Powered by Deep Web Technologies
Note: This page contains sample records for the topic "glass products hydraulic" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Glass Production  

E-Print Network (OSTI)

40, pp. 162 - 186. Glass Production, Shortland, UEE 2009AINES Short Citation: Shortland 2009, Glass Production. UEE.Andrew, 2009, Glass Production. In Willeke Wendrich (ed. ),

Shortland, Andrew

2009-01-01T23:59:59.000Z

2

Production Hydraulic Packer Field Test  

Science Conference Proceedings (OSTI)

In October 1999, the Rocky Mountain Oilfield Testing Center and Halliburton Energy Services cooperated on a field test of Halliburton's new Production Hydraulic Packer technology on Well 46-TPX-10 at Naval Petroleum Reserve No. 3 near Casper, WY. Performance of the packer was evaluated in set and unset operations. The packer's ability to seal the annulus between the casing and tubing was hydraulically tested and the results were recorded.

Schneller, Tricia; Salas, Jose

2000-06-30T23:59:59.000Z

3

Production of hydraulic oil from Baku crudes  

Science Conference Proceedings (OSTI)

The demand for low-pour oils for use in hydraulic systems is considerably greater than the possible production volume. The base stocks for hydraulic oils - AMG-10, MGE-10A, RM, and RMTs - are obtained by sulfuric acid treatment. In the interest of improving the ecological aspects of hydraulic oil production, sulfuric acid treatment is being replaced by hydroprocessing. The work described here was aimed at determining the feasibility of obtaining hydraulic oil of the RM type from lube distillate fractions of the mixed low-wax crudes processed in the Baku Azerneftyag Petroleum Refinery. This oil is intended for use in hydraulic systems of automatic control apparatus, mainly in flight vehicles operating in the North. Stringent requirements are imposed on its solid point and viscosity. solid point no higher than -60{degrees}C. viscosity w higher than 350 mm{sup 2}/sec at -40{degrees}C. The lube fractions used as starting materials had viscosities of 2.77 and 16.84 mm{sup 2}/sec at 50{degrees}C, with respective flash points of 85{degrees} and 168{degrees}C. As another starting material we used a gasoil cut with a viscosity of 4.4 mm{sup 2}/sec at 50{degrees}C and a flash point of 134{degrees}C.

Samedova, F.I.; Kasumova, A.M.; Alieva, V.M.

1994-07-01T23:59:59.000Z

4

Specialty Cellular Glass Products and Their Applications  

E-Print Network (OSTI)

Cellular glass products are composed of hermetically-sealed cells containing gases which exhibit no extracellular diffusion. As such, these products are impermeable to liquids and gases. FOAMGLAS® blocks have long been used as fireproof thermal insulation, especially in low temperature applications where condensation and subsequent ice formation in insulation can cause significant reduction in insulating value. Recently, specialty compositions have been developed in the borosilicate and boroaluminosilicate fields which exhibit a high degree of resistance to corrosion by aggressive chemicals as well. One product, sold as PENNGUARDTM block by Pennwalt Corporation, is used as a liner for chimneys where acid corrosion had previously caused substantial maintenance problems. The product is also used as an insulative, acid-resistant liner in numerous chemical processes. A more refractory foam called FOAMSID®12 insulation has been developed for use in extremely corrosive environments at elevated temperatures. One such field of application, the Alcoa Smelting Process, involves the use of molten salts which tend to impregnate materials which are porous to either salt vapors or to the liquid phase. Such impregnation of ordinary insulating materials causes a significant increase in heat transfer rates. FOAMSID®-12 blocks, with their unique properties of light weight, high strength, impermeability, and low thermal conductivity offer an opportunity for industrial energy conservation which did not previously exist.

Rostoker, D.

1979-01-01T23:59:59.000Z

5

Production process for glass sand from the quartz waste from the beneficiation of kingiseppsk phosphorites  

SciTech Connect

This paper presents a process developed for the production of molding sand from the quartz waste which makes it possible to simplify the system for obtaining glass sand. According to this system, the main operation in the removal of most of the residual phosphate shell and alkaline earth metal oxides from the quartz waste is foam separation, using the residual concentration of reagents in the pulp (tallow and kerosene). After the subsequent washing and hydraulic classification, the sands meet the requirements set for molding sands grade Ob2K. The characteristics of the original flotation tailings and molding sand are presented. The mineralogical analysis of the molding sand showed that the iron-containing impurities are grains of glauconite, films of iron oxide on the surface of the grains, grains of ferrous-dolomite cement, and iron from the apparatus.

Ershov, V.I.; Lezhnev, Y.P.; Novofastovskaya, E.M.; Rants, G.F.; Shalamova, V.G.; Sinyakova, E.I.; Sokolova, E.I.

1985-12-01T23:59:59.000Z

6

Hydraulic Conductivity of Geosynthetic Clay Liners to Coal Combustion Product Leachates: Interim Report  

Science Conference Proceedings (OSTI)

Hydraulic conductivity tests are being conducted on geosynthetic clay liners (GCLs) using solutions representing leachates observed in disposal facilities for coal combustion products (CCPs). Five different GCL products that are commercially available within the United States are being tested: two containing conventional sodium bentonite (NaB), two containing polymer-modified bentonite (PMB), and one with a bentonite polymer composite (BPC). Testing to date has been conducted by direct permeation ...

2013-12-13T23:59:59.000Z

7

Transient and Pseudosteady-State Productivity of Hydraulically Fractured Well  

E-Print Network (OSTI)

Numerical simulation method is used in this work to solve the problem of transient and pseudosteady-state flow of fluid in a rectangular reservoir with impermeable boundaries. Development and validation of the numerical solution for various well-fracture configurations are the main objectives of this research. The specific case of horizontal well intersected by multiple transverse fractures is the focus of the investigation. The solutions for different operating conditions, constant rate and constant pressure, are represented in the form of transient – peudosteady-state productivity indices. The numerical simulator is validated by comparing results to known analytical solution for radial flow, existing models of productivity for vertical well intersected by vertical fracture, and also with published tables of shape factors. Numerical simulation is a powerful tool to predict well performance. The complexities of well-fracture configurations can be modeled in a truly 3-dimensional system and the pressure and productivity responses for all of the flow regimes can be computed efficiently, enabling optimization of the well-fracture system.

Lumban Gaol, Ardhi

2012-08-01T23:59:59.000Z

8

Baseline Glass Development for Combined Fission Products Waste Streams  

SciTech Connect

Borosilicate glass was selected as the baseline technology for immobilization of the Cs/Sr/Ba/Rb (Cs), lanthanide (Ln) and transition metal fission product (TM) waste steams as part of a cost benefit analysis study.[1] Vitrification of the combined waste streams have several advantages, minimization of the number of waste forms, a proven technology, and similarity to waste forms currently accepted for repository disposal. A joint study was undertaken by Pacific Northwest National Laboratory (PNNL) and Savannah River National Laboratory (SRNL) to develop acceptable glasses for the combined Cs + Ln + TM waste streams (Option 1) and Cs + Ln combined waste streams (Option 2) generated by the AFCI UREX+ set of processes. This study is aimed to develop baseline glasses for both combined waste stream options and identify key waste components and their impact on waste loading. The elemental compositions of the four-corners study were used along with the available separations data to determine the effect of burnup, decay, and separations variability on estimated waste stream compositions.[2-5] Two different components/scenarios were identified that could limit waste loading of the combined Cs + LN + TM waste streams, where as the combined Cs + LN waste stream has no single component that is perceived to limit waste loading. Combined Cs + LN waste stream in a glass waste form will most likely be limited by heat due to the high activity of Cs and Sr isotopes.

Crum, Jarrod V.; Billings, Amanda Y.; Lang, Jesse B.; Marra, James C.; Rodriguez, Carmen P.; Ryan, Joseph V.; Vienna, John D.

2009-06-29T23:59:59.000Z

9

Evidence of Reopened Microfractures in Production Data of Hydraulically Fractured Shale Gas Wells  

E-Print Network (OSTI)

Frequently a discrepancy is found between the stimulated shale volume (SSV) estimated from production data and the SSV expected from injected water and proppant volume. One possible explanation is the presence of a fracture network, often termed fracture complexity, that may have been opened or reopened during the hydraulic fracturing operation. The main objective of this work is to investigate the role of fracture complexity in resolving the apparent SSV discrepancy and to illustrate whether the presence of reopened natural fracture network can be observed in pressure and production data of shale gas wells producing from two shale formations with different well and reservoir properties. Homogeneous, dual porosity and triple porosity models are investigated. Sensitivity runs based on typical parameters of the Barnett and the Horn River shale are performed. Then the field data from the two shales are matched. Homogeneous models for the two shale formations indicate effective infinite conductivity fractures in the Barnett well and only moderate conductivity fractures in the Horn River shale. Dual porosity models can support effectively infinite conductivity fractures in both shale formations. Dual porosity models indicate that the behavior of the Barnett and Horn River shale formations are different. Even though both shales exhibit apparent bilinear flow behavior the flow behaviors during this trend are different. Evidence of this difference comes from comparing the storativity ratio observed in each case to the storativity ratio estimated from injected fluid volumes during hydraulic fracturing. In the Barnett shale case similar storativity ratios suggest fracture complexity can account for the dual porosity behavior. In the Horn River case, the model based storativity ratio is too large to represent only fluids from hydraulic fracturing and suggests presence of existing shale formation microfractures.

Apiwathanasorn, Sippakorn

2012-08-01T23:59:59.000Z

10

Hydraulic Fracturing in Particulate Materials .  

E-Print Network (OSTI)

??For more than five decades, hydraulic fracturing has been widely used to enhance oil and gas production. Hydraulic fracturing in solid materials (e.g., rock) has… (more)

Chang, Hong

2004-01-01T23:59:59.000Z

11

Glass Ceramic Waste Form Development for Fission Products from ...  

Science Conference Proceedings (OSTI)

Symposium, Materials Issues in Nuclear Waste Management in the 21st Century. Presentation Title, Glass Ceramic Waste Form Development for Fission ...

12

Hydraulic fracture productivity performance in tight gas sands, a numerical simulation approach.  

E-Print Network (OSTI)

??Hydraulically fractured tight gas reservoirs are one of the most common unconventional sources being produced today, and look to be a regular source of gas… (more)

Ostojic, Jakov

2013-01-01T23:59:59.000Z

13

The recycling of the coal fly ash in glass production  

Science Conference Proceedings (OSTI)

The recycling of fly ash obtained from the combustion of coal in thermal power plant has been studied. Coal fly ash was vitrified by melting at 1773 K for 5 hours without any additives. The properties of glasses produced from coal fly ash were investigated by means of Differential Thermal Analysis (DTA), X-ray Diffraction (XRD) and Scanning Electron Microscopy (SEM) techniques. DTA study indicated that there was only one endothermic peak at 1003 K corresponding to the glass transition temperature. XRD analysis showed the amorphous state of the glass sample produced from coal fly ash. SEM investigations revealed that the coal fly ash based glass sample had smooth surface. The mechanical, physical and chemical properties of the glass sample were also determined. Recycling of coal fly ash by using vitrification technique resulted to a glass material that had good mechanical, physical and chemical properties. Toxicity characteristic leaching procedure (TCLP) results showed that the heavy metals of Pb, Cr, Zn and Mn were successfully immobilized into the glass. It can be said that glass sample obtained by the recycling of coal fly ash can be taken as a non-hazardous material. Overall, results indicated that the vitrification technique is an effective way for the stabilization and recycling of coal fly ash.

Erol, M.M.; Kucukbayrak, S.; Ersoy-Mericboyu, A. [Istanbul Technical University, Istanbul (Turkey). Dept. of Chemical Engineering

2006-09-15T23:59:59.000Z

14

Glass Ceramic Waste Forms for Combined CS+LN+TM Fission Products Waste Streams  

SciTech Connect

In this study, glass ceramics were explored as an alternative waste form for glass, the current baseline, to be used for immobilizing alkaline/alkaline earth + lanthanide (CS+LN) or CS+LN+transition metal (TM) fission-product waste streams generated by a uranium extraction (UREX+) aqueous separations type process. Results from past work on a glass waste form for the combined CS+LN waste streams showed that as waste loading increased, large fractions of crystalline phases precipitated upon slow cooling.[1] The crystalline phases had no noticeable impact on the waste form performance by the 7-day product consistency test (PCT). These results point towards the development of a glass ceramic waste form for treating CS+LN or CS+LN+TM combined waste streams. Three main benefits for exploring glass ceramics are: (1) Glass ceramics offer increased solubility of troublesome components in crystalline phases as compared to glass, leading to increased waste loading; (2) The crystalline network formed in the glass ceramic results in higher heat tolerance than glass; and (3) These glass ceramics are designed to be processed by the same melter technology as the current baseline glass waste form. It will only require adding controlled canister cooling for crystallization into a glass ceramic waste form. Highly annealed waste form (essentially crack free) with up to 50X lower surface area than a typical High-Level Waste (HLW) glass canister. Lower surface area translates directly into increased durability. This was the first full year of exploring glass ceramics for the Option 1 and 2 combined waste stream options. This work has shown that dramatic increases in waste loading are achievable by designing a glass ceramic waste form as an alternative to glass. Table S1 shows the upper limits for heat, waste loading (based on solubility), and the decay time needed before treatment can occur for glass and glass ceramic waste forms. The improvements are significant for both combined waste stream options in terms of waste loading and/or decay time required before treatment. For Option 1, glass ceramics show an increase in waste loading of 15 mass % and reduction in decay time of 24 years. Decay times of {approx}50 years or longer are close to the expected age of the fuel that will be reprocessed when the modified open or closed fuel cycle is expected to be put into action. Option 2 shows a 2x to 2.5x increase in waste loading with decay times of only 45 years. Note that for Option 2 glass, the required decay time before treatment is only 35 years because of the waste loading limits related to the solubility of MoO{sub 3} in glass. If glass was evaluated for similar waste loadings as those achieved in Option 2 glass ceramics, the decay time would be significantly longer than 45 years. These glass ceramics are not optimized, but already they show the potential to dramatically reduce the amount of waste generated while still utilizing the proven processing technology used for glass production.

Crum, Jarrod V.; Turo, Laura A.; Riley, Brian J.; Tang, Ming; Kossoy, Anna; Sickafus, Kurt E.

2010-09-23T23:59:59.000Z

15

Process for Converting Waste Glass Fiber into Value Added Products, Final Report  

Science Conference Proceedings (OSTI)

Nature of the Event: Technology demonstration. The project successfully met all of its technical objectives. Albacem has signed an exclusive licensing agreement with Vitro Minerals Inc., a specialty minerals company, to commercialize the Albacem technology (website: www.vitrominerals.com). Location: The basic research for the project was conducted in Peoria, Illinois, and Atlanta, Georgia, with third-party laboratory verification carried out in Ontario, Canada. Pilot-scale trials (multi-ton) were conducted at a facility in South Carolina. Full-scale manufacturing facilities have been designed and are scheduled for construction by Vitro Minerals during 2006 at a location in the Georgia, North Carolina, and South Carolina tri-state area. The Technology: This technology consists of a process to eliminate solid wastes generated at glass fiber manufacturing facilities by converting them to value-added materials (VCAS Pozzolans) suitable for use in cement and concrete applications. This technology will help divert up to 250,000 tpy of discarded glass fiber manufacturing wastes into beneficial use applications in the concrete construction industry. This technology can also be used for processing glass fiber waste materials reclaimed from monofills at manufacturing facilities. The addition of take-back materials and reclamation from landfills can help supply over 500,000 tpy of glass fiber waste for processing into value added products. In the Albacem process, waste glass fiber is ground to a fine powder that effectively functions as a reactive pozzolanic admixture for use in portland ce¬ment-based building materials and products, such as concrete, mortars, terrazzo, tile, and grouts. Because the waste fiber from the glass manufacturing industry is vitreous, clean, and low in iron and alkalis, the resulting pozzolan is white in color and highly consistent in chemical composition. This white pozzolan, termed VCAS Pozzolan (for Vitreous Calcium-Alumino-Silicate). is especially suited for white concrete applications where it imparts desirable benefits such as increased long-term strength and improved long-term durability of concrete products. Two U.S. patents entitled have been issued to Albacem covering the technology. Third-party validation testing has confirmed that the pozzolanic product is an excellent, high performance material that conforms to a ASTM standards and improves the strength and durability of concrete. Currently, there are no known significant competing technologies to process glass fiber manufacturing by-products and con¬vert them into value-added products. Most glass fiber-forming and fabrication wastes continue to be disposed in landfills at significant costs and with associated negative environmental impact. It is estimated that in a typical glass fiber manufactur¬ing facility, 10-20% by weight of the processed glass material is sent for dis¬posal to a landfill. Today, supplementary ce¬menting materials or mineral admixtures are key to achieving strong and durable concrete. Recovered materials such as coal fly ash, ground granulated blast furnace slag and silica fume are widely accepted and used in concrete all over the world, espe¬cially in the construction of “high performance” structures such as massive dams, bridges, subway tunnels, etc. These min¬eral admixtures are not suitable for white concrete and light-colored architectural concrete applications. Converting waste glass fibers into a high performance white pozzolan would allow white concrete producers to gain from the same durability benefits currently realized by gray concrete producers. Description of the Benefit: Albacem’s technology will enable the glass fiber industry to eliminate nearly 100% of its glass fiber produc¬tion waste streams by converting them into viable value-added products. With this technology, the glass industry can prevent the landfilling of about 250,000 tons of waste glass fiber annually. Glass manufacturers will realize improved production efficiency by reducing process costs through the elimination of solid was

Hemmings, Raymond T.

2005-12-31T23:59:59.000Z

16

HYDRAULIC FRACTURING  

NLE Websites -- All DOE Office Websites (Extended Search)

HYDRAULIC FRACTURING In addition to the recovery processes featured in this series of drawings, hydraulic fracturing is included as an example of technologies that contribute to...

17

Application of Argonne's Glass Furnace Model to longhorn glass corporation oxy-fuel furnace for the production of amber glass.  

SciTech Connect

The objective of this project is to apply the Argonne National Laboratory's Glass Furnace Model (GFM) to the Longhorn oxy-fuel furnace to improve energy efficiency and to investigate the transport of gases released from the batch/melt into the exhaust. The model will make preliminary estimates of the local concentrations of water, carbon dioxide, elemental oxygen, and other subspecies in the entire combustion space as well as the concentration of these species in the furnace exhaust gas. This information, along with the computed temperature distribution in the combustion space may give indications on possible locations of crown corrosion. An investigation into the optimization of the furnace will be performed by varying several key parameters such as the burner firing pattern, exhaust number/size, and the boost usage (amount and distribution). Results from these parametric studies will be analyzed to determine more efficient methods of operating the furnace that reduce crown corrosion. Finally, computed results from the GFM will be qualitatively correlated to measured values, thus augmenting the validation of the GFM.

Golchert, B.; Shell, J.; Jones, S.; Energy Systems; Shell Glass Consulting; Anheuser-Busch Packaging Group

2006-09-06T23:59:59.000Z

18

GLASS FABRICATION AND PRODUCT CONSISTENCY TESTING OF LANTHANIDE BOROSILICATE FRIT X COMPOSITION FOR PLUTONIUM DISPOSITION  

SciTech Connect

The Department of Energy Office of Environmental Management (DOE/EM) plans to conduct the Plutonium Disposition Project at the Savannah River Site (SRS) to disposition excess weapons-usable plutonium. A plutonium glass waste form is the preferred option for immobilization of the plutonium for subsequent disposition in a geologic repository. A reference glass composition (Lanthanide Borosilicate (LaBS) Frit B) was developed during the Plutonium Immobilization Program (PIP) to immobilize plutonium in the late 1990's. A limited amount of performance testing was performed on this baseline composition before efforts to further pursue Pu disposition via a glass waste form ceased. Recent FY05 studies have further investigated the LaBS Frit B formulation as well as development of a newer LaBS formulation denoted as LaBS Frit X. The objectives of this present task were to fabricate plutonium loaded LaBS Frit X glass and perform corrosion testing to provide near-term data that will increase confidence that LaBS glass product is suitable for disposal in the Yucca Mountain Repository. Specifically, testing was conducted in an effort to provide data to Yucca Mountain Project (YMP) personnel for use in performance assessment calculations. Plutonium containing LaBS glass with the Frit X composition with a 9.5 wt% PuO{sub 2} loading was prepared for testing. Glass was prepared to support Product Consistency Testing (PCT) at Savannah River National Laboratory (SRNL). The glass was thoroughly characterized using x-ray diffraction (XRD) and scanning electron microscopy coupled with energy dispersive spectroscopy (SEM/EDS) prior to performance testing. A series of PCTs were conducted at SRNL using quenched Pu Frit X glass with varying exposed surface areas. Effects of isothermal and can-in-canister heat treatments on the Pu Frit X glass were also investigated. Another series of PCTs were performed on these different heat-treated Pu Frit X glasses. Leachates from all these PCTs were analyzed to determine the dissolved concentrations of key elements. Acid stripping of leach vessels was performed to determine the concentration of the glass constituents that may have sorbed on the vessels during leach testing. Additionally, the leachate solutions were ultrafiltered to quantify colloid formation.

Marra, J

2006-11-15T23:59:59.000Z

19

Summary Report: Glass-Ceramic Waste Forms for Combined Fission Products  

SciTech Connect

Glass-ceramic waste form development began in FY 2010 examining two combined waste stream options: (1) alkaline earth (CS) + lanthanide (Ln), and (2) + transition metal (TM) fission-product waste streams generated by the uranium extraction (UREX+) separations process. Glass-ceramics were successfully developed for both options however; Option 2 was selected over Option 1, at the conclusion of 2010, because Option 2 immobilized all three waste streams with only a minimal decrease in waste loading. During the first year, a series of three glass (Option 2) were fabricated that varied waste loading-WL (42, 45, and 50 mass%) at fixed molar ratios of CaO/MoO{sub 3} and B{sub 2}O{sub 3}/alkali both at 1.75. These glass-ceramics were slow cooled and characterized in terms of phase assemblage and preliminary irradiation stability. This fiscal year, further characterization was performed on the FY 2010 Option 2 glass-ceramics in terms of: static leach testing, phase analysis by transmission electron microscopy (TEM), and irradiation stability (electron and ion). Also, a new series of glass-ceramics were developed for Option 2 that varied the additives: Al{sub 2}O{sub 3} (0-6 mass%), molar ratio of CaO/MoO{sub 3} and B{sub 2}O{sub 3}/alkali (1.75 to 2.25) and waste loading (50, 55, and 60 mass%). Lastly, phase pure powellite and oxyapatite were synthesized for irradiation studies. Results of this fiscal year studies showed compositional flexibility, chemical stability, and radiation stability in the current glass-ceramic system. First, the phase assemblages and microstructure of all of the FY 2010 and 2011 glass-ceramics are very similar once subjected to the slow cool heat treatment. The phases identified in these glass-ceramics were oxyapatite, powellite, cerianite, and ln-borosilicate. This shows that variations in waste loading or additives can be accommodated without drastically changing the phase assemblage of the waste form, thus making the processing and performance characteristics of the waste form more predictable/flexible. However, in the future, the glass phase still needs to be accurately characterized to determine the effects of waste loading and additives on the glass structure. Initial investigations show a borosilicate glass phase rich in silica. Second, the normalized concentrations of elements leached from the waste form during static leach testing were all below 0.6 g/L after 28d at 90 C, by the Product Consistency Test (PCT), method B. These normalized concentrations are on par with durable waste glasses such as the Low-Activity Reference Material (LRM) glass. The release rates for the crystalline phases (oxyapatite and powellite) appear to be lower (more durable) than the glass phase based on the relatively low release rates of Mo, Ca, and Ln found in the crystalline phases compared to Na and B that are mainly observed in the glass phase. However, further static leach testing on individual crystalline phases is needed to confirm this statement. Third, Ion irradiation and In situ TEM observations suggest that these crystalline phases (such as oxyapatite, ln-borosilicate, and powellite) in silicate based glass ceramic waste forms exhibit stability to 1000 years at anticipated doses (2 x 10{sup 10}-2 x 10{sup 11} Gy). This is adequate for the short lived isotopes in the waste, which lead to a maximum cumulative dose of {approx}7 x 10{sup 9} Gy, reached after {approx}100 yrs, beyond which the dose contributions are negligible. The cumulate dose calculations are based on a glass-ceramic at WL = 50 mass%, where the fuel has a burn-up of 51GWd/MTIHM, immobilized after 5 yr decay from reactor discharge.

Crum, Jarrod V.; Riley, Brian J.; Turo, Laura A.; Tang, Ming; Kossoy, Anna

2011-09-23T23:59:59.000Z

20

GLASS FABRICATION AND PRODUCT CONSISTENCY TESTING OF LANTHANIDE BOROSHILICATE FRIT X COMPOSITION FOR PLUTONIUM DISPOSITION  

SciTech Connect

The Department of Energy Office of Environmental Management (DOE/EM) plans to conduct the Plutonium Disposition Project at the Savannah River Site (SRS) to disposition excess weapons-usable plutonium. A plutonium glass waste form is the preferred option for immobilization of the plutonium for subsequent disposition in a geologic repository. A reference glass composition (Lanthanide Borosilicate (LaBS) Frit B) was developed during the Plutonium Immobilization Program (PIP) to immobilize plutonium in the late 1990's. A limited amount of performance testing was performed on this baseline composition before efforts to further pursue Pu disposition via a glass waste form ceased. Recent FY05 studies have further investigated the LaBS Frit B formulation as well as development of a newer LaBS formulation denoted as LaBS Frit X. The objectives of this present task were to fabricate plutonium loaded LaBS Frit X glass and perform corrosion testing to provide near-term data that will increase confidence that LaBS glass product is suitable for disposal in the Yucca Mountain Repository. Specifically, testing was conducted in an effort to provide data to Yucca Mountain Project (YMP) personnel for use in performance assessment calculations. Plutonium containing LaBS glass with the Frit X composition with a 9.5 wt% PuO{sub 2} loading was prepared for testing. Glass was prepared to support Product Consistency Testing (PCT) at Savannah River National Laboratory (SRNL). The glass was thoroughly characterized using x-ray diffraction (XRD) and scanning electron microscopy coupled with energy dispersive spectroscopy (SEM/EDS) prior to performance testing. A series of PCTs were conducted at SRNL using quenched Pu Frit X glass with varying exposed surface areas. Effects of isothermal and can-in-canister heat treatments on the Pu Frit X glass were also investigated. Another series of PCTs were performed on these different heat-treated Pu Frit X glasses. Leachates from all these PCTs were analyzed to determine the dissolved concentrations of key elements. Acid stripping of leach vessels was performed to determine the concentration of the glass constituents that may have sorbed on the vessels during leach testing. Additionally, the leachate solutions were ultrafiltered to quantify colloid formation. Characterization of the quenched Pu Frit X glass prior to testing revealed that some crystalline plutonium oxide was present in the glass. The crystalline particles had a disklike morphology and likely formed via coarsening of particles in areas compositionally enriched in plutonium. Similar results had also been observed in previous Pu Frit B studies. Isothermal 1250 C heat-treated Pu Frit X glasses showed two different crystalline phases (PuO{sub 2} and Nd{sub 2}Hf{sub 2}O{sub 7}), as well as a peak shift in the XRD spectra that is likely due to a solid solution phase PuO{sub 2}-HfO{sub 2} formation. Micrographs of this glass showed a clustering of some of the crystalline phases. Pu Frit X glass subjected to the can-in-canister heating profile also displayed the two PuO{sub 2} and Nd{sub 2}Hf{sub 2}O{sub 7} phases from XRD analysis. Additional micrographs indicate crystalline phases in this glass were of varying forms (a spherical PuO{sub 2} phase that appeared to range in size from submicron to {approx}5 micron, a dendritic-type phase that was comprised of mixed lanthanides and plutonium, and a minor phase that contained Pu and Hf), and clustering of the phases was also observed.

Marra, J

2006-11-21T23:59:59.000Z

Note: This page contains sample records for the topic "glass products hydraulic" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Standard test methods for determining chemical durability of nuclear, hazardous, and mixed waste glasses and multiphase glass ceramics: The product consistency test (PCT)  

E-Print Network (OSTI)

1.1 These product consistency test methods A and B evaluate the chemical durability of homogeneous glasses, phase separated glasses, devitrified glasses, glass ceramics, and/or multiphase glass ceramic waste forms hereafter collectively referred to as “glass waste forms” by measuring the concentrations of the chemical species released to a test solution. 1.1.1 Test Method A is a seven-day chemical durability test performed at 90 ± 2°C in a leachant of ASTM-Type I water. The test method is static and conducted in stainless steel vessels. Test Method A can specifically be used to evaluate whether the chemical durability and elemental release characteristics of nuclear, hazardous, and mixed glass waste forms have been consistently controlled during production. This test method is applicable to radioactive and simulated glass waste forms as defined above. 1.1.2 Test Method B is a durability test that allows testing at various test durations, test temperatures, mesh size, mass of sample, leachant volume, a...

American Society for Testing and Materials. Philadelphia

2002-01-01T23:59:59.000Z

22

Feasibility study Part I - Thermal hydraulic analysis of LEU target for {sup 99}Mo production in Tajoura reactor  

SciTech Connect

The Renewable Energies and Water Desalination Research Center (REWDRC), Libya, will implement the technology for {sup 99}Mo isotope production using LEU foil target, to obtain new revenue streams for the Tajoura nuclear research reactor and desiring to serve the Libyan hospitals by providing the medical radioisotopes. Design information is presented for LEU target with irradiation device and irradiation Beryllium (Be) unit in the Tajoura reactor core. Calculated results for the reactor core with LEU target at different level of power are presented for steady state and several reactivity induced accident situations. This paper will present the steady state thermal hydraulic design and transient analysis of Tajoura reactor was loaded with LEU foil target for {sup 99}Mo production. The results of these calculations show that the reactor with LEU target during the several cases of transient are in safe and no problems will occur. (author)

Bsebsu, F.M.; Abotweirat, F. [Reactor Department, Renewable Energies and Water Desalination Research Cente, P.O. Box 30878 Tajoura, Tripoli (Libyan Arab Jamahiriya)], E-mail: Bsebso@yahoo.com, E-mail: abutweirat@yahoo.com; Elwaer, S. [Radiochemistry Department, Renewable Energies and Water Desalination Research Cente, P.O. Box 30878 Tajoura, Tripoli (Libyan Arab Jamahiriya)], E-mail: samiwer@yahoo.com

2008-07-15T23:59:59.000Z

23

Hydraulic fracturing and wellbore completion of coalbed methane wells in the Powder River Basin, Wyoming: Implications for water and gas production  

SciTech Connect

Excessive water production (more than 7000 bbl/month per well) from many coalbed methane (CBM) wells in the Powder River Basin of Wyoming is also associated with significant delays in the time it takes for gas production to begin. Analysis of about 550 water-enhancement activities carried out during well completion demonstrates that such activities result in hydraulic fracturing of the coal. Water-enhancement activities, consists of pumping 60 bbl of water/min into the coal seam during approximately 15 min. This is done to clean the well-bore and to enhance CBM production. Hydraulic fracturing is of concern because vertical hydraulic fracture growth could extend into adjacent formations and potentially result in excess CBM water production and inefficient depressurization of coals. Analysis of the pressure-time records of the water-enhancement tests enabled us to determine the magnitude of the least principal stress (S{sub 3}) in the coal seams of 372 wells. These data reveal that because S{sub 3} switches between the minimum horizontal stress and the overburden at different locations, both vertical and horizontal hydraulic fracture growth is inferred to occur in the basin, depending on the exact location and coal layer. Relatively low water production is observed for wells with inferred horizontal fractures, whereas all of the wells associated with excessive water production are characterized by inferred vertical hydraulic fractures. The reason wells with exceptionally high water production show delays in gas production appears to be inefficient depressurization of the coal caused by water production from the formations outside the coal. To minimize CBM water production, we recommend that in areas of known vertical fracture propagation, the injection rate during the water-enhancement tests should be reduced to prevent the propagation of induced fractures into adjacent water-bearing formations.

Colmenares, L.B.; Zoback, M.D. [Stanford University, Stanford, CA (United States). Dept. of Geophysics

2007-01-15T23:59:59.000Z

24

HYDRAULIC SERVO  

DOE Patents (OSTI)

A hydraulic servo is designed in which a small pressure difference produced at two orifices by an electrically operated flapper arm in a constantly flowing hydraulic loop is hydraulically amplified by two constant flow pumps, two additional orifices, and three unconnected ball pistons. Two of the pistons are of one size and operate against the additional orifices, and the third piston is of a different size and operates between and against the first two pistons. (AEC)

Wiegand, D.E.

1962-05-01T23:59:59.000Z

25

Traditional Glasses  

Science Conference Proceedings (OSTI)

Table 1   Glass product types and applications...plates, cups, bowls, serving dishes Fiberglass Wool: insulation, filters Textile: plastic or rubber tire reinforcements, fabrics,

26

Suspensions in hydraulic fracturing  

Science Conference Proceedings (OSTI)

Suspensions or slurries are widely used in well stimulation and hydraulic fracturing processes to enhance the production of oil and gas from the underground hydrocarbon-bearing formation. The success of these processes depends significantly upon having a thorough understanding of the behavior of suspensions used. Therefore, the characterization of suspensions under realistic conditions, for their rheological and hydraulic properties, is very important. This chapter deals with the state-of-the-art hydraulic fracturing suspension technology. Specifically it deals with various types of suspensions used in well stimulation and fracturing processes, their rheological characterization and hydraulic properties, behavior of suspensions in horizontal wells, review of proppant settling velocity and proppant transport in the fracture, and presently available measurement techniques for suspensions and their merits. Future industry needs for better understanding of the complex behavior of suspensions are also addressed. 74 refs., 21 figs., 1 tab.

Shah, S.N. [Univ. of Oklahoma, Norman, OK (United States)

1996-12-31T23:59:59.000Z

27

HYDRAULIC FLUIDS  

E-Print Network (OSTI)

This fact sheet answers the most frequently asked health questions (FAQs) about hydraulic fluids. For more information, call the ATSDR Information Center at 1-888-422-8737. This fact sheet is one in a series of summaries about hazardous substances and their health effects. This information is important because this substance may harm you. The effects of exposure to any hazardous substance depend on the dose, the duration, how you are exposed, personal traits and habits, and whether other chemicals are present. HIGHLIGHTS: Exposure to hydraulic fluids occurs mainly in the workplace. Drinking certain types of hydraulic fluids can cause death in humans, and swallowing or inhaling certain types of hydraulic fluids has caused nerve damage in animals. Contact with some types of hydraulic fluids can irritate your skin or eyes. These substances have been found in at least 10 of the 1,428 National Priorities List sites identified by the Environmental Protection Agency (EPA). What are hydraulic fluids? (Pronounced ?????ô????????????) Hydraulic fluids are a large group of liquids made of many kinds of chemicals. They are used in automobile automatic

unknown authors

1997-01-01T23:59:59.000Z

28

ANOMALOUS ELECTRON PRODUCTION IN THE LEAD-GLASS WALL EXPERIMENT AT SPEAR  

E-Print Network (OSTI)

x 19 array of lea,J-glass "back-block counters" (BB), 10.Sdeposited in the lead-glass back blocks (ESS) is (Thisactive converter (baelblock) lead-glass counter was viewed

Madaras, R.J.

2010-01-01T23:59:59.000Z

29

Hydraulic Fracturing (Vermont)  

Energy.gov (U.S. Department of Energy (DOE))

Vermont prohibits hydraulic fracturing or the collection, storage, or treatment of wastewater from hydraulic fracturing

30

DOE Glass Publications Portal  

Office of Scientific and Technical Information (OSTI)

coated glass products. The Glass IOF is sponsored by the Department of Energy (DOE) Energy Efficiency & Renewable Energy (EERE) Industrial Technologies Program (ITP) which...

31

Hydraulic fractures traced by monitoring microseismic events  

NLE Websites -- All DOE Office Websites (Extended Search)

Summary: The trend toward production of hydrocarbons from unconventional reservoirs (tight gas, shale oilgas) has caused a large increase in the use of hydraulic fracture...

32

Microseismic Tracer Particles for Hydraulic Fracturing  

NLE Websites -- All DOE Office Websites (Extended Search)

The trend toward production of hydrocarbons from unconventional reservoirs (tight gas, shale oilgas) has caused a large increase in the use of hydraulic fracture stimulation of...

33

Corporation Commission Hydraulic FracturingHydraulic Fracturing  

E-Print Network (OSTI)

Corporation Commission Hydraulic FracturingHydraulic Fracturing Joint Committee on Energy Commission What is Hydraulic Fracturing d H D It W k?and How Does It Work? · Stimulates a well to increase by Stanolind Oil Company. 2 #12;Kansas Corporation Commission Are Hydraulic Fracture Jobs Performed in Kansas

Peterson, Blake R.

34

DEVELOPMENT OF GLASS COMPOSITIONS TO IMMOBILIZE ALKALI, ALKALINE EARTH, LANTHANIDE AND TRANSITION METAL FISSION PRODUCTS FROM NUCLEAR FUEL REPROCESSING  

Science Conference Proceedings (OSTI)

The Advanced Fuel Cycle Initiative (AFCI) waste management strategy revolves around specific treatment of individual or groups of separated waste streams. A goal for the separations processes is to efficiently manage the waste to be dispositioned as high level radioactive waste. The Advanced Fuel Cycle Initiative (AFCI) baseline technology for immobilization of the lanthanide (Ln) and transition metal fission product (TM) wastes is vitrification into a borosilicate glass. A current interest is to evaluate the feasibility of vitrifying combined waste streams to most cost effectively immobilize the wastes resulting from aqueous fuel reprocessing. Studies showed that high waste loadings are achievable for the Ln only (Option 1) stream. Waste loadings in excess of 60 wt % (on a calcined oxide basis) were demonstrated via a lanthanide borosilicate (LaBS) glass. The resulting glasses had excellent relative durability as determined by the Product Consistency Test (PCT). For a combined Ln and TM waste stream glass (Option 2), noble metal solubility was found to limit waste loading. However, the measured PCT normalized elemental releases for this glass were at least an order of magnitude below that of Environmental Assessment (EA) glass. Current efforts to evaluate the feasibility of vitrifying combined Ln, TM, alkali (Cs is the primary radionuclide of concern) and alkaline earth (Sr is the primary radionuclide of concern) wastes (Option 3) have shown that these approaches are feasible. However, waste loading limitations with respect to heat load (Cs/Sr loading), molybdenum solubility and/or noble metal solubility will likely be realized and must be considered in determining the cost effectiveness of these approaches.

Marra, J.; Billings, A.

2009-06-24T23:59:59.000Z

35

MST: Organizations: Ceramic and Glass  

NLE Websites -- All DOE Office Websites (Extended Search)

formation and machining, to complete component fabrication and testing. Our Mission Our ceramic, glass, and glass-ceramic products meet customer needs in defense, energy,...

36

Hydraulic fracturing-1  

Science Conference Proceedings (OSTI)

This book contains papers on hydraulic fracturing. Topics covered include: An overview of recent advances in hydraulic fracturing technology; Containment of massive hydraulic fracture; and Fracturing with a high-strength proppant.

Not Available

1990-01-01T23:59:59.000Z

37

Microseismic Tracer Particles for Hydraulic Fracturing  

NLE Websites -- All DOE Office Websites (Extended Search)

Microseismic Tracer Particles for Hydraulic Fracturing Microseismic Tracer Particles for Hydraulic Fracturing Microseismic Tracer Particles for Hydraulic Fracturing Scientists at Los Alamos National Laboratory have developed a method by which microseismic events can be discriminated/detected that correspond to only the portion of the hydraulic fracture that contains the proppant material and can be expected to be conductive to the flow of oil and gas. July 3, 2013 Microseismic Tracer Particles for Hydraulic Fracturing Figure 1: A graph of ionic conductivity as a function of temperature for the anti-perovskite Li3OCl. Available for thumbnail of Feynman Center (505) 665-9090 Email Microseismic Tracer Particles for Hydraulic Fracturing Applications: Oil and gas production Geophysical exploration Benefits: Tracks the disposition of material in a hydraulic fracturing

38

Investigation of the Effect of Non-Darcy Flow and Multi-Phase Flow on the Productivity of Hydraulically Fractured Gas Wells  

E-Print Network (OSTI)

Hydraulic fracturing has recently been the completion of choice for most tight gas bearing formations. It has proven successful to produce these formations in a commercial manner. However, some considerations have to be taken into account to design an optimum stimulation treatment that leads to the maximum possible productivity. These considerations include, but not limited to, non-Darcy flow and multiphase flow effects inside the fracture. These effects reduce the fracture conductivity significantly. Failing to account for that results in overestimating the deliverability of the well and, consequently, to designing a fracture treatment that is not optimum. In this work a thorough investigation of non-Darcy flow and multi-phase flow effects on the productivity of hydraulically fractured wells is conducted and an optimum fracture design is proposed for a tight gas formation in south Texas using the Unified Fracture Design (UFD) Technique to compensate for the mentioned effects by calculating the effective fracture permeability in an iterative way. Incorporating non-Darcy effects results in an optimum fracture that is shorter and wider than the fracture when only Darcy calculations are considered. That leads to a loss of production of 5, 18 percent due to dry and multiphase non-Darcy flow effects respectively. A comparison between the UFD and 3D simulators is also done to point out the differences in terms of methodology and results. Since UFD incorporated the maximum dimensionless productivity index in the fracture dimensions design, unlike 3D simulators, it can be concluded that using UFD to design the fracture treatment and then use the most important fracture parameters outputs (half length and CfDopt) as inputs in the simulators is a recommended approach.

Alarbi, Nasraldin Abdulslam A.

2011-08-01T23:59:59.000Z

39

Corrosion behavior of environmental assessment glass in product consistency tests of extended duration.  

SciTech Connect

We have conducted static dissolution tests to study the corrosion behavior of the Environmental Assessment (EA) glass, which is the benchmark glass for high-level waste glasses being produced at US Department of Energy facilities. These tests were conducted to evaluate the behavior of the EA glass under the same long-term and accelerated test conditions that are being used to evaluate the corrosion of waste glasses. Tests were conducted at 90 C in a tuff groundwater solution at glass surface area/solution volume (WV) ratios of about 2000 and 20,000 m{sup {minus}1}. The glass dissolved at three distinct dissolution rates in tests conducted at 2000 m{sup {minus}1}. Based on the release of boron, dissolution within the first seven days occurred at a rate of about 0.65 g/(m{sup 2} {center_dot} d). The rate between seven and 70 days decreased to 0.009 g/(m{sup 2} {center_dot} d). An increase in the dissolution rate occurred at longer times after the precipitation of zeolite phases analcime, gmelinite, and an aluminum silicate base. The dissolution rate after phase formation was about 0.18 g/(m{sup 2} {center_dot} d). The formation of the same zeolite alteration phases occurred after about 20 days in tests at 20,000 m{sup {minus}}. The average dissolution rate over the first 20 days was 0.5 g/(m{sup 2} {center_dot} d) and the rate after phase formation was about 0.20 g/(m{sup 2} {center_dot} d). An intermediate stage with a lower rate was not observed in tests at 20,000 m{sup {minus}1}. The corrosion behavior of EA glass is similar to that observed for other high-level waste glasses reacted under the same test conditions. The dissolution rate of EA glass is higher than that of other high-level waste glasses both in 7-day tests and after alteration phases form.

Bates, J.K.; Buck, E.C.; Ebert, W.L.; Luo, J.S.; Tam, S.W.

1998-11-18T23:59:59.000Z

40

Monitoring hydraulic fracture growth: Laboratory experiments  

Science Conference Proceedings (OSTI)

The authors carry out small-scale hydraulic fracture experiments to investigate the physics of hydraulic fracturing. The laboratory experiments are combined with time-lapse ultrasonic measurements with active sources using both compressional and shear-wave transducers. For the time-lapse measurements they focus on ultrasonic measurement changes during fracture growth. As a consequence they can detect the hydraulic fracture and characterize its shape and geometry during growth. Hence, this paper deals with fracture characterization using time-lapse acoustic data. Hydraulic fracturing is used in the oil and gas industry to stimulate reservoir production.

Groenenboom, J.; Dam, D.B. van

2000-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "glass products hydraulic" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

The Production of Advanced Glass Ceramic HLW Forms using Cold Crucible Induction Melter  

SciTech Connect

Cold Crucible Induction Melters (CCIMs) will favorably change how High-Level radioactive Waste (from nuclear fuel recovery) is treated in the 21st century. Unlike the existing Joule-Heated Melters (JHMs) currently in operation for the glass-based immobilization of High-Level Waste (HLW), CCIMs offer unique material features that will increase melt temperatures, increase throughput, increase mixing, increase loading in the waste form, lower melter foot prints, eliminate melter corrosion and lower costs. These features not only enhance the technology for producing HLW forms, but also provide advantageous attributes to the waste form by allowing more durable alternatives to glass. This paper discusses advantageous features of the CCIM, with emphasis on features that overcome the historical issues with the JHMs presently utilized, as well as the benefits of glass ceramic waste forms over borosilicate glass waste forms. These advantages are then validated based on recent INL testing to demonstrate a first-of-a-kind formulation of a non-radioactive ceramic-based waste form utilizing a CCIM.

Veronica J Rutledge; Vince Maio

2013-10-01T23:59:59.000Z

42

Numerical simulation of high-level radioactive nuclear waste glass production  

SciTech Connect

Vitrification of radioactive waste has become an international approach for converting highly radioactive wastes into a durable solid prior to placing them in a permanent disposal repository. The technology for the process is not new. The conversion melter is a direct descendant of all electric melters used for manufacturing of some commercial glass types. Therefore, the vitrification process of radioactive wastes inherits typical problems of all electric furnaces and creates some other specific problems such as noble metal sedimentation. The noble metals and nickel sulfides in the melter are heavier than molten glass and have a low solubility. In a reducing condition, these metals amalgamate and tend to settle on the melter floor. The metal deposit resulting from this settling has a potential to short circuit the melter. The objective of this paper is to identify the typical problems that have been encountered in the waste melter operations and to address how these problems can be tackled using state-of-the-art numerical simulation techniques. It is believed that the large amount of pilot-scale melter experience throughout the world, combined with the knowledge gained from state-of-the-art computer modeling techniques would give assurance that the existing and future radioactive wastes can be effectively converted into a durable glass material and safely placed in a permanent repository.

Choi, I.G. (Westinghouse Savannah River Co., Aiken, SC (United States)); Ungan, A. (Purdue Univ., Indianapolis, IN (United States). Dept. of Mechanical Engineering)

1991-01-01T23:59:59.000Z

43

Numerical simulation of high-level radioactive nuclear waste glass production  

SciTech Connect

Vitrification of radioactive waste has become an international approach for converting highly radioactive wastes into a durable solid prior to placing them in a permanent disposal repository. The technology for the process is not new. The conversion melter is a direct descendant of all electric melters used for manufacturing of some commercial glass types. Therefore, the vitrification process of radioactive wastes inherits typical problems of all electric furnaces and creates some other specific problems such as noble metal sedimentation. The noble metals and nickel sulfides in the melter are heavier than molten glass and have a low solubility. In a reducing condition, these metals amalgamate and tend to settle on the melter floor. The metal deposit resulting from this settling has a potential to short circuit the melter. The objective of this paper is to identify the typical problems that have been encountered in the waste melter operations and to address how these problems can be tackled using state-of-the-art numerical simulation techniques. It is believed that the large amount of pilot-scale melter experience throughout the world, combined with the knowledge gained from state-of-the-art computer modeling techniques would give assurance that the existing and future radioactive wastes can be effectively converted into a durable glass material and safely placed in a permanent repository.

