Sample records for glass curtain walls

  1. Photovoltaic modules integrated with a metal curtain wall

    SciTech Connect (OSTI)

    Yoshino, M.; Nakada, N.; Mori, T.; Yamagishi, K.; Yoshida, S. [YKK Corp., Kurobe, Toyama (Japan); Higashi, Y.; Shirasawa, K. [KYOCERA Corp., Yohkaichi, Shiga (Japan)

    1994-12-31T23:59:59.000Z

    An integrated photovoltaic system for buildings has many advantages. To realize building integration of photovoltaics, the authors have initially designed a PV module integrated with a metal curtain wall. PV modules are installed as spandrel panels and consist of long and slender PV sub-modules. These sub-modules have an encapsulated structure consisting of: glass, EVA, solar cells, EVA, aluminum base plate. The authors also present initial PV performance data from the experimental wall. In this wall, almost the same maximum P{sub max} of 64 W/m{sup 2} was obtained and the module temperature was approximately 10 C lower compared with conventional superstrate-type PV modules which have 1.3 times the solar cells of this module. Moreover, aesthetic requirements for this module are discussed in this paper.

  2. The significance of bolts in the thermal performance of curtain-wall frames for glazed facades

    SciTech Connect (OSTI)

    Griffith, B.; Finlayson, E.; Yazdanian, M.; Arasteh, D.K. [Lawrence Berkeley National Lab., CA (United States)

    1998-10-01T23:59:59.000Z

    Curtain walls are assemblies of glazings and metal frames that commonly form the exterior glass facades of commercial buildings. Evaluating the thermal performance of the bolts that hold curtain wall glazings in place is necessary to accurately rate the overall thermal performance of curtain walls. Using laboratory tests and computer simulations, the authors assessed the thermal performance of several different configurations of bolts and glazings. Curtain-wall samples were tested at an infrared thermography laboratory. Experimental results were compared to two-dimensional simulations approximating the thermal effect of the bolts using the parallel path and the isothermal planes calculation methods. It is concluded that stainless steel bolts minimally affect curtain-wall thermal performance ({approximately}18%) when spaced at least 230 mm apart, which is the industry standard. Performance is increasingly compromised when there is less than 230 mm between bolts or when steel bolts are used. The authors also show that the isothermal planes method of approximating curtain wall thermal performance can be used with two-dimensional heat transfer software typical of that used in the window industry to give conservative results for the thermal bridging effect caused by bolts.

  3. Technology reviews: Dynamic curtain wall systems

    SciTech Connect (OSTI)

    Schuman, J.; Rubinstein, F.; Papamichael, K.; Beltran, L.; Lee, E.S.; Selkowitz, S.

    1992-09-01T23:59:59.000Z

    We present a representative review of existing, emerging, and future technology options in each of five hardware and systems areas in envelope and lighting technologies: lighting systems, glazing systems, shading systems, daylighting optical systems, and dynamic curtain wall systems. The term technology is used here to describe any design choice for energy efficiency, ranging from individual components to more complex systems to general design strategies. The purpose of this task is to characterize die state of the art in envelope and lighting technologies in order to identify those with promise for advanced integrated systems, with an emphasis on California commercial buildings. For each technology category, the following activities have been attempted to the extent possible: Identify key performance characteristics and criteria for each technology. Determine the performance range of available technologies. Identify the most promising technologies and promising trends in technology advances. Examine market forces and market trends. Develop a continuously growing in-house database to be used throughout the project. A variety of information sources have been used in these technology characterizations, including miscellaneous periodicals, manufacturer catalogs and cut sheets, other research documents, and data from previous computer simulations. We include these different sources in order to best show the type and variety of data available, however publication here does not imply our guarantee of these data. Within each category, several broad classes are identified, and within each class we examine the generic individual technologies that fall into that class.

  4. Repair and retrofit of a modern high-rise curtain wall

    SciTech Connect (OSTI)

    Weinstein, J.S.; Del Rosso, A.L.

    1999-07-01T23:59:59.000Z

    Study has revealed that metal and glass exterior curtain walls constructed between the late 1960's and early 1980's can perform poorly and become very ineffective in preventing water infiltration. One such high-rise commercial office building demonstrates that wall performance against water infiltration is compromised due to cyclic wind loads, poor performance of gaskets and sealed joints and poor performance of fasteners and welds used to connect aluminum wall components. Failures and restoration methods at sealant joints and mechanical connections of the curtain wall are illustrated at eight major joint conditions. Methods and approaches used to restore weather resistance and structural integrity are discussed. Use of structural and non-structural silicone sealants as well as unique methods of mechanical anchorage are highlighted. Criteria driving the restoration design are presented, including: minimal disturbance to tenants, no disturbance of asbestos materials, a pleasing visual solution and providing for future long-term wall performance.

  5. POROUS WALL, HOLLOW GLASS MICROSPHERES

    SciTech Connect (OSTI)

    Sexton, W.

    2012-06-30T23:59:59.000Z

    Hollow Glass Microspheres (HGM) is not a new technology. All one has to do is go to the internet and Google{trademark} HGM. Anyone can buy HGM and they have a wide variety of uses. HGM are usually between 1 to 100 microns in diameter, although their size can range from 100 nanometers to 5 millimeters in diameter. HGM are used as lightweight filler in composite materials such as syntactic foam and lightweight concrete. In 1968 a patent was issued to W. Beck of the 3M{trademark} Company for 'Glass Bubbles Prepared by Reheating Solid Glass Particles'. In 1983 P. Howell was issued a patent for 'Glass Bubbles of Increased Collapse Strength' and in 1988 H. Marshall was issued a patent for 'Glass Microbubbles'. Now Google{trademark}, Porous Wall, Hollow Glass Microspheres (PW-HGMs), the key words here are Porous Wall. Almost every article has its beginning with the research done at the Savannah River National Laboratory (SRNL). The Savannah River Site (SRS) where SRNL is located has a long and successful history of working with hydrogen and its isotopes for national security, energy, waste management and environmental remediation applications. This includes more than 30 years of experience developing, processing, and implementing special ceramics, including glasses for a variety of Department of Energy (DOE) missions. In the case of glasses, SRS and SRNL have been involved in both the science and engineering of vitreous or glass based systems. As a part of this glass experience and expertise, SRNL has developed a number of niches in the glass arena, one of which is the development of porous glass systems for a variety of applications. These porous glass systems include sol gel glasses, which include both xerogels and aerogels, as well as phase separated glass compositions, that can be subsequently treated to produce another unique type of porosity within the glass forms. The porous glasses can increase the surface area compared to 'normal glasses of a 1 to 2 order of magnitude, which can result in unique properties in areas such as hydrogen storage, gas transport, gas separations and purifications, sensors, global warming applications, new drug delivery systems and so on. One of the most interesting porous glass products that SRNL has developed and patented is Porous Wall, Hollow Glass Microspheres (PW-HGMs) that are being studied for many different applications. The European Patent Office (EPO) just recently notified SRS that the continuation-in-part patent application for the PW-HGMs has been accepted. The original patent, which was granted by the EPO on June 2, 2010, was validated in France, Germany and the United Kingdom. The microspheres produced are generally in the range of 2 to 100 microns, with a 1 to 2 micron wall. What makes the SRNL microspheres unique from all others is that the team in Figure 1 has found a way to induce and control porosity through the thin walls on a scale of 100 to 3000 {angstrom}. This is what makes the SRNL HW-HGMs one-of-a-kind, and is responsible for many of their unique properties and potential for various applications, including those in tritium storage, gas separations, H-storage for vehicles, and even a variety of new medical applications in the areas of drug delivery and MRI contrast agents. SRNL Hollow Glass Microspheres, and subsequent, Porous Wall, Hollow Glass Microspheres are fabricated using a flame former apparatus. Figure 2 is a schematic of the apparatus.

  6. SRNL POROUS WALL GLASS MICROSPHERES

    SciTech Connect (OSTI)

    Wicks, G; Leung Heung, L; Ray Schumacher, R

    2008-04-15T23:59:59.000Z

    The Savannah River National Laboratory (SRNL) has developed a new medium for storage of hydrogen and other gases. This involves fabrication of thin, Porous Walled, Hollow Glass Microspheres (PW-HGMs), with diameters generally in the range of 1 to several hundred microns. What is unique about the glass microballons is that porosity has been induced and controlled within the thin, one micron thick walls, on the scale of 10 to several thousand Angstroms. This porosity results in interesting properties including the ability to use these channels to fill the microballons with special absorbents and other materials, thus providing a contained environment even for reactive species. Gases can now enter the microspheres and be retained on the absorbents, resulting in solid-state and contained storage of even reactive species. Also, the porosity can be altered and controlled in various ways, and even used to filter mixed gas streams within a system. SRNL is involved in about a half dozen different programs involving these PW-HGMs and an overview of some of these activities and results emerging are presented.

  7. Stained glass : an investigation into the design potentials of an architectural material

    E-Print Network [OSTI]

    Ransom, Shirley Anne

    1986-01-01T23:59:59.000Z

    Colored glass is a building material usually associated with churches or days of bygone glory. Yet the material would apparently have much to offer in window openings, curtain walls, even as structural block in the creating ...

  8. Hollow porous-wall glass microspheres for hydrogen storage

    DOE Patents [OSTI]

    Heung, Leung K. (Aiken, SC); Schumacher, Ray F. (Aiken, SC); Wicks, George G. (Aiken, SC)

    2010-02-23T23:59:59.000Z

    A porous wall hollow glass microsphere is provided having a diameter range of between 1 to 200 microns, a density of between 1.0 to 2.0 gm/cc, a porous-wall structure having wall openings defining an average pore size of between 10 to 1000 angstroms, and which contains therein a hydrogen storage material. The porous-wall structure facilitates the introduction of a hydrogen storage material into the interior of the porous wall hollow glass microsphere. In this manner, the resulting hollow glass microsphere can provide a membrane for the selective transport of hydrogen through the porous walls of the microsphere, the small pore size preventing gaseous or liquid contaminants from entering the interior of the hollow glass microsphere.

  9. Student Union: The Architecture and Social Design of Postwar Campus Community Centers in California

    E-Print Network [OSTI]

    Robinson, Clare Montomgery

    2012-01-01T23:59:59.000Z

    lunchroom, and the glass curtain wall that framed a view ofpartition walls, and glass curtain walls allowed architectsfirm’s projects, glass curtain walls sheathed office towers,

  10. Beautify Your Windows and Glass Walls.

    E-Print Network [OSTI]

    Tompkins, Charlotte

    1961-01-01T23:59:59.000Z

    -utside? How do your dqkrie outside of your house? 2 IlnKY color affect , Coloor, De~kn and Tex When choosing draperies to har- monize with a room, consider the room, proportions, exposure, view, walls, floors, furnishings, accessories...

  11. Building Energy Monitoring and Analysis

    E-Print Network [OSTI]

    Hong, Tianzhen

    2014-01-01T23:59:59.000Z

    main building with large glass curtain walls and an annex.  monochromatic vacuum glass curtain wall heating systembuilding with large glass curtain walls and an annex. Total

  12. A characterization of the nonresidential fenestration market

    E-Print Network [OSTI]

    Shehabi, Arman; Eley, Charles; Arasteh, Dariush; Degens, Phil

    2002-01-01T23:59:59.000Z

    PGM Glass Used for Nonresidential Curtain Wall/Storefront/PGM Glass Used for Nonresidential Curtain Wall/Storefront/glass). Fabricators provide glazing systems for curtain walls,

  13. Seismic Performance Assessment and Probabilistic Repair Cost Analysis of Precast Concrete Cladding Systems for Multistory Buildings

    E-Print Network [OSTI]

    Hunt, Jeffrey Patrick

    2010-01-01T23:59:59.000Z

    Racking Tests of Curtain Wall Glass Elements with In-PlaneRacking Tests of Curtain Wall Glass Elements, Earthquake

  14. Glass-coating and cleaning system to prevent carbon deposition on coke oven walls

    SciTech Connect (OSTI)

    Takahira, Takuya; Ando, Takeshi; Kasaoka, Shizuki; Yamauchi, Yutaka [Kawasaki Steel Corp., Mizushima, Kurashiki (Japan). Mizushima Works

    1997-12-31T23:59:59.000Z

    The new technology for protecting the coking chamber bricks from damage by hard-pushing is described. The technology consists of the glass coating on the wall bricks and a wall cleaner to blow deposited carbon. For the glass coating, a specially developed glaze is sprayed onto the wall bricks by a spraying device developed to completely spray one coking chamber in a few minutes. The wall cleaner is installed on a pusher ram in the facility to automatically blow air at a sonic speed during coke pushing. The life of the glazed layer is estimated to be over two years.

  15. Improving Glass Walls Thermal Resistance In Air-Conditioned Buildings 

    E-Print Network [OSTI]

    Galal, T.; Kulaib, A. M.; Alajmi, R.; Al-Ansary. A; Abuzaid, M.

    2010-01-01T23:59:59.000Z

    The solar radiation through an air conditioned building depends on what is called the building envelope. Building envelope consists of the surfaces that separate the inside from the building outdoors. Area, direction, and specifications of glass...

  16. Improving Glass Walls Thermal Resistance In Air-Conditioned Buildings

    E-Print Network [OSTI]

    Galal, T.; Kulaib, A. M.; Alajmi, R.; Al-Ansary. A; Abuzaid, M.

    2010-01-01T23:59:59.000Z

    The solar radiation through an air conditioned building depends on what is called the building envelope. Building envelope consists of the surfaces that separate the inside from the building outdoors. Area, direction, and specifications of glass...

  17. A novel isolation curtain to reduce turbine ingress heating and an advanced model for honeycomb labyrinth seals

    E-Print Network [OSTI]

    Choi, Dong Chun

    2006-08-16T23:59:59.000Z

    , but implementation of the injection curtain slot reduced substantially T* max of the outer region. In addition, a more desirable uniform adiabatic wall temperature distribution along the outer rotor and stator surfaces was observed due to the presence...

  18. Porous wall hollow glass microspheres as a medium or substrate for storage and formation of novel materials

    DOE Patents [OSTI]

    Wicks, George G; Serkiz, Steven M.; Zidan, Ragaiy; Heung, Leung K.

    2014-06-24T23:59:59.000Z

    Porous wall hollow glass microspheres are provided as a template for formation of nanostructures such as carbon nanotubes, In addition, the carbon nanotubes in combination with the porous wall hollow glass microsphere provides an additional reaction template with respect to carbon nanotubes.

  19. Development of building-integrated PV modules using color solar cells for various exterior walls

    SciTech Connect (OSTI)

    Ishikawa, N.; Kanai, M.; Hide, I. [Daido Hoxan Inc. (Japan). Chitose Labs.] [and others

    1997-12-31T23:59:59.000Z

    The authors have been developing building-material-integrated PV modules used as exterior walls of building using color solar cells with an emphasis on design. Mainly the authors developed four types of modules, glass curtain walls, precast-concrete (PC)-incorporated-type, slanted wall-type and renovation-type modules. They constructed the demonstration test facilities of those modules and evaluated the performance of building-material-integrated modules for various types of exterior walls. No problems were observed at an outdoor demonstration test facility. The authors confirmed the color and shape of those modules can be harmonized with the design of the building.

  20. Experimental evaluation of the in-plane seismic behavior of store-front window systems

    E-Print Network [OSTI]

    Eva, Charles Almond

    2009-01-01T23:59:59.000Z

    of architectural glass curtain walls under in-plane loadsracking tests of curtain wall glass elements with in-planethat causes glass fallout from curtain wall and store-front

  1. Contaminants in Buildings and Occupied Spaces as Risk Factors for Occupant Symptoms in U.S.

    E-Print Network [OSTI]

    Mendell, M.J.; Mirer, A.; Lei-Gomez, Q.

    2008-01-01T23:59:59.000Z

    For instance, glass/metal curtain walls were associated withrelative to glass/metal curtain walls and some other wallwith glass/metal curtain or “other” kinds of exterior walls,

  2. Insuring the City: The Prudential Center and the Reshaping of Boston

    E-Print Network [OSTI]

    Rubin, Elihu James

    2009-01-01T23:59:59.000Z

    with a very thin curtain wall of large glass panels. Luckmanthe curtain wall and to appraise the selected glass colors.curtain wall for the tower, filled with panels of structural glass

  3. KEENELAND -ENABLING HETEROGENEOUS COMPUTING FOR THE OPEN SCIENCE

    E-Print Network [OSTI]

    ? 5 #12;Smoke reacts with Batman, provides cover Walls explode Glass shatters Tattered curtains react

  4. Some features of the melting of borosilicate glasses in continuous furnaces

    SciTech Connect (OSTI)

    Sivko, A.P.

    1988-07-01T23:59:59.000Z

    The quality of G40-1 glass obtained in continuous gas furnaces was studied. The solubility of the gases in the G40-1 glass was determined for acceptable articles obtained in the two furnaces. The effect of repeat heating of the G40-1 glass in the forming zone was studied to find reasons for the formation of seeds and bubbles. It was shown that they form when scale from hot angle-bar supporting the plate-blocks of the crown fell into the glass of the working end of the furnace if the lining of the curtain wall has not been adequately sealed. When borosilicate glass with a large concentration of the boron oxide phase was melted in continuous furnaces it was not permissible to have a positive pressure of the gas medium in the sub-crown space.

  5. Discharge source with gas curtain for protecting optics from particles

    DOE Patents [OSTI]

    Fornaciari, Neal R.; Kanouff, Michael P.

    2004-03-30T23:59:59.000Z

    A gas curtain device is employed to deflect debris that is generated by an extreme ultraviolet and soft x-ray radiation discharge source such as an electric discharge plasma source. The gas curtain device projects a stream of gas over the path of the radiation to deflect debris particles into a direction that is different from that of the path of the radiation. The gas curtain can be employed to prevent debris accumulation on the optics used in photolithography.

  6. Construction News Report January 2011

    E-Print Network [OSTI]

    frames on the 1st floor. · Completed installation of glass at the south curtain wall. · Continued installation of pressure plate and cap at the south curtain wall. · Installed skinny curtain wall at the north and south elevations. · Completed framing at the curtain wall skylight. Bid Package 306 Drywall / Ceilings

  7. The PennsylvaniaStateUniversity HUB-RobesonAddition and Renovation

    E-Print Network [OSTI]

    Green Roof Curtain Wall Glass · Lay Brick on East Façade and Parapet · Barnes & Noble Cafe Rough · Insulate Bookstore Duct Work · Install Green Roof Curtain Wall · Lay Brick on East Façade and Parapet Building Co., Inc. GreenRoof CurtainWall #12;© Gilbane Building Co., Inc. GreenRoof CurtainWall #12

  8. Effects of accelerated weathering on architectural laminated glass in a windstorm environment

    SciTech Connect (OSTI)

    Behr, R.A.; Minor, J.E.; Kremer, P.A. [Univ. of Missouri, Rolla, MO (United States). Graduate Center for Materials Research

    1996-12-31T23:59:59.000Z

    An experimental study was conducted to assess the serviceability and ultimate limit state behavior of a fully glazed architectural laminated glass system under accelerated weathering conditions. Glazed specimens included heat-strengthened laminated glass with a low-emissivity, metallic solar coating on one glass surface next to the polyvinyl butyral interlayer. The laminated glass units were anchored to the aluminum curtain wall frame with a perimeter anchor bead of medium-modulus structural silicone sealant. Accelerated weathering was performed in a manner similar to the provisions of ASTM E773-88 and E774-92. All specimens (weathered and unweathered) were then subjected to a severe windstorm simulation test, i.e., windborne missile impacts followed by an extensive positive/negative pressure spectrum. Results indicated that the accelerated weathering had demonstrable effects on both the PVB laminated glass and the structural silicone anchor bead. However, complete resistance to glass fallout during the pressure spectrum was achieved when the inboard glass ply remained unbroken after completion of the windborne missile impacts.

  9. UNC Charlotte PORTAL Building Trade Package Base Bid

    E-Print Network [OSTI]

    Kelly, Scott David

    Alternate #2 Fire rated glass curtain wall system Alternate #3 Access control system/ card readers Alternate #1 Office curtains/ double glazing Alternate #2 Fire rated glass curtain wall systemUNC Charlotte PORTAL Building Trade Package Base Bid Alternate #1 Office curtains/ double glazing

  10. A Robot Team that Can Search, Rescue, and Serve Cookies

    E-Print Network [OSTI]

    Blank, Douglas

    , because it contains glass walls (hard to detect for laser), curtains (hard to detect for sonar), and other

  11. High-performance commercial building facades

    E-Print Network [OSTI]

    Lee, Eleanor; Selkowitz, Stephen; Bazjanac, Vladimir; Inkarojrit, Vorapat; Kohler, Christian

    2002-01-01T23:59:59.000Z

    93% glass, a double-pane low-e curtain wall exteriorcurtain wall on it, including a conventional mono- lithic glass

  12. The ignition hazard to urban interiors during nuclear attack due to burning curtain fragments transported by blast 

    E-Print Network [OSTI]

    Goodale, Thomas

    There exists some uncertainty at present, in the formulation of civil defense doctrine, as to whether it is advisable for window curtains to be closed or open during nuclear attack. Closed curtains would be in position to ...

  13. Propagating wave pattern on a falling liquid curtain N. Le Grand-Piteira,1,2

    E-Print Network [OSTI]

    Brunet, Philippe

    curtain falling from a horizontal, wetted tube, maintained between two vertical wires. Since the upper different geometries: i liquid columns formed be- low a horizontal wetted tube 16,17 , ii liquid columns motion, when the flow rate is progressively reduced, coupled to the propagation of curtain undulations

  14. The PennsylvaniaStateUniversity HUB-RobesonAddition and Renovation

    E-Print Network [OSTI]

    Glass in Bookstore Curtain Wall Frames · Millwork in Food Service · Hang Wood Ceiling in Food ServiceServiceWood Ceiling #12;© Gilbane Building Co., Inc. ElectricalRoom #12;© Gilbane Building Co., Inc. BookstoreCurtainWall Curtain Wall · Lay Brick on East Façade · Barnes & Noble Cafe Rough-In · B2 Level Sprinkler Installation

  15. Presented at the 1998 ASHRAE Winter Meeting, January 17-21, 1998, San Francisco, CA, and published in the proceedings.

    E-Print Network [OSTI]

    for the thermal bridging effect caused by bolts. Introduction Exterior glass facades known as curtain walls of Bolts in the Thermal Performance of Curtain-Wall Frames for Glazed Facades Brent Griffith, Elizabeth in the Thermal Performance of Curtain-Wall Frames for Glazed Facades Brent Griffith, Elizabeth Finlayson

  16. Optical Curtain Effect: Extraordinary Optical Transmission Enhanced by Antireflection

    E-Print Network [OSTI]

    Cui, Yanxia; Lin, Yinyue; Li, Guohui; Hao, Yuying; He, Sailing; Fang, Nicholas X

    2012-01-01T23:59:59.000Z

    In this paper, we employ an antireflective coating which comprises of inverted pi shaped metallic grooves to manipulate the behaviour of a TM-polarized plane wave transmitted through a periodic nanoslit array. At normal incidence, such scheme can not only retain the optical curtain effect in the output region, but also generate the extraordinary transmission of light through the nanoslits with the total transmission efficiency as high as 90%. Besides, we show that the spatially invariant field distribution in the output region as well as the field distribution of resonant modes around the inverted pi shaped grooves can be reproduced immaculately when the system is excited by an array of point sources beneath the inverted pi shaped grooves. In further, we investigate the influence of center-groove and side-corners of the inverted pi shaped grooves on suppressing the reflection of light, respectively. Based on our work, it shows promising potential in applications of enhancing the extraction efficiency as well ...

  17. Glass Membrane For Controlled Diffusion Of Gases

    DOE Patents [OSTI]

    Shelby, James E. (Alfred Station, NY); Kenyon, Brian E. (Pittsburgh, PA)

    2001-05-15T23:59:59.000Z

    A glass structure for controlled permeability of gases includes a glass vessel. The glass vessel has walls and a hollow center for receiving a gas. The glass vessel contains a metal oxide dopant formed with at least one metal selected from the group consisting of transition metals and rare earth metals for controlling diffusion of the gas through the walls of the glass vessel. The vessel releases the gas through its walls upon exposure to a radiation source.

  18. Mixed-mode cooling.

    E-Print Network [OSTI]

    Brager, Gail

    2006-01-01T23:59:59.000Z

    curtain walls and fluorescent lighting, led to the more common building forms we see today in North America—typically all-glass,

  19. Summary Report: Control Strategies for Mixed-Mode Buildings

    E-Print Network [OSTI]

    Brager, Gail; Borgeson, Sam; Lee, Yoonsu

    2007-01-01T23:59:59.000Z

    curtain walls and fluorescent lighting, led to the more common commercial building forms of today that are typically all-glass,

  20. Occupant satisfaction in mixed-mode buildings.

    E-Print Network [OSTI]

    Brager, Gail; Baker, Lindsay

    2008-01-01T23:59:59.000Z

    curtain walls and fluorescent lighting, led to the more common commercial building forms of today that are typically all-glass,

  1. Nonlinear Dynamics of Particles Excited by an Electric Curtain

    E-Print Network [OSTI]

    Owen D. Myers; Junru Wu; Jeffrey S. Marshall

    2014-11-10T23:59:59.000Z

    The use of the electric curtain (EC) has been proposed for manipulation and control of particles in various applications. The EC studied in this paper is called the 2-phase EC, which consists of a series of long parallel electrodes embedded in a thin dielectric surface. The EC is driven by an oscillating electric potential of a sinusoidal form where the phase difference of the electric potential between neighboring electrodes is 180 degrees. We investigate the one- and two-dimensional nonlinear dynamics of a particle in an EC field. The form of the dimensionless equations of motion is codimension two, where the dimensionless control parameters are the interaction amplitude ($A$) and damping coefficient ($\\beta$). Our focus on the one-dimensional EC is primarily on a case of fixed $\\beta$ and relatively small $A$, which is characteristic of typical experimental conditions. We study the nonlinear behaviors of the one-dimensional EC through the analysis of bifurcations of fixed points. We analyze these bifurcations by using Floquet theory to determine the stability of the limit cycles associated with the fixed points in the Poincar\\'e sections. Some of the bifurcations lead to chaotic trajectories where we then determine the strength of chaos in phase space by calculating the largest Lyapunov exponent. In the study of the two-dimensional EC we independently look at bifurcation diagrams of variations in $A$ with fixed $\\beta$ and variations in $\\beta$ with fixed $A$. Under certain values of $\\beta$ and $A$, we find that no stable trajectories above the surface exists; such chaotic trajectories are described by a chaotic attractor, for which the the largest Lyapunov exponent is found. We show the well-known stable oscillations between two electrodes come into existence for variations in $A$ and the transitions between several distinct regimes of stable motion for variations in $\\beta$.

  2. President Obama Visits Research Facilities in the Penn State Department of Architectural Engineering

    E-Print Network [OSTI]

    Yener, Aylin

    of an architectural glass curtain wall system under seismic racking test Photo Courtesy of Penn State Live #12 works to simulate a seismic displacement on a curtain wall Photo Courtesy of the Centre Daily Times, which shows the difference between clear glass and a glass that blocks the sun rays that causes heat

  3. Major Project Survey Form Including Bldg. Info 1 Created on: 3/24/2005 FAU Project Survey Form

    E-Print Network [OSTI]

    Fernandez, Eduardo

    Composition Sheathing Composition Curtain Precast Panel Metal Corrugater Glass Curtain or Glass Pane Stucco & Storage Temporary Structure Construction: Roof Walls Floor A Concrete & Fire Protected Steel Concrete or Glass Concrete or Light Conc. On Metal Deck C Metal or Prestress Conc. Metal Conc. Or Glass Concrete D

  4. The PennsylvaniaStateUniversity HUB-RobesonAddition and Renovation

    E-Print Network [OSTI]

    Roof Curtain Wall · Install Skylight Glass and Metal Panels · Install Storefront at Tech Lounge · Lay Building Co., Inc. EastWallBrick #12;Planned Work © Gilbane Building Co., Inc. · Install Skylight Glass

  5. A Study for the Statistical Optimization of a High Speed Curtain Coater

    E-Print Network [OSTI]

    Fleming, Paul D. "Dan"

    Western Michigan University b Mitsubishi Heavy Industries #12;2 ABSTRACT High-speed curtain coating roughness and base sheet sizing. Trials were conducted at Mitsubishi Heavy Industry's state of the art is an emerging technology trying to gain commercial acceptance by the paper industry as a non-impact coating

  6. Heat transfer through a water spray curtain under the effect of a strong radiative source

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Heat transfer through a water spray curtain under the effect of a strong radiative source P. Boulet - mail Pascal.Boulet@lemta.uhp-nancy.fr Keywords : heat transfer, radiative transfer, vaporization, convection, water spray Abstract Heat transfer inside a participating medium, made of droplets flowing in gas

  7. The Influence of Operating Modes, Room Temperature Set Point and Curtain Styles on Energy Consumption of Room Air Conditioner

    E-Print Network [OSTI]

    Yu, J.; Yang, C.; Guo, R.; Wu, D.; Chen, H.

    2006-01-01T23:59:59.000Z

    A field investigation was carried out in an office building of Changsha city in winter and summer, the influence of different running modes, curtain styles and room temperature set point on energy consumption of room air conditioner (RAC...

  8. State University Data System (SUDS) -Development Release 2014.001P (2014-07-01) CORINA MAVRODIN, FAU Page 250 Logout Home Calendar

    E-Print Network [OSTI]

    Fernandez, Eduardo

    0 0 Comment 4002 5 - Glass Curtain Wall Or Glass Pane 14 14 0 0 Comment 4002 6 - Metal Corrugater 4 - Masonry 25 26 -1 0 Comment 4002 3 - Precast Panel 70 70 0 0 Comment 4002 4 - Composition Curtain Wall 3 3

  9. Glass matrix armor

    DOE Patents [OSTI]

    Calkins, Noel C. (Los Alamos, NM)

    1991-01-01T23:59:59.000Z

    An armor system which utilizes glass. A plurality of constraint cells are mounted on a surface of a substrate, which is metal armor plate or a similar tough material, such that the cells almost completely cover the surface of the substrate. Each constraint cell has a projectile-receiving wall parallel to the substrate surface and has sides which are perpendicular to and surround the perimeter of the receiving wall. The cells are mounted such that, in one embodiment, the substrate surface serves as a sixth side or closure for each cell. Each cell has inside of it a plate, termed the front plate, which is parallel to and in contact with substantially all of the inside surface of the receiving wall. The balance of each cell is completely filled with a projectile-abrading material consisting of glass and a ceramic material and, in certain embodiments, a polymeric material. The glass may be in monolithic form or particles of ceramic may be dispersed in a glass matrix. The ceramic material may be in monolithic form or may be in the form of particles dispersed in glass or dispersed in said polymer.

  10. Department of the Army U.S. Army Corps of Engineers

    E-Print Network [OSTI]

    US Army Corps of Engineers

    BOLTS x. ,/' ,. -,, SEAL --­. `h / b >' \\ 31/2,3.3/8 ~GLASS CURTAIN \\, " WALL FRAMING \\ \\ \\ \\ \\ .- GLASS "c SEAL i `STIF `-- 1)2 ALUh! FLOOD SHIELD L --sTIFFENER / ~ 31/2x3x318 SECTION

  11. REPORTSVol. 15, No. 18/0ct. 9, 1969lVancwver8, B.C. RTS CAMPUS EDfTION

    E-Print Network [OSTI]

    Farrell, Anthony P.

    tothe Main Mall. These towers will divide the glass curtain walls that will face out onto students now have on topof the Main Mall. To add to visual orientation and empathy, a glass

  12. Ventilating characteristics of a recirculating air-curtain laboratory exhaust hood

    E-Print Network [OSTI]

    Janes, Dale Floyd

    1978-01-01T23:59:59.000Z

    on either side of the hood were energized, it was impossible to obtain any semblance of uniformity in the air-curtain velocity across the hood front. The blastgates in the supply ducts on either side of the hood were adjusted within their operating range... in Project "n~ 30 The recording voltage meter was energized at the beginning of a data run, the hour was indicated on the chart and the meter was allowed to continue recording throughout the day. Continuous moni- toring of the voltage was desired...

  13. Wafer chamber having a gas curtain for extreme-UV lithography

    DOE Patents [OSTI]

    Kanouff, Michael P. (Livermore, CA); Ray-Chaudhuri, Avijit K. (Livermore, CA)

    2001-01-01T23:59:59.000Z

    An EUVL device includes a wafer chamber that is separated from the upstream optics by a barrier having an aperture that is permeable to the inert gas. Maintaining an inert gas curtain in the proximity of a wafer positioned in a chamber of an extreme ultraviolet lithography device can effectively prevent contaminants from reaching the optics in an extreme ultraviolet photolithography device even though solid window filters are not employed between the source of reflected radiation, e.g., the camera, and the wafer. The inert gas removes the contaminants by entrainment.

  14. Glass Production

    E-Print Network [OSTI]

    Shortland, Andrew

    2009-01-01T23:59:59.000Z

    Late Bronze Age glasses. Journal of Archaeological Science781 - 789. Turner, W.E.S. 1954 Studies in ancient glassesand glass making processes. Part I: Crucibles and melting

  15. UNC Charlotte PORTAL Building Trade Package Base Bid

    E-Print Network [OSTI]

    Kelly, Scott David

    glazing Alternate #2 Fire rated glass curtain wall system Alternate #3 Access control system/ cardUNC Charlotte PORTAL Building Trade Package Base Bid Alternate #1 Office curtains/ double readers Alternate #4 Add café area wall finishes Alternate #5 Add café area casework Prefered

  16. Tiny Glass Bubbles With Big Potential

    Broader source: Energy.gov [DOE]

    If these glass microspheres' walls could talk…They would explain how their tiny pores allow the potential for handling, storing and transporting a variety of materials, including drugs that have...

  17. Glass balls

    E-Print Network [OSTI]

    There is a building with 100 floors in it, and glass balls, and an integer k with the following property. If one drops a glass ball from the floor number k or higher, ...

