National Library of Energy BETA

Sample records for glass metal casting

  1. Comparison of Structural Relaxation Behavior in As-Cast and Pre-Annealed Zr-Based Bulk Metallic Glasses Just below Glass Transition

    SciTech Connect (OSTI)

    Haruyama, Osami; Yoshikawa, Kazuyoshi; Yamazaki, Yoshikatsu; Yokoyama, Yoshihiko; Egami, Takeshi

    2015-04-25

    In this paper, the α-relaxation of pre-annealed Zr55Cu30Ni5Al10 bulk metallic glasses (BMGs) was compared with that of as-cast Zr-based BMGs including Zr55Cu30Ni5Al10. The α-relaxation was investigated by volume relaxation. The relaxation behavior was well described by a stretched exponential relaxation function, Φ (t) ≈ exp [ - (t/τ α )β α ], with the isothermal relaxation time, τα, and the Kohlrausch exponent, βα. The βα exhibited the strong temperature dependence for the pre-annealed BMG, while the weak temperature dependence was visualized for the as-cast BMG similar to the dynamic relaxation. The τα’s were modified by Moynihan and Narayanaswamy-Tool-Moynihan methods that reduce the difference in the thermal history of sample. Finally, as a result, the relaxation kinetics in the glass resembled that of a liquid deduced from the behavior of viscosity in the supercooled liquid.

  2. Comparison of Structural Relaxation Behavior in As-Cast and Pre-Annealed Zr-Based Bulk Metallic Glasses Just below Glass Transition

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Haruyama, Osami; Yoshikawa, Kazuyoshi; Yamazaki, Yoshikatsu; Yokoyama, Yoshihiko; Egami, Takeshi

    2015-04-25

    In this paper, the α-relaxation of pre-annealed Zr55Cu30Ni5Al10 bulk metallic glasses (BMGs) was compared with that of as-cast Zr-based BMGs including Zr55Cu30Ni5Al10. The α-relaxation was investigated by volume relaxation. The relaxation behavior was well described by a stretched exponential relaxation function, Φ (t) ≈ exp [ - (t/τ α )β α ], with the isothermal relaxation time, τα, and the Kohlrausch exponent, βα. The βα exhibited the strong temperature dependence for the pre-annealed BMG, while the weak temperature dependence was visualized for the as-cast BMG similar to the dynamic relaxation. The τα’s were modified by Moynihan and Narayanaswamy-Tool-Moynihan methods thatmore » reduce the difference in the thermal history of sample. Finally, as a result, the relaxation kinetics in the glass resembled that of a liquid deduced from the behavior of viscosity in the supercooled liquid.« less

  3. ITP Metal Casting: A Vision for the U.S. Metal Casting Industry...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    KB) More Documents & Publications ITP Metal Casting: Metalcasting Industry Technology Roadmap ITP Metal Casting: Implementation of Metal Casting Best Practices ITP Metal Casting: ...

  4. Clean Metal Casting

    SciTech Connect (OSTI)

    Makhlouf M. Makhlouf; Diran Apelian

    2002-02-05

    The objective of this project is to develop a technology for clean metal processing that is capable of consistently providing a metal cleanliness level that is fit for a given application. The program has five tasks: Development of melt cleanliness assessment technology, development of melt contamination avoidance technology, development of high temperature phase separation technology, establishment of a correlation between the level of melt cleanliness and as cast mechanical properties, and transfer of technology to the industrial sector. Within the context of the first task, WPI has developed a standardized Reduced Pressure Test that has been endorsed by AFS as a recommended practice. In addition, within the context of task1, WPI has developed a melt cleanliness sensor based on the principles of electromagnetic separation. An industrial partner is commercializing the sensor. Within the context of the second task, WPI has developed environmentally friendly fluxes that do not contain fluorine. Within the context of the third task, WPI modeled the process of rotary degassing and verified the model predictions with experimental data. This model may be used to optimize the performance of industrial rotary degassers. Within the context of the fourth task, WPI has correlated the level of melt cleanliness at various foundries, including a sand casting foundry, a permanent mold casting foundry, and a die casting foundry, to the casting process and the resultant mechanical properties. This is useful in tailoring the melt cleansing operations at foundries to the particular casting process and the desired properties of cast components.

  5. METAL PRODUCTION AND CASTING

    DOE Patents [OSTI]

    Magel, T.T.

    1958-03-01

    This patent covers a method and apparatus for collecting the molten metal produced by high temperature metal salt reduction. It consists essentially of subjecting the reaction vessel to centrifugal force in order to force the liberatcd molten metal into a coherent molten mass, and allowing it to solidify there. The apparatus is particularly suitable for use with small quantities of rare metals.

  6. EXELFS of Metallic Glasses

    SciTech Connect (OSTI)

    Ito, Y.; Alamgir, F.M.; Schwarz, R.B.; Jain, H.; Williams, D.B.

    1999-11-30

    The feasibility of using extended energy-loss fine structure (EXELFS) obtained from {approximately}1 nm regions of metallic glasses to study their short-range order has been examined. Ionization edges of the metallic glasses in the electron energy-loss spectrum (EELS) have been obtained from PdNiP bulk metallic glass and Ni{sub 2}P polycrystalline powder in a transmission electron microscope. The complexity of EXELFS analysis of L- and M-ionization edges of heavy elements (Z>22, i.e. Ni and Pd) is addressed by theoretical calculations using an ab initio computer code, and its results are compared with the experimental data.

  7. Method for casting thin metal objects

    SciTech Connect (OSTI)

    Pehrson, Brandon P; Moore, Alan F

    2015-04-14

    Provided herein are various embodiments of systems for casting thin metal plates and sheets. Typical embodiments include layers of mold cavities that are oriented vertically for casting the metal plates. In some embodiments, the mold cavities include a beveled edge such that the plates that are cast have a beveled edge. In some embodiments, the mold cavities are filled with a molten metal through an open horizontal edge of the cavity. In some embodiments, the mold cavities are filled through one or more vertical feed orifices. Further disclosed are methods for forming a thin cast metal plate or sheet where the thickness of the cast part is in a range from 0.005 inches to 0.2 inches, and the surface area of the cast part is in a range from 16 square inches to 144 square inches.

  8. ITP Metal Casting: Energy and Environmental Profile of the U...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Environmental Profile of the U.S. Metal casting Industry ITP Metal Casting: Energy and Environmental Profile of the U.S. Metal casting Industry profile.pdf (1.51 MB) More ...

  9. ITP Metal Casting: Advanced Melting Technologies: Energy Saving Concepts

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Opportunities for the Metal Casting Industry | Department of Energy Advanced Melting Technologies: Energy Saving Concepts and Opportunities for the Metal Casting Industry ITP Metal Casting: Advanced Melting Technologies: Energy Saving Concepts and Opportunities for the Metal Casting Industry advancedmeltingtechnologies.pdf (1.83 MB) More Documents & Publications ITP Metal Casting: Theoretical/Best Practice Energy Use in Metalcasting Operations ITP Metal Casting: Energy and

  10. ITP Metal Casting: Advanced Melting Technologies: Energy Saving...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Advanced Melting Technologies: Energy Saving Concepts and Opportunities for the Metal Casting Industry ITP Metal Casting: Advanced Melting Technologies: Energy Saving Concepts and ...

  11. Electronic structure of metallic glasses

    SciTech Connect (OSTI)

    Oelhafen, P.; Lapka, R.; Gubler, U.; Krieg, J.; DasGupta, A.; Guentherodt, H.J.; Mizoguchi, T.; Hague, C.; Kuebler, J.; Nagel, S.R.

    1981-01-01

    This paper is organized in six sections and deals with (1) the glassy transition metal alloys, their d-band structure, the d-band shifts on alloying and their relation to the alloy heat of formation (..delta..H) and the glass forming ability, (2) the glass to crystal phase transition viewed by valence band spectroscopy, (3) band structure calculations, (4) metallic glasses prepared by laser glazing, (5) glassy normal metal alloys, and (6) glassy hydrides.

  12. Light Metals Permanent Mold Casting

    SciTech Connect (OSTI)

    None

    2004-11-01

    The research will develop the gravity and/or low-pressure permanent-mold casting processes with sand or permanent-mold cores for aluminum and magnesium based alloys.

  13. Quinary metallic glass alloys

    DOE Patents [OSTI]

    Lin, X.; Johnson, W.L.

    1998-04-07

    At least quinary alloys form metallic glass upon cooling below the glass transition temperature at a rate less than 10{sup 3}K/s. Such alloys comprise zirconium and/or hafnium in the range of 45 to 65 atomic percent, titanium and/or niobium in the range of 4 to 7.5 atomic percent, and aluminum and/or zinc in the range of 5 to 15 atomic percent. The balance of the alloy compositions comprise copper, iron, and cobalt and/or nickel. The composition is constrained such that the atomic percentage of iron is less than 10 percent. Further, the ratio of copper to nickel and/or cobalt is in the range of from 1:2 to 2:1. The alloy composition formula is: (Zr,Hf){sub a}(Al,Zn){sub b}(Ti,Nb){sub c}(Cu{sub x}Fe{sub y}(Ni,Co){sub z}){sub d} wherein the constraints upon the formula are: a ranges from 45 to 65 atomic percent, b ranges from 5 to 15 atomic percent, c ranges from 4 to 7.5 atomic percent, d comprises the balance, d{hor_ellipsis}y is less than 10 atomic percent, and x/z ranges from 0.5 to 2.

  14. Quinary metallic glass alloys

    DOE Patents [OSTI]

    Lin, Xianghong; Johnson, William L.

    1998-01-01

    At least quinary alloys form metallic glass upon cooling below the glass transition temperature at a rate less than 10.sup.3 K/s. Such alloys comprise zirconium and/or hafnium in the range of 45 to 65 atomic percent, titanium and/or niobium in the range of 4 to 7.5 atomic percent, and aluminum and/or zinc in the range of 5 to 15 atomic percent. The balance of the alloy compositions comprise copper, iron, and cobalt and/or nickel. The composition is constrained such that the atomic percentage of iron is less than 10 percent. Further, the ratio of copper to nickel and/or cobalt is in the range of from 1:2 to 2:1. The alloy composition formula is: (Zr,Hf).sub.a (Al,Zn).sub.b (Ti,Nb).sub.c (Cu.sub.x Fe.sub.y (Ni,Co).sub.z).sub.d wherein the constraints upon the formula are: a ranges from 45 to 65 atomic percent, b ranges from 5 to 15 atomic percent, c ranges from 4 to 7.5 atomic percent, d comprises the balance, d.multidot.y is less than 10 atomic percent, and x/z ranges from 0.5 to 2.

  15. Horizontal electromagnetic casting of thin metal sheets

    DOE Patents [OSTI]

    Hull, John R.; Lari, Robert J.; Praeg, Walter F.; Turner, Larry R.

    1987-01-01

    Thin metal sheets are cast by magnetically suspending molten metal deposited within a ferromagnetic yoke and between AC conducting coils and linearly displacing the magnetically levitated liquid metal while it is being cooled to form a solid metal sheet. Magnetic flux increases as the molten metal sheet moves downward and decreases as the molten metal sheet moves upward to stabilize the sheet and maintain it in equilibrium as it is linearly displaced and solidified by cooling gases. A conducting shield is electrically coupled to the molten metal sheet by means of either metal sheet engaging rollers or brushes on the solidified metal, and by means of an electrode in the vessel containing the molten metal thereby providing a return path for the eddy currents induced in the metal sheet by the AC coil generated magnetic flux. Variation in the geometry of the conducting shield allows the magnetic flux between the metal sheet and the conducting shield to be varied and the thickness in surface quality of the metal sheet to be controlled. Side guards provide lateral containment for the molten metal sheet and stabilize and shape the magnetic field while a leader sheet having electromagnetic characteristics similar to those of the metal sheet is used to start the casting process and precedes the molten metal sheet through the magnet and forms a continuous sheet therewith. The magnet may be either U-shaped with a single racetrack coil or may be rectangular with a pair of facing bedstead coils.

  16. Horizontal electromagnetic casting of thin metal sheets

    DOE Patents [OSTI]

    Hull, John R.; Lari, Robert J.; Praeg, Walter F.; Turner, Larry R.

    1988-01-01

    Thin metal sheets are cast by magnetically suspending molten metal deposited within a ferromagnetic yoke and between AC conducting coils and linearly displacing the magnetically levitated liquid metal while it is being cooled to form a solid metal sheet. Magnetic flux increases as the molten metal sheet moves downward and decreases as the molten metal sheet moves upward to stabilize the sheet and maintain it in equilibrium as it is linearly displaced and solidified by cooling gases. A conducting shield is electrically coupled to the molten metal sheet by means of either metal sheet engaging rollers or brushes on the solidified metal, and by means of an electrode in the vessel containing the molten metal thereby providing a return path for the eddy currents induced in the metal sheet by the AC coil generated magnetic flux. Variation in the geometry of the conducting shield allows the magnetic flux between the metal sheet and the conducting shield to be varied and the thickness in surface quality of the metal sheet to be controlled. Side guards provide lateral containment for the molten metal sheet and stabilize and shape the magnetic field while a leader sheet having electromagnetic characteristics similar to those of the metal sheet is used to start the casting process and precedes the molten metal sheet through the magnet and forms a continuous sheet therewith. The magnet may be either U-shaped with a single racetrack coil or may be rectangular with a pair of facing bedstead coils.

  17. Energy use in selected metal casting facilities - 2003

    SciTech Connect (OSTI)

    Eppich, Robert E.

    2004-05-01

    This report represents an energy benchmark for various metal casting processes. It describes process flows and energy use by fuel type and processes for selected casting operations. It also provides recommendations for improving energy efficiency in casting.

  18. ITP Metal Casting: Implementation of Metal Casting Best Practices

    Broader source: Energy.gov [DOE]

    The project examined cases where metal casters had implemented ITP research results and detailed the benefits they received due to that implementation.

  19. Spray casting of metallic preforms

    DOE Patents [OSTI]

    Flinn, John E.; Burch, Joseph V.; Sears, James W.

    2000-01-01

    A metal alloy is melted in a crucible and ejected from the bottom of the crucible as a descending stream of molten metal. The descending stream is impacted with a plurality of primary inert gas jets surrounding the molten metal stream to produce a plume of atomized molten metal droplets. An inert gas is blown onto a lower portion of the plume with a plurality of auxiliary inert gas jets to deflect the plume into a more restricted pattern of high droplet density, thereby substantially eliminating unwanted overspray and resulting wasted material. The plume is projected onto a moving substrate to form a monolithic metallic product having generally parallel sides.

  20. Subcritical Measurements Multiple HEU Metal Castings

    SciTech Connect (OSTI)

    Mihalczo, John T [ORNL] [ORNL; Archer, Daniel E [ORNL] [ORNL; Wright, Michael C [ORNL] [ORNL

    2008-01-01

    Experiments with the standard annular highly enriched uranium (HEU) metal castings at Y-12 were performed in which up to 5 castings ({approx}90kg) were assembled in a tightly packed array with minimal spacing between castings. The fission chain multiplication process was initiated by a time tagged {sup 253}Cf spontaneously fissioning neutron source or time and directionally tagged neutrons from a small portable DT neutron generator and the prompt neutron time behavior measured with plastic scintillation detectors sensitive the fast neutron (>1 MeV) and gamma ray without distinction. These experiments were performed to provide data to benchmark methods for the calculation of the prompt neutron time behavior. Previous measurements with a single casting have been reported. This paper presents the experimental results for multiple castings. The prompt time decay was obtained by time coincidence correlation measurements between the detectors and the time tagged neutron source emission (equivalent to randomly pulsed neutron measurements) and between pairs of plastic scintillation detectors (equivalent to a 2-detector Rossi-alpha measurement). These standard HEU storage castings at the Y-12 plant had 5.000-in-OD, 3.500-in-ID, masses between 17,636 and 17,996 g, impurity content of 992 ppm, density of 18.75 g/cm{sup 3} and average enrichment of 93.16 wt % {sup 235}U. The castings were in tight fitting 025-in.-thick, 8.0-in-high stainless steel (SS-304) cylindrical cans for contamination control which were 8.0 in high. One can had an inside diameter of 3.0 in so that the Cf source could be located on the axes of this casting. Four 1 x 1 x 6 in plastic scintillators with the long dimension perpendicular to axes of the castings and adjacent to the outer surface of the casting cans were used. The detectors were enclosed in 1/4.-in.-thick lead shields on four 1 x 6 surfaces and on the 1 x 1 surface. The small surface of the lead shield was adjacent to the steel table. The

  1. Metal Casting Project Fact Sheet - Predicting Pattern Tooling and Casting

    SciTech Connect (OSTI)

    None

    2000-12-01

    Factors affecting casting dimension and tools to reduce their impact are being identified in this project.

  2. Chemical segregation in metallic glass nanowires

    SciTech Connect (OSTI)

    Zhang, Qi; Li, Mo; Li, Qi-Kai

    2014-11-21

    Nanowires made of metallic glass have been actively pursued recently due to the superb and unique properties over those of the crystalline materials. The amorphous nanowires are synthesized either at high temperature or via mechanical disruption using focused ion beam. These processes have potential to cause significant changes in structure and chemical concentration, as well as formation of defect or imperfection, but little is known to date about the possibilities and mechanisms. Here, we report chemical segregation to surfaces and its mechanisms in metallic glass nanowires made of binary Cu and Zr elements from molecular dynamics simulation. Strong concentration deviation are found in the nanowires under the conditions similar to these in experiment via focused ion beam processing, hot imprinting, and casting by rapid cooling from liquid state. Our analysis indicates that non-uniform internal stress distribution is a major cause for the chemical segregation, especially at low temperatures. Extension is discussed for this observation to multicomponent metallic glass nanowires as well as the potential applications and side effects of the composition modulation. The finding also points to the possibility of the mechanical-chemical process that may occur in different settings such as fracture, cavitation, and foams where strong internal stress is present in small length scales.

  3. Alloy with metallic glass and quasi-crystalline properties

    DOE Patents [OSTI]

    Xing, Li-Qian; Hufnagel, Todd C.; Ramesh, Kaliat T.

    2004-02-17

    An alloy is described that is capable of forming a metallic glass at moderate cooling rates and exhibits large plastic flow at ambient temperature. Preferably, the alloy has a composition of (Zr, Hf).sub.a Ta.sub.b Ti.sub.c Cu.sub.d Ni.sub.e Al.sub.f, where the composition ranges (in atomic percent) are 45.ltoreq.a.ltoreq.70, 3.ltoreq.b.ltoreq.7.5, 0.ltoreq.c.ltoreq.4, 3.ltoreq.b+c.ltoreq.10, 10.ltoreq.d.ltoreq.30, 0.ltoreq.e.ltoreq.20, 10.ltoreq.d+e.ltoreq.35, and 5.ltoreq.f.ltoreq.15. The alloy may be cast into a bulk solid with disordered atomic-scale structure, i.e., a metallic glass, by a variety of techniques including copper mold die casting and planar flow casting. The as-cast amorphous solid has good ductility while retaining all of the characteristic features of known metallic glasses, including a distinct glass transition, a supercooled liquid region, and an absence of long-range atomic order. The alloy may be used to form a composite structure including quasi-crystals embedded in an amorphous matrix. Such a composite quasi-crystalline structure has much higher mechanical strength than a crystalline structure.

  4. Volatile Species Retention During Metallic Fuel Casting

    SciTech Connect (OSTI)

    Randall S. Fielding; Douglas L. Proter

    2013-10-01

    Metallic nuclear fuels are candidate transmutation fuel forms for advanced fuel cycles. Through the operation of the Experimental Breeder Reactor II metallic nuclear fuels have been shown to be robust and easily manufactured. However, concerns have been raised concerning loss of americium during the casting process because of its high vapor pressure. In order to address these concerns a gaseous diffusion model was developed and a series of experiments using both manganese and samarium as surrogates for americium were conducted. The modeling results showed that volatility losses can be controlled to essentially no losses with a modest overpressure. Experimental results also showed volatile species retention down to no detectable losses through overpressure, although the loss values varied from the model results the same trend was seen. Bases on these results it is very probably that americium losses through volatility can be controlled to no detectable losses through application of a modest overpressure during casting.

  5. Constant permeability of (Fe{sub 0.75}B{sub 0.20}Si{sub 0.05}){sub 96}Nb{sub 4} bulk metallic glass prepared by B{sub 2}O{sub 3} flux melting and Cu-mold casting

    SciTech Connect (OSTI)

    Bitoh, T.; Shibata, D. [Department of Machine Intelligence and Systems Engineering, Faculty of Systems Science and Technology, Akita Prefectural University, Yurihonjo 015-0055 (Japan)

    2009-04-01

    The effect of B{sub 2}O{sub 3} flux melting on the soft magnetic properties of (Fe{sub 0.75}B{sub 0.20}Si{sub 0.05}){sub 96}Nb{sub 4} bulk metallic glass prepared by casting has been investigated. Ring-shaped bulk specimens that were prepared by B{sub 2}O{sub 3} flux melting and Cu-mold casting (fluxed specimens) show a flat hysteresis curve, indicating a good linear relationship between the magnetic induction and the applied magnetic field. Although the permeability of the fluxed specimens is lower than that of the specimens prepared by conventional Cu-mold casting by one order of magnitude, their coercivities are almost same. These results show that it is possible to develop a new soft magnetic material that exhibits constant permeability with low core loss.

  6. ITP Metal Casting: Energy Use in Selected Metalcasting Facilities...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Use in Selected Metalcasting Facilities - 2003 ITP Metal Casting: Energy Use in Selected Metalcasting Facilities - 2003 energyuseinselectedmetalcasting52804.pdf (1.2 MB) More ...

  7. ITP Metal Casting: Corrosion Testing Practices - High Alloy Corrosion...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Corrosion Testing Practices - High Alloy Corrosion Program ITP Metal Casting: Corrosion Testing Practices - High Alloy Corrosion Program lehighfs.pdf (151.33 KB) More Documents & ...

  8. ITP Metal Casting: Metalcasting Industry Technology Roadmap

    Broader source: Energy.gov [DOE]

    Castings are essential building blocks of U. S. industry. More than 90% of all mnaufactured, durable good and 100% of all manufacturing machinery contain castings.

  9. Production of glass or glass-ceramic to metal seals with the application of pressure

    DOE Patents [OSTI]

    Kelly, Michael D.; Kramer, Daniel P.

    1987-11-10

    In a process for preparing a glass or glass-ceramic to metal seal comprising contacting the glass with the metal and heat-treating the glass and metal under conditions whereby the glass to metal seal is effected and, optionally, the glass is converted to a glass-ceramic, an improvement comprises carrying out the heat-treating step using hot isostatic pressing.

  10. Production of glass or glass-ceramic to metal seals with the application of pressure

    DOE Patents [OSTI]

    Kelly, M.D.; Kramer, D.P.

    1985-01-04

    In a process for preparing a glass or glass-ceramic to metal seal comprising contacting the glass with the metal and heat-treating the glass and metal under conditions whereby the glass to metal seal is effected and, optionally, the glass is converted to a glass-ceramic, an improvement comprises carrying out the heat-treating step using hot isostatic pressing.

  11. Method and mold for casting thin metal objects

    SciTech Connect (OSTI)

    Pehrson, Brandon P; Moore, Alan F

    2014-04-29

    Provided herein are various embodiments of systems for casting thin metal plates and sheets. Typical embodiments include layers of mold cavities that are oriented vertically for casting the metal plates. In some embodiments, the mold cavities include a beveled edge such that the plates that are cast have a beveled edge. In some embodiments, the mold cavities are filled with a molten metal through an open horizontal edge of the cavity. In some embodiments, the mold cavities are filled through one or more vertical feed orifices. Further disclosed are methods for forming a thin cast metal plate or sheet where the thickness of the cast part is in a range from 0.005 inches to 0.2 inches, and the surface area of the cast part is in a range from 16 square inches to 144 square inches.

  12. Metallic Fuel Casting Development and Parameter Optimization Simulations

    SciTech Connect (OSTI)

    R.S. Fielding; J. Crapps; C. Unal; J.R. Kennedy

    2013-03-01

    One of the advantages of metallic fuel is the abilility to cast the fuel slugs to near net shape with little additional processing. However, the high aspect ratio of the fuel is not ideal for casting. EBR-II fuel was cast using counter gravity injection casting (CGIC) but, concerns have been raised concerning the feasibility of this process for americium bearing alloys. The Fuel Cycle Research and Development program has begun developing gravity casting techniques suitable for fuel production. Compared to CGIC gravity casting does not require a large heel that then is recycled, does not require application of a vacuum during melting, and is conducive to re-usable molds. Development has included fabrication of two separate benchscale, approximately 300 grams, systems. To shorten development time computer simulations have been used to ensure mold and crucible designs are feasible and to identify which fluid properties most affect casting behavior and therefore require more characterization.

  13. Filler metal alloy for welding cast nickel aluminide alloys

    DOE Patents [OSTI]

    Santella, M.L.; Sikka, V.K.

    1998-03-10

    A filler metal alloy used as a filler for welding cast nickel aluminide alloys contains from about 15 to about 17 wt. % chromium, from about 4 to about 5 wt. % aluminum, equal to or less than about 1.5 wt. % molybdenum, from about 1 to about 4.5 wt. % zirconium, equal to or less than about 0.01 wt. % yttrium, equal to or less than about 0.01 wt. % boron and the balance nickel. The filler metal alloy is made by melting and casting techniques such as are melting the components of the filler metal alloy and cast in copper chill molds. 3 figs.

  14. Mold with improved core for metal casting operation

    DOE Patents [OSTI]

    Gritzner, Verne B.; Hackett, Donald W.

    1977-01-01

    The present invention is directed to a mold containing an improved core for use in casting hollow, metallic articles. The core is formed of, or covered with, a layer of cellular material which possesses sufficient strength to maintain its structural integrity during casting, but will crush to alleviate the internal stresses that build up if the normal contraction during solidification and cooling is restricted.

  15. Metal and Glass Manufacturers Reduce Costs by Increasing Energy...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Metal and Glass Manufacturers Reduce Costs by Increasing Energy Efficiency in Process Heating Systems Metal and Glass Manufacturers Reduce Costs by Increasing Energy Efficiency in...

  16. ITP Metal Casting: Corrosion Testing Practices – High Alloy Corrosion Program

    Broader source: Energy.gov [DOE]

    This subtask under ESMARRT Material properties for Casting or Tooling Design Improvement supports the industry objectives of Designings for New Markets and Improved Metal Casting Processes.

  17. Fluxing agent for metal cast joining

    DOE Patents [OSTI]

    Gunkel, Ronald W.; Podey, Larry L.; Meyer, Thomas N.

    2002-11-05

    A method of joining an aluminum cast member to an aluminum component. The method includes the steps of coating a surface of an aluminum component with flux comprising cesium fluoride, placing the flux coated component in a mold, filling the mold with molten aluminum alloy, and allowing the molten aluminum alloy to solidify thereby joining a cast member to the aluminum component. The flux preferably includes aluminum fluoride and alumina. A particularly preferred flux includes about 60 wt. % CsF, about 30 wt. % AlF.sub.3, and about 10 wt. % Al.sub.2 O.sub.3.

  18. Electromagnetic augmentation for casting of thin metal sheets

    DOE Patents [OSTI]

    Hull, J.R.

    1987-10-28

    Thin metal sheets are cast by magnetically levitating molten metal deposited in a model within a ferromagnetic yoke and between AC conducting coils and linearly displacing the magnetically levitated liquid metal while it is being cooled by the water-cooled walls of the mold to form a solid metal sheet. A conducting shield is electrically coupled to the molten metal sheet to provide a return path for eddy currents induced in the metal sheet by the current in the AC conducting coils. In another embodiment, a DC conducting coil is coupled to the metal sheet for providing a direct current therein which interacts with the magnetic field to levitate the moving metal sheet. Levitation of the metal sheet in both molten and solid forms reduces its contact pressure with the mold walls while maintaining sufficient engagement therebetween to permit efficient conductive cooling by the mold through which a coolant fluid may be circulated. 8 figs.

  19. Fabrication of metallic glass structures

    DOE Patents [OSTI]

    Cline, C.F.