Choi, I.G. [Westinghouse Savannah River Co., Aiken, SC (United States); Ungan, A. [Purdue Univ., Indianapolis, IN (United States). Dept. of Mechanical Engineering

1991-12-31T23:59:59.000Z

44

Thermal-Hydraulic Analyses of Heat Transfer Fluid Requirements and Characteristics for Coupling A Hydrogen Production Plant to a High-Temperature Nuclear Reactor  

DOE Green Energy (OSTI)

The Department of Energy is investigating the use of high-temperature nuclear reactors to produce hydrogen using either thermochemical cycles or high-temperature electrolysis. Although the hydrogen production processes are in an early stage of development, coupling either of these processes to the hightemperature reactor requires both efficient heat transfer and adequate separation of the facilities to assure that off-normal events in the production facility do not impact the nuclear power plant. An intermediate heat transport loop will be required to separate the operations and safety functions of the nuclear and hydrogen plants. A next generation high-temperature reactor could be envisioned as a single-purpose facility that produces hydrogen or a dual-purpose facility that produces hydrogen and electricity. Early plants, such as the proposed Next Generation Nuclear Plant, may be dual-purpose facilities that demonstrate both hydrogen and efficient electrical generation. Later plants could be single-purpose facilities. At this stage of development, both single- and dual-purpose facilities need to be understood. Seven possible configurations for a system that transfers heat between the nuclear reactor and the hydrogen and/or electrical generation plants were identified. These configurations included both direct and indirect cycles for the production of electricity. Both helium and liquid salts were considered as the working fluid in the intermediate heat transport loop. Methods were developed to perform thermalhydraulic and cycle-efficiency evaluations of the different configurations and coolants. The thermalhydraulic evaluations estimated the sizes of various components in the intermediate heat transport loop for the different configurations. The relative sizes of components provide a relative indication of the capital cost associated with the various configurations. Estimates of the overall cycle efficiency of the various configurations were also determined. The evaluations determined which configurations and coolants are the most promising from thermal-hydraulic and efficiency points of view. These evaluations also determined which configurations and options do not appear to be feasible at the current time.

C. B. Davis; C. H. Oh; R. B. Barner; D. F. Wilson

2005-06-01T23:59:59.000Z

45

Compositional Study of Neutron Detecting Glasses  

Science Conference Proceedings (OSTI)

The current study involves the production and characterization of glass with high concentrations of Gd2O3 in various oxide glass formers, and containing one of ...

46

Versa Glass | Open Energy Information  

Open Energy Info (EERE)

Zip 43220 Product Versa is manufacturing a new technology privacy glass in Ohio that is LEED and has cleantech properties References Versa Glass1 LinkedIn Connections CrunchBase...

47

Downhole hydraulic seismic generator  

DOE Patents (OSTI)

A downhole hydraulic seismic generator system for transmitting energy wave vibrations into earth strata surrounding a borehole. The system contains an elongated, unitary housing operably connected to a well head aboveground by support and electrical cabling, and contains clamping apparatus for selectively clamping the housing to the walls of the borehole. The system further comprises a hydraulic oscillator containing a double-actuating piston whose movement is controlled by an electro-servovalve regulating a high pressure hydraulic fluid flow into and out of upper and lower chambers surrounding the piston. The spent hydraulic fluid from the hydraulic oscillator is stored and pumped back into the system to provide high pressure fluid for conducting another run at the same, or a different location within the borehole.

Gregory, Danny L. (Corrales, NM); Hardee, Harry C. (Albuquerque, NM); Smallwood, David O. (Albuquerque, NM)

1992-01-01T23:59:59.000Z

48

Downhole hydraulic seismic generator  

DOE Patents (OSTI)

A downhole hydraulic seismic generator system for transmitting energy wave vibrations into earth strata surrounding a borehole. The system contains an elongated, unitary housing operably connected to a well head aboveground by support and electrical cabling, and contains clamping apparatus for selectively clamping the housing to the walls of the borehole. The system further comprises a hydraulic oscillator containing a double-actuating piston whose movement is controlled by an electro-servovalve regulating a high pressure hydraulic fluid flow into and out of upper and lower chambers surrounding the piston. The spent hydraulic fluid from the hydraulic oscillator is stored and pumped back into the system to provide high pressure fluid for conducting another run at the same, or a different location within the borehole. 4 figs.

Gregory, D.L.; Hardee, H.C.; Smallwood, D.O.

1990-01-01T23:59:59.000Z

49

Downhole hydraulic seismic generator  

DOE Patents (OSTI)

A downhole hydraulic seismic generator system for transmitting energy wave vibrations into earth strata surrounding a borehole. The system contains an elongated, unitary housing operably connected to a well head aboveground by support and electrical cabling, and contains clamping apparatus for selectively clamping the housing to the walls of the borehole. The system further comprises a hydraulic oscillator containing a double-actuating piston whose movement is controlled by an electro-servovalve regulating a high pressure hydraulic fluid flow into and out of upper and lower chambers surrounding the piston. The spent hydraulic fluid from the hydraulic oscillator is stored and pumped back into the system to provide high pressure fluid for conducting another run at the same, or a different location within the borehole. 4 figs.

Gregory, D.L.; Hardee, H.C.; Smallwood, D.O.

1990-12-31T23:59:59.000Z

50

Combined Experimental and Computational Approach to Predict the Glass-Water Reaction  

Science Conference Proceedings (OSTI)

The use of mineral and glass dissolution rates measured in laboratory experiments to predict the weathering of primary minerals and volcanic and nuclear waste glasses in field studies requires the construction of rate models that accurately describe the weathering process over geologic timescales. Additionally, the need to model the long-term behavior of nuclear waste glass for the purpose of estimating radionuclide release rates requires that rate models be validated with long-term experiments. Several long-term test methods have been developed to accelerate the glass-water reaction [drip test, vapor hydration test, product consistency test B, and pressurized unsaturated flow (PUF)], thereby reducing the duration required to evaluate long-term performance. Currently, the PUF test is the only method that mimics the unsaturated hydraulic properties expected in a subsurface disposal facility and simultaneously monitors the glass-water reaction. PUF tests are being conducted to accelerate the weathering of glass and validate the model parameters being used to predict long-term glass behavior. A one-dimensional reactive chemical transport simulation of glass dissolution and secondary phase formation during a 1.5-year-long PUF experiment was conducted with the Subsurface Transport Over Reactive Multiphases (STORM) code. Results show that parameterization of the computer model by combining direct bench scale laboratory measurements and thermodynamic data provides an integrated approach to predicting glass behavior over the length of the experiment. Over the 1.5-year-long test duration, the rate decreased from 0.2 to 0.01 g/(m2 day) based on B release for low-activity waste glass LAWA44. The observed decrease is approximately two orders of magnitude higher than the decrease observed under static conditions with the SON68 glass (estimated to be a decrease by four orders of magnitude) and suggests that the gel-layer properties are less protective under these dynamic conditions.

Pierce, Eric M.; Bacon, Diana H.

2011-10-01T23:59:59.000Z

51

Method for making glass  

DOE Patents (OSTI)

A method is discussed for making better quality molten borosilicate glass in a glass melter, the glass having the desired viscosity and, preferably, also the desired resistivity so that the glass melt can be established effectively and the product of the glass melter will have the desired level of quality. The method includes the adjustment of the composition of the glass constituents that are fed into the melter in accordance with certain correlations that reliably predict the viscosity and resistivity from the melter temperature and the melt composition, then heating the ingredients to the melter's operating temperature until they melt and homogenize. The equations include the calculation of a non-bridging oxygen'' term from the numbers of moles of the various ingredients, and then the determination of the viscosity and resistivity from the operating temperature of the melter and the non-bridging oxygen term.

Jantzen, C.M.

1991-01-01T23:59:59.000Z

52

SUPERGLASS. Engineering field tests - Phase 3. Production, market planning, and product evaluation for a high-thermal-performance insulating glass design utilizing HEAT MIRROR transparent insulation. Final report  

DOE Green Energy (OSTI)

HEAT MIRROR transparent window insulation consists of a clear polyester film two mils (.002'') thick with a thin, clear low-emissivity (.15) coating deposited on one side by state-of-the-art vacuum deposition processes. This neutral-colored invisible coating reflects long-wave infrared energy (heat). When mounted by being stretched with a 1/2'' air-gap on each side of the film, the resulting unit reduces heat loss by 60% compared to dual insulating glass. Southwall Corporation produces HEAT MIRROR transparent insulation and markets it to manufacturers of sealed insulating glass (I.G.) units and window and building manufacturers who make their own I.G. These companies build and sell the SUPERGLASS sealed glazing units. Units made and installed in buildings by six customers were visited. These units were located in many geographic regions, including the Pacific Northwest, Rocky Mountains, New England, Southeast, and West Coast. As much as could be obtained of their history was recorded, as was their current condition and performance. These units had been in place from two weeks to over a year. All of the units were performing thermally very well, as measured by taking temperature profiles through them and through adjacent conventional I.G. units. Some units had minor visual defects (attributed to I.G. assembly techniques) which are discussed in detail. Overall occupant acceptance was enthusiastically positive. In addition to saving energy, without compromise of optical quality or appearance, the product makes rooms with large glazing areas comfortable to be in in cold weather. All defects observed were present when built; there appears to be no in-field degradation of quality at this time.

Tilford, C L

1982-11-01T23:59:59.000Z

53

Conceptual waste package interim product specifications and data requirements for disposal of borosilicate glass defense high-level waste forms in salt geologic repositories  

Science Conference Proceedings (OSTI)

The conceptual waste package interim product specifications and data requirements presented are applicable specifically to the normal borosilicate glass product of the Defense Waste Processing Facility (DWPF). They provide preliminary numerical values for the defense high-level waste form parameters and properties identified in the waste form performance specification for geologic isolation in salt repositories. Subject areas treated include containment and isolation, operational period safety, criticality control, waste form/production canister identification, and waste package performance testing requirements. This document was generated for use in the development of conceptual waste package designs in salt. It will be revised as additional data, analyses, and regulatory requirements become available.

Not Available

1983-06-01T23:59:59.000Z

54

Hydraulic Institute Member Benefits  

Energy.gov (U.S. Department of Energy (DOE))

As the developer of the universally acclaimed ANSI/HI Pump Standards, a key reference for pump knowledge and end-user specifications, the Hydraulic  nstitute (HI) provides its members with timely...

55

Combined Experimental and Computational Approach to Predict the Glass-Water Reaction  

Science Conference Proceedings (OSTI)

The use of mineral and glass dissolution rates measured in laboratory experiments to predict the weathering of primary minerals and volcanic and nuclear waste glasses in field studies requires the construction of rate models that accurately describe the weathering process over geologic time-scales. Additionally, the need to model the long-term behavior of nuclear waste glass for the purpose of estimating radionuclide release rates requires that rate models are validated with long-term experiments. Several long-term test methods have been developed to accelerate the glass-water reaction [drip test, vapor hydration test, product consistency test-B, and pressurized unsaturated flow (PUF)], thereby reducing the duration required to evaluate long-term performance. Currently, the PUF test is the only method that mimics the unsaturated hydraulic properties expected in a subsurface disposal facility and simultaneously monitors the glass-water reaction. PUF tests are being conducted to accelerate the weathering of glass and validate the model parameters being used to predict long-term glass behavior. A one-dimensional reactive chemical transport simulation of glass dissolution and secondary phase formation during a 1.5-year long PUF experiment was conducted with the subsurface transport over reactive multi-phases code. Results show that parameterization of the computer model by combining direct bench-scale laboratory measurements and thermodynamic data provides an integrated approach to predicting glass behavior over the length of the experiment. Over the 1.5-year long test duration, the rate decreased from 0.2 to 0.01 g/(m2 d) base on B release. The observed decrease is approximately two orders of magnitude higher than the decrease observed under static conditions with the SON68 glass (estimated to be a decrease by 4 orders of magnitude) and suggest the gel-layer properties are less protective under these dynamic conditions.

Pierce, Eric M [ORNL; Bacon, Diana [Pacific Northwest National Laboratory (PNNL)

2011-01-01T23:59:59.000Z

56

Electronics and hydraulics control transmission  

SciTech Connect

Caterpillar engineers have combined electronics and hydraulics for improved transmission control and productivity. The control system had extensive field test experience during development. The system accumulated more than 100,000 hours on 17 vehicles, with individual vehicle times in the 2000-10,000-hour range. Job sites were chosen to test the system over a wide range of applications and locales. The EPTC components are CAT-designed and made by outside suppliers. The components must comply with CAT designs and specifications. All components are 100% functionally tested. The control box is computer-tested functionally at the supplier and at CAT before vehicle installation.

Morris, H.C.; Sorrells, G.K.

1986-04-01T23:59:59.000Z

57

Prediction of effects of hydraulic fracturing using reservoir and well flow simulation  

Science Conference Proceedings (OSTI)

This paper presents a method to predict and evaluate effects of hydraulic fracturing jobs by using reservoir and well flow numerical simulation. The concept of the method i5 that steam production rate at the operating well head pressure is predicted with different fracture conditions which would be attained by the hydraulic fracturing jobs. Then, the effects of the hydraulic fracturing is evaluated by comparing the predicted steam production rate and that before the hydraulic fracturing. This course of analysis will suggest how large fracture should be created by the fracturing job to attain large enough increase in steam production at the operating condition and the best scheme of the hydraulic fracturing job.

Mineyuki Hanano; Tayuki Kondo

1992-01-01T23:59:59.000Z

58

Self-potential observations during hydraulic fracturing  

E-Print Network (OSTI)

potential measurements during hydraulic fracturing of BunterMonitoring during hydraulic fracturing using the TG-2 well,fracture processes in hydraulic fracturing, Quarterly Report

Moore, Jeffrey R.; Glaser, Steven D.

2008-01-01T23:59:59.000Z

59

Self-potential observations during hydraulic fracturing  

E-Print Network (OSTI)

potential measurements during hydraulic fracturing of BunterSP response during hydraulic fracturing. Citation: Moore, J.observations during hydraulic fracturing, J. Geophys. Res. ,

Moore, J R; Glaser, Steven D

2007-01-01T23:59:59.000Z

60

Self-potential observations during hydraulic fracturing  

E-Print Network (OSTI)

and T. W. Keech (1977), Hydraulic fracture mapping usingpotential measurements during hydraulic fracturing of BunterSP Monitoring during hydraulic fracturing using the TG-2

Moore, Jeffrey R.; Glaser, Steven D.

2008-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "glass products hydraulic" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Self-potential observations during hydraulic fracturing  

E-Print Network (OSTI)

and T. W. Keech (1977), Hydraulic fracture mapping usingpotential measurements during hydraulic fracturing of Bunterbetween electrical and hydraulic flow patterns from rock

Moore, J R; Glaser, Steven D

2007-01-01T23:59:59.000Z

62

HYDRAULIC CEMENT PREPARATION FROM LURGI SPENT SHALE  

E-Print Network (OSTI)

P. , "Investigations on hydraulic cement from spent oilCO, April 16-18, 1980 HYDRAULIC CEMENT PREPARATION FROMUniversity of California. HYDRAULIC CEMENT PREPARATION FROM

Mehta, P.K.

2013-01-01T23:59:59.000Z

63

Hydraulic Fracturing Poster | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Hydraulic Fracturing Poster Hydraulic Fracturing Poster Educational poster graphically displaying the key components of hydraulic fracturing. Teachers: If you would like hard...

64

Cost model for a small glass manufacturing enterprise.  

E-Print Network (OSTI)

??The cost model developed is for small, glass-manufacturing enterprises to help themdetermine their product costs. It estimates the direct cost in glass manufacturing such as… (more)

Gopisetti, Swetha.

2008-01-01T23:59:59.000Z

65

HYDRAULIC SERVO CONTROL MECHANISM  

DOE Patents (OSTI)

A hydraulic servo control mechanism of compact construction and low fluid requirements is described. The mechanism consists of a main hydraulic piston, comprising the drive output, which is connected mechanically for feedback purposes to a servo control piston. A control sleeve having control slots for the system encloses the servo piston, which acts to cover or uncover the slots as a means of controlling the operation of the system. This operation permits only a small amount of fluid to regulate the operation of the mechanism, which, as a result, is compact and relatively light. This mechanism is particuiarly adaptable to the drive and control of control rods in nuclear reactors. (auth)

Hussey, R.B.; Gottsche, M.J. Jr.

1963-09-17T23:59:59.000Z

66

The use of high glass temperature polymers in the production of transparent, structured surfaces using nanoimprint lithography  

Science Conference Proceedings (OSTI)

Polymers with high glass transition temperatures, fluorinated ethylene propylene copolymer (FEP) and poly(ethylene naphthalate) (PEN), have been used in imprint lithography as a protective support layer and as a secondary mould, to imprint superficial ... Keywords: Embossing, Nanoimprint lithography, Polymer Engineering

Christopher A. Mills; Javier G. Fernandez; Abdelhamid Errachid; Josep Samitier

2008-09-01T23:59:59.000Z

67

Hydraulic Hybrid Systems | Open Energy Information  

Open Energy Info (EERE)

Hydraulic Hybrid Systems Hydraulic Hybrid Systems Jump to: navigation, search Logo: Hydraulic Hybrid Systems Name Hydraulic Hybrid Systems Address 320 N. Railroad Ave Place Loveland, Colorado Zip 80537 Sector Vehicles Product hydraulic hybrid system for light-duty vehicles Year founded 2008 Number of employees 11-50 Phone number 303-519-4144 Website http://www.hydraulichybridsyst Coordinates 40.394833°, -105.0758931° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.394833,"lon":-105.0758931,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

68

Hydraulic mining method  

DOE Patents (OSTI)

A hydraulic mining method includes drilling a vertical borehole into a pitched mineral vein and a slant borehole along the footwall of the vein to intersect the vertical borehole. Material is removed from the mineral vein by a fluid jet stream and the resulting slurry flows down the footwall borehole into the vertical borehole from where it is pumped upwardly therethrough to the surface.

Huffman, L.H.; Knoke, G.S.

1984-06-15T23:59:59.000Z

69

Cradle modification for hydraulic ram  

DOE Green Energy (OSTI)

The analysis of the cradle hydraulic system considers stress, weld strength, and hydraulic forces required to lift and support the cradle/pump assembly. The stress and weld strength of the cradle modifications is evaluated to ensure that they meet the requirements of the American Institute for Steel Construction (AISC 1989). The hydraulic forces are evaluated to ensure that the hydraulic system is capable of rotating the cradle and pump assembly to the vertical position (between 70{degrees} and 90{degrees}).

Koons, B.M.

1995-03-02T23:59:59.000Z

70

Dynamic model for hydraulic dissipators  

Science Conference Proceedings (OSTI)

The authors propose a mathematical model of a hydraulic link with energy dissipation, the device working reversibly to the alternative traction and compression movement. The dynamic behavior of the energy hydraulic dissipater depends on the instantaneous ... Keywords: dissipater's control, dynamic behavior, hydraulic dissipater, mathematical model

Adrian S. Axinti; Gavril Axinti

2009-03-01T23:59:59.000Z

71

Glass Fibers  

Science Conference Proceedings (OSTI)

Table 14   Compositional ranges for insulation-type glasses...from materials melted in a cupola with coke as fuel, all iron oxide

72

Glass Surfaces and Water in Glasses  

Science Conference Proceedings (OSTI)

Oct 9, 2012 ... Glass and Optical Materials: Glass Surfaces and Water in Glasses Program Organizers: Jincheng Du, University of North Texas; John Kieffer, ...

73

Hydraulic manipulator research at ORNL  

Science Conference Proceedings (OSTI)

Recently, task requirements have dictated that manipulator payload capacity increase to accommodate greater payloads, greater manipulator length, and larger environmental interaction forces. General tasks such as waste storage tank cleanup and facility dismantlement and decommissioning require manipulator life capacities in the range of hundreds of pounds rather than tens of pounds. To meet the increased payload capacities demanded by present-day tasks, manipulator designers have turned once again to hydraulics as a means of actuation. In order to successfully design, build, and deploy a new hydraulic manipulator (or subsystem), sophisticated modeling, analysis, and control experiments are usually needed. Oak Ridge National Laboratory (ORNL) has a history of projects that incorporate hydraulics technology, including mobile robots, teleoperated manipulators, and full-scale construction equipment. In addition, to support the development and deployment of new hydraulic manipulators, ORNL has outfitted a significant experimental laboratory and has developed the software capability for research into hydraulic manipulators, hydraulic actuators, hydraulic systems, modeling of hydraulic systems, and hydraulic controls. The purpose of this article is to describe the past hydraulic manipulator developments and current hydraulic manipulator research capabilities at ORNL. Included are example experimental results from ORNL`s flexible/prismatic test stand.

Kress, R.L.; Jansen, J.F. [Oak Ridge National Lab., TN (United States); Love, L.J. [Oak Ridge Inst. for Science and Education, TN (United States)

1997-03-01T23:59:59.000Z

74

Reactor Thermal-Hydraulics  

NLE Websites -- All DOE Office Websites (Extended Search)

Thermal-Hydraulics Thermal-Hydraulics Dr. Tanju Sofu, Argonne National Laboratory In a power reactor, the energy produced in fission reaction manifests itself as heat to be removed by a coolant and utilized in a thermodynamic energy conversion cycle to produce electricity. A simplified schematic of a typical nuclear power plant is shown in the diagram below. Primary coolant loop Steam Reactor Heat exchanger Primary pump Secondary pump Condenser Turbine Water Although this process is essentially the same as in any other steam plant configuration, the power density in a nuclear reactor core is typically four orders of magnitude higher than a fossil fueled plant and therefore it poses significant heat transfer challenges. Maximum power that can be obtained from a nuclear reactor is often limited by the

75

INTERPRETATION OF HYDRAULIC FRACTURING PRESSURE IN LOW-PERMEABILITY GAS RESERVOIRS.  

E-Print Network (OSTI)

??Hydraulic fracturing has been used in most oil and gas wells to increase production by creating fractures that extend from the wellbore into the formation.… (more)

Kim, Gun Ho

2010-01-01T23:59:59.000Z

76

Analytical electron microscopy examination of solid reaction products in long-term test of SRL 200 waste glasses  

SciTech Connect

Alteration phases, found on the leached surfaces and present as colloids in the leachates of 200-based frit (fully active and simulated) nuclear waste glass, reacted under static test conditions, at a surface area to leachate volume ratio of 20,000 m{sup {minus}1} for 15 days to 728 days, have been examined by analytical electron microscopy. The compositions of the secondary phases were determined using x-ray energy dispersive spectroscopy and electron energy loss spectroscopy, and structural analysis was accomplished by electron diffraction. Long-term samples of simulated glass, which had undergone an acceleration of reaction after 182 days, possessed a number of silicate secondary phases, including; smectite (iron silicate and potassium iron alumina-silicate, weeksite (uranium silicate), zeolite (calcium potassium alumino-silicate), tobermorite (calcium silicate), and a pure silica phase. However, uranium silicates and smectite have also been observed in tests, which have not undergone the acceleration of reaction, in both the leachate and leached layer, suggesting that these phases are not responsible for the acceleration of reaction.

Buck, E.C.; Fortner, J.A.; Bates, J.K.; Feng, X.; Dietz, N.L.; Bradley, C.R.; Tani, B.S.

1993-12-31T23:59:59.000Z

77

Natural analogues of nuclear waste glass corrosion.  

SciTech Connect

This report reviews and summarizes studies performed to characterize the products and processes involved in the corrosion of natural glasses. Studies are also reviewed and evaluated on how well the corrosion of natural glasses in natural environments serves as an analogue for the corrosion of high-level radioactive waste glasses in an engineered geologic disposal system. A wide range of natural and experimental corrosion studies has been performed on three major groups of natural glasses: tektite, obsidian, and basalt. Studies of the corrosion of natural glass attempt to characterize both the nature of alteration products and the reaction kinetics. Information available on natural glass was then compared to corresponding information on the corrosion of nuclear waste glasses, specifically to resolve two key questions: (1) whether one or more natural glasses behave similarly to nuclear waste glasses in laboratory tests, and (2) how these similarities can be used to support projections of the long-term corrosion of nuclear waste glasses. The corrosion behavior of basaltic glasses was most similar to that of nuclear waste glasses, but the corrosion of tektite and obsidian glasses involves certain processes that also occur during the corrosion of nuclear waste glasses. The reactions and processes that control basalt glass dissolution are similar to those that are important in nuclear waste glass dissolution. The key reaction of the overall corrosion mechanism is network hydrolysis, which eventually breaks down the glass network structure that remains after the initial ion-exchange and diffusion processes. This review also highlights some unresolved issues related to the application of an analogue approach to predicting long-term behavior of nuclear waste glass corrosion, such as discrepancies between experimental and field-based estimates of kinetic parameters for basaltic glasses.

Abrajano, T.A. Jr.; Ebert, W.L.; Luo, J.S.

1999-01-06T23:59:59.000Z

78

Hydraulic properties of asphalt concrete.  

E-Print Network (OSTI)

??This research has applied standard unsaturated flow models and laboratory methods common to soil analysis, to characterize the hydraulic properties of asphalt concrete. Wetting and… (more)

Pease, Ronald Eric

2010-01-01T23:59:59.000Z

79

Lab Scale Hydraulic Parameter Estimation .  

E-Print Network (OSTI)

??Hydraulic tomography has been tested at the field scale, lab scale and in synthetic experiments. Recently Illman and Berg have conducted studies at the lab… (more)

Hartz, Andrew Scott

2011-01-01T23:59:59.000Z

80

LLNL-PROC-491799 Hydraulic  

NLE Websites -- All DOE Office Websites (Extended Search)

PROC-491799 Hydraulic fracturing: insights from field, lab, and numerical studies S. Johnson, P. Fu, R. Settgast, S. Walsh August 3, 2011 Fall Meeting of the American Geophysical...

Note: This page contains sample records for the topic "glass products hydraulic" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Gas condensate damage in hydraulically fractured wells  

E-Print Network (OSTI)

This project is a research into the effect of gas condensate damage in hydraulically fractured wells. It is the result of a problem encountered in producing a low permeability formation from a well in South Texas owned by the El Paso Production Company. The well was producing from a gas condensate reservoir. Questions were raised about whether flowing bottomhole pressure below dewpoint would be appropriate. Condensate damage in the hydraulic fracture was expected to be of significant effect. In the most recent work done by Adedeji Ayoola Adeyeye, this subject was studied when the effects of reservoir depletion were minimized by introduction of an injector well with fluid composition the same as the original reservoir fluid. He also used an infinite conductivity hydraulic fracture along with a linear model as an adequate analogy. He concluded that the skin due to liquid build-up is not enough to prevent lower flowing bottomhole pressures from producing more gas. This current study investigated the condensate damage at the face of the hydraulic fracture in transient and boundary dominated periods when the effects of reservoir depletion are taken into account. As a first step, simulation of liquid flow into the fracture was performed using a 2D 1-phase simulator in order to help us to better understand the results of gas condensate simulation. Then during the research, gas condensate models with various gas compositions were simulated using a commercial simulator (CMG). The results of this research are a step forward in helping to improve the management of gas condensate reservoirs by understanding the mechanics of liquid build-up. It also provides methodology for quantifying the condensate damage that impairs linear flow of gas into the hydraulic fracture.

Reza, Rostami Ravari

2004-08-01T23:59:59.000Z

82

ENVE 417 HYDRAULIC DESIGN TOPIC SYLLABUS  

E-Print Network (OSTI)

. John Wiley & Sons, Inc. New York, NY. 2001. Hydraulic Design Handbook, Larry W. Mays, McGraw-Hill, New of Applied Hydraulics (properties of fluids and energy equation Review of Applied Hydraulics (pipe, open

Clark, Shirley E.

83

Hydraulically actuated well shifting tool  

SciTech Connect

This patent describes a hydraulically actuated shifting tool for actuating a sliding member in a well tool. It comprises: a housing having a hydraulic fluid bore therein; shifting dog means positioned on the housing for movement away and toward the housing; locking dog means positioned on the housing for movement away and toward the body; shifting dog hydraulic actuating means in fluid communication with the bore for causing engagement of the shifting dogs with the sliding member; locking dog hydraulic actuating means in communication with the bore for causing engagement of the locking dogs with the locking means; and hydraulic shifting means in communication with the bore for causing relative movement between the shifting dog means and the locking dog means for shifting the sliding sleeve.

Roth, B.A.

1992-10-20T23:59:59.000Z

84

Glass and Optical Materials  

Science Conference Proceedings (OSTI)

NMR Insight into Glass Formers and Modifiers · NMR Studies on Biomaterials and Bioactive Glasses · Non-Linear Optical Properties in Glasses.

85

Glass-Ceramic Seal for Solid Oxide Fuel Cells - Available ...  

Computers & Electronics; Consumer Products; Energy & Utilities; Manufacturing & Warehousing; Video(s) Glass frit is dispersed in a ...

86

Location of hydraulic fractures using microseismic techniques  

DOE Green Energy (OSTI)

Microearthquakes with magnitudes ranging between -6 and -2 have been observed in three successive massive injections of water at the Hot Dry Rock Geothermal Energy demonstration site at Fenton Hill, New Mexico. The injection was part of a program to increase the heat transfer area of hydraulic fractures and to decrease the flow-through impedance between wells. The microearthquakes were used in mapping the location of the extended hydraulic fractures. A downhole triaxial system positioned approximately 200 m vertically above the injection point in a shut-in production well was used for detection. The microearthquakes occurred in a north-northwest striking zone 400 m in length passing through the injection point. During a third substantially larger injection, microearthquakes occurred in a dispersed volume at distances as great as 800 m from the zone active in the first two injections.

Albright, J.A.; Pearson, C.F.

1980-01-01T23:59:59.000Z

87

Tidal Hydraulic Generators Ltd | Open Energy Information  

Open Energy Info (EERE)

Hydraulic Generators Ltd Jump to: navigation, search Name Tidal Hydraulic Generators Ltd Address 14 Thislesboon Drive Place Mumbles Zip SA3 4HY Sector Marine and Hydrokinetic Phone...

88

Some Fundamental Mechanisms of Hydraulic Fracturing .  

E-Print Network (OSTI)

??This dissertation focuses mainly on three topics: (1) mixed-mode branching and segmentation of hydraulic fractures in brittle materials, (2) hydraulic fracture propagation in particulate materials,… (more)

Wu, Ruiting

2006-01-01T23:59:59.000Z

89

Gas condensate damage in hydraulically fractured wells  

E-Print Network (OSTI)

This project is a research into the effect of gas condensate damage in hydraulically fractured wells. It is the result of a problem encountered in producing a low permeability formation from a well in South Texas owned by the El Paso Production Company. The well was producing a gas condensate reservoir and questions were raised about how much drop in flowing bottomhole pressure below dewpoint would be appropriate. Condensate damage in the hydraulic fracture was expected to be of significant effect. Previous attempts to answer these questions have been from the perspective of a radial model. Condensate builds up in the reservoir as the reservoir pressure drops below the dewpoint pressure. As a result, the gas moving to the wellbore becomes leaner. With respect to the study by El-Banbi and McCain, the gas production rate may stabilize, or possibly increase, after the period of initial decline. This is controlled primarily by the condensate saturation near the wellbore. This current work has a totally different approach. The effects of reservoir depletion are minimized by introduction of an injector well with fluid composition the same as the original reservoir fluid. It also assumes an infinite conductivity hydraulic fracture and uses a linear model. During the research, gas condensate simulations were performed using a commercial simulator (CMG). The results of this research are a step forward in helping to improve the management of gas condensate reservoirs by understanding the mechanics of liquid build-up. It also provides methodology for quantifying the condensate damage that impairs linear flow of gas into the hydraulic fracture.

Adeyeye, Adedeji Ayoola

2003-12-01T23:59:59.000Z

90

Estimates of global, regional, and national annual CO{sub 2} emissions from fossil-fuel burning, hydraulic cement production, and gas flaring: 1950--1992  

SciTech Connect

This document describes the compilation, content, and format of the most comprehensive C0{sub 2}-emissions database currently available. The database includes global, regional, and national annual estimates of C0{sub 2} emissions resulting from fossil-fuel burning, cement manufacturing, and gas flaring in oil fields for 1950--92 as well as the energy production, consumption, and trade data used for these estimates. The methods of Marland and Rotty (1983) are used to calculate these emission estimates. For the first time, the methods and data used to calculate CO, emissions from gas flaring are presented. This C0{sub 2}-emissions database is useful for carbon-cycle research, provides estimates of the rate at which fossil-fuel combustion has released C0{sub 2} to the atmosphere, and offers baseline estimates for those countries compiling 1990 C0{sub 2}-emissions inventories.

Boden, T.A.; Marland, G. [Oak Ridge National Lab., TN (United States); Andres, R.J. [University of Alaska, Fairbanks, AK (United States). Inst. of Northern Engineering

1995-12-01T23:59:59.000Z

91

Community Geothermal Technology Program: Hawaii glass project. Final report  

DOE Green Energy (OSTI)

Objective was to develop a glass utilizing the silica waste material from geothermal energy production, and to supply local artists with this glass to make artistic objects. A glass composed of 93% indigenous Hawaiian materials was developed; 24 artists made 110 objects from this glass. A market was found for art objects made from this material.

Miller, N. [comp.; Irwin, B.

1988-01-20T23:59:59.000Z

92

Electrokinetic high pressure hydraulic system  

DOE Patents (OSTI)

A compact high pressure hydraulic pump having no moving mechanical parts for converting electric potential to hydraulic force. The electrokinetic pump, which can generate hydraulic pressures greater than 2500 psi, can be employed to compress a fluid, either liquid or gas, and manipulate fluid flow. The pump is particularly useful for capillary-base systems. By combining the electrokinetic pump with a housing having chambers separated by a flexible member, fluid flow, including high pressure fluids, is controlled by the application of an electric potential, that can vary with time.

Paul, Phillip H. (Livermore, CA); Rakestraw, David J. (Fremont, CA)

2000-01-01T23:59:59.000Z

93

POROUS WALL, HOLLOW GLASS MICROSPHERES  

DOE Green Energy (OSTI)

Hollow Glass Microspheres (HGM) is not a new technology. All one has to do is go to the internet and Google{trademark} HGM. Anyone can buy HGM and they have a wide variety of uses. HGM are usually between 1 to 100 microns in diameter, although their size can range from 100 nanometers to 5 millimeters in diameter. HGM are used as lightweight filler in composite materials such as syntactic foam and lightweight concrete. In 1968 a patent was issued to W. Beck of the 3M{trademark} Company for 'Glass Bubbles Prepared by Reheating Solid Glass Particles'. In 1983 P. Howell was issued a patent for 'Glass Bubbles of Increased Collapse Strength' and in 1988 H. Marshall was issued a patent for 'Glass Microbubbles'. Now Google{trademark}, Porous Wall, Hollow Glass Microspheres (PW-HGMs), the key words here are Porous Wall. Almost every article has its beginning with the research done at the Savannah River National Laboratory (SRNL). The Savannah River Site (SRS) where SRNL is located has a long and successful history of working with hydrogen and its isotopes for national security, energy, waste management and environmental remediation applications. This includes more than 30 years of experience developing, processing, and implementing special ceramics, including glasses for a variety of Department of Energy (DOE) missions. In the case of glasses, SRS and SRNL have been involved in both the science and engineering of vitreous or glass based systems. As a part of this glass experience and expertise, SRNL has developed a number of niches in the glass arena, one of which is the development of porous glass systems for a variety of applications. These porous glass systems include sol gel glasses, which include both xerogels and aerogels, as well as phase separated glass compositions, that can be subsequently treated to produce another unique type of porosity within the glass forms. The porous glasses can increase the surface area compared to 'normal glasses of a 1 to 2 order of magnitude, which can result in unique properties in areas such as hydrogen storage, gas transport, gas separations and purifications, sensors, global warming applications, new drug delivery systems and so on. One of the most interesting porous glass products that SRNL has developed and patented is Porous Wall, Hollow Glass Microspheres (PW-HGMs) that are being studied for many different applications. The European Patent Office (EPO) just recently notified SRS that the continuation-in-part patent application for the PW-HGMs has been accepted. The original patent, which was granted by the EPO on June 2, 2010, was validated in France, Germany and the United Kingdom. The microspheres produced are generally in the range of 2 to 100 microns, with a 1 to 2 micron wall. What makes the SRNL microspheres unique from all others is that the team in Figure 1 has found a way to induce and control porosity through the thin walls on a scale of 100 to 3000 {angstrom}. This is what makes the SRNL HW-HGMs one-of-a-kind, and is responsible for many of their unique properties and potential for various applications, including those in tritium storage, gas separations, H-storage for vehicles, and even a variety of new medical applications in the areas of drug delivery and MRI contrast agents. SRNL Hollow Glass Microspheres, and subsequent, Porous Wall, Hollow Glass Microspheres are fabricated using a flame former apparatus. Figure 2 is a schematic of the apparatus.

Sexton, W.

2012-06-30T23:59:59.000Z

94

Measurement of Effect of Chemical Reactions on the Hydrologic Properties of Fractured Glass Media Using a Tri-axial Flow and Transport Apparatus  

Science Conference Proceedings (OSTI)

Understanding the effect of chemical reactions on the hydrologic properties of sub-surface media is critical to many natural and engineered sub-surface systems. Methods and information for such characterization of fractured media are severely lacking. Influence of glass corrosion (precipitation and dissolution) reactions on fractured glass blocks HAN28 and LAWBP1, two candidate waste glass forms for a proposed immobilized low-activity waste (ILAW) disposal facility at the Hanford, WA site, was investigated. Flow and tracer transport experiments were conducted in such randomly and multiply fractured ILAW glass blocks, before and after subjecting them to corrosion using Vapor Hydration Testing (VHT) at 200 oC temperature and 200 psig (1379 KPa) pressure, causing the precipitation of alteration products. A tri-axial fractured media flow and transport experimental apparatus, which allows the simultaneous measurement of flow and transport properties and their anisotropy, has been designed and built for this purpose. Such apparatus for fractured media characterization are being reported in the literature only recently. Hydraulic properties of fractured blocks were measured in different orientations and along different cardinal directions, before and after glass corrosion reactions. Miscible displacement experiments using a non-reactive dye were also conducted, before and after glass corrosion reactions, to study the tracer transport behavior through such media. Initial efforts to analyze breakthrough curve (BTC) data using a 1D Advection Dispersion Equation (ADE) solution revealed that a different fractured media transport model may be necessary for such interpretation. It was found that glass reactions can have a significant influence on the hydrologic properties of fractured ILAW glass media. The methods and results are unique and useful to better understand the effect of chemical reactions on the hydrologic properties of fractured geomedia in general and glass media in particular.

Saripalli, Kanaka P.; Lindberg, Michael J.; Meyer, Philip D.

2006-09-15T23:59:59.000Z

95

Case studies of the potential effects of carbon taxation on the stone, clay, and glass industry  

SciTech Connect

This case study focuses on the potential for a carbon tax ($25 and $100 per metric ton of carbon) to reduce energy use and associated carbon dioxide (CO{sub 2}) emissions in three subsectors of the stone, clay, and glass industry: hydraulic cement, glass and glass products, and other products. A conservation supply curve analysis found that (1) opportunities for reducing fossil fuel use in the subsectors are limited (15% reduction under $100 tax) and (2) the relationship between the tax and reduced CO{sub 2} emissions is nonlinear and diminishing. Because cement manufacturing produces a significant amount of CO{sub 2}, this subsector was analyzed. A plant-level analysis found more opportunities to mitigate CO{sub 2} emissions; under a $100 tax, fossil fuel use would decrease 52%. (A conservative estimate lies between 15% and 52%). It also confirmed the nonlinear relationship, suggesting significant benefits could result from small taxes (32% reduction under $25 tax). A fuel share analysis found the cement industry could reduce carbon loading 11% under a $100 tax if gas were substituted for coal. Under a $100 tax, cement demand would decrease 17% and its price would increase 32%, a substantial increase for a material commodity. Overall, CO{sub 2} emissions from cement manufacturing would decrease 24--33% under a $100 tax and 10--18% under a $25 tax. Much of the decrease would result from the reduced demand for cement.

Bock, M.J.; Boyd, G.A. [Argonne National Lab., IL (United States). Environmental Assessment and Information Sciences Div.; Rosenbaum, D.I. [Nebraska Univ., Lincoln, NE (United States). Dept. of Economics; Ross, M.H. [Michigan Univ., Ann Arbor, MI (United States). Dept. of Physics

1992-12-01T23:59:59.000Z

96

Case studies of the potential effects of carbon taxation on the stone, clay, and glass industry  

SciTech Connect

This case study focuses on the potential for a carbon tax ($25 and $100 per metric ton of carbon) to reduce energy use and associated carbon dioxide (CO[sub 2]) emissions in three subsectors of the stone, clay, and glass industry: hydraulic cement, glass and glass products, and other products. A conservation supply curve analysis found that (1) opportunities for reducing fossil fuel use in the subsectors are limited (15% reduction under $100 tax) and (2) the relationship between the tax and reduced CO[sub 2] emissions is nonlinear and diminishing. Because cement manufacturing produces a significant amount of CO[sub 2], this subsector was analyzed. A plant-level analysis found more opportunities to mitigate CO[sub 2] emissions; under a $100 tax, fossil fuel use would decrease 52%. (A conservative estimate lies between 15% and 52%). It also confirmed the nonlinear relationship, suggesting significant benefits could result from small taxes (32% reduction under $25 tax). A fuel share analysis found the cement industry could reduce carbon loading 11% under a $100 tax if gas were substituted for coal. Under a $100 tax, cement demand would decrease 17% and its price would increase 32%, a substantial increase for a material commodity. Overall, CO[sub 2] emissions from cement manufacturing would decrease 24--33% under a $100 tax and 10--18% under a $25 tax. Much of the decrease would result from the reduced demand for cement.

Bock, M.J.; Boyd, G.A. (Argonne National Lab., IL (United States). Environmental Assessment and Information Sciences Div.); Rosenbaum, D.I. (Nebraska Univ., Lincoln, NE (United States). Dept. of Economics); Ross, M.H. (Michigan Univ., Ann Arbor, MI (United States). Dept. of Physics)

1992-12-01T23:59:59.000Z

97

Free-wheeling hydraulic power mills  

DOE Green Energy (OSTI)

Free-wheeling power plants using free replenishable hydraulic forces of winds and water currents would consist of most or all of the following: fore and after cones to increase throughput; duplex impellers; rotors with dc/ac excitation, ac/dc inverters and dc field coils; stators with ac output of varying frequency, voltage and power; solid-state ac/dc inverters, dc electrolytic cell banks for GH/sub 2/ and GO/sub 2/ production; and neon refrigerators for reducing these to LOX and chilled GH/sub 2/ for ease in shipment or storage.

Hall, F.F.

1978-10-01T23:59:59.000Z

98

Database and Interim Glass Property Models for Hanford HLW Glasses  

SciTech Connect

The purpose of this report is to provide a methodology for an increase in the efficiency and a decrease in the cost of vitrifying high-level waste (HLW) by optimizing HLW glass formulation. This methodology consists in collecting and generating a database of glass properties that determine HLW glass processability and acceptability and relating these properties to glass composition. The report explains how the property-composition models are developed, fitted to data, used for glass formulation optimization, and continuously updated in response to changes in HLW composition estimates and changes in glass processing technology. Further, the report reviews the glass property-composition literature data and presents their preliminary critical evaluation and screening. Finally the report provides interim property-composition models for melt viscosity, for liquidus temperature (with spinel and zircon primary crystalline phases), and for the product consistency test normalized releases of B, Na, and Li. Models were fitted to a subset of the screened database deemed most relevant for the current HLW composition region.

Hrma, Pavel R.; Piepel, Gregory F.; Vienna, John D.; Cooley, Scott K.; Kim, Dong-Sang; Russell, Renee L.

2001-07-24T23:59:59.000Z

99

Surrogate-based optimization of hydraulic fracturing in pre-existing fracture networks  

Science Conference Proceedings (OSTI)

Hydraulic fracturing has been used widely to stimulate production of oil, natural gas, and geothermal energy in formations with low natural permeability. Numerical optimization of fracture stimulation often requires a large number of evaluations of objective ... Keywords: Fractal dimension, Global sensitivity, Hydraulic fracturing, Optimization, Surrogate model

Mingjie Chen, Yunwei Sun, Pengcheng Fu, Charles R. Carrigan, Zhiming Lu, Charles H. Tong, Thomas A. Buscheck

2013-08-01T23:59:59.000Z

100

Hydroxyls and Glass Surface Reactivity  

Science Conference Proceedings (OSTI)

Field Assisted Viscous Flow and Crystallization in a Sodium Aluminosilicate Glass · Glass Ceramics ... Terahertz Properties of Lithium Iron Phosphate Glasses.

Note: This page contains sample records for the topic "glass products hydraulic" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

GLASS COMPOSITION-TCLP RESPONSE MODEL FOR WASTE GLASSES  

Science Conference Proceedings (OSTI)

A first-order property model for normalized Toxicity Characteristic Leaching Procedure (TCLP) release as a function of glass composition was developed using data collected from various studies. The normalized boron release is used to estimate the release of toxic elements based on the observation that the boron release represents the conservative release for those constituents of interest. The current TCLP model has two targeted application areas: (1) delisting of waste-glass product as radioactive (not mixed) waste and (2) designating the glass wastes generated from waste-glass research activities as hazardous or non-hazardous. This paper describes the data collection and model development for TCLP releases and discusses the issues related to the application of the model.

Kim, Dong-Sang; Vienna, John D.

2004-01-01T23:59:59.000Z

102

Feasibility Study of Using High-Temperature Raman Spectroscopy for On-Line Monitoring and Product Control of the Glass Vitrification Process  

SciTech Connect

A pulse-gating Raman spectroscopy setup was developed in this project. The setup was capable of performing in-situ high-temperature Raman measurements for glasses at temperatures as high as 1412 C. In the literature, high-temperature Raman measurements have only been performed on thin films of glass to minimize black-body radiation effects. The pulse-gating Raman setup allows making high-temperature measurements for bulk melts while effectively minimizing black-body radiation effects. A good correlation was found between certain Raman characteristic parameters and glass melt temperature for sodium silicate glasses measured in this project. Comparisons were made between the high-temperature Raman data from this study and literature data. The results suggest that an optimization of the pulse-gating Raman setup is necessary to further improve data quality (i.e., to obtain data with a higher signal-to-noise ratio). An W confocal Raman microspectrometer with continuous wave laser excitation using a 325 nm excitation line was evaluated selectively using a transparent silicate glass ad a deep-colored high-level waste glass in a bulk quantity. The data were successfully collected at temperatures as high as approximately 1500 C. The results demonstrated that the UV excitation line can be used for high-temperature Raman measurements of molten glasses without black-body radiation interference from the melt for both transparent and deep-color glasses. Further studies are needed to select the best laser system that can be used to develop high-temperature Raman glass databases.

Windisch, C.F. Jr.; Piepel, G.F.; Li, H.; Elliott, M.L.; Su, Y.

