63 wt%. The new glass formulations showed glass production rates as high as 1900 kg/(m{sup 2}.day) under nominal melter operating conditions. The demonstrated glass production rates are much higher than the current requirement of 800 kg/(m{sup 2}.day) and anticipated future enhanced Hanford Tank Waste Treatment and Immobilization Plant (WTP) requirement of 1000 kg/(m{sup 2}.day).

  17. Documented Safety Analysis for the Waste Storage Facilities

    SciTech Connect (OSTI)

    Laycak, D

    2008-06-16T23:59:59.000Z

    This documented safety analysis (DSA) for the Waste Storage Facilities was developed in accordance with 10 CFR 830, Subpart B, 'Safety Basis Requirements', and utilizes the methodology outlined in DOE-STD-3009-94, Change Notice 3. The Waste Storage Facilities consist of Area 625 (A625) and the Decontamination and Waste Treatment Facility (DWTF) Storage Area portion of the DWTF complex. These two areas are combined into a single DSA, as their functions as storage for radioactive and hazardous waste are essentially identical. The B695 Segment of DWTF is addressed under a separate DSA. This DSA provides a description of the Waste Storage Facilities and the operations conducted therein; identification of hazards; analyses of the hazards, including inventories, bounding releases, consequences, and conclusions; and programmatic elements that describe the current capacity for safe operations. The mission of the Waste Storage Facilities is to safely handle, store, and treat hazardous waste, transuranic (TRU) waste, low-level waste (LLW), mixed waste, combined waste, nonhazardous industrial waste, and conditionally accepted waste generated at LLNL (as well as small amounts from other DOE facilities).

  18. Documented Safety Analysis for the Waste Storage Facilities March 2010

    SciTech Connect (OSTI)

    Laycak, D T

    2010-03-05T23:59:59.000Z

    This Documented Safety Analysis (DSA) for the Waste Storage Facilities was developed in accordance with 10 CFR 830, Subpart B, 'Safety Basis Requirements,' and utilizes the methodology outlined in DOE-STD-3009-94, Change Notice 3. The Waste Storage Facilities consist of Area 625 (A625) and the Decontamination and Waste Treatment Facility (DWTF) Storage Area portion of the DWTF complex. These two areas are combined into a single DSA, as their functions as storage for radioactive and hazardous waste are essentially identical. The B695 Segment of DWTF is addressed under a separate DSA. This DSA provides a description of the Waste Storage Facilities and the operations conducted therein; identification of hazards; analyses of the hazards, including inventories, bounding releases, consequences, and conclusions; and programmatic elements that describe the current capacity for safe operations. The mission of the Waste Storage Facilities is to safely handle, store, and treat hazardous waste, transuranic (TRU) waste, low-level waste (LLW), mixed waste, combined waste, nonhazardous industrial waste, and conditionally accepted waste generated at LLNL (as well as small amounts from other DOE facilities).

  19. The necessity for permanence : making a nuclear waste storage facility

    E-Print Network [OSTI]

    Stupay, Robert Irving

    1991-01-01T23:59:59.000Z

    The United States Department of Energy is proposing to build a nuclear waste storage facility in southern Nevada. This facility will be designed to last 10,000 years. It must prevent the waste from contaminating the ...

  20. Monitoring and analyzing waste glass compositions

    DOE Patents [OSTI]

    Schumacher, Ray F. (Aiken, SC)

    1994-01-01T23:59:59.000Z

    A device and method for determining the viscosity of a fluid, preferably molten glass. The apparatus and method uses the velocity of rising bubbles, preferably helium bubbles, within the molten glass to determine the viscosity of the molten glass. The bubbles are released from a tube positioned below the surface of the molten glass so that the bubbles pass successively between two sets of electrodes, one above the other, that are continuously monitoring the conductivity of the molten glass. The measured conductivity will change as a bubble passes between the electrodes enabling an accurate determination of when a bubble has passed between the electrodes. The velocity of rising bubbles can be determined from the time interval between a change in conductivity of the first electrode pair and the second, upper electrode pair. The velocity of the rise of the bubbles in the glass melt is used in conjunction with other physical characteristics, obtained by known methods, to determine the viscosity of the glass melt fluid and, hence, glass quality.

  1. Monitoring and analyzing waste glass compositions

    DOE Patents [OSTI]

    Schumacher, R.F.

    1994-03-01T23:59:59.000Z

    A device and method are described for determining the viscosity of a fluid, preferably molten glass. The apparatus and method use the velocity of rising bubbles, preferably helium bubbles, within the molten glass to determine the viscosity of the molten glass. The bubbles are released from a tube positioned below the surface of the molten glass so that the bubbles pass successively between two sets of electrodes, one above the other, that are continuously monitoring the conductivity of the molten glass. The measured conductivity will change as a bubble passes between the electrodes enabling an accurate determination of when a bubble has passed between the electrodes. The velocity of rising bubbles can be determined from the time interval between a change in conductivity of the first electrode pair and the second, upper electrode pair. The velocity of the rise of the bubbles in the glass melt is used in conjunction with other physical characteristics, obtained by known methods, to determine the viscosity of the glass melt fluid and, hence, glass quality. 2 figures.

  2. Iron Phosphate Glass-Containing Hanford Waste Simulant

    SciTech Connect (OSTI)

    Sevigny, Gary J.; Kimura, Marcia L.; Fischer, Christopher M.; Schweiger, Michael J.; Kim, Dong-Sang

    2011-08-01T23:59:59.000Z

    Resolution of the nation’s high level tank waste legacy requires the design, construction, and operation of large and technically complex one-of-a-kind processing waste treatment and vitrification facilities. While the ultimate limits for waste loading and melter efficiency have yet to be defined or realized, significant reductions in glass volumes for disposal and mission life may be possible with advancements in melter technologies and/or glass formulations. This test report describes the experimental results from a small-scale test using the research scale melter (RSM) at Pacific Northwest National Laboratory (PNNL) to demonstrate the viability of iron phosphate-based glass with a selected waste composition that is high in sulfates (4.37 wt% SO3). The primary objective of the test was to develop data to support a cost-benefit analysis as related to the implementation of phosphate-based glasses for Hanford low activity waste (LAW) and/or other high-level waste streams within the U.S. Department of Energy complex. The testing was performed by PNNL and supported by Idaho National Laboratory, Savannah River National Laboratory, and Mo-Sci Corporation.

  3. Iron Phosphate Glass-Containing Hanford Waste Simulant

    SciTech Connect (OSTI)

    Sevigny, Gary J.; Kimura, Marcia L.; Fischer, Christopher M.; Schweiger, M. J.; Rodriguez, Carmen P.; Kim, Dong-Sang; Riley, Brian J.

    2012-01-18T23:59:59.000Z

    Resolution of the nation's high-level tank waste legacy requires the design, construction, and operation of large and technically complex one-of-a-kind processing waste treatment and vitrification facilities. While the ultimate limits for waste loading and melter efficiency have yet to be defined or realized, significant reductions in glass volumes for disposal and mission life may be possible with advancements in melter technologies and/or glass formulations. This test report describes the experimental results from a small-scale test using the research-scale melter (RSM) at Pacific Northwest National Laboratory (PNNL) to demonstrate the viability of iron-phosphate-based glass with a selected waste composition that is high in sulfate (4.37 wt% SO3). The primary objective of the test was to develop data to support a cost-benefit analysis related to the implementation of phosphate-based glasses for Hanford low-activity waste (LAW) and/or other high-level waste streams within the U.S. Department of Energy complex. The testing was performed by PNNL and supported by Idaho National Laboratory, Savannah River National Laboratory, Missouri University of Science and Technology, and Mo-Sci Corporation.

  4. Sulfate Retention and Segregation in Simulated Radioactive Waste Borosilicate Glasses

    SciTech Connect (OSTI)

    Li, Hong; Hrma, Pavel R.; Vienna, John D.

    2000-04-19T23:59:59.000Z

    Sulfate segregation from processing radioactive waste glasses causes an acceleration of the melter refractory corrosion and partitioning of radionuclides in the segregated layer. A sulfate retention (SR)-composition relationship has been established for various simulated high-level and low-activity waste glass compositions in terms of the relative non-bridging oxygen (NBO) concentration in the melt. Phosphate was found to significantly increase sulfate retention. However, the correlation between SR and NBO could not explain the sulfate segregation tendency. For instance, glasses with a higher ratio of boron to sodium suppress sulfate segreation in the melt in which SR is expected to be lower. As sulfate segregation is a kinetic process, occurring in the batch to glass conversion process, initial reactions of the batch materials are considered to have stronger effects on the sulfate segregation tendency, pointing out the need to study the impact of batch materials on sulfate segregation.

  5. Glass-Ceramic Waste Forms for Uranium and Plutonium Residues Wastes - 13164

    SciTech Connect (OSTI)

    Stewart, Martin W.A.; Moricca, Sam A.; Zhang, Yingjie; Day, R. Arthur; Begg, Bruce D. [Australian Nuclear Science and Technology Organisation (ANSTO), New Illawarra Road, Lucas Heights, NSW 2234 (Australia)] [Australian Nuclear Science and Technology Organisation (ANSTO), New Illawarra Road, Lucas Heights, NSW 2234 (Australia); Scales, Charlie R.; Maddrell, Ewan R. [National Nuclear Laboratory, Sellafield, Seascale, Cumbria, UK, CA20 1PG (United Kingdom)] [National Nuclear Laboratory, Sellafield, Seascale, Cumbria, UK, CA20 1PG (United Kingdom); Hobbs, Jeff [Sellafield Limited, Sellafield, Seascale, Cumbria, UK, CA20 1PG (United Kingdom)] [Sellafield Limited, Sellafield, Seascale, Cumbria, UK, CA20 1PG (United Kingdom)

    2013-07-01T23:59:59.000Z

    A program of work has been undertaken to treat plutonium-residues wastes at Sellafield. These have arisen from past fuel development work and are highly variable in both physical and chemical composition. The principal radiological elements present are U and Pu, with small amounts of Th. The waste packages contain Pu in amounts that are too low to be economically recycled as fuel and too high to be disposed of as lower level Pu contaminated material. NNL and ANSTO have developed full-ceramic and glass-ceramic waste forms in which hot-isostatic pressing is used as the consolidation step to safely immobilize the waste into a form suitable for long-term disposition. We discuss development work on the glass-ceramic developed for impure waste streams, in particular the effect of variations in the waste feed chemistry glass-ceramic. The waste chemistry was categorized into actinides, impurity cations, glass formers and anions. Variations of the relative amounts of these on the properties and chemistry of the waste form were investigated and the waste form was found to be largely unaffected by these changes. This work mainly discusses the initial trials with Th and U. Later trials with larger variations and work with Pu-doped samples further confirmed the flexibility of the glass-ceramic. (authors)

  6. Mixed waste removal from a hazardous waste storage tank

    SciTech Connect (OSTI)

    Geber, K.R.

    1993-06-01T23:59:59.000Z

    The spent fuel transfer canal at the Oak Ridge Graphite Reactor was found to be leaking 400 gallons of water per day into the surrounding soil. Sampling of the sediment layer on the floor of the canal to determine the environmental impact of the leak identified significant radiological contamination and elevated levels of cadmium and lead which are hazardous under the Resource Conservation and Recovery Act (RCRA). Under RCRA regulations and Rules of Tennessee Department of Environment and Conservation, the canal was considered a hazardous waste storage tank. This paper describes elements of the radiological control program established in support of a fast-track RCRA closure plan that involved underwater mapping of the radiation fields, vacuuming, and ultra-filtration techniques that were successfully used to remove the mixed waste sediments and close the canal in a method compliant with state and federal regulations.

  7. Phosphate glasses for radioactive, hazardous and mixed waste immobilization

    DOE Patents [OSTI]

    Cao, Hui (Middle Island, NY); Adams, Jay W. (Stony Brook, NY); Kalb, Paul D. (Wading River, NY)

    1999-03-09T23:59:59.000Z

    Lead-free phosphate glass compositions are provided which can be used to immobilize low level and/or high level radioactive wastes in monolithic waste forms. The glass composition may also be used without waste contained therein. Lead-free phosphate glass compositions prepared at about 900.degree. C. include mixtures from about 1 mole % to about 6 mole %.iron (III) oxide, from about 1 mole % to about 6 mole % aluminum oxide, from about 15 mole % to about 20 mole % sodium oxide or potassium oxide, and from about 30 mole % to about 60 mole % phosphate. The invention also provides phosphate, lead-free glass ceramic glass compositions which are prepared from about 400.degree. C. to about 450.degree. C. and which includes from about 3 mole % to about 6 mole % sodium oxide, from about 20 mole % to about 50 mole % tin oxide, from about 30 mole % to about 70 mole % phosphate, from about 3 mole % to about 6 mole % aluminum oxide, from about 3 mole % to about 8 mole % silicon oxide, from about 0.5 mole % to about 2 mole % iron (III) oxide and from about 3 mole % to about 6 mole % potassium oxide. Method of making lead-free phosphate glasses are also provided.

  8. Phosphate glasses for radioactive, hazardous and mixed waste immobilization

    DOE Patents [OSTI]

    Cao, Hui (Middle Island, NY); Adams, Jay W. (Stony Brook, NY); Kalb, Paul D. (Wading River, NY)

    1998-11-24T23:59:59.000Z

    Lead-free phosphate glass compositions are provided which can be used to immobilize low level and/or high level radioactive wastes in monolithic waste forms. The glass composition may also be used without waste contained therein. Lead-free phosphate glass compositions prepared at about 900.degree. C. include mixtures from about 1 mole % to about 6 mole % iron (III) oxide, from about 1 mole % to about 6 mole % aluminum oxide, from about 15 mole % to about 20 mole % sodium oxide or potassium oxide, and from about 30 mole % to about 60 mole % phosphate. The invention also provides phosphate, lead-free glass ceramic glass compositions which are prepared from about 400.degree. C. to about 450.degree. C. and which includes from about 3 mole % to about 6 mole % sodium oxide, from about 20 mole % to about 50 mole % tin oxide, from about 30 mole % to about 70 mole % phosphate, from about 3 mole % to about 6 mole % aluminum oxide, from about 3 mole % to about 8 mole % silicon oxide, from about 0.5 mole % to about 2 mole % iron (III) oxide and from about 3 mole % to about 6 mole % potassium oxide. Method of making lead-free phosphate glasses are also provided.

  9. Phosphate glasses for radioactive, hazardous and mixed waste immobilization

    DOE Patents [OSTI]

    Cao, H.; Adams, J.W.; Kalb, P.D.

    1999-03-09T23:59:59.000Z

    Lead-free phosphate glass compositions are provided which can be used to immobilize low level and/or high level radioactive wastes in monolithic waste forms. The glass composition may also be used without waste contained therein. Lead-free phosphate glass compositions prepared at about 900 C include mixtures from about 1 mole % to about 6 mole % iron (III) oxide, from about 1 mole % to about 6 mole % aluminum oxide, from about 15 mole % to about 20 mole % sodium oxide or potassium oxide, and from about 30 mole % to about 60 mole % phosphate. The invention also provides phosphate, lead-free glass ceramic glass compositions which are prepared from about 400 C to about 450 C and which includes from about 3 mole % to about 6 mole % sodium oxide, from about 20 mole % to about 50 mole % tin oxide, from about 30 mole % to about 70 mole % phosphate, from about 3 mole % to about 6 mole % aluminum oxide, from about 3 mole % to about 8 mole % silicon oxide, from about 0.5 mole % to about 2 mole % iron (III) oxide and from about 3 mole % to about 6 mole % potassium oxide. Method of making lead-free phosphate glasses are also provided. 8 figs.

  10. Phosphate glasses for radioactive, hazardous and mixed waste immobilization

    DOE Patents [OSTI]

    Cao, H.; Adams, J.W.; Kalb, P.D.

    1998-11-24T23:59:59.000Z

    Lead-free phosphate glass compositions are provided which can be used to immobilize low level and/or high level radioactive wastes in monolithic waste forms. The glass composition may also be used without waste contained therein. Lead-free phosphate glass compositions prepared at about 900 C include mixtures from about 1--6 mole % iron (III) oxide, from about 1--6 mole % aluminum oxide, from about 15--20 mole % sodium oxide or potassium oxide, and from about 30--60 mole % phosphate. The invention also provides phosphate, lead-free glass ceramic glass compositions which are prepared from about 400 C to about 450 C and which includes from about 3--6 mole % sodium oxide, from about 20--50 mole % tin oxide, from about 30--70 mole % phosphate, from about 3--6 mole % aluminum oxide, from about 3--8 mole % silicon oxide, from about 0.5--2 mole % iron (III) oxide and from about 3--6 mole % potassium oxide. Method of making lead-free phosphate glasses are also provided. 8 figs.

  11. Technical Safety Requirements for the Waste Storage Facilities

    SciTech Connect (OSTI)

    Laycak, D T

    2008-06-16T23:59:59.000Z

    This document contains Technical Safety Requirements (TSR) for the Radioactive and Hazardous Waste Management (RHWM) WASTE STORAGE FACILITIES, which include Area 625 (A625) and the Decontamination and Waste Treatment Facility (DWTF) Storage Area at Lawrence Livermore National Laboratory (LLNL). The TSRs constitute requirements regarding the safe operation of the WASTE STORAGE FACILITIES. These TSRs are derived from the 'Documented Safety Analysis for the Waste Storage Facilities' (DSA) (LLNL 2008). The analysis presented therein determined that the WASTE STORAGE FACILITIES are low-chemical hazard, Hazard Category 2 non-reactor nuclear facilities. The TSRs consist primarily of inventory limits and controls to preserve the underlying assumptions in the hazard and accident analyses. Further, appropriate commitments to safety programs are presented in the administrative controls sections of the TSRs. The WASTE STORAGE FACILITIES are used by RHWM to handle and store hazardous waste, TRANSURANIC (TRU) WASTE, LOW-LEVEL WASTE (LLW), mixed waste, California combined waste, nonhazardous industrial waste, and conditionally accepted waste generated at LLNL as well as small amounts from other U.S. Department of Energy (DOE) facilities, as described in the DSA. In addition, several minor treatments (e.g., size reduction and decontamination) are carried out in these facilities. The WASTE STORAGE FACILITIES are located in two portions of the LLNL main site. A625 is located in the southeast quadrant of LLNL. The A625 fenceline is approximately 225 m west of Greenville Road. The DWTF Storage Area, which includes Building 693 (B693), Building 696 Radioactive Waste Storage Area (B696R), and associated yard areas and storage areas within the yard, is located in the northeast quadrant of LLNL in the DWTF complex. The DWTF Storage Area fenceline is approximately 90 m west of Greenville Road. A625 and the DWTF Storage Area are subdivided into various facilities and storage areas, consisting of buildings, tents, other structures, and open areas as described in Chapter 2 of the DSA. Section 2.4 of the DSA provides an overview of the buildings, structures, and areas in the WASTE STORAGE FACILITIES, including construction details such as basic floor plans, equipment layout, construction materials, controlling dimensions, and dimensions significant to the hazard and accident analysis. Chapter 5 of the DSA documents the derivation of the TSRs and develops the operational limits that protect the safety envelope defined for the WASTE STORAGE FACILITIES. This TSR document is applicable to the handling, storage, and treatment of hazardous waste, TRU WASTE, LLW, mixed waste, California combined waste, nonhazardous industrial waste, and conditionally accepted waste received or generated in the WASTE STORAGE FACILITIES. Section 5, Administrative Controls, contains those Administrative Controls necessary to ensure safe operation of the WASTE STORAGE FACILITIES. Programmatic Administrative Controls are in Section 5.6.

  12. Technical Safety Requirements for the Waste Storage Facilities

    SciTech Connect (OSTI)

    Laycak, D T

    2010-03-05T23:59:59.000Z

    This document contains Technical Safety Requirements (TSR) for the Radioactive and Hazardous Waste Management (RHWM) WASTE STORAGE FACILITIES, which include Area 625 (A625) and the Decontamination and Waste Treatment Facility (DWTF) Storage Area at Lawrence Livermore National Laboratory (LLNL). The TSRs constitute requirements regarding the safe operation of the WASTE STORAGE FACILITIES. These TSRs are derived from the Documented Safety Analysis for the Waste Storage Facilities (DSA) (LLNL 2009). The analysis presented therein determined that the WASTE STORAGE FACILITIES are low-chemical hazard, Hazard Category 2 non-reactor nuclear facilities. The TSRs consist primarily of inventory limits and controls to preserve the underlying assumptions in the hazard and accident analyses. Further, appropriate commitments to safety programs are presented in the administrative controls sections of the TSRs. The WASTE STORAGE FACILITIES are used by RHWM to handle and store hazardous waste, TRANSURANIC (TRU) WASTE, LOW-LEVEL WASTE (LLW), mixed waste, California combined waste, nonhazardous industrial waste, and conditionally accepted waste generated at LLNL as well as small amounts from other U.S. Department of Energy (DOE) facilities, as described in the DSA. In addition, several minor treatments (e.g., size reduction and decontamination) are carried out in these facilities. The WASTE STORAGE FACILITIES are located in two portions of the LLNL main site. A625 is located in the southeast quadrant of LLNL. The A625 fenceline is approximately 225 m west of Greenville Road. The DWTF Storage Area, which includes Building 693 (B693), Building 696 Radioactive Waste Storage Area (B696R), and associated yard areas and storage areas within the yard, is located in the northeast quadrant of LLNL in the DWTF complex. The DWTF Storage Area fenceline is approximately 90 m west of Greenville Road. A625 and the DWTF Storage Area are subdivided into various facilities and storage areas, consisting of buildings, tents, other structures, and open areas as described in Chapter 2 of the DSA. Section 2.4 of the DSA provides an overview of the buildings, structures, and areas in the WASTE STORAGE FACILITIES, including construction details such as basic floor plans, equipment layout, construction materials, controlling dimensions, and dimensions significant to the hazard and accident analysis. Chapter 5 of the DSA documents the derivation of the TSRs and develops the operational limits that protect the safety envelope defined for the WASTE STORAGE FACILITIES. This TSR document is applicable to the handling, storage, and treatment of hazardous waste, TRU WASTE, LLW, mixed waste, California combined waste, nonhazardous industrial waste, and conditionally accepted waste received or generated in the WASTE STORAGE FACILITIES. Section 5, Administrative Controls, contains those Administrative Controls necessary to ensure safe operation of the WASTE STORAGE FACILITIES. Programmatic Administrative Controls are in Section 5.4.

  13. Processing constraints on high-level nuclear waste glasses for Hanford Waste Vitrification Plant

    SciTech Connect (OSTI)

    Hrma, P. [Pacific Northwest Lab., Richland, WA (United States)

    1993-12-31T23:59:59.000Z

    The work presented in this paper is a part of a major technology program supported by the US Department of Energy (DOE) in preparation for the planned operation of the Hanford Waste Vitrification Plant (HWVP). Because composition of Hanford waste varies greatly, processability is a major concern for successful vitrification. This paper briefly surveys general aspects of waste glass processability and then discusses their ramifications for specific examples of Hanford waste streams.

  14. Redox reaction and foaming in nuclear waste glass melting

    SciTech Connect (OSTI)

    Ryan, J.L.

    1995-08-01T23:59:59.000Z

    This document was prepared by Pacific Northwest Laboratory (PNL) and is an attempt to analyze and estimate the effects of feed composition variables and reducing agent variables on the expected chemistry of reactions occurring in the cold cap and in the glass melt in the nuclear waste glass Slurry-fed, joule-heated melters as they might affect foaming during the glass-making process. Numerous redox reactions of waste glass components and potential feed additives, and the effects of other feed variables on these reactions are reviewed with regard to their potential effect on glass foaming. A major emphasis of this report is to examine the potential positive or negative aspects of adjusting feed with formic acid as opposed to other feed modification techniques including but not limited to use of other reducing agents. Feed modification techniques other than the use of reductants that should influence foaming behavior include control of glass melter feed pH through use of nitric acid. They also include partial replacement of sodium salts by lithium salts. This latter action (b) apparently lowers glass viscosity and raises surface tension. This replacement should decrease foaming by decreasing foam stability.

  15. Thermal phase stability of some simulated Defense waste glasses

    SciTech Connect (OSTI)

    May, R.P.

    1981-04-01T23:59:59.000Z

    Three simulated defense waste glass compositions developed by Savannah River Laboratories were studied to determine viscosity and compositional effects on the comparative thermal phase stabilities of these glasses. The glass compositions are similar except that the 411 glasses are high in lithium and low in sodium compared to the 211 glass, and the T glasses are high in iron and low in aluminum compared to the C glass. Specimens of these glasses were heat treated using isothermal anneals as short as 10 min and up to 15 days over the temperature range of 450/sup 0/C to 1100/sup 0/C. Additionally, a specimen of each glass was cooled at a constant cooling rate of 7/sup 0/C/hour from an 1100/sup 0/C melt down to 500/sup 0/C where it was removed from the furnace. The following were observed. The slow cooling rate of 7/sup 0/C/hour is possible as a canister centerline cooling rate for large canisters. Accordingly, it is important to note that a short range diffusion mechanism like cooperative growth phenomena can result in extensive devitrification at lower temperatures and higher yields than a long-range diffusion mechanism can; and can do it without the growth of large crystals that can fracture the glass. Refractory oxides like CeO/sub 2/ and (Ni, Mn, Fe)/sub 2/O/sub 4/ form very rapidly at higher temperatures than silicates and significant yields can be obtained at sufficiently high temperatures that settling of these dense phases becomes a major microstructural feature during slow cooling of some glasses. These annealing studies further show that below 500/sup 0/C there is but little devitrification occurring implying that glass canisters stored at 300/sup 0/C may be kinetically stable despite not being thermodynamically so.

  16. Consolidated waste forms: glass marbles and ceramic pellets

    SciTech Connect (OSTI)

    Treat, R.L.; Rusin, J.M.

    1982-05-01T23:59:59.000Z

    Glass marbles and ceramic pellets have been developed at Pacific Northwest Laboratory as part of the multibarrier concept for immobilizing high-level radioactive waste. These consolidated waste forms served as substrates for the application of various inert coatings and as ideal-sized particles for encapsulation in protective matrices. Marble and pellet formulations were based on existing defense wastes at Savannah River Plant and proposed commercial wastes. To produce marbles, glass is poured from a melter in a continuous stream into a marble-making device. Marbles were produced at PNL on a vibratory marble machine at rates as high as 60 kg/h. Other marble-making concepts were also investigated. The marble process, including a lead-encapsulation step, was judged as one of the more feasible processes for immobilizing high-level wastes. To produce ceramic pellets, a series of processing steps are required, which include: spray calcining - to dry liquid wastes to a powder; disc pelletizing - to convert waste powders to spherical pellets; sintering - to densify pellets and cause desired crystal formation. These processing steps are quite complex, and thereby render the ceramic pellet process as one of the least feasible processes for immobilizing high-level wastes.

  17. Modeling of Spinel Settling in Waste Glass Melter

    SciTech Connect (OSTI)

    Hrma, Pavel R.; Nemec, Lubomir; Schill, Petr

    1999-06-01T23:59:59.000Z

    Each 1% increase of waste loading (W), defined as the high-level waste (HLW) mass fraction in glass, can save the U.S. Department of Energy (DOE) over a half billion U.S. dollars for vitrification and disposal. For a majority of Hanford and Savannah River waste streams, W is limited by spinel precipitation and settling in waste glass melters. Therefore, a fundamental understanding of spinel behavior is crucial for economy and the low-risk operation of HLW vitrification. The goal of this research is to develop a basic understanding of the dynamics of spinel formation and motion in velocity, temperature, and redox fields that are characteristic for the glass-melting process. This goal is being achieved by directly studying spinel formation and settling in molten glass and by developing a mathematical tool for predicting the spinel behavior and accumulation rate in the melter. The main potential benefit of this study is achieving a lower waste-glass volume, which translates into a shorter cleanup time, a smaller processing facility, a smaller repository space, and, hence, a reduced investment of time and money to reach acceptable technical risks. Additional benefits include (1) more accurately assessing sensible limits for problem constituents (such as chromium) in the melter feed, (2) reducing the blending requirements, and (3) comparing cost and risk with other options (pretreatment, blending or diluting the waste) to determine the best path forward. The results of this study will allow alternate melter designs and operating conditions to be evaluated. The study will also address the option of removing the settled sludge from the melter.

  18. Disposition of actinides released from high-level waste glass

    SciTech Connect (OSTI)

    Ebert, W.L.; Bates, J.K.; Buck, E.C.; Gong, M.; Wolf, S.F.

    1994-05-01T23:59:59.000Z

    A series of static leach tests was conducted using glasses developed for vitrifying tank wastes at the Savannah River Site to monitor the disposition of actinide elements upon corrosion of the glasses. In these tests, glasses produced from SRL 131 and SRL 202 frits were corroded at 90{degrees}C in a tuff groundwater. Tests were conducted using crushed glass at different glass surface area-to-solution volume (S/V) ratios to assess the effect of the S/V on the solution chemistry, the corrosion of the glass, and the disposition of actinide elements. Observations regarding the effects of the S/V on the solution chemistry and the corrosion of the glass matrix have been reported previously. This paper highlights the solution analyses performed to assess how the S/V used in a static leach test affects the disposition of actinide elements between fractions that are suspended or dissolved in the solution, and retained by the altered glass or other materials.

  19. Radiation and Thermal Ageing of Nuclear Waste Glass

    SciTech Connect (OSTI)

    Weber, William J [ORNL

    2014-01-01T23:59:59.000Z

    The radioactive decay of fission products and actinides incorporated into nuclear waste glass leads to self-heating and self-radiation effects that may affect the stability, structure and performance of the glass in a closed system. Short-lived fission products cause significant self-heating for the first 600 years. Alpha decay of the actinides leads to self-radiation damage that can be significant after a few hundred years, and over the long time periods of geologic disposal, the accumulation of helium and radiation damage from alpha decay may lead to swelling, microstructural evolution and changes in mechanical properties. Four decades of research on the behavior of nuclear waste glass are reviewed.

  20. Safety analysis report for the Waste Storage Facility. Revision 2

    SciTech Connect (OSTI)

    Bengston, S.J.

    1994-05-01T23:59:59.000Z

    This safety analysis report outlines the safety concerns associated with the Waste Storage Facility located in the Radioactive Waste Management Complex at the Idaho National Engineering Laboratory. The three main objectives of the report are: define and document a safety basis for the Waste Storage Facility activities; demonstrate how the activities will be carried out to adequately protect the workers, public, and environment; and provide a basis for review and acceptance of the identified risk that the managers, operators, and owners will assume.

  1. An Underwater Robotic Network for Monitoring Nuclear Waste Storage Pools

    E-Print Network [OSTI]

    Jeavons, Peter

    , it is still necessary to store this waste in cool- ing ponds for 20 to 60 years to remove the heatAn Underwater Robotic Network for Monitoring Nuclear Waste Storage Pools Sarfraz Nawaz1 , Muzammil spread with grow- ing world population. However, the radioactive waste generated in these power plants

  2. Preliminary Glass Development and Testing for In-Container Vitrification of Hanford Low-Activity Waste

    SciTech Connect (OSTI)

    Vienna, John D.; Kim, Dong-Sang; Schweiger, Michael J.; Hrma, Pavel R.; Matyas, Josef; Crum, Jarrod V.; Smith, Donald E.

    2004-01-01T23:59:59.000Z

    Roughly 50 million gallons of high-level waste (HLW) are stored at the Hanford site. This waste will be separated into HLW and low-activity waste (LAW) fractions and each fraction will be immobilized for final storage/disposal. The US Department of Energy (DOE) Office of River Protection (ORP) is constructing a Waste Treatment and Immobilization Plant (WTP) which will be capable of separating the waste, vitrifying the entire HLW fraction of the waste and vitrifying roughly 50% the LAW fraction. The remaining fraction of LAW will be immobilized by one of a number of possible technologies. ORP is currently evaluating options for LAW immobilization. One possible option is In-Container Vitrification (ICV) of the LAW. ICV is a technology developed by AMEC, GeoMelt Division, for treatment of hazardous, radioactive, and mixed wastes. The ICV process, as applied to Hanford LAW, includes the blending of liquid waste with additives (primarily composed of local soil) and drying to a granular state. The dried material is loaded into a refractory lined steel box and melted by passing a current through the material between two graphite electrodes. The box containing the molten waste/additive mixture is cooled, backfilled, and disposed of. The purpose of the study was to develop a glass composition suitable for the demonstration of ICV on Hanford LAW at full scale. Testing included crucible-scale tests with simulants and actual Hanford LAW. Following the crucible-scale tests, engineering-scale and large-scale melts were performed with LAW simulants. This paper discusses the formulation and testing of glass compositions for ICV of Hanford LAW at crucible scale. The results from process scale-up test are reported elsewhere.

  3. Vanadium and Chromium Redox Behavior in borosilicate Nuclear Waste Glasses

    SciTech Connect (OSTI)

    D McKeown; I Muller; H Gan; Z Feng; C Viragh; I Pegg

    2011-12-31T23:59:59.000Z

    X-ray absorption spectroscopy (XAS) was used to characterize vanadium (V) and chromium (Cr) environments in low activity nuclear waste (LAW) glasses synthesized under a variety of redox conditions. V{sub 2}O{sub 5} was added to the melt to improve sulfur incorporation from the waste; however, at sufficiently high concentrations, V increased melt foaming, which lowered melt processing rates. Foaming may be reduced by varying the redox conditions of the melt, while small amounts of Cr are added to reduce melter refractory corrosion. Three parent glasses were studied, where CO-CO{sub 2} mixtures were bubbled through the corresponding melt for increasing time intervals so that a series of redox-adjusted-glasses was synthesized from each parent glass. XAS data indicated that V and Cr behaviors are significantly different in these glasses with respect to the cumulative gas bubbling times: V{sup 4+}/V{sub total} ranges from 8 to 35%, while Cr{sup 3+}/Cr{sub total} can range from 15 to 100% and even to population distributions including Cr{sup 2+}. As Na-content decreased, V, and especially, Cr became more reduced, when comparing equivalent glasses within a series. The Na-poor glass series show possible redox coupling between V and Cr, where V{sup 4+} populations increase after initial bubbling, but as bubbling time increases, V{sup 4+} populations drop to near the level of the parent glass, while Cr becomes more reduced to the point of having increasing Cr{sup 2+} populations.

  4. Improved Alumina Loading in High-Level Waste Glasses

    SciTech Connect (OSTI)

    Kim, D.; Vienna, J.D. [Pacific Northwest National Laboratory, Richland, WA (United States); Peeler, D.K.; Fox, K.M. [Savannah River National Laboratory, Aiken, SC (United States); Aloy, A.; Trofimenko, A.V. [V.G. Khlopin Radium Institute, St. Petersburg (Russian Federation); Gerdes, K.D. [EM-21, Office of Waste Processing, U.S. Department of Energy, Washington, DC (United States)

    2008-07-01T23:59:59.000Z

    Recent tank retrieval, blending, and treatment strategies at both the Savannah River Site (SRS) and Hanford have identified increased amounts of high-Al{sub 2}O{sub 3} waste streams that are scheduled to be processed through their respective high-level waste (HLW) vitrification facilities. It is well known that the addition of small amounts of Al{sub 2}O{sub 3} to borosilicate glasses generally enhances the durability of the waste glasses. However, at higher Al{sub 2}O{sub 3} concentrations nepheline (NaAlSiO{sub 4}) formation can result in a severe deterioration of the chemical durability of the slowly cooled glass near the center of the canister. Additionally, higher concentrations of Al{sub 2}O{sub 3} generally increase the liquidus temperature of the melt and decrease the processing rate. Pacific Northwest National Laboratory (PNNL), Savannah River National Laboratory (SRNL), and Khlopin Radium Institute (KRI) are jointly performing laboratory and scaled-melter tests, through US Department of Energy, EM-21 Office of Waste Processing program, to develop glass formulations with increased Al{sub 2}O{sub 3} concentrations. These glasses are formulated for specific DOE waste compositions at Hanford and Savannah River Site. The objectives are to avoid nepheline formation while maintaining or meeting waste loading and/or waste throughput expectations as well as satisfying critical process and product performance related constraints such as viscosity, liquidus temperature, and glass durability. This paper summarizes the results of recent tests of simulated Hanford HLW glasses containing up to 26 wt% Al{sub 2}O{sub 3} in glass. In summary: Glasses with Al{sub 2}O{sub 3} loading ranging from 25 to 27 wt% were formulated and tested at a crucible scale. Successful glass formulations with up to 26 wt% Al{sub 2}O{sub 3} that do not precipitate nepheline during CCC treatment and had spinel crystals 1 vol% or less after 24 hr heat treatment at 950 deg. C were obtained. The selected glass, HAL-17 with 26 wt% Al{sub 2}O{sub 3}, had viscosity and electrical conductivity within the boundaries for adequate processing in the Joule heated melters operated at 1150 deg. C. This HAL-17 glass was successfully processed using small-scale (SMK) and larger scale (EP-5) melters. There was no indication of spinel settling during processing. The product glass samples from these melter tests contained 1 to 4 vol% spinel crystals that are likely formed during cooling. The PCT tests on the product glasses are underway. The present study demonstrated that it is possible to formulate the glasses with up to 26 wt% Al{sub 2}O{sub 3} that satisfy the property requirements and is processable with Joule-heated melters operated at 1150 deg. C. The 'nepheline discriminator' for HAL-17 glass is 0.45, which supports that claim that the current rule ('nepheline discriminator' < 0.62) is too restrictive. Considering that the cost of HLW treatment is highly dependent on loading of waste in glass, this result provides a potential for significant cost saving for Hanford. The maximum Al{sub 2}O{sub 3} loading that can be achieved will also depend on concentrations of other components in wastes. For example, the loading of waste used in this study was also limited by the spinel crystallization after 950 deg. C 24 hr heat treatment, which suggests that the concentrations of spinel-forming components such as Fe{sub 2}O{sub 3}, Cr{sub 2}O{sub 3}, NiO, ZnO, and MnO would be critical in addition to Al{sub 2}O{sub 3} for the maximum Al{sub 2}O{sub 3} loading achievable. The observed glass production rate per unit melter surface area of 0.75 MT/(d.m{sup 2}) for SMK test is comparable to the design capacity of WTP HLW melters at 0.8 MT/(d.m{sup 2}). However, the test with EP-5 melter achieved 0.38 MT/(d.m{sup 2}), which is roughly a half of the WTP design capacity. This result may imply that the glass with 26 wt% Al{sub 2}O{sub 3} may not achieve the WTP design production rate. However, this hypothesis is not conclusive because of unknown effects of melter size and operation

  5. Method of preparing nuclear wastes for tansportation and interim storage

    DOE Patents [OSTI]

    Bandyopadhyay, Gautam (Naperville, IL); Galvin, Thomas M. (Darien, IL)

    1984-01-01T23:59:59.000Z

    Nuclear waste is formed into a substantially water-insoluble solid for temporary storage and transportation by mixing the calcined waste with at least 10 weight percent powdered anhydrous sodium silicate to form a mixture and subjecting the mixture to a high humidity environment for a period of time sufficient to form cementitious bonds by chemical reaction. The method is suitable for preparing an interim waste form from dried high level radioactive wastes.

  6. Exploration and Modeling of Structural changes in Waste Glass Under Corrosion

    SciTech Connect (OSTI)

    Pantano, Carlos; Ryan, Joseph; Strachan, Denis

    2013-11-10T23:59:59.000Z

    Vitrification is currently the world-wide treatment of choice for the disposition of high-level nuclear wastes. In glasses, radionuclides are atomistically bonded into the solid, resulting in a highly durable product, with borosilicate glasses exhibiting particularly excellent durability in water. Considering that waste glass is designed to retain the radionuclides within the waste form for long periods, it is important to understand the long-term stability of these materials when they react in the environment, especially in the presence of water. Based on a number of previous studies, there is general consensus regarding the mechanisms controlling the initial rate of nuclear waste glass dissolution. Agreement regarding the cause of the observed decrease in dissolution rate at extended times, however, has been elusive. Two general models have been proposed to explain this behavior, and it has been concluded that both concepts are valid and must be taken into account when considering the decrease in dissolution rate. Furthermore, other processes such as water diffusion, ion exchange, and precipitation of mineral phases onto the glass surface may occur in parallel with dissolution of the glass and can influence long-term performance. Our proposed research will address these issues through a combination of aqueous-phase dissolution/reaction experiments and probing of the resulting surface layers with state-of-the-art analytical methods. These methods include solid-state nuclear magnetic resonance (SSNMR) and time-of-flight secondary ion mass spectrometry (TOF-SIMS). The resulting datasets will then be coupled with computational chemistry and reaction-rate modeling to address the most persistent uncertainties in the understanding of glass corrosion, which indeed have limited the performance of the best corrosion models to date. With an improved understanding of corrosion mechanisms, models can be developed and improved that, while still conservative, take advantage of the inherent durability of the waste form to enable secure repositories to be engineered with a much higher density of waste disposition. We propose the synthesis, corrosion, and characterization of two sets of glass samples— containing approximately 8 single-component oxides each—as models for corrosion studies of more complicated glass systems (which can contain in excess of 25 single-component ingredients). Powdered samples and millimeter- sized coupons of these simpler glasses will be corroded in solutions that begin at circumneutral pH, but are known to increase in alkalinity as corrosion proceeds and saturation in silica species is approached. Through carefully selected isotopic substitutions with nuclides that are readily detected with SSNMR and TOF-SIMS methods, we will be able to follow the diffusion of atoms into and out of the reacted surface layers of these glasses and provide new data for testing with existing reaction models. The models can then be further extended or updated to take our new data into account, allowing the existing long-term glass corrosion models to more accurately reflect the extraordinary durability of these systems. With improved models, a significant opportunity exists to better utilize the storage volume of any geologic repository.

  7. Helium solubility in SON68 nuclear waste glass

    SciTech Connect (OSTI)

    Fares, Toby; Peuget, Sylvain; Bouty, Olivier; Broudic, Veronique; Maugeri, Emilio; Bes, Rene; Jegou, Christophe [CEA, DEN, DTCD SECM LMPA, F-30207 Marcoule, Bagnols Sur Cez, (France); Chamssedine, Fadel; Sauvage, Thierry [CNRS, CEMHTI, F-245071 Orleans, (France); Deschanels, Xavier [LNAR, Marcoule Inst Separat Chem, F-30207 Bagnols Sur Ceze, (France)

    2012-12-15T23:59:59.000Z

    Helium behavior in a sodium borosilicate glass (SON68) dedicated to the immobilization of high-level nuclear waste is examined. Two experimental approaches on nonradioactive glass specimens are implemented: pressurized helium infusion experiments and {sup 3}He ion implantation experiments. The temperature variation of helium solubility in SON68 glass was determined and analyzed with the harmonic oscillator model to determine values of the energy of interaction E(0) at the host sites (about -4000 J/mol), the vibration frequency (about 1.7 x 10{sup 11} s{sup -1}), and the density of solubility sites (2.2 x 10{sup 21} sites cm{sup -3}). The implantation experiments show that a non diffusive transport phenomenon (i.e., athermal diffusion) is involved in the material when the helium concentration exceeds 2.3 x 10{sup 21} He cm{sup -3}, and thus probably as soon as it exceeds the density of solubility sites accessible to helium in the glass. We propose that this transport mechanism could be associated with the relaxation of the stress gradient induced by the implanted helium profile, which is favored by the glass damage. Microstructural characterization by TEM and ESEM of glass specimens implanted with high helium concentrations showed a homogeneous microstructure free of bubbles, pores, or cracking at a scale of 10 nm. (authors)

  8. Regulatory Approaches for Solid Radioactive Waste Storage in Russia

    SciTech Connect (OSTI)

    Griffith, A.; Testov, S.; Diaschev, A.; Nazarian, A.; Ustyuzhanin, A.

    2003-02-26T23:59:59.000Z

    The Russian Navy under the Arctic Military Environmental Cooperation (AMEC) Program has designated the Polyarninsky Shipyard as the regional recipient for solid radioactive waste (SRW) pretreatment and storage facilities. Waste storage technologies include containers and lightweight modular storage buildings. The prime focus of this paper is solid radioactive waste storage options based on the AMEC mission and Russian regulatory standards. The storage capability at the Polyarninsky Shipyard in support of Mobile Pretreatment Facility (MPF) operations under the AMEC Program will allow the Russian Navy to accumulate/stage the SRW after treatment at the MPF. It is anticipated that the MPF will operate for 20 years. This paper presents the results of a regulatory analysis performed to support an AMEC program decision on the type of facility to be used for storage of SRW. The objectives the study were to: analyze whether a modular storage building (MSB), referred in the standards as a lightweight building, would comply with the Russian SRW storage building standard, OST 95 10517-95; analyze the Russian SRW storage pad standard OST 95 10516-95; and compare the two standards, OST 95 10517-95 for storage buildings and OST 95 10516-95 for storage pads.

  9. ORS 466 - Storage, Treatment, and Disposal of Hazardous Waste...

    Open Energy Info (EERE)

    ORS 466 - Storage, Treatment, and Disposal of Hazardous Waste and Materials Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- StatuteStatute: ORS...

  10. Low sintering temperature glass waste forms for sequestering radioactive iodine

    DOE Patents [OSTI]

    Nenoff, Tina M.; Krumhansl, James L.; Garino, Terry J.; Ockwig, Nathan W.

    2012-09-11T23:59:59.000Z

    Materials and methods of making low-sintering-temperature glass waste forms that sequester radioactive iodine in a strong and durable structure. First, the iodine is captured by an adsorbant, which forms an iodine-loaded material, e.g., AgI, AgI-zeolite, AgI-mordenite, Ag-silica aerogel, ZnI.sub.2, CuI, or Bi.sub.5O.sub.7I. Next, particles of the iodine-loaded material are mixed with powdered frits of low-sintering-temperature glasses (comprising various oxides of Si, B, Bi, Pb, and Zn), and then sintered at a relatively low temperature, ranging from 425.degree. C. to 550.degree. C. The sintering converts the mixed powders into a solid block of a glassy waste form, having low iodine leaching rates. The vitrified glassy waste form can contain as much as 60 wt % AgI. A preferred glass, having a sintering temperature of 500.degree. C. (below the silver iodide sublimation temperature of 500.degree. C.) was identified that contains oxides of boron, bismuth, and zinc, while containing essentially no lead or silicon.

  11. Development of Crystal-Tolerant High-Level Waste Glasses

    SciTech Connect (OSTI)

    Matyas, Josef; Vienna, John D.; Schaible, Micah J.; Rodriguez, Carmen P.; Crum, Jarrod V.; Arrigoni, Alyssa L.; Tate, Rachel M.

    2010-12-17T23:59:59.000Z

    Twenty five glasses were formulated. They were batched from HLW AZ-101 simulant or raw chemicals and melted and tested with a series of tests to elucidate the effect of spinel-forming components (Ni, Fe, Cr, Mn, and Zn), Al, and noble metals (Rh2O3 and RuO2) on the accumulation rate of spinel crystals in the glass discharge riser of the high-level waste (HLW) melter. In addition, the processing properties of glasses, such as the viscosity and TL, were measured as a function of temperature and composition. Furthermore, the settling of spinel crystals in transparent low-viscosity fluids was studied at room temperature to access the shape factor and hindered settling coefficient of spinel crystals in the Stokes equation. The experimental results suggest that Ni is the most troublesome component of all the studied spinel-forming components producing settling layers of up to 10.5 mm in just 20 days in Ni-rich glasses if noble metals or a higher concentration of Fe was not introduced in the glass. The layer of this thickness can potentially plug the bottom of the riser, preventing glass from being discharged from the melter. The noble metals, Fe, and Al were the components that significantly slowed down or stopped the accumulation of spinel at the bottom. Particles of Rh2O3 and RuO2, hematite and nepheline, acted as nucleation sites significantly increasing the number of crystals and therefore decreasing the average crystal size. The settling rate of ?10-?m crystal size around the settling velocity of crystals was too low to produce thick layers. The experimental data for the thickness of settled layers in the glasses prepared from AZ-101 simulant were used to build a linear empirical model that can predict crystal accumulation in the riser of the melter as a function of concentration of spinel-forming components in glass. The developed model predicts the thicknesses of accumulated layers quite well, R2 = 0.985, and can be become an efficient tool for the formulation of the crystal-tolerant HLW glasses for higher waste loading. A physical modeling effort revealed that the Stokes and Richardson-Zaki equations can be used to adequately predict the accumulation rate of spinel crystals of different sizes and concentrations in the glass discharge riser of HLW melters. The determined shape factor for the glass beads was only 0.73% lower than the theoretical shape factor for a perfect sphere. The shape factor for the spinel crystals matched the theoretically predicted value to within 10% and was smaller than that of the beads, given the larger drag force caused by the larger surface area-to-volume ratio of the octahedral crystals. In the hindered settling experiments, both the glass bead and spinel suspensions were found to follow the predictions of the Richardson-Zaki equation with the exponent n = 3.6 and 2.9 for glass beads and spinel crystals, respectively.

  12. Aluminum phosphate ceramics for waste storage

    SciTech Connect (OSTI)

    Wagh, Arun; Maloney, Martin D

    2014-06-03T23:59:59.000Z

    The present disclosure describes solid waste forms and methods of processing waste. In one particular implementation, the invention provides a method of processing waste that may be particularly suitable for processing hazardous waste. In this method, a waste component is combined with an aluminum oxide and an acidic phosphate component in a slurry. A molar ratio of aluminum to phosphorus in the slurry is greater than one. Water in the slurry may be evaporated while mixing the slurry at a temperature of about 140-200.degree. C. The mixed slurry may be allowed to cure into a solid waste form. This solid waste form includes an anhydrous aluminum phosphate with at least a residual portion of the waste component bound therein.

  13. SETTLING OF SPINEL IN A HIGH-LEVEL WASTE GLASS MELTER

    SciTech Connect (OSTI)

    Pavel Hrma; Pert Schill; Lubomir Nemec

    2002-01-07T23:59:59.000Z

    High-level nuclear waste is being vitrified, i.e., converted to a durable glass that can be stored in a safe repository for hundreds of thousands of years. Waste vitrification is accomplished in reactors called melters to which the waste is charged together with glass-forming additives. The mixture is electrically heated to a temperature as high as 1150 decrees C to create a melt that becomes glass on cooling.

  14. Glass former composition and method for immobilizing nuclear waste using the same

    DOE Patents [OSTI]

    Cadoff, Laurence H. (Wilkins Township, Allegheny County, PA); Smith-Magowan, David B. (Washington, DC)

    1988-01-01T23:59:59.000Z

    An alkoxide glass former composition has silica-containing constituents present as solid particulates of a particle size of 0.1 to 0.7 micrometers in diameter in a liquid carrier phase substantially free of dissolved silica. The glass former slurry is resistant to coagulation and may contain other glass former metal constituents. The immobilization of nuclear waste employs the described glass former by heating the same to reduce the volume, mixing the same with the waste, and melting the resultant mixture to encapsulate the waste in the resultant glass.

  15. Tc and Re Behavior in Borosilicate Waste Glass Vapor Hydration Tests

    SciTech Connect (OSTI)

    McKeown, David A.; Buechele, Andrew C.; Pegg, Ian L. [Vitreous State Laboratory, Catholic University of America, 620 Michigan Ave., N.E., Washington, DC, 20064 (United States); Lukens, Wayne W.; Shuh, David K. [Actinide Chemistry Group, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720 (United States)

    2007-07-01T23:59:59.000Z

    Technetium (Tc), found in some nuclear wastes, is of particular concern with regard to long-term storage, because of its long-lived radioactivity and high mobility in the environment. Tc and rhenium (Re), commonly used as a non-radioactive surrogate for Tc, were studied to assess their behavior in borosilicate glass under hydrothermal conditions in the Vapor Hydration Test (VHT). X-ray absorption spectroscopy (XAS) and scanning electron microscopy (SEM) measurements were made on the original Tc- and Re-containing glasses and their corresponding VHT samples, and show different behavior for Tc and Re under VHT conditions. XAS indicates that, despite starting with different Tc(IV) and Tc(VII) distributions in each glass, the VHT samples have 100% Tc(IV)O{sub 6} environments. SEM shows complete alteration of the original glass, Tc enrichment near the sample surface, and Tc depletion in the center. Perrhenate (Re(VII)O{sub 4}{sup -}) is dominant in both Re-containing samples before and after the VHT, where Re is depleted near the VHT sample surface and more concentrated toward the center. (authors)

  16. INTERNATIONAL STUDIES OF ENHANCED WASTE LOADING AND IMPROVED MELT RATE FOR HIGH ALUMINA CONCENTRATION NUCLEAR WASTE GLASSES

    SciTech Connect (OSTI)

    Fox, K; David Peeler, D; James Marra, J

    2008-09-11T23:59:59.000Z

    The goal of this study was to determine the impacts of glass compositions with high aluminum concentrations on melter performance, crystallization and chemical durability for Savannah River Site (SRS) and Hanford waste streams. Glass compositions for Hanford targeted both high aluminum concentrations in waste sludge and a high waste loading in the glass. Compositions for SRS targeted Sludge Batch 5, the next sludge batch to be processed in the Defense Waste Processing Facility (DWPF), which also has a relatively high aluminum concentration. Three frits were selected for combination with the SRS waste to evaluate their impact on melt rate. The glasses were melted in two small-scale test melters at the V. G. Khlopin Radium Institute. The results showed varying degrees of spinel formation in each of the glasses. Some improvements in melt rate were made by tailoring the frit composition for the SRS feeds. All of the Hanford and SRS compositions had acceptable chemical durability.

  17. The release of technetium from defense waste processing facility glasses

    SciTech Connect (OSTI)

    Ebert, W.L.; Wolf, S.F.; Bates, J.K.

    1995-12-31T23:59:59.000Z

    Laboratory tests are being, conducted using two radionuclide-doped Defense Waste Processing, Facility (DWPF) glasses (referred to as SRL 13IA and SRL 202A) to characterize the effects of the glass surface area/solution volume (SN) ratio on the release and disposition of {Tc} and several actinide elements. Tests are being conducted at 90{degrees}C in a tuff ground water solution at SN ratios of 10, 2000, and 20,000 m{sup {minus}1} and have been completed through 1822 days. The formation of certain alteration phases in tests at 2000 and 20,000 m{sup {minus}1} results in an increase in the dissolution rates of both classes. The release of {Tc} parallels that of B and Na under most test conditions and its release increases when alteration phases form. However, in tests with SRL 202A glass at 20,000 ,{sup {minus}1}, the {Tc} concentration in solution decreases coincidentally with an increase in the nitrite/nitrate ratio that indicates a decrease in the solution Eh. This may have occurred due to radiolysis, glass dissolution, the formation of alteration phases, or vessel interactions. Technetium that was reduced from {Tc}(VII) to {Tc}(IV) may have precipitated, thou-h the amount of {Tc} was too low to detect any {Tc}-bearing phases. These results show the importance of conducting long-term tests with radioactive glasses to characterize the behavior of radionuclides, rather than relying on the observed behavior of nonradioactive surrogates.

  18. Hanford facility dangerous waste permit application, PUREX storage tunnels

    SciTech Connect (OSTI)

    Haas, C. R.

    1997-09-08T23:59:59.000Z

    The Hanford Facility Dangerous Waste Permit Application is considered to be a single application organized into a General Information Portion (document number DOE/RL-91-28) and a Unit-Specific Portion. The scope of the Unit-Specific Portion is limited to Part B permit application documentation submitted for individual, `operating` treatment, storage, and/or disposal units, such as the PUREX Storage Tunnels (this document, DOE/RL-90-24).

  19. Evaluation of glass-contact materials for waste glass melters. [Corhart 1215, Corhart 1780, ER-2161

    SciTech Connect (OSTI)

    Rankin, W.N.

    1983-01-01T23:59:59.000Z

    Alternative refractory and electrode materials have been evaluated as glass-contact materials for the vitrification of SRP waste. Monofrax K-3 (The Carborundum Co.) is the optimum refractory, based on corrosion and thermal-shock resistance. Inconel 690 (Huntington Alloys, Inc.) is the recommended electrode alloy. However, a potentially more corrosion-resistant alternative, UCAR Metal Ceramic, Grade LT-1 (Union Carbide Corp.), is being evaluated further. This material melts at a much higher temperature than Inconel 690. In the event of an unexpected high-temperature excursion in a melter, this material may offer significantly greater protection.

  20. Technology Successes in Hanford Tank Waste Storage and Retrieval

    SciTech Connect (OSTI)

    Cruz, E. J.

    2002-02-26T23:59:59.000Z

    The U. S. Department of Energy (DOE), Office of River Protection (ORP) is leading the River Protection Project (RPP), which is responsible for dispositioning approximately 204,000 cubic meters (54 million gallons) of high-level radioactive waste that has accumulated in 177 large underground tanks at the Hanford Site since 1944. The RPP is comprised of five major elements: storage of the waste, retrieval of the waste from the tanks, treatment of the waste, disposal of treated waste, and closure of the tank facilities. Approximately 3785 cubic meters (1 million gallons) of waste have leaked from the older ''single-shell tanks.'' Sixty-seven of the 147 single shell tanks are known or assumed ''leakers.'' These leaks have resulted in contaminant plumes that extend from the tank to the groundwater in a number of tank farms. Retrieval and closure of the leaking tanks complicates the ORP technical challenge because cleanup decisions must consider the impacts of past leaks along with a strategy for retrieving the waste in the tanks. Completing the RPP mission as currently planned and with currently available technologies will take several decades and tens of billions of dollars. RPP continue to pursue the benefits from deploying technologies that reduce risk to human health and the environment, as well as, the cost of cleanup. This paper discusses some of the recent technology partnering activities with the DOE Office of Science and Technology activities in tank waste retrieval and storage.

  1. United States National Waste Terminal Storage argillaceous rock studies

    SciTech Connect (OSTI)

    Brunton, G.D.

    1981-01-01T23:59:59.000Z

    The past and present argillaceous rock studies for the US National Waste Terminal Storage Program consist of: (1) evaluation of the geological characteristics of several widespread argillaceous formations in the United States; (2) laboratory studies of the physical and chemical properties of selected argillaceous rock samples; and (3) two full-scale in situ surface heater experiments that simulate the emplacement of heat-generating radioactive waste in argillaceous rock.

  2. High-level waste borosilicate glass: A compendium of corrosion characteristics. Volume 3

    SciTech Connect (OSTI)

    Cunnane, J.C. [comp.; Bates, J.K.; Bradley, C.R. [Argonne National Lab., IL (United States)] [and others

    1994-03-01T23:59:59.000Z

    The objective of this document is to summarize scientific information pertinent to evaluating the extent to which high-level waste borosilicate glass corrosion and the associated radionuclide release processes are understood for the range of environmental conditions to which waste glass may be exposed in service. Alteration processes occurring within the bulk of the glass (e.g., devitrification and radiation-induced changes) are discussed insofar as they affect glass corrosion. Volume III contains a bibliography of glass corrosion studies, including studies that are not cited in Volumes I and II.

  3. U.S. Department of Energy Awards Contracts for Waste Storage...

    Energy Savers [EERE]

    Awards Contracts for Waste Storage Canisters for Yucca Mountain U.S. Department of Energy Awards Contracts for Waste Storage Canisters for Yucca Mountain May 21, 2008 - 12:00pm...

  4. SWEDISH-AMERICAN COOPERATIVE PROGRAM ON RADIOACTIVE WASTE STORAGE IN MINED CAVERNS. PROGRAM SUMMARY

    E-Print Network [OSTI]

    Witherspoon, P.A.

    2011-01-01T23:59:59.000Z

    field investigations on the general problem of underground waste storage.field work will be carried out aimed at the general nroblen of underground radioacti\\'e waste storage.

  5. Waste Encapsulation and Storage Facility (WESF) Hazards Assessment

    SciTech Connect (OSTI)

    COVEY, L.I.

    2000-11-28T23:59:59.000Z

    This report documents the hazards assessment for the Waste Encapsulation and Storage Facility (WESF) located on the U.S. Department of Energy (DOE) Hanford Site. This hazards assessment was conducted to provide the emergency planning technical basis for WESF. DOE Orders require an emergency planning hazards assessment for each facility that has the potential to reach or exceed the lowest level emergency classification.

  6. GLASS FABRICATION AND ANALYSIS LITERATURE REVIEW AND METHOD SELECTION FOR WTP WASTE FEED QUALIFICATION

    SciTech Connect (OSTI)

    Peeler, D.

    2013-06-27T23:59:59.000Z

    Scope of the Report The objective of this literature review is to identify and review documents to address scaling, design, operations, and experimental setup, including configuration, data collection, and remote handling that would be used during waste feed qualification in support of the glass fabrication unit operation. Items addressed include: ? LAW and HLW glass formulation algorithms; ? Mixing and sampling; ? Rheological measurements; ? Heat of hydration; ? Glass fabrication techniques; ? Glass inspection; ? Composition analysis; ? Use of cooling curves; ? Hydrogen generation rate measurement.

  7. CHEMICAL ANALYSIS OF SIMULATED HIGH LEVEL WASTE GLASSES TO SUPPORT SULFATE SOLUBILITY MODELING

    SciTech Connect (OSTI)

    Fox, K.; Marra, J.

    2014-08-14T23:59:59.000Z

    The U.S. Department of Energy (DOE), Office of Environmental Management (EM) is sponsoring an international, collaborative project to develop a fundamental model for sulfate solubility in nuclear waste glass. The solubility of sulfate has a significant impact on the achievable waste loading for nuclear waste forms both within the DOE complex and to some extent at U.K. sites. The development of enhanced borosilicate glass compositions with improved sulfate solubility will allow for higher waste loadings and accelerated cleanup missions. Much of the previous work on improving sulfate retention in waste glasses has been done on an empirical basis, making it difficult to apply the findings to future waste compositions despite the large number of glass systems studied. A more fundamental, rather than empirical, model of sulfate solubility in glass, under development at Sheffield Hallam University (SHU), could provide a solution to the issues of sulfate solubility. The model uses the normalized cation field strength index as a function of glass composition to predict sulfate capacity, and has shown early success for some glass systems. The objective of the current scope is to mature the sulfate solubility model to the point where it can be used to guide glass composition development for DOE waste vitrification efforts, allowing for enhanced waste loadings and waste throughput. A series of targeted glass compositions was selected to resolve data gaps in the current model. SHU fabricated these glasses and sent samples to the Savannah River National Laboratory (SRNL) for chemical composition analysis. SHU will use the resulting data to enhance the sulfate solubility model and resolve any deficiencies. In this report, SRNL provides chemical analyses for simulated waste glasses fabricated SHU in support of sulfate solubility model development. A review of the measured compositions revealed that there are issues with the B{sub 2}O{sub 3} and Fe{sub 2}O{sub 3} concentrations missing their targeted values by a significant amount for several of the study glasses. SHU is reviewing the fabrication of these glasses and the chemicals used in batching them to identify the source of these issues. The measured sulfate concentrations were all below their targeted values. This is expected, as the targeted concentrations likely exceeded the solubility limit for sulfate in these glass compositions. Some volatilization of sulfate may also have occurred during fabrication of the glasses. Measurements of the other oxides in the study glasses were reasonably close to their targeted values

  8. Road Map for Development of Crystal-Tolerant High Level Waste Glasses

    SciTech Connect (OSTI)

    Matyas, Josef; Vienna, John D.; Peeler, David; Fox, Kevin; Herman, Connie; Kruger, Albert A.