    1983-10-20

    Amorphous metal powders or ribbons are fabricated into solid shapes of appreciable thickness by the application of compaction energy. The temperature regime wherein the amorphous metal deforms by viscous flow is measured. The metal powders or ribbons are compacted within the temperature regime.

  20. Bioactive glass coatings for orthopedic metallic implants

    SciTech Connect (OSTI)

    Lopez-Esteban, Sonia; Saiz, Eduardo; Fujino, Sigheru; Oku, Takeo; Suganuma, Katsuaki; Tomsia, Antoni P.

    2003-06-30

    The objective of this work is to develop bioactive glass coatings for metallic orthopedic implants. A new family of glasses in the SiO2-Na2O-K2O-CaO-MgO-P2O5 system has been synthesized and characterized. The glass properties (thermal expansion, softening and transformation temperatures, density and hardness) are in line with the predictions of established empirical models. The optimized firing conditions to fabricate coatings on Ti-based and Co-Cr alloys have been determined and related to the glass properties and the interfacial reactions. Excellent adhesion to alloys has been achieved through the formation of 100-200 nm thick interfacial layers (Ti5Si3 on Ti-based alloys and CrOx on Co-Cr). Finally, glass coatings, approximately 100 mu m thick, have been fabricated onto commercial Ti alloy-based dental implants.

  1. Structural rejuvenation in bulk metallic glasses

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Tong, Yang; Iwashita, T.; Dmowski, Wojciech; Bei, Hongbin; Yokoyama, Y.; Egami, Takeshi

    2015-01-05

    Using high-energy X-ray diffraction we study structural changes in bulk metallic glasses after uniaxial compressive homogeneous deformation at temperatures slightly below the glass transition. We observe that deformation results in structural disordering corresponding to an increase in the fictive, or effective, temperature. However, the structural disordering saturates after yielding. Lastly, examination of the experimental structure and molecular dynamics simulation suggests that local changes in the atomic connectivity network are the main driving force of the structural rejuvenation.

  2. CASTING SLIPS FOR FABRICATION OF REFRACTORY METAL WARE

    DOE Patents [OSTI]

    Stoddard, S.D.; Nuckolls, D.E.; Cowan, R.E.

    1962-09-01

    A composition is given for slip casting tungsten metal. The composition consists essentially of tungsten metal with an average particle size of 0.9 micron, an organic vehicle such as methyl chloroform, o-xylene, n-butyl acetate, isobutyl acetate, and 1, 1, 2, 2-tetrachlorethane, and a suspending agent such as ethyl cellulose, with the approximate ratio of said vehicle to the tungsten metal being 12 cc of a solution containing from 5 to about 20 grams of said ethyl cellulose in 400 cc of said organic vehicle per 100 grams of metal. (AEC)

  3. Implementation of Metal Casting Best Practices

    SciTech Connect (OSTI)

    Eppich, Robert; Naranjo, Robert D.

    2007-01-01

    The project examined cases where metal casters had implemented ITP research results and the benefits they received due to that implementation. In cases where casters had not implemented those results, the project examined the factors responsible for that lack of implementation. The project also informed metal casters of the free tools and service offered by the ITP Technology Delivery subprogram.

  4. Filler metal alloy for welding cast nickel aluminide alloys

    DOE Patents [OSTI]

    Santella, Michael L.; Sikka, Vinod K.

    1998-01-01

    A filler metal alloy used as a filler for welding east nickel aluminide alloys contains from about 15 to about 17 wt. % chromium, from about 4 to about 5 wt. % aluminum, equal to or less than about 1.5 wt. % molybdenum, from about 1 to about 4.5 wt. % zirconium, equal to or less than about 0.01 wt. % yttrium, equal to or less than about 0.01 wt. % boron and the balance nickel. The filler metal alloy is made by melting and casting techniques such as are melting the components of the filler metal alloy and east in copper chill molds.

  5. Cooling system for continuous metal casting machines

    DOE Patents [OSTI]

    Draper, R.; Sumpman, W.C.; Baker, R.J.; Williams, R.S.

    1988-06-07

    A continuous metal caster cooling system is provided in which water is supplied in jets from a large number of small nozzles against the inner surface of rim at a temperature and with sufficient pressure that the velocity of the jets is sufficiently high that the mode of heat transfer is substantially by forced convection, the liquid being returned from the cooling chambers through return pipes distributed interstitially among the nozzles. 9 figs.

  6. Cooling system for continuous metal casting machines

    DOE Patents [OSTI]

    Draper, Robert; Sumpman, Wayne C.; Baker, Robert J.; Williams, Robert S.

    1988-01-01

    A continuous metal caster cooling system is provided in which water is supplied in jets from a large number of small nozzles 19 against the inner surface of rim 13 at a temperature and with sufficient pressure that the velocity of the jets is sufficiently high that the mode of heat transfer is substantially by forced convection, the liquid being returned from the cooling chambers 30 through return pipes 25 distributed interstitially among the nozzles.

  7. Electromagnetic augmentation for casting of thin metal sheets

    DOE Patents [OSTI]

    Hull, John R.

    1989-01-01

    Thin metal sheets are cast by magnetically levitating molten metal deposited in a mold within a ferromagnetic yoke and between AC conducting coils and linearly displacing the magnetically levitated liquid metal while it is being cooled by the water-cooled walls of the mold to form a solid metal sheet. A conducting shield is electrically coupled to the molten metal sheet to provide a return path for eddy currents induced in the metal sheet by the current in the AC conducting coils. In another embodiment, a DC conducting coil is coupled to the metal sheet for providing a direct current therein which interacts with the magnetic field to levitate the moving metal sheet. Levitation of the metal sheet in both molten and solid forms reduces its contact pressure with the mold walls while maintaining sufficient engagement therebetween to permit efficient conductive cooling by the mold through which a coolant fluid may be circulated. The magnetic fields associated with the currents in the aforementioned coils levitate the molten metal sheet while the mold provides for its lateral and vertical confinement. A leader sheet having electromagnetic characteristics similar to those of the molten metal sheet is used to start the casing process and precedes the molten metal sheet through the yoke/coil arrangement and mold and forms a continuous sheet therewith. The yoke/coil arrangement may be either U-shaped with a single racetrack coil or may be rectangular with a pair of spaced, facing bedstead coils.

  8. Method for forming glass-to-metal seals

    DOE Patents [OSTI]

    Kramer, D.P.; Massey, R.T.

    1985-08-26

    Disclosed is a method for forming a glass-to-metal seal in which the glass has a higher melting point than the metal. The molten glass is vacuum injection molded onto the metal, thus melting a very thin layer of the surface of the metal long enough to form a seal, but not long enough to cause a distortion in the shape of the metal component.

  9. Method for forming glass-to-metal seals

    DOE Patents [OSTI]

    Kramer, Daniel P.; Massey, Richard T.

    1986-01-01

    A method for forming a glass-to-metal seal in which the glass has a higher melting point than the metal. The molten glass is vacuum injection molded onto the metal, thus melting a very thin layer of the surface of the metal long enough to form a seal, but not long enough to cause a distortion in the shape of the metal component.

  10. A Vision for the U.S. Metal Casting Industry - 2002 and Beyond

    SciTech Connect (OSTI)

    None

    2002-05-01

    Chief executive officers and presidents from the foundry, die casting, and foundry supply industries developed the A Vision for the U.S. Metal Casting Industry - 2002 and Beyond document.

  11. Melt-cast organic glasses as high-efficiency fast neutron scintillators

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Carlson, Joseph S.; Feng, Patrick L.

    2016-06-24

    In this work we report a new class of organic-based scintillators that combines several of the desirable attributes of existing crystalline, liquid, and plastic organic scintillators. The prepared materials may be isolated in single crystalline form or melt-cast to produce highly transparent glasses that have been shown to provide high light yields of up to 16,000 photons/MeVee, as evaluated against EJ-200 plastic scintillators and solution-grown trans-stilbene crystals. The prepared organic glasses exhibit neutron/gamma pulse-shape discrimination (PSD) and are compatible with wavelength shifters to reduce optical self-absorption effects that are intrinsic to pure materials such as crystalline organics. In conclusion, themore » combination of high scintillation efficiency, PSD capabilities, and facile scale-up via melt-casting distinguishes this new class of amorphous materials from existing alternatives.« less

  12. Energy and Environmental Profile of the U.S. Metal Casting Industry

    SciTech Connect (OSTI)

    Margolis, Nancy; Jamison, Keith; Dove, Louise

    1999-09-01

    This detailed report benchmarks the energy and environmental characteristics of the key technologies used in the major processes of the metal casting industry.

  13. ITP Metal Casting: Theoretical/Best Practice Energy Use in Metalcastin...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    TheoreticalBest Practice Energy Use in Metalcasting Operations ITP Metal Casting: TheoreticalBest Practice Energy Use in Metalcasting Operations doebestpractice052804.pdf (1.64 ...

  14. Electromagnetic confinement for vertical casting or containing molten metal

    DOE Patents [OSTI]

    Lari, Robert J.; Praeg, Walter F.; Turner, Larry R.

    1991-01-01

    An apparatus and method adapted to confine a molten metal to a region by means of an alternating electromagnetic field. As adapted for use in the present invention, the alternating electromagnetic field given by B.sub.y =(2.mu..sub.o .rho.gy).sup.1/2 (where B.sub.y is the vertical component of the magnetic field generated by the magnet at the boundary of the region; y is the distance measured downward form the top of the region, .rho. is the metal density, g is the acceleration of gravity and .mu..sub.o is the permeability of free space) induces eddy currents in the molten metal which interact with the magnetic field to retain the molten metal with a vertical boudnary. As applied to an apparatus for the continuous casting of metal sheets or rods, metal in liquid form can be continuously introduced into the region defined by the magnetic field, solidified and conveyed away from the magnetic field in solid form in a continuous process.

  15. Sink property of metallic glass free surfaces

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Shao, Lin; Fu, Engang; Price, Lloyd; Chen, Di; Chen, Tianyi; Wang, Yongqiang; Xie, Guoqiang; Lucca, Don A.

    2015-03-16

    When heated to a temperature close to glass transition temperature, metallic glasses (MGs) begin to crystallize. Under deformation or particle irradiation, crystallization occurs at even lower temperatures. Hence, phase instability represents an application limit for MGs. Here, we report that MG membranes of a few nanometers thickness exhibit properties different from their bulk MG counterparts. The study uses in situ transmission electron microscopy with concurrent heavy ion irradiation and annealing to observe crystallization behaviors of MGs. For relatively thick membranes, ion irradiations introduce excessive free volumes and thus induce nanocrystal formation at a temperature linearly decreasing with increasing ion fluences.moreFor ultra-thin membranes, however, the critical temperature to initiate crystallization is about 100 K higher than the bulk glass transition temperature. Molecular dynamics simulations indicate that this effect is due to the sink property of the surfaces which can effectively remove excessive free volumes. These findings suggest that nanostructured MGs having a higher surface to volume ratio are expected to have higher crystallization resistance, which could pave new paths for materials applications in harsh environments requiring higher stabilities.less

  16. Sink property of metallic glass free surfaces

    SciTech Connect (OSTI)

    Shao, Lin; Fu, Engang; Price, Lloyd; Chen, Di; Chen, Tianyi; Wang, Yongqiang; Xie, Guoqiang; Lucca, Don A.

    2015-03-16

    When heated to a temperature close to glass transition temperature, metallic glasses (MGs) begin to crystallize. Under deformation or particle irradiation, crystallization occurs at even lower temperatures. Hence, phase instability represents an application limit for MGs. Here, we report that MG membranes of a few nanometers thickness exhibit properties different from their bulk MG counterparts. The study uses in situ transmission electron microscopy with concurrent heavy ion irradiation and annealing to observe crystallization behaviors of MGs. For relatively thick membranes, ion irradiations introduce excessive free volumes and thus induce nanocrystal formation at a temperature linearly decreasing with increasing ion fluences. For ultra-thin membranes, however, the critical temperature to initiate crystallization is about 100 K higher than the bulk glass transition temperature. Molecular dynamics simulations indicate that this effect is due to the sink property of the surfaces which can effectively remove excessive free volumes. These findings suggest that nanostructured MGs having a higher surface to volume ratio are expected to have higher crystallization resistance, which could pave new paths for materials applications in harsh environments requiring higher stabilities.

  17. Sink property of metallic glass free surfaces

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Shao, Lin; Fu, Engang; Price, Lloyd; Chen, Di; Chen, Tianyi; Wang, Yongqiang; Xie, Guoqiang; Lucca, Don A.

    2015-03-16

    When heated to a temperature close to glass transition temperature, metallic glasses (MGs) begin to crystallize. Under deformation or particle irradiation, crystallization occurs at even lower temperatures. Hence, phase instability represents an application limit for MGs. Here, we report that MG membranes of a few nanometers thickness exhibit properties different from their bulk MG counterparts. The study uses in situ transmission electron microscopy with concurrent heavy ion irradiation and annealing to observe crystallization behaviors of MGs. For relatively thick membranes, ion irradiations introduce excessive free volumes and thus induce nanocrystal formation at a temperature linearly decreasing with increasing ion fluences.more » For ultra-thin membranes, however, the critical temperature to initiate crystallization is about 100 K higher than the bulk glass transition temperature. Molecular dynamics simulations indicate that this effect is due to the sink property of the surfaces which can effectively remove excessive free volumes. These findings suggest that nanostructured MGs having a higher surface to volume ratio are expected to have higher crystallization resistance, which could pave new paths for materials applications in harsh environments requiring higher stabilities.« less

  18. Economic manufacturing of bulk metallic glass compositions by microalloying

    DOE Patents [OSTI]

    Liu, Chain T.

    2003-05-13

    A method of making a bulk metallic glass composition includes the steps of:a. providing a starting material suitable for making a bulk metallic glass composition, for example, BAM-11; b. adding at least one impurity-mitigating dopant, for example, Pb, Si, B, Sn, P, to the starting material to form a doped starting material; and c. converting the doped starting material to a bulk metallic glass composition so that the impurity-mitigating dopant reacts with impurities in the starting material to neutralize deleterious effects of the impurities on the formation of the bulk metallic glass composition.

  19. Cast Metals Coalition Technology Transfer and Program Management Final Report

    SciTech Connect (OSTI)

    Gwyn, Mike

    2009-03-31

    The Cast Metals Coalition (CMC) partnership program was funded to ensure that the results of the Department of Energy's (DOE) metalcasting research and development (R&D) projects are successfully deployed into industry. Specifically, the CMC program coordinated the transfer and deployment of energy saving technologies and process improvements developed under separately funded DOE programs and projects into industry. The transition of these technologies and process improvements is a critical step in the path to realizing actual energy savings. At full deployment, DOE funded metalcasting R&D results are projected to save 55% of the energy used by the industry in 1998. This closely aligns with DOE's current goal of driving a 25% reduction in industrial energy intensity by 2017. In addition to benefiting DOE, these energy savings provide metalcasters with a significant economic advantage. Deployment of already completed R&D project results and those still underway is estimated to return over 500% of the original DOE and industry investment. Energy savings estimates through December 2008 from the Energy-Saving Melting and Revert Reduction Technology (E-SMARRT) portfolio of projects alone are 12 x 1012 BTUs, with a projection of over 50 x 1012 BTUs ten years after program completion. These energy savings and process improvements have been made possible through the unique collaborative structure of the CMC partnership. The CMC team consists of DOE's Office of Industrial Technology, the three leading metalcasting technical societies in the U.S: the American Foundry Society; the North American Die Casting Association; and the Steel Founders Society of America; and the Advanced Technology Institute (ATI), a recognized leader in distributed technology management. CMC provides collaborative leadership to a complex industry composed of approximately 2,100 companies, 80% of which employ less than 100 people, and only 4% of which employ more than 250 people. Without collaboration

  20. National Metal Casting Research Institute final report. Volume 2, Die casting research

    SciTech Connect (OSTI)

    Jensen, D.

    1994-06-01

    Four subprojects were completed: development and evaluation of die coatings, accelerated die life characterization of die materials, evaluation of fluid flow and solidification modeling programs, selection and characterization of Al-based die casting alloys, and influence of die materials and coatings on die casting quality.

  1. Ductility and work hardening in nano-sized metallic glasses

    SciTech Connect (OSTI)

    Chen, D. Z.; Gu, X. W.; An, Q.; Goddard, W. A.; Greer, J. R.

    2015-02-09

    In-situ nano-tensile experiments on 70 nm-diameter free-standing electroplated NiP metallic glass nanostructures reveal tensile true strains of ∼18%, an amount comparable to compositionally identical 100 nm-diameter focused ion beam samples and ∼3 times greater than 100 nm-diameter electroplated samples. Simultaneous in-situ observations and stress-strain data during post-elastic deformation reveal necking and work hardening, features uncharacteristic for metallic glasses. The evolution of free volume within molecular dynamics-simulated samples suggests a free surface-mediated relaxation mechanism in nano-sized metallic glasses.

  2. Process for direct conversion of reactive metals to glass

    DOE Patents [OSTI]

    Rajan, John B.; Kumar, Romesh; Vissers, Donald R.

    1990-01-01

    Radioactive alkali metal is introduced into a cyclone reactor in droplet form by an aspirating gas. In the cyclone metal reactor the aspirated alkali metal is contacted with silica powder introduced in an air stream to form in one step a glass. The sides of the cyclone reactor are preheated to ensure that the initial glass formed coats the side of the reactor forming a protective coating against the reactants which are maintained in excess of 1000.degree. C. to ensure the formation of glass in a single step.

  3. Casting Apparatus Including A Gas Driven Molten Metal Injector And Method

    DOE Patents [OSTI]

    Meyer, Thomas N.

    2004-06-01

    The casting apparatus (50) includes a holding vessel (10) for containing a supply of molten metal (12) and a casting mold (52) located above the holding vessel (10) and having a casting cavity (54). A molten metal injector (14) extends into the holding vessel (10) and is at least partially immersed in the molten metal (12) in the holding vessel (10). The molten metal injector (14) is in fluid communication with the casting cavity (54). The molten metal injector (14) has an injector body (16) defining an inlet opening (24) for receiving molten metal into the injector body (16). A gas pressurization source (38) is in fluid communication with the injector body (16) for cyclically pressurizing the injector body (16) and inducing molten metal to flow from the injector body (16) to the casting cavity (54). An inlet valve (42) is located in the inlet opening (24) in the injector body (16) for filling molten metal into the injector body (16). The inlet valve (42) is configured to prevent outflow of molten metal from the injector body (16) during pressurization and permit inflow of molten metal into the injector body (16) after pressurization. The inlet valve (42) has an inlet valve actuator (44) located above the surface of the supply of molten metal (12) and is operatively connected to the inlet valve (42) for operating the inlet valve (42) between open and closed positions.

  4. Ammonia-treated phosphate glasses useful for sealing to metals

    DOE Patents [OSTI]

    Brow, R.K.; Day, D.E.

    1991-09-03

    A method of improving surface-dependent properties of phosphate glass such as durability and wear resistance without significantly affecting its thermal expansion coefficient is provided which comprises annealing the glass in a dry ammonia atmosphere at temperatures approximating the transition temperature of the glass. The ammonia annealing treatment of the present invention is carried out for a time sufficient to allow incorporation of a thin layer of nitrogen into the surface of the phosphate glass, and the treatment improves the durability of the glass without the reduction in the thermal expansion coefficient that has restricted the effectiveness of prior ammonia treatments. The improved phosphate glass resulting from this method is superior in wear resistance, yet maintains suitable thermal expansion properties so that it may be used effectively in a variety of applications requiring hermetic glass-metal seals.

  5. Structure and constitution of glass and steel compound in glass-metal composite

    SciTech Connect (OSTI)

    Lyubimova, Olga N.; Morkovin, Andrey V.; Dryuk, Sergey A.; Nikiforov, Pavel A.

    2014-11-14

    The research using methods of optical and scanning electronic microscopy was conducted and it discovered common factors on structures and diffusing zone forming after welding glass C49-1 and steel Ct3sp in technological process of creating new glass-metal composite. Different technological modes of steel surface preliminary oxidation welded with and without glass were investigated. The time of welding was varied from minimum encountering time to the time of stabilizing width of diffusion zone.

  6. Metallic glass composition. [That does not embrittle upon annealing

    DOE Patents [OSTI]

    Kroeger, D.M.; Koch, C.C.

    1984-09-14

    This patent pertains to a metallic glass alloy that is either iron-based or nickel-based or based on a mixture of iron and nickel, containing lesser amounts of elements selected from the group boron, silicon, carbon and phosphorous to which is added an amount of a ductility-enhancing element selected from the group cerium, lanthanum, praseodymium and neodymium sufficient to increase ductility of the metallic glass upon annealing.

  7. Ceramic-glass-metal seal by microwave heating

    DOE Patents [OSTI]

    Meek, Thomas T.; Blake, Rodger D.

    1985-01-01

    A method for producing a ceramic-glass-metal seal by microwaving mixes a slurry of glass sealing material and coupling agent and applies same to ceramic and metal workpieces. The slurry and workpieces are then insulated and microwaved at a power, time and frequency sufficient to cause a liquid phase reaction in the slurry. The reaction of the glass sealing material forms a chemically different seal than that which would be formed by conventional heating because it is formed by diffusion rather than by wetting of the reactants.

  8. Ceramic-glass-metal seal by microwave heating

    DOE Patents [OSTI]

    Meek, T.T.; Blake, R.D.

    1983-10-04

    A method for producing a ceramic-glass-metal seal by microwaving, mixes a slurry of glass sealing material and coupling agent and applies same to ceramic and metal workpieces. The slurry and workpieces are then insulated and microwaved at a power, time and frequency sufficient to cause a liquid-phase reaction in the slurry. The reaction of the glass sealing material forms a chemically different seal than that which would be formed by conventional heating because it is formed by diffusion rather than by wetting of the reactants.

  9. Glass ceramic-to-metal seals

    DOE Patents [OSTI]

    Not Available

    1982-04-19

    A glass ceramic composition prepared by subjecting a glass composition comprising, by weight, 65 to 80% SiO/sub 2/, 8 to 16% Li/sub 2/O, 2 to 8% Al/sub 2/O/sub 3/, 1 to 8% K/sub 2/O, 1 to 5% P/sub 2/O/sub 5/ and 1.5 to 7% B/sub 2/O/sub 3/, to the following processing steps of heating the glass composition to a temperature sufficient to crystallize lithium metasilicate therein, holding the glass composition at a temperature and for a time period sufficient to dissolve the lithium metasilicate therein thereby creating cristobalite nucleii, cooling the glass composition and maintaining the composition at a temperature and for a time period sufficient to recrystallize lithium metasilicate therein, and thermally treating the glass composition at a temperature and for a time period sufficient to caus growth of cristobalite and further crystallization of lithium metasilicate producing a glass ceramic composition having a specific thermal expansion coefficient and products containing said composition.

  10. Energy Saving Melting and Revert Reduction Technology (Energy-SMARRT): Light Metals Permanent Mold Casting

    SciTech Connect (OSTI)

    Fasoyinu, Yemi

    2014-03-31

    Current vehicles use mostly ferrous components for structural applications. It is possible to reduce the weight of the vehicle by substituting these parts with those made from light metals such as aluminum and magnesium. Many alloys and manufacturing processes can be used to produce these light metal components and casting is known to be most economical. One of the high integrity casting processes is permanent mold casting which is the focus of this research report. Many aluminum alloy castings used in automotive applications are produced by the sand casting process. Also, aluminum-silicon (Al-Si) alloys are the most widely used alloy systems for automotive applications. It is possible that by using high strength aluminum alloys based on an aluminum-copper (Al-Cu) system and permanent mold casting, the performance of these components can be enhanced significantly. This will also help to further reduce the weight. However, many technological obstacles need to be overcome before using these alloys in automotive applications in an economical way. There is very limited information in the open literature on gravity and low-pressure permanent mold casting of high strength aluminum alloys. This report summarizes the results and issues encountered during the casting trials of high strength aluminum alloy 206.0 (Al-Cu alloy) and moderate strength alloy 535.0 (Al-Mg alloy). Five engineering components were cast by gravity tilt-pour or low pressure permanent mold casting processes at CanmetMATERIALS (CMAT) and two production foundries. The results of the casting trials show that high integrity engineering components can be produced successfully from both alloys if specific processing parameters are used. It was shown that a combination of melt processing and mold temperature is necessary for the elimination of hot tears in both alloys.

  11. ITP Metal Casting: Energy Use in Selected Metalcasting Facilities- 2003

    Broader source: Energy.gov [DOE]

    This report represents an energy benchmark for various metalcasting processes. It describes process flows and energy use by fuel type and processes for selected casting operations. It also provides recommendations for improving energy efficiency in casti

  12. High strength glass-ceramic to metal seals

    SciTech Connect (OSTI)

    Haws, L D; Kramer, D P; Moddeman, W E; Wooten, G W

    1986-12-01

    In many applications, ceramics are joined to other materials, especially metals. In such cases, interfacial strength is as important as the strength of each constituent material. Examples are presented for tailoring materials and processes to optimize the glass-ceramic-to-metal seal. Means for detecting defects, nondestructively, are also identified.

  13. Casting Apparatus Including A Gas Driven Molten Metal Injector And Method

    DOE Patents [OSTI]

    Trudel, David R.; Meyer, Thomas N.; Kinosz, Michael J.; Arnaud, Guy; Bigler, Nicolas

    2003-06-17

    The filtering molten metal injector system includes a holder furnace, a casting mold supported above the holder furnace, and at least one molten metal injector supported from a bottom side of the casting mold. The holder furnace contains a supply of molten metal. The mold defines a mold cavity for receiving the molten metal from the holder furnace. The molten metal injector projects into the holder furnace. The molten metal injector includes a cylinder defining a piston cavity housing a reciprocating piston for pumping the molten metal upward from the holder furnace to the mold cavity. The cylinder and piston are at least partially submerged in the molten metal when the holder furnace contains the molten metal. The cylinder or the piston includes a molten metal intake for receiving the molten metal into the piston cavity when the holder furnace contains molten metal. A conduit connects the piston cavity to the mold cavity. A molten metal filter is located in the conduit for filtering the molten metal passing through the conduit during the reciprocating movement of the piston. The molten metal intake may be a valve connected to the cylinder, a gap formed between the piston and an open end of the cylinder, an aperture defined in the sidewall of the cylinder, or a ball check valve incorporated into the piston. A second molten metal filter preferably covers the molten metal intake to the injector.

  14. ''Heat Transfer at the Mold-Metal Interface in Permanent Mold Casting of Aluminum Alloys'' Final Project Report

    SciTech Connect (OSTI)

    Professor R. D. Pehlke, Principal Investigator, Dr. John M. Cookson, Dr. Shouwei Hao, Dr. Prasad Krishna, Kevin T. Bilkey

    2001-12-14

    This project on heat transfer coefficients in metal permanent mold casting has been conducted in three areas. They are the theoretical study at the University of Michigan, the experimental investigation of squeeze casting at CMI-Tech Center (Now Hayes-Lemmerz Technical Center) and the experimental investigation of low pressure permanent mold casting at Amcast Automotive.

  15. Synthesis of new amorphous metallic spin glasses

    DOE Patents [OSTI]

    Haushalter, R.C.

    1985-02-11

    Disclosed are: amorphous metallic precipitates having the formula (M/sub 1/)/sub a/(M/sub 2/)/sub b/ wherein M/sub 1/ is at least one transition metal, M/sub 2/ is at least one main group metal and the integers ''a'' and ''b'' provide stoichiometric balance; the precipitates having a degree of local order characteristic of chemical compounds from the precipitation process and useful electrical and mechanical properties.

  16. Synthesis of new amorphous metallic spin glasses

    DOE Patents [OSTI]

    Haushalter, Robert C.

    1988-01-01

    Amorphous metallic precipitates having the formula (M.sub.1).sub.a (M.sub.2).sub.b wherein M.sub.1 is at least one transition metal, M.sub.2 is at least one main group metal and the integers "a" and "b" provide stoichiometric balance; the precipitates having a degree of local order characteristic of chemical compounds from the precipitation process and useful electrical and mechanical properties.

  17. Synthesis of new amorphous metallic spin glasses

    DOE Patents [OSTI]

    Haushalter, Robert C.