1999-01-04T23:59:59.000Z

103

Modeling Hydraulic Responses to Meteorological Forcing: from Canopy to Aquifer  

E-Print Network (OSTI)

equations  for  some  soil  hydraulic properties.  Water Modeling Hydraulic Responses to Meteorological Forcing: CA 94720  lpan@lbl.gov  Modeling Hydraulic Responses to 

Pan, Lehua; Jin, Jiming; Miller, Norman; Wu, Yu-Shu; Bodvarsson, Gudmundur

2008-01-01T23:59:59.000Z

104

HYDRAULIC CALCULATIONS FOR A MODIFIED IN-SITU RETORT  

E-Print Network (OSTI)

LBL-1 0431 UC-91 HYDRAULIC CALCULATIONS FOR A MODIFIED IN-REFERENCES • . • • • • . , . HYDRAULIC CALCULATIONS FOR ACalifomia. LBL-10431 HYDRAULIC CALCULATIONS FOR A MODIFIED

Hall, W.G.

2012-01-01T23:59:59.000Z

105

Hydraulic properties of adsorbed water films in unsaturated porous media  

E-Print Network (OSTI)

ionic strength and unit hydraulic head gradient. Figure 7.of the unsaturated hydraulic conductivity on matricYork. Durner, W. (1994), Hydraulic conductivity estimation

Tokunaga, Tetsu K.

2009-01-01T23:59:59.000Z

106

Hydraulic Fracturing | Open Energy Information  

Open Energy Info (EERE)

Hydraulic Fracturing Hydraulic Fracturing Jump to: navigation, search More info on OpenEI Oil and Gas Gateway Federal Environmental Statues Federal Oil and Gas Statutes Oil and Gas Companies United States Oil and Gas Boards International Oil and Gas Boards Other Information Fracking Regulations by State Wells by State Fracking Chemicals Groundwater Protection Related Reports A Perspective on Health and Natural Gas Operations: A Report for Denton City Council Just the Fracking Facts The Politics of 'Fracking': Regulating Natural Gas Drilling Practices in Colorado and Texas Addressing the Environmental Risks from Shale Gas Development Water Management Technologies Used by Marcellus Shale Gas Producers Methane contamination of drinking wateraccompanying gas-well drilling and hydraulic fracturing

107

Electrokinetic high pressure hydraulic system  

DOE Patents (OSTI)

An electrokinetic high pressure hydraulic pump for manipulating fluids in capillary-based systems. The pump uses electro-osmotic flow to provide a high pressure hydraulic system, having no moving mechanical parts, for pumping and/or compressing fluids, for providing valve means and means for opening and closing valves, for controlling fluid flow rate, and manipulating fluid flow generally and in capillary-based systems (Microsystems), in particular. The compact nature of the inventive high pressure hydraulic pump provides the ability to construct a micro-scale or capillary-based HPLC system that fulfills the desire for small sample quantity, low solvent consumption, improved efficiency, the ability to run samples in parallel, and field portability. Control of pressure and solvent flow rate is achieved by controlling the voltage applied to an electrokinetic pump.

Paul, Phillip H. (Livermore, CA); Rakestraw, David J. (Fremont, CA); Arnold, Don W. (Livermore, CA); Hencken, Kenneth R. (Pleasanton, CA); Schoeniger, Joseph S. (Oakland, CA); Neyer, David W. (Castro Valley, CA)

2001-01-01T23:59:59.000Z

108

Method for directional hydraulic fracturing  

DOE Patents (OSTI)

A method for directional hydraulic fracturing using borehole seals to confine pressurized fluid in planar permeable regions, comprising: placing a sealant in the hole of a structure selected from geologic or cemented formations to fill the space between a permeable planar component and the geologic or cemented formation in the vicinity of the permeable planar component; making a hydraulic connection between the permeable planar component and a pump; permitting the sealant to cure and thereby provide both mechanical and hydraulic confinement to the permeable planar component; and pumping a fluid from the pump into the permeable planar component to internally pressurize the permeable planar component to initiate a fracture in the formation, the fracture being disposed in the same orientation as the permeable planar component.

Swanson, David E. (West St. Paul, MN); Daly, Daniel W. (Crystal, MN)

1994-01-01T23:59:59.000Z

109

Electokinetic high pressure hydraulic system  

DOE Patents (OSTI)

A compact high pressure hydraulic system having no moving parts for converting electric potential to hydraulic force and for manipulating fluids. Electro-osmotic flow is used to provide a valve and means to compress a fluid or gas in a capillary-based system. By electro-osmotically moving an electrolyte between a first position opening communication between a fluid inlet and outlet and a second position closing communication between the fluid inlet and outlet the system can be configured as a valve. The system can also be used to generate forces as large as 2500 psi that can be used to compress a fluid, either a liquid or a gas.

Paul, Phillip H. (Livermore, CA); Rakestraw, David J. (Fremont, CA)

2000-01-01T23:59:59.000Z

110

Hydraulic jumps on an incline  

E-Print Network (OSTI)

When a fluid jet strikes an inclined solid surface at normal incidence, gravity creates a flow pattern with a thick outer rim resembling a parabola and reminiscent of a hydraulic jump. There appears to be little theory or experiments describing simple aspects of this phenomenon, such as the maximum rise height of the fluid above the impact point, and its dependence on jet velocity and inclination angle. We address this with experiments, and present a simple theory based on horizontal hydraulic jumps which accounts for the rise height and its scaling, though without describing the shape of the parabolic envelope.

Jean-Luc Thiffeault; Andrew Belmonte

2010-09-01T23:59:59.000Z

111

Hydraulic jumps on an incline  

E-Print Network (OSTI)

When a fluid jet strikes an inclined solid surface at normal incidence, gravity creates a flow pattern with a thick outer rim resembling a parabola and reminiscent of a hydraulic jump. There appears to be little theory or experiments describing simple aspects of this phenomenon, such as the maximum rise height of the fluid above the impact point, and its dependence on jet velocity and inclination angle. We address this with experiments, and present a simple theory based on horizontal hydraulic jumps which accounts for the rise height and its scaling, though without describing the shape of the parabolic envelope.

Thiffeault, Jean-Luc

2010-01-01T23:59:59.000Z

112

Debris Thermal Hydraulics Modeling of QUENCH Experiments  

SciTech Connect

Porous debris formation and behavior in QUENCH experiments (QUENCH-02, QUENCH-03) plays a considerable role and its adequate modeling is important for thermal analysis. This work is aimed to the development of a numerical module which is able to model thermal hydraulics and heat transfer phenomena occurring during the high-temperature stage of severe accident with the formation of debris region and molten pool. The original approach for debris evolution is developed from classical principles using a set of parameters including debris porosity; average particle diameter; temperatures and mass fractions of solid, liquid and gas phases; specific interface areas between different phases; effective thermal conductivity of each phase, including radiative heat conductivity; mass and energy fluxes through the interfaces. The debris model is based on the system of continuity, momentum and energy conservation equations, which consider the dynamics of volume-averaged velocities and temperatures of fluid, solid and gaseous phases of porous debris. The different mechanisms of debris formation are considered, including degradation of fuel rods according to temperature criteria, taking into consideration some correlations between rod layers thicknesses; degradation of rod layer structure due to thermal expansion of melted materials inside intact rod cladding; debris formation due to sharp temperature drop of previously melted material due to reflood; and transition to debris of material from elements lying above. The porous debris model was implemented to best estimate numerical code RATEG/SVECHA/HEFEST developed for modeling thermal hydraulics and severe accident phenomena in a reactor. The model is used for calculation of QUENCH experiments. The results obtained by the model are compared to experimental data concerning different aspects of thermal behavior: thermal hydraulics of porous debris, radiative heat transfer in a porous medium, the generalized melting and refreezing behavior of materials, hydrogen production. (authors)

Kisselev, Arcadi E.; Kobelev, Gennadii V.; Strizhov, Valerii F.; Vasiliev, Alexander D. [Nuclear Safety Institute - IBRAE, 52 Bolshaya Tulskaya Ulitsa, Moscow, 113191 (Russian Federation)

2006-07-01T23:59:59.000Z

113

Metallic Glass II  

Science Conference Proceedings (OSTI)

Aug 8, 2013 ... Application of Metallic Glass for High Performance Si Solar Cell: ... of the metallic glasses during heating is dependent on the thermal stability of ...

114

Bulk Metallic Glasses IX  

Science Conference Proceedings (OSTI)

... of elements to form metallic-glass alloys] have resulted in the required cooling rate ... Bauschinger Effect in Metallic Glass Nanowires under Cyclic Loading.

115

Bulk Metallic Glasses XI  

Science Conference Proceedings (OSTI)

Jul 15, 2013 ... A Bulk Metallic Glass with Record-breaking Damage Tolerance ... Oxidation on the Surface Characteristics of Zr-based Bulk Metallic Glasses.

116

Steam Turbine Hydraulic Control system Maintenance Guide  

Science Conference Proceedings (OSTI)

Steam turbine hydraulic control system maintenance problems have been a significant factor in plant power reductions, shutdowns, and lost generation. This guide provides recommendations to improve the reliability of the hydraulic components and fluid.

1996-12-31T23:59:59.000Z

117

CRITICALITY CURVES FOR PLUTONIUM HYDRAULIC FLUID MIXTURES  

SciTech Connect

This Calculation Note performs and documents MCNP criticality calculations for plutonium (100% {sup 239}Pu) hydraulic fluid mixtures. Spherical geometry was used for these generalized criticality safety calculations and three geometries of neutron reflection are: {sm_bullet}bare, {sm_bullet}1 inch of hydraulic fluid, or {sm_bullet}12 inches of hydraulic fluid. This document shows the critical volume and critical mass for various concentrations of plutonium in hydraulic fluid. Between 1 and 2 gallons of hydraulic fluid were discovered in the bottom of HA-23S. This HA-23S hydraulic fluid was reported by engineering to be Fyrquel 220. The hydraulic fluid in GLovebox HA-23S is Fyrquel 220 which contains phosphorus. Critical spherical geometry in air is calculated with 0 in., 1 in., or 12 inches hydraulic fluid reflection.

WITTEKIND WD

2007-10-03T23:59:59.000Z

118

On Internal Hydraulics with Entrainment  

Science Conference Proceedings (OSTI)

The hydraulics of a single layer flow with entrainment is examined with a reduced-gravity model. Expressions are derived for the local change of Froude number and layer thickness as a function of the entrainment velocity. It is shown that ...

Frank Gerdes; Chris Garrett; David Farmer

2002-03-01T23:59:59.000Z

119

Dynamic Measurement of Hydraulic Parameters Under Liquid ...  

Search PNNL. PNNL Home; About; Research; Publications; Jobs; News; Contacts; Dynamic Measurement of Hydraulic Parameters Under Liquid Unsaturated Flow ...

120

The communication protocol design of electro-hydraulic control system for hydraulic supports at coal mine  

Science Conference Proceedings (OSTI)

The electro-hydraulic control system for hydraulic supports is a multi embedded systems constitute a computer network system working in the coal mine harsh environment. Excellent hardware connection and fine communication protocol are the fundamental ... Keywords: AVR microcontroller, communication protocols, electro-hydraulic control, hydraulic support

Jingguo Wen; Zisheng Lian

2011-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "glass products hydraulic" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Software implementation of hydraulic shock numerical computation in the pressure hydraulic systems without protection devices  

Science Conference Proceedings (OSTI)

This paper presents software for calculus of hydraulic shock phenomenon in pressure hydraulic systems without protection device. The program is written in Java programming language and responds to the following requirements: easy management of several ... Keywords: flowchart, graphical interface, hydraulic shock (water hammer), method of characteristics, pressure hydraulic system, software

Ichinur Omer

2010-08-01T23:59:59.000Z

122

The hydraulic conductivity of chopped sorghum  

Science Conference Proceedings (OSTI)

Hydraulic conductivity of water through chopped sweet sorghum at various packing densities and soaking times was measured using permeameters. Hydraulic conductivity decreased by two orders of magnitude as packing density increased from 400 to 897 kg/m/sup 3/. Soaking time had less effect on hydraulic conductivity, and the effect depended on packing density.

Custer, M.H.; Reddell, D.L.; Sweeten, J.M.

1987-01-01T23:59:59.000Z

123

Risk assessment of groundwater contamination from hydraulic fracturing fluid spills in Pennsylvania  

E-Print Network (OSTI)

Fast-paced growth in natural gas production in the Marcellus Shale has fueled intense debate over the risk of groundwater contamination from hydraulic fracturing and the shale gas extraction process at large. While several ...

Fletcher, Sarah Marie

2012-01-01T23:59:59.000Z

124

Imaging Hydraulic Fractures: Source Location Uncertainty Analysis At The UPRC Carthage Test Site  

E-Print Network (OSTI)

Hydraulic fracturing is a useful tool for enhancing gas and oil production. High-resolution seismic imaging of the fracture geometry and fracture growth process is the key in determining optimal spacing and location of ...

Li, Yingping

1996-01-01T23:59:59.000Z

125

Design and analysis of hydraulically driven actuation system For a parabolic solar trough  

E-Print Network (OSTI)

This thesis documents Katarina Popovic's contribution to the design of hydraulic cylinder actuation system for day to day solar trough sun tracking, a semester long project within 2.752 Development of Mechanical Products ...

Popovi?, Katarina, S.B. Massachusetts Institute of Technology

2013-01-01T23:59:59.000Z

126

Hydraulic Pulse Drilling  

NLE Websites -- All DOE Office Websites (Extended Search)

REV DATE DESCRIPTION ORIGINATOR REVIEWED DATE REV DATE DESCRIPTION ORIGINATOR REVIEWED DATE 0 4/13/2004 Final Report Author: J. Kolle Hunter/Theimer 4/13/2004 Document No.: TR- 053 HydroPulse(tm) Drilling Final Report Prepared by J.J. Kolle April 2004 U.S. Department of Energy Cooperative Development Agreement No. DE-FC26-FT34367 Tempress Technologies, Inc. 18858 - 72 ND Ave S. Kent, WA 98032 Disclaimer This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not

127

Glass Cookware Safety  

NLE Websites -- All DOE Office Websites (Extended Search)

Glass Cookware Safety Glass Cookware Safety Under the wrong conditions, glass cookware can crack, break or shatter. Glass cookware is tempered (heat resistant). However, there are many steps to follow to ensure safe use of glass cookware. Glass Cookware Steps: If the steps are not followed, glass cookware can shatter unexpectedly. shatters, (it looks as if it has exploded) If glass bakeware is chipped, cracked, or scratched, it's time for it to be retired from service. It is more likely to shatter! Don't take glass bakeware directly from the freezer to the oven, or vice versa. Allow the oven to fully preheat before putting glassware inside. Don't add liquid to glassware that is already hot. Cover the bottom of glass bakeware with liquid before cooking meat or vegetables.

128

Glass notes  

NLE Websites -- All DOE Office Websites (Extended Search)

Saving Energy in Ready Mixed Concrete Production An ENERGY STAR Quick Guide for Managing Energy August 2013 ENERGY STAR is a U.S. Environmental Protection Agency Program helping...

129

Energy implications of glass-container recycling  

SciTech Connect

This report addresses the question of whether glass-container recycling actually saves energy. Glass-container production in 1991 was 10{sup 7} tons, with cullet making up about 30% of the input to manufacture. Two-thirds of the cullet is postconsumer waste; the remainder is in-house scrap (rejects). Most of the glass recycled is made into new containers. Total primary energy consumption includes direct process-energy use by the industry (adjusted to account for the efficiency of fuel production) plus fuel and raw-material transportation and production energies; the grand total for 1991 is estimated to be about 168 {times} 10{sup 12} Btu. The total primary energy use decreases as the percent of glass recycled rises, but the maximum energy saved is only about 13%. If distance to the landfill is kept fixed and that to the recovery facility multiplied by about eight, to 100 mi, a break-even point is reached, and recycling saves no energy. Previous work has shown that to save energy when using glass bottles, reuse is the clear choice. Recycling of glass does not save much energy or valuable raw material and does not reduce air or water pollution significantly. The most important impacts are the small reduction of waste sent to the landfill and increased production rates at glass plants.

Gaines, L.L.; Mintz, M.M. [Argonne National Lab., IL (United States)

1994-03-01T23:59:59.000Z

130

Glass viscosity calculation based on a global statistical modelling approach  

SciTech Connect

A global statistical glass viscosity model was developed for predicting the complete viscosity curve, based on more than 2200 composition-property data of silicate glasses from the scientific literature, including soda-lime-silica container and float glasses, TV panel glasses, borosilicate fiber wool and E type glasses, low expansion borosilicate glasses, glasses for nuclear waste vitrification, lead crystal glasses, binary alkali silicates, and various further compositions from over half a century. It is shown that within a measurement series from a specific laboratory the reported viscosity values are often over-estimated at higher temperatures due to alkali and boron oxide evaporation during the measurement and glass preparation, including data by Lakatos et al. (1972) and the recently published High temperature glass melt property database for process modeling by Seward et al. (2005). Similarly, in the glass transition range many experimental data of borosilicate glasses are reported too high due to phase separation effects. The developed global model corrects those errors. The model standard error was 9-17°C, with R^2 = 0.985-0.989. The prediction 95% confidence interval for glass in mass production largely depends on the glass composition of interest, the composition uncertainty, and the viscosity level. New insights in the mixed-alkali effect are provided.

Fluegel, Alex

2007-02-01T23:59:59.000Z

131

North Dakota's oil production has more than quadrupled since 2005 ...  

U.S. Energy Information Administration (EIA)

By combining horizontal wells and hydraulic fracturing (the same technologies used to significantly boost the Nation's shale gas production), ...

132

Horizontal drilling boosts Pennsylvania’s natural gas production ...  

U.S. Energy Information Administration (EIA)

Between 2009 and 2011, Pennsylvania's natural gas production more than quadrupled due to expanded horizontal drilling combined with hydraulic fracturing.

133

DWPF Melter Glass Pump Implementation and Design Improvement  

SciTech Connect

In order to improve the melt rate of high level waste slurry feed being vitrified in the Savannah River Sites (SRS) Defense Waste Processing Facility (DWPF) Melter, a melter glass pump (pump 1) was installed in the DWPF Melter on February 10, 2004. The glass pump increased melt rate by generating a forced convection within the molten glass pool, thereby increasing the heat transfer from the molten glass to the unmolten feed cold cap that is on top of the glass pool. After operating for over four months, the pump was removed on June 22, 2004 due to indications that it had failed. The removed pump exhibited obvious signs of corrosion, had collapsed inward at the glass exit slots at the melt line, and was dog-legged in the same area. This lead to the pump being redesigned to improve its mechanical integrity (increased wall thickness and strength) while maintaining its hydraulic diameter as large as possible. The improved DWPF glass pump (pump 2) was installed on September 15, 2004. The impact of the new design on pump life, along with analysis of the glass pumps impact on melt rate in the DWPF Melter is discussed in this paper.

MICHAEL, SMITH

2005-04-01T23:59:59.000Z

134

Investigation of Created Fracture Geometry through Hydraulic Fracture Treatment Analysis  

E-Print Network (OSTI)

Successful development of shale gas reservoirs is highly dependent on hydraulic fracture treatments. Many questions remain in regards to the geometry of the created fractures. Production data analysis from some shale gas wells quantifies a much smaller stimulated pore volume than what would be expected from microseismic evidence and reports of fracturing fluids reaching distant wells. In addition, claims that hydraulic fracturing may open or reopen a network of natural fractures is of particular interest. This study examines hydraulic fracturing of shale gas formations with specific interest in fracture geometry. Several field cases are analyzed using microseismic analysis as well as net pressure analysis of the fracture treatment. Fracture half lengths implied by microseismic events for some of the stages are several thousand feet in length. The resulting dimensions from microseismic analysis are used for calibration of the treatment model. The fracture profile showing created and propped fracture geometry illustrates that it is not possible to reach the full fracture geometry implied by microseismic given the finite amount of fluid and proppant that was pumped. The model does show however that the created geometry appears to be much larger than half the well spacing. From a productivity standpoint, the fracture will not drain a volume more than that contained in half of the well spacing. This suggests that for the case of closely spaced wells, the treatment size should be reduced to a maximum of half the well spacing. This study will provide a framework for understanding hydraulic fracture treatments in shale formations. In addition, the results from this study can be used to optimize hydraulic fracture treatment design. Excessively large treatments may represent a less than optimal approach for developing these resources.

Ahmed, Ibraheem 1987-

2012-12-01T23:59:59.000Z

135

Glass Working, Use and Discard  

E-Print Network (OSTI)

of the glass object, be it glass block or glass vessel. Thisglass would have been reheated and cast, probably into blocks

Nicholson, Paul

2011-01-01T23:59:59.000Z

136

Direction of CRT waste glass processing: Electronics recycling industry communication  

Science Conference Proceedings (OSTI)

Highlights: Black-Right-Pointing-Pointer Given a large flow rate of CRT glass {approx}10% of the panel glass stream will be leaded. Black-Right-Pointing-Pointer The supply of CRT waste glass exceeded demand in 2009. Black-Right-Pointing-Pointer Recyclers should use UV-light to detect lead oxide during the separation process. Black-Right-Pointing-Pointer Recycling market analysis techniques and results are given for CRT glass. Black-Right-Pointing-Pointer Academic initiatives and the necessary expansion of novel product markets are discussed. - Abstract: Cathode Ray Tube, CRT, waste glass recycling has plagued glass manufacturers, electronics recyclers and electronics waste policy makers for decades because the total supply of waste glass exceeds demand, and the formulations of CRT glass are ill suited for most reuse options. The solutions are to separate the undesirable components (e.g. lead oxide) in the waste and create demand for new products. Achieving this is no simple feat, however, as there are many obstacles: limited knowledge of waste glass composition; limited automation in the recycling process; transportation of recycled material; and a weak and underdeveloped market. Thus one of the main goals of this paper is to advise electronic glass recyclers on how to best manage a diverse supply of glass waste and successfully market to end users. Further, this paper offers future directions for academic and industry research. To develop the recommendations offered here, a combination of approaches were used: (1) a thorough study of historic trends in CRT glass chemistry; (2) bulk glass collection and analysis of cullet from a large-scale glass recycler; (3) conversations with industry members and a review of potential applications; and (4) evaluation of the economic viability of specific uses for recycled CRT glass. If academia and industry can solve these problems (for example by creating a database of composition organized by manufacturer and glass source) then the reuse of CRT glass can be increased.

Mueller, Julia R., E-mail: mueller.143@osu.edu [Ohio State University, William G. Lowrie Department of Chemical and Biomolecular Engineering, OH (United States) and University of Queensland, School of Chemical Engineering (Australia) and Ohio State University, Materials Science and Engineering, OH (United States); Boehm, Michael W. [University of Queensland, School of Chemical Engineering (Australia); Drummond, Charles [Ohio State University, Materials Science and Engineering, OH (United States)

2012-08-15T23:59:59.000Z

137

Thermal Hydraulic Analysis of HTGR Coupled with Hydrogen Plant  

DOE Green Energy (OSTI)

The US Department of Energy is investigating the use of high-temperature gas-cooled reactors (HTGR) to produce electricity and hydrogen. Although the hydrogen production processes using the nuclear energy are in an early stage of development, coupling hydrogen plant to HTGR requires both efficient heat transfer and adequate separation of the facilities to assure that off-normal events in the production facility do not impact the nuclear plant. In anticipation of the design, development and procurement of an advanced power conversion system for HTGR, this study was initiated to identify the major design and technology options and their tradeoffs in the evaluation of power conversion system (PCS) coupled to hydrogen plant. In this study, we investigated a number of design configurations and performed thermal hydraulic analyses using various working fluids and various conditions. This paper includes a portion of thermal hydraulic results based on a direct cycle and a parallel intermediate heat exchanger (IHX) configuration option.

Chang Oh; Cliff Davis; Robert Barner; Paul Pickard

2006-06-01T23:59:59.000Z

138

Definition: Hydraulic Conductivity | Open Energy Information  

Open Energy Info (EERE)

Conductivity Conductivity Jump to: navigation, search Dictionary.png Hydraulic Conductivity Hydraulic conductivity is a physical property which measures the ability of the material to transmit fluid through pore spaces and fractures in the presence of an applied hydraulic gradient. Darcy's Law defines the hydraulic conductivity as the ratio of the average velocity of a fluid through a cross-sectional area (Darcy's velocity) to the applied hydraulic gradient.[1] View on Wikipedia Wikipedia Definition Hydraulic conductivity, symbolically represented as, is a property of vascular plants, soil or rock, that describes the ease with which a fluid (usually water) can move through pore spaces or fractures. It depends on the intrinsic permeability of the material and on the degree of

139

Combined hydraulic and regenerative braking system  

DOE Patents (OSTI)

A combined hydraulic and regenerative braking system and method for an electric vehicle is disclosed. The braking system is responsive to the applied hydraulic pressure in a brake line to control the braking of the vehicle to be completely hydraulic up to a first level of brake line pressure, to be partially hydraulic at a constant braking force and partially regenerative at a linearly increasing braking force from the first level of applied brake line pressure to a higher second level of brake line pressure, to be partially hydraulic at a linearly increasing braking force and partially regenerative at a linearly decreasing braking force from the second level of applied line pressure to a third and higher level of applied line pressure, and to be completely hydraulic at a linearly increasing braking force from the third level to all higher applied levels of line pressure.

Venkataperumal, R.R.; Mericle, G.E.

1979-08-09T23:59:59.000Z

140

158 HYDRAULIC PERFORMANCE OF BRIDGE RAILS  

E-Print Network (OSTI)

This research program addresses issues associated with the hydraulic effects of bridge rails on floodwater levels upstream of bridge structures. The hydraulics of bridge rails and traffic barrier systems are not well understood, especially with regard to rail/barrier systems in series and the submergence of structures. The hydraulics of bridge rails is an important issue for TxDOT bridge rehabilitation projects with potentially significant cost implications. This research project is designed to address issues associated with the hydraulic performance of bridge rails and traffic barriers, and to provide guidance on how different rail/barrier systems can be included in floodplain hydraulics models. 17. Key Words Hydraulics, bridge rails, floodplain, Weir equations,

All J. Charbeneau; On Klenzendorf; Michael E. Barrett; Randall J. Charbeneau; Brandon Klenzendorf; Michael E. Barrett

2008-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "glass products hydraulic" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Combined hydraulic and regenerative braking system  

DOE Patents (OSTI)

A combined hydraulic and regenerative braking system and method for an electric vehicle, with the braking system being responsive to the applied hydraulic pressure in a brake line to control the braking of the vehicle to be completely hydraulic up to a first level of brake line pressure, to be partially hydraulic at a constant braking force and partially regenerative at a linearly increasing braking force from the first level of applied brake line pressure to a higher second level of brake line pressure, to be partially hydraulic at a linearly increasing braking force and partially regenerative at a linearly decreasing braking force from the second level of applied line pressure to a third and higher level of applied line pressure, and to be completely hydraulic at a linearly increasing braking force from the third level to all higher applied levels of line pressure.

Venkataperumal, Rama R. (Troy, MI); Mericle, Gerald E. (Mount Clemens, MI)

1981-06-02T23:59:59.000Z

142

High Resolution River Hydraulic and Water Quality Characterization Using Rapidly Deployable Networked Infomechanical Systems (NIMS RD)  

E-Print Network (OSTI)

High Resolution River Hydraulic and Water Quality1594. High Resolution River Hydraulic and Water Qualityobserving spatiotemporal hydraulic and chemical properties

Thomas C. Harmon; Richard F. Ambrose; Robert M. Gilbert; Jason C. Fisher; Michael Stealey; William J. Kaiser

2006-01-01T23:59:59.000Z

143

>Carbon Dioxide Emission Estimates from Fossil-Fuel Burning, Hydraulic  

NLE Websites -- All DOE Office Websites (Extended Search)

Carbon Dioxide Emission Estimates from Fossil-Fuel Burning, Hydraulic Carbon Dioxide Emission Estimates from Fossil-Fuel Burning, Hydraulic Cement Production, and Gas Flaring for 1995 on a One Degree Grid Cell Basis (NDP-058a) Prepared by Antoinette L. Brenkert Carbon Dioxide Information Analysis Center Oak Ridge National Laboratory Oak Ridge, Tennessee 37831-6290 Date Published: February 1998 (Revised for the Web: 2003) CONTENTS Abstract Documentation file for Data Base NDP-058a (2-1998) Data Base NDP-058a (2-1998) Abstract Carbon Dioxide Emission Estimates from Fossil-Fuel Burning, Hydraulic Cement Production, and Gas Flaring for 1995 on a One Degree Grid Cell Basis. (March 1998) Antoinette L. Brenkert DOI: 10.3334/CDIAC/ffe.ndp058.2003 This data package presents the gridded (one degree latitude by one degree longitude) summed emissions from fossil-fuel burning, hydraulic cement

144

Hydraulic fracturing and shale gas extraction.  

E-Print Network (OSTI)

??In the past decade the technique of horizontal drilling and hydraulic fracturing has been improved so much that it has become a cost effective method… (more)

Klein, Michael

2012-01-01T23:59:59.000Z

145

Electromagnetic Alteration of Hydraulic Conductivity of Soils.  

E-Print Network (OSTI)

??Hydraulic conductivity is a measure of the rate at which water flows through porous media. Because of the dipole properties of water molecules, any electric… (more)

Azad, Sahba

2013-01-01T23:59:59.000Z

146

Geothermal: Sponsored by OSTI -- Hydraulic fracturing: insights...  

Office of Scientific and Technical Information (OSTI)

Hydraulic fracturing: insights from field, lab, and numerical studies Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us | Admin Log On HomeBasic Search...

147

PLUTONIUM SOLUBILITY IN HIGH-LEVEL WASTE ALKALI BOROSILICATE GLASS  

SciTech Connect

The solubility of plutonium in a Sludge Batch 6 (SB6) reference glass and the effect of incorporation of Pu in the glass on specific glass properties were evaluated. A Pu loading of 1 wt % in glass was studied. Prior to actual plutonium glass testing, surrogate testing (using Hf as a surrogate for Pu) was conducted to evaluate the homogeneity of significant quantities of Hf (Pu) in the glass, determine the most appropriate methods to evaluate homogeneity for Pu glass testing, and to evaluate the impact of Hf loading in the glass on select glass properties. Surrogate testing was conducted using Hf to represent between 0 and 1 wt % Pu in glass on an equivalent molar basis. A Pu loading of 1 wt % in glass translated to {approx}18 kg Pu per Defense Waste Processing Facility (DWPF) canister, or about 10X the current allowed limit per the Waste Acceptance Product Specifications (2500 g/m{sup 3} of glass or about 1700 g/canister) and about 30X the current allowable concentration based on the fissile material concentration limit referenced in the Yucca Mountain Project License Application (897 g/m{sup 3}3 of glass or about 600 g Pu/canister). Based on historical process throughput data, this level was considered to represent a reasonable upper bound for Pu loading based on the ability to provide Pu containing feed to the DWPF. The task elements included evaluating the distribution of Pu in the glass (e.g. homogeneity), evaluating crystallization within the glass, evaluating select glass properties (with surrogates), and evaluating durability using the Product Consistency Test -- Method A (PCT-A). The behavior of Pu in the melter was evaluated using paper studies and corresponding analyses of DWPF melter pour samples.The results of the testing indicated that at 1 wt % Pu in the glass, the Pu was homogeneously distributed and did not result in any formation of plutonium-containing crystalline phases as long as the glass was prepared under 'well-mixed' conditions. The incorporation of 1 wt % Pu in the glass did not adversely impact glass viscosity (as assessed using Hf surrogate) or glass durability. Finally, evaluation of DWPF glass pour samples that had Pu concentrations below the 897 g/m{sup 3} limit showed that Pu concentrations in the glass pour stream were close to targeted compositions in the melter feed indicating that Pu neither volatilized from the melt nor stratified in the melter when processed in the DWPF melter.

Marra, J.; Crawford, C.; Fox, K.; Bibler, N.

2011-01-04T23:59:59.000Z

148

DRAFT Glass.indd  

NLE Websites -- All DOE Office Websites (Extended Search)

FAST FACTS FAST FACTS Glass technology provides a versatile method for safely managing a variety of wastes SRNL has studied the behavior in glass of nearly every element in the Periodic Table Overview Converting waste materials into a stable glass form is a highly effective way of treating and disposing of many types of waste, including some hazardous and radioactive wastes. Vitrifi cation - the immobilization of a material in glass - is

149

Analysis of Glass Breakage  

Science Conference Proceedings (OSTI)

Analysis of a Bucketwheel Stacker Reclaimer Structural Failure · Analysis of Glass Breakage · Analysis of Sealed, Integrated, Automotive Wheel Bearings.

150

Control rod drive hydraulic system  

DOE Patents (OSTI)

A hydraulic system for a control rod drive (CRD) includes a variable output-pressure CR pump operable in a charging mode for providing pressurized fluid at a charging pressure, and in a normal mode for providing the pressurized fluid at a purge pressure, less than the charging pressure. Charging and purge lines are disposed in parallel flow between the CRD pump and the CRD. A hydraulic control unit is disposed in flow communication in the charging line and includes a scram accumulator. An isolation valve is provided in the charging line between the CRD pump and the scram accumulator. A controller is operatively connected to the CRD pump and the isolation valve and is effective for opening the isolation valve and operating the CRD pump in a charging mode for charging the scram accumulator, and closing the isolation valve and operating the CRD pump in a normal mode for providing to the CRD through the purge line the pressurized fluid at a purge pressure lower than the charging pressure.

Ose, Richard A. (San Jose, CA)

1992-01-01T23:59:59.000Z

151

Radiation coloration resistant glass  

SciTech Connect

A radiation coloration resistant glass is disclosed which is used in a radiation environment sufficient to cause coloration in most forms of glass. The coloration resistant glass includes higher proportions by weight of water and has been found to be extremely resistant to color change when exposed to such radiation levels. The coloration resistant glass is free of cerium oxide and has more than about 0.5% by weight water content. Even when exposed to gamma radiation of more than 10.sup.7 rad, the coloration resistant glass does not lose transparency.

Tomozawa, Minoru (Troy, NY); Watson, E. Bruce (Troy, NY); Acocella, John (Troy, NY)

1986-01-01T23:59:59.000Z

152

Hydrodynamic design of axial hydraulic turbines  

Science Conference Proceedings (OSTI)

This paper presents a complete methodology of the hydrodynamic design for the runner of axial hydraulic turbines (Kaplan) using the finite element method. The procedure starts with the parametric design of the meridian channel. Next, the stream traces ... Keywords: QTurbo3D, axial hydraulic turbines, design, meridian channel, runner blade

Daniel Balint; Viorel Câmpian

2011-04-01T23:59:59.000Z

153

Mercury-Contaminated Hydraulic Mining Debris in San Francisco Bay  

E-Print Network (OSTI)

may 2010 Mercury-Contaminated Hydraulic Mining Debris in SanCA 94025 Abstract The hydraulic gold-mining process usedsediment created by hydraulic gold mining in the Sierra

Bouse, Robin M; Fuller, Christopher C; Luoma, Sam; Hornberger, Michelle I; Jaffe, Bruce E; Smith, Richard E

2010-01-01T23:59:59.000Z

154

DEVELOPMENT OF THE HELICAL REACTION HYDRAULIC TURBINE Final Technical Report  

Office of Scientific and Technical Information (OSTI)

DEVELOPMENT OF THE HELICAL REACTION HYDRAULIC TURBINE DEVELOPMENT OF THE HELICAL REACTION HYDRAULIC TURBINE Final Technical Report (DE-FGO1-96EE 15669) Project Period: 7/1/96 - 6/30/98 For submission to: The US Department of Energy, EE-20 1000 Independence Avenue, SW Washington, DC 20585 Attn: Mr. David Crouch Prepared by: Dr. Alexander Gorlov, PI MIME Department Northeastern University Boston, MA 02115 August, 1998 DISCLAIMER T h i s nport,was prepared as an account of work sponsored by an agency of the United States Government Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or use- fulness of any information, apparatus, product, or process disclosed, or

155

Hydraulic Institute Mission and Vision:  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Institute Mission and Vision: Institute Mission and Vision: Vision: To be a global authority on pumps and pumping systems. Mission: To be a value-adding resource to member companies and pump users worldwide by: * Developing and delivering comprehensive industry standards. * Expanding knowledge by providing education and tools for the effective application, testing, installation, operation and maintenance of pumps and pumping systems. * Serving as a forum for the exchange of industry information. The Hydraulic Institute is a non-profit industry (trade) association established in 1917. HI and its members are dedicated to excellence in the engineering, manufacture, and application of pumping equipment. The Institute plays a leading role in the development of pump standards in North America and worldwide. HI

156

Thermal hydraulics development for CASL  

SciTech Connect

This talk will describe the technical direction of the Thermal-Hydraulics (T-H) Project within the Consortium for Advanced Simulation of Light Water Reactors (CASL) Department of Energy Innovation Hub. CASL is focused on developing a 'virtual reactor', that will simulate the physical processes that occur within a light-water reactor. These simulations will address several challenge problems, defined by laboratory, university, and industrial partners that make up CASL. CASL's T-H efforts are encompassed in two sub-projects: (1) Computational Fluid Dynamics (CFD), (2) Interface Treatment Methods (ITM). The CFD subproject will develop non-proprietary, scalable, verified and validated macroscale CFD simulation tools. These tools typically require closures for their turbulence and boiling models, which will be provided by the ITM sub-project, via experiments and microscale (such as DNS) simulation results. The near-term milestones and longer term plans of these two sub-projects will be discussed.

Lowrie, Robert B [Los Alamos National Laboratory

2010-12-07T23:59:59.000Z

157

Hydraulic fracturing of jointed formations  

DOE Green Energy (OSTI)

Measured by volume, North America's largest hydraulic fracturing operations have been conducted at Fenton Hill, New Mexico to create geothermal energy reservoirs. In the largest operation 21,000 m/sup 3/ of water were injected into jointed granitic rock at a depth of 3.5 km. Microearthquakes induced by this injection were measured with geophones placed in five wells drilled into, or very close, to the reservoir, as well as 11 surface seismometers. The large volume of rock over which the microearthquakes were distributed indicates a mechanism of hydraulic stimulation which is at odds with conventional fracturing theory, which predicts failure along a plane which is perpendicular to the least compressive earth stress. A coupled rock mechanics/fluid flow model provides much of the explanation. Shear slippage along pre-existing joints in the rock is more easily induced than conventional tensile failure, particularly when the difference between minimum and maximum earth stresses is large and the joints are oriented at angles between 30 and 60 degrees to the principal earth stresses, and a low viscosity fluid like water is injected. Shear slippage results in local redistribution of stresses, which allows a branching, or dendritic, stimulation pattern to evolve, in agreement with the patterns of microearthquake locations. These results are qualitatively similar to the controversial process known as ''Kiel'' fracturing, in which sequential injections and shut-ins are repeated to create dendritic fractures for enhanced oil and gas recovery. However, we believe that the explanation is shear slippage of pre-existing joints and stress redistribution, not proppant bridging and fluid blocking as suggested by Kiel. 15 refs., 10 figs.

Murphy, H.D.; Fehler, M.C.

1986-01-01T23:59:59.000Z

158

Hydraulic Institute Mission and Vision | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Hydraulic Institute Mission and Vision Hydraulic Institute Mission and Vision Mission: To be a value-adding resource to member companies and pump users worldwide by: * Developing...

159

Variation in Hydraulic Conductivity Over Time at the Monticello...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Variation in Hydraulic Conductivity Over Time at the Monticello Permeable Reactive Barrier Variation in Hydraulic Conductivity Over Time at the Monticello Permeable Reactive...

160

Real-time and post-frac' 3-D analysis of hydraulic fracture treatments in geothermal reservoirs  

SciTech Connect

Economic power production from Hot Dry Rock (HDR) requires the establishment of an efficient circulation system between wellbores in reservoir rock with extremely low matrix permeability. Hydraulic fracturing is employed to establish the necessary circulation system. Hydraulic fracturing has also been performed to increase production from hydrothermal reservoirs by enhancing the communication with the reservoir's natural fracture system. Optimal implementation of these hydraulic fracturing applications, as with any engineering application, requires the use of credible physical models and the reconciliation of the physical models with treatment data gathered in the field. Analysis of the collected data has shown that 2-D models and 'conventional' 3-D models of the hydraulic fracturing process apply very poorly to hydraulic fracturing in geothermal reservoirs. Engineering decisions based on these more 'conventional' fracture modeling techniques lead to serious errors in predicting the performance of hydraulic fracture treatments. These errors can lead to inappropriate fracture treatment design as well as grave errors in well placement for hydrothermal reservoirs or HDR reservoirs. This paper outlines the reasons why conventional modeling approaches fall short, and what types of physical models are needed to credibly estimate created hydraulic fracture geometry. The methodology of analyzing actual measured fracture treatment data and matching the observed net fracturing pressure (in realtime as well as after the treatment) is demonstrated at two separate field sites. Results from an extensive Acoustic Emission (AE) fracture diagnostic survey are also presented for the first case study aS an independent measure of the actual created hydraulic fracture geometry.

Wright, C.A.; Tanigawa, J.J.; Hyodo, Masami; Takasugi, Shinji

1994-01-20T23:59:59.000Z

Note: This page contains sample records for the topic "glass products hydraulic" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

SLUDGE BATCH 7B GLASS VARIABILITY STUDY  

SciTech Connect

The Defense Waste Processing Facility (DWPF) is preparing to initiate processing Sludge Batch 7b (SB7b). In support of the upcoming processing, the Savannah River National Laboratory (SRNL) provided a recommendation to utilize Frits 418 with a 6% Na{sub 2}O addition (26 wt% Na{sub 2}O in sludge) and 702 with a 4% Na{sub 2}O addition (24 wt% Na{sub 2}O in sludge) to process SB7b. This recommendation was based on assessments of the compositional projections for SB7b available at the time from the Savannah River Remediation (SRR). To support qualification of SB7b, SRNL executed a variability study to assess the applicability of the current durability models for SB7b. The durability models were assessed over the expected composition range of SB7b, including potential caustic additions, combined with Frits 702 and 418 over a 32-40% waste loading (WL) range. Thirty four glasses were selected based on Frits 418 and 702 coupled with the sludge projections with an additional 4-6% Na{sub 2}O to reflect the potential caustic addition. Six of these glasses, based on average nominal sludge compositions including the appropriate caustic addition, were developed for both Frit 418 and Frit 702 at 32, 36 and 40% WL to provide coverage in the center of the anticipated SB7b glass region. All glasses were fabricated and characterized using chemical composition analysis, X-ray diffraction (XRD) and the Product Consistency Test (PCT). To comply with the DWPF Glass Product Control Program, a total of thirty four glasses were fabricated to assess the applicability of the current DWPF PCCS durability models. Based on the measured PCT response, all of the glasses were acceptable with respect to the Environmental Assessment (EA) benchmark glass regardless of thermal history. The NL[B] values of the SB7b variability study glasses were less than 1.99 g/L as compared to 16.695 g/L for EA. A small number of the D-optimally selected 'outer layer' extreme vertices (EV) glasses were not predictable using the current Product Composition Control System (PCCS) models for durability, but were acceptable compared to the EA glass when tested. These glasses fell outside of the lower 95% confidence band, which demonstrates conservatism in the model. A few of the glasses fell outside of the upper 95% confidence band; however, these particular glasses have normalized release values that were much lower than the values of EA and should be of no practical concern. Per the requirements of the DWPF Glass Product Control Program, the PCCS durability models have been shown to be applicable to the SB7b sludge system with a range of Na{sub 2}O concentrations blended with Frits 418 or 702. PCT results from the glasses fabricated as part of the variability study were shown to be predictable by the current DWPF PCCS models and/or acceptable with respect to the EA benchmark glass regardless of thermal history or compositional view.

Johnson, F.; Edwards, T.

2011-10-25T23:59:59.000Z

162

GlassPoint Solar Inc | Open Energy Information  

Open Energy Info (EERE)

GlassPoint Solar Inc GlassPoint Solar Inc Jump to: navigation, search Name GlassPoint Solar Inc. Place San Francisco, California Zip 94105 Sector Solar Product San Francisco-based developer and marketer of solar industrial process heat generating equipment for a wide range of industries including enhanced oil recovery, municipal waste water treatment and electrical power generation. References GlassPoint Solar Inc.[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. GlassPoint Solar Inc. is a company located in San Francisco, California . References ↑ "GlassPoint Solar Inc." Retrieved from "http://en.openei.org/w/index.php?title=GlassPoint_Solar_Inc&oldid=345889

163

Deformation and Void Structure in Glass  

Science Conference Proceedings (OSTI)

Field Assisted Viscous Flow and Crystallization in a Sodium Aluminosilicate Glass · Glass Ceramics ... Terahertz Properties of Lithium Iron Phosphate Glasses.

164

Model development and calibration for the coupled thermal, hydraulic and mechanical phenomena of the bentonite  

E-Print Network (OSTI)

FOR THE COUPLED THERMAL, HYDRAULIC AND MECHANICAL PHENOMENAby the interdependence of thermal, hydraulic and mechanical

Hernelind, J.

2009-01-01T23:59:59.000Z

165

Progressive wetting of initially hydrophobic plant surfaces by salts – a prerequisite for hydraulic activation of stomata?  

E-Print Network (OSTI)

along a transstomatal hydraulic connection. Referencesis called here ‘hydraulic activation of stomata’ (HAS). The

Burkhardt, Juergen; Hunsche, Mauricio; Pariyar, Shyam

2009-01-01T23:59:59.000Z

166

HYDRAULIC CONDUCTIVITY OF ESSENTIALLY SATURATED PEAT  

SciTech Connect

The Savannah River National Laboratory measured the hydraulic conductivity of peat samples using method ASTM D4511-00. Four samples of peat were packed into 73mm diameter plastic tubes and saturated from the bottom up with water. The columns were packed with Premier ProMoss III TBK peat to a dry density of approximately 0.16 gm/cc (10 lb/ft3). One column was packed using oven dried peat and the other 3 were packed using as delivered peat. The oven dried sample was the most difficult to saturate. All of the peat samples expanded during saturation resulting in a sample length (L) that was longer than when the sample was initially packed. Table 1 contains information related to the column packing. After saturation the hydraulic conductivity test was conducted using the apparatus shown in Figure 1. Three of the samples were tested at 2 different flow conductions, 1 high and 1 low. Table 2 and Figure 2 contain the results of the hydraulic conductivity testing. Each test was run for a minimum of 40 minutes to allow the test conditions to stabilize. The hydraulic conductivity at the end of each test is reported as the hydraulic conductivity for that test. The hydraulic conductivity of the 4 peat samples is 0.0052 {+-} 0.0009 cm/sec. This result compares well with the hydraulic conductivity measured in the pilot scale peat bed after approximately 2 months of operation. The similarity in results between the dry pack sample and moist pack samples shows the moisture content at the time of packing had a minimal effect on the hydraulic conductivity. Additionally, similarity between the results shows the test is reproducible. The hydraulic conductivity results are similar to those reported by other tests of peat samples reported in the literature.