  18. A few rooms on campus are available for students to use,

    E-Print Network [OSTI]

    Escher, Christine

    . Frosted glass walls let light into the room while keeping the space private. Foot baths are located in public bathrooms near the multifath room. A curtain in the middle of the room creates a separate space

  19. UMR is excited to welcome you to 318 Commons!

    E-Print Network [OSTI]

    Amin, S. Massoud

    Square first; before you check in to 318 Commons!) ·Kitchen equipment: ·Dishes ·Cups / glasses / mugs and washcloths ·Bathrobe ·Shower curtain ·Bathmat or rug ·Shower curtain rings ·Personal toiletries (shampoo ·Stereo / Ipod ·Vacuum ·DVD Player #12;·Printer ·Alarm clock ·TV (flat screens can NOT be wall mounted

  20. The newesT addiTion To The UniversiTy of MinnesoTa's BioMedical

    E-Print Network [OSTI]

    Weiblen, George D

    Hitecture Minnesotanovember/december 2011 Magnetic personality #12;The glass-walled public areas of the University as a sculptural piece, can be glimpsed through the layered glass walls of a main corridor. 1 lobby 2 clinical in the U's Biomedical Discovery District. "The brick, precast concrete, and curtain wall vocabulary

  1. Glass Transition in Confined Geometry

    E-Print Network [OSTI]

    Simon Lang; Vitalie Botan; Martin Oettel; David Hajnal; Thomas Franosch; Rolf Schilling

    2010-08-23T23:59:59.000Z

    Extending mode-coupling theory, we elaborate a microscopic theory for the glass transition of liquids confined between two parallel flat hard walls. The theory contains the standard MCT equations in bulk and in two dimensions as limiting cases and requires as input solely the equilibrium density profile and the structure factors of the fluid in confinement. We evaluate the phase diagram as a function of the distance of the plates for the case of a hard sphere fluid and obtain an oscillatory behavior of the glass transtion line as a result of the structural changes related to layering.

  2. ORNL 2012-G00212/tcc UT-B ID 200902214

    E-Print Network [OSTI]

    Pennycook, Steve

    Technology Summary Glass used in building materials (curtain walls), windshields, goggles, glasses, opticalORNL 2012-G00212/tcc UT-B ID 200902214 08.2012 Superhydrophobic Transparent Glass Thin Films researchers have invented a method to produce durable, superhydrophobic, antireflective glass thin films

  3. Through a glass darkly

    E-Print Network [OSTI]

    Hall, James E

    2012-01-01T23:59:59.000Z

    Closeup Through a glass darklyThrough a glass darkly James E. Hall Keywords: AKAP2; AQP0;Medicine Closeup Through a glass darkly GLUT1 Glucose

  4. Lid heater for glass melter

    DOE Patents [OSTI]

    Phillips, T.D.

    1993-12-14T23:59:59.000Z

    A glass melter having a lid electrode for heating the glass melt radiantly. The electrode comprises a series of INCONEL 690 tubes running above the melt across the melter interior and through the melter walls and having nickel cores inside the tubes beginning where the tubes leave the melter interior and nickel connectors to connect the tubes electrically in series. An applied voltage causes the tubes to generate heat of electrical resistance for melting frit injected onto the melt. The cores limit heat generated as the current passes through the walls of the melter. Nickel bus connection to the electrical power supply minimizes heat transfer away from the melter that would occur if standard copper or water-cooled copper connections were used between the supply and the INCONEL 690 heating tubes. 3 figures.

  5. Lid heater for glass melter

    DOE Patents [OSTI]

    Phillips, Terrance D. (617 Chestnut Ct., Aiken, SC 29803)

    1993-01-01T23:59:59.000Z

    A glass melter having a lid electrode for heating the glass melt radiantly. The electrode comprises a series of INCONEL 690 tubes running above the melt across the melter interior and through the melter walls and having nickel cores inside the tubes beginning where the tubes leave the melter interior and nickel connectors to connect the tubes electrically in series. An applied voltage causes the tubes to generate heat of electrical resistance for melting frit injected onto the melt. The cores limit heat generated as the current passes through the walls of the melter. Nickel bus connection to the electrical power supply minimizes heat transfer away from the melter that would occur if standard copper or water-cooled copper connections were used between the supply and the INCONEL 690 heating tubes.

  6. Construction News Report Construction News Report

    E-Print Network [OSTI]

    tower curtain wall frames and glass. Bid Package 306 Drywall / Ceilings / Painting · Completed framing and poured south site wall at the stairs. · Poured exterior step east of the shear wall. · Poured paver slabs at stairs. · Poured concrete seating west of the shear wall. · Graded the dock area. · Poured loading dock

  7. DEST Software to Analyze System Zoning and Energy Consumption in Air Conditioning Systems

    E-Print Network [OSTI]

    Fan, Y.; Li, D.

    2006-01-01T23:59:59.000Z

    ) Depth 6m, glass curtain wall, Beijing; 2) Depth 6m, window-wall ratio 0.5, Beijing; ICEBO2006, Shenzhen, China HVAC Technologies for Energy Efficiency, Vol. IV-8-2 3) Depth 8m, window-wall ratio 0.5, Harbin; 4) Depth 8m... cases were studied: 1) depth: 6m, glass curtain wall, Beijing; 2) depth: 6m, window-wall ratio 0.5, Beijing. The results were showed in Fig.3 and Fig.4. Different building envelopes condition impacted inner zone load little and distribution of inner...

  8. ITP Glass: Industrial Glass Bandwidth Analysis Final Report,...

    Broader source: Energy.gov (indexed) [DOE]

    industrialbandwidth.pdf More Documents & Publications ITP Glass: Glass Industry of the Future: Energy and Environmental Profile of the U.S. Glass Industry; April, 2002 ITP Glass:...

  9. Fiber ReinforcedFiber Reinforced CementitiousCementitious CompositesComposites B. Mobasher

    E-Print Network [OSTI]

    Mobasher, Barzin

    prefabricated shapes panels shotcrete curtain walls Slabs on grade precast elements Composite decks Vaults Continuous and discontinuous fibers Natural, Asbestos, Wood, rock wool. Synthetic, Steel, E-glass, AR Glass of Interface Weak Zone Steel fibers, high w/c, CH formation Glass fibers strand effect, embrittlement, filling

  10. To appear in Proceedings of Graphics Interface 2007 Constrained Planar Remeshing for Architecture

    E-Print Network [OSTI]

    Varela, Carlos

    , greenhouses, and other curtain wall buildings are typically made in simple, symmetric, planar shapes so with planar construction materials such as glass or plywood. Starting with a complex curved input shape challenging construction material is glass. Al- though glass can be bent into curved panels (e

  11. ITP Glass: Glass Industry of the Future: Energy and Environmental...

    Broader source: Energy.gov (indexed) [DOE]

    glass2002profile.pdf More Documents & Publications ITP Glass: Industrial Glass Bandwidth Analysis Final Report, August 2007 ITP Glass: A Clear Vision for a Bright Future ITP Glass:...

  12. CRYSTALLIZATION IN MULTICOMPONENT GLASSES

    SciTech Connect (OSTI)

    KRUGER AA; HRMA PR

    2009-10-08T23:59:59.000Z

    In glass processing situations involving glass crystallization, various crystalline forms nucleate, grow, and dissolve, typically in a nonuniform temperature field of molten glass subjected to convection. Nuclear waste glasses are remarkable examples of multicomponent vitrified mixtures involving partial crystallization. In the glass melter, crystals form and dissolve during batch-to-glass conversion, melter processing, and product cooling. Crystals often agglomerate and sink, and they may settle at the melter bottom. Within the body of cooling glass, multiple phases crystallize in a non-uniform time-dependent temperature field. Self-organizing periodic distribution (the Liesegnang effect) is common. Various crystallization phenomena that occur in glass making are reviewed.

  13. Controlled permeation of hydrogen through glass. Final report

    SciTech Connect (OSTI)

    Halvorson, T. [Praxair, Inc., Tonawanda, NY (United States); Shelby, J.E. Jr. [Alfred Univ., NY (United States). Glass Science Lab.

    1998-03-01T23:59:59.000Z

    Storing hydrogen inside of hollow glass spheres requires that the gas permeate through the glass walls. Hydrogen permeation through glass is relatively slow and the time to charge a sphere or bed of spheres is dependent on many factors. Permeation processes are strongly temperature dependent with behavior that follows an Arrhenius function., Rate is also dependent on the pressure drop driving force across a membrane wall and inversely proportional to thickness. Once filled, glass spheres will immediately begin to leak once the pressure driving force is reversed. Practical systems would take advantage of the fact that keeping the glass at ambient temperatures can minimize outboard leakage even with significant internal pressures. If hydrogen could be loaded and unloaded from glass microspheres with significantly less energy and particularly at near ambient temperature, some of the key barriers to commercializing this storage concept would be broken and further system engineering efforts may make this approach cost-effective. There were two key objectives for this effort. The first was to evaluate the application of hollow glass microspheres for merchant hydrogen storage and distribution and then determine the hydrogen permeation performance required for practical commercial use. The second objective was to identify, through a series of fundamental experiments, a low energy, low temperature field effect that could significantly enhance hydrogen permeation through glass without application of heat. If such an effect could be found, hollow glass microspheres could be much more attractive for hydrogen storage or possibly gas separation applications.

  14. NEWS & VIEWS Glass dynamics

    E-Print Network [OSTI]

    Weeks, Eric R.

    NEWS & VIEWS Glass dynamics Diverging views on glass transition Gregory B. mc.mckenna@ttu.edu T he glass transition is one of the most intriguing phenomena in the world of soft condensed matter. Despite decades of study, many aspects of the behaviour of glass-forming liquids remain elusive

  15. Glass-silicon column

    DOE Patents [OSTI]

    Yu, Conrad M.

    2003-12-30T23:59:59.000Z

    A glass-silicon column that can operate in temperature variations between room temperature and about 450.degree. C. The glass-silicon column includes large area glass, such as a thin Corning 7740 boron-silicate glass bonded to a silicon wafer, with an electrode embedded in or mounted on glass of the column, and with a self alignment silicon post/glass hole structure. The glass/silicon components are bonded, for example be anodic bonding. In one embodiment, the column includes two outer layers of silicon each bonded to an inner layer of glass, with an electrode imbedded between the layers of glass, and with at least one self alignment hole and post arrangement. The electrode functions as a column heater, and one glass/silicon component is provided with a number of flow channels adjacent the bonded surfaces.

  16. Colloidal Glass Transition Observed in Confinement Carolyn R. Nugent,* Kazem V. Edmond, Hetal N. Patel, and Eric R. Weeks

    E-Print Network [OSTI]

    Weeks, Eric R.

    Colloidal Glass Transition Observed in Confinement Carolyn R. Nugent,* Kazem V. Edmond, Hetal N suspension confined between two quasiparallel walls as a model system for glass transitions in confined. For higher volume fraction samples (closer to the glass transition), the onset of confinement effects occurs

  17. Sol-Clad-Siding and Trans-Lucent-Insulation : curtain wall components for conserving dwelling heat by passive-solar means

    E-Print Network [OSTI]

    Iliesiu, Doru

    1983-01-01T23:59:59.000Z

    A prototype for a dwelling heat loss compensator is introduced in this thesis, along with its measured thermal performance and suggestions for its future development. As a heat loss compensator, the Sol-Clad-Siding collects, ...

  18. Glass Transition Phenomena in Melt-Processed Polystyrene/Polypropylene Blends

    E-Print Network [OSTI]

    . The presence of a rigid polycarbonate matrix as PET cools through its glass transition gives rise to a "wall" effect, causing the Tg of PET to increase [6]. The Tg of polybutadiene in polycarbonate/ABS blends

  19. Glass Working, Use and Discard

    E-Print Network [OSTI]

    Nicholson, Paul

    2011-01-01T23:59:59.000Z

    Beck, Horace C. 1934 Glass before 1500 BC. Ancient Egypt7 - 21. Cooney, John 1960 Glass sculpture in ancient Egypt.Journal of Glass Studies 2, pp. 10 - 43. 1976 Glass.

  20. Check-In/Check-Out Evaluation Complete the arrival columns with explanations below part 7. You and your

    E-Print Network [OSTI]

    Olsen Jr., Dan R.

    . Shower, glass, curtain b. Tub, sink, towel racks c. Toilet, cabinets d. Plastic and tile surfaces e coverings c. Walls and ceilings d. Plastic and tile surfaces e. Electric fixtures, stove (burners, oven) f. Refrigerator, freezer, sink disposal g. Other: 2. Living Room a. Walls and ceiling b. Carpet or rug, window

  1. The Benefit of Lean Techniques Interfaced with Modular Construction

    E-Print Network [OSTI]

    Douthit, Colin

    2013-12-20T23:59:59.000Z

    to interview Marc Butler. He is the Owner of J.R. Butler, Inc., a glass and glazing contractor located in Denver, Colorado. J.R. Butler manufactures and installs unitized curtain wall. Marc is a valuable resource because he uses Lean principles in his... provides relief from the elements, wind, and dust. Also, the work is being done in an ergonomic position. When putting together glass curtain wall in the field the glazier is frequently in awkward positions that may lead to imperfect seals around...

  2. A model of water streaking down a wall David A. Benson

    E-Print Network [OSTI]

    and Hill, 1976; Glass et al., 1989a; Selker et al., 1992]. A wave-like (kinematic) model using Rich- ardsA model of water streaking down a wall David A. Benson Division of Hydrologic Sciences, Desert aperture fracture. A digital photograph of the wall suggests that the vertical distribution of water

  3. Diamond turning of glass

    SciTech Connect (OSTI)

    Blackley, W.S.; Scattergood, R.O.

    1988-12-01T23:59:59.000Z

    A new research initiative will be undertaken to investigate the critical cutting depth concepts for single point diamond turning of brittle, amorphous materials. Inorganic glasses and a brittle, thermoset polymer (organic glass) are the principal candidate materials. Interrupted cutting tests similar to those done in earlier research are Ge and Si crystals will be made to obtain critical depth values as a function of machining parameters. The results will provide systematic data with which to assess machining performance on glasses and amorphous materials

  4. Covering Walls With Fabrics.

    E-Print Network [OSTI]

    Anonymous,

    1979-01-01T23:59:59.000Z

    TDOC . Z TA24S.7 8873 NO.1227 WALLS with ;FABRICS Texas Agricultural Extension Service . The Texas A&M University System Daniel C. Pfannstiel, Director, College Station, Texas Covering Walls with Fabrics* When tastefully applied, fabrics... it is applied, fabric-covered walls improve the sound-absorbing acoustical properties of a room. Also, fabrics can be used for covering walls of either textured gypsum board or wood paneling. Home decorating magazines are good sources for ideas about fabric...

  5. Rare Earth Phosphate Glass and Glass-Ceramic Proton Conductors

    E-Print Network [OSTI]

    De Jonghe, Lutgard C.

    2010-01-01T23:59:59.000Z

    300-500°C. Doping rare earth phosphate glasses with Ce, andRare Earth Phosphate Glass and Glass-Ceramic Protonconductivity of alkaline-earth doped rare earth phosphate

  6. Rare Earth Phosphate Glass and Glass-Ceramic Proton Conductors

    SciTech Connect (OSTI)

    De Jonghe, Lutgard C.; Ray, Hannah L.; Wang, Ruigang

    2008-12-03T23:59:59.000Z

    The structure and conductivity of cerium and lanthanum phosphate glasses and glass-ceramics were investigated. The effects of varying the metal to phosphate ratio in the glasses, doping LaP3O9 glasses with Ce, and recrystallization of CeP3O9 glasses, on the glasses' microstructure and total conductivity were investigated using XRD, SEM, and AC impedance techniques. Strong increases in conductivity occurred when the glasses were recrystallized: the conductivity of a cerium metaphosphate glass increased conductivity after recrystallization from 10-7.5 S/cm to 10-6 S/cm at 400oC.

  7. NUCLEAR WASTE GLASSES CONTINUOUS MELTING AND BULK VITRIFICAITON

    SciTech Connect (OSTI)

    KRUGER AA; HRMA PR

    2008-03-24T23:59:59.000Z

    This contribution addresses various aspects of nuclear waste vitrification. Nuclear wastes have a variety of components and composition ranges. For each waste composition, the glass must be formulated to possess acceptable processing and product behavior defined in terms of physical and chemical properties that guarantee the glass can be easily made and resist environmental degradation. Glass formulation is facilitated by developing property-composition models, and the strategy of model development and application is reviewed. However, the large variability of waste compositions presents numerous additional challenges: insoluble solids and molten salts may segregate; foam may hinder heat transfer and slow down the process; molten salts may accumulate in container refractory walls; the glass on cooling may precipitate crystalline phases. These problems need targeted exploratory research. Examples of specific problems and their possible solutions are discussed.

  8. Nuclear Waste Glasses: Continuous Melting and Bulk Vitrification

    SciTech Connect (OSTI)

    Hrma, Pavel R.; Kruger, Albert A.

    2008-02-25T23:59:59.000Z

    This contribution addresses various aspects of nuclear waste vitrification. Nuclear wastes have a variety of components and composition ranges. For each waste composition, the glass must be formulated to possess acceptable processing and product behavior defined in terms of physical and chemical properties that guarantee that the glass can be easily made and resist environmental degradation. Glass formulation is facilitated by developing property-composition models, and the strategy of model development and application is reviewed. However, the large variability of waste compositions presents numerous additional challenges: insoluble solids and molten salts may segregate; foam may hinder heat transfer and slow down the process; molten salts may accumulate in container refractory walls; on cooling, the glass may precipitate crystalline phases. These problems need targeted exploratory research. Examples of specific problems and their possible solutions are discussed.

  9. Nuclear Waste Glasses: Continuous Melting and Bulk Vitrification

    SciTech Connect (OSTI)

    Hrma, Pavel R.; Kruger, Albert A.

    2009-01-15T23:59:59.000Z

    This contribution addresses various aspects of nuclear waste vitrification. Composition of nuclear wastes varies in the number of components and their composition ranges. For each waste composition, the glass must be formulated to possess acceptable processing and product behavior defined in terms of physical and chemical properties that guarantee that the glass is easily made and resists environmental degradation. Glass formulation is facilitated by developing property-composition models. The strategy of model development and application is reviewed. However, the large variability of waste composition presents numerous additional challenges: insoluble solids and molten salts may segregate; foam may hinder heat transfer and slows down the process; molten salts may accumulate in container refractory walls; on cooling, the glass may precipitate crystalline phases. These problems need targeted exploratory research. Examples of specific problems and their possible solutions are discussed.

  10. Defense HLW Glass Degradation Model

    SciTech Connect (OSTI)

    D. Strachan

    2004-10-20T23:59:59.000Z

    The purpose of this report is to document the development of a model for calculating the release rate for radionuclides and other key elements from high-level radioactive waste (HLW) glasses under exposure conditions relevant to the performance of the repository. Several glass compositions are planned for the repository, some of which have yet to be identified (i.e., glasses from Hanford and Idaho National Engineering and Environmental Laboratory). The mechanism for glass dissolution is the same for these glasses and the glasses yet to be developed for the disposal of DOE wastes. All of these glasses will be of a quality consistent with the glasses used to develop this report.

  11. Fluidized wall for protecting fusion chamber walls

    DOE Patents [OSTI]

    Maniscalco, James A. (Danville, CA); Meier, Wayne R. (Livermore, CA)

    1982-01-01T23:59:59.000Z

    Apparatus for protecting the inner wall of a fusion chamber from microexplosion debris, x-rays, neutrons, etc. produced by deuterium-tritium (DT) targets imploded within the fusion chamber. The apparatus utilizes a fluidized wall similar to a waterfall comprising liquid lithium or solid pellets of lithium-ceramic, the waterfall forming a blanket to prevent damage of the structural materials of the chamber.

  12. Liquid Wall Chambers

    SciTech Connect (OSTI)

    Meier, W R

    2011-02-24T23:59:59.000Z

    The key feature of liquid wall chambers is the use of a renewable liquid layer to protect chamber structures from target emissions. Two primary options have been proposed and studied: wetted wall chambers and thick liquid wall (TLW) chambers. With wetted wall designs, a thin layer of liquid shields the structural first wall from short ranged target emissions (x-rays, ions and debris) but not neutrons. Various schemes have been proposed to establish and renew the liquid layer between shots including flow-guiding porous fabrics (e.g., Osiris, HIBALL), porous rigid structures (Prometheus) and thin film flows (KOYO). The thin liquid layer can be the tritium breeding material (e.g., flibe, PbLi, or Li) or another liquid metal such as Pb. TLWs use liquid jets injected by stationary or oscillating nozzles to form a neutronically thick layer (typically with an effective thickness of {approx}50 cm) of liquid between the target and first structural wall. In addition to absorbing short ranged emissions, the thick liquid layer degrades the neutron flux and energy reaching the first wall, typically by {approx}10 x x, so that steel walls can survive for the life of the plant ({approx}30-60 yrs). The thick liquid serves as the primary coolant and tritium breeding material (most recent designs use flibe, but the earliest concepts used Li). In essence, the TLW places the fusion blanket inside the first wall instead of behind the first wall.

  13. Glass, Brian 1 BRIAN DANIEL GLASS, M.A.

    E-Print Network [OSTI]

    Maddox, W. Todd

    Glass, Brian 1 BRIAN DANIEL GLASS, M.A. University Department of Psychology, A8000 The University of Texas at Austin Austin, TX 78712 (512) 232-2883 e-mail: glass@mail.utexas.edu EDUCATION 2006 ­ Cognitive include: Designing and constructing experiments, statistical #12;Glass, Brian 2 analysis, manuscript

  14. Glass, Brian 1 BRIAN DANIEL GLASS, M.A.

    E-Print Network [OSTI]

    Maddox, W. Todd

    Glass, Brian 1 BRIAN DANIEL GLASS, M.A. University Department of Psychology, A8000 The University Making, The University of Texas at Austin #12;Glass, Brian 2 Duties include: Designing and constructing, constructing, and running experiments, statistical analysis. JOURNAL PUBLICATIONS Glass, B. D., Chotibut, T

  15. Glass, Brian 1 BRIAN DANIEL GLASS, M.A.

    E-Print Network [OSTI]

    Maddox, W. Todd

    Glass, Brian 1 BRIAN DANIEL GLASS, M.A. University Department of Psychology, A8000 The University of Categorization and Decision Making, The University of Texas at Austin #12;Glass, Brian 2 Duties include: Programming, constructing, and running experiments, statistical analysis. JOURNAL PUBLICATIONS Glass, B. D

  16. Webs of Walls

    E-Print Network [OSTI]

    Minoru Eto; Youichi Isozumi; Muneto Nitta; Keisuke Ohashi; Norisuke Sakai

    2005-06-20T23:59:59.000Z

    Webs of domain walls are constructed as 1/4 BPS states in d=4, N=2 supersymmetric U(Nc) gauge theories with Nf hypermultiplets in the fundamental representation. Web of walls can contain any numbers of external legs and loops like (p,q) string/5-brane webs. We find the moduli space M of a 1/4 BPS equation for wall webs to be the complex Grassmann manifold. When moduli spaces of 1/2 BPS states (parallel walls) and the vacua are removed from M, the non-compact moduli space of genuine 1/4 BPS wall webs is obtained. All the solutions are obtained explicitly and exactly in the strong gauge coupling limit. In the case of Abelian gauge theory, we work out the correspondence between configurations of wall web and the moduli space CP^{Nf-1}.

  17. Tokamak reactor first wall

    DOE Patents [OSTI]

    Creedon, R.L.; Levine, H.E.; Wong, C.; Battaglia, J.

    1984-11-20T23:59:59.000Z

    This invention relates to an improved first wall construction for a tokamak fusion reactor vessel, or other vessels subjected to similar pressure and thermal stresses.

  18. Baseline LAW Glass Formulation Testing

    SciTech Connect (OSTI)

    Kruger, Albert A. [USDOE Office of River Protection, Richland, WA (United States); Mooers, Cavin [The Catholic University of America, Washington, DC (United States). Vitreous State Lab.; Bazemore, Gina [The Catholic University of America, Washington, DC (United States). Vitreous State Lab; Pegg, Ian L. [The Catholic University of America, Washington, DC (United States). Vitreous State Lab; Hight, Kenneth [The Catholic University of America, Washington, DC (United States). Vitreous State Lab; Lai, Shan Tao [The Catholic University of America, Washington, DC (United States). Vitreous State Lab; Buechele, Andrew [The Catholic University of America, Washington, DC (United States). Vitreous State Lab; Rielley, Elizabeth [The Catholic University of America, Washington, DC (United States). Vitreous State Lab; Gan, Hao [The Catholic University of America, Washington, DC (United States). Vitreous State Lab; Muller, Isabelle S. [The Catholic University of America, Washington, DC (United States). Vitreous State Lab; Cecil, Richard [The Catholic University of America, Washington, DC (United States). Vitreous State Lab

    2013-06-13T23:59:59.000Z

    The major objective of the baseline glass formulation work was to develop and select glass formulations that are compliant with contractual and processing requirements for each of the LAW waste streams. Other objectives of the work included preparation and characterization of glasses with respect to the properties of interest, optimization of sulfate loading in the glasses, evaluation of ability to achieve waste loading limits, testing to demonstrate compatibility of glass melts with melter materials of construction, development of glass formulations to support ILAW qualification activities, and identification of glass formulation issues with respect to contract specifications and processing requirements.

  19. Super ionic conductive glass

    DOE Patents [OSTI]

    Susman, Sherman (Park Forest, IL); Volin, Kenneth J. (Fort Collins, CO)

    1984-01-01T23:59:59.000Z

    An ionically conducting glass for use as a solid electrolyte in a power or secondary cell containing an alkali metal-containing anode and a cathode separated by an alkali metal ion conducting glass having an ionic transference number of unity and the general formula: A.sub.1+x D.sub.2-x/3 Si.sub.x P.sub.3-x O.sub.12-2x/3, wherein A is a network modifier for the glass and is an alkali metal of the anode, D is an intermediate for the glass and is selected from the class consisting of Zr, Ti, Ge, Al, Sb, Be, and Zn and X is in the range of from 2.25 to 3.0. Of the alkali metals, Na and Li are preferred and of the intermediate, Zr, Ti and Ge are preferred.

  20. DWPF GLASS BEADS AND GLASS FRIT TRANSPORT DEMONSTRATION

    SciTech Connect (OSTI)

    Adamson, D; Bradley Pickenheim, B

    2008-11-24T23:59:59.000Z

    DWPF is considering replacing irregularly shaped glass frit with spherical glass beads in the Slurry Mix Evaporator (SME) process to decrease the yield stress of the melter feed (a non-Newtonian Bingham Plastic). Pilot-scale testing was conducted on spherical glass beads and glass frit to determine how well the glass beads would transfer when compared to the glass frit. Process Engineering Development designed and constructed the test apparatus to aid in the understanding and impacts that spherical glass beads may have on the existing DWPF Frit Transfer System. Testing was conducted to determine if the lines would plug with the glass beads and the glass frit slurry and what is required to unplug the lines. The flow loop consisted of vertical and horizontal runs of clear PVC piping, similar in geometry to the existing system. Two different batches of glass slurry were tested: a batch of 50 wt% spherical glass beads and a batch of 50 wt% glass frit in process water. No chemicals such as formic acid was used in slurry, only water and glass formers. The glass beads used for this testing were commercially available borosilicate glass of mesh size -100+200. The glass frit was Frit 418 obtained from DWPF and is nominally -45+200 mesh. The spherical glass beads did not have a negative impact on the frit transfer system. The transferring of the spherical glass beads was much easier than the glass frit. It was difficult to create a plug with glass bead slurry in the pilot transfer system. When a small plug occurred from setting overnight with the spherical glass beads, the plug was easy to displace using only the pump. In the case of creating a man made plug in a vertical line, by filling the line with spherical glass beads and allowing the slurry to settle for days, the plug was easy to remove by using flush water. The glass frit proved to be much more difficult to transfer when compared to the spherical glass beads. The glass frit impacted the transfer system to the point that the test apparatus had to be disassembled to dislodge the plugs created in the system.

  1. THE ROLE OF THREE CYTOPLASMIC FIBERS IN BHK-21 CELL MOTILITY

    E-Print Network [OSTI]

    Goldman, Robert D.

    of the microtubule walls (7) . We have utilized colchicine to determine the possible functions of microtubules;not crushed or compressed, broken pieces of no . 1 glass cover slips were placed at the four corners observations with a Sage Air Curtain incubator (Sage Instruments, Inc ., White Plains, N.Y.). Sykes

  2. UCSD Housing Damages and Charges

    E-Print Network [OSTI]

    Russell, Lynn

    5. Walls 10. Windows (glass) Unclean $25.00 to $100 Broken $50.00 and up Tape-adhesive removal $30 dispenser $35.00 Replace $30.00 to $200 Shower curtain $10.00 Rod-repair/replace Shower rod $40.00 Bedroom

  3. Seismic behavior of structural silicone glazing

    SciTech Connect (OSTI)

    Zarghamee, M.S.; Schwartz, T.A. [Simpson Gumpertz and Heger Inc., Arlington, MA (United States); Gladstone, M. [Dow Corning Corp., Fremont, CA (United States)

    1996-12-31T23:59:59.000Z

    In seismic events, glass curtain walls undergo racking deformation, while the flat glass lites do not rack due to their high shear stiffness. If the glass curtain wall is not isolated from the building frame by specifically designed connections that accommodate relative motion, seismic racking motion of the building frame will demand significant resiliency of the sealant that secures the glass to the curtain wall framing. In typical four-sided structural silicone glazing systems used in buildings with unbraced moment frames, the magnitude of seismic racking is likely to stress the sealants significantly beyond the sealant design strength. In this paper, the extent of the expected seismic racking motion, the behavior of the structural silicone glazing when subjected to the expected racking motion, and the field performance of a building with four-sided structural silicone glazing during the Northridge earthquake are discussed. The details of a curtain wall design concept consisting of shop-glazed subframes connected to the building frame and the connections that accommodate seismic motion of the subframe relative to the building frame is developed. Specific recommendations are made for the design of the four-sided structural silicone glazing systems for seismic loads.

  4. ADVENTURE RECREATION CENTER Updated: 1/25/11

    E-Print Network [OSTI]

    Howat, Ian M.

    Batting Cages: Porter Climbing Wall: Nicros ($250,000) Fitness Equipment: Cybex, Troy, Precor, Life are adjacent to each other, while one is a stand alone court · Four scoreboards · Walkdraw curtains around" · Cameras/TV to monitor climbing center · Located in a "glass cube" on main campus road to market

  5. The Seduction of the Glass Box

    E-Print Network [OSTI]

    Ackerly, Katie

    2013-01-01T23:59:59.000Z

    Visual, and Spatial Effects of Glass, New York: PrincetonBauten, Perspektiven (Glass Architects: Concepts, Buildings,Taking a Second Look: Glass Pavilion at Broadfield House in

  6. Glass blowing on a wafer level

    E-Print Network [OSTI]

    Eklund, E. Jesper; Shkel, Andrei M.

    2007-01-01T23:59:59.000Z

    E. Shelby, Introduction to Glass Science and Technology. :Properties of Corning Glasses [Online]. Available: http://1981. [15] R. H. Doremus, Glass Science. New York: Wiley,

  7. Glass | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdf Flash2006-52.pdf0.pdfDepartmentCounselGlass Coating Makes Solar Panels MoreGlass

  8. Rammered Earth Wall 

    E-Print Network [OSTI]

    Unknown

    2011-08-17T23:59:59.000Z

    FIELD MEASUREMENT OF LATERAL EARTH PRESSURES ON RETAINING WALLS A Thesis by Michael Riggins Submitted to the Graduate College of Texas ARM University in partial fulfillment of the requirement for the degree of MASTER OF SCIENCE August 1974... Major Subject: Civil Engineering FIELD MEASUREMENT OF LATERAL EARTH PRESSURES ON RETAINING WALLS A Thesis by Michael Riggins Approved as to style and content by: Cha rman of Committee Memb r Head of Departm t P Etc Member August 1974 ABSTRACT...

  9. Laboratory Waste Disposal HAZARDOUS GLASS

    E-Print Network [OSTI]

    Sheridan, Jennifer

    Laboratory Waste Disposal HAZARDOUS GLASS Items that could cut or puncture skin or trash- can without any treatment. Hazardous Glass and Plastic: Items that can puncture, cut or scratch if disposed of in normal trash containers. Pasteur pipettes Other pipettes and tips (glass or plastic) Slides and cover

  10. Intrinsic Dosimetry: Elemental Composition Effects on the Thermoluminescence of Commercial Borosilicate Glass

    SciTech Connect (OSTI)

    Richard A. Clark; J. David Robertson; Jon M. Schwantes

    2013-12-01T23:59:59.000Z

    Intrinsic dosimetry is the method of measuring total absorbed dose received by the walls of a container holding radioactive material. By considering this dose in tandem with the physical characteristics of the radioactive material housed within the container, this method can provide enhanced pathway information for interdicted radioactive samples. Thermoluminescence (TL) dosimetry was used to measure ionizing radiation dose effects on stock borosilicate glass. Differences in TL glow curve shape and intensity were observed for glasses from different geographical origins. The different TL signatures strongly correlated with the concentration of alkaline earth metals and the ratio of sodium to the total amount of alkali metal present in the borosilicate glass.

  11. Intrinsic Dosimetry: Elemental Composition Effects on the Thermoluminescence of Commercial Borosilicate Glass

    SciTech Connect (OSTI)

    Clark, Richard A.; Robinson, J. D.; Schwantes, Jon M.

    2013-12-07T23:59:59.000Z

    Intrinsic dosimetry is the method of measuring total absorbed dose received by the walls of a container holding radioactive material. By considering this dose in tandem with the physical characteristics of the radioactive material housed within the container, this method can provide enhanced pathway information for interdicted radioactive samples. Thermoluminescence (TL) dosimetry was used to measure ionizing radiation dose effects on stock borosilicate glass. Differences in TL glow curve shape and intensity were observed for glasses from different geographical origins. The different TL signatures strongly correlated with the concentration of alkaline earth metals and the ratio of sodium to the total amount of alkali metal present in the borosilicate glass.

  12. The Color Glass Condensate

    E-Print Network [OSTI]

    F. Gelis; E. Iancu; J. Jalilian-Marian; R. Venugopalan

    2010-02-01T23:59:59.000Z

    We provide a broad overview of the theoretical status and phenomenological applications of the Color Glass Condensate effective field theory describing universal properties of saturated gluons in hadron wavefunctions that are extracted from deeply inelastic scattering and hadron-hadron collision experiments at high energies.