    2014-05-31T23:59:59.000Z

    This road map guides the research and development for formulation and processing of crystal-tolerant glasses, identifying near- and long-term activities that need to be completed over the period from 2014 to 2019. The primary objective is to maximize waste loading for Hanford waste glasses without jeopardizing melter operation by crystal accumulation in the melter or melter discharge riser. The potential applicability to the Savannah River Site (SRS) Defense Waste Processing Facility (DWPF) is also addressed in this road map.

  9. Radioactive Waste Storage Facility at the Armenian NPP - 12462

    SciTech Connect (OSTI)

    Grigoryan, G.; Amirjanyan, A.; Gondakyan, Y. [Nuclear and Radiation Safety Center (NRSC), 4 Tigran Mets, 375010 Yerevan (Armenia); Stepanyan, A. [Armenian Nuclear Regulatory Authority(ANRA), 4 Tigran Mets, 375010 Yerevan (Armenia)

    2012-07-01T23:59:59.000Z

    We present a detailed contaminant transfer dynamics model for radionuclide in geosphere and biosphere medium. The model describes the transport of radionuclides using full equation for the processes of advection, diffusion, decay and sorption. The overall objective is to establish, from a post-closure radiological safety point of view, whether it is practical to convert an existing radioactive waste storage facility at Armenian NPP, to a waste disposal facility. The calculation includes: - Data sources for: the operational waste-source term; options for refurbishment and completion of the waste storage facility as a waste disposal facility; the site and its environs; - Development of an assessment context for the safety assessment, and identification of waste treatment options; - A description of the conceptual and mathematical models, and results calculated for the base case scenario relating to the release of contaminants via the groundwater pathway and also precipitation especially important for this site. The results of the calculations showed that the peak individual dose is < 7 E-8 Sv/y arising principally from I-129 after 700 years post closure. Other significant radionuclides, in terms of their contribution to the total dose are I-129, Tc-99 and in little C-14 (U- 234 and Po-210 are not relevant). The study does not explore all issues that might be expected to be presented in a safety case for a near surface disposal facility it mainly focuses on post- closure dose impacts. Most emphasis has been placed on the development of scenarios and conceptual models rather than the presentation and analyses of results and confidence building (only deterministic results are presented). The calculations suggest that, from a perspective the conversion of the waste-storage facility is feasible such that all the predicted doses are well below internationally recognized targets, as well as provisional Armenian regulatory objectives. This conclusion applies to the disposal of the ANPP present and future arising of L/ILW operating wastes. (authors)

  10. Seismic modeling and analysis of a prototype heated nuclear waste storage tunnel, Yucca Mountain, Nevada

    E-Print Network [OSTI]

    Snieder, Roel

    Seismic modeling and analysis of a prototype heated nuclear waste storage tunnel, Yucca Mountain was heated to replicate the effects of long-term storage of decaying nuclear waste and to study the effects for the long- term storage of high-level nuclear waste from reactors and decom- missioned atomic weapons

  11. Biohazardous Waste Disposal GuidelinesDescriptionStorage& LabelingTreatmentDisposal

    E-Print Network [OSTI]

    Wikswo, John

    Waste Sharps Waste Solid Lab Waste Liquid Waste Any of these devices if contaminated with biohazardousBiohazardous Waste Disposal GuidelinesDescriptionStorage& packaging LabelingTreatmentDisposal Mixed container. Container must be leakproof, ridgid, puncture resistant, clearly marked for biohazardous waste

  12. Foreign programs for the storage of spent nuclear power plant fuels, high-level waste canisters and transuranic wastes

    SciTech Connect (OSTI)

    Harmon, K.M.; Johnson, A.B. Jr.

    1984-04-01T23:59:59.000Z

    The various national programs for developing and applying technology for the interim storage of spent fuel, high-level radioactive waste, and TRU wastes are summarized. Primary emphasis of the report is on dry storage techniques for uranium dioxide fuels, but data are also provided concerning pool storage.

  13. Melt Rate Improvement for High-Level Waste Glass

    SciTech Connect (OSTI)

    Matyas, Josef; Hrma, Pavel R.; Kim, Dong-Sang

    2002-09-09T23:59:59.000Z

    This report summarizes results of research accomplished during the first year of the 3-year project. The data presented in this report have been gathered to support work on the mathematical modeling of waste-glass melters. At this stage, only a qualitative description and interpretation of the observed phenomena has been attempted. Two Savannah Rive feeds were used for the study. These feeds were subjected to thermal gravimetric analysis, differential thermal analysis, differential scanning calorimetry, evolved gas analysis with volume-expansion monitoring, modified reboil test, quantitative X-ray diffraction, scanning electron microscopy with energy dispersive spectroscopy, wet chemical analysis, and M?ssbauer spectroscopy. Glass viscosity was also measured. Finally, it was recommended to use melt-rate furnace test data to measure thermal diffusivity of the feed. Though both feed were reduced to prevent oxygen evolution from the melt, oxygen evolved form one of the melts and COx evolved from both. Hence, foam is likely to form under the cold cap even when the feed is reduced. An important difference between the feeds was in the melt viscosity at the temperature at which the melt interfaces the cold cap. It was suggested that low viscosity destabilizes foam under the cold cap, thus enhancing the rate of melting.

  14. Waste Encapsulation and Storage Facility (WESF) Interim Status Closure Plan

    SciTech Connect (OSTI)

    SIMMONS, F.M.

    2000-12-01T23:59:59.000Z

    This document describes the planned activities and performance standards for closing the Waste Encapsulation and Storage Facility (WESF). WESF is located within the 225B Facility in the 200 East Area on the Hanford Facility. Although this document is prepared based on Title 40 Code of Federal Regulations (CFR), Part 265, Subpart G requirements, closure of the storage unit will comply with Washington Administrative Code (WAC) 173-303-610 regulations pursuant to Section 5.3 of the Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement) Action Plan (Ecology et al. 1996). Because the intention is to clean close WESF, postclosure activities are not applicable to this interim status closure plan. To clean close the storage unit, it will be demonstrated that dangerous waste has not been left onsite at levels above the closure performance standard for removal and decontamination. If it is determined that clean closure is not possible or environmentally is impracticable, the interim status closure plan will be modified to address required postclosure activities. WESF stores cesium and strontium encapsulated salts. The encapsulated salts are stored in the pool cells or process cells located within 225B Facility. The dangerous waste is contained within a double containment system to preclude spills to the environment. In the unlikely event that a waste spill does occur outside the capsules, operating methods and administrative controls require that waste spills be cleaned up promptly and completely, and a notation made in the operating record. Because dangerous waste does not include source, special nuclear, and by-product material components of mixed waste, radionuclides are not within the scope of this documentation. The information on radionuclides is provided only for general knowledge.

  15. An Investigation into the Oxidation State of Molybdenum in Simplified High Level Nuclear Waste Glass Compositions

    E-Print Network [OSTI]

    Sheffield, University of

    An Investigation into the Oxidation State of Molybdenum in Simplified High Level Nuclear Waste of Mo in glasses containing simplified simulated high level nuclear waste (HLW) streams has been originating from the reprocessing of spent nuclear fuel. Experiments using simulated nuclear waste streams

  16. Methods of vitrifying waste with low melting high lithia glass compositions

    DOE Patents [OSTI]

    Jantzen, Carol M. (Aiken, SC); Pickett, John B. (Aiken, SC); Cicero-Herman, Connie A. (Aiken, SC); Marra, James C. (Aiken, SC)

    2001-01-01T23:59:59.000Z

    The invention relates to methods of vitrifying waste and for lowering the melting point of glass forming systems by including lithia formers in the glass forming composition in significant amounts, typically from about 0.16 wt % to about 11 wt %, based on the total glass forming oxides. The lithia is typically included as a replacement for alkali oxide glass formers that would normally be present in a particular glass forming system. Replacement can occur on a mole percent or weight percent basis, and typically results in a composition wherein lithia forms about 10 wt % to about 100 wt % of the alkali oxide glass formers present in the composition. The present invention also relates to the high lithia glass compositions formed by these methods. The invention is useful for stabilization of numerous types of waste materials, including aqueous waste streams, sludge solids, mixtures of aqueous supernate and sludge solids, combinations of spent filter aids from waste water treatment and waste sludges, supernate alone, incinerator ash, incinerator offgas blowdown, or combinations thereof, geological mine tailings and sludges, asbestos, inorganic filter media, cement waste forms in need of remediation, spent or partially spent ion exchange resins or zeolites, contaminated soils, lead paint, etc. The decrease in melting point achieved by the present invention desirably prevents volatilization of hazardous or radioactive species during vitrification.

  17. West Valley high-level nuclear waste glass development: a statistically designed mixture study

    SciTech Connect (OSTI)

    Chick, L.A.; Bowen, W.M.; Lokken, R.O.; Wald, J.W.; Bunnell, L.R.; Strachan, D.M.

    1984-10-01T23:59:59.000Z

    The first full-scale conversion of high-level commercial nuclear wastes to glass in the United States will be conducted at West Valley, New York, by West Valley Nuclear Services Company, Inc. (WVNS), for the US Department of Energy. Pacific Northwest Laboratory (PNL) is supporting WVNS in the design of the glass-making process and the chemical formulation of the glass. This report describes the statistically designed study performed by PNL to develop the glass composition recommended for use at West Valley. The recommended glass contains 28 wt% waste, as limited by process requirements. The waste loading and the silica content (45 wt%) are similar to those in previously developed waste glasses; however, the new formulation contains more calcium and less boron. A series of tests verified that the increased calcium results in improved chemical durability and does not adversely affect the other modeled properties. The optimization study assessed the effects of seven oxide components on glass properties. Over 100 melts combining the seven components into a wide variety of statistically chosen compositions were tested. Viscosity, electrical conductivity, thermal expansion, crystallinity, and chemical durability were measured and empirically modeled as a function of the glass composition. The mathematical models were then used to predict the optimum formulation. This glass was tested and adjusted to arrive at the final composition recommended for use at West Valley. 56 references, 49 figures, 18 tables.

  18. Summary Report: Glass-Ceramic Waste Forms for Combined Fission Products

    SciTech Connect (OSTI)

    Crum, Jarrod V.; Riley, Brian J.; Turo, Laura A.; Tang, Ming; Kossoy, Anna

    2011-09-23T23:59:59.000Z

    Glass-ceramic waste form development began in FY 2010 examining two combined waste stream options: (1) alkaline earth (CS) + lanthanide (Ln), and (2) + transition metal (TM) fission-product waste streams generated by the uranium extraction (UREX+) separations process. Glass-ceramics were successfully developed for both options however; Option 2 was selected over Option 1, at the conclusion of 2010, because Option 2 immobilized all three waste streams with only a minimal decrease in waste loading. During the first year, a series of three glass (Option 2) were fabricated that varied waste loading-WL (42, 45, and 50 mass%) at fixed molar ratios of CaO/MoO{sub 3} and B{sub 2}O{sub 3}/alkali both at 1.75. These glass-ceramics were slow cooled and characterized in terms of phase assemblage and preliminary irradiation stability. This fiscal year, further characterization was performed on the FY 2010 Option 2 glass-ceramics in terms of: static leach testing, phase analysis by transmission electron microscopy (TEM), and irradiation stability (electron and ion). Also, a new series of glass-ceramics were developed for Option 2 that varied the additives: Al{sub 2}O{sub 3} (0-6 mass%), molar ratio of CaO/MoO{sub 3} and B{sub 2}O{sub 3}/alkali (1.75 to 2.25) and waste loading (50, 55, and 60 mass%). Lastly, phase pure powellite and oxyapatite were synthesized for irradiation studies. Results of this fiscal year studies showed compositional flexibility, chemical stability, and radiation stability in the current glass-ceramic system. First, the phase assemblages and microstructure of all of the FY 2010 and 2011 glass-ceramics are very similar once subjected to the slow cool heat treatment. The phases identified in these glass-ceramics were oxyapatite, powellite, cerianite, and ln-borosilicate. This shows that variations in waste loading or additives can be accommodated without drastically changing the phase assemblage of the waste form, thus making the processing and performance characteristics of the waste form more predictable/flexible. However, in the future, the glass phase still needs to be accurately characterized to determine the effects of waste loading and additives on the glass structure. Initial investigations show a borosilicate glass phase rich in silica. Second, the normalized concentrations of elements leached from the waste form during static leach testing were all below 0.6 g/L after 28d at 90 C, by the Product Consistency Test (PCT), method B. These normalized concentrations are on par with durable waste glasses such as the Low-Activity Reference Material (LRM) glass. The release rates for the crystalline phases (oxyapatite and powellite) appear to be lower (more durable) than the glass phase based on the relatively low release rates of Mo, Ca, and Ln found in the crystalline phases compared to Na and B that are mainly observed in the glass phase. However, further static leach testing on individual crystalline phases is needed to confirm this statement. Third, Ion irradiation and In situ TEM observations suggest that these crystalline phases (such as oxyapatite, ln-borosilicate, and powellite) in silicate based glass ceramic waste forms exhibit stability to 1000 years at anticipated doses (2 x 10{sup 10}-2 x 10{sup 11} Gy). This is adequate for the short lived isotopes in the waste, which lead to a maximum cumulative dose of {approx}7 x 10{sup 9} Gy, reached after {approx}100 yrs, beyond which the dose contributions are negligible. The cumulate dose calculations are based on a glass-ceramic at WL = 50 mass%, where the fuel has a burn-up of 51GWd/MTIHM, immobilized after 5 yr decay from reactor discharge.

  19. Isothermal crystallization kinetics in simulated high-level nuclear waste glass

    SciTech Connect (OSTI)

    Vienna, J.D.; Hrma, P.; Smith, D.E. [Pacific Northwest National Lab., Richland, WA (United States)

    1997-12-31T23:59:59.000Z

    Crystallization kinetics of a simulated high-level waste (HLW) glass were measured and modelled. Kinetics of acmite growth in the standard HW39-4 glass were measured using the isothermal method. A time-temperature-transformation (TTT) diagram was generated from these data. Classical glass-crystal transformation kinetic models were empirically applied to the crystallization data. These models adequately describe the kinetics of crystallization in complex HLW glasses (i.e., RSquared = 0.908). An approach to measurement, fitting, and use of TTT diagrams for prediction of crystallinity in a HLW glass canister is proposed.

  20. IMPACT OF URANIUM AND THORIUM ON HIGH TIO2 CONCENTRATION NUCLEAR WASTE GLASSES

    SciTech Connect (OSTI)

    Fox, K.; Edwards, T.

    2012-01-11T23:59:59.000Z

    This study focused on the potential impacts of the addition of Crystalline Silicotitanate (CST) and Monosodium Titanate (MST) from the Small Column Ion Exchange (SCIX) process on the Defense Waste Processing Facility (DWPF) glass waste form and the applicability of the DWPF process control models. MST from the Salt Waste Processing Facility (SWPF) is also considered in the study. The KT08-series of glasses was designed to evaluate any impacts of the inclusion of uranium and thorium in glasses containing the SCIX components. All but one of the study glasses were found to be amorphous by X-ray diffraction (XRD). One of the slowly cooled glasses contained a small amount of trevorite, which is typically found in DWPF-type glasses and had no practical impact on the durability of the glass. The measured Product Consistency Test (PCT) responses for the study glasses and the viscosities of the glasses were well predicted by the current DWPF models. No unexpected issues were encountered when uranium and thorium were added to the glasses with SCIX components.

  1. Pipe overpack container for trasuranic waste storage and shipment

    DOE Patents [OSTI]

    Geinitz, Richard R. (Arvada, CO); Thorp, Donald T. (Broomfield, CO); Rivera, Michael A. (Boulder, CO)

    1999-01-01T23:59:59.000Z

    A Pipe Overpack Container for transuranic waste storage and shipment. The system consists of a vented pipe component which is positioned in a vented, insulated 55 gallon steel drum. Both the vented pipe component and the insulated drum are capable of being secured to prevent the contents from leaving the vessel. The vented pipe component is constructed of 1/4 inch stainless steel to provide radiation shielding. Thus, allowing shipment having high Americium-241 content. Several Pipe Overpack Containers are then positioned in a type B, Nuclear Regulatory Commission (NRC) approved, container. In the current embodiment, a TRUPACT-II container was employed and a maximum of fourteen Pipe Overpack Containers were placed in the TRUPACT-II. The combination received NRC approval for the shipment and storage of transuranic waste.

  2. Development of Vitrification Process and Glass Formulation for Nuclear Waste Conditioning

    SciTech Connect (OSTI)

    Petitjean, V.; Fillet, C.; Boen, R.; Veyer, C.; Flament, T.

    2002-02-26T23:59:59.000Z

    The vitrification of high-level waste is the internationally recognized standard to minimize the impact to the environment resulting from waste disposal as well as to minimize the volume of conditioned waste to be disposed of. COGEMA has been vitrifying high-level waste industrially for over 20 years and is currently operating three commercial vitrification facilities based on a hot metal crucible technology, with outstanding records of safety, reliability and product quality. To further increase the performance of vitrification facilities, CEA and COGEMA have been developing the cold crucible melter technology since the beginning of the 1980s. This type of melter is characterized by a virtually unlimited equipment service life and a great flexibility in dealing with various types of waste and allowing development of high temperature matrices. In complement of and in parallel with the vitrification process, a glass formulation methodology has been developed by the CEA in order to tailor matrices for the wastes to be conditioned while providing the best adaptation to the processing technology. The development of a glass formulation is a trade-off between material properties and qualities, technical feasibility, and disposal safety criteria. It involves non-radioactive and radioactive laboratories in order to achieve a comprehensive matrix qualification. Several glasses and glass ceramics have thus been studied by the CEA to be compliant with industrial needs and waste characteristics: glasses or other matrices for a large spectrum of fission products, or for high contents of specifics elements such as sodium, phosphate, iron, molybdenum, or actinides. New glasses or glass-ceramics designed to minimize the final wasteform volume for solutions produced during the reprocessing of high burnup fuels or to treat legacy wastes are now under development and take benefit from the latest CEA hot-laboratories and technology development. The paper presents the CEA state-of-the-art in developing matrices or glasses and provides several examples.

  3. PERFORMANCE OF A BURIED RADIOACTIVE HIGH LEVEL WASTE GLASS AFTER 24 YEARS

    SciTech Connect (OSTI)

    Jantzen, C; Daniel Kaplan, D; Ned Bibler, N; David Peeler, D; John Plodinec, J

    2008-05-05T23:59:59.000Z

    A radioactive high level waste glass was made in 1980 with Savannah River Site (SRS) Tank 15 waste. This glass was buried in the SRS burial ground for 24 years but lysimeter data was only available for the first 8 years. The glass was exhumed and analyzed in 2004. The glass was predicted to be very durable and laboratory tests confirmed the durability response. The laboratory results indicated that the glass was very durable as did analysis of the lysimeter data. Scanning electron microscopy of the glass burial surface showed no significant glass alteration consistent with the results of the laboratory and field tests. No detectable Pu, Am, Cm, Np, or Ru leached from the glass into the surrounding sediment. Leaching of {beta}/{delta} from {sup 90}Sr and {sup 137}Cs in the glass was diffusion controlled. Less than 0.5% of the Cs and Sr in the glass leached into the surrounding sediment, with >99% of the leached radionuclides remaining within 8 centimeters of the glass pellet.

  4. Laboratory-Scale Melter for Determination of Melting Rate of Waste Glass Feeds

    SciTech Connect (OSTI)

    Kim, Dong-Sang; Schweiger, Michael J.; Buchmiller, William C.; Matyas, Josef

    2012-01-09T23:59:59.000Z

    The purpose of this study was to develop the laboratory-scale melter (LSM) as a quick and inexpensive method to determine the processing rate of various waste glass slurry feeds. The LSM uses a 3 or 4 in. diameter-fused quartz crucible with feed and off-gas ports on top. This LSM setup allows cold-cap formation above the molten glass to be directly monitored to obtain a steady-state melting rate of the waste glass feeds. The melting rate data from extensive scaled-melter tests with Hanford Site high-level wastes performed for the Hanford Tank Waste Treatment and Immobilization Plant have been compiled. Preliminary empirical model that expresses the melting rate as a function of bubbling rate and glass yield were developed from the compiled database. The two waste glass feeds with most melter run data were selected for detailed evaluation and model development and for the LSM tests so the melting rates obtained from LSM tests can be compared with those from scaled-melter tests. The present LSM results suggest the LSM setup can be used to determine the glass production rates for the development of new glass compositions or feed makeups that are designed to increase the processing rate of the slurry feeds.

  5. High-level waste borosilicate glass: A compendium of corrosion characteristics. Volume 2

    SciTech Connect (OSTI)

    Cunnane, J.C. [comp.; Bates, J.K.; Bradley, C.R. [Argonne National Lab., IL (United States)] [and others

    1994-03-01T23:59:59.000Z

    The objective of this document is to summarize scientific information pertinent to evaluating the extent to which high-level waste borosilicate glass corrosion and the associated radionuclide release processes are understood for the range of environmental conditions to which waste glass may be exposed in service. Alteration processes occurring within the bulk of the glass (e.g., devitrification and radiation-induced changes) are discussed insofar as they affect glass corrosion.This document is organized into three volumes. Volumes I and II represent a tiered set of information intended for somewhat different audiences. Volume I is intended to provide an overview of waste glass corrosion, and Volume 11 is intended to provide additional experimental details on experimental factors that influence waste glass corrosion. Volume III contains a bibliography of glass corrosion studies, including studies that are not cited in Volumes I and II. Volume I is intended for managers, decision makers, and modelers, the combined set of Volumes I, II, and III is intended for scientists and engineers working in the field of high-level waste.

  6. Benefits/impacts of utilizing depleted uranium silicate glass as backfill for spent fuel waste packages

    SciTech Connect (OSTI)

    Pope, R.B.; Forsberg, C.W.; Ashline, R.C.; DeHart, M.D.; Childs, K.W.; Tang, J.S.

    1996-05-01T23:59:59.000Z

    An assessment has been made of the benefits and impacts which can be derived by filling a spent nuclear fuel multi-purpose canister with depleted uranium silicate (DUS) glass at a reactor site. Although the primary purpose of the DUS glass fill would be to enhance repository performance assessment and control criticality of geologic times, a number of benefits to the waste management system can be derived from adding the DUS glass prior to shipment from the reactor site.

  7. ENHANCED DOE HIGH LEVEL WASTE MELTER THROUGHPUT STUDIES: SRNL GLASS SELECTION STRATEGY

    SciTech Connect (OSTI)

    Raszewski, F; Tommy Edwards, T; David Peeler, D

    2008-01-23T23:59:59.000Z

    The Department of Energy has authorized a team of glass formulation and processing experts at the Savannah River National Laboratory (SRNL), the Pacific Northwest National Laboratory (PNNL), and the Vitreous State Laboratory (VSL) at Catholic University of America to develop a systematic approach to increase high level waste melter throughput (by increasing waste loading with minimal or positive impacts on melt rate). This task is aimed at proof-of-principle testing and the development of tools to improve waste loading and melt rate, which will lead to higher waste throughput. Four specific tasks have been proposed to meet these objectives (for details, see WSRC-STI-2007-00483): (1) Integration and Oversight, (2) Crystal Accumulation Modeling (led by PNNL)/Higher Waste Loading Glasses (led by SRNL), (3) Melt Rate Evaluation and Modeling, and (4) Melter Scale Demonstrations. Task 2, Crystal Accumulation Modeling/Higher Waste Loading Glasses is the focus of this report. The objective of this study is to provide supplemental data to support the possible use of alternative melter technologies and/or implementation of alternative process control models or strategies to target higher waste loadings (WLs) for the Defense Waste Processing Facility (DWPF)--ultimately leading to higher waste throughputs and a reduced mission life. The glass selection strategy discussed in this report was developed to gain insight into specific technical issues that could limit or compromise the ability of glass formulation efforts to target higher WLs for future sludge batches at the Savannah River Site (SRS). These technical issues include Al-dissolution, higher TiO{sub 2} limits and homogeneity issues for coupled-operations, Al{sub 2}O{sub 3} solubility, and nepheline formation. To address these technical issues, a test matrix of 28 glass compositions has been developed based on 5 different sludge projections for future processing. The glasses will be fabricated and characterized based on the protocols outlined in the SRNL Task and Quality Assurance (QA) plan.

  8. Redox-Dependent Solubility of Technetium in Low Activity Waste Glass

    SciTech Connect (OSTI)

    Soderquist, Chuck Z.; Schweiger, Michael J.; Kim, Dong-Sang; Lukens, Wayne W.; Mccloy, John S.

    2014-03-01T23:59:59.000Z

    The solubility of technetium was measured in a Hanford low activity waste glass simulant. The simulant glass was melted, quenched and pulverized to make a stock of powdered glass. A series of glass samples were prepared using the powdered glass and varying amounts of solid potassium pertechnetate. Samples were melted at 1000°C in sealed fused quartz ampoules. After cooling, the bulk glass and the salt phase above the glass (when present) were sampled for physical and chemical characterization. Technetium was found in the bulk glass up to 2000 ppm (using the glass as prepared) and 3000 ppm (using slightly reducing conditions). The chemical form of technetium obtained by x-ray absorption near edge spectroscopy can be mainly assigned to isolated Tc(IV), with a minority of Tc(VII) in some glasses and TcO2 in two glasses. The concentration and speciation of technetium depends on glass redox and amount of technetium added. Solid crystals of pertechnetate salts were found in the salt cake layer that formed at the top of some glasses during the melt.

  9. Effects of temperature and radiation on the nuclear waste glass product consistency leach test

    SciTech Connect (OSTI)

    Crawford, C.L.; Bibler, N.E.

    1993-01-01T23:59:59.000Z

    Previous leach studies carried out with monolithic glass samples have shown that glass dissolution rates increase with increasing temperature and may or may not increase on exposure to external gamma radiolysis. In this study we have investigated the effects of temperature (70--1200[degrees]C) and radiation on the dissolution of simulated radioactive waste glasses using the Product Consistency Test (PCT). The PCT is a seven day, crushed glass leach test in deionized water that is carried out at 9OO[degrees]C. To date our results indicate no significant effect of external Co--60 gamma radiation when testing various simulated waste glasses at 90[degrees]C in a wellinsulated compartment within a Gammacell 220 irradiation unit. The temperature dependence for glass dissolution clearly exhibits Arrheniustype behavior for two of the three glasses tested. For the third glass the dissolution decreases at the higher temperatures, probably due to saturation effects. Actual radioactive waste glasses will be investigated later as part of this study.

  10. Effects of temperature and radiation on the nuclear waste glass product consistency leach test

    SciTech Connect (OSTI)

    Crawford, C.L.; Bibler, N.E.

    1993-04-01T23:59:59.000Z

    Previous leach studies carried out with monolithic glass samples have shown that glass dissolution rates increase with increasing temperature and may or may not increase on exposure to external gamma radiolysis. In this study we have investigated the effects of temperature (70--1200{degrees}C) and radiation on the dissolution of simulated radioactive waste glasses using the Product Consistency Test (PCT). The PCT is a seven day, crushed glass leach test in deionized water that is carried out at 9OO{degrees}C. To date our results indicate no significant effect of external Co--60 gamma radiation when testing various simulated waste glasses at 90{degrees}C in a wellinsulated compartment within a Gammacell 220 irradiation unit. The temperature dependence for glass dissolution clearly exhibits Arrheniustype behavior for two of the three glasses tested. For the third glass the dissolution decreases at the higher temperatures, probably due to saturation effects. Actual radioactive waste glasses will be investigated later as part of this study.

  11. Kinetics of Conversion of High-level Waste to Glass

    SciTech Connect (OSTI)

    Izak, Pavel (ASSOC WESTERN UNIVERSITY); Hrma, Pavel R. (BATTELLE (PACIFIC NW LAB)); Schweiger, Michael J. (BATTELLE (PACIFIC NW LAB)); Heineman, W.R.; Eller, P.G.

    2001-01-01T23:59:59.000Z

    The kinetics of the conversion of high-level waste (HLW) feed to glass controls the rate of HLW processing. Simulated HLW feed and low silica - high sodium (LSHS) feed with co-precipitated Fe, Ni, Cr, and Mn hydroxides (to simulate the chemical and physical makeup of these components in the melter feed) were heated at constant temperature increase rates (0.4, 4, and 14?C/min), quenched at different stages of conversion, and analyzed with optical microscope, scanning electron microscope, and x-ray diffraction (XRD). Quartz, sodium nitrate, carnegieite (Na8Al4Si4O18), sodalite (Na8(AlSiO4)6(NO2)2), and spinel were identified in the samples. Mass fractions of these phases were determined as functions of the temperature and the heating rate. The fractions of nitrates and quartz decreased with increasing temperature, starting above 550?C and dropping to zero at 850?C. Spinel was present in the feed within the temperature interval from 350?C to 1050?C, peaking between 550 and 700?C. Sodalite (in HLW feed) and carnegieite (in LSHS feed) formed at temperatures above 600?C and then began to dissolve. TGA and DSC were use to determine the mass loss and the conversion heat as functions of temperature and heating rate and were compared with the reaction progress reached in quenched samples.

  12. Minor component study for simulated high-level nuclear waste glasses (Draft)

    SciTech Connect (OSTI)

    Li, H.; Langowskim, M.H.; Hrma, P.R.; Schweiger, M.J.; Vienna, J.D.; Smith, D.E.

    1996-02-01T23:59:59.000Z

    Hanford Site single-shell tank (SSI) and double-shell tank (DSI) wastes are planned to be separated into low activity (or low-level waste, LLW) and high activity (or high-level waste, HLW) fractions, and to be vitrified for disposal. Formulation of HLW glass must comply with glass processibility and durability requirements, including constraints on melt viscosity, electrical conductivity, liquidus temperature, tendency for phase segregation on the molten glass surface, and chemical durability of the final waste form. A wide variety of HLW compositions are expected to be vitrified. In addition these wastes will likely vary in composition from current estimates. High concentrations of certain troublesome components, such as sulfate, phosphate, and chrome, raise concerns about their potential hinderance to the waste vitrification process. For example, phosphate segregation in the cold cap (the layer of feed on top of the glass melt) in a Joule-heated melter may inhibit the melting process (Bunnell, 1988). This has been reported during a pilot-scale ceramic melter run, PSCM-19, (Perez, 1985). Molten salt segregation of either sulfate or chromate is also hazardous to the waste vitrification process. Excessive (Cr, Fe, Mn, Ni) spinel crystal formation in molten glass can also be detrimental to melter operation.

  13. Interim Models Developed to Predict Key Hanford Waste Glass Properties Using Composition

    SciTech Connect (OSTI)

    Vienna, John D.; Kim, Dong-Sang; Hrma, Pavel R.

    2003-08-08T23:59:59.000Z

    Over the past several years the amount of waste glass property data available in the open literature has increased markedly. We have compiled the data from over 2000 glass compositions, evaluated the data for consistency, and fit glass property models to portions of this database.[1] The properties modeled include normalized releases of boron (rB), sodium (rNa), and lithium (rLi) from glass exposed to the product consistency test (PCT), liquidus temperature (TL) of glasses in the spinel and zircon primary phase field, viscosity (?) at 1150°C (?1150) and as a function of temperature (?T), and molar volume (V). These models were compared to some of the previously available models and were found to predict the properties of glasses not used in model fitting better and covered broader glass composition regions than the previous ones. This paper summarizes the data collected and the models that resulted from this effort.

  14. An international initiative on long-term behavior of high-level nuclear waste glass

    SciTech Connect (OSTI)

    Gin, Stephane [CEA Marcoule DTCD SECM LCLT, Bagnols/Ceze (France); Abdelouas, Abdessalam [SUBATECH, Nantes (France); Criscenti, Louise J. [Sandia National Laboratories, Albuquerque, NM (United States); Ebert, W. L. [Argonne National Laboratory (ANL), Argonne, IL (United States); Ferrand, Karine [SCK·CEN, Mol (Belgium); Geisler, Thorsten [Rheinische Friedrich-Wilhelms-Univ., Bonn (Germany); Harrison, Mike T. [National Nuclear Laboratory, Sellafield, Cumbria (United Kingdom); Inagaki, Yaohiro [Kyushu Univ. (Japan). Dept. Appl. Quantum Physics and Nuclear Engineering; Mitsui, Seiichiro [Japan Atomic Energy Agency, Ibaraki (Japan); Mueller, Karl T. [Pacific Northwest National Laboratory (PNNL), Richland, WA (United States). Environmental and Molecular Science Lab.; Marra, James C. [Savannah River National Laboratory, Aiken, SC (United States); Pantano, Carlo G. [Penn State Univ., State College, PA (United States); Pierce, Eric M. [Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States); Ryan, Joseph V. [Pacific Northwest National Laboratory (PNNL), Richland, WA (United States); Schofield, James M. [AMEC, Harwell Oxford (United Kingdom); Steefel, Carl I. [Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States). Earth Sciences Div.; Vienna, John D. [Pacific Northwest National Laboratory (PNNL), Richland, WA (United States)

    2013-06-01T23:59:59.000Z

    Nations producing borosilicate glass as an immobilization material for radioactive wastes resulting from spent nuclear fuel reprocessing have reinforced scientific collaboration to obtain consensus on mechanisms controlling the long-term dissolution rate of glass. This goal is deemed to be crucial for the development of reliable performance assessment models for geological disposal. The collaborating laboratories all conduct fundamental and/or applied research with modern materials science techniques. The paper briefly reviews the radioactive waste vitrification programmes of the six participant nations and summarizes the state-of-the-art of glass corrosion science, emphasizing common scientific needs and justifications for on-going initiatives.

  15. Modeling of Spinel Settling in Waste Glass Melter

    SciTech Connect (OSTI)

    Hrma, Pavel; Schill, Petr; Nemec, Lubomir; Klouzek, Jaroslav, Mika, Martin; Brada, Jiri Glass Service, Ltd., Vsetin, Czech Republic

    2000-06-01T23:59:59.000Z

    Our objective is to determine the fraction and size of spinel crystals in molten HLW glass that are compatible with low-risk melter operation. To this end, we are investigating spinel behavior in HLW glass and obtaining data to be used in a mathematical model for spinel settling in a HLW glass melter. We will modify the current glass-furnace model to incorporate spinel concentration distribution and to predict the rate of spinel settling. Also, we will determine the nucleation agents that control the number density and size of spinel crystals in HLW glass.

  16. ROAD MAP FOR DEVELOPMENT OF CRYSTAL-TOLERANT HIGH LEVEL WASTE GLASSES

    SciTech Connect (OSTI)

    Fox, K.; Peeler, D.; Herman, C.

    2014-05-15T23:59:59.000Z

    The U.S. Department of Energy (DOE) is building a Tank Waste Treatment and Immobilization Plant (WTP) at the Hanford Site in Washington to remediate 55 million gallons of radioactive waste that is being temporarily stored in 177 underground tanks. Efforts are being made to increase the loading of Hanford tank wastes in glass while meeting melter lifetime expectancies and process, regulatory, and product quality requirements. This road map guides the research and development for formulation and processing of crystaltolerant glasses, identifying near- and long-term activities that need to be completed over the period from 2014 to 2019. The primary objective is to maximize waste loading for Hanford waste glasses without jeopardizing melter operation by crystal accumulation in the melter or melter discharge riser. The potential applicability to the Savannah River Site (SRS) Defense Waste Processing Facility (DWPF) will also be addressed in this road map. The planned research described in this road map is motivated by the potential for substantial economic benefits (significant reductions in glass volumes) that will be realized if the current constraints (T1% for WTP and TL for DWPF) are approached in an appropriate and technically defensible manner for defense waste and current melter designs. The basis of this alternative approach is an empirical model predicting the crystal accumulation in the WTP glass discharge riser and melter bottom as a function of glass composition, time, and temperature. When coupled with an associated operating limit (e.g., the maximum tolerable thickness of an accumulated layer of crystals), this model could then be integrated into the process control algorithms to formulate crystal-tolerant high-level waste (HLW) glasses targeting high waste loadings while still meeting process related limits and melter lifetime expectancies. The modeling effort will be an iterative process, where model form and a broader range of conditions, e.g., glass composition and temperature, will evolve as additional data on crystal accumulation are gathered. Model validation steps will be included to guide the development process and ensure the value of the effort (i.e., increased waste loading and waste throughput). A summary of the stages of the road map for developing the crystal-tolerant glass approach, their estimated durations, and deliverables is provided.

  17. Long-term modeling of glass waste in portland cement- and clay-based matrices

    SciTech Connect (OSTI)

    Stockman, H.W.; Nagy, K.L. [Sandia National Labs., Albuquerque, NM (United States); Morris, C.E. [Wollongong Univ., NSW (Australia). Dept. of Civil and Mining Engineering

    1995-12-01T23:59:59.000Z

    A set of ``templates`` was developed for modeling waste glass interactions with cement-based and clay-based matrices. The templates consist of a modified thermodynamic database, and input files for the EQ3/6 reaction path code, containing embedded rate models and compositions for waste glass, cement, and several pozzolanic materials. Significant modifications were made in the thermodynamic data for Th, Pb, Ra, Ba, cement phases, and aqueous silica species. It was found that the cement-containing matrices could increase glass corrosion rates by several orders of magnitude (over matrixless or clay matrix systems), but they also offered the lowest overall solubility for Pb, Ra, Th and U. Addition of pozzolans to cement decreased calculated glass corrosion rates by up to a factor of 30. It is shown that with current modeling capabilities, the ``affinity effect`` cannot be trusted to passivate glass if nuclei are available for precipitation of secondary phases that reduce silica activity.

  18. XRF and leaching characterization of waste glasses derived from wastewater treatment sludges

    SciTech Connect (OSTI)

    Ragsdale, R.G., Jr

    1994-12-01T23:59:59.000Z

    Purpose of this study was to investigate use of XRF (x-ray fluorescence spectrometry) as a near real-time method to determine melter glass compositions. A range of glasses derived from wastewater treatment sludges associated with DOE sites was prepared. They were analyzed by XRF and wet chemistry digestion with atomic absorption/inductively coupled emission spectrometry. Results indicated good correlation between these two methods. A rapid sample preparation and analysis technique was developed and demonstrated by acquiring a sample from a pilot-scale simulated waste glass melter and analyzing it by XRF within one hour. From the results, XRF shows excellent potential as a process control tool for waste glass vitrification. Glasses prepared for this study were further analyzed for durability by toxicity characteristic leaching procedure and product consistency test and results are presented.

  19. Environmental assessment, finding of no significant impact, and response to comments. Radioactive waste storage

    SciTech Connect (OSTI)

    NONE

    1996-04-01T23:59:59.000Z

    The Department of Energy`s (DOE) Rocky Flats Environmental Technology Site (the Site), formerly known as the Rocky Flats Plant, has generated radioactive, hazardous, and mixed waste (waste with both radioactive and hazardous constituents) since it began operations in 1952. Such wastes were the byproducts of the Site`s original mission to produce nuclear weapons components. Since 1989, when weapons component production ceased, waste has been generated as a result of the Site`s new mission of environmental restoration and deactivation, decontamination and decommissioning (D&D) of buildings. It is anticipated that the existing onsite waste storage capacity, which meets the criteria for low-level waste (LL), low-level mixed waste (LLM), transuranic (TRU) waste, and TRU mixed waste (TRUM) would be completely filled in early 1997. At that time, either waste generating activities must cease, waste must be shipped offsite, or new waste storage capacity must be developed.

  20. Settling of Spinel in A High-Level Waste Glass Melter

    SciTech Connect (OSTI)

    Pavel Hrma; Pert Schill; Lubomir Nemec

    2002-01-07T23:59:59.000Z

    High-level nuclear waste is being vitrified, i.e., converted to a durable glass that can be stored in a safe repository for hundreds of thousands of years. Waste vitrification is accomplished in reactors call melters to which the waste is charged together with glass-forming additives. The mixture is electrically heated to a temperature as high as 1150 degree C (or even higher in advanced melters) to create a melt that becomes glass on cooling. This process is slow and expensive. Moreover, the melters that are currently in use or are going to be used in the U.S. are sensitive to clogging and thus cannot process melt in which solid particles are suspended. These particles settle and gradually accumulate on the melter bottom. Such particles, most often small crystals of spinel ( a mineral containing iron, nickel, chromium, and other minor oxides), inevitably occurred in the melt when the content of the waste in the glass (called waste loading) increases above a certain limit. To avoid the presence of solid particles in the melter, the waste loading is kept rather low, in average 15% lower than in glass formulated for more robust melters.

  1. Settling of Spinel in a High-Level Waste Glass Melter

    SciTech Connect (OSTI)

    Hrma, Pavel R.; Schill, Pert; Nemec, Lubomir

    2002-01-18T23:59:59.000Z

    High-level nuclear waste is being vitrified, i.e., converted to a durable glass that can be stored in a safe repository for hundreds of thousands of years. Waste vitrification is accomplished in reactors called melters to which the waste is charged together with glass-forming additives. The mixture is electrically heated to a temperature as high as 1150?C (or even higher in advanced melters) to create a melt that becomes glass on cooling. This process is slow and expensive. Moreover, the melters that are currently in use or are going to be used in the U.S. are sensitive to clogging and thus cannot process melt in which solid particles are suspended. These particles settle and gradually accumulate on the melter bottom. Such particles, most often small crystals of spinel (a mineral containing iron, nickel, chromium, and other minor oxides), inevitably occur in the melt when the content of the waste in the glass (called waste loading) increases above a certain limit. To avoid the presence of solid particles in the melter, the waste loading is kept rather low, in average 15% lower than in glass formulated for more robust melters.

  2. Conceptual design statement of work for the immobilized low-activity waste interim storage facility project

    SciTech Connect (OSTI)

    Carlson, T.A., Fluor Daniel Hanford

    1997-02-06T23:59:59.000Z

    The Immobilized Low-Activity Waste Interim Storage subproject will provide storage capacity for immobilized low-activity waste product sold to the U.S. Department of Energy by the privatization contractor. This statement of work describes the work scope (encompassing definition of new installations and retrofit modifications to four existing grout vaults), to be performed by the Architect-Engineer, in preparation of a conceptual design for the Immobilized Low-Activity Waste Interim Storage Facility.

  3. Immobilized high-level waste interim storage alternatives generation and analysis and decision report

    SciTech Connect (OSTI)

    CALMUS, R.B.

    1999-05-18T23:59:59.000Z

    This report presents a study of alternative system architectures to provide onsite interim storage for the immobilized high-level waste produced by the Tank Waste Remediation System (TWRS) privatization vendor. It examines the contract and program changes that have occurred and evaluates their impacts on the baseline immobilized high-level waste (IHLW) interim storage strategy. In addition, this report documents the recommended initial interim storage architecture and implementation path forward.

  4. Mixed waste storage facility CDR review, Paducah Gaseous Diffusion Plant; Solid waste landfill CDR review, Paducah Gaseous Diffusion Plant

    SciTech Connect (OSTI)

    NONE

    1998-08-01T23:59:59.000Z

    This report consists of two papers reviewing the waste storage facility and the landfill projects proposed for the Paducah Gaseous Diffusion Plant complex. The first paper is a review of DOE`s conceptual design report for a mixed waste storage facility. This evaluation is to review the necessity of constructing a separate mixed waste storage facility. The structure is to be capable of receiving, weighing, sampling and the interim storage of wastes for a five year period beginning in 1996. The estimated cost is assessed at approximately $18 million. The review is to help comprehend and decide whether a new storage building is a feasible approach to the PGDP mixed waste storage problem or should some alternate approach be considered. The second paper reviews DOE`s conceptual design report for a solid waste landfill. This solid waste landfill evaluation is to compare costs and the necessity to provide a new landfill that would meet State of Kentucky regulations. The assessment considered funding for a ten year storage facility, but includes a review of other facility needs such as a radiation detection building, compactor/baler machinery, material handling equipment, along with other personnel and equipment storage buildings at a cost of approximately $4.1 million. The review is to help discern whether a landfill only or the addition of compaction equipment is prudent.

  5. The incorporation of technetium into a representative low-activity waste glass

    SciTech Connect (OSTI)

    Ebert, W.L.; Bakel, A.J.; Bowers, D.L.; Buck, E.C.; Emery, J.W.

    1997-08-01T23:59:59.000Z

    A glass that has been tested to understand the corrosion behavior of waste glasses with high soda contents for immobilizing Hanford incidental wastes has been made by melting crushed glass with either TcO{sub 2} or NaTcO{sub 4} at 1,100--1,300 C. Incorporation of technetium in the glass was affected by solubility or kinetic effects. Metallic technetium inclusions formed in all the TcO{sub 2}-doped glasses. Inclusions also formed in glasses with added NaTcO{sub 4} that were melted at 1,100 C, but a glass melted at 1,200 C did not contain detectable inclusions. The presence of Tc-bearing inclusions complicates the interpretation of results from dissolution tests because of the simultaneous release of technetium from more than one phase, the unknown surface areas of each phase, and the possible incorporation of technetium that is released from one phase into another phase. A glass containing about 0.15 mass % Tc dissolved in the glass is being used in dissolution tests to study the release behavior of technetium.

  6. Fire protection guide for solid waste metal drum storage

    SciTech Connect (OSTI)

    Bucci, H.M.

    1996-09-16T23:59:59.000Z

    This guide provides a method to assess potential fire development in drum storage facilities. The mechanism of fire propagation/spread through stored drum arrays is a complex process. It involves flame heat transfer, transient conduction,convection, and radiation between drums (stored in an array configuration). There are several phenomena which may occur when drums are exposed to fire. The most dramatic is violent lid failure which results in total lid removal. When a drum loses its lid due to fire exposure, some or all of the contents may be ejected from the drum, and both the ejected combustible material and the combustible contents remaining within the container will burn. The scope of this guide is limited to storage arrays of steel drums containing combustible (primarily Class A) and noncombustible contents. Class B combustibles may be included in small amounts as free liquid within the solid waste contents.Storage arrays, which are anticipated in this guide, include single or multi-tier palletized (steel or wood pallets) drums,high rack storage of drums, and stacked arrays of drums where plywood sheets are used between tiers. The purpose of this guide is to describe a simple methodology that estimates the consequences of a fire in drum storage arrays. The extent of fire development and the resulting heat release rates can be estimated. Release fractions applicable to this type of storage are not addressed, and the transport of contaminants away from the source is not addressed. However, such assessments require the amount of combustible material consumed and the surface area of this burning material. The methods included in this guide do provide this information.

  7. COMBINED RETENTION OF MOLYBDENUM AND SULFUR IN SIMULATED HIGH LEVEL WASTE GLASS

    SciTech Connect (OSTI)

    Fox, K.

    2009-10-16T23:59:59.000Z

    This study was undertaken to investigate the effect of elevated sulfate and molybdenum concentrations in nuclear waste glasses. A matrix of 24 glasses was developed and the glasses were tested for acceptability based on visual observations, canister centerline-cooled heat treatments, and chemical composition analysis. Results from the chemical analysis of the rinse water from each sample were used to confirm the presence of SO{sup 2-}{sub 4} and MoO{sub 3} on the surface of glasses as well as other components which might form water soluble compounds with the excess sulfur and molybdenum. A simple, linear model was developed to show acceptable concentrations of SO{sub 4}{sup 2-} and MoO{sub 3} in an example waste glass composition. This model was constructed for scoping studies only and is not ready for implementation in support of actual waste vitrification. Several other factors must be considered in determining the limits of sulfate and molybdenum concentrations in the waste vitrification process, including but not limited to, impacts on refractory and melter component corrosion, effects on the melter off-gas system, and impacts on the chemical durability and crystallization of the glass product.

  8. First-order study of property/composition relationships for Hanford Waste Vitrification Plant glasses

    SciTech Connect (OSTI)

    Piepel, G.F.; Hrma, P.R.; Bates, S.O.; Schweiger, M.J.; Smith, D.E.

    1993-01-01T23:59:59.000Z

    A first-order composition variability study (CVS-I) was conducted for the Hanford Waste Vitrification Plant (HWVP) program to preliminarily characterize the effects on key glass properties of variations i selected glass (waste and frit) components. The components selected were Si0{sub 2},B{sub 2}O{sub 3},A1{sub 2}O{sub 3}, Fe{sub 2}O{sub 3}, ZrO{sub 2}, Na{sub 2}O,Li{sub 2}O,CaO,MgO, and Others (all remaining waste components). A glass composition region was selected for study based on the expected range of glass compositions and the results of a previous series of scoping and solubility studies. Then, a 23-glass statistically-designed mixture experiment was conducted and data obtained for viscosity, electrical conductivity, glass transition temperature, thermal expansion, crystallinity, and durability [Materials Characterization Center (MCC-1) 28-day leach test and the 7-day Product Consistency Test (PCT)]. These data were modeled using first-order functions of composition, and the models were used to investigate the effects of the components on glass and melt properties. The CVS-I data and models will also be used to support the second-order composition variability study (CVS-II).

  9. First-order study of property/composition relationships for Hanford Waste Vitrification Plant glasses

    SciTech Connect (OSTI)

    Piepel, G.F.; Hrma, P.R.; Bates, S.O.; Schweiger, M.J.; Smith, D.E.

    1993-01-01T23:59:59.000Z

    A first-order composition variability study (CVS-I) was conducted for the Hanford Waste Vitrification Plant (HWVP) program to preliminarily characterize the effects on key glass properties of variations i selected glass (waste and frit) components. The components selected were Si0[sub 2],B[sub 2]O[sub 3],A1[sub 2]O[sub 3], Fe[sub 2]O[sub 3], ZrO[sub 2], Na[sub 2]O,Li[sub 2]O,CaO,MgO, and Others (all remaining waste components). A glass composition region was selected for study based on the expected range of glass compositions and the results of a previous series of scoping and solubility studies. Then, a 23-glass statistically-designed mixture experiment was conducted and data obtained for viscosity, electrical conductivity, glass transition temperature, thermal expansion, crystallinity, and durability [Materials Characterization Center (MCC-1) 28-day leach test and the 7-day Product Consistency Test (PCT)]. These data were modeled using first-order functions of composition, and the models were used to investigate the effects of the components on glass and melt properties. The CVS-I data and models will also be used to support the second-order composition variability study (CVS-II).

  10. Evaluation of defense-waste glass produced by full-scale vitrification equipment

    SciTech Connect (OSTI)

    Lukacs, J.M.; Petkus, L.L.; Mellinger, G.B.

    1981-09-01T23:59:59.000Z

    Three full-scale vitrification processes at the Pacific Northwest Laboratory produced over 67,000 kg of simulated nuclear-waste glass from March 1979 to August 1980. Samples were analyzed to monitor process operation and evaluate the resulting glass product. These processes are: Spray Calciner/In-Can Melter (SC/ICM); Spray Calciner/Calcine-Fed Ceramic Melter (SC/CFCM); and Liquid-Fed Ceramic Melter (LFCM). Waste components in the process feed varied less than +- 10%. The SC/ICM and SC/CFCM which use separate waste and frit feed systems showed larger glass compositional variation than the LFCM, which processed only premixed feed during this period. The SC/ICM and SC/CFCM product contained significant amounts of acmite crystals, while the LFCM product was largely amorphous. In addition, the lower portion of all SC/ICM-filled canisters contained a zone rich in waste components. A product chemical durability as determined by pH4 and soxhlet leach tests varied considerably. Aside from increased durability under pH4 conditions with decreasing waste content, glass composition, microstructure and melting process did not correlate with glass durability. For all samples analyzed, the weight loss under pH4 conditions ranged from 17.7 to 85.2 wt %. Soxhlet conditions produced weight losses from 1.78 to 3.56 wt %.

  11. Increasing High-Level Waste Loading In Glass Without Changing The Baseline Melter Technology

    SciTech Connect (OSTI)

    Hrma, Pavel R.; Alton, Jesse; Plaisted, Trevor J.; Klouzek, Jaroslav; Matyas, Josef; Mika, Martin; Schill, Petr; Trochta, Miroslav; Nemec, Lubomir

    2001-02-25T23:59:59.000Z

    The main factors that determine the cost of high-level waste (HLW) vitrification are the waste loading (which determines the volume of glass) and the melting rate. Product quality should be the only factor determining the waste loading while melter design should provide a rapid melting technology. In reality, the current HLW melters are slow in glass-production rate and are subjected to operational risks that require waste loading to be kept far below its intrinsic level. One of the constraints that decrease waste loading is the liquidus-temperature limit. close inspection reveals that this constraint is probably too severe, even for the current technology. The purpose of the liquidus-temperature constraint is to prevent solids from settling on the melter bottom. It appears that some limited settling would niether interfere with melter operation nor shorten its lifetime and that the rate of settling can be greatly reduced if only small crystals are allowed to form.

  12. A Review of Iron Phosphate Glasses and Recommendations for Vitrifying Hanford Waste

    SciTech Connect (OSTI)

    Delbert E. Ray; Chandra S. Ray

    2013-11-01T23:59:59.000Z

    This report contains a comprehensive review of the research conducted, world-wide, on iron phosphate glass over the past ~30 years. Special attention is devoted to those iron phosphate glass compositions which have been formulated for the purpose of vitrifying numerous types of nuclear waste, with special emphasis on the wastes stored in the underground tanks at Hanford WA. Data for the structural, chemical, and physical properties of iron phosphate waste forms are reviewed for the purpose of understanding their (a) outstanding chemical durability which meets all current DOE requirements, (b) high waste loadings which can exceed 40 wt% (up to 75 wt%) for several Hanford wastes, (c) low melting temperatures, can be as low as 900°C for certain wastes, and (d) high tolerance for “problem” waste components such as sulfates, halides, and heavy metals (chromium, actinides, noble metals, etc.). Several recommendations are given for actions that are necessary to smoothly integrate iron phosphate glass technology into the present waste treatment plans and vitrification facilities at Hanford.

  13. Vitrification and testing of a Hanford high-level waste sample. Part 1: Glass fabrication, and chemical and radiochemical analysis

    SciTech Connect (OSTI)

    Hrma, Pavel R.; Crum, Jarrod V.; Bates, Derrick J.; Bredt, Paul; Greenwood, Lawrence R.; Smith, H D.

    2005-10-01T23:59:59.000Z

    The Hanford radioactive tank waste will be separated into low-activity waste and high-level waste that will both be vitrified into borosilicate glasses. To demonstrate the feasibility of vitrification and the durability of the high-level waste glass, a high-level waste sample from Tank AZ-101 was processed to glass in a hot cell and analyzed with respect to chemical composition, radionuclide content, waste loading, and the presence of crystalline phases and then tested for leachability. The glass was analyzed with inductively coupled plasma-atomic emission spectroscopy, inductively coupled plasma-mass spectrometry, ? energy spectrometry, ? spectrometry, and liquid scintillation counting. The WISE Uranium Project calculator was used to calculate the main sources of radioactivity to the year 3115. The observed crystallinity and the results of leachability testing of the glass will be reported in Part 2 of this paper.

  14. Incorporating Cold Cap Behavior in a Joule-heated Waste Glass Melter Model

    SciTech Connect (OSTI)

    Varija Agarwal; Donna Post Guillen

    2013-08-01T23:59:59.000Z

    In this paper, an overview of Joule-heated waste glass melters used in the vitrification of high level waste (HLW) is presented, with a focus on the cold cap region. This region, in which feed-to-glass conversion reactions occur, is critical in determining the melting properties of any given glass melter. An existing 1D computer model of the cold cap, implemented in MATLAB, is described in detail. This model is a standalone model that calculates cold cap properties based on boundary conditions at the top and bottom of the cold cap. Efforts to couple this cold cap model with a 3D STAR-CCM+ model of a Joule-heated melter are then described. The coupling is being implemented in ModelCenter, a software integration tool. The ultimate goal of this model is to guide the specification of melter parameters that optimize glass quality and production rate.

  15. Identifying suitable "piercement" salt domes for nuclear waste storage sites

    SciTech Connect (OSTI)

    Kehle, R.

    1980-08-01T23:59:59.000Z

    Piercement salt domes of the northern interior salt basins of the Gulf of Mexico are being considered as permanent storage sites for both nuclear and chemically toxic wastes. The suitable domes are stable and inactive, having reached their final evolutionary configuration at least 30 million years ago. They are buried to depths far below the level to which erosion will penetrate during the prescribed storage period and are not subject to possible future reactivation. The salt cores of these domes are themselves impermeable, permitting neither the entry nor exit of ground water or other unwanted materials. In part, a stable dome may be recognized by its present geometric configuration, but conclusive proof depends on establishing its evolutionary state. The evolutionary state of a dome is obtained by reconstructing the growth history of the dome as revealed by the configuration of sedimentary strata in a large area (commonly 3,000 square miles or more) surrounding the dome. A high quality, multifold CDP reflection seismic profile across a candidate dome will provide much of the necessary information when integrated with available subsurface control. Additional seismic profiles may be required to confirm an apparent configuration of the surrounding strata and an interpreted evolutionary history. High frequency seismic data collected in the near vicinity of a dome are also needed as a supplement to the CDP data to permit accurate depiction of the configuration of shallow strata. Such data must be tied to shallow drill hole control to confirm the geologic age at which dome growth ceased. If it is determined that a dome reached a terminal configuration many millions of years ago, such a dome is incapable of reactivation and thus constitutes a stable storage site for nuclear wastes.

  16. Radionuclide decay effects on waste glass corrosion and weathering

    SciTech Connect (OSTI)

    Wronkiewicz, D.J.

    1993-12-31T23:59:59.000Z

    The release of glass components into solution, including radionuclides, may be influenced by the presence of radiolytically produced nitric acid, carboxylic acid, and transient water dissociation products such as {center_dot}OH and O{sub 2}{sup {minus}}. Under batch test conditions, glass corrosion has been shown to increase up to a maximum of three-to five-fold in irradiated tests relative to nonirradiated tests, while in other studies the presence of radiolytic products has actually decreased glass corrosion rates. Bicarbonate groundwaters will buffer against pH decreases and changes in corrosion rates. Under high surface area-to-solution volume (S/V) conditions, the bicarbonate buffering reservoir may be quickly overwhelmed by radiolytic acids that are concentrated in the thin films of water contacting the samples. Glass reaction rates have been shown to increase up to 10-to-15-fold due to radiation exposure under high S/V conditions. Radiation damage to solid glass materials results in bond damage and atomic displacements. This type of damage has been shown to increase the release rates of glass components up to four-fold during subsequent corrosion tests, although under actual disposal conditions, glass annealing processes may negate the solid radiation damage effects.

  17. Energy Saving Method of Manufacturing Ceramic Products from Fiber Glass Waste

    SciTech Connect (OSTI)

    Michael J. Haun

    2005-07-15T23:59:59.000Z

    The U.S. fiber glass industry disposes of more than 260,000 tons of industrial fiber glass waste in landfills annually. New technology is needed to reprocess this industrial waste into useful products. A low-cost energy-saving method of manufacturing ceramic tile from fiber glass waste was developed. The technology is based on sintering fiber glass waste at 700-900 degrees C to produce products which traditionally require firing temperatures of >1200 degrees C, or glass-melting temperatures >1500 degrees C. The process also eliminates other energy intensive processing steps, including mining and transportation of raw materials, spray-drying to produce granulated powder, drying pressed tile, and glazing. The technology completely transforms fiber glass waste into a dense ceramic product, so that all future environmental problems in the handling and disposal of the fibers is eliminated. The processing steps were developed and optimized to produce glossy and matte surface finishes for wall and floor tile applications. High-quality prototype tile samples were processed for demonstration and tile standards testing. A Market Assessment confirmed the market potential for tile products produced by the technology. Manufacturing equipment trials were successfully conducted for each step of the process. An industrial demonstration plant was designed, including equipment and operating cost analysis. A fiber glass manufacturer was selected as an industrial partner to commercialize the technology. A technology development and licensing agreement was completed with the industrial partner. Haun labs will continue working to transfer the technology and assist the industrial partner with commercialization beyond the DOE project.

  18. Waste Acceptance Radionuclides To Be Reported In Tank 51 Sludge Only Glass

    SciTech Connect (OSTI)

    Hyder, M. Lee

    1995-12-12T23:59:59.000Z

    The first high level waste glass to be generated at SRS will incorporate sludge from Tank 51. This sludge has been characterized by Bibler et al., who measured and estimated the radioisotope composition of the glass that might be derived from this sludge. In this report this characterization is used to determine which isotopes must be quantified to meet the legal criteria for repository placement.

  19. CHEMICAL COMPOSITION AND PCT DATA FOR THE INITIAL SET OF HANFORD ENHANCED WASTE LOADING GLASSES

    SciTech Connect (OSTI)

    Fox, K.; Edwards, T.

    2014-06-02T23:59:59.000Z

    In this report, the Savannah River National Laboratory provides chemical analyses and Product Consistency Test results for 20 simulated high level waste glasses fabricated by the Pacific Northwest National Laboratory. The results of these analyses will be used as part of efforts to revise or extend the validation ranges of the current Hanford Waste Treatment and Immobilization Plant glass property models to cover a broader span of waste compositions. The measured chemical composition data are reported and compared with the targeted values for each component for each glass. Two components of the study glasses, fluorine and silver, were not measured since each of these species would have required the use of an additional preparation method and their measured values were likely to be near or below analytical detection limits. Some of the glasses were difficult to prepare for chemical analysis. A sodium peroxide fusion dissolution method was successful in completely dissolving the glasses. Components present in the glasses in minor concentrations can be difficult to measure using this dissolution method due to dilution requirements. The use of a lithium metaborate preparation method for the minor components (planned for use since it is typically successful in digesting Defense Waste Processing Facility HLW glasses) resulted in an unacceptable amount of undissolved solids remaining in the sample solutions. An acid dissolution method was used instead, which provided more thorough dissolution of the glasses, although a small amount of undissolved material remained for some of the study glasses. The undissolved material was analyzed to determine those components of the glasses that did not fully dissolve. These components (e.g., calcium and chromium) were present in sufficient quantities to be reported from the measurements resulting from the sodium peroxide fusion preparation method, which did not leave undissolved material. Overall, the analyses resulted in sums of oxides that ranged from about 98 to 101.5 wt % for the study glasses, indicating excellent recovery of all the components in the chemical composition analyses. Comparisons of the targeted and measured chemical compositions indicated that, in general, the measured values for the glasses met the targeted concentrations. Exceptions were Cr{sub 2}O{sub 3}, MgO, and P{sub 2}O{sub 5}. The measured values for Cr{sub 2}O{sub 3} were somewhat low when compared to the targeted values for all of the study glasses targeting Cr{sub 2}O{sub 3} concentrations above 0.5 wt %. Many of the measured MgO and P{sub 2}O{sub 5} values were below the targeted values for those glasses that contained these components. Two of the study glasses exhibited differences from the targeted compositions that may indicate a batching error. Glasses EWG-HAI-Centroid-2 and EWG-OL-1672 had measured values for Al{sub 2}O{sub 3} and SiO{sub 2} that were lower than the targeted values, and measured values for B{sub 2}O{sub 3} that were higher than the targeted values. Glass EWG-HAI-Centroid-2 also had a measured value for Fe{sub 2}O{sub 3} that was lower than the targeted value. A review of the PCT data, including standards and blanks, revealed no issues with the performance of the tests. The PCT results were normalized to both the targeted and measured compositions of the study glasses. Comparisons of the normalized PCT results for both the quenched and Canister Centerline Cooled versions of the study glasses are made with the Environmental Assessment benchmark glass for reference.