    1986-01-01

    Amorphous metallic precipitates having the formula (M.sub.1).sub.a (M.sub.2).sub.b wherein M.sub.1 is at least one transition metal, M.sub.2 is at least one main group metal and the integers "a" and "b" provide stoichiometric balance; the precipitates having a degree of local order characteristic of chemical compounds from the precipitation process and useful electrical and mechanical properties.

  18. Soldering of Thin Film-Metallized Glass Substrates

    SciTech Connect (OSTI)

    Hosking, F.M.; Hernandez, C.L.; Glass, S.J.

    1999-03-31

    The ability to produce reliable electrical and structural interconnections between glass and metals by soldering was investigated. Soldering generally requires premetallization of the glass. As a solderable surface finish over soda-lime-silicate glass, two thin films coatings, Cr-Pd-Au and NiCr-Sn, were evaluated. Solder nettability and joint strengths were determined. Test samples were processed with Sn60-Pb40 solder alloy at a reflow temperature of 210 C. Glass-to-cold rolled steel single lap samples yielded an average shear strength of 12 MPa. Solder fill was good. Control of the Au thickness was critical in minimizing the formation of AuSn{sub 4} intermetallic in the joint, with a resulting joint shear strength of 15 MPa. Similar glass-to-glass specimens with the Cr-Pd-Au finish failed at 16.5 MPa. The NiCr-Sn thin film gave even higher shear strengths of 20-22.5 MPa, with failures primarily in the glass.

  19. Ammonia-treated phosphate glasses useful for sealing to metals metals

    DOE Patents [OSTI]

    Brow, Richard K.; Day, Delbert E.

    1991-01-01

    A method of improving surface-dependent properties of phosphate glass such as durability and wear resistance without significantly affecting its thermal expansion coefficient is provided which comprises annealing the glass in a dry ammonia atmosphere at temperatures approximating the transition temperature of the glass. The ammonia annealing treatment of the present invention is carried out for a time sufficient to allow incorporation of a thin layer of nitrogen into the surface of the phosphate glass, and the treatment improves the durability of the glass without the reduction in the thermal expansion coefficient that has restricted the effectiveness of prior ammonia treatments. The improved phosphate glass resulting from this method is superior in wear resistance, yet maintains suitable thermal expansion properties so that it may be used effectively in a variety of applications requiring hermetic glass-metal seals.

  20. Metallic glass could make your next cell phone harder to break

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Metallic glass could make your next cell phone harder to break Alumni Link: Opportunities, News and Resources for Former Employees Latest Issue:September 2015 all issues All Issues » submit Metallic glass could make your next cell phone harder to break Lab researcher works to rearrange the atoms in metals June 20, 2014 New insights to changing the atomic structure of metals New insights to changing the atomic structure of metals Contact Linda Anderman Email Metal and glass objects are all

  1. Engineering-Scale Development of Injection Casting Technology for Metal Fuel Cycle

    SciTech Connect (OSTI)

    Ogata, Takanari; Tsukada, Takeshi

    2007-07-01

    Engineering-scale injection casting tests were conducted in order to demonstrate the applicability of injection casting technology to the commercialized fast reactor fuel cycle. The uranium-zirconium alloy slugs produced in the tests were examined with reference to the practical slug specifications: average diameter tolerance {+-} 0.05 mm, local diameter tolerance {+-} 0.1 mm, density range 15.3 to 16.1 g/cm{sup 3}, zirconium content range 10 {+-} 1 wt% and total impurity (C, N, O, Si) <2000 ppm, which were provisionally determined. Most of the slugs satisfied these specifications, except for zirconium content. The impurity level was sufficiently low even though the residual and scrapped alloys were repeatedly recycled. The weight ratio of injected metal to charged metal was sufficiently high for a high process throughput. The injection casting technology will be applicable to the commercialized fuel cycle when the issue of zirconium content variation is resolved. (authors)

  2. Metallic Reinforcement of Direct Squeeze Die Casting Aluminum Alloys for Improved Strength and Fracture Resistance

    SciTech Connect (OSTI)

    D. Schwam: J.F. Wallace: Y. Zhu: J.W. Ki

    2004-10-01

    The utilization of aluminum die casting as enclosures where internal equipment is rotating inside of the casting and could fracture requires a strong housing to restrain the fractured parts. A typical example would be a supercharger. In case of a failure, unless adequately contained, fractured parts could injure people operating the equipment. A number of potential reinforcement materials were investigated. The initial work was conducted in sand molds to create experimental conditions that promote prolonged contact of the reinforcing material with molten aluminum. Bonding of Aluminum bronze, Cast iron, and Ni-resist inserts with various electroplated coatings and surface treatments were analyzed. Also toughening of A354 aluminum cast alloy by steel and stainless steel wire mesh with various conditions was analyzed. A practical approach to reinforcement of die cast aluminum components is to use a reinforcing steel preform. Such performs can be fabricated from steel wire mesh or perforated metal sheet by stamping or deep drawing. A hemispherical, dome shaped casting was selected in this investigation. A deep drawing die was used to fabricate the reinforcing performs. The tendency of aluminum cast enclosures to fracture could be significantly reduced by installing a wire mesh of austenitic stainless steel or a punched austenitic stainless steel sheet within the casting. The use of reinforcements made of austenitic stainless steel wire mesh or punched austenitic stainless steel sheet provided marked improvement in reducing the fragmentation of the casting. The best strengthening was obtained with austenitic stainless steel wire and with a punched stainless steel sheet without annealing this material. Somewhat lower results were obtained with the annealed punched stainless steel sheet. When the annealed 1020 steel wire mesh was used, the results were only slightly improved because of the lower mechanical properties of this unalloyed steel. The lowest results were

  3. Graded pitch electromagnetic pump for thin strip metal casting systems

    DOE Patents [OSTI]

    Kuznetsov, Stephen B.

    1986-01-01

    A metal strip casing system is provided with an electromagnetic pump which includes a pair of primary blocks having a graded pole pitch, polyphase ac winding and being arranged on opposite sides of a movable heat sink. A nozzle is provided for depositing liquid metal on the heat sink such that the resulting metal strip and heat sink combination is subjected to a longitudinal electromagnetic field which increases in wavelength in the direction of travel of the heat sink, thereby subjecting the metal and heat sink to a longitudinal force having a magnitude which increases in the direction of travel.

  4. Graded pitch electromagnetic pump for thin strip metal casting systems

    DOE Patents [OSTI]

    Kuznetsov, S.B.

    1986-04-01

    A metal strip casing system is provided with an electromagnetic pump which includes a pair of primary blocks having a graded pole pitch, polyphase ac winding and being arranged on opposite sides of a movable heat sink. A nozzle is provided for depositing liquid metal on the heat sink such that the resulting metal strip and heat sink combination is subjected to a longitudinal electromagnetic field which increases in wavelength in the direction of travel of the heat sink, thereby subjecting the metal and heat sink to a longitudinal force having a magnitude which increases in the direction of travel. 4 figs.

  5. Pulsed Neutron Measurments With A DT Neutron Generator for an Annular HEU Uranium Metal Casting

    SciTech Connect (OSTI)

    Mihalczo, John T [ORNL; Archer, Daniel E [ORNL; Wright, Michael C [ORNL; Mullens, James Allen [ORNL

    2007-09-01

    Measurements were performed with a single annular, stainless-steel-canned casting of uranium (93.17 wt% 235U) metal ( ~18 kg) to provide data to verify calculational methods for criticality safety. The measurements used a small portable DT generator with an embedded alpha detector to time and directionally tag the neutrons from the generator. The center of the time and directional tagged neutron beam was perpendicular to the axis of the casting. The radiation detectors were 1x1x6 in plastic scintillators encased in 0.635-cm-thick lead shields that were sensitive to neutrons above 1 MeV in energy. The detector lead shields were adjacent to the casting and the target spot of the generator was about 3.8 cm from the casting at the vertical center. The time distribution of the fission induced radiation was measured with respect to the source event by a fast (1GHz) processor. The measurements described in this paper also include time correlation measurements with a time tagged spontaneously fissioning 252Cf neutron source, both on the axis and on the surface of the casting. Measurements with both types of sources are compared. Measurements with the DT generator closely coupled with the HEU provide no more additional information than those with the Cf source closely coupled with the HEU and are complicated by the time and directionally tagged neutrons from the generator scattering between the walls and floor of the measurements room and the casting while still above detection thresholds.

  6. ‘Crystal Genes’ in Metallic Liquids and Glasses

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Sun, Yang; Zhang, Feng; Ye, Zhuo; Zhang, Yue; Fang, Xiaowei; Ding, Zejun; Wang, Cai-Zhuang; Mendelev, Mikhail I.; Ott, Ryan T.; Kramer, Matthew J.; et al

    2016-03-31

    We analyze the underlying structural order that transcends liquid, glass and crystalline states in metallic systems. A genetic algorithm is applied to search for the most common energetically favorable packing motifs in crystalline structures. These motifs are in turn compared to the observed packing motifs in the actual liquid or glass structures using a cluster-alignment method. Using this method, we have revealed the nature of the short-range order in Cu64Zr36 glasses. More importantly, we identified a novel structural order in the Al90Sm10 system. In addition, our approach brings new insight into understanding the origin of vitrification and describing mesoscopic order-disordermore » transitions in condensed matter systems.« less

  7. Melting, Solidification, Remelting, and Separation of Glass and Metal

    SciTech Connect (OSTI)

    M. A. Ebadian; R. C.Xin; Z. F. Dong

    1998-11-02

    Several kinds of radioactive waste exist in mixed forms at DOE sites throughout the United States. These Wastes consist of radionuclides and some usefil bme materials. One purpose of waste treatment technologies is to vitrify the radionuclides into durable, stable glass-like materials to reduce the size of the waste form requiring final disposal. The other purpose is to recycle and reuse most of the usefi.d base materials. Thus, improved techniques for the separation of molten metal and glass are essential. Several high temperature vitrification technologies have been developed for the treatment of a wide range of mixed waste types in both the low-level waste and transuranic (TRU) mixed waste categories currently in storage at DOE sites throughout the nation. These processes include the plasma hearth process, which is being developed by Science Applications International Corporation (SAIC), and the arc melter vitrification process, which is being developed at Idaho National Engineering Laboratory. The products of these processes are an oxide slag phase and a reduced metal phase. The metal phase has the potential to be recycled within the DOE Complex. Enhanced slag/metal separation methods are needed to suppoti these process. A separation method is also needed for the radioactively contaminated scrap metal recycling processe; in order to obtain highly refined recycled metals.

  8. On the correlation between microscopic structural heterogeneity and embrittlement behavior in metallic glasses

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Li, Weidong; Gao, Yanfei; Bei, Hongbin

    2015-10-05

    To establish a relationship between microstructure and mechanical properties, we systematically annealed a Zr-based bulk metallic glass (BMG) at 100 ~ 300°C and measured their mechanical and thermal properties. The as-cast BMG exhibits some ductility, while the increase of annealing temperature and time leads to the transition to a brittle behavior that can reach nearly-zero fracture energy. The differential scanning calorimetry did not find any significant changes in crystallization temperature and enthalpy, indicating that the materials still remained fully amorphous. Elastic constants measured by ultrasonic technique vary only slightly with respect to annealing temperature and time, which does obey themore » empirical relationship between Poisson’s ratio and fracture behavior. Nanoindentation pop-in tests were conducted, from which the pop-in strength mapping provides a “mechanical probe” of the microscopic structural heterogeneities in these metallic glasses. Based on stochastically statistic defect model, we found that the defect density decreases with increasing annealing temperature and annealing time and is exponentially related to the fracture energy. A ductile-versus-brittle behavior (DBB) model based on the structural heterogeneity is developed to identify the physical origins of the embrittlement behavior through the interactions between these defects and crack tip.« less

  9. On the correlation between microscopic structural heterogeneity and embrittlement behavior in metallic glasses

    SciTech Connect (OSTI)

    Li, Weidong; Gao, Yanfei; Bei, Hongbin

    2015-10-05

    To establish a relationship between microstructure and mechanical properties, we systematically annealed a Zr-based bulk metallic glass (BMG) at 100 ~ 300°C and measured their mechanical and thermal properties. The as-cast BMG exhibits some ductility, while the increase of annealing temperature and time leads to the transition to a brittle behavior that can reach nearly-zero fracture energy. The differential scanning calorimetry did not find any significant changes in crystallization temperature and enthalpy, indicating that the materials still remained fully amorphous. Elastic constants measured by ultrasonic technique vary only slightly with respect to annealing temperature and time, which does obey the empirical relationship between Poisson’s ratio and fracture behavior. Nanoindentation pop-in tests were conducted, from which the pop-in strength mapping provides a “mechanical probe” of the microscopic structural heterogeneities in these metallic glasses. Based on stochastically statistic defect model, we found that the defect density decreases with increasing annealing temperature and annealing time and is exponentially related to the fracture energy. A ductile-versus-brittle behavior (DBB) model based on the structural heterogeneity is developed to identify the physical origins of the embrittlement behavior through the interactions between these defects and crack tip.

  10. Method for determining molten metal pool level in twin-belt continuous casting machines

    DOE Patents [OSTI]

    Kaiser, Timothy D.; Daniel, Sabah S.; Dykes, Charles D.

    1989-03-21

    A method for determining level of molten metal in the input of a continuous metal casting machine having at least one endless, flexible, revolving casting belt with a surface which engages the molten metal to be cast and a reverse, cooled surface along which is directed high velocity liquid coolant includes the steps of predetermining the desired range of positions of the molten metal pool and positioning at least seven heat-sensing transducers in bearing contact with the moving reverse belt surface and spaced in upstream-downstream relationship relative to belt travel spanning the desired pool levels. A predetermined temperature threshold is set, somewhat above coolant temperature and the output signals of the transducer sensors are scanned regarding their output signals indicative of temperatures of the moving reverse belt surface. Position of the molten pool is determined using temperature interpolation between any successive pair of upstream-downstream spaced sensors, which follows confirmation that two succeeding downstream sensors are at temperature levels exceeding threshold temperature. The method accordingly provides high resolution for determining pool position, and verifies the determined position by utilizing full-strength signals from two succeeding downstream sensors. In addition, dual sensors are used at each position spanning the desired range of molten metal pool levels to provide redundancy, wherein only the higher temperature of each pair of sensors at a station is utilized.

  11. Ductile-to-brittle transition in spallation of metallic glasses

    SciTech Connect (OSTI)

    Huang, X.; Ling, Z.; Dai, L. H.

    2014-10-14

    In this paper, the spallation behavior of a binary metallic glass Cu{sub 50}Zr{sub 50} is investigated with molecular dynamics simulations. With increasing the impact velocity, micro-voids induced by tensile pulses become smaller and more concentrated. The phenomenon suggests a ductile-to-brittle transition during the spallation process. Further investigation indicates that the transition is controlled by the interaction between void nucleation and growth, which can be regarded as a competition between tension transformation zones (TTZs) and shear transformation zones (STZs) at atomic scale. As impact velocities become higher, the stress amplitude and temperature rise in the spall region increase and micro-structures of the material become more unstable. Therefore, TTZs are prone to activation in metallic glasses, leading to a brittle behavior during the spallation process.

  12. Application of Thread-Forming Fasteners in Net-Shaped Cast Holes in Lightweight Metal Alloys

    SciTech Connect (OSTI)

    Paxton, Dean M.; Dudder, Gregory J.; Charron, William A.; Cleaver, Todd H.

    2006-03-12

    The application of thread-forming fasteners (TFFs) in net-shaped die-cast holes of lightweight metal alloys is being explored by the United States Automotive Materials Partnership (USAMP) through work at the Pacific Northwest National Laboratory (PNNL). These fasteners are being applied in drilled hole applications for general assembly which have reduced costs, reduced investment, and improved warranty while delivering better joint properties. Successful development of this idea in light-weight alloy die-cast products will expand the use of lightweight materials due to the proven benefits already achieved in existing applications. A portion of this effort has included a parametric study of the relationship between joint strength and as-cast hole geometry in aluminum alloy A380 test specimens.

  13. Medium-range structure and glass forming ability in Zr–Cu–Al bulk metallic glasses

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Zhang, Pei; Maldonis, Jason J.; Besser, M. F.; Kramer, M. J.; Voyles, Paul M.

    2016-03-05

    Fluctuation electron microscopy experiments combined with hybrid reverse Monte Carlo modeling show a correlation between medium-range structure at the nanometer scale and glass forming ability in two Zr–Cu–Al bulk metallic glass (BMG) alloys. Both Zr50Cu35Al15 and Zr50Cu45Al5 exhibit two nanoscale structure types, one icosahedral and the other more crystal-like. In Zr50Cu35Al15, the poorer glass former, the crystal-like structure is more stable under annealing below the glass transition temperature, Tg, than in Zr50Cu45Al5. Variable resolution fluctuation microscopy of the MRO clusters show that in Zr50Cu35Al15 on sub-Tg annealing, the crystal-like clusters shrink even as they grow more ordered, while icosahedral-like clustersmore » grow. Furthermore, the results suggest that achieving better glass forming ability in this alloy system may depend more on destabilizing crystal-like structures than enhancing non-crystalline structures.« less

  14. Metallic glass alloys of Zr, Ti, Cu and Ni

    DOE Patents [OSTI]

    Lin, Xianghong; Peker, Atakan; Johnson, William L.

    1997-01-01

    At least quaternary alloys form metallic glass upon cooling below the glass transition temperature at a rate less than 10.sup.3 K/s. Such alloys comprise titanium from 19 to 41 atomic percent, an early transition metal (ETM) from 4 to 21 atomic percent and copper plus a late transition metal (LTM) from 49 to 64 atomic percent. The ETM comprises zirconium and/or hafnium. The LTM comprises cobalt and/or nickel. The composition is further constrained such that the product of the copper plus LTM times the atomic proportion of LTM relative to the copper is from 2 to 14. The atomic percentage of ETM is less than 10 when the atomic percentage of titanium is as high as 41, and may be as large as 21 when the atomic percentage of titanium is as low as 24. Furthermore, when the total of copper and LTM are low, the amount of LTM present must be further limited. Another group of glass forming alloys has the formula (ETM.sub.1-x Ti.sub.x).sub.a Cu.sub.b (Ni.sub.1-y Co.sub.y).sub.c wherein x is from 0.1 to 0.3, y.cndot.c is from 0 to 18, a is from 47 to 67, b is from 8 to 42, and c is from 4 to 37. This definition of the alloys has additional constraints on the range of copper content, b.

  15. 'Fore!' heads up, wide use of more flexible metallic glass coming your

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    way Flexible metallic glass coming your way 'Fore!' heads up, wide use of more flexible metallic glass coming your way Scientists are working toward even stronger and more elastic glass types which would fail in a ductile fashion instead of shattering. March 3, 2014 A piece of metallic glass that has been bent around onto itself with a 1mm radius and glued into place. It would spring back to a flat piece if the glue were removed. A piece of metallic glass that has been bent around onto

  16. Apparatus for injection casting metallic nuclear energy fuel rods

    DOE Patents [OSTI]

    Seidel, Bobby R.; Tracy, Donald B.; Griffiths, Vernon

    1991-01-01

    Molds for making metallic nuclear fuel rods are provided which present reduced risks to the environment by reducing radioactive waste. In one embodiment, the mold is consumable with the fuel rod, and in another embodiment, part of the mold can be re-used. Several molds can be arranged together in a cascaded manner, if desired, or several long cavities can be integrated in a monolithic multiple cavity re-usable mold.

  17. Glass-ceramic hermetic seals to high thermal expansion metals

    DOE Patents [OSTI]

    Kramer, D.P.; Massey, R.T.

    1987-04-28

    A process for forming glass-ceramic materials from an alkaline silica-lithia glass composition comprising 60-72 mole-% SiO/sub 2/, 18-27 mole-% Li/sub 2/O, 0-5 mole-% Al/sub 2/O/sub 3/, 0-6 mole-% K/sub 2/O, 0-3 mole-% B/sub 2/O/sub 3/, and 0.5-2.5 mole-% P/sub 2/O/sub 5/, which comprises heating said glass composition at a first temperature within the 950-1050/degree/C range for 5-60 minutes, and then at a devitrification temperature within the 700-900/degree/C range for about 5-300 minutes to obtain a glass-ceramic having a thermal expansion coefficient of up to 210 x 10/sup /minus/7///degree/C. These ceramics form strong, hermetic seals with high expansion metals such as stainless steel alloys. An intermediate nucleation heating step conducted at a temperature within the range of 675-750/degree/C for 10-120 minutes may be employed between the first stage and the devitrification stage. 1 fig., 2 tabs.

  18. Atomic and electronic structure of Ni-Nb metallic glasses

    SciTech Connect (OSTI)

    Yuan, C. C.; Yang, Y.-F. Xi, X. K.

    2013-12-07

    Solid state {sup 93}Nb nuclear magnetic resonance spectroscopy has been employed to investigate the atomic and electronic structures in Ni-Nb based metallic glass (MG) model system. {sup 93}Nb nuclear magnetic resonance (NMR) isotropic metallic shift of Ni{sub 60}Nb{sub 35}Sn{sub 5} has been found to be ∼100 ppm lower than that of Ni{sub 60}Nb{sub 35}Zr{sub 5} MG, which is correlated with their intrinsic fracture toughness. The evolution of {sup 93}Nb NMR isotropic metallic shifts upon alloying is clearly an electronic origin, as revealed by both local hyperfine fields analysis and first-principle computations. This preliminary result indicates that, in addition to geometrical considerations, atomic form factors should be taken into a description of atomic structures for better understanding the mechanical behaviors of MGs.

  19. Metallic glass alloys of Zr, Ti, Cu and Ni

    DOE Patents [OSTI]

    Lin, X.; Peker, A.; Johnson, W.L.

    1997-04-08

    At least quaternary alloys form metallic glass upon cooling below the glass transition temperature at a rate less than 10{sup 3} K/s. Such alloys comprise titanium from 19 to 41 atomic percent, an early transition metal (ETM) from 4 to 21 atomic percent and copper plus a late transition metal (LTM) from 49 to 64 atomic percent. The ETM comprises zirconium and/or hafnium. The LTM comprises cobalt and/or nickel. The composition is further constrained such that the product of the copper plus LTM times the atomic proportion of LTM relative to the copper is from 2 to 14. The atomic percentage of ETM is less than 10 when the atomic percentage of titanium is as high as 41, and may be as large as 21 when the atomic percentage of titanium is as low as 24. Furthermore, when the total of copper and LTM are low, the amount of LTM present must be further limited. Another group of glass forming alloys has the formula (ETM{sub 1{minus}x}Ti{sub x}){sub a} Cu{sub b} (Ni{sub 1{minus}y}Co{sub y}){sub c} wherein x is from 0.1 to 0.3, y{center_dot}c is from 0 to 18, a is from 47 to 67, b is from 8 to 42, and c is from 4 to 37. This definition of the alloys has additional constraints on the range of copper content, b. 2 figs.

  20. Methods of making metallic glass foil laminate composites

    DOE Patents [OSTI]

    Vianco, P.T.; Fisher, R.W.; Hosking, F.M.; Zanner, F.J.

    1996-08-20

    A process for the fabrication of a rapidly solidified foil laminate composite. An amorphous metallic glass foil is flux treated and coated with solder. Before solidification of the solder the foil is collected on a take-up spool which forms the composite into a solid annular configuration. The resulting composite exhibits high strength, resiliency and favorable magnetic and electrical properties associated with amorphous materials. The composite also exhibits bonding strength between the foil layers which significantly exceeds the bulk strength of the solder alone. 6 figs.

  1. Methods of making metallic glass foil laminate composites

    DOE Patents [OSTI]

    Vianco, Paul T.; Fisher, Robert W.; Hosking, Floyd M.; Zanner, Frank J.

    1996-01-01

    A process for the fabrication of a rapidly solidified foil laminate composite. An amorphous metallic glass foil is flux treated and coated with solder. Before solidification of the solder the foil is collected on a take-up spool which forms the composite into a solid annular configuration. The resulting composite exhibits high strength, resiliency and favorable magnetic and electrical properties associated with amorphous materials. The composite also exhibits bonding strength between the foil layers which significantly exceeds the bulk strength of the solder alone.

  2. Measurement of Heat Flux at Metal-Mold Interface during Casting Solidification

    SciTech Connect (OSTI)

    Sabau, Adrian S [ORNL

    2006-01-01

    All previous studies on interfacial heat transfer coefficient have been based on indirect methods for estimating the heat flux that employed either inverse heat transfer analysis procedures or instrumentation arrangements to measure temperatures and displacements near the metal-mold interface. In this paper, the heat transfer at the metal-mold interfaces is investigated using a sensor for the direct measurement of heat flux. The heat flux sensor (HFS) was rated for 700oC and had a time response of less than 10 ms. Casting experiments were conducted using graphite molds for aluminum alloy A356. Several casting experiments were performed using a graphite coating and a boron nitride coating. The measurement errors were estimated. The temperature of the mold surface was provided by the HFS while the temperature of the casting surface was measured using a thermocouple. Results for the heat transfer coefficients were obtained based on measured heat flux and temperatures. Four stages were clearly identified for the variation in time of the heat flux. Values of the heat transfer coefficient were in good agreement with data from previous studies.

  3. Metallic glass could make your next cell phone harder to break

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (such as metallic glass) are for recreational purposes. Imhoff pointed out that sports are often early adopters of new materials technology because even the slightest...

  4. Technology development for thin strip metal casting, Phase 2: Final technical report. [Melt spinning or planar flow casting

    SciTech Connect (OSTI)

    Williams, R.S.

    1988-03-07

    The Phase II program has been conducted by a team of engineers from Westinghouse Electric Corporation and Armco, Inc., with the objective of providing a suitably sized experimental planar flow casting machine, and using it to perform casting trials to address the above technical uncertainties for cast thicknesses and speeds representative of industrial production, and with sufficient duration to diminish thermal transient effects. A nominally 7 ft. diameter water-cooled copper wheel planar flow casting system has been designed, fabricated and installed in a dedicated 15,000 sq. ft. foundry facility are Armco Inc., Middletown, Ohio. This system is capable of casting 3 in. wide strip and operating at surface speeds up to 25 ft/sec. Additionally, the facility also contains a 16 in. diameter water-cooled wheel with interchangeable casting substrates of different materials. This small wheel facility has been adapted to utilize the melt overflow process for casting of 3 in. wide strip. These casting facilities are supported by a 500 lb. induction melting furnace and necessary liquid steel handling equipment. Adequate techniques have been developed for transportation and filtering of liquid steel without undue temperature loss. Good control of the planar flow casting process was not achieved during this program, however given such control and the adoption of clean steel practices, the inference is that the process will be capable of producing strip which is readily cold-rollable in the as-cast condition. After cold rolling and annealing, such material should have useful mechanical properties. 8 refs., 112 figs., 10 tabs.

  5. Inherent structure length in metallic glasses: Simplicity behind complexity

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Wu, Yuan; Wang, Hui; Cheng, Yongqiang; Liu, Xiongjun; Hui, Xidong; Nieh, Taigang; Wang, Yandong; Lu, Zhaoping

    2015-08-06

    One of the central themes in materials science is the structure-property relationship. In conventional crystalline metals, their mechanical behaviour is often dictated by well-defined structural defects such as dislocations, impurities, and twins. However, the structure-property relationship in amorphous alloys is far from being understood, due to great difficulties in characterizing and describing the disordered atomic-level structure. Here, we report a universal, yet simple, correlation between the macroscopic mechanical properties (i.e., yield strength and shear modulus) and a unique characteristic structural length in metallic glasses (MGs). Lastly, our analysis indicates that this characteristic length can incorporate effects of both the inter-atomicmore » distance and valence electron density in MGs, and result in the observed universal correlation. The current findings shed lights on the basic understanding of mechanical properties of MGs from their disordered atomic structures.« less

  6. Inherent structure length in metallic glasses: Simplicity behind complexity

    SciTech Connect (OSTI)

    Wu, Yuan; Wang, Hui; Cheng, Yongqiang; Liu, Xiongjun; Hui, Xidong; Nieh, Taigang; Wang, Yandong; Lu, Zhaoping

    2015-08-06

    One of the central themes in materials science is the structure-property relationship. In conventional crystalline metals, their mechanical behaviour is often dictated by well-defined structural defects such as dislocations, impurities, and twins. However, the structure-property relationship in amorphous alloys is far from being understood, due to great difficulties in characterizing and describing the disordered atomic-level structure. Here, we report a universal, yet simple, correlation between the macroscopic mechanical properties (i.e., yield strength and shear modulus) and a unique characteristic structural length in metallic glasses (MGs). Lastly, our analysis indicates that this characteristic length can incorporate effects of both the inter-atomic distance and valence electron density in MGs, and result in the observed universal correlation. The current findings shed lights on the basic understanding of mechanical properties of MGs from their disordered atomic structures.