  13. Incorporation and distribution of rhenium in a borosilicate glass melt heat treated in a sealed ampoule

    SciTech Connect (OSTI)

    Kim, Dong-Sang; Schweiger, Michael J.

    2013-07-25T23:59:59.000Z

    We investigated a mass balance of rhenium (used as a surrogate for technetium-99) in a borosilicate glass that was mixed with excess Re source (KReO4) beyond its solubility and heat treated in a vacuum-sealed fused silica ampoule. Distribution of Re in the bulk of the glass, in a salt phase formed on the melt surface, and in condensate material deposited on the ampoule wall was evaluated to understand the Re migration into different phases during the reaction between the molten glass and KReO4. The information gained from this study will contribute to an effort to understand the mechanism of technetium retention in or escape from glass melt during early stages of glass batch melting, which is a goal of the present series of studies.

  14. Thermal treatment wall

    DOE Patents [OSTI]

    Aines, Roger D. (Livermore, CA); Newmark, Robin L. (Livermore, CA); Knauss, Kevin G. (Livermore, CA)

    2000-01-01T23:59:59.000Z

    A thermal treatment wall emplaced to perform in-situ destruction of contaminants in groundwater. Thermal destruction of specific contaminants occurs by hydrous pyrolysis/oxidation at temperatures achievable by existing thermal remediation techniques (electrical heating or steam injection) in the presence of oxygen or soil mineral oxidants, such as MnO.sub.2. The thermal treatment wall can be installed in a variety of configurations depending on the specific objectives, and can be used for groundwater cleanup, wherein in-situ destruction of contaminants is carried out rather than extracting contaminated fluids to the surface, where they are to be cleaned. In addition, the thermal treatment wall can be used for both plume interdiction and near-wellhead in-situ groundwater treatment. Thus, this technique can be utilized for a variety of groundwater contamination problems.

  15. Axion domain wall baryogenesis

    E-Print Network [OSTI]

    Daido, Ryuji; Takahashi, Fuminobu

    2015-01-01T23:59:59.000Z

    We propose a new scenario of baryogenesis, in which annihilation of axion domain walls generates a sizable baryon asymmetry. Successful baryogenesis is possible for a wide range of the axion mass and decay constant, $m \\simeq 10^8 -10^{13}$ GeV and $f \\simeq 10^{13} - 10^{16}$ GeV. Baryonic isocurvature perturbations are significantly suppressed in our model, in contrast to various spontaneous baryogenesis scenarios in the slow-roll regime. In particular, the axion domain wall baryogenesis is consistent with high-scale inflation which generates a large tensor-to-scalar ratio within the reach of future CMB B-mode experiments. We also discuss the gravitational waves produced by the domain wall annihilation and its implications for the future gravitational wave experiments.

  16. Analytical Plan for Roman Glasses

    SciTech Connect (OSTI)

    Strachan, Denis M.; Buck, Edgar C.; Mueller, Karl T.; Schwantes, Jon M.; Olszta, Matthew J.; Thevuthasan, Suntharampillai; Heeren, Ronald M.

    2011-01-01T23:59:59.000Z

    Roman glasses that have been in the sea or underground for about 1800 years can serve as the independent “experiment” that is needed for validation of codes and models that are used in performance assessment. Two sets of Roman-era glasses have been obtained for this purpose. One set comes from the sunken vessel the Iulia Felix; the second from recently excavated glasses from a Roman villa in Aquileia, Italy. The specimens contain glass artifacts and attached sediment or soil. In the case of the Iulia Felix glasses quite a lot of analytical work has been completed at the University of Padova, but from an archaeological perspective. The glasses from Aquileia have not been so carefully analyzed, but they are similar to other Roman glasses. Both glass and sediment or soil need to be analyzed and are the subject of this analytical plan. The glasses need to be analyzed with the goal of validating the model used to describe glass dissolution. The sediment and soil need to be analyzed to determine the profile of elements released from the glass. This latter need represents a significant analytical challenge because of the trace quantities that need to be analyzed. Both pieces of information will yield important information useful in the validation of the glass dissolution model and the chemical transport code(s) used to determine the migration of elements once released from the glass. In this plan, we outline the analytical techniques that should be useful in obtaining the needed information and suggest a useful starting point for this analytical effort.

  17. Experimental study of a fiber absorber-suppressor modified Trombe wall

    SciTech Connect (OSTI)

    Choudhury, D; Birkebak, R C

    1982-12-01T23:59:59.000Z

    An experimental study has been conducted to ascertain the effects of introducing fiber bed absorbers on Trombe wall passive solar collectors. Two identical, Trombe wall passive solar units were constructed that incorporate the basic components of masonry collector-storage walls: glazings, masonry and thermal insulation. Both units were extensively instrumented with thermocouples and heat flux transducers. Ambient temperature, relative humidity, wind speed and insolation are also measured. In the first part of the study the two Trombe wall units were tested with a single glass cover. The thermal performance of both units was found to be virtually identical. In the second part of the study a single cover Trombe wall unit was compared with a double cover unit and the latter was found to have higher air gap and masonry wall temperatures and heat fluxes. In the final phase of the experiment, an absorbing, scattering and emitting fiberglass-like material was placed in the air gap of the single gazed wall. Tests were conducted to compare the solar-thermal performance, heat loss and gain characteristics between the units with and without the fiber absorber-suppressor. This experiment showed that the fiber bed served to decouple the wall at night from its exterior environment and to reduce the heat losses. The modified Trombe wall with the fiber absorber-suppressor out-performed the double glazed Trombe wall system by approximately ten percent gain in useable thermal energy. Also, the fiber bed eliminates one glazing thereby reducing system cost as well.

  18. Foam flow around an obstacle: obstacle-wall interaction , B. Dollet2

    E-Print Network [OSTI]

    Cox, Simon

    two-dimensional (2D) foams, such as can be made by squeezing a foam between two glass plates soFoam flow around an obstacle: obstacle-wall interaction S.J. Cox1 , B. Dollet2 , F. Graner2 1- chanics, University of Wales Aberystwyth, Ceredigion SY23 3BZ, UK, e-mail: foams@aber.ac.uk 2 Spectrom

  19. Mixed polyanion glass cathodes: Iron phosphate vanadate glasses

    SciTech Connect (OSTI)

    Kercher, Andrew K [ORNL; Ramey, Joanne Oxendine [ORNL; Carroll, Kyler J [Massachusetts Institute of Technology (MIT); Kiggans Jr, James O [ORNL; Veith, Gabriel M [ORNL; Meisner, Roberta [Oak Ridge National Laboratory (ORNL); Boatner, Lynn A [ORNL; Dudney, Nancy J [ORNL

    2014-01-01T23:59:59.000Z

    Mixed polyanion (MP) glasses have been investigated for use as cathodes in lithium ion batteries. MP glass cathodes are similar in composition to theoretically promising crystalline polyanionic (CP) cathodes (e.g., lithium cobalt phosphate, lithium manganese silicate), but with proper polyanion substitution, they can be designed to overcome the key shortcomings of CP cathodes, such as poor electrical conductivity and irreversible phase changes. Iron phosphate/vanadate glasses were chosen as a first demonstration of the MP glass concept. Polyanion substitution with vanadate was shown to improve the intercalation capacity of an iron phosphate glass from almost zero to full theoretical capacity. In addition, the MP glass cathodes also exhibited an unexpected second high-capacity electrochemical reaction. X-ray absorption near-edge structure (XANES) and x-ray diffraction (XRD) of cathodes from cells having different states of charge suggested that this second electrochemical reaction is a glass-state conversion reaction. With a first demonstration established, MP glass materials utilizing an intercalation and/or glass-state conversion reaction are promising candidates for future high-energy cathode research.

  20. High-R Walls for Remodeling: Wall Cavity Moisture Monitoring

    SciTech Connect (OSTI)

    Wiehagen, J.; Kochkin, V.

    2012-12-01T23:59:59.000Z

    The focus of the study is on the performance of wall systems, and in particular, the moisture characteristics inside the wall cavity and in the wood sheathing. Furthermore, while this research will initially address new home construction, the goal is to address potential moisture issues in wall cavities of existing homes when insulation and air sealing improvements are made.

  1. Weihai Blue Star Glass Holding Co Ltd aka Shandong Lanxing Glass...

    Open Energy Info (EERE)

    Weihai Blue Star Glass Holding Co Ltd aka Shandong Lanxing Glass Group Co Ltd Jump to: navigation, search Name: Weihai Blue Star Glass Holding Co Ltd (aka Shandong Lanxing Glass...

  2. Glass Ceiling or Glass Elevator: Are Voters Biased in Favor of Women Candidates in California Elections?

    E-Print Network [OSTI]

    Abney, Ronni Marie; Peterson, Rolfe Daus

    2011-01-01T23:59:59.000Z

    10.2202/1944-4370.1103 Abney and Peterson: Glass Ceilingor Glass Elevator Table 7A. Positive Gender Bias ModelAbney and Peterson: Glass Ceiling or Glass Elevator Huddy,

  3. Transparent glass honeycomb structures for energy loss control. Final summary report, January 1976-October 1979

    SciTech Connect (OSTI)

    Not Available

    1980-06-01T23:59:59.000Z

    It has been demonstrated that properly-shaped glass honeycomb placed between a non-selective absorber and the coverglass of a flat plate solar collector gives collection efficiencies significantly higher than those of conventional flat plate units, even those with selective absorbers, collecting solar energy at temperatures required for heating and cooling buildings. Three basic glass honeycomb shapes were analyzed and tested: (1) thin-walled cylindrical glass tube honeycomb in square or hexagonal arrays, (2) corrugated thin glass sheets stacked peak-to-trough to form double-sinsuoid-shaped cells, and (3) flat thin glass sheets stacked to form long parallel slots. A continuous hot-rolling mill was used to corrugate commercial Micro-Sheet glass, thus demonstrating a key step needed for the commercialization of glass honeycomb fabrication. Experimental-scale (61 cm x 61 cm) collectors and collectors scaled-up in area were fabricated and tested outdoors to verify the analytical-numerical performance-prediction algorithms developed during the program. Optimization studies were made with respect to performance and cost to identify optimal shapes of sinusoidal-celled glass honeycombs which have high potential for mass production.

  4. The GLASS CHAIR Edited by Manuel Heitor

    E-Print Network [OSTI]

    Instituto de Sistemas e Robotica

    The GLASS CHAIR Edited by Manuel Heitor IST Press, 2000 #12;Collaborative Design of... The GLASS the glass chair, but also for the numerous discussions on glass production processes. And last · Carmo Valente Chapter 4. GLASS: BEAUTY WITH STRENGTH Sushil Kumar Mendiratta Chapter 5. The IDEA

  5. Method for heating a glass sheet

    DOE Patents [OSTI]

    Boaz, Premakaran Tucker (Livonia, MI)

    1998-01-01T23:59:59.000Z

    A method for heating a glass sheet includes the steps of heating a glass sheet to a first predetermined temperature and applying microwave energy to the glass sheet to heat the glass sheet to at least a second predetermined temperature to allow the glass sheet to be formed.

  6. Method for heating a glass sheet

    DOE Patents [OSTI]

    Boaz, P.T.

    1998-07-21T23:59:59.000Z

    A method for heating a glass sheet includes the steps of heating a glass sheet to a first predetermined temperature and applying microwave energy to the glass sheet to heat the glass sheet to at least a second predetermined temperature to allow the glass sheet to be formed. 5 figs.

  7. Compositional threshold for Nuclear Waste Glass Durability

    SciTech Connect (OSTI)

    Kruger, Albert A. [Pacific Northwest National Lab., Richland, WA (United States); Farooqi, Rahmatullah [Pohang Univ. of Science and Technology, (Korea, Republic of); Hrma, Pavel R. [Pacific Northwest National Lab., Richland, WA (United States), Pohang Univ. of Science and Technology, (Korea, Republic of)

    2013-04-24T23:59:59.000Z

    Within the composition space of glasses, a distinct threshold appears to exist that separates "good" glasses, i.e., those which are sufficiently durable, from "bad" glasses of a low durability. The objective of our research is to clarify the origin of this threshold by exploring the relationship between glass composition, glass structure and chemical durability around the threshold region.

  8. Cooling Energy and Cost Savings with Daylighting in a Hot and Humid Climate

    E-Print Network [OSTI]

    Arasteh, D.; Johnson, R.; Selkowitz, S.; Connell, D.

    1985-01-01T23:59:59.000Z

    (including glazing) was %eld constant at values consistent with ASHRAE 90 standards. Since the thermal conductance of the glazing (single or dou- ble) exceeds the maximum U , as the glass area increases, the conductance 0% the opaque wall is reduced...- ing to a saturation of useful daylight and no sig- nificant further savings in electric lighting energy. This daylight saturation effect begins at effective apertures between 0.10 and 0.25 for typ- ical curtain wall designs in a perimeter zone...

  9. Color Glass Condensate and Glasma

    E-Print Network [OSTI]

    Francois Gelis

    2010-09-06T23:59:59.000Z

    In this talk, I review the Color Glass Condensate theory of gluon saturation, and its application to the early stages of heavy ion collisions.

  10. THE DIELECTRIC WALL ACCELERATOR

    SciTech Connect (OSTI)

    Caporaso, G J; Chen, Y; Sampayan, S E

    2009-08-17T23:59:59.000Z

    The Dielectric Wall Accelerator (DWA), a class of induction accelerators, employs a novel insulating beam tube to impress a longitudinal electric field on a bunch of charged particles. The surface flashover characteristics of this tube may permit the attainment of accelerating gradients on the order of 100 MV/m for accelerating pulses on the order of a nanosecond in duration. A virtual traveling wave of excitation along the tube is produced at any desired speed by controlling the timing of pulse generating modules that supply a tangential electric field to the tube wall. Because of the ability to control the speed of this virtual wave, the accelerator is capable of handling any charge to mass ratio particle; hence it can be used for electrons, protons and any ion. The accelerator architectures, key technologies and development challenges will be described.

  11. Research on the HYLIFE liquid-first-wall concept for future laser-fusion reactors. Final report No. 5

    SciTech Connect (OSTI)

    Hoffman, M.A.

    1980-09-01T23:59:59.000Z

    It has been proposed to protect the structural walls of a future laser fusion reactor with a curtain or fluid-wall of liquid lithium jets. As part of the investigation of this concept, experiments have been performed on planar sheet water jets issuing vertically downward from slit nozzles. The nozzles were subjected to transverse forced harmonic excitation to simulate the vibrational environment of the laser fusion reactor, and experiments were run at both 1 atm and at lower ambient pressures. Linear temporal stability theory is shown to predict the onset of the unstable regime and the initial spatial growth rates quite well for the cases where the amplitudes of the nozzle vibration are not too large and the waveform is nearly sinusoidal. In addition, both the linear theory and a simplified trajectory theory are shown to predict the initial wave envelope amplitudes very well. For larger amplitude nozzle excitation, the waveform becomes highly nonlinear and non-sinusoidal and can resemble a sawtooth waveform in some cases; these latter experimental results can only be partially explained by existing theories at the present time.

  12. Efficient Breach Theory Through the Looking Glass

    E-Print Network [OSTI]

    Adler, Barry E.

    2007-01-01T23:59:59.000Z

    in Wonderland and Through the Looking Glass (Signet 1960).Theory Through the Looking Glass such an award a put by theTheory Through the Looking Glass Consider also the hoary

  13. Aspects of the mechanics of metallic glasses

    E-Print Network [OSTI]

    Henann, David Lee

    2011-01-01T23:59:59.000Z

    Metallic glasses are amorphous materials that possess unique mechanical properties, such as high tensile strengths and good fracture toughnesses. Also, since they are amorphous, metallic glasses exhibit a glass transition, ...

  14. Quinary metallic glass alloys

    DOE Patents [OSTI]

    Lin, Xianghong (Pasadena, CA); Johnson, William L. (Pasadena, CA)

    1998-01-01T23:59:59.000Z

    At least quinary alloys form metallic glass upon cooling below the glass transition temperature at a rate less than 10.sup.3 K/s. Such alloys comprise zirconium and/or hafnium in the range of 45 to 65 atomic percent, titanium and/or niobium in the range of 4 to 7.5 atomic percent, and aluminum and/or zinc in the range of 5 to 15 atomic percent. The balance of the alloy compositions comprise copper, iron, and cobalt and/or nickel. The composition is constrained such that the atomic percentage of iron is less than 10 percent. Further, the ratio of copper to nickel and/or cobalt is in the range of from 1:2 to 2:1. The alloy composition formula is: (Zr,Hf).sub.a (Al,Zn).sub.b (Ti,Nb).sub.c (Cu.sub.x Fe.sub.y (Ni,Co).sub.z).sub.d wherein the constraints upon the formula are: a ranges from 45 to 65 atomic percent, b ranges from 5 to 15 atomic percent, c ranges from 4 to 7.5 atomic percent, d comprises the balance, d.multidot.y is less than 10 atomic percent, and x/z ranges from 0.5 to 2.

  15. Quinary metallic glass alloys

    DOE Patents [OSTI]

    Lin, X.; Johnson, W.L.

    1998-04-07T23:59:59.000Z

    At least quinary alloys form metallic glass upon cooling below the glass transition temperature at a rate less than 10{sup 3}K/s. Such alloys comprise zirconium and/or hafnium in the range of 45 to 65 atomic percent, titanium and/or niobium in the range of 4 to 7.5 atomic percent, and aluminum and/or zinc in the range of 5 to 15 atomic percent. The balance of the alloy compositions comprise copper, iron, and cobalt and/or nickel. The composition is constrained such that the atomic percentage of iron is less than 10 percent. Further, the ratio of copper to nickel and/or cobalt is in the range of from 1:2 to 2:1. The alloy composition formula is: (Zr,Hf){sub a}(Al,Zn){sub b}(Ti,Nb){sub c}(Cu{sub x}Fe{sub y}(Ni,Co){sub z}){sub d} wherein the constraints upon the formula are: a ranges from 45 to 65 atomic percent, b ranges from 5 to 15 atomic percent, c ranges from 4 to 7.5 atomic percent, d comprises the balance, d{hor_ellipsis}y is less than 10 atomic percent, and x/z ranges from 0.5 to 2.

  16. Refractory Glass Seals for SOFC

    SciTech Connect (OSTI)

    Chou, Y. S.; Stevenson, Jeffry W.

    2011-07-01T23:59:59.000Z

    One of the critical challenges facing planar solid oxide fuel cell (SOFC) technology is the need for reliable sealing technology. Seals must exhibit long-term stability and mechanical integrity in the high temperature SOFC environment during normal and transient operation. Several different approaches for sealing SOFC stacks are under development, including glass or glass-ceramic seals, metallic brazes, and compressive seals. Among glass seals, rigid glass-ceramics, self-healing glass, and composite glass approaches have been investigated under the SECA Core Technology Program. The U.S. Department of Energy's Pacific Northwest National Laboratory (PNNL) has developed the refractory glass approach in light of the fact that higher sealing temperatures (e.g., 930-1000 degrees C) may enhance the ultimate in-service bulk strength and electrical conductivity of contact materials, as well as the bonding strength between contact materials and adjacent SOFC components, such as interconnect coatings and electrodes. This report summarizes the thermal, chemical, mechanical, and electrical properties of the refractory sealing glass.

  17. Method of determining glass durability

    DOE Patents [OSTI]

    Jantzen, C.M.; Pickett, J.B.; Brown, K.G.; Edwards, T.B.

    1998-12-08T23:59:59.000Z

    A process is described for determining one or more leachate concentrations of one or more components of a glass composition in an aqueous solution of the glass composition by identifying the components of the glass composition, including associated oxides, determining a preliminary glass dissolution estimator, {Delta}G{sub p}, based upon the free energies of hydration for the component reactant species, determining an accelerated glass dissolution function, {Delta}G{sub a}, based upon the free energy associated with weak acid dissociation, {Delta}G{sub a}{sup WA}, and accelerated matrix dissolution at high pH, {Delta}G{sub a}{sup SB} associated with solution strong base formation, and determining a final hydration free energy, {Delta}G{sub f}. This final hydration free energy is then used to determine leachate concentrations for elements of interest using a regression analysis and the formula log{sub 10}(N C{sub i}(g/L))=a{sub i} + b{sub i}{Delta}G{sub f}. The present invention also includes a method to determine whether a particular glass to be produced will be homogeneous or phase separated. The present invention is also directed to methods of monitoring and controlling processes for making glass using these determinations to modify the feedstock materials until a desired glass durability and homogeneity is obtained. 4 figs.

  18. Method of determining glass durability

    DOE Patents [OSTI]

    Jantzen, Carol Maryanne (Aiken, SC); Pickett, John Butler (Aiken, SC); Brown, Kevin George (Augusta, GA); Edwards, Thomas Barry (Aiken, SC)

    1998-01-01T23:59:59.000Z

    A process for determining one or more leachate concentrations of one or more components of a glass composition in an aqueous solution of the glass composition by identifying the components of the glass composition, including associated oxides, determining a preliminary glass dissolution estimator, .DELTA.G.sub.p, based upon the free energies of hydration for the component reactant species, determining an accelerated glass dissolution function, .DELTA.G.sub.a, based upon the free energy associated with weak acid dissociation, .DELTA.G.sub.a.sup.WA, and accelerated matrix dissolution at high pH, .DELTA.G.sub.a.sup.SB associated with solution strong base formation, and determining a final hydration free energy, .DELTA.G.sub.f. This final hydration free energy is then used to determine leachate concentrations for elements of interest using a regression analysis and the formula log.sub.10 (N C.sub.i (g/L))=a.sub.i +b.sub.i .DELTA.G.sub.f. The present invention also includes a method to determine whether a particular glass to be produced will be homogeneous or phase separated. The present invention is also directed to methods of monitoring and controlling processes for making glass using these determinations to modify the feedstock materials until a desired glass durability and homogeneity is obtained.

  19. Glass science tutorial: Lecture No. 7, Waste glass technology for Hanford

    SciTech Connect (OSTI)

    Kruger, A.A.

    1995-07-01T23:59:59.000Z

    This paper presents the details of the waste glass tutorial session that was held to promote knowledge of waste glass technology and how this can be used at the Hanford Reservation. Topics discussed include: glass properties; statistical approach to glass development; processing properties of nuclear waste glass; glass composition and the effects of composition on durability; model comparisons of free energy of hydration; LLW glass structure; glass crystallization; amorphous phase separation; corrosion of refractories and electrodes in waste glass melters; and glass formulation for maximum waste loading.

  20. Lead phosphate glass compositions for optical components

    DOE Patents [OSTI]

    Sales, Brian C. (Oak Ridge, TN); Boatner, Lynn A. (Oak Ridge, TN)

    1987-01-01T23:59:59.000Z

    A lead phosphate glass to which has been added indium oxide or scandium oe to improve chemical durability and provide a lead phosphate glass with good optical properties.

  1. Glass Ceramic Formulation Data Package

    SciTech Connect (OSTI)

    Crum, Jarrod V.; Rodriguez, Carmen P.; McCloy, John S.; Vienna, John D.; Chung, Chul-Woo

    2012-06-17T23:59:59.000Z

    A glass ceramic waste form is being developed for treatment of secondary waste streams generated by aqueous reprocessing of commercial used nuclear fuel (Crum et al. 2012b). The waste stream contains a mixture of transition metals, alkali, alkaline earths, and lanthanides, several of which exceed the solubility limits of a single phase borosilicate glass (Crum et al. 2009; Caurant et al. 2007). A multi-phase glass ceramic waste form allows incorporation of insoluble components of the waste by designed crystallization into durable heat tolerant phases. The glass ceramic formulation and processing targets the formation of the following three stable crystalline phases: (1) powellite (XMoO4) where X can be (Ca, Sr, Ba, and/or Ln), (2) oxyapatite Yx,Z(10-x)Si6O26 where Y is alkaline earth, Z is Ln, and (3) lanthanide borosilicate (Ln5BSi2O13). These three phases incorporate the waste components that are above the solubility limit of a single-phase borosilicate glass. The glass ceramic is designed to be a single phase melt, just like a borosilicate glass, and then crystallize upon slow cooling to form the targeted phases. The slow cooling schedule is based on the centerline cooling profile of a 2 foot diameter canister such as the Hanford High-Level Waste canister. Up to this point, crucible testing has been used for glass ceramic development, with cold crucible induction melter (CCIM) targeted as the ultimate processing technology for the waste form. Idaho National Laboratory (INL) will conduct a scaled CCIM test in FY2012 with a glass ceramic to demonstrate the processing behavior. This Data Package documents the laboratory studies of the glass ceramic composition to support the CCIM test. Pacific Northwest National Laboratory (PNNL) measured melt viscosity, electrical conductivity, and crystallization behavior upon cooling to identify a processing window (temperature range) for melter operation and cooling profiles necessary to crystallize the targeted phases in the waste form.

  2. Learning to Share Visual Appearance for Multiclass Object Detection Ruslan Salakhutdinov, Antonio Torralba, Josh Tenenbaum

    E-Print Network [OSTI]

    Oliva, Aude

    switch closet wall window curtain windows g wall tree building sky floor window plant ceiling mountain person road grass cabinet chair ground door table curtain fence sidewalk painting ceilinglamp shelves sea books box water flowers car column stand

  3. Database and Interim Glass Property Models for Hanford HLW Glasses

    SciTech Connect (OSTI)

    Hrma, Pavel R.; Piepel, Gregory F.; Vienna, John D.; Cooley, Scott K.; Kim, Dong-Sang; Russell, Renee L.

    2001-07-24T23:59:59.000Z

    The purpose of this report is to provide a methodology for an increase in the efficiency and a decrease in the cost of vitrifying high-level waste (HLW) by optimizing HLW glass formulation. This methodology consists in collecting and generating a database of glass properties that determine HLW glass processability and acceptability and relating these properties to glass composition. The report explains how the property-composition models are developed, fitted to data, used for glass formulation optimization, and continuously updated in response to changes in HLW composition estimates and changes in glass processing technology. Further, the report reviews the glass property-composition literature data and presents their preliminary critical evaluation and screening. Finally the report provides interim property-composition models for melt viscosity, for liquidus temperature (with spinel and zircon primary crystalline phases), and for the product consistency test normalized releases of B, Na, and Li. Models were fitted to a subset of the screened database deemed most relevant for the current HLW composition region.

  4. A Topological Glass

    E-Print Network [OSTI]

    Jean-Pierre Eckmann

    2007-04-07T23:59:59.000Z

    We propose and study a model with glassy behavior. The state space of the model is given by all triangulations of a sphere with $n$ nodes, half of which are red and half are blue. Red nodes want to have 5 neighbors while blue ones want 7. Energies of nodes with different numbers of neighbors are supposed to be positive. The dynamics is that of flipping the diagonal of two adjacent triangles, with a temperature dependent probability. We show that this system has an approach to a steady state which is exponentially slow, and show that the stationary state is unordered. We also study the local energy landscape and show that it has the hierarchical structure known from spin glasses. Finally, we show that the evolution can be described as that of a rarefied gas with spontaneous generation of particles and annihilating collisions.

  5. Building wall heat flux calculations

    SciTech Connect (OSTI)

    Park, J.E.; Kirkpatrick, J.R.; Tunstall, J.N.; Childs, K.W.

    1987-06-01T23:59:59.000Z

    Calculations of the heat transfer through the standard stud wall structure of a residential building are described. The wall cavity contains no insulation. Four of the five test cases represent progressively more complicated approximations to the heat transfer through and within a hollow wall structure. The fifth adds the model components necessary to severely inhibit the radiative energy transport across the empty cavity. Flow within the wall cavity is calculated from the Navier-Stokes equations and the energy conservation equation for an ideal gas using the Implicit Compressible Eulerian (ICE) algorithm. The fluid flow calculation is coupled to the radiation-conduction model for the solid portions of the system. Conduction through sill plates is about 4% of the total heat transferred through a composite wall. All of the other model elements (conduction through wall board, sheathing, and siding; convection from siding and wallboard to ambients; and radiation across the wall cavity) are required to accurately predict the heat transfer through a wall. Addition of a foil liner on one inner surface of the wall cavity reduces the total heat transferred by almost 50%.

  6. Domain walls in gapped graphene

    E-Print Network [OSTI]

    G. W. Semenoff; V. Semenoff; Fei Zhou

    2008-05-31T23:59:59.000Z

    The electronic properties of a particular class of domain walls in gapped graphene are investigated. We show that they can support mid-gap states which are localized in the vicinity of the domain wall and propagate along its length. With a finite density of domain walls, these states can alter the electronic properties of gapped graphene significantly. If the mid-gap band is partially filled,the domain wall can behave like a one-dimensional metal embedded in a semi-conductor, and could potentially be used as a single-channel quantum wire.

  7. Domain walls in gapped graphene

    E-Print Network [OSTI]

    Semenoff, G W; Zhou, Fei

    2015-01-01T23:59:59.000Z

    The electronic properties of a particular class of domain walls in gapped graphene are investigated. We show that they can support mid-gap states which are localized in the vicinity of the domain wall and propagate along its length. With a finite density of domain walls, these states can alter the electronic properties of gapped graphene significantly. If the mid-gap band is partially filled,the domain wall can behave like a one-dimensional metal embedded in a semi-conductor, and could potentially be used as a single-channel quantum wire.

  8. Reinforced glass beamsReinforced glass beamsg Auteur Dr. Christian LOUTER 1

    E-Print Network [OSTI]

    Reinforced glass beamsReinforced glass beamsg EDCE Auteur Dr. Christian LOUTER 1 ENAC/EDCE 2011In contemporary architecture glass is increasinglyIn contemporary architecture glass is increasingly applied for structural components such as beamsapplied for structural components such as beams. However glass

  9. Crystallization during processing of nuclear waste glass

    SciTech Connect (OSTI)

    Hrma, Pavel R.

    2010-12-01T23:59:59.000Z

    In glass processing situations involving glass crystallization, various crystalline forms nucleate, grow, and dissolve, typically in a nonuniform temperature field of molten glass subjected to convection. Nuclear waste glasses are remarkable examples of multicomponent vitrified mixtures involving partial crystallization. In the glass melter, crystals form and dissolve during batch-to-glass conversion, melter processing, and product cooling. Crystals often agglomerate and sink, and they may settle at the melter bottom. Within the body of cooling glass, multiple phases crystallize in a non-uniform time-dependent temperature field. Self-organizing periodic distribution (the Liesegnang effect) is common. Various crystallization phenomena that occur in glassmaking are reviewed.

  10. Liquid Walls Innovative Concepts for First Walls and Blankets

    E-Print Network [OSTI]

    Abdou, Mohamed

    with existing technology · Size of plasma devices and power plants can be substantially reduced High PoloidalLiquid Walls Innovative Concepts for First Walls and Blankets Mohamed Abdou Professor, Mechanical as part of the US Restructured Fusion Program Strategy to enhance innovation · Natural Questions

  11. The PennsylvaniaStateUniversity HUB-RobesonAddition and Renovation

    E-Print Network [OSTI]

    Bookstore Duct Work · Install Green Roof Curtain Wall · Install Skylight Framing · Lay Brick on East Façade Co., Inc. EastEntryConcretePour #12;© Gilbane Building Co., Inc. GreenRoof CurtainWall #12;© Gilbane and Stair · Acoustical Decking · Install Mechanical Control Valves · Install Green Roof Curtain Wall

  12. The PennsylvaniaStateUniversity HUB-RobesonAddition and Renovation

    E-Print Network [OSTI]

    · Insulate Bookstore Duct Work · Waterproof Bookstore Green Roof · Install Green Roof Curtain Wall · Lay. GreenRoof CurtainWall #12;© Gilbane Building Co., Inc. SkylightFraming #12;© Gilbane Building Co., Inc Bookstore Duct Work · Install Green Roof Curtain Wall · Lay Brick on East Façade · Barnes & Noble Cafe Rough

  13. Corrosion of Partially Crystallized Glasses

    SciTech Connect (OSTI)

    Hrma, Pavel R.; Riley, Brian J.; Vienna, John D.

    2002-05-21T23:59:59.000Z

    Using existing data on corrosion of partially crystallized, simulated, high-level waste glasses, coefficients were introduced to evaluate the cumulative influence of secondary effects, such as residual stresses or concentration gradients on product consistency test response. As compared to predictions based solely on residual glass composition effects, the results showed that cristobalite, eucryptite, and nepheline had a higher-than-predicted impact on glass corrosion, while the effects of baddeleyite, hematite, calcium-zirconium silicate, and zircon were close to those predicted. The effects of acmite and lithium silicate were opposite to those expected based on their compositions. The analysis revealed important limitations of the databases currently available. Better understanding of corrosion phenomena will require quantitative composition data, microscopic characterization of pristine and corroded surfaces, and long-term tests with glass coupons or monoliths.

  14. Oven wall panel construction

    DOE Patents [OSTI]

    Ellison, Kenneth (20 Avondale Cres., Markham, CA); Whike, Alan S. (R.R. #1, Caledon East, both of Ontario, CA)

    1980-04-22T23:59:59.000Z

    An oven roof or wall is formed from modular panels, each of which comprises an inner fabric and an outer fabric. Each such fabric is formed with an angle iron framework and somewhat resilient tie-bars or welded at their ends to flanges of the angle irons to maintain the inner and outer frameworks in spaced disposition while minimizing heat transfer by conduction and permitting some degree of relative movement on expansion and contraction of the module components. Suitable thermal insulation is provided within the module. Panels or skins are secured to the fabric frameworks and each such skin is secured to a framework and projects laterally so as slidingly to overlie the adjacent frame member of an adjacent panel in turn to permit relative movement during expansion and contraction.

  15. BNFL Report Glass Formers Characterization

    SciTech Connect (OSTI)

    Schumacher, R.F.