  20. Tank waste remediation system phase I high-level waste feed processability assessment report

    SciTech Connect (OSTI)

    Lambert, S.L.; Stegen, G.E., Westinghouse Hanford

    1996-08-01T23:59:59.000Z

    This report evaluates the effects of feed composition on the Phase I high-level waste immobilization process and interim storage facility requirements for the high-level waste glass.Several different Phase I staging (retrieval, blending, and pretreatment) scenarios were used to generate example feed compositions for glass formulations, testing, and glass sensitivity analysis. Glass models and data form laboratory glass studies were used to estimate achievable waste loading and corresponding glass volumes for various Phase I feeds. Key issues related to feed process ability, feed composition, uncertainty, and immobilization process technology are identified for future consideration in other tank waste disposal program activities.

  1. Round-robin testing of a reference glass for low-activity waste forms

    SciTech Connect (OSTI)

    Ebert, W. L.; Wolf, S. F.

    1999-12-06T23:59:59.000Z

    A round robin test program was conducted with a glass that was developed for use as a standard test material for acceptance testing of low-activity waste glasses made with Hanford tank wastes. The glass is referred to as the low-activity test reference material (LRM). The program was conducted to measure the interlaboratory reproducibility of composition analysis and durability test results. Participants were allowed to select the methods used to analyze the glass composition. The durability tests closely followed the Product Consistency Test (PCT) Method A, except that tests were conducted at both 40 and 90 C and that parallel tests with a reference glass were not required. Samples of LRM glass that had been crushed, sieved, and washed to remove fines were provided to participants for tests and analyses. The reproducibility of both the composition and PCT results compare favorably with the results of interlaboratory studies conducted with other glasses. From the perspective of reproducibility of analysis results, this glass is acceptable for use as a composition standard for nonradioactive components of low-activity waste forms present at >0.1 elemental mass % and as a test standard for PCTS at 40 and 90 C. For PCT with LRM glass, the expected test results at the 95% confidence level are as follows: (1) at 40 C: pH = 9.86 {+-} 0.96; [B] = 2.30 {+-} 1.25 mg/L; [Na] = 19.7 {+-} 7.3 mg/L; [Si] = 13.7 {+-} 4.2 mg/L; and (2) at 90 C: pH = 10.92 {+-} 0.43; [B] = 26.7 {+-} 7.2 mg/L; [Na] = 160 {+-} 13 mg/L; [Si] = 82.0 {+-} 12.7 mg/L. These ranges can be used to evaluate the accuracy of PCTS conducted at other laboratories.

  2. EELS Spectrum Imaging and Tomography Studies of Simulated Nuclear Waste Glasses

    SciTech Connect (OSTI)

    Yang, Guang; Saghi, Zineb; Xu, Xiaojing; Hand, Russell; Moebus, Guenter [Engineering Materials, The University of Sheffield, Sir Robert Hadfield Building, Mappin Street, Sheffield, S1 3JD (United Kingdom)

    2007-07-01T23:59:59.000Z

    Electron energy loss spectroscopy (EELS) fine structure is a powerful technique for analyzing oxidation levels of rare-earth oxides and coordination numbers in glasses and ceramics, especially for boron. To exploit the unique advantage of EELS over x-ray absorption spectroscopy (XAS)/x-ray absorption near edge structure (XANES), namely nm-scale spatial resolution, EELS spectrum imaging across precipitates in glasses has been employed to detect lateral changes of EELS fine structure. Alkali borosilicate (ABS) glasses doped with Cr{sub 2}O{sub 3}, CeO{sub 2} and ZrO{sub 2} or Fe{sub 2}O{sub 3} were melted to simulate high level radionuclide immobilization glasses. Precipitates with diameter in the range of {approx}20 nm to {approx}500 nm were found homogeneously distributed in the glasses. Ce valence was found to be mainly +3 in the glass matrix, and +4 in crystalline precipitates, while some amorphous particles show +3 as well. Another powerful TEM technique for the analysis of glass-nano-composites is electron tomography, as it is up to now the only technique for the three-dimensional reconstruction of nano-particles. A 3D reconstructed nuclear waste glass is presented in this paper by using a tilt series of ADF STEM images covering a glass fragment of {approx}3{mu}m field of view containing several tens of nano-particles distributed throughout its volume. (authors)

  3. Product consistency leach tests of Savannah River Site radioactive waste glasses

    SciTech Connect (OSTI)

    Bibler, N.E. (Westinghouse Savannah River Co., Aiken, SC (United States)); Bates, J.K. (Argonne National Lab., IL (United States))

    1989-01-01T23:59:59.000Z

    The Product Consistency Test (PCT) is a glass leach test that was developed at the Savannah River Site (SRS) to routinely confirm the durability of nuclear waste glasses that will be produced in the Defense Waste Processing Facility. The PCT is a 7 day, crushed glass leach test in deionized water at 90{degree}C. Final leachates are filtered and acidified prior to analysis. To demonstrate the reproducibility of the PCT when performed remotely, SRS and Argonne National Laboratory have performed the PCT on samples of two radioactive glasses. The tests were also performed to compare the releases of the radionuclides with the major nonradioactive glass components and to determine if radiation from the glass was affecting the results of the PCT. The test was performed in triplicate at each laboratory. For the major soluble elements, B, Li, Na, and Si, in the glass, each investigator obtained relative precisions in the range 2--5% in the triplicate tests. This range indicates good precision for the PCT when performed remotely with master slave manipulators in a shielded cell environment.

  4. Comprehensive data base of high-level nuclear waste glasses: September 1987 status report: Volume 1, Discussion and glass durability data

    SciTech Connect (OSTI)

    Kindle, C.H.; Kreiter, M.R.

    1987-12-01T23:59:59.000Z

    The Materials Characterization Center (MCC) at Pacific Northwest Laboratory is assembling a comprehensive data base (CDB) of experimental data collected for high-level nuclear waste package components. Data collected throughout the world are included in the data base; current emphasis is on waste glasses and their properties. The goal is to provide a data base of properties and compositions and an analysis of dominant property trends as a function of composition. This data base is a resource that nuclear waste producers, disposers, and regulators can use to compare properties of a particular high-level nuclear waste glass product with the properties of other glasses of similar compositions. Researchers may use the data base to guide experimental tests to fill gaps in the available knowledge or to refine empirical models. The data are incorporated into a computerized data base that will allow the data to be extracted based on, for example, glass composition or test duration. 3 figs.

  5. SWAMI: An Autonomous Mobile Robot for Inspection of Nuclear Waste Storage Facilities

    E-Print Network [OSTI]

    Stephens, Larry M.

    SWAMI: An Autonomous Mobile Robot for Inspection of Nuclear Waste Storage Facilities Ron Fulbright Inspector (SWAMI) is a prototype mobile robot designed to perform autonomous inspection of nuclear waste user interface building tool called UIM/X. Introduction Safe disposal of nuclear waste is a difficult

  6. Molybdenum in Nuclear Waste Glasses -Incorporation and Redox state R.J. Short, R.J. Hand, N.C. Hyatt,

    E-Print Network [OSTI]

    Sheffield, University of

    Molybdenum in Nuclear Waste Glasses - Incorporation and Redox state R.J. Short, R.J. Hand, N form in simulated high level nuclear waste (HLW) glass melts have been studied. It was found less attention has been paid to the effects of redox on nuclear waste glasses. One particular element

  7. Standard test methods for determining chemical durability of nuclear, hazardous, and mixed waste glasses and multiphase glass ceramics: The product consistency test (PCT)

    E-Print Network [OSTI]

    American Society for Testing and Materials. Philadelphia

    2002-01-01T23:59:59.000Z

    1.1 These product consistency test methods A and B evaluate the chemical durability of homogeneous glasses, phase separated glasses, devitrified glasses, glass ceramics, and/or multiphase glass ceramic waste forms hereafter collectively referred to as “glass waste forms” by measuring the concentrations of the chemical species released to a test solution. 1.1.1 Test Method A is a seven-day chemical durability test performed at 90 ± 2°C in a leachant of ASTM-Type I water. The test method is static and conducted in stainless steel vessels. Test Method A can specifically be used to evaluate whether the chemical durability and elemental release characteristics of nuclear, hazardous, and mixed glass waste forms have been consistently controlled during production. This test method is applicable to radioactive and simulated glass waste forms as defined above. 1.1.2 Test Method B is a durability test that allows testing at various test durations, test temperatures, mesh size, mass of sample, leachant volume, a...

  8. SUMMARY OF FY11 SULFATE RETENTION STUDIES FOR DEFENSE WASTE PROCESSING FACILITY GLASS

    SciTech Connect (OSTI)

    Fox, K.; Edwards, T.

    2012-05-08T23:59:59.000Z

    This report describes the results of studies related to the incorporation of sulfate in high level waste (HLW) borosilicate glass produced at the Savannah River Site (SRS) Defense Waste Processing Facility (DWPF). A group of simulated HLW glasses produced for earlier sulfate retention studies was selected for full chemical composition measurements to determine whether there is any clear link between composition and sulfate retention over the compositional region evaluated. In addition, the viscosity of several glasses was measured to support future efforts in modeling sulfate solubility as a function of predicted viscosity. The intent of these studies was to develop a better understanding of sulfate retention in borosilicate HLW glass to allow for higher loadings of sulfate containing waste. Based on the results of these and other studies, the ability to improve sulfate solubility in DWPF borosilicate glasses lies in reducing the connectivity of the glass network structure. This can be achieved, as an example, by increasing the concentration of alkali species in the glass. However, this must be balanced with other effects of reduced network connectivity, such as reduced viscosity, potentially lower chemical durability, and in the case of higher sodium and aluminum concentrations, the propensity for nepheline crystallization. Future DWPF processing is likely to target higher waste loadings and higher sludge sodium concentrations, meaning that alkali concentrations in the glass will already be relatively high. It is therefore unlikely that there will be the ability to target significantly higher total alkali concentrations in the glass solely to support increased sulfate solubility without the increased alkali concentration causing failure of other Product Composition Control System (PCCS) constraints, such as low viscosity and durability. No individual components were found to provide a significant improvement in sulfate retention (i.e., an increase of the magnitude necessary to have a dramatic impact on blending, washing, or waste loading strategies for DWPF) for the glasses studied here. In general, the concentrations of those species that significantly improve sulfate solubility in a borosilicate glass must be added in relatively large concentrations (e.g., 13 to 38 wt % or more of the frit) in order to have a substantial impact. For DWPF, these concentrations would constitute too large of a portion of the frit to be practical. Therefore, it is unlikely that specific additives may be introduced into the DWPF glass via the frit to significantly improve sulfate solubility. The results presented here continue to show that sulfate solubility or retention is a function of individual glass compositions, rather than a property of a broad glass composition region. It would therefore be inappropriate to set a single sulfate concentration limit for a range of DWPF glass compositions. Sulfate concentration limits should continue to be identified and implemented for each sludge batch. The current PCCS limit is 0.4 wt % SO{sub 4}{sup 2-} in glass, although frit development efforts have led to an increased limit of 0.6 wt % for recent sludge batches. Slightly higher limits (perhaps 0.7-0.8 wt %) may be possible for future sludge batches. An opportunity for allowing a higher sulfate concentration limit at DWPF may lay lie in improving the laboratory experiments used to set this limit. That is, there are several differences between the crucible-scale testing currently used to define a limit for DWPF operation and the actual conditions within the DWPF melter. In particular, no allowance is currently made for sulfur partitioning (volatility versus retention) during melter processing as the sulfate limit is set for a specific sludge batch. A better understanding of the partitioning of sulfur in a bubbled melter operating with a cold cap as well as the impacts of sulfur on the off-gas system may allow a higher sulfate concentration limit to be established for the melter feed. This approach would have to be taken carefully to ensure that a

  9. Solid-State NMR Examination of Alteration Layers on a Nuclear Waste Glasses

    SciTech Connect (OSTI)

    Murphy, Kelly A. [Penn State Univ., State College, PA (United States). Dept. of Chemistry; Washton, Nancy M. [Pacific Northwest National Laboratory (PNNL), Richland, WA (United States). Environmental Molecular Science Lab.; Ryan, Joseph V. [Pacific Northwest National Laboratory (PNNL), Richland, WA (United States); Pantano, Carlo G. [Penn State Univ., State College, PA (United States). Dept. of Materials Science and Engineering; Mueller, Karl T. [Penn State Univ., State College, PA (United States). Dept. of Chemistry; Pacific Northwest National Laboratory (PNNL), Richland, WA (United States). Environmental Molecular Science Lab.

    2013-06-01T23:59:59.000Z

    Solid-state NMR is a powerful tool for probing the role and significance of alteration layers in determining the kinetics for the corrosion of nuclear waste glass. NMR methods are used to probe the chemical structure of the alteration layers to elucidate information about their chemical complexity, leading to increased insight into the mechanism of altered layer formation. Two glass compositions were examined in this study: a glass preliminarily designed for nuclear waste immobilization (called AFCI) and a simplified version of this AFCI glass (which we call SA1R). Powdered glasses with controlled and known particles sizes were corroded at 90 °C for periods of one and five months with a surface-area to solution-volume ratio of 100,000 m-1. 1H-29Si CP-CPMG MAS NMR, 1H-27Al CP-MAS NMR, 1H-11B CP-MAS NMR, and 1H-23Na CP-MAS NMR experiments provide isolated structural information about the alteration layers, which differ in structure from that of the pristine glass. Both glasses studied here develop alteration layers composed primarily of [IV]Si species. Aluminum is also retained in the alteration layers, perhaps facilitated by the observed increase in coordination from [IV]Al to [VI]Al, which correlates with a loss of charge balancing cations. 1H-11B CP-MAS NMR observations indicated a retention of boron in hydrated glass layers, which has not been characterized by previous work. For the AFCI glass, secondary phase formation begins during the corrosion times considered here, and these neophases are detected within the alteration layers. We identify precursor phases as crystalline sodium metasilicates. An important finding is that layer thickness depends on the length of the initial alteration stages and varies only with respect to silicon species during the residual rate regime.

  10. Evaluation of final waste forms and recommendations for baseline alternatives to group and glass

    SciTech Connect (OSTI)

    Bleier, A.

    1997-09-01T23:59:59.000Z

    An assessment of final waste forms was made as part of the Federal Facilities Compliance Agreement/Development, Demonstration, Testing, and Evaluation (FFCA/DDT&E) Program because supplemental waste-form technologies are needed for the hazardous, radioactive, and mixed wastes of concern to the Department of Energy and the problematic wastes on the Oak Ridge Reservation. The principal objective was to identify a primary waste-form candidate as an alternative to grout (cement) and glass. The effort principally comprised a literature search, the goal of which was to establish a knowledge base regarding four areas: (1) the waste-form technologies based on grout and glass, (2) candidate alternatives, (3) the wastes that need to be immobilized, and (4) the technical and regulatory constraints on the waste-from technologies. This report serves, in part, to meet this goal. Six families of materials emerged as relevant; inorganic, organic, vitrified, devitrified, ceramic, and metallic matrices. Multiple members of each family were assessed, emphasizing the materials-oriented factors and accounting for the fact that the two most prevalent types of wastes for the FFCA/DDT&E Program are aqueous liquids and inorganic sludges and solids. Presently, no individual matrix is sufficiently developed to permit its immediate implementation as a baseline alternative. Three thermoplastic materials, sulfur-polymer cement (inorganic), bitumen (organic), and polyethylene (organic), are the most technologically developed candidates. Each warrants further study, emphasizing the engineering and economic factors, but each also has limitations that regulate it to a status of short-term alternative. The crystallinity and flexible processing of sulfur provide sulfur-polymer cement with the highest potential for short-term success via encapsulation. Long-term immobilization demands chemical stabilization, which the thermoplastic matrices do not offer. Among the properties of the remaining candidates, those of glass-ceramics (devitrified matrices) represent the best compromise for meeting the probable stricter disposal requirements in the future.

  11. INTERNATIONAL STUDY OF ALUMINUM IMPACTS ON CRYSTALLIZATION IN U.S. HIGH LEVEL WASTE GLASS

    SciTech Connect (OSTI)

    Fox, K; David Peeler, D; Tommy Edwards, T; David Best, D; Irene Reamer, I; Phyllis Workman, P; James Marra, J

    2008-09-23T23:59:59.000Z

    The objective of this task was to develop glass formulations for (Department of Energy) DOE waste streams with high aluminum concentrations to avoid nepheline formation while maintaining or meeting waste loading and/or waste throughput expectations as well as satisfying critical process and product performance related constraints. Liquidus temperatures and crystallization behavior were carefully characterized to support model development for higher waste loading glasses. The experimental work, characterization, and data interpretation necessary to meet these objectives were performed among three partnering laboratories: the V.G. Khlopin Radium Institute (KRI), Pacific Northwest National Laboratory (PNNL) and Savannah River National Laboratory (SRNL). Projected glass compositional regions that bound anticipated Defense Waste Processing Facility (DWPF) and Hanford high level waste (HLW) glass regions of interest were developed and used to generate glass compositions of interest for meeting the objectives of this study. A thorough statistical analysis was employed to allow for a wide range of waste glass compositions to be examined while minimizing the number of glasses that had to be fabricated and characterized in the laboratory. The glass compositions were divided into two sets, with 45 in the test matrix investigated by the U.S. laboratories and 30 in the test matrix investigated by KRI. Fabrication and characterization of the US and KRI-series glasses were generally handled separately. This report focuses mainly on the US-series glasses. Glasses were fabricated and characterized by SRNL and PNNL. Crystalline phases were identified by X-ray diffraction (XRD) in the quenched and canister centerline cooled (CCC) glasses and were generally iron oxides and spinels, which are not expected to impact durability of the glass. Nepheline was detected in five of the glasses after the CCC heat treatment. Chemical composition measurements for each of the glasses were conducted following an analytical plan. A review of the individual oxides for each glass revealed that there were no errors in batching significant enough to impact the outcome of the study. A comparison of the measured compositions of the replicates indicated an acceptable degree of repeatability as the percent differences for most of the oxides were less than 5% and percent differences for all of the oxides were less than 10 wt%. Chemical durability was measured using the Product Consistency Test (PCT). All but two of the study glasses had normalized leachate for boron (NL [B]) values that were well below that of the Environmental Assessment (EA) reference glass. The two highest NL [B] values were for the CCC versions of glasses US-18 and US-27 (10.498 g/L and 15.962 g/L, respectively). Nepheline crystallization was identified by qualitative XRD in five of the US-series glasses. Each of these five glasses (US-18, US-26, US-27, US-37 and US-43) showed a significant increase in NL [B] values after the CCC heat treatment. This reduction in durability can be attributed to the formation of nepheline during the slow cooling cycle and the removal of glass formers from the residual glass network. The liquidus temperature (T{sub L}) of each glass in the study was determined by both optical microscopy and XRD methods. The correlation coefficient of the measured XRD TL data versus the measured optical TL data was very good (R{sup 2} = 0.9469). Aside from a few outliers, the two datasets aligned very well across the entire temperature range (829 C to 1312 C for optical data and 813 C to 1310 C for XRD crystal fraction data). The data also correlated well with the predictions of a PNNL T{sub L} model. The correlation between the measured and calculated data had a higher degree of merit for the XRD crystal fraction data than for the optical data (higher R{sup 2} value of 0.9089 versus 0.8970 for the optical data). The SEM-EDS analysis of select samples revealed the presence of undissolved RuO{sub 2} in all glasses due to the low solubility of RuO{sub 2} in borosilicate glass. These

  12. EIS-0063: Waste Management Operations, Double-Shell Tanks for Defense High Level Radioactive Waste Storage, Hanford Site, Richland, Washington

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy developed this statement to evaluate the existing tank design and consider additional specific design and safety feature alternatives for the thirteen tanks being constructed for storage of defense high-level radioactive liquid waste at the Hanford Site in Richland, Washington. This statement supplements ERDA-1538, "Final Environmental Statement on Waste Management Operation."

  13. CORROSION OF NUCLEAR WASTE GLASSES IN NON-SATURATED CONDITIONS: TIME-TEMPERATURE BEHAVIOUR

    E-Print Network [OSTI]

    Sheffield, University of

    CORROSION OF NUCLEAR WASTE GLASSES IN NON-SATURATED CONDITIONS: TIME-TEMPERATURE BEHAVIOUR Michael Rostovsky Lane, 2/14, Moscow, 119121, Russia This paper examines corrosion behaviour of radioactive term natural tests. These demonstrated diminishing of release rates of radionuclides by time. Corrosion

  14. Vapour Phase Hydration of Blended Oxide Magnox Waste Glasses Neil C. Hyatt,1*

    E-Print Network [OSTI]

    Sheffield, University of

    Vapour Phase Hydration of Blended Oxide ­ Magnox Waste Glasses Neil C. Hyatt,1* William E. Lee,1 BNFL Technology Centre, Sellafield, Seascale, Cumbria, CA20 1PG. UK. ABSTRACT Vapour phase hydration across the alteration layer. Vapour phase hydration leads to formation of surface alteration products

  15. Crystal-Tolerant Glass Approach For Mitigation Of Crystal Accumulation In Continuous Melters Processing Radioactive Waste

    SciTech Connect (OSTI)

    Kruger, Albert A. [Department of Energy, Office of River Protection, Richland, Washington (United States); Rodriguez, Carmen P. [Pacific Northwest National Laboratory (PNNL), Richland, WA (United States); Lang, Jesse B. [Pacific Northwest National Laboratory (PNNL), Richland, WA (United States); Huckleberry, Adam R. [Pacific Northwest National Laboratory (PNNL), Richland, WA (United States); Matyas, Josef [Pacific Northwest National Laboratory (PNNL), Richland, WA (United States); Owen, Antoinette T. [Pacific Northwest National Laboratory (PNNL), Richland, WA (United States)

    2012-08-28T23:59:59.000Z

    High-level radioactive waste melters are projected to operate in an inefficient manner as they are subjected to artificial constraints, such as minimum liquidus temperature (T{sub L}) or maximum equilibrium fraction of crystallinity at a given temperature. These constraints substantially limit waste loading, but were imposed to prevent clogging of the melter with spinel crystals [(Fe, Ni, Mn, Zn)(Fe, Cr){sub 2}O{sub 4}]. In the melter, the glass discharge riser is the most likely location for crystal accumulation during idling because of low glass temperatures, stagnant melts, and small diameter. To address this problem, a series of lab-scale crucible tests were performed with specially formulated glasses to simulate accumulation of spinel in the riser. Thicknesses of accumulated layers were incorporated into empirical model of spinel settling. In addition, T{sub L} of glasses was measured and impact of particle agglomeration on accumulation rate was evaluated. Empirical model predicted well the accumulation of single crystals and/or smallscale agglomerates, but, excessive agglomeration observed in high-Ni-Fe glass resulted in an under-prediction of accumulated layers, which gradually worsen over time as an increased number of agglomerates formed. Accumulation rate of ~14.9 +- 1 nm/s determined for this glass will result in ~26 mm thick layer in 20 days of melter idling.

  16. Characteristics of colloids generated during the corrosion of nuclear waste glasses in groundwater

    SciTech Connect (OSTI)

    Feng, X.; Buck, E.C.; Mertz, C.; Bates, J.K.; Cunnane, J.C.; Chaiko, D.

    1993-10-01T23:59:59.000Z

    Aqueous colloidal suspensions were generated by reacting nuclear waste glasses with groundwater at 90{degrees}C at different ratios of the glass surface area to solution volume (S/V). The colloids have been characterized in terms of size, charge, identity, and stability with respect to salt concentration, pH, and time, by examination using dynamic light scattering, electrophoretic mobility, and transmission electron microscopy. The colloids are predominately produced by precipitation from solution, possibly with contribution from reacted layers that have spallated from the glass. These colloids are silicon-rich minerals. The colloidal suspensions agglomerate when the salinity of the solutions increase. The following implications for modeling the colloidal transport of contaminants have been derived from this study: (1) The sources of the colloids are not only solubility-limited real colloids and the pseudo colloids formed by adsorption of radionuclides onto a groundwater colloid, but also from the spalled surface layers of reacted waste glasses. (2) In a repository, the local environment is likely to be glass-reaction dominated and the salt concentration is likely to be high, leading to rapid colloid agglomeration and settling; thus, colloid transport may be insignificant. (3) If large volumes of groundwater contact the glass reaction site, the precipitated colloids may become resuspended, and colloid transport may become important. (4) Under most conditions, the colloids are negatively charged and will deposit readily on positively charged surfaces. Negatively charged surfaces will, in general, facilitate colloid stability and transport.

  17. Cold Crucible Induction Melter Studies for Making Glass Ceramic Waste Forms: A Feasibility Assessment

    SciTech Connect (OSTI)

    Crum, Jarrod V.; Maio, Vincent; McCloy, John S.; Scott, Clark; Riley, Brian J.; Benefiel, Bradley; Vienna, John D.; Archibald, Kip; Rodriguez, Carmen P.; Rutledge, Veronica; Zhu, Zihua; Ryan, Joseph V.; Olszta, Matthew J.

    2014-01-01T23:59:59.000Z

    Glass ceramics are being developed to immobilize fission products, separated from used nuclear fuel by aqueous reprocessing, into a stable waste form suitable for disposal in a geological repository. This work documents the glass ceramic formulation at bench scale and for a scaled melter test performed in a pilot-scale (~1/4 scale) cold crucible induction meter (CCIM). Melt viscosity, electrical conductivity, and crystallization behavior upon cooling were measured on a small set of compositions to select a formulation for melter testing. Property measurements also identified a temperature range for melter operation and cooling profiles necessary to crystallize the targeted phases in the waste form. Bench scale and melter run results successfully demonstrate the processability of the glass ceramic using the CCIM melter technology.

  18. Calcine Waste Storage at the Idaho Nuclear Technology and Engineering Center

    SciTech Connect (OSTI)

    M. D. Staiger

    1999-06-01T23:59:59.000Z

    A potential option in the program for long-term management of high-level wastes at the Idaho Nuclear Technology and Engineering Center (INTEC), at the Idaho National Engineering and Environmental Laboratory, calls for retrieving calcine waste and converting it to a more stable and less dispersible form. An inventory of calcine produced during the period December 1963 to May 1999 has been prepared based on calciner run, solids storage facilities operating, and miscellaneous operational information, which gives the range of chemical compositions of calcine waste stored at INTEC. Information researched includes calciner startup data, waste solution analyses and volumes calcined, calciner operating schedules, solids storage bin capacities, calcine storage bin distributor systems, and solids storage bin design and temperature monitoring records. Unique information on calcine solids storage facilities design of potential interest to remote retrieval operators is given.

  19. SUMMARY OF 2010 DOE EM INTERNATIONAL PROGRAM STUDIES OF WASTE GLASS STRUCTURE AND PROPERTIES

    SciTech Connect (OSTI)

    Fox, K.; Choi, A.; Marra, J.; Billings, A.

    2011-02-07T23:59:59.000Z

    Collaborative work between the Savannah River National Laboratory (SRNL) and SIA Radon in Russia was divided among three tasks for calendar year 2010. The first task focused on the study of simplified high level waste glass compositions with the objective of identifying the compositional drivers that lead to crystallization and poor chemical durability. The second task focused on detailed characterization of more complex waste glass compositions with unexpectedly poor chemical durabilities. The third task focused on determining the structure of select high level waste glasses made with varying frit compositions in order to improve models under development for predicting the melt rate of the Defense Waste Processing Facility (DWPF) glasses. The majority of these tasks were carried out at SIA Radon. Selection and fabrication of the glass compositions, along with chemical composition measurements and evaluations of durability were carried out at SRNL and are described in this report. SIA Radon provided three summary reports based on the outcome of the three tasks. These reports are included as appendices to this document. Briefly, the result of characterization of the Task 1 glasses may indicate that glass compositions where iron is predominantly tetrahedrally coordinated have more of a tendency to crystallize nepheline or nepheline-like phases. For the Task 2 glasses, the results suggested that the relatively low fraction of tetrahedrally coordinated boron and the relatively low concentrations of Al{sub 2}O{sub 3} available to form [BO{sub 4/2}]{sup -}Me{sup +} and [AlO{sub 4/2}]{sup -}Me{sup +} tetrahedral units are not sufficient to consume all of the alkali ions, and thus these alkali ions are easily leached from the glasses. All of the twelve Task 3 glass compositions were determined to be mainly amorphous, with some minor spinel phases. Several key structural units such as metasilicate chains and rings were identified, which confirms the current modeling approach for the silicate phase. The coordination of aluminum and iron was found to be mainly tetrahedral, with some octahedral iron ions. In all samples, trigonally-coordinated boron was determined to dominate over tetrahedrally-coordinated boron. The results further suggested that BO{sub 4} tetrahedra and BO{sub 3} triangles form complex borate units and may be present as separate constituents. However, no quantification of tetrahedral-to-trigonal boron ratio was made.

  20. Toward Understanding the Effect of Nuclear Waste Glass Composition on Sulfur Solubility

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Vienna, John D.; Kim, Dong-Sang; Muller, I. S.; Kruger, Albert A.; Piepel, Gregory F.

    2014-10-01T23:59:59.000Z

    The concentration of sulfur in nuclear waste glass melter feed must be maintained below the point where salt accumulates on the melt surface. The allowable concentrations may range from 0.37 to over 2.05 weight percent (of SO3 on a calcined oxide basis) depending on the composition of the melter feed and processing conditions. If the amount of sulfur exceeds the melt tolerance level, a molten salt will accumulate, which may upset melter operations and potentially shorten the useful life of the melter. At the Hanford site, relatively conservative limits have been placed on sulfur loading in melter feed, which inmore »turn significantly increases the amount of glass that will be produced. Crucible-scale sulfur solubility data and scaled melter sulfur tolerance data have been collected on simulated Hanford waste glasses over the last 15 years. These data were compiled and analyzed. A model was developed to predict the solubility of SO3 in glass based on 252 simulated Hanford low-activity waste (LAW) glass compositions. This model represents the data well, accounting for over 85% of the variation in data, and was well validated. The model was also found to accurately predict the tolerance for sulfur in melter feed for 13 scaled melter tests of simulated LAW glasses. The model can be used to help estimate glass volumes and make informed decisions on process options. The model also gives quantitative estimates of component concentration effects on sulfur solubility. The components that most increase sulfur solubility are Li2O > V2O5> CaO ? P2O5 > Na2O ? B2O3 > K2O. The components that most decrease sulfur solubility are Cl > Cr2O3 > Al2O3 > ZrO2 ? SnO2 > Others ? SiO2. The order of component effects is similar to previous literature data, in most cases.« less

  1. Toward Understanding the Effect of Nuclear Waste Glass Composition on Sulfur Solubility

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Vienna, John D. [Pacific Northwest National Laboratory; Kim, Dong-Sang [Pacific Northwest National Laboratory; Muller, I. S. [The Catholic University National Laboratory; Kruger, Albert A. [Department of Energy -- Ofice of River Protection; Piepel, Gregory F. [Pacific Northwest National Laboratory

    2014-10-01T23:59:59.000Z

    The concentration of sulfur in nuclear waste glass melter feed must be maintained below the point where salt accumulates on the melt surface. The allowable concentrations may range from 0.37 to over 2.05 weight percent (of SO3 on a calcined oxide basis) depending on the composition of the melter feed and processing conditions. If the amount of sulfur exceeds the melt tolerance level, a molten salt will accumulate, which may upset melter operations and potentially shorten the useful life of the melter. At the Hanford site, relatively conservative limits have been placed on sulfur loading in melter feed, which in turn significantly increases the amount of glass that will be produced. Crucible-scale sulfur solubility data and scaled melter sulfur tolerance data have been collected on simulated Hanford waste glasses over the last 15 years. These data were compiled and analyzed. A model was developed to predict the solubility of SO3 in glass based on 252 simulated Hanford low-activity waste (LAW) glass compositions. This model represents the data well, accounting for over 85% of the variation in data, and was well validated. The model was also found to accurately predict the tolerance for sulfur in melter feed for 13 scaled melter tests of simulated LAW glasses. The model can be used to help estimate glass volumes and make informed decisions on process options. The model also gives quantitative estimates of component concentration effects on sulfur solubility. The components that most increase sulfur solubility are Li2O > V2O5> CaO ? P2O5 > Na2O ? B2O3 > K2O. The components that most decrease sulfur solubility are Cl > Cr2O3 > Al2O3 > ZrO2 ? SnO2 > Others ? SiO2. The order of component effects is similar to previous literature data, in most cases.

  2. Rhenium Solubility in Borosilicate Nuclear Waste Glass: Implications for the Processing and Immobilization of Technetium-99

    SciTech Connect (OSTI)

    McCloy, John S.; Riley, Brian J.; Goel, Ashutosh; Liezers, Martin; Schweiger, Michael J.; Rodriguez, Carmen P.; Hrma, Pavel R.; Kim, Dong-Sang; Lukens, Wayne W.; Kruger, Albert A.

    2012-10-26T23:59:59.000Z

    The immobilization of 99Tc in a suitable host matrix has proved to be an arduous task for the researchers in nuclear waste community around the world. At the Hanford site in Washington State, the total amount of 99Tc in low-activity waste (LAW) is ~1300 kg and the current strategy is to immobilize the 99Tc in borosilicate glass with vitrification. In this context, the present article reports on the solubility/retention of rhenium, a nonradioactive surrogate for 99Tc, in a LAW borosilicate glass. Due to the radioactive nature of technetium, rhenium was chosen as a simulant because of the similarity between their ionic radii and other chemical aspects. The glasses containing Re (0 – 10,000 ppm by mass) were synthesized in vacuum-sealed quartz ampoules in order to minimize the loss of Re by volatilization during melting at 1000 °C. The rhenium was found to predominantly exist as Re (VII) in all the glasses as observed by X-ray absorption near-edge structure (XANES). The solubility of Re in borosilicate glasses was determined to be ~3000 ppm (by mass) with inductively coupled plasma-optical emission spectroscopy (ICP-OES). At higher rhenium concentrations, some additional material was retained in the glasses in the form of crystalline inclusions that were detected by X-ray diffraction (XRD) and laser ablation-ICP mass spectrometry (LA-ICP-MS). The implications of these results on the immobilization of 99Tc from radioactive wastes in borosilicate glasses have been discussed.

  3. Progress toward bridging from atomistic to continuum modeling to predict nuclear waste glass dissolution.

    SciTech Connect (OSTI)

    Zapol, Peter (Argonne National Laboratory, Argonne, IL); Bourg, Ian (Lawrence Berkeley National Laboratories, Berkeley, CA); Criscenti, Louise Jacqueline; Steefel, Carl I. (Lawrence Berkeley National Laboratories, Berkeley, CA); Schultz, Peter Andrew

    2011-10-01T23:59:59.000Z

    This report summarizes research performed for the Nuclear Energy Advanced Modeling and Simulation (NEAMS) Subcontinuum and Upscaling Task. The work conducted focused on developing a roadmap to include molecular scale, mechanistic information in continuum-scale models of nuclear waste glass dissolution. This information is derived from molecular-scale modeling efforts that are validated through comparison with experimental data. In addition to developing a master plan to incorporate a subcontinuum mechanistic understanding of glass dissolution into continuum models, methods were developed to generate constitutive dissolution rate expressions from quantum calculations, force field models were selected to generate multicomponent glass structures and gel layers, classical molecular modeling was used to study diffusion through nanopores analogous to those in the interfacial gel layer, and a micro-continuum model (K{mu}C) was developed to study coupled diffusion and reaction at the glass-gel-solution interface.

  4. Liquidus Temperature and Primary Crystallization Phases in High-Zirconia High-Level Waste Borosilicate Glasses

    SciTech Connect (OSTI)

    Plaisted, Trevor J.; Hrma, Pavel R.; Vienna, John D.; Jiricka, Antonin

    1999-12-09T23:59:59.000Z

    Liquidus temperature (TL) studies of high-Zr high-level waste (HLW) borosilicate glasses have identified three primary phases: baddelyite (ZrO2), zircon (ZrSiO4), and alkali-zirconium silicates, such as parakeldyshite (Na2ZrSi2O7). Using published TL data for HLW glasses with these primary phases, we have computed partial specific TLs for major glass components. On the Na2O-SiO2-ZrO2 submixture, we have determined approximate positions of the boundaries between the baddelyite, zircon, and parakeldyshite primary phase fields. The maximum that can dissolve at 1150?C in a borosilicate HLW glass subjected to common processability and acceptability constraints appears to be 16.5 mass% ZrO2.

  5. Conceptual waste package interim product specifications and data requirements for disposal of borosilicate glass defense high-level waste forms in salt geologic repositories

    SciTech Connect (OSTI)

    Not Available

    1983-06-01T23:59:59.000Z

    The conceptual waste package interim product specifications and data requirements presented are applicable specifically to the normal borosilicate glass product of the Defense Waste Processing Facility (DWPF). They provide preliminary numerical values for the defense high-level waste form parameters and properties identified in the waste form performance specification for geologic isolation in salt repositories. Subject areas treated include containment and isolation, operational period safety, criticality control, waste form/production canister identification, and waste package performance testing requirements. This document was generated for use in the development of conceptual waste package designs in salt. It will be revised as additional data, analyses, and regulatory requirements become available.

  6. Crystallization In High Level Waste (HLW) Glass Melters: Operational Experience From The Savannah River Site

    SciTech Connect (OSTI)

    Fox, K. M.

    2014-02-27T23:59:59.000Z

    processing strategy for the Hanford Tank Waste Treatment and Immobilization Plant (WTP). The basis of this alternative approach is an empirical model predicting the crystal accumulation in the WTP glass discharge riser and melter bottom as a function of glass composition, time, and temperature. When coupled with an associated operating limit (e.g., the maximum tolerable thickness of an accumulated layer of crystals), this model could then be integrated into the process control algorithms to formulate crystal tolerant high level waste (HLW) glasses targeting higher waste loadings while still meeting process related limits and melter lifetime expectancies. This report provides a review of the scaled melter testing that was completed in support of the Defense Waste Processing Facility (DWPF) melter. Testing with scaled melters provided the data to define the DWPF operating limits to avoid bulk (volume) crystallization in the un-agitated DWPF melter and provided the data to distinguish between spinels generated by K-3 refractory corrosion versus spinels that precipitated from the HLW glass melt pool. This report includes a review of the crystallization observed with the scaled melters and the full scale DWPF melters (DWPF Melter 1 and DWPF Melter 2). Examples of actual DWPF melter attainment with Melter 2 are given. The intent is to provide an overview of lessons learned, including some example data, that can be used to advance the development and implementation of an empirical model and operating limit for crystal accumulation for WTP. Operation of the first and second (current) DWPF melters has demonstrated that the strategy of using a liquidus temperature predictive model combined with a 100 °C offset from the normal melter operating temperature of 1150 °C (i.e., the predicted liquidus temperature (TL) of the glass must be 1050 °C or less) has been successful in preventing any detrimental accumulation of spinel in the DWPF melt pool, and spinel has not been observed in any of the pour stream glass samples. Spinel was observed at the bottom of DWPF Melter 1 as a result of K-3 refractory corrosion. Issues have occurred with accumulation of spinel in the pour spout during periods of operation at higher waste loadings. Given that both DWPF melters were or have been in operation for greater than 8 years, the service life of the melters has far exceeded design expectations. It is possible that the DWPF liquidus temperature approach is conservative, in that it may be possible to successfully operate the melter with a small degree of allowable crystallization in the glass. This could be a viable approach to increasing waste loading in the glass assuming that the crystals are suspended in the melt and swept out through the riser and pour spout. Additional study is needed, and development work for WTP might be leveraged to support a different operating limit for the DWPF. Several recommendations are made regarding considerations that need to be included as part of the WTP crystal tolerant strategy based on the DWPF development work and operational data reviewed here. These include: Identify and consider the impacts of potential heat sinks in the WTP melter and glass pouring system; Consider the contributions of refractory corrosion products, which may serve to nucleate additional crystals leading to further accumulation; Consider volatilization of components from the melt (e.g., boron, alkali, halides, etc.) and determine their impacts on glass crystallization behavior; Evaluate the impacts of glass REDuction/OXidation (REDOX) conditions and the distribution of temperature within the WTP melt pool and melter pour chamber on crystal accumulation rate; Consider the impact of precipitated crystals on glass viscosity; Consider the impact of an accumulated crystalline layer on thermal convection currents and bubbler effectiveness within the melt pool; Evaluate the impact of spinel accumulation on Joule heating of the WTP melt pool; and Include noble metals in glass melt experiments because of their potential to act as nucleation site

  7. Low-temperature lithium diffusion in simulated high-level boroaluminosilicate nuclear waste glasses

    SciTech Connect (OSTI)

    Neeway, James J.; Kerisit, Sebastien N.; Gin, Stephane; Wang, Zhaoying; Zhu, Zihua; Ryan, Joseph V.

    2014-12-01T23:59:59.000Z

    Ion exchange is recognized as an integral, if underrepresented, mechanism influencing glass corrosion. However, due to the formation of various alteration layers in the presence of water, it is difficult to conclusively deconvolute the mechanisms of ion exchange from other processes occurring simultaneously during corrosion. In this work, an operationally inert non-aqueous solution was used as an alkali source material to isolate ion exchange and study the solid-state diffusion of lithium. Specifically, the experiments involved contacting glass coupons relevant to the immobilization of high-level nuclear waste, SON68 and CJ-6, which contained Li in natural isotope abundance, with a non-aqueous solution of 6LiCl dissolved in dimethyl sulfoxide at 90 °C for various time periods. The depth profiles of major elements in the glass coupons were measured using time-of-flight secondary ion mass spectrometry (ToF-SIMS). Lithium interdiffusion coefficients, DLi, were then calculated based on the measured depth profiles. The results indicate that the penetration of 6Li is rapid in both glasses with the simplified CJ-6 glass (D6Li ? 4.0-8.0 × 10-21 m2/s) exhibiting faster exchange than the more complex SON68 glass (DLi ? 2.0-4.0 × 10-21 m2/s). Additionally, sodium ions present in the glass were observed to participate in ion exchange reactions; however, different diffusion coefficients were necessary to fit the diffusion profiles of the two alkali ions. Implications of the diffusion coefficients obtained in the absence of alteration layers to the long-term performance of nuclear waste glasses in a geological repository system are also discussed.

  8. Current Understanding and Remaining Challenges in Modeling Long-Term Degradation of Borosilicate Nuclear Waste Glasses

    SciTech Connect (OSTI)

    Vienna, John D. [Pacific Northwest National Laboratory (PNNL), Richland, WA (United States); Ryan, Joseph V. [Pacific Northwest National Laboratory (PNNL), Richland, WA (United States); Gin, Stephane [CEA Marcoule, DTCD SECM, Bagnols-sur-Ceze (France); Inagaki, Yaohiro [Dept. of Applied Quantum Physics and Nuclear Engineering, Kyushu University, Fukuoda (Japan)

    2013-12-01T23:59:59.000Z

    Chemical durability is not a single material property that can be uniquely measured. Instead it is the response to a host of coupled material and environmental processes whose rates are estimated by a combination of theory, experiment, and modeling. High-level nuclear waste (HLW) glass is perhaps the most studied of any material yet there remain significant technical gaps regarding their chemical durability. The phenomena affecting the long-term performance of HLW glasses in their disposal environment include surface reactions, transport properties to and from the reacting glass surface, and ion exchange between the solid glass and the surrounding solution and alteration products. The rates of these processes are strongly influenced and are coupled through the solution chemistry, which is in turn influenced by the reacting glass and also by reaction with the near-field materials and precipitation of alteration products. Therefore, those processes must be understood sufficiently well to estimate or bound the performance of HLW glass in its disposal environment over geologic time-scales. This article summarizes the current state of understanding of surface reactions, transport properties, and ion exchange along with the near-field materials and alteration products influences on solution chemistry and glass reaction rates. Also summarized are the remaining technical gaps along with recommended approaches to fill those technical gaps.

  9. The liquidus temperature of nuclear waste glasses: an international Round-Robin Study

    SciTech Connect (OSTI)

    Riley, Brian J.; Hrma, Pavel R.; Vienna, John D.; Schweiger, Michael J.; Rodriguez, Carmen P.; Crum, Jarrod V.; Lang, Jesse B.; Marra, James C.; Johnson, Fabienne; Peeler, David K.; Leonelli, Cristina; Ferrari, Anna M.; Lancellotti, Isabella; Dussossoy, Jean-Lue A.; Hand, Russell J.; Schofield, James M.; Connelly, Andrew J.; Short, Rick; Harrison, Mike T.

    2012-12-01T23:59:59.000Z

    Ten institutions from five countries participated in a Round Robin study to contribute to the Precision and Bias section of an American Society for Testing and Materials standard procedure that Pacific Northwest National Laboratory (PNNL) is developing for measuring the liquidus temperature (TL) of radioactive and simulated waste glasses. In this study, three separate TL measurement methods were a gradient temperature (GT) method, a uniform temperature (UT) method, and a crystal fraction extrapolation (CF) method. Three different glasses were measured with a combination of these three methods. The TL values reported by different institutions are generally consistent and vary within a narrow range. The precision of a TL measurement was evaluated as ±10°C regardless of the method used for making the measurement. The Round Robin glasses were all previously studied at PNNL and included ARG-1 (Glass A), Zr-9 (Glass B), and AmCm2-19 (Glass C), with measured TL values spanning the temperature range ~960-1240°C. The three methods discussed here in more detail are the GT, UT, and CF methods. A best-case precision for TL has been obtained from the data, even though the data were not acquired for all three glasses using all three methods from each participating organization.

  10. Progress and Status of the Ignalina Nuclear Power Plant's New Solid Waste Management and Storage Facilities

    SciTech Connect (OSTI)

    Rausch, J.; Henderson, R.W. [NUKEM Technologies GmbH, Alzenau (Germany); Penkov, V. [State Enterprise Ignalina Nuclear Power Plant, Visaginas (Lithuania)

    2008-07-01T23:59:59.000Z

    A considerable amount of dry radioactive waste from former NPP operation has accumulated up to date and is presently stored at the Ignalina NPP site, Lithuania. Current storage capacities are nearly exhausted and more waste is to come from future decommissioning of the two RMBKtype reactors. Additionally, the existing storage facilities does not comply to the state-of-the-art technology for handling and storage of radioactive waste. In 2005, INPP faced this situation of a need for waste processing and subsequent interim storage of these wastes by contracting NUKEM with the design, construction, installation and commissioning of new waste management and storage facilities. The subject of this paper is to describe the scope and the status of the new solid waste management and storage facilities at the Ignalina Nuclear Power Plant. In summary: The turnkey contract for the design, supply and commission of the SWMSF was awarded in December 2005. The realisation of the project was initially planned within 48 month. The basic design was finished in August 2007 and the Technical Design Documentation and Preliminary Safety Analyses Report was provided to Authorities in October 2007. The construction license is expected in July 2008. The procurement phase was started in August 2007, start of onsite activities is expected in November 2007. The start of operation of the SWMSF is scheduled for end of 2009. (authors)

  11. EA-0981: Solid Waste Retrieval Complex, Enhanced Radioactive and Mixed Waste Storage Facility, Infrastructure Upgrades, and Central Waste Support Complex, Hanford Site, Richland, Washington

    Broader source: Energy.gov [DOE]

    This EA evaluates the environmental impacts of the proposal to retrieve transuranic waste (TRU), provide storage capacity for retrieved and newly generated TRU, Greater-than-Category 3, and mixed...

  12. Method of making nanostructured glass-ceramic waste forms

    DOE Patents [OSTI]

    Gao, Huizhen; Wang, Yifeng; Rodriguez, Mark A.; Bencoe, Denise N.

    2014-07-08T23:59:59.000Z

    A waste form for and a method of rendering hazardous materials less dangerous is disclosed that includes fixing the hazardous material in nanopores of a nanoporous material, reacting the trapped hazardous material to render it less volatile/soluble, and vitrifying the nanoporous material containing the less volatile/soluble hazardous material.

  13. Toward Understanding the Effect of Low-Activity Waste Glass Composition on Sulfur Solubility

    SciTech Connect (OSTI)

    Vienna, John D.; Kim, Dong-Sang; Muller, Isabelle S.; Piepel, Gregory F.; Kruger, Albert A.

    2014-10-01T23:59:59.000Z

    The concentration of sulfur in nuclear waste glass melter feed must be maintained below the point where salt accumulates on the melt surface. The allowable concentrations may range from 0.37 to over 2.05 weight percent (of SO3 on a calcined oxide basis). If the amount of sulfur exceeds its tolerance level a molten salt will accumulate and upset melter operations and potentially shorten melter useful life. Therefore relatively conservative limits have been placed on sulfur loading in melter feed which in-turn significantly impacts the amount of glass that will be produced, in particular at the Hanford site. Crucible-scale sulfur solubility data and scaled melter sulfur tolerance data have been collected on simulated Hanford waste glasses over the last 15 years. These data were compiled and analyzed. A model was developed to predict the solubility of SO3 in glass based on 312 individual glass compositions. This model was shown to well represent the data, accounting for over 80% of the variation in data and was well validated. The model was also found to accurately predict the tolerance for sulfur in melter feed based on 19 scaled melter tests. The model is appropriate for control of waste glass processing which includes uncertainty quantification. The model also gives quantitative estimates of component concentration effects on sulfur solubility. The components that most increase sulfur solubility are Li2O > V2O5 ? TiO2 < CaO < P2O5 ? ZnO. The components that most decrease sulfur solubility are Cl > Cr2O3 > SiO2 ? ZrO2 > Al2O3.

  14. EA-0820: Construction of Mixed Waste Storage RCRA Facilities, Buildings 7668 and 7669, Oak Ridge, Tennessee

    Broader source: Energy.gov [DOE]

    This EA evaluates the environmental impacts of a proposal to construct and operate two mixed (both radioactive and hazardous) waste storage facilities (Buildings 7668 and 7669) in accordance with...

  15. Kinetic model for quartz and spinel dissolution during melting of high-level-waste glass batch

    SciTech Connect (OSTI)

    Pokorny, Richard; Rice, Jarrett A.; Crum, Jarrod V.; Schweiger, Michael J.; Hrma, Pavel R.

    2013-07-24T23:59:59.000Z

    The dissolution of quartz particles and the growth and dissolution of crystalline phases during the conversion of batch to glass potentially affects both the glass melting process and product quality. Crystals of spinel exiting the cold cap to molten glass below can be troublesome during the vitrification of iron-containing high-level wastes. To estimate the distribution of quartz and spinel fractions within the cold cap, we used kinetic models that relate fractions of these phases to temperature and heating rate. Fitting the model equations to data showed that the heating rate, apart from affecting quartz and spinel behavior directly, also affects them indirectly via concurrent processes, such as the formation and motion of bubbles. Because of these indirect effects, it was necessary to allow one kinetic parameter (the pre-exponential factor) to vary with the heating rate. The resulting kinetic equations are sufficiently simple for the detailed modeling of batch-to-glass conversion as it occurs in glass melters. The estimated fractions and sizes of quartz and spinel particles as they leave the cold cap, determined in this study, will provide the source terms needed for modeling the behavior of these solid particles within the flow of molten glass in the melter.

  16. The Effect of Composition on Spinel Equilibrium and Crystal Size in High-Level Waste Glass

    SciTech Connect (OSTI)

    Wilson, B. K.; Hrma, Pavel R.; Alton, Jesse; Plaisted, Trevor J.; Vienna, John D.

    2002-12-15T23:59:59.000Z

    The equilibrium concentration (Co) of spinel was measured in 16 high-level waste (HLW) glasses as a function of temperature (T). Glasses were formulated by increasing or decreasing concentrations of Al2O3, Cr2O3, Fe2O3, Li2O, MgO, Na2O, or NiO, one-at-a-time, from a baseline composition. Data were fitted using the quasi-ideal-solution relationship between Co and T. The coefficients of this relationship were expressed as functions of glass composition using first-order approximation. All glass components had an effect on liquidus temperature (TL), but only NiO and Fe2O3 had a significant impact on spinel concentration below TL. The temperature at which Co had a given value was also expressed as a function of glass composition. These results can be used to optimize a HLW glass formulation to meet a constraint of either no spinel or a limited spinel fraction in the melter. In addition, the measurement of the size of spinel crystals and subsequent calculation of crystal number density (n) showed that Cr2O4 and Al2O3 increase n.

  17. Silicate Based Glass Formulations for Immobilization of U.S. Defense Wastes Using Cold Crucible Induction Melters

    SciTech Connect (OSTI)

    Smith, Gary L.; Kim, Dong-Sang; Schweiger, Michael J.; Marra, James C.; Lang, Jesse B.; Crum, Jarrod V.; Crawford, Charles L.; Vienna, John D.

    2014-05-22T23:59:59.000Z

    The cold crucible induction melter (CCIM) is an alternative technology to the currently deployed liquid-fed, ceramic-lined, Joule-heated melter for immobilizing of U.S. tank waste generated from defense related reprocessing. In order to accurately evaluate the potential benefits of deploying a CCIM, glasses must be developed specifically for that melting technology. Related glass formulation efforts have been conducted since the 1990s including a recent study that is first documented in this report. The purpose of this report is to summarize the silicate base glass formulation efforts for CCIM testing of U.S. tank wastes. Summaries of phosphate based glass formulation and phosphate and silicate based CCIM demonstration tests are reported separately (Day and Ray 2013 and Marra 2013, respectively). Combined these three reports summarize the current state of knowledge related to waste form development and process testing of CCIM technology for U.S. tank wastes.

  18. Conceptual design report for immobilized high-level waste interim storage facility (Phase 1)

    SciTech Connect (OSTI)

    Burgard, K.C.

    1998-04-09T23:59:59.000Z

    The Hanford Site Canister Storage Building (CSB Bldg. 212H) will be utilized to interim store Phase 1 HLW products. Project W-464, Immobilized High-Level Waste Interim Storage, will procure an onsite transportation system and retrofit the CSB to accommodate the Phase 1 HLW products. The Conceptual Design Report establishes the Project W-464 technical and cost basis.

  19. Conceptual design report for immobilized high-level waste interim storage facility (Phase 1)

    SciTech Connect (OSTI)

    Burgard, K.C.

    1998-06-02T23:59:59.000Z

    The Hanford Site Canister Storage Building (CSB Bldg. 212H) will be utilized to interim store Phase 1 HLW products. Project W-464, Immobilized High-Level Waste Interim Storage, will procure an onsite transportation system and retrofit the CSB to accommodate the Phase 1 HLW products. The Conceptual Design Report establishes the Project W-464 technical and cost basis.

  20. EM-21 HIGHER WASTE LOADING GLASSES FOR ENHANCED DOE HIGH-LEVEL WASTE MELTER THROUGHPUT STUDIES - 10194

    SciTech Connect (OSTI)

    Raszewski, F.; Peeler, D.; Edwards, T.

    2009-11-18T23:59:59.000Z

    Supplemental validation data has been generated that will be used to determine the applicability of the current Defense Waste Processing Facility (DWPF) liquidus temperature (T{sub L}) model to expanded DWPF glass regions of interest based on higher waste loadings. For those study glasses which had very close compositional overlap with the model development and/or model validation ranges (except TiO{sub 2} and MgO concentrations), there was very little difference in the predicted and measured TL values, even though the TiO{sub 2} contents were above the 2 wt% upper limit. The results indicate that the current T{sub L} model is applicable in these compositional regions. As the compositional overlap between the model validation ranges diverged from the target glass compositions, the T{sub L} data suggest that the model under-predicted the measured values. These discrepancies imply that there are individual oxides or their combinations that were outside of the model development and/or validation range over which the model was previously assessed. These oxides include B{sub 2}O{sub 3}, SiO{sub 2}, MnO, TiO{sub 2} and/or their combinations. More data is required to fill in these anticipated DWPF compositional regions so that the model coefficients could be refit to account for these differences.

  1. Calcined Waste Storage at the Idaho Nuclear Technology and Engineering Center

    SciTech Connect (OSTI)

    M. D. Staiger

    2007-06-01T23:59:59.000Z

    This report provides a quantitative inventory and composition (chemical and radioactivity) of calcined waste stored at the Idaho Nuclear Technology and Engineering Center. From December 1963 through May 2000, liquid radioactive wastes generated by spent nuclear fuel reprocessing were converted into a solid, granular form called calcine. This report also contains a description of the calcine storage bins.

  2. Cold-cap reactions in vitrification of nuclear waste glass: experiments and modeling

    SciTech Connect (OSTI)

    Chun, Jaehun; Pierce, David A.; Pokorny, Richard; Hrma, Pavel R.

    2013-05-01T23:59:59.000Z

    Cold-cap reactions are multiple overlapping reactions that occur in the waste-glass melter during the vitrification process when the melter feed is being converted to molten glass. In this study, we used differential scanning calorimetry (DSC) to investigate cold-cap reactions in a high-alumina high-level waste melter feed. To separate the reaction heat from both sensible heat and experimental instability, we employed the run/rerun method, which enabled us to define the degree of conversion based on the reaction heat and to estimate the heat capacity of the reacting feed. Assuming that the reactions are nearly independent and can be approximated by the nth order kinetics, we obtained the kinetic parameters using the Kissinger method combined with least squares analysis. The resulting mathematical simulation of the cold-cap reactions provides a key element for the development of an advanced cold-cap model.

  3. Hanford Site waste treatment/storage/disposal integration

    SciTech Connect (OSTI)

    MCDONALD, K.M.

    1999-02-24T23:59:59.000Z

    In 1998 Waste Management Federal Services of Hanford, Inc. began the integration of all low-level waste, mixed waste, and TRU waste-generating activities across the Hanford site. With seven contractors, dozens of generating units, and hundreds of waste streams, integration was necessary to provide acute waste forecasting and planning for future treatment activities. This integration effort provides disposition maps that account for waste from generation, through processing, treatment and final waste disposal. The integration effort covers generating facilities from the present through the life-cycle, including transition and deactivation. The effort is patterned after the very successful DOE Complex EM Integration effort. Although still in the preliminary stages, the comprehensive onsite integration effort has already reaped benefits. These include identifying significant waste streams that had not been forecast, identifying opportunities for consolidating activities and services to accelerate schedule or save money; and identifying waste streams which currently have no path forward in the planning baseline. Consolidation/integration of planned activities may also provide opportunities for pollution prevention and/or avoidance of secondary waste generation. A workshop was held to review the waste disposition maps, and to identify opportunities with potential cost or schedule savings. Another workshop may be held to follow up on some of the long-term integration opportunities. A change to the Hanford waste forecast data call would help to align the Solid Waste Forecast with the new disposition maps.

  4. The effect of high-level waste glass composition on spinel liquidus temperature

    SciTech Connect (OSTI)

    Hrma, Pavel R.; Riley, Brian J.; Crum, Jarrod V.; Matyas, Josef

    2014-01-15T23:59:59.000Z

    Spinel crystals precipitate in high-level waste glasses containing Fe, Cr, Ni , Mn, Zn, and Ru. The liquidus temperature (TL) of spinel as the primary crystallization phase is a function of glass composition and the spinel solubility (c0) is a function of both glass composition and temperature (T). Previously reported models of TL as a function of composition are based on TL measured directly, which requires laborious experimental procedures. Viewing the curve of c0 versus T as the liquidus line allows a significant broadening of the composition region for model fitting. This paper estimates TL as a function of composition based on c0 data obtained with the X-ray diffraction technique.

  5. The effect of high-level waste glass composition on spinel liquidus temperature

    SciTech Connect (OSTI)

    Kruger, A. A. [Department of Energy, Office of River Protection, Richland, Washington (United States); Riley, Brian J. [Pacific Northwest National Laboratory (PNNL), Richland, WA (United States); Crum, Jarrod V. [Pacific Northwest National Laboratory (PNNL), Richland, WA (United States); Hrma, Pavel [Pacific Northwest National Laboratory (PNNL), Richland, WA (United States); Matyas, Josef [Pacific Northwest National Laboratory (PNNL), Richland, WA (United States)

    2012-11-15T23:59:59.000Z

    Spinel crystals precipitate in high-level waste glasses containing Fe, Cr, Ni, Mn, Zn, and Ru. The liquidus temperature (T{sub L}d) of spinel as the primary crystallization phase is a function of glass composition, and the spinel solubility (c{sub o}) is a function of both glass composition and temperature (T). Previously reported models of T{sub L} as a function of composition are based on T{sub L} measured directly, which requires laborious experimental procedures. Viewing the curve of c{sub o} versus T as the liquidus line allows a significant broadening of the composition region for model fitting. This paper estimates T{sub L} as a function of composition based on c{sub o} data obtained with the X-ray diffraction technique.

  6. A new Energy Saving method of manufacturing ceramic products from waste glass

    SciTech Connect (OSTI)

    Haun Labs

    2002-07-05T23:59:59.000Z

    This final report summarizes the activities of the DOE Inventions and Innovations sponsored project, ''A New Energy Saving Method of Manufacturing Ceramic Products from Waste Glass.'' The project involved an innovative method of lowering energy costs of manufacturing ceramic products by substituting traditional raw materials with waste glass. The processing method is based on sintering of glass powder at {approx}750 C to produce products which traditionally require firing temperatures of >1200 C, or glass-melting temperatures >1500 C. The key to the new method is the elimination of previous processing problems, which have greatly limited the use of recycled glass as a ceramic raw material. The technology is aligned with the DOE-OIT Glass Industry Vision and Roadmap, and offers significant energy savings and environmental benefits compared to current technologies. A U.S. patent (No. 6,340,650) covering the technology was issued on January 22, 2002. An international PCT Patent Application is pending with designations made for all PCT regions and countries. The goal of the project was to provide the basis for the design and construction of an energy-efficient manufacturing plant that can convert large volumes of waste glass into high-quality ceramic tile. The main objectives of the project were to complete process development and optimization; construct and test prototype samples; and conduct market analysis and commercialization planning. Two types of ceramic tile products were targeted by the project. The first type was developed during the first year (Phase I) to have a glazed-like finish for applications where slip resistance is not critical, such as wall tile. The processing method optimized in Phase I produces a glossy surface with a translucent appearance, without the extra glazing steps required in traditional tile manufacturing. The second type of product was developed during the second year (Phase II). This product was designed to have an unglazed appearance for applications requiring slip resistance, such as floor tile. The coarser matte finish of this product type was produced by modifying the basic process to include crystalline fillers and partial crystallization of the glass. Additional details of the project results are discussed in Section III.

  7. The kinetics of spinel crystallization from a high-level waste glass

    SciTech Connect (OSTI)

    Reynolds, J.G. [Univ. of Idaho, Moscow, ID (United States). Div. of Soils; Hrma, P. [Pacific Northwest National Lab., Richland, WA (United States)

    1997-12-31T23:59:59.000Z

    The kinetics of spinel crystallization from a molten high-iron simulated high-level nuclear waste glass was studied using isothermal heat treatments. Optical microscopy with image analysis was used to measure volume fraction of spinel as a function of heat treatment time and temperature. The Johnson-Mehl-Avrami equation was fitted to data to determine kinetic coefficients for spinel crystallization. The liquidus temperature and Avrami number are T{sub L} = 1,337K and n = 1.5.

  8. EIS-0212: Safe Interim Storage of Hanford Tank Wastes, Hanford Site, Richland, WA

    Broader source: Energy.gov [DOE]

    This environmental impact statement asseses Department of Energy and Washington State Department of Ecology maintanence of safe storage of high-level radioactive wastes currently stored in the older single-shell tanks, the Watchlist Tank 101-SY, and future waste volumes associated with tank farm and other Hanford facility operations, including a need to provide a modern safe, reliable, and regulatory-compliant replacement cross-site transfer capability. The purpose of this action is to prevent uncontrolled releases to the environment by maintaining safe storage of high-level tank wastes.