Nichols, R

2008-02-27T23:59:59.000Z

167

Nanocoatings for High-Efficiency Industrial Hydraulic and Tooling Systems  

Science Conference Proceedings (OSTI)

Industrial manufacturing in the U.S. accounts for roughly one third of the 98 quadrillion Btu total energy consumption. Motor system losses amount to 1.3 quadrillion Btu, which represents the largest proportional loss of any end-use category, while pumps alone represent over 574 trillion BTU (TBTU) of energy loss each year. The efficiency of machines with moving components is a function of the amount of energy lost to heat because of friction between contacting surfaces. The friction between these interfaces also contributes to downtime and the loss of productivity through component wear and subsequent repair. The production of new replacement parts requires additional energy. Among efforts to reduce energy losses, wear-resistant, low-friction coatings on rotating and sliding components offer a promising approach that is fully compatible with existing equipment and processes. In addition to lubrication, one of the most desirable solutions is to apply a protective coating or surface treatment to rotating or sliding components to reduce their friction coefficients, thereby leading to reduced wear. Historically, a number of materials such as diamond-like carbon (DLC), titanium nitride (TiN), titanium aluminum nitride (TiAlN), and tungsten carbide (WC) have been examined as tribological coatings. The primary objective of this project was the development of a variety of thin film nanocoatings, derived from the AlMgB14 system, with a focus on reducing wear and friction in both industrial hydraulics and cutting tool applications. Proof-of-concept studies leading up to this project had shown that the constituent phases, AlMgB14 and TiB2, were capable of producing low-friction coatings by pulsed laser deposition. These coatings combine high hardness with a low friction coefficient, and were shown to substantially reduce wear in laboratory tribology tests. Selection of the two applications was based largely on the concept of improved mechanical interface efficiencies for energy conservation. In mobile hydraulic systems, efficiency gains through low friction would translate into improved fuel economy and fewer greenhouse gas emissions. Stationary hydraulic systems, accordingly, would consume less electrical power. Reduced tooling wear in machining operations would translate to greater operating yields, while lowering the energy consumed during processing. The AlMgB14 nanocoatings technology progressed beyond baseline laboratory tests into measurable energy savings and enhancements to product durability. Three key hydraulic markets were identified over the course of the project that will benefit from implementation: industrial vane pumps, orbiting valve-in-star hydraulic motors, and variable displacement piston pumps. In the vane pump application, the overall product efficiency was improved by as much as 11%. Similar results were observed with the hydraulic motors tested, where efficiency gains of over 10% were noted. For variable displacement piston pumps, overall efficiency was improved by 5%. For cutting tools, the most significant gains in productivity (and, accordingly, the efficiency of the machining process as a whole) were associated with the roughing and finishing of titanium components for aerospace systems. Use of the AlMgB14 nanocoating in customer field tests has shown that the coated tools were able to withstand machining rates as high as 500sfm (limited only by the substrate material), with relatively low flank wear when compared to other industrial offerings. AlMgB14 coated tools exhibited a 60% improvement over similarly applied TiAlN thin films. Furthermore, AlMgB14-based coatings in these particular tests lasted twice as long than their TiAlN counterparts at the 500sfm feed rates. Full implementation of the technology into the industrial hydraulic and cutting tool markets equates to a worldwide energy savings of 46 trillion BTU/year by 2030. U.S.-based GHG emissions associated with the markets identified would fall accordingly, dropping by as much as 50,000 tonnes annually.

Clifton B. Higdon III

2011-01-07T23:59:59.000Z

168

Bubble visualization in a simulated hydraulic jump  

E-Print Network (OSTI)

This is a fluid dynamics video of two- and three-dimensional computational fluid dynamics simulations carried out at St. Anthony Falls Laboratory. A transient hydraulic jump is simulated using OpenFOAM, an open source numerical solver. A Volume of Fluid numerical method is employed with a realizable k-epsilon turbulence model. The goal of this research is to model the void fraction and bubble size in a transient hydraulic jump. This fluid dynamics video depicts the air entrainment characteristics and bubble behavior within a hydraulic jump of Froude number 4.82.

Witt, Adam; Shen, Lian

2013-01-01T23:59:59.000Z

169

GlassMelt&Sealing  

NLE Websites -- All DOE Office Websites (Extended Search)

Glass Melting and Sealing Glass Melting and Sealing Manufacturing Technologies The Manufacturing Science & Technology Center performs process development of glass and glass-ceramic-to-metal seals. Small batches of specialty glass can be melted from reagent grade oxide powders. Glass and glass-ceramic-to-metal seals are made in microprocessor controlled inert atmospheres and are checked for her- meticity after sealing. Sandia's extensive properties database of low melting solder glasses is used to aid in material and processing decisions when making glass-to-glass, ceramic-to-ceramic, and glass-to-ceramic seals. These seals are typically done in air at much lower tem- peratures than glass and glass-to-ceramic seals. Capabilities * Interface with designers and vendors to assure that the most appropriate materi-

170

Mechanical Properties of Glass  

Science Conference Proceedings (OSTI)

... moduli and Vicker's hardness, as well as high transparency in the UV/visible region, ... Ion Exchanged Mixed Glass Cullet Proppants for Stimulation of Oil and  ...

171

About - Glass Publications Portal  

Office of Scientific and Technical Information (OSTI)

from the repository at OSTI. The Glass Publications Portal is sponsored by the DOE Energy Efficiency and Renewable Energy (EERE) Industrial Technologies Program. In...

172

"S" Glass Manufacturing Technology Transfer  

SciTech Connect

A glass-ceramic-to metal sealing technology patented by Sandia National Laboratories, Albuquerque (SNLA) was developed by MRC-Mound for use in the manufacture of weapon components. Successful implementation attracted increasingly widespread weapon use of this technology. "S-glass" manufacturing technology was transferred to commercial vendors to ensure that weapons production schedules would be met in the coming years. Such transfer also provided sources of this fledgling technology for the Department of Defense (DOD), aerospace and other commercial uses. The steps involved in the technology transfer are described, from the initial cooperative development work of Sandia and Mound scientists and technologists to the final phase of qualifying commercial vendors for component manufacture.

Buckner, Dean, A.; McCollister, Howard, L.

1988-06-01T23:59:59.000Z

173

Model for TCLP Releases from Waste Glasses  

Science Conference Proceedings (OSTI)

A first-order property model for normalized Toxicity Characteristic Leaching Procedure (TCLP) release as a function of glass composition was developed using data collected from various studies. The normalized boron release is used to estimate the release of toxic elements based on the observation that the boron release represents the conservative release for those constituents of interest. The current TCLP model has two targeted application areas: (1) delisting of waste-glass product as radioactive (not mixed) waste and (2) designating the glass wastes generated from waste-glass research activities as hazardous or non-hazardous. This report describes the data collection and model development for TCLP releases and discusses the issues related to the application of the model.

Kim, Dong-Sang; Vienna, John D.

2003-05-01T23:59:59.000Z

174

Model for TCLP Releases from Waste Glasses  

Science Conference Proceedings (OSTI)

A first-order property model for normalized Toxicity Characteristic Leaching Procedure (TCLP) release as a function of glass composition was developed using collected data from various studies. The normalized boron release is used to estimate the release of toxic elements based on the observation that the boron release represents the conservative release for those constituents of interest. The current TCLP model has two targeted application areas: (1) delisting of waste-glass product as radioactive (not mixed) waste and (2) designating the glass wastes generated from waste-glass research activities as hazardous or non-hazardous. This report describes the data collection and model development for TCLP releases and discusses the issues related to the application of the model.

Kim, Dong-Sang; Vienna, John D.

2002-09-01T23:59:59.000Z

175

Comparative hydraulic and anatomic properties in palm trees (Washingtonia robusta) of varying heights: implications for hydraulic limitation to increased height growth  

E-Print Network (OSTI)

studies that suggest that hydraulic limitation may not onlyand Dawson 2007). The hydraulic limitation hypothesis isevidence that the hydraulic cost of increased frictional

Renninger, Heidi J.; Phillips, Nathan; Hodel, Donald R.

2009-01-01T23:59:59.000Z

176

The feasibility of hydraulic energy recovery from geopressured- geothermal resources  

DOE Green Energy (OSTI)

This report presents the results of a study conducted by the Idaho National Engineering Laboratory (INEL) for DOE on the application of hydraulic energy recovery from geopressured-geothermal resources. The report examines both the technical and economic feasibility. Previous reports and demonstrations of geopressured-geothermal energy have been directed to the recovery of heat and methane. This report is specifically directed to extracting the pressure component of a typical reservoir. The pressure energy available in a 220 psia geopressured fluid could yield 1.49 W{center dot}h per pound and an average well could produce 500kW. The best available device for recovering this energy is a Pelton turbine. Commercial Pelton turbines are not available for this application but are technically feasible. Suitable turbines could be developed with first of a kind engineering and tooling costs of approximately $227,000. The breakeven cost to add conversion of hydraulic energy to an existing methane/heat recovery system would be $0.030 per kWh based on a 10 year lifetime. Development testing is necessary to understand the effect of the dissolved gases, verify cavitation suppression, and materials selection. Cavitation suppression would be provided by utilizing the gas backpressure of the dissolved methane and carbon dioxide that exists in the geofluid. It is estimated that adding conversion of hydraulic energy to an operating system recovering heat and methane could reduce the overall cost of electrical production by about 1.5 cents per kWh. This is not a viable stand-alone system is the well costs are to be born by the conversion of hydraulic energy alone. 5 refs., 4 figs., 2 tabs.

Thurston, G.C.; Plum, M.M.

1991-09-01T23:59:59.000Z

177

Geomechanical review of hydraulic fracturing technology  

E-Print Network (OSTI)

Hydraulic fracturing as a method for recovering unconventional shale gas has been around for several decades. Significant research and improvement in field methods have been documented in literature on the subject. The ...

Arop, Julius Bankong

2013-01-01T23:59:59.000Z

178

Hydraulic Fracturing Technology | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Oil & Gas » Shale Gas » Hydraulic Oil & Gas » Shale Gas » Hydraulic Fracturing Technology Hydraulic Fracturing Technology Image taken from "Shale Gas: Applying Technology to Solve America's Energy Challenges," NETL, 2011. Image taken from "Shale Gas: Applying Technology to Solve America's Energy Challenges," NETL, 2011. Hydraulic fracturing is a technique in which large volumes of water and sand, and small volumes of chemical additives are injected into low-permeability subsurface formations to increase oil or natural gas flow. The injection pressure of the pumped fluid creates fractures that enhance gas and fluid flow, and the sand or other coarse material holds the fractures open. Most of the injected fluid flows back to the wellbore and is pumped to the surface.

179

HYDRAULIC CEMENT PREPARATION FROM LURGI SPENT SHALE  

E-Print Network (OSTI)

hydraulic cement from spent oil shale," Vol. 10, No. 4, p.J. W. , "Colorado's primary oil shale resource for verticalJ. B. , "Simulated effects of oil-shale development on the

Mehta, P.K.

2013-01-01T23:59:59.000Z

180

On the Use of Rotating Hydraulic Models  

Science Conference Proceedings (OSTI)

Two problems regarding the use of rotating hydraulic channel flow models are addressed. The first concerns the difficulties encountered when trying to identify the “potential” depth for a flow of uniform (but nonzero) potential vorticity in a ...

K. M. Borenäs; L. J. Pratt

1994-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "glass products hydraulic" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Definition: Hydraulic Fracturing | Open Energy Information  

Open Energy Info (EERE)

Jump to: navigation, search Dictionary.png Hydraulic Fracturing The process used in the Oil and Gas industry of drilling deep into the ground and injecting water, sand, and other...

182

Acoustic Character Of Hydraulic Fractures In Granite  

E-Print Network (OSTI)

Hydraulic fractures in homogeneous granitic rocks were logged with conventional acoustic-transit-time, acoustic-waveform, and acoustic-televiewer logging systems. Fractured intervals ranged in depth from 45 to 570m. and ...

Paillet, Frederick I.

1983-01-01T23:59:59.000Z

183

HYDRAULIC CEMENT PREPARATION FROM LURGI SPENT SHALE  

E-Print Network (OSTI)

hydraulic cement from spent oil shale," Vol. 10, No. 4, p.J. W. , "Colorado's primary oil shale resource for verticalSimulated effects of oil-shale development on the hydrology

Mehta, P.K.

2013-01-01T23:59:59.000Z

184

Flow Properties in Rotating, Stratified Hydraulics  

Science Conference Proceedings (OSTI)

This paper discusses three distinct features of rotating, stratified hydraulics, using a reduced-gravity configuration. First, a new upstream condition is derived corresponding to a wide, almost motionless basin, and this is applied to flow ...

Peter D. Killworth

1992-09-01T23:59:59.000Z

185

Hydraulic fracture optimization using hydraulic fracture and reservoir modeling in the Piceance Basin, Colorado.  

E-Print Network (OSTI)

??Hydraulic fracturing is an important stimulation method for producing unconventional gas reserves. Natural fractures are present in many low-permeability gas environments and often provide important… (more)

Reynolds, Harris Allen

2012-01-01T23:59:59.000Z

186

Hydraulic frac sets Rockies depth record  

SciTech Connect

A depth record for massive hydraulic fracture in the Rocky Mt. region was set April 22 with the treatment of a central Wyoming gas well. The No. 1-29 Moneta Hills Well was treated through perforations at 19,838 to 19,874 ft and 20,064 to 20,100 ft. Soon after, another well in the Madden Deep Field was subject to hydraulic fracture through perforations a

Not Available

1980-06-01T23:59:59.000Z

187

25 kWe solar thermal stirling hydraulic engine system: Final conceptual design report  

DOE Green Energy (OSTI)

This report documents the conceptual design and analysis of a solar thermal free-piston Stirling hydraulic engine system designed to deliver 25 kWe when coupled to the 11-meter Test Bed Concentrator at Sandia National Laboratories. A manufacturing cost assessment for 10,000 units per year was made by Pioneer Engineering and Manufacturing. The design meets all program objectives including a 60,000-hr design life, dynamic balancing, fully automated control, >33.3% overall system efficiency, properly conditioned power, maximum utilization of annualized insolation, and projected production costs of $300/kW. The system incorporates a simple, rugged, reliable pool boiler reflux heat pipe to transfer heat from the solar receiver to the Stirling engine. The free-piston engine produces high-pressure hydraulic flow which powers a commercial hydraulic motor that, in turn, drives a commercial rotary induction generator. The Stirling hydraulic engine uses hermetic bellows seals to separate helium working gas from hydraulic fluid which provides hydrodynamic lubrication to all moving parts. Maximum utilization of highly refined, field proven commercial components for electric power generation minimizes development cost and risk. The engine design is based on a highly refined Stirling hydraulic engine developed over 20 years as a fully implantable artificial heart power source. 4 refs., 19 figs., 3 tabs.

Not Available

1988-01-01T23:59:59.000Z

188

Graded Bioactive Glass and Glass/Ceramic Coatings for ...  

For Industry; For Researchers; Success Stories; About Us; Available Technologies. ... Graded Bioactive Glass and Glass/Ceramic Coatings for Metal Bone ...

189

Importance of glass and brass  

E-Print Network (OSTI)

The importance of scientific instruments in the scientific revolution, especially brass and glass. Precise lenses and lens grinding, glass vessels for chemical experiments, the advances in astronomy, microscopy and many other areas due to glass...

Dugan, David

2004-08-17T23:59:59.000Z

190

Sol-GelGlasses  

NLE Websites -- All DOE Office Websites (Extended Search)

Sol-Gel Glasses Sol-Gel Glasses Manufacturing Technologies The Manufacturing Science & Technology Center conducts process development and scale-up of ceramic and glass materials prepared by the sol- gel process. Sol-gel processing uses solutions prepared at low temperature rather than high temperature powder processing to make materi- als with controlled properties. A precursor sol-gel solution (sol) is either poured into a mold and allowed to gel or is diluted and applied to a sub- strate by spinning, dipping, spraying, elec- trophoresis, inkjet printing or roll coating. Controlled drying of the wet gel results in either a ceramic or glass bulk part or a thin film on a glass, plastic, ceramic or metal substrate. Sol-gel derived materials have diverse applications in optics, electronics, energy, space, sensors and

191

Advanced Hydraulic Fracturing Technology for Unconventional Tight Gas Reservoirs  

Science Conference Proceedings (OSTI)

The objectives of this project are to develop and test new techniques for creating extensive, conductive hydraulic fractures in unconventional tight gas reservoirs by statistically assessing the productivity achieved in hundreds of field treatments with a variety of current fracturing practices ranging from 'water fracs' to conventional gel fracture treatments; by laboratory measurements of the conductivity created with high rate proppant fracturing using an entirely new conductivity test - the 'dynamic fracture conductivity test'; and by developing design models to implement the optimal fracture treatments determined from the field assessment and the laboratory measurements. One of the tasks of this project is to create an 'advisor' or expert system for completion, production and stimulation of tight gas reservoirs. A central part of this study is an extensive survey of the productivity of hundreds of tight gas wells that have been hydraulically fractured. We have been doing an extensive literature search of the SPE eLibrary, DOE, Gas Technology Institute (GTI), Bureau of Economic Geology and IHS Energy, for publicly available technical reports about procedures of drilling, completion and production of the tight gas wells. We have downloaded numerous papers and read and summarized the information to build a database that will contain field treatment data, organized by geographic location, and hydraulic fracture treatment design data, organized by the treatment type. We have conducted experimental study on 'dynamic fracture conductivity' created when proppant slurries are pumped into hydraulic fractures in tight gas sands. Unlike conventional fracture conductivity tests in which proppant is loaded into the fracture artificially; we pump proppant/frac fluid slurries into a fracture cell, dynamically placing the proppant just as it occurs in the field. From such tests, we expect to gain new insights into some of the critical issues in tight gas fracturing, in particular the roles of gel damage, polymer loading (water-frac versus gel frac), and proppant concentration on the created fracture conductivity. To achieve this objective, we have designed the experimental apparatus to conduct the dynamic fracture conductivity tests. The experimental apparatus has been built and some preliminary tests have been conducted to test the apparatus.

Stephen Holditch; A. Daniel Hill; D. Zhu

2007-06-19T23:59:59.000Z

192

Interwell tracer analyses of a hydraulically fractured granitic geothermal reservoir  

DOE Green Energy (OSTI)

Field experiments using fluorescent dye and radioactive tracers (Br{sup 82} and I{sup 131}) have been employed to characterize a hot, low-matrix permeability, hydraulically-fractured granitic reservoir at depths of 2440 to 2960 m (8000 to 9700 ft). Tracer profiles and residence time distributions have been used to delineate changes in the fracture system, particularly in diagnosing pathological flow patterns and in identifying new injection and production zones. The effectiveness of one- and two-dimensional theoretical dispersion models utilizing single and multiple porous, fractured zones with velocity and formation dependent effects are discussed with respect to actual field data.

Tester, J.W.; Potter, R.M.; Bivins, R.L.

1979-01-01T23:59:59.000Z

193

Coordinated studies in support of hydraulic fracturing of coalbed methane. Annual report, January 1993-April 1994  

SciTech Connect

The production of natural gas from coal typically requires stimulation in the form of hydraulic fracturing and, more recently, cavity completions. The results of hydraulic fracturing treatments have ranged from extremely successful to less than satisfactory. The purpose of this work is to characterize common and potential fracturing fluids in terms of coal-fluid interactions to identify reasons for less than satisfactory performance and to ultimately devise alternative fluids and treatment procedures to optimize production following hydraulic fracturing. The laboratory data reported herein has proven helpful in designing improved hydraulic fracturing treatments and remedial treatments in the Black Warrior Basin. Acid inhibitors, scale inhibitors, additives to improve coal relative permeability to gas, and non-damaging polymer systems for hydraulic fracturing have been screened in coal damage tests. The optimum conditions for creating field-like foams in the laboratory have been explored. Tests have been run to identify minimum polymer and surfactant concentrations for applications of foam in coal. The roll of 100 mesh sand in controlling leakoff and impairing conductivity in coal has been investigated. The leakoff and proppant transport of fluids with breaker has been investigated and recommendations have been made for breaker application to minimize damage potential in coal. A data base called COAL`S has been created in Paradox (trademark) for Windows to catalogue coalbed methane activities in the Black Warrior and San Juan Basins.

Penny, G.S.; Conway, M.W.

1994-08-01T23:59:59.000Z

194

Uncertainty in the maximum principal stress estimated from hydraulic fracturing Measurements due to the presence of the induced fracture  

E-Print Network (OSTI)

Laboratory study of hydraulic fracturing pressure data?Howevaluation of hydraulic fracturing stress measurementreopening during hydraulic fracturing stress determinations.

Rutqvist, Jonny; Tsang, Chin-fu; Stephansson, Ove

2000-01-01T23:59:59.000Z

195

Potential for energy conservation in the glass industry  

SciTech Connect

While the glass industry (flat glass, container glass, pressed and blown glass, and insulation fiber glass) has reduced its specific energy use (Btu/ton) by almost 30% since 1972, significant potential for further reduction still remains. State-of-the-art technologies are available which could lead to incremental improvements in glass industry energy productivity; however, these technologies must compete for capital with projects undertaken for other reasons (e.g., capacity expansion, equipment rebuild, labor cost reduction, product quality improvement, or compliance with environmental, health or safety regulations). Narrowing profit margins in the large tonnage segments of the glass industry in recent years and the fact that energy costs represent less than 25% of the value added in glass manufacture have combined to impede the widespread adoption of many state-of-the-art conservation technologies. Savings in energy costs alone have not provided the incentive to justify the capital expenditures required to realize the energy savings. Beyond implementation of state-of-the-art technologies, significant potential energy savings could accrue from advanced technologies which represent a radical departure from current glass making technology. Long-term research and development (R and D) programs, which address the technical and economic barriers associated with advanced, energy-conserving technologies, offer the opportunity to realize this energy-saving potential.

Garrett-Price, B.A.; Fassbender, A.G.; Bruno, G.A.

1986-06-01T23:59:59.000Z

196

EMPIRICAL MODEL FOR FORMULATION OF CRYSTAL-TOLERANT HLW GLASSES  

Science Conference Proceedings (OSTI)

Historically, high-level waste (HLW) glasses have been formulated with a low liquideus temperature (T{sub L}), or temperature at which the equilibrium fraction of spinel crystals in the melt is below 1 vol % (T{sub 0.01}), nominally below 1050 C. These constraints cannot prevent the accumulation of large spinel crystals in considerably cooler regions ({approx} 850 C) of the glass discharge riser during melter idling and significantly limit the waste loading, which is reflected in a high volume of waste glass, and would result in high capital, production, and disposal costs. A developed empirical model predicts crystal accumulation in the riser of the melter as a function of concentration of spinel-forming components in glass, and thereby provides guidance in formulating crystal-tolerant glasses that would allow high waste loadings by keeping the spinel crystals small and therefore suspended in the glass.

KRUGER AA; MATYAS J; HUCKLEBERRY AR; VIENNA JD; RODRIGUEZ CA

2012-03-07T23:59:59.000Z

197

Glass electrolyte composition  

DOE Patents (OSTI)

An ionically conductive glass is disclosed for use as electrolyte in a high temperature electrochemical cell, particularly a cell with sodium anode and sulfur cathode. The glass includes the constituents Na/sub 2/O, ZrO/sub 2/, Al/sub 2/O/sub 3/ and SiO/sub 2/ in selected proportions to be a single phase solid solution substantially free of crystalline regions and undissolved constituents. Other advantageous properties are an ionic conductivity in excess of 2 x 10/sup -3/ (ohm-cm)/sup -1/ at 300/sup 0/C and a glass transition temperature in excess of 500/sup 0/C.

Kucera, G.H.; Roche, M.F.

1985-01-08T23:59:59.000Z

198

Engineering Glass Passivation Layers -Model Results  

SciTech Connect

The immobilization of radioactive waste into glass waste forms is a baseline process of nuclear waste management not only in the United States, but worldwide. The rate of radionuclide release from these glasses is a critical measure of the quality of the waste form. Over long-term tests and using extrapolations of ancient analogues, it has been shown that well designed glasses exhibit a dissolution rate that quickly decreases to a slow residual rate for the lifetime of the glass. The mechanistic cause of this decreased corrosion rate is a subject of debate, with one of the major theories suggesting that the decrease is caused by the formation of corrosion products in such a manner as to present a diffusion barrier on the surface of the glass. Although there is much evidence of this type of mechanism, there has been no attempt to engineer the effect to maximize the passivating qualities of the corrosion products. This study represents the first attempt to engineer the creation of passivating phases on the surface of glasses. Our approach utilizes interactions between the dissolving glass and elements from the disposal environment to create impermeable capping layers. By drawing from other corrosion studies in areas where passivation layers have been successfully engineered to protect the bulk material, we present here a report on mineral phases that are likely have a morphological tendency to encrust the surface of the glass. Our modeling has focused on using the AFCI glass system in a carbonate, sulfate, and phosphate rich environment. We evaluate the minerals predicted to form to determine the likelihood of the formation of a protective layer on the surface of the glass. We have also modeled individual ions in solutions vs. pH and the addition of aluminum and silicon. These results allow us to understand the pH and ion concentration dependence of mineral formation. We have determined that iron minerals are likely to form a complete incrustation layer and we plan to look more closely at Vivianite [Fe3(PO4)2-8(H2O)] and Siderite [FeCO3] in the next stage of the project.

Skorski, Daniel C.; Ryan, Joseph V.; Strachan, Denis M.; Lepry, William C.

2011-08-08T23:59:59.000Z

199

Waste glass weathering  

Science Conference Proceedings (OSTI)

The weathering of glass is reviewed by examining processes that affect the reaction of commercial, historical, natural, and nuclear waste glass under conditions of contact with humid air and slowly dripping water, which may lead to immersion in nearly static solution. Radionuclide release data from weathered glass under conditions that may exist in an unsaturated environment are presented and compared to release under standard leaching conditions. While the comparison between the release under weathering and leaching conditions is not exact, due to variability of reaction in humid air, evidence is presented of radionuclide release under a variety of conditions. These results suggest that both the amount and form of radionuclide release can be affected by the weathering of glass.

Bates, J.K.; Buck, E.C.

1993-12-31T23:59:59.000Z

200

Bulk Metallic Glasses X  

Science Conference Proceedings (OSTI)

Jul 31, 2012 ... Aerospace and Spacecraft Applications for Bulk Metallic Glasses and Matrix Composites · Air Oxidation of a Binary Cu64.5Zr35.5 Bulk Metallic ...

Note: This page contains sample records for the topic "glass products hydraulic" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Bulk Metallic Glasses VII  

Science Conference Proceedings (OSTI)

Sponsorship, The Minerals, Metals and Materials Society ... Air-Oxidation of a ( Zr55Cu30Al10Ni5)98Er2 Bulk Metallic Glass at 350-500oc · Anelastic ...

202

Terahertz Properties of Glasses  

Science Conference Proceedings (OSTI)

A review of advances in THz-TDS spectroscopy of selected glass families ... Field Assisted Viscous Flow and Crystallization in a Sodium Aluminosilicate ... Molecular Mechanisms of the Conversion Reaction in FeF2 Cathodes Exposed to Li in ...

203

HYDRAULIC FRACTURING AND OVERCORING STRESS MEASUREMENTS IN A DEEP BOREHOLE AT THE STRIPA TEST MINE, SWEDEN  

E-Print Network (OSTI)

u l y 2 , 1 9 8 1 HYDRAULIC FRACTURING AND OVERCORING STRESSI nun LBL-12478 HYDRAULIC FRACTURING AND OVERCORING STRESSthe calculated stress. n HYDRAULIC FRACTURING EQUIPMENT AND

Doe, T.

2010-01-01T23:59:59.000Z

204

Acoustic Emission in a Fluid Saturated Hetergeneous Porous Layer with Application to Hydraulic Fracture  

E-Print Network (OSTI)

responses during hydraulic fracturing, and aid developmentFracture Monitoring Hydraulic fracturing is a method forfluids" used for hydraulic fracturing, the above frequencies

Nelson, J.T.

2009-01-01T23:59:59.000Z

205

A Self-Consistent Approach for Calculating the Effective Hydraulic Conductivity of a Bimodal, Heterogeneous Medium  

E-Print Network (OSTI)

Snow, D.T. , Anisotropic Hydraulic conductivity of FracturedComparison of the effective hydraulic conductivity near theestimation of effective hydraulic conductivity in sand-shale

Pozdniakov, Sergey; Tsang, Chin-Fu

2004-01-01T23:59:59.000Z

206

Hydraulic controls on river biota and the consequence for ecosystem processes.  

E-Print Network (OSTI)

periphyton biomass on hydraulic characteristics and nutrientheterogeneity. Journal of Hydraulic Engineering 110:1568-morphology. Journal Of Hydraulic Engineering 129:885- Power,

Limm, Michael Peter

2009-01-01T23:59:59.000Z

207

OBSERVATIONS OF A POTENTIAL SIZE-EFFECT IN EXPERIMENTAL DETERMINATION OF THE HYDRAULIC PROPERTIES OF FRACTURES  

E-Print Network (OSTI)

DETERMINATION OF THE HYDRAULIC PROPERTIES OF FRACTURES P. A.cell 5. Variation of hydraulic conductivity in a fracturecceleratior of gravity hydraulic head fracture intrinsic

Witherspoon, P.A.

2010-01-01T23:59:59.000Z

208

Alternative representations of in-stream habitat: classification using remote sensing, hydraulic modeling, and fuzzy logic  

E-Print Network (OSTI)

C. , 1996, Two-dimensional hydraulic simulation of physicalfish: Linking statistical hydraulic models with multivariateusing Remote Sensing, Hydraulic Modeling, and Fuzzy Logic

Legleiter, Carl J.; Goodchild, M F

2005-01-01T23:59:59.000Z

209

The Hydraulic Institute: Who We Are  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Hydraulic Institute: Hydraulic Institute: Who We Are The Global Authority on Pumps and Pumping Systems As the developer of the universally acclaimed ANSI/HI Pump Standards, a key reference for pump knowledge and end-user specifications, the Hydraulic Institute (HI) provides its members with timely and essential resources for the advancement of their pump industry businesses. HI is also an indispensable asset for business intelligence, professional development, and pump industry leadership and advocacy, serving as the unequivocal voice of the North American pump industry since its inception in 1917. The Institute has become the industry resource for cutting- edge educational programs, critical industry reports, business-enhancing services, and a myriad of opportunities

210

The hydraulic jump as a white hole  

E-Print Network (OSTI)

In the geometry of the circular hydraulic jump, the velocity of the liquid in the interior region exceeds the speed of capillary-gravity waves (ripplons), whose spectrum is `relativistic' in the shallow water limit. The velocity flow is radial and outward, and thus the relativistic ripplons cannot propagating into the interior region. In terms of the effective 2+1 dimensional Painleve-Gullstrand metric appropriate for the propagating ripplons, the interior region imitates the white hole. The hydraulic jump represents the physical singularity at the white-hole horizon. The instability of the vacuum in the ergoregion inside the circular hydraulic jump and its observation in recent experiments on superfluid 4He by E. Rolley, C. Guthmann, M.S. Pettersen and C. Chevallier in physics/0508200 are discussed.

G. E. Volovik

2005-08-30T23:59:59.000Z

211

Hydraulic characterization of hydrothermally altered Nopal tuff  

SciTech Connect

Understanding the mechanics of variably saturated flow in fractured-porous media is of fundamental importance to evaluating the isolation performance of the proposed high-level radioactive waste repository for the Yucca Mountain site. Developing that understanding must be founded on the analysis and interpretation of laboratory and field data. This report presents an analysis of the unsaturated hydraulic properties of tuff cores from the Pena Blanca natural analog site in Mexico. The basic intent of the analysis was to examine possible trends and relationships between the hydraulic properties and the degree of hydrothermal alteration exhibited by the tuff samples. These data were used in flow simulations to evaluate the significance of a particular conceptual (composite) model and of distinct hydraulic properties on the rate and nature of water flow.

Green, R.T.; Meyer-James, K.A. [Southwest Research Institute, San Antonio, TX (United States); Rice, G. [George Rice and Associates, San Antonio, TX (United States)

1995-07-01T23:59:59.000Z

212

Bucknell Hydraulic Flume | Open Energy Information  

Open Energy Info (EERE)

Hydraulic Flume Hydraulic Flume Jump to: navigation, search Basic Specifications Facility Name Bucknell Hydraulic Flume Overseeing Organization Bucknell University Hydrodynamic Testing Facility Type Flume Length(m) 9.8 Beam(m) 1.2 Depth(m) 0.6 Water Type Freshwater Cost(per day) Depends on personnel requirements Towing Capabilities Towing Capabilities Yes Maximum Velocity(m/s) 2.7 Wavemaking Capabilities Wavemaking Capabilities None Channel/Tunnel/Flume Channel/Tunnel/Flume Yes Velocity(m/s) 2.7 Recirculating Yes Wind Capabilities Wind Capabilities None Control and Data Acquisition Description Various sensors available on a test-by-test basis Available Sensors Flow, Velocity Data Generation Capability Real-Time No Integrated Display/Graphics Microsoft Windows based systems

213

Hydraulic Conductivity of the Monticello Permeable Reactive Barrier  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Hydraulic Conductivity of the Monticello Permeable Reactive Barrier Hydraulic Conductivity of the Monticello Permeable Reactive Barrier November 2005 Update Hydraulic Conductivity of the Monticello Permeable Reactive Barrier November 2005 Update Hydraulic Conductivity of the Monticello Permeable Reactive Barrier November 2005 Update Hydraulic Conductivity of the Monticello Permeable Reactive Barrier November 2005 Update More Documents & Publications Variation in Hydraulic Conductivity Over Time at the Monticello Permeable Reactive Barrier Performance Assessment and Recommendations for Rejuvenation of a Permeable Reactive Barrier: Cotter Corporation's Cañon City, Colorado, Uranium Mill Performance Assessment and Recommendations for Rejuvenation of a Permeable Reactive Barrier: Cotter Corporation's Cañon City, Colorado, Uranium

214

Hydraulic Conductivity of the Monticello Permeable Reactive Barrier  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Hydraulic Conductivity of the Monticello Permeable Reactive Barrier Hydraulic Conductivity of the Monticello Permeable Reactive Barrier November 2005 Update Hydraulic Conductivity of the Monticello Permeable Reactive Barrier November 2005 Update Hydraulic Conductivity of the Monticello Permeable Reactive Barrier November 2005 Update Hydraulic Conductivity of the Monticello Permeable Reactive Barrier November 2005 Update More Documents & Publications Variation in Hydraulic Conductivity Over Time at the Monticello Permeable Reactive Barrier Ground-Water Table and Chemical Changes in an Alluvial Aquifer During Sustained Pumping at the Monticello, Utah, Zero-Valent Iron Treatment Cells Performance Assessment and Recommendations for Rejuvenation of a Permeable Reactive Barrier: Cotter Corporation's Cañon City, Colorado, Uranium

215

Baseline LAW Glass Formulation Testing  

Science Conference Proceedings (OSTI)

The major objective of the baseline glass formulation work was to develop and select glass formulations that are compliant with contractual and processing requirements for each of the LAW waste streams. Other objectives of the work included preparation and characterization of glasses with respect to the properties of interest, optimization of sulfate loading in the glasses, evaluation of ability to achieve waste loading limits, testing to demonstrate compatibility of glass melts with melter materials of construction, development of glass formulations to support ILAW qualification activities, and identification of glass formulation issues with respect to contract specifications and processing requirements.

Kruger, Albert A. [USDOE Office of River Protection, Richland, WA (United States); Mooers, Cavin [The Catholic University of America, Washington, DC (United States). Vitreous State Lab.; Bazemore, Gina [The Catholic University of America, Washington, DC (United States). Vitreous State Lab; Pegg, Ian L. [The Catholic University of America, Washington, DC (United States). Vitreous State Lab; Hight, Kenneth [The Catholic University of America, Washington, DC (United States). Vitreous State Lab; Lai, Shan Tao [The Catholic University of America, Washington, DC (United States). Vitreous State Lab; Buechele, Andrew [The Catholic University of America, Washington, DC (United States). Vitreous State Lab; Rielley, Elizabeth [The Catholic University of America, Washington, DC (United States). Vitreous State Lab; Gan, Hao [The Catholic University of America, Washington, DC (United States). Vitreous State Lab; Muller, Isabelle S. [The Catholic University of America, Washington, DC (United States). Vitreous State Lab; Cecil, Richard [The Catholic University of America, Washington, DC (United States). Vitreous State Lab

2013-06-13T23:59:59.000Z

216

Measurement Research of Borehole-to-Surface Electric Potential Gradient Method in Monitoring Hydraulic Fracture  

Science Conference Proceedings (OSTI)

As the main measures to improve oil and gas production, hydraulic fracturing has been widely applied in modern oil industry. By means of lower resistance properties of fracturing fluid, borehole-to-surface electric potential gradient method analyses ... Keywords: borehole-to-surface electric method, Ab normal depth, launch current, polar distance, electric potential gradient

Tingting Li; Kaiguang Zhu; Jia Wang; Chunling Qiu; Jun Lin

2012-04-01T23:59:59.000Z

217

Self-potential observations during hydraulic fracturing  

SciTech Connect

The self-potential (SP) response during hydraulic fracturing of intact Sierra granite was investigated in the laboratory. Excellent correlation of pressure drop and SP suggests that the SP response is created primarily by electrokinetic coupling. For low pressures, the variation of SP with pressure drop is linear, indicating a constant coupling coefficient (Cc) of -200 mV/MPa. However for pressure drops >2 MPa, the magnitude of the Cc increases by 80% in an exponential trend. This increasing Cc is related to increasing permeability at high pore pressures caused by dilatancy of micro-cracks, and is explained by a decrease in the hydraulic tortuosity. Resistivity measurements reveal a decrease of 2% prior to hydraulic fracturing and a decrease of {approx}35% after fracturing. An asymmetric spatial SP response created by injectate diffusion into dilatant zones is observed prior to hydraulic fracturing, and in most cases this SP variation revealed the impending crack geometry seconds before failure. At rupture, injectate rushes into the new fracture area where the zeta potential is different than in the rock porosity, and an anomalous SP spike is observed. After fracturing, the spatial SP distribution reveals the direction of fracture propagation. Finally, during tensile cracking in a point load device with no water flow, a SP spike is observed that is caused by contact electrification. However, the time constant of this event is much less than that for transients observed during hydraulic fracturing, suggesting that SP created solely from material fracture does not contribute to the SP response during hydraulic fracturing.

Moore, Jeffrey R.; Glaser, Steven D.

2007-09-13T23:59:59.000Z

218

Downhole mud properties complicate drilling hydraulics  

Science Conference Proceedings (OSTI)

This paper explains that wellsite parameters such as penetration rate, hole cleaning, hole erosion and overall wellbore stability are directly related to the hydraulic conditions occurring while drilling. Drilling hydraulics, in turn, are largely a function of the drilling mud's properties, primarily viscosity and density. Accurate pressure loss calculations are necessary to maximize bit horse-power and penetration rates. Also, annular pressure loss measurements are important to record equivalent circulating densities, particularly when drilling near balanced formation pressures or when approaching formation fracture pressures. Determination of the laminar, transitional or turbulent flow regimes will help ensure the mud will remove drill cuttings from the wellbore and minimize hole erosion.

Leyendecker, E.A.; Bruton, J.R.

1986-10-01T23:59:59.000Z

219

Sizing of a hot dry rock reservoir from a hydraulic fracturing experiment  

DOE Green Energy (OSTI)

Hot dry rock (HDR) reservoirs do not lend themselves to the standard methods of reservoir sizing developed in the petroleum industry such as the buildup/drawdown test. In a HDR reservoir the reservoir is created by the injection of fluid. This process of hydraulic fracturing of the reservoir rock usually involves injection of a large volume (5 million gallons) at high rates (40BPM). A methodology is presented for sizing the HDR reservoir created during the hydraulic fracturing process. The reservoir created during a recent fracturing experiment is sized using the techniques presented. This reservoir is then investigated for commercial potential by simulation of long term power production. 5 refs., 7 figs.

Zyvoloski, G.

1985-01-01T23:59:59.000Z

220

Light-water-reactor coupled neutronic and thermal-hydraulic codes  

Science Conference Proceedings (OSTI)

An overview is presented of computer codes that model light water reactor cores with coupled neutronics and thermal-hydraulics. This includes codes for transient analysis and codes for steady state analysis which include fuel depletion and fission product buildup. Applications in nuclear design, reactor operations and safety analysis are given and the major codes in use in the USA are identified. The neutronic and thermal-hydraulic methodologies and other code features are outlined for three steady state codes (PDQ7, NODE-P/B and SIMULATE) and four dynamic codes (BNL-TWIGL, MEKIN, RAMONA-3B, RETRAN-02). Speculation as to future trends with such codes is also presented.

Diamond, D.J.

1982-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "glass products hydraulic" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Discussion of comparison study of hydraulic fracturing models -- Test case: GRI Staged Field Experiment No. 3  

Science Conference Proceedings (OSTI)

This paper provides comments to a companion journal paper on predictive modeling of hydraulic fracturing patterns (N.R. Warpinski et. al., 1994). The former paper was designed to compare various modeling methods to demonstrate the most accurate methods under various geologic constraints. The comments of this paper are centered around potential deficiencies in the former authors paper which include: limited actual comparisons offered between models, the issues of matching predictive data with that from related field operations was lacking or undocumented, and the relevance/impact of accurate modeling on the overall hydraulic fracturing cost and production.

Cleary, M.P.

1994-02-01T23:59:59.000Z

222

Expanded High-Level Waste Glass Property Data Development: Phase I  

Science Conference Proceedings (OSTI)

Two separate test matrices were developed as part if the EM-21 Glass Matrix Crucible Testing. The first matrix, developed using a single component-at-a-time design method and covering glasses of interest primarily to Hanford, is addressed in this data package. This data package includes methods and results from glass fabrication, chemical analysis of glass compositions, viscosity, electrical conductivity, liquidus temperature, canister centerline cooling, product consistency testing, and the toxicity characteristic leach procedure.

Schweiger, Michael J.; Riley, Brian J.; Crum, Jarrod V.; Hrma, Pavel R.; Rodriguez, Carmen P.; Arrigoni, Benjamin M.; Lang, Jesse B.; Kim, Dong-Sang; Vienna, John D.; Raszewski, F. C.; Peeler, David K.; Edwards, Tommy B.; Best, D. R.; Reamer, Irene A.; Riley, W. T.; Simmons, P. T.; Workman, R. J.

2011-01-21T23:59:59.000Z

223

DWPF GLASS BEADS AND GLASS FRIT TRANSPORT DEMONSTRATION  

SciTech Connect

DWPF is considering replacing irregularly shaped glass frit with spherical glass beads in the Slurry Mix Evaporator (SME) process to decrease the yield stress of the melter feed (a non-Newtonian Bingham Plastic). Pilot-scale testing was conducted on spherical glass beads and glass frit to determine how well the glass beads would transfer when compared to the glass frit. Process Engineering Development designed and constructed the test apparatus to aid in the understanding and impacts that spherical glass beads may have on the existing DWPF Frit Transfer System. Testing was conducted to determine if the lines would plug with the glass beads and the glass frit slurry and what is required to unplug the lines. The flow loop consisted of vertical and horizontal runs of clear PVC piping, similar in geometry to the existing system. Two different batches of glass slurry were tested: a batch of 50 wt% spherical glass beads and a batch of 50 wt% glass frit in process water. No chemicals such as formic acid was used in slurry, only water and glass formers. The glass beads used for this testing were commercially available borosilicate glass of mesh size -100+200. The glass frit was Frit 418 obtained from DWPF and is nominally -45+200 mesh. The spherical glass beads did not have a negative impact on the frit transfer system. The transferring of the spherical glass beads was much easier than the glass frit. It was difficult to create a plug with glass bead slurry in the pilot transfer system. When a small plug occurred from setting overnight with the spherical glass beads, the plug was easy to displace using only the pump. In the case of creating a man made plug in a vertical line, by filling the line with spherical glass beads and allowing the slurry to settle for days, the plug was easy to remove by using flush water. The glass frit proved to be much more difficult to transfer when compared to the spherical glass beads. The glass frit impacted the transfer system to the point that the test apparatus had to be disassembled to dislodge the plugs created in the system.

Adamson, D; Bradley Pickenheim, B

2008-11-24T23:59:59.000Z

224

IMPACTS OF SMALL COLUMN ION EXCHANGE STREAMS ON DWPF GLASS FORMULATION KT07-SERIES GLASS COMPOSITIONS  

Science Conference Proceedings (OSTI)

This report is the third in a series of studies of the impacts of the addition of Crystalline Silicotitanate (CST) and Monosodium Titanate (MST) from the Small Column Ion Exchange (SCIX) process on the Defense Waste Processing Facility (DWPF) glass waste form and the applicability of the DWPF process control models. MST from the Salt Waste Processing Facility is also considered in the study. The KT07-series glasses were selected to evaluate any potential impacts of noble metals on their properties and performance. The glasses characterized thus far for the SCIX study have not included noble metals since they are not typically tracked in sludge batch composition projections. However, noble metals can act as nucleation sites in glass melts, leading to enhanced crystallization. This crystallization can potentially influence the properties and performance of the glass, such as chemical durability, viscosity, and liquidus temperature. The noble metals Ag, Pd, Rh, and Ru were added to the KT07-series glasses in concentrations based on recent measurements of Sludge Batch 6, which was considered to contain a high concentration of noble metals. The KT04-series glasses were used as the baseline compositions. After fabrication, the glasses were characterized to determine their homogeneity, chemical composition, durability, and viscosity. Liquidus temperature measurements are also underway but were not complete at the time of this report. The liquidus temperature results for the KT07-series glasses, along with several of the earlier glasses in the SCIX study, will be documented separately. All of the KT07-series glasses, both quenched and slowly cooled, were found to be amorphous by X-ray diffraction. Chemical composition measurements showed that all of the glasses met their targeted compositions. The Product Consistency Test (PCT) results showed that all of the glasses had chemical durabilities that were far better than that of the Environmental Assessment benchmark glass. The measured PCT responses were well predicted by the current DWPF Product Composition Control System (PCCS) durability models. The measured viscosity values for each KT07-series glass were acceptable for DWPF processing and were well predicted by the current PCCS model. Overall, the results show that the inclusion of relatively high concentrations of noble metals (in terms of expected values for a DWPF sludge batch) had no significant impact on the properties and performance of these glass compositions. There were no significant differences in the measured properties when compared to those of the KT04-series glasses, which did not contain noble metals. Liquidus temperature measurements are still underway and there may be an impact of the noble metals on those measurements. However, no adverse effects were noted in terms of crystallization after slow cooling. At the completion of these studies, all of the data generated will be reviewed with regard to the applicability of the DWPF PCCS models and recommendations will be made as to whether the validation ranges of the current models can be extended, or whether some or all of the models need to be refit to allow for the incorporation of the SCIX streams. As changes are made to the projected sludge compositions and the volume of the SCIX material, additional evaluations should be performed.

Fox, K.; Edwards, T.