    2000-07-27T23:59:59.000Z

    The objective of this task was to obtain powder property data on candidate glass former materials, sufficient to guide conceptual design and estimate the cost of glass former handling facilities as requested under Part B1 of BNFL Technical and Development Support. Twenty-nine glass forming materials were selected and obtained from vendors for the characterization of their physical properties, durability in caustic solution, and powder flow characteristics. A glass former was selected based on the characterization for each of the ten oxide classes required for Envelope A, B, and C mixtures. Three blends (A, B, and C) were prepared based on formulations provided by Vitreous State Laboratory and evaluated with the same methods employed for the glass formers. The properties obtained are presented in a series of attached Tables. It was determined that five of the ten glass formers, (kyanite, iron oxide, titania, zircon, and zinc oxide) have the potential to cause some level of solids f low problems. In addition, all of the blends may require consideration for their handling. A number of engineering considerations and recommendations were prepared based on the experimental findings, experience, and other process considerations. Recommendations for future testing are included. In conjunction with future work, it is recommended that a professional consultant be engaged to guide and assist with testing and design input.

  16. BNFL Report Glass Formers Characterization

    SciTech Connect (OSTI)

    Schumacher, R.F.

    2000-07-27T23:59:59.000Z

    The objective of this task was to obtain powder property data on candidate glass former materials, sufficient to guide conceptual design and estimate the cost of glass former handling facilities as requested under Part B1 of BNFL Technical and Development Support. Twenty-nine glass forming materials were selected and obtained from vendors for the characterization of their physical properties, durability in caustic solution, and powder flow characteristics. A glass former was selected based on the characterization for each of the ten oxide classes required for Envelope A, B, and C mixtures. Three blends (A, B, and C) were prepared based on formulations provided by Vitreous State Laboratory and evaluated with the same methods employed for the glass formers. The properties obtained are presented in a series of attached Tables. It was determined that five of the ten glass formers, (kyanite, iron oxide, titania, zircon, and zinc oxide) have the potential to cause some level of solids f low problems. The problems might include arching or ratholing in the silo/hopper. In addition, all of the blends may require consideration for their handling.

  17. Moisture Research - Optimizing Wall Assemblies

    SciTech Connect (OSTI)

    Arena, L.; Mantha, P.

    2013-05-01T23:59:59.000Z

    The Consortium for Advanced Residential Buildings (CARB) evaluated several different configurations of wall assemblies to determine the accuracy of moisture modeling and make recommendations to ensure durable, efficient assemblies. WUFI and THERM were used to model the hygrothermal and heat transfer characteristics of these walls.

  18. Product Sheet Wall Mount Lift

    E-Print Network [OSTI]

    Saskatchewan, University of

    Product Sheet Wall Mount Lift Ergotron® Neo-FlexTM 870-05-061, rev. 12/11/07 www. Less effort. Feel the difference. Add greater range of movement to your LCD display or TV with the Neo-Flex Wall Mount Lift! CF patented lift-and-pivot motion technology adjusts with a light touch. Raise

  19. Building wall heat flux calculations

    SciTech Connect (OSTI)

    Park, J.E.; Kirkpatrick, J.R.; Tunstall, J.N.; Childs, K.W.

    1987-01-01T23:59:59.000Z

    Calculations of the heat transfer through the standard stud wall structure of a residential building are described. The wall cavity contains no insulation. Four of the five test cases represent progressively more complicated approximations to the heat transfer through and within a hollow wall structure. The fifth adds the model components necessary to severely inhibit the radiative energy transport across the empty cavity. Flow within the wall cavity is calculated from the Navier-Stokes equations and the energy conservation equation for an ideal gas using the Implicit Compressible Eulerian (ICE) algorithm. The fluid flow calculation is coupled to the radiation-conduction model for the solid portions of the system. Conduction through sill plates is about 4% of the total heat transferred through a composite wall.

  20. Natural analogues of nuclear waste glass corrosion.

    SciTech Connect (OSTI)

    Abrajano, T.A. Jr.; Ebert, W.L.; Luo, J.S.

    1999-01-06T23:59:59.000Z

    This report reviews and summarizes studies performed to characterize the products and processes involved in the corrosion of natural glasses. Studies are also reviewed and evaluated on how well the corrosion of natural glasses in natural environments serves as an analogue for the corrosion of high-level radioactive waste glasses in an engineered geologic disposal system. A wide range of natural and experimental corrosion studies has been performed on three major groups of natural glasses: tektite, obsidian, and basalt. Studies of the corrosion of natural glass attempt to characterize both the nature of alteration products and the reaction kinetics. Information available on natural glass was then compared to corresponding information on the corrosion of nuclear waste glasses, specifically to resolve two key questions: (1) whether one or more natural glasses behave similarly to nuclear waste glasses in laboratory tests, and (2) how these similarities can be used to support projections of the long-term corrosion of nuclear waste glasses. The corrosion behavior of basaltic glasses was most similar to that of nuclear waste glasses, but the corrosion of tektite and obsidian glasses involves certain processes that also occur during the corrosion of nuclear waste glasses. The reactions and processes that control basalt glass dissolution are similar to those that are important in nuclear waste glass dissolution. The key reaction of the overall corrosion mechanism is network hydrolysis, which eventually breaks down the glass network structure that remains after the initial ion-exchange and diffusion processes. This review also highlights some unresolved issues related to the application of an analogue approach to predicting long-term behavior of nuclear waste glass corrosion, such as discrepancies between experimental and field-based estimates of kinetic parameters for basaltic glasses.

  1. Nano-structured self-cleaning superhydrophobic glass

    E-Print Network [OSTI]

    Kim, Jin Yeol

    2010-01-01T23:59:59.000Z

    5. Optically transparent glass with vertically alignedcomposition of biosoluble glass fiber” Korean ApplicationS. Jin, “Optically Transparent Glass with Vertically Aligned

  2. Micro-Continuum Modeling of Nuclear Waste Glass Corrosion

    E-Print Network [OSTI]

    Steefel, Carl

    2014-01-01T23:59:59.000Z

    21. Grambow, B. (2006). Nuclear waste glasses – How durable?Continuum Modeling of Nuclear Waste Glass Corrosion AugustContinuum Modeling of Nuclear Waste Glass Corrosion Prepared

  3. Open-cell glass crystalline porous material

    DOE Patents [OSTI]

    Anshits, Alexander G. (Krasnoyarsk, RU); Sharonova, Olga M. (Krasnoyarsk, RU); Vereshchagina, Tatiana A. (Krasnoyarsk, RU); Zykova, Irina D. (Krasnoyarsk, RU); Revenko, Yurii A. (Zheleznogorsk, RU); Tretyakov, Alexander A. (Zheleznogorsk, RU); Aloy, Albert S. (Saint-Petersburg, RU); Lubtsev, Rem I. (Saint-Petersburg, RU); Knecht, Dieter A. (Idaho Falls, ID); Tranter, Troy J. (Idaho Falls, ID); Macheret, Yevgeny (Idaho Falls, ID)

    2002-01-01T23:59:59.000Z

    An open-cell glass crystalline porous material made from hollow microspheres which are cenospheres obtained from fly ash, having an open-cell porosity of up to 90 vol. % is produced. The cenospheres are separated into fractions based on one or more of grain size, density, magnetic or non-magnetic, and perforated or non-perforated. Selected fractions are molded and agglomerated by sintering with a binder at a temperature below the softening temperature, or without a binder at a temperature about, or above, the softening temperature but below the temperature of liquidity. The porous material produced has an apparent density of 0.3-0.6 g/cm.sup.3, a compressive strength in the range of 1.2-3.5 MPa, and two types of openings: through-flow wall pores in the cenospheres of 0.1-30 micrometers, and interglobular voids between the cenospheres of 20-100 micrometers. The porous material of the invention has properties useful as porous matrices for immobilization of liquid radioactive waste, heat-resistant traps and filters, supports for catalysts, adsorbents and ion-exchangers.

  4. Open-cell glass crystalline porous material

    DOE Patents [OSTI]

    Anshits, Alexander G.; Sharonova, Olga M.; Vereshchagina, Tatiana A.; Zykova, Irina D.; Revenko, Yurii A.; Tretyakov, Alexander A.; Aloy, Albert S.; Lubtsev, Rem I.; Knecht, Dieter A.; Tranter, Troy J.; Macheret, Yevgeny

    2003-12-23T23:59:59.000Z

    An open-cell glass crystalline porous material made from hollow microspheres which are cenospheres obtained from fly ash, having an open-cell porosity of up to 90 vol. % is produced. The cenospheres are separated into fractions based on one or more of grain size, density, magnetic or non-magnetic, and perforated or non-perforated. Selected fractions are molded and agglomerated by sintering with a binder at a temperature below the softening temperature, or without a binder at a temperature about, or above, the softening temperature but below the temperature of liquidity. The porous material produced has an apparent density of 0.3-0.6 g/cm.sup.3, a compressive strength in the range of 1.2-3.5 MPa, and two types of openings: through-flow wall pores in the cenospheres of 0.1-30 micrometers, and interglobular voids between the cenospheres of 20-100 micrometers. The porous material of the invention has properties useful as porous matrices for immobilization of liquid radioactive waste, heat-resistant traps and filters, supports for catalysts, adsorbents and ion-exchangers.

  5. HLW Glass Studies: Development of Crystal-Tolerant HLW Glasses

    SciTech Connect (OSTI)

    Matyas, Josef; Huckleberry, Adam R.; Rodriguez, Carmen P.; Lang, Jesse B.; Owen, Antionette T.; Kruger, Albert A.

    2012-04-02T23:59:59.000Z

    In our study, a series of lab-scale crucible tests were performed on designed glasses of different compositions to further investigate and simulate the effect of Cr, Ni, Fe, Al, Li, and RuO2 on the accumulation rate of spinel crystals in the glass discharge riser of the HLW melter. The experimental data were used to expand the compositional region covered by an empirical model developed previously (Matyáš et al. 2010b), improving its predictive performance. We also investigated the mechanism for agglomeration of particles and impact of agglomerates on accumulation rate. In addition, the TL was measured as a function of temperature and composition.

  6. Glass and Glass Products (2010 MECS) | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdf Flash2006-52.pdf0.pdfDepartmentCounselGlass Coating Makes Solar Panels MoreGlass and

  7. Construction Guide: Energy Efficient, Durable Walls

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Labs | Upper Marlboro, Md High Performance Walls || CZ 3-5 2 INTRODUCTION Low market penetration of energy efficient walls Construction Guide - energy efficient,...

  8. Effect of furnace atmosphere on E-glass foaming

    E-Print Network [OSTI]

    Kim, D. S.; Dutton, Bryan C.; Hrma, Pavel R.; Pilon, Laurent

    2006-01-01T23:59:59.000Z

    oxy-fired furnaces. E-glass foams were generated in a fused-81.05.K 1. Introduction Glass foams generated in glass-that the stability of E-glass foam decreased with increasing

  9. The Conservation of Seventeenth Century Archaeological Glass

    E-Print Network [OSTI]

    Arcak, Cory

    2010-10-12T23:59:59.000Z

    is the only chance for the objects survival. Though glass is considered one of the most stable archaeological materials, noninvasive, reversible treatments are not always possible given the level of deterioration glass objects undergo within the archaeological...

  10. The Huge, Blue, Jesus Glass Statue

    E-Print Network [OSTI]

    Robbins, Joanna

    2013-01-01T23:59:59.000Z

    Later, I found a huge, blue, glass statue of Jesus stuffedOF CALIFORNIA RIVERSIDE The Huge, Blue, Jesus Glass Statue Aeyes as RED And wrote down BLUE for your hair. I had to fix

  11. Structure glass technology : systems and applications

    E-Print Network [OSTI]

    Leitch, Katherine K. (Katherine Kristen)

    2005-01-01T23:59:59.000Z

    Glass cannot compete with steel in terms of strength or durability, but it is the only structural material that offers the highly sought after qualities of translucency and transparency. The use of glass has evolved from ...

  12. Crystallization in High-Level Waste Glasses

    SciTech Connect (OSTI)

    Hrma, Pavel R. (BATTELLE (PACIFIC NW LAB)); Dane R Spearing, Gary L Smith, SK Sundaram

    2002-01-01T23:59:59.000Z

    This review outlines important aspects of crystallization in HLW glasses, such as equilibrium, nucleation, growth, and dissolution. The impact of crystallization on continuous melters and the chemical durability of high-level waste glass are briefly discussed.

  13. Joseph Brodsky TO A TYRANT

    E-Print Network [OSTI]

    Givental, Alexander

    windows will be draped with curtains, Not a prison lattice ­ and this is certain! We'll come early home on the dresses sprout. Are you short of cash? We'll help you out. We will build a vessel from glass and metal and see Mona Lisa. For, when tanks are filled, and we start to count on the cabin's wall where the maps we

  14. 4 Science Service Feature Released upon receipt

    E-Print Network [OSTI]

    of the word, are best. Walls tvieaty-five feet high o r so admit of sufficient air space -- a most necessary pillows, curtains and hangings, and it w i l l even warp pictures, just as it does doors. screened with banboo *chiks,l lined w i t h black, to shut out m c e breeze and Doors with glass arc darkened by strips

  15. Glass Transition and the Coulomb Gap in Electron Glasses M. Muller and L. B. Ioffe

    E-Print Network [OSTI]

    Müller, Markus

    Glass Transition and the Coulomb Gap in Electron Glasses M. Mu¨ller and L. B. Ioffe Department December 2004) We establish the connection between the presence of a glass phase and the appearance correlations in a systematic way, we show that in the case of strong disorder a continuous glass transition

  16. Heating-induced glass-glass and glass-liquid transformations in computer simulations of water

    SciTech Connect (OSTI)

    Chiu, Janet; Giovambattista, Nicolas [Department of Physics, Brooklyn College of the City University of New York, Brooklyn, New York 11210 (United States)] [Department of Physics, Brooklyn College of the City University of New York, Brooklyn, New York 11210 (United States); Starr, Francis W. [Department of Physics, Wesleyan University, Middletown, Connecticut 06459 (United States)] [Department of Physics, Wesleyan University, Middletown, Connecticut 06459 (United States)

    2014-03-21T23:59:59.000Z

    Water exists in at least two families of glassy states, broadly categorized as the low-density (LDA) and high-density amorphous ice (HDA). Remarkably, LDA and HDA can be reversibly interconverted via appropriate thermodynamic paths, such as isothermal compression and isobaric heating, exhibiting first-order-like phase transitions. We perform out-of-equilibrium molecular dynamics simulations of glassy water using the ST2 model to study the evolution of LDA and HDA upon isobaric heating. Depending on pressure, glass-to-glass, glass-to-crystal, glass-to-vapor, as well as glass-to-liquid transformations are found. Specifically, heating LDA results in the following transformations, with increasing heating pressures: (i) LDA-to-vapor (sublimation), (ii) LDA-to-liquid (glass transition), (iii) LDA-to-HDA-to-liquid, (iv) LDA-to-HDA-to-liquid-to-crystal, and (v) LDA-to-HDA-to-crystal. Similarly, heating HDA results in the following transformations, with decreasing heating pressures: (a) HDA-to-crystal, (b) HDA-to-liquid-to-crystal, (c) HDA-to-liquid (glass transition), (d) HDA-to-LDA-to-liquid, and (e) HDA-to-LDA-to-vapor. A more complex sequence may be possible using lower heating rates. For each of these transformations, we determine the corresponding transformation temperature as function of pressure, and provide a P-T “phase diagram” for glassy water based on isobaric heating. Our results for isobaric heating dovetail with the LDA-HDA transformations reported for ST2 glassy water based on isothermal compression/decompression processes [Chiu et al., J. Chem. Phys. 139, 184504 (2013)]. The resulting phase diagram is consistent with the liquid-liquid phase transition hypothesis. At the same time, the glass phase diagram is sensitive to sample preparation, such as heating or compression rates. Interestingly, at least for the rates explored, our results suggest that the LDA-to-liquid (HDA-to-liquid) and LDA-to-HDA (HDA-to-LDA) transformation lines on heating are related, both being associated with the limit of kinetic stability of LDA (HDA)

  17. The corrosion behavior of DWPF glasses

    SciTech Connect (OSTI)

    Ebert, W.L.; Bates, J.K. [Argonne National Lab., IL (United States). Chemical Technology Div.

    1995-06-01T23:59:59.000Z

    The authors analyzed the corroded surfaces of reference glasses developed for the Defense Waste Processing Facility (DWPF) to characterize their corrosion behavior. The corrosion mechanism of nuclear waste glasses must be known in order to provide source terms describing radionuclide release for performance assessment calculations. Different DWPF reference glasses were corroded under conditions that highlighted various aspects of the corrosion process and led to different extents of corrosion. The glasses corroded by similar mechanisms, and a phenomenological description of their corrosion behavior is presented here. The initial leaching of soluble glass components results in the formation of an amorphous gel layer on the glass surface. The gel layer is a transient phase that transforms into a layer of clay crystallites, which equilibrates with the solution as corrosion continues. The clay layer does not act as a barrier to either water penetration or glass dissolution, which continues beneath it, and may eventually separate from the glass. Solubility limits for glass components may be established by the eventual precipitation of secondary phases; thus, corrosion of the glass becomes controlled by the chemical equilibrium between the solution and the assemblage of secondary phases. In effect, the solution is an intermediate phase through which the glass transforms to an energetically more favorable assemblage of phases. Implications regarding the prediction of long-term glass corrosion behavior are discussed.

  18. High-Temperature Viscosity of Commercial Glasses

    SciTech Connect (OSTI)

    Hrma, Pavel R.

    2006-08-31T23:59:59.000Z

    Arrhenius models were developed for glass viscosity within the processing temperature of six types of commercial glasses: low-expansion-borosilicate glasses, E glasses, fiberglass wool glasses, TV panel glasses, container glasses, and float glasses. Both local models (for each of the six glass types) and a global model (for the composition region of commercial glasses, i.e., the six glass types taken together) are presented. The models are based on viscosity data previously obtained with rotating spindle viscometers within the temperature range between 900 C and 1550 C; the viscosity varied from 1 Pa?s to 750 Pa?s. First-order models were applied to relate Arrhenius coefficients to the mass fractions of 15 components: SiO2, TiO2, ZrO2, Al2O3, Fe2O3, B2O3, MgO, CaO, SrO, BaO, PbO, ZnO, Li2O, Na2O, K2O. The R2 is 0.98 for the global model and ranges from .097 to 0.99 for the six local models. The models are recommended for glasses containing 42 to 84 mass% SiO2 to estimate viscosities or temperatures at a constant viscosity for melts within both the temperature range from 1100 C to 1550 C and viscosity range from 5 to 400 Pa?s.

  19. DURABLE GLASS FOR THOUSANDS OF YEARS

    SciTech Connect (OSTI)

    Jantzen, C.

    2009-12-04T23:59:59.000Z

    The durability of natural glasses on geological time scales and ancient glasses for thousands of years is well documented. The necessity to predict the durability of high level nuclear waste (HLW) glasses on extended time scales has led to various thermodynamic and kinetic approaches. Advances in the measurement of medium range order (MRO) in glasses has led to the understanding that the molecular structure of a glass, and thus the glass composition, controls the glass durability by establishing the distribution of ion exchange sites, hydrolysis sites, and the access of water to those sites. During the early stages of glass dissolution, a 'gel' layer resembling a membrane forms through which ions exchange between the glass and the leachant. The hydrated gel layer exhibits acid/base properties which are manifested as the pH dependence of the thickness and nature of the gel layer. The gel layer ages into clay or zeolite minerals by Ostwald ripening. Zeolite mineral assemblages (higher pH and Al{sup 3+} rich glasses) may cause the dissolution rate to increase which is undesirable for long-term performance of glass in the environment. Thermodynamic and structural approaches to the prediction of glass durability are compared versus Ostwald ripening.

  20. DefectDomain Wall Interactions in Trigonal

    E-Print Network [OSTI]

    Gopalan, Venkatraman

    Defect­Domain Wall Interactions in Trigonal Ferroelectrics Venkatraman Gopalan,1 Volkmar Dierolf,2 walls in the trigonal ferroelectrics lithium niobate and lithium tantalate. It is shown that extrinsic questions re- garding intrinsic widths, defect­domain wall interactions, and static versus dynamic wall

  1. Turbine airfoil with outer wall thickness indicators

    DOE Patents [OSTI]

    Marra, John J; James, Allister W; Merrill, Gary B

    2013-08-06T23:59:59.000Z

    A turbine airfoil usable in a turbine engine and including a depth indicator for determining outer wall blade thickness. The airfoil may include an outer wall having a plurality of grooves in the outer surface of the outer wall. The grooves may have a depth that represents a desired outer surface and wall thickness of the outer wall. The material forming an outer surface of the outer wall may be removed to be flush with an innermost point in each groove, thereby reducing the wall thickness and increasing efficiency. The plurality of grooves may be positioned in a radially outer region of the airfoil proximate to the tip.

  2. Investigation of Sludge Batch 3 (Macrobatch 4) Glass Sample Anomalous Behavior

    SciTech Connect (OSTI)

    Bannochie, C. J.; Bibler, N. E.; Peeler, D. K.

    2005-08-15T23:59:59.000Z

    Two Defense Waste Processing Facility (DWPF) glass samples from Sludge Batch 3 (SB3) (Macrobatch 4) were received by the Savannah River National Laboratory (SRNL) on February 23, 2005. One sample, S02244, was designated for the Product Consistency Test (PCT) and elemental and radionuclide analyses. The second sample, S02247, was designated for archival storage. The samples were pulled from the melter pour stream during the feeding of Melter Feed Tank (MFT) Batch 308 and therefore roughly correspond to feed from Slurry Mix Evaporator (SME) Batches 306-308. During the course of preparing sample S02244 for PCT and other analyses two observations were made which were characterized as ''unusual'' or anomalous behavior relative to historical observations of glasses prepared for the PCT. These observations ultimately led to a series of scoping tests in order to determine more about the nature of the behavior and possible mechanisms. The first observation was the behavior of the ground glass fraction (-100 +200 mesh) for PCT analysis when contacted with deionized water during the washing phase of the PCT procedure. The behavior was analogous to that of an organic compound in the presence of water: clumping, floating on the water surface, and crawling up the beaker walls. In other words, the glass sample did not ''wet'' normally, displaying a hydrophobic behavior in water. This had never been seen before in 18 years SRNL PCT tests on either radioactive or non-radioactive glasses. Typical glass behavior is largely to settle to the bottom of the water filled beaker, though there may be suspended fines which result in some cloudiness to the wash water. The typical appearance is analogous to wetting sand. The second observation was the presence of faint black rings at the initial and final solution levels in the Teflon vessels used for the mixed acid digestion of S02244 glass conducted for compositional analysis. The digestion is composed of two stages, and at both the intermediate and the final content levels in the digestion vessel the rings were present. The rings had not been seen previously during glass digestions and were not present in the Analytical Reference Glass (ARG) standard samples digested, in separate vessels, along with the DWPF glass. What follows in this report are the results and analyses from various scoping experiments done in order to explain the anomalous behavior observed with DWPF glass S02244, along with a comparison with tests on sample S02247 where the anomalous wetting behavior was not observed.

  3. Effective Supergravity for Supergravity Domain Walls

    E-Print Network [OSTI]

    M. Cvetic; N. D. Lambert

    2002-05-23T23:59:59.000Z

    We discuss the low energy effective action for the Bosonic and Fermionic zero-modes of a smooth BPS Randall-Sundrum domain wall, including the induced supergravity on the wall. The result is a pure supergravity in one lower dimension. In particular, and in contrast to non-gravitational domain walls or domain walls in a compact space, the zero-modes representing transverse fluctuations of domain wall have vanishing action.

  4. Glass needs for a growing photovoltaics industry

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Burrows, Keith; Fthenakis, Vasilis

    2015-01-01T23:59:59.000Z

    With the projected growth in photovoltaics, the demand for glass for the solar industry will far exceed the current supply, and thousands of new float-glass plants will have to be built to meet its needs over the next 20 years. Such expansion will provide an opportunity for the solar industry to obtain products better suited to their needs, such as low-iron glass and borosilicate glass at the lowest possible price. While there are no significant technological hurdles that would prevent the flat glass industry from meeting the solar industry’s projected needs, to do so will require advance planning and substantialmore »investments.« less

  5. Glass needs for a growing photovoltaics industry

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Burrows, Keith [Columbia Univ., New York, NY (United States); Fthenakis, Vasilis [Columbia Univ., New York, NY (United States); Brookhaven National Lab. (BNL), Upton, NY (United States)

    2015-01-01T23:59:59.000Z

    With the projected growth in photovoltaics, the demand for glass for the solar industry will far exceed the current supply, and thousands of new float-glass plants will have to be built to meet its needs over the next 20 years. Such expansion will provide an opportunity for the solar industry to obtain products better suited to their needs, such as low-iron glass and borosilicate glass at the lowest possible price. While there are no significant technological hurdles that would prevent the flat glass industry from meeting the solar industry’s projected needs, to do so will require advance planning and substantial investments.

  6. Recirculation bubbler for glass melter apparatus

    DOE Patents [OSTI]

    Guerrero, Hector (Evans, GA); Bickford, Dennis (Folly Beach, SC)

    2007-06-05T23:59:59.000Z

    A gas bubbler device provides enhanced recirculation of molten glass within a glass melter apparatus. The bubbler device includes a tube member disposed within a pool of molten glass contained in the melter. The tube member includes a lower opening through which the molten glass enters and upper slots disposed close to (above or below) the upper surface of the pool of molten glass and from which the glass exits. A gas (air) line is disposed within the tube member and extends longitudinally thereof. A gas bubble distribution device, which is located adjacent to the lower end of the tube member and is connected to the lower end of the gas line, releases gas through openings therein so as to produce gas bubbles of a desired size in the molten glass and in a distributed pattern across the tube member.

  7. Domain walls riding the wave.

    SciTech Connect (OSTI)

    Karapetrov, G.; Novosad, V.; Materials Science Division

    2010-11-01T23:59:59.000Z

    Recent years have witnessed a rapid proliferation of electronic gadgets around the world. These devices are used for both communication and entertainment, and it is a fact that they account for a growing portion of household energy consumption and overall world consumption of electricity. Increasing the energy efficiency of these devices could have a far greater and immediate impact than a gradual switch to renewable energy sources. The advances in the area of spintronics are therefore very important, as gadgets are mostly comprised of memory and logic elements. Recent developments in controlled manipulation of magnetic domains in ferromagnet nanostructures have opened opportunities for novel device architectures. This new class of memories and logic gates could soon power millions of consumer electronic devices. The attractiveness of using domain-wall motion in electronics is due to its inherent reliability (no mechanical moving parts), scalability (3D scalable architectures such as in racetrack memory), and nonvolatility (retains information in the absence of power). The remaining obstacles in widespread use of 'racetrack-type' elements are the speed and the energy dissipation during the manipulation of domain walls. In their recent contribution to Physical Review Letters, Oleg Tretiakov, Yang Liu, and Artem Abanov from Texas A&M University in College Station, provide a theoretical description of domain-wall motion in nanoscale ferromagnets due to the spin-polarized currents. They find exact conditions for time-dependent resonant domain-wall movement, which could speed up the motion of domain walls while minimizing Ohmic losses. Movement of domain walls in ferromagnetic nanowires can be achieved by application of external magnetic fields or by passing a spin-polarized current through the nanowire itself. On the other hand, the readout of the domain state is done by measuring the resistance of the wire. Therefore, passing current through the ferromagnetic wire is the preferred method, as it combines manipulation and readout of the domain-wall state. The electrons that take part in the process of readout and manipulation of the domain-wall structure in the nanowire do so through the so-called spin transfer torque: When spin-polarized electrons in the ferromagnet nanowire pass through the domain wall they experience a nonuniform magnetization, and they try to align their spins with the local magnetic moments. The force that the electrons experience has a reaction force counterpart that 'pushes' the local magnetic moments, resulting in movement of the domain wall in the direction of the electron flow through the spin-transfer torque. The forces between the electrons and the local magnetic moments in the ferromagnet also create additional electrical resistance for the electrons passing through the domain wall. By measuring resistance across a segment of the nanowire, one determines if a domain wall is present; i.e., one can read the stored information. The interaction of the spin-polarized electrons with the domain wall in the ferromagnetic nanowire is not very efficient. Even for materials achieving high polarization of the free electrons, it is very difficult to move the magnetic domain wall. Several factors contribute to this problem, with imperfections of the ferromagnetic nanowire that cause domain-wall pinning being the dominant one. Permalloy nanowires, one of the best candidates for domain-wall-based memory and logic devices, require current densities of the order of 10{sup 8} A/cm{sup 2} in order to move a domain wall from a pinning well. Considering that this current has to pass through a relatively long wire, it is not very difficult to imagine that most of the energy will go to Joule heating. The efficiency of the process - the ratio of the energy converted to domain-wall motion to the total energy consumed - is comparable to that of an incandescent light bulb converting electricity to light. A step towards more efficient domain-wall-based memory devices is the advance of using alternating currents or curren

  8. Energy Saving Method of Manufacturing Ceramic Products from Fiber Glass Waste

    SciTech Connect (OSTI)

    Michael J. Haun

    2005-07-15T23:59:59.000Z

    The U.S. fiber glass industry disposes of more than 260,000 tons of industrial fiber glass waste in landfills annually. New technology is needed to reprocess this industrial waste into useful products. A low-cost energy-saving method of manufacturing ceramic tile from fiber glass waste was developed. The technology is based on sintering fiber glass waste at 700-900 degrees C to produce products which traditionally require firing temperatures of >1200 degrees C, or glass-melting temperatures >1500 degrees C. The process also eliminates other energy intensive processing steps, including mining and transportation of raw materials, spray-drying to produce granulated powder, drying pressed tile, and glazing. The technology completely transforms fiber glass waste into a dense ceramic product, so that all future environmental problems in the handling and disposal of the fibers is eliminated. The processing steps were developed and optimized to produce glossy and matte surface finishes for wall and floor tile applications. High-quality prototype tile samples were processed for demonstration and tile standards testing. A Market Assessment confirmed the market potential for tile products produced by the technology. Manufacturing equipment trials were successfully conducted for each step of the process. An industrial demonstration plant was designed, including equipment and operating cost analysis. A fiber glass manufacturer was selected as an industrial partner to commercialize the technology. A technology development and licensing agreement was completed with the industrial partner. Haun labs will continue working to transfer the technology and assist the industrial partner with commercialization beyond the DOE project.

  9. Glass Transition, Cooperativity and Interfaces

    E-Print Network [OSTI]

    Salez, Thomas; Dalnoki-Veress, Kari; Raphaël, Elie; Forrest, James A

    2015-01-01T23:59:59.000Z

    We introduce a minimal theory of glass formation based on the physical ideas of molecular crowding and resultant cooperative motion, and address the effects of free interfaces on dynamics. First, we obtain a simple scaling expression for the diverging number of particles taking part in bulk cooperative relaxation as the system approaches kinetic arrest, and in doing so provide a robust derivation of the Adam and Gibbs description of cooperative dynamics. Then, by including thermal expansivity of the material, the Vogel-Fulcher-Tammann relation is derived. Moreover, we predict a temperature-dependent expression for the cooperative length $\\xi$ of bulk relaxation, and explore the influence of sample boundaries on the glassy dynamics when the system size becomes comparable to $\\xi$. The theory is in full agreement with measurements of the glass transition temperature of thin polystyrene films. This agreement comes with two adjustable parameters, the critical interparticle distance and the Vogel temperature. Alth...

  10. Color Glass Condensate and Glasma

    E-Print Network [OSTI]

    F. Gelis

    2012-11-26T23:59:59.000Z

    We review the Color Glass Condensate effective theory, that describes the gluon content of a high energy hadron or nucleus, in the saturation regime. The emphasis is put on applications to high energy heavy ion collisions. After describing initial state factorization, we discuss the Glasma phase, that precedes the formation of an equilibrated quark-gluon plasma. We end this review with a presentation of recent developments in the study of the isotropization and thermalization of the quark-gluon plasma.

  11. Melter Glass Removal and Dismantlement

    SciTech Connect (OSTI)

    Richardson, BS

    2000-10-31T23:59:59.000Z

    The U.S. Department of Energy (DOE) has been using vitrification processes to convert high-level radioactive waste forms into a stable glass for disposal in waste repositories. Vitrification facilities at the Savannah River Site (SRS) and at the West Valley Demonstration Project (WVDP) are converting liquid high-level waste (HLW) by combining it with a glass-forming media to form a borosilicate glass, which will ensure safe long-term storage. Large, slurry fed melters, which are used for this process, were anticipated to have a finite life (on the order of two to three years) at which time they would have to be replaced using remote methods because of the high radiation fields. In actuality the melters useable life spans have, to date, exceeded original life-span estimates. Initial plans called for the removal of failed melters by placing the melter assembly into a container and storing the assembly in a concrete vault on the vitrification plant site pending size-reduction, segregation, containerization, and shipment to appropriate storage facilities. Separate facilities for the processing of the failed melters currently do not exist. Options for handling these melters include (1) locating a facility to conduct the size-reduction, characterization, and containerization as originally planned; (2) long-term storing or disposing of the complete melter assembly; and (3) attempting to refurbish the melter and to reuse the melter assembly. The focus of this report is to look at methods and issues pertinent to size-reduction and/or melter refurbishment in particular, removing the glass as a part of a refurbishment or to reduce contamination levels (thus allowing for disposal of a greater proportion of the melter as low level waste).

  12. Method for heating, forming and tempering a glass sheet

    DOE Patents [OSTI]

    Boaz, Premakaran Tucker (Livonia, MI); Sitzman, Gary W. (Walled Lake, MI)

    1998-01-01T23:59:59.000Z

    A method for heating, forming and tempering a glass sheet including the steps of heating at least one glass sheet to at least a first predetermined temperature, applying microwave energy to the glass sheet to heat the glass sheet to at least a second predetermined temperature, forming the glass sheet to a predetermined configuration, and cooling an outer surface of the glass sheet to at least a third predetermined temperature to temper the glass sheet.

  13. Method for heating, forming and tempering a glass sheet

    DOE Patents [OSTI]

    Boaz, P.T.; Sitzman, G.W.

    1998-10-27T23:59:59.000Z

    A method for heating, forming and tempering a glass sheet is disclosed including the steps of heating at least one glass sheet to at least a first predetermined temperature, applying microwave energy to the glass sheet to heat the glass sheet to at least a second predetermined temperature, forming the glass sheet to a predetermined configuration, and cooling an outer surface of the glass sheet to at least a third predetermined temperature to temper the glass sheet. 2 figs.