  7. Devitrification kinetics and phase selection mechanisms in Cu-Zr metallic glasses

    SciTech Connect (OSTI)

    Kalay, Ilkay

    2010-12-15

    Metallic glasses have been a promising class of materials since their discovery in the 1960s. Indeed, remarkable chemical, mechanical and physical properties have attracted considerable attention, and several excellent reviews are available. Moreover, the special group of glass forming alloys known as the bulk metallic glasses (BMG) become amorphous solids even at relatively low cooling rates, allowing them to be cast in large cross sections, opening the scope of potential applications to include bulk forms and net shape structural applications. Recent studies have been reported for new bulk metallic glasses produced with lower cooling rates, from 0.1 to several hundred K/s. Some of the application products of BMGs include sporting goods, high performance springs and medical devices. Several rapid solidification techniques, including melt-spinning, atomization and surface melting have been developed to produce amorphous alloys. The aim of all these methods is to solidify the liquid phase rapidly enough to suppress the nucleation and growth of crystalline phases. Furthermore, the production of amorphous/crystalline composite (ACC) materials by partial crystallization of amorphous precursor has recently given rise to materials that provide better mechanical and magnetic properties than the monolithic amorphous or crystalline alloys. In addition, these advances illustrate the broad untapped potential of using the glassy state as an intermediate stage in the processing of new materials and nanostructures. These advances underlie the necessity of investigations on prediction and control of phase stability and microstructural dynamics during both solidification and devitrification processes. This research presented in this dissertation is mainly focused on Cu-Zr and Cu-Zr-Al alloy systems. The Cu-Zr binary system has high glass forming ability in a wide compositional range (35-70 at.% Cu). Thereby, Cu-Zr based alloys have attracted much attention according to fundamental

  8. Process for direct conversion of reactive metals to glass (Patent...

    Office of Scientific and Technical Information (OSTI)

    is contacted with silica powder introduced in an air stream to form in one step a glass. ... contacted; silica; powder; introduced; air; stream; form; step; glass; cyclone; ...

  9. In-situ ductile metal/bulk metallic glass matrix composites formed by chemical partitioning

    DOE Patents [OSTI]

    Kim, Choong Paul (Northridge, CA); Hays, Charles C. (Pasadena, CA); Johnson, William L. (Pasadena, CA)

    2007-07-17

    A composite metal object comprises ductile crystalline metal particles in an amorphous metal matrix. An alloy is heated above its liquidus temperature. Upon cooling from the high temperature melt, the alloy chemically partitions, forming dendrites in the melt. Upon cooling the remaining liquid below the glass transition temperature it freezes to the amorphous state, producing a two-phase microstructure containing crystalline particles in an amorphous metal matrix. The ductile metal particles have a size in the range of from 0.1 to 15 micrometers and spacing in the range of from 0.1 to 20 micrometers. Preferably, the particle size is in the range of from 0.5 to 8 micrometers and spacing is in the range of from 1 to 10 micrometers. The volume proportion of particles is in the range of from 5 to 50% and preferably 15 to 35%. Differential cooling can produce oriented dendrites of ductile metal phase in an amorphous matrix. Examples are given in the Zr--Ti--Cu--Ni--Be alloy bulk glass forming system with added niobium.

  10. In-situ ductile metal/bulk metallic glass matrix composites formed by chemical partitioning

    DOE Patents [OSTI]

    Kim, Choong Paul; Hays, Charles C.; Johnson, William L.

    2004-03-23

    A composite metal object comprises ductile crystalline metal particles in an amorphous metal matrix. An alloy is heated above its liquidus temperature. Upon cooling from the high temperature melt, the alloy chemically partitions, forming dendrites in the melt. Upon cooling the remaining liquid below the glass transition temperature it freezes to the amorphous state, producing a two-phase microstructure containing crystalline particles in an amorphous metal matrix. The ductile metal particles have a size in the range of from 0.1 to 15 micrometers and spacing in the range of from 0.1 to 20 micrometers. Preferably, the particle size is in the range of from 0.5 to 8 micrometers and spacing is in the range of from 1 to 10 micrometers. The volume proportion of particles is in the range of from 5 to 50% and preferably 15 to 35%. Differential cooling can produce oriented dendrites of ductile metal phase in an amorphous matrix. Examples are given in the Zr--Ti--Cu--Ni--Be alloy bulk glass forming system with added niobium.

  11. High-entropy bulk metallic glasses as promising magnetic refrigerants

    SciTech Connect (OSTI)

    Huo, Juntao; Huo, Lishan; Li, Jiawei; Men, He; Wang, Xinmin; Chang, Chuntao E-mail: jqwang@nimte.ac.cn; Wang, Jun-Qiang E-mail: jqwang@nimte.ac.cn; Li, Run-Wei; Inoue, Akihisa

    2015-02-21

    In this paper, the Ho{sub 20}Er{sub 20}Co{sub 20}Al{sub 20}RE{sub 20} (RE = Gd, Dy, and Tm) high-entropy bulk metallic glasses (HE-BMGs) with good magnetocaloric properties are fabricated successfully. The HE-BMGs exhibit a second-order magnetic phase transition. The peak of magnetic entropy change (ΔS{sub M}{sup pk}) and refrigerant capacity (RC) reaches 15.0 J kg{sup −1} K{sup −1} and 627 J kg{sup −1} at 5 T, respectively, which is larger than most rare earth based BMGs. The heterogeneous nature of glasses also contributes to the large ΔS{sub M}{sup pk} and RC. In addition, the magnetic ordering temperature, ΔS{sub M}{sup pk} and RC can be widely tuned by alloying different rare earth elements. These results suggest that the HE-BMGs are promising magnetic refrigerant at low temperatures.

  12. Atomic picture of elastic deformation in a metallic glass

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Wang, X. D.; Aryal, S.; Zhong, C.; Ching, W. Y.; Sheng, H. W.; Zhang, H.; Zhang, D. X.; Cao, Q. P.; Jiang, J. Z.

    2015-03-17

    The tensile behavior of a Ni₆₀Nb₄₀ metallic glass (MG) has been studied by using ab initio density functional theory (DFT) calculation with a large cell containing 1024 atoms (614 Ni and 410 Nb). We provide insight into how a super elastic limit can be achieved in a MG. Spatially inhomogeneous responses of single atoms and also major polyhedra are found to change greatly with increasing external stress when the strain is over 2%, causing the intrinsically viscoelastic behavior. We uncover the origin of the observed super elastic strain limit under tension (including linear and viscoelastic strains) in small-sized MG samples,more » mainly caused by inhomogeneous distribution of excess volumes in the form of newly formed subatomic cavities.« less

  13. Crossover from localized to cascade relaxations in metallic glasses

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Fan, Yue; Iwashita, Takuya; Egami, Takeshi

    2015-07-21

    Thermally activated deformation is investigated in two metallic glass systems with different cooling histories. By probing the atomic displacements and stress changes on the potential energy landscape, two deformation modes, a localized process and cascade process, have observed. The localized deformation involves fewer than 30 atoms and appears in both systems, and its size is invariant with cooling history. However, the cascade deformation is more frequently observed in the fast quenched system than in the slowly quenched system. As a result, the origin of the cascade process in the fast quenched system is attributed to the higher density of localmore » minima on the underlying potential energy landscape.« less

  14. Atomic picture of elastic deformation in a metallic glass

    SciTech Connect (OSTI)

    Wang, X. D.; Aryal, S.; Zhong, C.; Ching, W. Y.; Sheng, H. W.; Zhang, H.; Zhang, D. X.; Cao, Q. P.; Jiang, J. Z.

    2015-03-17

    The tensile behavior of a Ni??Nb?? metallic glass (MG) has been studied by using ab initio density functional theory (DFT) calculation with a large cell containing 1024 atoms (614 Ni and 410 Nb). We provide insight into how a super elastic limit can be achieved in a MG. Spatially inhomogeneous responses of single atoms and also major polyhedra are found to change greatly with increasing external stress when the strain is over 2%, causing the intrinsically viscoelastic behavior. We uncover the origin of the observed super elastic strain limit under tension (including linear and viscoelastic strains) in small-sized MG samples, mainly caused by inhomogeneous distribution of excess volumes in the form of newly formed subatomic cavities.

  15. Liquid Metal Processing and Casting Experiences at the U.S. Department of Energy's Albany Research Center

    SciTech Connect (OSTI)

    Jablonski, Paul D.; Turner, Paul C.

    2005-09-01

    In this paper we will discuss some of the early pioneering work as well as some of our more recent research. The Albany Research Center (ARC) has been involved with the melting and processing of metals since it was established in 1942. In the early days, hardly anything was known about melting refractory or reactive metals and as such, virtually everything had to be developed in-house. Besides the more common induction heated air-melt furnaces, ARC has built and/or utilized a wide variety of furnaces including vacuum arc remelt ingot and casting furnaces, cold wall induction furnaces, electric arc furnaces, cupola furnaces and reverberatory furnaces. The melt size of these furnaces range from several grams to a ton or more. We have used these furnaces to formulate custom alloys for wrought applications as well as for such casting techniques as spin casting, investment casting and lost foam casting among many. Two early spin-off industrializations were Wah Chang (wrought zirconium alloys for military and commercial nuclear applications) and Oremet (both wrought and cast Ti). Both of these companies are now part of the ATI Allegheny Ludlum Corporation.

  16. Method and apparatus for performing in-situ vacuum-assisted metal to glass sealing

    DOE Patents [OSTI]

    Kramer, D.P.; Massey, R.T.

    1985-07-18

    A method and apparatus for assembling and fusing glass to metal in a glass-metal electrical component is disclosed. The component includes a metallic shell formed with upper and lower cylindrical recesses connected together by longitudinal passages, a pair of metal rings and plural metal pins assembled to define electrical feed-throughs. The component parts are assembled on a fixture having a sleeve-like projection and a central mounting projection establishing concentric nesting surfaces to which the metal rings are slip-fitted in concentric alignment with each other spaced from sidewalls of the lower recess. The pins are in electrical contact with the metal rings. A glass pre-form is seated within the upper recess. The assembled structure is heated to a temperature sufficient to melt the glass pre-form which flows under gravity through the passages into the lower recess to provide an insulative seal between the metal parts. The gravity flow of glass is assisted by applying vacuum to the lower recess, ensuring that all spaces between the metal parts are filled with sealing glass without formation of bubbles.

  17. Method and apparatus for performing in-situ vacuum-assisted metal to glass sealing

    DOE Patents [OSTI]

    Kramer, Daniel P.; Massey, Richard T.

    1986-01-01

    A method and apparatus for assembling and fusing glass to metal in a glass-metal electrical component is disclosed. The component includes a metallic shell formed with upper and lower cylindrical recesses connected together by longitudinal passages, a pair of metal rings and plural metal pins assembled to define electrical feed-throughs. The component parts are assembled on a fixture having a sleeve-like projection and a central mounting projection establishing concentric nesting surfaces to which the metal rings are slip-fitted in concentric alignment with each other spaced from sidewalls of the lower recess. The pins are in electrical contact with the metal rings. A glass pre-form is seated within the upper recess. The assembled structure is heated to a temperature sufficient to melt the glass pre-form which flows under gravity through the passages into the lower recess to provide an insulative seal between the metal parts. The gravity flow of glass is assisted by applying vacuum to the lower recess, ensuring that all spaces between the metal parts are filled with sealing glass without formation of bubbles.

  18. Fabrication and Characterization of Graded Impedance Gas Gun Impactors from Tape Cast Metal Powders

    SciTech Connect (OSTI)

    Martin, L P; Nguyen, J H

    2005-11-21

    Fabrication of compositionally graded structures for use as light-gas gun impactors has been demonstrated using a tape casting technique. Mixtures of metal powders in the Mg-Cu system were cast into a series of tapes with uniform compositions ranging from 100% Mg to 100% Cu. The individual compositions were fabricated into monolithic pellets for characterization by laminating multiple layers together, thermally removing the organics, and hot-pressing to near-full density. The pellets were characterized by optical and scanning electron microscopy, X-ray diffraction, and measurement of density and sound wave velocity. The density and acoustic impedance were observed to vary monotonically (and nearly linearly) with composition. Graded structures were fabricated by stacking layers of different compositions in a sequence calculated to yield a desired acoustic impedance profile. The measured physical properties of the graded structures compare favorably with those predicted from the monolithic-pellet characteristics. Fabrication of graded impactors by this technique is of significant interest for providing improved control of the pressure profile in gas gun experiments.

  19. Ceramic plasma-sprayed coating of melting crucibles for casting metal fuel slugs

    SciTech Connect (OSTI)

    K.H. Kim; C.T. Lee; C.B. Lee; R.S. Fielding; J.R. Kennedy

    2013-10-01

    Thermal cycling and melt reaction studies of ceramic coatings plasma-sprayed on Nb substrates were carried out to evaluate the performance of barrier coatings for metallic fuel casting applications. Thermal cycling tests of the ceramic plasma-sprayed coatings to 1450 degrees C showed that HfN, TiC, ZrC, and Y2O3 coating had good cycling characteristics with few interconnected cracks even after 20 cycles. Interaction studies by 1550 degrees C melt dipping tests of the plasma-sprayed coatings also indicated that HfN and Y2O3 do not form significant reaction layer between U20 wt.% Zr melt and the coating layer. Plasma-sprayed Y2O3 coating exhibited the most promising characteristics among HfN, TiC, ZrC, and Y2O3 coating.

  20. Tuned critical avalanche scaling in bulk metallic glasses

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Antonaglia, James; Xie, Xie; Schwarz, Gregory; Wraith, Matthew; Qiao, Junwei; Zhang, Yong; Liaw, Peter K.; Uhl, Jonathan T.; Dahmen, Karin A.

    2014-03-17

    In this study, ingots of the bulk metallic glass (BMG), Zr64.13Cu15.75Ni10.12Al10 in atomic percent (at. %), are compressed at slow strain rates. The deformation behavior is characterized by discrete, jerky stress-drop bursts (serrations). Here we present a quantitative theory for the serration behavior of BMGs, which is a critical issue for the understanding of the deformation characteristics of BMGs. The mean-field interaction model predicts the scaling behavior of the distribution, D(S), of avalanche sizes, S, in the experiments. D(S) follows a power law multiplied by an exponentially-decaying scaling function. The size of the largest observed avalanche depends on experimental tuning-parameters,more » such as either imposed strain rate or stress. Similar to crystalline materials, the plasticity of BMGs reflects tuned criticality showing remarkable quantitative agreement with the slip statistics of slowly-compressed nanocrystals. The results imply that material-evaluation methods based on slip statistics apply to both crystalline and BMG materials.« less

  1. Alternative granular media for the metal casting industry. Final report, September 30, 1994

    SciTech Connect (OSTI)

    Guichelaar, P.J.; Ramrattan, S.N.; Tieder, R.E.

    1995-09-01

    Silica sand for foundry use is inexpensive to purchase, readily transported and widely available. As a result, it is universally used. However, three factors are becoming increasingly significant as more environmental regulations are promulgated. First, the disposal of waste foundry sand has become an excessively burdensome cost. Second, the phase changes which occur in the silica structure on heating and cooling cause thermal breakdown of the sand into smaller unusable fractions. Third, silica is a relatively weak mineral. Alternatives to silica sand which can withstand the rigors of repetitive reuse must be seriously evaluated as a way to control production costs of the domestic metal casting industry. Chromite sands, olivine sands and carbon sands have each been successfully used to solve operating problems and thus have developed their specific niches in the foundry materials inventory. However, there are several other materials that are candidates for replacing silica sand, such as fused alumina, sintered bauxite and sintered oil well proppants. These media, and others that are generically similar, are manufactured for specific purposes. Compositions and shapes could be readily tailored for used in a metal casting environment of total recycling and materials conservation. This study examines materials that are readily available as alternatives to silica sand from a functionality perspective and a cost perspective. Some of the alternative materials are natural and others are synthetic and thus referring to them as ``sands`` has the potential to cause confusion; the generic term ``granular medium`` is used in this study to mean any material that could functionally substitute for silica sand in the foundry process.

  2. Waste minimization assessment for a manufacturer of iron castings and fabricated sheet metal parts

    SciTech Connect (OSTI)

    Fleischman, M.; Harris, J.J.; Handmaker, A.; Looby, G.P.

    1995-08-01

    The U.S. Environmental Protection Agency (EPA) has funded a pilot project to assist small and medium-size manufacturers who want to minimize their generation of waste but who lack the expertise to do so. Waste Minimization Assessment Centers (WMACs) were established at selected universities and procedures were adapted from the EPA Waste Minimization Opportunity Assessment Manual. That document has been superseded by the Facility Pollution Prevention Guide. The WMAC team at the University of Louisville performed an assessment at a plant that manufactures iron castings and fabricated sheet metal parts. Foundry operations include mixing and mold formation, core making, metal pouring, shakeout, finishing, and painting. Cutting, shaping, and welding are the principal metal fabrication operations. The team`s report, detailing findings and recommendations indicated that paint-related wastes are generated in large quantities, and that significant waste reduction and cost savings could be realized by installing a dry powder coating system or by replacing conventional air spray paint guns with high-volume low-pressure spray guns. This research brief was developed by the principal investigators and EPA`s National Risk Management Research Laboratory, Cincinnati, OH, to announce key findings of an ongoing research project that is fully documented in a separate report of the same title available from University City Science Center.

  3. Molten metal holder furnace and casting system incorporating the molten metal holder furnace

    DOE Patents [OSTI]

    Kinosz, Michael J.; Meyer, Thomas N.

    2003-02-11

    A bottom heated holder furnace (12) for containing a supply of molten metal includes a storage vessel (30) having sidewalls (32) and a bottom wall (34) defining a molten metal receiving chamber (36). A furnace insulating layer (42) lines the molten metal receiving chamber (36). A thermally conductive heat exchanger block (54) is located at the bottom of the molten metal receiving chamber (36) for heating the supply of molten metal. The heat exchanger block (54) includes a bottom face (65), side faces (66), and a top face (67). The heat exchanger block (54) includes a plurality of electrical heaters (70) extending therein and projecting outward from at least one of the faces of the heat exchanger block (54), and further extending through the furnace insulating layer (42) and one of the sidewalls (32) of the storage vessel (30) for connection to a source of electrical power. A sealing layer (50) covers the bottom face (65) and side faces (66) of the heat exchanger block (54) such that the heat exchanger block (54) is substantially separated from contact with the furnace insulating layer (42).

  4. Report of Separate Effects Testing for Modeling of Metallic Fuel Casting Process

    SciTech Connect (OSTI)

    Crapps, Justin M.; Galloway, Jack D.; Decroix, David S.; Korzekwa, David A.; Aikin, Robert M. Jr.; Unal, Cetin; Fielding, R.; Kennedy, R

    2012-06-29

    In order to give guidance regarding the best investment of time and effort in experimental determination of parameters defining the casting process, a Flow-3D model of the casting process was used to investigate the most influential parameters regarding void fraction of the solidified rods and solidification speed for fluid flow parameters, liquid heat transfer parameters, and solid heat transfer parameters. Table 1 summarizes the most significant variables for each of the situations studied. A primary, secondary, and tertiary effect is provided for fluid flow parameters (impacts void fraction) and liquid heat transfer parameters (impacts solidification). In Table 1, the wetting angle represents the angle between the liquid and mold surface as pictured in Figure 1. The viscosity is the dynamic viscosity of the liquid and the surface tension is the property of the surface of a liquid that allows it to resist an external force. When only considering solid heat transfer properties, the variations from case to case were very small. Details on this conclusion are provided in the section considering solid heat transfer properties. The primary recommendation of the study is to measure the fluid flow parameters, specifically the wetting angle, surface tension, and dynamic viscosity, in order of importance, as well as the heat transfer parameters latent heat and specific heat of the liquid alloy. The wetting angle and surface tension can be measured simultaneously using the sessile drop method. It is unclear whether there is a temperature dependency in these properties. Thus measurements for all three parameters are requested at 1340, 1420, and 1500 degrees Celsius, which correspond to the minimum, middle, and maximum temperatures of the liquid alloy during the process. In addition, the heat transfer coefficient between the mold and liquid metal, the latent heat of transformation, and the specific heat of the liquid metal all have strong influences on solidification. These

  5. Mechanical Properties and Microstructure of Plasma Sprayed Ni-Based Metallic Glass Coating

    SciTech Connect (OSTI)

    Kobayashi, Akira; Kuroda, Toshio; Kimura, Hisamichi; Inoue, Akihisa

    2010-10-13

    Various developmental research works on the metallic glass have been conducted in order to broaden its application field. Thermal spraying method is one of the potential techniques to enhance the excellent properties such as high toughness and corrosion resistance of the metallic glass material. The gas tunnel type plasma spraying is useful to obtain high quality ceramic coatings such as Al{sub 2}O{sub 3} and ZrO{sub 2} coatings. In this study, the Ni-based metallic glass coatings were produced by the gas tunnel type plasma spraying under various experimental conditions, and their microstructure and mechanical properties were investigated. At the plasma current of 200-300 A, the Ni-based metallic glass coatings of more than 200 {mu}m in thickness were formed densely with Vickers hardness of about Hv = 600.

  6. Metal and Glass Manufacturers Reduce Costs by Increasing Energy...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Process heating plays a key role in producing steel, aluminum, and glass and in ... More Documents & Publications Commonwealth Aluminum: Manufacturer Conducts Plant-Wide ...

  7. Measurement of local internal friction in metallic glasses

    SciTech Connect (OSTI)

    Wagner, H.; Bchsenschtz-Gbeler, M.; Luo, Y.; Samwer, K.; Kumar, A.; Arnold, W.

    2014-04-07

    Atomic force acoustic microscopy (AFAM), an advanced scanning probe microscopy technique, has been used to measure local elastic properties with a spatial resolution given by the tip-sample contact radius. AFAM is based on inducing out-of-plane vibrations in the specimen. The vibrations are sensed by the AFM cantilever from by the photodiode signal when its tip is in contact with the material under test. To measure local damping, the inverse quality factor Q{sup ?1} of the resonance curve is usually evaluated. Here, from the contact-resonance spectra obtained, we determine the real and imaginary part of the contact stiffness k* and from these two quantities the local damping factor Q{sub loc}{sup ?1} is obtained which is proportional to the imaginary part ? of the contact stiffness. The evaluation of the data is based on the cantilever's mass distribution with damped flexural modes and not on an effective point-mass approximation for the cantilevers motion. The given equation is simple to use and has been employed to study the local Q{sub loc}{sup ?1} of amorphous PdCuSi metallic glass and its crystalline counterpart as a function of position of the AFM tip on the surface. The width of the distribution changes dramatically from the amorphous to the crystalline state as expected from the consequences of the potential-energy landscape picture. The center value of the distribution curve for Q{sub loc}{sup ?1} coincides very well with published data, based on global ultrasonic or internal friction measurements. This is compared to Q{sub loc}{sup ?1} measured in crystalline SrTiO{sub 3}, which exhibits a narrow distribution, as expected.

  8. Investigation of Heat Transfer at the Mold/Metal Interface in Permanent Mold Casting of Light Alloys

    SciTech Connect (OSTI)

    Robert D. Pehlke; John T. Berry

    2005-12-16

    Accurate modeling of the metal casting process prior to creating a mold design demands reliable knowledge of the interfacial heat transfer coefficient at the mold metal interface as a function of both time and location. The phenomena concerned with the gap forming between the mold and the solidifying metal are complex but need to be understood before any modeling is attempted. The presence of mold coatings further complicates the situation. A commercial casting was chosen and studied in a gravity permanent mold casting process. The metal/mold interfacial heat transfer coefficient (IHTC) was the focus of the research. A simple, direct method has been used to evaluate the IHTC. Both the simulation and experiments have shown that a reasonably good estimate of the heat transfer coefficient could be made in the case studied. It has been found that there is a good agreement between experiments and simulations in the temperature profiles during the solidification process, given that the primary mechanism of heat transfer across the gap in permanent mold casting of light alloys is by conduction across the gap. The procedure utilized to determine the interfacial heat transfer coefficient can be applied to other casting processes. A recently completed project involving The University of Michigan and Mississippi State University, together with several industrial partners, which was supported by the USDOE through the Cast Metals Coalition, examined a number of cases of thermal contact. In an investigation which gave special consideration to the techniques of measurement, several mold coatings were employed and results presented as a function of time. Realistic conditions of coating thickness and type together with an appropriate combination of mold preheat and metal pouring temperature were strictly maintained throughout the investigation. Temperature sensors, in particular thermocouples, play an important part in validating the predictions of solidification models. Cooling

  9. Glass

    Broader source: Energy.gov [DOE]

    Glass production requires considerable energy to sustain the very high temperatures needed to melt the glass batch. The U.S. glass industry has worked cooperatively with AMO to develop a range of resources for improving energy efficiency and reducing emissions.

  10. Lowering critical cooling rate for forming bulk metallic glass

    SciTech Connect (OSTI)

    Shen, T.D.; Schwarz, R.B. [MS G755, MST-8, Materials Science and Technology Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States)

    2006-02-27

    Small volumes of Pd{sub 44}Ni{sub 10}Cu{sub 26}P{sub 20} and Pd{sub 43.2}Ni{sub 8.8}Cu{sub 28}P{sub 20} were encapsulated in B{sub 2}O{sub 3} and thermally cycled between T{sub g}-60 deg. C and T{sub l}+60 deg. C, where T{sub g} and T{sub l} denote the alloys' glass transition and liquidus temperatures. After this thermal treatment, the critical cooling rates (CCRs) for glass formation can be lowered by an order of magnitude, resulting in a critical cooling rate significantly lower than that reported for any other glass forming alloy melt. These experiments demonstrate that the CCR is not constant but strongly dependent on the degree of heterogeneous nucleation.

  11. Proposed Testing to Assess the Accuracy of Glass-To-Metal Seal Stress Analyses.

    SciTech Connect (OSTI)

    Chambers, Robert S.; Emery, John M; Tandon, Rajan; Antoun, Bonnie R.; Stavig, Mark E.; Newton, Clay S.; Gibson, Cory S; Bencoe, Denise N.

    2014-09-01

    The material characterization tests conducted on 304L VAR stainless steel and Schott 8061 glass have provided higher fidelity data for calibration of material models used in Glass - T o - Metal (GTM) seal analyses. Specifically, a Thermo - Multi - Linear Elastic Plastic ( thermo - MLEP) material model has be en defined for S S304L and the Simplified Potential Energy Clock nonlinear visc oelastic model has been calibrated for the S8061 glass. To assess the accuracy of finite element stress analyses of GTM seals, a suite of tests are proposed to provide data for comparison to mo del predictions.

  12. Structural evolution in Ti-Cu-Ni metallic glasses during heating

    SciTech Connect (OSTI)

    Gargarella, P.; Pauly, S.; Stoica, M.; Khn, U.; Vaughan, G.; Afonso, C. R. M.; Eckert, J.

    2015-01-01

    The structural evolution of Ti{sub 50}Cu{sub 43}Ni{sub 7} and Ti{sub 55}Cu{sub 35}Ni{sub 10} metallic glasses during heating was investigated by in-situ synchrotron X-ray diffraction. The width of the most intense diffraction maximum of the glassy phase decreases slightly during relaxation below the glass transition temperature. Significant structural changes only occur above the glass transition manifesting in a change in the respective peak positions. At even higher temperatures, nanocrystals of the shape memory B2-Ti(Cu,Ni) phase precipitate, and their small size hampers the occurrence of a martensitic transformation.

  13. Linking structure to fragility in bulk metallic glass-forming liquids

    SciTech Connect (OSTI)

    Wei, Shuai E-mail: m.stolpe@mx.uni-saarland.de; Stolpe, Moritz E-mail: m.stolpe@mx.uni-saarland.de; Gross, Oliver; Gallino, Isabella; Hembree, William; Busch, Ralf; Evenson, Zach; Bednarcik, Jozef; Kruzic, Jamie J.