  9. Decommissioning and Dismantling of Liquid Waste Storage and Liquid Waste Treatment Facility from Paldiski Nuclear Site, Estonia

    SciTech Connect (OSTI)

    Varvas, M. [AS ALARA, Leetse tee 21, Paldiski, 76806 (Estonia); Putnik, H. [Delegation of the European Commission to Russia, Kadashevskaja nab. 14/1 119017 Moscow (Russian Federation); Nirvin, B.; Pettersson, S. [SKB, Box 5864, Stockholm, SE-102 40 (Sweden); Johnsson, B. [Studsvik RadWaste, Nykoping, SE-611 82 (Sweden)

    2006-07-01T23:59:59.000Z

    The Paldiski Nuclear Facility in Estonia, with two nuclear reactors was owned by the Soviet Navy and was used for training the navy personnel to operate submarine nuclear reactors. After collapse of Soviet Union the Facility was shut down and handed over to the Estonian government in 1995. In co-operation with the Paldiski International Expert Reference Group (PIERG) decommission strategy was worked out and started to implement. Conditioning of solid and liquid operational waste and dismantling of contaminated installations and buildings were among the key issues of the Strategy. Most of the liquid waste volume, remained at the Facility, was processed in the frames of an Estonian-Finnish co-operation project using a mobile wastewater purification unit NURES (IVO International OY) and water was discharged prior to the site take-over. In 1999-2002 ca 120 m{sup 3} of semi-liquid tank sediments (a mixture of ion exchange resins, sand filters, evaporator and flocculation slurry), remained after treatment of liquid waste were solidified in steel containers and stored into interim storage. The project was carried out under the Swedish - Estonian co-operation program on radiation protection and nuclear safety. Contaminated installations in buildings, used for treatment and storage of liquid waste (Liquid Waste Treatment Facility and Liquid Waste Storage) were then dismantled and the buildings demolished in 2001-2004. (authors)

  10. METHODOLOGY & CALCULATIONS FOR THE ASSIGNMENT OF WASTE GROUPS FOR THE LARGE UNDERGROUND WASTE STORAGE TANKS AT THE HANFORD SITE

    SciTech Connect (OSTI)

    BARKER, S.A.

    2006-07-27T23:59:59.000Z

    Waste stored within tank farm double-shell tanks (DST) and single-shell tanks (SST) generates flammable gas (principally hydrogen) to varying degrees depending on the type, amount, geometry, and condition of the waste. The waste generates hydrogen through the radiolysis of water and organic compounds, thermolytic decomposition of organic compounds, and corrosion of a tank's carbon steel walls. Radiolysis and thermolytic decomposition also generates ammonia. Nonflammable gases, which act as dilutents (such as nitrous oxide), are also produced. Additional flammable gases (e.g., methane) are generated by chemical reactions between various degradation products of organic chemicals present in the tanks. Volatile and semi-volatile organic chemicals in tanks also produce organic vapors. The generated gases in tank waste are either released continuously to the tank headspace or are retained in the waste matrix. Retained gas may be released in a spontaneous or induced gas release event (GRE) that can significantly increase the flammable gas concentration in the tank headspace as described in RPP-7771. The document categorizes each of the large waste storage tanks into one of several categories based on each tank's waste characteristics. These waste group assignments reflect a tank's propensity to retain a significant volume of flammable gases and the potential of the waste to release retained gas by a buoyant displacement event. Revision 5 is the annual update of the methodology and calculations of the flammable gas Waste Groups for DSTs and SSTs.

  11. METHODOLOGY & CALCULATIONS FOR THE ASSIGNMENT OF WASTE FOR THE LARGE UNDERGROUND WASTE STORAGE TANKS AT THE HANFORD SITE

    SciTech Connect (OSTI)

    TU, T.A.

    2007-01-04T23:59:59.000Z

    Waste stored within tank farm double-shell tanks (DST) and single-shell tanks (SST) generates flammable gas (principally hydrogen) to varying degrees depending on the type, amount, geometry, and condition of the waste. The waste generates hydrogen through the radiolysis of water and organic compounds, thermolytic decomposition of organic compounds, and corrosion of a tank's carbon steel walls. Radiolysis and thermolytic decomposition also generates ammonia. Nonflammable gases, which act as dilutents (such as nitrous oxide), are also produced. Additional flammable gases (e.g., methane) are generated by chemical reactions between various degradation products of organic chemicals present in the tanks. Volatile and semi-volatile organic chemicals in tanks also produce organic vapors. The generated gases in tank waste are either released continuously to the tank headspace or are retained in the waste matrix. Retained gas may be released in a spontaneous or induced gas release event (GRE) that can significantly increase the flammable gas concentration in the tank headspace as described in RPP-7771, Flammable Gas Safety Isme Resolution. Appendices A through I provide supporting information. The document categorizes each of the large waste storage tanks into one of several categories based on each tank's waste and characteristics. These waste group assignments reflect a tank's propensity to retain a significant volume of flammable gases and the potential of the waste to release retained gas by a buoyant displacement event. Revision 6 is the annual update of the flammable gas Waste Groups for DSTs and SSTs.

  12. Sedimentation behavior of noble metal particles in simulated high-level waste borosilicate glasses

    SciTech Connect (OSTI)

    Nakajima, M.; Ohyama, K.; Morikawa, Y.; Miyauchi, A.; Yamashita, T. [Japan Atomic Energy Agency, 4-33 Muramatsu, Tokai-mura, Naka-gun, Ibaraki 319-1109 (Japan); Komamine, S.; Ochi, E. [Japan Nuclear Fuel Limited, Bussan-Bldg. Bekkan, 1-1-5 Nishi-Shinbashi Minato-ku, Tokyo 105-0003 (Japan)

    2013-07-01T23:59:59.000Z

    Solubility of noble metal elements (NME) in the melted borosilicate glass is much smaller than its normal concentration of the high level liquid waste. Thus most of NME show small particles in the melted glass and tend to sediment in the bottom region of the vitrification melter due to their higher density than that of glass. Experiments of the sedimentation of NME particles in the melted glass were carried out under static condition. Three conditions of initial NME concentration (1.1, 3.0, 6.1 wt % with an equivalent for each oxide) in the simulated glass were set and held at 1100 C. degrees up to 2880 hours. The specimen with 1.1 wt % initial NME concentration indicated zone settling, and the settling rate of the interface is constant: 2.4 mm/h. This sedimentation behavior is the type of rapid settling. Following the rapid settling, the settling rate goes gradually slower; this is the type of compressive settling. The specimens with 3.0 wt % and 6.1 wt % initial NME concentration showed compression settling from the beginning. From the settling curve of the interface, the maximum concentration of NME in sediment was estimated to be around 23- 26 wt %. Growth of NME particles was observed by holding at 1100 C. degrees for up to 2880 hours. The viscosity becomes higher as NME concentration increases and the dependence on shear rate becomes simultaneously stronger. The effect of the particle growth to viscosity appears to be not significant.

  13. THE STRUCTURAL CHEMISTRY OF MOLYBDENUM IN MODEL HIGH LEVEL NUCLEAR WASTE GLASSES, INVESTIGATED BY MO K-EDGE X-RAY ABSORPTION

    E-Print Network [OSTI]

    Sheffield, University of

    THE STRUCTURAL CHEMISTRY OF MOLYBDENUM IN MODEL HIGH LEVEL NUCLEAR WASTE GLASSES, INVESTIGATED of molybdenum in model UK high level nuclear waste glasses was investigated by X-ray Absorption Spectroscopy (XAS). Molybdenum K-edge XAS data were acquired from several inactive simulant high level nuclear waste

  14. Environmental assessment for the construction and operation of waste storage facilities at the Paducah Gaseous Diffusion Plant, Paducah, Kentucky

    SciTech Connect (OSTI)

    NONE

    1994-06-01T23:59:59.000Z

    DOE is proposing to construct and operate 3 waste storage facilities (one 42,000 ft{sup 2} waste storage facility for RCRA waste, one 42,000 ft{sup 2} waste storage facility for toxic waste (TSCA), and one 200,000 ft{sup 2} mixed (hazardous/radioactive) waste storage facility) at Paducah. This environmental assessment compares impacts of this proposed action with those of continuing present practices aof of using alternative locations. It is found that the construction, operation, and ultimate closure of the proposed waste storage facilities would not significantly affect the quality of the human environment within the meaning of NEPA; therefore an environmental impact statement is not required.

  15. Toward Understanding the Effect of Nuclear Waste Glass Composition on Sulfur Solubility

    SciTech Connect (OSTI)

    Vienna, John D. [Pacific Northwest National Laboratory; Kim, Dong-Sang [Pacific Northwest National Laboratory; Muller, I. S. [The Catholic University National Laboratory; Kruger, Albert A. [Department of Energy -- Ofice of River Protection; Piepel, Gregory F. [Pacific Northwest National Laboratory

    2014-10-01T23:59:59.000Z

    The concentration of sulfur in nuclear waste glass melter feed must be maintained below the point where salt accumulates on the melt surface. The allowable concentrations may range from 0.37 to over 2.05 weight percent (of SO3 on a calcined oxide basis) depending on the composition of the melter feed and processing conditions. If the amount of sulfur exceeds the melt tolerance level, a molten salt will accumulate, which may upset melter operations and potentially shorten the useful life of the melter. At the Hanford site, relatively conservative limits have been placed on sulfur loading in melter feed, which in turn significantly increases the amount of glass that will be produced. Crucible-scale sulfur solubility data and scaled melter sulfur tolerance data have been collected on simulated Hanford waste glasses over the last 15 years. These data were compiled and analyzed. A model was developed to predict the solubility of SO3 in glass based on 252 simulated Hanford low-activity waste (LAW) glass compositions. This model represents the data well, accounting for over 85% of the variation in data, and was well validated. The model was also found to accurately predict the tolerance for sulfur in melter feed for 13 scaled melter tests of simulated LAW glasses. The model can be used to help estimate glass volumes and make informed decisions on process options. The model also gives quantitative estimates of component concentration effects on sulfur solubility. The components that most increase sulfur solubility are Li2O > V2O5> CaO ? P2O5 > Na2O ? B2O3 > K2O. The components that most decrease sulfur solubility are Cl > Cr2O3 > Al2O3 > ZrO2 ? SnO2 > Others ? SiO2. The order of component effects is similar to previous literature data, in most cases.

  16. Na, Mg, Ni and Cs distribution and speciation after long-term alteration of a simulated nuclear waste glass

    E-Print Network [OSTI]

    distribution and speciation of Na, Mg, Ni and Cs in a simulated (inactive) nuclear waste glass were studied and Cs represent dose determining long-lived radionuclides (59 Ni, 135 Cs) in vitrified nuclear wasteNa, Mg, Ni and Cs distribution and speciation after long-term alteration of a simulated nuclear

  17. Radioactive waste shipments to Hanford Retrievable Storage from the General Electric Vallecitos Nuclear Center, Pleasanton, California

    SciTech Connect (OSTI)

    Vejvoda, E.J.; Pottmeyer, J.A.; DeLorenzo, D.S.; Weyns-Rollosson, M.I. [Los Alamos Technical Associates, Inc., NM (United States); Duncan, D.R. [Westinghouse Hanford Co., Richland, WA (United States)

    1993-10-01T23:59:59.000Z

    During the next two decades the transuranic (TRU) wastes now stored in the burial trenches and storage facilities at the Hanford Site are to be retrieved, processed at the Waste Receiving and Processing Facility, and shipped to the Waste Isolation Pilot Plant near Carlsbad, New Mexico for final disposal. Approximately 3.8% of the TRU waste to be retrieved for shipment to WIPP was generated at the General Electric (GE) Vallecitos Nuclear Center (VNC) in Pleasanton, California and shipped to the Hanford Site for storage. The purpose of this report is to characterize these radioactive solid wastes using process knowledge, existing records, and oral history interviews. The waste was generated almost exclusively from the activities, of the Plutonium Fuels Development Laboratory and the Plutonium Analytical Laboratory. Section 2.0 provides further details of the VNC physical plant, facility operations, facility history, and current status. The solid radioactive wastes were associated with two US Atomic Energy Commission/US Department of Energy reactor programs -- the Fast Ceramic Reactor (FCR) program, and the Fast Flux Test Reactor (FFTR) program. These programs involved the fabrication and testing of fuel assemblies that utilized plutonium in an oxide form. The types and estimated quantities of waste resulting from these programs are discussed in detail in Section 3.0. A detailed discussion of the packaging and handling procedures used for the VNC radioactive wastes shipped to the Hanford Site is provided in Section 4.0. Section 5.0 provides an in-depth look at this waste including the following: weight and volume of the waste, container types and numbers, physical description of the waste, radiological components, hazardous constituents, and current storage/disposal locations.

  18. APPLICATION OF BOREHOLE GEOPHYSICS AT AN EXPERIMENTAL WASTE STORAGE SITE

    E-Print Network [OSTI]

    Nelson, P.H.

    2014-01-01T23:59:59.000Z

    letal Ore Deposits, 11 in Geophysics and Geochemistry in the11 Applications of Borehole Geophysics to Water-ResourcesAPPLICATION OF BOREHOLE GEOPHYSICS AT AN EXPERIMENTAL WASTE

  19. Fire hazards analysis of transuranic waste storage and assay facility

    SciTech Connect (OSTI)

    Busching, K.R., Westinghouse Hanford

    1996-07-31T23:59:59.000Z

    This document analyzes the fire hazards associated with operations at the Central Waste Complex. It provides the analysis and recommendations necessary to ensure compliance with applicable fire codes.

  20. Hanford facility dangerous waste permit application, 616 Nonradioactive dangerous waste storage facility

    SciTech Connect (OSTI)

    Price, S.M.

    1997-04-30T23:59:59.000Z

    This chapter provides information on the physical, chemical, and biological characteristics of the waste stored at the 616 NRDWSF. A waste analysis plan is included that describes the methodology used for determining waste types.

  1. Study on the colloids generated from testing of high-level nuclear waste glasses

    SciTech Connect (OSTI)

    Feng, X.; Buck, E.C.; Mertz, C.; Bates, J.K.; Cunnane, J.C.; Chaiko, D.J.

    1993-03-01T23:59:59.000Z

    The generation of colloids in the interaction of high-level nuclear waste glasses with groundwater at 90{degrees}C has been investigated. The stability of the colloidal suspensions has been characterized with respect to salt concentration, pH time, particle size, and zeta potential. The compositions and the morphology of the colloids have also been determined with transmission electron microscopy (TEM). From ourtest results combined with earlier ones, we conclude that the waste glass may contribute to the colloid formation by increasing ion concentration in groundwater, which causes nucleation of colloids; by releasing radionuclides that adsorb onto existing groundwater colloids; and by spalling colloidal-size fragments from the surface layer of the reacted glass. The colloids are silicon-rich particles, such as smectites and uranium silicates. When the salt concentration in the solution is high the colloidal suspensions agglomerate. However, the agglomerated particles can be resuspended if the salt concentration is lowered by dilution with groundwater. The colloids agglomerate quickly after the leachate is cooled to room temperature. Most of the colloids settle out of the solution within a few days at ambient temperature. The isoelectric point is at a pH of approximately 1.0. Between pH 1 and 10.5, the colloids are negatively charged, which suggests that they will deposit readily on, positively charged surfaces. The average particle size islargest at the isoelectric point and is smallest around pH 6.

  2. Study on the colloids generated from testing of high-level nuclear waste glasses

    SciTech Connect (OSTI)

    Feng, X.; Buck, E.C.; Mertz, C.; Bates, J.K.; Cunnane, J.C.; Chaiko, D.J.

    1993-01-01T23:59:59.000Z

    The generation of colloids in the interaction of high-level nuclear waste glasses with groundwater at 90[degrees]C has been investigated. The stability of the colloidal suspensions has been characterized with respect to salt concentration, pH time, particle size, and zeta potential. The compositions and the morphology of the colloids have also been determined with transmission electron microscopy (TEM). From ourtest results combined with earlier ones, we conclude that the waste glass may contribute to the colloid formation by increasing ion concentration in groundwater, which causes nucleation of colloids; by releasing radionuclides that adsorb onto existing groundwater colloids; and by spalling colloidal-size fragments from the surface layer of the reacted glass. The colloids are silicon-rich particles, such as smectites and uranium silicates. When the salt concentration in the solution is high the colloidal suspensions agglomerate. However, the agglomerated particles can be resuspended if the salt concentration is lowered by dilution with groundwater. The colloids agglomerate quickly after the leachate is cooled to room temperature. Most of the colloids settle out of the solution within a few days at ambient temperature. The isoelectric point is at a pH of approximately 1.0. Between pH 1 and 10.5, the colloids are negatively charged, which suggests that they will deposit readily on, positively charged surfaces. The average particle size islargest at the isoelectric point and is smallest around pH 6.

  3. Statement of position of the United States Department of Energy in the matter of proposed rulemaking on the storage and disposal of nuclear waste (waste confidence rulemaking)

    SciTech Connect (OSTI)

    None

    1980-04-15T23:59:59.000Z

    Purpose of this proceeding is to assess generically the degree of assurance that the radioactive waste can be safely disposed of, to determine when such disposal or off-site storage will be available, and to determine whether wastes can be safely stored on-site past license expiration until off-site disposal/storage is available. (DLC)

  4. Determination of heat conductivity and thermal diffusivity of waste glass melter feed: Extension to high temperatures

    SciTech Connect (OSTI)

    Rice, Jarrett A. [Pacific Northwest National Laboratory (PNNL), Richland, WA (United States); Pokorny, Richard [Inst. of Chemical Technology, Prague (Czech Republic); Schweiger, Michael J. [Pacific Northwest National Laboratory (PNNL), Richland, WA (United States); Hrma, Pavel R. [Pacific Northwest National Laboratory (PNNL), Richland, WA (United States); Pohang Univ. of Science and Technology (Korea, Republic of)

    2014-06-01T23:59:59.000Z

    The heat conductivity ({lambda}) and the thermal diffusivity (a) of reacting glass batch, or melter feed, control the heat flux into and within the cold cap, a layer of reacting material floating on the pool of molten glass in an all-electric continuous waste glass melter. After previously estimating {lambda} of melter feed at temperatures up to 680 deg C, we focus in this work on the {lambda}(T) function at T > 680 deg C, at which the feed material becomes foamy. We used a customized experimental setup consisting of a large cylindrical crucible with an assembly of thermocouples, which monitored the evolution of the temperature field while the crucible with feed was heated at a constant rate from room temperature up to 1100°C. Approximating measured temperature profiles by polynomial functions, we used the heat transfer equation to estimate the {lambda}(T) approximation function, which we subsequently optimized using the finite-volume method combined with least-squares analysis. The heat conductivity increased as the temperature increased until the feed began to expand into foam, at which point the conductivity dropped. It began to increase again as the foam turned into a bubble-free glass melt. We discuss the implications of this behavior for the mathematical modeling of the cold cap.

  5. Crystallization in simulated glasses from Hanford high-level nuclear waste composition range

    SciTech Connect (OSTI)

    Kim, Dong-Sang; Hrma, P.; Smith, D.E.; Schweiger, M.J.

    1993-04-01T23:59:59.000Z

    Glass crystallization was investigated as part of a property-composition relationship study of Hanford waste glasses. Non-radioactive glass samples were heated in a gradient furnace over a wide range of temperatures. The liquidus temperature was measured, and primary crystalline phases were determined using optical microscopy and Scanning Electron Microscopy with Energy Dispersive Spectrometry (SEM/EDS). Samples have also been heat treated according to a simulated canister centerline cooling curve. The crystalline phases in these samples have been identified by optical microscopy, SEM/EDS, and X-ray diffraction (XRD). Major components of the borosilicate glasses that were melted at approximately 1150{degrees}C were SiO{sub 2}, B{sub 2}O{sub 3}, Na{sub 2}O, Li{sub 2}O, CaO, MgO, Fe{sub 2}O{sub 3}, Al{sub 2}O{sub 3}, ZrO{sub 2}, and ``Others`` (sum of minor components). The major crystalline phases identified in this study were zircon, nepheline, calcium silicate, lithium silicate, and a range of solid solutions from clinopyroxenes, orthopyroxenes, olivines, and spiners.

  6. Obsidians and tektites: Natural analogues for water diffusion in nuclear waste glasses

    SciTech Connect (OSTI)

    Mazer, J.J.; Bates, J.K.; Bradley, C.R. [Argonne National Lab., IL (United States); Stevenson, C.M. [Archaeological Services Consultants, Inc., Columbus, OH (United States)

    1991-11-01T23:59:59.000Z

    Projected scenarios for the proposed Yucca Mountain repository include significant periods of time when high relative humidity atmospheres will be present, thus the reaction processes of interest will include those known to occur under these conditions. The ideal natural analog for the proposed Yucca Mountain repository would consist of natural borosilicate glasses exposed to expected repository conditions for thousands of years; however, the prospects for identifying such an analog are remote, but an important caveat for using natural analog studies is to relate the reaction processes in the analog to those in the system of interest, rather than a strict comparison of the glass compositions. In lieu of this, identifying natural glasses that have reacted via reaction processes expected in the repository is the most attractive option. The goal of this study is to quantify molecular water diffusion in the natural analogs obsidian and tektites. Results from this study can be used in assessing the importance of factors affecting molecular water diffusion in nuclear waste glasses, relative to other identified reaction processes. In this way, a better understanding of the long-term reaction mechanism can be developed and incorporated into performance assessment models. 17 refs., 4 figs.

  7. Crucible Study of Spinel Settling in Molten High-Level Waste Glass

    SciTech Connect (OSTI)

    Klouzek, Jaroslav; Alton, Jesse; Hrma, Pavel R.; Plaisted, Trevor J.

    2000-04-12T23:59:59.000Z

    To produce the conditions for settling of spinel crystals in a quiescent high-level waste glass melt, we used a double crucible assembly that eliminated Marangoni convection and limited bubble generation in a portion of melt volume. We observed the movement of the settling front as a function of time at temperatures 900, 950 and 1000?C. The shape of the settling front was approximately parabolic with a flap tip indicating that the settling crystals drove a convective cell within the melt. The rate of settling was close to that predicted by the Stokes' law when the growth rate of spinel crystals was taken into account. The calculated settling velocity was modified by a semi-empirical settling function providing an agreement with experimental results within 5%. In addition, spinel settling was simulated by the mathematical model that predicted the concentration distribution of spinel in glass melt and the accumulation of particles at the bottom of the crucible.

  8. Performance assessment for continuing and future operations at solid waste storage area 6

    SciTech Connect (OSTI)

    NONE

    1997-09-01T23:59:59.000Z

    This revised performance assessment (PA) for the continued disposal operations at Solid Waste Storage Area (SWSA) 6 on the Oak Ridge Reservation (ORR) has been prepared to demonstrate compliance with the performance objectives for low-level radioactive waste (LLW) disposal contained in the US Department of Energy (DOE) Order 5820.2A. This revised PA considers disposal operations conducted from September 26, 1988, through the projects lifetime of the disposal facility.

  9. Initial comparison of leach behavior between fully radioactive and simulated nuclear waste glasses through long-term testing

    SciTech Connect (OSTI)

    Feng, Xiangdong; Bates, J.K.

    1992-01-01T23:59:59.000Z

    A comparison of glass reactivity between radioactive sludge based and simulated nuclear waste glasses has been made through long-term testing of both glass types for SRL 165, SRL 131, and SRL 200 frit compositions. The data demonstrate that for time periods through 280 days, differences in elemental release to solution up to 400% are observed. However, in general, differences in glass reactivity as measured by the release of boron, lithium, and sodium are less than a factor of two. The differences in reactivity are not large enough to alter the order of glass durability for the different compositions or to change the controlling glass dissolution mechanism. A radiation effect exists, mainly in the influence on the leachate pH, which in turn affects the glass reaction mechanism and rate. The differences in reactivity between fully radioactive and the simulated glasses can be reasonably explained if the controlling reaction mechanism is accounted for. Those differences are glass composition and leaching mechanism dependent. Lithium is found to have the highest elemental release in an ion-exchange dominated glass reaction process, while lithium has a lower release than boron and sodium in a matrix dissolution dominated process, where boron and sodium are usually among the most concentrated solution species.

  10. Waste-Lithium-Liquid (WLL) Flow Battery for Stationary Energy Storage Applications Youngsik Kim* and Nina MahootcheianAsl

    E-Print Network [OSTI]

    Zhou, Yaoqi

    Waste-Lithium-Liquid (WLL) Flow Battery for Stationary Energy Storage Applications Youngsik Kim in a Waste-Lithium-Liquid (WLL) flow battery that can be used in a stationary energy storage application. Li* and Nina MahootcheianAsl Richard Lugar Center for Renewable Energy, Department of Mechanical Engineering

  11. METHODOLOGY AND CALCULATIONS FOR THE ASSIGNMENT OF WASTE GROUPS FOR THE LARGE UNDERGROUND WASTE STORAGE TANKS AT THE HANFORD SITE

    SciTech Connect (OSTI)

    WEBER RA

    2009-01-16T23:59:59.000Z

    The Hanford Site contains 177 large underground radioactive waste storage tanks (28 double-shell tanks and 149 single-shell tanks). These tanks are categorized into one of three waste groups (A, B, and C) based on their waste and tank characteristics. These waste group assignments reflect a tank's propensity to retain a significant volume of flammable gases and the potential of the waste to release retained gas by a buoyant displacement gas release event. Assignments of waste groups to the 177 double-shell tanks and single-shell tanks, as reported in this document, are based on a Monte Carlo analysis of three criteria. The first criterion is the headspace flammable gas concentration following release of retained gas. This criterion determines whether the tank contains sufficient retained gas such that the well-mixed headspace flammable gas concentration would reach 100% of the lower flammability limit if the entire tank's retained gas were released. If the volume of retained gas is not sufficient to reach 100% of the lower flammability limit, then flammable conditions cannot be reached and the tank is classified as a waste group C tank independent of the method the gas is released. The second criterion is the energy ratio and considers whether there is sufficient supernatant on top of the saturated solids such that gas-bearing solids have the potential energy required to break up the material and release gas. Tanks that are not waste group C tanks and that have an energy ratio < 3.0 do not have sufficient potential energy to break up material and release gas and are assigned to waste group B. These tanks are considered to represent a potential induced flammable gas release hazard, but no spontaneous buoyant displacement flammable gas release hazard. Tanks that are not waste group C tanks and have an energy ratio {ge} 3.0, but that pass the third criterion (buoyancy ratio < 1.0, see below) are also assigned to waste group B. Even though the designation as a waste group B (or A) tank identifies the potential for an induced flammable gas release hazard, the hazard only exists for specific operations that can release the retained gas in the tank at a rate and quantity that results in reaching 100% of the lower flammability limit in the tank headspace. The identification and evaluation of tank farm operations that could cause an induced flammable gas release hazard in a waste group B (or A) tank are included in other documents. The third criterion is the buoyancy ratio. This criterion addresses tanks that are not waste group C double-shell tanks and have an energy ratio {ge} 3.0. For these double-shell tanks, the buoyancy ratio considers whether the saturated solids can retain sufficient gas to exceed neutral buoyancy relative to the supernatant layer and therefore have buoyant displacement gas release events. If the buoyancy ratio is {ge} 1.0, that double-shell tank is assigned to waste group A. These tanks are considered to have a potential spontaneous buoyant displacement flammable gas release hazard in addition to a potential induced flammable gas release hazard. This document categorizes each of the large waste storage tanks into one of several categories based on each tank's waste characteristics. These waste group assignments reflect a tank's propensity to retain a significant volume of flammable gases and the potential of the waste to release retained gas by a buoyant displacement event. Revision 8 is the annual update of the calculations of the flammable gas Waste Groups for DSTs and SSTs.

  12. METHODOLOGY AND CALCULATIONS FOR THE ASSIGNMENT OF WASTE GROUPS FOR THE LARGE UNDERGROUND WASTE STORAGE TANKS AT THE HANFORD SITE

    SciTech Connect (OSTI)

    FOWLER KD

    2007-12-27T23:59:59.000Z

    This document categorizes each of the large waste storage tanks into one of several categories based on each tank's waste characteristics. These waste group assignments reflect a tank's propensity to retain a significant volume of flammable gases and the potential of the waste to release retained gas by a buoyant displacement event. Revision 7 is the annual update of the calculations of the flammable gas Waste Groups for DSTs and SSTs. The Hanford Site contains 177 large underground radioactive waste storage tanks (28 double-shell tanks and 149 single-shell tanks). These tanks are categorized into one of three waste groups (A, B, and C) based on their waste and tank characteristics. These waste group assignments reflect a tank's propensity to retain a significant volume of flammable gases and the potential of the waste to release retained gas by a buoyant displacement gas release event. Assignments of waste groups to the 177 double-shell tanks and single-shell tanks, as reported in this document, are based on a Monte Carlo analysis of three criteria. The first criterion is the headspace flammable gas concentration following release of retained gas. This criterion determines whether the tank contains sufficient retained gas such that the well-mixed headspace flammable gas concentration would reach 100% of the lower flammability limit if the entire tank's retained gas were released. If the volume of retained gas is not sufficient to reach 100% of the lower flammability limit, then flammable conditions cannot be reached and the tank is classified as a waste group C tank independent of the method the gas is released. The second criterion is the energy ratio and considers whether there is sufficient supernatant on top of the saturated solids such that gas-bearing solids have the potential energy required to break up the material and release gas. Tanks that are not waste group C tanks and that have an energy ratio < 3.0 do not have sufficient potential energy to break up material and release gas and are assigned to waste group B. These tanks are considered to represent a potential induced flammable gas release hazard, but no spontaneous buoyant displacement flammable gas release hazard. Tanks that are not waste group C tanks and have an energy ratio {ge} 3.0, but that pass the third criterion (buoyancy ratio < 1.0, see below) are also assigned to waste group B. Even though the designation as a waste group B (or A) tank identifies the potential for an induced flammable gas release hazard, the hazard only exists for specific operations that can release the retained gas in the tank at a rate and quantity that results in reaching 100% of the lower flammability limit in the tank headspace. The identification and evaluation of tank farm operations that could cause an induced flammable gas release hazard in a waste group B (or A) tank are included in other documents. The third criterion is the buoyancy ratio. This criterion addresses tanks that are not waste group C double-shell tanks and have an energy ratio {ge} 3.0. For these double-shell tanks, the buoyancy ratio considers whether the saturated solids can retain sufficient gas to exceed neutral buoyancy relative to the supernatant layer and therefore have buoyant displacement gas release events. If the buoyancy ratio is {ge} 1.0, that double-shell tank is assigned to waste group A. These tanks are considered to have a potential spontaneous buoyant displacement flammable gas release hazard in addition to a potential induced flammable gas release hazard.

  13. HIGH LEVEL WASTE (HLW) VITRIFICATION EXPERIENCE IN THE US: APPLICATION OF GLASS PRODUCT/PROCESS CONTROL TO OTHERHLW AND HAZARDOUS WASTES

    SciTech Connect (OSTI)

    Jantzen, C; James Marra, J

    2007-09-17T23:59:59.000Z

    Vitrification is currently the most widely used technology for the treatment of high level radioactive wastes (HLW) throughout the world. At the Savannah River Site (SRS) actual HLW tank waste has successfully been processed to stringent product and process constraints without any rework into a stable borosilicate glass waste since 1996. A unique 'feed forward' statistical process control (SPC) has been used rather than statistical quality control (SQC). In SPC, the feed composition to the melter is controlled prior to vitrification. In SQC, the glass product is sampled after it is vitrified. Individual glass property models form the basis for the 'feed forward' SPC. The property models transform constraints on the melt and glass properties into constraints on the feed composition. The property models are mechanistic and depend on glass bonding/structure, thermodynamics, quasicrystalline melt species, and/or electron transfers. The mechanistic models have been validated over composition regions well outside of the regions for which they were developed because they are mechanistic. Mechanistic models allow accurate extension to radioactive and hazardous waste melts well outside the composition boundaries for which they were developed.

  14. Preliminary Technology Maturation Plan for Immobilization of High-Level Waste in Glass Ceramics

    SciTech Connect (OSTI)

    Vienna, John D.; Crum, Jarrod V.; Sevigny, Gary J.; Smith, G L.

    2012-09-30T23:59:59.000Z

    A technology maturation plan (TMP) was developed for immobilization of high-level waste (HLW) raffinate in a glass ceramics waste form using a cold-crucible induction melter (CCIM). The TMP was prepared by the following process: 1) define the reference process and boundaries of the technology being matured, 2) evaluate the technology elements and identify the critical technology elements (CTE), 3) identify the technology readiness level (TRL) of each of the CTE’s using the DOE G 413.3-4, 4) describe the development and demonstration activities required to advance the TRLs to 4 and 6 in order, and 5) prepare a preliminary plan to conduct the development and demonstration. Results of the technology readiness assessment identified five CTE’s and found relatively low TRL’s for each of them: • Mixing, sampling, and analysis of waste slurry and melter feed: TRL-1 • Feeding, melting, and pouring: TRL-1 • Glass ceramic formulation: TRL-1 • Canister cooling and crystallization: TRL-1 • Canister decontamination: TRL-4 Although the TRL’s are low for most of these CTE’s (TRL-1), the effort required to advance them to higher values. The activities required to advance the TRL’s are listed below: • Complete this TMP • Perform a preliminary engineering study • Characterize, estimate, and simulate waste to be treated • Laboratory scale glass ceramic testing • Melter and off-gas testing with simulants • Test the mixing, sampling, and analyses • Canister testing • Decontamination system testing • Issue a requirements document • Issue a risk management document • Complete preliminary design • Integrated pilot testing • Issue a waste compliance plan A preliminary schedule and budget were developed to complete these activities as summarized in the following table (assuming 2012 dollars). TRL Budget Year MSA FMP GCF CCC CD Overall $M 2012 1 1 1 1 4 1 0.3 2013 2 2 1 1 4 1 1.3 2014 2 3 1 1 4 1 1.8 2015 2 3 2 2 4 2 2.6 2016 2 3 2 2 4 2 4.9 2017 2 3 3 2 4 2 9.8 2018 3 3 3 3 4 3 7.9 2019 3 3 3 3 4 3 5.1 2020 3 3 3 3 4 3 14.6 2021 3 3 3 3 4 3 7.3 2022 3 3 3 3 4 3 8.8 2023 4 4 4 4 4 4 9.1 2024 5 5 5 5 5 5 6.9 2025 6 6 6 6 6 6 6.9 CCC = canister cooling and crystallization; FMP = feeding, melting, and pouring; GCF = glass ceramic formulation; MSA = mixing, sampling, and analyses. This TMP is intended to guide the development of the glass ceramics waste form and process to the point where it is ready for industrialization.

  15. Potential radiation damage: Storage tanks for liquid radioactive waste

    SciTech Connect (OSTI)

    Caskey, G.R. Jr.

    1992-08-21T23:59:59.000Z

    High level waste at SRS is stored in carbon steel tanks constructed during the period 1951 to 1981. This waste contains radionuclides that decay by alpha, beta, or gamma emission or are spontaneous neutronsources. Thus, a low intensity radiation field is generated that is capable of causing displacement damage to the carbon steel. The potential for degradation of mechanical properties was evaluated by comparing the estimated displacement damage with published data relating changes in Charpy V-notch (CVN) impact energy to neutron exposure. Experimental radiation data was available for three of the four grades of carbonsteel from which the tanks were constructed and is applicable to all four steels. Estimates of displacement damage arising from gamma and neutron radiation have been made based on the radionuclide contents for high level waste that are cited in the Safety Analysis Report (SAR) for the Liquid Waste Handling Facilities in the 200-Area. Alpha and beta emissions do not penetrate carbon steel to a sufficient depth to affect the bulk properties of the tank walls but may aggravate corrosion processes. The damage estimates take into account the source of the waste (F- or H-Area), the several types of tank service, and assume wateras an attenuating medium. Estimates of displacement damage are conservative because they are based on the highest levels of radionuclide contents reported in the SAR and continuous replenishment of the radionuclides.

  16. Cryograb: A Novel Approach to the Retrieval of Waste from Underground Storage Tanks - 13501

    SciTech Connect (OSTI)

    O'Brien, Luke; Baker, Stephen; Bowen, Bob [UK National Nuclear Laboratory, Chadwick House, Warrington (United Kingdom)] [UK National Nuclear Laboratory, Chadwick House, Warrington (United Kingdom); Mallick, Pramod; Smith, Gary [US Department of Energy (United States)] [US Department of Energy (United States); King, Bill [Savannah River National Laboratory (United States)] [Savannah River National Laboratory (United States); Judd, Laurie [NuVision Engineering (United States)] [NuVision Engineering (United States)

    2013-07-01T23:59:59.000Z

    The UK's National Nuclear Laboratory (NNL) is investigating the use of cryogenic technology for the recovery of nuclear waste. Cryograb, freezing the waste on a 'cryo-head' and then retrieves it as a single mass which can then be treated or stabilized as necessary. The technology has a number of benefits over other retrieval approaches in that it minimizes sludge disturbance thereby reducing effluent arising and it can be used to de-water, and thereby reduce the volume of waste. The technology has been successfully deployed for a variety of nuclear and non-nuclear waste recovery operations. The application of Cryograb for the recovery of waste from US underground storage tanks is being explored through a US DOE International Technology Transfer and Demonstration programme. A sample deployment being considered involves the recovery of residual mounds of sludge material from waste storage tanks at Savannah River. Operational constraints and success criteria were agreed prior to the completion of a process down selection exercise which specified the preferred configuration of the cryo-head and supporting plant. Subsequent process modeling identified retrieval rates and temperature gradients through the waste and tank infrastructure. The work, which has been delivered in partnership with US DOE, SRNL, NuVision Engineering and Frigeo AB has demonstrated the technical feasibility of the approach (to TRL 2) and has resulted in the allocation of additional funding from DOE to take the programme to bench and cold pilot-scale trials. (authors)

  17. Radiation effects in moist-air systems and the influence of radiolytic product formation on nuclear waste glass corrosion

    SciTech Connect (OSTI)

    Wronkiewicz, D.J.; Bates, J.K.; Buck, E.C.; Hoh, J.C.; Emery, J.W. [Argonne National Lab., IL (United States). Chemical Technology Div.; Wang, L.M. [Univ. of New Mexico, Albuquerque, NM (United States). Dept. of Geology

    1997-07-01T23:59:59.000Z

    Ionizing radiation may affect the performance of glass in an unsaturated repository site by interacting with air, water vapor, or liquid water to produce a variety of radiolytic products. Tests were conducted to examine the effects of radiolysis under high gas/liquid ratios. Results indicate that nitrate is the predominant radiolytic product produced following both gamma and alpha radiation exposure, with lesser amounts of nitrite and carboxylic acids. The formation of nitrogen acids during exposure to long-lived, alpha-particle-emitting transuranic elements indicates that these acids may play a role in influencing nuclear waste form reactions in a long-term unsaturated disposal scenario. Experiments were also conducted with samples that simulate the composition of Savannah River Plant nuclear waste glasses. Radiolytic product formation in batch tests (340 m{sup {minus}1}, 90 C) resulted in a small increase in the release rates of many glass components, such as alkali and alkaline earth elements, although silicon and uranium release rates were slightly reduced indicating an overall beneficial effect of radiation on waste form stability. The radiolytic acids increased the rate of ion exchange between the glass and the thin film of condensate, resulting in accelerated corrosion rates for the glass. The paragenetic sequence of alteration phases formed on both the irradiated and nonirradiated glass samples reacted in the vapor hydration tests matches closely with those developed during volcanic glass alteration in naturally occurring saline-alkaline lake systems. This correspondence suggests that the high temperatures used in these tests have not changed the underlying glass reaction mechanism relate to that which controls glass reactions under ambient surficial conditions.

  18. Solid Waste Disposal, Hazardous Waste Management Act, Underground Storage Act (Tennessee)

    Broader source: Energy.gov [DOE]

    The Solid Waste Disposal Laws and Regulations are found in Tenn. Code 68-211. These rules are enforced and subject to change by the Public Waste Board (PWB), which is established by the Division...

  19. Iodine Solubility in Low-Activity Waste Borosilicate Glass at 1000 °C

    SciTech Connect (OSTI)

    Riley, Brian J.; Schweiger, Michael J.; Kim, Dong-Sang; Lukens, Wayne W.; Williams, Benjamin D.; Iovin, Cristian; Rodriguez, Carmen P.; Overman, Nicole R.; Bowden, Mark E.; Dixon, Derek R.; Crum, Jarrod V.; Mccloy, John S.; Kruger, Albert A.

    2014-04-30T23:59:59.000Z

    The purpose of this study was to determine the solubility of iodine in a low-activity waste borosilicate glass when heated inside an evacuated and sealed fused quartz ampoule. The iodine was added to glass frit as KI in quantities of 100–24000 ppm iodine (by mass), each mixture was added to an ampoule, the ampoule was heated at 1000 °C for 2 h and then air quenched. In samples with ?12000 ppm iodine, low viscosity salt phases were observed on the surface of the melts during cooling that solidified into a white coating upon cooling. These salts were identified as mixtures of KI, NaI, and Na2SO4 with X-ray diffraction (XRD). The iodine concentrations in glass specimens were analyzed with inductively-coupled plasma mass spectrometry and the overall iodine solubility was determined to be 10000 ppm by mass. Several crystalline inclusions of iodine sodalite, Na8(AlSiO4)6I2, were observed in the 24000 ppm specimen and were verified with micro-XRD and wavelength dispersive spectroscopy.

  20. Effect of Alumina Source on the Rate of Melting Demonstrated with Nuclear Waste Glass Batch

    SciTech Connect (OSTI)

    Pierce, David A.; Hrma, Pavel R.; Marcial, Jose; Riley, Brian J.; Schweiger, Michael J.

    2012-03-30T23:59:59.000Z

    The melting behaviors of three glass batches formulated to vitrify high-level waste were compared. These batches, otherwise identical, differed in the alumina source: one was prepared with corundum (Al2O3), another with gibbsite [Al(OH)3], and the other with boehmite [AlO(OH)]. Batch samples, in the form of loose batches or pressed pellets, were heated at 5°C/min up to 1200°C. The expansion of pellets was monitored photographically. Quenched samples of batches, heated in crucibles, were thin-sectioned, investigated with optical microscopy, and analyzed with X-ray diffraction to quantify crystalline phases. Finally, batch-to-glass conversion was investigated with thermal analysis. Corundum was still present in one batch up to 900°C whereas gibbsite and boehmite dissolved below 500°C. In the batch with corundum, quartz, the source of silica, dissolved marginally earlier than in the batches with gibbsite and boehmite. Unlike the batch with corundum that exhibited considerable foaming, the batches with gibbsite and boehmite did not produce primary foam and made a more homogeneous glass. The occurrence of primary foam in the batch with corundum is a likely cause of a low rate of melting within the cold cap of a large-scale electric melter.

  1. Model for the conversion of nuclear waste melter feed to glass

    SciTech Connect (OSTI)

    Pokorny, Richard; Hrma, Pavel R.

    2014-02-01T23:59:59.000Z

    The rate of batch-to-glass conversion is a primary concern for the vitrification of nuclear waste, as it directly influences the life cycle of the cleanup process. This study describes the development of an advanced model of the cold cap, which augments the previous model by further developments on the structure and the dynamics of the foam layer. The foam layer on the bottom of the cold cap consists of the primary foam, cavities, and the secondary foam, and forms an interface through which the heat is transferred to the cold cap. Other model enhancements include the behavior of intermediate crystalline phases and the dissolution of quartz particles. The model relates the melting rate to feed properties and melter conditions, such as the molten glass temperature, foaminess of the feed, or the heat fraction supplied to the cold cap from the plenum space. The model correctly predicts a 25% increase in melting rate when changing the alumina source in the melter feed from Al(OH)3 to AlO(OH). It is expected that this model will be incorporated in the full glass melter model as its integral component.

  2. Borehole Miner - Extendible Nozzle Development for Radioactive Waste Dislodging and Retrieval from Underground Storage Tanks

    SciTech Connect (OSTI)

    CW Enderlin; DG Alberts; JA Bamberger; M White

    1998-09-25T23:59:59.000Z

    This report summarizes development of borehole-miner extendible-nozzle water-jetting technology for dislodging and retrieving salt cake, sludge} and supernate to remediate underground storage tanks full of radioactive waste. The extendible-nozzle development was based on commercial borehole-miner technology.

  3. Performance assessment for continuing and future operations at solid waste storage area 6. Appendices

    SciTech Connect (OSTI)

    NONE

    1997-09-01T23:59:59.000Z

    This appendix provides the radionuclide inventory data used for the Solid Waste Storage Area (SWSA) 6 Performance Assessment (PA). The uncertainties in the radionuclide inventory data are also provided, along with the descriptions of the methods used to estimate the uncertainties.

  4. Radionuclide transport code development in support of nuclear waste storage investigations

    SciTech Connect (OSTI)

    Martinez, M.J.; Bixler, N.E.

    1983-03-01T23:59:59.000Z

    This report documents the status of radionuclide transport code development in support of the Nevada Nuclear Waste Storage Investigations (NNWSI) program as of October 1982. The modifications made to an existing code, FEMWASTE, are described and subsequent verification of the modified code is presented.

  5. The development of a management strategy for interim storage and final disposal of nuclear wastes

    SciTech Connect (OSTI)

    Engelmann, H.J.; Popp, F.W. [Deutsche Gesellschaft zum Bau and Betrieb von Endglagern fuer Abfallostofe mbH, Peine (Germany); Arntzen, P.; Botzem, W. [NUKEM GmbH, Alzenau (Germany); Soucek, B. [Czech Power Board, Prague (Czech Republic)

    1993-12-31T23:59:59.000Z

    The overall waste management strategy for alternative routes from reactor to final disposal, including dry interim storage, is discussed. Within the framework of a preliminary structure plan possible technical solutions must be investigated, and with sufficient relevant information available the future progress of the project, can be addressed on the base of a decision analysis.

  6. Thermal Energy Storage/Waste Heat Recovery Applications in the Cement Industry

    E-Print Network [OSTI]

    Beshore, D. G.; Jaeger, F. A.; Gartner, E. M.

    1979-01-01T23:59:59.000Z

    , and the Portland Cement Association have studied the potential benefits of using waste heat recovery methods and thermal energy storage systems in the cement manufacturing process. This work was performed under DOE Contract No. EC-77-C-01-50S4. The study has been...

  7. Spent fuel storage and waste management fuel cycle optimization using CAFCA

    SciTech Connect (OSTI)

    Brinton, S.; Kazimi, M. [Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge MA 02139 (United States)

    2013-07-01T23:59:59.000Z

    Spent fuel storage modeling is at the intersection of nuclear fuel cycle system dynamics and waste management policy. A model that captures the economic parameters affecting used nuclear fuel storage location options, which complements fuel cycle economic assessment has been created using CAFCA (Code for Advanced Fuel Cycles Assessment) of MIT. Research has also expanded to the study on dependency of used nuclear fuel storage economics, environmental impact, and proliferation risk. Three options of local, regional, and national storage were studied. The preliminary product of this research is the creation of a system dynamics tool known as the Waste Management Module which provides an easy to use interface for education on fuel cycle waste management economic impacts. Storage options costs can be compared to literature values with simple variation available for sensitivity study. Additionally, a first of a kind optimization scheme for the nuclear fuel cycle analysis is proposed and the applications of such an optimization are discussed. The main tradeoff for fuel cycle optimization was found to be between economics and most of the other identified metrics. (authors)

  8. High Waste Loading Glass Formulations for Hanford High-Aluminum High-Level Waste Streams

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC) EnvironmentalGyroSolé(tm) Harmonicbet WhenHiggs BosonAccurate knowledge ofHIGH WASTE

  9. Calcined Waste Storage at the Idaho Nuclear Technology and Engineering Center

    SciTech Connect (OSTI)

    Staiger, M. Daniel, Swenson, Michael C.

    2011-09-01T23:59:59.000Z

    This comprehensive report provides definitive volume, mass, and composition (chemical and radioactivity) of calcined waste stored at the Idaho Nuclear Technology and Engineering Center. Calcine composition data are required for regulatory compliance (such as permitting and waste disposal), future treatment of the caline, and shipping the calcine to an off-Site-facility (such as a geologic repository). This report also contains a description of the calcine storage bins. The Calcined Solids Storage Facilities (CSSFs) were designed by different architectural engineering firms and built at different times. Each CSSF has a unique design, reflecting varying design criteria and lessons learned from historical CSSF operation. The varying CSSF design will affect future calcine retrieval processes and equipment. Revision 4 of this report presents refinements and enhancements of calculations concerning the composition, volume, mass, chemical content, and radioactivity of calcined waste produced and stored within the CSSFs. The historical calcine samples are insufficient in number and scope of analysis to fully characterize the entire inventory of calcine in the CSSFs. Sample data exist for all the liquid wastes that were calcined. This report provides calcine composition data based on liquid waste sample analyses, volume of liquid waste calcined, calciner operating data, and CSSF operating data using several large Microsoft Excel (Microsoft 2003) databases and spreadsheets that are collectively called the Historical Processing Model. The calcine composition determined by this method compares favorably with historical calcine sample data.

  10. Nondestructive examination of DOE high-level waste storage tanks

    SciTech Connect (OSTI)

    Bush, S.; Bandyopadhyay, K.; Kassir, M.; Mather, B.; Shewmon, P.; Streicher, M.; Thompson, B.; van Rooyen, D.; Weeks, J.

    1995-05-01T23:59:59.000Z

    A number of DOE sites have buried tanks containing high-level waste. Tanks of particular interest am double-shell inside concrete cylinders. A program has been developed for the inservice inspection of the primary tank containing high-level waste (HLW), for testing of transfer lines and for the inspection of the concrete containment where possible. Emphasis is placed on the ultrasonic examination of selected areas of the primary tank, coupled with a leak-detection system capable of detecting small leaks through the wall of the primary tank. The NDE program is modelled after ASME Section XI in many respects, particularly with respects to the sampling protocol. Selected testing of concrete is planned to determine if there has been any significant degradation. The most probable failure mechanisms are corrosion-related so that the examination program gives major emphasis to possible locations for corrosion attack.

  11. Waste Encapsulation and Storage Facility (WESF) Dangerous Waste Training Plan (DWTP)

    SciTech Connect (OSTI)

    LEBARON, G.J.

    1999-12-03T23:59:59.000Z

    This training plan describes general requirements, worker categories, and provides course descriptions for operation of the WESF permitted miscellaneous storage units, and the < 90 day accumulation areas.

  12. Multi-phase glass-ceramics as a waste form for combined fission products: alkalis, alkaline earths, lanthanides, and transition metals

    SciTech Connect (OSTI)

    Crum, Jarrod V.; Turo, Laura A.; Riley, Brian J.; Tang, Ming; Kossoy, Anna

    2012-04-01T23:59:59.000Z

    In this study, multi-phase silicate-based glass-ceramics were investigated as an alternate waste form for immobilizing non-fissionable products from used nuclear fuel. Currently, borosilicate glass is the waste form selected for immobilization of this waste stream, however, the low thermal stability and solubility of MoO{sub 3} in borosilicate glass translates into a maximum waste loading in the range of 15-20 mass%. Glass-ceramics provide the opportunity to target durable crystalline phases, e.g., powellite, oxyapatite, celsian, and pollucite, that will incorporate MoO{sub 3} as well as other waste components such as lanthanides, alkalis, and alkaline earths at levels 2X the solubility limits of a single-phase glass. In addition a glass-ceramic could provide higher thermal stability, depending upon the properties of the crystalline and amorphous phases. Glass-ceramics were successfully synthesized at waste loadings of 42, 45, and 50 mass% with the following glass additives: B{sub 2}O{sub 3}, Al{sub 2}O{sub 3}, CaO and SiO{sub 2} by slow cooling form from a glass melt. Glass-ceramics were characterized in terms of phase assemblage, morphology, and thermal stability. The targeted phases: powellite and oxyapatite were observed in all of the compositions along with a lanthanide borosilicate, and cerianite. Results of this initial investigation of glass-ceramics show promise as a potential waste form to replace single-phase borosilicate glass.

  13. Evaluation of existing Hanford buildings for the storage of solid wastes

    SciTech Connect (OSTI)

    Carlson, M.C.; Hodgson, R.D.; Sabin, J.C.

    1993-05-01T23:59:59.000Z

    Existing storage space at the Hanford Site for solid low-level mixed waste (LLMW) will be filled up by 1997. Westinghouse Hanford Company (WHC) has initiated the project funding cycle for additional storage space to assure that new facilities are available when needed. In the course of considering the funding request, the US Department of Energy (DOE) has asked WHC to identify and review any existing Hanford Site facilities that could be modified and used as an alternative to constructing the proposed W-112 Project. This report documents the results of that review. In summary, no buildings exist at the Hanford Site that can be utilized for storage of solid LLMW on a cost-effective basis when compared to new construction. The nearest approach to an economically sensible conversion would involve upgrade of 100,000 ft{sup 2} of space in the 2101-M Building in the 200 East Area. Here, modified storage space is estimated to cost about $106 per ft{sup 2} while new construction will cost about $50 per ft{sup 2}. Construction costs for the waste storage portion of the W-112 Project are comparable with W-016 Project actual costs, with escalation considered. Details of the cost evaluation for this building and for other selected candidate facilities are presented in this report. All comparisons presented address the potential decontamination and decommissioning (D&D) cost avoidances realized by using existing facilities.

  14. Thermal Analysis of Waste Glass Batches: Effect of Batch Makeup on Gas-Evolving Reactions

    SciTech Connect (OSTI)

    Pierce, David A.; Hrma, Pavel R.; Marcial, Jose

    2013-01-21T23:59:59.000Z

    Batches made with a variety of precursors were subjected to thermo-gravimetric analysis. The baseline modifications included all-nitrate batch with sucrose addition, all-carbonate batch, and batches with different sources of alumina. All batches were formulated for a single glass composition (a vitrified simulated high-alumina high-level waste). Batch samples were heated from the ambient temperature to 1200°C at constant heating rates ranging from 1 K/min to 50 K/min. Major gas evolving reactions began at temperatures just above 100°C and were virtually complete by 650°C. Activation energies for major reactions were obtained with the Kissinger’s method. A rough model for the overall kinetics of the batch-conversion was developed to be eventually applied to a mathematical model of the cold cap.

  15. Safe interim storage of Hanford tank wastes, draft environmental impact statement, Hanford Site, Richland, Washington

    SciTech Connect (OSTI)

    Not Available

    1994-07-01T23:59:59.000Z

    This Draft EIS is prepared pursuant to the National Environmental Policy Act (NEPA) and the Washington State Environmental Policy Act (SEPA). DOE and Ecology have identified the need to resolve near-term tank safety issues associated with Watchlist tanks as identified pursuant to Public Law (P.L.) 101-510, Section 3137, ``Safety Measures for Waste Tanks at Hanford Nuclear Reservation,`` of the National Defense Authorization Act for Fiscal Year 1991, while continuing to provide safe storage for other Hanford wastes. This would be an interim action pending other actions that could be taken to convert waste to a more stable form based on decisions resulting from the Tank Waste Remediation System (TWRS) EIS. The purpose for this action is to resolve safety issues concerning the generation of unacceptable levels of hydrogen in two Watchlist tanks, 101-SY and 103-SY. Retrieving waste in dilute form from Tanks 101-SY and 103-SY, hydrogen-generating Watchlist double shell tanks (DSTs) in the 200 West Area, and storage in new tanks is the preferred alternative for resolution of the hydrogen safety issues.

  16. Addendum to the Calcined Waste Storage at the Idaho Nuclear Technology Center

    SciTech Connect (OSTI)

    M. D. Staiger; Michael Swenson; T. R. Thomas

    2004-05-01T23:59:59.000Z

    This report is an addendum to the report Calcined Waste Storage at the Idaho Nuclear Technology and Engineering Center, INEEL/EXT-98-00455 Rev. 1, June 2003. The original report provided a summary description of the Calcined Solids Storage Facilities (CSSFs). It also contained dozens of pages of detailed data tables documenting the volume and composition (chemical content and radionuclide activity) of the calcine stored in the CSSFs and the liquid waste from which the calcine was derived. This addendum report compiles the calcine composition data from the original report. It presents the compiled data in a graphical format with units (weight percent, curies per cubic meter, and nanocuries per gram) that are commonly used in regulatory and waste acceptance criteria documents. The compiled data are easier to use and understand when comparing the composition of the calcine with potential regulatory or waste acceptance criteria. This addendum report also provides detailed explanations for the large variability in the calcine composition among the CSSFs. The calcine composition varies as a result of reprocessing different types of fuel that had different cladding materials. Different chemicals were used to dissolve the various types of fuel, extract the uranium, and calcine the resulting waste. This resulted in calcine with variable compositions. This addendum report also identifies a few trace chemicals and radionuclides for which the accuracy of the amounts estimated to be in the calcine could be improved by making adjustments to the assumptions and methods used in making the estimates.

  17. The Component Slope Linear Model for Calculating Intensive Partial Molar Properties: Application to Waste Glasses

    SciTech Connect (OSTI)

    Reynolds, Jacob G. [Washington River Protection Solutions, Richland, WA (United States)

    2013-01-11T23:59:59.000Z

    Partial molar properties are the changes occurring when the fraction of one component is varied while the fractions of all other component mole fractions change proportionally. They have many practical and theoretical applications in chemical thermodynamics. Partial molar properties of chemical mixtures are difficult to measure because the component mole fractions must sum to one, so a change in fraction of one component must be offset with a change in one or more other components. Given that more than one component fraction is changing at a time, it is difficult to assign a change in measured response to a change in a single component. In this study, the Component Slope Linear Model (CSLM), a model previously published in the statistics literature, is shown to have coefficients that correspond to the intensive partial molar properties. If a measured property is plotted against the mole fraction of a component while keeping the proportions of all other components constant, the slope at any given point on a graph of this curve is the partial molar property for that constituent. Actually plotting this graph has been used to determine partial molar properties for many years. The CSLM directly includes this slope in a model that predicts properties as a function of the component mole fractions. This model is demonstrated by applying it to the constant pressure heat capacity data from the NaOH-NaAl(OH{sub 4}H{sub 2}O system, a system that simplifies Hanford nuclear waste. The partial molar properties of H{sub 2}O, NaOH, and NaAl(OH){sub 4} are determined. The equivalence of the CSLM and the graphical method is verified by comparing results detennined by the two methods. The CSLM model has been previously used to predict the liquidus temperature of spinel crystals precipitated from Hanford waste glass. Those model coefficients are re-interpreted here as the partial molar spinel liquidus temperature of the glass components.

  18. Liquidus Temperature of High-Level Waste Borosilicate Glasses with Spinel Primary Phase

    SciTech Connect (OSTI)

    Hrma, Pavel R. (BATTELLE (PACIFIC NW LAB)); Vienna, John D. (BATTELLE (PACIFIC NW LAB)); Crum, Jarrod V. (BATTELLE (PACIFIC NW LAB)); Piepel, Gregory F. (BATTELLE (PACIFIC NW LAB)); Mika, Martin (ASSOC WESTERN UNIVERSITY); Robert W. Smith; David W. Shoesmith

    2000-01-01T23:59:59.000Z

    Liquidus temperatures (TL) were measured for high-level waste (HLW) borosilicate glasses covering a Savannah River composition region. The primary crystallization phase for most glasses was spinel, a solid solution of trevorite (NiFe2O4) with other oxides (FeO, MnO, and Cr2O3). The TL values ranged from 859 to 1310?C. Component additions increased the TL (per mass%) as Cr2O3 261?C, NiO 85?C, TiO2 42?C, MgO 33?C, Al2O3 18?C, and Fe2O3 18?C and decreased the TL (per mass%) as Na2O -29?C, Li2O -28?C, K2O -20?C, and B2O3 -8?C. Other oxides (CaO, MnO, SiO2, and U3O8) had little effect. The effect of RuO2 is not clear.

  19. A Short History of Hanford Waste Generation, Storage, and Release

    SciTech Connect (OSTI)

    Gephart, Roy E.

    2003-10-01T23:59:59.000Z

    Nine nuclear reactors and four reprocessing plants at Hanford produced nearly two-thirds of the plutonium used in the United States for government purposes . These site operations also created large volumes of radioactive and chemical waste. Some contaminants were released into the environment, exposing people who lived downwind and downstream. Other contaminants were stored. The last reactor was shut down in 1987, and the last reprocessing plant closed in 1990. Most of the human-made radioactivity and about half of the chemicals remaining onsite are kept in underground tanks and surface facilities. The rest exists in the soil, groundwater, and burial grounds. Hanford contains about 40% of all the radioactivity that exists across the nuclear weapons complex. Today, environmental restoration activities are under way.

  20. Alternatives for high-level waste forms, containers, and container processing systems

    SciTech Connect (OSTI)

    Crawford, T.W.

    1995-09-22T23:59:59.000Z

    This study evaluates alternatives for high-level waste forms, containers, container processing systems, and onsite interim storage. Glass waste forms considered are cullet, marbles, gems, and monolithic glass. Small and large containers configured with several combinations of overpack confinement and shield casks are evaluated for these waste forms. Onsite interim storage concepts including canister storage building, bore holes, and storage pad were configured with various glass forms and canister alternatives. All favorable options include the monolithic glass production process as the waste form. Of the favorable options the unshielded 4- and 7-canister overpack options have the greatest technical assurance associated with their design concepts due to their process packaging and storage methods. These canisters are 0.68 m and 0.54 m in diameter respectively and 4.57 m tall. Life-cycle costs are not a discriminating factor in most cases, varying typically less than 15 percent.

  1. Quasicrystalline Approach to Prediting the Spinel-Nepheline Liquidus: Application to Nuclear Waste Glass Processing

    SciTech Connect (OSTI)

    Jantzen, Carol

    2005-10-10T23:59:59.000Z

    The crystal-melt equilibria in complex fifteen component melts are modeled based on quasicrystalline concepts. A pseudobinary phase diagram between acmite (which melts incongruently to a transition metal ferrite spinel) and nepheline is defined. The pseudobinary lies within the Al{sub 2}O{sub 3}-Fe{sub 2}O{sub 3}-Na{sub 2}O-SiO{sub 2} quaternary system that defines the crystallization of basalt glass melts. The pseudobinary provides the partitioning of species between the melt and the primary liquidus phases. The medium range order of the melt and the melt-crystal exchange equilibria are defined based on a constrained mathematical treatment that considers the crystallochemical coordination of the elemental species in acmite and nepheline. The liquidus phases that form are shown to be governed by the melt polymerization and the octahedral site preference energies. This quasicrystalline liquidus model has been used to prevent unwanted crystallization in the world's largest high level waste (HLW) melter for the past three years while allowing >10 wt% higher waste loadings to be processed.