  14. Systems Biology Approaches to Dissecting Plant Cell Wall Biosynthesis Genes in Poplus (JGI Seventh Annual User Meeting 2012: Genomics of Energy and Environment)

    ScienceCinema (OSTI)

    Glass, N Louise [UC Berkeley

    2013-01-25T23:59:59.000Z

    N. Louise Glass from the University of California, Berkeley, presents a talk titled "Systems Biology Approaches to Dissecting Plant Cell Wall Biosynthesis Genes in Poplus" at the JGI 7th Annual Users Meeting: Genomics of Energy & Environment Meeting on March 22, 2012 in Walnut Creek, California.

  15. Systems Biology Approaches to Dissecting Plant Cell Wall Biosynthesis Genes in Poplus (JGI Seventh Annual User Meeting 2012: Genomics of Energy and Environment)

    SciTech Connect (OSTI)

    Glass, N Louise [UC Berkeley] [UC Berkeley

    2012-03-22T23:59:59.000Z

    N. Louise Glass from the University of California, Berkeley, presents a talk titled "Systems Biology Approaches to Dissecting Plant Cell Wall Biosynthesis Genes in Poplus" at the JGI 7th Annual Users Meeting: Genomics of Energy & Environment Meeting on March 22, 2012 in Walnut Creek, California.

  16. ITP Glass: Industrial Glass Bandwidth Analysis Final Report, August 2007 |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreaking of BlytheDepartment of Energy IRS Issuesof the U.S. Glass

  17. Glass Property Data and Models for Estimating High-Level Waste Glass Volume

    SciTech Connect (OSTI)

    Vienna, John D.; Fluegel, Alexander; Kim, Dong-Sang; Hrma, Pavel R.

    2009-10-05T23:59:59.000Z

    This report describes recent efforts to develop glass property models that can be used to help estimate the volume of high-level waste (HLW) glass that will result from vitrification of Hanford tank waste. The compositions of acceptable and processable HLW glasses need to be optimized to minimize the waste-form volume and, hence, to save cost. A database of properties and associated compositions for simulated waste glasses was collected for developing property-composition models. This database, although not comprehensive, represents a large fraction of data on waste-glass compositions and properties that were available at the time of this report. Glass property-composition models were fit to subsets of the database for several key glass properties. These models apply to a significantly broader composition space than those previously publised. These models should be considered for interim use in calculating properties of Hanford waste glasses.

  18. Magnetic domain walls driven by interfacial phenomena

    E-Print Network [OSTI]

    Emori, Satoru

    2014-01-01T23:59:59.000Z

    A domain wall in a ferromagnetic material is a boundary between differently magnetized regions, and its motion provides a convenient scheme to control the magnetization state of the material. Domain walls can be confined ...

  19. Process for preparing improved silvered glass mirrors

    DOE Patents [OSTI]

    Buckwalter, C.Q. Jr.

    1980-01-28T23:59:59.000Z

    Glass mirrors having improved weathering properties are prepared by an improvement in the process for making the mirrors. The glass surface after it has been cleaned but before it is silvered, is contacted with a solution of lanthanide rare earths in addition to a sensitization solution of tin or palladium. The addition of the rare earths produces a mirror which has increased resistance to delamination of the silver from the glass surface in the presence of water.

  20. 68 Glass Technology Vol. 45 No. 2 April 2004 Proc. VII Symp. on Crystallisation in Glasses and Liquids, Sheffield, 69 July 2003 Proc. VII Symp. on Crystallisation in Glasses and Liquids, Sheffield, 69 July 2003 Glass Technol., 2004, 45, 6870

    E-Print Network [OSTI]

    Sheffield, University of

    68 Glass Technology Vol. 45 No. 2 April 2004 Proc. VII Symp. on Crystallisation in Glasses and Liquids, Sheffield, 6­9 July 2003 Proc. VII Symp. on Crystallisation in Glasses and Liquids, Sheffield, 6­9 July 2003 Glass Technol., 2004, 45, 68­70 The behaviour of a simulant Magnox waste glass

  1. Radiation Characteristics of Glass Containing Gas Bubbles

    E-Print Network [OSTI]

    Pilon, Laurent; Viskanta, Raymond

    2003-01-01T23:59:59.000Z

    B. L. Drolen, “Thermal radiation in particulate media withRadiation Characteristics of Glass Containing Gas Bubblesthermophysical properties and radiation characteristics of

  2. Compliant Glass Seals for SOFC Stacks

    SciTech Connect (OSTI)

    Chou, Y. S.; Choi, Jung-Pyung; Xu, Wei; Stephens, Elizabeth V.; Koeppel, Brian J.; Stevenson, Jeffry W.; Lara-Curzio, Edgar

    2014-04-01T23:59:59.000Z

    This report summarizes results from experimental and modeling studies performed by participants in the Solid-State Energy Conversion Alliance (SECA) Core Technology Program, which indicate that compliant glass-based seals offer a number of potential advantages over conventional seals based on de-vitrifying glasses, including reduced stresses during stack operation and thermal cycling, and the ability to heal micro-damage induced during thermal cycling. The properties and composition of glasses developed and/or investigated in these studies are reported, along with results from long-term (up to 5,800h) evaluations of seals based on a compliant glass containing ceramic particles or ceramic fibers.

  3. High-Temperature Viscosity Of Commercial Glasses

    SciTech Connect (OSTI)

    Hrma, Pavel R.; See, Clem A.; Lam, Oanh P.; Minister, Kevin B.

    2005-01-01T23:59:59.000Z

    Viscosity was measured for six types of commercial glasses: low-expansion-borosilicate glasses, E glasses, fiberglass wool glasses, TV panel glasses, container glasses, and float glasses. Viscosity data were obtained with rotating spindle viscometers within the temperature range between 900°C and 1550°C; the viscosity varied from 1 Pa?s to 750 Pa?s. Arrhenius coefficients were calculated for individual glasses and linear models were applied to relate them to the mass fractions of 11 major components (SiO2, CaO, Na2O, Al2O3, B2O3, BaO, SrO, K2O, MgO, PbO, and ZrO2) and 12 minor components (Fe2O3, ZnO, Li2O, TiO2, CeO2, F, Sb2O3, Cr2O3, As2O3, MnO2, SO3, and Co3O4). The models are recommended for glasses containing 42 to 84 mass% SiO2 to estimate viscosities or temperatures at a constant viscosity for melts within both the temperature range from 1100°C to 1550°C and viscosity range from 10 to 400 Pa?s.

  4. Waste Glass Corrosion: Some Open Questions

    SciTech Connect (OSTI)

    Hrma, Pavel R.; Vienna, John D.; Yeager, John D.

    2003-05-21T23:59:59.000Z

    An equation for time evolution of glass corrosion in a closed system is proposed. Examples of fitting this equation to vapor-hydration test (VHT) and product consistency test data are shown. It is argued that the stage of accelerated corrosion of waste glass is a temporary spike caused by a transition to a different mechanism (not associated solely with high-alumina content in glass) and followed by slower steady corrosion. The effect of temperature and glass composition on the VHT rate of corrosion is evaluated. Results of different corrosion tests are compared. Progress towards a frame-indifferent rate equation is outlined.

  5. Bioactive Glass Scaffolds for Bone Regeneration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Working at ALS Beamline 8.3.2, researchers from Berkeley Lab and the Imperial College London have created bioactive glass scaffolds that mirror nature's efficient materials. The...

  6. Draining our Glass: An Energy and Heat Characterization of Google Glass

    E-Print Network [OSTI]

    Zhong, Lin

    Draining our Glass: An Energy and Heat Characterization of Google Glass Robert LiKamWa, Zhen Wang, such as hands-free video chat and web search. However, its shape also hampers its potential: (1) battery size characterizing the Glass system. Others have documented technical specifica- tions [22], privacy, security

  7. Introduction and Motivation Structural Model for Laminated Glass Beams Conclusions and Outlook of Laminated Glass Structures

    E-Print Network [OSTI]

    Components of Crystalline Solar Modules back sheet or glass encapsulant electrical conductor crystalline solar cells encapsulant front glass Reference: Schulze, S.-H.; Pander, M.; Naumenko, K.; Altenbach, H and Motivation Components of Thin Film Solar Modules back sheet or glass encapsulant electrical conductor thin

  8. A two dimensional thermal network model for a photovoltaic solar wall

    SciTech Connect (OSTI)

    Dehra, Himanshu [1-140 Avenue Windsor, Lachine, Quebec (Canada)

    2009-11-15T23:59:59.000Z

    A two dimensional thermal network model is proposed to predict the temperature distribution for a section of photovoltaic solar wall installed in an outdoor room laboratory in Concordia University, Montreal, Canada. The photovoltaic solar wall is constructed with a pair of glass coated photovoltaic modules and a polystyrene filled plywood board as back panel. The active solar ventilation through a photovoltaic solar wall is achieved with an exhaust fan fixed in the outdoor room laboratory. The steady state thermal network nodal equations are developed for conjugate heat exchange and heat transport for a section of a photovoltaic solar wall. The matrix solution procedure is adopted for formulation of conductance and heat source matrices for obtaining numerical solution of one dimensional heat conduction and heat transport equations by performing two dimensional thermal network analyses. The temperature distribution is predicted by the model with measurement data obtained from the section of a photovoltaic solar wall. The effect of conduction heat flow and multi-node radiation heat exchange between composite surfaces is useful for predicting a ventilation rate through a solar ventilation system. (author)

  9. Radiative Heat Transfer in Enhanced Hydrogen Outgassing of Glass

    E-Print Network [OSTI]

    Kitamura, Rei; Pilon, Laurent

    2009-01-01T23:59:59.000Z

    transport in a machinable glass-ceramic”, Journal of Non-in soda-lime-silicate glasses by reaction with hydrogen”,1971. [16] I. Fanderlik, Glass Science and Technology, Vol.

  10. Chapter 6 Simulations of Amorphous Polyethylene Glass Transition

    E-Print Network [OSTI]

    Goddard III, William A.

    112 Chapter 6 Simulations of Amorphous Polyethylene Glass Transition 6.1 Introduction Amorphous and characterized. Although various macroscopic properties around and below the glass transition temperature have been extensively investigated experimentally, the phenomena of glass transition and relaxation

  11. ANOMALOUS ELECTRON PRODUCTION IN THE LEAD-GLASS WALL EXPERIMENT AT SPEAR

    E-Print Network [OSTI]

    Madaras, R.J.

    2010-01-01T23:59:59.000Z

    the 1)1(3772). PRELIMINARY Eem = 3.77 GeV 46t.12 events ..I.Q. ) Eem c 4.16 GeV 50 ± 12 events II> Q. )Q. ) c ttt+ + 4.4Eem < 5.7 GeV 119 ± 20 even t s "C z 20 "

  12. The quantum Biroli-Mézard model: glass transition and superfluidity in a quantum lattice glass model

    E-Print Network [OSTI]

    Laura Foini; Guilhem Semerjian; Francesco Zamponi

    2011-03-12T23:59:59.000Z

    We study the quantum version of a lattice model whose classical counterpart captures the physics of structural glasses. We discuss the role of quantum fluctuations in such systems and in particular their interplay with the amorphous order developed in the glass phase. We show that quantum fluctuations might facilitate the formation of the glass at low enough temperature. We also show that the glass transition becomes a first-order transition between a superfluid and an insulating glass at very low temperature, and is therefore accompanied by phase coexistence between superfluid and glassy regions.

  13. Method for heating and forming a glass sheet

    DOE Patents [OSTI]

    Boaz, Premakaran Tucker (Livonia, MI)

    1997-01-01T23:59:59.000Z

    A method for heating and forming a glass sheet includes the steps of heating a glass sheet to at least a first predetermined temperature, applying microwave energy to the glass sheet to heat the glass sheet to at least a second predetermined temperature, cooling an outer surface of the glass sheet to at least a third predetermined temperature and forming the glass sheet using forming rollers to a predetermined configuration.

  14. Direct conversion of halogen-containing wastes to borosilicate glass

    SciTech Connect (OSTI)

    Forsberg, C.W.; Beahm, E.C.; Rudolph, J.C.

    1996-12-09T23:59:59.000Z

    Glass has become a preferred waste form worldwide for radioactive wastes: however, there are limitations. Halogen-containing wastes can not be converted to glass because halogens form poor-quality waste glasses. Furthermore, halides in glass melters often form second phases that create operating problems. A new waste vitrification process, the Glass Material Oxidation and dissolution System (GMODS), removes these limitations by converting halogen-containing wastes into borosilicate glass and a secondary, clean, sodium-halide stream.

  15. Viscous Glass Sealants for SOFC Applications

    SciTech Connect (OSTI)

    Scott Misture

    2012-09-30T23:59:59.000Z

    Two series of silicate glasses that contain gallium as the primary critical component have been identified and optimized for viscous sealing of solid oxide fuel cells operating from 650 to 850°C. Both series of glass sealants crystallize partially upon heat treatment and yield multiphase microstructures that allow viscous flow at temperatures as low as 650°C. A fully amorphous sealant was also developed by isolating, synthesizing and testing a silicate glass of the same composition as the remnant glassy phase in one of the two glass series. Of ~40 glasses tested for longer than 500 hours, a set of 5 glasses has been further tested for up to 1000h in air, wet hydrogen, and against both yttria-stabilized zirconia and aluminized stainless steel. In some cases the testing times reached 2000h. The reactivity testing has provided new insight into the effects of Y, Zr, and Al on bulk and surface crystallization in boro-gallio-silicate glasses, and demonstrated that at least 5 of the newly-developed glasses are viable viscous sealants.

  16. Monitoring and analyzing waste glass compositions

    DOE Patents [OSTI]

    Schumacher, Ray F. (Aiken, SC)

    1994-01-01T23:59:59.000Z

    A device and method for determining the viscosity of a fluid, preferably molten glass. The apparatus and method uses the velocity of rising bubbles, preferably helium bubbles, within the molten glass to determine the viscosity of the molten glass. The bubbles are released from a tube positioned below the surface of the molten glass so that the bubbles pass successively between two sets of electrodes, one above the other, that are continuously monitoring the conductivity of the molten glass. The measured conductivity will change as a bubble passes between the electrodes enabling an accurate determination of when a bubble has passed between the electrodes. The velocity of rising bubbles can be determined from the time interval between a change in conductivity of the first electrode pair and the second, upper electrode pair. The velocity of the rise of the bubbles in the glass melt is used in conjunction with other physical characteristics, obtained by known methods, to determine the viscosity of the glass melt fluid and, hence, glass quality.

  17. Radiation Induced Nanocrystal Formation in Metallic Glasses

    E-Print Network [OSTI]

    Carter, Jesse

    2010-01-14T23:59:59.000Z

    The irradiation of metallic glasses to induce nanocrystallization was studied in two metallic glass compositions, Cu50Zr45Ti5 and Zr55Cu30Al10Ni5. Atomic mobility was described using a model based on localized excess free volume due to displace...

  18. Monitoring and analyzing waste glass compositions

    DOE Patents [OSTI]

    Schumacher, R.F.

    1994-03-01T23:59:59.000Z

    A device and method are described for determining the viscosity of a fluid, preferably molten glass. The apparatus and method use the velocity of rising bubbles, preferably helium bubbles, within the molten glass to determine the viscosity of the molten glass. The bubbles are released from a tube positioned below the surface of the molten glass so that the bubbles pass successively between two sets of electrodes, one above the other, that are continuously monitoring the conductivity of the molten glass. The measured conductivity will change as a bubble passes between the electrodes enabling an accurate determination of when a bubble has passed between the electrodes. The velocity of rising bubbles can be determined from the time interval between a change in conductivity of the first electrode pair and the second, upper electrode pair. The velocity of the rise of the bubbles in the glass melt is used in conjunction with other physical characteristics, obtained by known methods, to determine the viscosity of the glass melt fluid and, hence, glass quality. 2 figures.

  19. Sealing glasses for titanium and titanium alloys

    DOE Patents [OSTI]

    Brow, Richard K. (Albuquerque, NM); Watkins, Randall D. (Albuquerque, NM)

    1992-01-01T23:59:59.000Z

    Glass compositions containing CaO, Al.sub.2 O.sub.3, B.sub.2 O.sub.3, SrO and BaO of various combinations of mole % are provided. These compositions are capable of forming stable glass-to-metal seals with titanium and titanium alloys, for use in components such as seals for battery headers.

  20. Sealing glasses for titanium and titanium alloys

    DOE Patents [OSTI]

    Brow, R.K.; Watkins, R.D.

    1988-01-21T23:59:59.000Z

    Glass compositions containing CaO, Al/sub 2/O/sub 3/, B/sub 2/O/sub 3/, SrO and BaO of various combinations of mole % are provided. These compositions are capable of forming stable glass-to-metal seals with titanium and titanium alloys, for use in components such as seals for battery headers.

  1. Eyeglass lens made of glass (radiopaque)

    E-Print Network [OSTI]

    Fig. 9-1 Eyeglass lens made of glass (radiopaque) and frame made of metal (radiopaque). #12;Fig. 9-2 Eyeglass lens made of glass (radiopaque) and frame made of plastic (radiolucent). #12;Fig. 9-3 Metal frame of eyeglasses (radiopaque). The eyeglass lens is made of plastic (radiolucent). #12;Fig. 9-4 Cotton roll

  2. California: Energy-Efficient Glass Saves Energy Costs, Increases...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy-Efficient Glass Saves Energy Costs, Increases Personal Comfort California: Energy-Efficient Glass Saves Energy Costs, Increases Personal Comfort April 18, 2013 - 12:00am...

  3. Time-Domain Electromagnetics At Glass Mountain Area (Cumming...

    Open Energy Info (EERE)

    GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Time-Domain Electromagnetics At Glass Mountain Area (Cumming And Mackie, 2007) Exploration Activity Details Location Glass...

  4. Glass-like thermal conductivity in high efficiency thermoelectric...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Glass-like thermal conductivity in high efficiency thermoelectric materials Glass-like thermal conductivity in high efficiency thermoelectric materials Discusses strategies to...

  5. Modeling Interfacial Glass-Water Reactions: Recent Advances and...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Modeling Interfacial Glass-Water Reactions: Recent Advances and Current Limitations. Modeling Interfacial Glass-Water Reactions: Recent Advances and Current Limitations. Abstract:...

  6. Metal and Glass Manufacturers Reduce Costs by Increasing Energy...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Metal and Glass Manufacturers Reduce Costs by Increasing Energy Efficiency in Process Heating Systems Metal and Glass Manufacturers Reduce Costs by Increasing Energy Efficiency in...

  7. China Glass Solar aka CG Solar formerly Weihai Bluestar Terra...

    Open Energy Info (EERE)

    China Glass Solar aka CG Solar formerly Weihai Bluestar Terra Photovoltaic Co Ltd Jump to: navigation, search Name: China Glass Solar (aka CG Solar, formerly Weihai Bluestar Terra...

  8. aluminum hlw glasses: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    applications. - Int. J. Solids & Struct. 49 and Motivation Components of Thin Film Solar Modules back sheet or glass encapsulant electrical conductor thin 122 Glass Forming...

  9. andesitic glass comparison: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    applications. - Int. J. Solids & Struct. 49 and Motivation Components of Thin Film Solar Modules back sheet or glass encapsulant electrical conductor thin 59 Glass Forming...

  10. ajakirja stained glass: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    applications. - Int. J. Solids & Struct. 49 and Motivation Components of Thin Film Solar Modules back sheet or glass encapsulant electrical conductor thin 122 Glass Forming...

  11. Gaseous Sulfate Solubility in Glass: Experimental Method

    SciTech Connect (OSTI)

    Bliss, Mary

    2013-11-30T23:59:59.000Z

    Sulfate solubility in glass is a key parameter in many commercial glasses and nuclear waste glasses. This report summarizes key publications specific to sulfate solubility experimental methods and the underlying physical chemistry calculations. The published methods and experimental data are used to verify the calculations in this report and are expanded to a range of current technical interest. The calculations and experimental methods described in this report will guide several experiments on sulfate solubility and saturation for the Hanford Waste Treatment Plant Enhanced Waste Glass Models effort. There are several tables of sulfate gas equilibrium values at high temperature to guide experimental gas mixing and to achieve desired SO3 levels. This report also describes the necessary equipment and best practices to perform sulfate saturation experiments for molten glasses. Results and findings will be published when experimental work is finished and this report is validated from the data obtained.

  12. Titanium sealing glasses and seals formed therefrom

    DOE Patents [OSTI]

    Brow, Richard K. (Albuquerque, NM); McCollister, Howard L. (Albuquerque, NM); Phifer, Carol C. (Albuquerque, NM); Day, Delbert E. (Rolla, MO)

    1997-01-01T23:59:59.000Z

    Alkaline-earth lanthanoborate sealing-glass compositions containing CaO, La.sub.2 O.sub.3, B.sub.2 O.sub.3, TiO.sub.2 and Al.sub.2 O.sub.3 in various combinations of mole-% are provided. These sealing-glass compositions are useful for forming hermetic glass-to-metal seals with titanium and titanium alloys that have a high aqueous durability for component or device applications requiring exposure to moisture, water or body fluids. Particular applications of the titanium sealing-glass compositions include forming glass-to-metal seals for lithium batteries and implanted biomedical devices (e.g. batteries, pacemakers, defibrillators, pumps).

  13. A consortium approach to glass furnace modeling.

    SciTech Connect (OSTI)

    Chang, S.-L.; Golchert, B.; Petrick, M.

    1999-04-20T23:59:59.000Z

    Using computational fluid dynamics to model a glass furnace is a difficult task for any one glass company, laboratory, or university to accomplish. The task of building a computational model of the furnace requires knowledge and experience in modeling two dissimilar regimes (the combustion space and the liquid glass bath), along with the skill necessary to couple these two regimes. Also, a detailed set of experimental data is needed in order to evaluate the output of the code to ensure that the code is providing proper results. Since all these diverse skills are not present in any one research institution, a consortium was formed between Argonne National Laboratory, Purdue University, Mississippi State University, and five glass companies in order to marshal these skills into one three-year program. The objective of this program is to develop a fully coupled, validated simulation of a glass melting furnace that may be used by industry to optimize the performance of existing furnaces.

  14. Glass heat pipe evacuated tube solar collector

    DOE Patents [OSTI]

    McConnell, Robert D. (Lakewood, CO); Vansant, James H. (Tracy, CA)

    1984-01-01T23:59:59.000Z

    A glass heat pipe is adapted for use as a solar energy absorber in an evacuated tube solar collector and for transferring the absorbed solar energy to a working fluid medium or heat sink for storage or practical use. A capillary wick is formed of granular glass particles fused together by heat on the inside surface of the heat pipe with a water glass binder solution to enhance capillary drive distribution of the thermal transfer fluid in the heat pipe throughout the entire inside surface of the evaporator portion of the heat pipe. Selective coatings are used on the heat pipe surface to maximize solar absorption and minimize energy radiation, and the glass wick can alternatively be fabricated with granular particles of black glass or obsidian.

  15. Titanium sealing glasses and seals formed therefrom

    DOE Patents [OSTI]

    Brow, R.K.; McCollister, H.L.; Phifer, C.C.; Day, D.E.

    1997-12-02T23:59:59.000Z

    Alkaline-earth lanthanoborate sealing-glass compositions containing CaO, La{sub 2}O{sub 3}, B{sub 2}O{sub 3}, TiO{sub 2} and Al{sub 2}O{sub 3} in various combinations of mole-% are provided. These sealing-glass compositions are useful for forming hermetic glass-to-metal seals with titanium and titanium alloys that have a high aqueous durability for component or device applications requiring exposure to moisture, water or body fluids. Particular applications of the titanium sealing-glass compositions include forming glass-to-metal seals for lithium batteries and implanted biomedical devices (e.g. batteries, pacemakers, defibrillators, pumps). 2 figs.

  16. Heat capacity at the glass transition

    E-Print Network [OSTI]

    Kostya Trachenko; Vadim Brazhkin

    2010-07-13T23:59:59.000Z

    A fundamental problem of glass transition is to explain the jump of heat capacity at the glass transition temperature $T_g$ without asserting the existence of a distinct solid glass phase. This problem is also common to other disordered systems, including spin glasses. We propose that if $T_g$ is defined as the temperature at which the liquid stops relaxing at the experimental time scale, the jump of heat capacity at $T_g$ follows as a necessary consequence due to the change of system's elastic, vibrational and thermal properties. In this picture, we discuss time-dependent effects of glass transition, and identify three distinct regimes of relaxation. Our approach explains widely observed logarithmic increase of $T_g$ with the quench rate and the correlation of heat capacity jump with liquid fragility.

  17. Analysis of Rotating Collectors from the Private Region of JET with Carbon Wall and Metallic ITER-Like Wall

    E-Print Network [OSTI]

    Analysis of Rotating Collectors from the Private Region of JET with Carbon Wall and Metallic ITER-Like Wall

  18. First Wall and Operational Diagnostics

    SciTech Connect (OSTI)

    Lasnier, C; Allen, S; Boedo, J; Groth, M; Brooks, N; McLean, A; LaBombard, B; Sharpe, J; Skinner, C; Whyte, D; Rudakov, D; West, W; Wong, C

    2006-06-19T23:59:59.000Z

    In this chapter we review numerous diagnostics capable of measurements at or near the first wall, many of which contribute information useful for safe operation of a tokamak. There are sections discussing infrared cameras, visible and VUV cameras, pressure gauges and RGAs, Langmuir probes, thermocouples, and erosion and deposition measurements by insertable probes and quartz microbalance. Also discussed are dust measurements by electrostatic detectors, laser scattering, visible and IR cameras, and manual collection of samples after machine opening. In each case the diagnostic is discussed with a view toward application to a burning plasma machine such as ITER.

  19. Solid oxide fuel cell having a glass composite seal

    DOE Patents [OSTI]

    De Rose, Anthony J.; Mukerjee, Subhasish; Haltiner, Jr., Karl Jacob

    2013-04-16T23:59:59.000Z

    A solid oxide fuel cell stack having a plurality of cassettes and a glass composite seal disposed between the sealing surfaces of adjacent cassettes, thereby joining the cassettes and providing a hermetic seal therebetween. The glass composite seal includes an alkaline earth aluminosilicate (AEAS) glass disposed about a viscous glass such that the AEAS glass retains the viscous glass in a predetermined position between the first and second sealing surfaces. The AEAS glass provides geometric stability to the glass composite seal to maintain the proper distance between the adjacent cassettes while the viscous glass provides for a compliant and self-healing seal. The glass composite seal may include fibers, powders, and/or beads of zirconium oxide, aluminum oxide, yttria-stabilized zirconia (YSZ), or mixtures thereof, to enhance the desirable properties of the glass composite seal.

  20. Glass for sealing lithium cells

    DOE Patents [OSTI]

    Leedecke, C.J.

    1981-08-28T23:59:59.000Z

    Glass compositions resistant to corrosion by lithium cell electrolyte and having an expansion coefficient of 45 to 85 x 10/sup -70/C/sup -1/ have been made with SiO/sub 2/, 25 to 55% by weight; B/sub 2/O/sub 3/, 5 to 12%; Al/sub 2/O/sub 3/, 12 to 35%; CaO, 5 to 15%; MgO, 5 to 15%; SrO, 0 to 10%; and La/sub 2/O/sub 3/, 0 to 5%. Preferred compositions within that range contain 3 to 8% SrO and 0.5 to 2.5% La/sub 2/O/sub 3/.

  1. Investigation of wall friction in noncircular ducts with a rough liner

    E-Print Network [OSTI]

    Tyler, John Charles

    1959-01-01T23:59:59.000Z

    section Density Viscosity Dimensions L5/Q L/Q m/L& m/LQ 1. The friction factors, Reynolds numbers, and. abso- lute roughnesses for fluid flow in ducts having a glass fiber liner have been calculated and plotted in the form of characteristic... distributed, it is essential that the wall friction phenomena associated with the particular duct design be understood. When fluid is passed through a duct, a static pressure drop occurs due to the friction forces which act between the fluid. particles...

  2. A new Energy Saving method of manufacturing ceramic products from waste glass

    SciTech Connect (OSTI)

    Haun Labs

    2002-07-05T23:59:59.000Z

    This final report summarizes the activities of the DOE Inventions and Innovations sponsored project, ''A New Energy Saving Method of Manufacturing Ceramic Products from Waste Glass.'' The project involved an innovative method of lowering energy costs of manufacturing ceramic products by substituting traditional raw materials with waste glass. The processing method is based on sintering of glass powder at {approx}750 C to produce products which traditionally require firing temperatures of >1200 C, or glass-melting temperatures >1500 C. The key to the new method is the elimination of previous processing problems, which have greatly limited the use of recycled glass as a ceramic raw material. The technology is aligned with the DOE-OIT Glass Industry Vision and Roadmap, and offers significant energy savings and environmental benefits compared to current technologies. A U.S. patent (No. 6,340,650) covering the technology was issued on January 22, 2002. An international PCT Patent Application is pending with designations made for all PCT regions and countries. The goal of the project was to provide the basis for the design and construction of an energy-efficient manufacturing plant that can convert large volumes of waste glass into high-quality ceramic tile. The main objectives of the project were to complete process development and optimization; construct and test prototype samples; and conduct market analysis and commercialization planning. Two types of ceramic tile products were targeted by the project. The first type was developed during the first year (Phase I) to have a glazed-like finish for applications where slip resistance is not critical, such as wall tile. The processing method optimized in Phase I produces a glossy surface with a translucent appearance, without the extra glazing steps required in traditional tile manufacturing. The second type of product was developed during the second year (Phase II). This product was designed to have an unglazed appearance for applications requiring slip resistance, such as floor tile. The coarser matte finish of this product type was produced by modifying the basic process to include crystalline fillers and partial crystallization of the glass. Additional details of the project results are discussed in Section III.

  3. HGMS: Glasses and Nanocomposites for Hydrogen Storage.

    SciTech Connect (OSTI)

    Lipinska, Kris [PI] [PI; Hemmers, Oliver

    2013-02-17T23:59:59.000Z

    The primary goal of this project is to fabricate and investigate different glass systems and glass-derived nanocrystalline composite materials. These glass-based, two-phased materials will contain nanocrystals that can attract hydrogen and be of potential interest as hydrogen storage media. The glass materials with intrinsic void spaces that are able to precipitate functional nanocrystals capable to attract hydrogen are of particular interest. Proposed previously, but never practically implemented, one of promising concepts for storing hydrogen are micro-containers built of glass and shaped into hollow microspheres. The project expanded this concept to the exploration of glass-derived nanocrystalline composites as potential hydrogen storage media. It is known that the most desirable materials for hydrogen storage do not interact chemically with hydrogen and possess a high surface area to host substantial amounts of hydrogen. Glasses are built of disordered networks with ample void spaces that make them permeable to hydrogen even at room temperature. Glass-derived nanocrystalline composites (two-phased materials), combination of glasses (networks with ample voids) and functional nanocrystals (capable to attract hydrogen), appear to be promising candidates for hydrogen storage media. Key advantages of glass materials include simplicity of preparation, flexibility of composition, chemical durability, non-toxicity and mechanical strength, as well as low production costs and environmental friendliness. This project encompasses a fundamental research into physics and chemistry of glasses and nanocrystalline composite materials, derived from glass. Studies are aimed to answer questions essential for considering glass-based materials and composites as potential hydrogen storage media. Of particular interest are two-phased materials that combine glasses with intrinsic voids spaces for physisorption of hydrogen and nanocrystals capable of chemisorption. This project does not directly address any hydrogen storage technical barriers or targets in terms of numbers. Specifically, hydrogen sorption and desorption tests or kinetics measurements were not part of the project scope. However, the insights gained from these studies could help to answer fundamental questions necessary for considering glass-based materials as hydrogen storage media and could be applied indirectly towards the DOE hydrogen storage technical targets such as system weight and volume, system cost and energy density. Such questions are: Can specific macro-crystals, proven to attract hydrogen when in a macroscopic form (bulk), be nucleated in glass matrices as nanocrystals to create two-phased materials? What are suitable compositions that enable to synthetize glass-based, two-phase materials with nanocrystals that can attract hydrogen via surface or bulk interactions? What are the limits of controlling the microstructure of these materials, especially limits for nanocrystals density and size? Finally, from a technological point of view, the fabrication of glass-derived nanocomposites that we explore is a very simple, fast and inexpensive process that does not require costly or specialized equipment which is an important factor for practical applications.

  4. Glass ceramic-to-metal seals

    DOE Patents [OSTI]

    Not Available

    1982-04-19T23:59:59.000Z

    A glass ceramic composition prepared by subjecting a glass composition comprising, by weight, 65 to 80% SiO/sub 2/, 8 to 16% Li/sub 2/O, 2 to 8% Al/sub 2/O/sub 3/, 1 to 8% K/sub 2/O, 1 to 5% P/sub 2/O/sub 5/ and 1.5 to 7% B/sub 2/O/sub 3/, to the following processing steps of heating the glass composition to a temperature sufficient to crystallize lithium metasilicate therein, holding the glass composition at a temperature and for a time period sufficient to dissolve the lithium metasilicate therein thereby creating cristobalite nucleii, cooling the glass composition and maintaining the composition at a temperature and for a time period sufficient to recrystallize lithium metasilicate therein, and thermally treating the glass composition at a temperature and for a time period sufficient to caus growth of cristobalite and further crystallization of lithium metasilicate producing a glass ceramic composition having a specific thermal expansion coefficient and products containing said composition.

  5. Energy implications of glass-container recycling

    SciTech Connect (OSTI)

    Gaines, L.L.; Mintz, M.M. [Argonne National Lab., IL (United States)] [Argonne National Lab., IL (United States)

    1994-03-01T23:59:59.000Z

    This report addresses the question of whether glass-container recycling actually saves energy. Glass-container production in 1991 was 10{sup 7} tons, with cullet making up about 30% of the input to manufacture. Two-thirds of the cullet is postconsumer waste; the remainder is in-house scrap (rejects). Most of the glass recycled is made into new containers. Total primary energy consumption includes direct process-energy use by the industry (adjusted to account for the efficiency of fuel production) plus fuel and raw-material transportation and production energies; the grand total for 1991 is estimated to be about 168 {times} 10{sup 12} Btu. The total primary energy use decreases as the percent of glass recycled rises, but the maximum energy saved is only about 13%. If distance to the landfill is kept fixed and that to the recovery facility multiplied by about eight, to 100 mi, a break-even point is reached, and recycling saves no energy. Previous work has shown that to save energy when using glass bottles, reuse is the clear choice. Recycling of glass does not save much energy or valuable raw material and does not reduce air or water pollution significantly. The most important impacts are the small reduction of waste sent to the landfill and increased production rates at glass plants.