    2015-05-04

    Using in-situ synchrotron X-ray scattering, we show that the structural evolution of various bulk metallic glass-forming liquids can be quantitatively connected to their viscosity behavior in the supercooled liquid near T{sub g}. The structural signature of fragility is identified as the temperature dependence of local dilatation on distinct key atomic length scales. A more fragile behavior results from a more pronounced thermally induced dilatation of the structure on a length scale of about 3 to 4 atomic diameters, coupled with shallower temperature dependence of structural changes in the nearest neighbor environment. These findings shed light on the structural origin of viscous slowdown during undercooling of bulk metallic glass-forming liquids and demonstrate the promise of predicting the properties of bulk metallic glasses from the atomic scale structure.

  14. Auger CVV spectra as a probe of the electronic structure of metallic glasses

    SciTech Connect (OSTI)

    Bevolo, A.J.; Severin, C.S.; Chen, C.W.

    1982-03-01

    Additional data on the Auger KVV spectra of Be and B in the Fe/sub 82/B/sub 18-x/Be/sub x/ ferromagnetic metallic glass system are presented. A weak but sharp peak in the B KVV spectra of the ternary alloys is identified with a Fe--B bonding state that is also present in the binary Fe--B metallic glass system. In addition to the previously reported 14-eV shift in the Be KVV energy for x< or =4 a narrowing of the linewidth of this transition from 8 to 5 eV is reported for the same composition range. Several models are considered to explain the unusual Be KVV Auger results for the ternary Fe--B--Be metallic glass system.

  15. Propensity of bond exchange as a window into the mechanical properties of metallic glasses

    SciTech Connect (OSTI)

    Jiao, W.; Wang, X. L. Lan, S.; Pan, S. P.; Lu, Z. P.

    2015-02-09

    We investigated the mechanical properties of Zr-Cu-Al bulk metallic glasses, by compression experiment and molecular dynamics simulations. From the simulation, we found that the large, solvent atom, Zr, has high propensity of bond exchange compared to those of the smaller solute atoms. The difference in bond exchange is consistent with the observed disparity in mechanical behaviors: Zr-rich metallic glass exhibits low elastic modulus and large plastic strain. X-ray photoelectron spectroscopy measurements suggest that the increased propensity in bond exchange is related to the softening of Zr bonds with increasing Zr content.

  16. Metal thin film growth on multimetallic surfaces: From quaternary metallic glass to binary crystal

    SciTech Connect (OSTI)

    Jing, Dapeng

    2010-01-01

    The work presented in this thesis mainly focuses on the nucleation and growth of metal thin films on multimetallic surfaces. First, we have investigated the Ag film growth on a bulk metallic glass surface. Next, we have examined the coarsening and decay of bilayer Ag islands on NiAl(110) surface. Third, we have investigated the Ag film growth on NiAl(110) surface using low-energy electron diffraction (LEED). At last, we have reported our investigation on the epitaxial growth of Ni on NiAl(110) surface. Some general conclusions can be drawn as follows. First, Ag, a bulk-crystalline material, initially forms a disordered wetting layer up to 4-5 monolayers on Zr-Ni-Cu-Al metallic glass. Above this coverage, crystalline 3D clusters grow, in parallel with the flatter regions. The cluster density increases with decreasing temperature, indicating that the conditions of island nucleation are far-from-equilibrium. Within a simple model where clusters nucleate whenever two mobile Ag adatoms meet, the temperature-dependence of cluster density yields a (reasonable) upper limit for the value of the Ag diffusion barrier on top of the Ag wetting layer of 0.32 eV. Overall, this prototypical study suggests that it is possible to grow films of a bulk-crystalline metal that adopt the amorphous character of a glassy metal substrate, if film thickness is sufficiently low. Next, the first study of coarsening and decay of bilayer islands has been presented. The system was Ag on NiAl(110) in the temperature range from 185 K to 250 K. The coarsening behavior, has some similarities to that seen in the Ag(110) homoepitaxial system studied by Morgenstern and co-workers. At 185 K and 205 K, coarsening of Ag islands follows a Smoluchowski ripening pathway. At 205 K and 250 K, the terrace diffusion limited Ostwald ripening dominants. The experimental observed temperature for the transition from SR to OR is 205 K. The SR exhibits anisotropic island diffusion and the OR exhibits 1D decay of island

  17. Computational modeling of structure of metal matrix composite in centrifugal casting process

    SciTech Connect (OSTI)

    Zagorski, Roman [Department of Electrotechnology, Faculty of Materials Science and Metallurgy, Silesian University of Technology, ul. Krasinskiego 8, 40-019, Katowice (Poland)

    2007-04-07

    The structure of alumina matrix composite reinforced with crystalline particles obtained during centrifugal casting process are studied. Several parameters of cast process like pouring temperature, temperature, rotating speed and size of casting mould which influent on structure of composite are examined. Segregation of crystalline particles depended on other factors such as: the gradient of density of the liquid matrix and reinforcement, thermal processes connected with solidifying of the cast, processes leading to changes in physical and structural properties of liquid composite are also investigated. All simulation are carried out by CFD program Fluent. Numerical simulations are performed using the FLUENT two-phase free surface (air and matrix) unsteady flow model (volume of fluid model - VOF) and discrete phase model (DPM)

  18. Interactions at glass-ceramic to metal interfaces

    SciTech Connect (OSTI)

    Knorovsky, G.A.; Brow, R.K.; Watkins, R.D.; Loehman, R.E.

    1990-01-01

    Advanced pyrotechnic components can be fabricated from Ni-based superalloys with hermetic seals to high expansion lithium-silicate glass ceramics (LSGC). Prior studies have characterized the interfacial reactions in these systems necessary for good chemical bonding. Similar reactions occur when LSGCs are bonded to 300-series stainless steel except that these seals debond on cooling to room temperature. Cr-depletion (from {approximately}18 wt % to {approximately}5 wt %) from the steel interface cases an fcc-to-bcc phase transition that expands the interfacial grains and decreases their thermal expansion coefficient, putting the LSGC into tension, causing the seal to fail. 9 refs., 5 figs., 1 tab.

  19. Understanding glass-forming ability through sluggish crystallization of atomically thin metallic glassy films

    SciTech Connect (OSTI)

    Sun, Y. T.; Cao, C. R.; Huang, K. Q.; Zhao, N. J.; Gu, L. E-mail: dzheng@iphy.ac.cn Zheng, D. N. E-mail: dzheng@iphy.ac.cn Wang, W. H. E-mail: dzheng@iphy.ac.cn

    2014-08-04

    The glass-forming ability (GFA) of an alloy, closely related to its ability to resist crystallization, is a crucial issue in condensed matter physics. So far, the studies on GFA are mostly statistical and empirical guides. Benefiting from the ultrahigh thermal stability of ultrathin metallic glassy film and high resolution spherical aberration-corrected transmission electron microscope, the crystallization of atomically thin ZrCu and its microalloyed ZrCuAl glasses with markedly different GFA was investigated at the atomic scale. We find the Zr diffusivity estimated from the density of nuclei is dramatically decreased by adding of Al, which is the major reason for the much better GFA of the ZrCuAl metallic glass.

  20. Unique properties of CuZrAl bulk metallic glasses induced by microalloying

    SciTech Connect (OSTI)

    Huang, B.; Bai, H. Y.; Wang, W. H.

    2011-12-15

    We studied the glass forming abilities (GFA), mechanical, and physical properties of (CuZr){sub 92.5}Al{sub 7}X{sub 0.5} (X = La, Sm, Ce, Gd, Ho, Y, and Co) bulk metallic glasses (BMGs). We find that the GFA, mechanical, and physical properties can be markedly changed and modulated by the minor rare earth addition. The Kondo screening effect is found to exist in (CuZr){sub 92.5}Al{sub 7}Ce{sub 0.5} BMG at low temperatures and the Schottky effect exists in all the rare earth element doped BMGs. Our results indicate that the minor addition is an effective way for modulating and getting desirable properties of the BMGs. The mechanisms of the effects of the addition are discussed. The results have implications for the exploration of metallic glasses and for improving the mechanical and low temperature physical properties of BMGs.

  1. Metal and Glass Manufacturers Reduce Costs by Increasing Energy Efficiency in Process Heating Systems

    Broader source: Energy.gov [DOE]

    Process heating plays a key role in producing steel, aluminum, and glass and in manufacturing products made from these materials. Faced with regulatory and competitive pressures to control emissions and reduce operating costs, metal and glass manufacturers are considering a variety of options for reducing overall energy consumption. As 38% of the energy used in U.S. industrial plants is consumed for process heating applications, metal and glass manufacturers are discovering that process heating technologies provide significant opportunities for improving industrial productivity, energy efficiency, and global competitiveness. This fact sheet is the first in a series to describe such opportunities that can be realized in industrial systems by conducting plant-wide assessments (PWA).

  2. Guided evolution of bulk metallic glass nanostructures: A platform for designing three-dimensional electrocatalytic surfaces

    SciTech Connect (OSTI)

    Doubek, Gustavo; Sekol, Ryan C.; Li, Jinyang; Ryu, Won -Hee; Gittleson, Forrest S.; Nejati, Siamak; Moy, Eric; Reid, Candy; Carmo, Marcelo; Linardi, Marcelo; Bordeenithikasem, Punnathat; Kinser, Emily; Liu, Yanhui; Tong, Xiao; Osuji, Chinedum; Schroers, Jan; Mukherjee, Sundeep; Taylor, Andre D.

    2015-12-22

    Precise control over catalyst surface composition and structure is necessary to improve the function of electrochemical systems. To that end, bulk metallic glass (BMG) alloys with atomically dispersed elements provide a highly processable, nanoscale platform for electrocatalysis and surface modification. Here we report on nanostructures of Pt-based BMGs that are modified with various subtractive and additive processes to improve their electrochemical performance.

  3. Prompt Neutron Time Decay in Single HEU and DU Metal Annular Storage Castings

    SciTech Connect (OSTI)

    Pena, Kirsten E [ORNL] [ORNL; McConchie, Seth M [ORNL] [ORNL; Mihalczo, John T [ORNL] [ORNL

    2010-01-01

    Previous measurements of highly enriched uranium (HEU) storage castings performed by Oak Ridge National Laboratory (ORNL) at the Y-12 National Security Complex showed a prompt neutron time decay that is not exponential. These measurements showed that multiple time constants originating from multiplication, time-of-flight, scattering in the assembly and room return could be associated with this prompt neutron decay. In this work, the contribution not associated with neutron multiplication was investigated via measurements with a depleted uranium (DU) casting. The measurements at ORNL used an annular (5.0-in OD, 3.5-in ID, 6.0-in H) DU casting with a time-tagged 252Cf source, centered vertically on the axis, and four closely coupled 1 1 6-in.-long plastic scintillators with -in.- thick lead shielding adjacent to the outer surface of the casting. This setup was identical to the configuration used in the previously performed measurements with HEU castings at Y-12. The time correlation between fission events and detections in the plastic scintillators was measured, as well as the time distribution of coincidences between multiple detectors within a 512-ns time window. The measurement results were then compared to MCNP-PoliMi calculations and the previous HEU measurements. Time constants from decay fits to the HEU and DU data were compared to characterize the contributions resulting from multiplication, time-of-flight, and scattering.

  4. Deformation in metallic glasses studied by synchrotron x-ray diffraction

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Dmowski, Wojciech; Egami, Takeshi; Tong, Yang

    2016-01-11

    In this study, high mechanical strength is one of the superior properties of metallic glasses which render them promising as a structural material. However, understanding the process of mechanical deformation in strongly disordered matter, such as metallic glass, is exceedingly difficult because even an effort to describe the structure qualitatively is hampered by the absence of crystalline periodicity. In spite of such challenges, we demonstrate that high-energy synchrotron X-ray diffraction measurement under stress, using a two-dimensional detector coupled with the anisotropic pair-density function (PDF) analysis, has greatly facilitated the effort of unraveling complex atomic rearrangements involved in the elastic, anelastic,more » and plastic deformation of metallic glasses. Even though PDF only provides information on the correlation between two atoms and not on many-body correlations, which are often necessary in elucidating various properties, by using stress as means of exciting the system we can garner rich information on the nature of the atomic structure and local atomic rearrangements during deformation in glasses.« less

  5. Sharp semiconductor-to-metal transition of VO{sub 2} thin films on glass substrates

    SciTech Connect (OSTI)

    Jian, Jie; Chen, Aiping; Zhang, Wenrui; Wang, Haiyan

    2013-12-28

    Outstanding phase transition properties of vanadium dioxide (VO{sub 2}) thin films on amorphous glass were achieved and compared with the ones grown on c-cut sapphire and Si (111) substrates, all by pulsed laser deposition. The films on glass substrate exhibit a sharp semiconductor-to-metal transition (∼4.3 °C) at a near bulk transition temperature of ∼68.4 °C with an electrical resistance change as high as 3.2 × 10{sup 3} times. The excellent phase transition properties of the films on glass substrate are correlated with the large grain size and low defects density achieved. The phase transition properties of VO{sub 2} films on c-cut sapphire and Si (111) substrates were found to be limited by the high defect density.

  6. Orbital glass state of the nearly metallic spinel cobalt vanadate

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Koborinai, R.; Dissanayake, Sachith E.; Reehuis, M.; Matsuda, Masaaki; Kajita, T.; Kuwahara, H.; Lee, Seung -Hun; Katsufuji, T.

    2016-01-19

    Strain, magnetization, dielectric relaxation, and unpolarized and polarized neutron diffraction measurements were performed to study the magnetic and structural properties of spinel Co1–xV2+xO4. The strain measurement indicates that, upon cooling, ΔL/L in the order of ~10–4 starts increasing below TC, becomes maximum at Tmax, and then decreases and changes its sign at T*. Neutron measurements indicate that a collinear ferrimagnetic order develops below TC and upon further cooling noncollinear ferrimagnetic ordering occurs below Tmax. At low temperatures, the dielectric constant exhibits a frequency dependence, indicating slow dynamics. Lastly, these results indicate the existence of an orbital glassy state at lowmore » temperatures in this nearly metallic frustrated magnet.« less

  7. Report on Development of Concepts for the Advanced Casting System in Support of the Deployment of a Remotely Operable Research Scale Fuel Fabrication Facility for Metal Fuel

    SciTech Connect (OSTI)

    Ken Marsden

    2007-03-01

    Demonstration of recycle processes with low transuranic losses is key to the successful implementation of the Global Nuclear Energy Partnership strategy to manage spent fuel. It is probable that these recycle processes will include remote fuel fabrication. This report outlines the strategy to develop and implement a remote metal fuel casting process with minimal transuranic losses. The approach includes a bench-scale casting system to develop materials, methods, and perform tests with transuranics, and an engineering-scale casting system to demonstrate scalability and remote operability. These systems will be built as flexible test beds allowing exploration of multiple fuel casting approaches. The final component of the remote fuel fabrication demonstration culminates in the installation of an advanced casting system in a hot cell to provide integrated remote operation experience with low transuranic loss. Design efforts and technology planning have begun for the bench-scale casting system, and this will become operational in fiscal year 2008, assuming appropriate funding. Installation of the engineering-scale system will follow in late fiscal year 2008, and utilize materials and process knowledge gained in the bench-scale system. Assuming appropriate funding, the advanced casting system will be installed in a remote hot cell at the end of fiscal year 2009.

  8. Mechanical Properties - Structure Correlation for Commercial Specification of Cast Particulate Metal Matrix Composites

    SciTech Connect (OSTI)

    Pradeep Rohatgi

    2002-12-31

    In this research, the effects of casting foundry, testing laboratory, surface conditions, and casting processes on the mechanical properties of A359-SiC composites were identified. To observe the effects, A359-SiC composites with 20 and 305 SiC particles were cast at three different foundries and tested at three different laboratories. The composites were cast in sand and permanent molds and tested as-cast and machined conditions. To identify the effect of the volume fraction and distribution of particles on the properties of the composites, particle distribution was determined using Clemex Image analysis systems, and particle volume fraction was determined using wet chemical analysis and Clemex Image analysis systems. The microstructure and fractured surfaces of the samples were analyzed using SEM, and EDX analysis was done to analyze chemical reaction between the particles and the matrix. The results of the tensile strengths exhibited that the tensile strengths depend on the density and porosity of the composites; in general the higher tensile strength is associated with lower porosity and higher density. In some cases, composites with lower density were higher than these with higher density. In the Al-20% SiC samples, the composites with more inclusions exhibited a lower tensile strength than the ones with fewer inclusions. This suggests that macroscopic casting defects such as micro-porosity, shrinkage porosity and inclusions appear to strongly influence the tensile strength more than the microstructure and particle distribution. The fatigue properties of A359/20 vol.% SiC composites were investigated under strain controlled conditions. Hysteresis loops obtained from strain controlled cyclic loading of 20% SiCp reinforced material did not exhibit any measurable softening or hardening. The fatigue life of Al-20% SiC heat treated alloy at a given total strain showed wide variation in fatigue life, which appeared to be related to factors such as inclusions

  9. On a solution to the problem of the poor cyclic fatigue resistance of bulk metallic glasses

    SciTech Connect (OSTI)

    Launey, Maximilien E.; Hofmann, Douglas C.; Johnson, William L.; Ritchie, Robert O.

    2009-01-09

    The recent development of metallic glass-matrix composites represents a particular milestone in engineering materials for structural applications owing to their remarkable combinations of strength and toughness. However, metallic glasses are highly susceptible to cyclic fatigue damage and previous attempts to solve this problem have been largely disappointing. Here we propose and demonstrate a microstructural design strategy to overcome this limitation by matching the microstructural length scales (of the second phase) to mechanical crack-length scales. Specifically, semi-solid processing is used to optimize the volume fraction, morphology, and size of second phase dendrites to confine any initial deformation (shear banding) to the glassy regions separating dendrite arms having length scales of {approx} 2 {micro}m, i.e., to less than the critical crack size for failure. Confinement of the damage to such interdendritic regions results in enhancement of fatigue lifetimes and increases the fatigue limit by an order of magnitude making these 'designed' composites as resistant to fatigue damage as high-strength steels and aluminum alloys. These design strategies can be universally applied to any other metallic glass systems.

  10. National Metal Casting Research Institute final report. Development of an automated ultrasonic inspection cell for detecting subsurface discontinuities in cast gray iron. Volume 3

    SciTech Connect (OSTI)

    Burningham, J.S.

    1995-08-01

    This inspection cell consisted of an ultrasonic flaw detector, transducer, robot, immersion tank, computer, and software. Normal beam pulse-echo ultrasonic nondestructive testing, using the developed automated cell, was performed on 17 bosses on each rough casting. Ultrasonic transducer selection, initial inspection criteria, and ultrasonic flow detector (UFD) setup parameters were developed for the gray iron castings used in this study. The software were developed for control of the robot and UFD in real time. The software performed two main tasks: emulating the manual operation of the UFD, and evaluating the ultrasonic signatures for detecting subsurface discontinuities. A random lot of 105 castings were tested; the 100 castings that passed were returned to the manufacturer for machining into finished parts and then inspection. The other 5 castings had one boss each with ultrasonic signatures consistent with subsurface discontinuities. The cell was successful in quantifying the ultrasonic echo signatures for the existence of signature characteristics consistent with Go/NoGo criteria developed from simulated defects. Manual inspection showed that no defects in the areas inspected by the automated cell avoided detection in the 100 castings machined into finished parts. Of the 5 bosses found to have subsurface discontinuities, two were verified by manual inspection. The cell correctly classified 1782 of the 1785 bosses (99.832%) inspected.

  11. Field Evaluations of Low-Frequency SAFT-UT on Cast Stainless Steel and Dissimilar Metal Weld Components

    SciTech Connect (OSTI)

    Diaz, Aaron A.; Harris, R. V.; Doctor, Steven R.

    2008-11-01

    This report documents work performed at the Pacific Northwest National Laboratory (PNNL) in Richland, Washington, and at the Electric Power Research Institute's (EPRI) Nondestructive Examination (NDE) Center in Charlotte, North Carolina, on evalutating a low frequency ultrasonic inspection technique used for examination of cast stainless steel (CSS) and dissimilar metal (DMW) reactor piping components. The technique uses a zone-focused, multi-incident angle, low frequency (250-450 kHz) inspection protocol coupled with the synthetic aperture focusing technique (SAFT). The primary focus of this work is to provide information to the United States Nuclear Regulatory Commission on the utility, effectiveness and reliability of ultrasonic testing (UT) inspection techniques as related to the inservice ultrasonic inspection of coarse grained primary piping components in pressurized water reactors (PWRs).

  12. Coincidence of collective relaxation anomaly and specific heat peak in a bulk metallic glass-forming liquid

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Jaiswal, Abhishek; Podlesynak, Andrey; Ehlers, Georg; Mills, Rebecca; O'Keeffe, Stephanie; Stevick, Joseph; Kempton, James; Jelbert, Glenton; Dmowski, Wojciech; Lokshin, Konstantin; et al

    2015-07-21

    The study of multicomponent metallic liquids' relaxational behavior is still the key to understanding and improving the glass-forming abilities of bulk metallic glasses. Here, we report measurements of the collective relaxation times in a melted bulk metallic glass (LM601Zr51Cu36Ni4Al9) in the kinetic regime (Q: 1.5–4.0Å–1) using quasielastic neutron scattering. The results reveal an unusual slope change in the Angell plots of this metallic liquid's collective relaxation time around 950°C, beyond the material's melting point. Measurement of specific heat capacity also reveals a peak around the same temperature. Adams-Gibbs theory is used to rationalize the coincidence, which motivates more careful experimentalmore » and computational studies of the metallic liquids in the future.« less

  13. Coincidence of collective relaxation anomaly and specific heat peak in a bulk metallic glass-forming liquid

    SciTech Connect (OSTI)

    Jaiswal, Abhishek; Podlesynak, Andrey; Ehlers, Georg; Mills, Rebecca; O'Keeffe, Stephanie; Stevick, Joseph; Kempton, James; Jelbert, Glenton; Dmowski, Wojciech; Lokshin, Konstantin; Egami, Takeshi; Zhang, Yang

    2015-07-21

    The study of multicomponent metallic liquids' relaxational behavior is still the key to understanding and improving the glass-forming abilities of bulk metallic glasses. Here, we report measurements of the collective relaxation times in a melted bulk metallic glass (LM601Zr51Cu36Ni4Al9) in the kinetic regime (Q: 1.5–4.0Å–1) using quasielastic neutron scattering. The results reveal an unusual slope change in the Angell plots of this metallic liquid's collective relaxation time around 950°C, beyond the material's melting point. Measurement of specific heat capacity also reveals a peak around the same temperature. Adams-Gibbs theory is used to rationalize the coincidence, which motivates more careful experimental and computational studies of the metallic liquids in the future.

  14. Second-Nearest-Neighbor Correlations from Connection of Atomic Packing Motifs in Metallic Glasses and Liquids

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Ding, Jun; Ma, Evan; Asta, Mark; Ritchie, Robert O.

    2015-11-30

    Using molecular dynamics simulations, we have studied the atomic correlations characterizing the second peak in the radial distribution function (RDF) of metallic glasses and liquids. The analysis was conducted from the perspective of different connection schemes of atomic packing motifs, based on the number of shared atoms between two linked coordination polyhedra. The results demonstrate that the cluster connections by face-sharing, specifically with three common atoms, are most favored when transitioning from the liquid to glassy state, and exhibit the stiffest elastic response during shear deformation. These properties of the connections and the resultant atomic correlations are generally the samemore » for different types of packing motifs in different alloys. Splitting of the second RDF peak was observed for the inherent structure of the equilibrium liquid, originating solely from cluster connections; this trait can then be inherited in the metallic glass formed via subsequent quenching of the parent liquid through the glass transition, in the absence of any additional type of local structural order. In conclusion, increasing ordering and cluster connection during cooling, however, may tune the position and intensity of the split peaks.« less

  15. Second-Nearest-Neighbor Correlations from Connection of Atomic Packing Motifs in Metallic Glasses and Liquids

    SciTech Connect (OSTI)

    Ding, Jun; Ma, Evan; Asta, Mark; Ritchie, Robert O.

    2015-11-30

    Using molecular dynamics simulations, we have studied the atomic correlations characterizing the second peak in the radial distribution function (RDF) of metallic glasses and liquids. The analysis was conducted from the perspective of different connection schemes of atomic packing motifs, based on the number of shared atoms between two linked coordination polyhedra. The results demonstrate that the cluster connections by face-sharing, specifically with three common atoms, are most favored when transitioning from the liquid to glassy state, and exhibit the stiffest elastic response during shear deformation. These properties of the connections and the resultant atomic correlations are generally the same for different types of packing motifs in different alloys. Splitting of the second RDF peak was observed for the inherent structure of the equilibrium liquid, originating solely from cluster connections; this trait can then be inherited in the metallic glass formed via subsequent quenching of the parent liquid through the glass transition, in the absence of any additional type of local structural order. In conclusion, increasing ordering and cluster connection during cooling, however, may tune the position and intensity of the split peaks.

  16. Peculiarities and application perspectives of metal-ion implants in glasses

    SciTech Connect (OSTI)

    Mazzoldi, P.; Gonella, F.; Arnold, G.W.; Battaglin, G.; Bertoncello, R.

    1993-12-31

    Ion implantation in insulators causes modifications in the refractive-index as a result of radiation damage, phase separation, or compound formation. As a consequence, light waveguides may be formed with interesting applications in the field of optoelectronics. Recently implantation of metals ions (e.g. silver, copper, gold, lead,...) showed the possibility of small radii colloidal particles formation, in a thin surface layer of the glass substrate. These particles exhibit an electron plasmon resonance which depends on the optical constants of the implanted metal and on the refractive-index of the glass host. The non-linear optical properties of such colloids, in particular the enhancement of optical Kerr susceptibility, suggest that the, ion implantation technique may play an important role for the production of all-optical switching devices. In this paper an analysis of the state-of-the-art of the research in this field will be presented in the framework of ion implantation in glass physics and chemistry.

  17. A National Assistance Extension Program for Metal Casting: a foundation industry. Final report for the period February 16, 1994 through May 15, 1997

    SciTech Connect (OSTI)

    1997-09-01

    The TRP award was proposed as an umbrella project to build infrastructure and extract lessons about providing extension-enabling services to the metal casting industry through the national network of Manufacturing Technology Center`s (MTC`s). It targeted four discrete task areas required for the MCC to service the contemplated needs of industry, and in which the MCC had secured substantial involvement of partner organizations. Task areas identified included Counter-Gravitational Casting, Synchronous Manufacturing, Technology Deployment, and Facility and Laboratory Improvements. Each of the task areas includes specific subtasks which are described.

  18. Advanced Melting Technologies: Energy Saving Concepts and Opportunities for the Metal Casting Industry

    SciTech Connect (OSTI)

    none,

    2005-11-01

    The study examines current and emerging melting technologies and discusses their technical barriers to scale-up issues and research needed to advance these technologies, improving melting efficiency, lowering metal transfer heat loss, and reducing scrap.

  19. Investigation of fracture mechanical behavior of nodular cast iron and welded joints with parent-material-like weld metal

    SciTech Connect (OSTI)

    Baer, W.; Pusch, G.

    1995-12-31

    The focus of the investigations was the determination of fracture mechanical characteristics and crack resistance curves of the J-Integral and CTOD concept by application of the partial unloading compliance technique and D.C. potential drop technique (four point bend) under static load. The results show a close correlation between crack initiation values as well as crack resistance curves and graphite morphology parameters determined by means of quantitative microstructural analysis where the influence of the matrix (distance of graphite particles) dominates the crack resistance and fracture performance of ferritic nodular cast iron under consideration of the notch effect of graphite particles. SEM in-situ tensile tests showed that due to a beneficial shielding effect of the strength overmatching parent-material-like weld metal (mis-match ratio M = 1.21), cracks positioned directly in the plane of the fusion line did not deviate into the weld metal in spite of its lower toughness compared to that of the parent material. They also showed an unsymmetrical formation of damage in front of the crack tip.

  20. Casting fine grained, fully dense, strong inorganic materials

    SciTech Connect (OSTI)

    Brown, Sam W.; Spencer, Larry S.; Phillips, Michael R.