2011-01-12T23:59:59.000Z

225

ECONOMIC RECOVERY OF OIL TRAPPED AT FAN MARGINS USING HIGH ANGLE WELLS AND MULTIPLE HYDRAULIC FRACTURES  

Science Conference Proceedings (OSTI)

This project attempts to demonstrate the effectiveness of exploiting thin-layered, low-energy deposits at the distal margin of a prograding turbidite complex through the use of hydraulically fractured horizontal or high-angle wells. The combination of a horizontal or high-angle well and hydraulic fracturing will allow greater pay exposure than can be achieved with conventional vertical wells while maintaining vertical communication between thin interbedded layers and the wellbore. A high-angle well will be drilled in the fan-margin portion of a slope-basin clastic reservoir and will be completed with multiple hydraulic-fracture treatments. Geologic modeling, reservoir characterization, and fine-grid reservoir simulation will be used to select the well location and orientation. Design parameters for the hydraulic-fracture treatments will be determined, in part, by fracturing an existing test well. Fracture azimuth will be predicted by passive seismic monitoring of a fracture-stimulation treatment in the test well using logging tools in an offset well. The long radius, near horizontal well was drilled during the first quarter of 1996. Well conditions resulted in the 7 in. production liner sticking approximately 900 ft off bottom. Therefore, a 5 in. production liner was necessary to case this portion of the target formation. Swept-out sand intervals and a poor cement bond behind the 5 in. liner precluded two of the three originally planned hydraulic fracture treatments. As a result, all pay intervals behind the 5 in. liner were perforated and stimulated with a non-acid reactive fluid. Following a short production period, the remaining pay intervals in the well (behind the 7 in. liner) were perforated. The well was returned to production to observe production trends and pressure behavior and assess the need to stimulate the new perforations.

Mike L. Laue

2001-09-28T23:59:59.000Z

226

Coordinated studies in support of hydraulic fracturing of coalbed methane. Annual report, November 1991-December 1992  

Science Conference Proceedings (OSTI)

The purpose of the work is to characterize common and potential fracturing fluids in terms of coal-fluid interactions to identify reasons for less than satisfactory performance and to ultimately devise alternative fluids and treatment procedures to optimize production following hydraulic fracturing. The laboratory data reported herein has proven helpful in designing improved hydraulic fracturing treatments and remedial treatments in the Black Warrior Basin. Acid inhibitors, scale inhibitors, additives to improve coal relative permeability to gas, and non-damaging polymer systems for hydraulic fracturing have been screened in coal damage tests. The optimum conditions for creating field-like foams in the laboratory have been explored. Tests have been run to identify minimum polymer and surfactant concentrations for applications of foam in coal. The roll of 100 mesh sand in controlling leakoff and impairing conductivity in coal has been investigated.

Not Available

1993-04-01T23:59:59.000Z

227

Specification of Surface Roughness for Hydraulic Flow Test Plates  

Science Conference Proceedings (OSTI)

A study was performed to determine the surface roughness of the corrosion layer on aluminum clad booster fuel plates for the proposed Gas Test Loop (GTL) system to be incorporated into the Advanced Test Reactor (ATR) at the Idaho National Laboratory. A layer of boehmite (a crystalline, non-porous gamma-alumina hydrate) is typically pre-formed on the surface of the fuel cladding prior to exposure to reactor operation to prevent the uncontrolled buildup of corrosion product on the surface. A representative sample coupon autoclaved with the ATR driver fuel to produce the boehmite layer was analyzed using optical profilometry to determine the mean surface roughness, a parameter that can have significant impact on the coolant flow past the fuel plates. This information was used to specify the surface finish of mockup fuel plates for a hydraulic flow test model. The purpose of the flow test is to obtain loss coefficients describing the resistance of the coolant flow paths, which are necessary for accurate thermal hydraulic analyses of the water-cooled booster fuel assembly. It is recommended that the surface roughness of the boehmite layer on the fuel cladding be replicated for the flow test. While it is very important to know the order of magnitude of the surface roughness, this value does not need to be matched exactly. Maintaining a reasonable dimensional tolerance for the surface finish on each side of the 12 mockup fuel plates would ensure relative uniformity in the flow among the four coolant channels. Results obtained from thermal hydraulic analyses indicate that ±15% deviation from a surface finish (i.e., Ra) of 0.53 ìm would have a minimal effect on coolant temperature, coolant flow rate, and fuel temperature.

Donna Post Guillen; Timothy S. Yoder

2006-05-01T23:59:59.000Z

228

DOE's Shale Gas and Hydraulic Fracturing Research | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DOE's Shale Gas and Hydraulic Fracturing Research DOE's Shale Gas and Hydraulic Fracturing Research April 26, 2013 - 11:05am Addthis Statement of Guido DeHoratiis Acting Deputy...

229

Comparison of Soil Hydraulic Parameterizations for Mesoscale Meteorological Models  

Science Conference Proceedings (OSTI)

Soil water contents, calculated with seven soil hydraulic parameterizations, that is, soil hydraulic functions together with the corresponding parameter sets, are compared with observational data. The parameterizations include the Campbell/Clapp–...

Frank J. Braun; Gerd Schädler

2005-07-01T23:59:59.000Z

230

Optical Basicity and Nepheline Crystallization in High Alumina Glasses  

SciTech Connect

The purpose of this study was to find compositions that increase waste loading of high-alumina wastes beyond what is currently acceptable while avoiding crystallization of nepheline (NaAlSiO4) on slow cooling. Nepheline crystallization has been shown to have a large impact on the chemical durability of high-level waste glasses. It was hypothesized that there would be some composition regions where high-alumina would not result in nepheline crystal production, compositions not currently allowed by the nepheline discriminator. Optical basicity (OB) and the nepheline discriminator (ND) are two ways of describing a given complex glass composition. This report presents the theoretical and experimental basis for these models. They are being studied together in a quadrant system as metrics to explore nepheline crystallization and chemical durability as a function of waste glass composition. These metrics were calculated for glasses with existing data and also for theoretical glasses to explore nepheline formation in Quadrant IV (passes OB metric but fails ND metric), where glasses are presumed to have good chemical durability. Several of these compositions were chosen, and glasses were made to fill poorly represented regions in Quadrant IV. To evaluate nepheline formation and chemical durability of these glasses, quantitative X-ray diffraction (XRD) analysis and the Product Consistency Test were conducted. A large amount of quantitative XRD data is collected here, both from new glasses and from glasses of previous studies that had not previously performed quantitative XRD on the phase assemblage. Appendix A critically discusses a large dataset to be considered for future quantitative studies on nepheline formation in glass. Appendix B provides a theoretical justification for choice of the oxide coefficients used to compute the OB criterion for nepheline formation.

Rodriguez, Carmen P.; McCloy, John S.; Schweiger, M. J.; Crum, Jarrod V.; Winschell, Abigail E.

2011-02-25T23:59:59.000Z

231

HYDRAULIC FRACTURING AND INDUCED SEISMICITY IN KANSAS  

E-Print Network (OSTI)

For some time the public has asked questions about seismic activity related to hydraulic fracturing and other oil-field related activities. In particular, there is concern that the energy that goes into the subsurface during hydraulic fracturing is sufficient to cause felt earthquakes. The following is a response to those questions. 1) Seismic activity that is related to human activities is generally referred to as “induced seismicity ” or “triggered seismicity. ” Induced seismicity is defined as “seismic events attributable to human activities ” (National Research Council, 2012). The term “triggered seismicity ” is also used to describe situations in which human activities “could potentially ‘trigger ’ large and potentially damaging earthquakes ” (Shemeta et al., 2012). The following discussion uses only the term “induced seismicity ” to refer to seismic activity in which human activity plays a role. 2) Because it uses energy to fracture rocks to release oil or natural gas, hydraulic fracturing does create microseismic events (of a magnitude less than 2.0). Felt earthquake activity (generally greater than a magnitude 3.0) resulting from hydraulic fracturing has been confirmed from only one location in the world (National Research Council, 2012). In the

unknown authors

2013-01-01T23:59:59.000Z

232

Grundfos HVAC OEM Efficient water hydraulics  

E-Print Network (OSTI)

Grundfos HVAC OEM Efficient water hydraulics for Heat Pumps Anders Mønsted GRUNDFOS Holding A/S Group Technical Key Account Manager HVAC OEM Project Management http://net.grundfos.com/doc/webnet/hv acoem/index.htmlOEM online #12;Introduction Grundfos Company Grundfos HVAC OEM Current Circulator Range

Oak Ridge National Laboratory

233

Regulation of Hydraulic Fracturing (or lack thereof)  

E-Print Network (OSTI)

: "subsurface emplacement of fluids by well injection." 42 U.S.C. § 300h(d)(1). #12;UIC Program Requirements, EPA has concluded that the injection of hydraulic fracturing fluids into [coalbed methane] wells poses Water Act The federal Safe Drinking Water Act prohibits "underground injection" that is not authorized

Boufadel, Michel

234

MAAP Thermal-Hydraulic Qualification Studies  

Science Conference Proceedings (OSTI)

As a severe accident code, the Modular Accident Analysis Program (MAAP) predicts system response to accident-initiated events. Recent qualification studies demonstrate that MAAP thermal-hydraulic modeling adequately predicts accident sequences before fuel damage occurs. Specifically, MAAP predictions provide a good match with thermal performance trends in test data and independent predictions by other computer programs.

1992-06-01T23:59:59.000Z

235

Rotating Hydraulics and Upstream Basin Circulation  

Science Conference Proceedings (OSTI)

The flow in a source-fed f-plane basin drained through a strait is explored using a single-layer (reduced gravity) shallow-water numerical model that resolves the hydraulic flow within the strait. The steady upstream basin circulation is found to ...

Karl R. Helfrich; Lawrence J. Pratt

2003-08-01T23:59:59.000Z

236

John Day Tailrace MASS2 Hydraulic Modeling  

DOE Green Energy (OSTI)

Recent biological results for the Juvenile Bypass System at John Jay Lock and Dam have raised concerns about the hydraulic conditions that are created in the tailrace under different project operations. This Memorandum for Record discusses the development and application of a truncated MASS2 model in the John Day tailrace.

Rakowski, Cynthia L.; Richmond, Marshall C.

2003-06-03T23:59:59.000Z

237

Hydraulic conductivity of desiccated geosynthetic clay liners  

SciTech Connect

Large-scale tests were performed to determine the effect of a cycle of wetting and drying on the hydraulic conductivity of several geosynthetic clay liners (GCLs). The GCLs were covered with 0.6 m of pea gravel and permeated with water. After steady seepage had developed, the water was drained away, and the GCL was desiccated by circulating heated air through the overlying gravel. The drying caused severe cracking in the bentonite component of the GCLs. The GCLs were again permeated with water. As the cracked bentonite hydrated and swelled, the hydraulic conductivity slowly decreased from an initially high value. The long-term, steady value of hydraulic conductivity after the wetting and drying cycle was found to be essentially the same as the value for the undesiccated GCL. It is concluded that GCLs possess the ability to self-heal after a cycle of wetting and drying, which is important for applications in which there may be alternate wetting and drying of a hydraulic barrier (e.g. within a landfill final cover).

Boardman, B.T. [CH2M Hill, Oakland, CA (United States); Daniel, D.E. [Univ. of Texas, Austin, TX (United States)

1996-03-01T23:59:59.000Z

238

Constructing Hydraulic Barriers in Deep Geologic Formations  

Science Conference Proceedings (OSTI)

Many construction methods have been developed to create hydraulic barriers to depths of 30 to 50 meters, but few have been proposed for depths on the order of 500 meters. For these deep hydraulic barriers, most methods are potentially feasible for soil but not for hard rock. In the course of researching methods of isolating large subterranean blocks of oil shale, the authors have developed a wax thermal permeation method for constructing hydraulic barriers in rock to depths of over 500 meters in competent or even fractured rock as well as soil. The technology is similar to freeze wall methods, but produces a permanent barrier; and is potentially applicable in both dry and water saturated formations. Like freeze wall barriers, the wax thermal permeation method utilizes a large number of vertical or horizontal boreholes around the perimeter to be contained. However, instead of cooling the boreholes, they are heated. After heating these boreholes, a specially formulated molten wax based grout is pumped into the boreholes where it seals fractures and also permeates radially outward to form a series of columns of wax-impregnated rock. Rows of overlapping columns can then form a durable hydraulic barrier. These barriers can also be angled above a geologic repository to help prevent influx of water due to atypical rainfall events. Applications of the technique to constructing containment structures around existing shallow waste burial sites and water shutoff for mining are also described. (authors)

Carter, E.E.; Carter, P.E. [Technologies Co, Texas (United States); Cooper, D.C. [Ph.D. Idaho National Laboratory, Idaho Falls, ID (United States)

2008-07-01T23:59:59.000Z

239

Glass for low-cost photovoltaic solar arrays  

DOE Green Energy (OSTI)

In photovoltaic systems, the encapsulant material that protects the solar cells should be highly transparent and very durable. Glass satisfies these two criteria and is considered a primary candidate for low-cost, photovoltaic encapsulation systems. In this report, various aspects of glass encapsulation are treated that are important for the designer of photovoltaic systems. Candidate glasses and available information defining the state of the art of glass encapsulation materials and processes for automated, high volume production of terrestrial photovoltaic devices and related applications are presented. The criteria for consideration of the glass encapsulation systems were based on the LSA (Low-cost Solar Array) Project goals for arrays: (a) a low degradation rate, (b) high reliability, (c) an efficiency greater than 10 percent, (d) a total array price less than $500/kW, and (e) a production capacity of 5 x 10/sup 5/ kW/yr. The glass design areas treated herein include the types of glass, sources and costs, physical properties and glass modifications, such as antireflection coatings. 78 references.

Bouquet, F.L.

1980-02-01T23:59:59.000Z

240

Electrically and Hydraulically Rechargeable Zinc-air Battery  

A secondary zinc air battery, which can be either eletrically or hydraulically recharged, is provided with an inventive metal ...

Note: This page contains sample records for the topic "glass products hydraulic" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Transient Properties of Refractory Castable with Hydraulic Binders  

Science Conference Proceedings (OSTI)

Abstract Scope, Refractory castable with hydraulic binders have widespread application in aluminium casthouses (furnaces, launders, etc.). Their selection is

242

Vehicle hydraulic system that provides heat for passenger compartment  

DOE Patents (OSTI)

A vehicle includes a vehicle housing which defines a passenger compartment. Attached to the vehicle housing is a hydraulic system, that includes a hydraulic fluid which flows through at least one passageway within the hydraulic system. Also attached to the vehicle housing is a passenger compartment heating system. The passenger compartment heating system includes a heat exchanger, wherein a portion of the heat exchanger is a segment of the at least one passageway of the hydraulic system.

Bartley, Bradley E. (Manito, IL); Blass, James R. (Bloomington, IL); Gibson, Dennis H. (Chillicothe, IL)

2001-01-01T23:59:59.000Z

243

Hydraulically actuated fuel injector including a pilot operated spool valve assembly and hydraulic system using same  

DOE Patents (OSTI)

The present invention relates to hydraulic systems including hydraulically actuated fuel injectors that have a pilot operated spool valve assembly. One class of hydraulically actuated fuel injectors includes a solenoid driven pilot valve that controls the initiation of the injection event. However, during cold start conditions, hydraulic fluid, typically engine lubricating oil, is particularly viscous and is often difficult to displace through the relatively small drain path that is defined past the pilot valve member. Because the spool valve typically responds slower than expected during cold start due to the difficulty in displacing the relatively viscous oil, accurate start of injection timing can be difficult to achieve. There also exists a greater difficulty in reaching the higher end of the cold operating speed range. Therefore, the present invention utilizes a fluid evacuation valve to aid in displacement of the relatively viscous oil during cold start conditions.

Shafer, Scott F. (Morton, IL)

2002-01-01T23:59:59.000Z

244

Argonne Software Licensing: Glass Furnace Model (GFM)  

The Glass Furnace Model (GFM) The Glass Furnace Model (GFM) Version 4.0, a computational fluid dynamic (CFD) glass furnace simulation code was developed at Argonne ...

245

Glass-water Interactions - Programmaster.org  

Science Conference Proceedings (OSTI)

Glass and Optical Materials: Glass-water Interactions ... Corrosion of Photomultiplier Tube Glasses in High Purity Water : Ruhil Dongol1; S. K. Sundaram1; Milind ...

246

Geographic patterns of carbon dioxide emissions from fossil-fuel burning, hydraulic cement production, and gas flaring on a one degree by one degree grid cell basis: 1950 to 1990  

SciTech Connect

Data sets of one degree latitude by one degree longitude carbon dioxide (CO{sub 2}) emissions in units of thousand metric tons of carbon (C) per year from anthropogenic sources have been produced for 1950, 1960, 1970, 1980 and 1990. Detailed geographic information on CO{sub 2} emissions can be critical in understanding the pattern of the atmospheric and biospheric response to these emissions. Global, regional and national annual estimates for 1950 through 1992 were published previously. Those national, annual CO{sub 2} emission estimates were based on statistics on fossil-fuel burning, cement manufacturing and gas flaring in oil fields as well as energy production, consumption and trade data, using the methods of Marland and Rotty. The national annual estimates were combined with gridded one-degree data on political units and 1984 human populations to create the new gridded CO{sub 2} emission data sets. The same population distribution was used for each of the years as proxy for the emission distribution within each country. The implied assumption for that procedure was that per capita energy use and fuel mix is uniform over a political unit. The consequence of this first-order procedure is that the spatial changes observed over time are solely due to changes in national energy consumption and nation-based fuel mix. Increases in emissions over time are apparent for most areas.

Brenkert, A.L. [ed.] [Oak Ridge National Lab., TN (United States). Carbon Dioxide Information Analysis Center; Andres, R.J. [Univ. of Alaska, Fairbanks, AK (United States). Inst. of Northern Engineering; Marland, G. [Oak Ridge National Lab., TN (United States). Environmental Sciences Div.; Fung, I. [Univ. of Victoria, British Columbia (Canada)]|[National Aeronautics and Space Administration, New York, NY (United States). Goddard Inst. for Space Studies; Matthews, E. [Columbia Univ., New York, NY (United States)]|[National Aeronautics and Space Administration, New York, NY (United States). Goddard Inst. for Space Studies

1997-03-01T23:59:59.000Z

247

Korean Development of Advanced Thermal-Hydraulic Codes for Water Reactors and HTGRs: Space and Gamma  

Science Conference Proceedings (OSTI)

Technical Paper / Special Issue on the 14th International Topical Meeting on Nuclear Reactor Thermal Hydraulics (NURETH-14) / Thermal Hydraulics

Hee Cheon No; Sang Jun Ha; Kyung Doo Kim; Hong Sik Lim; Eo Hwak Lee; Hyung Gon Jin

248

HLW Glass Waste Loadings  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

HLW HLW Glass Waste Loadings Ian L. Pegg Vitreous State Laboratory The Catholic University of America Washington, DC Overview Overview  Vitrification - general background  Joule heated ceramic melter (JHCM) technology  Factors affecting waste loadings  Waste loading requirements and projections  WTP DWPF  DWPF  Yucca Mountain License Application requirements on waste loading  Summary Vitrification  Immobilization of waste by conversion into a glass  Internationally accepted treatment for HLW  Why glass?  Amorphous material - able to incorporate a wide spectrum of elements over wide ranges of composition; resistant to radiation damage  Long-term durability - natural analogs Relatively simple process - amenable to nuclearization at large  Relatively simple process - amenable to nuclearization at large scale  There

249

Measurement of Solute Diffusion Behavior in Fractured Waste Glass Media  

SciTech Connect

Determination of aqueous phase diffusion coefficients of solutes through fractured media is essential for understanding and modeling contaminants transport at many hazardous waste disposal sites. No methods for earlier measurements are available for the characterization of diffusion in fractured glass blocks. We report here the use of time-lag diffusion experimental method to assess the diffusion behavior of three different solutes (Cs, Sr and Pentafluoro Benzoic Acid or PFBA) in fractured, immobilized low activity waste (ILAW) glass forms. A fractured media time-lag diffusion experimental apparatus that allows the measurement of diffusion coefficients has been designed and built for this purpose. Use of time-lag diffusion method, a considerably easier experimental method than the other available methods, was not previously demonstrated for measuring diffusion in any fractured media. Hydraulic conductivity, porosity and diffusion coefficients of a solute were experimentally measured in fractured glass blocks using this method for the first time. Results agree with the range of properties reported for similar rock media earlier, indicating that the time-lag experimental method can effectively characterize the diffusion coefficients of fractured ILAW glass media.

Saripalli, Kanaka P.; Lindberg, Michael J.; Meyer, Philip D.

2008-10-01T23:59:59.000Z

250

IRON-PHOSPHATE GLASS FOR IMMOBILIZATION OF RADIOACTIVE TECHNETIUM  

Science Conference Proceedings (OSTI)

Technetium-99 (Tc-99) can bring a serious environmental threat because of its high fission yield, long half-life, and high solubility and mobility in the ground water. The present work investigated the immobilization of Tc-99 (surrogated by Re) by heat-treating mixtures of an iron-phosphate glass with 1.5 to 6 wt.% KReO{sub 4} at {approx}1000 C. The Re retention in the glass was as high as {approx}1.2 wt. % while the loss of Re by evaporation during melting was {approx}50%. Re was uniformly distributed within the glass. The normalized Re release by the 7-day Product Consistency Test was {approx}0.39 g/m{sup 2}, comparable with that in phosphate-bonded ceramics and borosilicate glasses. These results suggest that iron-phosphate glass can provide a good matrix for immobilizing Tc-99.

KRUGER AA; HRMA PR; XU K; CHOI J; UM W; HEO J

2012-03-19T23:59:59.000Z

251

Comparison of glass surfaces as a countertop material to existing surfaces  

SciTech Connect

Gleen Glass, a small production glass company that creates countertops, was selected for the Technology Assistance Program through Pacific Northwest National Laboratory. Gleen Glass was seeking material property analysis comparing glass as a countertop material to current surfaces (i.e. marble, granite and engineered stone). With samples provided from Gleen Glass, testing was done on granite, marble, and 3 different glass surfaces ('Journey,' 'Pebble,' and 'Gleen'). Results showed the glass surfaces have a lower density, lower water absorption, and are stronger in compressive and flexural tests as compared to granite and marble. Thermal shock tests showed the glass failed when objects with a high thermal mass are placed directly on them, whereas marble and granite did not fracture under these conditions.

Turo, Laura A.; Winschell, Abigail E.

2011-09-01T23:59:59.000Z

252

Superhydrophobic Transparent Glass Thin Films  

Glass used in building materials (curtain walls), windshields, goggles, glasses,optical lenses, and similar applications must be durable and transparent. To meetthis challenge, ORNL researchers have invented a method to produce ...

253

The Effect of Proppant Size and Concentration on Hydraulic Fracture Conductivity in Shale Reservoirs  

E-Print Network (OSTI)

Hydraulic fracture conductivity in ultra-low permeability shale reservoirs is directly related to well productivity. The main goal of hydraulic fracturing in shale formations is to create a network of conductive pathways in the rock which increase the surface area of the formation that is connected to the wellbore. These highly conductive fractures significantly increase the production rates of petroleum fluids. During the process of hydraulic fracturing proppant is pumped and distributed in the fractures to keep them open after closure. Economic considerations have driven the industry to find ways to determine the optimal type, size and concentration of proppant that would enhance fracture conductivity and improve well performance. Therefore, direct laboratory conductivity measurements using real shale samples under realistic experimental conditions are needed for reliable hydraulic fracturing design optimization. A series of laboratory experiments was conducted to measure the conductivity of propped and unpropped fractures of Barnett shale using a modified API conductivity cell at room temperature for both natural fractures and induced fractures. The induced fractures were artificially created along the bedding plane to account for the effect of fracture face roughness on conductivity. The cementing material present on the surface of the natural fractures was preserved only for the initial unpropped conductivity tests. Natural proppants of difference sizes were manually placed and evenly distributed along the fracture face. The effect of proppant monolayer was also studied.

Kamenov, Anton

2013-05-01T23:59:59.000Z

254

Modeling of Glass Making Processes for Improved Efficiency  

SciTech Connect

The overall goal of this project was to develop a high-temperature melt properties database with sufficient reliability to allow mathematical modeling of glass melting and forming processes for improved product quality, improved efficiency and lessened environmental impact. It was initiated by the United States glass industry through the NSF Industry/University Center for Glass Research (CGR) at Alfred University [1]. Because of their important commercial value, six different types/families of glass were studied: container, float, fiberglass (E- and wool-types), low-expansion borosilicate, and color TV panel glasses. CGR member companies supplied production-quality glass from all six families upon which we measured, as a function of temperature in the molten state, density, surface tension, viscosity, electrical resistivity, infrared transmittance (to determine high temperature radiative conductivity), non-Newtonian flow behavior, and oxygen partial pres sure. With CGR cost sharing, we also studied gas solubility and diffusivity in each of these glasses. Because knowledge of the compositional dependencies of melt viscosity and electrical resistivity are extremely important for glass melting furnace design and operation, these properties were studied more fully. Composition variations were statistically designed for all six types/families of glass. About 140 different glasses were then melted on a laboratory scale and their viscosity and electrical resistivity measured as a function of temperature. The measurements were completed in February 2003 and are reported on here. The next steps will be (1) to statistically analyze the compositional dependencies of viscosity and electrical resistivity and develop composition-property response surfaces, (2) submit all the data to CGR member companies to evaluate the usefulness in their models, and (3) publish the results in technical journals and most likely in book form.

Thomas P. Seward III

2003-03-31T23:59:59.000Z

255

Terahertz Properties of Lithium Iron Phosphate Glasses  

Science Conference Proceedings (OSTI)

Presentation Title, Terahertz Properties of Lithium Iron Phosphate Glasses ... Field Assisted Viscous Flow and Crystallization in a Sodium Aluminosilicate Glass.

256

Interaction between Injection Points during Hydraulic Fracturing  

E-Print Network (OSTI)

We present a model of the hydraulic fracturing of heterogeneous poroelastic media. The formalism is an effective continuum model that captures the coupled dynamics of the fluid pressure and the fractured rock matrix and models both the tensile and shear failure of the rock. As an application of the formalism, we study the geomechanical stress interaction between two injection points during hydraulic fracturing (hydrofracking) and how this interaction influences the fracturing process. For injection points that are separated by less than a critical correlation length, we find that the fracturing process around each point is strongly correlated with the position of the neighboring point. The magnitude of the correlation length depends on the degree of heterogeneity of the rock and is on the order of 30-45 m for rocks with low permeabilities. In the strongly correlated regime, we predict a novel effective fracture-force that attracts the fractures toward the neighboring injection point.

Hals, Kjetil M D

2012-01-01T23:59:59.000Z

257

Hydraulic waste energy recovery, Phase 2  

SciTech Connect

The energy required for booster station operation is supplied by the electrical utility company and has an associated cost. Energy removed by pressure reducing valves in the system is lost or wasted. The objective of this project is to capture the wasted hydraulic energy with in-line turbines. In this application, the in-line turbines act as pressure reducing valves while removing energy from the water distribution system and converting it to electrical energy. The North Service Center pumping station was selected for the pilot program due to the availability of a wide range in pressure drop and flow, which are necessary for hydraulic energy recovery. The research performed during this project resulted in documentation of technical, economic, installation, and operational information necessary for local government officials to make an informed judgement as it relates to in-line turbine generation.

1992-02-01T23:59:59.000Z

258

Hydraulic/Shock-Jumps in Protoplanetary Disks  

E-Print Network (OSTI)

In this paper, we describe the nonlinear outcome of spiral shocks in protoplanetary disks. Spiral shocks, for most protoplanetary disk conditions, create a loss of vertical force balance in the post-shock region and result in rapid expansion of the gas perpendicular to the disk midplane. This expansion has characteristics similar to hydraulic jumps, which occur in incompressible fluids. We present a theory to describe the behavior of these hybrids between shocks and hydraulic jumps (shock bores) and then compare the theory to three-dimensional hydrodynamics simulations. We discuss the fully three-dimensional shock structures that shock bores produce and discuss possible consequences for disk mixing, turbulence, and evolution of solids.

A. C. Boley; R. H. Durisen

2005-10-11T23:59:59.000Z

259

Downstream hydraulic geometry relations: 1. Theoretical development  

E-Print Network (OSTI)

In this study, it is hypothesized that (1) the spatial variation of the stream power of a channel for a given discharge is accomplished by the spatial variation in channel form (flow depth and channel width) and hydraulic variables, including energy slope, flow velocity, and friction, and (2) that the change in stream power is distributed among the changes in flow depth, channel width, flow velocity, slope, and friction, depending on the constraints (boundary conditions) the channel has to satisfy. The second hypothesis is a result of the principles of maximum entropy and minimum energy dissipation or its simplified minimum stream power. These two hypotheses lead to four families of downstream hydraulic geometry relations. The conditions under which these families of relations can occur in field are discussed.

Singh, Vijay P.; Yang, Chih Ted; Deng, Z. Q.

2003-12-04T23:59:59.000Z

260

Solubility effects in waste-glass/demineralized-water systems  

SciTech Connect

Aqueous systems involving demineralized water and four glass compositions (including standins for actinides and fission products) at temperatures of up to 150/sup 0/C were studied. Two methods were used to measure the solubility of glass components in demineralized water. One method involved approaching equilibrium from subsaturation, while the second method involved approaching equilibrium from supersaturation. The aqueous solutions were analyzed by induction-coupled plasma spectrometry (ICP). Uranium was determined using a Scintrex U-A3 uranium analyzer and zinc and cesium were determined by atomic absorption. The system that results when a waste glass is contacted with demineralized water is a complex one. The two methods used to determine the solubility limits gave very different results, with the supersaturation method yielding much higher solution concentrations than the subsaturation method for most of the elements present in the waste glasses. The results show that it is impossible to assign solubility limits to the various glass components without thoroughly describing the glass-water systems. This includes not only defining the glass type and solution temperature, but also the glass surface area-to-water volume ratio (S/V) of the system and the complete thermal history of the system. 21 figures, 22 tables. (DLC)

Fullam, H.T.

1981-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "glass products hydraulic" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

HYDRAULIC CEMENT PREPARATION FROM LURGI SPENT SHALE  

SciTech Connect

Low cost material is needed for grouting abandoned retorts. Experimental work has shown that a hydraulic cement can be produced from Lurgi spent shale by mixing it in a 1:1 weight ratio with limestone and heating one hour at 1000°C. With 5% added gypsum, strengths up to 25.8 MPa are obtained. This cement could make an economical addition up to about 10% to spent shale grout mixes, or be used in ordinary cement applications.

Mehta, P.K.; Persoff, P.; Fox, J.P.

1980-06-01T23:59:59.000Z

262

Hydraulic system for a ratio change transmission  

DOE Patents (OSTI)

Disclosed is a drive assembly (10) for an electrically powered vehicle (12). The assembly includes a transaxle (16) having a two-speed transmission (40) and a drive axle differential (46) disposed in a unitary housing assembly (38), an oil-cooled prime mover or electric motor (14) for driving the transmission input shaft (42), an adapter assembly (24) for supporting the prime mover on the transaxle housing assembly, and a hydraulic system (172) providing pressurized oil flow for cooling and lubricating the electric motor and transaxle and for operating a clutch (84) and a brake (86) in the transmission to shift between the two-speed ratios of the transmission. The adapter assembly allows the prime mover to be supported in several positions on the transaxle housing. The brake is spring-applied and locks the transmission in its low-speed ratio should the hydraulic system fail. The hydraulic system pump is driven by an electric motor (212) independent of the prime mover and transaxle.

Kalns, Ilmars (Northville, MI)

1981-01-01T23:59:59.000Z

263

Hydraulic Cooling Tower Driver- The Innovation  

E-Print Network (OSTI)

One of the weaknesses of present day cooling tower drives are fan wrecks caused by shaft couplings breaking, gear box malfunctions due to inadequate lubrication, gear tooth wear, and inaccessibility for inspection and routine maintenance. The hydro-drive eliminates these items from the drive train and puts the same electric motor HP at ground level close coupled to a hydraulic pump, filters, and oil reservoir. Hydraulic lines bring oil pressure to the hydraulic motor, which is more than 75% less weight than comparable gear boxes and presents a smooth practically trouble free performance. In this three cell installation, the original 75 horsepower motors and 18’ diameter fans were cooling a total of 14,000 GPM which were CTI tested and 74.7% of capability. The upgrading and retrofit consisted of installing at ground level 100 horse power motors, 22’ diameter fans, 14’ high velocity recovery fan cylinders, “V” PVC splash bars, and high efficiency cellular drift eliminators. Testing after completion indicated a 92% tower now circulating 21,000 GPM instead of the original 14,000.

Dickerson, J. A.

1987-09-01T23:59:59.000Z

264

Radionuclide decay effects on waste glass corrosion and weathering  

Science Conference Proceedings (OSTI)

The release of glass components into solution, including radionuclides, may be influenced by the presence of radiolytically produced nitric acid, carboxylic acid, and transient water dissociation products such as {center_dot}OH and O{sub 2}{sup {minus}}. Under batch test conditions, glass corrosion has been shown to increase up to a maximum of three-to five-fold in irradiated tests relative to nonirradiated tests, while in other studies the presence of radiolytic products has actually decreased glass corrosion rates. Bicarbonate groundwaters will buffer against pH decreases and changes in corrosion rates. Under high surface area-to-solution volume (S/V) conditions, the bicarbonate buffering reservoir may be quickly overwhelmed by radiolytic acids that are concentrated in the thin films of water contacting the samples. Glass reaction rates have been shown to increase up to 10-to-15-fold due to radiation exposure under high S/V conditions. Radiation damage to solid glass materials results in bond damage and atomic displacements. This type of damage has been shown to increase the release rates of glass components up to four-fold during subsequent corrosion tests, although under actual disposal conditions, glass annealing processes may negate the solid radiation damage effects.

Wronkiewicz, D.J.

1993-12-31T23:59:59.000Z

265

HIGH ALUMINUM HLW GLASSES FOR HANFORDS WTP  

Science Conference Proceedings (OSTI)

The world's largest radioactive waste vitrification facility is now under construction at the United State Department of Energy's (DOE's) Hanford site. The Hanford Tank Waste Treatment and Immobilization Plant (WTP) is designed to treat nearly 53 million gallons of mixed hazardous and radioactive waste now residing in 177 underground storage tanks. This multi-decade processing campaign will be one of the most complex ever undertaken because of the wide chemical and physical variability of the waste compositions generated during the cold war era that are stored at Hanford. The DOE Office of River Protection (ORP) has initiated a program to improve the long-term operating efficiency of the WTP vitrification plants with the objective of reducing the overall cost of tank waste treatment and disposal and shortening the duration of plant operations. Due to the size, complexity and duration of the WTP mission, the lifecycle operating and waste disposal costs are substantial. As a result, gains in High Level Waste (HLW) and Low Activity Waste (LAW) waste loadings, as well as increases in glass production rate, which can reduce mission duration and glass volumes for disposal, can yield substantial overall cost savings. EnergySolutions and its long-term research partner, the Vitreous State Laboratory (VSL) of the Catholic University of America, have been involved in a multi-year ORP program directed at optimizing various aspects of the HLW and LAW vitrification flow sheets. A number of Hanford HLW streams contain high concentrations of aluminum, which is challenging with respect to both waste loading and processing rate. Therefore, a key focus area of the ORP vitrification process optimization program at EnergySolutions and VSL has been development of HLW glass compositions that can accommodate high Al{sub 2}O{sub 3} concentrations while maintaining high processing rates in the Joule Heated Ceramic Melters (JHCMs) used for waste vitrification at the WTP. This paper, reviews the achievements of this program with emphasis on the recent enhancements in Al{sub 2}O{sub 3} loadings in HLW glass and its processing characteristics. Glass formulation development included crucible-scale preparation and characterization of glass samples to assess compliance with all melt processing and product quality requirements, followed by small-scale screening tests to estimate processing rates. These results were used to down-select formulations for subsequent engineering-scale melter testing. Finally, further testing was performed on the DM1200 vitrification system installed at VSL, which is a one-third scale (1.20 m{sup 2}) pilot melter for the WTP HLW melters and which is fitted with a fully prototypical off-gas treatment system. These tests employed glass formulations with high waste loadings and Al{sub 2}O{sub 3} contents of {approx}25 wt%, which represents a near-doubling of the present WTP baseline maximum Al{sub 2}O{sub 3} loading. In addition, these formulations were processed successfully at glass production rates that exceeded the present requirements for WTP HLW vitrification by up to 88%. The higher aluminum loading in the HLW glass has an added benefit in that the aluminum leaching requirements in pretreatment are reduced, thus allowing less sodium addition in pretreatment, which in turn reduces the amount of LAW glass to be produced at the WTP. The impact of the results from this ORP program in reducing the overall cost and schedule for the Hanford waste treatment mission will be discussed.

KRUGER AA; JOSEPH I; BOWMAN BW; GAN H; KOT W; MATLACK KS; PEGG IL

2009-08-19T23:59:59.000Z

266

Flat Glass Manufacturing Plant EPI | ENERGY STAR Buildings & Plants  

NLE Websites -- All DOE Office Websites (Extended Search)

Flat Glass Manufacturing Plant EPI Flat Glass Manufacturing Plant EPI Secondary menu About us Press room Contact Us Portfolio Manager Login Facility owners and managers Existing buildings Commercial new construction Industrial energy management Small business Service providers Service and product providers Verify applications for ENERGY STAR certification Design commercial buildings Energy efficiency program administrators Commercial and industrial program sponsors Associations State and local governments Federal agencies Tools and resources Training In This Section Campaigns Commercial building design Communications resources Energy management guidance Financial resources Portfolio Manager Products and purchasing Recognition Research and reports Service and product provider (SPP) resources Success stories Target Finder

267

Derivation of site-specific relationships between hydraulic parameters and p-wave velocities based on hydraulic and seismic tomography  

SciTech Connect

In this study, hydraulic and seismic tomographic measurements were used to derive a site-specific relationship between the geophysical parameter p-wave velocity and the hydraulic parameters, diffusivity and specific storage. Our field study includes diffusivity tomograms derived from hydraulic travel time tomography, specific storage tomograms, derived from hydraulic attenuation tomography, and p-wave velocity tomograms, derived from seismic tomography. The tomographic inversion was performed in all three cases with the SIRT (Simultaneous Iterative Reconstruction Technique) algorithm, using a ray tracing technique with curved trajectories. The experimental set-up was designed such that the p-wave velocity tomogram overlaps the hydraulic tomograms by half. The experiments were performed at a wellcharacterized sand and gravel aquifer, located in the Leine River valley near Göttingen, Germany. Access to the shallow subsurface was provided by direct-push technology. The high spatial resolution of hydraulic and seismic tomography was exploited to derive representative site-specific relationships between the hydraulic and geophysical parameters, based on the area where geophysical and hydraulic tests were performed. The transformation of the p-wave velocities into hydraulic properties was undertaken using a k-means cluster analysis. Results demonstrate that the combination of hydraulic and geophysical tomographic data is a promising approach to improve hydrogeophysical site characterization.

Brauchler, R.; Doetsch, J.; Dietrich, P.; Sauter, M.

2012-01-10T23:59:59.000Z

268

A new method for determining fluid flow paths during hydraulic fracturing  

DOE Green Energy (OSTI)

Although hydraulic fracturing is a popular method for increasing the productivity of oil and gas wells, there is no direct way other than drilling additional boreholes to determine where the injected fluid has gone and thus what direction a fracture has propagated. Information about fluid flow paths is important for designing subsequent fracturing operations for nearby wells. Determining the locations and orientations of permeable fractures is also important in studies of potential toxic waste repositories where it is critical to understand fluid flow paths. We have developed a method for determining the orientations and locations of fractures along which fluid flows during hydraulic fracturing. The method is based on accurate determination of the locations of microseismic events, or microearthquakes, that accompany the hydraulic injection. By applying a pattern recognition technique to the locations of events from one hydraulic fracturing operation we find planes in the data along which we presume that the fluid has traveled. The planes determined using our method intersect the injection borehole and a second, nearby borehole, in regions where other data indicate that fractures are present.

Fehler, M.

1987-01-01T23:59:59.000Z

269

NREL: Fleet Test and Evaluation - Hydraulic Hybrid Drive Systems  

NLE Websites -- All DOE Office Websites (Extended Search)

Hydraulic Hybrid Drive Systems Hydraulic Hybrid Drive Systems NREL's Fleet Test and Evaluation Team conducts performance evaluations of hydraulic hybrid drive systems in delivery vehicles. Because hydraulic hybrids feature highly efficient regenerative braking systems and "engine off at idle" capabilities, they are ideal for parcel delivery applications where stop-and-go traffic is common. Hydraulic hybrid systems can capture up to 70% of the kinetic energy that would otherwise be lost during braking. This energy drives a pump, which transfers hydraulic fluid from a low-pressure reservoir to a high-pressure accumulator. When the vehicle accelerates, fluid in the high-pressure accumulator moves to the lower-pressure reservoir, which drives a motor and provides extra torque. This process can improve the vehicle's fuel economy

270

Production  

E-Print Network (OSTI)

There are serious concerns about the greenhouse gas (GHG) emissions, energy and nutrient and water use efficiency of large-scale, first generation bio-energy feedstocks currently in use. A major question is whether biofuels obtained from these feedstocks are effective in combating climate change and what impact they will have on soil and water resources. Another fundamental issue relates to the magnitude and nature of their impact on food prices and ultimately on the livelihoods of the poor. A possible solution to overcome the current potentially large negative effects of large-scale biofuel production is developing second and third generation conversion techniques from agricultural residues and wastes and step up the scientific research efforts to achieve sustainable biofuel production practices. Until such sustainable techniques are available governments should scale back their support for and promotion of biofuels. Multipurpose feedstocks should be investigated making use of the bio-refinery concept (bio-based economy). At the same time, the further development of non-commercial, small scale

Science Council Secretariat

2008-01-01T23:59:59.000Z

271

Interim Models Developed to Predict Key Hanford Waste Glass Properties Using Composition  

Science Conference Proceedings (OSTI)

Over the past several years the amount of waste glass property data available in the open literature has increased markedly. We have compiled the data from over 2000 glass compositions, evaluated the data for consistency, and fit glass property models to portions of this database.[1] The properties modeled include normalized releases of boron (rB), sodium (rNa), and lithium (rLi) from glass exposed to the product consistency test (PCT), liquidus temperature (TL) of glasses in the spinel and zircon primary phase field, viscosity (?) at 1150°C (?1150) and as a function of temperature (?T), and molar volume (V). These models were compared to some of the previously available models and were found to predict the properties of glasses not used in model fitting better and covered broader glass composition regions than the previous ones. This paper summarizes the data collected and the models that resulted from this effort.

Vienna, John D.; Kim, Dong-Sang; Hrma, Pavel R.

2003-08-08T23:59:59.000Z

272

Hydraulic Fracturing and Water Use in Dallas, Texas.  

E-Print Network (OSTI)

??Dallas, Texas is located in North Texas and sits above the eastern portion of the Barnett Shale natural gas formation. Hydraulic fracturing, or fracking, was… (more)

Yates, Sarah

2013-01-01T23:59:59.000Z

273

Thermal Hydraulic Optimization of Nuclear Systems [Heat Transfer and Fluid  

NLE Websites -- All DOE Office Websites (Extended Search)

Thermal Hydraulic Thermal Hydraulic Optimization of Nuclear Systems Capabilities Engineering Computation and Design Engineering and Structural Mechanics Systems/Component Design, Engineering and Drafting Heat Transfer and Fluid Mechanics Overview Thermal Hydraulic Optimization of Nuclear Systems Underhood Thermal Management Combustion Simulations Advanced Model and Methodology Development Multi-physics Reactor Performance and Safety Simulations Other Capabilities Work with Argonne Contact us For Employees Site Map Help Join us on Facebook Follow us on Twitter NE on Flickr Heat Transfer and Fluid Mechanics Bookmark and Share Thermal Hydraulic Optimization of Nuclear Systems Accelerator Driven Test Facility Target Accelerator Driven Test Facility Target. Click on image to view larger

274

Modeling Of Hydraulic Fracture Network Propagation In Shale Gas Reservoirs.  

E-Print Network (OSTI)

??The most effective method for stimulating shale gas reservoirs is massive hydraulic fracture treatments. Recent fracture diagnostic technologies such as microseismic technology have shown that… (more)

Ahn, Chong

2012-01-01T23:59:59.000Z

275

Haptic Control of Hydraulic Machinery Using Proportional Valves .  

E-Print Network (OSTI)

??Supplying haptic or force feedback to operators using hydraulic machinery such as excavators has the potential to increase operator capabilities. Haptic, robotic, human-machine interfaces enable… (more)

Kontz, Matthew Edward

2007-01-01T23:59:59.000Z

276

Dynamic analysis and fault diagnosis of a water hydraulic motor.  

E-Print Network (OSTI)

??This research is concerned with condition monitoring and fault diagnosis of the piston of the water hydraulic motor by vibration signal analysis. Vibration signatures are… (more)

Chen, Hanxin.

2008-01-01T23:59:59.000Z

277

Hydraulic properties of adsorbed water films in unsaturated porous media  

SciTech Connect

Adsorbed water films strongly influence residual water saturations and hydraulic conductivities in porous media at low saturations. Hydraulic properties of adsorbed water films in unsaturated porous media were investigated through combining Langmuir's film model with scaling analysis, without use of any adjustable parameters. Diffuse double layer influences are predicted to be important through the strong dependence of adsorbed water film thickness (f) on matric potential ({Psi}) and ion charge (z). Film thickness, film velocity, and unsaturated hydraulic conductivity are predicted to vary with z{sup -1}, z{sup -2}, and z{sup -3}, respectively. In monodisperse granular media, the characteristic grain size ({lambda}) controls film hydraulics through {lambda}{sup -1} scaling of (1) the perimeter length per unit cross sectional area over which films occur, (2) the critical matric potential ({Psi}{sub c}) below which films control flow, and (3) the magnitude of the unsaturated hydraulic conductivity when {Psi} < {Psi}{sub c}. While it is recognized that finer textured sediments have higher unsaturated hydraulic conductivities than coarser sands at intermediate {Psi}, the {lambda}{sup -1} scaling of hydraulic conductivity predicted here extends this understanding to very low saturations where all pores are drained. Extremely low unsaturated hydraulic conductivities are predicted under adsorbed film-controlled conditions (generally < 0.1 mm y{sup -1}). On flat surfaces, the film hydraulic diffusivity is shown to be constant (invariant with respect to {Psi}).

Tokunaga, Tetsu K.

2009-03-01T23:59:59.000Z

278

MICRO-SEISMICITY, FAULT STRUCTURE AND HYDRAULIC COMPARTMENTALIZATION...  

Open Energy Info (EERE)

MICRO-SEISMICITY, FAULT STRUCTURE AND HYDRAULIC COMPARTMENTALIZATION WITHIN THE COSO GETHERMAL FIELD, CALIFORNIA Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home...

279

Application of the directional hydraulic fracturing at Berezovskaya Mine  

SciTech Connect

The paper analyzes the experimental research of the directional hydraulic fracturing applied for weakening of rocks at Berezovskaya Mine (Kuznetsk Coal Basin) in 2005-2006.

Lekontsev, Y.M.; Sazhin, P.V. [Russian Academy of Sciences, Novosibirsk (Russian Federation). Institute for Mining

2008-05-15T23:59:59.000Z

280

Applying and analyzing robust modern control on uncertain hydraulic systems .  

E-Print Network (OSTI)

??In this work modern robust control systems are designed and compared to standard techniques for a hydraulic implement system. The system includes an independent metering… (more)

Bax, Brian

2006-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "glass products hydraulic" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Optimization of the Cooling Process of a Heavy Hydraulic Turbine ...  