  2. The effect of chemical composition on the PCT durability of mixed waste glasses from wastewater treatment sludges

    SciTech Connect (OSTI)

    Resce, J.L.; Ragsdale, R.G.; Overcamp, T.J. [Clemson Univ., SC (United States); Bickford, D.F.; Cicero, C.A. [Savannah River Technology Center, Aiken, SC (United States)

    1995-01-25T23:59:59.000Z

    An experimental program has been designed to examine the chemical durability of glass compositions derived from the vitrification of simulated wastewater treatment sludges. These sludges represent the majority of low-level mixed wastes currently in need of treatment by the US DOE. The major oxides in these model glasses included SiO{sub 2}, Al{sub 2}O{sub 3}, B{sub 2}O{sub 3}, Na{sub 2}O, CaO and Fe{sub 2}O{sub 3}. In addition, three minor oxides, BaO, NiO, and PbO, were added as hazardous metals. The major oxides were each varied at two levels resulting in 32 experimental glasses. The chemical durability was measured by the 7-Day Product Consistency Test (PCT). The normalized sodium release rates (NRR{sub Na}) of these glasses ranged from 0.01 to 4.99 g/m{sup 2}. The molar ratio of the glass-former to glass-modifier (F/M) was found to have the greatest effect on PCT durability. Glass-formers included SiO{sub 2}, Al{sub 2}O{sub 3}, and B{sub 2}O{sub 3}, while Na{sub 2}O, CaO, BaO, NiO, and PbO were glass-modifiers. As this ratio increased from 0.75 to 2.0, NRR{sub Na} was found to decrease between one and two orders of magnitude. Another important effect on NRR{sub Na} was the Na{sub 2}O/CaO ratio. As this ratio increased from 0.5 to 2.0, NRR{sub Na} increased up to two orders of magnitude for the glasses with the low F/M ratio but almost no effect was observed for the glasses with the high F/M ratio. Increasing the iron oxide content from 2 to 18 mole% was found to decrease NRR{sub Na} one order of magnitude for the glasses with low F/M but iron had little effect on the glasses with the high F/M ratio. The durability also increased when 10 mole percent Al{sub 2}O{sub 3} was included in low iron oxide glasses but no effect was observed with the high iron glasses. The addition of B{sub 2}O{sub 3} had little effect on durability. The effects of other composition parameters on durability are discussed as well.

  3. The incorporation of P, S, Cr, F, Cl, I, Mn, Ti, U, and Bi into simulated nuclear waste glasses: Literature study

    SciTech Connect (OSTI)

    Langowski, M.H.

    1996-02-01T23:59:59.000Z

    Waste currently stored on the Hanford Reservation in underground tanks will be into High Level Waste (HLW) and Low Level Waste (LLW). The HLW melter will high-level and transuranic wastes to a vitrified form for disposal in a geological repository. The LLW melter will vitrify the low-level waste which is mainly a sodium solution. Characterization of the tank wastes is still in progress, and the pretreatment processes are still under development Apart from tank-to-tank variations, the feed delivered to the HLW melter will be subject to process control variability which consists of blending and pretreating the waste. The challenge is then to develop glass formulation models which can produce durable and processable glass compositions for all potential vitrification feed compositions and processing conditions. The work under HLW glass formulation is to study and model glass and melt pro functions of glass composition and temperature. The properties of interest include viscosity, electrical conductivity, liquidus temperature, crystallization, immiscibility durability. It is these properties that determine the glass processability and ac waste glass. Apart from composition, some properties, such as viscosity are affected by temperature. The processing temperature may vary from 1050{degrees}C to 1550{degrees}C dependent upon the melter type. The glass will also experience a temperature profile upon cooling. The purpose of this letter report is to assess the expected vitrification feed compositions for critical components with the greatest potential impact on waste loading for double shell tank (DST) and single shell tank (SST) wastes. The basis for critical component selection is identified along with the planned approach for evaluation. The proposed experimental work is a crucial part of model development and verification.

  4. Waste Encapsulation and Storage Facility (WESF) Quality Assurance Program Plan (QAPP)

    SciTech Connect (OSTI)

    ROBINSON, P.A.

    2000-04-17T23:59:59.000Z

    This Quality Assurance Plan describes how the Waste Encapsulation and Storage Facility (WESF) implements the quality assurance (QA) requirements of the Quality Assurance Program Description (QAPD) (HNF-Mp-599) for Project Hanford activities and products. This QAPP also describes the organizational structure necessary to successfully implement the program. The QAPP provides a road map of applicable Project Hanford Management System Procedures, and facility specific procedures, that may be utilized by WESF to implement the requirements of the QAPD.

  5. Waste encapsulation storage facility (WESF) standards/requirements identification document (S/RIDS)

    SciTech Connect (OSTI)

    Maddox, B.S., Westinghouse Hanford

    1996-07-29T23:59:59.000Z

    This Standards/Requirements Identification Document (S/RID) sets forth the Environmental Safety and Health (ES{ampersand}H) standards/requirements for the Waste Encapsulation Storage Facility (WESF). This S/RID is applicable to the appropriate life cycle phases of design, construction, operation, and preparation for decommissioning. These standards/requirements are adequate to ensure the protection of the health and safety of workers, the public, and the environment.

  6. Groundwater quality assessment report for Solid Waste Storage Area 6 at Oak Ridge National Laboratory, Oak Ridge, Tennessee -- 1997

    SciTech Connect (OSTI)

    NONE

    1998-02-01T23:59:59.000Z

    Solid Waste Storage Area (SWSA) 6, located at the US Department of Energy (DOE) Oak Ridge National Laboratory (ORNL) facility, is a shallow land burial site for low-level radioactive waste (LLW) and other waste types. Wastes were disposed of in unlined trenches and auger holes from 1969 until May 1986, when it was determined that Resource Conservation and Recovery Act (RCRA) regulated wastes were being disposed of there. DOE closed SWSA 6 until changes in operating procedures prevented the disposal of RCRA wastes at SWSA 6. The site, which reopened for waste disposal activities in July 1986, is the only currently operating disposal area for low-level radioactive waste at ORNL. In addition to SWSA 6, it was determined that hazardous wastes were treated at the Explosives Detonation Trench (EDT). Explosives and shock-sensitive chemicals such as picric acid, phosphorus, and ammonium nitrate were detonated; debris from the explosions was backfilled into the trench.

  7. Leaching assessments of toxic metals in waste plasma display panel glass.

    E-Print Network [OSTI]

    Chen, M; Jiang, P; Chen, H; Ogunseitan, OA; Li, Y

    2015-01-01T23:59:59.000Z

    elements in municipal solid waste incineration ?y ash. J.Beijing (MEP China). 2007. Solid waste-extraction procedureheavy metals from municipal solid waste incinerator ?y ash.

  8. Use of depleted uranium silicate glass to minimize release of radionuclides from spent nuclear fuel waste packages

    SciTech Connect (OSTI)

    Forsberg, C.W.

    1996-01-20T23:59:59.000Z

    A Depleted Uranium Silicate Container Backfill System (DUSCOBS) is proposed that would use small, isotopically-depleted uranium silicate glass beads as a backfill material inside repository waste packages containing spent nuclear fuel (SNF). The uranium silicate glass beads would fill the void space inside the package including the coolant channels inside SNF assemblies. Based on preliminary analysis, the following benefits have been identified. DUSCOBS improves repository waste package performance by three mechanisms. First, it reduces the radionuclide releases from SNF when water enters the waste package by creating a local uranium silicate saturated groundwater environment that suppresses (a) the dissolution and/or transformation of uranium dioxide fuel pellets and, hence, (b) the release of radionuclides incorporated into the SNF pellets. Second, the potential for long-term nuclear criticality is reduced by isotopic exchange of enriched uranium in SNF with the depleted uranium (DU) in the glass. Third, the backfill reduces radiation interactions between SNF and the local environment (package and local geology) and thus reduces generation of hydrogen, acids, and other chemicals that degrade the waste package system. Finally, DUSCOBS provides a potential method to dispose of significant quantities of excess DU from uranium enrichment plants at potential economic savings. DUSCOBS is a new concept. Consequently, the concept has not been optimized or demonstrated in laboratory experiments.

  9. Risk assessment of CST-7 proposed waste treatment and storage facilities Volume I: Limited-scope probabilistic risk assessment (PRA) of proposed CST-7 waste treatment & storage facilities. Volume II: Preliminary hazards analysis of proposed CST-7 waste storage & treatment facilities

    SciTech Connect (OSTI)

    Sasser, K.

    1994-06-01T23:59:59.000Z

    In FY 1993, the Los Alamos National Laboratory Waste Management Group [CST-7 (formerly EM-7)] requested the Probabilistic Risk and Hazards Analysis Group [TSA-11 (formerly N-6)] to conduct a study of the hazards associated with several CST-7 facilities. Among these facilities are the Hazardous Waste Treatment Facility (HWTF), the HWTF Drum Storage Building (DSB), and the Mixed Waste Receiving and Storage Facility (MWRSF), which are proposed for construction beginning in 1996. These facilities are needed to upgrade the Laboratory`s storage capability for hazardous and mixed wastes and to provide treatment capabilities for wastes in cases where offsite treatment is not available or desirable. These facilities will assist Los Alamos in complying with federal and state requlations.

  10. Immobilized High Level Waste (HLW) Interim Storage Alternative Generation and analysis and Decision Report 2nd Generation Implementing Architecture

    SciTech Connect (OSTI)

    CALMUS, R.B.

    2000-09-14T23:59:59.000Z

    Two alternative approaches were previously identified to provide second-generation interim storage of Immobilized High-Level Waste (IHLW). One approach was retrofit modification of the Fuel and Materials Examination Facility (FMEF) to accommodate IHLW. The results of the evaluation of the FMEF as the second-generation IHLW interim storage facility and subsequent decision process are provided in this document.

  11. EIS-0109: Long-Term Management of the Existing Radioactive Wastes and Residues at the Niagara Falls Storage Site

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy developed this statement to evaluate the environmental impacts of several alternatives for management and control of the radioactive wastes and residues at the Niagara Falls Storage Site, including a no action alternative, an alternative to manage wastes on-site, and two off-site management alternatives.

  12. TWRS retrieval and storage mission, immobilized low-activity waste disposal plan

    SciTech Connect (OSTI)

    Shade, J.W.

    1998-01-07T23:59:59.000Z

    The TWRS mission is to store, treat, and immobilize highly radioactive Hanford waste (current and future tank waste and the encapsulated cesium and strontium) in a safe, environmentally sound, and cost-effective manner (TWRS JMN Justification for mission need). The mission includes retrieval, pretreatment, immobilization, interim storage and disposal, and tank closure. As part of this mission, DOE has established the TWRS Office to manage all Hanford Site tank waste activities. The TWRS program has identified the need to store, treat, immobilize, and dispose of the highly radioactive Hanford Site tank waste and encapsulated cesium and strontium materials in an environmentally sound, safe, and cost-effective manner. To support environmental remediation and restoration at the Hanford Site a two-phase approach to using private contractors to treat and immobilize the low-activity and high-level waste currently stored in underground tanks is planned. The request for proposals (RFP) for the first phase of waste treatment and immobilization was issued in February 1996 (Wagoner 1996) and initial contracts for two private contractor teams led by British Nuclear Fuels Ltd. and Lockheed-Martin Advanced Environmental Services were signed in September 1996. Phase 1 is a proof-of-concept and commercial demonstration effort to demonstrate the technical and business feasibility of using private facilities to treat Hanford Site waste, maintain radiological, nuclear, process, and occupational safety; and maintain environmental protection and compliance while reducing lifecycle costs and waste treatment times. Phase 1 production of ILAW is planned to begin in June 2002 and could treat up to about 13 percent of the waste. Phase 1 production is expected to be completed in 2007 for minimum order quantities or 2011 for maximum order quantities. Phase 2 is a full-scale production effort that will begin after Phase 1 and treat and immobilize most of the waste. Phase 2 production is expected to be completed in 2025. DOE will supply the feed to the private contractors and will receive the ILAW product from the private treatment facilities during Phase 1. For Phase 2, retrieval and feed delivery, as well as waste treatment and immobilization, will be done by private contractors. DOE will pay the private contractors for each ILAW package that meets the product specifications as stated in the RFP or subsequently negotiated. Acceptance of immobilized waste will be based on private contractor activities to qualify, verify, document, and certify the product and DOE activities to audit, review, inspect, and evaluate the treatment and immobilization process and products. The acceptance process is expected to result in ILAW product packages certified for transport and disposal at the Hanford Site safely and in compliance with environmental regulations.

  13. Solution-borne colloids from drip tests using actinide-doped and fully-radioactive waste glasses

    SciTech Connect (OSTI)

    Fortner, J.A.; Wolf, S.F.; Buck, E.C.; Mertz, C.J.; Bates, J.K.

    1996-12-31T23:59:59.000Z

    Drip tests designed to replicate the synergistic interactions between waste glass, repository groundwater, water vapor, and sensitized 304L stainless steel in the potential Yucca Mountain Repository have been ongoing in our laboratory for over ten years. Results will be presented from three sets of these drip tests: two with actinide-doped glasses, and one with a fully-radioactive glass. Periodic sampling of these tests have revealed trends in actinide release behavior that are consistent with their entrainment in colloidal material when as-cast glass is reacted. Results from vapor hydrated glass show that initially the actinides are completely dissolved in solution, but as the reaction proceeds, the actinides become suspended in solution. Sequential filtering and alpha spectroscopy of colloid-bearing leachate solutions indicate that more than 80 percent of the plutonium and americium are bound to particles that are captured by a 0. 1 gm filter, while less than 10 percent of the neptunium is stopped by a 0. 1 gm filter. Analytical transmission electron microscopy has been used to examine particles from leachate solutions and to identify several actinide-bearing phases which are responsible for the majority of actinide release during glass corrosion.

  14. INCONEL 690 CORROSION IN WTP (WASTE TREATMENT PLANT) HLW (HIGH LEVEL WASTE) GLASS MELTS RICH IN ALUMINUM & BISMUTH & CHROMIUM OR ALUMINUM/SODIUM

    SciTech Connect (OSTI)

    KRUGER AA; FENG Z; GAN H; PEGG IL

    2009-11-05T23:59:59.000Z

    Metal corrosion tests were conducted with four high waste loading non-Fe-limited HLW glass compositions. The results at 1150 C (the WTP nominal melter operating temperature) show corrosion performance for all four glasses that is comparable to that of other typical borosilicate waste glasses, including HLW glass compositions that have been developed for iron-limited WTP streams. Of the four glasses tested, the Bi-limited composition shows the greatest extent of corrosion, which may be related to its higher phosphorus content. Tests at higher suggest that a moderate elevation of the melter operating temperature (up to 1200 C) should not result in any significant increase in Inconel corrosion. However, corrosion rates did increase significantly at yet higher temperatures (1230 C). Very little difference was observed with and without the presence of an electric current density of 6 A/inch{sup 2}, which is the typical upper design limit for Inconel electrodes. The data show a roughly linear relationship between the thickness of the oxide scale on the coupon and the Cr-depletion depth, which is consistent with the chromium depletion providing the material source for scale growth. Analysis of the time dependence of the Cr depletion profiles measured at 1200 C suggests that diffusion of Cr in the Ni-based Inconel alloy controls the depletion depth of Cr inside the alloy. The diffusion coefficient derived from the experimental data agrees within one order of magnitude with the published diffusion coefficient data for Cr in Ni matrices; the difference is likely due to the contribution from faster grain boundary diffusion in the tested Inconel alloy. A simple diffusion model based on these data predicts that Inconel 690 alloy will suffer Cr depletion damage to a depth of about 1 cm over a five year service life at 1200 C in these glasses.

  15. EIS-0062: Double-Shell Tanks for Defense High Level Waste Storage, Savannah River Site, Aiken, SC

    Broader source: Energy.gov [DOE]

    This EIS analyzes the impacts of the various design alternatives for the construction of fourteen 1.3 million gallon high-activity radioactive waste tanks. The EIS further evaluates the effects of these alternative designs on tank durability, on the ease of waste retrieval from such tanks, and the choice of technology and timing for long-term storage or disposal of the wastes.

  16. Development Of High Waste-Loading HLW Glasses For High Bismuth Phosphate Wastes, VSL-12R2550-1, Rev 0

    SciTech Connect (OSTI)

    Kruger, A. A. [Department of Energy, Office of River Protection, Richland, Washington (United States); Pegg, Ian L. [The Catholic University of America, Washington, DC (United States); Gan, Hao [The Catholic University of America, Washington, DC (United States); Kot, Wing K. [The Catholic University of America, Washington, DC (United States)

    2012-12-13T23:59:59.000Z

    This report presents results from tests with new glass formulations that have been developed for several high Bi-P HLW compositions that are expected to be processed at the WTP that have not been tested previously. WTP HLW feed compositions were reviewed to select waste batches that are high in Bi-P and that are reasonably distinct from the Bi-limited waste that has been tested previously. Three such high Bi-P HLW compositions were selected for this work. The focus of the present work was to determine whether the same type of issues as seen in previous work with high-Bi HLW will be seen in HLW with different concentrations of Bi, P and Cr and also whether similar glass formulation development approaches would be successful in mitigating these issues. New glass compositions were developed for each of the three representative Bi-P HLW wastes and characterized with respect to key processing and product quality properties and, in particular, those relating to crystallization and foaming tendency.

  17. US Department of Energy Storage of Spent Fuel and High Level Waste

    SciTech Connect (OSTI)

    Sandra M Birk

    2010-10-01T23:59:59.000Z

    ABSTRACT This paper provides an overview of the Department of Energy's (DOE) spent nuclear fuel (SNF) and high level waste (HLW) storage management. Like commercial reactor fuel, DOE's SNF and HLW were destined for the Yucca Mountain repository. In March 2010, the DOE filed a motion with the Nuclear Regulatory Commission (NRC) to withdraw the license application for the repository at Yucca Mountain. A new repository is now decades away. The default for the commercial and DOE research reactor fuel and HLW is on-site storage for the foreseeable future. Though the motion to withdraw the license application and delay opening of a repository signals extended storage, DOE's immediate plans for management of its SNF and HLW remain the same as before Yucca Mountain was designated as the repository, though it has expanded its research and development efforts to ensure safe extended storage. This paper outlines some of the proposed research that DOE is conducting and will use to enhance its storage systems and facilities.

  18. Nevada Nuclear-Waste-Storage Investigations. Quarterly report, April-June 1982

    SciTech Connect (OSTI)

    None

    1982-09-01T23:59:59.000Z

    The Nevada Nuclear Waste Storage Investigations (NNWSI) are studying the Nevada Test Site (NTS) area to establish whether it would qualify as a licensable location for a commercial nuclear waste repository; determining whether specific underground rock masses in the NTS area are technically acceptable for permanently disposing of highly radioactive solid wastes; and developing and demonstrating the capability to safely handle and store commercial spent reactor fuel and high-level waste. Progress reports for the following eight tasks are presented: systems; waste package; site; repository; regulatory and institutional; test facilities; land acquisition; and program management. Some of the highlights are: A code library was established to provide a central location for documentation of repository performance assessment codes. A two-dimensional finite element code, SAGUARO, was developed for modeling saturated/unsaturated groundwater flow. The results of an initial experiment to determine canister penetration rates due to corrosion indicate the expected strong effect of toxic environmental conditions on the corrosion rate of carbon steel in tuff-conditioned water. Wells USW-H3 and USW-H4 at Yucca Mountain have been sampled for groundwater analysis. A summary characterizing and relating the mineralogy and petrology of Yucca Mountain tuffs was compiled from the findings of studies of core samples from five drill holes.

  19. Risk perception on management of nuclear high-level and transuranic waste storage

    SciTech Connect (OSTI)

    Dees, L.A.

    1994-08-15T23:59:59.000Z

    The Department of Energy`s program for disposing of nuclear High-Level Waste (HLW) and transuranic (TRU) waste has been impeded by overwhelming political opposition fueled by public perceptions of actual risk. Analysis of these perceptions shows them to be deeply rooted in images of fear and dread that have been present since the discovery of radioactivity. The development and use of nuclear weapons linked these images to reality and the mishandling of radioactive waste from the nations military weapons facilities has contributed toward creating a state of distrust that cannot be erased quickly or easily. In addition, the analysis indicates that even the highly educated technical community is not well informed on the latest technology involved with nuclear HLW and TRU waste disposal. It is not surprising then, that the general public feels uncomfortable with DOE`s management plans for with nuclear HLW and TRU waste disposal. Postponing the permanent geologic repository and use of Monitored Retrievable Storage (MRS) would provide the time necessary for difficult social and political issues to be resolved. It would also allow time for the public to become better educated if DOE chooses to become proactive.

  20. Radionuclide content of simulated and fully radioactive SRLLL waste gl;asses: comparison of results from ICP-MS, gamma spectrometry and alpha spectrometry

    SciTech Connect (OSTI)

    Wolf, S.F.; Bates, J.K.

    1995-12-31T23:59:59.000Z

    We have measured the transuranic content of two transuranic=doped, simulated waste glasses, using inductively coupled plasma-mass spectrometry (ICP-MS), {gamma}-spectrometry, and {alpha}-spectrometry. Average concentrations measured by each technique were within {+-} 10% of the as-doped concentrations. We also report the transuranic content of three fully radioactive SRL waste glasses that were determined using {gamma}- and {alpha}-spectrometry measurements to deconvolute isobaric interferences present in the ICP-MS analyses.

  1. Effect of feed melting, temperature history, and minor component addition on spinel crystallization in high-level waste glass

    SciTech Connect (OSTI)

    Izak, Pavel (ASSOC WESTERN UNIVERSITY) [ASSOC WESTERN UNIVERSITY; Hrma, Pavel R.(BATTELLE (PACIFIC NW LAB)) [BATTELLE (PACIFIC NW LAB); Arey, Bruce W.(BATTELLE (PACIFIC NW LAB)) [BATTELLE (PACIFIC NW LAB); Plaisted, Trevor J.(ASSOC WESTERN UNIVERSITY) [ASSOC WESTERN UNIVERSITY

    2001-01-01T23:59:59.000Z

    Spinel crystallization affects the anticipated cost and risk of high-level waste (HLW) vitrification. Spinel, (Fe,Ni) (Fe,Cr)2O4, is the primary crystalline phase that precipitates from melts containing Fe and Ni in sufficient concentrations. This study was undertaken to help design and verify mathematical models for a HLW glass melter in which spinel crystals precipitate and partially settle.

  2. The Effect of Temperature and Composition on Spinel Concentration and Crystal Size in High-Level Waste Glass

    SciTech Connect (OSTI)

    Mika, M (.); Patek, M (.); Maixner, J (.); Randakova, S (.); Hrma, Pavel R. (BATTELLE (PACIFIC NW LAB)); Anibal Taboas, Rick Vanbrabant, Gary Benda.

    2001-01-01T23:59:59.000Z

    High-level radioactive wastes can be safely immobilized in alkali-aluminoborosilicate glass. To reduce the cost of the vitrification process, the waste loading should be maximized. This can be done by optimizing the process using mathematical modeling. The main objective of our work was to determine one of the necessary inputs for the mathematical model, which is the effect of temperature and composition on the concentration of spinel crystals and their size. We prepared six glasses with a different content of Li+, Na+, Mg2+, Ni2+, Cr3+, and SiIV and studied the effect of composition on the temperature dependence of spinel equilibrium concentration in glass by X-ray powder diffraction. The size of crystals was determined using optical microscopy. It was found that the temperature effect on spinel concentration significantly increased as the content of Ni2+ or Mg2+ in glass increased and slightly decreased as the content of Cr3+ increased and Li+ and Na+ content decreased. Both Ni2+ and Cr3+ acted as nucleating agents, producing a huge number of tiny spinel crystals ({approx}2 im). In particular, Ni2+ seems to very significantly facilitate spinel crystallization.

  3. Alkali metal ions through glass: a possible radioactive waste management application

    E-Print Network [OSTI]

    Jones, Robert Allan

    1996-01-01T23:59:59.000Z

    Early studies show that some types of glass can become conductors of electricity at higher temperatures. The nature of the conductance was shown to be ionic. The studies also showed that, due to structural properties within the glass, the ionic...

  4. Expanded High-Level Waste Glass Property Data Development: Phase I

    SciTech Connect (OSTI)

    Schweiger, Michael J.; Riley, Brian J.; Crum, Jarrod V.; Hrma, Pavel R.; Rodriguez, Carmen P.; Arrigoni, Benjamin M.; Lang, Jesse B.; Kim, Dong-Sang; Vienna, John D.; Raszewski, F. C.; Peeler, David K.; Edwards, Tommy B.; Best, D. R.; Reamer, Irene A.; Riley, W. T.; Simmons, P. T.; Workman, R. J.

    2011-01-21T23:59:59.000Z

    Two separate test matrices were developed as part if the EM-21 Glass Matrix Crucible Testing. The first matrix, developed using a single component-at-a-time design method and covering glasses of interest primarily to Hanford, is addressed in this data package. This data package includes methods and results from glass fabrication, chemical analysis of glass compositions, viscosity, electrical conductivity, liquidus temperature, canister centerline cooling, product consistency testing, and the toxicity characteristic leach procedure.

  5. Analyses by the Defense Waste Processing Facility Laboratory of Thorium Glasses from the Sludge Batch 6 Variability Study

    SciTech Connect (OSTI)

    Edwards, T.; Click, D.; Feller, M.

    2011-02-28T23:59:59.000Z

    The Savannah River Remediation (SRR) Defense Waste Processing Facility (DWPF) is currently processing Sludge Batch 6 (SB6) with Frit 418. At times during the processing of this glass system, thorium is expected to be at concentrations in the final wasteform that make it a reportable element for the first time since startup of radioactive operations at the DWPF. The Savannah River National Laboratory (SRNL) supported the qualification of the processing of this glass system at the DWPF. A recommendation from the SRNL studies was the need for the DWPF Laboratory to establish a method to measure thorium by Inductively Coupled Plasma - Atomic Emission Spectroscopy (ICPAES). This recommendation led to the set of thorium-bearing glasses from the SB6 Variability Study (VS) being submitted to the DWPF Laboratory for chemical composition measurement. The measurements were conducted by the DWPF Laboratory using the sodium peroxide fusion preparation method routinely employed for analysis of samples from the Slurry Mix Evaporator (SME). These measurements are presented and reviewed in this report. The review indicates that the measurements provided by the DWPF Laboratory are comparable to those provided by Analytical Development's laboratory at SRNL for these same glasses. As a result, the authors of this report recommend that the DWPF Laboratory begin using its routine peroxide fusion dissolution method for the measurement of thorium in SME samples of SB6. The purpose of this technical report is to present the measurements generated by the DWPF Laboratory for the SB6 VS glasses and to compare the measurements to the targeted compositions for these VS glasses as well as to SRNL's measurements (both sets, targeted and measured, of compositional values were reported by SRNL in [2]). The goal of these comparisons is to provide information that will lead to the qualification of peroxide fusion dissolution as a method for the measurement by the DWPF Laboratory of thorium in SME glass samples.

  6. Use of transportable storage casks in the nuclear waste management system: Appendices

    SciTech Connect (OSTI)

    Not Available

    1987-12-01T23:59:59.000Z

    A study was performed to determine the viability of the use of transportable storage casks (TSCs), and other metal casks that are designed primarily for storage but which might be used to ship their stored contents to DOE on a one-time use basis (referred to in this study as storage only casks, or SOCs), in the combined utility/DOE spent fuel management system. The viability of the use of TSCs and SOCs was assessed in terms of the costs and savings involved in their use, the sensitivity of these costs and savings to changes in the capacity and cost of fabrication of the casks, the impacts of variation in cask design features on cost and radiation exposure of personnel, and their prospective use in connection with the transport of defense high level wastes. Estimates were developed of the costs of acquiring and handling of TSCs and SOCs at reactor sites. For comparison purposes, similar costs were developed for the use of concrete storage casks at reactor sites. Estimates of the savings involved to the DOE system as a result of receiving spent fuel in TSCs or SOCs were separately developed. These costs are developed and presented in Volume 2, Appendices A through J.

  7. Assessing the Feasibility of Interrogating Nuclear Waste Storage Silos using Cosmic-ray Muons

    E-Print Network [OSTI]

    Ambrosino, F; Cimmino, L; D'Alessandro, R; Ireland, D G; Kaiser, R; Mahon, D F; Mori, N; Noli, P; Saracino, G; Shearer, C; Viliani, L; Yang, G

    2014-01-01T23:59:59.000Z

    Muon radiography is a fast growing field in applied scientific research. In recent years, many detector technologies and imaging techniques using the Coulomb scattering and absorption properties of cosmic-ray muons have been developed for the non-destructive assay of various structures across a wide range of applications. This work presents the first results that assess the feasibility of using muons to interrogate waste silos within the UK Nuclear Industry. Two such approaches, using different techniques that exploit each of these properties, have previously been published, and show promising results from both simulation and experimental data for the detection of shielded high-Z materials and density variations from volcanic assay. Both detector systems are based on scintillator and photomultiplier technologies. Results from dedicated simulation studies using both these technologies and image reconstruction techniques are presented for an intermediate-sized nuclear waste storage facility filled with concrete...

  8. Performance assessment for continuing and future operations at Solid Waste Storage Area 6

    SciTech Connect (OSTI)

    Not Available

    1994-02-01T23:59:59.000Z

    This radiological performance assessment for the continued disposal operations at Solid Waste Storage Area 6 (SWSA 6) on the Oak Ridge Reservation (ORR) has been prepared to demonstrate compliance with the requirements of the US DOE. The analysis of SWSA 6 required the use of assumptions to supplement the available site data when the available data were incomplete for the purpose of analysis. Results indicate that SWSA 6 does not presently meet the performance objectives of DOE Order 5820.2A. Changes in operations and continued work on the performance assessment are expected to demonstrate compliance with the performance objectives for continuing operations at the Interim Waste Management Facility (IWMF). All other disposal operations in SWSA 6 are to be discontinued as of January 1, 1994. The disposal units at which disposal operations are discontinued will be subject to CERCLA remediation, which will result in acceptable protection of the public health and safety.

  9. Fast facility spent-fuel and waste assay instrument. [Fluorinel Dissolution and Fuel Storage (FAST) Facility

    SciTech Connect (OSTI)

    Eccleston, G.W.; Johnson, S.S.; Menlove, H.O.; Van Lyssel, T.; Black, D.; Carlson, B.; Decker, L.; Echo, M.W.

    1983-01-01T23:59:59.000Z

    A delayed-neutron assay instrument was installed in the Fluorinel Dissolution and Fuel Storage Facility at Idaho National Engineering Laboratory. The dual-assay instrument is designed to measure both spent fuel and waste solids that are produced from fuel processing. A set of waste standards, fabricated by Los Alamos using uranium supplied by Exxon Nuclear Idaho Company, was used to calibrate the small-sample assay region of the instrument. Performance testing was completed before installation of the instrument to determine the effects of uranium enrichment, hydrogenous materials, and neutron poisons on assays. The unit was designed to measure high-enriched uranium samples in the presence of large neutron backgrounds. Measurements indicate that the system can assay low-enriched uranium samples with moderate backgrounds if calibrated with proper standards.

  10. ADMINISTRATIVE AND ENGINEERING CONTROLS FOR THE OPERATION OF VENTILATION SYSTEMS FOR UNDERGROUND RADIOACTIVE WASTE STORAGE TANKS

    SciTech Connect (OSTI)

    Wiersma, B.; Hansen, A.

    2013-11-13T23:59:59.000Z

    Liquid radioactive wastes from the Savannah River Site are stored in large underground carbon steel tanks. The majority of the waste is confined in double shell tanks, which have a primary shell, where the waste is stored, and a secondary shell, which creates an annular region between the two shells, that provides secondary containment and leak detection capabilities should leakage from the primary shell occur. Each of the DST is equipped with a purge ventilation system for the interior of the primary shell and annulus ventilation system for the secondary containment. Administrative flammability controls require continuous ventilation to remove hydrogen gas and other vapors from the waste tanks while preventing the release of radionuclides to the atmosphere. Should a leak from the primary to the annulus occur, the annulus ventilation would also serve this purpose. The functionality of the annulus ventilation is necessary to preserve the structural integrity of the primary shell and the secondary. An administrative corrosion control program is in place to ensure integrity of the tank. Given the critical functions of the purge and annulus ventilation systems, engineering controls are also necessary to ensure that the systems remain robust. The system consists of components that are constructed of metal (e.g., steel, stainless steel, aluminum, copper, etc.) and/or polymeric (polypropylene, polyethylene, silicone, polyurethane, etc.) materials. The performance of these materials in anticipated service environments (e.g., normal waste storage, waste removal, etc.) was evaluated. The most aggressive vapor space environment occurs during chemical cleaning of the residual heels by utilizing oxalic acid. The presence of NO{sub x} and mercury in the vapors generated from the process could potentially accelerate the degradation of aluminum, carbon steel, and copper. Once identified, the most susceptible materials were either replaced and/or plans for discontinuing operations are executed.

  11. Soil weight (lbf/ft{sup 3}) at Hanford waste storage locations (2 volumes)

    SciTech Connect (OSTI)

    Pianka, E.W.

    1994-12-01T23:59:59.000Z

    Hanford Reservation waste storage tanks are fabricated in accordance with approved construction specifications. After an underground tank has been constructed in the excavation prepared for it, soil is place around the tank and compacted by an approved compaction procedure. To ensure compliance with the construction specifications, measurements of the soil compaction are taken by QA inspectors using test methods based on American Society for the Testing and Materials (ASTM) standards. Soil compaction tests data taken for the 241AP, 241AN, and 241AW tank farms constructed between 1978 and 1986 are included. The individual data values have been numerically processed to obtain average soil density values for each of these tank farms.

  12. MRS (monitored retrievable storage) systems study Task G report: The role and functions of surface storage of radioactive material in the federal waste management system

    SciTech Connect (OSTI)

    Wood, T.W.; Short, S.M.; Woodruff, M.G.; Altenhofen, M.K.; MacKay, C.A.

    1989-04-01T23:59:59.000Z

    This is one of nine studies undertaken by contractors to the US Department of Energy (DOE), Office of Civilian Radioactive Waste Management (OCRWM), to provide a technical basis for re-evaluating the role of a monitored retrievable storage (MRS) facility. The study investigates the functions that could be performed by surface storage of radioactive material within the federal radioactive waste management system, including enabling acceptance of spent fuel from utility owners, scheduling of waste-preparation processes within the system, enhancement of system operating reliability, and conditioning the thermal (decay heat) characteristics of spent fuel emplaced in a repository. The analysis focuses particularly on the effects of storage capacity and DOE acceptance schedule on power reactors. Figures of merit developed include the storage capacity (in metric tons of uranium (MTU)) required to be added beyond currently estimated maximum spent fuel storage capacities and its associated cost, and the number of years that spent fuel pools would remain open after last discharge (in pool-years) and the cost of this period of operation. 27 refs., 36 figs., 18 tabs.

  13. Flood Assessment at the Area 5 Radioactive Waste Management Site and the Proposed Hazardous Waste Storage Unit, DOE/Nevada Test Site, Nye County, Nevada

    SciTech Connect (OSTI)

    Schmeltzer, J. S., Millier, J. J., Gustafson, D. L.

    1993-01-01T23:59:59.000Z

    A flood assessment at the Radioactive Waste Management Site (RWMS) and the proposed Hazardous Waste Storage Unit (HWSU) in Area 5 of the Nevada Test Site (NTS) was performed to determine the 100-year flood hazard at these facilities. The study was conducted to determine whether the RWMS and HWSU are located within a 100-year flood hazard as defined by the Federal Emergency Management Agency, and to provide discharges for the design of flood protection.

  14. Kinetics of Cold-Cap Reactions for Vitrification of Nuclear Waste Glass Based on Simultaneous Differential Scanning Calorimetry - Thermogravimetry (DSC-TGA) and Evolved Gas Analysis (EGA)

    SciTech Connect (OSTI)

    Rodriguez, Carmen P. [Pacific Northwest National Laboratory (PNNL), Richland, WA (United States); ; Pierce, David A. [Pacific Northwest National Laboratory (PNNL), Richland, WA (United States); ; Schweiger, Michael J. [Pacific Northwest National Laboratory (PNNL), Richland, WA (United States); ; Kruger, Albert A. [USDOE Office of River Protection, Richland, WA (United States); Chun, Jaehun [Pacific Northwest National Laboratory (PNNL), Richland, WA (United States); ; Hrma, Pavel R. [Pacific Northwest National Laboratory (PNNL), Richland, WA (United States);

    2013-12-03T23:59:59.000Z

    For vitrifying nuclear waste glass, the feed, a mixture of waste with glass-forming and modifying additives, is charged onto the cold cap that covers 90-100% of the melt surface. The cold cap consists of a layer of reacting molten glass floating on the surface of the melt in an all-electric, continuous glass melter. As the feed moves through the cold cap, it undergoes chemical reactions and phase transitions through which it is converted to molten glass that moves from the cold cap into the melt pool. The process involves a series of reactions that generate multiple gases and subsequent mass loss and foaming significantly influence the mass and heat transfers. The rate of glass melting, which is greatly influenced by mass and heat transfers, affects the vitrification process and the efficiency of the immobilization of nuclear waste. We studied the cold-cap reactions of a representative waste glass feed using both the simultaneous differential scanning calorimetry thermogravimetry (DSC-TGA) and the thermogravimetry coupled with gas chromatography-mass spectrometer (TGA-GC-MS) as complementary tools to perform evolved gas analysis (EGA). Analyses from DSC-TGA and EGA on the cold-cap reactions provide a key element for the development of an advanced cold-cap model. It also helps to formulate melter feeds for higher production rate.

  15. RH-TRU Waste Shipments from Battelle Columbus Laboratories to the Hanford Nuclear Facility for Interim Storage

    SciTech Connect (OSTI)

    Eide, J.; Baillieul, T. A.; Biedscheid, J.; Forrester, T,; McMillan, B.; Shrader, T.; Richterich, L.

    2003-02-26T23:59:59.000Z

    Battelle Columbus Laboratories (BCL), located in Columbus, Ohio, must complete decontamination and decommissioning (D&D) activities for nuclear research buildings and grounds by 2006, as directed by Congress. Most of the resulting waste (approximately 27 cubic meters [m3]) is remote-handled (RH) transuranic (TRU) waste destined for disposal at the Waste Isolation Pilot Plant (WIPP). The BCL, under a contract to the U.S. Department of Energy (DOE) Ohio Field Office, has initiated a plan to ship the TRU waste to the DOE Hanford Nuclear Facility (Hanford) for interim storage pending the authorization of WIPP for the permanent disposal of RH-TRU waste. The first of the BCL RH-TRU waste shipments was successfully completed on December 18, 2002. This BCL shipment of one fully loaded 10-160B Cask was the first shipment of RH-TRU waste in several years. Its successful completion required a complex effort entailing coordination between different contractors and federal agencies to establish necessary supporting agreements. This paper discusses the agreements and funding mechanisms used in support of the BCL shipments of TRU waste to Hanford for interim storage. In addition, this paper presents a summary of the efforts completed to demonstrate the effectiveness of the 10-160B Cask system. Lessons learned during this process are discussed and may be applicable to other TRU waste site shipment plans.

  16. Waste Encapsulation and Storage Facility (WESF) Basis for Interim Operation (BIO)

    SciTech Connect (OSTI)

    COVEY, L.I.

    2000-11-28T23:59:59.000Z

    The Waste Encapsulation and Storage Facility (WESF) is located in the 200 East Area adjacent to B Plant on the Hanford Site north of Richland, Washington. The current WESF mission is to receive and store the cesium and strontium capsules that were manufactured at WESF in a safe manner and in compliance with all applicable rules and regulations. The scope of WESF operations is currently limited to receipt, inspection, decontamination, storage, and surveillance of capsules in addition to facility maintenance activities. The capsules are expected to be stored at WESF until the year 2017, at which time they will have been transferred for ultimate disposition. The WESF facility was designed and constructed to process, encapsulate, and store the extracted long-lived radionuclides, {sup 90}Sr and {sup 137}Cs, from wastes generated during the chemical processing of defense fuel on the Hanford Site thus ensuring isolation of hazardous radioisotopes from the environment. The construction of WESF started in 1971 and was completed in 1973. Some of the {sup 137}Cs capsules were leased by private irradiators or transferred to other programs. All leased capsules have been returned to WESF. Capsules transferred to other programs will not be returned except for the seven powder and pellet Type W overpacks already stored at WESF.

  17. Effect of Feed Melting, Temperature History and Minor Component Addition on Spinel Crystallization in High-Level Waste Glass

    SciTech Connect (OSTI)

    Izak, Pavel; Hrma, Pavel R.; Arey, Bruce W.; Plaisted, Trevor J.

    2001-08-01T23:59:59.000Z

    This study was undertaken to help design mathematical models for high-level waste (HLW) glass melter that simulate spinel behavior in molten glass. Spinel, (Fe,Ni,Mn) (Fe,Cr)2O4, is the primary solid phase that precipitates from HLW glasses containing Fe and Ni in sufficient concentrations. Spinel crystallization affects the anticipated cost and risk of HLW vitrification. To study melting reactions, we used simulated HLW feed, prepared with co-precipitated Fe, Ni, Cr, and Mn hydroxides. Feed samples were heated up at a temperature-increase rate (4C/min) close to that which the feed experiences in the HLW glass melter. The decomposition, melting, and dissolution of feed components (such as nitrates, carbonates, and silica) and the formation of intermediate crystalline phases (spinel, sodalite [Na8(AlSiO4)6(NO2)2], and Zr-containing minerals) were characterized using evolved gas analysis, volume-expansion measurement, optical microscope, scanning electron microscope, thermogravimetric analysis, differential scanning calorimetry, and X-ray diffraction. Nitrates and quartz, the major feed components, converted to a glass-forming melt by 880C. A chromium-free spinel formed in the nitrate melt starting from 520C and Sodalite, a transient product of corundum dissolution, appeared above 600C and eventually dissolved in glass. To investigate the effects of temperature history and minor components (Ru,Ag, and Cu) on the dissolution and growth of spinel crystals, samples were heated up to temperatures above liquidus temperature (TL), then subjected to different temperature histories, and analyzed. The results show that spinel mass fraction, crystals composition, and crystal size depend on the chemical and physical makeup of the feed and temperature history.

  18. Site-specific EIS ordered but injunctive relief deined in nuclear waste storage case

    SciTech Connect (OSTI)

    Barnhart y Chavez, S.

    1980-01-01T23:59:59.000Z

    The Energy Research and Development Administration (ERDA) received appropriations in 1976-77 to construct 22 tanks for storage of high level radioactive wastes generated by its nuclear weapons materials production program. The tanks were to replace older, leaking tanks at the Hanford Reservation in Richland, Washington and the Savannah River Plant in Aiken, South Carolina. The Natural Resources Defense Council (NRDC) had unsuccessfully requested that ERDA obtain a construction permit from the Nuclear Regulatory Commission (NRC). NRDC also petitioned NRC to exercise its licensing authority over the tanks under Section 202(4) of the Energy Reorganization Act of 1974. In response to the NRDC request, ERDA claimed the tanks were only for short-term storage and therefore a license was unnecessary. NRC claimed it lacked jurisdiction over the tanks. NRDC filed suit in United States District Court for the District of Columbia, alleging that ERDA had violated Section 102(2)(C) of the National Environmental Policy Act, and that both ERDA and NRC had violated Section 202(4) of the Energy Reorganization Act. NRDC requested an injunction against further construction of the tanks. Although ERDA did not have to obtain an NRC construction permit for the nuclear waste storage tanks at Hanford Reservation and Savannah River Plant, the programmatic Environmental Impact Statement submitted was insufficient and site-specific statements must be prepared. Injunctive relief pending the statements was denied for the social and economic costs of delaying the tanks project. NRC decisions even remotely connected to its licensing power should be contested in federal courts of appeals, not district courts. The court gave NRDC a hollow victory by ordering a more specific EIS, but denying an injunction.

  19. The Effect of Composition on Spinel Crystals Equilibrium in Low-Silica High-Level Waste Glasses

    SciTech Connect (OSTI)

    Jiricka, Milos; Hrma, Pavel R.; Vienna, John D.

    2003-05-15T23:59:59.000Z

    The liquidus temperature (TL) and the equilibrium mass fraction of spinel were measured in the regions of low-silica (less than 42 mass% SiO2) high-level waste borosilicate glasses within the spinel primary phase field as functions of glass composition. The components that varied, one at a time, were Al2O3, B2O3, Cr2O3, Fe2O3, Li2O, MnO, Na2O, NiO, SiO2, and ZrO2. The effects of Al2O3, B2O3, Fe2O3, NiO, SiO2, and ZrO2 on the TL in this region and in glasses with 42 to 56 mass% SiO2 were similar. However, in the low-silica region, Cr2O3 increased the TL substantially less, and Li2O and Na2O decreased the TL significantly less than in the region with 42 to 56 mass% SiO2. The effect of MnO on the TL of the higher SiO2 glasses is not yet understood with sufficient accuracy. The temperature at which the equilibrium mass fraction of spinel was 1 mass% was 25C to 64C below the TL.

  20. The Effect of Composition on Spinel Crystals Equilibrium in Low-Silica High-Level Waste Glasses

    SciTech Connect (OSTI)

    Jiricka, Milos (ASSOC WESTERN UNIVERSITY); Hrma, Pavel R. (BATTELLE (PACIFIC NW LAB)); Vienna, John D. (BATTELLE (PACIFIC NW LAB))

    2003-05-15T23:59:59.000Z

    The liquidus temperature (TL) and the equilibrium mass fraction of spinel were measured in the regions of low-silica (less than 42 mass% SiO2) high-level waste borosilicate glasses within the spinel primary phase field as functions of glass composition. The components that varied, one at a time, were Al2O3, B2O3, Cr2O3, Fe2O3, Li2O, MnO, Na2O, NiO, SiO2, and ZrO2. The effects of Al2O3, B2O3, Fe2O3, NiO, SiO2, and ZrO2 on the TL in this region and in glasses with 42 to 56 mass% SiO2 were similar. However, in the low-silica region, Cr2O3 increased the TL substantially less, and Li2O and Na2O decreased the TL significantly less than in the region with 42 to 56 mass% SiO2. The effect of MnO on the TL of the higher SiO2 glasses is not yet understood with sufficient accuracy. The temperature at which the equilibrium mass fraction of spinel was 1 mass% was 25?C to 64?C below the TL.

  1. CRYSTALLIZATION IN HIGH-LEVEL WASTE GLASSES U.S. DEPARTMENT OF ENERGY OFFICE OF RIVER PROTECTION WTP ENGINEERING DIVISION

    SciTech Connect (OSTI)

    KRUGER AA; HRMA PR

    2009-08-19T23:59:59.000Z

    Various circumstances influence crystallization in glassmaking, for example: (1) crystals nucleate and grow before the glass-forming melt occurs; (2) crystals grow or dissolve in flowing melt and during changing temperature; (3) crystals move under the influence of gravity; (4) crystals agglomerate and interact with gas bubbles; (5) high-level wastes (HLW) are mixtures of a large number of components in unusual proportions; (6) melter processing of HLW and the slow cooling of HLW glass in canisters provides an opportunity for a variety of crystalline forms to precipitate; (7) settling of crystals in a HLW glass melter may produce undesirable sludge at the melter bottom; and (8) crystallization of the glass product may increase, but also ruin chemical durability. The conclusions are: (1) crystal growth and dissolution typically proceed in a convective medium at changing temperature; (2) to represent crystallization or dissolution the kinetics must be expressed in the form of rate equations, such as dC/dt = f(C,T) and the temperature dependence of kinetic coefficients and equilibrium concentrations must be accounted for; and (3) non-equilibrium phenomena commonly occur - metastable crystallization, periodic distribution of crystals; and dendritic crystal growth.

  2. The effect of chromium oxide on the properties of simulated nuclear waste glasses

    SciTech Connect (OSTI)

    Vojtech, O.; Sussmilch, J.; Urbanec, Z. [and others

    1996-02-01T23:59:59.000Z

    A study of the effect of chromium on the properties of selected glasses was performed in the frame of a Contract between Battelle, Pacific Northwest Laboratories and Nuclear Research Institute, ReZ. In the period from July 1994 to June 1995 two borosilicate glasses of special composition were prepared according to the PNL procedure and their physical and structural characteristics of glasses were studied. This Final Report contains a vast documentation on the properties of all glasses studied. For the preparation of the respective technology more detailed study of physico-chemical properties and crystallinity of investigated systems would be desirable.

  3. Study of the VOC emissions from a municipal solid waste storage pilot-scale cell: Comparison with biogases from municipal waste landfill site

    SciTech Connect (OSTI)

    Chiriac, R., E-mail: rodica.chiriac@univ-lyon1.fr [Universite de Lyon, Universite Lyon 1, CNRS, UMR 5615, Laboratoire des Multimateriaux et Interfaces, 43 boulevard du 11 Novembre 1918, F-69622 Villeurbanne (France); De Araujos Morais, J. [Universite Federal de Paraiba, Campus I Departamento de Engenharia Civil e Ambiental, Joao Pessoa, Paraiba (Brazil); Carre, J. [Universite de Lyon, Universite Lyon 1, CNRS, UMR 5256, Institut de Recherche sur la Catalyse et l'Environnement, 43 boulevard du 11 Novembre 1918, F-69622 Villeurbanne (France); Bayard, R. [Universite de Lyon, INSA de Lyon, Laboratoire de Genie Civil et d'Ingenierie environnementale (LGCIE), F-69622 Villeurbanne (France); Chovelon, J.M. [Universite de Lyon, Universite Lyon 1, CNRS, UMR 5256, Institut de Recherche sur la Catalyse et l'Environnement, 43 boulevard du 11 Novembre 1918, F-69622 Villeurbanne (France); Gourdon, R. [Universite de Lyon, INSA de Lyon, Laboratoire de Genie Civil et d'Ingenierie environnementale (LGCIE), F-69622 Villeurbanne (France)

    2011-11-15T23:59:59.000Z

    Highlights: > Follow-up of the emission of VOCs in a municipal waste pilot-scale cell during the acidogenesis and acetogenesis phases. > Study from the very start of waste storage leading to a better understanding of the decomposition/degradation of waste. > Comparison of the results obtained on the pilot-scale cell with those from 3 biogases coming from the same landfill site. > A methodology of characterization for the progression of the stabilization/maturation of waste is finally proposed. - Abstract: The emission of volatile organic compounds (VOCs) from municipal solid waste stored in a pilot-scale cell containing 6.4 tonnes of waste (storage facility which is left open during the first period (40 days) and then closed with recirculation of leachates during a second period (100 days)) was followed by dynamic sampling on activated carbon and analysed by GC-MS after solvent extraction. This was done in order to know the VOC emissions before the installation of a methanogenesis process for the entire waste mass. The results, expressed in reference to toluene, were exploited during the whole study on all the analyzable VOCs: alcohols, ketones and esters, alkanes, benzenic and cyclic compounds, chlorinated compounds, terpene, and organic sulphides. The results of this study on the pilot-scale cell are then compared with those concerning three biogases from a municipal waste landfill: biogas (1) coming from waste cells being filled or recently closed, biogas (2) from all the waste storage cells on site, and biogas (3) which is a residual gas from old storage cells without aspiration of the gas. The analysis of the results obtained revealed: (i) a high emission of VOCs, principally alcohols, ketones and esters during the acidogenesis; (ii) a decrease in the alkane content and an increase in the terpene content were observed in the VOCs emitted during the production of methane; (iii) the production of heavier alkanes and an increase in the average number of carbon atoms per molecule of alkane with the progression of the stabilisation/maturation process were also observed. Previous studies have concentrated almost on the analysis of biogases from landfills. Our research aimed at gaining a more complete understanding of the decomposition/degradation of municipal solid waste by measuring the VOCs emitted from the very start of the landfill process i.e. during the acidogenesis and acetogenesis phases.

  4. Application to ship nonmixed transuranic waste to the Nevada Test Site for interim storage. Waste Cerification Program

    SciTech Connect (OSTI)

    Not Available

    1993-12-01T23:59:59.000Z

    This report documents various regulations on radioactive waste processing and discusses how the Waste Isolation Pilot Plant will comply with and meet these requirements. Specific procedures are discussed concerning transuranic, metal scrap, salt block, solid, and glove box wastes.

  5. Engineering evaluation of alternatives for the disposition of Niagara Falls Storage Site, its residues and wastes

    SciTech Connect (OSTI)

    Not Available

    1984-01-01T23:59:59.000Z

    The final disposition scenarios selected by DOE for assessment in this document are consistent with those stated in the Notice of Intent to prepare an Environmental Impact Statement (EIS) for the Niagara Falls Storage Site (NFSS) (DOE, 1983d) and the modifications to the alternatives resulting from the public scoping process. The scenarios are: take no action beyond interim remedial measures other than maintenance and surveillance of the NFSS; retain and manage the NFSS as a long-term waste management facility for the wastes and residues on the site; decontaminate, certify, and release the NFSS for other use, with long-term management of the wastes and residues at other DOE sites; and partially decontaminate the NFSS by removal and transport off site of only the more radioactive residues, and upgrade containment of the remaining wastes and residues on site. The objective of this document is to present to DOE the conceptual engineering, occupational radiation exposure, construction schedule, maintenance and surveillance requirements, and cost information relevant to design and implementation of each of the four scenarios. The specific alternatives within each scenario used as the basis for discussion in this document were evaluated on the bases of engineering considerations, technical feasibility, and regulatory requirements. Selected alternatives determined to be acceptable for each of the four final disposition scenarios for the NFSS were approved by DOE to be assessed and costed in this document. These alternatives are also the subject of the EIS for the NFSS currently being prepared by Argonne National Laboratory (ANL). 40 figures, 38 tables.

  6. Initial comparison of leach behavior between fully radioactive and simulated nuclear waste glasses through long-term testing. Part 1, Solution analysis

    SciTech Connect (OSTI)

    Feng, Xiangdong; Bates, J.K.

    1992-04-01T23:59:59.000Z

    A comparison of glass reactivity between radioactive sludge based and simulated nuclear waste glasses has been made through long-term testing of both glass types for SRL 165, SRL 131, and SRL 200 frit compositions. The data demonstrate that for time periods through 280 days, differences in elemental release to solution up to 400% are observed. However, in general, differences in glass reactivity as measured by the release of boron, lithium, and sodium are less than a factor of two. The differences in reactivity are not large enough to alter the order of glass durability for the different compositions or to change the controlling glass dissolution mechanism. A radiation effect exists, mainly in the influence on the leachate pH, which in turn affects the glass reaction mechanism and rate. The differences in reactivity between fully radioactive and the simulated glasses can be reasonably explained if the controlling reaction mechanism is accounted for. Those differences are glass composition and leaching mechanism dependent. Lithium is found to have the highest elemental release in an ion-exchange dominated glass reaction process, while lithium has a lower release than boron and sodium in a matrix dissolution dominated process, where boron and sodium are usually among the most concentrated solution species.

  7. The Performance of Underground Radioactive Waste Storage Tanks at the Savannah River Site: A 60-Year Historical Perspective

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Wiersma, Bruce J.

    2014-03-01T23:59:59.000Z

    The Savannah River Site produced weapons-grade materials for nearly 35 years between 1953 and 1988. The legacy of this production is nearly 37 million gallons of radioactive waste. Since the 1950s, the liquid waste has been stored in large, underground carbon steel waste tanks. During the past 20 years, the site has begun to process the waste so that it may be stored in vitrified and grout forms, which are more suitable for long-term storage. Over the history of the site, some tanks have experienced leakage of the waste to the secondary containment. This article is a review of themore »instances of leakage and corrosion degradation that the tanks and associated equipment have experienced since the first tanks were built. Furthermore, the activities that the site has taken to mitigate the degradation and manage the service life of the tank for its anticipated lifetime are reviewed.« less

  8. High-level waste storage tank farms/242-A evaporator Standards/Requirements Identification Document (S/RID), Volume 2

    SciTech Connect (OSTI)

    Not Available

    1994-04-01T23:59:59.000Z

    The High-Level Waste Storage Tank Farms/242-A Evaporator Standards/Requirements Document (S/RID) is contained in multiple volumes. This document (Volume 2) presents the standards and requirements for the following sections: Quality Assurance, Training and Qualification, Emergency Planning and Preparedness, and Construction.

  9. High-level waste storage tank farms/242-A evaporator Standards/Requirements Identification Document (S/RID)

    SciTech Connect (OSTI)

    Not Available

    1994-04-01T23:59:59.000Z

    The High-Level Waste Storage Tank Farms/242-A Evaporator Standards/Requirements Identification Document (S/RID) is contained in multiple volumes. This document (Volume 3) presents the standards and requirements for the following sections: Safeguards and Security, Engineering Design, and Maintenance.

  10. High-level waste storage tank farms/242-A evaporator Standards/Requirements Identification Document (S/RID), Volume 5

    SciTech Connect (OSTI)

    Not Available

    1994-04-01T23:59:59.000Z

    The High-Level Waste Storage Tank Farms/242-A Evaporator Standards/Requirements Identification Document (S/RID) is contained in multiple volumes. This document (Volume 5) outlines the standards and requirements for the Fire Protection and Packaging and Transportation sections.

  11. Used Oil and Filter Disposal Used Oil: Create a segregated storage area or container. Label the container "Waste Oil Only".

    E-Print Network [OSTI]

    Maroncelli, Mark

    Used Oil and Filter Disposal Used Oil: Create a segregated storage area or container. Label the container "Waste Oil Only". Maintain a written log to document all amounts and types of oil added to the container. No solvents, oil contaminated with solvents, PCBs, non-petroleum based oils, or any other

  12. Fractured rock modeling in the National Waste Terminal Storage Program: a review of requirements and status

    SciTech Connect (OSTI)

    St. John, C.; Krug, A.; Key, S.; Monsees, J.

    1983-05-01T23:59:59.000Z

    Generalized computer codes capable of forming the basis for numerical models of fractured rock masses are being used within the NWTS program. Little additional development of these codes is considered justifiable, except in the area of representation of discrete fractures. On the other hand, model preparation requires definition of medium-specific constitutive descriptions and site characteristics and is therefore legitimately conducted by each of the media-oriented projects within the National Waste Terminal Storage program. However, it is essential that a uniform approach to the role of numerical modeling be adopted, including agreement upon the contribution of modeling to the design and licensing process and the need for, and means of, model qualification for particular purposes. This report discusses the role of numerical modeling, reviews the capabilities of several computer codes that are being used to support design or performance assessment, and proposes a framework for future numerical modeling activities within the NWTS program.

  13. Assessment of concentration mechanisms for organic wastes in underground storage tanks at Hanford

    SciTech Connect (OSTI)

    Gerber, M.A.; Burger, L.L.; Nelson, D.A.; Ryan, J.L. [Pacific Northwest Lab., Richland, WA (United States); Zollars, R.L. [Washington State Univ., Pullman, WA (United States)

    1992-09-01T23:59:59.000Z

    Pacific Northwest Laboratory (PNL) has conducted an initial conservative evaluation of physical and chemical processes that could lead to significant localized concentrations of organic waste constituents in the Hanford underground storage tanks (USTs). This evaluation was part of ongoing studies at Hanford to assess potential safety risks associated with USTs containing organics. Organics in the tanks could pose a potential problem if localized concentrations are high enough to propagate combustion and are in sufficient quantity to produce a large heat and/or gas release if in contact with a suitable oxidant. The major sources of oxidants are oxygen in the overhead gas space of the tanks and sodium nitrate and nitrite either as salt cake solids or dissolved in the supernatant and interstitial liquids.

  14. Results from Nevada Nuclear Waste Storage Investigations (NNWSI) Series 3 spent fuel dissolution tests

    SciTech Connect (OSTI)

    Wilson, C.N.

    1990-06-01T23:59:59.000Z

    The dissolution and radionuclide release behavior of spent fuel in groundwater is being studied by the Yucca Mountain Project (YMP), formerly the Nevada Nuclear Waste Storage Investigations (NNWSI) Project. Specimens prepared from pressurized water reactor fuel rod segments were tested in sealed stainless steel vessels in Nevada Test Site J-13 well water at 85{degree}C and 25{degree}C. The test matrix included three specimens of bare-fuel particles plus cladding hulls, two fuel rod segments with artificially defected cladding and water-tight end fittings, and an undefected fuel rod section with watertight end fittings. Periodic solution samples were taken during test cycles with the sample volumes replenished with fresh J-13 water. Test cycles were periodically terminated and the specimens restarted in fresh J-13 water. The specimens were run for three cycles for a total test duration of 15 months. 22 refs., 32 figs., 26 tabs.

  15. Generation, storage, collection and transportation of municipal solid waste - A case study in the city of Kathmandu, capital of Nepal

    SciTech Connect (OSTI)

    Alam, R. [Shahjalal University of Science and Technology, Department of Civil and Environmental Engineering, Sylhet 3114 (Bangladesh)], E-mail: rakib_env@yahoo.com; Chowdhury, M.A.I.; Hasan, G.M.J.; Karanjit, B.; Shrestha, L.R. [Shahjalal University of Science and Technology, Department of Civil and Environmental Engineering, Sylhet 3114 (Bangladesh)

    2008-07-01T23:59:59.000Z

    Solid waste management (SWM) services have consistently failed to keep up with the vast amount of solid waste produced in urban areas. There is not currently an efficient system in place for the management, storage, collection, and transportation of solid waste. Kathmandu City, an important urban center of South Asia, is no exception. In Kathmandu Metropolitan City, solid waste generation is predicted to be 1091 m{sup 3}/d (245 tons/day) and 1155 m{sup 3}/d (260 tons/day) for the years 2005 and 2006, respectively. The majority (89%) of households in Kathmandu Metropolitan City are willing to segregate the organic and non-organic portions of their waste. Overall collection efficiency was 94% in 2003. An increase in waste collection occurred due to private sector involvement, the shutdown of the second transfer station near the airport due to local protest, a lack of funding to maintain trucks/equipment, a huge increase in plastic waste, and the willingness of people to separate their waste into separate bins. Despite a substantial increase in total expenditure, no additional investments were made to the existing development plan to introduce a modern disposal system due to insufficient funding. Due to the lack of a proper lining, raw solid waste from the existing dumping site comes in contact with river water directly, causing severe river contamination and deteriorating the quality of the water.

  16. POROUS WALL, HOLLOW GLASS MICROSPHERES

    SciTech Connect (OSTI)

    Sexton, W.

    2012-06-30T23:59:59.000Z

    Hollow Glass Microspheres (HGM) is not a new technology. All one has to do is go to the internet and Google{trademark} HGM. Anyone can buy HGM and they have a wide variety of uses. HGM are usually between 1 to 100 microns in diameter, although their size can range from 100 nanometers to 5 millimeters in diameter. HGM are used as lightweight filler in composite materials such as syntactic foam and lightweight concrete. In 1968 a patent was issued to W. Beck of the 3M{trademark} Company for 'Glass Bubbles Prepared by Reheating Solid Glass Particles'. In 1983 P. Howell was issued a patent for 'Glass Bubbles of Increased Collapse Strength' and in 1988 H. Marshall was issued a patent for 'Glass Microbubbles'. Now Google{trademark}, Porous Wall, Hollow Glass Microspheres (PW-HGMs), the key words here are Porous Wall. Almost every article has its beginning with the research done at the Savannah River National Laboratory (SRNL). The Savannah River Site (SRS) where SRNL is located has a long and successful history of working with hydrogen and its isotopes for national security, energy, waste management and environmental remediation applications. This includes more than 30 years of experience developing, processing, and implementing special ceramics, including glasses for a variety of Department of Energy (DOE) missions. In the case of glasses, SRS and SRNL have been involved in both the science and engineering of vitreous or glass based systems. As a part of this glass experience and expertise, SRNL has developed a number of niches in the glass arena, one of which is the development of porous glass systems for a variety of applications. These porous glass systems include sol gel glasses, which include both xerogels and aerogels, as well as phase separated glass compositions, that can be subsequently treated to produce another unique type of porosity within the glass forms. The porous glasses can increase the surface area compared to 'normal glasses of a 1 to 2 order of magnitude, which can result in unique properties in areas such as hydrogen storage, gas transport, gas separations and purifications, sensors, global warming applications, new drug delivery systems and so on. One of the most interesting porous glass products that SRNL has developed and patented is Porous Wall, Hollow Glass Microspheres (PW-HGMs) that are being studied for many different applications. The European Patent Office (EPO) just recently notified SRS that the continuation-in-part patent application for the PW-HGMs has been accepted. The original patent, which was granted by the EPO on June 2, 2010, was validated in France, Germany and the United Kingdom. The microspheres produced are generally in the range of 2 to 100 microns, with a 1 to 2 micron wall. What makes the SRNL microspheres unique from all others is that the team in Figure 1 has found a way to induce and control porosity through the thin walls on a scale of 100 to 3000 {angstrom}. This is what makes the SRNL HW-HGMs one-of-a-kind, and is responsible for many of their unique properties and potential for various applications, including those in tritium storage, gas separations, H-storage for vehicles, and even a variety of new medical applications in the areas of drug delivery and MRI contrast agents. SRNL Hollow Glass Microspheres, and subsequent, Porous Wall, Hollow Glass Microspheres are fabricated using a flame former apparatus. Figure 2 is a schematic of the apparatus.