  6. Quantum Fusion of Domain Walls with Fluxes

    E-Print Network [OSTI]

    S. Bolognesi; M. Shifman; M. B. Voloshin

    2009-07-20T23:59:59.000Z

    We study how fluxes on the domain wall world volume modify quantum fusion of two distant parallel domain walls into a composite wall. The elementary wall fluxes can be separated into parallel and antiparallel components. The parallel component affects neither the binding energy nor the process of quantum merger. The antiparallel fluxes, instead, increase the binding energy and, against naive expectations, suppress quantum fusion. In the small flux limit we explicitly find the bounce solution and the fusion rate as a function of the flux. We argue that at large (antiparallel) fluxes there exists a critical value of the flux (versus the difference in the wall tensions), which switches off quantum fusion altogether. This phenomenon of flux-related wall stabilization is rather peculiar: it is unrelated to any conserved quantity. Our consideration of the flux-related all stabilization is based on substantiated arguments that fall short of complete proof.

  7. Novel lead-iron phosphate glass

    DOE Patents [OSTI]

    Boatner, L.A.; Sales, B.C.

    1989-07-11T23:59:59.000Z

    The invention described and claimed in the specification relates to the discovery that effective addition of Fe[sub 2]O[sub 3] to a lead phosphate glass results in a glass having enhanced chemical durability and physical stability, and consists essentially of the glass resulting from melting a mixture consisting essentially of, in weight percent, 40--66 percent PbO, 30--55 percent P[sub 2]O[sub 5] and an effective concentration up to 12 percent Fe[sub 2]O[sub 3].

  8. Rheology of spinel sludge in molten glass

    SciTech Connect (OSTI)

    Mika, M (.); Hrma, Pavel R. (BATTELLE (PACIFIC NW LAB)); Schweiger, M J. (.)

    1999-11-01T23:59:59.000Z

    Spinel sludge, which forms while vitrifying high-level waste, obstructs the flow of molten glass and damages the melter. The effectiveness of removing spinel sludge from a high-level waste glass melter depends on its rheological behavior. We prepared spinel sludge in a laboratory crucible by allowing spinel to settle from molten glass and measured the response of the sludge to shear using a rotating spindle viscometer. The shear stress increased nonlinearly with the velocity gradient (the shear rate) and with time at a constant velocity gradient, as is typical for a pseudoplastic rheopectic liquid. The apparent viscosity of the sludge substantially increased when RuO-2 needles were present.

  9. Panelized wall system with foam core insulation

    DOE Patents [OSTI]

    Kosny, Jan (Oak Ridge, TN); Gaskin, Sally (Houston, TX)

    2009-10-20T23:59:59.000Z

    A wall system includes a plurality of wall members, the wall members having a first metal panel, a second metal panel, and an insulating core between the first panel and the second panel. At least one of the first panel and the second panel include ridge portions. The insulating core can be a foam, such as a polyurethane foam. The foam can include at least one opacifier to improve the k-factor of the foam.

  10. First wall for polarized fusion reactors

    DOE Patents [OSTI]

    Greenside, Henry S. (Cranbury, NJ); Budny, Robert V. (Princeton, NJ); Post, Jr., Douglass E. (Buttonwood, CT)

    1988-01-01T23:59:59.000Z

    Depolarization mechanisms arising from the recycling of the polarized fuel at the limiter and the first-wall of a fusion reactor are greater than those mechanisms in the plasma. Rapid depolarization of the plasma is prevented by providing a first-wall or first-wall coating formed of a low-Z, non-metallic material having a depolarization rate greater than 1 sec.sup.-1.

  11. Textural break foundation wall construction modules

    DOE Patents [OSTI]

    Phillips, Steven J. (Kennewick, WA)

    1990-01-01T23:59:59.000Z

    Below-grade, textural-break foundation wall structures are provided for inhibiting diffusion and advection of liquids and gases into and out from a surrounding hydrogeologic environment. The foundation wall structure includes a foundation wall having an interior and exterior surface and a porous medium disposed around a portion of the exterior surface. The structure further includes a modular barrier disposed around a portion of the porous medium. The modular barrier is substantially removable from the hydrogeologic environment.

  12. SLUDGE BATCH 7B GLASS VARIABILITY STUDY

    SciTech Connect (OSTI)

    Johnson, F.; Edwards, T.

    2011-10-25T23:59:59.000Z

    The Defense Waste Processing Facility (DWPF) is preparing to initiate processing Sludge Batch 7b (SB7b). In support of the upcoming processing, the Savannah River National Laboratory (SRNL) provided a recommendation to utilize Frits 418 with a 6% Na{sub 2}O addition (26 wt% Na{sub 2}O in sludge) and 702 with a 4% Na{sub 2}O addition (24 wt% Na{sub 2}O in sludge) to process SB7b. This recommendation was based on assessments of the compositional projections for SB7b available at the time from the Savannah River Remediation (SRR). To support qualification of SB7b, SRNL executed a variability study to assess the applicability of the current durability models for SB7b. The durability models were assessed over the expected composition range of SB7b, including potential caustic additions, combined with Frits 702 and 418 over a 32-40% waste loading (WL) range. Thirty four glasses were selected based on Frits 418 and 702 coupled with the sludge projections with an additional 4-6% Na{sub 2}O to reflect the potential caustic addition. Six of these glasses, based on average nominal sludge compositions including the appropriate caustic addition, were developed for both Frit 418 and Frit 702 at 32, 36 and 40% WL to provide coverage in the center of the anticipated SB7b glass region. All glasses were fabricated and characterized using chemical composition analysis, X-ray diffraction (XRD) and the Product Consistency Test (PCT). To comply with the DWPF Glass Product Control Program, a total of thirty four glasses were fabricated to assess the applicability of the current DWPF PCCS durability models. Based on the measured PCT response, all of the glasses were acceptable with respect to the Environmental Assessment (EA) benchmark glass regardless of thermal history. The NL[B] values of the SB7b variability study glasses were less than 1.99 g/L as compared to 16.695 g/L for EA. A small number of the D-optimally selected 'outer layer' extreme vertices (EV) glasses were not predictable using the current Product Composition Control System (PCCS) models for durability, but were acceptable compared to the EA glass when tested. These glasses fell outside of the lower 95% confidence band, which demonstrates conservatism in the model. A few of the glasses fell outside of the upper 95% confidence band; however, these particular glasses have normalized release values that were much lower than the values of EA and should be of no practical concern. Per the requirements of the DWPF Glass Product Control Program, the PCCS durability models have been shown to be applicable to the SB7b sludge system with a range of Na{sub 2}O concentrations blended with Frits 418 or 702. PCT results from the glasses fabricated as part of the variability study were shown to be predictable by the current DWPF PCCS models and/or acceptable with respect to the EA benchmark glass regardless of thermal history or compositional view.

  13. Multiple moving wall dry coal extrusion pump

    DOE Patents [OSTI]

    Fitzsimmons, Mark Andrew

    2013-05-14T23:59:59.000Z

    A pump for transporting particulate material includes a passageway defined on each side between an inlet and an outlet by a moving wall.

  14. First wall for polarized fusion reactors

    DOE Patents [OSTI]

    Greenside, H.S.; Budny, R.V.; Post, D.E. Jr.

    1985-01-29T23:59:59.000Z

    A first-wall or first-wall coating for use in a fusion reactor having polarized fuel may be formed of a low-Z non-metallic material having slow spin relaxation, i.e., a depolarization rate greater than 1 sec/sup -1/. Materials having these properties include hydrogenated and deuterated amorphous semiconductors. A method for preventing the rapid depolarization of a polarized plasma in a fusion device may comprise the step of providing a first-wall or first-wall coating formed of a low-Z, non-metallic material having a depolarization rate greater than 1 sec/sup -1/.

  15. Glass/polymer composites and methods of making

    DOE Patents [OSTI]

    Samuels, W. D. (Richland, WA); Exarhos, Gregory J. (Richland, WA)

    1995-01-01T23:59:59.000Z

    The present invention relates to new glass/polymer composites and methods for making them. More specifically, the invention is glass/polymer composites having phases that are at the molecular level and thereby practicably indistinguishable. The invention further discloses making molecular phase glass/polymer composites by mixing a glass and a polymer in a compatible solvent.

  16. Non-photorealistic Rendering of Images as Evolutionary Stained Glass

    E-Print Network [OSTI]

    Ashlock, Dan

    Non-photorealistic Rendering of Images as Evolutionary Stained Glass Daniel Ashlock Mathematics glass. A collection of points that are the centers of weighted Voronoi tilings are evolved to minimize. A fractal model of stained glass is then run to create a stained glass texture with a similar average color

  17. Finding Glass Kenton McHenry, Jean Ponce

    E-Print Network [OSTI]

    Forsyth, David

    Finding Glass Kenton McHenry, Jean Ponce Beckman Institute University of Illinois Urbana, IL 61801. This paper addresses the problem of finding glass ob- jects in images. Visual cues obtained by combining with the strong highlights typical of glass surfaces are used to train a hierarchy of classifiers, identify glass

  18. Film Formation Mechanism in Glass Lubrication by Polymer Latex Dispersions

    E-Print Network [OSTI]

    Boyer, Edmond

    coatings by tin dioxide resulting in glass bottle lubrication was investigated on flat glass. The anchoring contacts between glass bottles on production lines and transport affect both their mechanical strength and visual aspect. To improve their scratch resistance and prevent surface damage, glass bottles

  19. Spectroscopic investigation of simulated low-level nuclear waste glass

    SciTech Connect (OSTI)

    Rong, Chaoying; Li, Hong; Hrma, P.R.; Cho, H.M. [Pacific Northwest National Lab., Richland, WA (United States)

    1996-12-31T23:59:59.000Z

    Borosilicate glasses with high sodium concentrations, formulated to simulate vitrified Hanford low-level wastes (LLW), were investigated by {sup 31}P magic angle spinning (MAS) nuclear magnetic resonance (NMR). Phase separation, glass homogeneity changes during remelting, and the form of phosphate in glass following product consistency tests (PCT) were also examined by NMR. The results show that a distinct orthophosphate phase not part of the glass network is present in the glass. The effect of glass composition on phosphate chemical environments in the glass is discussed.

  20. Demonstration of chalcogenide glass racetrack microresonators

    E-Print Network [OSTI]

    Kimerling, Lionel C.

    We have demonstrated what we believe to be the first chalcogenide glass racetrack microresonator using a complementary metal-oxide semiconductor-compatible lift-off technique with thermally evaporated As[subscript 2]S[subscript ...

  1. Energy Assessment Protocol for Glass Furnaces

    E-Print Network [OSTI]

    Plodinec, M. J.; Kauffman, B. M.; Norton, O. P.; Richards, C.; Connors, J.; Wishnick, D.

    2005-01-01T23:59:59.000Z

    The Department of Energy funded development of a methodology that could be used by glass producers to increase furnace efficiency, and that could serve as a model for other energy-intensive industries. Accordingly, a team comprising PPG Industries...

  2. Elimination of Glass Artifacts and Object Segmentation

    E-Print Network [OSTI]

    Katyal, Vini; Srivastava, Deepesh

    2012-01-01T23:59:59.000Z

    Many images nowadays are captured from behind the glasses and may have certain stains discrepancy because of glass and must be processed to make differentiation between the glass and objects behind it. This research paper proposes an algorithm to remove the damaged or corrupted part of the image and make it consistent with other part of the image and to segment objects behind the glass. The damaged part is removed using total variation inpainting method and segmentation is done using kmeans clustering, anisotropic diffusion and watershed transformation. The final output is obtained by interpolation. This algorithm can be useful to applications in which some part of the images are corrupted due to data transmission or needs to segment objects from an image for further processing.

  3. Glass bead micromodel study of solute transport

    E-Print Network [OSTI]

    Fedirchuk, Paula Diane

    1995-01-01T23:59:59.000Z

    This study presents the quantification of glass bead micromodel experiments through a combination of computational modeling and experimental analysis. The computational model simulates two-dimensional solute flow through porous media using a finite...

  4. Measurement of DWPF glass viscosity - Final Report

    SciTech Connect (OSTI)

    Harbour, J.R.

    2000-02-17T23:59:59.000Z

    This report details the results of a scoping study funded by the Defense Waste Processing Facility (DWPF) for the measurement of melt viscosities for simulated glasses representative of Macrobatch 2 (Tank 42/51 feed).

  5. Preparation of fullerene/glass composites

    DOE Patents [OSTI]

    Mattes, B.R.; McBranch, D.W.; Robinson, J.M.; Koskelo, A.C.; Love, S.P.

    1995-05-30T23:59:59.000Z

    Synthesis of fullerene/glass composites is described. A direct method for preparing solid solutions of C{sub 60} in silicon dioxide (SiO{sub 2}) glass matrices by means of sol-gel chemistry is described. In order to produce highly concentrated fullerene-sol-gel-composites it is necessary to increase the solubility of these ``guests`` in a delivery solvent which is compatible with the starter sol (receiving solvent). Sonication results in aggregate disruption by treatment with high frequency sound waves, thereby accelerating the rate of hydrolysis of the alkoxide precursor, and the solution process for the C{sub 60}. Depending upon the preparative procedure, C{sub 60} dispersed within the glass matrix as microcrystalline domains, or dispersed as true molecular solutions of C{sub 60} in a solid glass matrix, is generated by the present method.

  6. Preparation of fullerene/glass composites

    DOE Patents [OSTI]

    Mattes, Benjamin R. (Santa Fe, NM); McBranch, Duncan W. (Santa Fe, NM); Robinson, Jeanne M. (Los Alamos, NM); Koskelo, Aaron C. (Los Alamos, NM); Love, Steven P. (Los Alamos, NM)

    1995-01-01T23:59:59.000Z

    Synthesis of fullerene/glass composites. A direct method for preparing solid solutions of C.sub.60 in silicon dioxide (SiO.sub.2) glass matrices by means of sol-gel chemistry is described. In order to produce highly concentrated fullerene-sol-gel-composites it is necessary to increase the solubility of these "guests" in a delivery solvent which is compatible with the starter sol (receiving solvent). Sonication results in aggregate disruption by treatment with high frequency sound waves, thereby accelerating the rate of hydrolysis of the alkoxide precursor, and the solution process for the C.sub.60. Depending upon the preparative procedure, C.sub.60 dispersed within the glass matrix as microcrystalline domains, or dispersed as true molecular solutions of C.sub.60 in a solid glass matrix, is generated by the present method.

  7. Liquidus Temperature Data for DWPF Glass

    SciTech Connect (OSTI)

    GF Piepel; JD Vienna; JV Crum; M Mika; P Hrma

    1999-05-21T23:59:59.000Z

    This report provides new liquidus temperature (TL) versus composition data that can be used to reduce uncertainty in TL calculation for DWPF glass. According to the test plan and test matrix design PNNL has measured TL for 53 glasses within and just outside of the current DWPF processing composition window. The TL database generated under this task will directly support developing and enhancing the current TL process-control model. Preliminary calculations have shown a high probability of increasing HLW loading in glass produced at the SRS and Hanford. This increase in waste loading will decrease the lifecycle tank cleanup costs by decreasing process time and the volume of waste glass produced.

  8. Mechanism of sulfate segregation during glass melting

    SciTech Connect (OSTI)

    Hrma, Pavel R.; Vienna, John D.; Ricklefs, Joel S.

    2005-02-13T23:59:59.000Z

    Sulfate retention in glass during the vitrification process can be as low as 1/3 of the solubility limit, or can exceed the solubility limit if suspended in the glass in the form of droplets. This study is focused on the mechanism of incorporating and segregating sodium sulfate during the melting of an alkali-alumino-borosilicate glass batch. Batches were ramp heated at 4°C/min to temperatures ranging from 600°C to 1050°C and fractured for examination. Observation of the melts showed that as the batch temperature increases and the primary oxo-anionic, predominantly nitrate melt decomposes, the sulfate residue accumulates inside gas bubbles and is transported in them to the melt surface, where it remains segregated. The degree of sulfate incorporation into the final glass depends on the relative rates of sulfate dissolution in the borosilicate melt and sulfate lifting inside bubbles.

  9. Free energy of sheared colloidal glasses

    E-Print Network [OSTI]

    M. T. Dang; V. Chikkadi; R. Zargar; D. M. Miedema; D. Bonn; A. Zaccone; P. Schall

    2015-05-25T23:59:59.000Z

    We develop a free energy framework to describe the response of glasses to applied stress. Unlike crystals, for which the free energy increases quadratically with strain due to affine displacements, for glasses, the nonequilibrium free energy decreases due to complex interplay of non-affine displacements and dissipation. We measure this free energy directly in strained colloidal glasses, and use mean-field theory to relate it to affine and nonaffine displacements. Nonaffine displacements grow with applied shear due to shear-induced loss of structural connectivity. Our mean-field model allows for the first time to disentangle the complex contributions of affine and nonaffine displacements and dissipation in the transient deformation of glasses.

  10. Beetle Kill Wall at NREL

    ScienceCinema (OSTI)

    None

    2013-05-29T23:59:59.000Z

    When it comes to designing an interior decorative feature for one of the most energy efficient office buildings in the world, very few would consider bringing in a beetle to do the job. But thats what happened at the U.S. Department of Energy's (DOE) Research Support Facility (RSF) located on the National Renewable Energy Laboratory (NREL) campus.In June, the RSF will become home to more than 800 workers from DOE and NREL and building visitors will be greeted with a soaring, two-story high wall entirely covered with wood harvested from the bark beetle infestation that has killed millions of pine trees in the Western U.S. But, the use of beetle kill wood is just one example of the resources being leveraged to make the RSF a model for sustainability and one more step toward NRELs goal to be a net zero energy campus.

  11. Virtual gap dielectric wall accelerator

    DOE Patents [OSTI]

    Caporaso, George James; Chen, Yu-Jiuan; Nelson, Scott; Sullivan, Jim; Hawkins, Steven A

    2013-11-05T23:59:59.000Z

    A virtual, moving accelerating gap is formed along an insulating tube in a dielectric wall accelerator (DWA) by locally controlling the conductivity of the tube. Localized voltage concentration is thus achieved by sequential activation of a variable resistive tube or stalk down the axis of an inductive voltage adder, producing a "virtual" traveling wave along the tube. The tube conductivity can be controlled at a desired location, which can be moved at a desired rate, by light illumination, or by photoconductive switches, or by other means. As a result, an impressed voltage along the tube appears predominantly over a local region, the virtual gap. By making the length of the tube large in comparison to the virtual gap length, the effective gain of the accelerator can be made very large.

  12. 218 Glass Technology Vol. 44 No. 6 December 2003 www.sgt.org Glass Technol., 2003, 44 (6), 21824

    E-Print Network [OSTI]

    Sheffield, University of

    218 Glass Technology Vol. 44 No. 6 December 2003 www.sgt.org Glass Technol., 2003, 44 (6), 218 re- actions in a mixture of waste and powder metal fuel (PMF) to form a glass-like material without into durable glass-like waste forms. Since they do not require complex equip- ment or energy supplies, self

  13. Equivalence of Glass Transition and Colloidal Glass Transition in the Hard-Sphere Limit Thomas K. Haxton,2

    E-Print Network [OSTI]

    Weeks, Eric R.

    Equivalence of Glass Transition and Colloidal Glass Transition in the Hard-Sphere Limit Ning Xu,1 that the slowing of the dynamics in simulations of several model glass-forming liquids is equivalent to the hard-sphere glass transition in the low-pressure limit. In this limit, we find universal behavior of the relaxation

  14. ICG 2000 Amsterdam Glass in the new Millennium Absorption Spectra of Iron and Water in Silicate Glasses

    E-Print Network [OSTI]

    Glebov, Leon

    ICG 2000 Amsterdam ­ Glass in the new Millennium Absorption Spectra of Iron and Water in Silicate of the absorption spectrum of silicate glasses and determination of absolute concentrations of ferric, ferrous of silicate glass. 2. Experimental The same glass samples were used in this work as were described in [3, 4

  15. High expansion, lithium corrosion resistant sealing glasses

    DOE Patents [OSTI]

    Brow, Richard K. (Albuquerque, NM); Watkins, Randall D. (Albuquerque, NM)

    1991-01-01T23:59:59.000Z

    Glass compositions containing CaO, Al.sub.2 O.sub.3, B.sub.2 O.sub.3, SrO and BaO in various combinations of mole % are provided. These compositions are capable of forming stable glass-to-metal seals with pin materials of 446 Stainless Steel and Alloy-52 rather than molybdenum, for use in harsh chemical environments, specifically in lithium batteries.

  16. The dynamic response of heated glass

    E-Print Network [OSTI]

    Sewall, Roy Edward

    1972-01-01T23:59:59.000Z

    rates of strain. This research was prompted, in part, by NASA studies on ductile-type craters in glassy lunar rocks. The dynamic response of Apollo spacecraft windows, made of fused silica, also led to this research. The investigation consists... Response of Heated Glass. (December 1972) Roy Edward Sewall, B. S. , Texas AS? University Directed by: Dr. James L. Rand The purpose of this research is to investigate the dynamic behavior of fused silica glass subjected to high temperatures and high...

  17. THE COLOUR GLASS CONDENSATE: AN INTRODUCTION

    SciTech Connect (OSTI)

    IANCU,E.; LEONIDOV,A.; MCLERRAN,L.

    2001-08-06T23:59:59.000Z

    In these lectures, the authors develop the theory of the Colour Glass Condensate. This is the matter made of gluons in the high density environment characteristic of deep inelastic scattering or hadron-hadron collisions at very high energy. The lectures are self contained and comprehensive. They start with a phenomenological introduction, develop the theory of classical gluon fields appropriate for the Colour Glass, and end with a derivation and discussion of the renormalization group equations which determine this effective theory.

  18. High expansion, lithium corrosion resistant sealing glasses

    DOE Patents [OSTI]

    Brow, R.K.; Watkins, R.D.

    1991-06-04T23:59:59.000Z

    Glass compositions containing CaO, Al[sub 2]O[sub 3], B[sub 2]O[sub 3], SrO and BaO in various combinations of mole % are provided. These compositions are capable of forming stable glass-to-metal seals with pin materials of 446 Stainless Steel and Alloy-52 rather than molybdenum, for use in harsh chemical environments, specifically in lithium batteries.

  19. Sealed glass coating of high temperature ceramic superconductors

    DOE Patents [OSTI]

    Wu, Weite (Tainan, TW); Chu, Cha Y. (Garnerville, NY); Goretta, Kenneth C. (Downers Grove, IL); Routbort, Jules L. (Darien, IL)

    1995-01-01T23:59:59.000Z

    A method and article of manufacture of a lead oxide based glass coating on a high temperature superconductor. The method includes preparing a dispersion of glass powders in a solution, applying the dispersion to the superconductor, drying the dispersion before applying another coating and heating the glass powder dispersion at temperatures below oxygen diffusion onset and above the glass melting point to form a continuous glass coating on the superconductor to establish compressive stresses which enhance the fracture strength of the superconductor.

  20. Glass produced by underground nuclear explosions. [Rainier

    SciTech Connect (OSTI)

    Schwartz, L.; Piwinskii, A.; Ryerson, F.; Tewes, H.; Beiriger, W.

    1983-01-01T23:59:59.000Z

    Detonation of an underground nuclear explosive produces a strong shock wave which propagates spherically outward, vaporizing the explosive and nearby rock and melting, the surrounding rock. The vaporized material expands adiabatically, forming a cavity. As the energy is dissipated during the cavity formation process, the explosive and rock debris condense and mix with the melted rock. The melt flows to the bottom of the cavity where it is quenched by fractured rock fragments falling from above as the cavity collapses. Measurements indicate that about 740 tonnes of rock and/or soil are melted for every kiloton (10/sup 12/ calories) of explosive energy, or about 25% of the explosive energy goes to melting rock. The resulting glass composition reflects the composition of the unaltered rock with explosive debris. The appearance ranges from white pumice to dense, dark lava. The bulk composition and color vary with the amount of explosive iron incorporated into the glass. The refractory explosion products are mixed with the solidified melt, although the degree of mixing is variable. Electron microprobe studies of glasses produced by Rainier in welded tuff have produced the following results: glasses are dehydrated relative to the host media, glasses are extremely heterogeneous on a 20 ..mu..m scale, a ubiquitous feature is the presence of dark marble-cake regions in the glass, which were locally enriched in iron and may be related to the debris, optically amorphous regions provide evidence of shock melting, only limited major element redistribution and homogenization occur within the cavity.

  1. High thermal expansion, sealing glass

    DOE Patents [OSTI]

    Brow, Richard K. (Albuquerque, NM); Kovacic, Larry (Albuquerque, NM)

    1993-01-01T23:59:59.000Z

    A glass composition for hermetically sealing to high thermal expansion materials such as aluminum alloys, stainless steels, copper, and copper/beryllium alloys, which includes between about 10 and about 25 mole percent Na.sub.2 O, between about 10 and about 25 mole percent K.sub.2 O, between about 5 and about 15 mole percent Al.sub.2 O.sub.3, between about 35 and about 50 mole percent P.sub.2 O.sub.5 and between about 5 and about 15 mole percent of one of PbO, BaO, and mixtures thereof. The composition, which may also include between 0 and about 5 mole percent Fe.sub.2 O.sub.3 and between 0 and about 10 mole percent B.sub.2 O.sub.3, has a thermal expansion coefficient in a range of between about 160 and 210.times.10-7/.degree.C. and a dissolution rate in a range of between about 2.times.10.sup.- 7 and 2.times.10.sup.-9 g/cm.sup.2 -min. This composition is suitable to hermetically seal to metallic electrical components which will be subjected to humid environments over an extended period of time.

  2. High thermal expansion, sealing glass

    DOE Patents [OSTI]

    Brow, R.K.; Kovacic, L.

    1993-11-16T23:59:59.000Z

    A glass composition is described for hermetically sealing to high thermal expansion materials such as aluminum alloys, stainless steels, copper, and copper/beryllium alloys, which includes between about 10 and about 25 mole percent Na[sub 2]O, between about 10 and about 25 mole percent K[sub 2]O, between about 5 and about 15 mole percent Al[sub 2]O[sub 3], between about 35 and about 50 mole percent P[sub 2]O[sub 5] and between about 5 and about 15 mole percent of one of PbO, BaO, and mixtures thereof. The composition, which may also include between 0 and about 5 mole percent Fe[sub 2]O[sub 3] and between 0 and about 10 mole percent B[sub 2]O[sub 3], has a thermal expansion coefficient in a range of between about 160 and 210[times]10[sup [minus]7]/C and a dissolution rate in a range of between about 2[times]10[sup [minus]7] and 2[times]10[sup [minus]9]g/cm[sup 2]-min. This composition is suitable to hermetically seal to metallic electrical components which will be subjected to humid environments over an extended period of time.

  3. Hysteretic Optimization For Spin Glasses

    E-Print Network [OSTI]

    B. Goncalves; S. Boettcher

    2007-12-10T23:59:59.000Z

    The recently proposed Hysteretic Optimization (HO) procedure is applied to the 1D Ising spin chain with long range interactions. To study its effectiveness, the quality of ground state energies found as a function of the distance dependence exponent, $\\sigma$, is assessed. It is found that the transition from an infinite-range to a long-range interaction at $\\sigma=0.5$ is accompanied by a sharp decrease in the performance . The transition is signaled by a change in the scaling behavior of the average avalanche size observed during the hysteresis process. This indicates that HO requires the system to be infinite-range, with a high degree of interconnectivity between variables leading to large avalanches, in order to function properly. An analysis of the way auto-correlations evolve during the optimization procedure confirm that the search of phase space is less efficient, with the system becoming effectively stuck in suboptimal configurations much earlier. These observations explain the poor performance that HO obtained for the Edwards-Anderson spin glass on finite-dimensional lattices, and suggest that its usefulness might be limited in many combinatorial optimization problems.

  4. Near-wall serpentine cooled turbine airfoil

    DOE Patents [OSTI]

    Lee, Ching-Pang

    2014-10-28T23:59:59.000Z

    A serpentine coolant flow path is formed by inner walls in a cavity between pressure and suction side walls of a turbine airfoil, the cavity partitioned by one or more transverse partitions into a plurality of continuous serpentine cooling flow streams each having a respective coolant inlet.

  5. Natural glass analogues to alteration of nuclear waste glass: A review and recommendations for further study

    SciTech Connect (OSTI)

    McKenzie, W.F.

    1990-01-01T23:59:59.000Z

    The purpose of this report is to review previous work on the weathering of natural glasses; and to make recommendations for further work with respect to studying the alteration of natural glasses as it relates quantifying rates of dissolution. the first task was greatly simplified by the published papers of Jercinovic and Ewing (1987) and Byers, Jercinovic, and Ewing (1987). The second task is obviously the more difficult of the two and the author makes no claim of completeness in this regard. Glasses weather in the natural environment by reacting with aqueous solutions producing a rind of secondary solid phases. It had been proposed by some workers that the thickness of this rind is a function of the age of the glass and thus could be used to estimate glass dissolution rates. However, Jercinovic and Ewing (1987) point out that in general the rind thickness does not correlate with the age of the glass owing to the differences in time of contact with the solution compared to the actual age of the sample. It should be noted that the rate of glass dissolution is also a function of the composition of both the glass and the solution, and the temperature. Quantification of the effects of these parameters (as well as time of contact with the aqueous phase and flow rates) would thus permit a prediction of the consequences of glass-fluid interactions under varying environmental conditions. Defense high- level nuclear waste (DHLW), consisting primarily of liquid and sludge, will be encapsulated by and dispersed in a borosilicate glass before permanent storage in a HLW repository. This glass containing the DHLW serves to dilute the radionuclides and to retard their dispersion into the environment. 318 refs.

  6. 2003 Plant Cell Walls Gordon Conference

    SciTech Connect (OSTI)

    Daniel J. Cosgrove

    2004-09-21T23:59:59.000Z

    This conference will address recent progress in many aspects of cell wall biology. Molecular, genetic, and genomic approaches are yielding major advances in our understanding of the composition, synthesis, and architecture of plant cell walls and their dynamics during growth, and are identifying the genes that encode the machinery needed to make their biogenesis possible. This meeting will bring together international scientists from academia, industry and government labs to share the latest breakthroughs and perspectives on polysaccharide biosynthesis, wood formation, wall modification, expansion and interaction with other organisms, and genomic & evolutionary analyses of wall-related genes, as well as to discuss recent ''nanotechnological'' advances that take wall analysis to the level of a single cell.

  7. Final Report for "Stabilization of resistive wall modes using moving metal walls"

    SciTech Connect (OSTI)

    Forest, Cary B.

    2014-02-05T23:59:59.000Z

    The UW experiment used a linear pinch experiment to study the stabilization of MHD by moving metal walls. The methodology of the experiment had three steps. (1) Identify and understand the no-wall MHD instability limits and character, (2) identify and understand the thin-wall MHD instabilities (re- sistive wall mode), and then (3) add the spinning wall and understand its impact on stability properties. During the duration of the grant we accomplished all 3 of these goals, discovered new physics, and completed the experiment as proposed.

  8. Evolution of string-wall networks and axionic domain wall problem

    SciTech Connect (OSTI)

    Hiramatsu, Takashi [Yukawa Institute for Theoretical Physics, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto 606-8502 (Japan); Kawasaki, Masahiro; Saikawa, Ken'ichi, E-mail: hiramatz@yukawa.kyoto-u.ac.jp, E-mail: kawasaki@icrr.u-tokyo.ac.jp, E-mail: saikawa@icrr.u-tokyo.ac.jp [Institute for Cosmic Ray Research, The University of Tokyo, 5-1-5 Kashiwa-no-ha, Kashiwa City, Chiba 277-8582 (Japan)

    2011-08-01T23:59:59.000Z

    We study the cosmological evolution of domain walls bounded by strings which arise naturally in axion models. If we introduce a bias in the potential, walls become metastable and finally disappear. We perform two dimensional lattice simulations of domain wall networks and estimate the decay rate of domain walls. By using the numerical results, we give a constraint for the bias parameter and the Peccei-Quinn scale. We also discuss the possibility to probe axion models by direct detection of gravitational waves produced by domain walls.

  9. Engineering Glass Passivation Layers -Model Results

    SciTech Connect (OSTI)

    Skorski, Daniel C.; Ryan, Joseph V.; Strachan, Denis M.; Lepry, William C.

    2011-08-08T23:59:59.000Z

    The immobilization of radioactive waste into glass waste forms is a baseline process of nuclear waste management not only in the United States, but worldwide. The rate of radionuclide release from these glasses is a critical measure of the quality of the waste form. Over long-term tests and using extrapolations of ancient analogues, it has been shown that well designed glasses exhibit a dissolution rate that quickly decreases to a slow residual rate for the lifetime of the glass. The mechanistic cause of this decreased corrosion rate is a subject of debate, with one of the major theories suggesting that the decrease is caused by the formation of corrosion products in such a manner as to present a diffusion barrier on the surface of the glass. Although there is much evidence of this type of mechanism, there has been no attempt to engineer the effect to maximize the passivating qualities of the corrosion products. This study represents the first attempt to engineer the creation of passivating phases on the surface of glasses. Our approach utilizes interactions between the dissolving glass and elements from the disposal environment to create impermeable capping layers. By drawing from other corrosion studies in areas where passivation layers have been successfully engineered to protect the bulk material, we present here a report on mineral phases that are likely have a morphological tendency to encrust the surface of the glass. Our modeling has focused on using the AFCI glass system in a carbonate, sulfate, and phosphate rich environment. We evaluate the minerals predicted to form to determine the likelihood of the formation of a protective layer on the surface of the glass. We have also modeled individual ions in solutions vs. pH and the addition of aluminum and silicon. These results allow us to understand the pH and ion concentration dependence of mineral formation. We have determined that iron minerals are likely to form a complete incrustation layer and we plan to look more closely at Vivianite [Fe3(PO4)2-8(H2O)] and Siderite [FeCO3] in the next stage of the project.