Science Conference Proceedings (OSTI)

Hydraulic turbine lower band castings, of the matensitic stainless steel (Cr13% ... Effect of Si Content on Fracture Behaviour Change by Strain Rate in Si Steels.

282

Glass Plates under Micro-indentation” Incorporation in Glass Ionomer  

Science Conference Proceedings (OSTI)

Effects of nanocrystalline calcium de?cient hydroxyapatite gnCDHAl incorporation in glass ..... K., Nishino, M., 2003. Toughness, bonding and ?uoride release.

283

Applications of Atomistic Simulation to Radioactive and Hazardous Waste Glass Formulation Development  

SciTech Connect

Glass formulation development depends on an understanding of the effects of glass composition on its processibility and product quality. Such compositional effects on properties in turn depend on the microscopic structure of the glass. Historically, compositional effects on macroscopic properties have been explored empirically, e.g., by measuring viscosity at various glass compositions. The relationship of composition to structure has been studied by microstructural experimental methods. More recently, computer simulation has proved a fruitful complement to these more traditional methods of study. By simulating atomic interaction over a period of time using the molecular dynamics method, a direct picture of the glass structure and dynamics is obtained which can verify existing concepts as well as permit ``measurement`` of quantities inaccessible to experiment. Atomistic simulation can be of particular benefit in the development of waste glasses. As vitrification is being considered for an increasing variety of waste streams, process and product models are needed to formulate compositions for an extremely wide variety of elemental species and composition ranges. The demand for process and product models which can predict over such a diverse composition space requires mechanistic understanding of glass behavior; atomistic simulation is ideally suited for providing this understanding. Moreover, while simulation cannot completely eliminate the need for treatability studies, it can play a role in minimizing the experimentation on (and therefore contact handling of) such materials. This paper briefly reviews the molecular dynamics method, which is the primary atomistic simulation tool for studying glass structure. We then summarize the current state of glass simulation, emphasizing areas of importance for waste glass process/product modeling. At SRS, glass process and product models have been formulated in terms of glass structural concepts.

Kielpinski, A.L.

1995-03-01T23:59:59.000Z

284

WINDOW 5 Glass Library Update  

NLE Websites -- All DOE Office Websites (Extended Search)

WINDOW 6 or 7 Glass Library Update WINDOW 6 or 7 Glass Library Update Last update:12/09/13 07:26 PM Automatic IGDB Update Feature in WINDOW 6 and 7 The latest versions of WINDOW 6 and 7 have an automatic IGDB database update function in the Glass Library. When you first open the program, it checks to see if there is an IGDB version later than what you already have installed, and will notify you if there is an update. Then you can download and install the IGDB database, and click on the Update IGDB button in the Glass Library in order to start the automatic update. For older versions of WINDOW 6 and 7 without the automatic IGDB update function bullet How to Check the Current WINDOW5 IGDB Version bullet Updating the Glass Library bullet Problem Updating the Glass Library bullet Discontinued Records or Reused NFRC IDs

285

Hydraulic constraints on photosynthesis in subtropical evergreen broad leaf forest and pine woodland trees of the Florida Everglades  

E-Print Network (OSTI)

127:445– Zimmermann MH (1978) Hydraulic architecture of someÁ South Florida Á Hydraulic conductivity Á PhotosyntheticArgentina Introduction Plant hydraulic characteristics have

Jones, Tim J.; Luton, Corene D.; Santiago, Louis S.; Goldstein, Guillermo

2010-01-01T23:59:59.000Z

286

Goal 4 Long Life Pavement Rehabilitation Strategies-Rigid: Flexural Fatigue Life of Hydraulic Cement Concrete Beams  

E-Print Network (OSTI)

Flexural Fatigue Life of Hydraulic Cement Concrete Beamsperformance of Fast-Setting Hydraulic Cement Concrete (and Thermal Expansion of Hydraulic Cement Concrete Mixes”,

Kohler, Erwin R.; Ali, Abdikarim; Harvey, John T

2005-01-01T23:59:59.000Z

287

CLMT2 user's guide: A Coupled Model for Simulation of Hydraulic Processes from Canopy to Aquifer Version 1.0  

E-Print Network (OSTI)

equations  for  some  soil  hydraulic properties.  Water are capable to simulate hydraulic processes from  top of Model for Simulation of Hydraulic Processes from Canopy to 

Pan, Lehua

2006-01-01T23:59:59.000Z

288

Estimation of field-scale soil hydraulic and dielectric parameters through joint inversion of GPR and hydrological data  

E-Print Network (OSTI)

Catalog of Vadose Zone Hydraulic Properties for the Hanfordand Measurement of the Hydraulic Properties of UnsaturatedEstimation for Soil Hydraulic Properties Using Zero-Offset

2005-01-01T23:59:59.000Z

289

Estimation of deformation and stiffness of fractures close to tunnels using data from single-hole hydraulic testing and grouting  

E-Print Network (OSTI)

normal stiffness and hydraulic conductivity of a major sheareffect in single-hole hydraulic testing and grouting. Int JRutqvist J. Determination of hydraulic normal stiffness of

Fransson, A.

2010-01-01T23:59:59.000Z

290

Heat as a Tracer to Examine Hydraulic Conductance Near the Russian River Bank Filtration Facility, Sonoma County, CA  

E-Print Network (OSTI)

to examine streambed hydraulic conductance near the Russianas a tracer to determine the hydraulic conductance of themodel requires that key hydraulic parameters be identified,

Constantz, Jim; Su, Grace; Hatch, Christine

2004-01-01T23:59:59.000Z

291

FORMED CORE SAMPLER HYDRAULIC CONDUCTIVITY TESTING  

SciTech Connect

A full-scale formed core sampler was designed and functionally tested for use in the Saltstone Disposal Facility (SDF). Savannah River National Laboratory (SRNL) was requested to compare properties of the formed core samples and core drilled samples taken from adjacent areas in the full-scale sampler. While several physical properties were evaluated, the primary property of interest was hydraulic conductivity. Differences in hydraulic conductivity between the samples from the formed core sampler and those representing the bulk material were noted with respect to the initial handling and storage of the samples. Due to testing conditions, the site port samples were exposed to uncontrolled temperature and humidity conditions prior to testing whereas the formed core samples were kept in sealed containers with minimal exposure to an uncontrolled environment prior to testing. Based on the results of the testing, no significant differences in porosity or density were found between the formed core samples and those representing the bulk material in the test stand.

Miller, D.; Reigel, M.

2012-09-25T23:59:59.000Z

292

TEMPEST. Transient 3-D Thermal-Hydraulic  

SciTech Connect

TEMPEST is a transient, three-dimensional, hydrothermal program that is designed to analyze a range of coupled fluid dynamic and heat transfer systems of particular interest to the Fast Breeder Reactor (FBR) thermal-hydraulic design community. The full three-dimensional, time-dependent equations of motion, continuity, and heat transport are solved for either laminar or turbulent fluid flow, including heat diffusion and generation in both solid and liquid materials. The equations governing mass, momentum, and energy conservation for incompressible flows and small density variations (Boussinesq approximation) are solved using finite-difference techniques. Analyses may be conducted in either cylindrical or Cartesian coordinate systems. Turbulence is treated using a two-equation model. Two auxiliary plotting programs, SEQUEL and MANPLOT, for use with TEMPEST output are included. SEQUEL may be operated in batch or interactive mode; it generates data required for vector plots, contour plots of scalar quantities, line plots, grid and boundary plots, and time-history plots. MANPLOT reads the SEQUEL-generated data and creates the hardcopy plots. TEMPEST can be a valuable hydrothermal design analysis tool in areas outside the intended FBR thermal-hydraulic design community.

Eyler, L.L. [Pacific Northwest Lab., Richland, WA (United States)

1992-01-31T23:59:59.000Z

293

Thermal-Hydraulic Modeling of the Primary Coolant System of Light Water Reactors During Severely Degraded Core Accidents  

Science Conference Proceedings (OSTI)

The transport of fission-product vapors and aerosols that would be released from an LWR primary system in postulated severe accidents depends on the prevalent thermal-hydraulic conditions. The analytic models developed in this study are incorporated in the PSAAC modular computer program, which can help predict more realistic estimates of accident consequences.

1984-07-01T23:59:59.000Z

294

Compositional threshold for Nuclear Waste Glass Durability  

Science Conference Proceedings (OSTI)

Within the composition space of glasses, a distinct threshold appears to exist that separates "good" glasses, i.e., those which are sufficiently durable, from "bad" glasses of a low durability. The objective of our research is to clarify the origin of this threshold by exploring the relationship between glass composition, glass structure and chemical durability around the threshold region.

Kruger, Albert A. [Pacific Northwest National Lab., Richland, WA (United States); Farooqi, Rahmatullah [Pohang Univ. of Science and Technology, (Korea, Republic of); Hrma, Pavel R. [Pacific Northwest National Lab., Richland, WA (United States), Pohang Univ. of Science and Technology, (Korea, Republic of)

2013-04-24T23:59:59.000Z

295

Method for heating a glass sheet  

DOE Patents (OSTI)

A method for heating a glass sheet includes the steps of heating a glass sheet to a first predetermined temperature and applying microwave energy to the glass sheet to heat the glass sheet to at least a second predetermined temperature to allow the glass sheet to be formed. 5 figs.

Boaz, P.T.

1998-07-21T23:59:59.000Z

296

Method for heating a glass sheet  

DOE Patents (OSTI)

A method for heating a glass sheet includes the steps of heating a glass sheet to a first predetermined temperature and applying microwave energy to the glass sheet to heat the glass sheet to at least a second predetermined temperature to allow the glass sheet to be formed.

Boaz, Premakaran Tucker (Livonia, MI)

1998-01-01T23:59:59.000Z

297

Glass rupture disk  

DOE Patents (OSTI)

A frangible rupture disk and mounting apparatus for use in blocking fluid flow, generally in a fluid conducting conduit such as a well casing, a well tubing string or other conduits within subterranean boreholes. The disk can also be utilized in above-surface pipes or tanks where temporary and controllable fluid blockage is required. The frangible rupture disk is made from a pre-stressed glass with controllable rupture properties wherein the strength distribution has a standard deviation less than approximately 5% from the mean strength. The frangible rupture disk has controllable operating pressures and rupture pressures.

Glass, S. Jill (Albuquerque, NM); Nicolaysen, Scott D. (Albuquerque, NM); Beauchamp, Edwin K. (Albuquerque, NM)

2002-01-01T23:59:59.000Z

298

RETENTION OF SULFATE IN HIGH LEVEL RADIOACTIVE WASTE GLASS  

SciTech Connect

High level radioactive wastes are being vitrified at the Savannah River Site for long term disposal. Many of the wastes contain sulfate at concentrations that can be difficult to retain in borosilicate glass. This study involves efforts to optimize the composition of a glass frit for combination with the waste to improve sulfate retention while meeting other process and product performance constraints. The fabrication and characterization of several series of simulated waste glasses are described. The experiments are detailed chronologically, to provide insight into part of the engineering studies used in developing frit compositions for an operating high level waste vitrification facility. The results lead to the recommendation of a specific frit composition and a concentration limit for sulfate in the glass for the next batch of sludge to be processed at Savannah River.

Fox, K.

2010-09-07T23:59:59.000Z

299

INCORPORATION OF MONO SODIUM TITANATE AND CRYSTALLINE SILICOTITANATE FEEDS IN HIGH LEVEL NUCLEAR WASTE GLASS  

Science Conference Proceedings (OSTI)

Four series of glass compositions were selected, fabricated, and characterized as part of a study to determine the impacts of the addition of Crystalline Silicotitanate (CST) and Monosodium Titanate (MST) from the Small Column Ion Exchange (SCIX) process on the Defense Waste Processing Facility (DWPF) glass waste form and the applicability of the DWPF process control models. All of the glasses studied were considerably more durable than the benchmark Environmental Assessment (EA) glass. The measured Product Consistency Test (PCT) responses were compared with the predicted values from the current DWPF durability model. One of the KT01-series and two of the KT03-series glasses had measured PCT responses that were outside the lower bound of the durability model. All of the KT04 glasses had durabilities that were predictable regardless of heat treatment or compositional view. In general, the measured viscosity values of the KT01, KT03, and KT04-series glasses are well predicted by the current DWPF viscosity model. The results of liquidus temperature (T{sub L}) measurements for the KT01-series glasses were mixed with regard to the predictability of the T{sub L} for each glass. All of the measured T{sub L} values were higher than the model predicted values, although most fell within the 95% confidence intervals. Overall, the results of this study show a reasonable ability to incorporate the anticipated SCIX streams into DWPF-type glass compositions with TiO{sub 2} concentrations of 4-5 wt % in glass.

Fox, K.; Johnson, F.; Edwards, T.

2010-11-23T23:59:59.000Z

300

Quinary metallic glass alloys  

DOE Patents (OSTI)

At least quinary alloys form metallic glass upon cooling below the glass transition temperature at a rate less than 10{sup 3}K/s. Such alloys comprise zirconium and/or hafnium in the range of 45 to 65 atomic percent, titanium and/or niobium in the range of 4 to 7.5 atomic percent, and aluminum and/or zinc in the range of 5 to 15 atomic percent. The balance of the alloy compositions comprise copper, iron, and cobalt and/or nickel. The composition is constrained such that the atomic percentage of iron is less than 10 percent. Further, the ratio of copper to nickel and/or cobalt is in the range of from 1:2 to 2:1. The alloy composition formula is: (Zr,Hf){sub a}(Al,Zn){sub b}(Ti,Nb){sub c}(Cu{sub x}Fe{sub y}(Ni,Co){sub z}){sub d} wherein the constraints upon the formula are: a ranges from 45 to 65 atomic percent, b ranges from 5 to 15 atomic percent, c ranges from 4 to 7.5 atomic percent, d comprises the balance, d{hor_ellipsis}y is less than 10 atomic percent, and x/z ranges from 0.5 to 2.

Lin, X.; Johnson, W.L.

1998-04-07T23:59:59.000Z

Note: This page contains sample records for the topic "glass products hydraulic" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Quinary metallic glass alloys  

DOE Patents (OSTI)

At least quinary alloys form metallic glass upon cooling below the glass transition temperature at a rate less than 10.sup.3 K/s. Such alloys comprise zirconium and/or hafnium in the range of 45 to 65 atomic percent, titanium and/or niobium in the range of 4 to 7.5 atomic percent, and aluminum and/or zinc in the range of 5 to 15 atomic percent. The balance of the alloy compositions comprise copper, iron, and cobalt and/or nickel. The composition is constrained such that the atomic percentage of iron is less than 10 percent. Further, the ratio of copper to nickel and/or cobalt is in the range of from 1:2 to 2:1. The alloy composition formula is: (Zr,Hf).sub.a (Al,Zn).sub.b (Ti,Nb).sub.c (Cu.sub.x Fe.sub.y (Ni,Co).sub.z).sub.d wherein the constraints upon the formula are: a ranges from 45 to 65 atomic percent, b ranges from 5 to 15 atomic percent, c ranges from 4 to 7.5 atomic percent, d comprises the balance, d.multidot.y is less than 10 atomic percent, and x/z ranges from 0.5 to 2.

Lin, Xianghong (Pasadena, CA); Johnson, William L. (Pasadena, CA)

1998-01-01T23:59:59.000Z

302

The Implications and Flow Behavior of the Hydraulically Fractured Wells in Shale Gas Formation  

E-Print Network (OSTI)

Shale gas formations are known to have low permeability. This low permeability can be as low as 100 nano darcies. Without stimulating wells drilled in the shale gas formations, it is hard to produce them at an economic rate. One of the stimulating approaches is by drilling horizontal wells and hydraulically fracturing the formation. Once the formation is fractured, different flow patterns will occur. The dominant flow regime observed in the shale gas formation is the linear flow or the transient drainage from the formation matrix toward the hydraulic fracture. This flow could extend up to years of production and it can be identified by half slop on the log-log plot of the gas rate against time. It could be utilized to evaluate the hydraulic fracture surface area and eventually evaluate the effectiveness of the completion job. Different models from the literature can be used to evaluate the completion job. One of the models used in this work assumes a rectangular reservoir with a slab shaped matrix between each two hydraulic fractures. From this model, there are at least five flow regions and the two regions discussed are the Region 2 in which bilinear flow occurs as a result of simultaneous drainage form the matrix and hydraulic fracture. The other is Region 4 which results from transient matrix drainage which could extend up to many years. The Barnett shale production data will be utilized throughout this work to show sample of the calculations. This first part of this work will evaluate the field data used in this study following a systematic procedure explained in Chapter III. This part reviews the historical production, reservoir and fluid data and well completion records available for the wells being analyzed. It will also check for data correlations from the data available and explain abnormal flow behaviors that might occur utilizing the field production data. It will explain why some wells might not fit into each model. This will be followed by a preliminary diagnosis, in which flow regimes will be identified, unclear data will be filtered, and interference and liquid loading data will be pointed. After completing the data evaluation, this work will evaluate and compare the different methods available in the literature in order to decide which method will best fit to analyze the production data from the Barnett shale. Formation properties and the original gas in place will be evaluated and compared for different methods.

Almarzooq, Anas Mohammadali S.

2010-12-01T23:59:59.000Z

303

P and PI controllers for a nonlinear hydraulic network  

E-Print Network (OSTI)

constraints) arising in industrial applications. Current case study: Grundfos district heating system #12;P" district heating system #12;P and PI controllers for a nonlinear hydraulic network Sept. 20, 2007 Page 4 Results #12;P and PI controllers for a nonlinear hydraulic network Sept. 20, 2007 Page 5 District Heating

De Persis, Claudio

304

Simulation of Dynamic Characteristic for Passive Hydraulic Mount  

Science Conference Proceedings (OSTI)

Dynamic modeling of Passive Hydraulic Engine Mounts (PHEM) is developed with inertia track, decoupler and throttle. Mathematically, the state equations governing vibration isolation behaviors of the PHEMs are presented and solved by means of the lumped ... Keywords: passive hydraulic mount, simulation, test

Zhang Yunxia; Fang Zuhua

2009-08-01T23:59:59.000Z

305

Fold Catastrophe Model of Fracture Propagation of Hydraulic Fracturing  

Science Conference Proceedings (OSTI)

According to energy conservation from the destruction of rock catastrophe, a new calculation method of the length of fracture propagation in hydraulic fracturing is proposed, and assuming the crack extends to approximate ellipse, the width calculation ... Keywords: hydraulic fracture, fold catastrophe, fracture parameters

Zhaowan Chun; Wan Tingting; Ai Chi; Ju Guoshuai

2010-05-01T23:59:59.000Z

306

A New Parameter Identification Method for Hydraulic Fractured Gas Wells  

Science Conference Proceedings (OSTI)

The relaxation search algorithm to identify the parameters of hydraulic fractured gas wells is developed in this paper based on the inductive matrix. According to the optimization theory and parallel computation method, the parameters to be identified ... Keywords: Gas Wells, hydraulic fracturing, formation parameters, parameter identification, historic fitting

Li Tiejun; Guo Dali; Min Chao

2010-12-01T23:59:59.000Z

307

New Experimental Studies of Thermal Hydraulics of Rod Bundles (NESTOR)  

Science Conference Proceedings (OSTI)

The NESTOR project (that is, new experimental studies of thermal hydraulics of rod bundles) is a multiyear collaborative endeavor of the Electric Power Research Institute (EPRI), Electricit de France (EDF), and Commissariat a lEnergie Atomique (CEA). The project is aimed at elucidating thermal-hydraulics unknowns pertaining to axial offset anomaly (AOA) in pressurized water reactor (PWR) cores.

2011-10-26T23:59:59.000Z

308

Unsaturated hydraulic parameters determined from direct and indirect methods  

SciTech Connect

Hydraulic parameters are required for numerical simulations of unsaturated flow at Yucca Mountain, a vertically heterogeneous volcanic site for a potential high-level waste repository in the desert southwest. In this paper, direct measurements of the unsaturated hydraulic conductivity using a centrifuge with a specialized rotor are compared to those estimated using a predictive conductivity equation and two methods of measuring moisture retention.

Flint, Lorraine E.; Hudson, David B.; Flint, Alan L.

1997-10-22T23:59:59.000Z

309

Integrated Thermal and Hydraulic Analysis of Distillation Columns  

E-Print Network (OSTI)

This paper outlines the implementation of column thermal and hydraulic analysis in a simulation environment. The methodology is described using a separations example. Column Thermal Analysis has been discussed in the literature extensively. The paper outlines how bringing together the column thermal and hydraulics analysis provides significant additional insights to help screen the options for distillation column revamps.

Samant, K.; Sinclair, I.; Keady, G.

2002-04-01T23:59:59.000Z

310

Potential Contaminant Pathways from Hydraulically Fractured Shale to Aquifers  

E-Print Network (OSTI)

Potential Contaminant Pathways from Hydraulically Fractured Shale to Aquifers by Tom Myers Abstract Hydraulic fracturing of deep shale beds to develop natural gas has caused concern regarding the potential and preferential flow through fractures--could allow the transport of contaminants from the fractured shale

311

A finite element model for three dimensional hydraulic fracturing  

Science Conference Proceedings (OSTI)

This paper is devoted to the development of a model for the numerical simulation of hydraulic fracturing processes with 3d fracture propagation. It takes into account the effects of fluid flow inside the fracture, fluid leak-off through fracture walls ... Keywords: boundary elements, finite elements, hydraulic fracturing, petroleum recovery

Philippe R. B. Devloo; Paulo Dore Fernandes; Sônia M. Gomes; Cedric Marcelo Augusto Ayala Bravo; Renato Gomes Damas

2006-11-01T23:59:59.000Z

312

A New Parameter to Assess Hydromechanical Effect in Single-hole Hydraulic Testing and Grouting  

E-Print Network (OSTI)

of rock joints from hydraulic field testing. Ph.D. thesis,R W, Bodvarsson G S. Hydraulic conductivity of rockFractures as Derived From Hydraulic and Tracer Tests. Water

Fransson, A.

2008-01-01T23:59:59.000Z

313

Acoustic Emission in a Fluid Saturated Hetergeneous Porous Layer with Application to Hydraulic Fracture  

E-Print Network (OSTI)

Motion for a New Model of Hydraulic Fracture With an Induced1987. Hydrodynamics of a Vertical Hydraulic Fracture, Earthand Fluid Flow in the Hydraulic Fracture Pmess, (PhD.

Nelson, J.T.

2009-01-01T23:59:59.000Z

314

LABORATORY INVESTIGATIONS ON THE HYDRAULIC AND THERMOMECHANICAL PROPERTIES OF FRACTURED CRYSTALLINE ROCKS  

E-Print Network (OSTI)

INVESTIGATIONS ON THE HYDRAULIC AND THERMOMECHANICALdetermination of the hydraulic p r o p e r t i e s of f r ainfluence of thermal and hydraulic stresses. The success of

Witherspoon, P.A.

2010-01-01T23:59:59.000Z

315

Using electrical impedance tomography to map subsurface hydraulic conductivity  

DOE Patents (OSTI)

The use of Electrical Impedance Tomography (EIT) to map subsurface hydraulic conductivity. EIT can be used to map hydraulic conductivity in the subsurface where measurements of both amplitude and phase are made. Hydraulic conductivity depends on at least two parameters: porosity and a length scale parameter. Electrical Resistance Tomography (ERT) measures and maps electrical conductivity (which can be related to porosity) in three dimensions. By introducing phase measurements along with amplitude, the desired additional measurement of a pertinent length scale can be achieved. Hydraulic conductivity controls the ability to flush unwanted fluid contaminants from the surface. Thus inexpensive maps of hydraulic conductivity would improve planning strategies for subsequent remediation efforts. Fluid permeability is also of importance for oil field exploitation and thus detailed knowledge of fluid permeability distribution in three-dimension (3-D) would be a great boon to petroleum reservoir analysts.

Berryman, James G. (Danville, CA); Daily, William D. (Livermore, CA); Ramirez, Abelardo L. (Pleasanton, CA); Roberts, Jeffery J. (Livermore, CA)

2000-01-01T23:59:59.000Z

316

Determining the Porosity and Saturated Hydraulic Conductivity of Binary Mixtures  

SciTech Connect

Gravels and coarse sands make up significant portions of some environmentally important sediments, while the hydraulic properties of the sediments are typically obtained in the laboratory using only the fine fraction (e.g., <2 mm or 4.75 mm). Researchers have found that the content of gravel has significant impacts on the hydraulic properties of the bulk soils. Laboratory experiments were conducted to measure the porosity and the saturated hydraulic conductivity of binary mixtures with different fractions of coarse and fine components. We proposed a mixing-coefficient model to estimate the porosity and a power-averaging method to determine the effective particle diameter and further to predict the saturated hydraulic conductivity of binary mixtures. The proposed methods could well estimate the porosity and saturated hydraulic conductivity of the binary mixtures for the full range of gravel contents and was successfully applied to two data sets in the literature.

Zhang, Z. F.; Ward, Anderson L.; Keller, Jason M.

2009-09-27T23:59:59.000Z

317

Determining the Porosity and Saturated Hydraulic Conductivity of Binary Mixtures  

SciTech Connect

Gravels and coarse sands make up significant portions of some environmentally important sediments, while the hydraulic properties of the sediments are typically obtained in the laboratory using only the fine fraction (e.g., <2 mm or 4.75 mm). Researchers have found that the content of gravel has significant impacts on the hydraulic properties of the bulk soils. Laboratory experiments were conducted to measure the porosity and the saturated hydraulic conductivity of binary mixtures with different fractions of coarse and fine components. We proposed a mixing-coefficient model to estimate the porosity and a power-averaging method to determine the effective particle diameter and further to predict the saturated hydraulic conductivity of binary mixtures. The proposed methods could well estimate the porosity and saturated hydraulic conductivity of the binary mixtures for the full range of gravel contents and was successfully applied to two data sets in the literature.

Zhang, Z. F.; Ward, Anderson L.; Keller, Jason M.

2011-02-14T23:59:59.000Z

318

Holder for rotating glass body  

DOE Patents (OSTI)

A device is provided for holding and centering a rotating glass body such as a rod or tube. The device includes a tubular tip holder which may be held in a lathe chuck. The device can utilize a variety of centering tips each adapted for a particular configuration, such as a glass O-ring joint or semi-ball joint.

Kolleck, Floyd W. (Clarendon Hills, IL)

1978-04-04T23:59:59.000Z

319

Method of determining glass durability  

DOE Patents (OSTI)

A process is described for determining one or more leachate concentrations of one or more components of a glass composition in an aqueous solution of the glass composition by identifying the components of the glass composition, including associated oxides, determining a preliminary glass dissolution estimator, {Delta}G{sub p}, based upon the free energies of hydration for the component reactant species, determining an accelerated glass dissolution function, {Delta}G{sub a}, based upon the free energy associated with weak acid dissociation, {Delta}G{sub a}{sup WA}, and accelerated matrix dissolution at high pH, {Delta}G{sub a}{sup SB} associated with solution strong base formation, and determining a final hydration free energy, {Delta}G{sub f}. This final hydration free energy is then used to determine leachate concentrations for elements of interest using a regression analysis and the formula log{sub 10}(N C{sub i}(g/L))=a{sub i} + b{sub i}{Delta}G{sub f}. The present invention also includes a method to determine whether a particular glass to be produced will be homogeneous or phase separated. The present invention is also directed to methods of monitoring and controlling processes for making glass using these determinations to modify the feedstock materials until a desired glass durability and homogeneity is obtained. 4 figs.

Jantzen, C.M.; Pickett, J.B.; Brown, K.G.; Edwards, T.B.

1998-12-08T23:59:59.000Z

320

Refractory Glass Seals for SOFC  

DOE Green Energy (OSTI)

One of the critical challenges facing planar solid oxide fuel cell (SOFC) technology is the need for reliable sealing technology. Seals must exhibit long-term stability and mechanical integrity in the high temperature SOFC environment during normal and transient operation. Several different approaches for sealing SOFC stacks are under development, including glass or glass-ceramic seals, metallic brazes, and compressive seals. Among glass seals, rigid glass-ceramics, self-healing glass, and composite glass approaches have been investigated under the SECA Core Technology Program. The U.S. Department of Energy's Pacific Northwest National Laboratory (PNNL) has developed the refractory glass approach in light of the fact that higher sealing temperatures (e.g., 930-1000 degrees C) may enhance the ultimate in-service bulk strength and electrical conductivity of contact materials, as well as the bonding strength between contact materials and adjacent SOFC components, such as interconnect coatings and electrodes. This report summarizes the thermal, chemical, mechanical, and electrical properties of the refractory sealing glass.

Chou, Y. S.; Stevenson, Jeffry W.

2011-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "glass products hydraulic" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Method of determining glass durability  

DOE Patents (OSTI)

A process for determining one or more leachate concentrations of one or more components of a glass composition in an aqueous solution of the glass composition by identifying the components of the glass composition, including associated oxides, determining a preliminary glass dissolution estimator, .DELTA.G.sub.p, based upon the free energies of hydration for the component reactant species, determining an accelerated glass dissolution function, .DELTA.G.sub.a, based upon the free energy associated with weak acid dissociation, .DELTA.G.sub.a.sup.WA, and accelerated matrix dissolution at high pH, .DELTA.G.sub.a.sup.SB associated with solution strong base formation, and determining a final hydration free energy, .DELTA.G.sub.f. This final hydration free energy is then used to determine leachate concentrations for elements of interest using a regression analysis and the formula log.sub.10 (N C.sub.i (g/L))=a.sub.i +b.sub.i .DELTA.G.sub.f. The present invention also includes a method to determine whether a particular glass to be produced will be homogeneous or phase separated. The present invention is also directed to methods of monitoring and controlling processes for making glass using these determinations to modify the feedstock materials until a desired glass durability and homogeneity is obtained.

Jantzen, Carol Maryanne (Aiken, SC); Pickett, John Butler (Aiken, SC); Brown, Kevin George (Augusta, GA); Edwards, Thomas Barry (Aiken, SC)

1998-01-01T23:59:59.000Z

322

Mechanisms and impact of damage resulting from hydraulic fracturing. Topical report, May 1995-July 1996  

Science Conference Proceedings (OSTI)

This topical report documents the mechanisms of formation damage following hydraulic fracturing and their impact upon gas well productivity. The categories of damage reviewed include absolute or matrix permeability damage, relative permeability alterations, the damage of natural fracture permeability mechanisms and proppant conductivity impairment. Case studies are reviewed in which attempts are made to mitigate each of the damage types. Industry surveys have been conducted to determine the perceptions of the industry on the topic of formation damage following hydraulic fracturing and to identify key formations in which formation damage is a problem. From this information, technical hurdles and new technology needs are identified and estimates are made of the benefits of developing and applying minimum formation damage technology.

Penny, G.S.; Conway, M.W.; Almond, S.W.; Himes, R.; Nick, K.E.

1996-08-01T23:59:59.000Z

323

THERMAL HYDRAULIC ANALYSIS OF A LIQUID-METAL-COOLED NEUTRON SPALLATION TARGET  

Science Conference Proceedings (OSTI)

We have carried out numerical simulations of the thermal hydraulic behavior of a neutron spallation target where liquid metal lead-bismuth serves as both coolant and as a neutron spallation source. The target is one of three designs provided by the Institute of Physics and Power Engineering (IPPE) in Russia. This type of target is proposed for Accelerator-driven Transmutation of Waste (ATW) to eliminate plutonium from hazardous fission products. The thermal hydraulic behavior was simulated by use of a commercial CFD computer code called CFX. Maximum temperatures in the diaphragm window and in the liquid lead were determined. In addition the total pressure drop through the target was predicted. The results of the CFX analysis were close to those results predicted by IPPE in their preliminary analysis.

W. GREGORY; R. MARTIN; T. VALACHOVIC

2000-07-01T23:59:59.000Z

324

THE THREE DIMENSIONAL THERMAL HYDRAULIC CODE BAGIRA.  

SciTech Connect

BAGIRA - a thermal-hydraulic program complex was primarily developed for using it in nuclear power plant simulator models, but is also used as a best-estimate analytical tool for modeling two-phase mixture flows. The code models allow consideration of phase transients and the treatment of the hydrodynamic behavior of boiling and pressurized water reactor circuits. It provides the capability to explicitly model three-dimensional flow regimes in various regions of the primary and secondary circuits such as, the mixing regions, circular downcomer, pressurizer, reactor core, main primary loops, the steam generators, the separator-reheaters. In addition, it is coupled to a severe-accident module allowing the analysis of core degradation and fuel damage behavior. Section II will present the theoretical basis for development and selected results are presented in Section III. The primary use for the code complex is to realistically model reactor core behavior in power plant simulators providing enhanced training tools for plant operators.

KALINICHENKO,S.D.; KOHUT,P.; KROSHILIN,A.E.; KROSHILIN,V.E.; SMIRNOV,A.V.

2003-05-04T23:59:59.000Z

325

Neutron Imaging Reveals Internal Plant Hydraulic Dynamics  

SciTech Connect

Many terrestrial ecosystem processes are constrained by water availability and transport within the soil. Knowledge of plant water fluxes is thus critical for assessing mechanistic processes linked to biogeochemical cycles, yet resolution of root structure and xylem water transport dynamics has been a particularly daunting task for the ecologist. Through neutron imaging, we demonstrate the ability to non-invasively monitor individual root functionality and water fluxes within Zea mays L. (maize) and Panicum virgatum L. (switchgrass) seedlings growing in a sandy medium. Root structure and growth were readily imaged by neutron radiography and neutron computed tomography. Seedlings were irrigated with water or deuterium oxide and imaged through time as a growth lamp was cycled on to alter leaf demand for water. Sub-millimeter scale resolution reveals timing and magnitudes of root water uptake, redistribution within the roots, and root-shoot hydraulic linkages, relationships not well characterized by other techniques.

Warren, Jeffrey [ORNL; Bilheux, Hassina Z [ORNL; Kang, Misun [ORNL; Voisin, Sophie [ORNL; Cheng, Chu-Lin [ORNL; Horita, Jusuke [ORNL; Perfect, Edmund [ORNL

2013-01-01T23:59:59.000Z

326

Ductility of lightly reinforced concrete hydraulic structures  

E-Print Network (OSTI)

In the past, intake towers built by the Corp of Engineers were designed without consideration of seismic effects. This study investigates an economic approach to determining the ductility of an existing lightly reinforced concrete hydraulic structure. An intake tower, typical of older structure, with reinforcing steel ratios below code specified minimums was selected and modeled using DRAIN-2DX, a dynamic analysis program for personal computers which incorporates the effects of inelastic deformation. The analyses, performed with three separate earthquake acceleration time histories for various model conditions, produced a range of ductility values. The results indicate that ductility is facilitated by the presence of in-plane walls. However, the calculated ductility values may be exaggerated due to the elastic panel elements in the model which redistribute loads away from yielded sections. Also, larger ductility values were calculated for reservoirs with water than for empty reservoirs.

Raines, Amy Lynette

1994-01-01T23:59:59.000Z

327

LMR thermal hydraulics calculations in the US  

SciTech Connect

A wide range of thermal hydraulics computer codes have been developed by various organizations in the US. These codes cover an extensive range of purposes from within-assembly-wise pin temperature calculations to plant wide transient analysis. The codes are used for static analysis, for analysis of protected anticipated transients, and for analysis of a wide range of unprotected transients for the more recent inherently safe LMR designs. Some of these codes are plant-specific codes with properties of a specific plant built into them. Other codes are more general and can be applied to a number of plants or designs. These codes, and the purposes for which they have been used, are described.

Dunn, F.E.; Malloy, D.J.; Mohr, D.

1987-04-27T23:59:59.000Z

328

Gas Test Loop Booster Fuel Hydraulic Testing  

SciTech Connect

The Gas Test Loop (GTL) project is for the design of an adaptation to the Advanced Test Reactor (ATR) to create a fast-flux test space where fuels and materials for advanced reactor concepts can undergo irradiation testing. Incident to that design, it was found necessary to make use of special booster fuel to enhance the neutron flux in the reactor lobe in which the Gas Test Loop will be installed. Because the booster fuel is of a different composition and configuration from standard ATR fuel, it is necessary to qualify the booster fuel for use in the ATR. Part of that qualification is the determination that required thermal hydraulic criteria will be met under routine operation and under selected accident scenarios. The Hydraulic Testing task in the GTL project facilitates that determination by measuring flow coefficients (pressure drops) over various regions of the booster fuel over a range of primary coolant flow rates. A high-fidelity model of the NW lobe of the ATR with associated flow baffle, in-pile-tube, and below-core flow channels was designed, constructed and located in the Idaho State University Thermal Fluids Laboratory. A circulation loop was designed and constructed by the university to provide reactor-relevant water flow rates to the test system. Models of the four booster fuel elements required for GTL operation were fabricated from aluminum (no uranium or means of heating) and placed in the flow channel. One of these was instrumented with Pitot tubes to measure flow velocities in the channels between the three booster fuel plates and between the innermost and outermost plates and the side walls of the flow annulus. Flow coefficients in the range of 4 to 6.5 were determined from the measurements made for the upper and middle parts of the booster fuel elements. The flow coefficient for the lower end of the booster fuel and the sub-core flow channel was lower at 2.3.

Gas Test Loop Hydraulic Testing Staff

2006-09-01T23:59:59.000Z

329

Application of a 3D hydraulic-fracturing simulator for design of acid-fracturing treatments  

Science Conference Proceedings (OSTI)

Field experience during 1989--90 shows that application of a 3D hydraulic-fracturing simulator increases success of acid-fracturing well treatments. Fracture extension can be limited to the oil-bearing pay, maximum lateral extension can be realized within the height constraint, and acid/rock contact time can be increased by a factor of between 3 and 30. Oil-production response can be improved over other stimulation designs while water-production response can be limited. These methods have been applied in mature waterfloods of the Permian Basin and Cedar Creek anticline.

Morgenthaler, L.N. (Shell Development Co., Houston, TX (United States))

1994-02-01T23:59:59.000Z

330

Thermal Hydraulics of Sodium-Cooled Fast Reactors: Key Design and Safety Issues and Highlights  

Science Conference Proceedings (OSTI)

Technical Paper / Special Issue on the 14th International Topical Meeting on Nuclear Reactor Thermal Hydraulics (NURETH-14) / Fission Reactors; Thermal Hydraulics

Hisashi Ninokata; Hideki Kamide

331

Method for valve seating control for an electro-hydraulic engine valve  

DOE Patents (OSTI)

Valve lift in an internal combustion engine is controlled by an electro-hydraulic actuation mechanism including a selectively actuable hydraulic feedback circuit.

Sun, Zongxuan (Plymouth, MN)

2011-01-11T23:59:59.000Z

332

Unusually Stable Glasses May Benefit Drugs, Coatings  

Science Conference Proceedings (OSTI)

... glass is more apt to convert to a low-energy crystalline order ... to study how molecules diffuse during subsequent annealing of the two types of glass ...

2012-11-01T23:59:59.000Z

333

Glass and Optical Materials - Programmaster.org  

Science Conference Proceedings (OSTI)

Ion Exchanged Mixed Glass Cullet Proppants for Stimulation of Oil and Natural Gas Bearing Shales · Modeling the Electrical Conductivity in Glass Melts.

334

Lead phosphate glass compositions for optical components  

DOE Patents (OSTI)

A lead phosphate glass to which has been added indium oxide or scandium oe to improve chemical durability and provide a lead phosphate glass with good optical properties.

Sales, Brian C. (Oak Ridge, TN); Boatner, Lynn A. (Oak Ridge, TN)

1987-01-01T23:59:59.000Z

335

Laboratory Equipment - Ace Glass UV Photochemistry Safety ...  

Science Conference Proceedings (OSTI)

... Specifications / Capabilities: UV Photchemistry Safety Cabinet Ace Glass Cat. Number 7836-20. ... Power Supply Ace Glass Cat. Number 7830-60. ...

2013-02-27T23:59:59.000Z

336

Chemical Strengthening of Soda Lime Silicate Glass  

Science Conference Proceedings (OSTI)

Ion Exchanged Mixed Glass Cullet Proppants for Stimulation of Oil and Natural Gas Bearing Shales · Modeling the Electrical Conductivity in Glass Melts.

337

HIGH ALUMINUM HLW (HIGH LEVEL WASTE ) GLASSES FOR HANFORDS WTP (WASTE TREATMENT PROJECT)  

Science Conference Proceedings (OSTI)

This paper presents the results of glass formulation development and melter testing to identify high waste loading glasses to treat high-Al high level waste (HLW) at Hanford. Previous glass formulations developed for this HLW had high waste loadings but their processing rates were lower that desired. The present work was aimed at improving the glass processing rate while maintaining high waste loadings. Glass formulations were designed, prepared at crucible-scale and characterized to determine their properties relevant to processing and product quality. Glass formulations that met these requirements were screened for melt rates using small-scale tests. The small-scale melt rate screening included vertical gradient furnace (VGF) and direct feed consumption (DFC) melter tests. Based on the results of these tests, modified glass formulations were developed and selected for larger scale melter tests to determine their processing rate. Melter tests were conducted on the DuraMelter 100 (DMIOO) with a melt surface area of 0.11 m{sup 2} and the DuraMelter 1200 (DMI200) HLW Pilot Melter with a melt surface area of 1.2 m{sup 2}. The newly developed glass formulations had waste loadings as high as 50 wt%, with corresponding Al{sub 2}O{sub 3} concentration in the glass of 26.63 wt%. The new glass formulations showed glass production rates as high as 1900 kg/(m{sup 2}.day) under nominal melter operating conditions. The demonstrated glass production rates are much higher than the current requirement of 800 kg/(m{sup 2}.day) and anticipated future enhanced Hanford Tank Waste Treatment and Immobilization Plant (WTP) requirement of 1000 kg/(m{sup 2}.day).

KRUGER AA; BOWAN BW; JOSEPH I; GAN H; KOT WK; MATLACK KS; PEGG IL

2010-01-04T23:59:59.000Z

338

Glass science tutorial: Lecture No. 7, Waste glass technology for Hanford  

SciTech Connect

This paper presents the details of the waste glass tutorial session that was held to promote knowledge of waste glass technology and how this can be used at the Hanford Reservation. Topics discussed include: glass properties; statistical approach to glass development; processing properties of nuclear waste glass; glass composition and the effects of composition on durability; model comparisons of free energy of hydration; LLW glass structure; glass crystallization; amorphous phase separation; corrosion of refractories and electrodes in waste glass melters; and glass formulation for maximum waste loading.

Kruger, A.A.

1995-07-01T23:59:59.000Z

339

Federal Energy Management Program: Covered Product Category:...  

NLE Websites -- All DOE Office Websites (Extended Search)

glass door models. Federal agencies should use solid door models as much as possible. ENERGY STAR Qualified Products Updated March 2012 FEMP provides acquisition guidance and...

340

Hydraulic Fracturing on Drinking Water Resources  

E-Print Network (OSTI)

Disclaimer Mention of trade names or commercial products does not constitute endorsement or recommendation for use.

unknown authors

2012-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "glass products hydraulic" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Al-Based Metallic Glass Incorporated Novel Ag Electrode for Si ...  

Science Conference Proceedings (OSTI)

... and good corrosion/oxidation resistances in the supercooled liquid state. ... Al- Based Metallic Glass Incorporated Novel Ag Electrode for Si Solar Cell ... Interfacial Free Energy and Local Order of Metallic Liquids from Elements to Alloys ... Predicting the Production of Glass Former Alloys by Mathematical Simulation of ...

342

Development of a process control sensor for the glass industry  

SciTech Connect

This project was initiated to fill a need in the glass industry for a non-contact temperature sensor for glass melts. At present, the glass forming industry (e.g., bottle manufacture) consumes significant amounts of energy. Careful control of temperature at the point the bottle is molded is necessary to prevent the bottle from being rejected as out-of-specification. In general, the entire glass melting and conditioning process is designed to minimize this rejection rate, maximize throughput and thus control energy and production costs. This program focuses on the design, development and testing of an advanced optically based pyrometer for glass melts. The pyrometer operates simultaneously at four wavelengths; through analytical treatment of the signals, internal temperature profiles within the glass melt can be resolved. A novel multiplexer alloys optical signals from a large number of fiber-optic sensors to be collected and resolved by a single detector at a location remote from the process. This results in a significant cost savings on a per measurement point basis. The development program is divided into two phases. Phase 1 involves the construction of a breadboard version on the instrument and its testing on a pilot-scale furnace. In Phase 2, a prototype analyzer will be constructed and tested on a commercial forehearth. This report covers the Phase 1 activities.

Gardner, M.; Candee, A.; Kramlich, J.; Koppang, R.

1991-05-01T23:59:59.000Z

343

GRADIENT INDEX SPHERES BY THE SEQUENTIAL ACCRETION OF GLASS POWDERS  

Science Conference Proceedings (OSTI)

The Department of Energy is seeking a method for fabricating mm-scale spheres having a refractive index that varies smoothly and continuously from the center to its surface [1]. The fabrication procedure must allow the creation of a range of index profiles. The spheres are to be optically transparent and have a refractive index differential greater than 0.2. The sphere materials can be either organic or inorganic and the fabrication technique must be capable of scaling to low cost production. Mo-Sci Corporation proposed to develop optical quality gradient refractive index (GRIN) glass spheres of millimeter scale (1 to 2 mm diameter) by the sequential accretion and consolidation of glass powders. Other techniques were also tested to make GRIN spheres as the powder-accretion method produced non-concentric layers and poor optical quality glass spheres. Potential ways to make the GRIN spheres were (1) by "coating" glass spheres (1 to 2 mm diameter) with molten glass in a two step process; and (2) by coating glass spheres with polymer layers.

MARIANO VELEZ

2008-06-15T23:59:59.000Z

344

Fracturing of simulated high-level waste glass in canisters  

SciTech Connect

Waste-glass castings generated from engineering-scale developmental processes at the Pacific Northwest Laboratory are generally found to have significant levels of cracks. The causes and extent of fracturing in full-scale canisters of waste glass as a result of cooling and accidental impact are discussed. Although the effects of cracking on waste-form performance in a repository are not well understood, cracks in waste forms can potentially increase leaching surface area. If cracks are minimized or absent in the waste-glass canisters, the potential for radionuclide release from the canister package can be reduced. Additional work on the effects of cracks on leaching of glass is needed. In addition to investigating the extent of fracturing of glass in waste-glass canisters, methods to reduce cracking by controlling cooling conditions were explored. Overall, the study shows that the extent of glass cracking in full-scale, passively-cooled, continuous melting-produced canisters is strongly dependent on the cooling rate. This observation agrees with results of previously reported Pacific Northwest Laboratory experiments on bench-scale annealed canisters. Thus, the cause of cracking is principally bulk thermal stresses. Fracture damage resulting from shearing at the glass/metal interface also contributes to cracking, more so in stainless steel canisters than in carbon steel canisters. This effect can be reduced or eliminated with a graphite coating applied to the inside of the canister. Thermal fracturing can be controlled by using a fixed amount of insulation for filling and cooling of canisters. In order to maintain production rates, a small amount of additional facility space is needed to accomodate slow-cooling canisters. Alternatively, faster cooling can be achieved using the multi-staged approach. Additional development is needed before this approach can be used on full-scale (60-cm) canisters.

Peters, R.D.; Slate, S.C.