    2015-11-24

    Methods and apparatuses for casting inorganic materials are provided. The inorganic materials include metals, metal alloys, metal hydrides and other materials. Thermal control zones may be established to control the propagation of a freeze front through the casting. Agitation from a mechanical blade or ultrasonic energy may be used to reduce porosity and shrinkage in the casting. After solidification of the casting, the casting apparatus may be used to anneal the cast part.

  1. Microyielding of core-shell crystal dendrites in a bulk-metallic-glass matrix composite

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Huang, E. -Wen; Qiao, Junwei; Winiarski, Bartlomiej; Lee, Wen -Jay; Scheel, Mario; Chuang, Chih -Pin; Liaw, Peter K.; Lo, Yu -Chieh; Zhang, Yong; Di Michiel, Marco

    2014-03-18

    In-situ synchrotron x-ray experiments have been used to follow the evolution of the diffraction peaks for crystalline dendrites embedded in a bulk metallic glass matrix subjected to a compressive loading-unloading cycle. We observe irreversible diffraction-peak splitting even though the load does not go beyond half of the bulk yield strength. The chemical analysis coupled with the transmission electron microscopy mapping suggests that the observed peak splitting originates from the chemical heterogeneity between the core (major peak) and the stiffer shell (minor peak) of the dendrites. A molecular dynamics model has been developed to compare the hkl-dependent microyielding of the bulkmore » metallic-glass matrix composite. As a result, the complementary diffraction measurements and the simulation results suggest that the interfaces between the amorphous matrix and the (211) crystalline planes relax under prolonged load that causes a delay in the reload curve which ultimately catches up with the original path.« less

  2. Strip casting apparatus and method

    DOE Patents [OSTI]

    Williams, R.S.; Baker, D.F.

    1988-09-20

    Strip casting apparatus including a molten-metal-holding container and a nozzle to deposit molten metal onto a moving chill drum to directly cast continuous metallic strip. The nozzle body includes a slot bounded between a back and a front lip. The slot width exceeds about 20 times the gap distance between the nozzle and the chill drum surface. Preferably, the slot width exceeds 0.5 inch. This method of strip casting minimizes pressure drop, insuring better metal-to-chill-drum contact which promotes heat transfer and results in a better quality metallic strip. 6 figs.

  3. Strip casting apparatus and method

    DOE Patents [OSTI]

    Williams, Robert S.; Baker, Donald F.

    1988-01-01

    Strip casting apparatus including a molten-metal-holding container and a nozzle to deposit molten metal onto a moving chill drum to directly cast continuous metallic strip. The nozzle body includes a slot bounded between a back and a front lip. The slot width exceeds about 20 times the gap distance between the nozzle and the chill drum surface. Preferably, the slot width exceeds 0.5 inch. This method of strip casting minimizes pressure drop, insuring better metal-to-chill-drum contact which promotes heat transfer and results in a better quality metallic strip.

  4. Uranium at Y-12: Casting | Y-12 National Security Complex

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Casting Uranium at Y-12: Casting Posted: July 22, 2013 - 3:42pm | Y-12 Report | Volume 10, Issue 1 | 2013 Buttons and other recycled metal are used in casting components for ...

  5. Smoothing metallic glasses without introducing crystallization by gas cluster ion beam

    SciTech Connect (OSTI)

    Shao, Lin; Chen, Di; Myers, Michael; Wang, Jing; Tilakaratne, Buddhi; Wijesundera, Dharshana; Chu, Wei-Kan; Xie, Guoqiang; Zare, Arezoo; Lucca, Don A.

    2013-03-11

    We show that 30 keV Ar cluster ion bombardment of Ni{sub 52.5}Nb{sub 10}Zr{sub 15}Ti{sub 15}Pt{sub 7.5} metallic glass (MG) can remove surface mountain-like features and reduce the root mean square surface roughness from 12 nm to 0.7 nm. X-ray diffraction analysis reveals no crystallization after cluster ion irradiation. Molecular dynamics simulations show that, although damage cascades lead to local melting, the subsequent quenching rate is a few orders of magnitude higher than the critical cooling rate for MG formation, thus the melted zone retains its amorphous nature down to room temperature. These findings can be applied to obtain ultra-smooth MGs without introducing crystallization.

  6. Deformation-induced spatiotemporal fluctuation, evolution and localization of strain fields in a bulk metallic glass

    SciTech Connect (OSTI)

    Wu, Yuan; Bei, Hongbin; Wang, Yanli; Lu, Zhaoping; George, Easo P.; Gao, Yanfei

    2015-05-16

    Deformation behavior and local strain evolutions upon loading and unloading of a bulk metallic glass (BMG) were systematically investigated by in situ digital image correlation (DIC). Distinct fluctuations and irreversible local strains were observed before the onset of macroscopic yielding. Statistical analysis shows that these fluctuations might be related to intrinsic structural heterogeneities, and that the evolution history and characteristics of local strain fields play an important role in the subsequent initiation of shear bands. Effects of sample size, pre-strain, and loading conditions were systematically analyzed in terms of the probability distributions of the resulting local strain fields. It is found that a higher degree of local shear strain heterogeneity corresponds to a more ductile stressestrain curve. Implications of these findings are discussed for the design of new materials.

  7. Deformation-induced spatiotemporal fluctuation, evolution and localization of strain fields in a bulk metallic glass

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Wu, Yuan; Bei, Hongbin; Wang, Yanli; Lu, Zhaoping; George, Easo P.; Gao, Yanfei

    2015-05-16

    Deformation behavior and local strain evolutions upon loading and unloading of a bulk metallic glass (BMG) were systematically investigated by in situ digital image correlation (DIC). Distinct fluctuations and irreversible local strains were observed before the onset of macroscopic yielding. Statistical analysis shows that these fluctuations might be related to intrinsic structural heterogeneities, and that the evolution history and characteristics of local strain fields play an important role in the subsequent initiation of shear bands. Effects of sample size, pre-strain, and loading conditions were systematically analyzed in terms of the probability distributions of the resulting local strain fields. It ismore » found that a higher degree of local shear strain heterogeneity corresponds to a more ductile stressestrain curve. Implications of these findings are discussed for the design of new materials.« less

  8. MOLDS FOR CASTING PLUTONIUM

    DOE Patents [OSTI]

    Anderson, J.W.; Miley, F.; Pritchard, W.C.

    1962-02-27

    A coated mold for casting plutonium comprises a mold base portion of a material which remains solid and stable at temperatures as high as the pouring temperature of the metal to be cast and having a thin coating of the order of 0.005 inch thick on the interior thereof. The coating is composed of finely divided calcium fluoride having a particle size of about 149 microns. (AEC)

  9. System performance and cost sensitivity comparisons of stretched membrane heliostat reflectors with current generation glass/metal concepts

    SciTech Connect (OSTI)

    Murphy, L.M.; Anderson, J.V.; Short, W.; Wendelin, T.

    1985-12-01

    Heliostat costs have long been recognized as a major factor in the cost of solar central receiver plants. Research on stretched membrane heliostats has been emphasized because of their potential as a cost-effective alternative to current glass/metal designs. However, the cost and performance potential of stretched membrane heliostats from a system perspective has not been studied until this time. The optical performance of individual heliostats is predicted here using results established in previous structural studies. These performance predictions are used to compare both focused and unfocused stretched membrane heliostats with state-of-the-art glass/metal heliostats from a systems perspective. We investigated the sensitivity of the relative cost and performance of fields of heliostats to a large number of parameter variations, including system size, delivery temperature, heliostat module size, surface specularity, hemispherical reflectance, and macroscopic surface quality. The results indicate that focused stretched membrane systems should have comparable performance levels to those of current glass/metal heliostat systems. Further, because of their relatively lower cost, stretched membrane heliostats should provide an economically attractive alternative to current glass/metal heliostats over essentially the entire range of design parameters studied. Unfocused stretched membrane heliostats may also be attractive for a somewhat more limited range of applications, including the larger plant sizes and lower delivery temperatures.

  10. Improvement of the Lost Foam Casting Process

    Broader source: Energy.gov [DOE]

    Casting is an energy-intensive manufacturing process within the metal casting and aluminum industries, requiring natural gas to melt aluminum and electricity to run equipment. The higher-than...

  11. Strength statistics of single crystals and metallic glasses under small stressed volumes

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Gao, Yanfei; Bei, Hongbin

    2016-05-13

    It has been well documented that plastic deformation of crystalline and amorphous metals/alloys shows a general trend of “smaller is stronger”. The majority of the experimental and modeling studies along this line have been focused on finding and reasoning the scaling slope or exponent in the logarithmic plot of strength versus size. In contrast to this view, here we show that the universal picture should be the thermally activated nucleation mechanisms in small stressed volume, the stochastic behavior as to find the weakest links in intermediate sizes of the stressed volume, and the convolution of these two mechanisms with respectmore » to variables such as indenter radius in nanoindentation pop-in, crystallographic orientation, pre-strain level, sample length as in uniaxial tests, and others. Furthermore, experiments that cover the entire spectrum of length scales and a unified model that treats both thermal activation and spatial stochasticity have discovered new perspectives in understanding and correlating the strength statistics in a vast of observations in nanoindentation, micro-pillar compression, and fiber/whisker tension tests of single crystals and metallic glasses.« less

  12. DEVELOPMENT OF GLASS COMPOSITIONS TO IMMOBILIZE ALKALI, ALKALINE EARTH, LANTHANIDE AND TRANSITION METAL FISSION PRODUCTS FROM NUCLEAR FUEL REPROCESSING

    SciTech Connect (OSTI)

    Marra, J.; Billings, A.

    2009-06-24

    The Advanced Fuel Cycle Initiative (AFCI) waste management strategy revolves around specific treatment of individual or groups of separated waste streams. A goal for the separations processes is to efficiently manage the waste to be dispositioned as high level radioactive waste. The Advanced Fuel Cycle Initiative (AFCI) baseline technology for immobilization of the lanthanide (Ln) and transition metal fission product (TM) wastes is vitrification into a borosilicate glass. A current interest is to evaluate the feasibility of vitrifying combined waste streams to most cost effectively immobilize the wastes resulting from aqueous fuel reprocessing. Studies showed that high waste loadings are achievable for the Ln only (Option 1) stream. Waste loadings in excess of 60 wt % (on a calcined oxide basis) were demonstrated via a lanthanide borosilicate (LaBS) glass. The resulting glasses had excellent relative durability as determined by the Product Consistency Test (PCT). For a combined Ln and TM waste stream glass (Option 2), noble metal solubility was found to limit waste loading. However, the measured PCT normalized elemental releases for this glass were at least an order of magnitude below that of Environmental Assessment (EA) glass. Current efforts to evaluate the feasibility of vitrifying combined Ln, TM, alkali (Cs is the primary radionuclide of concern) and alkaline earth (Sr is the primary radionuclide of concern) wastes (Option 3) have shown that these approaches are feasible. However, waste loading limitations with respect to heat load (Cs/Sr loading), molybdenum solubility and/or noble metal solubility will likely be realized and must be considered in determining the cost effectiveness of these approaches.

  13. DEVELOPMENT OF GLASS COMPOSITIONS TO IMMOBILIZE ALKALI, ALKALINE EARTH, LANTHANIDE AND TRANSITION METAL FISSION PRODUCTS FROM NUCLEAR FUEL REPROCESSING

    SciTech Connect (OSTI)

    Marra, James C.; Billings, Amanda Y.; Crum, Jarrod V.; Ryan, Joseph V.; Vienna, John D.

    2010-02-26

    The Advanced Fuel Cycle Initiative (AFCI) waste management strategy revolves around specific treatment of individual or groups of separated waste streams. A goal for the separations processes is to efficiently manage the waste to be dispositioned as high level radioactive waste. The Advanced Fuel Cycle Initiative (AFCI) baseline technology for immobilization of the lanthanide (Ln) and transition metal fission product (TM) wastes is vitrification into a borosilicate glass. A current interest is to evaluate the feasibility of vitrifying combined waste streams to most cost effectively immobilize the wastes resulting from aqueous fuel reprocessing. Studies showed that high waste loadings are achievable for the Ln only (Option 1) stream. Waste loadings in excess of 60 wt % (on a calcined oxide basis) were demonstrated via a lanthanide borosilicate (LaBS) glass. The resulting glasses had excellent relative durability as determined by the Product Consistency Test (PCT). For a combined Ln and TM waste stream glass (Option 2), noble metal solubility was found to limit waste loading. However, the measured PCT normalized elemental releases for this glass were at least an order of magnitude below that of Environmental Assessment (EA) glass. Current efforts to evaluate the feasibility of vitrifying combined Ln, TM, alkali (Cs is the primary radionuclide of concern) and alkaline earth (Sr is the primary radionuclide of concern) wastes (Option 3) have shown that these approaches are feasible. However, waste loading limitations with respect to heat load (Cs/Sr loading), molybdenum solubility and/or noble metal solubility will likely be realized and must be considered in determining the cost effectiveness of these approaches.

  14. Magnetocaloric effect in heavy rare-earth elements doped Fe-based bulk metallic glasses with tunable Curie temperature

    SciTech Connect (OSTI)

    Li, Jiawei; Huo, Juntao; Chang, Chuntao E-mail: dujun@nimte.ac.cn; Du, Juan E-mail: dujun@nimte.ac.cn; Man, Qikui; Wang, Xinmin; Li, Run-Wei; Law, Jiayan

    2014-08-14

    The effects of heavy rare earth (RE) additions on the Curie temperature (T{sub C}) and magnetocaloric effect of the Fe-RE-B-Nb (RE = Gd, Dy and Ho) bulk metallic glasses were studied. The type of dopping RE element and its concentration can easily tune T{sub C} in a large temperature range of 120 K without significantly decreasing the magnetic entropy change (ΔS{sub M}) and refrigerant capacity (RC) of the alloys. The observed values of ΔS{sub M} and RC of these alloys compare favorably with those of recently reported Fe-based metallic glasses with enhanced RC compared to Gd{sub 5}Ge{sub 1.9}Si{sub 2}Fe{sub 0.1}. The tunable T{sub C} and large glass-forming ability of these RE doped Fe-based bulk metallic glasses can be used in a wide temperature range with the final required shapes.

  15. Roles of nanoclusters in shear banding and plastic deformation of bulk metallic glasses

    SciTech Connect (OSTI)

    Nieh, T.G.

    2012-07-31

    During the course of this research we published 33 papers in various physics/material journals. We select four representing papers in this report and their results are summarized as follows. I. To study shear banding process, it is pertinent to know the intrinsic shear strain rate within a propagating shear band. To this aim, we used nanoindentation technique to probe the mechanical response of a Au49Ag5.5Pd2.3Cu26.9Si16.3 bulk metallic glass in locality and found notable pop-in events associated with shear band emission. Using a free volume model and under the situation when temperature and stress/hardness are fixed result in an equation, which predicts that hardness serration caused by pop-in decreases exponentially with the strain rate. Our data are in good agreement with the prediction. The result also predicts that, when strain rate is higher than a critical strain rate of 1700 s^-1, there will be no hardness serration, thereby no pop-in. In other words, multiple shear bandings will take place and material will flow homogeneously. The critical strain rate of 1700 s^-1 can be treated as the intrinsic strain rate within a shear band. We subsequently carried out a simulation study and showed that, if the imposed strain rate was over , the shear band spacing would become so small that the entire sample would virtually behave like one major shear band. Using the datum strain rate =1700 s^-1 and based on a shear band nucleation model proposed by us, the size of a shear-band nucleus in Au-BMG was estimated to be 3 ???? 10^6 atoms, or a sphere of ~30 nm in diameter. II. Inspired by the peculiar result published in a Science article ?¢????Super Plastic Bulk Metallic Glasses at Room Temperature?¢???, we synthesized the Zr-based bulk metallic glass with a composition identical to that in the paper (Zr64.13Cu15.75Ni10.12Al10) and, subsequently, tested in compression at the same slow strain rate (~10^-4 s^-1). We found that the dominant deformation mode is

  16. Looking for footprint of bulk metallic glass in electronic and phonon heat capacities of Cu{sub 55}Hf{sub 45?x}Ti{sub x} alloys

    SciTech Connect (OSTI)

    Remenyi, G.; Biljakovi?, K.; Stareini?, D.; Dominko, D.; Risti?, R.; Babi?, E.; Figueroa, I. A.; Davies, H. A.

    2014-04-28

    We report on the heat capacity investigation of Cu{sub 55}Hf{sub 45?x}Ti{sub x} metallic glasses. The most appropriate procedure to estimate low temperature electronic and phonon contributions has been determined. Both contributions exhibit monotonous Ti concentration dependence, demonstrating that there is no relation of either the electron density of states at the Fermi level or the Debye temperature to the increased glass forming ability in the Ti concentration range x?=?1530. The thermodynamic parameters (e.g., reduced glass temperature) remain better indicators in assessing the best composition for bulk metallic glass formation.

  17. Comparison of costs for solidification of high-level radioactive waste solutions: glass monoliths vs metal matrices

    SciTech Connect (OSTI)

    Jardine, L.J.; Carlton, R.E.; Steindler, M.J.

    1981-05-01

    A comparative economic analysis was made of four solidification processes for liquid high-level radioactive waste. Two processes produced borosilicate glass monoliths and two others produced metal matrix composites of lead and borosilicate glass beads and lead and supercalcine pellets. Within the uncertainties of the cost (1979 dollars) estimates, the cost of the four processes was about the same, with the major cost component being the cost of the primary building structure. Equipment costs and operating and maintenance costs formed only a small portion of the building structure costs for all processes.

  18. Zr-based bulk metallic glass as a cylinder material for high pressure apparatuses

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Komatsu, Kazuki; Munakata, Koji; Matsubayashi, Kazuyuki; Uwatoko, Yoshiya; Yokoyama, Yoshihiko; Sugiyama, Kazumasa; Matsuda, Masaaki

    2015-05-12

    Zirconium-based bulk metallic glass (Zr-based BMG) has outstanding properties as a cylinder mate- rial for piston-cylinder high pressure apparatuses and is especially useful for neutron scattering. The piston-cylinder consisting of a Zr-based BMG cylinder with outer/inner diameters of 8.8/2.5 mm sustains pressures up to 1.81 GPa and ruptured at 2.0 GPa, with pressure values determined by the superconduct- ing temperature of lead. The neutron attenuation of Zr-based BMG is similar to that of TiZr null-scattering alloy and more transparent than that of CuBe alloy. No contamination of sharp Bragg reflections is observed in the neutron diffraction pattern for Zr-based BMG.more » The magnetic susceptibility of Zr-based BMG is similar to that of CuBe alloy; this leads to a potential application for measurements of magnetic properties under pressure.« less

  19. Loading-rate-independent delay of catastrophic avalanches in a bulk metallic glass

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Chen, S. H.; Chan, K. C.; Wang, G.; Wu, F. F.; Xia, L.; Ren, J. L.; Li, J.; Dahmen, K. A.; Liaw, P. K.

    2016-02-25

    The plastic flow of bulk metallic glasses (BMGs) is characterized by intermittent bursts of avalanches, and this trend results in disastrous failures of BMGs. In the present work, a double-side-notched BMG specimen is designed, which exhibits chaotic plastic flows consisting of several catastrophic avalanches under the applied loading. The disastrous shear avalanches have, then, been delayed by forming a stable plastic-flow stage in the specimens with tailored distances between the bottoms of the notches, where the distribution of a complex stress field is acquired. Differing from the conventional compressive testing results, such a delaying process is independent of loading rate.more » The statistical analysis shows that in the specimens with delayed catastrophic failures, the plastic flow can evolve to a critical dynamics, making the catastrophic failure more predictable than the ones with chaotic plastic flows. Lastly, the findings are of significance in understanding the plastic-flow mechanisms in BMGs and controlling the avalanches in relating solids.« less

  20. Effects of helium implantation on the tensile properties and microstructure of Ni₇₃P₂₇ metallic glass nanostructures

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Liontas, Rachel; Gu, X. Wendy; Fu, Engang; Wang, Yongqiang; Li, Nan; Mara, Nathan; Greer, Julia R.

    2014-09-10

    We report fabrication and nanomechanical tension experiments on as-fabricated and helium-implanted ~130 nm diameter Ni₇₃P₂₇ metallic glass nano-cylinders. The nano-cylinders were fabricated by a templated electroplating process and implanted with He⁺ at energies of 50, 100, 150, and 200 keV to create a uniform helium concentration of ~3 at. % throughout the nano-cylinders. Transmission electron microscopy (TEM) imaging and through-focus analysis reveal that the specimens contained ~2 nm helium bubbles distributed uniformly throughout the nano-cylinder volume. In-situ tensile experiments indicate that helium-implanted specimens exhibit enhanced ductility as evidenced by a 2-fold increase in plastic strain over as-fabricated specimens, with nomore » sacrifice in yield and ultimate tensile strengths. This improvement in mechanical properties suggests that metallic glasses may actually exhibit a favorable response to high levels of helium implantation.« less

  1. Effects of helium implantation on the tensile properties and microstructure of Ni??P?? metallic glass nanostructures

    SciTech Connect (OSTI)

    Liontas, Rachel; Gu, X. Wendy; Fu, Engang; Wang, Yongqiang; Li, Nan; Mara, Nathan; Greer, Julia R.

    2014-09-10

    We report fabrication and nanomechanical tension experiments on as-fabricated and helium-implanted ~130 nm diameter Ni??P?? metallic glass nano-cylinders. The nano-cylinders were fabricated by a templated electroplating process and implanted with He? at energies of 50, 100, 150, and 200 keV to create a uniform helium concentration of ~3 at. % throughout the nano-cylinders. Transmission electron microscopy (TEM) imaging and through-focus analysis reveal that the specimens contained ~2 nm helium bubbles distributed uniformly throughout the nano-cylinder volume. In-situ tensile experiments indicate that helium-implanted specimens exhibit enhanced ductility as evidenced by a 2-fold increase in plastic strain over as-fabricated specimens, with no sacrifice in yield and ultimate tensile strengths. This improvement in mechanical properties suggests that metallic glasses may actually exhibit a favorable response to high levels of helium implantation.

  2. Energy Consumption of Die Casting Operations

    SciTech Connect (OSTI)

    Jerald Brevick; clark Mount-Campbell; Carroll Mobley

    2004-03-15

    Molten metal processing is inherently energy intensive and roughly 25% of the cost of die-cast products can be traced to some form of energy consumption [1]. The obvious major energy requirements are for melting and holding molten alloy in preparation for casting. The proper selection and maintenance of melting and holding equipment are clearly important factors in minimizing energy consumption in die-casting operations [2]. In addition to energy consumption, furnace selection also influences metal loss due to oxidation, metal quality, and maintenance requirements. Other important factors influencing energy consumption in a die-casting facility include geographic location, alloy(s) cast, starting form of alloy (solid or liquid), overall process flow, casting yield, scrap rate, cycle times, number of shifts per day, days of operation per month, type and size of die-casting form of alloy (solid or liquid), overall process flow, casting yield, scrap rate, cycle times, number of shifts per day, days of operation per month, type and size of die-casting machine, related equipment (robots, trim presses), and downstream processing (machining, plating, assembly, etc.). Each of these factors also may influence the casting quality and productivity of a die-casting enterprise. In a die-casting enterprise, decisions regarding these issues are made frequently and are based on a large number of factors. Therefore, it is not surprising that energy consumption can vary significantly from one die-casting enterprise to the next, and within a single enterprise as function of time.

  3. Fillability of Thin-Wall Steel Castings

    SciTech Connect (OSTI)

    Robert C. Voigt; Joseph Bertoletti; Andrew Kaley; Sandi Ricotta; Travis Sunday

    2002-07-30

    The use of steel components is being challenged by lighter nonferrous or cast iron components. The development of techniques for enhancing and ensuring the filability of thin-wall mold cavities is most critical for thinner wall cast steel production. The purpose of this research was to develop thin-wall casting techniques that can be used to reliably produce thin-wall castings from traditional gravity poured sand casting processes. The focus of the research was to enhance the filling behavior to prevent misrunds. Experiments were conducted to investigate the influence of various foundry variables on the filling of thin section steel castings. These variables include casting design, heat transfer, gating design, and metal fluidity. Wall thickness and pouring temperature have the greatest effect on casting fill. As wall thickness increases the volume to surface area of the casting increases, which increases the solidification time, allowing the metal to flow further in thicker sect ions. Pouring time is another significant variable affecting casting fill. Increases or decreases of 20% in the pouring time were found to have a significant effect on the filling of thin-wall production castings. Gating variables, including venting, pouring head height, and mold tilting also significantly affected thin-wall casting fill. Filters offer less turbulent, steadier flow, which is appropriate for thicker castings, but they do not enhance thin-wall casting fill.

  4. Ford Cleveland: Inside-Out Analysis Identifies Energy and Cost Savings Opportunities at Metal Casting Plant; Industrial Technologies Program Metal Casting BestPractices Plant-Wide Assessment Case Study

    SciTech Connect (OSTI)

    Not Available

    2003-09-01

    The Ford Cleveland Casting Plant used results from its plant-wide energy efficiency assessment to identify 16 energy- and cost-saving projects. These projects addressed combustion, compressed air, water, steam, motor drive, and lighting systems. When implemented, the projects should save a total of$3.28 million per year. In addition, two long-term projects were identified that together would represent another$9.5 million in cost savings.

  5. Bioactive Glass Scaffolds for Bone Regeneration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    have been used for the fabrication of glass scaffolds, including polymer foam replication, sol-gel, and freeze-casting; however, the low compressive strength of these...

  6. Local Probe into the Atomic Structure of Metallic Glasses using EELS

    SciTech Connect (OSTI)

    Alamgir, F.M.; Ito, Y. Schwarz, R.B.

    1999-11-30

    Electron energy loss spectroscopy (EELS) is used to extract information on the topological arrangement of atoms around Pd in the bulk-glass-forming Pd{sub 60}Ni{sub 20}P{sub 20}. It is found that the environment around Pd in the glass is only a slight modification of the Pd crystalline structure. However, the modification is enough to allow this alloy to form a glass in bulk. In examining the differences between the structure of crystalline Pd and glassy Pd{sub 60}Ni{sub 20}P{sub 20} it is concluded that incorporation of Ni and P into the structure frustrates the structure enough that glass formation becomes easy.

  7. Chemically durable nitrogen containing phosphate glasses useful for sealing to metals

    DOE Patents [OSTI]

    Day, Delbert E.; Wilder, Jr., James A.

    1984-01-01

    The chemical durability of alkali phosphate glasses is improved by incorporation of up to 23 weight percent of nitrogen. A typical phosphate glass contains: 10 to 60 mole % of Li.sub.2 O, Na.sub.2 O or K.sub.2 O; 5-40 mole % of BaO or CAO; 0-1 to 10 mole % of Al.sub.2 O.sub.3 ; and 40-70 mole % of P.sub.2 O.sub.5. Nitrides, such as AlN, are the favored additives.

  8. A new method for separating first row transition metals and actinides from synthetic melt glass

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Roman, Audrey Rae; Bond, Evelyn M.

    2016-01-14

    A new method was developed for separating Co, Fe, and Sc from complex debris matrices using the extraction chromatography resin DGA. The activation products Co-58, Mn-54, and Sc-46 were used to characterize the separation of the synthetic melt glass solutions. In the separation scheme that was developed, Au, Co, Cu, Fe, Sc, and Ti were separated from the rest of the sample constituents. In this paper, the synthetic melt glass separation method, efficiency, recoveries, and the length of procedure will be discussed. In conclusion, batch contact adsorption studies for Na and Sc for DGA resin are discussed as well.

  9. Optimization of Squeeze Casting for Aluminum Alloy Parts (Technical...

    Office of Scientific and Technical Information (OSTI)

    This study was initiated with the installation of a new production size UBE 350 Ton VSC Squeeze Casting system in the Metal Casting Laboratory at Case Western University. A ...

  10. Noble Metals and Spinel Settling in High Level Waste Glass Melters

    SciTech Connect (OSTI)

    Sundaram, S. K.; Perez, Joseph M.

    2000-09-30

    In the continuing effort to support the Defense Waste Processing Facility (DWPF), the noble metals issue is addressed. There is an additional concern about the amount of noble metals expected to be present in the future batches that will be considered for vitrification in the DWPF. Several laboratory, as well as melter-scale, studies have been completed by various organizations (mainly PNNL, SRTC, and WVDP in the USA). This letter report statuses the noble metals issue and focuses at the settling of noble metals in melters.