  17. Technical Note: Updated durability/composition relationships for Hanford high-level waste glasses

    SciTech Connect (OSTI)

    Piepel, G.F.; Hartley, S.A.; Redgate, P.E.

    1996-03-01T23:59:59.000Z

    This technical note presents empirical models developed in FYI 995 to predict durability as functions of glass composition. Models are presented for normalized releases of B, Li, Na, and Si from the 7-day Product Consistency Test (PCT) applied to quenched and canister centerline cooled (CCC) glasses as well as from the 28-day Materials Characterization Center-1 (MCC-1) test applied to quenched glasses. Models are presented for Composition Variation Study (CVS) data from low temperature melter (LTM) studies (Hrma, Piepel, et al. 1994) and high temperature melter (HTM) studies (Vienna et al. 1995). The data used for modeling in this technical note are listed in Appendix A.

  18. WASTE LOADING ENHANCEMENTS FOR HANFORD LAW GLASSES VLS-10R1790-1 FINAL REPORT REV 0 12/1/2010

    SciTech Connect (OSTI)

    KRUGER AA; MULLER IS; JOSEPH I; MATLACK KS; GAN H; PEGG IL

    2010-12-28T23:59:59.000Z

    About 50 million gallons of high-level mixed waste is currently stored in underground tanks at The United States Department of Energy's (DOE's) Hanford site in the State of Washington. The Hanford Tank Waste Treatment and Immobilization Plant (WTP) will provide DOE's Office of River Protection (ORP) with a means of treating this waste by vitrification for subsequent disposal. The tank waste will be separated into low- and high-activity waste fractions, which will then be vitrified respectively into Immobilized Low Activity Waste (ILAW) and Immobilized High Level Waste (IHLW) products. The ILAW product will be disposed in an engineered facility on the Hanford site while the IHLW product will likely be directed to a national deep geological disposal facility for high-level nuclear waste. The ILAW and IHLW products must meet a variety of requirements with respect to protection of the environment before they can be accepted for disposal. The Office of River Protection is currently examining options to optimize the Low Activity Waste (LAW) Facility and LAW glass waste form. One option under evaluation is to enhance the waste processing rate of the vitrification plant currently under construction. It is likely that the capacity of the LAW vitrification plant can be increased incrementally by implementation of a variety of low-risk, high-probability changes, either separately or in combination. These changes include: (1) Operating at the higher processing rates demonstrated at the LAW pilot melter; (2) Increasing the glass pool surface area within the existing external melter envelope; (3) Increasing the glass waste loading; and (4) Operating the melter at a slightly higher temperature. The Vitreous State Laboratory (VSL) of The Catholic University of America (CUA) and Energy Solutions, Inc. have evaluated several of these potential incremental improvements for ORP in support of its evaluation of WTP LAW facility optimization. Some of these incremental improvements have been tested at VSL including increasing the waste loading, increasing the processing temperature, and increasing the fraction of the sulfur in the feed that is partitioned to the off-gas (in the event that a decision is made to break the present WTP recycle loop). These approaches successfully demonstrated increases in glass production rates and significant increases in sulfate incorporation at the nominal melter operating temperature of 1150 C and at slightly higher than nominal glass processing temperatures. Subsequent tests demonstrated further enhancement of glass formulations for all of the LAW waste envelopes, thereby reducing the amount of glass to be produced by the WTP for the same amount of waste processed. The next phase of testing determined the applicability of these improvements over the expected range of sodium and sulfur concentrations for Hanford LAW. This approach was subsequently applied to an even wider range of LAW wastes types, including those with high potassium concentration. The feasibility of formulating higher waste loading glasses using SnO{sub 2} and V{sub 2}O{sub 5} in place of Fe{sub 2}O{sub 3} and TiO{sub 2} as glass former additives was also evaluated. The present report provides data from investigation of the effects of magnesium content (up to {approx}10 wt%) on LAW glass properties and from work to identify improved high waste loading glass formulations that meets all processing and product quality requirements for two waste compositions. The scope of testing is detailed in the Test Plan for this work. A glass composition previously developed and tested at VSL for LAW from tank AN-105 (LAWA187) was varied by substituting Mg for other glass former additives such as Ca, B and Si in an attempt to formulate a glass with improved properties, such as higher waste loading and greater sulfur tolerance. The results were used to reformulate another glass (ORPLG9) developed for LAW from tank AP-101 that contains high concentrations of alkalis (Na and K). Glass formulation goals for this waste were to increase the sulfur tolerance of the

  19. Environmental Assessment for the Operation of the Glass Melter Thermal Treatment Unit at the US Department of Energy`s Mound Plant, Miamisburg, Ohio

    SciTech Connect (OSTI)

    NONE

    1995-06-01T23:59:59.000Z

    The glass melter would thermally treat mixed waste (hazardous waste contaminated with radioactive constituents largely tritium, Pu-238, and/or Th-230) that was generated at the Mound Plant and is now in storage, by stabilizing the waste in glass blocks. Depending on the radiation level of the waste, the glass melter may operate for 1 to 6 years. Two onsite alternatives and seven offsite alternatives were considered. This environmental assessment indicates that the proposed action does not constitute a major Federal action significantly affecting the human environment according to NEPA, and therefore the finding of no significant impact is made, obviating the need for an environmental impact statement.

  20. Submergible barge retrievable storage and permanent disposal system for radioactive waste

    DOE Patents [OSTI]

    Goldsberry, Fred L. (Spring, TX); Cawley, William E. (Richland, WA)

    1981-01-01T23:59:59.000Z

    A submergible barge and process for submerging and storing radioactive waste material along a seabed. A submergible barge receives individual packages of radwaste within segregated cells. The cells are formed integrally within the barge, preferably surrounded by reinforced concrete. The cells are individually sealed by a concrete decking and by concrete hatch covers. Seawater may be vented into the cells for cooling, through an integral vent arrangement. The vent ducts may be attached to pumps when the barge is bouyant. The ducts are also arranged to promote passive ventilation of the cells when the barge is submerged. Packages of the radwaste are loaded into individual cells within the barge. The cells are then sealed and the barge is towed to the designated disposal-storage site. There, the individual cells are flooded and the barge will begin descent controlled by a powered submarine control device to the seabed storage site. The submerged barge will rest on the seabed permanently or until recovered by a submarine control device.

  1. Use of depleted uranium metal as cask shielding in high-level waste storage, transport, and disposal systems

    SciTech Connect (OSTI)

    Yoshimura, H.R.; Ludwigsen, J.S.; McAllaster, M.E. [and others

    1996-09-01T23:59:59.000Z

    The US DOE has amassed over 555,000 metric tons of depleted uranium from its uranium enrichment operations. Rather than dispose of this depleted uranium as waste, this study explores a beneficial use of depleted uranium as metal shielding in casks designed to contain canisters of vitrified high-level waste. Two high-level waste storage, transport, and disposal shielded cask systems are analyzed. The first system employs a shielded storage and disposal cask having a separate reusable transportation overpack. The second system employs a shielded combined storage, transport, and disposal cask. Conceptual cask designs that hold 1, 3, 4 and 7 high-level waste canisters are described for both systems. In all cases, cask design feasibility was established and analyses indicate that these casks meet applicable thermal, structural, shielding, and contact-handled requirements. Depleted uranium metal casting, fabrication, environmental, and radiation compatibility considerations are discussed and found to pose no serious implementation problems. About one-fourth of the depleted uranium inventory would be used to produce the casks required to store and dispose of the nearly 15,400 high-level waste canisters that would be produced. This study estimates the total-system cost for the preferred 7-canister storage and disposal configuration having a separate transportation overpack would be $6.3 billion. When credits are taken for depleted uranium disposal cost, a cost that would be avoided if depleted uranium were used as cask shielding material rather than disposed of as waste, total system net costs are between $3.8 billion and $5.5 billion.

  2. TWRS retrieval and disposal mission, immobilized high-level waste storage plan

    SciTech Connect (OSTI)

    Calmus, R.B.

    1998-01-07T23:59:59.000Z

    This project plan has a two fold purpose. First, it provides a plan specific to the Hanford Tank Waste Remediation System (TWRS) Immobilized High-Level Waste (EMW) Storage Subproject for the Washington State Department of Ecology (Ecology) that meets the requirements of Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement) milestone M-90-01 (Ecology et al. 1996) and is consistent with the project plan content guidelines found in Section 11.5 of the Tri-Party Agreement action plan. Second, it provides an upper tier document that can be used as the basis for future subproject line item construction management plans. The planning elements for the construction management plans are derived from applicable U.S. Department of Energy (DOE) planning guidance documents (DOE Orders 4700.1 (DOE 1992a) and 430.1 (DOE 1995)). The format and content of this project plan are designed to accommodate the plan`s dual purpose. A cross-check matrix is provided in Appendix A to explain where in the plan project planning elements required by Section 11.5 of the Tri-Party Agreement are addressed.

  3. Seismically induced loads on internal components submerged in waste storage tanks

    SciTech Connect (OSTI)

    Rezvani, M.A.; Julyk, J.L.; Weiner, E.O.

    1993-10-01T23:59:59.000Z

    As new equipment is designed and analyzed to be installed in the double-shell waste storage tanks at the Hanford Site near Richland, Washington, the equipment and the tank integrity must be evaluated. These evaluations must consider the seismically induced loads, combined with other loadings. This paper addresses the hydrodynamic behavior and response of structural components submerged in the fluid waste. The hydrodynamic effects induced by the horizontal component of ground shaking is expressed as the sum of the impulsive and convective (sloshing) components. The impulsive component represents the effects of the fluid that may be considered to move in synchronism with the tank wall as a rigidly attached mass. The convective component represents the action of the fluid near the surface that experiences sloshing or rocking motion. The added-mass concept deals with the vibration of the structural component in a viscous fluid. The presence of the fluid gives rise to a fluid reaction force that can be interpreted as an added-mass effect and a damping contribution to the dynamic response of the submerged components. The distribution of the hydrodynamic forces on the internal components is not linear. To obtain the reactions and the stresses at the critical points, the force distribution is integrated along the length of the equipment submerged in the fluid.

  4. Radioactive Waste Radioactive Waste

    E-Print Network [OSTI]

    Slatton, Clint

    form · Separate liquid from solid · Radionuclide · Separate all but H3/C14 #12;#12;Radioactive Waste;Radioactive Waste H3/C14 solids Type B (non-incinerable) metal glass hazardous materials #12;#12;Radioactive#12;Radioactive Waste at UF Bldg 831 392-8400 #12;Radioactive Waste · Program is designed to

  5. ENVIRONMENTAL IMPACTS ASSOCIATED WITH STORAGE, TREATMENT, AND DISPOSAL OF SOLID RADIOACTIVE AND CHEMICALLY HAZARDOUS WASTE AT THE HANFORD SITE, RICHLAND, WASHINGTON

    SciTech Connect (OSTI)

    Johnson, Wayne L.; Nelson, Iral C.; Payson, David R.; Rhoads, Kathleen

    2004-03-01T23:59:59.000Z

    The Hanford Site Solid (Radioactive and Hazardous) Waste Program Environmental Impact Statement (HSW EIS) provides environmental and technical information concerning U.S. Department of Energy (DOE) proposed waste management practices for certain solid radioactive wastes at the Hanford Site through the year 2046. The HSW EIS covers four primary aspects of waste management at Hanford – storage, treatment, transportation, and disposal. It also addresses four types of solid waste – low-level waste, mixed low-level waste that contains both radioactive and chemically hazardous constituents, immobilized low-activity waste from processing Hanford tank waste, and transuranic waste. The HSW EIS was prepared to assist DOE in determining which specific Hanford Site facilities will continue to be used, will be modified, or need to be constructed, to safely treat, store, and dispose of these wastes.

  6. Liquidus Temperature Measurements for Modeling Oxide Glass Systems Relevant to Nuclear Waste Vitrification

    SciTech Connect (OSTI)

    Hanni, Jonathan; Pressly, Eric D.; Crum, Jarrod V.; Minister, Kevin B.; Tran, Diana N.; Hrma, Pavel R.; Vienna, John D.

    2005-12-01T23:59:59.000Z

    Liquidus temperatures TL have been measured and primary phases have been determined for 42 (from an initial test matrix of 60) compositions within the Al2O3-B2O3-CaO-Na2O-SiO2 glass forming network. These data have been used to test TL calculations and primary phase predictions obtained using a modified associate species model (ASM). This paper highlights the strong linear correlations between composition and TL for glasses within the same primary phase fields, the strengths of the ASM in determining TL and phase for glasses observed to precipitate nepheline, and weaknesses of the ASM in predicting phase information and TL for calcia- and boria-rich glasses. TL has also been measured for glasses using two baseline compositions from the five-component network that have been individually doped with Fe2O3, Li2O, NiO, ZrO2, Cr2O3, ZnO, and MnO. These additional oxide glasses are intended for use as benchmark data for testing the model as more oxides are included.

  7. Test plan for glass melter system technologies for vitrification of high-sodium content low-level radioactive liquid waste, Project No. RDD-43288

    SciTech Connect (OSTI)

    Higley, B.A.

    1995-03-15T23:59:59.000Z

    This document provides a test plan for the conduct of combustion fired cyclone vitrification testing by a vendor in support of the Hanford Tank Waste Remediation System, Low-Level Waste Vitrification Program. The vendor providing this test plan and conducting the work detailed within it is the Babcock & Wilcox Company Alliance Research Center in Alliance, Ohio. This vendor is one of seven selected for glass melter testing.

  8. Glass Science tutorial lecture No. 5: Historical review of USDOE tank waste management

    SciTech Connect (OSTI)

    McDaniel, E.W.

    1995-02-01T23:59:59.000Z

    This is a two day course whose objective is to present an unbiased historical overview of the DOE tank waste activities. World events which impacted the US nuclear program (or vise versa) will be presented. Liquid, mostly tank waste, and sludge are the primary concerns of this course.

  9. RHENIUM SOLUBILITY IN BOROSILICATE NUCLEAR WASTE GLASS IMPLICATIONS FOR THE PROCESSING AND IMMOBILIZATION OF TECHNETIUM-99 (AND SUPPORTING INFORMATION WITH GRAPHICAL ABSTRACT)

    SciTech Connect (OSTI)

    AA KRUGER; A GOEL; CP RODRIGUEZ; JS MCCLOY; MJ SCHWEIGER; WW LUKENS; JR, BJ RILEY; D KIM; M LIEZERS; P HRMA

    2012-08-13T23:59:59.000Z

    The immobilization of 99Tc in a suitable host matrix has proved a challenging task for researchers in the nuclear waste community around the world. At the Hanford site in Washington State in the U.S., the total amount of 99Tc in low-activity waste (LAW) is {approx} 1,300 kg and the current strategy is to immobilize the 99Tc in borosilicate glass with vitrification. In this context, the present article reports on the solubility and retention of rhenium, a nonradioactive surrogate for 99Tc, in a LAW sodium borosilicate glass. Due to the radioactive nature of technetium, rhenium was chosen as a simulant because of previously established similarities in ionic radii and other chemical aspects. The glasses containing target Re concentrations varying from 0 to10,000 ppm by mass were synthesized in vacuum-sealed quartz ampoules to minimize the loss of Re by volatilization during melting at 1000 DC. The rhenium was found to be present predominantly as Re7 + in all the glasses as observed by X-ray absorption near-edge structure (XANES). The solubility of Re in borosilicate glasses was determined to be {approx}3,000 ppm (by mass) using inductively coupled plasma-optical emission spectroscopy (ICP-OES). At higher rhenium concentrations, some additional material was retained in the glasses in the form of alkali perrhenate crystalline inclusions detected by X-ray diffraction (XRD) and laser ablation-ICP mass spectrometry (LA-ICP-MS). Assuming justifiably substantial similarities between Re7 + and Tc 7+ behavior in this glass system, these results implied that the processing and immobilization of 99Tc from radioactive wastes should not be limited by the solubility of 99Tc in borosilicate LAW glasses.

  10. HWMA/RCRA Closure Plan for the CPP-648 Radioactive Solid and Liquid Waste Storage Tank System (VES-SFE-106)

    SciTech Connect (OSTI)

    S. K. Evans

    2006-08-15T23:59:59.000Z

    This Hazardous Waste Management Act/Resource Conservation and Recovery Act closure plan for the Radioactive Solid and Liquid Waste Storage Tank System located in the adjacent to the Sludge Tank Control House (CPP-648), Idaho Nuclear Technology and Engineering Center, Idaho National Laboratory, was developed to meet the interim status closure requirements for a tank system. The system to be closed includes a tank and associated ancillary equipment that were determined to have managed hazardous waste. The CPP-648 Radioactive Solid and Liquid Waste Storage Tank System will be "cleaned closed" in accordance with the requirements of the Hazardous Waste Management Act/Resource Conservation and Recovery Act as implemented by the Idaho Administrative Procedures Act and 40 Code of Federal Regulations 265. This closure plan presents the closure performance standards and methods of acheiving those standards for the CPP-648 Radioactive Solid and Liquid Waste Storage Tank System.

  11. Corrosion of Chromium-Rich Oxide Refractories in Molten Waste Glasses

    SciTech Connect (OSTI)

    Hao Gan; Xiaodong Lu; Andrew C. Buechele; M. Catherine Paul; Ian L. Pegg

    2002-03-20T23:59:59.000Z

    The DOE is faced with a wide variety of waste treatment problems throughout the complex. The diversity in physical, chemical, and radiological characteristics of these waste streams will necessitate an array of treatment technologies since, at present, there exists no single solution. Thermal treatment technologies have an important, but by no means singular, role to play in addressing this problem since they generally offer the potential for significant volume reductions, leach resistant waste forms, considerable versatility, and are relatively well developed. In particular, DOE has made significant investments in the development and deployment of vitrification technologies for the treatment of high-level nuclear wastes and, more recently, for mixed wastes. The general area of materials of construction is especially important for thermal processes due to the inherently high-temperature and the often-corrosive environments involved. The performance of these materials directly impacts treatment costs since this determines maintenance downtime and the useful service life of the treatment unit.

  12. Criticality Safety Evaluations on the Use of 200-gram Pu Mass Limit for RHWM Waste Storage Operations

    SciTech Connect (OSTI)

    Chou, P

    2011-12-14T23:59:59.000Z

    This work establishes the criticality safety technical basis to increase the fissile mass limit from 120 grams to 200 grams for Type A 55-gallon drums and their equivalents. Current RHWM fissile mass limit is 120 grams Pu for Type A 55-gallon containers and their equivalent. In order to increase the Type A 55-gallon drum limit to 200 grams, a few additional criticality safety control requirements are needed on moderators, reflectors, and array controls to ensure that the 200-gram Pu drums remain criticality safe with inadvertent criticality remains incredible. The purpose of this work is to analyze the use of 200-gram Pu drum mass limit for waste storage operations in Radioactive and Hazardous Waste Management (RHWM) Facilities. In this evaluation, the criticality safety controls associated with the 200-gram Pu drums are established for the RHWM waste storage operations. With the implementation of these criticality safety controls, the 200-gram Pu waste drum storage operations are demonstrated to be criticality safe and meet the double-contingency-principle requirement per DOE O 420.1.

  13. IMPACT OF PARTICLE SIZE AND AGGLOMERATION ON SETTLING OF SOLIDS IN CONTINUOUS MELTERS PROCESSING RADIOACTIVE WASTE GLASS

    SciTech Connect (OSTI)

    HRMA PR

    2008-12-18T23:59:59.000Z

    The major factor limiting waste loading for many waste compositions in continuous waste glass melters is the settling of crystalline materials. The currently used constraints, i.e., the minimum liquidus temperature or the maximum fraction of equilibrium crystallinity at a given temperature, are based on thennodynamic equilibria. Because of the rapid circular convection in the melter, these constraints are probably irrelevant and cannot prevent large crystals from settling. The main factor that detennines the rate of settling ofindividual crystals, such as those ofspinel, is their size. The tiny crystals of RU02 are too small to settle, but they readily fonn large agglomerates that accelerate their rate ofsettling by severalorders ofmagnitude. The RU02 agglomerates originate early in the melting process and then grow by the shear-flocculation mechanism. It is estimated that these agglomerates must either be ofhundreds micrometers in size or have an elongated shape to match the observed rates ofthe sludge-layer fonnation. PACS: 47.57.ef, 81.05.Kj, 81.10.Fg

  14. Determination of temperature-dependent heat conductivity and thermal diffusivity of waste glass melter feed

    SciTech Connect (OSTI)

    Pokorny, Richard; Rice, Jarrett A.; Schweiger, Michael J.; Hrma, Pavel R.

    2013-06-01T23:59:59.000Z

    The cold cap is a layer of reacting glass batch floating on the surface of melt in an all-electric continuous glass melter. The heat needed for the conversion of the melter feed to molten glass must be transferred to and through the cold cap. Since the heat flux into the cold cap determines the rate of melting, the heat conductivity is a key property of the reacting feed. We designed an experimental setup consisting of a large cylindrical crucible with an assembly of thermocouples that monitors the evolution of the temperature field while the crucible is heated at a constant rate. Then we used two methods to calculate the heat conductivity and thermal diffusivity of the reacting feed: the approximation of the temperature field by polynomial functions and the finite-volume method coupled with least-squares analysis. Up to 680°C, the heat conductivity of the reacting melter feed was represented by a linear function of temperature.

  15. Effect of Minor Component Addition on Spinel Crystallization in Simulated High-Level Waste Glass

    SciTech Connect (OSTI)

    Plaisted, Trevor J.; Alton, Jesse; Wilson, Benjamin K.; Hrma, Pavel R.

    2000-04-12T23:59:59.000Z

    Spinel concentration in MS-7 glass (0% others) with its limited components shows to be dependent on several variable properties during heat treatments, primarily the limited number of nucleation sites and the growth rate of spinel. Equilibrium seems to be unaffected by this phenomenon, but the kinetics of spinel crystallization show a dependence. An empirical relationship between the number density (ns) of spinel in glass and the rate constant (k) in the Avrami equation was established showing that the kinetics of crystallization are temperature (T) and ns dependent.

  16. Melter Glass Removal and Dismantlement

    SciTech Connect (OSTI)

    Richardson, BS

    2000-10-31T23:59:59.000Z

    The U.S. Department of Energy (DOE) has been using vitrification processes to convert high-level radioactive waste forms into a stable glass for disposal in waste repositories. Vitrification facilities at the Savannah River Site (SRS) and at the West Valley Demonstration Project (WVDP) are converting liquid high-level waste (HLW) by combining it with a glass-forming media to form a borosilicate glass, which will ensure safe long-term storage. Large, slurry fed melters, which are used for this process, were anticipated to have a finite life (on the order of two to three years) at which time they would have to be replaced using remote methods because of the high radiation fields. In actuality the melters useable life spans have, to date, exceeded original life-span estimates. Initial plans called for the removal of failed melters by placing the melter assembly into a container and storing the assembly in a concrete vault on the vitrification plant site pending size-reduction, segregation, containerization, and shipment to appropriate storage facilities. Separate facilities for the processing of the failed melters currently do not exist. Options for handling these melters include (1) locating a facility to conduct the size-reduction, characterization, and containerization as originally planned; (2) long-term storing or disposing of the complete melter assembly; and (3) attempting to refurbish the melter and to reuse the melter assembly. The focus of this report is to look at methods and issues pertinent to size-reduction and/or melter refurbishment in particular, removing the glass as a part of a refurbishment or to reduce contamination levels (thus allowing for disposal of a greater proportion of the melter as low level waste).

  17. GLASS SELECTION STRATEGY: DEVELOPMENT OF US AND KRI TEST MATRICIES

    SciTech Connect (OSTI)

    Fox, K; Tommy Edwards, T; David Peeler, D

    2007-02-06T23:59:59.000Z

    High-level radioactive wastes are stored as liquids in underground storage tanks at the Department of Energy's (DOE) Savannah River Site (SRS) and Hanford Reservation. These wastes are to be prepared for permanent disposition in a geologic repository by vitrification with glass forming additives (e.g., frit), creating a waste form with long-term durability. Wastes at SRS are being vitrified in the Defense Waste Processing Facility (DWPF). Vitrification of the wastes stored at Hanford is planned for the Waste Treatment and Immobilization Plant (WTP) when completed. Some of the wastes at SRS, and particularly those at Hanford, contain high concentrations of aluminum, chromium and sulfate. These elements make it more difficult to produce a waste glass with a high waste loading (WL) without crystallization occurring in the glass (either within the melter or upon cooling of the glass), potentially exceeding the solubility limit of critical components, having negative impacts on durability, and/or resulting in the formation of a sulfate salt layer on the molten glass surface. Although the overall scope of the task is focused on all three critical, chemical components, the current work will primarily address the potential for crystallization (e.g., nepheline and/or spinel) in high level waste (HLW) glasses. Recent work at the Savannah River National Laboratory (SRNL) and by other groups has shown that nepheline (NaAlSiO{sub 4}), which is likely to crystallize in high-alumina glasses, has a detrimental effect on the durability of the glass. The objective of this task is to develop glass formulations for specific SRS and Hanford waste streams to avoid nepheline formation while meeting waste loading and waste throughput expectations, as well as satisfying critical process and product performance related constraints. Secondary objectives of this task are to assess the sulfate solubility limit for the DWPF composition and spinel settling for the WTP composition. SRNL has partnered with Pacific Northwest National Laboratory (PNNL) and the V.G. Khlopin Radium Institute (KRI) to complete this task.

  18. RIVER PROTECTION PROJECT MISSION ANALYSIS WASTE BLENDING STUDY

    SciTech Connect (OSTI)

    SHUFORD DH; STEGEN G

    2010-04-19T23:59:59.000Z

    Preliminary evaluation for blending Hanford site waste with the objective of minimizing the amount of high-level waste (HLW) glass volumes without major changes to the overall waste retrieval and processing sequences currently planned. The evaluation utilizes simplified spreadsheet models developed to allow screening type comparisons of blending options without the need to use the Hanford Tank Waste Operations Simulator (HTWOS) model. The blending scenarios evaluated are expected to increase tank farm operation costs due to increased waste transfers. Benefit would be derived from shorter operating time period for tank waste processing facilities, reduced onsite storage of immobilized HLW, and reduced offsite transportation and disposal costs for the immobilized HLW.

  19. Effects of Quartz Particle Size and Sucrose Addition on Melting Behavior of a Melter Feed for High-Level Waste Glass

    SciTech Connect (OSTI)

    Marcial, Jose; Hrma, Pavel R.; Schweiger, Michael J.; Swearingen, Kevin J.; Tegrotenhuis, Nathan E.; Henager, Samuel H.

    2010-08-11T23:59:59.000Z

    The behavior of melter feed (a mixture of nuclear waste and glass-forming additives) during waste-glass processing has a significant impact on the rate of the vitrification process. We studied the effects of silica particle size and sucrose addition on the volumetric expansion (foaming) of a high-alumina feed and the rate of dissolution of silica particles in feed samples heated at 5°C/min up to 1200°C. The initial size of quartz particles in feed ranged from 5 to 195 µm. The fraction of the sucrose added ranged from 0 to 0.20 g per g glass. Extensive foaming occurred only in feeds with 5-?m quartz particles; particles ?150 µm formed clusters. Particles of 5 µm completely dissolved by 900°C whereas particles ?150 µm did not fully dissolve even when the temperature reached 1200°C. Sucrose addition had virtually zero impact on both foaming and the dissolution of silica particles.

  20. Waste Disposal (Illinois)

    Broader source: Energy.gov [DOE]

    This article lays an outline of waste disposal regulations, permits and fees, hazardous waste management and underground storage tank requirements.

  1. SULFATE RETENTION IN HIGH LEVEL WASTE SLUDGE BATCH 4 GLASSES: A PRELIMINARY ASSESSMENT

    SciTech Connect (OSTI)

    Fox, K; Tommy Edwards, T; David Peeler, D

    2006-12-11T23:59:59.000Z

    Early projections of the Sludge Batch 4 (SB4) composition predicted relatively high concentrations of alumina (Al{sub 2}O{sub 3}, 23.5 wt%) and sulfate (SO{sub 4}{sup 2-}, 1.2 wt%) in the sludge. A high concentration of Al{sub 2}O{sub 3} in the sludge, combined with Na{sub 2}O additions in the frit, raises the potential for nepheline crystallization in the glass. However, strategic frit development efforts at the Savannah River National Laboratory (SRNL) have shown that frits containing a relatively high concentration of B{sub 2}O{sub 3} can both suppress nepheline crystallization and improve melt rates. A high sulfate concentration is a concern to the DWPF as it can lead to the formation of sulfate inclusions in the glass and/or the formation of a molten, sulfate-rich phase atop the melt pool. To avoid these issues, a sulfate concentration limit of 0.4 wt% SO{sub 4}{sup 2-} in glass was originally set in the Product Composition Control System (PCCS) used at DWPF. It was later shown that this limit could be increased to 0.6 wt% SO{sub 4}{sup 2-} in glass for the Frit 418, Sludge Batch 3 (SB3) system.

  2. Synthesis of powellite-rich glasses for high level waste immobilization

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    : 10.1016/j.jnoncrysol.2011.02.024 #12;1. Introduction Spent fuel from GCR (Gas Cooled Reactors quantity of Gd2O3 (0.15 mol%) was added to all glasses to study the speciation of rare earth elements for EPR measurements. Indeed, EPR spectroscopy is a quantitative tool for analyzing ion speciation and Gd3

  3. CRYSTALLIZATION IN MULTICOMPONENT GLASSES

    SciTech Connect (OSTI)

    KRUGER AA; HRMA PR

    2009-10-08T23:59:59.000Z

    In glass processing situations involving glass crystallization, various crystalline forms nucleate, grow, and dissolve, typically in a nonuniform temperature field of molten glass subjected to convection. Nuclear waste glasses are remarkable examples of multicomponent vitrified mixtures involving partial crystallization. In the glass melter, crystals form and dissolve during batch-to-glass conversion, melter processing, and product cooling. Crystals often agglomerate and sink, and they may settle at the melter bottom. Within the body of cooling glass, multiple phases crystallize in a non-uniform time-dependent temperature field. Self-organizing periodic distribution (the Liesegnang effect) is common. Various crystallization phenomena that occur in glass making are reviewed.

  4. Structural and mechanical response to a thermo-rheologic history of spinel sludge in high-level waste glass

    SciTech Connect (OSTI)

    Jiricka, Milos (ASSOC WESTERN UNIVERSITY); Hrma, Pavel R. (BATTELLE (PACIFIC NW LAB))

    2002-01-01T23:59:59.000Z

    The composition and structure of a sludge sample from a high-level waste glass melter were studied using optical and scanning electron microscopy, and x-ray diffraction. At isothermal heat treatments between 1050 C and 1350 C, spinel crystals partly dissolved to form on cooling tiny ({approx}10 um) star-like crystals or dendrites. The shear stress in sludge was measured at a constant shear rate (from 0.005 s{sup -1} to 1.0 s{sup -1}) and temperature (from 1050 C to 1350?C) during repeated deformation and after idling. The initial thixotropic character of the loose structure of the settled sludge turned on subsequent deformation (and idling) to rheopectic behavior. As the spinel concentration in the sludge decreased from 28 mass% (sludge as received) to 15 mass% at 1300 C, the sludge turned into a Newtonian suspension.

  5. Record of Technical Change for Corrective Action Plan for Corrective Action Unit 140: Waste Dumps, burn Pits, and Storage Area, Nevada Test Site, Nevada

    SciTech Connect (OSTI)

    U.S. Department of Energy, National Nuclear Security Administration, Nevada Site Office; Bechtel Nevada

    2005-01-05T23:59:59.000Z

    Record of Technical Change for Corrective Action Plan for Corrective Action Unit 140: Waste Dumps, Burn Pits, and Storage Area, Nevada Test Site, Nevada (DOE/NV--963-Rev 2, dated November 2004).

  6. SAVANNAH RIVER SITE INCIPIENT SLUDGE MIXING IN RADIOACTIVE LIQUID WASTE STORAGE TANKS DURING SALT SOLUTION BLENDING

    SciTech Connect (OSTI)

    Leishear, R.; Poirier, M.; Lee, S.; Steeper, T.; Fowley, M.; Parkinson, K.

    2011-01-12T23:59:59.000Z

    This paper is the second in a series of four publications to document ongoing pilot scale testing and computational fluid dynamics (CFD) modeling of mixing processes in 85 foot diameter, 1.3 million gallon, radioactive liquid waste, storage tanks at Savannah River Site (SRS). Homogeneous blending of salt solutions is required in waste tanks. Settled solids (i.e., sludge) are required to remain undisturbed on the bottom of waste tanks during blending. Suspension of sludge during blending may potentially release radiolytically generated hydrogen trapped in the sludge, which is a safety concern. The first paper (Leishear, et. al. [1]) presented pilot scale blending experiments of miscible fluids to provide initial design requirements for a full scale blending pump. Scaling techniques for an 8 foot diameter pilot scale tank were also justified in that work. This second paper describes the overall reasons to perform tests, and documents pilot scale experiments performed to investigate disturbance of sludge, using non-radioactive sludge simulants. A third paper will document pilot scale CFD modeling for comparison to experimental pilot scale test results for both blending tests and sludge disturbance tests. That paper will also describe full scale CFD results. The final paper will document additional blending test results for stratified layers in salt solutions, scale up techniques, final full scale pump design recommendations, and operational recommendations. Specifically, this paper documents a series of pilot scale tests, where sludge simulant disturbance due to a blending pump or transfer pump are investigated. A principle design requirement for a blending pump is UoD, where Uo is the pump discharge nozzle velocity, and D is the nozzle diameter. Pilot scale test results showed that sludge was undisturbed below UoD = 0.47 ft{sup 2}/s, and that below UoD = 0.58 ft{sup 2}/s minimal sludge disturbance was observed. If sludge is minimally disturbed, hydrogen will not be released. Installation requirements were also determined for a transfer pump which will remove tank contents, and which is also required to not disturb sludge. Testing techniques and test results for both types of pumps are presented.

  7. The component slope linear model for calculating intensive partial molar properties /application to waste glasses and aluminate solutions

    SciTech Connect (OSTI)

    Reynolds, Jacob G. [Washington River Protection Solutions, LLC, Richland, WA (United States)

    2013-01-11T23:59:59.000Z

    Partial molar properties are the changes occurring when the fraction of one component is varied while the fractions of all other component mole fractions change proportionally. They have many practical and theoretical applications in chemical thermodynamics. Partial molar properties of chemical mixtures are difficult to measure because the component mole fractions must sum to one, so a change in fraction of one component must be offset with a change in one or more other components. Given that more than one component fraction is changing at a time, it is difficult to assign a change in measured response to a change in a single component. In this study, the Component Slope Linear Model (CSLM), a model previously published in the statistics literature, is shown to have coefficients that correspond to the intensive partial molar properties. If a measured property is plotted against the mole fraction of a component while keeping the proportions of all other components constant, the slope at any given point on a graph of this curve is the partial molar property for that constituent. Actually plotting this graph has been used to determine partial molar properties for many years. The CSLM directly includes this slope in a model that predicts properties as a function of the component mole fractions. This model is demonstrated by applying it to the constant pressure heat capacity data from the NaOH-NaAl(OH){sub 4}-H{sub 2}O system, a system that simplifies Hanford nuclear waste. The partial molar properties of H{sub 2}O, NaOH, and NaAl(OH){sub 4} are determined. The equivalence of the CSLM and the graphical method is verified by comparing results determined by the two methods. The CSLM model has been previously used to predict the liquidus temperature of spinel crystals precipitated from Hanford waste glass. Those model coefficients are re-interpreted here as the partial molar spinel liquidus temperature of the glass components.

  8. Analytical electron microscopy examination of solid reaction products in long-term test of SRL 200 waste glasses

    SciTech Connect (OSTI)

    Buck, E.C.; Fortner, J.A.; Bates, J.K.; Feng, X.; Dietz, N.L.; Bradley, C.R.; Tani, B.S.

    1993-12-31T23:59:59.000Z

    Alteration phases, found on the leached surfaces and present as colloids in the leachates of 200-based frit (fully active and simulated) nuclear waste glass, reacted under static test conditions, at a surface area to leachate volume ratio of 20,000 m{sup {minus}1} for 15 days to 728 days, have been examined by analytical electron microscopy. The compositions of the secondary phases were determined using x-ray energy dispersive spectroscopy and electron energy loss spectroscopy, and structural analysis was accomplished by electron diffraction. Long-term samples of simulated glass, which had undergone an acceleration of reaction after 182 days, possessed a number of silicate secondary phases, including; smectite (iron silicate and potassium iron alumina-silicate, weeksite (uranium silicate), zeolite (calcium potassium alumino-silicate), tobermorite (calcium silicate), and a pure silica phase. However, uranium silicates and smectite have also been observed in tests, which have not undergone the acceleration of reaction, in both the leachate and leached layer, suggesting that these phases are not responsible for the acceleration of reaction.

  9. CHARACTERIZING DOE HANFORD SITE WASTE ENCAPSULATION STORAGE FACILITY CELLS USING RADBALL

    SciTech Connect (OSTI)

    Farfan, E.; Coleman, R.

    2011-03-31T23:59:59.000Z

    RadBall{trademark} is a novel technology that can locate and quantify unknown radioactive hazards within contaminated areas, hot cells, and gloveboxes. The device consists of a colander-like outer tungsten collimator that houses a radiation-sensitive polymer semi-sphere. The collimator has a number of small holes with tungsten inserts; as a result, specific areas of the polymer are exposed to radiation becoming increasingly more opaque in proportion to the absorbed dose. The polymer semi-sphere is imaged in an optical computed tomography scanner that produces a high resolution 3D map of optical attenuation coefficients. A subsequent analysis of the optical attenuation data using a reverse ray tracing or backprojection technique provides information on the spatial distribution of gamma-ray sources in a given area forming a 3D characterization of the area of interest. RadBall{trademark} was originally designed for dry deployments and several tests, completed at Savannah River National Laboratory and Oak Ridge National Laboratory, substantiate its modeled capabilities. This study involves the investigation of the RadBall{trademark} technology during four submerged deployments in two water filled cells at the DOE Hanford Site's Waste Encapsulation Storage Facility.

  10. MEASUREMENT AND CALCULATION OF RADIONUCLIDE ACTIVITIES IN SAVANNAH RIVER SITE HIGH LEVEL WASTE SLUDGE FOR ACCEPTANCE OF DEFENSE WASTE PROCESSING FACILITY GLASS IN A FEDERAL REPOSITORY

    SciTech Connect (OSTI)

    Bannochie, C; David Diprete, D; Ned Bibler, N

    2008-12-31T23:59:59.000Z

    This paper describes the results of the analyses of High Level Waste (HLW) sludge slurry samples and of the calculations necessary to decay the radionuclides to meet the reporting requirement in the Waste Acceptance Product Specifications (WAPS) [1]. The concentrations of 45 radionuclides were measured. The results of these analyses provide input for radioactive decay calculations used to project the radionuclide inventory at the specified index years, 2015 and 3115. This information is necessary to complete the Production Records at Savannah River Site's Defense Waste Processing Facility (DWPF) so that the final glass product resulting from Macrobatch 5 (MB5) can eventually be submitted to a Federal Repository. Five of the necessary input radionuclides for the decay calculations could not be measured directly due to their low concentrations and/or analytical interferences. These isotopes are Nb-93m, Pd-107, Cd-113m, Cs-135, and Cm-248. Methods for calculating these species from concentrations of appropriate other radionuclides will be discussed. Also the average age of the MB5 HLW had to be calculated from decay of Sr-90 in order to predict the initial concentration of Nb-93m. As a result of the measurements and calculations, thirty-one WAPS reportable radioactive isotopes were identified for MB5. The total activity of MB5 sludge solids will decrease from 1.6E+04 {micro}Ci (1 {micro}Ci = 3.7E+04 Bq) per gram of total solids in 2008 to 2.3E+01 {micro}Ci per gram of total solids in 3115, a decrease of approximately 700 fold. Finally, evidence will be given for the low observed concentrations of the radionuclides Tc-99, I-129, and Sm-151 in the HLW sludges. These radionuclides were reduced in the MB5 sludge slurry to a fraction of their expected production levels due to SRS processing conditions.

  11. Property/composition relationships for Hanford high-level waste glasses melting at 115{degrees}C volume 1: Chapters 1-11

    SciTech Connect (OSTI)

    Hrma, P.R.; Piepel, G.F.

    1994-12-01T23:59:59.000Z

    A Composition Variation study (CVS) is being performed within the Pacific Northwest Laboratory Vitrification Technology Development (PVTD) project in support of a future high-level nuclear waste vitrification plant at the Hanford site in Washington. From 1989 to 1994, over 120 nonradioactive glasses were melted and properties measured in five statistically-designed experimental phases. Glass composition is represented by the 10 components SiO{sub 2}, B{sub 2}O{sub 3}, Al{sub 2}O{sub 3}, Fe{sub 2}O{sub 3}, ZrO{sub 2}, Na{sub 2}O, Li{sub 2}O, CaO, MgO, and Others (all remaining components). The properties measured include viscosity ({eta}), electrical conductivity ({epsilon}), glass transition temperature (T{sub g} ), thermal expansion of solid glass ({alpha}{sub s}) and molten glass ({alpha}{sub m}), crystallinity (quenched and canister centerline cooled glasses), liquidus temperature (T{sub L}), durability based on normalized elemental releases from the Materials Characterization Center-1 28-day dissolution test (MCC-1, r{sub mi}) and the 7-day Product Consistency Test (PCT, r{sub pi}), and solution pHs from MCC-1 and PCT. Amorphous phase separation was also evaluated. Empirical first- and second-order mixture models were fit using the CVS data to relate the various properties to glass composition. Equations for calculating the uncertainty associated with property values predicted by the models were also developed. The models were validated using both internal and external data. Other modeling approaches (e.g., non-bridging oxygen, free energy of hydration, phase-equilibria T{sub L}) were investigated for specific properties. A preliminary Qualified Composition Region was developed to identify glass compositions with high confidence of being processable in a melter and meeting waste form acceptance criteria.

  12. Property/composition relationships for Hanford high-level waste glasses melting at 1150{degrees}C volume 2: Chapters 12-16 and appendices A-K

    SciTech Connect (OSTI)

    Hrma, P.R.; Piepel, G.F.

    1994-12-01T23:59:59.000Z

    A Composition Variation Study (CVS) is being performed within the Pacific Northwest Laboratory Vitrification Technology Development (PVTD) project in support of a future high-level nuclear waste vitrification plant at the Hanford site in Washington. From 1989 to 1994, over 120 nonradioactive glasses were melted and properties measured in five statistically-designed experimental phases. Glass composition is represented by the 10 components SiO{sub 2}, B{sub 2}O{sub 3}, ZrO{sub 2}, Na{sub 2}O, Li{sub 2}O, CaO, MgO, and Others (all remaining components). The properties measured include viscosity ({eta}), electrical conductivity ({epsilon}), glass transition temperature (T{sub g}), thermal expansion of solid glass ({alpha}{sub s}) and molten glass ({alpha}{sub m}), crystallinity (quenched and canister centerline cooled glasses), liquidus temperature (T{sub L}), durability based on normalized elemental releases from the Materials Characterization Center-1 28-day dissolution test (MCC-1, r{sub mi}) and the 7-day Product Consistency Test (PCT, r{sub pi}), and solution pHs from MCC-1 and PCT. Amorphous phase separation was also evaluated. Empirical first- and second-order mixture models were fit using the CVS data to relate the various properties to glass composition. Equations for calculating the uncertainty associated with property values predicted by the models were also developed. The models were validated using both internal and external data. Other modeling approaches (e.g., non-bridging oxygen, free energy of hydration, phase-equilibria T{sub L}) were investigated for specific properties. A preliminary Qualified Composition Region was developed to identify glass compositions with high confidence of being processable in a melter and meeting waste form acceptance criteria.

  13. Preliminary technique assessment for nondestructive evaluation certification of the NNWSI [Nevada Nuclear Waste Storage Investigations] disposal container closure

    SciTech Connect (OSTI)

    Day, R.A.

    1988-12-31T23:59:59.000Z

    Under the direction of the Department of Energy`s (DOE) Office of Civilian Radioactive Waste Management (OCRWM) program, the Nevada Nuclear Waste Storage Investigations (NNWSI) project is evaluating a candidate repository site at Yucca Mountain, Nevada, for permanent disposal of high-level nuclear waste. The Lawrence Livermore National Laboratory (LLNL), a participant in the NNWSI project, is developing waste package designs to meet the NRC requirements. One aspect of this waste package is the nondestructive testing of the final closure of the waste container. The container closure weld can best be nondestructively examined (NDE) by a combination of ultrasonics and liquid penetrants. This combination can be applied remotely and can meet stringent quality control requirements common to nuclear applications. Further development in remote systems and inspection will be required to meet anticipated requirements for flaw detection reliability and sensitivity. New research is not required but might reduce cost or inspection time. Ultrasonic and liquid penetrant methods can examine all closure methods currently being considered, which include fusion welding and inertial welding, among others. These NDE methods also have a history of application in high radiation environments and a well developed technology base for remote operation that can be used to reduce development and design costs. 43 refs., 23 figs., 3 tabs.

  14. Proposed rulemaking on the storage and disposal of nuclear waste. Cross-statement of the United States Department of Energy

    SciTech Connect (OSTI)

    None

    1980-09-05T23:59:59.000Z

    The US DOE cross-statement in the matter of proposed rulemaking in the storage and disposal of nuclear wastes is presented. It is concluded from evidence contained in the document that: (1) spent fuel can be disposed of in a manner that is safe and environmentally acceptable; (2) present plans for establishing geological repositories are an effective and reasonable means of disposal; (3) spent nuclear fuel from licensed facilities can be stored in a safe and environmentally acceptable manner on-site or off-site until disposal facilities are ready; (4) sufficient additional storage capacity for spent fuel will be established; and (5) the disposal and interim storage systems for spent nuclear fuel will be integrated into an acceptable operating system. It was recommended that the commission should promulgate a rule providing that the safety and environmental implications of spent nuclear fuel remaining on site after the anticipated expiration of the facility licenses involved need not be considered in individual facility licensing proceedings. A prompt finding of confidence in the nuclear waste disposal and storage area by the commission is also recommeded. (DMC)

  15. Status and use of the Rocky Flats Environmental Technology Site Pipe Overpack Container for TRU waste storage and shipments

    SciTech Connect (OSTI)

    Thorp, D.T.; Geinitz, R.R. [Safe Sites of Colorado, L.L.C., Golden, CO (United States); Rivera, M.A. [Los Alamos Technical Associates (United States)

    1998-03-03T23:59:59.000Z

    The Pipe Overpack Container was designed to optimize shipments of high plutonium content transuranic waste from Rocky Flats Environmental Technology Site (RFETS) to Waste Isolation Pilot Plant (WIPP). The container was approved for use in the TRUPACT-II shipping container by the Nuclear Regulatory Commission in February 1997. The container optimizes shipments to WIPP by increasing the TRUPACT-II criticality limit from 325 fissile grams equivalent (FGE) to 2,800 FGE and provides additional shielding for handling wastes with high americium-241 (Am-241) content. The container was subsequently evaluated and approved for storage of highly dispersible TRU wastes and residues at RFETS. Thermal evaluation of the container shows that the container will mitigate the impact of a worst case thermal event from reactive or potentially pyrophoric materials. These materials contain hazards postulated by the Defense Nuclear Facilities Safety Board for interim storage. Packaging these reactive or potentially pyrophoric residues in the container without stabilizing the materials is under consideration at RFETS. The design, testing, and evaluations used in the approvals, and the current status of the container usage, will be discussed.

  16. Sampling and analysis of radioactive liquid wastes and sludges in the Melton Valley and evaporator facility storage tanks at ORNL

    SciTech Connect (OSTI)

    Sears, M.B.; Botts, J.L.; Ceo, R.N.; Ferrada, J.J.; Griest, W.H.; Keller, J.M.; Schenley, R.L.

    1990-09-01T23:59:59.000Z

    The sampling and analysis of the radioactive liquid wastes and sludges in the Melton Valley Storage Tanks (MVSTs), as well as two of the evaporator service facility storage tanks at ORNL, are described. Aqueous samples of the supernatant liquid and composite samples of the sludges were analyzed for major constituents, radionuclides, total organic carbon, and metals listed as hazardous under the Resource Conservation and Recovery Act (RCRA). Liquid samples from five tanks and sludge samples from three tanks were analyzed for organic compounds on the Environmental Protection Agency (EPA) Target Compound List. Estimates were made of the inventory of liquid and sludge phases in the tanks. Descriptions of the sampling and analytical activities and tabulations of the results are included. The report provides data in support of the design of the proposed Waste Handling and Packaging Plant, the Liquid Low-Level Waste Solidification Project, and research and development activities (R D) activities in developing waste management alternatives. 7 refs., 8 figs., 16 tabs.

  17. PEGASUS, a European research project on the effects of gas in underground storage facilities for radioactive waste

    SciTech Connect (OSTI)

    Haijtink, B.; McMenamin, T. [Commission of the European Communities, Brussels (Belgium)

    1993-12-31T23:59:59.000Z

    Whereas the subject of gas generation and possible gas release from radioactive waste repositories has gained in interest on the international scene, the Commission of the European Communities has increased its research efforts on this issue. In particular in the 4th five year R and D program on Management and Storage of Radioactive Waste (1990--1994), a framework has been set up in which research efforts on the subject of gas generation and migration, supported by the CEC, are brought together and coordinated. In this project, called PEGASUS, Project on the Effects of GAS in Underground Storage facilities for radioactive waste, about 20 organizations and research institutes from 7 European countries are involved. The project covers both experimental and theoretical studies of the processes of gas formation and possible gas release from the different waste types, LLW, ILW and HLW, under typical repository conditions in suitable geological formations as clay, salt and granite. In this paper an overview is given of the various studies undertaken in the project as well as some first results presented.

  18. Recovery of fissile materials from nuclear wastes

    DOE Patents [OSTI]

    Forsberg, Charles W. (Oak Ridge, TN)

    1999-01-01T23:59:59.000Z

    A process for recovering fissile materials such as uranium, and plutonium, and rare earth elements, from complex waste feed material, and converting the remaining wastes into a waste glass suitable for storage or disposal. The waste feed is mixed with a dissolution glass formed of lead oxide and boron oxide resulting in oxidation, dehalogenation, and dissolution of metal oxides. Carbon is added to remove lead oxide, and a boron oxide fusion melt is produced. The fusion melt is essentially devoid of organic materials and halogens, and is easily and rapidly dissolved in nitric acid. After dissolution, uranium, plutonium and rare earth elements are separated from the acid and recovered by processes such as PUREX or ion exchange. The remaining acid waste stream is vitrified to produce a waste glass suitable for storage or disposal. Potential waste feed materials include plutonium scrap and residue, miscellaneous spent nuclear fuel, and uranium fissile wastes. The initial feed materials may contain mixtures of metals, ceramics, amorphous solids, halides, organic material and other carbon-containing material.

  19. Conditions for precipitation of copper phases in DWPF waste glass. Revision 1

    SciTech Connect (OSTI)

    Schumacher, R.F.; Ramsey, W.G.

    1993-05-01T23:59:59.000Z

    The Defense Waste Processing Facility precipitate hydrolysis process requires the use of copper formate as a catalyst. The expected absorbed radiation doses to the salt precipitate require higher levels of copper formate which increase the potential for the precipitation of metallic copper containing phases in the DWPF Melter. The conditions required to avoid the precipitation of copper phases are described in this report.

  20. Glass science tutorial: Lecture No. 8, introduction cementitious systems for Low-Level Waste immobilization

    SciTech Connect (OSTI)

    Young, J.F.; Kirkpatrick, R.J.; Mason, T.O.; Brough, A.

    1995-07-01T23:59:59.000Z

    This report presents details about cementitious systems for low-level waste immobilization. Topics discussed include: composition and properties of portland cement; hydration properties; microstructure of concrete; pozzolans; slags; zeolites; transport properties; and geological aspects of long-term durability of concrete.

  1. Defense HLW Glass Degradation Model

    SciTech Connect (OSTI)

    D. Strachan

    2004-10-20T23:59:59.000Z

    The purpose of this report is to document the development of a model for calculating the release rate for radionuclides and other key elements from high-level radioactive waste (HLW) glasses under exposure conditions relevant to the performance of the repository. Several glass compositions are planned for the repository, some of which have yet to be identified (i.e., glasses from Hanford and Idaho National Engineering and Environmental Laboratory). The mechanism for glass dissolution is the same for these glasses and the glasses yet to be developed for the disposal of DOE wastes. All of these glasses will be of a quality consistent with the glasses used to develop this report.

  2. Verification survey report of the south waste tank farm training/test tower and hazardous waste storage lockers at the West Valley demonstration project, West Valley, New York

    SciTech Connect (OSTI)

    Weaver, Phyllis C.

    2012-08-29T23:59:59.000Z

    A team from ORAU's Independent Environmental Assessment and Verification Program performed verification survey activities on the South Test Tower and four Hazardous Waste Storage Lockers. Scan data collected by ORAU determined that both the alpha and alpha-plus-beta activity was representative of radiological background conditions. The count rate distribution showed no outliers that would be indicative of alpha or alpha-plus-beta count rates in excess of background. It is the opinion of ORAU that independent verification data collected support the site?s conclusions that the South Tower and Lockers sufficiently meet the site criteria for release to recycle and reuse.

  3. Geochemical information for sites contaminated with low-level radioactive wastes. III. Weldon Spring Storage Site

    SciTech Connect (OSTI)

    Seeley, F.G.; Kelmers, A.D.

    1985-02-01T23:59:59.000Z

    The Weldon Spring Storage Site (WSSS), which includes both the chemical site and the quarry, became radioactively contaminated as the result of wastes that were being stored from operations to recover uranium from pitchblende ores in the 1940s and 1950s. The US Department of Energy (DOE) is considering various remedial action options for the WSSS. This report describes the results of geochemical investigations carried out at Oak Ridge National Laboratory (ORNL) to support these activities and to help quantify various remedial action options. Soil and groundwater samples were characterized, and uranium and radium sorption ratios were measured in site soil/groundwater systems by batch contact methodology. Soil samples from various locations around the raffinate pits were found to contain major amounts of silica, along with illite as the primary clay constituent. Particle sizes of the five soil samples were variable (50% distribution point ranging from 12 to 81 ..mu..m); the surface areas varied from 13 to 62 m/sup 2//g. Elemental analysis of the samples showed them to be typical of sandy clay and silty clay soils. Groundwater samples included solution from Pit 3 and well water from Well D. Anion analyses showed significant concentrations of sulfate and nitrate (>350 and >7000 mg/L, respectively) in the solution from Pit 3. These anions were also present in the well water, but in lower concentrations. Uranium sorption ratios for four of the soil samples contacted with the solution from Pit 3 were moderate to high (approx. 300 to approx. 1000 mL/g). The fifth sample had a ratio of only 12 mL/g. Radium sorption ratios for the five samples were moderate to high (approx. 600 to approx. 1000 mL/g). These values indicate that soil at the WSSS may show favorable retardation of uranium and radium in the groundwater. 13 references, 13 figures, 10 tables.

  4. Results from NNWSI [Nevada Nuclear Waste Storage Investigations] Series 2 bare fuel dissolution tests

    SciTech Connect (OSTI)

    Wilson, C.N.

    1990-09-01T23:59:59.000Z

    The dissolution and radionuclide release behavior of spent fuel in groundwater is being studied by the Nevada Nuclear Waste Storage Investigations (NNWSI) Project. Two bare spent fuel specimens plus the empty cladding hulls were tested in NNWSI J-13 well water in unsealed fused silica vessels under ambient hot cell air conditions (25{degree}C) in the currently reported tests. One of the specimens was prepared from a rod irradiated in the H. B. Robinson Unit 2 reactor and the other from a rod irradiated in the Turkey Point Unit 3 reactor. Results indicate that most radionuclides of interest fall into three groups for release modeling. The first group principally includes the actinides (U, Np, Pu, Am, and Cm), all of which reached solubility-limited concentrations that were orders of magnitude below those necessary to meet the NRC 10 CFR 60.113 release limits for any realistic water flux predicted for the Yucca Mountain repository site. The second group is nuclides of soluble elements such as Cs, Tc, and I, for which release rates do not appear to be solubility-limited and may depend on the dissolution rate of fuel. In later test cycles, {sup 137}Cs, {sup 90}Sr, {sup 99}Tc, and {sup 129}I were continuously released at rates between about 5 {times} 10{sup {minus}5} and 1 {times} 10{sup {minus}4} of inventory per year. The third group is radionuclides that may be transported in the vapor phase, of which {sup 14}C is of primary concern. Detailed test results are presented and discussed. 17 refs., 15 figs., 21 tabs.

  5. Sensors for monitoring waste glass quality and method of using the same

    DOE Patents [OSTI]

    Bickford, D.F.

    1994-03-15T23:59:59.000Z

    A set of three electrical probes is described for monitoring alkali and oxygen activity of a glass melt. On-line, real time measurements of the potential difference among the probes when they are placed in electrical contact with the melt yield the activity information and can be used to adjust the composition of the melt in order to produce higher quality glass. The first two probes each has a reference gas and a reference electrolyte and a pair of wires in electrical connection with each other in the reference gas but having one of the wires extending further into the reference electrolyte. The reference gases both include a known concentration of oxygen. The third electrode has a pair of wires extending through an otherwise solid body to join electrically just past the body but having one of the wires extend past this junction. Measuring the potential difference between wires of the first and second probes provides the alkali activity; measurement of the potential difference between wires of the second and third probes provides the oxygen activity of the melt. 1 figure.

  6. Porous wall hollow glass microspheres as a medium or substrate for storage and formation of novel materials

    DOE Patents [OSTI]

    Wicks, George G; Serkiz, Steven M.; Zidan, Ragaiy; Heung, Leung K.

    2014-06-24T23:59:59.000Z

    Porous wall hollow glass microspheres are provided as a template for formation of nanostructures such as carbon nanotubes, In addition, the carbon nanotubes in combination with the porous wall hollow glass microsphere provides an additional reaction template with respect to carbon nanotubes.

  7. The Effects of Oxygen Partial Pressure on Liquidus Temperature of a High-Level Waste Glass with Spinel as the Primary Phase

    SciTech Connect (OSTI)

    Izak, Pavel; Hrma, Pavel R.; Wilson, Benjamin K.; Vienna, John D.

    2000-04-07T23:59:59.000Z

    The redox state of iron affects spinal crystallization in vitrified high-level waste (HLW) glass. Simulated HLW glass with spinel as the primary crystalline phase field was heat treated at constant temperatures within the interval from 850 C to 1300 C under varying atmospheres with oxygen partial pressure, Po2, ranging from 1x10-16 kPa (pure CO) to 101 kPa (pure O2). Liquidus temperature (TL) of glass increased with decreasing Po2 up to Po2 > 3 x 10-9 kPa. At Po2 < 3 x 10-9 kPa, Ni-Fe alloy precipitated from the glass, and TL decreased. Samples were analyzed with optical microscope and scanning electron microscope. The mass fraction of spinel in glass was determined using quantitative X-ray diffraction. Spinel composition was investigated with energy disperse spectroscopy. Ferrous-ferric equilibrium at TL was calculated in a HLW glass as a function of temperature and Po2, based on the previous studies by Schreiber. TL/FeO over the itnerval 0.0063 < gFeO < 0.051 (1x10-2 kPa < Po2 < 3x10-9 kPa) was estimated from calucated ferrous-ferric equilibrium at TL as 1835 C.

  8. Criticality Safety Evaluation for TRU Waste In Storage at the RWMC

    SciTech Connect (OSTI)

    M. E. Shaw; J. B. Briggs; C. A. Atkinson; G. J. Briscoe

    1994-04-01T23:59:59.000Z

    Stored containers (drums, boxes, and bins) of transuranic waste at the Radioactive Waste Management Complex (RWMC) facility located at the Idaho National Engineering Laboratory (INEL) were evaluated based on inherent neutron absorption characteristics of the waste materials. It was demonstrated that these properties are sufficient to preclude a criticality accident at the actual fissile levels present in the waste stored at the RWMC. Based on the database information available, the results reported herein confirm that the waste drums, boxes, and bins currently stored at the RWMC will remain safely subcritical if rearranged, restacked, or otherwise handled. Acceptance criteria for receiving future drum shipments were established based on fully infinite systems.

  9. Progress of the High Level Waste Program at the Defense Waste Processing Facility - 13178

    SciTech Connect (OSTI)

    Bricker, Jonathan M.; Fellinger, Terri L.; Staub, Aaron V.; Ray, Jeff W.; Iaukea, John F. [Savannah River Remediation, Aiken, South Carolina, 29808 (United States)] [Savannah River Remediation, Aiken, South Carolina, 29808 (United States)

    2013-07-01T23:59:59.000Z

    The Defense Waste Processing Facility at the Savannah River Site treats and immobilizes High Level Waste into a durable borosilicate glass for safe, permanent storage. The High Level Waste program significantly reduces environmental risks associated with the storage of radioactive waste from legacy efforts to separate fissionable nuclear material from irradiated targets and fuels. In an effort to support the disposition of radioactive waste and accelerate tank closure at the Savannah River Site, the Defense Waste Processing Facility recently implemented facility and flowsheet modifications to improve production by 25%. These improvements, while low in cost, translated to record facility production in fiscal years 2011 and 2012. In addition, significant progress has been accomplished on longer term projects aimed at simplifying and expanding the flexibility of the existing flowsheet in order to accommodate future processing needs and goals. (authors)

  10. Baseline milestone HWVP-87-V110202F: Preliminary evaluation of noble metal behavior in the Hanford waste vitrification plant reference glass HW-39

    SciTech Connect (OSTI)

    Geldart, R.W.; Bates, S.O.; Jette, S.J.

    1996-03-01T23:59:59.000Z

    The precipitation and aggregation of ruthenium (Ru), rhodium (RLh) and palladium (Pd) in the Hanford Waste Vitrification Plant (HWVP) low chromium reference glass HLW-39 were investigated to determine if there is a potential for formation of a noble metal sludge in the HWVP ceramic melter. Significant noble metal accumulations on the floor of the melter will result in the electrical shorting of the electrodes and premature failure of the melter. The purpose of this study was to obtain preliminary information on the characteristics of noble metals in a simulated HWVP glass. Following a preliminary literature view to obtain information concerning the noble metals behavior, a number of variability studies were initiated. The effects of glass redox conditions, melt temperature, melting time and noble metal concentration on the phase characteristics of these noble metals were examined.