  10. External Insulation of Masonry Walls and Wood Framed Walls

    SciTech Connect (OSTI)

    Baker, P.

    2013-01-01T23:59:59.000Z

    The use of exterior insulation on a building is an accepted and effective means to increase the overall thermal resistance of the assembly that also has other advantages of improved water management and often increased air tightness of building assemblies. For thin layers of insulation (1" to 1 1/2"), the cladding can typically be attached directly through the insulation back to the structure. For thicker insulation layers, furring strips have been added as a cladding attachment location. This approach has been used in the past on numerous Building America test homes and communities (both new and retrofit applications), and has been proven to be an effective and durable means to provide cladding attachment. However, the lack of engineering data has been a problem for many designers, contractors, and code officials. This research project developed baseline engineering analysis to support the installation of thick layers of exterior insulation on existing masonry and frame walls. Furthermore, water management details necessary to integrate windows, doors, decks, balconies and roofs were created to provide guidance on the integration of exterior insulation strategies with other enclosure elements.

  11. Glass science tutorial: Lecture No. 4, commercial glass melting and associated air emission issues

    SciTech Connect (OSTI)

    Kruger, A.A.

    1995-01-01T23:59:59.000Z

    This document serves as a manual for a workshop on commercial glass melting and associated air emission issues. Areas covered include: An overview of the glass industry; Furnace design and construction practices; Melting furnace operation; Energy input methods and controls; Air legislation and regulations; Soda lime emission mechanisms; and, Post furnace emission controls. Supporting papers are also included.

  12. Database and Interim Glass Property Models for Hanford HLW and LAW Glasses

    SciTech Connect (OSTI)

    Vienna, John D. (BATTELLE (PACIFIC NW LAB)); Kim, Dong-Sang (BATTELLE (PACIFIC NW LAB)); Hrma, Pavel R. (BATTELLE (PACIFIC NW LAB))

    2002-09-27T23:59:59.000Z

    This report discusses a methodology for increasing the efficiency and decreasing the cost of vitrifying nuclear waste by optimizing waste-glass formulation. This methodology involves collecting and generating a property-composition database (for glass properties that determine waste-glass processability and acceptability) and relating these properties to glass composition via property-composition models. The report explains how the property-composition models are developed, fitted to data and evaluated, validated using additional data, used for glass-formulation optimization, and continuously updated in response to changes in waste-composition estimates and processing technologies. Further, the report describes a waste-glass property-composition database compiled from literature sources and presents the results from a critical evaluation and screening of the data for applicability to Hanford waste glasses. Finally, the report provides interim property-composition models for melt viscosity, liquidus temperature (with spinel and zircon primary crystalline phases), and Product Consistency Test normalized releases of B, Na, and Li. Models were fitted to a subset of the database deemed most relevant for the anticipated Hanford waste-glass composition region.

  13. An Insulating Glass Knowledge Base

    SciTech Connect (OSTI)

    Michael L. Doll; Gerald Hendrickson; Gerard Lagos; Russell Pylkki; Chris Christensen; Charlie Cureija

    2005-08-01T23:59:59.000Z

    This report will discuss issues relevant to Insulating Glass (IG) durability performance by presenting the observations and developed conclusions in a logical sequential format. This concluding effort discusses Phase II activities and focuses on beginning to quantifying IG durability issues while continuing the approach presented in the Phase I activities (Appendix 1) which discuss a qualitative assessment of durability issues. Phase II developed a focus around two specific IG design classes previously presented in Phase I of this project. The typical box spacer and thermoplastic spacer design including their Failure Modes and Effect Analysis (FMEA) and Fault Tree diagrams were chosen to address two currently used IG design options with varying components and failure modes. The system failures occur due to failures of components or their interfaces. Efforts to begin quantifying the durability issues focused on the development and delivery of an included computer based IG durability simulation program. The focus/effort to deliver the foundation for a comprehensive IG durability simulation tool is necessary to address advancements needed to meet current and future building envelope energy performance goals. This need is based upon the current lack of IG field failure data and the lengthy field observation time necessary for this data collection. Ultimately, the simulation program is intended to be used by designers throughout the current and future industry supply chain. Its use is intended to advance IG durability as expectations grow around energy conservation and with the growth of embedded technologies as required to meet energy needs. In addition the tool has the immediate benefit of providing insight for research and improvement prioritization. Included in the simulation model presentation are elements and/or methods to address IG materials, design, process, quality, induced stress (environmental and other factors), validation, etc. In addition, acquired data is presented in support of project and model assumptions. Finally, current and suggested testing protocol and procedure for future model validation and IG physical testing are discussed.

  14. INTRINSIC DOSIMETRY: PROPERTIES AND MECHANISMS OF THERMOLUMINESCENCE IN COMMERCIAL BOROSILICATE GLASS

    SciTech Connect (OSTI)

    Clark, Richard A.

    2012-10-24T23:59:59.000Z

    Intrinsic dosimetry is the method of measuring total absorbed dose received by the walls of a container holding radioactive material. By considering the total absorbed dose received by a container in tandem with the physical characteristics of the radioactive material housed within that container, this method has the potential to provide enhanced pathway information regarding the history of the container and its radioactive contents. The latest in a series of experiments designed to validate and demonstrate this newly developed tool are reported. Thermoluminescence (TL) dosimetry was used to measure dose effects on raw stock borosilicate container glass up to 70 days after gamma ray, x-ray, beta particle or ultraviolet irradiations at doses from 0.15 to 20 Gy. The TL glow curve when irradiated with 60Co was separated into five peaks: two relatively unstable peaks centered near 120 and 165°C, and three relatively stable peaks centered near 225, 285, and 360°C. Depending on the borosilicate glass source, the minimum measurable dose using this technique is 0.15-0.5 Gy, which is roughly equivalent to a 24 hr irradiation at 1 cm from a 50-165 ng source of 60Co. Differences in TL glow curve shape and intensity were observed for the glasses from different geographical origins. These differences can be explained by changes in the intensities of the five peaks. Electron paramagnetic resonance (EPR) and multivariate statistical methods were used to relate the TL intensity and peaks to electron/hole traps and compositional variations.

  15. Impact of HLW Glass Crystallinity on the PCT Response

    SciTech Connect (OSTI)

    Riley, Brian J.; Rosario, Jose A.; Hrma, Pavel R.

    2002-08-08T23:59:59.000Z

    Optimizing glass formulation for vitrifying waste is based on computing a glass composition that would meet processability and acceptability constraints imposed on glass properties and composition while maximizing system efficiency. The process currently employed allows for estimation of all limiting glass properties except for the normalized element releases (ri, where i = B, Na, or Li) by the product consistency test (PCT) from glasses subjected to canister centerline cooling (CCC). This report documents a suggested approach to include this key glass property in numerical glass optimization. It shows that acceptable predictions of rB and rNa from CCC glasses can be obtained provided that sufficiently accurate compositions and concentrations of the crystalline phases in CCC glass are known.

  16. Transport properties of lithium- lead-vanadium-telluride glass and glass ceramics

    SciTech Connect (OSTI)

    Sathish, M., E-mail: sathishphy79@gmail.com [Department of Physics, GOVT first grade College, Doddaballapur-561203 (India); Eraiah, B., E-mail: eraiah@rediffmail.com [Department of Physics, Bangalore University, Bangalore-560056, India (India)

    2014-04-24T23:59:59.000Z

    Glasses with the chemical composition 35Li{sub 2}O-(45-x)V{sub 2}O{sub 5?}20PbO-xTeO{sub 2} (where x = 2.5, 5, 7.5, 10, 15 mol %) have prepared by conventional melt quenching method. The electrical conductivity of Li{sup +} ion conducting lead vanadium telluride glass samples has been carried out both as a function of temperature and frequency in the temperature range 503K-563K and over frequencies 40 Hz to 10 MHz. The electronic conduction has been observed in the present systems. When these samples annealed around 400°C for 2hour become the glass ceramic, which also shows increase tendency of conductivity. SEM confines glass and glass ceramic nature of the prepared samples.

  17. You have remarkable ideas. share them at the Falling Walls lab!

    E-Print Network [OSTI]

    Heermann, Dieter W.

    of the falling wallS lab + conference berlin 8/9 nov 2012 aPPlYnoW!www.falling-walls.com/lab THE FALLING WALLS

  18. Building America Special Research Project: High-R Walls Case...

    Office of Environmental Management (EM)

    High-R Walls Case Study Analysis Building America Special Research Project: High-R Walls Case Study Analysis This report considers a number of promising wall systems with improved...

  19. China Singyes Solar Technologies Holdings Ltd formerly known...

    Open Energy Info (EERE)

    Singyes Solar Technologies Holdings Ltd formerly known as Singyes Curtain Wall Engineering Jump to: navigation, search Name: China Singyes Solar Technologies Holdings Ltd (formerly...

  20. Polymer Grafted Janus Multi-Walled Carbon Nanotubes

    SciTech Connect (OSTI)

    Priftis, Dimitrios [ORNL; Sakellariou, Georgios [ORNL; Baskaran, Durairaj [University of Tennessee, Knoxville (UTK); Mays, Jimmy [ORNL; Hadjichristidis, Nikos [University of Athens, Athens, Greece

    2009-01-01T23:59:59.000Z

    We describe a novel and facile strategy to modify the surface of carbon nanotubes (CNTs) with two chemically different polymer brushes utilizing the grafting from technique. A [4 + 2] Diels Alder cycloaddition reaction was used to functionalize multi-walled carbon nanotubes (MWNTs) with two different precursor initiators, one for ring opening polymerization (ROP) and one for atom transfer radical polymerization (ATRP). The binary functionalized MWNTs were used for the simultaneous surface initiated polymerizations of different monomers resulting in polymer grafted MWNTs that can form Janus type structures under appropriate conditions. 1H NMR, FTIR and Raman spectra showed that the precursor initiators were successfully synthesized and covalently attached on the CNT surface. Thermogravimetric analysis (TGA) revealed that the grafted polymer content varies when different monomer ratios and polymerization times are used. The presence of an organic layer around the CNTs was observed through transmission electron microscopy (TEM). Differential scanning calorimetry (DSC) proved that the glass transition (Tg) and melting (Tm) temperatures of the grafted polymers are affected by the presence of the CNTs, while circular dichroism (CD) spectra indicated that the PLLA ahelix conformation remains intact.

  1. Sealing glasses for titanium and titanium alloys

    DOE Patents [OSTI]

    Brow, Richard K. (Albuquerque, NM); McCollister, Howard L. (Albuquerque, NM); Phifer, Carol C. (Albuquerque, NM); Day, Delbert E. (Rolla, MO)

    1997-01-01T23:59:59.000Z

    Barium lanthanoborate sealing-glass compositions are provided comprising various combinations (in terms of mole-%) of boron oxide (B.sub.2 O.sub.3), barium oxide (BaO), lanthanum oxide (La.sub.2 O.sub.3), and at least one other oxide selected from the group consisting of aluminum oxide (Al.sub.2 O.sub.3), calcium oxide (CaO), lithium oxide (Li.sub.2 O), sodium oxide (Na.sub.2 O), silicon dioxide (SiO.sub.2), or titanium dioxide (TiO.sub.2). These sealing-glass compositions are useful for forming hermetic glass-to-metal seals with titanium and titanium alloys having an improved aqueous durability and favorable sealing characteristics. Examples of the sealing-glass compositions are provided having coefficients of thermal expansion about that of titanium or titanium alloys, and with sealing temperatures less than about 900.degree. C., and generally about 700.degree.-800.degree. C. The barium lanthanoborate sealing-glass compositions are useful for components and devices requiring prolonged exposure to moisture or water, and for implanted biomedical devices (e.g. batteries, pacemakers, defibrillators, pumps).

  2. Dynamics of window glass fracture in explosions

    SciTech Connect (OSTI)

    Beauchamp, E.K.; Matalucci, R.V.

    1998-05-01T23:59:59.000Z

    An exploratory study was conducted under the Architectural Surety Program to examine the possibility of modifying fracture of glass in the shock-wave environment associated with terrorist bombings. The intent was to explore strategies to reduce the number and severity of injuries resulting from those attacks. The study consisted of a series of three experiments at the Energetic Materials Research and Testing Center (EMRTC) of the New Mexico Institute of Mining and Technology at Socorro, NM, in which annealed and tempered glass sheets were exposed to blast waves at several different levels of overpressure and specific impulse. A preliminary assessment of the response of tempered glass to the blast environment suggested that inducing early failure would result in lowering fragment velocity as well as reducing the loading from the window to the structure. To test that possibility, two different and novel procedures (indentation flaws and spot annealing) were used to reduce the failure strength of the tempered glass while maintaining its ability to fracture into small cube-shaped fragments. Each experiment involved a comparison of the performance of four sheets of glass with different treatments.

  3. The Physics of the Colloidal Glass Transition

    E-Print Network [OSTI]

    Gary L. Hunter; Eric R. Weeks

    2011-12-20T23:59:59.000Z

    As one increases the concentration of a colloidal suspension, the system exhibits a dramatic increase in viscosity. Structurally, the system resembles a liquid, yet motions within the suspension are slow enough that it can be considered essentially frozen. This kinetic arrest is the colloidal glass transition. For several decades, colloids have served as a valuable model system for understanding the glass transition in molecular systems. The spatial and temporal scales involved allow these systems to be studied by a wide variety of experimental techniques. The focus of this review is the current state of understanding of the colloidal glass transition. A brief introduction is given to important experimental techniques used to study the glass transition in colloids. We describe features of colloidal systems near and in glassy states, including tremendous increases in viscosity and relaxation times, dynamical heterogeneity, and ageing, among others. We also compare and contrast the glass transition in colloids to that in molecular liquids. Other glassy systems are briefly discussed, as well as recently developed synthesis techniques that will keep these systems rich with interesting physics for years to come.

  4. Retention of Halogens in Waste Glass

    SciTech Connect (OSTI)

    Hrma, Pavel R.

    2010-05-01T23:59:59.000Z

    In spite of their potential roles as melting rate accelerators and foam breakers, halogens are generally viewed as troublesome components for glass processing. Of five halogens, F, Cl, Br, I, and At, all but At may occur in nuclear waste. A nuclear waste feed may contain up to 10 g of F, 4 g of Cl, and ?100 mg of Br and I per kg of glass. The main concern is halogen volatility, producing hazardous fumes and particulates, and the radioactive iodine 129 isotope of 1.7x10^7-year half life. Because F and Cl are soluble in oxide glasses and tend to precipitate on cooling, they can be retained in the waste glass in the form of dissolved constituents or as dispersed crystalline inclusions. This report compiles known halogen-retention data in both high-level waste (HLW) and low-activity waste (LAW) glasses. Because of its radioactivity, the main focus is on I. Available data on F and Cl were compiled for comparison. Though Br is present in nuclear wastes, it is usually ignored; no data on Br retention were found.

  5. Sealing glasses for titanium and titanium alloys

    DOE Patents [OSTI]

    Brow, R.K.; McCollister, H.L.; Phifer, C.C.; Day, D.E.

    1997-07-15T23:59:59.000Z

    Barium lanthanoborate sealing-glass compositions are provided comprising various combinations (in terms of mole-%) of boron oxide (B{sub 2}O{sub 3}), barium oxide (BaO), lanthanum oxide (La{sub 2}O{sub 3}), and at least one other oxide selected from the group consisting of aluminum oxide (Al{sub 2}O{sub 3}), calcium oxide (CaO), lithium oxide (Li{sub 2}O), sodium oxide (Na{sub 2}O), silicon dioxide (SiO{sub 2}), or titanium dioxide (TiO{sub 2}). These sealing-glass compositions are useful for forming hermetic glass-to-metal seals with titanium and titanium alloys having an improved aqueous durability and favorable sealing characteristics. Examples of the sealing-glass compositions are provided having coefficients of thermal expansion about that of titanium or titanium alloys, and with sealing temperatures less than about 900 C, and generally about 700--800 C. The barium lanthanoborate sealing-glass compositions are useful for components and devices requiring prolonged exposure to moisture or water, and for implanted biomedical devices (e.g. batteries, pacemakers, defibrillators, pumps). 1 fig.

  6. Vacuum fusion bonding of glass plates

    DOE Patents [OSTI]

    Swierkowski, Steve P. (Livermore, CA); Davidson, James C. (Livermore, CA); Balch, Joseph W. (Livermore, CA)

    2001-01-01T23:59:59.000Z

    An improved apparatus and method for vacuum fusion bonding of large, patterned glass plates. One or both glass plates are patterned with etched features such as microstructure capillaries and a vacuum pumpout moat, with one plate having at least one hole therethrough for communication with a vacuum pumpout fixture. High accuracy alignment of the plates is accomplished by a temporary clamping fixture until the start of the fusion bonding heat cycle. A complete, void-free fusion bond of seamless, full-strength quality is obtained through the plates; because the glass is heated well into its softening point and because of a large, distributed force that is developed that presses the two plates together from the difference in pressure between the furnace ambient (high pressure) and the channeling and microstructures in the plates (low pressure) due to the vacuum drawn. The apparatus and method may be used to fabricate microcapillary arrays for chemical electrophoresis; for example, any apparatus using a network of microfluidic channels embedded between plates of glass or similar moderate melting point substrates with a gradual softening point curve, or for assembly of glass-based substrates onto larger substrates, such as in flat panel display systems.

  7. Vacuum fusion bonding of glass plates

    DOE Patents [OSTI]

    Swierkowski, Steve P. (Livermore, CA); Davidson, James C. (Livermore, CA); Balch, Joseph W. (Livermore, CA)

    2000-01-01T23:59:59.000Z

    An improved apparatus and method for vacuum fusion bonding of large, patterned glass plates. One or both glass plates are patterned with etched features such as microstructure capillaries and a vacuum pumpout moat, with one plate having at least one hole therethrough for communication with a vacuum pumpout fixture. High accuracy alignment of the plates is accomplished by a temporary clamping fixture until the start of the fusion bonding heat cycle. A complete, void-free fusion bond of seamless, full-strength quality is obtained through the plates; because the glass is heated well into its softening point and because of a large, distributed force that is developed that presses the two plates together from the difference in pressure between the furnace ambient (high pressure) and the channeling and microstructures in the plates (low pressure) due to the vacuum drawn. The apparatus and method may be used to fabricate microcapillary arrays for chemical electrophoresis; for example, any apparatus using a network of microfluidic channels embedded between plates of glass or similar moderate melting point substrates with a gradual softening point curve, or for assembly of glass-based substrates onto larger substrates, such as in flat panel display systems.

  8. Domain wall cosmology and multiple accelerations

    SciTech Connect (OSTI)

    Lee, Bum-Hoon [CQUeST, Sogang University, Seoul, Korea 121-742 (Korea, Republic of); Department of Physics, Sogang University, Seoul, 121-742 (Korea, Republic of); Lee, Wonwoo; Nam, Siyoung; Park, Chanyong [CQUeST, Sogang University, Seoul, 121-742 (Korea, Republic of)

    2007-05-15T23:59:59.000Z

    We classify the cosmological behaviors of the domain wall under junctions between two spacetimes in terms of various parameters: cosmological constants of bulk spacetime, a tension of a domain wall, and mass parameters of the black-hole-type metric. Especially, we consider the false-true vacuum-type junctions and the domain wall connecting between an inner AdS space and an outer AdS Reissner-Nordstroem black hole. We find that there exists a solution to the junction equations with multiple accelerations.

  9. Highway noise reduction by barrier walls

    E-Print Network [OSTI]

    Young, Murray F

    1971-01-01T23:59:59.000Z

    's Variables 3. Noise Reduction and Noise Reduction Factor 4. Relationship Between Noise Attenuation and d 5. Rettinger's Variables 6. Relationship of Sound-Level Reduction and v 7. Basic Principles in Sound-Transmission Loss 8. The Mass Law Relationship... that the barrier wall is acoustically opaque (i. e. , impermeable to sound waves). Purcell (8) found that the noise transmission loss of a wall was a measure of the ratio of the acoustical energy transmitted through the wall to the acoustical energy incident...

  10. Bacterial wall structure and implications for interaction with...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Bacterial wall structure and implications for interaction with metal ions and minerals. Bacterial wall structure and implications for interaction with metal ions and minerals....

  11. Security Walls, LLC, January 14-18, 2013

    Broader source: Energy.gov (indexed) [DOE]

    their contributions to health and safety at Security Walls. Security Walls uses the Job Hazard Analysis process to address protective force hazards and develop controls. Subject...

  12. Sorted Single-Walled Carbon Nanotube Films for Transparent Electrodes...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sorted Single-Walled Carbon Nanotube Films for Transparent Electrodes in Organic Solar Cells Home > Research > ANSER Research Highlights > Sorted Single-Walled Carbon Nanotube...

  13. Single Wall Diesel Particulate Filter (DPF) Filtration Efficiency...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Single Wall Diesel Particulate Filter (DPF) Filtration Efficiency Studies Using Laboratory Generated Particles. Single Wall Diesel Particulate Filter (DPF) Filtration Efficiency...

  14. Glass/ceramic coatings for implants

    DOE Patents [OSTI]

    Tomsia, Antoni P. (Pinole, CA); Saiz, Eduardo (Berkeley, CA); Gomez-Vega, Jose M. (Nagoya, JP); Marshall, Sally J. (Larkspur, CA); Marshall, Grayson W. (Larkspur, CA)

    2011-09-06T23:59:59.000Z

    Glass coatings on metals including Ti, Ti6A14V and CrCo were prepared for use as implants. The composition of the glasses was tailored to match the thermal expansion of the substrate metal. By controlling the firing atmosphere, time, and temperature, it was possible to control the reactivity between the glass and the alloy and to fabricate coatings (25-150 .mu.m thick) with excellent adhesion to the substrate. The optimum firing temperatures ranged between 800 and 840.degree. C. at times up to 1 min in air or 15 min in N.sub.2. The same basic technique was used to create multilayered coatings with concentration gradients of hydroxyapatite (HA) particles and SiO.sub.2.

  15. Wetting of metals and glasses on Mo

    SciTech Connect (OSTI)

    Saiz, Eduardo; Tomsia, Antoni P.; Saiz, Eduardo; Lopez-Esteban, Sonia; Benhassine, Mehdi; de Coninck, Joel; Rauch, Nicole; Ruehle, Manfred

    2008-01-08T23:59:59.000Z

    The wetting of low melting point metals and Si-Ca-Al-Ti-O glasses on molybdenum has been investigated. The selected metals (Au, Cu, Ag) form a simple eutectic with Mo. Metal spreading occurs under nonreactive conditions without interdiffusion or ridge formation. The metals exhibit low (non-zero) contact angles on Mo but this requires temperatures higher than 1100 C in reducing atmospheres in order to eliminate a layer of adsorbed impurities on the molybdenum surface. By controlling the oxygen activity in the furnace, glass spreading can take place under reactive or nonreactive conditions. We have found that in the glass/Mo system the contact angle does not decrease under reactive conditions. In all cases, adsorption from the liquid seems to accelerate the diffusivity on the free molybdenum surface.

  16. Irradiation effects on borosilicate waste glasses

    SciTech Connect (OSTI)

    Roberts, F.P.

    1980-06-01T23:59:59.000Z

    The effects of alpha decay on five borosilicate glasses containing simulated nuclear high-level waste oxides were studied. Irradiations carried out at room temperature were achieved by incorporating 1 to 8 wt % /sup 244/Cm/sub 2/O/sub 3/ in the glasses. Density changes and stored-energy build-up saturated at doses less than 2 x 10/sup 21/ alpha decays/kg. Damage manifested by stored energy was completely annealed at 633/sup 0/K. Positive and negative density changes were observed which never exceeded 1%. Irradiation had very little effect on mechanical strength or on chemical durability as measured by aqueous leach rates. Also, no effects were observed on the microstructure for vitreous waste glasses, although radiation-induced microcracking could be achieved on specimens that had been devitrified prior to irradiation.

  17. Direction of CRT waste glass processing: Electronics recycling industry communication

    SciTech Connect (OSTI)

    Mueller, Julia R., E-mail: mueller.143@osu.edu [Ohio State University, William G. Lowrie Department of Chemical and Biomolecular Engineering, OH (United States) and University of Queensland, School of Chemical Engineering (Australia) and Ohio State University, Materials Science and Engineering, OH (United States); Boehm, Michael W. [University of Queensland, School of Chemical Engineering (Australia); Drummond, Charles [Ohio State University, Materials Science and Engineering, OH (United States)

    2012-08-15T23:59:59.000Z

    Highlights: Black-Right-Pointing-Pointer Given a large flow rate of CRT glass {approx}10% of the panel glass stream will be leaded. Black-Right-Pointing-Pointer The supply of CRT waste glass exceeded demand in 2009. Black-Right-Pointing-Pointer Recyclers should use UV-light to detect lead oxide during the separation process. Black-Right-Pointing-Pointer Recycling market analysis techniques and results are given for CRT glass. Black-Right-Pointing-Pointer Academic initiatives and the necessary expansion of novel product markets are discussed. - Abstract: Cathode Ray Tube, CRT, waste glass recycling has plagued glass manufacturers, electronics recyclers and electronics waste policy makers for decades because the total supply of waste glass exceeds demand, and the formulations of CRT glass are ill suited for most reuse options. The solutions are to separate the undesirable components (e.g. lead oxide) in the waste and create demand for new products. Achieving this is no simple feat, however, as there are many obstacles: limited knowledge of waste glass composition; limited automation in the recycling process; transportation of recycled material; and a weak and underdeveloped market. Thus one of the main goals of this paper is to advise electronic glass recyclers on how to best manage a diverse supply of glass waste and successfully market to end users. Further, this paper offers future directions for academic and industry research. To develop the recommendations offered here, a combination of approaches were used: (1) a thorough study of historic trends in CRT glass chemistry; (2) bulk glass collection and analysis of cullet from a large-scale glass recycler; (3) conversations with industry members and a review of potential applications; and (4) evaluation of the economic viability of specific uses for recycled CRT glass. If academia and industry can solve these problems (for example by creating a database of composition organized by manufacturer and glass source) then the reuse of CRT glass can be increased.

  18. Structure of rhenium-containing sodium borosilicate glass

    SciTech Connect (OSTI)

    Goel, Ashutosh; McCloy, John S.; Windisch, Charles F.; Riley, Brian J.; Schweiger, Michael J.; Rodriguez, Carmen P.; Ferreira, Jose M.

    2013-03-01T23:59:59.000Z

    A series of sodium borosilicate glasses were synthesized with increasing fractions of KReO4 or Re2O7, to 10000 ppm (1 mass%) target Re in glass, to assess the effects of large concentrations of rhenium on glass structure and to estimate the solubility of technetium, a radioactive component in typical low active waste nuclear waste glasses. Magic angle spinning nuclear magnetic resonance (MAS-NMR), Fourier transform infrared (FTIR) spectroscopy, and Raman spectroscopy were performed to characterize the glasses as a function of Re source additions. In general, silicon was found coordinated in a mixture of Q2 and Q3 structural units, while Al was 4-coordinated and B was largely 3-coordinate and partially 4-coordinated. The rhenium source did not appear to have significant effects on the glass structure. Thus, at the up to the concentrations that remain in dissolved in glass, ~3000 ppm Re by mass maximum. , the Re appeared to be neither a glass-former nor a strong glass modifier., Rhenium likely exists in isolated ReO4- anions in the interstices of the glass network, as evidenced by the polarized Raman spectrum of the Re glass in the absence of sulfate. Analogous to SO42-¬ in similar glasses, ReO4- is likely a network modifier and forms alkali salt phases on the surface and in the bulk glass above solubility.

  19. GLASS FABRICATION AND PRODUCT CONSISTENCY TESTING OF LANTHANIDE BOROSILICATE GLASS FOR PLUTONIUM DISPOSITION

    SciTech Connect (OSTI)

    Crawford, C; James Marra, J; Ned Bibler, N

    2007-02-12T23:59:59.000Z

    The Department of Energy Office of Environmental Management (DOE/EM) plans to conduct the Plutonium Disposition Project at the Savannah River Site (SRS) in Aiken, SC, to disposition excess weapons-usable plutonium. A plutonium glass waste form is a leading candidate for immobilization of the plutonium for subsequent disposition in a geologic repository. The objectives of this present task were to fabricate plutonium-loaded lanthanide borosilicate (LaBS) Frit B glass and perform testing to provide near-term data that will increase confidence that LaBS glass product is suitable for disposal in the proposed Federal Repository. Specifically, testing was conducted in an effort to provide data to Yucca Mountain Project (YMP) personnel for use in performance assessment calculations. Plutonium containing LaBS glass with the Frit B composition with a 9.5 wt% PuO{sub 2} loading was prepared for testing. Glass was prepared to support glass durability testing via the ASTM Product Consistency Testing (PCT) at Savannah River National Laboratory (SRNL). The glass was characterized with X-ray diffraction (XRD) and scanning electron microscopy coupled with energy dispersive spectroscopy (SEM/EDS) prior to performance testing. This characterization revealed some crystalline PuO{sub 2} inclusions with disk-like morphology present in the as fabricated, quench-cooled glass. A series of PCTs was conducted at SRNL with varying exposed surface area and test durations. Filtered leachates from these tests were analyzed to determine the dissolved concentrations of key elements. The leachate solutions were also ultrafiltered to quantify colloid formation. Leached solids from select PCTs were examined in an attempt to evaluate the Pu and neutron absorber release behavior from the glass and to investigate formation of alteration phases on the glass surface. A series of PCTs was conducted at 90 C in ASTM Type 1 water to compare the Pu LaBS Frit B glass durability to current requirements for High Level Waste (HLW) glass in a geologic repository. The PCT (7-day static test with powdered glass) results on the Pu-containing LaBS Frit B glass at SA/V of {approx} 2000 m{sup -1} showed that the glass was very durable with an average normalized elemental release value for boron of 0.013 g/m{sup 2}. This boron release value is {approx} 640X lower than normalized boron release from current Environmental Assessment (EA) glass used for repository acceptance. The PCT-B (7, 14, 28 and 56-day, static test with powdered glass) normalized elemental releases were similar to the normalized elemental release values from PCT-A testing, indicating that the LaBS Frit B glass is very durable as measured by the PCT. Normalized plutonium releases were essentially the same within the analytical uncertainty of the ICP-MS methods used to quantify plutonium in the 0.45 {micro}m-filtered leachates and ultra-filtered leachates, indicating that colloidal plutonium species do not form under the PCT conditions used in this study.

  20. Glass Frit Clumping And Dusting

    SciTech Connect (OSTI)

    Steimke, J. L.

    2013-09-26T23:59:59.000Z

    DWPF mixes a slurry of glass frit (Frit 418) and dilute (1.5 wt%) formic acid solution with high level waste in the Slurry Mix Evaporator (SME). There would be advantages to introducing the frit in a non-slurry form to minimize water addition to the SME, however, adding completely dry frit has the potential to generate dust which could clog filters or condensers. Prior testing with another type of frit, Frit 320, and using a minimal amount of water reduced dust generation, however, the formation of hard clumps was observed. To examine options and behavior, a TTQAP [McCabe and Stone, 2013] was written to initiate tests that would address these concerns. Tests were conducted with four types of glass frit; Frit 320, DWPF Frit 418, Bekeson Frit 418 and Multi-Aspirator Frit 418. The last two frits are chemically identical to DWPF Frit 418 but smaller particles were removed by the respective vendors. Test results on Frit Clumping and Dusting are provided in this report. This report addresses the following seven questions. Short answers are provided below with more detailed answers to follow. 1. Will the addition of a small amount of water, 1.5 wt%, to dry DWPF Frit 418 greatly reduce the dust generation during handling at DWPF? a. Yes, a small scale test showed that adding a little water to the frit greatly reduced dust generation during handling. 2. Will the addition of small amounts of water to the frit cause clumping that will impair frit handling at DWPF? a. No, not with Frit 418. Although clumps were observed to form when 1.5 wt% water was mixed with DWPF Frit 418, then compressed and air-dried overnight, the clumps were easily crushed and did not form the hardened material noted when Frit 320 was tested. 3. What is the measured size distribution of dust generated when dry frit is handled? (This affects the feasibility and choice of processing equipment for removing the dust generating fraction of the frit before it is added to the SME.) a. The size distribution for the dust removed from fresh DWPF Frit 418 while it was being shaken in a small scale LabRAM test was measured. The median size on a volume basis was 7.6 ?m and 90% of the frit particles were between 1.6 and 28 ?m. The mass of dust collected using this test protocol was much less than 1% of the original frit. 4. Can the dust be removed in a small number of processing steps and without the larger frit particles continuing to spall additional dust sized particles? a. Test results using a LabRAM were inconclusive. The LaRAM performs less efficient particle size separation than the equipment used by Bekeson and Multi-Aspirator. 5. What particle size of frit is expected to create a dust problem? a. The original criterion for creating a dusting problem was those particle sizes that were readily suspended when being shaken. For that criterion calculations and Microtrac size analyses indicated that particles smaller than 37 ?m are likely dust generators. Subsequently a more sophisticated criterion for dust problem was considered, particle sizes that would become suspended in the air flow patterns inside the SME and possibly plug the condenser. That size may be larger than 37 ?m but has not yet been determined. 6. If particles smaller than 37 ?m are removed will bulk dust generation be eliminated? a. Video-taped tests were performed using three gallons each of three types of frit 418, DWPF frit, Bekeson frit and Multi-Aspirator frit. Frit was poured through air from a height of approximately eight feet into a container half filled with water. Pouring Bekeson frit or Multi-Aspirator frit generated markedly less visible dust, but there was still a significant amount, which still has the potential of causing a dust problem. 7. Can completely dry frit be poured into the SME without having dust plug the condenser at the top of the vessel? a. Because of the complexity of air currents inside the SME and the difficulty of defensible size scaling a more prototypical test will be required to answer this question. We recommend construction of a full scale

  1. PLUTONIUM SOLUBILITY IN HIGH-LEVEL WASTE ALKALI BOROSILICATE GLASS

    SciTech Connect (OSTI)

    Marra, J.; Crawford, C.; Fox, K.; Bibler, N.