  11. CASTING FURNACES

    DOE Patents [OSTI]

    Ruppel, R.H.; Winters, C.E.

    1961-01-01

    A device is described for casting uranium which comprises a crucible, a rotatable table holding a plurality of molds, and a shell around both the crucible and the table. The bottom of the crucible has an eccentrically arranged pouring hole aligned with one of the molds at a time. The shell can be connected with a vacuum.

  12. Strip casting with fluxing agent applied to casting roll

    SciTech Connect (OSTI)

    Williams, R.S.; O`Malley, R.J.; Sussman, R.C.

    1997-07-29

    A strip caster for producing a continuous strip includes a tundish for containing a melt, a pair of horizontally disposed water cooled casting rolls and devices for electrostatically coating the outer peripheral chill surfaces of the casting rolls with a powder flux material. The casting rolls are juxtaposed relative to one another for forming a pouting basin for receiving the melt through a teeming tube thereby establishing a meniscus between the rolls for forming the strip. The melt is protected from the outside air by a non-oxidizing gas passed through a supply line to a sealing chamber. A preferred flux is boron oxide having a melting point of about 550 C. The flux coating enhances wetting of the steel melt to the casting roll and dissolves any metal oxide formed on the roll. 3 figs.

  13. Strip casting with fluxing agent applied to casting roll

    DOE Patents [OSTI]

    Williams, Robert S.; O'Malley, Ronald J.; Sussman, Richard C.

    1997-01-01

    A strip caster (10) for producing a continuous strip (24) includes a tundish (12) for containing a melt (14), a pair of horizontally disposed water cooled casting rolls (22) and devices (29) for electrostatically coating the outer peripheral chill surfaces (44) of the casting rolls with a powder flux material (56). The casting rolls are juxtaposed relative to one another for forming a pouting basin (18) for receiving the melt through a teeming tube (16) thereby establishing a meniscus (20) between the rolls for forming the strip. The melt is protected from the outside air by a non-oxidizing gas passed through a supply line (28) to a sealing chamber (26). A preferred flux is boron oxide having a melting point of about 550.degree. C. The flux coating enhances wetting of the steel melt to the casting roll and dissolves any metal oxide formed on the roll.

  14. Laser shock peening on Zr-based bulk metallic glass and its effect on plasticity: Experiment and modeling

    SciTech Connect (OSTI)

    Cao, Yunfeng; Xie, Xie; Antonaglia, James; Winiarski, Bartlomiej; Wang, Gongyao; Shin, Yung C.; Withers, Philip J.; Dahmen, Karin A.; Liaw, Peter K.

    2015-05-20

    The Zr-based bulk metallic glasses (BMGs) are a new family of attractive materials with good glass-forming ability and excellent mechanical properties, such as high strength and excellent wear resistance, which make them candidates for structural and biomedical materials. Although the mechanical behavior of BMGs has been widely investigated, their deformation mechanisms are still poorly understood. In particular, their poor ductility significantly impedes their industrial application. In the present work, we show that the ductility of Zr-based BMGs with nearly zero plasticity is improved by a laser shock peening technique. Moreover, we map the distribution of laser-induced residual stresses via the micro-slot cutting method, and then predict them using a three dimensional finite-element method coupled with a confined plasma model. Reasonable agreement is achieved between the experimental and modeling results. The analysis of serrated flow reveals plentiful and useful information of the underlying deformation process. As a result, our work provides an easy and effective way to extend the ductility of intrinsically-brittle BMGs, opening up wider applications of these materials.

  15. Laser shock peening on Zr-based bulk metallic glass and its effect on plasticity: Experiment and modeling

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Cao, Yunfeng; Xie, Xie; Antonaglia, James; Winiarski, Bartlomiej; Wang, Gongyao; Shin, Yung C.; Withers, Philip J.; Dahmen, Karin A.; Liaw, Peter K.

    2015-05-20

    The Zr-based bulk metallic glasses (BMGs) are a new family of attractive materials with good glass-forming ability and excellent mechanical properties, such as high strength and excellent wear resistance, which make them candidates for structural and biomedical materials. Although the mechanical behavior of BMGs has been widely investigated, their deformation mechanisms are still poorly understood. In particular, their poor ductility significantly impedes their industrial application. In the present work, we show that the ductility of Zr-based BMGs with nearly zero plasticity is improved by a laser shock peening technique. Moreover, we map the distribution of laser-induced residual stresses via themore » micro-slot cutting method, and then predict them using a three dimensional finite-element method coupled with a confined plasma model. Reasonable agreement is achieved between the experimental and modeling results. The analysis of serrated flow reveals plentiful and useful information of the underlying deformation process. As a result, our work provides an easy and effective way to extend the ductility of intrinsically-brittle BMGs, opening up wider applications of these materials.« less

  16. Insulating and metallic spin glass in Ni-doped KxFe2-ySe? single crystals

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Ryu, Hyejin; Abeykoon, Milinda; Wang, Kefeng; Lei, Hechang; Lazarevic, N.; Warren, J. B.; Bozin, E. S.; Popovic, Z. V.; Petrovic, C.

    2015-05-04

    We report electron doping effects by Ni in KxFe2-?-yNiySe? (0.06 ? y ? 1.44) single crystal alloys. A rich ground state phase diagram is observed. A small amount of Ni (~ 4%) suppressed superconductivity below 1.8 K, inducing insulating spin glass magnetic ground state for higher Ni content. With further Ni substitution, metallic resistivity is restored. For high Ni concentration in the lattice the unit cell symmetry is high symmetry I4/mmm with no phase separation whereas both I4/m + I4/mmm space groups were detected in the phase separated crystals when concentration of Ni morewith the absence of crystalline Fe vacancy order.less

  17. Enhanced sensitivity of Raman spectroscopy for tritium gas analysis using a metal-lined hollow glass fiber

    SciTech Connect (OSTI)

    Rupp, S.; Schloesser, M.; Bornschein, B.; James, T.M.; Telle, H.H.

    2015-03-15

    The precise compositional analysis of tritium-containing gases is of high interest for tritium accountancy in future fusion power plants. Raman spectroscopy provides a fast and contact-free gas analysis procedure with high precision, thus being an advantageous tool for the named purpose. In this paper, it is shown that the sensitivity achieved with conventional Raman systems (in 90 degrees or forward/backward configurations) can be enhanced by at least one order of magnitude by using a metal-lined hollow glass fiber as the Raman cell. This leads to the ability of detecting low partial pressures of tritium within short measurement intervals (< 0.5 mbar in < 0.5 s) opening the way for real-time applications.

  18. Insulating and metallic spin glass in Ni-doped K x Fe 2 - y Se 2 single crystals

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Ryu, Hyejin; Abeykoon, Milinda; Wang, Kefeng; Lei, Hechang; Lazarevic, N.; Warren, J. B.; Bozin, E. S.; Popovic, Z. V.; Petrovic, C.

    2015-05-04

    We report electron doping effects by Ni in KxFe2-δ-yNiySe₂(0.06≤y≤1.44) single-crystal alloys. A rich ground-state phase diagram is observed. A small amount of Ni (~4%) suppressed superconductivity below 1.8 K, inducing insulating spin-glass magnetic ground state for higher Ni content. With further Ni substitution, metallic resistivity is restored. For high Ni concentration in the lattice the unit cell symmetry is high symmetry I4/mmm with no phase separation whereas both I4/m+I4/mmm space groups were detected in the phase separated crystals when concentration of Ni < Fe. The absence of superconductivity coincides with the absence of crystalline Fe vacancy order.

  19. Direct synchrotron x-ray measurements of local strain fields in elastically and plastically bent metallic glasses

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Wu, Yuan; Stoica, Alexandru Dan; Ren, Yang; Ma, Dong; Gao, Yanfei F.; Bei, Hongbin

    2015-09-03

    In situ high-energy synchrotron X-ray diffraction was conducted on elastically and plastically bent bulk metallic glass (BMG) thin plates, from which distinct local elastic strain fields were mapped spatially. These directly measured residual strain fields can be nicely interpreted by our stress analysis, and also validate a previously proposed indirect residual-stress-measurement method by relating nanoindentation hardness to residual stresses. Local shear strain variations on the cross sections of these thin plates were found in the plastically bent BMG, which however cannot be determined from the indirect indentation method. As a result, this study has important implications in designing and manipulatingmore » internal strain fields in BMGs for the purpose of ductility enhancement.« less

  20. Direct synchrotron x-ray measurements of local strain fields in elastically and plastically bent metallic glasses

    SciTech Connect (OSTI)

    Wu, Yuan; Stoica, Alexandru Dan; Ren, Yang; Ma, Dong; Gao, Yanfei F.; Bei, Hongbin

    2015-09-03

    In situ high-energy synchrotron X-ray diffraction was conducted on elastically and plastically bent bulk metallic glass (BMG) thin plates, from which distinct local elastic strain fields were mapped spatially. These directly measured residual strain fields can be nicely interpreted by our stress analysis, and also validate a previously proposed indirect residual-stress-measurement method by relating nanoindentation hardness to residual stresses. Local shear strain variations on the cross sections of these thin plates were found in the plastically bent BMG, which however cannot be determined from the indirect indentation method. As a result, this study has important implications in designing and manipulating internal strain fields in BMGs for the purpose of ductility enhancement.

  1. Effect of geometrical constraint condition on the formation of nanoscale twins in the Ni-based metallic glass composite

    SciTech Connect (OSTI)

    Lee, M.H.; Kim, B.S.; Kim, D.H.; Ott, R.T.; Sansoz, F.; Eckert, J.

    2014-04-25

    We investigated the effect of geometrically constrained stress-strain conditions on the formation of nanotwins in alpha-brass phase reinforced Ni59Zr20Ti16Si2Sn3 metallic glass (MG) matrix deformed under macroscopic uniaxial compression. The specific geometrically constrained conditions in the samples lead to a deviation from a simple uniaxial state to a multi-axial stress state, for which nanocrystallization in the MG matrix together with nanoscale twinning of the brass reinforcement is observed in localized regions during plastic flow. The nanocrystals in the MG matrix and the appearance of the twinned structure in the reinforcements indicate that the strain energy is highly confined and the local stress reaches a very high level upon yielding. Both the effective distribution of reinforcements on the strain enhancement of composite and the effects of the complicated stress states on the development of nanotwins in the second-phase brass particles are discussed.

  2. Casting methods

    DOE Patents [OSTI]

    Marsden, Kenneth C.; Meyer, Mitchell K.; Grover, Blair K.; Fielding, Randall S.; Wolfensberger, Billy W.

    2012-12-18

    A casting device includes a covered crucible having a top opening and a bottom orifice, a lid covering the top opening, a stopper rod sealing the bottom orifice, and a reusable mold having at least one chamber, a top end of the chamber being open to and positioned below the bottom orifice and a vacuum tap into the chamber being below the top end of the chamber. A casting method includes charging a crucible with a solid material and covering the crucible, heating the crucible, melting the material, evacuating a chamber of a mold to less than 1 atm absolute through a vacuum tap into the chamber, draining the melted material into the evacuated chamber, solidifying the material in the chamber, and removing the solidified material from the chamber without damaging the chamber.

  3. Bio-corrosion and cytotoxicity studies on novel Zr55Co30Ti15 and Cu60Zr20Ti20 metallic glasses

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Vincent, S.; Daiwile, A.; Devi, S. S.; Kramer, M. J.; Besser, M. F.; Murty, B. S.; Bhatt, Jatin

    2014-09-26

    Metallic glasses are a potential and compatible implant candidate for biomedical applications. In the present investigation, a comparative study between novel Zr55Co30Ti15 and Cu60Zr20Ti20 metallic glasses is carried out to evaluate in vitro biocompatibility using simulated body fluids. The bio-corrosion behavior of Zr- and Cu-based metallic glasses in different types of artificial body fluids such as artificial saliva solution, phosphate-buffered saline solution, artificial blood plasma solution, and Hank’s balanced saline solution is evaluated using potentiodynamic polarization studies at a constant body temperature of 310.15 K (37 °C). Surface morphology of samples after bio-corrosion experiments was observed by scanning electron microscopy.more » In vitro cytotoxicity test on glassy alloys were performed using human osteosarcoma cell line as per 10993-5 guidelines from International Organization for Standardization. As a result, the comparative study between Zr- and Cu-based glassy alloys provides vital information about the effect of elemental composition on biocompatibility of metallic glasses.« less

  4. CASTING APPARATUS

    DOE Patents [OSTI]

    Gray, C.F.; Thompson, R.H.

    1958-09-23

    An apparatus is described for casting small quantities of uranlum. It consists of a crucible having a hole in the bottom with a mold positioned below. A vertical rcd passes through the hole in the crucible and has at its upper end a piercing head adapted to break the oxide skin encasing a molten uranium body. An air tight cylinder surrounds the crucible and mold, and is arranged to be evacuated.

  5. Ablation Casting Evaluation for High Volume Structural Castings...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Ablation Casting Evaluation for High Volume Structural Castings Ablation Casting Evaluation for High Volume Structural Castings 2012 DOE Hydrogen and Fuel Cells Program and Vehicle ...

  6. A computational study of diffusion in a glass-forming metallic liquid

    SciTech Connect (OSTI)

    Wang, T.; Zhang, F.; Yang, L.; Fang, X. W.; Zhou, S. H.; Kramer, M. J.; Wang, C. Z.; Ho, K. M.; Napolitano, R. E.

    2015-06-09

    In this study, liquid phase diffusion plays a critical role in phase transformations (e.g. glass transformation and devitrification) observed in marginal glass forming systems such as Al-Sm. Controlling transformation pathways in such cases requires a comprehensive description of diffusivity, including the associated composition and temperature dependencies. In our computational study, we examine atomic diffusion in Al-Sm liquids using ab initio molecular dynamics (AIMD) and determine the diffusivities of Al and Sm for selected alloy compositions. Non-Arrhenius diffusion behavior is observed in the undercooled liquids with an enhanced local structural ordering. Through assessment of our AIMD result, we construct a general formulation for Al-Sm liquid, involving a diffusion mobility database that includes composition and temperature dependence. A Volmer-Fulcher-Tammann (VFT) equation is adopted for describing the non-Arrhenius behavior observed in the undercooled liquid. Furthermore, the composition dependence of diffusivity is found quite strong, even for the Al-rich region contrary to the sole previous report on this binary system. The model is used in combination with the available thermodynamic database to predict specific diffusivities and compares well with reported experimental data for 0.6 at.% and 5.6 at.% Sm in Al-Sm alloys.

  7. Composition-dependent stability of the medium-range order responsible for metallic glass formation

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Zhang, Feng; Ji, Min; Fang, Xiao-Wei; Sun, Yang; Wang, Cai-Zhuang; Mendelev, Mikhail I.; Kramer, M. J.; Napolitano, Ralph E.; Ho, Kai-Ming

    2014-09-18

    The competition between the characteristic medium-range order corresponding to amorphous alloys and that in ordered crystalline phases is central to phase selection and morphology evolution under various processing conditions. We examine the stability of a model glass system, Cu–Zr, by comparing the energetics of various medium-range structural motifs over a wide range of compositions using first-principles calculations. Furthermore, we focus specifically on motifs that represent possible building blocks for competing glassy and crystalline phases, and we employ a genetic algorithm to efficiently identify the energetically favored decorations of each motif for specific compositions. These results show that a Bergman-type motifmore » with crystallization-resisting icosahedral symmetry is energetically most favorable in the composition range 0.63 < xCu < 0.68, and is the underlying motif for one of the three optimal glass-forming ranges observed experimentally for this binary system (Li et al., 2008). This work establishes an energy-based methodology to evaluate specific medium-range structural motifs which compete with stable crystalline nuclei in deeply undercooled liquids.« less

  8. Composition-dependent stability of the medium-range order responsible for metallic glass formation

    SciTech Connect (OSTI)

    Zhang, Feng; Ji, Min; Fang, Xiao-Wei; Sun, Yang; Wang, Cai-Zhuang; Mendelev, Mikhail I.; Kramer, M. J.; Napolitano, Ralph E.; Ho, Kai-Ming

    2014-09-18

    The competition between the characteristic medium-range order corresponding to amorphous alloys and that in ordered crystalline phases is central to phase selection and morphology evolution under various processing conditions. We examine the stability of a model glass system, Cu–Zr, by comparing the energetics of various medium-range structural motifs over a wide range of compositions using first-principles calculations. Furthermore, we focus specifically on motifs that represent possible building blocks for competing glassy and crystalline phases, and we employ a genetic algorithm to efficiently identify the energetically favored decorations of each motif for specific compositions. These results show that a Bergman-type motif with crystallization-resisting icosahedral symmetry is energetically most favorable in the composition range 0.63 < xCu < 0.68, and is the underlying motif for one of the three optimal glass-forming ranges observed experimentally for this binary system (Li et al., 2008). This work establishes an energy-based methodology to evaluate specific medium-range structural motifs which compete with stable crystalline nuclei in deeply undercooled liquids.

  9. A computational study of diffusion in a glass-forming metallic liquid

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Wang, T.; Zhang, F.; Yang, L.; Fang, X. W.; Zhou, S. H.; Kramer, M. J.; Wang, C. Z.; Ho, K. M.; Napolitano, R. E.

    2015-06-09

    Liquid phase diffusion plays a critical role in phase transformations (e.g. glass transformation and devitrification) observed in marginal glass forming systems such as Al-Sm. Controlling transformation pathways in such cases requires a comprehensive description of diffusivity, including the associated composition and temperature dependencies. In the computational study reported here, we examine atomic diffusion in Al-Sm liquids using ab initio molecular dynamics (AIMD) and determine the diffusivities of Al and Sm for selected alloy compositions. Non-Arrhenius diffusion behavior is observed in the undercooled liquids with an enhanced local structural ordering. Through assessment of our AIMD result, we construct a general formulationmorefor Al-Sm liquid, involving a diffusion mobility database that includes composition and temperature dependence. A Volmer-Fulcher-Tammann (VFT) equation is adopted for describing the non-Arrhenius behavior observed in the undercooled liquid. The composition dependence of diffusivity is found quite strong, even for the Al-rich region contrary to the sole previous report on this binary system. The model is used in combination with the available thermodynamic database to predict specific diffusivities and compares well with reported experimental data for 0.6 at.% and 5.6 at.% Sm in Al-Sm alloys.less

  10. A computational study of diffusion in a glass-forming metallic liquid

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Wang, T.; Zhang, F.; Yang, L.; Fang, X. W.; Zhou, S. H.; Kramer, M. J.; Wang, C. Z.; Ho, K. M.; Napolitano, R. E.

    2015-06-09

    In this study, liquid phase diffusion plays a critical role in phase transformations (e.g. glass transformation and devitrification) observed in marginal glass forming systems such as Al-Sm. Controlling transformation pathways in such cases requires a comprehensive description of diffusivity, including the associated composition and temperature dependencies. In our computational study, we examine atomic diffusion in Al-Sm liquids using ab initio molecular dynamics (AIMD) and determine the diffusivities of Al and Sm for selected alloy compositions. Non-Arrhenius diffusion behavior is observed in the undercooled liquids with an enhanced local structural ordering. Through assessment of our AIMD result, we construct a generalmore » formulation for Al-Sm liquid, involving a diffusion mobility database that includes composition and temperature dependence. A Volmer-Fulcher-Tammann (VFT) equation is adopted for describing the non-Arrhenius behavior observed in the undercooled liquid. Furthermore, the composition dependence of diffusivity is found quite strong, even for the Al-rich region contrary to the sole previous report on this binary system. The model is used in combination with the available thermodynamic database to predict specific diffusivities and compares well with reported experimental data for 0.6 at.% and 5.6 at.% Sm in Al-Sm alloys.« less

  11. Crystallization of Zr2PdxCu(1-x) and Zr2NixCu(1-x) Metallic Glass

    SciTech Connect (OSTI)

    Min Xu

    2008-08-18

    One interesting aspect of rretallic glasses is the numerous instances of the deviation of the phase selection from the amorphous state to thermodynamically stable phases during the crystallization process. Their devitrification pathways allow us to study the relationship between the original amorphous structure and their crystalline counter parts. Among the various factors of phase selections, size and electronic effects have been most extensively studied. Elucidating the phase selection process of a glassy alloy will be helpful to fill in the puzzle of the changes from disordered to ordered structures. In this thesis, Two model Zr{sub 2}Pd{sub x}Cu{sub (1-x)} and Zr{sub 2}Ni{sub x}Cu{sub (1-x)} (x = 0, 0.25, 0.5, 0.75 and 1) glassy systems were investigated since: (1) All of the samples can be made into a homogenous metallic glass; (2) The atomic radii differ from Pd to Cu is by 11%, while Ni has nearly the identical atomic size compare to Cu. Moreover, Pd and Ni differ by only one valence electron from Cu. Thus, these systems are ideal to test the idea of the effects of electronic structure and size factors; (3) The small number of components in these pseudo binary systems readily lend themselves to theoretical modeling. Using high temperature X-ray diffraction {HTXRD) and thermal analysis, topological, size, electronic, bond and chemical distribution factors on crystallization selections in Zr{sub 2}Pd{sub x}Cu{sub (1-x)} and Zr{sub 2}Ni{sub x}Cu{sub (1-x)} metallic glass have been explored. All Zr{sub 2}Pd{sub x}Cu{sub (1-x)} compositions share the same Cu11b phase with different pathways of meta-stable, icosahedral quasicrystalline phase (i-phase), and C16 phase formations. The quasicrystal phase formation is topologically related to the increasing icosahedral short range order (SRO) with Pd content in Zr{sub 2}Pd{sub x}Cu{sub (1·x)} system. Meta-stable C16 phase is competitive with C11b phase at x = 0.5, which is dominated by electronic structure rather than

  12. The Role of Partial Crystallinity on Hydrogen Permeation in Fe–Ni–B–Mo Based Metallic Glass Membranes

    SciTech Connect (OSTI)

    Brinkman, K.; Su, D.; Fox, E.; Korinko, P.; Missimer, D.; Adams, T.

    2011-08-15

    A potentially exciting material for membrane separations are metallic glass materials due to their low cost, high elastic toughness and resistance to hydrogen embrittlement as compared to crystalline Pd-based membrane systems. However, at elevated temperatures and extended operation times structural changes including partial crystallinity may appear in these amorphous metallic systems. This study reports on the investigation of time and temperature dependent crystalline phase formation in conjunction with in situ crystallization/hydrogen permeation experiments at elevated temperatures. At temperatures near 400 C a FeNi crystalline phase appears as 22 vol.% inside the host amorphous matrix and the resulting composite structure remains stable over 3 h at temperature. The hydrogen permeation at 400 C of the partially crystalline material is similar to the fully amorphous material near 5 x 10{sup -9} mol H{sub 2}/m s Pa{sup 1/2}, while ambient temperature electrochemical permeation at 25 C revealed an order of magnitude decrease in the permeation of partially crystalline materials due to differences in the amorphous versus crystalline phase activation energy for hydrogen permeation.

  13. Atomic-scale dynamics of a model glass-forming metallic liquid: Dynamical crossover, dynamical decoupling, and dynamical clustering

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Jaiswal, Abhishek; Egami, Takeshi; Zhang, Yang

    2015-04-01

    The phase behavior of multi-component metallic liquids is exceedingly complex because of the convoluted many-body and many-elemental interactions. Herein, we present systematic studies of the dynamic aspects of such a model ternary metallic liquid Cu40Zr51Al9 using molecular dynamics simulation with embedded atom method. We observed a dynamical crossover from Arrhenius to super-Arrhenius behavior in the transport properties (diffusion coefficient, relaxation times, and shear viscosity) bordered at Tx ~1300K. Unlike in many molecular and macromolecular liquids, this crossover phenomenon occurs in the equilibrium liquid state well above the melting temperature of the system (Tm ~ 900K), and the crossover temperature ismore » roughly twice of the glass-transition temperature (Tg). Below Tx, we found the elemental dynamics decoupled and the Stokes-Einstein relation broke down, indicating the onset of heterogeneous spatially correlated dynamics in the system mediated by dynamic communications among local configurational excitations. To directly characterize and visualize the correlated dynamics, we employed a non-parametric, unsupervised machine learning technique and identified dynamical clusters of atoms with similar atomic mobility. The revealed average dynamical cluster size shows an accelerated increase below Tx and mimics the trend observed in other ensemble averaged quantities that are commonly used to quantify the spatially heterogeneous dynamics such as the non-Gaussian parameter and the four-point correlation function.« less

  14. Casting materials

    DOE Patents [OSTI]

    Chaudhry, Anil R.; Dzugan, Robert; Harrington, Richard M.; Neece, Faurice D.; Singh, Nipendra P.

    2011-06-14

    A foam material comprises a liquid polymer and a liquid isocyanate which is mixed to make a solution that is poured, injected or otherwise deposited into a corresponding mold. A reaction from the mixture of the liquid polymer and liquid isocyanate inside the mold forms a thermally collapsible foam structure having a shape that corresponds to the inside surface configuration of the mold and a skin that is continuous and unbroken. Once the reaction is complete, the foam pattern is removed from the mold and may be used as a pattern in any number of conventional casting processes.

  15. Use of metallic glasses for fabrication of structures with submicron dimensions

    DOE Patents [OSTI]

    Wiley, John D.; Perepezko, John H.

    1986-01-01

    Patterned structures of submicron dimension formed of supported or unsupported amorphous metals having submicron feature sizes characterized by etching behavior sufficient to allow delineation of sharp edges and smooth flat flanks, resistance to time-dependent dimensional changes caused by creep, flow, in-diffusion of unwanted impurities, out-diffusion of constituent atoms, void formation, grain growth or phase separation and resistance to phase transformations or compound formation.

  16. Glass Membrane For Controlled Diffusion Of Gases

    DOE Patents [OSTI]

    Shelby, James E.; Kenyon, Brian E.

    2001-05-15

    A glass structure for controlled permeability of gases includes a glass vessel. The glass vessel has walls and a hollow center for receiving a gas. The glass vessel contains a metal oxide dopant formed with at least one metal selected from the group consisting of transition metals and rare earth metals for controlling diffusion of the gas through the walls of the glass vessel. The vessel releases the gas through its walls upon exposure to a radiation source.

  17. APPARATUS AND METHOD FOR INJECTION CASTING

    DOE Patents [OSTI]

    Shuck, A.B.

    1960-09-13

    S>A single-chamber metal casting apparatus is described wherein molten metal in a vertically movable container can be brought directly into contact with molds. By increasing the gas pressure within the chamber the metal is forced upward into the molds.

  18. Bose-Einstein Condensation and Bose Glasses in an S = 1 Organo-metallic quantum magnet

    SciTech Connect (OSTI)

    Zapf, Vivien

    2012-06-01

    I will speak about Bose-Einstein condensation (BEC) in quantum magnets, in particular the compound NiCl2-4SC(NH2)2. Here a magnetic field-induced quantum phase transition to XY antiferromagnetism can be mapped onto BEC of the spins. The tuning parameter for BEC transition is the magnetic field rather than the temperature. Some interesting phenomena arise, for example the fact that the mass of the bosons that condense can be strongly renormalized by quantum fluctuations. I will discuss the utility of this mapping for both understanding the nature of the quantum magnetism and testing the thermodynamic limit of Bose-Einstein Condensation. Furthermore we can dope the system in a clean and controlled way to create the long sought-after Bose Glass transition, which is the bosonic analogy of Anderson localization. I will present experiments and simulations showing evidence for a new scaling exponent, which finally makes contact between theory and experiments. Thus we take a small step towards the difficult problem of understanding the effect of disorder on bosonic wave functions.