  11. Noble Metals and Spinel Settling in High Level Waste Glass Melters

    SciTech Connect (OSTI)

    Sundaram, S. K.; Perez, Joseph M.

    2000-09-30T23:59:59.000Z

    In the continuing effort to support the Defense Waste Processing Facility (DWPF), the noble metals issue is addressed. There is an additional concern about the amount of noble metals expected to be present in the future batches that will be considered for vitrification in the DWPF. Several laboratory, as well as melter-scale, studies have been completed by various organizations (mainly PNNL, SRTC, and WVDP in the USA). This letter report statuses the noble metals issue and focuses at the settling of noble metals in melters.

  12. X-ray micro-tomography investigation of the foaming process in the system of waste glass–silica mud–MnO{sub 2}

    SciTech Connect (OSTI)

    Ducman, V., E-mail: vilma.ducman@zag.si [ZAG Ljubljana, Dimi?eva 12, 1000 Ljubljana (Slovenia); Korat, L.; Legat, A. [ZAG Ljubljana, Dimi?eva 12, 1000 Ljubljana (Slovenia); Mirti?, B. [NTF, Ašker?eva 12, 1000 Ljubljana (Slovenia)

    2013-12-15T23:59:59.000Z

    In case of foamed lightweight aggregates (LWAs), porosity is introduced by the addition of a foaming agent to the glassy matrix, which degasses at an elevated temperature, so that the resulting gases remain trapped inside the glassy structure. The efficiency of action of MnO{sub 2} as a foaming agent in waste glass and waste glass/silica mud systems was studied. Samples were fired at different temperatures and with different dwelling times at a certain temperature, and the development of porosity was investigated by means of X-ray micro-tomography. It was found that, with the prolongation in dwelling times, the number of pores decreased, while, on the other hand, the volume of these pores increased, and that the addition of silica mud increases the foaming temperature and slows down the foaming process. - Highlights: • Preparation of lightweight aggregate from waste glass, silica sludge, and MnO{sub 2} • DTA/TG investigation of MnO{sub 2} • Characterization of pore-forming process by means of X-ray micro-tomography (?cT)

  13. RCRA Part A Permit Application for Waste Management Activities at the Nevada Test Site, Part B Permit Application Hazardous Waste Storage Unit, Nevada Test Site, and Part B Permit Application - Explosives Ordnance Disposal Unit (EODU)

    SciTech Connect (OSTI)

    NSTec Environmental Programs

    2010-06-17T23:59:59.000Z

    The Area 5 Hazardous Waste Storage Unit (HWSU) was established to support testing, research, and remediation activities at the Nevada Test Site (NTS), a large-quantity generator of hazardous waste. The HWSU, located adjacent to the Area 5 Radioactive Waste Management Site (RWMS), is a prefabricated, rigid steel-framed, roofed shelter used to store hazardous nonradioactive waste generated on the NTS. No offsite generated wastes are managed at the HWSU. Waste managed at the HWSU includes the following categories: Flammables/Combustibles; Acid Corrosives; Alkali Corrosives; Oxidizers/Reactives; Toxics/Poisons; and Other Regulated Materials (ORMs). A list of the regulated waste codes accepted for storage at the HWSU is provided in Section B.2. Hazardous wastes stored at the HWSU are stored in U.S. Department of Transportation (DOT) compliant containers, compatible with the stored waste. Waste transfer (between containers) is not allowed at the HWSU and containers remain closed at all times. Containers are stored on secondary containment pallets and the unit is inspected monthly. Table 1 provides the metric conversion factors used in this application. Table 2 provides a list of existing permits. Table 3 lists operational Resource Conservation and Recovery Act (RCRA) units at the NTS and their respective regulatory status.

  14. Statement of work for conceptual design of solidified high-level waste interim storage system project (phase I)

    SciTech Connect (OSTI)

    Calmus, R.B., Westinghouse Hanford

    1996-12-17T23:59:59.000Z

    The U.S. Department of Energy (DOE) has embarked upon a course to acquire Hanford Site tank waste treatment and immobilization services using privatized facilities. This plan contains a two phased approach. Phase I is a ``proof-of-principle/commercial demonstration- scale`` effort and Phase II is a full-scale production effort. In accordance with the planned approach, interim storage (IS) and disposal of various products from privatized facilities are to be DOE furnished. The path forward adopted for Phase I solidification HLW IS entails use of Vaults 2 and 3 in the Spent Nuclear Fuel Canister Storage Building, to be located in the Hanford Site 200 East Area. This Statement of Work describes the work scope to be performed by the Architect-Engineer to prepare a conceptual design for the solidified HLW IS System.

  15. Seismic design and evaluation guidelines for the Department of Energy high-level waste storage tanks and appurtenances

    SciTech Connect (OSTI)

    Bandyopadhyay, K.; Cornell, A.; Costantino, C.; Kennedy, R.; Miller, C.; Veletsos, A.

    1993-01-01T23:59:59.000Z

    This document provides guidelines for the design and evaluation of underground high-level waste storage tanks due to seismic loads. Attempts were made to reflect the knowledge acquired in the last two decades in the areas of defining the ground motion and calculating hydrodynamic loads and dynamic soil pressures for underground tank structures. The application of the analysis approach is illustrated with an example. The guidelines are developed for specific design of underground storage tanks, namely double-shell structures. However, the methodology discussed is applicable for other types of tank structures as well. The application of these and of suitably adjusted versions of these concepts to other structural types will be addressed in a future version of this document.

  16. A Strategy to Conduct an Analysis of the Long-Term Performance of Low-Activity Waste Glass in a Shallow Subsurface Disposal System at Hanford

    SciTech Connect (OSTI)

    BP McGrail, WL Ebert, DH Bacon, DM Strachan

    1998-02-18T23:59:59.000Z

    Privatized services are being procured to vitrify low-activity tank wastes for eventual disposal in a shallow subsurface facility at the Hanford Site. Over 500,000 metric tons of low-activity waste glass will be generated, which is among the largest volumes of waste within the U.S. Department of Energy (DOE) complex and is one of the largest inventories of long-lived radionuclides planned for disposal in a low-level waste facility. Before immobilized waste can be disposed, DOE must approve a "performance assessment," which is a document that describes the impacts of the disposal facility on public health and environmental resources. Because the release rate of radionuclides from the glass waste form is a key factor determining these impacts, a sound scientific basis for determining their long-term release rates must be developed if this disposal action is to be accepted by regulatory agencies, stakeholders, and the public. In part, the scientific basis is determined from a sound testing strategy. The foundation of the proposed testing strategy is a well accepted mechanistic model that is being used to calculate the glass corrosion behavior over the geologic time scales required for performance assessment. This model requires that six parameters be determined, and the testing program is defined by an appropriate set of laboratory experiments to determine these parameters, and is combined with a set of field experiments to validate the model as a whole. Three general classes of laboratory tests are proposed in this strategy: 1) characterization, 2) accelerated, and 3) service condition. Characterization tests isolate and provide specific information about processes or parameters in theoretical models. Accelerated tests investigate corrosion behavior that will be important over the regulated service life of a disposal system within a laboratory time frame of a few years or less. Service condition tests verify that the techniques used in accelerated tests do not change the alteration mechanisms. The recommended characterization tests are single-pass flow-through tests using a batch reactor design, Accelerated and service conditions tests include product consistency and pressurized unsaturated flow (PUF) tests. Nonradioactive glasses will be used for the majority of the laboratory testing (-80%), with the remainder performed with glasses containing a selected set of key radionuclides. Additionally, a series of PUF experiments with a natural analog of basaltic glass is recommended to confirm that the alteration products observed under accelerated conditions in the PUF tests are similar to those found associated with the natural analog. This will provide additional confidence in using the PUF test results to infer long-term corrosion behavior. Field tests are proposed as a unique way to validate the glass corrosion and contaminant transport models being used in the performance assessment. To better control the test conditions, the field tests are to be performed in lysimeters (corrugated steel containers buried flush with the ground surface). Lysimeters provide a way to combine a glass, Hanford soil, and perhaps other engineered materials in a well-controlled test, but on a scale that is not practicable in the laboratory. The recommended field tests include some experiments where a steady flow rate of water is artificially applied. These tests use a glass designed to have a high corrosion rate so that it is easier to monitor contaminant release and transport. Existing lysimeters at the Hanford Site can be used for these experiments or new lysimeters that have been equipped with the latest in monitoring equipment and located near the proposed disposal site.

  17. Hanford Site River Protection Project High-Level Waste Safe Storage and Retrieval

    SciTech Connect (OSTI)

    Aromi, E. S.; Raymond, R. E.; Allen, D. I.; Payne, M. A.; DeFigh-Price, C.; Kristofzski, J. G.; Wiegman, S. A.

    2002-02-25T23:59:59.000Z

    This paper provides an update from last year and describes project successes and issues associated with the management and work required to safely store, enhance readiness for waste feed delivery, and prepare for treated waste receipts for the approximately 53 million gallons of mixed and high-level waste currently in aging tanks at the Hanford Site. The Hanford Site is a 560 square-mile area in southeastern Washington State near Richland, Washington.

  18. Baseline LAW Glass Formulation Testing

    SciTech Connect (OSTI)

    Kruger, Albert A. [USDOE Office of River Protection, Richland, WA (United States); Mooers, Cavin [The Catholic University of America, Washington, DC (United States). Vitreous State Lab.; Bazemore, Gina [The Catholic University of America, Washington, DC (United States). Vitreous State Lab; Pegg, Ian L. [The Catholic University of America, Washington, DC (United States). Vitreous State Lab; Hight, Kenneth [The Catholic University of America, Washington, DC (United States). Vitreous State Lab; Lai, Shan Tao [The Catholic University of America, Washington, DC (United States). Vitreous State Lab; Buechele, Andrew [The Catholic University of America, Washington, DC (United States). Vitreous State Lab; Rielley, Elizabeth [The Catholic University of America, Washington, DC (United States). Vitreous State Lab; Gan, Hao [The Catholic University of America, Washington, DC (United States). Vitreous State Lab; Muller, Isabelle S. [The Catholic University of America, Washington, DC (United States). Vitreous State Lab; Cecil, Richard [The Catholic University of America, Washington, DC (United States). Vitreous State Lab

    2013-06-13T23:59:59.000Z

    The major objective of the baseline glass formulation work was to develop and select glass formulations that are compliant with contractual and processing requirements for each of the LAW waste streams. Other objectives of the work included preparation and characterization of glasses with respect to the properties of interest, optimization of sulfate loading in the glasses, evaluation of ability to achieve waste loading limits, testing to demonstrate compatibility of glass melts with melter materials of construction, development of glass formulations to support ILAW qualification activities, and identification of glass formulation issues with respect to contract specifications and processing requirements.

  19. Initial comparison of leach behavior between fully radioactive and simulated nuclear waste glass through long-term testing: Part 2, Reacted layer analysis

    SciTech Connect (OSTI)

    Bates, J.K.; Feng, X.; Bradley, C.R.; Buck, E.C.

    1992-01-01T23:59:59.000Z

    An initial comparison of glass behavior of simulated nuclear waste glasses has been made through long-term testing of general glass types SRL165, SRL131 and SRL200. The data demonstrate that up to 560 days at S/V of 2000/m, the reacted layers consist of one outer clay layer, which is undetermined by discontinuous etch pits. The regions between the etch pits are alkali depleted. The surface layer becomes thicker as test duration progresses and the reacted layer after the same test time is thinner at higher S/V than at lower S/V. The relative glass durability measured by the thickness of the reacted layer is 165/42S > 131/11S > 200S, which is consistent with solution analyses. In general, the reacted layers on all glass compositions are poorly crystallized which makes the clay identification difficult. The diffraction spacings and EDS compositions for 131/11S and 200S, although not unique to, are consistent with Na (or Ca-) montmorillonite or nontronite. Both of these are dioctahedral smectite.

  20. Initial comparison of leach behavior between fully radioactive and simulated nuclear waste glass through long-term testing: Part 2, Reacted layer analysis

    SciTech Connect (OSTI)

    Bates, J.K.; Feng, X.; Bradley, C.R.; Buck, E.C.

    1992-04-01T23:59:59.000Z

    An initial comparison of glass behavior of simulated nuclear waste glasses has been made through long-term testing of general glass types SRL165, SRL131 and SRL200. The data demonstrate that up to 560 days at S/V of 2000/m, the reacted layers consist of one outer clay layer, which is undetermined by discontinuous etch pits. The regions between the etch pits are alkali depleted. The surface layer becomes thicker as test duration progresses and the reacted layer after the same test time is thinner at higher S/V than at lower S/V. The relative glass durability measured by the thickness of the reacted layer is 165/42S > 131/11S > 200S, which is consistent with solution analyses. In general, the reacted layers on all glass compositions are poorly crystallized which makes the clay identification difficult. The diffraction spacings and EDS compositions for 131/11S and 200S, although not unique to, are consistent with Na (or Ca-) montmorillonite or nontronite. Both of these are dioctahedral smectite.

  1. Turning the Corner on Hanford Tank Waste Cleanup-From Safe Storage to Closure

    SciTech Connect (OSTI)

    Boston, H. L.; Cruz, E. J.; Coleman, S. J.

    2002-02-25T23:59:59.000Z

    The U.S. Department of Energy (DOE), Office of River Protection (ORP) is leading the River Protection Project (RPP) which is responsible for the disposition of 204,000 cubic meters (54 million gallons) of high-level radioactive waste that have accumulated in large underground tanks at the Hanford Site since 1944. ORP continues to make good progress on improving the capability to treat Hanford tank waste. Design of the waste vitrification facilities is proceeding well and construction will begin within the next year. Progress is also being made in reducing risk to the worker and the environment from the waste currently stored in the tank farms. Removal of liquids from single-shell tanks (SSTs) is on schedule and we will begin removing solids (salt cake) from a tank (241-U-107) in 2002. There is a sound technical foundation for the waste vitrification facilities. These initial facilities will be capable of treating (vitrifying) the bulk of Hanford tank waste and are the corners tone of the clean-up strategy. ORP recognizes that as the near-term work is performed, it is vital that there be an equally strong and defensible plan for completing the mission. ORP is proceeding on a three-pronged approach for moving the mission forward. First, ORP will continue to work aggressively to complete the waste vitrification facilities. ORP intends to provide the most capable and robust facilities to maximize the amount of waste treated by these initial facilities by 2028 (regulatory commitment for completion of waste treatment). Second, and in parallel with completing the waste vitrification facilities, ORP is beginning to consider how best to match the hazard of the waste to the disposal strategy. The final piece of our strategy is to continue to move forward with actions to reduce risk in the tank farms and complete cleanup.

  2. Extended Development Work to Validate a HLW Calcine Waste Form via INL's Cold Crucible Induction Melter

    SciTech Connect (OSTI)

    James A. King; Vince Maio

    2011-09-01T23:59:59.000Z

    To accomplish calcine treatment objectives, the Idaho Clean-up Project contractor, CWI, has chosen to immobilize the calcine in a glass-ceramic via the use of a Hot-Isostatic-Press (HIP); a treatment selection formally documented in a 2010 Record of Decision (ROD). Even though the HIP process may prove suitable for the calcine as specified in the ROD and validated in a number of past value engineering sessions, DOE is evaluating back-up treatment methods for the calcine as a result of the technical, schedule, and cost risk associated with the HIPing process. Consequently DOE HQ has requested DOE ID to make INL's bench-scale cold-crucible induction melter (CCIM) available for investigating its viability as a process alternate to calcine treatment. The waste form is the key component of immobilization of radioactive waste. Providing a solid, stable, and durable material that can be easily be stored is the rationale for immobilization of radioactive waste material in glass, ceramic, or glass-ceramics. Ceramic waste forms offer an alternative to traditional borosilicate glass waste forms. Ceramics can usually accommodate higher waste loadings than borosilicate glass, leading to smaller intermediate and long-term storage facilities. Many ceramic phases are known to possess superior chemical durability as compared to borosilicate glass. However, ceramics are generally multiphase systems containing many minor phase that make characterization and prediction of performance within a repository challenging. Additionally, the technologies employed in ceramic manufacture are typically more complex and expensive. Thus, many have proposed using glass-ceramics as compromise between in the more inexpensive, easier to characterize glass waste forms and the more durable ceramic waste forms. Glass-ceramics have several advantages over traditional borosilicate glasses as a waste form. Borosilicate glasses can inadvertently devitrify, leading to a less durable product that could crack during cooling and crystals may be prone to dissolution. By designing a glass-ceramics, the risks of deleterious effects from devitrification are removed. Furthermore, glass-ceramics have higher mechanical strength and impact strengths and possess greater chemical durability as noted above. Glass-ceramics should provide a waste form with the advantages of glass - ease of manufacture - with improved mechanical properties, thermal stability, and chemical durability. This report will cover aspects relevant for the validation of the CCIM use in the production of glass-ceramic waste forms.

  3. RADIOACTIVE WASTE STORAGE IN MINED CAVERNS IN CRYSTALLINE ROCK-RESULTS OF FIELD INVESTIGATIONS AT STRIPA, SWEDEN

    E-Print Network [OSTI]

    Witherspoon, P.A.

    2010-01-01T23:59:59.000Z

    for Nuclear Waste Management, Materials Research Society.for Nuclear Waste Management, Materials Research Society.

  4. Structural Integrity Program for the 300,000-Gallon Radioactive Liquid Waste Storage Tanks at the Idaho Nuclear Technology and Engineering Center

    SciTech Connect (OSTI)

    Bryant, J.W.; Nenni, J.A.; Yoder, T.S.

    2003-04-22T23:59:59.000Z

    This report provides a record of the Structural Integrity Program for the 300,000-gal liquid waste storage tanks and associated equipment at the Idaho Nuclear Technology and Engineering Center, as required by U.S. Department of Energy M 435.1-1, ''Radioactive Waste Management Manual.'' This equipment is known collectively as the Tank Farm Facility. The conclusion of this report is that the Tank Farm Facility tanks, vaults, and transfer systems that remain in service for storage are structurally adequate, and are expected to remain structurally adequate over the remainder of their planned service life through 2012. Recommendations are provided for continued monitoring of the Tank Farm Facility.

  5. Supplemental analysis of accident sequences and source terms for waste treatment and storage operations and related facilities for the US Department of Energy waste management programmatic environmental impact statement

    SciTech Connect (OSTI)

    Folga, S.; Mueller, C.; Nabelssi, B.; Kohout, E.; Mishima, J.

    1996-12-01T23:59:59.000Z

    This report presents supplemental information for the document Analysis of Accident Sequences and Source Terms at Waste Treatment, Storage, and Disposal Facilities for Waste Generated by US Department of Energy Waste Management Operations. Additional technical support information is supplied concerning treatment of transuranic waste by incineration and considering the Alternative Organic Treatment option for low-level mixed waste. The latest respirable airborne release fraction values published by the US Department of Energy for use in accident analysis have been used and are included as Appendix D, where respirable airborne release fraction is defined as the fraction of material exposed to accident stresses that could become airborne as a result of the accident. A set of dominant waste treatment processes and accident scenarios was selected for a screening-process analysis. A subset of results (release source terms) from this analysis is presented.

  6. Volatility and entrainment of feed components and product glass characteristics during pilot-scale vitrification of simulated Hanford site low-level waste

    SciTech Connect (OSTI)

    Shade, J.W.

    1996-05-03T23:59:59.000Z

    Commercially available melter technologies were tested for application to vitrification of Hanford site low-level waste (LLW). Testing was conducted at vendor facilities using a non-radioactive LLW simulant. Technologies tested included four Joule-heated melter types, a carbon electrode melter, a cyclone combustion melter, and a plasma torch-fired melter. A variety of samples were collected during the vendor tests and analyzed to provide data to support evaluation of the technologies. This paper describes the evaluation of melter feed component volatility and entrainment losses and product glass samples produced during the vendor tests. All vendors produced glasses that met minimum leach criteria established for the test glass formulations, although in many cases the waste oxide loading was less than intended. Entrainment was much lower in Joule-heated systems than in the combustion or plasma torch-fired systems. Volatility of alkali metals, halogens, B, Mo, and P were severe for non-Joule-heated systems. While losses of sulfur were significant for all systems, the volatility of other components was greatly reduced for some configurations of Joule-heated melters. Data on approaches to reduce NO{sub x} generation, resulting from high nitrate and nitrite content in the double-shell slurry feed, are also presented.

  7. EA-1146: Radioactive Waste Storage at Rocky Flats Environmental Technology Site, Golden, Colorado

    Broader source: Energy.gov [DOE]

    This EA evaluates the environmental impacts of the proposal to convert buildings at the U.S. Department of Energy Rocky Flats Environmental Technology Site from their former uses to interim waste...

  8. Georgia Hazardous Waste Management Act

    Broader source: Energy.gov [DOE]

    The Georgia Hazardous Waste Management Act (HWMA) describes a comprehensive, Statewide program to manage hazardous wastes through regulating hazardous waste generation, transportation, storage,...

  9. Waste processing air cleaning

    SciTech Connect (OSTI)

    Kriskovich, J.R.

    1998-07-27T23:59:59.000Z

    Waste processing and preparing waste to support waste processing relies heavily on ventilation. Ventilation is used at the Hanford Site on the waste storage tanks to provide confinement, cooling, and removal of flammable gases.

  10. Waste Management in Dsseldorf Combination of separate collection,

    E-Print Network [OSTI]

    Columbia University

    Waste Management in DĂĽsseldorf Combination of separate collection, recycling and waste-to-energy Biowaste Garden waste Light packaging Paper Glass Wood from bulky waste Bulky waste Rest / mixed waste Bio- Garden- Paper Glass Light Metals Wood Bulky Rest waste waste Card- Pack. waste board Saved CO2

  11. Corrosion Control Measures For Liquid Radioactive Waste Storage Tanks At The Savannah River Site

    SciTech Connect (OSTI)

    Wiersma, B. J.; Subramanian, K. H.

    2012-11-27T23:59:59.000Z

    The Savannah River Site has stored radioactive wastes in large, underground, carbon steel tanks for approximately 60 years. An assessment of potential degradation mechanisms determined that the tanks may be vulnerable to nitrate- induced pitting corrosion and stress corrosion cracking. Controls on the solution chemistry and temperature of the wastes are in place to mitigate these mechanisms. These controls are based upon a series of experiments performed using simulated solutions on materials used for construction of the tanks. The technical bases and evolution of these controls is presented in this paper.

  12. Method for extracting metals from aqueous waste streams for long term storage

    DOE Patents [OSTI]

    Chaiko, D.J.

    1995-03-07T23:59:59.000Z

    A liquid-liquid extraction method for removing metals and hydrous metal colloids from waste streams is provided wherein said waste streams are contacted with a solvent system containing a water-in-oil microemulsion wherein the inverted micelles contain the extracted metal. A silicon alkoxide, either alone or in combination with other metal alkoxide compounds is added to the water-in-oil microemulsion, thereby allowing encapsulation of the extracted metal within a silicon oxide network. Lastly, the now-encapsulated metal is precipitated from the water-in-oil microemulsion phase to yield aggregates of metal-silicate particles having average individual particle sizes of approximately 40 nanometers. 2 figs.

  13. Method for extracting metals from aqueous waste streams for long term storage

    DOE Patents [OSTI]

    Chaiko, David J. (Woodridge, IL)

    1995-01-01T23:59:59.000Z

    A liquid--liquid extraction method for removing metals and hydrous metal colloids from waste streams is provided wherein said waste streams are contacted with a solvent system containing a water-in-oil microemulsion wherein the inverted micelles contain the extracted metal. A silicon alkoxide, either alone or in combination with other metal alkoxide compounds is added to the water-in-oil microemulsion, thereby allowing encapsulation of the extracted metal within a silicon oxide network. Lastly, the now-encapsulated metal is precipitated from the water-in-oil microemulsion phase to yield aggregates of metal-silicate particles having average individual particle sizes of approximately 40 nanometers.

  14. Method for extracting metals from aqueous waste streams for long term storage

    DOE Patents [OSTI]

    Chaiko, D.J.

    1993-01-01T23:59:59.000Z

    A liquid-liquid extraction method for removing metals and hydrous metal colloids from waste streams is provided wherein said waste streams are contacted with a solvent system containing a water-in-oil microemulsion wherein the inverted micelles contain the extracted metal. A silicon alkoxide, either alone or in combination with other metal alkoxide compounds is added to the water-in-oil microemulsion, thereby allowing encapsulation of the extracted metal within a silicon oxide network. Lastly, the now-encapsulated metal is precipitated from the water-in-oil microemulsion phase to yield aggregates of metal-silicate particles having average. individual particle sizes of approximately 40 manometers.

  15. High-level waste storage tank farms/242-A evaporator Standards/Requirements Identification Document (S/RID), Volume 7. Revision 1

    SciTech Connect (OSTI)

    Burt, D.L.

    1994-04-01T23:59:59.000Z

    The High-Level Waste Storage Tank Farms/242-A Evaporator Standards/Requirements Identification Document (S/RID) is contained in multiple volumes. This document (Volume 7) presents the standards and requirements for the following sections: Occupational Safety and Health, and Environmental Protection.

  16. High-level waste storage tank farms/242-A evaporator standards/requirements identification document (S/RID), Vol. 7

    SciTech Connect (OSTI)

    Not Available

    1994-04-01T23:59:59.000Z

    This Requirements Identification Document (RID) describes an Occupational Health and Safety Program as defined through the Relevant DOE Orders, regulations, industry codes/standards, industry guidance documents and, as appropriate, good industry practice. The definition of an Occupational Health and Safety Program as specified by this document is intended to address Defense Nuclear Facilities Safety Board Recommendations 90-2 and 91-1, which call for the strengthening of DOE complex activities through the identification and application of relevant standards which supplement or exceed requirements mandated by DOE Orders. This RID applies to the activities, personnel, structures, systems, components, and programs involved in maintaining the facility and executing the mission of the High-Level Waste Storage Tank Farms.

  17. Comparative assessment of status and opportunities for carbon Dioxide Capture and storage and Radioactive Waste Disposal In North America

    SciTech Connect (OSTI)

    Oldenburg, C.; Birkholzer, J.T.

    2011-07-22T23:59:59.000Z

    Aside from the target storage regions being underground, geologic carbon sequestration (GCS) and radioactive waste disposal (RWD) share little in common in North America. The large volume of carbon dioxide (CO{sub 2}) needed to be sequestered along with its relatively benign health effects present a sharp contrast to the limited volumes and hazardous nature of high-level radioactive waste (RW). There is well-documented capacity in North America for 100 years or more of sequestration of CO{sub 2} from coal-fired power plants. Aside from economics, the challenges of GCS include lack of fully established legal and regulatory framework for ownership of injected CO{sub 2}, the need for an expanded pipeline infrastructure, and public acceptance of the technology. As for RW, the USA had proposed the unsaturated tuffs of Yucca Mountain, Nevada, as the region's first high-level RWD site before removing it from consideration in early 2009. The Canadian RW program is currently evolving with options that range from geologic disposal to both decentralized and centralized permanent storage in surface facilities. Both the USA and Canada have established legal and regulatory frameworks for RWD. The most challenging technical issue for RWD is the need to predict repository performance on extremely long time scales (10{sup 4}-10{sup 6} years). While attitudes toward nuclear power are rapidly changing as fossil-fuel costs soar and changes in climate occur, public perception remains the most serious challenge to opening RW repositories. Because of the many significant differences between RWD and GCS, there is little that can be shared between them from regulatory, legal, transportation, or economic perspectives. As for public perception, there is currently an opportunity to engage the public on the benefits and risks of both GCS and RWD as they learn more about the urgent energy-climate crisis created by greenhouse gas emissions from current fossil-fuel combustion practices.

  18. Use of Thermal Energy Storage to Enhance the Recovery and Utilization of Industrial Waste Heat

    E-Print Network [OSTI]

    McChesney, H. R.; Bass, R. W.; Landerman, A. M.; Obee, T. N.; Sgamboti, C. T.

    1982-01-01T23:59:59.000Z

    The recovery and reuse of industrial waste heat may be limited if an energy source cannot be fully utilized in an otherwise available out of phase or unequal capacity end-use process. This paper summarizes the results of a technical and economic...

  19. Evaluation of bubbler/diaphragm techniques to measure surface level in the waste storage tanks

    SciTech Connect (OSTI)

    Peters, T.J.; Hickman, B.J.; Colson, J.B.

    1993-10-01T23:59:59.000Z

    This report describes the results of tests conducted at the Pacific Northwest Laboratory (PNL) to determine if a bubbler technique can be used to determine the surface level in the waste tanks. Two techniques were evaluated. The first technique is a standard bubbler system in which a tube is placed below the surface of the liquid to be measured and air pressure inside a tube is increased until bubbles begin to become emitted from the tube. The air pressure then is a function of the pressure at the bottom of the tube. The second technique involves a system similar to the standard bubbler technique, but instead of bubbles being released into the material to be gauged, air pressure is increased against a diaphragm until enough pressure is applied to overcome the pressure of the liquid at the given depth, at which time the air then flows in a return loop back to a vent. The advantage of the diaphragm system is that it is a sealed system; thus no air is released into the waste tank materials, and it is not possible for the waste tank materials to get into the air flow. Based on the results of the tests conducted in this program, it appears that the bubbler and diaphragm systems that were tested could not be used for accurate measurements of the level in the waste tanks. Both exhibited deposits of simulated waste tank material at the end of the devices which affected the ability of the gauge to accurately determine changes in the surface level even though the measured value of the level was inaccurate. Further investigations into the cause of this inaccuracy may be warranted. Alternate diaphragm materials may improve the performance of this gauge.

  20. Comparative Assessment of Status and Opportunities for CO2 Capture and Storage and Radioactive Waste Disposal in North America

    E-Print Network [OSTI]

    Oldenburg, C.

    2010-01-01T23:59:59.000Z

    fuel in terms of waste volume, heat load, and radiotoxicity,heat-induced flow perturbations expected from emplacement of waste.

  1. Vitrification and chemical durability of simulated high-level nuclear waste glasses with high concentrations of Cr{sub 2}O{sub 3} and Al{sub 2}O{sub 3}

    SciTech Connect (OSTI)

    Li, H.; Hrma, P.; Langowski, M.H. [Pacific Northwest Lab., Richland, WA (United States)] [and others

    1996-12-31T23:59:59.000Z

    Borosilicate glasses were loaded with 30 to 55 wt% of simulated high-level tank waste, rich in Cr{sub 2}O{sub 3} and Al{sub 2}O{sub 3}, obtained from Hanford Site (Richland, Washington). No segregated chromate was observed on molten glass at the melting temperature. Eskolaite (Cr{sub 2}O{sub 3} with iron) and chromite (FeCr{sub 2}O{sub 4}) crystals were found in all quenched glasses. At waste loadings {ge}50 wt%, nephelme (NaAlSiO{sub 4}) and beta-eucryptite ({beta}-LiAlSiO{sub 4}) became major crystalline phases. Precipitation of these phases decreased melt viscosity and glass corrosion resistance.

  2. Seismic design and evaluation guidelines for the Department of Energy High-Level Waste Storage Tanks and Appurtenances

    SciTech Connect (OSTI)

    Bandyopadhyay, K.; Cornell, A.; Costantino, C.; Kennedy, R.; Miller, C.; Veletsos, A.

    1995-10-01T23:59:59.000Z

    This document provides seismic design and evaluation guidelines for underground high-level waste storage tanks. The guidelines reflect the knowledge acquired in the last two decades in defining seismic ground motion and calculating hydrodynamic loads, dynamic soil pressures and other loads for underground tank structures, piping and equipment. The application of the guidelines is illustrated with examples. The guidelines are developed for a specific design of underground storage tanks, namely double-shell structures. However, the methodology discussed is applicable for other types of tank structures as well. The application of these and of suitably adjusted versions of these concepts to other structural types will be addressed in a future version of this document. The original version of this document was published in January 1993. Since then, additional studies have been performed in several areas and the results are included in this revision. Comments received from the users are also addressed. Fundamental concepts supporting the basic seismic criteria contained in the original version have since then been incorporated and published in DOE-STD-1020-94 and its technical basis documents. This information has been deleted in the current revision.

  3. Preservation of artifacts in salt mines as a natural analog for the storage of transuranic wastes at the WIPP repository

    SciTech Connect (OSTI)

    Martell, M.A.; Hansen, F.; Weiner, R.

    1998-10-01T23:59:59.000Z

    Use of nature`s laboratory for scientific analysis of complex systems is a largely untapped resource for understanding long-term disposal of hazardous materials. The Waste Isolation Pilot Plant (WIPP) in the US is a facility designed and approved for storage of transuranic waste in a salt medium. Isolation from the biosphere must be ensured for 10,000 years. Natural analogs provide a means to interpret the evolution of the underground disposal setting. Investigations of ancient sites where manmade materials have experienced mechanical and chemical processes over millennia provide scientific information unattainable by conventional laboratory methods. This paper presents examples of these pertinent natural analogs, provides examples of features relating to the WIPP application, and identifies potential avenues of future investigations. This paper cites examples of analogical information pertaining to the Hallstatt salt mine in Austria and Wieliczka salt mine in Poland. This paper intends to develop an appreciation for the applicability of natural analogs to the science and engineering of a long-term disposal facility in geomedia.

  4. A low-temperature process for the denitration of Hanford single-shell tank, nitrate-based waste utilizing the nitrate to ammonia and ceramic (NAC) or nitrate to ammonia and glass (NAG) process: Phase 2 report

    SciTech Connect (OSTI)

    Mattus, A.J.; Walker, J.F. Jr.; Youngblood, E.L.; Farr, L.L.; Lee, D.D.; Dillow, T.A.; Tiegs, T.N.

    1994-12-01T23:59:59.000Z

    Continuing benchtop studies using Hanford single-shell tank (SST) simulants and actual Oak Ridge National Laboratory (ORNL) low-level waste (LLW), employing a new denitration process for converting nitrate to ammonia and ceramic (NAC), have conclusively shown that between 85 and 99% of the nitrate can be readily converted to gaseous ammonia. In this process, aluminum powders can be used to convert alkaline, nitrate-based supernate to ammonia and an aluminum oxide-sodium aluminate-based solid. The process may be able to use contaminated aluminum scrap metal from DOE sites to effect the conversion. The final, nitrate-free ceramic product can be pressed and sintered like other ceramics or silica and/or fluxing agents can be added to form a glassy ceramic or a flowable glass product. Based upon the starting volumes of 6.2 and 3.1 M sodium nitrate solution, volume reductions of 50 to 70% were obtained for the waste form produced. Sintered pellets produced from supernate from Melton Valley Storage Tanks (MVSTs) have been leached in accordance with the 16.1 leach test for the radioelements {sup 85}Sr and {sup 137}Cs. Despite lengthy counting times, {sup 85}Sr could not be detected in the leachates. {sup 137}Cs was only slightly above background and corresponded to a leach index of 12.2 to 13.7 after 8 months of leaching. Leach testing of unsintered and sintered reactor product spiked with hazardous metals proved that both sintered and unsintered product passed the Toxicity Characteristic Leaching Procedure (TCLP) test. Design of the equipment and flowsheet for a pilot demonstration-scale system to prove the nitrate destruction portion of the NAC process and product formation is under way.

  5. Operations and Maintenance Concept Plan for the Immobilized High Level Waste (IHLW) Interim Storage Facility

    SciTech Connect (OSTI)

    JANIN, L.F.

    2000-08-30T23:59:59.000Z

    This O&M Concept looks at the future operations and maintenance of the IHLW/CSB interim storage facility. It defines the overall strategy, objectives, and functional requirements for the portion of the building to be utilized by Project W-464. The concept supports the tasks of safety basis planning, risk mitigation, alternative analysis, decision making, etc. and will be updated as required to support the evolving design.

  6. Emptying of the Storage for Solid Radioactive Waste in the Greifswald Nuclear Power Plant

    SciTech Connect (OSTI)

    Hartmann, B.; Fischer, J.

    2002-02-26T23:59:59.000Z

    On the Greifswald site, 8 WWER 440 reactor units are located and also several facilities to handle fuel and radwaste. After the reunification of Germany, the final decision was taken to decommission all these Russian designed reactors. Thus, EWN is faced with a major decommissioning project in the field of nuclear power stations. One of the major tasks before the dismantling of the plant is the complete disposal of the operational waste. Among other facilities, a store for solid radioactive waste is located on the site, which has been filled over 17 years of operation of units 1 to 4. The paper presents the disposal technology development and results achieved. This activity is the first project in the operational history of the Russian type serial reactor line WWER-440.

  7. Evaluation of methods to measure surface level in waste storage tanks

    SciTech Connect (OSTI)

    Peters, T.J.; Park, W.R.; Cuta, F.M.

    1993-06-01T23:59:59.000Z

    This report describes the results of a program conducted at the Pacific Northwest Laboratory (PNL) and Westinghouse Hanford Company (WHC) to identify alternative methods to measure the surface level in the waste tanks. This program examined commercially available devices for measuring the distance to a target. Test were performed with five devices to determine their applicability to measure the surface level in the waste tanks. The devices were the Enraf-Nonius{sup {trademark}} 872 Radar Gauge, the Enraf-Nonius{sup {trademark}} 854 Advanced Technology Gauge, the Stanley Tool Laser Measuring Device, the Robertshaw Inven-Tel{sup {reg_sign}} Precision Level Gauge, and the Micro Switch 942 Acoustic Sensor. In addition, discussions were held with several manufacturer representatives regarding other potential devices.

  8. HLW Glass Waste Loadings

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011 Strategic2 OPAM Flash2011-12 OPAMGeneralGuiding Documents and Links

  9. TWRS Retrieval and Storage Mission and Immobilized Low Activity Waste (ILAW) Disposal Plan

    SciTech Connect (OSTI)

    BURBANK, D.A.

    1999-09-01T23:59:59.000Z

    This project plan has a twofold purpose. First, it provides a waste stream project plan specific to the River Protection Project (RPP) (formerly the Tank Waste Remediation System [TWRS] Project) Immobilized Low-Activity Waste (LAW) Disposal Subproject for the Washington State Department of Ecology (Ecology) that meets the requirements of Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement) Milestone M-90-01 (Ecology et al. 1994) and is consistent with the project plan content guidelines found in Section 11.5 of the Tri-Party Agreement action plan (Ecology et al. 1998). Second, it provides an upper tier document that can be used as the basis for future subproject line-item construction management plans. The planning elements for the construction management plans are derived from applicable U.S. Department of Energy (DOE) planning guidance documents (DOE Orders 4700.1 [DOE 1992] and 430.1 [DOE 1995a]). The format and content of this project plan are designed to accommodate the requirements mentioned by the Tri-Party Agreement and the DOE orders. A cross-check matrix is provided in Appendix A to explain where in the plan project planning elements required by Section 11.5 of the Tri-Party Agreement are addressed.

  10. Survey of Potential Glass Compositions for the Immobilisation of the UK's Separated Plutonium Stocks

    SciTech Connect (OSTI)

    Harrison, Mike T.; Scales, Charlie R. [Nexia Solutions Ltd, The British Technology Centre, Sellafield, Seascale, CA20 1PG (United Kingdom); Bingham, Paul A.; Hand, Russell J. [Immobilisation Science Laboratory, University of Sheffield, Sir Robert Hadfield Building, Mappin Street, Sheffield, S1 3JD (United Kingdom)

    2007-07-01T23:59:59.000Z

    The Nuclear Decommissioning Authority (NDA) has taken over ownership of the majority of the UK's separated civil plutonium stocks, which are expected to exceed 100 metric tons by 2010. Studies to technically underpin options development for the disposition of these stocks, for example by immobilization or re-use as fuel, are being carried out by Nexia Solutions on behalf of NDA. Three classes of immobilization matrices have been selected for investigation by means of previous studies and stakeholder dialogue: ceramic or crystalline waste-forms, storage MOx, and vitreous or glass-based waste-forms. This paper describes the preliminary inactive experimental program for the vitrification option, with results from a wide range of glass compositions along with conclusions on their potential use for plutonium immobilization. Following review, four glass systems were selected for preliminary investigation: borosilicate, lanthanide borosilicate, aluminosilicate and phosphate glasses. A broad survey of glass properties was completed in order to allow meaningful evaluation, e.g. glass formulation, waste loading, chemical durability, thermal properties, and viscosity. The program was divided into two parts, with silicate and phosphate glasses being investigated by Nexia Solutions and the Immobilisation Science Laboratory (ISL) at the University of Sheffield respectively. (authors)

  11. A Roman Shipwreck and Safe Nuclear Storage

    Broader source: Energy.gov [DOE]

    Glass discovered in a Roman shipwreck could unlock more answers about how glass will stands the test of time for millennia to come -- research that is very relevant to vitrification, an effective method for storing nuclear waste in glass.

  12. Chemical and mechanical performance properties for various final waste forms -- PSPI scoping study

    SciTech Connect (OSTI)

    Farnsworth, R.K.; Larsen, E.D.; Sears, J.W.; Eddy, T.L.; Anderson, G.L.

    1996-09-01T23:59:59.000Z

    The US DOE is obtaining data on the performance properties of the various final waste forms that may be chosen as primary treatment products for the alpha-contaminated low-level and transuranic waste at the INEL`s Transuranic Storage Area. This report collects and compares selected properties that are key indicators of mechanical and chemical durability for Portland cement concrete, concrete formed under elevated temperature and pressure, sulfur polymer cement, borosilicate glass, and various forms of alumino-silicate glass, including in situ vitrification glass and various compositions of iron-enriched basalt (IEB) and iron-enriched basalt IV (IEB4). Compressive strength and impact resistance properties were used as performance indicators in comparative evaluation of the mechanical durability of each waste form, while various leachability data were used in comparative evaluation of each waste form`s chemical durability. The vitrified waste forms were generally more durable than the non-vitrified waste forms, with the iron-enriched alumino-silicate glasses and glass/ceramics exhibiting the most favorable chemical and mechanical durabilities. It appears that the addition of zirconia and titania to IEB (forming IEB4) increases the leach resistance of the lanthanides. The large compositional ranges for IEB and IEB4 more easily accommodate the compositions of the waste stored at the INEL than does the composition of borosilicate glass. It appears, however, that the large potential variation in IEB and IEB4 compositions resulting from differing waste feed compositions can impact waste form durability. Further work is needed to determine the range of waste stream feed compositions and rates of waste form cooling that will result in acceptable and optimized IEB or IEB4 waste form performance. 43 refs.

  13. Method for acid oxidation of radioactive, hazardous, and mixed organic waste materials

    DOE Patents [OSTI]

    Pierce, Robert A. (Aiken, SC); Smith, James R. (Corrales, NM); Ramsey, William G. (Aiken, SC); Cicero-Herman, Connie A. (Aiken, SC); Bickford, Dennis F. (Folly Beach, SC)

    1999-01-01T23:59:59.000Z

    The present invention is directed to a process for reducing the volume of low level radioactive and mixed waste to enable the waste to be more economically stored in a suitable repository, and for placing the waste into a form suitable for permanent disposal. The invention involves a process for preparing radioactive, hazardous, or mixed waste for storage by contacting the waste starting material containing at least one organic carbon-containing compound and at least one radioactive or hazardous waste component with nitric acid and phosphoric acid simultaneously at a contacting temperature in the range of about 140.degree. C. to about 210 .degree. C. for a period of time sufficient to oxidize at least a portion of the organic carbon-containing compound to gaseous products, thereby producing a residual concentrated waste product containing substantially all of said radioactive or inorganic hazardous waste component; and immobilizing the residual concentrated waste product in a solid phosphate-based ceramic or glass form.

  14. Nevada Nuclear Waste Storage Investigations: Exploratory Shaft Facility fluids and materials evaluation

    SciTech Connect (OSTI)

    West, K.A.

    1988-11-01T23:59:59.000Z

    The objective of this study was to determine if any fluids or materials used in the Exploratory Shaft Facility (ESF) of Yucca Mountain will make the mountain unsuitable for future construction of a nuclear waste repository. Yucca Mountain, an area on and adjacent to the Nevada Test Site in southern Nevada, USA, is a candidate site for permanent disposal of high-level radioactive waste from commercial nuclear power and defense nuclear activities. To properly characterize Yucca Mountain, it will be necessary to construct an underground test facility, in which in situ site characterization tests can be conducted. The candidate repository horizon at Yucca Mountain, however, could potentially be compromised by fluids and materials used in the site characterization tests. To minimize this possibility, Los Alamos National Laboratory was directed to evaluate the kinds of fluids and materials that will be used and their potential impacts on the site. A secondary objective was to identify fluids and materials, if any, that should be prohibited from, or controlled in, the underground. 56 refs., 19 figs., 11 tabs.

  15. Evaluation of methods to measure surface level in waste storage tanks: Second test sequence

    SciTech Connect (OSTI)

    Peters, T.J.; Park, W.R.

    1993-09-01T23:59:59.000Z

    This report describes the results of a program conducted at the Pacific Northwest Laboratory (PNL) and Westinghouse Hanford Company (WHC) to identify alternative methods to measure the surface level in the waste tanks. This program examined commercially available devices for measuring the distance to a target. This is a continuation of a program started in FY93. In the first test sequence, tests were performed.on five devices to determine their applicability to measure the surface level in the waste tanks. The devices were the Enraf-Nonius{trademark} Model 872 Radar Gauge, the Enraf-Nonius{trademark} Model 854 Advanced Technology Gauge (ATG), the Stanley Tool Laser Measuring Device, the Robertshaw Inven-Tel{reg_sign} Precision Level Gauge, and the Micro Switch Model 942 Acoustic Sensor. In addition, discussions were held with several manufacturer representatives regarding other potential devices. The results of these tests were documented in a previous report. Two additional devices were tested in this test sequence. The devices were the Krohne Model BM-70 level radar gauge and the L&J Technologies Model MCG-1500XL Servo Gauge. In addition, a 4--20 ma output board was installed in the ATG and the current output was monitored to determine the accuracy of the gauge through this board. Also, tests were conducted with a redesigned displacer for the ATG. The displacer was designed to minimize the possibility of (1) getting caught in the riser and (2) obtaining crystal growth on the surface.

  16. FEASIBILITY AND EXPEDIENCE TO VITRIFY NPP OPERATIONAL WASTE

    SciTech Connect (OSTI)

    LIFANOV, F.A.; OJOVAN, M.I.; STEFANOVSKY, S.V.; BURCL, R.

    2003-02-27T23:59:59.000Z

    Operational radioactive waste is generated during routine operation of NPP. Process waste is mainly generated by treatment of water from reactor or ancillaries including spent fuel storage pools and some decontamination operations. Typical process wastes of pressurized water reactors (PWR or WWER) are borated water concentrates, whereas typical process wastes of boiling and RBMK type reactors are water concentrates with no boron content. NPP operational wastes are classified as low and intermediate level waste (LILW). NPP operational waste must be solidified in order to ensure safe conditions of storage and disposal. Currently the most promising solidification method for this waste is the vitrification technology. Vitrification of NPP operational waste is a relative new option being developed for last years. Nevertheless there is already accumulated operational experience on vitrifying low and intermediate level waste in Russian Federation at Moscow SIA ''Radon'' vitrification plant. This plant uses the most advanced type induction high frequency melters that facilitate the melting process and significantly reduce the generation of secondary waste and henceforth the overall cost. The plant was put into operation by the end of 1999. It has three operating cold crucible melters with the overall capacity up to 75 kg/h. The vitrification technology comprises a few stages, starting with evaporation of excess water from liquid radioactive waste, followed by batch preparation, glass melting, and ending with vitrified waste blocks and some relative small amounts of secondary waste. First of all since the original waste contain as main component water, this water is removed from waste through evaporation. Then the remaining salt concentrate is mixed with necessary technological additives, thus a glass-forming batch is formed. The batch is fed into melters where the glass melting occurs. From here there are two streams: one is the glass melt containing the most part of radioactivity and second is the off gas flow, which contains off gaseous and aerosol airborne. The melt glass is fed into containers, which are slowly cooled in an annealing tunnel furnace to avoid accumulation of mechanical stresses in the glass. Containers with glass are the final processing product containing the overwhelming part of waste contaminants. The second stream from melter is directed to gas purification system, which is a rather complex system taking into account the necessity to remove from off gas not only radionuclides but also the chemical contaminants. Operation of this purification system leads to generation of a small amount of secondary waste. This waste stream slightly contaminated with volatilized radionuclides is recycled in the same technological scheme. As a result only non-radioactive materials are produced. They are either discharged into environment or reused. Based on the experience gained during operation of vitrification plant one can conclude on high efficiency achieved through vitrification method. Another significant argument on vitrifying NPP operational waste is the minimal impact of vitrified radioactive waste onto environment. Solidified waste shall be disposed of into a near surface disposal facility. Waste forms disposed of in a near-surface wet repository eventually come into contact with groundwater. Engineered structures used or designed to prevent or postpone such contact and the subsequent radionuclide release are complex and often too expensive. Vitrification technologies provide waste forms with excellent resistance to corrosion and gave the basic possibility of maximal simplification of engineered barrier systems. The most simple disposal option is to locate the vitrified waste form packages directly into earthen trenches provided the host rock has the necessary sorption and confinement properties. Such an approach will significantly make simpler the disposal facilities thus contributing both to enhancing safety and economic al efficiency.

  17. RADIOACTIVE WASTE STORAGE IN MINED CAVERNS IN CRYSTALLINE ROCK-RESULTS OF FIELD INVESTIGATIONS AT STRIPA, SWEDEN

    E-Print Network [OSTI]

    Witherspoon, P.A.

    2010-01-01T23:59:59.000Z

    the presence of heat-generating, radioactive wastes, and theBecause the heat output of radioactive waste decays withthe heat produced by the decay of radioactive wastes. Full-

  18. Development of test acceptance standards for qualification of the glass-bonded zeolite waste form. Interim annual report, October 1995--September 1996

    SciTech Connect (OSTI)

    Simpson, L.J.; Wronkiewicz, D.J.; Fortner, J.A.

    1997-09-01T23:59:59.000Z

    Glass-bonded zeolite is being developed at Argonne National Laboratory in the Electrometallurgical Treatment Program as a potential ceramic waste form for the disposition of radionuclides associated with the US Department of Energy`s (DOE`s) spent nuclear fuel conditioning activities. The utility of standard durability tests [e.g. Materials Characterization Center Test No. 1 (MCC-1), Product Consistency Test (PCT), and Vapor Hydration Test (VHT)] are being evaluated as an initial step in developing test methods that can be used in the process of qualifying this material for acceptance into the Civilian Radioactive Waste Management System. A broad range of potential repository conditions are being evaluated to determine the bounding parameters appropriate for the corrosion testing of the ceramic waste form, and its behavior under accelerated testing conditions. In this report we provide specific characterization information and discuss how the durability test results are affected by changes in pH, leachant composition, and sample surface area to leachant volume ratios. We investigate the release mechanisms and other physical and chemical parameters that are important for establishing acceptance parameters, including the development of appropriate test methodologies required to measure product consistency.

  19. A Strategy to Conduct an Analysis of the Long-Term Performance of Low-Activity Waste Glass in a Shallow Subsurface Disposal System at Hanford

    SciTech Connect (OSTI)

    Neeway, James J.; Pierce, Eric M.; Freedman, Vicky L.; Ryan, Joseph V.; Qafoku, Nikolla

    2014-08-04T23:59:59.000Z

    The federal facilities located on the Hanford Site in southeastern Washington State have been used extensively by the U.S. government to produce nuclear materials for the U.S. strategic defense arsenal. Currently, the Hanford Site is under the stewardship of the U.S. Department of Energy (DOE) Office of Environmental Management (EM). A large inventory of radioactive and mixed waste resulting from the production of nuclear materials has accumulated, mainly in 177 underground single- and double-shell tanks located in the central plateau of the Hanford Site (Mann et al., 2001). The DOE-EM Office of River Protection (ORP) is proceeding with plans to immobilize and permanently dispose of the low-activity waste (LAW) fraction onsite in a shallow subsurface disposal facility (the Integrated Disposal Facility [IDF]). Pacific Northwest National Laboratory (PNNL) was contracted to provide the technical basis for estimating radionuclide release from the engineered portion of the IDF (the source term) as part of an immobilized low-activity waste (ILAW) glass testing program to support future IDF performance assessments (PAs).

  20. Geochemical information for sites contaminated with low-level radioactive wastes: II. St. Louis Airport Storage Site

    SciTech Connect (OSTI)

    Seeley, F.G.; Kelmers, A.D.

    1985-01-01T23:59:59.000Z

    The St. Louis Airport Storage Site (SLASS) became radioactively contaminated as a result of wastes that were being stored from operations to recover uranium from pitchblende ores in the 1940s and 1950s. The US Department of Energy is considering various remedial action options for the SLASS under the Formerly Utilized Site Remedial Action Program (FUSRAP). This report describes the results of geochemical investigations, carried out to support the FUSRAP activities and to aid in quantifying various remedial action options. Soil and groundwater samples from the site were characterized, and sorption ratios for uranium and radium and apparent concentration limit values for uranium were measured in soil/groundwater systems by batch contact methodology. The uranium and radium concentrations in soil samples were significantly above background near the old contaminated surface horizon (now at the 0.3/sup -/ to 0.9/sup -/m depth); the maximum values were 1566 ..mu..g/g and 101 pCi/g, respectively. Below about the 6/sup -/m depth, the concentrations appeared to be typical of those naturally present in soils of this area (3.8 +- 1.2 ..mu..g/g and 3.1 +- 0.6 pCi/g). Uranium sorption ratios showed stratigraphic trends but were generally moderate to high (100 to 1000 L/kg). The sorption isotherm suggested an apparent uranium concentration limit of about 200 mg/L. This relatively high solubility can probably be correlated with the carbonate content of the soil/groundwater systems. The lower sorption ratio values obtained from the sorption isotherm may have resulted from changes in the experimental procedure or the groundwater used. The SLASS appears to exhibit generally favorable behavior for the retardation of uranium solubilized from waste in the site. Parametric tests were conducted to estimate the sensitivity of uranium sorption and solubility to the pH and carbonate content of the system.

  1. Structural Integrity Program for the 300,000-Gallon Radioactive Liquid Waste Storage Tanks at the Idaho Nuclear Technology and Engineering Center

    SciTech Connect (OSTI)

    Bryant, Jeffrey W.

    2010-08-12T23:59:59.000Z

    This report provides a record of the Structural Integrity Program for the 300,000-gal liquid waste storage tanks and associated equipment at the Idaho Nuclear Technology and Engineering Center, as required by U.S. Department of Energy M 435.1-1, “Radioactive Waste Management Manual.” This equipment is known collectively as the Tank Farm Facility. This report is an update, and replaces the previous report by the same title issued April 2003. The conclusion of this report is that the Tank Farm Facility tanks, vaults, and transfer systems that remain in service for storage are structurally adequate, and are expected to remain structurally adequate over the remainder of their planned service life through 2012. Recommendations are provided for continued monitoring of the Tank Farm Facility.

  2. Supplemental design requirements document enhanced radioactive and mixed waste storage: Phase 5, Project W-113

    SciTech Connect (OSTI)

    Ocampo, V.P.

    1994-11-01T23:59:59.000Z

    This Supplemental Design Requirements Document (SDRD) is used to communicate Project W-113 specific plant design information from Westinghouse Hanford Company (WHC) to the United States Department of Energy (DOE) and the cognizant Architect Engineer (A/E). The SDRD is prepared after the completion of the project Conceptual Design report (CDR) and prior to the initiation of definitive design. Information in the SDRD serves two purposes: to convey design requirements that are too detailed for inclusion in the Functional Design Criteria (FDC) report and to serve as a means of change control for design commitments in the Title I and Title II design. The Solid Waste Retrieval Project (W-113) SDRD has been restructured from the equipment based outline used in previous SDRDs to a functional systems outline. This was done to facilitate identification of deficiencies in the information provided in the initial draft SDRD and aid design confirmation. The format and content of this SDRD adhere as closely as practicable to the requirements of WHC-CM-6-1, Standard Engineering Practices for Functional Design Criteria.

  3. LABORATORY TESTING TO SIMULATE VAPOR SPACE CORROSION IN RADIOACTIVE WASTE STORAGE TANKS

    SciTech Connect (OSTI)

    Wiersma, B.; Garcia-Diaz, B.; Gray, J.

    2013-08-30T23:59:59.000Z

    Radioactive liquid waste has been stored in underground carbon steel tanks for nearly 70 years at the Hanford nuclear facility. Vapor space corrosion of the tank walls has emerged as an ongoing challenge to overcome in maintaining the structural integrity of these tanks. The interaction between corrosive and inhibitor species in condensates/supernates on the tank wall above the liquid level, and their interaction with vapor phase constituents as the liquid evaporates from the tank wall influences the formation of corrosion products and the corrosion of the carbon steel. An effort is underway to gain an understanding of the mechanism of vapor space corrosion. Localized corrosion, in the form of pitting, is of particular interest in the vapor space. CPP testing was utilized to determine the susceptibility of the steel in a simulated vapor space environment. The tests also investigated the impact of ammonia gas in the vapor space area on the corrosion of the steel. Vapor space coupon tests were also performed to investigate the evolution of the corrosion products during longer term exposures. These tests were also conducted at vapor space ammonia levels of 50 and 550 ppm NH{sub 3} (0.005, and 0.055 vol.%) in air. Ammonia was shown to mitigate vapor space corrosion.

  4. Glass Ceramic Formulation Data Package

    SciTech Connect (OSTI)

    Crum, Jarrod V.; Rodriguez, Carmen P.; McCloy, John S.; Vienna, John D.; Chung, Chul-Woo

    2012-06-17T23:59:59.000Z

    A glass ceramic waste form is being developed for treatment of secondary waste streams generated by aqueous reprocessing of commercial used nuclear fuel (Crum et al. 2012b). The waste stream contains a mixture of transition metals, alkali, alkaline earths, and lanthanides, several of which exceed the solubility limits of a single phase borosilicate glass (Crum et al. 2009; Caurant et al. 2007). A multi-phase glass ceramic waste form allows incorporation of insoluble components of the waste by designed crystallization into durable heat tolerant phases. The glass ceramic formulation and processing targets the formation of the following three stable crystalline phases: (1) powellite (XMoO4) where X can be (Ca, Sr, Ba, and/or Ln), (2) oxyapatite Yx,Z(10-x)Si6O26 where Y is alkaline earth, Z is Ln, and (3) lanthanide borosilicate (Ln5BSi2O13). These three phases incorporate the waste components that are above the solubility limit of a single-phase borosilicate glass. The glass ceramic is designed to be a single phase melt, just like a borosilicate glass, and then crystallize upon slow cooling to form the targeted phases. The slow cooling schedule is based on the centerline cooling profile of a 2 foot diameter canister such as the Hanford High-Level Waste canister. Up to this point, crucible testing has been used for glass ceramic development, with cold crucible induction melter (CCIM) targeted as the ultimate processing technology for the waste form. Idaho National Laboratory (INL) will conduct a scaled CCIM test in FY2012 with a glass ceramic to demonstrate the processing behavior. This Data Package documents the laboratory studies of the glass ceramic composition to support the CCIM test. Pacific Northwest National Laboratory (PNNL) measured melt viscosity, electrical conductivity, and crystallization behavior upon cooling to identify a processing window (temperature range) for melter operation and cooling profiles necessary to crystallize the targeted phases in the waste form.

  5. Technical Basis for the Determination that Current Characterization Data and Processes are Sufficient to Ensure Safe Storage and to Design Waste Disposal

    SciTech Connect (OSTI)

    SIMPSON, B.C.

    1999-08-12T23:59:59.000Z

    This document presents the technical basis for closure of Defense Nuclear Facilities Safety Board (DNFSB) Recommendation 93-5 Implementation Plan milestone 5.6.3.13, ''Core sample all tanks by 2002'' (DOE-RL 1996). The milestone was based on the need for characterization data to ensure safe storage of the waste, to operate the tanks safely, and to plan and implement retrieval and processing of the waste. Sufficient tank characterization data have been obtained to ensure that existing controls are adequate for safe storage of the waste in the 177 waste tanks at the Hanford Site. In addition, a process has been developed, executed, and institutionalized to systemically identify information needs, to integrate and prioritize the needs, and to reliably obtain and analyze the associated samples. This document provides a technical case that the remaining 45 incompletely sampled tanks no longer require sampling to support the intent of the Implementation Plan milestone. Sufficient data have been obtained to close the Unreviewed Safety Questions (USQs), and to ensure that existing hazard controls are adequate and appropriately applied. However, in the future, additional characterization of tanks at the site will be required to support identified information needs. Closure of this milestone allows sampling and analytical data to be obtained in a manner that is consistent with the integrated priority process.

  6. 218 Glass Technology Vol. 44 No. 6 December 2003 www.sgt.org Glass Technol., 2003, 44 (6), 21824

    E-Print Network [OSTI]

    Sheffield, University of

    218 Glass Technology Vol. 44 No. 6 December 2003 www.sgt.org Glass Technol., 2003, 44 (6), 218 re- actions in a mixture of waste and powder metal fuel (PMF) to form a glass-like material without into durable glass-like waste forms. Since they do not require complex equip- ment or energy supplies, self

  7. Corrective Action Investigation Plan for Corrective Action Unit 140: Waste Dumps, Burn Pits, and Storage Area, Nevada Test Site, Nevada, July 2002, Rev. No. 0

    SciTech Connect (OSTI)

    NNSA /NV

    2002-07-18T23:59:59.000Z

    This Corrective Action Investigation Plan contains the U.S. Department of Energy, National Nuclear Security Administration Nevada Operations Office's approach to collect the data necessary to evaluate corrective action alternatives appropriate for the closure of Corrective Action Unit (CAU) 140 under the Federal Facility Agreement and Consent Order. Corrective Action Unit 140 consists of nine Corrective Action Sites (CASs): 05-08-01, Detonation Pits; 05-08-02, Debris Pits; 05-17-01, Hazardous Waste Accumulation Site (Buried); 05-19-01, Waste Disposal Site; 05-23-01, Gravel Gertie; 05-35-01, Burn Pit; 05-99-04, Burn Pit; 22-99-04, Radioactive Waste Dump; 23-17-01, Hazardous Waste Storage Area. All nine of these CASs are located within Areas 5, 22, and 23 of the Nevada Test Site (NTS) in Nevada, approximately 65 miles northwest of Las Vegas. This CAU is being investigated because disposed waste may be present without appropriate controls (i.e., use restrictions, adequate cover) and hazardous and/or radioactive constituents may be present or migrating at concentrations and locations that could potentially pose a threat to human health and the environment. The NTS has been used for various research and development projects including nuclear weapons testing. The CASs in CAU 140 were used for testing, material storage, waste storage, and waste disposal. A two-phase approach has been selected to collect information and generate data to satisfy needed resolution criteria and resolve the decision statements. Phase I will determine if contaminants of potential concern (COPCs) are present in concentrations exceeding preliminary action levels. This data will be evaluated at all CASs. Phase II will determine the extent of the contaminant(s) of concern (COCs). This data will only be evaluated for CASs with a COC identified during Phase I. Based on process knowledge, the COPCs for CAU 140 include volatile organics, semivolatile organics, petroleum hydrocarbons, explosive residues, herbicides, pesticides, polychlorinated biphenyls, metals, and radionuclides. The results of this field investigation will support a defensible evaluation of corrective action alternatives in the corrective action decision document.