1981-09-01T23:59:59.000Z

345

IMPACT OF URANIUM AND THORIUM ON HIGH TIO2 CONCENTRATION NUCLEAR WASTE GLASSES  

Science Conference Proceedings (OSTI)

This study focused on the potential impacts of the addition of Crystalline Silicotitanate (CST) and Monosodium Titanate (MST) from the Small Column Ion Exchange (SCIX) process on the Defense Waste Processing Facility (DWPF) glass waste form and the applicability of the DWPF process control models. MST from the Salt Waste Processing Facility (SWPF) is also considered in the study. The KT08-series of glasses was designed to evaluate any impacts of the inclusion of uranium and thorium in glasses containing the SCIX components. All but one of the study glasses were found to be amorphous by X-ray diffraction (XRD). One of the slowly cooled glasses contained a small amount of trevorite, which is typically found in DWPF-type glasses and had no practical impact on the durability of the glass. The measured Product Consistency Test (PCT) responses for the study glasses and the viscosities of the glasses were well predicted by the current DWPF models. No unexpected issues were encountered when uranium and thorium were added to the glasses with SCIX components.

Fox, K.; Edwards, T.

2012-01-11T23:59:59.000Z

346

Method for melting glass by measurement of non-bridging oxygen  

DOE Patents (OSTI)

A method is described for making better quality molten glass in a glass melter, the glass having the desired viscosity and, preferably, also the desired resistivity so that the glass melt can be established effectively and the product of the glass melter will have the desired level of quality. The method includes the adjustment of the composition of the glass constituents that are fed into the melter in accordance with certain correlations that reliably predict the viscosity and resistivity from the melter temperature and the melt composition, then heating the ingredients to the melter's operating temperature until they melt and homogenize. The equations include the calculation of a non-bridging oxygen' term from the numbers of moles of the various ingredients, and then the determination of the viscosity and resistivity from the operating temperature of the melter and the non-bridging oxygen term. 4 figs.

Jantzen, C.M.

1992-04-07T23:59:59.000Z

347

Method for melting glass by measurement of non-bridging oxygen  

DOE Patents (OSTI)

A method for making better quality molten glass in a glass melter, the glass having the desired viscosity and, preferably, also the desired resistivity so that the glass melt can be established effectively and the product of the glass melter will have the desired level of quality. The method includes the adjustment of the composition of the glass constituents that are fed into the melter in accordance with certain correlations that reliably predict the viscosity and resistivity from the melter temperature and the melt composition, then heating the ingredients to the melter's operating temperature until they melt and homogenize. The equations include the calculation of a "non-bridging oxygen" term from the numbers of moles of the various ingredients, and then the determination of the viscosity and resistivity from the operating temperature of the melter and the non-bridging oxygen term.

Jantzen, Carol M. (3922 Wood Valley Dr., Aiken, SC 29801)

1992-01-01T23:59:59.000Z

348

Method for manufacturing glass frit  

SciTech Connect

A method of manufacturing a glass frit for use in the manufacture of uniform glass microspheres to serve as containers for laser fusion fuel to be exposed to laser energy which includes the formation of a glass gel which is then dried, pulverized, and very accurately sized to particles in a range of, for example, 125 to 149 micrometers. The particles contain an occluded material such as urea which expands when heated. The sized particles are washed, dried, and subjected to heat to control the moisture content prior to being introduced into a system to form microspheres.

Budrick, Ronald G. (Ann Arbor, MI); King, Frank T. (Hillsboro, OR); Nolen, Jr., Robert L. (Ann Arbor, MI); Solomon, David E. (Ann Arbor, MI)

1977-01-01T23:59:59.000Z

349

MICRO-SEISMICITY, FAULT STRUCTURE AND HYDRAULIC COMPARTMENTALIZATION WITHIN  

Open Energy Info (EERE)

MICRO-SEISMICITY, FAULT STRUCTURE AND HYDRAULIC COMPARTMENTALIZATION WITHIN MICRO-SEISMICITY, FAULT STRUCTURE AND HYDRAULIC COMPARTMENTALIZATION WITHIN THE COSO GETHERMAL FIELD, CALIFORNIA Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Proceedings: MICRO-SEISMICITY, FAULT STRUCTURE AND HYDRAULIC COMPARTMENTALIZATION WITHIN THE COSO GETHERMAL FIELD, CALIFORNIA Details Activities (1) Areas (1) Regions (0) Abstract: High precision earthquake locations and subsurface velocity structure provide potential insights into fracture system geometry, fluid conduits and fluid compartmentalization critical to geothermal reservoir management. We analyze 16 years of seismicity to improve hypocentral locations and simultaneously invert for the seismic velocity structure within the Coso Geothermal Field (CGF). The CGF has been continuously

350

IMPACTS OF SMALL COLUMN ION EXCHANGE STREAMS ON DWPF GLASS FORMULATION: KT05- AND KT06-SERIES GLASS COMPOSITIONS  

SciTech Connect

This report is the second in a series of studies of the impacts of the addition of Crystalline Silicotitanate (CST) and Monosodium Titanate (MST) from the Small Column Ion Exchange (SCIX) process on the Defense Waste Processing Facility (DWPF) glass waste form and the applicability of the DWPF process control models. The KT05-series glasses were selected, fabricated, and characterized to further study glass compositions where iron titanate crystals had been previously found to form. The intent was to better understand the mechanisms and compositions that favored the formation of crystals containing titanium. Formation of these crystalline phases was confirmed. Increased Na{sub 2}O concentrations had little if any impact on reducing the propensity for the formation of the iron titanate crystalline phases. Other physical properties of these glasses were not measured since the intent was to focus on crystallization. Additional studies are suggested to investigate the potential impacts of Al{sub 2}O{sub 3} and K{sub 2}O on crystallization in glasses with high TiO{sub 2} concentrations. The KT06-series glasses were selected, fabricated, and characterized to further study glass compositions that, while broader than the current projections for DWPF feeds with SCIX material, are potential candidates for future processing (i.e., the compositions are acceptable for processing by the Product Composition Control System (PCCS) with the exception of the current TiO{sub 2} concentration constraint). The chemical compositions of these glasses matched well with the target values. The chemical durabilities of all the glasses were acceptable relative to the Environmental Assessment (EA) benchmark. Minor crystallization was identified in some of the slowly cooled glasses, although this crystallization did not impact chemical durability. Several of the KT06-series compositions had durability values that, while acceptable, were not accurately predicted by the current durability models. It was shown that for these high TiO{sub 2} concentration glasses, relatively high Fe{sub 2}O{sub 3} concentrations combined with relatively high Al{sub 2}O{sub 3} concentrations led to durabilities that were unpredictable. Several of the KT06-series glasses also had measured viscosity values that were not well predicted by the current model. A statistical partitioning routine showed that the measured viscosities became unpredictable by the current model when the Fe{sub 2}O{sub 3} concentration in the glasses was less than about 8.2 wt % at the elevated TiO{sub 2} concentrations. The current durability and viscosity models will have to be further evaluated should compositions in these regions become necessary for DWPF processing. Overall, the results presented for the KT06-series glasses show that TiO{sub 2} from the SCIX streams can be incorporated into DWPF-type glasses at concentrations of 6 wt % (in glass) without any detrimental impacts on crystallization or chemical durability that are of practical importance. The measured values for chemical durability and viscosity were acceptable for processing; however, not all of the values were predictable by the current PCCS models. Since the compositions selected for the KT06-series glasses were outside the current projections for DWPF processing with the SCIX streams (in terms of waste components other than TiO{sub 2}), these results help identify compositional regions that, if necessary for processing, would require modifications to the current models. Additional experiments are currently underway. Once completed, all of the measured data will be reviewed and compared to model predictions to better determine whether the validation range of the DWPF process control models can be confidently extended, or whether refitting of the models will be necessary.

Fox, K.; Edwards, T.

2011-01-03T23:59:59.000Z

351

A comparison of glass reaction at high and low glass surface/solution volume  

SciTech Connect

Static leach tests have been performed at glass surface area/leachant volume (SA/V) ratios of 10, 340, 2,000, and 20,000 m[sup [minus]1] to assess the effects of the SA/V on the mechanism and rate of the glass reaction. Tests were performed using actinide-doped borosilicate waste glasses [Savannah River Laboratory (SRL) 131 and SRL 202] to monitor the distribution of released radionuclides in tests at different SA/V. Solution results show the major effect of the SA/V to be dilution of reaction of products. Differences in the pH and silicic acid concentrations attained in tests at different SA/V then affect the reaction rate. Tests at low SA/V maintain leachate pH values similar to the initial leachant, while tests at higher SA/V result in higher leachate pH values being attained due to ion-exchange reactions. Transuranics released as the glass corrodes may exist in the leachate in concentrations far above their solubility limits by sorbing onto colloids, although the colloids may eventually settle out of solution. Transuranics also sorb onto the steel reaction vessel. The glass reaction progress can be characterized by three stages: (a) an initial stage where the reaction rate depends on the leachant pH, (b) an intermediate stage where the reaction slows toward a minimum rate as the leachate solution approaches saturation,'' and (c) a long-term stage where the reaction rate may be affected by the formation of secondary phases that control the solution chemistry. Tests at different SA/V cannot always be compared directly because the dominant reaction step and the observed reaction stage (initial, intermediate, or long-term) may not be the same.

Ebert, W.L.; Bates, J.K. (Argonne National Lab., IL (United States))

1993-12-01T23:59:59.000Z

352

Memo, "Incorporation of HLW Glass Shell V2.0 into the Flowsheets," to ED Lee, CCN: 184905, October 20, 2009  

Science Conference Proceedings (OSTI)

Efforts are being made to increase the efficiency and decrease the cost of vitrifying radioactive waste stored in tanks at the U.S. Department of Energy Hanford Site. The compositions of acceptable and processable high-level waste (HL W) glasses need to be optimized to minimize the waste-form volume and, hence, to reduce cost. A database of glass properties of waste glass and associated simulated waste glasses was collected and documented in PNNL 18501, Glass Property Data and Models for Estimating High-Level Waste Glass Volume and glass property models were curve-fitted to the glass compositions. A routine was developed that estimates HL W glass volumes using the following glass property models: II Nepheline, II One-Percent Crystal Temperature (T1%), II Viscosity (11) II Product Consistency Tests (PCT) for boron, sodium, and lithium, and II Liquidus Temperature (TL). The routine, commonly called the HL W Glass Shell, is presented in this document. In addition to the use of the glass property models, glass composition constraints and rules, as recommend in PNNL 18501 and in other documents (as referenced in this report) were incorporated. This new version of the HL W Glass Shell should generally estimate higher waste loading in the HL W glass than previous versions.

Gimpel, Rodney F.; Kruger, Albert A.

2013-12-18T23:59:59.000Z

353

Replacement of petroleum based hydraulic fluids with a soybean-based alternative  

DOE Green Energy (OSTI)

Despite the best preventative measures, ruptured hoses, spills and leaks occur with use of all hydraulic equipment. Although these releases do not usually produce a RCRA regulated waste, they are often a reportable occurrence. Clean-up and subsequent administrative procedure involves additional costs, labor and work delays. Concerns over these releases, especially related to Sandia National Laboratories (SNL) vehicles hauling waste on public roads prompted Fleet Services (FS) to seek an alternative to the standard petroleum based hydraulic fluid. Since 1996 SNL has participated in a pilot program with the University of Iowa (UNI) and selected vehicle manufacturers, notably John Deere, to field test hydraulic fluid produced from soybean oil in twenty of its vehicles. The vehicles included loaders, graders, sweepers, forklifts and garbage trucks. Research was conducted for several years at UNI to modify and market soybean oils for industrial uses. Soybean oil ranks first in worldwide production of vegetable oils (29%), and represents a tremendous renewable resource. Initial tests with soybean oil showed excellent lubrication and wear protection properties. Lack of oxidative stability and polymerization of the oil were concerns. These concerns were being addressed through genetic alteration, chemical modification and use of various additives, and the improved lubricant is in the field testing stage.

Rose, B.; Rivera, P.

1998-05-01T23:59:59.000Z

354

Numerical investigation of electric heating impacts on solid/liquid glass flow patterns.  

SciTech Connect

A typical glass furnace consists of a combustion space and a melter. Intense heat is generated from the combustion of fuel and air/oxygen in the combustion space. This heat is transferred mainly by radiation to the melter in order to melt sand and cullet (scrap glass) eventually creating glass products. Many furnaces use electric boosters to enhance glass melting and increase productivity. The coupled electric/combustion heat transfer patterns are key to the glass making processes. The understanding of the processes can lead to the improvement of glass quality and furnace efficiency. The effects of electrical boosting on the flow patterns and heat transfer in a glass melter are investigated using a multiphase Computational Fluid Dynamics (CFD) code with addition of an electrical boosting model. The results indicate that the locations and spacing of the electrodes have large impacts on the velocity and temperature distributions in the glass melter. With the same total heat input, the batch shape (which is determined by the overall heat transfer and the batch melting rate) is kept almost the same. This indicates that electric boosting can be used to replace part of heat by combustion. Therefore, temperature is lower in the combustion space and the life of the furnace can be prolonged. The electric booster can also be used to increase productivity without increasing the furnace size.

Chang, S. L.; Zhou, C. Q.; Golchert, B.

2002-07-02T23:59:59.000Z

355

Glass in 21st Century  

Science Conference Proceedings (OSTI)

Oct 19, 2011 ... This presentation is an overview of the findings from the June 21-22, 2010 American Ceramic Society Leadership Summit ... Borosilicate Glasses: Steve W. Martin1; Randi Christensen1; Garrett Olson1; 1Iowa State University

356

Thermal insulation of window glass  

SciTech Connect

The thermal insulation of window glass can be increased by a factor of two using spray-on semiconductive SnO/sub 2/: Sb or IN/sub 2/O/sub 3/: Sn coatings. (auth)

Sievers, A.J.

1973-11-01T23:59:59.000Z

357

Fast Crystals and Strong Glasses  

SciTech Connect

This talk describes new results on model colloid systems that provide insight into the behavior of fundamental problems in colloid physics, and more generally, for other materials as well. By visualizing the nucleation and growth of colloid crystals, we find that the incipient crystallites are much more disordered than expected, leading to a larger diversity of crystal morphologies. When the entropic contribution of these diverse morphologies is included in the free energy, we are able to describe the behavior very well, and can predict the nucleation rate surprisingly accurately. The talk also describes the glass transition in deformable colloidal particles, and will show that when the internal elasticity of the particles is included, the colloidal glass transition mimics that of molecular glass formers much more completely. These results also suggest that the elasticity at the scale of the fundamental unit, either colloid particle or molecule, determines the nature of the glass transition, as described by the "fragility."

Weitz, David [Harvard

2009-11-04T23:59:59.000Z

358

Sulfate Fining Chemistry in Oxidized and Reduced Soda-Lime-Silica Glasses  

SciTech Connect

Various reducing agents were used and their additions were varied to (1) increase glass quality through eliminating defects from silica scum, (2) decrease SOx emissions through changing the kind and quantity of reducing agents, and (3) improve production efficiency through increased flexibility of glass redox control during continuous processing. The work included measuring silica sand dissolution and sulfate decomposition in melts from glass batches. Glass batches were heated at a temperature-increase rate deemed similar to that experienced in the melting furnace. The sulfate decomposition kinetics was investigated with thermogravimetric analysis-differential thermal analysis and evolved gas analysis. Sulfur concentrations in glasses quenched at different temperatures were determined using X-ray fluorescence spectroscopy. The distribution of residual sand (that which was not dissolved during the initial batch reactions) in the glass was obtained as a function of temperature with optical microscopy in thin-sections of melts. The fraction of undissolved sand was measured with X-ray diffraction. The results of the present study helped Visteon Inc. reduce the energy consumption and establish the batch containing 0.118 mass% of graphite as the best candidate for Visteon glass production. The improved glass batch has a lower potential for silica scum formation and for brown fault occurrence in the final glass product. It was established that bubbles trapped in the melt even at 1450 C have a high probability to be refined when reaching the hot zone in the glass furnace. Furthermore, silica sand does not accumulate at the glass surface and dissolves faster in the batch with graphite than in the batch with carbocite.

Matyas, Josef; Hrma, Pavel R.

2005-05-13T23:59:59.000Z

359

Energy Saving Glass Lamination via Selective Radio Frequency Heating  

SciTech Connect

This project focused on advancing radio-frequency (RF) lamination technology closer to commercial implementation, in order to reduce the energy intensity of glass lamination by up to 90%. Lamination comprises a wide range of products including autoglass, architectural safety and innovative design glass, transparent armor (e.g. bullet proof glass), smart glass, mirrors, and encapsulation of photovoltaics. Lamination is also the fastest growing segment of glass manufacturing, with photovoltaics, architectural needs, and an anticipated transition to laminated side windows in vehicles. The state-of-the-art for glass lamination is to use autoclaves, which apply heat and uniform gas pressure to bond the laminates over the course of 1 to 18 hours. Laminates consist of layers of glass or other materials bonded with vinyl or urethane interlayers. In autoclaving, significant heat energy is lost heating the chamber, pressurized air, glass racks, and the glass. In RF lamination, the heat is generated directly in the vinyl interlayer, causing it to heat and melt quickly, in just 1 to 10 minutes, without significantly heating the glass or the equipment. The main purpose of this project was to provide evidence that low energy, rapid RF lamination quality met the same standards as conventionally autoclaved windows. The development of concepts for laminating curved glass with RF lamination was a major goal. Other primary goals included developing a stronger understanding of the lamination product markets described above, and to refine the potential benefits of commercial implementation. The scope of the project was to complete implementation concept studies in preparation for continuation into advanced development, pilot studies, and commercial implementation. The project consisted of 6 main tasks. The first dealt with lamination with poly-vinyl butyral (PVB) interlayers, which prior work had shown difficulties in achieving good quality laminates, working with Pilkington North America. The second task dealt with a study of current lamination processes in the various laminate industries, and development of concepts for integrating RF lamination into new or existing processes. The third task explored the use of a non-destructive technique for analyzing laminate adhesion with the University of Illinois at Urbana-Champaign. The fourth task focused on developing concepts for curved glass lamination using RF lamination. The fifth and sixth tasks together comprised an analysis of laminate product markets, ranking for applicability and commercialization potential, and the development of commercialization strategies for those products. In addition, throughout the project as new experimental data and conventional process data were obtained, the benefits analysis of RF lamination was refined. The goals of the project described above were achieved, positioning RF lamination for the next stage growth envisioned in the original Industrial Grand Challenge proposal. Working with Pilkington North America, lamination of flat autoglass with PVB was achieved, meeting all 16 stringent industry tests. In particular, PVB laminates made with RF lamination passed environmental tests including the high temperature, 120 C bake test, without significant formation of bubbles (defects). The adhesion of PVB to glass was measured using the pummel method. Adhesion values ranging from 1 to 7 out of 10 were obtained. The significant process parameters affecting the environmental and adhesion performance were identified through a designed experiment. Pre-lamination process variables including PVB storage humidity and the de-airing process (vacuum or nip rolling) were significant, as well as the level of pressure applied to the laminate during the RF process. Analysis of manufacturing with RF lamination equipment, based on the processes developed indicated that 3 RF presses could replace a typical auto-industry autoclave to achieve equal or greater throughput with possibly less capital cost and smaller footprint. Concepts for curved lamination identifying castable molds for

Allan, Shawn M.

2012-02-27T23:59:59.000Z

360

Energy Saving Glass Lamination via Selective Radio Frequency Heating  

SciTech Connect

This project focused on advancing radio-frequency (RF) lamination technology closer to commercial implementation, in order to reduce the energy intensity of glass lamination by up to 90%. Lamination comprises a wide range of products including autoglass, architectural safety and innovative design glass, transparent armor (e.g. bullet proof glass), smart glass, mirrors, and encapsulation of photovoltaics. Lamination is also the fastest growing segment of glass manufacturing, with photovoltaics, architectural needs, and an anticipated transition to laminated side windows in vehicles. The state-of-the-art for glass lamination is to use autoclaves, which apply heat and uniform gas pressure to bond the laminates over the course of 1 to 18 hours. Laminates consist of layers of glass or other materials bonded with vinyl or urethane interlayers. In autoclaving, significant heat energy is lost heating the chamber, pressurized air, glass racks, and the glass. In RF lamination, the heat is generated directly in the vinyl interlayer, causing it to heat and melt quickly, in just 1 to 10 minutes, without significantly heating the glass or the equipment. The main purpose of this project was to provide evidence that low energy, rapid RF lamination quality met the same standards as conventionally autoclaved windows. The development of concepts for laminating curved glass with RF lamination was a major goal. Other primary goals included developing a stronger understanding of the lamination product markets described above, and to refine the potential benefits of commercial implementation. The scope of the project was to complete implementation concept studies in preparation for continuation into advanced development, pilot studies, and commercial implementation. The project consisted of 6 main tasks. The first dealt with lamination with poly-vinyl butyral (PVB) interlayers, which prior work had shown difficulties in achieving good quality laminates, working with Pilkington North America. The second task dealt with a study of current lamination processes in the various laminate industries, and development of concepts for integrating RF lamination into new or existing processes. The third task explored the use of a non-destructive technique for analyzing laminate adhesion with the University of Illinois at Urbana-Champaign. The fourth task focused on developing concepts for curved glass lamination using RF lamination. The fifth and sixth tasks together comprised an analysis of laminate product markets, ranking for applicability and commercialization potential, and the development of commercialization strategies for those products. In addition, throughout the project as new experimental data and conventional process data were obtained, the benefits analysis of RF lamination was refined. The goals of the project described above were achieved, positioning RF lamination for the next stage growth envisioned in the original Industrial Grand Challenge proposal. Working with Pilkington North America, lamination of flat autoglass with PVB was achieved, meeting all 16 stringent industry tests. In particular, PVB laminates made with RF lamination passed environmental tests including the high temperature, 120 ���°C bake test, without significant formation of bubbles (defects). The adhesion of PVB to glass was measured using the pummel method. Adhesion values ranging from 1 to 7 out of 10 were obtained. The significant process parameters affecting the environmental and adhesion performance were identified through a designed experiment. Pre-lamination process variables including PVB storage humidity and the de-airing process (vacuum or nip rolling) were significant, as well as the level of pressure applied to the laminate during the RF process. Analysis of manufacturing with RF lamination equipment, based on the processes developed indicated that 3 RF presses could replace a typical auto-industry autoclave to achieve equal or greater throughput with possibly less capital cost and smaller footprint. Concepts for curved lamination id

Allan, Shawn M.; Baranova, Inessa; Poley, Joseph; Reis, Henrique

2012-02-27T23:59:59.000Z

Note: This page contains sample records for the topic "glass products hydraulic" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Microsoft Word - S0212500_HydraulicConductivity-PRB.doc  

Office of Legacy Management (LM)

Hydraulic Conductivity of the Monticello Hydraulic Conductivity of the Monticello Permeable Reactive Barrier November 2005 Update January 2006 DOE-LM/GJ1086-2006 ESL-RPT-2006-01 DOE-LM/GJ1086-2006 ESL-RPT-2006-01 Hydraulic Conductivity of the Monticello Permeable Reactive Barrier-November 2005 Update January 2006 Work Performed by S.M. Stoller Corporation under DOE Contract No. DE-AC01-02GJ79491 for the U.S. Department of Energy Office of Legacy Management, Grand Junction, Colorado U.S. Department of Energy Hydraulic Conductivity of the Monticello PRB-November 2005 Update January 2006 Doc. No. S0212500 Page iii Contents 1.0 Introduction ...........................................................................................................................

362

Mercury-Contaminated Hydraulic Mining Debris in San Francisco Bay  

E-Print Network (OSTI)

S, and Flegal AR 2008. Mercury in the San Francisco Estuary.may 2010 Mercury-Contaminated Hydraulic Mining Debris in Sancontaminants such as ele- mental mercury and cyanide used in

Bouse, Robin M; Fuller, Christopher C; Luoma, Sam; Hornberger, Michelle I; Jaffe, Bruce E; Smith, Richard E

2010-01-01T23:59:59.000Z

363

Hydraulic Fracturing Data Collection Tools Improve Environmental Reporting,  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Hydraulic Fracturing Data Collection Tools Improve Environmental Hydraulic Fracturing Data Collection Tools Improve Environmental Reporting, Monitoring, Protection Hydraulic Fracturing Data Collection Tools Improve Environmental Reporting, Monitoring, Protection April 18, 2013 - 12:03pm Addthis Washington, DC -Two data collection tools specifically developed for hydraulic fracturing are available to help regulatory agencies monitor drilling and completion operations and enhance environmental protection. Developed with support from the U.S. Department of Energy's Office of Fossil Energy (FE), the Risk Based Data Management System (RBDMS) and FracFocus chemical disclosure registry provide a way for industry professionals, regulatory agencies and the general public to more easily access information on oil and natural gas activities. These reporting and

364

Microsoft Word - S0212500_HydraulicConductivity-PRB.doc  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Hydraulic Conductivity of the Monticello Hydraulic Conductivity of the Monticello Permeable Reactive Barrier November 2005 Update January 2006 DOE-LM/GJ1086-2006 ESL-RPT-2006-01 DOE-LM/GJ1086-2006 ESL-RPT-2006-01 Hydraulic Conductivity of the Monticello Permeable Reactive Barrier-November 2005 Update January 2006 Work Performed by S.M. Stoller Corporation under DOE Contract No. DE-AC01-02GJ79491 for the U.S. Department of Energy Office of Legacy Management, Grand Junction, Colorado U.S. Department of Energy Hydraulic Conductivity of the Monticello PRB-November 2005 Update January 2006 Doc. No. S0212500 Page iii Contents 1.0 Introduction ...........................................................................................................................

365

Hydraulically Drained Flows in Rotating Basins. Part II: Steady Flow  

Science Conference Proceedings (OSTI)

The slow, horizontal circulation in a deep, hydraulically drained basin is discussed within the context of reduced-gravity dynamics. The basin may have large topographic variations and is fed from above or from the sides by mass sources. ...

Lawrence J. Pratt

1997-12-01T23:59:59.000Z

366

Hydraulic Physical Modeling and Observations of a Severe Gap Wind  

Science Conference Proceedings (OSTI)

Strong gap winds in Howe Sound, British Columbia, are simulated using a small-scale physical model. Model results are presented and compared with observations recorded in Howe Sound during a severe gap wind event in December 1992. Hydraulic ...

Timothy D. Finnigan; Jason A. Vine; Peter L. Jackson; Susan E. Allen; Gregory A. Lawrence; Douw G. Steyn

1994-12-01T23:59:59.000Z

367

Adaptive control of hydraulic shift actuation in an automatic transmission  

E-Print Network (OSTI)

A low-order dynamic model of a clutch for hydraulic control in an automatic transmission is developed by separating dynamics of the shift into four regions based on clutch piston position. The first three regions of the ...

Thornton, Sarah Marie

2013-01-01T23:59:59.000Z

368

Hydraulic Control of Flows with Nonuniform Potential Vorticity  

Science Conference Proceedings (OSTI)

The hydraulics of flow contained in a channel and having nonuniform potential vorticity is considered from a general standpoint. The channel cross section is rectangular and the potential vorticity is assumed to be prescribed in terms of the ...

Lawrence J. Pratt; Laurence Armi

1987-11-01T23:59:59.000Z

369

On-line hydraulic state prediction for water distribution systems  

E-Print Network (OSTI)

This paper describes and demonstrates a method for on?line hydraulic state prediction in urban water networks. The proposed method uses a Predictor?Corrector (PC) approach in which a statistical data?driven algorithm is ...

Whittle, Andrew

370

Hydraulically actuated gas exchange valve assembly and engine using same  

DOE Patents (OSTI)

An engine comprises a housing that defines a hollow piston cavity that is separated from a gas passage by a valve seat. The housing further defines a biasing hydraulic cavity and a control hydraulic cavity. A gas valve member is also included in the engine and is movable relative to the valve seat between an open position at which the hollow piston cavity is open to the gas passage and a closed position in which the hollow piston cavity is blocked from the gas passage. The gas valve member includes a ring mounted on a valve piece and a retainer positioned between the ring and the valve piece. A closing hydraulic surface is included on the gas valve member and is exposed to liquid pressure in the biasing hydraulic cavity.

Carroll, Thomas S. (Peoria, IL); Taylor, Gregory O. (Hinsdale, IL)

2002-09-03T23:59:59.000Z

371

Generalized Conditions for Hydraulic Criticality of Oceanic Overflows  

Science Conference Proceedings (OSTI)

Two methods for assessing the hydraulic criticality of an observed or modeled overflow are discussed. The methods are valid for single-layer deep flows with arbitrary potential vorticity and cross section. The first method is based on a purely ...

Larry Pratt; Karl Helfrich

2005-10-01T23:59:59.000Z

372

INVESTIGATIONS ON HYDRAULIC CEMENTS FROM SPENT OIL SHALE  

E-Print Network (OSTI)

ON HYDRAULIC CEMENTS FROM SPENT OIL SHALE P.K. Mehta and P.Cement Manufacture from Oil Shale, U.S. Patent 2,904,445,203 (1974), E. D. York, Amoco Oil Co. , letter to J, P. Fox,

Mehta, P.K.

2012-01-01T23:59:59.000Z

373

Steady state thermal hydraulic analysis of hydride fueled BWRs  

E-Print Network (OSTI)

(cont.) Since the results obtained in the main body of the analysis account only for thermal-hydraulic constraints, an estimate of the power reduction due to the application of neutronic constraints is also performed. This ...

Ferroni, Paolo, Ph. D. Massachusetts Institute of Technology

2006-01-01T23:59:59.000Z

374

Multiphase Flow Dynamics 4: Nuclear Thermal Hydraulics, 1st edition  

Science Conference Proceedings (OSTI)

Volume 4 of the successful book package "Multiphase Flow" is devoted to nuclear thermal hydraulics which is a substantial part of nuclear reactor safety. It provides knowledge and mathematical tools for adequate description of the process of transferring ...

Nikolay I. Kolev

2009-06-01T23:59:59.000Z

375

Modeling of Hydraulically Controlled Exchange Flow in the Bosphorus Strait  

Science Conference Proceedings (OSTI)

Recent hydrographic observations obtained in the Bosphorus Strait illustrate several features of the flow that may be related with the internal hydraulics. A two-layer numerical model indicates that the two-way exchange flow may indeed be subject ...

Temel Oguz; Emin Özsoy; Mohammed A. Latif; Halil I. Sur; Ümit Ünlüata

1990-07-01T23:59:59.000Z

376

Hydraulic Fracturing Data Collection Tools Improve Environmental Reporting,  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Hydraulic Fracturing Data Collection Tools Improve Environmental Hydraulic Fracturing Data Collection Tools Improve Environmental Reporting, Monitoring, Protection Hydraulic Fracturing Data Collection Tools Improve Environmental Reporting, Monitoring, Protection April 18, 2013 - 12:03pm Addthis Washington, DC -Two data collection tools specifically developed for hydraulic fracturing are available to help regulatory agencies monitor drilling and completion operations and enhance environmental protection. Developed with support from the U.S. Department of Energy's Office of Fossil Energy (FE), the Risk Based Data Management System (RBDMS) and FracFocus chemical disclosure registry provide a way for industry professionals, regulatory agencies and the general public to more easily access information on oil and natural gas activities. These reporting and

377

Is the Faroe Bank Channel Overflow Hydraulically Controlled?  

Science Conference Proceedings (OSTI)

The overflow of dense water from the Nordic Seas through the Faroe Bank Channel (FBC) has attributes suggesting hydraulic control—primarily an asymmetry across the sill reminiscent of flow over a dam. However, this aspect has never been confirmed ...

James B. Girton; Lawrence J. Pratt; David A. Sutherland; James F. Price

2006-12-01T23:59:59.000Z

378

BNFL Report Glass Formers Characterization  

Science Conference Proceedings (OSTI)

The objective of this task was to obtain powder property data on candidate glass former materials, sufficient to guide conceptual design and estimate the cost of glass former handling facilities as requested under Part B1 of BNFL Technical and Development Support. Twenty-nine glass forming materials were selected and obtained from vendors for the characterization of their physical properties, durability in caustic solution, and powder flow characteristics. A glass former was selected based on the characterization for each of the ten oxide classes required for Envelope A, B, and C mixtures. Three blends (A, B, and C) were prepared based on formulations provided by Vitreous State Laboratory and evaluated with the same methods employed for the glass formers. The properties obtained are presented in a series of attached Tables. It was determined that five of the ten glass formers, (kyanite, iron oxide, titania, zircon, and zinc oxide) have the potential to cause some level of solids f low problems. In addition, all of the blends may require consideration for their handling. A number of engineering considerations and recommendations were prepared based on the experimental findings, experience, and other process considerations. Recommendations for future testing are included. In conjunction with future work, it is recommended that a professional consultant be engaged to guide and assist with testing and design input.

Schumacher, R.F.

2000-07-27T23:59:59.000Z

379

BNFL Report Glass Formers Characterization  

Science Conference Proceedings (OSTI)

The objective of this task was to obtain powder property data on candidate glass former materials, sufficient to guide conceptual design and estimate the cost of glass former handling facilities as requested under Part B1 of BNFL Technical and Development Support. Twenty-nine glass forming materials were selected and obtained from vendors for the characterization of their physical properties, durability in caustic solution, and powder flow characteristics. A glass former was selected based on the characterization for each of the ten oxide classes required for Envelope A, B, and C mixtures. Three blends (A, B, and C) were prepared based on formulations provided by Vitreous State Laboratory and evaluated with the same methods employed for the glass formers. The properties obtained are presented in a series of attached Tables. It was determined that five of the ten glass formers, (kyanite, iron oxide, titania, zircon, and zinc oxide) have the potential to cause some level of solids f low problems. The problems might include arching or ratholing in the silo/hopper. In addition, all of the blends may require consideration for their handling.

Schumacher, R.F.

2000-07-27T23:59:59.000Z

380

Testing of Large-Scale ICV Glasses with Hanford LAW Simulant  

SciTech Connect

Preliminary glass compositions for immobilizing Hanford low-activity waste (LAW) by the in-container vitrification (ICV) process were initially fabricated at crucible- and engineering-scale, including simulants and actual (radioactive) LAW. Glasses were characterized for vapor hydration test (VHT) and product consistency test (PCT) responses and crystallinity (both quenched and slow-cooled samples). Selected glasses were tested for toxicity characteristic leach procedure (TCLP) responses, viscosity, and electrical conductivity. This testing showed that glasses with LAW loading of 20 mass% can be made readily and meet all product constraints by a far margin. Glasses with over 22 mass% Na2O can be made to meet all other product quality and process constraints. Large-scale testing was performed at the AMEC, Geomelt Division facility in Richland. Three tests were conducted using simulated LAW with increasing loadings of 12, 17, and 20 mass% Na2O. Glass samples were taken from the test products in a manner to represent the full expected range of product performance. These samples were characterized for composition, density, crystalline and non-crystalline phase assemblage, and durability using the VHT, PCT, and TCLP tests. The results, presented in this report, show that the AMEC ICV product with meets all waste form requirements with a large margin. These results provide strong evidence that the Hanford LAW can be successfully vitrified by the ICV technology and can meet all the constraints related to product quality. The economic feasibility of the ICV technology can be further enhanced by subsequent optimization.

Hrma, Pavel R.; Kim, Dong-Sang; Vienna, John D.; Matyas, Josef; Smith, Donald E.; Schweiger, Michael J.; Yeager, John D.

2005-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "glass products hydraulic" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Thermal Hydraulics of the Very High Temperature Gas Cooled Reactor  

DOE Green Energy (OSTI)

The U.S Department of Energy (DOE) is conducting research on the Very High Temperature Reactor (VHTR) design concept for the Next Generation Nuclear Plant (NGNP) Project. The reactor design will be a graphite moderated, thermal neutron spectrum reactor that will produce electricity and hydrogen in a highly efficient manner. The NGNP reactor core will be either a prismatic graphite block type core or a pebble bed core. The NGNP will use very high-burnup, low-enriched uranium, TRISO-coated fuel, and have a projected plant design service life of 60 years. The VHTR concept is considered to be the nearest-term reactor design that has the capability to efficiently produce hydrogen. The plant size, reactor thermal power, and core configuration will ensure passive decay heat removal without fuel damage or radioactive material releases during reactor core-accidents. The objectives of the NGNP Project are to: Demonstrate a full-scale prototype VHTR that is commercially licensed by the U.S. Nuclear Regulatory Commission, and Demonstrate safe and economical nuclear-assisted production of hydrogen and electricity. The DOE laboratories, led by the INL, perform research and development (R&D) that will be critical to the success of the NGNP, primarily in the areas of: • High temperature gas reactor fuels behavior • High temperature materials qualification • Design methods development and validation • Hydrogen production technologies • Energy conversion. This paper presents current R&D work that addresses fundamental thermal hydraulics issues that are relevant to a variety of possible NGNP designs.

Chang Oh; Eung Kim; Richard Schultz; Mike Patterson; Davie Petti

2009-10-01T23:59:59.000Z

382

Part-Load Flow and Hydraulic Stability of Centrifugal Pumps  

Science Conference Proceedings (OSTI)

Replacement energy costs for outages of large plants caused by feedpump problems amount to more than $400 million annually. Laboratory tests were performed to increase understanding of the physical mechanisms responsible for unstable performance curves and hydraulic excitation forces that can lead to failure. Tentative guidelines have been established for the selection of hydraulic design parameters.Background The size and number of fossil-fired generating ...

1992-03-01T23:59:59.000Z

383

Integrated hydraulic cooler and return rail in camless cylinder head  

SciTech Connect

An engine assembly may include a cylinder head defining an engine coolant reservoir, a pressurized fluid supply, a valve actuation assembly, and a hydraulic fluid reservoir. The valve actuation assembly may be in fluid communication with the pressurized fluid supply and may include a valve member displaceable by a force applied by the pressurized fluid supply. The hydraulic fluid reservoir may be in fluid communication with the valve actuation assembly and in a heat exchange relation to the engine coolant reservoir.

Marriott, Craig D. (Clawson, MI); Neal, Timothy L. (Ortonville, MI); Swain, Jeff L. (Flushing, MI); Raimao, Miguel A. (Colorado Springs, CO)

2011-12-13T23:59:59.000Z

384

Gravity-free hydraulic jumps and metal femtocups  

E-Print Network (OSTI)

Hydraulic jumps created by gravity are seen every day in the kitchen sink. We show that at small scales a circular hydraulic jump can be created in the absence of gravity, by surface tension. The theory is motivated by our experimental finding of a height discontinuity in spreading submicron molten metal droplets created by pulsed-laser ablation. By careful control of initial conditions, we show that this leads to solid femtolitre cups of gold, silver, copper, niobium and tin.

Rama Govindarajan; Manikandan Mathur; Ratul DasGupta; N. R. Selvi; Neena Susan John; G. U. Kulkarni

2006-10-03T23:59:59.000Z

385

Optimal power management for a hydraulic hybrid delivery truck  

E-Print Network (OSTI)

Hydraulic hybrid propulsion and energy storage components demonstrate characteristics that are very different from their electric counterparts, thus requiring unique control strategies. This paper presents a methodology for developing a power management strategy tailored specifically to a parallel Hydraulic Hybrid Vehicle (HHV) configured for a medium-size delivery truck. The Hydraulic Hybrid Vehicle is modelled in the MATLAB/SIMULINK environment to facilitate system integration and control studies. A Dynamic Programming (DP) algorithm is used to obtain optimal control actions for gear shifting and power splitting bet ween the engine and the hydraulic motor over a representative urban driving schedule. Features of optimal trajectories are then studied to derive i mplementable rules. System behaviour demonstrates that the new control strategy takes advantage of high power density and efficiency characteristics of hydraulic components, and minimizes disadvantages of low energy density, to achieve enhanced overall efficiency. Simulation results indicate that the potential for fuel economy improvement of medium trucks with hydraulic hybrid propulsion can be as high as 48 %. 1

Bin Wu; Chan-chiao Lin; Zoran Filipi; Huei Peng

2004-01-01T23:59:59.000Z

386

Process management using component thermal-hydraulic function classes  

DOE Patents (OSTI)

A process management expert system where following malfunctioning of a component, such as a pump, for determining system realignment procedures such as for by-passing the malfunctioning component with on-line speeds to maintain operation of the process at full or partial capacity or to provide safe shut down of the system while isolating the malfunctioning component. The expert system uses thermal-hydraulic function classes at the component level for analyzing unanticipated as well as anticipated component malfunctions to provide recommended sequences of operator actions. Each component is classified according to its thermal-hydraulic function, and the generic and component-specific characteristics for that function. Using the diagnosis of the malfunctioning component and its thermal hydraulic class, the expert system analysis is carried out using generic thermal-hydraulic first principles. One aspect of the invention employs a qualitative physics-based forward search directed primarily downstream from the malfunctioning component in combination with a subsequent backward search directed primarily upstream from the serviced component. Generic classes of components are defined in the knowledge base according to the three thermal-hydraulic functions of mass, momentum and energy transfer and are used to determine possible realignment of component configurations in response to thermal-hydraulic function imbalance caused by the malfunctioning component. Each realignment to a new configuration produces the accompanying sequence of recommended operator actions. All possible new configurations are examined and a prioritized list of acceptable solutions is produced.

Morman, James A. (Woodridge, IL); Wei, Thomas Y. C. (Downers Grove, IL); Reifman, Jaques (Western Springs, IL)

1999-01-01T23:59:59.000Z

387

Process management using component thermal-hydraulic function classes  

DOE Patents (OSTI)

A process management expert system where following malfunctioning of a component, such as a pump, for determining system realignment procedures such as for by-passing the malfunctioning component with on-line speeds to maintain operation of the process at full or partial capacity or to provide safe shut down of the system while isolating the malfunctioning component. The expert system uses thermal-hydraulic function classes at the component level for analyzing unanticipated as well as anticipated component malfunctions to provide recommended sequences of operator actions. Each component is classified according to its thermal-hydraulic function, and the generic and component-specific characteristics for that function. Using the diagnosis of the malfunctioning component and its thermal hydraulic class, the expert system analysis is carried out using generic thermal-hydraulic first principles. One aspect of the invention employs a qualitative physics-based forward search directed primarily downstream from the malfunctioning component in combination with a subsequent backward search directed primarily upstream from the serviced component. Generic classes of components are defined in the knowledge base according to the three thermal-hydraulic functions of mass, momentum and energy transfer and are used to determine possible realignment of component configurations in response to thermal-hydraulic function imbalance caused by the malfunctioning component. Each realignment to a new configuration produces the accompanying sequence of recommended operator actions. All possible new configurations are examined and a prioritized list of acceptable solutions is produced. 5 figs.

Morman, J.A.; Wei, T.Y.C.; Reifman, J.

1999-07-27T23:59:59.000Z

388

Derivation of site-specific relationships between hydraulic parameters and p-wave velocities based on hydraulic and seismic tomography  

E-Print Network (OSTI)

method, Water Resources Research 36 (8), 2095-2105 Yeh, T. -determine the water saturation. However, Yeh at al. , 2000Yeh (2005), Characterization of aquifer heterogeneity using transient hydraulic tomography, Water

Brauchler, R.

2012-01-01T23:59:59.000Z

389

Microseismic Tracer Particles for Hydraulic Fracturing  

NLE Websites -- All DOE Office Websites (Extended Search)

Complements existing methods Summary: The trend toward production of hydrocarbons from unconventional reservoirs (tight gas, shale oilgas) has caused a large increase in the...

390

Hydrodynamics of a vertical hydraulic fracture  

DOE Green Energy (OSTI)

We have developed a numerical algorithm, HUBBERT, to simulate the hydrodynamics of a propagating vertical, rectangular fracture in an elastic porous medium. Based on the IFD method, this algorithm assumes fracture geometry to be prescribed. The breakdown and the creation of the incipient fracture is carried out according to the Hubbert-Willis theory. The propagation of the fracture is based on the criterion provided by Griffith, based on energy considerations. The deformation properties of the open fracture are based on simple elasticity solutions. The fracture is assumed to have an elliptical shape to a distance equal to the fracture height, beyond which the shape is assumed to be parallel plate. A consequence of Griffith's criterion is that the fracture must propagate in discrete steps. The parametric studies carried out suggest that for a clear understanding of the hydrodynamics of the hydraulic fracture many hitherto unrecognized parameters must be better understood. Among these parameters one might mention, efficiency, aperture of the newly formed fracture, stiffness of the newly formed fracture, relation between fracture aperture and permeability, and well bore compliance. The results of the studies indicate that the patterns of pressure transients and the magnitudes of fracture length appear to conform to field observations. In particular, the discrete nature of fracture propagation as well as the relevant time scales of interest inferred from the present work seem to be corroborated by seismic monitoring in the field. The results suggest that the estimation of least principal stress can be reliably made either with shut in data or with reinjection data provided that injection rates are very small.

Narasimhan, T.N.

1987-03-24T23:59:59.000Z

391

Hydraulic Permeability of Resorcinol-Formaldehyde Resin  

SciTech Connect

An ion exchange process using spherical resorcinol-formaldehyde (RF) resin is the baseline process for removing cesium from the dissolved salt solution in the high-level waste tanks at the Hanford Site, using large scale columns as part of the Waste Treatment Plant (WTP). The RF resin is also being evaluated for use in the proposed small column ion exchange (SCIX) system, which is an alternative treatment option at Hanford and at the Savannah River Site (SRS). A recirculating test loop with a small ion exchange column was used to measure the effect of oxygen uptake and radiation exposure on the permeability of a packed bed of the RF resin. The lab-scale column was designed to be prototypic of the proposed Hanford columns at the WTP. Although the test equipment was designed to model the Hanford ion exchange columns, the data on changes in the hydraulic permeability of the resin will also be valuable for determining potential pressure drops through the proposed SCIX system. The superficial fluid velocity in the lab-scale test (3.4-5.7 cm/s) was much higher than is planned for the full-scale Hanford columns to generate the maximum pressure drop expected in those columns (9.7 psig). The frictional drag from this high velocity produced forces on the resin in the lab-scale tests that matched the design basis of the full-scale Hanford column. Any changes in the resin caused by the radiation exposure and oxygen uptake were monitored by measuring the pressure drop through the lab-scale column and the physical properties of the resin. Three hydraulic test runs were completed, the first using fresh RF resin at 25 C, the second using irradiated resin at 25 C, and the third using irradiated resin at 45 C. A Hanford AP-101 simulant solution was recirculated through a test column containing 500 mL of Na-form RF resin. Known amounts of oxygen were introduced into the primary recirculation loop by saturating measured volumes of the simulant solution with oxygen and reintroducing the oxygenated simulant into the feed tank. The dissolved oxygen (DO) concentration of the recirculating simulant was monitored, and the amount of oxygen that reacted with the resin was determined from the change in the DO concentration of the recirculating simulant solution. Prior to hydraulic testing the resin for runs 2 and 3 was covered with the simulant solution and irradiated in a spent fuel element at the Oak Ridge National Laboratory High Flux Isotope Reactor (HFIR). Both batches of resin were irradiated to a total gamma dose of 177 Mrad, but the resin for run 2 reached a maximum temperature during irradiation of 51 C, while the resin for run 3 reached a temperature of 38 C. The different temperatures were the result of the operating status of HFIR at the time of the irradiation and were not part of the test plan; however, the results clearly show the impact of the higher-temperature exposure during irradiation. The flow rate and pressure drop data from the test loop runs show that irradiating the RF resin reduces both the void fraction and the permeability of the resin bed. The mechanism for the reduction in permeability is not clear because irradiation increases the particle size of the resin beads and makes them deform less under pressure. Microscopic examination of the resin beads shows that they are all smooth regular spheres and that irradiation or oxygen uptake did not change the shape of the beads. The resin reacts rapidly with DO in the simulant solution, and the reaction with oxygen reduces the permeability of a bed of new resin by about 10% but has less impact on the permeability of irradiated resin. Irradiation increases the toughness of the resin beads, probably by initiating cross-linking reactions in them. Oxygen uptake reduces the crush strength of both new and irradiated resin; however, the pressures that caused the beads to crush are much higher than would be expected during the operation of an ion exchange column. There was no visible evidence of broken beads in any of the resin samples taken from the test loop. Reaction with oxygen red

Taylor, Paul Allen [ORNL

2010-01-01T23:59:59.000Z

392

Radiation Effects on Transport and Bubble Formation in Silicate Glasses  

DOE Green Energy (OSTI)

Using advanced magnetic resonance spectroscopies and small-cluster modeling, atomic structure of radiation-induced point defects in alkali borate, silicate, and borosilicate glasses is fully characterized. It is shown that in boron-containing glasses, most of these point defects are electrons/holes trapped by cation/anion vacancies, such as O1 - - O3 + valence-alternation pairs. In microscopically phase-separated borosilicate glasses, radiation-induced defects are found to cluster at the interface between the borate and silicate phases. Reaction and diffusion dynamics of defect-annealing interstitial hydrogen atoms in boron and silica oxide glasses are studied. The yield of radiolytic O2 is estimated. This oxygen is shown to be the final product of triplet exciton decay. Plausible mechanisms for the oxygen bubble formation are put forward. Two practical conclusions relevant for the EMSP mission are made: First, the yield of radiolytic oxygen is shown to be too low to interfere with the storage of vitrified radioactive waste in the first 10 Kyr. Second, microscopic phase separation is demonstrated to increase both the chemical and radiation stability of borosilicate glass.