  19. Atomic-scale dynamics of a model glass-forming metallic liquid: Dynamical crossover, dynamical decoupling, and dynamical clustering

    SciTech Connect (OSTI)

    Jaiswal, Abhishek; Egami, Takeshi; Zhang, Yang

    2015-04-01

    The phase behavior of multi-component metallic liquids is exceedingly complex because of the convoluted many-body and many-elemental interactions. Herein, we present systematic studies of the dynamic aspects of such a model ternary metallic liquid Cu40Zr51Al9 using molecular dynamics simulation with embedded atom method. We observed a dynamical crossover from Arrhenius to super-Arrhenius behavior in the transport properties (diffusion coefficient, relaxation times, and shear viscosity) bordered at Tx ~1300K. Unlike in many molecular and macromolecular liquids, this crossover phenomenon occurs in the equilibrium liquid state well above the melting temperature of the system (Tm ~ 900K), and the crossover temperature is roughly twice of the glass-transition temperature (Tg). Below Tx, we found the elemental dynamics decoupled and the Stokes-Einstein relation broke down, indicating the onset of heterogeneous spatially correlated dynamics in the system mediated by dynamic communications among local configurational excitations. To directly characterize and visualize the correlated dynamics, we employed a non-parametric, unsupervised machine learning technique and identified dynamical clusters of atoms with similar atomic mobility. The revealed average dynamical cluster size shows an accelerated increase below Tx and mimics the trend observed in other ensemble averaged quantities that are commonly used to quantify the spatially heterogeneous dynamics such as the non-Gaussian parameter and the four-point correlation function.

  20. Ab initio molecular dynamics simulations of short-range order in Zr50Cu45Al5 and Cu50Zr45Al5 metallic glasses

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Huang, Yuxiang; Huang, Li; Wang, C. Z.; Kramer, M. J.; Ho, K. M.

    2016-02-01

    Comparative analysis between Zr-rich Zr50Cu45Al5 and Cu-rich Cu50Zr45Al5 metallic glasses (MGs) is extensively performed to locate the key structural motifs accounting for their difference of glass forming ability. Here we adopt ab initio molecular dynamics simulations to investigate the local atomic structures of Zr50Cu45Al5 and Cu50Zr45Al5 MGs. A high content of icosahedral-related (full and distorted) orders was found in both samples, while in the Zr-rich MG full icosahedrons < 0,0,12,0 > is dominant, and in the Cu-rich one the distorted icosahedral orders, especially < 0,2,8,2 > and < 0,2,8,1 >, are prominent. And the < 0,2,8,2 > polyhedra in Cu50Zr45Al5more » MG mainly originate from Al-centered clusters, while the < 0,0,12,0 > in Zr50Cu45Al5 derives from both Cu-centered clusters and Al-centered clusters. These difference may be ascribed to the atomic size difference and chemical property between Cu and Zr atoms. Lastly, the relatively large size of Zr and large negative heat of mixing between Zr and Al atoms, enhancing the packing density and stability of metallic glass system, may be responsible for the higher glass forming ability of Zr50Cu45Al5.« less

  1. Ab initio molecular dynamics simulations of short-range order in Zr50Cu45Al5 and Cu50Zr45Al5 metallic glasses

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Huang, Yuxiang; Huang, Li; Wang, C. Z.; Kramer, M. J.; Ho, K. M.

    2016-02-01

    In this study, comparative analysis between Zr-rich Zr50Cu45Al5 and Cu-rich Cu50Zr45Al5 metallic glasses (MGs) is extensively performed to locate the key structural motifs accounting for their difference of glass forming ability. Here we adopt ab initio molecular dynamics simulations to investigate the local atomic structures of Zr50Cu45Al5 and Cu50Zr45Al5 MGs. A high content of icosahedral-related (full and distorted) orders was found in both samples, while in the Zr-rich MG full icosahedrons <0,0,12,0> is dominant, and in the Cu-rich one the distorted icosahedral orders, especially <0,2,8,2> and <0,2,8,1>, are prominent. And the <0,2,8,2> polyhedra in Cu50Zr45Al5 MG mainly originate from Al-centeredmore » clusters, while the <0,0,12,0> in Zr50Cu45Al5 derives from both Cu-centered clusters and Al-centered clusters. These difference may be ascribed to the atomic size difference and chemical property between Cu and Zr atoms. The relatively large size of Zr and large negative heat of mixing between Zr and Al atoms, enhancing the packing density and stability of metallic glass system, may be responsible for the higher glass forming ability of Zr50Cu45Al5.« less

  2. Impact of deformation on the atomic structures and dynamics of a Cu-Zr metallic glass: A molecular dynamics study

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Zhang, Y.; Mendelev, M. I.; Wang, C. Z.; Ott, R.; Zhang, F.; Besser, M. F.; Ho, K. M.; Kramer, M. J.

    2014-11-03

    Despite numerous studies on the atomic structures of Cu-Zr metallic glasses (MGs), their inherent structural ordering, e.g., medium-range order (MRO), remains difficult to describe. Specifically lacking is an understanding of how the MRO responds to deformation and the associated changes in atomic mobility. In this paper, we focus on the impact of deformation on MRO and associated effect on diffusion in a well-relaxed Cu64.5Zr35.5 MG by molecular dynamics simulations. The Cu-Zr MG exhibits a larger elastic limit of 0.035 and a yield stress of 3.5 GPa. The cluster alignment method was employed to characterize the icosahedral short-range order (ISRO) andmore » Bergman-type medium-range order (BMRO) in the models upon loading and unloading. From this analysis, we find the disruption of both ISRO and BMRO occurs as the strain reaches about 0.02, well below the elastic limit. Within the elastic limit, the total fractions of ISRO or BMRO can be fully recovered upon unloading. The diffusivity increases six to eight times in regions undergoing plastic deformation, which is due to the dramatic disruption of the ISRO and BMRO. As a result, by mapping the spatial distributions of the mobile atoms, we demonstrate the increase in atomic mobility is due to the extended regions of disrupted ISRO and more importantly BMRO.« less

  3. Impact of deformation on the atomic structures and dynamics of a Cu-Zr metallic glass: A molecular dynamics study

    SciTech Connect (OSTI)

    Zhang, Y.; Mendelev, M. I.; Wang, C. Z.; Ott, R.; Zhang, F.; Besser, M. F.; Ho, K. M.; Kramer, M. J.

    2014-11-03

    Despite numerous studies on the atomic structures of Cu-Zr metallic glasses (MGs), their inherent structural ordering, e.g., medium-range order (MRO), remains difficult to describe. Specifically lacking is an understanding of how the MRO responds to deformation and the associated changes in atomic mobility. In this paper, we focus on the impact of deformation on MRO and associated effect on diffusion in a well-relaxed Cu64.5Zr35.5 MG by molecular dynamics simulations. The Cu-Zr MG exhibits a larger elastic limit of 0.035 and a yield stress of 3.5 GPa. The cluster alignment method was employed to characterize the icosahedral short-range order (ISRO) and Bergman-type medium-range order (BMRO) in the models upon loading and unloading. From this analysis, we find the disruption of both ISRO and BMRO occurs as the strain reaches about 0.02, well below the elastic limit. Within the elastic limit, the total fractions of ISRO or BMRO can be fully recovered upon unloading. The diffusivity increases six to eight times in regions undergoing plastic deformation, which is due to the dramatic disruption of the ISRO and BMRO. As a result, by mapping the spatial distributions of the mobile atoms, we demonstrate the increase in atomic mobility is due to the extended regions of disrupted ISRO and more importantly BMRO.

  4. Domain wall assisted magnetization switching in (111) oriented L1{sub 0} FePt grown on a soft magnetic metallic glass

    SciTech Connect (OSTI)

    Kaushik, Neelam; Sharma, Parmanand; Yubuta, Kunio; Makino, Akihiro; Inoue, Akihisa

    2010-08-16

    We report on growth and magnetic properties of exchange-coupled (111)-L1{sub 0} FePt hard/CoFeTaB soft magnetic metallic glass bilayered structure processed at lower temperature ({approx}400 deg. C). Single phaselike hysteresis loops with tailorable coercivity (<8.2 kOe) in out of plane direction are obtained. The magnetization switching mechanism is identified as domain wall assisted. In views of excellent nanofabrication abilities of metallic glass thin film and the ability to grow preferred oriented L1{sub 0} FePt, the present bilayered structure is very promising for the fabrication of high density bit--patterned magnetic recording media and other spintronic devices.

  5. Effect of hydrothermal condition on the formation of multi-component oxides of Ni-based metallic glass under high temperature water near the critical point

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Kim, J. S.; Kim, S. Y.; Kim, D. H.; Ott, R. T.; Kim, H. G.; Lee, M. H.

    2015-07-01

    The specific feature of multi-component oxides synthesized by hydrothermal process under high temperature (633 K) and highly pressurized water (18.9 MPa) near critical point. Effects of hydrothermal processing duration times 24 hours and 72 hours, respectively, on the oxide formation of the Ni59Zr20Ti16Si2Sn3 metallic glass synthesized by powder metallurgy process were characterized by X-ray diffractometer, differential scanning calorimeter along with the particle size, morphology and crystalline phase of the oxides. The crystallization of the needle-shape NiTiO3, ZrTiO4 and ZrSnO4 ternary oxide phases observed on the surface of metallic glass at below glass transition temperature and the morphology of oxide phasesmore » changed to plate-shape around 2 μm in diameter by the increase processing time. This hydrothermal processing in subcritical water provides accelerated dense metal oxide crystals due to the reaction medium being at higher pressure than conventional oxidation processing.« less

  6. Effect of hydrothermal condition on the formation of multi-component oxides of Ni-based metallic glass under high temperature water near the critical point

    SciTech Connect (OSTI)

    Kim, J. S.; Kim, S. Y.; Kim, D. H.; Ott, R. T.; Kim, H. G.; Lee, M. H.

    2015-07-01

    The specific feature of multi-component oxides synthesized by hydrothermal process under high temperature (633 K) and highly pressurized water (18.9 MPa) near critical point. Effects of hydrothermal processing duration times 24 hours and 72 hours, respectively, on the oxide formation of the Ni59Zr20Ti16Si2Sn3 metallic glass synthesized by powder metallurgy process were characterized by X-ray diffractometer, differential scanning calorimeter along with the particle size, morphology and crystalline phase of the oxides. The crystallization of the needle-shape NiTiO3, ZrTiO4 and ZrSnO4 ternary oxide phases observed on the surface of metallic glass at below glass transition temperature and the morphology of oxide phases changed to plate-shape around 2 μm in diameter by the increase processing time. This hydrothermal processing in subcritical water provides accelerated dense metal oxide crystals due to the reaction medium being at higher pressure than conventional oxidation processing.

  7. Effect of hydrothermal condition on the formation of multi-component oxides of Ni-based metallic glass under high temperature water near the critical point

    SciTech Connect (OSTI)

    Kim, J. S.; Lee, M. H.; Kim, S. Y.; Kim, D. H.; Ott, R. T.; Kim, H. G.

    2015-07-15

    The specific feature of multi-component oxides synthesized by hydrothermal process under high temperature (633 K) and highly pressurized water (18.9 MPa) near critical point. Effects of hydrothermal processing duration times 24 hours and 72 hours, respectively, on the oxide formation of the Ni{sub 59}Zr{sub 20}Ti{sub 16}Si{sub 2}Sn{sub 3} metallic glass synthesized by powder metallurgy process were characterized by X-ray diffractometer, differential scanning calorimeter along with the particle size, morphology and crystalline phase of the oxides. The crystallization of the needle-shape NiTiO{sub 3}, ZrTiO{sub 4} and ZrSnO{sub 4} ternary oxide phases observed on the surface of metallic glass at below glass transition temperature and the morphology of oxide phases changed to plate-shape around 2 μm in diameter by the increase processing time. This hydrothermal processing in subcritical water provides accelerated dense metal oxide crystals due to the reaction medium being at higher pressure than conventional oxidation processing.

  8. Thin Wall Iron Castings

    SciTech Connect (OSTI)

    J.F. Cuttino; D.M. Stefanescu; T.S. Piwonka

    2001-10-31

    Results of an investigation made to develop methods of making iron castings having wall thicknesses as small as 2.5 mm in green sand molds are presented. It was found that thin wall ductile and compacted graphite iron castings can be made and have properties consistent with heavier castings. Green sand molding variables that affect casting dimensions were also identified.

  9. Thin sheet casting with electromagnetic pressurization

    DOE Patents [OSTI]

    Walk, Steven R.; Slepian, R. Michael; Nathenson, Richard D.; Williams, Robert S.

    1991-01-01

    An apparatus, method and system for the casting of thin strips or strips of metal upon a moving chill block that includes an electromagnet located so that molten metal poured from a reservoir onto the chill block passes into the magnetic field produced by the electromagnet. The electromagnet produces a force on the molten metal on said chill block in the direction toward said chill block in order to enhance thermal contact between the molten metal and the chill block.

  10. Clean cast steel technology. Final report

    SciTech Connect (OSTI)

    Bates, C.E.; Griffin, J.A.

    1998-06-01

    This report documents the results obtained from the Clean Cast Steel Technology Program financially supported by the DOE Metal Casting Competitiveness Research Program and industry. The primary objective of this program is to develop technology for delivering steel free of oxide macroinclusions to mold cavities. The overall objective is to improve the quality of cast steel by developing and demonstrating the technology for substantially reducing surface and sub-surface oxide inclusions. Two approaches are discussed here. A total of 23 castings were produced by submerge pouring along with sixty conventionally poured castings. The submerged poured castings contained, on average, 96% fewer observable surface inclusions (11.9 vs 0.4) compared to the conventionally poured cast parts. The variation in the population of surface inclusions also decreased by 88% from 5.5 to 0.7. The machinability of the casting was also improved by submerged pouring. The submerge poured castings required fewer cutting tool changes and less operator intervention during machining. Subsequent to these trials, the foundry has decided to purchase more shrouds for continued experimentation on other problem castings where submerge pouring is possible. An examination of melting and pouring practices in four foundries has been carried out. Three of the four foundries showed significant improvement in casting quality by manipulating the melting practice. These melting practice variables can be grouped into two separate categories. The first category is the pouring and filling practice. The second category concerns the concentration of oxidizable elements contained in the steel. Silicon, manganese, and aluminum concentrations were important factors in all four foundries. Clean heats can consistently be produced through improved melting practice and reducing exposure of the steel to atmospheric oxygen during pouring and filling.

  11. PLZT capacitor on glass substrate

    DOE Patents [OSTI]

    Fairchild, M. Ray; Taylor, Ralph S.; Berlin, Carl W.; Wong, Celine W. K.; Ma, Beihai; Balachandran, Uthamalingam

    2016-01-05

    A lead-lanthanum-zirconium-titanate (PLZT) capacitor on a substrate formed of glass. The first metallization layer is deposited on a top side of the substrate to form a first electrode. The dielectric layer of PLZT is deposited over the first metallization layer. The second metallization layer deposited over the dielectric layer to form a second electrode. The glass substrate is advantageous as glass is compatible with an annealing process used to form the capacitor.

  12. PLZT capacitor on glass substrate

    DOE Patents [OSTI]

    Fairchild, Manuel Ray; Taylor, Ralph S.; Berlin, Carl W.; Wong, Celine Wk; Ma, Beihai; Balachandran, Uthamalingam

    2016-03-29

    A lead-lanthanum-zirconium-titanate (PLZT) capacitor on a substrate formed of glass. The first metallization layer is deposited on a top side of the substrate to form a first electrode. The dielectric layer of PLZT is deposited over the first metallization layer. The second metallization layer deposited over the dielectric layer to form a second electrode. The glass substrate is advantageous as glass is compatible with an annealing process used to form the capacitor.

  13. Method of reducing the green density of a slip cast article

    DOE Patents [OSTI]

    Mangels, John A.; Dickie, Ray A.

    1985-01-01

    The method disclosed in this specification is one of reducing the green density of an article cast in a slip casting operation. The article is cast from a casting slip containing silicon metal particles, yttrium containing particles, and a small amount of a fluoride salt which is effective to suppress flocculation of the silicon metal particles by y.sup.+3 ions derived from the yttrium containing particles. The method is characterized by the following step. A small amount of compound which produces a cation which will partly flocculate the particles of silicon metal is added to the casting slip. The small amount of this compound is added so that when the casting slip is slip cast into a casting mold, the partly flocculated particles of silicon will interrupt an otherwise orderly packing of the particles of silicon and particles of yttrium. In this manner, the green density of the slip cast article is reduced and the article may be more easily nitrided.

  14. Arc Casting Intermetallic Alloy (Materials Preparation Center)

    SciTech Connect (OSTI)

    2010-01-01

    Arc casting of intermetallic (La-Ni-Sn) AB5 alloy used for metal hydride hydrogen storage. Upon solidification the Sn is partially rejected and increases in concentration in the remaining liquid. Upon completing solidification there is a great deal of internal stress in the ingot. As the ingot cools further the stress is relieved. This material was cast at the Ames Laboratorys Materials Preparation Center http://www.mpc.ameslab.gov

  15. Effect of pre-oxidation and environmental aging on the seal strength of a novel high-temperature solid oxide fuel cell (SOFC) sealing glass with metallic interconnect

    SciTech Connect (OSTI)

    Chou, Y. S.; Stevenson, Jeffry W.; Singh, Prabhakar

    2008-09-15

    A novel high-temperature alkaline-earth silicate sealing glass was developed for solid oxide fuel cell (SOFC) applications. The glass was used to join two ferritic stainless steel coupons for strength evaluation. The steel coupons were pre-oxidized at elevated temperatures to promote thick oxide layers to simulate long-term exposure conditions. In addition, seals to as-received metal coupons were also tested after aging in oxidizing or reducing environments to simulate the actual SOFC environment. Room temperature tensile testing showed strength degradation when using pre-oxidized coupons, and more extensive degradation after aging in air. Fracture surface and microstructural analysis confirmed that the cause of degradation was formation of SrCrO4 at the outer sealing edges exposed to air.

  16. Super ionic conductive glass

    DOE Patents [OSTI]

    Susman, S.; Volin, K.J.

    Described is an ionically conducting glass for use as a solid electrolyte in a power or secondary cell containing an alkali metal-containing anode and a cathode separated by an alkali metal ion conducting glass having an ionic transference number of unity and the general formula: A/sub 1 + x/D/sub 2-x/3/Si/sub x/P/sub 3 - x/O/sub 12 - 2x/3/, wherein A is a network modifier for the glass and is an alkali metal of the anode, D is an intermediate for the glass and is selected from the class consisting of Zr, Ti, Ge, Al, Sb, Be, and Zn and X is in the range of from 2.25 to 3.0. Of the alkali metals, Na and Li are preferred and of the intermediate, Zr, Ti and Ge are preferred.

  17. Super ionic conductive glass

    DOE Patents [OSTI]

    Susman, Sherman; Volin, Kenneth J.

    1984-01-01

    An ionically conducting glass for use as a solid electrolyte in a power or secondary cell containing an alkali metal-containing anode and a cathode separated by an alkali metal ion conducting glass having an ionic transference number of unity and the general formula: A.sub.1+x D.sub.2-x/3 Si.sub.x P.sub.3-x O.sub.12-2x/3, wherein A is a network modifier for the glass and is an alkali metal of the anode, D is an intermediate for the glass and is selected from the class consisting of Zr, Ti, Ge, Al, Sb, Be, and Zn and X is in the range of from 2.25 to 3.0. Of the alkali metals, Na and Li are preferred and of the intermediate, Zr, Ti and Ge are preferred.

  18. Glass Stronger than Steel

    DOE R&D Accomplishments [OSTI]

    Yarris, Lynn

    2011-03-28

    A new type of damage-tolerant metallic glass, demonstrating a strength and toughness beyond that of steel or any other known material, has been developed and tested by a collaboration of researchers from Berkeley Lab and Caltech.

  19. Effects of the Exposure to Corrosive Salts on the Frictional Behavior of Gray Cast Iron and a Titanium-Based Metal Matrix Composite

    SciTech Connect (OSTI)

    Blau, Peter Julian; Truhan, Jr., John J; Kenik, Edward A

    2007-01-01

    The introduction of increasingly aggressive road-deicing chemicals has created significant and costly corrosion problems for the trucking industry. From a tribological perspective, corrosion of the sliding surfaces of brakes after exposure to road salts can create oxide scales on the surfaces that affect friction. This paper describes experiments on the effects of exposure to sodium chloride and magnesium chloride sprays on the transient frictional behavior of cast iron and a titanium-based composite sliding against a commercial brake lining material. Corrosion scales on cast iron initially act as abrasive third-bodies, then they become crushed, spread out, and behave as a solid lubricant. The composition and subsurface microstructures of the corrosion products on the cast iron were analyzed. Owing to its greater corrosion resistance, the titanium composite remained scale-free and its frictional response was markedly different. No corrosion scales were formed on the titanium composite after aggressive exposure to salts; however, a reduction in friction was still observed. Unlike the crystalline sodium chloride deposits that tended to remain dry, hygroscopic magnesium chloride deposits absorbed ambient moisture from the air, liquefied, and retained a persistent lubricating effect on the titanium surfaces.

  20. Method to prevent/mitigate steam explosions in casting pits

    DOE Patents [OSTI]

    Taleyarkhan, R.P.

    1996-12-24

    Steam explosions can be prevented or mitigated during a metal casting process by the placement of a perforated flooring system in the casting pit. An upward flow of compressed gas through this perforated flooring system is introduced during the casting process to produce a buffer layer between any spilled molten metal and the cooling water in the reservoir. This buffer layer provides a hydrodynamic layer which acts to prevent or mitigate steam explosions resulting from hot, molten metal being spilled into or onto the cooling water. 3 figs.

  1. Method to prevent/mitigate steam explosions in casting pits

    DOE Patents [OSTI]

    Taleyarkhan, Rusi P.

    1996-01-01

    Steam explosions can be prevented or mitigated during a metal casting process by the placement of a perforated flooring system in the casting pit. An upward flow of compressed gas through this perforated flooring system is introduced during the casting process to produce a buffer layer between any spilled molten metal and the cooling water in the reservoir. This buffer layer provides a hydrodynamic layer which acts to prevent or mitigate steam explosions resulting from hot, molten metal being spilled into or onto the cooling water.

  2. Metal & Alloy Services | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Metal & Alloy Services The MPC specializes in the preparation, purification, and fabrication of high-purity rare earth metals, refractory metals, alkaline earth metals, and alloys in single and polycrystalline forms. Arc Casting. The interior of an arc casting furnace is shown. Arc casting has been employed for many years at ISU and Ames Laboratory, for preparing alloys and inter-metallic compounds for materials research. The molten metal in the center is zirconium, #40 on the periodic

  3. SLIP CASTING METHOD

    DOE Patents [OSTI]

    Allison, A.G.

    1959-09-01

    S>A process is described for preparing a magnesium oxide slip casting slurry which when used in conjunction with standard casting techniques results in a very strong "green" slip casting and a fired piece of very close dimensional tolerance. The process involves aging an aqueous magnestum oxide slurry, having a basic pH value, until it attains a specified critical viscosity at which time a deflocculating agent is added without upsetting the basic pH value.

  4. Process and apparatus for casting multiple silicon wafer articles

    DOE Patents [OSTI]

    Nanis, Leonard

    1992-05-05

    Method and apparatus of casting silicon produced by the reaction between SiF.sub.4 and an alkaline earth metal into thin wafer-shaped articles suitable for solar cell fabrication.

  5. Method and apparatus for planar drag strip casting

    DOE Patents [OSTI]

    Powell, J.C.; Campbell, S.L.

    1991-11-12

    The present invention is directed to an improved process and apparatus for strip casting. The combination of a planar flow casting nozzle positioned back from the top dead center position with an attached nozzle extension, provides an increased level of casting control and quality. The nozzle extension provides a means of containing the molten pool above the rotating substrate to increase the control of molten metal at the edges of the strip and increase the range of coating thicknesses which may be produced. The level of molten metal in the containment means is regulated to be above the level of melt supplying the casting nozzle which produces a condition of planar drag flow with the casting substrate prior to solidification. 5 figures.

  6. Method and apparatus for planar drag strip casting

    DOE Patents [OSTI]

    Powell, John C.; Campbell, Steven L.

    1991-01-01

    The present invention is directed to an improved process and apparatus for strip casting. The combination of a planar flow casting nozzle positioned back from the top dead center position with an attached nozzle extension, provides an increased level of casting control and quality. The nozzle extension provides a means of containing the molten pool above the rotating substrate to increase the control of molten metal at the edges of the strip and increase the range of coating thicknesses which may be produced. The level of molten metal in the containment means is regulated to be above the level of melt supplying the casting nozzle which produces a condition of planar drag flow with the casting substrate prior to solidification.

  7. Advanced Pattern Material for Investment Casting Applications

    SciTech Connect (OSTI)

    F. Douglas Neece Neil Chaudhry

    2006-02-08

    Cleveland Tool and Machine (CTM) of Cleveland, Ohio in conjunction with Harrington Product Development Center (HPDC) of Cincinnati, Ohio have developed an advanced, dimensionally accurate, temperature-stable, energy-efficient and cost-effective material and process to manufacture patterns for the investment casting industry. In the proposed technology, FOPAT (aFOam PATtern material) has been developed which is especially compatible with the investment casting process and offers the following advantages: increased dimensional accuracy; increased temperature stability; lower cost per pattern; less energy consumption per pattern; decreased cost of pattern making equipment; decreased tooling cost; increased casting yield. The present method for investment casting is "the lost wax" process, which is exactly that, the use of wax as a pattern material, which is then melted out or "lost" from the ceramic shell. The molten metal is then poured into the ceramic shell to produce a metal casting. This process goes back thousands of years and while there have been improvements in the wax and processing technology, the material is basically the same, wax. The proposed technology is based upon an established industrial process of "Reaction Injection Molding" (RIM) where two components react when mixed and then "molded" to form a part. The proposed technology has been modified and improved with the needs of investment casting in mind. A proprietary mix of components has been formulated which react and expand to form a foam-like product. The result is an investment casting pattern with smooth surface finish and excellent dimensional predictability along with the other key benefits listed above.

  8. Insulating and metallic spin glass in KxFe2-δ-yNiySe2 (0.06 ≤ y ≤ 1.44 ) single crystals

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Ryu, Hyejin; Abeykoon, Milinda; Wang, Kefeng; Lei, Hechang; Lazarevic, N.; Warren, J. B.; Bozin, E. S.; Popovic, Z. V.; Petrovic, C.

    2015-05-04

    We report electron doping effects by Ni in KxFe2-δ-yNiySe₂ (0.06 ≤ y ≤ 1.44) single crystal alloys. A rich ground state phase diagram is observed. Thus, a small amount of Ni (~ 4%) suppressed superconductivity below 1.8 K, inducing insulating spin glass magnetic ground state for higher Ni content. With further Ni substitution, metallic resistivity is restored. For high Ni concentration in the lattice the unit cell symmetry is high symmetry I4/mmm with no phase separation whereas both I4/m + I4/mmm space groups were detected in the phase separated crystals when concentration of Ni < Fe. The absence of superconductivitymore » coincides with the absence of crystalline Fe vacancy order.« less

  9. Understanding the deformation mechanism of individual phases of a ZrTi-based bulk metallic glass matrix composite using in situ diffraction and imaging methods

    SciTech Connect (OSTI)

    Huang, Yongjiang E-mail: yjhuang@hit.edu.cn; Khong, J. C.; Mi, J. E-mail: yjhuang@hit.edu.cn; Connolley, Thomas

    2014-01-20

    The plasticity of a ZrTi-based bulk metallic glass composite consisting of glassy matrix and crystalline dendritic phase was studied in-situ under identical tensile loading conditions using scanning electron microscopy and synchrotron X-ray diffraction. A generic procedure was developed to separate the diffraction information of the crystalline phases away from that of the matrix and to precisely calculate the microscopic strains of the two phases at different macroscopic load steps. In this way, the time-evolved quantitative links between shear bands nucleation/propagation and the corresponding microscopic stress fields around them are established, providing more quantitative understanding on (1) how the shear bands are driven by the local stress field, and (2) the critical stresses required for the shear bands to nucleate in the crystalline phase, propagate through the crystalline/matrix interface, and finally into the matrix.

  10. CENTRIFUGAL CASTING MACHINE

    DOE Patents [OSTI]

    Shuck, A.B.

    1958-04-01

    A device is described that is specifically designed to cast uraniumn fuel rods in a vacuunn, in order to obtain flawless, nonoxidized castings which subsequently require a maximum of machining or wastage of the expensive processed material. A chamber surrounded with heating elements is connected to the molds, and the entire apparatus is housed in an airtight container. A charge of uranium is placed in the chamber, heated, then is allowed to flow into the molds While being rotated. Water circulating through passages in the molds chills the casting to form a fine grained fuel rod in nearly finished form.