  8. Permitting plan for the immobilized low-activity waste project

    SciTech Connect (OSTI)

    Deffenbaugh, M.L.

    1997-09-04T23:59:59.000Z

    This document addresses the environmental permitting requirements for the transportation and interim storage of the Immobilized Low-Activity Waste (ILAW) produced during Phase 1 of the Hanford Site privatization effort. Tri-Party Agreement (TPA) Milestone M-90 establishes a new major milestone, and associated interim milestones and target dates, governing acquisition and/or modification of facilities necessary for: (1) interim storage and disposal of Tank Waste Remediation Systems (TWRS) immobilized low-activity tank waste (ILAW) and (2) interim storage of TWRS immobilized HLW (IHLW) and other canistered high-level waste forms. Low-activity waste (LAW), low-level waste (LLW), and high-level waste (HLW) are defined by the TWRS, Hanford Site, Richland, Washington, Final Environmental Impact Statement (EIS) DOE/EIS-0189, August 1996 (TWRS, Final EIS). By definition, HLW requires permanent isolation in a deep geologic repository. Also by definition, LAW is ``the waste that remains after separating from high-level waste as much of the radioactivity as is practicable that when solidified may be disposed of as LLW in a near-surface facility according to the NRC regulations.`` It is planned to store/dispose of (ILAW) inside four empty vaults of the five that were originally constructed for the Group Program. Additional disposal facilities will be constructed to accommodate immobilized LLW packages produced after the Grout Vaults are filled. The specifications for performance of the low-activity vitrified waste form have been established with strong consideration of risk to the public. The specifications for glass waste form performance are being closely coordinated with analysis of risk. RL has pursued discussions with the NRC for a determination of the classification of the Hanford Site`s low-activity tank waste fraction. There is no known RL action to change law with respect to onsite disposal of waste.

  9. Independent engineering review of the Hanford Waste Vitrification System

    SciTech Connect (OSTI)

    Not Available

    1991-10-01T23:59:59.000Z

    The Hanford Waste Vitrification Plant (HWVP) was initiated in June 1987. The HWVP is an essential element of the plan to end present interim storage practices for defense wastes and to provide for permanent disposal. The project start was justified, in part, on efficient technology and design information transfer from the prototype Defense Waste Processing Facility (DWPF). Development of other serial Hanford Waste Vitrification System (HWVS) elements, such as the waste retrieval system for the double-shell tanks (DSTs), and the pretreatment system to reduce the waste volume converted into glass, also was required to accomplish permanent waste disposal. In July 1991, at the time of this review, the HWVP was in the Title 2 design phase. The objective of this technical assessment is to determine whether the status of the technology development and engineering practice is sufficient to provide reasonable assurance that the HWVP and the balance of the HWVS system will operate in an efficient and cost-effective manner. The criteria used to facilitate a judgment of potential successful operation are: vitrification of high-level radioactive waste from specified DSTs on a reasonably continuous basis; and glass produced with physical and chemical properties formally acknowledge as being acceptable for disposal in a repository for high-level radioactive waste. The criteria were proposed specifically for the Independent Engineering Review to focus that assessment effort. They are not represented as the criteria by which the Department will judge the prudence of the Project. 78 refs., 10 figs., 12 tabs.

  10. 68 Glass Technology Vol. 45 No. 2 April 2004 Proc. VII Symp. on Crystallisation in Glasses and Liquids, Sheffield, 69 July 2003 Proc. VII Symp. on Crystallisation in Glasses and Liquids, Sheffield, 69 July 2003 Glass Technol., 2004, 45, 6870

    E-Print Network [OSTI]

    Sheffield, University of

    68 Glass Technology Vol. 45 No. 2 April 2004 Proc. VII Symp. on Crystallisation in Glasses and Liquids, Sheffield, 6­9 July 2003 Proc. VII Symp. on Crystallisation in Glasses and Liquids, Sheffield, 6­9 July 2003 Glass Technol., 2004, 45, 68­70 The behaviour of a simulant Magnox waste glass

  11. Columbia University Hazardous Waste Room Inspection Report

    E-Print Network [OSTI]

    Jia, Songtao

    Storage Area Hazardous Waste Room Inspection Report Location: Bldg. Room: Date: Inspected ByColumbia University Hazardous Waste Room Inspection Report Flammable Storage Area Lack Pack always closed while holding hazardous wastes? Comment: 12. Are containers labeled? Date

  12. Review of private sector and Department of Energy treatment, storage, and disposal capabilities for low-level and mixed low-level waste

    SciTech Connect (OSTI)

    Willson, R.A.; Ball, L.W.; Mousseau, J.D.; Piper, R.B.

    1996-03-01T23:59:59.000Z

    Private sector capacity for treatment, storage, and disposal (TSD) of various categories of radioactive waste has been researched and reviewed for the Idaho National Engineering Laboratory (INEL) by Lockheed Idaho Technologies Company, the primary contractor for the INEL. The purpose of this document is to provide assistance to the INEL and other US Department of Energy (DOE) sites in determining if private sector capabilities exist for those waste streams that currently cannot be handled either on site or within the DOE complex. The survey of private sector vendors was limited to vendors currently capable of, or expected within the next five years to be able to perform one or more of the following services: low-level waste (LLW) volume reduction, storage, or disposal; mixed LLW treatment, storage, or disposal; alpha-contaminated mixed LLW treatment; LLW decontamination for recycling, reclamation, or reuse; laundering of radioactively-contaminated laundry and/or respirators; mixed LLW treatability studies; mixed LLW treatment technology development. Section 2.0 of this report will identify the approach used to modify vendor information from previous revisions of this report. It will also illustrate the methodology used to identify any additional companies. Section 3.0 will identify, by service, specific vendor capabilities and capacities. Because this document will be used to identify private sector vendors that may be able to handle DOE LLW and mixed LLW streams, it was decided that current DOE capabilities should also be identified. This would encourage cooperation between DOE sites and the various states and, in some instances, may result in a more cost-effective alternative to privatization. The DOE complex has approximately 35 sites that generate the majority of both LLW and mixed LLW. Section 4.0 will identify these sites by Operations Office, and their associated LLW and mixed LLW TSD units.

  13. Thermal performance of a buried nuclear waste storage container storing a hybrid mix of PWR and BWR spent fuel rods; Revision 1

    SciTech Connect (OSTI)

    Johnson, G.L.

    1991-11-01T23:59:59.000Z

    Lawrence Livermore National Laboratory will design, model, and test nuclear waste packages for use at the Nevada Nuclear Waste Storage Repository at Yucca Mountain, Nevada. One such package would store tightly packed spent fuel rods from both pressurized and boiling water reactors. The storage container provides the primary containment of the nuclear waste and the spent fuel rod cladding provides secondary containment. A series of transient conduction and radiation heat transfer analyses was run to determine for the first 1000 yr of storage if the temperature of the tuff at the borehole wall ever falls below 97{degrees}C and whether the cladding of the stored spent fuel ever exceeds 350{degrees}C. Limiting the borehole to temperatures of 97{degrees}C or greater helps minimize corrosion by assuring that no condensed water collects on the container. The 350{degrees}C cladding limit minimizes the possibility of creep- related failure in the spent fuel rod cladding. For a series of packages stored in a 8 {times} 30 m borehole grid where each package contains 10-yr-old spent fuel rods generating 4.74 kW or more, the borehole wall stays above 97{degrees}C for the full 10000-yr analysis period. For the 4.74-kW load, the peak cladding temperature rises to just below the 350{degrees}C limit about 4 years after emplacement. If the packages are stored using the spacing specified in the Site Characterization Plan (15 ft {times} 126 ft), a maximum of 4.1 kW per container may be stored. If the 0.05-m-thick void between the container and the borehole wall is filled with loosely packed bentonite, the peak cladding temperature rises more than 40{degrees}C above the allowed cladding limit. In all cases the dominant heat transfer mode between container components is thermal radiation.

  14. Regional geological assessment of the Devonian-Mississippian shale sequence of the Appalachian, Illinois, and Michigan basins relative to potential storage/disposal of radioactive wastes

    SciTech Connect (OSTI)

    Lomenick, T.F.; Gonzales, S.; Johnson, K.S.; Byerly, D.

    1983-01-01T23:59:59.000Z

    The thick and regionally extensive sequence of shales and associated clastic sedimentary rocks of Late Devonian and Early Mississippian age has been considered among the nonsalt geologies for deep subsurface containment of high-level radioactive wastes. This report examines some of the regional and basin-specific characteristics of the black and associated nonblack shales of this sequence within the Appalachian, Illinois, and Michigan basins of the north-central and eastern United States. Principal areas where the thickness and depth of this shale sequence are sufficient to warrant further evaluation are identified, but no attempt is made to identify specific storage/disposal sites. Also identified are other areas with less promise for further study because of known potential conflicts such as geologic-hydrologic factors, competing subsurface priorities involving mineral resources and groundwater, or other parameters. Data have been compiled for each basin in an effort to indicate thickness, distribution, and depth relationships for the entire shale sequence as well as individual shale units in the sequence. Included as parts of this geologic assessment are isopach, depth information, structure contour, tectonic elements, and energy-resource maps covering the three basins. Summary evaluations are given for each basin as well as an overall general evaluation of the waste storage/disposal potential of the Devonian-Mississippian shale sequence,including recommendations for future studies to more fully characterize the shale sequence for that purpose. Based on data compiled in this cursory investigation, certain rock units have reasonable promise for radioactive waste storage/disposal and do warrant additional study.

  15. Comparative Assessment of Status and Opportunities for CO2 Capture and Storage and Radioactive Waste Disposal in North America

    E-Print Network [OSTI]

    Oldenburg, C.

    2010-01-01T23:59:59.000Z

    and liability for carbon capture and sequestration, Environ.Wilson and Gerard, editors, Carbon Capture and SequestrationSpecial Report on carbon dioxide capture and storage, ISBN

  16. PNL vitrification technology development project glass formulation strategy for LLW vitrification

    SciTech Connect (OSTI)

    Kim, D.; Hrma, P.R.; Westsik, J.H. Jr.

    1996-03-01T23:59:59.000Z

    This Glass Formulation Strategy describes development approaches to optimize glass compositions for Hanford`s low-level waste vitrification between now and the projected low-level waste facility start-up in 2005. The objectives of the glass formulation task are to develop optimized glass compositions with satisfactory long-term durability, acceptable processing characteristics, adequate flexibility to handle waste variations, maximize waste loading to practical limits, and to develop methodology to respond to further waste variations.

  17. Interim storage study report

    SciTech Connect (OSTI)

    Rawlins, J.K.

    1998-02-01T23:59:59.000Z

    High-level radioactive waste (HLW) stored at the Idaho Chemical Processing Plant (ICPP) in the form of calcine and liquid and liquid sodium-bearing waste (SBW) will be processed to provide a stable waste form and prepare the waste to be transported to a permanent repository. Because a permanent repository will not be available when the waste is processed, the waste must be stored at ICPP in an Interim Storage Facility (ISF). This report documents consideration of an ISF for each of the waste processing options under consideration.

  18. Estimating Residual Solids Volume In Underground Storage Tanks

    SciTech Connect (OSTI)

    Clark, Jason L.; Worthy, S. Jason; Martin, Bruce A.; Tihey, John R.

    2014-01-08T23:59:59.000Z

    The Savannah River Site liquid waste system consists of multiple facilities to safely receive and store legacy radioactive waste, treat, and permanently dispose waste. The large underground storage tanks and associated equipment, known as the 'tank farms', include a complex interconnected transfer system which includes underground transfer pipelines and ancillary equipment to direct the flow of waste. The waste in the tanks is present in three forms: supernatant, sludge, and salt. The supernatant is a multi-component aqueous mixture, while sludge is a gel-like substance which consists of insoluble solids and entrapped supernatant. The waste from these tanks is retrieved and treated as sludge or salt. The high level (radioactive) fraction of the waste is vitrified into a glass waste form, while the low-level waste is immobilized in a cementitious grout waste form called saltstone. Once the waste is retrieved and processed, the tanks are closed via removing the bulk of the waste, chemical cleaning, heel removal, stabilizing remaining residuals with tailored grout formulations and severing/sealing external penetrations. The comprehensive liquid waste disposition system, currently managed by Savannah River Remediation, consists of 1) safe storage and retrieval of the waste as it is prepared for permanent disposition; (2) definition of the waste processing techniques utilized to separate the high-level waste fraction/low-level waste fraction; (3) disposition of LLW in saltstone; (4) disposition of the HLW in glass; and (5) closure state of the facilities, including tanks. This paper focuses on determining the effectiveness of waste removal campaigns through monitoring the volume of residual solids in the waste tanks. Volume estimates of the residual solids are performed by creating a map of the residual solids on the waste tank bottom using video and still digital images. The map is then used to calculate the volume of solids remaining in the waste tank. The ability to accurately determine a volume is a function of the quantity and quality of the waste tank images. Currently, mapping is performed remotely with closed circuit video cameras and still photograph cameras due to the hazardous environment. There are two methods that can be used to create a solids volume map. These methods are: liquid transfer mapping / post transfer mapping and final residual solids mapping. The task is performed during a transfer because the liquid level (which is a known value determined by a level measurement device) is used as a landmark to indicate solids accumulation heights. The post transfer method is primarily utilized after the majority of waste has been removed. This method relies on video and still digital images of the waste tank after the liquid transfer is complete to obtain the relative height of solids across a waste tank in relation to known and usable landmarks within the waste tank (cooling coils, column base plates, etc.). In order to accurately monitor solids over time across various cleaning campaigns, and provide a technical basis to support final waste tank closure, a consistent methodology for volume determination has been developed and implemented at SRS.

  19. Vitrification of waste

    DOE Patents [OSTI]

    Wicks, George G. (Aiken, SC)

    1999-01-01T23:59:59.000Z

    A method for encapsulating and immobilizing waste for disposal. Waste, preferably, biologically, chemically and radioactively hazardous, and especially electronic wastes, such as circuit boards, are placed in a crucible and heated by microwaves to a temperature in the range of approximately 300.degree. C. to 800.degree. C. to incinerate organic materials, then heated further to a temperature in the range of approximately 1100.degree. C. to 1400.degree. C. at which temperature glass formers present in the waste will cause it to vitrify. Glass formers, such as borosilicate glass, quartz or fiberglass can be added at the start of the process to increase the silicate concentration sufficiently for vitrification.

  20. Vitrification of waste

    DOE Patents [OSTI]

    Wicks, G.G.

    1999-04-06T23:59:59.000Z

    A method is described for encapsulating and immobilizing waste for disposal. Waste, preferably, biologically, chemically and radioactively hazardous, and especially electronic wastes, such as circuit boards, are placed in a crucible and heated by microwaves to a temperature in the range of approximately 300 C to 800 C to incinerate organic materials, then heated further to a temperature in the range of approximately 1100 C to 1400 C at which temperature glass formers present in the waste will cause it to vitrify. Glass formers, such as borosilicate glass, quartz or fiberglass can be added at the start of the process to increase the silicate concentration sufficiently for vitrification.

  1. PROPER SAFETY Safety Glasses -Proper eye

    E-Print Network [OSTI]

    Jia, Songtao

    . Universal Waste not placed in proper storage locations is a violation of environmental regulations. Ground level Tower Center 100 Haven Ave. B1 level HHSC 701 W. 168th St LL2 level UNIVERSAL WASTE the provided poly bin, storage room or cage area. 2. DO NOT throw computers into the poly bin, storage room

  2. Precipitate hydrolysis process for the removal of organic compounds from nuclear waste slurries

    DOE Patents [OSTI]

    Doherty, J.P.; Marek, J.C.

    1987-02-25T23:59:59.000Z

    A process for removing organic compounds from a nuclear waste slurry comprising reacting a mixture of radioactive waste precipitate slurry and an acid in the presence of a catalytically effective amount of a copper(II) catalyst whereby the organic compounds in the precipitate slurry are hydrolyzed to form volatile organic compounds which are separated from the reacting mixture. The resulting waste slurry, containing less than 10 percent of the original organic compounds, is subsequently blended with high level radioactive sludge land transferred to a vitrification facility for processing into borosilicate glass for long-term storage. 2 figs., 3 tabs.

  3. Precipitate hydrolysis process for the removal of organic compounds from nuclear waste slurries

    DOE Patents [OSTI]

    Doherty, Joseph P. (Elkton, MD); Marek, James C. (Augusta, GA)

    1989-01-01T23:59:59.000Z

    A process for removing organic compounds from a nuclear waste slurry comprising reacting a mixture of radioactive waste precipitate slurry and an acid in the presence of a catalytically effective amount of a copper (II) catalyst whereby the organic compounds in the precipitate slurry are hydrolyzed to form volatile organic compounds which are separated from the reacting mixture. The resulting waste slurry, containing less than 10 percent of the orginal organic compounds, is subsequently blended with high level radioactive sludge and transferred to a virtrification facility for processing into borosilicate glass for long-term storage.

  4. Interactions of simulated high level waste (HLW) calcine with alkali borosilicate glass. S. Morgan, R. J. Hand, N. C. Hyatt and W. E. Lee

    E-Print Network [OSTI]

    Sheffield, University of

    a full scale inactive trial (Magnox: oxide "blend" 25:75) was pre-mixed with alkali borosilicate glass such as molybdates, refractory oxides within the glass and anything which is immiscible in the melt may adversely affect the long term durability of the glass wasteform and also lead to enhanced melter corrosion [1

  5. Evaluation of concepts for monitored retrievable storage of spent nuclear fuel and high-level radioactive waste

    SciTech Connect (OSTI)

    Triplett, M.B.; Smith, R.I.

    1984-04-01T23:59:59.000Z

    The primary mission selected by DOE for the monitored retrieval storage (MRS) system is to provide an alternative means of storage in the event that the repository program is delayed. The MRS concepts considered were the eight concepts included in the MRS Research and Development Report to Congress (DOE 1983). These concepts are: metal cask (stationary and transportable); concrete cask (sealed storage cask); concrete cask-in-trench; field drywell; tunnel drywell; open cycle vault; closed cycle vault; and tunnel rack vault. Conceptual design analyses were performed for the candidate concepts using a common set of design requirements specified in consideration of the MRS mission.

  6. Operating experience during high-level waste vitrification at the West Valley Demonstration Project

    SciTech Connect (OSTI)

    Valenti, P.J.; Elliott, D.I.

    1999-01-01T23:59:59.000Z

    This report provides a summary of operational experiences, component and system performance, and lessons learned associated with the operation of the Vitrification Facility (VF) at the West Valley Demonstration Project (WVDP). The VF was designed to convert stored high-level radioactive waste (HLW) into a stable waste form (borosilicate glass) suitable for disposal in a federal repository. Following successful completion on nonradioactive test, HLW processing began in July 1995. Completion of Phase 1 of HLW processing was reached on 10 June 1998 and represented the processing of 9.32 million curies of cesium-137 (Cs-137) and strontium-90 (Sr-90) to fill 211 canisters with over 436,000 kilograms of glass. With approximately 85% of the total estimated curie content removed from underground waste storage tanks during Phase 1, subsequent operations will focus on removal of tank heel wastes.

  7. Glass Production

    E-Print Network [OSTI]

    Shortland, Andrew

    2009-01-01T23:59:59.000Z

    Late Bronze Age glasses. Journal of Archaeological Science781 - 789. Turner, W.E.S. 1954 Studies in ancient glassesand glass making processes. Part I: Crucibles and melting

  8. EA-0942: Return of Isotope Capsules to the Waste Encapsulation and Storage Facility, Hanford Site, Richland, Washington

    Broader source: Energy.gov [DOE]

    This EA evaluates the environmental impacts of the proposal for the return of all leased cesium-137 and strontium-90 leased capsules to the U.S. Department of Energy's Waste Encapsulation and...

  9. Development of biological and chemical methods for environmental monitoring of DOE waste disposal and storage facilities. Final report

    SciTech Connect (OSTI)

    NONE

    1989-04-01T23:59:59.000Z

    Hazardous chemicals in the environment have received ever increasing attention in recent years. In response to ongoing problems with hazardous waste management, Congress enacted the Resource Conservation and Recovery Act (RCRA) in 1976. In 1980, Congress adopted the Comprehensive Environmental Response Compensation, and Liability Act (CERCLA), commonly called Superfund to provide for emergency spill response and to clean up closed or inactive hazardous waste sites. Scientists and engineers have begun to respond to the hazardous waste challenge with research and development on treatment of waste streams as well as cleanup of polluted areas. The magnitude of the problem is just now beginning to be understood. The U.S. Environmental Protection Agency (USEPA) National Priorities List as of September 13 1985, contained 318 proposed sites and 541 final sites (USEPA, 1985). Estimates of up to 30,000 sites containing hazardous wastes (1,200 to 2,000 of which present a serious threat to public health) have been made (Public Law 96-150). In addition to the large number of sites, the costs of cleanup using available technology are phenomenal. For example, a 10-acre toxic waste site in Ohio is to be cleaned up by removing chemicals from the site and treating the contaminated groundwater. The federal government has already spent more than $7 million to remove the most hazardous wastes and the groundwater decontamination alone is expected to take at least 10 years and cost $12 million. Another example of cleanup costs comes from the State of California Commission for Economic Development which predicts a bright economic future for the state except for the potential outlay of $40 billion for hazardous waste cleanup mandated by federal and state laws.

  10. Potential benefits and impacts on the CRWMS transportation system of filling spent fuel shipping casks with depleted uranium silicate glass

    SciTech Connect (OSTI)

    Pope, R.B.; Forsberg, C.W.; DeHart, M.D.; Childs, K.W.; Tang, J.S.

    1996-06-01T23:59:59.000Z

    A new technology, the Depleted Uranium Silicate COntainer Fill System (DUSCOFS), is proposed to improve the performance and reduce the uncertainties of geological disposal of spent nuclear fuel (SNF), thus reducing both radionuclide release rates from the waste package and the potential for repository nuclear criticality events. DUSCOFS may also provide benefits for SNF storage and transport if it is loaded into the container early in the waste management cycle. Assessments have been made of the benefits to be derived by placing depleted uranium silicate (DUS) glass into SNF containers for enhancing repository performance assessment and controlling criticality over geologic times in the repository. Also, the performance, benefits, and impacts which can be derived if the SNF is loaded into a multi-purpose canister with DUS glass at a reactor site have been assessed. The DUSCOFS concept and the benefits to the waste management cycle of implementing DUSCOFS early in the cycle are discussed in this paper.

  11. Hazardous Waste Management (Oklahoma)

    Broader source: Energy.gov [DOE]

    This article states regulations for the disposal of hazardous waste. It also provides information about permit requirements for the transport, treatment and storage of such waste. It also mentions...

  12. Supplemental Immobilization of Hanford Low-Activity Waste: Cast Stone Screening Tests

    SciTech Connect (OSTI)

    Westsik, Joseph H.; Piepel, Gregory F.; Lindberg, Michael J.; Heasler, Patrick G.; Mercier, Theresa M.; Russell, Renee L.; Cozzi, Alex; Daniel, William E.; Eibling, Russell E.; Hansen, E. K.; Reigel, Marissa M.; Swanberg, David J.

    2013-09-30T23:59:59.000Z

    More than 56 million gallons of radioactive and hazardous waste are stored in 177 underground storage tanks at the U.S. Department of Energy’s (DOE’s) Hanford Site in southeastern Washington State. The Hanford Tank Waste Treatment and Immobilization Plant (WTP) is being constructed to treat the wastes and immobilize them in a glass waste form. The WTP includes a pretreatment facility to separate the wastes into a small volume of high-level waste (HLW) containing most of the radioactivity and a larger volume of low-activity waste (LAW) containing most of the nonradioactive chemicals. The HLW will be converted to glass in the HLW vitrification facility for ultimate disposal at an offsite federal repository. At least a portion (~35%) of the LAW will be converted to glass in the LAW vitrification facility and will be disposed of onsite at the Integrated Disposal Facility (IDF). The pretreatment and HLW vitrification facilities will have the capacity to treat and immobilize the wastes destined for each facility. However, a second LAW immobilization facility will be needed for the expected volume of LAW requiring immobilization. A cementitious waste form known as Cast Stone is being considered to provide the required additional LAW immobilization capacity. The Cast Stone waste form must be acceptable for disposal in the IDF. The Cast Stone waste form and immobilization process must be tested to demonstrate that the final Cast Stone waste form can comply with the waste acceptance criteria for the disposal facility and that the immobilization processes can be controlled to consistently provide an acceptable waste form product. Further, the waste form must be tested to provide the technical basis for understanding the long-term performance of the waste form in the disposal environment. These waste form performance data are needed to support risk assessment and performance assessment (PA) analyses of the long-term environmental impact of the waste disposal in the IDF. The PA is needed to satisfy both Washington State IDF Permit and DOE Order requirements. Cast Stone has been selected for solidification of radioactive wastes including WTP aqueous secondary wastes treated at the Effluent Treatment Facility (ETF) at Hanford. A similar waste form called Saltstone is used at the Savannah River Site (SRS) to solidify its LAW tank wastes.

  13. Sandia National Laboratories: Carbon Storage

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    from improved climate models to performance models for underground waste storage to 3D printing and digital rock physics. Marianne Walck (Director ... Joint SandiaUniversity of...

  14. Sandia National Laboratories: Energy Storage

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    from improved climate models to performance models for underground waste storage to 3D printing and digital rock physics. Marianne Walck (Director ... Recent Sandia Secure,...

  15. Solid Waste Permits (Louisiana)

    Broader source: Energy.gov [DOE]

    The Louisiana Department of Environmental Quality administers the rules and regulations governing the storage, collection, processing, recovery, and reuse of solid waste protect the air,...

  16. DUSCOBS - a depleted-uranium silicate backfill for transport, storage, and disposal of spent nuclear fuel

    SciTech Connect (OSTI)

    Forsberg, C.W.; Pope, R.B.; Ashline, R.C.; DeHart, M.D.; Childs, K.W.; Tang, J.S.

    1995-11-30T23:59:59.000Z

    A Depleted Uranium Silicate COntainer Backfill System (DUSCOBS) is proposed that would use small, isotopically-depleted uranium silicate glass beads as a backfill material inside storage, transport, and repository waste packages containing spent nuclear fuel (SNF). The uranium silicate glass beads would fill all void space inside the package including the coolant channels inside SNF assemblies. Based on preliminary analysis, the following benefits have been identified. DUSCOBS improves repository waste package performance by three mechanisms. First, it reduces the radionuclide releases from SNF when water enters the waste package by creating a local uranium silicate saturated groundwater environment that suppresses (1) the dissolution and/or transformation of uranium dioxide fuel pellets and, hence, (2) the release of radionuclides incorporated into the SNF pellets. Second, the potential for long-term nuclear criticality is reduced by isotopic exchange of enriched uranium in SNF with the depleted uranium (DU) in the glass. Third, the backfill reduces radiation interactions between SNF and the local environment (package and local geology) and thus reduces generation of hydrogen, acids, and other chemicals that degrade the waste package system. In addition, the DUSCOBS improves the integrity of the package by acting as a packing material and ensures criticality control for the package during SNF storage and transport. Finally, DUSCOBS provides a potential method to dispose of significant quantities of excess DU from uranium enrichment plants at potential economic savings. DUSCOBS is a new concept. Consequently, the concept has not been optimized or demonstrated in laboratory experiments.

  17. ZERO WASTE STANFORD WASTE REDUCTION, RECYCLING AND COMPOSTING GUIDELINES

    E-Print Network [OSTI]

    Gerdes, J. Christian

    ZERO WASTE STANFORD WASTE REDUCTION, RECYCLING AND COMPOSTING GUIDELINES PLASTICS, METALS & GLASS pleaseemptyandflatten COMPOSTABLES kitchenandyardwasteonly LANDFILL ONLY ifallelsefails All Plastic Containers Metal Material All Food Paper Plates & Napkins *including pizza & donut boxes Compostable & Biodegradable

  18. Vitrification of Low-Activity Radioactive Waste Streams and a High-Level Radioactive Waste Stream in Support of the Hanford River Protection Program

    SciTech Connect (OSTI)

    Crawford, C.L.

    2002-07-10T23:59:59.000Z

    Hanford tank waste consists of about 190 million curies in 54 million gallons of highly radioactive and mixed hazardous waste stored in underground storage tanks at the Hanford Site in Washington State. The tank waste includes solids (sludge), liquids (supernatant), and salt cake (dried salts that dissolve in water to form supernatant). The tank waste will be remediated through treatment and immobilization to protect the environment and meet regulatory requirements. The U.S. Department of Energy's (DOE's) preferred alternative to remediate the Hanford tank waste is to pretreat the waste by separating it into low-activity waste (LAW) and high-level waste (HLW), followed by immobilization of the LAW for on-site disposal and immobilization of the HLW for ultimate disposal in a national repository. This paper describes the crucible-scale vitrification and associated wasteform product tests in support of the WTP at Hanford. The two different LAW glasses produced in this study were from pretreated Envelope A (Tank 241-AN-103) and Envelope C (Tank 241-AN-102) waste. The HLW glass was produced from Tank C-106 HLW sludge and the HLW radionuclide products separated from Hanford Site tank samples AN-103, AN-102 and AZ-102. Pretreatment of these three supernates consisted of characterization, strontium and transuranics removal by precipitation and filtration, and final Cs-137 and Tc-99 removal by ion exchange (IX). The glasses were produced from formulations supplied by Vitreous State Laboratory of the Catholic University of America (CUA). Formulations were based on previous surrogate testing and the actual characterization data from the radioactive feed streams. Crucible-scale vitrifications were performed in platinum/gold crucibles in a custom-designed furnace fit with an offgas containment system. Both LAW and HLW melter feed slurries were evaporated, calcined, and then melted at 1150 degrees C. The LAW and HLW glasses were heat-treated per a modeled centerline cooling curve for the LAW canister and HLW canister, respectively.

  19. Radioactive Waste Management, Inspection Criteria; Approach,...

    Broader source: Energy.gov (indexed) [DOE]

    except for storage for decay or otherwise authorized by the Field Element Manager? Are radioactive waste storage, treatment, and disposal activities performed in a manner that...

  20. The formation of crystals in glasses containing rare earth oxides

    SciTech Connect (OSTI)

    Fadzil, Syazwani Mohd [Pohang University of Science and Technology (POSTECH), Pohang (Korea, Republic of); Hrma, Pavel [Pohang University of Science and Technology (POSTECH), Pohang, South Korea and Pacific Northwest National Laboratory, Richland, Washington (United States); Crum, Jarrod [Pacific Northwest National Laboratory, Richland, Washington (United States); Siong, Khoo Kok; Ngatiman, Mohammad Fadzlee; Said, Riduan Mt [National University of Malaysia, Bandar Baru Bangi, Selangor (Malaysia)

    2014-02-12T23:59:59.000Z

    Korean spent nuclear fuel will reach the capacity of the available temporary storage by 2016. Pyroprocessing and direct disposal seems to be an alternative way to manage and reuse spent nuclear fuel while avoiding the wet reprocessing technology. Pyroprocessing produces several wastes streams, including metals, salts, and rare earths, which must be converted into stabilized form. A suitable form for rare earth immobilization is borosilicate glass. The borosilicate glass form exhibits excellent durability, allows a high waste loading, and is easy to process. In this work, we combined the rare earths waste of composition (in wt%) 39.2Nd{sub 2}O{sub 3}–22.7CeO{sub 2}–11.7La{sub 2}O{sub 3}–10.9PrO{sub 2}–1.3Eu{sub 2}O{sub 3}–1.3Gd{sub 2}O{sub 3}–8.1Sm{sub 2}O{sub 3}–4.8Y{sub 2}O{sub 3} with a baseline glass of composition 60.2SiO{sub 2}–16.0B{sub 2}O{sub 3}–12.6Na{sub 2}O–3.8Al{sub 2}O{sub 3}–5.7CaO–1.7ZrO{sub 2}. Crystallization in waste glasses occurs as the waste loading increases. It may produce complicate glass processing and affect the product quality. To study crystal formation, we initially made glasses containing 5%, 10% and 15% of La{sub 2}O{sub 3} and then glasses with 5%, 10% and 15% of the complete rare earth mix. Samples were heat-treated for 24 hours at temperatures 800°C to 1150°C in 50°C increments. Quenched samples were analyzed using an optical microscope, scanning electron microscope with energy dispersive spectroscopy, and x-ray diffraction. Stillwellite (LaBSiO{sub 5}) and oxyapatite (Ca{sub 2}La{sub 8}Si{sub 6}O{sub 26}) were found in glasses containing La{sub 2}O{sub 3}, while oxyapatite (Ca{sub 2}La{sub 8}Si{sub 6}O{sub 26} and NaNd{sub 9}Si{sub 6}O{sub 26}) precipitated in glasses with additions of mixed rare earths. The liquidus temperature (T{sub L}) of the glasses containing 5%, 10% and 15% La{sub 2}O{sub 3} were 800°C, 959°C and 986°C, respectively; while T{sub L} was 825°C, 1059°C and 1267°C for glasses with 5%, 10% and 15% addition of mixed rare earth oxides. The component coefficients T{sub B2O3}, T{sub SiO2}, T{sub CaO}, and T{sub RE2O3} were also evaluated using a recently published study.

  1. DC Hazardous Waste Management (District of Columbia)

    Broader source: Energy.gov [DOE]

    This regulation regulates the generation, storage, transportation, treatment, and disposal of hazardous waste, and wherever feasible, reduces or eliminates waste at the source. It is the policy of...

  2. Process for treating fission waste. [Patent application

    DOE Patents [OSTI]

    Rohrmann, C.A.; Wick, O.J.

    1981-11-17T23:59:59.000Z

    A method is described for the treatment of fission waste. A glass forming agent, a metal oxide, and a reducing agent are mixed with the fission waste and the mixture is heated. After melting, the mixture separates into a glass phase and a metal phase. The glass phase may be used to safely store the fission waste, while the metal phase contains noble metals recovered from the fission waste.

  3. Waste Disposal Guide HOW TO PROPERLY DISPOSE OF WASTE MATERIALS

    E-Print Network [OSTI]

    Schaefer, Marcus

    Waste Disposal Guide HOW TO PROPERLY DISPOSE OF WASTE MATERIALS GENERATED AT DEPAUL UNIVERSITY.4 Hazardous Waste Defined p.5 Chemical Waste Procedure for Generating Departments p.6 o A of Containers p.8 o E. Disposal of Empty Containers p.8 o F. Storage of Waste Chemicals p.8,9 o G

  4. Treatment of halogen-containing waste and other waste materials

    DOE Patents [OSTI]

    Forsberg, C.W.; Beahm, E.C.; Parker, G.W.

    1997-03-18T23:59:59.000Z

    A process is described for treating a halogen-containing waste material. The process provides a bath of molten glass containing a sacrificial metal oxide capable of reacting with a halogen in the waste material. The sacrificial metal oxide is present in the molten glass in at least a stoichiometric amount with respect to the halogen in the waste material. The waste material is introduced into the bath of molten glass to cause a reaction between the halogen in the waste material and the sacrificial metal oxide to yield a metal halide. The metal halide is a gas at the temperature of the molten glass. The gaseous metal halide is separated from the molten glass and contacted with an aqueous scrubber solution of an alkali metal hydroxide to yield a metal hydroxide or metal oxide-containing precipitate and a soluble alkali metal halide. The precipitate is then separated from the aqueous scrubber solution. The molten glass containing the treated waste material is removed from the bath as a waste glass. The process of the invention can be used to treat all types of waste material including radioactive wastes. The process is particularly suited for separating halogens from halogen-containing wastes. 3 figs.

  5. Treatment of halogen-containing waste and other waste materials

    DOE Patents [OSTI]

    Forsberg, Charles W. (Oak Ridge, TN); Beahm, Edward C. (Oak Ridge, TN); Parker, George W. (Concord, TN)

    1997-01-01T23:59:59.000Z

    A process for treating a halogen-containing waste material. The process provides a bath of molten glass containing a sacrificial metal oxide capable of reacting with a halogen in the waste material. The sacrificial metal oxide is present in the molten glass in at least a stoichiometric amount with respect to the halogen in the waste material. The waste material is introduced into the bath of molten glass to cause a reaction between the halogen in the waste material and the sacrificial metal oxide to yield a metal halide. The metal halide is a gas at the temperature of the molten glass. The gaseous metal halide is separated from the molten glass and contacted with an aqueous scrubber solution of an alkali metal hydroxide to yield a metal hydroxide or metal oxide-containing precipitate and a soluble alkali metal halide. The precipitate is then separated from the aqueous scrubber solution. The molten glass containing the treated waste material is removed from the bath as a waste glass. The process of the invention can be used to treat all types of waste material including radioactive wastes. The process is particularly suited for separating halogens from halogen-containing wastes.

  6. HAZWOPER work plan and site safety and health plan for the Alpha characterization project at the solid waste storage area 4 bathtubbing trench at Oak Ridge National Laboratory

    SciTech Connect (OSTI)

    Not Available

    1994-07-01T23:59:59.000Z

    This work plan/site safety and health plan is for the alpha sampling project at the Solid Waste Storage Area 4 bathtubbing trench. The work will be conducted by the Oak Ridge National Laboratory (ORNL) Environmental Sciences Division and associated ORNL environmental, safety, and health support groups. This activity will fall under the scope of 29 CFR 1910.120, Hazardous Waste Operations and Emergency Response (HAZWOPER). The purpose of this document is to establish health and safety guidelines to be followed by all personnel involved in conducting work for this project. Work will be conducted in accordance with requirements as stipulated in the ORNL HAZWOPER Program Manual and applicable ORNL; Martin Marietta Energy Systems, Inc.; and U.S. Department of Energy policies and procedures. The levels of protection and the procedures specified in this plan are based on the best information available from historical data and preliminary evaluations of the area. Therefore, these recommendations represent the minimum health and safety requirements to be observed by all personnel engaged in this project. Unforeseeable site conditions or changes in scope of work may warrant a reassessment of the stated protection levels and controls. All adjustments to the plan must have prior approval by the safety and health disciplines signing the original plan.

  7. Guidelines for mixed waste minimization

    SciTech Connect (OSTI)

    Owens, C.

    1992-02-01T23:59:59.000Z

    Currently, there is no commercial mixed waste disposal available in the United States. Storage and treatment for commercial mixed waste is limited. Host States and compacts region officials are encouraging their mixed waste generators to minimize their mixed wastes because of management limitations. This document provides a guide to mixed waste minimization.

  8. Site characterization plan: Conceptual design report: Volume 4, Appendices F-O: Nevada Nuclear Waste Storage Investigations Project

    SciTech Connect (OSTI)

    MacDougall, H R; Scully, L W; Tillerson, J R [comps.] [comps.

    1987-09-01T23:59:59.000Z

    The site for the prospective repository is located at Yucca Mountain in southwestern Nevada, and the waste emplacement area will be constructed in the underlying volcanic tuffs. The target horizon for waste emplacement is a sloping bed of densely welded tuff more than 650 ft below the surface and typically more than 600 ft above the water table. The conceptual design described in this report is unique among repository designs in that it uses ramps in addition to shafts to gain access to the underground facility, the emplacement horizon is located above the water table, and it is possible that 300- to 400-ft-long horizontal waste emplacement boreholes will be used. This report summarizes the design bases, design and performance criteria, and the design analyses performed. The current status of meeting the preclosure performance objectives for licensing and of resolving the repository design and preclosure issues is presented. The repository design presented in this report will be expanded and refined during the advanced conceptual design, the license application design, and the final procurement and construction design phases. Volume 4 contains Appendices F to O.

  9. Database and Interim Glass Property Models for Hanford HLW and LAW Glasses

    SciTech Connect (OSTI)

    Vienna, John D. (BATTELLE (PACIFIC NW LAB)); Kim, Dong-Sang (BATTELLE (PACIFIC NW LAB)); Hrma, Pavel R. (BATTELLE (PACIFIC NW LAB))

    2002-09-27T23:59:59.000Z

    This report discusses a methodology for increasing the efficiency and decreasing the cost of vitrifying nuclear waste by optimizing waste-glass formulation. This methodology involves collecting and generating a property-composition database (for glass properties that determine waste-glass processability and acceptability) and relating these properties to glass composition via property-composition models. The report explains how the property-composition models are developed, fitted to data and evaluated, validated using additional data, used for glass-formulation optimization, and continuously updated in response to changes in waste-composition estimates and processing technologies. Further, the report describes a waste-glass property-composition database compiled from literature sources and presents the results from a critical evaluation and screening of the data for applicability to Hanford waste glasses. Finally, the report provides interim property-composition models for melt viscosity, liquidus temperature (with spinel and zircon primary crystalline phases), and Product Consistency Test normalized releases of B, Na, and Li. Models were fitted to a subset of the database deemed most relevant for the anticipated Hanford waste-glass composition region.

  10. Analysis of Sludge Batch 3 (Macrobatch4) DWPF Pour Stream Glass Sample for Canister s02312

    SciTech Connect (OSTI)

    Bannochie, C

    2005-09-01T23:59:59.000Z

    The Defense Waste Processing Facility (DWPF) began processing Sludge Batch 3 (SB3), Macrobatch 4 (MB4) in March 2004 as part of Sludge Receipt and Adjustment Tank (SRAT) Batch 272. Sludge Batch 3 is a blend of the contents Tank 40 remaining from Sludge Batch 2 (SB2), the sludge that was transferred to Tank 40 from Tank 51 and Canyon Np solution additions made directly to Tank 40. The sludge transferred from Tank 51 contained sludges from Tanks 7, 18 and 19 along with precipitated solutions of U, Pu/Gd and Am/Cm from the F and H Canyons. The blend of sludge from Tank 51, Tank 40, and the Canyon additions defines SB3 (or MB4). The sludge slurry is received into the DWPF Chemical Processing Cell (CPC) and is processed through the SRAT and Slurry Mix Evaporator (SME) Tank and fed to the melter. During the processing of each sludge batch, the DWPF is required to take at least one glass sample. This glass sample is taken to meet the objectives of the Glass Product Control Program and complete the necessary Production Records so that the final glass product may be disposed of at a Federal Repository. Two glass samples were obtained while pouring Canisters S02312 and S02315 which were sent to the Savannah River National Laboratory's (SRNL) Shielded Cells Facility. Sample S02312 was designated for analysis, while sample S02315 was designated for archival storage. This report contains the visual observations of the as-received glass sample, results for the density, chemical composition, the Product Consistency Test (PCT) and the calculated and measured radionuclide results needed for the Production Record for Canister S02312. The following conclusions were drawn from the examination of this DWPF pour stream glass sample: (1) The glass sample taken during the filling of DWPF Canister S02312 weighed 41.69 g and was generally dark and reflective. (2) Minor inclusions, on the order of 1 {micro}m in size, of noble metals were seen in the glass via contained scanning electron microscopy and confirmed from their x-ray fluorescence spectra. (3) The results for the composition of glass sample S02312, except for U, are in reasonable agreement (15% or better) with the DWPF SME Batch 319 results, the SME batch being fed to the melter when the sample was collected. (4) The calculated waste dilution factor (WDF) was 2.19. The measured values of the radionuclides and noble metals in the glass sample generally corresponded well with the calculated values determined using sludge slurry results from Reference 9 and the WDF. (5) The noble metal content of the glass indicates that the noble metals are largely swept from the melter with the glass based upon the noble metals analyzed in the glass and those predicted in the sludge from the WDF. (6) Comparison of the noble metal results for the two digestion methods (mixed acid and alkali fusion) indicates that the alkali fusion method is preferred for the determination of noble metals in glass. (7) The PCT results for the glass (normalized release of B: 1.09 g/L, Na: 1.03 g/L, and Li: 0.94 g/L) indicate that it meets the waste acceptance criterion for durability. (8) The normalized release rates for the measured radionuclides were less than those for the major soluble elements in the waste (B, Na, and Li) with the exception of Tc-99 which was released at a rate similar to that the soluble elements in the leachate. (9) The measured density of the glass was 2.58 {+-} 0.11 g/cm{sup 3}.

  11. alternatives glass jars: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Small amounts). When looking at the cost effectiveness of recycling versus waste to landfill, it's worth bearing Melham, Tom 100 Overview of Energy Efficiency for Glass...

  12. Glass balls

    E-Print Network [OSTI]

    There is a building with 100 floors in it, and glass balls, and an integer k with the following property. If one drops a glass ball from the floor number k or higher, ...

  13. Focus Sheet | Hazardous Waste Checklist How to be ready for state hazardous waste

    E-Print Network [OSTI]

    Wilcock, William

    storage cabinet. Avoid accumulating a lot of waste ­ keep areas clear. EPO ­ Hazardous Waste Checklist 07Focus Sheet | Hazardous Waste Checklist How to be ready for state hazardous waste inspectors. See a hazardous waste inspection. ons, rrosive. n hemicals? ical waste. Waste-like chemicals have als Are you

  14. H. R. 4394: a bill to amend the Price-Anderson provisions of the Atomic Energy Act of 1954 to establish liability and indemnification for nuclear incidents arising out of federal storage, disposal, and related transportation of radioactive waste. Introduced in the House of Representatives, Ninety-Ninth Congress, Second Session, March 12, 1986

    SciTech Connect (OSTI)

    Not Available

    1986-01-01T23:59:59.000Z

    The Federal Radioactive Waste Liability Act of 1986 (H.R. 4394) amends the Price-Anderson Act so that the federal government assumes responsibility for compensation of liability claims resulting from nuclear incidents involving federal radioactive wastes. The Act corrects the fact that the 1954 Atomic Energy Act did not provide for claims arising from the storage, disposal, or transport of federal radioactive wastes. The legislation provides for payments from the Nuclear Waste Fund of $5 billion for any one incident.

  15. Modeling Hydrogen Generation Rates in the Hanford Waste Treatment and Immobilization Plant

    SciTech Connect (OSTI)

    Camaioni, Donald M.; Bryan, Samuel A.; Hallen, Richard T.; Sherwood, David J.; Stock, Leon M.

    2004-03-29T23:59:59.000Z

    This presentation describes a project in which Hanford Site and Environmental Management Science Program investigators addressed issues concerning hydrogen generation rates in the Hanford waste treatment and immobilization plant. The hydrogen generation rates of radioactive wastes must be estimated to provide for safe operations. While an existing model satisfactorily predicts rates for quiescent wastes in Hanford underground storage tanks, pretreatment operations will alter the conditions and chemical composition of these wastes. Review of the treatment process flowsheet identified specific issues requiring study to ascertain whether the model would provide conservative values for waste streams in the plant. These include effects of adding hydroxide ion, alpha radiolysis, saturation with air (oxygen) from pulse-jet mixing, treatment with potassium permanganate, organic compounds from degraded ion exchange resins and addition of glass-former chemicals. The effects were systematically investigated through literature review, technical analyses and experimental work.

  16. The corrosion behavior of DWPF glasses

    SciTech Connect (OSTI)

    Ebert, W.L.; Bates, J.K. [Argonne National Lab., IL (United States). Chemical Technology Div.

    1995-06-01T23:59:59.000Z

    The authors analyzed the corroded surfaces of reference glasses developed for the Defense Waste Processing Facility (DWPF) to characterize their corrosion behavior. The corrosion mechanism of nuclear waste glasses must be known in order to provide source terms describing radionuclide release for performance assessment calculations. Different DWPF reference glasses were corroded under conditions that highlighted various aspects of the corrosion process and led to different extents of corrosion. The glasses corroded by similar mechanisms, and a phenomenological description of their corrosion behavior is presented here. The initial leaching of soluble glass components results in the formation of an amorphous gel layer on the glass surface. The gel layer is a transient phase that transforms into a layer of clay crystallites, which equilibrates with the solution as corrosion continues. The clay layer does not act as a barrier to either water penetration or glass dissolution, which continues beneath it, and may eventually separate from the glass. Solubility limits for glass components may be established by the eventual precipitation of secondary phases; thus, corrosion of the glass becomes controlled by the chemical equilibrium between the solution and the assemblage of secondary phases. In effect, the solution is an intermediate phase through which the glass transforms to an energetically more favorable assemblage of phases. Implications regarding the prediction of long-term glass corrosion behavior are discussed.

  17. Laboratory work in support of West Valley glass development

    SciTech Connect (OSTI)

    Bunnell, L.R.

    1988-05-01T23:59:59.000Z

    Over the past six years, Pacific Northwest Laboratory (PNL) has conducted several studies in support of waste glass composition development and testing of glass compositions suitable for immobilizing the nuclear wastes stored at West Valley, New York. As a result of pilot-scale testing conducted by PNL, the glass composition was changed from that originally recommended in response to changes in the waste stream, and several processing-related problems were discovered. These problems were solved, or sufficiently addressed to determine their likely effect on the glass melting operations to be conducted at West Valley. This report describes the development of the waste glass composition, WV-205, and discusses solutions to processing problems such as foaming and insoluble sludges, as well as other issues such as effects of feed variations on processing of the resulting glass. An evaluation of the WV-205 glass from a repository perspective is included in the appendix to this report.

  18. PROPER SAFETY EQUIPMENT Safety Glasses -Proper eye

    E-Print Network [OSTI]

    Jia, Songtao

    be managed as Hazardous Waste. Paint Material Storage location: Right side of Grove tunnel heading towards. Universal Waste not placed in proper storage locations is a violation of environmental regulations and is punishable by a fine, it also poses a hazard to the many people and vehicles that use the Grove everyday

  19. WASTE DESCRIPTION TYPE OF PROJECT POUNDS REDUCED,

    E-Print Network [OSTI]

    Minimization/ Volume Reduction 0 Solid Radioactive Waste $2,168 $0 $2,168 Vial Crusher for glass vialsWASTE DESCRIPTION TYPE OF PROJECT POUNDS REDUCED, REUSED, RECYCLED OR CONSERVED IN 2004 WASTE TYPE DESCRIPTION DETAILS * Automotive Waste Substitution 510 Hazardous Waste $1,020 $1,000 $1,000 Aqueous Solvent

  20. Central Waste Complex (CWC) Waste Analysis Plan

    SciTech Connect (OSTI)

    ELLEFSON, M.D.

    1999-12-01T23:59:59.000Z

    The purpose of this waste analysis plan (WAP) is to document the waste acceptance process, sampling methodologies, analytical techniques, and overall processes that are undertaken for waste accepted for storage at the Central Waste Complex (CWC), which is located in the 200 West Area of the Hanford Facility, Richland, Washington. Because dangerous waste does not include the source, special nuclear, and by-product material components of mixed waste, radionuclides are not within the scope of this documentation. The information on radionuclides is provided only for general knowledge.

  1. Gaseous Sulfate Solubility in Glass: Experimental Method

    SciTech Connect (OSTI)

    Bliss, Mary

    2013-11-30T23:59:59.000Z

    Sulfate solubility in glass is a key parameter in many commercial glasses and nuclear waste glasses. This report summarizes key publications specific to sulfate solubility experimental methods and the underlying physical chemistry calculations. The published methods and experimental data are used to verify the calculations in this report and are expanded to a range of current technical interest. The calculations and experimental methods described in this report will guide several experiments on sulfate solubility and saturation for the Hanford Waste Treatment Plant Enhanced Waste Glass Models effort. There are several tables of sulfate gas equilibrium values at high temperature to guide experimental gas mixing and to achieve desired SO3 levels. This report also describes the necessary equipment and best practices to perform sulfate saturation experiments for molten glasses. Results and findings will be published when experimental work is finished and this report is validated from the data obtained.

  2. CRYSTALLINE CERAMIC WASTE FORMS: REFERENCE FORMULATION REPORT

    SciTech Connect (OSTI)

    Brinkman, K.; Fox, K.; Marra, J.

    2012-05-15T23:59:59.000Z

    The research conducted in this work package is aimed at taking advantage of the long term thermodynamic stability of crystalline ceramics to create more durable waste forms (as compared to high level waste glass) in order to reduce the reliance on engineered and natural barrier systems. Durable ceramic waste forms that incorporate a wide range of radionuclides have the potential to broaden the available disposal options and to lower the storage and disposal costs associated with advanced fuel cycles. Assemblages of several titanate phases have been successfully demonstrated to incorporate radioactive waste elements, and the multiphase nature of these materials allows them to accommodate variation in the waste composition. Recent work has shown that they can be successfully produced from a melting and crystallization process. The objective of this report is to explain the design of ceramic host systems culminating in a reference ceramic formulation for use in subsequent studies on process optimization and melt property data assessment in support of FY13 melter demonstration testing. The waste stream used as the basis for the development and testing is a combination of the projected Cs/Sr separated stream, the Trivalent Actinide - Lanthanide Separation by Phosphorous reagent Extraction from Aqueous Komplexes (TALSPEAK) waste stream consisting of lanthanide fission products, the transition metal fission product waste stream resulting from the transuranic extraction (TRUEX) process, and a high molybdenum concentration with relatively low noble metal concentrations. In addition to the combined CS/LN/TM High Mo waste stream, variants without Mo and without Mo and Zr were also evaluated. Based on the results of fabricating and characterizing several simulated ceramic waste forms, two reference ceramic waste form compositions are recommended in this report. The first composition targets the CS/LN/TM combined waste stream with and without Mo. The second composition targets with CS/LN/TM combined waste stream with Mo and Zr removed. Waste streams that contain Mo must be produced in reducing environments to avoid Cs-Mo oxide phase formation. Waste streams without Mo have the ability to be melt processed in air. A path forward for further optimizing the processing steps needed to form the targeted phase assemblages is outlined in this report. Processing modifications including melting in a reducing atmosphere, and controlled heat treatment schedules are anticipated to improve the targeted elemental partitioning.

  3. Regulatory Project Manager for Salina and Permian Basins for the NWTS (National Waste Terminal Storage) Program: Final techical report

    SciTech Connect (OSTI)

    Not Available

    1986-12-01T23:59:59.000Z

    The identification of candidate sites for nuclear waste repositories involves geological and environmental studies to characterize potential sites. These investigations include the collection and analysis of detailed geological and environmental data and comparison of the data against predetermined site performance criteria, i.e., geologic characteristics, environmental protection, and socioeconomic impacts. The work summarized in this final technical report encompasses mainly ''environmental characterization'' studies in the Permian Basin in the Texas Panhandle during the period of 1977-86; in the earlier phase of the contract, regional environmental work was also done in the Salina Basin (1977-79) and certain licensing support activities and safety analyses were conducted (1977-82). Considerable regulatory support work was also performed during 1986. 9 figs., 2 tabs.

  4. Measurement of DWPF glass viscosity - Final Report

    SciTech Connect (OSTI)

    Harbour, J.R.

    2000-02-17T23:59:59.000Z

    This report details the results of a scoping study funded by the Defense Waste Processing Facility (DWPF) for the measurement of melt viscosities for simulated glasses representative of Macrobatch 2 (Tank 42/51 feed).

  5. Corrosion-induced gas generation in a nuclear waste repository: Reactive geochemistry and multiphase flow effect

    E-Print Network [OSTI]

    Xu, T.

    2009-01-01T23:59:59.000Z

    Lying Repositories for Nuclear Waste, NAGRA Technical Reporthost rock formation for nuclear waste storage. EngineeringGas Generation in a Nuclear Waste Repository: Reactive

  6. Four: Evaluating Reforms in the Implementation of Hazardous Waste Policies in California

    E-Print Network [OSTI]

    Cutter, W. Bowman; DeShazo, J.R.

    2006-01-01T23:59:59.000Z

    in four areas: storage tanks, hazardous waste generatingprograms in hazardous waste and other areas. This resultof hazardous waste laws, requiring that every area be under

  7. Low-level waste inventory, characteristics, generation, and facility assessment for treatment, storage, and disposal alternatives considered in the US Department of Energy waste management programmatic environmental impact statement

    SciTech Connect (OSTI)

    Goyette, M.L.; Dolak, D.A.

    1996-12-01T23:59:59.000Z

    This report provides technical support information for use in analyzing environmental impacts associated with U.S. Department of Energy (DOE) low-level radioactive waste (LLW) management alternatives in the Waste-Management (WM) Programmatic Environmental Impact Statement (PEIS). Waste loads treated and disposed of for each of the LLW alternatives considered in the DOE WM PEIS are presented. Waste loads are presented for DOE Waste Management (WM) wastes, which are generated from routine operations. Radioactivity concentrations and waste quantities for treatment and disposal under the different LLW alternatives are described for WM waste. 76 refs., 14 figs., 42 tabs.

  8. Grout and glass performance in support of stabilization/solidification of ORNL tank sludges

    SciTech Connect (OSTI)

    Spence, R.D.; Mattus, C.H.; Mattus, A.J.

    1998-09-01T23:59:59.000Z

    Wastewater at Oak Ridge National Laboratory (ORNL) is collected, evaporated, and stored in the Melton Valley Storage Tanks (MVST) and Bethel Valley Evaporator Storage Tanks (BVEST) pending treatment for disposal. In addition, some sludges and supernatants also requiring treatment remain in two inactive tank systems: the gunite and associated tanks (GAAT) and the old hydrofracture (OHF) tank. The waste consists of two phases: sludge and supernatant. The sludges contain a high amount of radioactivity, and some are classified as TRU sludges. Some Resource Conservation and Recovery Act (RCRA) metal concentrations are high enough to be defined as RCRA hazardous; therefore, these sludges are presumed to be mixed TRU waste. Grouting and vitrification are currently two likely stabilization/solidification alternatives for mixed wastes. Grouting has been used to stabilize/solidify hazardous and low-level radioactive waste for decades. Vitrification has been developed as a high-level radioactive alternative for decades and has been under development recently as an alternative disposal technology for mixed waste. The objective of this project is to define an envelope, or operating window, for grout and glass formulations for ORNL tank sludges. Formulations will be defined for the average composition of each of the major tank farms (BVEST/MVST, GAAT, and OHF) and for an overall average composition of all tank farms. This objective is to be accomplished using surrogates of the tank sludges with hot testing of actual tank sludges to check the efficacy of the surrogates.

  9. Corrective Action Decision Document for Corrective Action Unit 140: Waste Dumps, Burn Pits, and Storage Area, Nevada Test Site, Nevada: Revision No. 0

    SciTech Connect (OSTI)

    U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office

    2003-10-17T23:59:59.000Z

    This Corrective Action Decision Document identifies and rationalizes the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office's selection of a recommended corrective action alternative appropriate to facilitate the closure of Corrective Action Unit (CAU) 140: Waste Dumps, Burn Pits, and Storage Area, Nevada Test Site (NTS), Nevada, under the Federal Facility Agreement and Consent Order. Located in Areas 5, 22, and 23 of the NTS, CAU 140 consists of nine corrective action sites (CASs). Investigation activities were performed from November 13 through December 11, 2002, with additional sampling to delineate the extent of contaminants of concern (COCs) conducted on February 4 and March 18 and 19, 2003. Results obtained from the investigation activities and sampling indicated that only 3 of the 9 CASs at CAU 140 had COCs identified. Following a review of existing data, future land use, and current operations at the NTS, the following preferred alternatives were developed for consideration: (1) No Further Action - six CASs (05-08-02, 05-17-01, 05-19-01, 05-35-01, 05-99-04, and 22-99-04); (2) Clean Closure - one CAS (05-08-01), and (3) Closure-in-Place - two CASs (05-23-01 and 23-17-01). These alternatives were judged to meet all requirements for the technical components evaluated. Additionally, the alternatives meet all applicable state and federal regulations for closure of the site and will eliminate potential future exposure pathways to the contaminated media at CAU 140.

  10. Clean option: An alternative strategy for Hanford Tank Waste Remediation. Volume 2, Detailed description of first example flowsheet

    SciTech Connect (OSTI)

    Swanson, J.L.

    1993-09-01T23:59:59.000Z

    Disposal of high-level tank wastes at the Hanford Site is currently envisioned to divide the waste between two principal waste forms: glass for the high-level waste (HLW) and grout for the low-level waste (LLW). The draft flow diagram shown in Figure 1.1 was developed as part of the current planning process for the Tank Waste Remediation System (TWRS), which is evaluating options for tank cleanup. The TWRS has been established by the US Department of Energy (DOE) to safely manage the Hanford tank wastes. It includes tank safety and waste disposal issues, as well as the waste pretreatment and waste minimization issues that are involved in the ``clean option`` discussed in this report. This report describes the results of a study led by Pacific Northwest Laboratory to determine if a more aggressive separations scheme could be devised which could mitigate concerns over the quantity of the HLW and the toxicity of the LLW produced by the reference system. This aggressive scheme, which would meet NRC Class A restrictions (10 CFR 61), would fit within the overall concept depicted in Figure 1.1; it would perform additional and/or modified operations in the areas identified as interim storage, pretreatment, and LLW concentration. Additional benefits of this scheme might result from using HLW and LLW disposal forms other than glass and grout, but such departures from the reference case are not included at this time. The evaluation of this aggressive separations scheme addressed institutional issues such as: radioactivity remaining in the Hanford Site LLW grout, volume of HLW glass that must be shipped offsite, and disposition of appropriate waste constituents to nonwaste forms.

  11. High-level waste storage tank farms/242-A evaporator standards/requirements identification document (S/RID), Vol. 4

    SciTech Connect (OSTI)

    Not Available

    1994-04-01T23:59:59.000Z

    Radiation protection of personnel and the public is accomplished by establishing a well defined Radiation Protection Organization to ensure that appropriate controls on radioactive materials and radiation sources are implemented and documented. This Requirements Identification Document (RID) applies to the activities, personnel, structures, systems, components, and programs involved in executing the mission of the Tank Farms. The physical boundaries within which the requirements of this RID apply are the Single Shell Tank Farms, Double Shell Tank Farms, 242-A Evaporator-Crystallizer, 242-S, T Evaporators, Liquid Effluent Retention Facility (LERF), Purgewater Storage Facility (PWSF), and all interconnecting piping, valves, instrumentation, and controls. Also included is all piping, valves, instrumentation, and controls up to and including the most remote valve under Tank Farms control at any other Hanford Facility having an interconnection with Tank Farms. The boundary of the structures, systems, components, and programs to which this RID applies, is defined by those that are dedicated to and/or under the control of the Tank Farms Operations Department and are specifically implemented at the Tank Farms.

  12. Waste Management Assistance Act (Iowa)

    Broader source: Energy.gov [DOE]

    This section promotes the proper and safe storage, treatment, and disposal of solid, hazardous, and low-level radioactive wastes in Iowa, and calls on Iowans to assume responsibility for waste...

  13. Solid Waste Management Act (Pennsylvania)

    Broader source: Energy.gov [DOE]

    This Act provides for the planning and regulation of solid waste storage, collection, transportation, processing, treatment, and disposal. It requires that municipalities submit plans for municipal...

  14. IMPACT OF THE SMALL COLUMN ION EXCHANGE PROCESS ON THE DEFENSE WASTE PROCESSING FACILITY - 12112

    SciTech Connect (OSTI)

    Koopman, D.; Lambert, D.; Fox, K.; Stone, M.

    2011-11-07T23:59:59.000Z

    The Savannah River Site (SRS) is investigating the deployment of a parallel technology to the Salt Waste Processing Facility (SWPF, presently under construction) to accelerate high activity salt waste processing. The proposed technology combines large waste tank strikes of monosodium titanate (MST) to sorb strontium and actinides with two ion exchange columns packed with crystalline silicotitanate (CST) resin to sorb cesium. The new process was designated Small Column Ion Exchange (SCIX), since the ion exchange columns were sized to fit within a waste storage tank riser. Loaded resins are to be combined with high activity sludge waste and fed to the Defense Waste Processing Facility (DWPF) for incorporation into the current glass waste form. Decontaminated salt solution produced by SCIX