Trifunac, A.D.; Shkrob, I.A.; Werst, D.W.

2001-12-31T23:59:59.000Z

393

Evaluation of cellular glasses for solar mirror panel applications  

DOE Green Energy (OSTI)

An analytic technique is developed to compare the structural and environmental performance of various materials considered for backing of second surface glass solar mirrors. Metals, ceramics, dense molded plastics, foamed plastics, forest products and plastic laminates are surveyed. Cellular glass is determined to be a prime candidate due to its low cost, high stiffness-to-weight ratio, thermal expansion match to mirror glass, evident minimal environmental impact and chemical and dimensional stability under conditions of use. While applications could employ this material as a foam core or compressive member of a composite material system, the present analysis addresses the bulk material only, allowing a basis for simple extrapolations. The current state of the art and anticipated developments in cellular glass technology are discussed. Material properties are correlated to design requirements using a Weibull weakest link statistical method appropriate for describing the behavior of such brittle materials. A mathematical model is presented which suggests a design approach which allows minimization of life cycle cost; given adequate information for a specific aplication, this would permit high confidence estimates of the cost/performance factor. A mechanical and environmental testing program is outlined, designed to providea material property basis for development of cellular glass hardware, together with methodology for collecting lifetime predictive data required by the mathematical treatment provided herein. Preliminary material property data from measurements is given.

Giovan, M.; Adams, M.

1979-06-15T23:59:59.000Z

394

Hydrogen transport and storage in engineered glass microspheres  

DOE Green Energy (OSTI)

New, high-strength, hollow, glass microspheres filled with pressurized hydrogen exhibit storage densities which make them attractive for bulk hydrogen storage and transport. The hoop stress at failure of our engineered glass microspheres is about 150,000 psi, permitting a three-fold increase in pressure limit and storage capacity above commercial microspheres, which fail at wall stresses of 50,000 psi. For this project, microsphere material and structure will be optimized for storage capacity and charge/discharge kinetics to improve their commercial practicality. Microsphere production scale up will be performed, directed towards large-scale commercial use. Our analysis relating glass microspheres for hydrogen transport with infrastructure and economics` indicate that pressurized microspheres can be economically competitive with other forms of bulk rail and truck transport such as hydride beds, cryocarbons and pressurized tube transports. For microspheres made from advanced materials and processes, analysis will also be performed to identify the appropriate applications of the microspheres considering property variables, and different hydrogen infrastructure, end use, production and market scenarios. This report presents some of the recent modelling results for large beds of glass microspheres in hydrogen storage applications. It includes plans for experiments to identify the properties relevant to large-bed hydrogen transport and storage applications, of the best, currently producible, glass microspheres. This work began in March, 1994. Project successes will be manifest in the matching of cur-rent glass microspheres with a useful application in hydrogen bulk transport and storage, and in developing microsphere materials and processes that increase the storage density and reduce the storage energy requirement.

Rambach, G.D.

1994-04-20T23:59:59.000Z

395

HYDRAULIC CONDUCTIVITY OF SALTSTONE FORMULATED USING 1Q11, 2Q11 AND 3Q11 TANK 50 SLURRY SAMPLES  

SciTech Connect

As part of the Saltstone formulation work requested by Waste Solidification Engineering (WSE), Savannah River National Laboratory (SRNL) was tasked with preparing Saltstone samples for fresh property analysis and hydraulic conductivity measurements using actual Tank 50 salt solution rather than simulated salt solution. Samples of low level waste salt solution collected from Tank 50H during the first, second, and third quarters of 2011 were used to formulate the Saltstone samples. The salt solution was mixed with premix (45 wt % slag, 45 wt % fly ash, and 10 wt % cement), in a ratio consistent with facility operating conditions during the quarter of interest. The fresh properties (gel, set, bleed) of each mix were evaluated and compared to the recommended acceptance criteria for the Saltstone Production Facility. ASTM D5084-03, Method C was used to measure the hydraulic conductivity of the Saltstone samples. The hydraulic conductivity of Saltstone samples prepared from 1Q11 and 2Q11 samples of Tank 50H is 4.2E-9 cm/sec and 2.6E-9 cm/sec, respectively. Two additional 2Q11 and one 3Q11 sample were not successfully tested due to the inability to achieve stable readings during saturation and testing. The hydraulic conductivity of the samples made from Tank 50H salt solution compare well to samples prepared with simulated salt solution and cured under similar conditions (1.4E-9 - 4.9E-8 cm/sec).

Reigel, M.; Nichols, R.

2012-06-27T23:59:59.000Z

396

Process management using component thermal-hydraulic function classes  

DOE Patents (OSTI)

A process management expert system for a nuclear, chemical or other process is effective following malfunctioning of a component, such as a pump, for determining system realignment procedures such as for by-passing the malfunctioning component with on-line speeds to maintain operation of the process at full or partial capacity or to provide safe shut down of the system while isolating the malfunctioning component. The expert system uses thermal-hydraulic function classes at the component level for analyzing unanticipated as well as anticipated component malfunctions to provide recommended sequences of operator actions. Each component is classified according to its thermal-hydraulic function, and the generic and component-specific characteristics for that function. Using the diagnosis of the malfunctioning component and its thermal hydraulic class, the expert system analysis is carried out using generic thermal-hydraulic first principles. One aspect of the invention employs a qualitative physics-based forward search directed primarily downstream from the malfunctioning component in combination with a subsequent backward search directed primarily upstream from the serviced component. Generic classes of components are defined in the knowledge base according to the three thermal-hydraulic functions of mass, momentum and energy transfer and are used to determine possible realignment of component configurations in response to thermal-hydraulic function imbalance caused by the malfunctioning component. The search process is based upon mass, momentum and energy conservation principles so that qualitative thermal-hydraulic fundamental principles are satisfied for new system configurations. Each realignment to a new configuration produces the accompanying sequence of recommended operator actions. All possible new configurations are examined and a prioritized list of acceptable solutions is produced.

Morman, James A.; Wei, Thomas Y.C.; Reifman, Jaques

1997-12-01T23:59:59.000Z

397

HLW Glass Studies: Development of Crystal-Tolerant HLW Glasses  

Science Conference Proceedings (OSTI)

In our study, a series of lab-scale crucible tests were performed on designed glasses of different compositions to further investigate and simulate the effect of Cr, Ni, Fe, Al, Li, and RuO2 on the accumulation rate of spinel crystals in the glass discharge riser of the HLW melter. The experimental data were used to expand the compositional region covered by an empirical model developed previously (Matyᚠet al. 2010b), improving its predictive performance. We also investigated the mechanism for agglomeration of particles and impact of agglomerates on accumulation rate. In addition, the TL was measured as a function of temperature and composition.

Matyas, Josef; Huckleberry, Adam R.; Rodriguez, Carmen P.; Lang, Jesse B.; Owen, Antionette T.; Kruger, Albert A.

2012-04-02T23:59:59.000Z

398

Massive hydraulic fracturing experiment No. 1 Home Federal well, Uintah County, Utah  

SciTech Connect

Two massive hydraulic fracturing experiments were performed on two separate gas-bearing intervals of Mesaverde sandstones in the No. 1 Home Federal well located in Uintah County, Utah. Water-base gel carrying sand proppant was used as the frac medium and the limited entry technique was used for injection. The first experiment was carried out on an interval containing 112 ft of net pay between 10,014 and 10,202 ft. Pre-frac production capacity was estimated to be 60+ MCF/D. Post-frac production capacity was significantly less, presumably attributable to a limited lateral extent of inherent formation permeability. The second experiment was carried out on an interval containing 85 ft of net pay between 7826 and 9437 ft. Pre-frac production capacity of 33 MCF/D was increased by MHF to an initial 500 MCF/D and to a relatively stabilized 155 MCF/D within four months following the treatment.

Boardman, C.R.

1977-07-01T23:59:59.000Z

399

Economic Recovery of Oil Trapped at Fan Margins Using Hig Angle Wells Multiple Hydraulic Fractures  

Science Conference Proceedings (OSTI)

The Yowlumne field is a giant field in the southern San Joaquin basin, Kern County, California. It is a deep (13,000 ft) waterflood operation that produces from the Miocene- aged Stevens Sand. The reservoir is interpreted as a layered, fan-shaped, prograding turbidite complex containing several lobe-shaped sand bodies that represent distinct flow units. A high ultimate recovery factor is expected, yet significant quantities of undrained oil remain at the fan margins. The fan margins are not economic to develop using vertical wells because of thinning pay, deteriorating rock quality, and depth. This project attempts to demonstrate the effectiveness of exploiting the northeast distal fan margin through the use of a high- angle well completed with multiple hydraulic- fracture treatments. A high-angle well offers greater pay exposure than can be achieved with a vertical well. Hydraulic-fracture treatments will establish vertical communication between thin interbedded layers and the wellbore. The equivalent production rate and reserves of three vertical wells are anticipated at a cost of approximately two vertical wells. The near-horizontal well penetrated the Yowlumne sand; a Stevens sand equivalent, in the distal fan margin in the northeast area of the field. The well was drilled in a predominately westerly direction towards the interior of the field, in the direction of improving rock quality. Drilling and completion operations proved to be very challenging, leading to a number of adjustments to original plans. Hole conditions resulted in obtaining less core material than desired and setting intermediate casing 1200 ft too high. The 7 in. production liner stuck 1000 ft off bottom, requiring a 5 in. liner to be run the rest of the way. The cement job on the 5 in. liner resulted in a very poor bond, which precluded one of three hydraulic fracture treatments originally planned for the well. Openhole logs confirmed most expectations going into the project about basic rock properties: the formation was shaly with low porosities, and water saturations were in line with expectations, including the presence of some intervals swept out by the waterflood. High water saturations at the bottom of the well eliminated one of the originally planned hydraulic fracture treatments. Although porosities proved to be low, they were more uniform across the formation than expected. Permeabilities of the various intervals continue to be evaluated, but appear to be better than expected from the porosity log model derived in Budget Period One. The well was perforated in all pay sections behind the 5 in. liner. Production rates and phases agree nicely with log calculations, fractional flow calculations, and an analytical technique used to predict the rate performance of the well.

Laue, M.L.

1997-11-21T23:59:59.000Z

400

Geek-Up[6.17.2011]: Metallic Glass and 3D Plasmon Rulers | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

7.2011]: Metallic Glass and 3D Plasmon Rulers 7.2011]: Metallic Glass and 3D Plasmon Rulers Geek-Up[6.17.2011]: Metallic Glass and 3D Plasmon Rulers June 17, 2011 - 5:41pm Addthis Check out a short animation of a 3D plasmon ruler as it delivers optical information about the structural dynamics of an attached protein and read more below. Niketa Kumar Niketa Kumar Public Affairs Specialist, Office of Public Affairs What does this mean for me? The discovery of a new property of glass offers new insight into the atomic structure and behavior of metallic glasses, which are in products such as anti-theft tags and power transformers. A new ruler could help provide scientists with unprecedented details into a variety of biological events, including the interaction between DNA and enzymes, protein folding and cell membrane vibrations.

Note: This page contains sample records for the topic "glass products hydraulic" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Characterizing the radiation response of Cherenkov glass detectors with isotopic sources  

SciTech Connect

Abstract Cherenkov detectors are widely used for particle identification and threshold detectors in high-energy physics. Glass Cherenkov detectors that are sensitive to beta emissions originating from neutron activation have been demonstrated recently as a potential replacement for activation foils. In this work, we set the groundwork to evaluate large Cherenkov glass detectors for sensitivity to MeV photons through first understanding the measured response of small Cherenkov glass detectors to isotopic gamma-ray sources. Counting and pulse height measurements are acquired with reflected glass Cherenkov detectors read out with a photomultiplier tube. Simulation was used to inform our understanding of the measured results. This simulation included radioactive source decay, radiation interaction, Cherenkov light generation, optical ray tracing, and photoelectron production. Implications for the use of Cherenkov glass detectors to measure low energy gammaray response are discussed.

Hayward, J P [University of Tennessee, Knoxville (UTK); Hobbs, C. L. [University of Tennessee, Knoxville (UTK); Bell, Zane W [ORNL; Boatner, Lynn A [ORNL; Johnson, Rose E [ORNL; Ramey, Joanne Oxendine [ORNL; Jellison Jr, Gerald Earle [ORNL; Lillard, Cole R [ORNL; Ramey, Lucas A [ORNL

2012-01-01T23:59:59.000Z

402

Structure glass technology : systems and applications  

E-Print Network (OSTI)

Glass cannot compete with steel in terms of strength or durability, but it is the only structural material that offers the highly sought after qualities of translucency and transparency. The use of glass has evolved from ...

Leitch, Katherine K. (Katherine Kristen)

2005-01-01T23:59:59.000Z

403

Transient Thermal, Hydraulic, and Mechanical Analysis of a Counter Flow Offset Strip Fin Intermediate Heat Exchanger using an Effective Porous Media Approach  

E-Print Network (OSTI)

Transient Thermal, Hydraulic, and Mechanical Analysis of a2009 Transient Thermal, Hydraulic, and Mechanical AnalysisAbstract Transient Thermal, Hydraulic, and Mechanical Stress

Urquiza, Eugenio

2009-01-01T23:59:59.000Z

404

Feed-Pump Hydraulic Performance and Design Improvement, Phase I:  

Office of Scientific and Technical Information (OSTI)

Feed-Pump Hydraulic Performance Feed-Pump Hydraulic Performance and Design Improvement, Phase I: J2esearch Program Design Volume 2 EPRI EPRI CS-2323 Volume 2 Project 1884-6 Final Report March 1982 Keywords: Feed Pumps Feed Pump Reliability Feed Pump Hydraulics Feed Pump Design Feed Pump Research Feed Pump Specifications Prepared by Borg-Warner Corporation (Byron Jackson Pump Division and Borg-Warner Research Center) Carson, California and Massa^ f Technology Cambri__ . s ,-T. a a *a_^"nt.- ji^, w « ' jm.m ^j.^M\MMMim^mjii'mmmjmiiiimm\i- " I E CT R I C P 0 W E R R E S E A R C H I N ST ITO T E DISCLAIMER This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency Thereof, nor any of their employees,

405

On equivalence of thinning fluids used for hydraulic fracturing  

E-Print Network (OSTI)

The paper aims to answer the question: if and how non-Newtonian fluids may be compared in their mechanical action when used for hydraulic fracturing? By employing the modified formulation of the PKN problem we obtain its simple analytical solutions in the cases of perfectly plastic and Newtonian fluids. Since the results for shear thinning fluids are intermediate between those for these cases, the obtained equation for the fracture length suggests a criterion of the equivalence of various shear thinning fluids for the problem of hydraulic fractures. We assume fluids equivalent in their hydrofracturing action, when at a reference time they produce fractures of the same length. The equation for the fracture length translates the equivalence in terms of the hydraulic fracture length and treatment time into the equivalence in terms of the properties of a fracturing fluid (behavior and consistency indices). Analysis shows that the influence of the consistency and behavior indices on the fracture length, particle v...

Linkov, Alexander

2012-01-01T23:59:59.000Z

406

DOE's Shale Gas and Hydraulic Fracturing Research | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Shale Gas and Hydraulic Fracturing Research Shale Gas and Hydraulic Fracturing Research DOE's Shale Gas and Hydraulic Fracturing Research April 26, 2013 - 11:05am Addthis Statement of Guido DeHoratiis Acting Deputy Assistant Secretary for Oil and Natural Gas before the House Committee on Science, Space, and Technology Subcommittees on Energy and Environment. I want to thank the Chairs, Ranking Members and Members of the Subcommittees for inviting me to appear before you today to discuss the critical role that the Department of Energy's Office of Fossil Energy, in collaboration with the Department of the Interior (DOI) and the Environmental Protection Agency (EPA), is playing to improve the safety and environmental performance of developing our Nation's unconventional oil and natural gas (UOG) resources.

407

MHK Technologies/Tidal Hydraulic Generators THG | Open Energy Information  

Open Energy Info (EERE)

Generators THG Generators THG < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Tidal Hydraulic Generators THG.jpg Technology Profile Primary Organization Tidal Hydraulic Generators Ltd Project(s) where this technology is utilized *MHK Projects/Ramsey Sound Technology Resource Click here Current/Tidal Technology Type Click here Axial Flow Turbine Technology Readiness Level Click here TRL 1-3: Discovery / Concept Definition / Early Stage Development & Design & Engineering Technology Description The concept of generating energy in this way is made unique by our novel design feature. The generator, devised in 1998, is a hydraulic accumulator system, involving relatively small revolving blades which gather power to a central collector, where electricity is generated. The generator, which is situated under water, is 80 metres square, stands at 15 metres high, and is designed to run for a minimum of ten years without service.

408

Performance Evaluation of Gene Expression Programming for Hydraulic Data Mining  

E-Print Network (OSTI)

Abstract: Predication is one of the fundamental tasks of data mining. In recent years, Artificial Intelligence techniques are widely being used in data mining applications where conventional statistical methods were used such as Regression and classification. The aim of this work is to show the applicability of Gene Expression Programming (GEP), a recently developed AI technique, for hydraulic data prediction and to evaluate its performance by comparing it with Multiple Linear Regression (MLR). Both GEP and MLR were used to model the hydraulic jump over a roughened bed using very large series of experimental data that contain all the important flow and roughness parameters such as the initial Froude number, the height of roughness ratio, the length of roughness ratio, the initial length ratio (from the gate) and the roughness density. The results show that GEP is a promising AI approach for hydraulic data prediction.

Khalid Eldr; Abdel-azim Negm

2006-01-01T23:59:59.000Z

409

Advanced hydraulic fracturing methods to create in situ reactive barriers  

Science Conference Proceedings (OSTI)

This article describes the use of hydraulic fracturing to increase permeability in geologic formations where in-situ remedial action of contaminant plumes will be performed. Several in-situ treatment strategies are discussed including the use of hydraulic fracturing to create in situ redox zones for treatment of organics and inorganics. Hydraulic fracturing methods offer a mechanism for the in-situ treatment of gently dipping layers of reactive compounds. Specialized methods using real-time monitoring and a high-energy jet during fracturing allow the form of the fracture to be influenced, such as creation of assymmetric fractures beneath potential sources (i.e. tanks, pits, buildings) that should not be penetrated by boring. Some examples of field applications of this technique such as creating fractures filled with zero-valent iron to reductively dechlorinate halogenated hydrocarbons, and the use of granular activated carbon to adsorb compounds are discussed.

Murdoch, L. [FRX Inc., Cincinnati, OH (United States)]|[Clemson Univ., SC (United States). Dept. of Geological Sciences; Siegrist, B.; Meiggs, T. [Oak Ridge National Lab., TN (United States)] [and others

1997-12-31T23:59:59.000Z

410

A comparison of microseismicity induced by gel-proppant-and water-injected hydraulic fractures, Carthage Cotton Valley gas field, East Texas  

E-Print Network (OSTI)

-precision location technique to improve the image resolution of a hydraulic fracture treatment in a tight gas sand, another thick (~ 450-600 m) interval of productive, tight-gas sands interbedded with mudstones (Dutton in the Carthage Cotton Valley gas field of east Texas. Gas is produced from multiple, low-permeability sands

411

Analytical Results of DWPF Glass Sample Taken During Pouring of Canister S01913  

SciTech Connect

The Defense Waste Processing Facility (DWPF) began processing Sludge Batch 2 (SB2) (Macrobatch 3) in December 2001 as part of Sludge Receipt and Adjustment Tank (SRAT) Batch 208. Macrobatch 3 consists of the contents of Tank 40 and Tank 8 in approximately equal proportions. A glass sample was obtained while pouring Canister S01913 and was sent to the Savannah River National Laboratory (SRNL) Shielded Cells for characterization. This report contains observations of the glass sample, results for the density, the chemical composition, the Product Consistency Test (PCT) and the radionuclide results needed for the Production Record for Canister S01913. The following conclusions are drawn from this work: (1) The glass sample taken during the filling of canister S01913 received at SRNL weighed 33.04 grams and was dark and reflective with no obvious inclusions indicating the glass was homogeneous. (2) The results of the composition for glass sample S01913 are in good agreement ({+-} 15%) with the DWPF SME results for Batch Number 254, the SME Batch that was being fed to the melter when the sample was collected. (3) The calculated WDF was 2.58. (4) Acid dissolution of the glass samples may not have completely dissolved the noble metals rhodium and ruthenium. (5) The PCT results for the glass (normalized boron release of 1.18 g/L) indicate that it is greater than seven standard deviations more durable than the EA glass; thus, the glass meets the waste acceptance criterion for durability. (6) The measured density of the glass was 2.56 {+-} 0.03 g/cm{sup 3}.

Bannochie, C

2005-10-01T23:59:59.000Z

412

PHYSICAL AGING OF PLASTICIZED POLYMER GLASS. WH ...  

Science Conference Proceedings (OSTI)

PHYSICAL AGING OF PLASTICIZED POLYMER GLASS. WH Han and GB McKenna, Polymers Division, Building 224, Room ...

413

Graphene Reinforced Glass and Ceramic Matrix Composites  

Science Conference Proceedings (OSTI)

About this Abstract. Meeting, Materials Science & Technology 2013. Symposium, Ceramic Matrix Composites. Presentation Title, Graphene Reinforced Glass ...

414

Laboratory Waste Disposal HAZARDOUS GLASS  

E-Print Network (OSTI)

Laboratory Waste Disposal HAZARDOUS GLASS Items that could cut or puncture skin or trash- can liners. This waste stream must be boxed to protect custodial staff. It goes directly to the landfill lined cardboard box. Tape seams with heavy duty tape to contain waste. Limit weight to 20 lbs. Or

Sheridan, Jennifer

415

Microsoft Word - S0162200_VariationHydraulicConductivity-PRB.doc  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

GJ803-2005 GJ803-2005 ESL-RPT-2005-01 Variation in Hydraulic Conductivity Over Time at the Monticello Permeable Reactive Barrier February 2005 Work Performed by S.M. Stoller Corporation under DOE Contract No. DE-AC01-02GJ79491 for the U.S. Department of Energy Office of Legacy Management, Grand Junction, Colorado U.S. Department of Energy Variation in Hydraulic Conductivity Over Time at the Monticello Permeable Reactive Barrier February 2005 Doc. No. S0162200 Page v Contents Executive Summary...................................................................................................................... vii 1.0 Introduction ...........................................................................................................................

416

Microsoft Word - S0162200_VariationHydraulicConductivity-PRB.doc  

Office of Legacy Management (LM)

GJ803-2005 GJ803-2005 ESL-RPT-2005-01 Variation in Hydraulic Conductivity Over Time at the Monticello Permeable Reactive Barrier February 2005 Work Performed by S.M. Stoller Corporation under DOE Contract No. DE-AC01-02GJ79491 for the U.S. Department of Energy Office of Legacy Management, Grand Junction, Colorado U.S. Department of Energy Variation in Hydraulic Conductivity Over Time at the Monticello Permeable Reactive Barrier February 2005 Doc. No. S0162200 Page v Contents Executive Summary...................................................................................................................... vii 1.0 Introduction ...........................................................................................................................

417

Scaling Characteristics of Soil Hydraulic Parameters at Varying Spatial Resolutions  

E-Print Network (OSTI)

This dissertation focuses on the challenge of soil hydraulic parameter scaling in soil hydrology and related applications in general; and, in particular, the upscaling of these parameters to provide effective values at coarse scales. Soil hydraulic properties are required for many hydrological and ecological models at their representative scales. Prediction accuracy of these models is highly dependent on the quality of the model input parameters. However, measurement of parameter data at all such required scales is impractical as that would entail huge outlays of finance, time and effort. Hence, alternate methods of estimating the soil hydraulic parameters at the scales of interest are necessary. Two approaches to bridge this gap between the measurement and application scales for soil hydraulic parameters are presented in this dissertation. The first one is a stochastic approach, based on artificial neural networks (ANNs) applied within a Bayesian framework. ANNs have been used before to derive soil hydraulic parameters from other more easily measured soil properties at matching scales. Here, ANNs were applied with different training and simulation scales. This concept was further extended to work within a Bayesian framework in order to provide estimates of uncertainty in such parameter estimations. Use of ancillary information such as elevation and vegetation data, in addition to the soil physical properties, were also tested. These multiscale pedotransfer function methods were successfully tested with numerical and field studies at different locations and scales. Most upscaling efforts thus far ignore the effect of the topography on the upscaled soil hydraulic parameter values. While this flat-terrain assumption is acceptable at coarse scales of a few hundred meters, at kilometer scales and beyond, the influence of the physical features cannot be ignored. anew upscaling scheme which accounts for variations in topography within a domain was developed to upscale soil hydraulic parameters to hill-slope (kilometer) scales. The algorithm was tested on different synthetically generated topographic configurations with good results. Extending the methodology to field conditions with greater complexities also produced good results. A comparison of different recently developed scaling schemes showed that at hill-slope scales, inclusion of topographic information produced better estimates of effective soil hydraulic parameters at that scale.

Belur Jana, Raghavendra

2010-05-01T23:59:59.000Z

418

Downstream hydraulic geometry relations: 2. Calibration and testing  

E-Print Network (OSTI)

Using 456 data sets under bank-full conditions obtained from various sources, the geometric relations, derived in part 1 [ Singh et al., 2003 ], are calibrated and verified using the split sampling approach. The calibration of parameters shows that the change in stream power is not shared equally among hydraulic variables and that the unevenness depends on the boundary conditions to be satisfied by the channel under consideration. The agreement between the observed values of the hydraulic variables and those predicted by the derived relations is close for the verification data set and lends credence to the hypotheses employed in this study.

Singh, Vijay P.; Yang, Chih Ted; Deng, Zhi-Qiang

2003-12-04T23:59:59.000Z

419

INVESTIGATIONS ON HYDRAULIC CEMENTS FROM SPENT OIL SHALE  

SciTech Connect

A process for making hydraulic cements from spent oil shale is described in this paper. Inexpensive cement is needed to grout abandoned in-situ retorts of spent shale for subsidence control, mitigation of leaching, and strengthening the retorted mass in order to recover oil from adjacent pillars of raw shale. A hydraulic cement was produced by heating a 1:1 mixture of Lurgi spent shale and CaCO{sub 3} at 1000 C for one hour. This cement would be less expensive than ordinary portland cement and is expected to fulfill the above requirements.

Mehta, P.K.; Persoff, P.

1980-04-01T23:59:59.000Z

420

High-Temperature Viscosity of Commercial Glasses  

SciTech Connect

Arrhenius models were developed for glass viscosity within the processing temperature of six types of commercial glasses: low-expansion-borosilicate glasses, E glasses, fiberglass wool glasses, TV panel glasses, container glasses, and float glasses. Both local models (for each of the six glass types) and a global model (for the composition region of commercial glasses, i.e., the six glass types taken together) are presented. The models are based on viscosity data previously obtained with rotating spindle viscometers within the temperature range between 900 C and 1550 C; the viscosity varied from 1 Pa?s to 750 Pa?s. First-order models were applied to relate Arrhenius coefficients to the mass fractions of 15 components: SiO2, TiO2, ZrO2, Al2O3, Fe2O3, B2O3, MgO, CaO, SrO, BaO, PbO, ZnO, Li2O, Na2O, K2O. The R2 is 0.98 for the global model and ranges from .097 to 0.99 for the six local models. The models are recommended for glasses containing 42 to 84 mass% SiO2 to estimate viscosities or temperatures at a constant viscosity for melts within both the temperature range from 1100 C to 1550 C and viscosity range from 5 to 400 Pa?s.

Hrma, Pavel R.

2006-08-31T23:59:59.000Z

Note: This page contains sample records for the topic "glass products hydraulic" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

DURABLE GLASS FOR THOUSANDS OF YEARS  

SciTech Connect

The durability of natural glasses on geological time scales and ancient glasses for thousands of years is well documented. The necessity to predict the durability of high level nuclear waste (HLW) glasses on extended time scales has led to various thermodynamic and kinetic approaches. Advances in the measurement of medium range order (MRO) in glasses has led to the understanding that the molecular structure of a glass, and thus the glass composition, controls the glass durability by establishing the distribution of ion exchange sites, hydrolysis sites, and the access of water to those sites. During the early stages of glass dissolution, a 'gel' layer resembling a membrane forms through which ions exchange between the glass and the leachant. The hydrated gel layer exhibits acid/base properties which are manifested as the pH dependence of the thickness and nature of the gel layer. The gel layer ages into clay or zeolite minerals by Ostwald ripening. Zeolite mineral assemblages (higher pH and Al{sup 3+} rich glasses) may cause the dissolution rate to increase which is undesirable for long-term performance of glass in the environment. Thermodynamic and structural approaches to the prediction of glass durability are compared versus Ostwald ripening.

Jantzen, C.

2009-12-04T23:59:59.000Z

422

Hydraulic manipulator design, analysis, and control at Oak Ridge National Laboratory  

Science Conference Proceedings (OSTI)

To meet the increased payload capacities demanded by present-day tasks, manipulator designers have turned to hydraulics as a means of actuation. Hydraulics have always been the actuator of choice when designing heavy-life construction and mining equipment such as bulldozers, backhoes, and tunneling devices. In order to successfully design, build, and deploy a new hydraulic manipulator (or subsystem) sophisticated modeling, analysis, and control experiments are usually needed. To support the development and deployment of new hydraulic manipulators Oak Ridge National Laboratory (ORNL) has outfitted a significant experimental laboratory and has developed the software capability for research into hydraulic manipulators, hydraulic actuators, hydraulic systems, modeling of hydraulic systems, and hydraulic controls. The hydraulics laboratory at ORNL has three different manipulators. First is a 6-Degree-of-Freedom (6-DoF), multi-planer, teleoperated, flexible controls test bed used for the development of waste tank clean-up manipulator controls, thermal studies, system characterization, and manipulator tracking. Finally, is a human amplifier test bed used for the development of an entire new class of teleoperated systems. To compliment the hardware in the hydraulics laboratory, ORNL has developed a hydraulics simulation capability including a custom package to model the hydraulic systems and manipulators for performance studies and control development. This paper outlines the history of hydraulic manipulator developments at ORNL, describes the hydraulics laboratory, discusses the use of the equipment within the laboratory, and presents some of the initial results from experiments and modeling associated with these hydraulic manipulators. Included are some of the results from the development of the human amplifier/de-amplifier concepts, the characterization of the thermal sensitivity of hydraulic systems, and end-point tracking accuracy studies. Experimental and analytical results are included.

Kress, R.L.; Jansen, J.F. [Oak Ridge National Lab., TN (United States). Robotics and Process Systems Div.; Love, L.J. [Oak Ridge Inst. for Science and Education, TN (United States); Basher, A.M.H. [South Carolina State Univ., Orangeburg, SC (United States)

1996-09-01T23:59:59.000Z

423

Shale Gas Production: Potential versus Actual GHG Emissions  

E-Print Network (OSTI)

Estimates of greenhouse gas (GHG) emissions from shale gas production and use are controversial. Here we assess the level of GHG emissions from shale gas well hydraulic fracturing operations in the United States during ...

O'Sullivan, Francis

424

Shale gas production: potential versus actual greenhouse gas emissions  

E-Print Network (OSTI)

Estimates of greenhouse gas (GHG) emissions from shale gas production and use are controversial. Here we assess the level of GHG emissions from shale gas well hydraulic fracturing operations in the United States during ...

O’Sullivan, Francis Martin

425

Production of High Translucent Self-Colored Dental Zirconia Blocks  

Science Conference Proceedings (OSTI)

Borate Glass Nanofiber/Whiskers in a Hybrid Orthopedic Composite Implants for ... G6: Production of High Translucent Self-Colored Dental Zirconia Blocks.

426

Energy Efficiency Improvement and Cost Saving Opportunities for the Glass Industry. An ENERGY STAR Guide for Energy and Plant Managers  

Science Conference Proceedings (OSTI)

The U.S. glass industry is comprised of four primary industry segments--flat glass, container glass, specialty glass, and fiberglass--which together consume $1.6 billion in energy annually. On average, energy costs in the U.S. glass industry account for around 14 percent of total glass production costs. Energy efficiency improvement is an important way to reduce these costs and to increase predictable earnings, especially in times of high energy price volatility. There is a variety of opportunities available at individual plants in the U.S. glass industry to reduce energy consumption in a cost-effective manner. This Energy Guide discusses energy efficiency practices and energy-efficient technologies that can be implemented at the component, process, system, and organizational levels. A discussion of the trends, structure, and energy consumption characteristics of the U.S. glass industry is provided along with a description of the major process steps in glass manufacturing. Expected savings in energy and energy-related costs are given for many energy efficiency measures, based on case study data from real-world applications in glass production facilities and related industries worldwide. Typical measure payback periods and references to further information in the technical literature are also provided, when available. The information in this Energy Guide is intended to help energy and plant managers in the U.S. glass industry reduce energy consumption in a cost-effective manner while maintaining the quality of products manufactured. Further research on the economics of the measures--as well on as their applicability to different production practices--is needed to assess potential implementation of selected technologies at individual plants.

Galitsky, Christina; Worrell, Ernst; Galitsky, Christina; Masanet, Eric; Graus, Wina

2008-03-01T23:59:59.000Z

427

High-level waste borosilicate glass a compendium of corrosion characteristics. Volume 1  

Science Conference Proceedings (OSTI)

Current plans call for the United States Department of Energy (DOE) to start up facilities for vitrification of high-level radioactive waste (HLW) stored in tanks at the Savannah River Site, Aiken, South Carolina, in 1995; West Valley Demonstration Project, West Valley, New York, in 1996; and at the Hanford Site, Richland, Washington, after the year 2000. The product from these facilities will be canistered HLW borosilicate glass, which will be stored, transported, and eventually disposed of in a geologic repository. The behavior of this glass waste product, under the range of likely service conditions, is the subject of considerable scientific and public interest. Over the past few decades, a large body of scientific information on borosilicate waste glass has been generated worldwide. The intent of this document is to consolidate information pertaining to our current understanding of waste glass corrosion behavior and radionuclide release. The objective, scope, and organization of the document are discussed in Section 1.1, and an overview of borosilicate glass corrosion is provided in Section 1.2. The history of glass as a waste form and the international experience with waste glass are summarized in Sections 1.3 and 1.4, respectively.

Cunnane, J.C. [comp.; Bates, J.K.; Bradley, C.R. [Argonne National Lab., IL (United States)

1994-03-01T23:59:59.000Z

428

Standard Guide for Dry Lead Glass and Oil-Filled Lead Glass Radiation Shielding Window Components for Remotely Operated Facilities  

E-Print Network (OSTI)

Standard Guide for Dry Lead Glass and Oil-Filled Lead Glass Radiation Shielding Window Components for Remotely Operated Facilities

American Society for Testing and Materials. Philadelphia

2010-01-01T23:59:59.000Z

429

Glass-ceramic material and method of making  

DOE Patents (OSTI)

The present invention is a glass-ceramic material and method of making useful for joining at least two solid ceramic parts. The seal is a blend of M.sub.A O--M.sub.B O.sub.y --SiO.sub.2 that substantially matches a coefficient of thermal expansion of the solid electrolyte. According to the present invention, a series of glass ceramics in the M.sub.A O--M.sub.B O.sub.y --SiO.sub.2 system can be used to join or seal both tubular and planar ceramic solid oxide fuel cells, oxygen electrolyzers, and membrane reactors for the production of syngas, commodity chemicals and other products.

Meinhardt, Kerry D [Richland, WA; Vienna, John D [West Richland, WA; Armstrong, Timothy R [Pasco, WA; Pederson, Larry R [Kennewick, WA

2002-08-13T23:59:59.000Z

430

Development of a China Dataset of Soil Hydraulic Parameters Using Pedotransfer Functions for Land Surface Modeling  

Science Conference Proceedings (OSTI)

The objective of this study is to develop a dataset of the soil hydraulic parameters associated with two empirical soil functions (i.e., a water retention curve and hydraulic conductivity) using multiple pedotransfer functions (PTFs). The dataset ...

Yongjiu Dai; Wei Shangguan; Qingyun Duan; Baoyuan Liu; Suhua Fu; Guoyue Niu

2013-06-01T23:59:59.000Z

431

Comparison of Laboratory and Field Methods for Determining the Quasi-Saturated Hydraulic Conductivity of Soils  

E-Print Network (OSTI)

to atmospheric air. The soil sealing process decreases thesealing process begins, the hydraulic pressure drops below the airair is discharged from the soils; during the third stage, the hydraulic conductivity decreases to minimum values due to sealing

Faybishenko, Boris

1997-01-01T23:59:59.000Z

432

Joint Hydraulic Institute/ASAP Letter of March 30th - Clarification...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Joint Hydraulic InstituteASAP Letter of March 30th - Clarification of Point 2 Joint Hydraulic InstituteASAP Letter of March 30th - Clarification of Point 2 We would like to...

433

The Design and Qualification of a Hydraulic Hardware-in-the-Loop Simulator .  

E-Print Network (OSTI)

??The goal of this work was to design and evaluate a hydraulic Hardware-in-the-Loop (HIL) simulation system based around electric and hydraulic motors. The idea behind… (more)

Driscoll, Scott Crawford

2005-01-01T23:59:59.000Z

434

A Java-based program for numerical computation of hydraulic shock  

Science Conference Proceedings (OSTI)

Numerical solving, by method of characteristics, of the hydraulic shock problem required to develop a computer program that automatically respond to the following requirements: easy management of several projects, easy introduction, editing and change ... Keywords: flowchart, graphical interface, hydraulic shock

Ichinur Omer; Cristina Serban

2010-05-01T23:59:59.000Z

435

Automatic hydraulic fracturing design for low permeability reservoirs using artificial intelligence  

Science Conference Proceedings (OSTI)

The hydraulic fracturing technique is one of the major developments in petroleum engineering in the last two decades. Today, nearly all the wells completed in low permeability gas reservoirs require a hydraulic fracturing treatment in order to produce ...

Andrei Sergiu Popa / Shahab Mohaghegh

2004-01-01T23:59:59.000Z

436

Conversion of radioactive ferrocyanide compounds to immobile glasses  

DOE Patents (OSTI)

Complex radioactive ferrocyanide compounds result from the scavenging of cesium from waste products produced in the chemical reprocessing of nuclear fuel. These ferrocyanides, in accordance with this process, are converted to an immobile glass, resistant to leaching by water, by fusion together with sodium carbonate and a mixture of (a) basalt and boron trioxide (B.sub.2 O.sub.3) or (b) silica (SiO.sub.2) and lime (CaO).

Schulz, Wallace W. (Richland, WA); Dressen, A. Louise (Richland, WA)

1977-04-26T23:59:59.000Z

437

Proportional and Proportional-Integral Controllers for a Nonlinear Hydraulic  

E-Print Network (OSTI)

in a nonlinear hydraulic network of a reduced-size yet meaningful district heating system with two end correspondingly the controllers. In this paper we focus on one of these case studies, a district heating system to the system. Presently district heating systems are designed to meet the needs of a given number of end users

De Persis, Claudio

438

Hydraulic Control of Sill Flow with Bottom Friction  

Science Conference Proceedings (OSTI)

The hydraulics of strait and sill flow with friction is examined using a reduced gravity model. It is shown that friction moves the critical (or control) point from the sill to a location downstream. If the strait has constant width, the control ...

L. J. Pratt

1986-11-01T23:59:59.000Z

439

Gap Winds in a Fjord. Part II: Hydraulic Analog  

Science Conference Proceedings (OSTI)

A simple shallow-water model of gap wind in a channel that is based upon hydraulic theory is presented and compared with observations and output from a 3D mesoscale numerical model. The model is found to be successful in simulating gap winds. The ...

Peter L. Jackson; D. G. Steyn

1994-12-01T23:59:59.000Z

440

The Modeling of Slurry Friction Loss of Hydraulic Fracturing  

Science Conference Proceedings (OSTI)

In recent years, the research on theoretical model of hydraulic fracturing has experienced development. But there is little progress in the research on slurry friction loss in the fracturing string, which is the key to guide the design and construction ... Keywords: slurry, friction loss, momentum transfer

Yongming Li; Hu Mao; Fengsheng Yao; Song Wang; Jinzhou Zhao

2011-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "glass products hydraulic" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Multilayer Hydraulic Control with Application to the Alboran Sea Circulation  

Science Conference Proceedings (OSTI)

The flow of a single layer of fluid along a channel of variable dimensions is hydraulically controlled when long gravity waves can no longer propagate upstream at the cross-section of minimum area. For a multilayer fluid, it is shown that a ...

Nelson G. Hogg

1985-04-01T23:59:59.000Z

442

A Time-Dependent Aspect of Hydraulic Control in Straits  

Science Conference Proceedings (OSTI)

The concept of hydraulic control by a sill is discussed in terms of its consequences for the upstream flow. Based on observations of the upstream flow alone. “control” is shown to be distinguishable from “noncontrol” only if the flow is unsteady. ...

L. J. Pratt

1984-08-01T23:59:59.000Z

443

Time-Dependent Two-Layer Hydraulic Exchange Flows  

Science Conference Proceedings (OSTI)

A theory is presented for time-dependent two-layer hydraulic flows through straits. The theory is used to study exchange flows forced by a periodic barotropic (tidal) flow. For a given strait geometry the resulting flow is a function of two ...

Karl R. Helfrich

1995-03-01T23:59:59.000Z

444

Control of a Hydraulically-Powered, Differential Lift Project Proposal  

E-Print Network (OSTI)

to raise and lower the load. A pump draws hydraulic oil from a reservoir through a four-port, three. As oil enters one side of the cylinder, oil exits the other side, passes through the valve, and drains leading from the pump through the valve and into the cylinder, such that (1) where p is the effort, p

445

On-site investigations and diagnosis of hydraulic structures  

SciTech Connect

Hydraulic structures (HSs) should be classified as complex engineering systems. It is difficult to imagine an absolutely reliable and safe engineering system. It is completely obvious that if such a system were possible, then economically it would not experience any competition with less reliable systems whose operation is organized in a certain way.

Vasilevskii, A.G.

1994-06-01T23:59:59.000Z

446

Validation of high performance pneumo-hydraulic shock absorbers  

Science Conference Proceedings (OSTI)

The paper discusses a theoretical and experimental approach to the validation of high performance shock absorbers, based on a flexible and innovative procedure. This type of components needs specific and unconventional tests, in order to detect the actual ... Keywords: oil-hydraulics, shock absorbers, validation, virtual instrumentation

Enrico Ravina

2006-02-01T23:59:59.000Z

447

Hydraulic Performance of a Multistage Array of Advanced Centrifugal Contactors  

Science Conference Proceedings (OSTI)

The hydraulic characteristics of an advanced design centrifugal contactor array have been determined at the Savannah River Laboratory (SRL). The advanced design utilizes couette mixing (Taylor vortices) in the annulus between the rotating and stationary bowls. Excellent phase separation over a wide range of flow conditions was obtained. Interfaces within an entire eight-stage array were controlled with a single weir air pressure.

Hodges, M.E.

2001-05-29T23:59:59.000Z

448

IOWA INSTITUTE OF HYDRAULIC RESEARCH THE UNIVERSITY OF IOWA  

E-Print Network (OSTI)

at Power Plants EPRIa Odgaard, Nakato Icing-Induced Vibration of Cables EPRIa Ettema, Nixon ** Hydraulic Patel ** Diffraction of Acoustic Waves by a Circular Disk of Arbitrary Impedance DTRC Chwang #12;Summary Structure, Spurlock Power Station EKP Nakato ** Consulting Services to Establish Value of Exploratory

Stanier, Charlie

449

Comments on “Is the Faroe Bank Channel Overflow Hydraulically Controlled?”  

Science Conference Proceedings (OSTI)

In a recent paper Girton et al., due to what appears to be a misunderstanding, stated that a critical-flow analysis of the deep-water transport through the Faroe Bank Channel had been undertaken by Lake et al. on the basis of rotating hydraulic ...

Linda Enmar; Karin Borenäs; Iréne Lake; Peter Lundberg

2009-06-01T23:59:59.000Z

450

Marcellus Shale Drilling and Hydraulic Fracturing; Technicalities and  

E-Print Network (OSTI)

Marcellus Shale Drilling and Hydraulic Fracturing; Technicalities and Controversies Kyle J Ferrar;UNITED STATES SHALE BASINS Modern Shale Gas Development in the U.S.: A Primer, (2009) U.S. Dept of Energy Development http://www.secinfo.com/DB/SEC/2007 #12;Where to Drill? Harper, John A. (2008). The Marcellus Shale

Sibille, Etienne

451

Study on an Electric Drilling Rig with Hydraulic Energy Storage  

Science Conference Proceedings (OSTI)

An electric drilling rig with hydraulic energy storage is researched. This rig can recover the potential energy of the drill stem lowered and owns remarkable energy-saving effect. The mathematical model of the new rig lifting the drill stem was deduced ... Keywords: electric drilling rig, energy-recovering, energy-saving

Zhang Lujun

2010-06-01T23:59:59.000Z

452

Numerical Simulation Research on Proppant Transport in Hydraulic Fracture  

Science Conference Proceedings (OSTI)

Among the mathematical models of describing the prop pant settling or transport process, the particle settling velocity primarily takes the gravity, buoyancy and other conventional forces into consideration under the equilibrium condition of forces, ... Keywords: hydraulic fracturing, solid-liquid two phaes flow, proppant transport, numerical simulation, predictor-corrector method

Yongming Li; Song Wang; Jinzhou Zhao; Zhang Jiyao; Xiangzeng Wang; Ruimin Gao

2011-10-01T23:59:59.000Z