    2011-01-04T23:59:59.000Z

    The solubility of plutonium in a Sludge Batch 6 (SB6) reference glass and the effect of incorporation of Pu in the glass on specific glass properties were evaluated. A Pu loading of 1 wt % in glass was studied. Prior to actual plutonium glass testing, surrogate testing (using Hf as a surrogate for Pu) was conducted to evaluate the homogeneity of significant quantities of Hf (Pu) in the glass, determine the most appropriate methods to evaluate homogeneity for Pu glass testing, and to evaluate the impact of Hf loading in the glass on select glass properties. Surrogate testing was conducted using Hf to represent between 0 and 1 wt % Pu in glass on an equivalent molar basis. A Pu loading of 1 wt % in glass translated to {approx}18 kg Pu per Defense Waste Processing Facility (DWPF) canister, or about 10X the current allowed limit per the Waste Acceptance Product Specifications (2500 g/m{sup 3} of glass or about 1700 g/canister) and about 30X the current allowable concentration based on the fissile material concentration limit referenced in the Yucca Mountain Project License Application (897 g/m{sup 3}3 of glass or about 600 g Pu/canister). Based on historical process throughput data, this level was considered to represent a reasonable upper bound for Pu loading based on the ability to provide Pu containing feed to the DWPF. The task elements included evaluating the distribution of Pu in the glass (e.g. homogeneity), evaluating crystallization within the glass, evaluating select glass properties (with surrogates), and evaluating durability using the Product Consistency Test -- Method A (PCT-A). The behavior of Pu in the melter was evaluated using paper studies and corresponding analyses of DWPF melter pour samples.The results of the testing indicated that at 1 wt % Pu in the glass, the Pu was homogeneously distributed and did not result in any formation of plutonium-containing crystalline phases as long as the glass was prepared under 'well-mixed' conditions. The incorporation of 1 wt % Pu in the glass did not adversely impact glass viscosity (as assessed using Hf surrogate) or glass durability. Finally, evaluation of DWPF glass pour samples that had Pu concentrations below the 897 g/m{sup 3} limit showed that Pu concentrations in the glass pour stream were close to targeted compositions in the melter feed indicating that Pu neither volatilized from the melt nor stratified in the melter when processed in the DWPF melter.

  2. Reaction of glass during gamma irradiation in a saturated tuff environment. Part 1. SRL 165 glass

    SciTech Connect (OSTI)

    Bates, J.K.; Fischer, D.F.; Gerding, T.J.

    1986-02-01T23:59:59.000Z

    The influence of gamma irradiation on the reaction of actinide-doped borosilicate glass (SRL 165) in a saturated tuff environment has been studied in a series of tests lasting up to 56 days. The following conclusions were reached. The reaction of, and subsequent actinide release from, the glass depends on the dynamic interaction between radiolysis effects, which cause the solution pH to become more acidic; glass reaction, which drives the pH more basic; and test component interactions that may extract glass components from solution. The use of large gamma irradiation dose rates to accelerate reactions that may occur in an actual repository radiation field may affect this dynamic balance by unduly influencing the mechanism of the glass-water reaction. Comparisons between the present results and data obtained by reacting similar glasses using MCC-1 and NNWSI rock cup procedures indicate that the irradiation conditions used in the present experiments do not dramatically influence the reaction rate of the glass. 8 figs., 9 tabs.

  3. See through walls with Wi-Fi

    E-Print Network [OSTI]

    Adib, Fadel

    2013-01-01T23:59:59.000Z

    Wi-Fi signals are typically information carriers between a transmitter and a receiver. In this thesis, we show that Wi-Fi can also extend our senses, enabling us to see moving objects through walls and behind closed doors. ...

  4. See through walls with WiFi!

    E-Print Network [OSTI]

    Adib, Fadel M.

    2013-01-01T23:59:59.000Z

    Wi-Fi signals are typically information carriers between a transmitter and a receiver. In this paper, we show that Wi-Fi can also extend our senses, enabling us to see moving objects through walls and behind closed doors. ...

  5. Axions from cosmic string and wall decay

    SciTech Connect (OSTI)

    Hagmann, C A

    2010-03-10T23:59:59.000Z

    If inflation occurred with a reheat temperature > T{sub PQ}, axions from the decay of global axion strings and domain walls would make an important contribution to the cosmological energy density, comparable to that from vacuum misalignment. Several groups have numerically studied the evolution of axion strings and walls in the past, however substantial uncertainties remain in their contribution to the present density {Omega}{sub a,string+wall} {approx} 1-100 (f{sub a}/10{sup 12} GeV){sup 7/6}, where f{sub a} is the axion decay constant. I will describe the numerical methods used in our simulations and show results for several string and wall configurations.

  6. Axions from cosmic string and wall decay

    SciTech Connect (OSTI)

    Hagmann, Chris [Lawrence Livermore National Laboratory, L-59, 7000 East Ave, Livermore, CA (United States)

    2010-08-30T23:59:59.000Z

    If inflation occurred with a reheat temperature > T{sub PQ}, axions from the decay of global axion strings and domain walls would make an important contribution to the cosmological energy density, comparable to that from vacuum misalignment. Several groups have numerically studied the evolution of axion strings and walls in the past, however substantial uncertainties remain in their contribution to the present density {Omega}{sub a,string+wall{approx}}1-100(f{sub a}/10{sup 12} GeV){sup 7/6}, where f{sub a} is the axion decay constant. I will describe the numerical methods used in our simulations and show results for several string and wall configurations.

  7. Anisotropic Expansion of the Plant Cell Wall

    E-Print Network [OSTI]

    Baskin, Tobias

    solar panels of leaves to the coiled grap- pling hooks of tendrils. Thompson (1917) re- alized of a unit area of cell wall is characterized by the direction and degree of anisotropy. The direction

  8. Direct measurements of growing amorphous order and non-monotonic dynamic correlations in a colloidal glass-former

    E-Print Network [OSTI]

    K. Hima Nagamanasa; Shreyas Gokhale; A. K. Sood; Rajesh Ganapathy

    2014-08-23T23:59:59.000Z

    While the transformation of flowing liquids into rigid glasses is omnipresent, a complete understanding of vitrification remains elusive. Of the numerous approaches aimed at solving the glass transition problem, the Random First-Order Theory (RFOT) is the most prominent. However, the existence of the underlying thermodynamic phase transition envisioned by RFOT remains debatable, since its key microscopic predictions concerning the growth of amorphous order and the nature of dynamic correlations lack experimental verification. Here, by using holographic optical tweezers, we freeze a wall of particles in an equilibrium configuration of a 2D colloidal glass-forming liquid and provide direct evidence for growing amorphous order in the form of a static point-to-set length. Most remarkably, we uncover the non-monotonic dependence of dynamic correlations on area fraction and show that this non-monotonicity follows directly from the change in morphology of cooperatively rearranging regions, as predicted by RFOT. Our findings suggest that the glass transition has a thermodynamic origin.

  9. Two glass transitions in miscible polymer blends?

    SciTech Connect (OSTI)

    Dudowicz, Jacek; Freed, Karl F. [The James Franck Institute and the Department of Chemistry, The University of Chicago, Chicago, Illinois 60637 (United States); Douglas, Jack F. [Materials Science and Engineering Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899 (United States)

    2014-06-28T23:59:59.000Z

    In contrast to mixtures of two small molecule fluids, miscible binary polymer blends often exhibit two structural relaxation times and two glass transition temperatures. Qualitative explanations postulate phenomenological models of local concentration enhancements due to chain connectivity in ideal, fully miscible systems. We develop a quantitative theory that explains qualitative trends in the dynamics of real miscible polymer blends which are never ideal mixtures. The theory is a synthesis of the lattice cluster theory of blend thermodynamics, the generalized entropy theory for glass-formation in polymer materials, and the Kirkwood-Buff theory for concentration fluctuations in binary mixtures.

  10. Scaling of fluctuations in a colloidal glass

    E-Print Network [OSTI]

    P. Wang; C. Song; H. A. Makse

    2006-11-01T23:59:59.000Z

    We report experimental measurements of particle dynamics in a colloidal glass in order to understand the dynamical heterogeneities associated with the cooperative motion of the particles in the glassy regime. We study the local and global fluctuation of correlation and response functions in an aging colloidal glass. The observables display universal scaling behavior following a modified power-law, with a plateau dominating the less heterogeneous short-time regime and a power-law tail dominating the highly heterogeneous long-time regime.

  11. Temperature and number evolution of cold cesium atoms inside a glass cell

    E-Print Network [OSTI]

    Huang, J Q; Wang, S G; Wang, Z B; Wang, L J

    2015-01-01T23:59:59.000Z

    We report an experimental study on the temperature and number evolution of the cold cesium atoms diffusively cooled inside a wall-coated glass cell by measuring the absorption profile of the 62S1/2 (F=4)-62P3/2 (F'=5) transition line with a weak probe laser in the evolution process. We found that the temperature of the cold atoms first gradually decreases from 16 mK to 9 mK, and then rapidly increases. A theoretical model of the number evolution is built, which includes the temperature of the cold atoms and the fraction p of the cold cesium atoms elastically reflected by the cell wall. The theoretical model is consistent with the experimental result very well, and the fraction p is obtained to be (0.58 +/- 0.03), which reveals that the cold cesium atoms are not all heated to the ambient temperature by a single collision with the cell wall.

  12. INTOR impurity control and first wall system

    SciTech Connect (OSTI)

    Abdou, M.A.

    1983-04-01T23:59:59.000Z

    The highlights of the recent INTOR effort on examining the key issues of the impurity control/first wall system are summarized. The emphasis of the work was an integrated study of the edge-region physics, plasma-wall interaction, materials, engineering and magnetic considerations associated with the poloidal divertor and pump limiter. The development of limiter and divertor collector plate designs with an acceptable lifetime was a major part of the work.

  13. Thin Wall Cast Iron: Phase II

    SciTech Connect (OSTI)

    Doru M. Stefanescu

    2005-07-21T23:59:59.000Z

    The development of thin-wall technology allows the designers of energy consuming equipment to select the most appropriate material based on cost/material properties considerations, and not solely on density. The technology developed in this research project will permit the designers working for the automotive industry to make a better informed choice between competing materials and thin wall cast iron, thus decreasing the overall cost of the automobile.

  14. Development of a Procedure to Evaluate the Shear Modulus of Laminated Glass Interlayers

    E-Print Network [OSTI]

    Brackin, Michael S.

    2010-07-14T23:59:59.000Z

    Laminated glass is comprised of multiple glass plates coupled together in a sandwich construction through the use of a polymorphous interlayer that acts as a bonding agent between the glass plates. Laminated glass offers several advantages over...

  15. A user interface for customizing cane layouts in Virtual Glass

    E-Print Network [OSTI]

    Baldauf, Kimberly (Kimberly B.)

    2013-01-01T23:59:59.000Z

    Cane pulling is a technique used in glass blowing to build up intricate patterns which come out in the final piece. Virtual Glass was created to model the cane pulling process from start to finish. There are a variety of ...

  16. Combustion Technology Development for an Advanced Glass Melting System

    E-Print Network [OSTI]

    Stickler, D. B.; Westra, L.; Woodroffe, J.; Jeong, K. M.; Donaldson, L. W.

    Concept feasibility of an innovative technology for glass production has recently been demonstrated. It is based on suspension heating of the glass-forming batch minerals while entrained in a combustion flow of preheated air and natural gas...

  17. Safety glasses Closed-toe rubber-soled shoes

    E-Print Network [OSTI]

    Taylor, Jerry

    #12;Safety glasses Long pants Closed-toe rubber-soled shoes Hard hat The three most important glasses - Long pants - Closed-toe rubber-soled shoes 1 #12;#12;#12;Step 1 Place wooden furring strips

  18. Heavy Metals in Glass Beads Used in Pavement Markings

    E-Print Network [OSTI]

    Mangalgiri, Kiranmayi

    2012-07-16T23:59:59.000Z

    Pavement markings are vital for safely navigating roadways. The nighttime visibility of pavement markings is enhanced by addition of retroreflective glass beads, most of which are made from recycled glass. Concern has been raised over the presence...

  19. Nuclear Waste Glasses: Beautiful Simplicity of Complex Systems

    SciTech Connect (OSTI)

    Hrma, Pavel R.

    2009-01-01T23:59:59.000Z

    The behavior of glasses with a large number of components, such as waste glasses, is not more complex than the behavior of simple glasses. On the contrary, the presence of many components restricts the composition region of these glasses in a way that allows approximating composition-property relationships by linear functions. This has far-reaching practical consequences for formulating nuclear waste glasses. On the other hand, processing high-level and low-activity waste glasses presents various problems, such as crystallization, foaming, and salt segre-gation in the melter. The need to decrease the settling of solids in the melter to an acceptable level and to maximize the rate of melting presents major challenges to processing technology. However, the most important property of the glass product is its chemical durability, a somewhat vague concept in lieu of the assessment of the glass resistance to aqueous attack while the radioactivity decays over tens of thousands of years.

  20. GLASS TRANSITION SEEN THROUGH ASYMPTOTIC JULIEN OLIVIER AND MICHAEL RENARDY

    E-Print Network [OSTI]

    GLASS TRANSITION SEEN THROUGH ASYMPTOTIC EXPANSIONS JULIEN OLIVIER AND MICHAEL RENARDY Abstract of the model at low shear rate changes when a certain parameter (which we call the glass parameter) crosses´ebraud-Lequeux model, a Fokker-Planck-like description of soft glassy material, exhibits such a glass transition

  1. Glass Concrete Thin Sheets Reinforced with Prestressed Aramid Fabrics

    E-Print Network [OSTI]

    Meyer, Christian

    Glass Concrete Thin Sheets Reinforced with Prestressed Aramid Fabrics Gregor Vilkner Submitted Glass Concrete Thin Sheets Reinforced with Prestressed Aramid Fabrics Gregor Vilkner Thin sheet concrete crushed glass as aggregate, a multitude of different esthetic effects can be produced, which again open up

  2. condmat/9801215 Crossovers in the Two Dimensional Ising Spin Glass

    E-Print Network [OSTI]

    Roma "La Sapienza", Universitŕ di

    cond­mat/9801215 v2 26 Jan 1998 Crossovers in the Two Dimensional Ising Spin Glass of extensive computer simulations we analyze in detail the two dimen­ sional \\SigmaJ Ising spin glass with ferromagnetic next­nearest­neighbor interactions. We found a crossover from ferromagnetic to ``spin glass'' like

  3. Saga of Glass Damage in Urban Environments Continues

    E-Print Network [OSTI]

    Kareem, Ahsan

    Saga of Glass Damage in Urban Environments Continues: Consequences of Aerodynamics and Debris Laboratory University of Notre Dame The Saga of Glass Damage in Urban Environments Continues: Consequences east of the city of Houston. Initial reconnaissance suggested that the observed glass/cladding damage

  4. A new method for solving radiative heat problems in glass

    E-Print Network [OSTI]

    Eindhoven, Technische Universiteit

    RANA 99­06 A new method for solving radiative heat problems in glass B.J. van der Linden --- R, The Netherlands e­mail: linden@win.tue.nl 15th May 2000 #12; Abstract In the production of glass, temperature Conclusion 25 2 #12; Chapter 1 Introduction The production of glass belongs to the oldest forms of human

  5. Calorimetric glass transition explained by hierarchical dynamic facilitation

    E-Print Network [OSTI]

    Garrahan, Juan P.

    Calorimetric glass transition explained by hierarchical dynamic facilitation Aaron S. Keysa Contributed by David Chandler, February 11, 2013 (sent for review November 15, 2012) The glass transition different on cooling than on heating, and the response to melting a glass depends markedly on the cooling

  6. A new method for solving radiative heat problems in glass

    E-Print Network [OSTI]

    Eindhoven, Technische Universiteit

    RANA 99-06 A new method for solving radiative heat problems in glass B.J. van der Linden -- R, The Netherlands e-mail: linden@win.tue.nl 15th May 2000 #12;Abstract In the production of glass, temperature plays Conclusion 25 2 #12;Chapter 1 Introduction The production of glass belongs to the oldest forms of human

  7. 5D Data Storage by Ultrafast Laser Nanostructuring in Glass

    E-Print Network [OSTI]

    Anderson, Jim

    5D Data Storage by Ultrafast Laser Nanostructuring in Glass Jingyu Zhang* , Mindaugas Gecevicius-assembled form birefringence and retrieved in glass opening the era of unlimited lifetime data storage. © 2013 laser writing in glass were proposed for the polarization multiplexed optical memory, where

  8. Rectilinear Glass-Cut Dissections of Rectangles to Squares

    E-Print Network [OSTI]

    Urrutia, Jorge

    Rectilinear Glass-Cut Dissections of Rectangles to Squares Jurek Czyzowicz§ czyzowic is made using only rectilinear glass-cuts, i.e., vertical or horizontal straight-line cuts separating pieces into two. 1 Introduction A glass-cut of a rectangle is a cut by a straight-line segment

  9. Structure and magnetic properties of vanadiumsodium silicate glasses

    E-Print Network [OSTI]

    Mekki, Abdelkarim

    Structure and magnetic properties of vanadium­sodium silicate glasses A. Mekki a,*, G.D. Khattak Received 4 April 2002 Abstract Vanadium­sodium silicate glasses with the chemical composition [ðV2O5�x(Na2O) atoms in the silicate glasses. The fraction of NBO, determined from these spectra is found to increase

  10. Optical absorption and ionization of silicate glasses Leonid B. Glebov

    E-Print Network [OSTI]

    Glebov, Leon

    Optical absorption and ionization of silicate glasses Leonid B. Glebov School of Optics and hydroxyl), and induced (color centers) absorption of multicomponent silicate glasses in UV, visible-photon ionization was detected in alkaline-silicate glasses exposed to high-power laser radiation in nano

  11. Department of Electrical Engineering Spring 2011 Glass Block Solar Collector

    E-Print Network [OSTI]

    Demirel, Melik C.

    PENNSTATE Department of Electrical Engineering Spring 2011 Glass Block Solar Collector Overview of the team to incorporate solar collectors into glass blocks and provide an application for the collected energy. Objectives The team's objective was to deliver a working glass block solar collector

  12. Divalent europium in auminioborosilicate glasses Eugenia Malchukova(a)

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    1 Divalent europium in auminioborosilicate glasses Eugenia Malchukova(a) and Bruno Boizot sensitive to the surroundings in which the ion is embedded. Due to this characteristic, divalent europium glass samples. In the obtained ABS glasses the europium ions are found to be in both "+3" and "+2

  13. Mössbauer study of conductive oxide glass

    SciTech Connect (OSTI)

    Matsuda, Koken; Kubuki, Shiro [Tokyo Metropolitan University, Hachi-Oji, Tokyo 192-0397 (Japan); Nishida, Tetsuaki, E-mail: nishida@fuk.kindai.ac.jp [Kinki University, Iizuka, Fukuoka 820-8555 (Japan)

    2014-10-27T23:59:59.000Z

    Heat treatment of barium iron vanadate glass, BaO?Fe{sub 2}O{sub 3}?V{sub 2}O{sub 5}, at temperatures higher than crystallization temperature causes a marked decrease in resistivity (?) from several M?cm to several ?cm. {sup 57}Fe Mössbauer spectrum of heat-treated vanadate glass shows a marked decrease in quadrupole splitting (?) of Fe{sup III}, reflecting a structural relaxation, i.e., an increased symmetry of 'distorted' FeO{sub 4} and VO{sub 4} tetrahedra which are connected to each other by sharing corner oxygen atoms. Structural relaxation of 3D-network of vanadate glass accompanies a decrease in the activation energy for the conduction, reflecting a decreased energy gap between the donor level and conduction band. A marked increase in the conductivity was observed in CuO- or Cu{sub 2}O-containing barium iron vanadate glass after heat treatment at 450 °C for 30 min or more. 'n-type semiconductor model combined with small polaron hopping theory' was proposed in order to explain the high conductivity.

  14. Equilibrium ultrastable glasses produced by random pinning

    E-Print Network [OSTI]

    Glen M Hocky; Ludovic Berthier; David R. Reichman

    2014-12-08T23:59:59.000Z

    Ultrastable glasses have risen to prominence due to their potentially useful material properties and the tantalizing possibility of a general method of preparation via vapor deposition. Despite the importance of this novel class of amorphous materials, numerical studies have been scarce because achieving ultrastability in atomistic simulations is an enormous challenge. Here we bypass this difficulty and establish that randomly pinning the position of a small fraction of particles inside an equilibrated supercooled liquid generates ultrastable configurations at essentially no numerical cost, while avoiding undesired structural changes due to the preparation protocol. Building on the analogy with vapor-deposited ultrastable glasses, we study the melting kinetics of these configurations following a sudden temperature jump into the liquid phase. In homogeneous geometries, we find that enhanced kinetic stability is accompanied by large scale dynamic heterogeneity, while a competition between homogeneous and heterogeneous melting is observed when a liquid boundary invades the glass at constant velocity. Our work demonstrates the feasibility of large-scale, atomistically resolved, and experimentally relevant simulations of the kinetics of ultrastable glasses.

  15. DWPF Glass Melter Technology Manual: Volume 4

    SciTech Connect (OSTI)

    Iverson, D.C.

    1993-12-31T23:59:59.000Z

    This document details information about the design of a glass melter to be used at the Defense Waste Processing Facility located at the Savannah River Plant. Information contained in this document consists solely of a machine drawing and parts list and purchase orders with specifications of equipment used in the development of the melter.

  16. Overview of Energy Efficiency for Glass Furnace

    E-Print Network [OSTI]

    Banerjee, Rangan

    ,Particulates (Environmental norms) Global competitiveness #12;3 April, 2006 4Source: www.oilnergy.com Crude Oil Price #12, 2006 8 Energy Consumption in Glass Plant Melting 75% Forehearth 7% Anneling 4% Other 10% Printing Energy Consumption Specific Energy Consumption (SEC)­ Energy Consumption per unit of product output Units

  17. DWPF Glass Melter Technology Manual: Volume 3

    SciTech Connect (OSTI)

    Iverson, D.C.

    1993-12-31T23:59:59.000Z

    This document details information about the design of a glass melter to be used at the Defense Waste Processing Facility located at the Savannah River Site. Topics discussed include: Information collected during testing, equipment, materials, design basis, feed tubes, and an evaluation of the performance of various components. Information is conveyed using many diagrams and photographs.

  18. Erbium concentration dependent absorbance in tellurite glass

    SciTech Connect (OSTI)

    Sazali, E. S., E-mail: mdsupar@utm; Rohani, M. S., E-mail: mdsupar@utm; Sahar, M. R., E-mail: mdsupar@utm; Arifin, R., E-mail: mdsupar@utm; Ghoshal, S. K., E-mail: mdsupar@utm; Hamzah, K., E-mail: mdsupar@utm [Advanced Optical Material Research Group, Department of Physics, Faculty of Science, Universiti Teknologi Malaysia, 81310, Skudai, Johor Bahru, Johor (Malaysia)

    2014-09-25T23:59:59.000Z

    Enhancing the optical absorption cross-section in topically important rare earth doped tellurite glasses is challenging for photonic devices. Controlled synthesis and detailed characterizations of the optical properties of these glasses are important for the optimization. The influence of varying concentration of Er{sup 3+} ions on the absorbance characteristics of lead tellurite glasses synthesized via melt-quenching technique are investigated. The UV-Vis absorption spectra exhibits six prominent peaks centered at 490, 526, 652, 800, 982 and 1520 nm ascribed to the transitions in erbium ion from the ground state to the excited states {sup 4}F{sub 7/2}, {sup 2}H{sub 11/2}, {sup 4}F{sub 9/2}, {sup 4}I{sub 9/2}, {sup 2}H{sub 11/2} and {sup 4}I{sub 13/2}, respectively. The results are analyzed by means of optical band gap E{sub g} and Urbach energy E{sub u}. The values of the energy band gap are found decreased from 2.82 to 2.51 eV and the Urbach energy increased from 0.15 to 0.24 eV with the increase of the Er{sub 2}O{sub 3} concentration from 0 to 1.5 mol%. The excellent absorbance of the prepared tellurite glasses makes them suitable for fabricating solid state lasers.

  19. The development of design factors for heat-strengthened and tempered glass based on the glass failure prediction model

    E-Print Network [OSTI]

    Oakes, Timothy Andrew

    1991-01-01T23:59:59.000Z

    of the interior. According to ASTM, the residual surface compression of tempered glass is defined to have a value of 10, 000 psi (68. 95 MPa) while heat-strengthened glass has residual compressive stresses greater than 3, 500 psi (24. 13 MPa) but less than 10..., 000 psi (68. 95 MPa) (ASTM, 1989). These residual surface compressive stresses must be overcome by mechanical stresses before the glass surfaces experience tension. Hence heat-strengthened and tempered glass are considerably stronger than annealed...

  20. Blocking effect of crystal–glass interface in lanthanum doped barium strontium titanate glass–ceramics

    SciTech Connect (OSTI)

    Wang, Xiangrong [Beijing Fine Ceramics Laboratory, State Key Laboratory of New Ceramics and Fine Processing, Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084 (China); Zhang, Yong, E-mail: yzhang@tsinghua.edu.cn [Beijing Fine Ceramics Laboratory, State Key Laboratory of New Ceramics and Fine Processing, Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084 (China); Baturin, Ivan [Ferroelectric Laboratory, Institute of Natural Science, Ural Federal University, Ekaterinburg 620000 (Russian Federation); Liang, Tongxiang [Beijing Fine Ceramics Laboratory, State Key Laboratory of New Ceramics and Fine Processing, Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084 (China)

    2013-10-15T23:59:59.000Z

    Graphical abstract: The blocking effect of the crystal–glass interface on the carrier transport behavior in the lanthanum doped barium strontium titanate glass–ceramics: preparation and characterization. - Highlights: • La{sub 2}O{sub 3} addition promotes the crystallization of the major crystalline phase. • The Z? and M? peaks exist a significant mismatch for 0.5 mol% La{sub 2}O{sub 3} addition. • The Z? and M? peaks separate obviously for 1.0 mol% La{sub 2}O{sub 3} addition. • Crystallite impedance decreases while crystal–glass interface impedance increases. • La{sub 2}O{sub 3} addition increases blocking factor of the crystal–glass interface. - Abstract: The microstructures and dielectric properties in La{sub 2}O{sub 3}-doped barium strontium titanate glass–ceramics have been investigated by scanning electron microscopy (SEM) and impedance spectroscopy. SEM analysis indicated that La{sub 2}O{sub 3} additive decreases the average crystallite size. Impedance spectroscopy revealed that the positions of Z? and M? peaks are close for undoped samples. When La{sub 2}O{sub 3} concentration is 0.5 mol%, the Z? and M? peaks show a significant mismatch. Furthermore, these peaks separate obviously for 1.0 mol% La{sub 2}O{sub 3} addition. With increasing La{sub 2}O{sub 3} concentration, the contribution of the crystallite impedance becomes smaller, while the contribution of the crystal–glass interface impedance becomes larger. More interestingly, it was found that La{sub 2}O{sub 3} additive increases blocking factor of the crystal–glass interface in the temperature range of 250–450 °C. This may be attributed to a decrease of activation energy of the crystallite and an increase of the crystal–glass interface area.

  1. Influence of glass polymerisation and oxidation on micro-Raman water analysis in alumino-silicate glasses

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Influence of glass polymerisation and oxidation on micro-Raman water analysis in alumino-silicate glasses Maxime Merciera, Andrea Di Muroab , Daniele Giordanoc , Nicole Métricha , Priscille Lesned of an accurate analytical procedure for determination of dissolved water in complex alumino-silicate glasses via

  2. Glasstech. Ber. Glass Sci. Technol. 75 C2 (2002) 1 Linear and Nonlinear Photoionization of Silicate Glasses

    E-Print Network [OSTI]

    Glebov, Leon

    Glasstech. Ber. Glass Sci. Technol. 75 C2 (2002) 1 Linear and Nonlinear Photoionization of Silicate, photoinduced phenomena, and laser-induced damage of silicate glasses. The discussion will be concentrated devices, such as alkaline-silicate, sodium-calcium-silicate, borosilicate, and lead- silicate glasses

  3. Photograph from Ruth Glass Obituary in The Times 9th March 1990. Ruth Adele Glass [ne Lazarus] (1912 1990), sociologist, was born on 30 June 1912 in Berlin,

    E-Print Network [OSTI]

    RUTH GLASS Photograph from Ruth Glass Obituary in The Times 9th March 1990. Ruth Adele Glass [née, published in 1939, established her reputation as a social scientist. From 1940 until 1942 Ruth Glass College London, which remained her academic base for the rest of her life. In 1951 Ruth Glass became

  4. Near-wall modeling of an isothermal vertical wall using one-dimensional turbulence

    E-Print Network [OSTI]

    DesJardin, Paul E.

    [5]. The challenge in modeling this class of flows is the coupling between the heat transfer approaches are considered for describing the heat transfer from a vertical isothermal wall. In this approach at the wall surface and the generation of turbulence from buoyancy forces, which in turn, affect

  5. Glass transitions in two-dimensional suspensions of colloidal ellipsoids

    E-Print Network [OSTI]

    Zhongyu Zheng; Feng Wang; Yilong Han

    2011-05-29T23:59:59.000Z

    We observed a two-step glass transition in monolayers of colloidal ellipsoids by video microscopy. The glass transition in the rotational degree of freedom was at a lower density than that in the translational degree of freedom. Between the two transitions, ellipsoids formed an orientational glass. Approaching the respective glass transitions, the rotational and translational fastest-moving particles in the supercooled liquid moved cooperatively and formed clusters with power-law size distributions. The mean cluster sizes diverge in power law as approaching the glass transitions. The clusters of translational and rotational fastest-moving ellipsoids formed mainly within pseudo-nematic domains, and around the domain boundaries, respectively.

  6. Rapid process for producing transparent, monolithic porous glass

    DOE Patents [OSTI]

    Coronado, Paul R. (Livermore, CA)

    2006-02-14T23:59:59.000Z

    A process for making transparent porous glass monoliths from gels. The glass is produced much faster and in much larger sizes than present technology for making porous glass. The process reduces the cost of making large porous glass monoliths because: 1) the process does not require solvent exchange nor additives to the gel to increase the drying rates, 2) only moderate temperatures and pressures are used so relatively inexpensive equipment is needed, an 3) net-shape glass monoliths are possible using this process. The process depends on the use of temperature to control the partial pressure of the gel solvent in a closed vessel, resulting in controlled shrinking during drying.

  7. Energy Efficient Glass Melting - The Next Generation Melter

    SciTech Connect (OSTI)

    David Rue

    2008-03-01T23:59:59.000Z

    The objective of this project is to demonstrate a high intensity glass melter, based on the submerged combustion melting technology. This melter will serve as the melting and homogenization section of a segmented, lower-capital cost, energy-efficient Next Generation Glass Melting System (NGMS). After this project, the melter will be ready to move toward commercial trials for some glasses needing little refining (fiberglass, etc.). For other glasses, a second project Phase or glass industry research is anticipated to develop the fining stage of the NGMS process.

  8. Sealed glass coating of high temperature ceramic superconductors

    DOE Patents [OSTI]

    Wu, W.; Chu, C.Y.; Goretta, K.C.; Routbort, J.L.

    1995-05-02T23:59:59.000Z

    A method and article of manufacture of a lead oxide based glass coating on a high temperature superconductor is disclosed. The method includes preparing a dispersion of glass powders in a solution, applying the dispersion to the superconductor, drying the dispersion before applying another coating and heating the glass powder dispersion at temperatures below oxygen diffusion onset and above the glass melting point to form a continuous glass coating on the superconductor to establish compressive stresses which enhance the fracture strength of the superconductor. 8 figs.

  9. Modeling of Spinel Settling in Waste Glass Melter

    SciTech Connect (OSTI)

    Hrma, Pavel; Schill, Petr; Nemec, Lubomir; Klouzek, Jaroslav, Mika, Martin; Brada, Jiri Glass Service, Ltd., Vsetin, Czech Republic

    2000-06-01T23:59:59.000Z

    Our objective is to determine the fraction and size of spinel crystals in molten HLW glass that are compatible with low-risk melter operation. To this end, we are investigating spinel behavior in HLW glass and obtaining data to be used in a mathematical model for spinel settling in a HLW glass melter. We will modify the current glass-furnace model to incorporate spinel concentration distribution and to predict the rate of spinel settling. Also, we will determine the nucleation agents that control the number density and size of spinel crystals in HLW glass.

  10. DEVELOPMENT OF GLASS MATRICES FOR HLW RADIOACTIVE WASTES

    SciTech Connect (OSTI)

    Jantzen, C.

    2010-03-18T23:59:59.000Z

    Vitrification is currently the most widely used technology for the treatment of high level radioactive wastes (HLW) throughout the world. Most of the nations that have generated HLW are immobilizing in either borosilicate glass or phosphate glass. One of the primary reasons that glass has become the most widely used immobilization media is the relative simplicity of the vitrification process, e.g. melt waste plus glass forming frit additives and cast. A second reason that glass has become widely used for HLW is that the short range order (SRO) and medium range order (MRO) found in glass atomistically bonds the radionuclides and governs the melt properties such as viscosity, resistivity, sulphate solubility. The molecular structure of glass controls contaminant/radionuclide release by establishing the distribution of ion exchange sites, hydrolysis sites, and the access of water to those sites. The molecular structure is flexible and hence accounts for the flexibility of glass formulations to waste variability. Nuclear waste glasses melt between 1050-1150 C which minimizes the volatility of radioactive components such as Tc{sup 99}, Cs{sup 137}, and I{sup 129}. Nuclear waste glasses have good long term stability including irradiation resistance. Process control models based on the molecular structure of glass have been mechanistically derived and have been demonstrated to be accurate enough to control the world's largest HLW Joule heated ceramic melter in the US since 1996 at 95% confidence.

  11. System and method for glass processing and temperature sensing

    DOE Patents [OSTI]

    Shepard, Chester L.; Cannon, Bret D.; Khaleel, Mohammad A.

    2004-09-28T23:59:59.000Z

    Techniques for measuring the temperature at various locations through the thickness of glass products and to control the glass processing operation with the sensed temperature information are disclosed. Fluorescence emission of iron or cerium in glass is excited and imaged onto segmented detectors. Spatially resolved temperature data are obtained through correlation of the detected photoluminescence signal with location within the glass. In one form the detected photoluminescence is compared to detected scattered excitation light to determine temperature. Stress information is obtained from the time history of the temperature profile data and used to evaluate the quality of processed glass. A heating or cooling rate of the glass is also controlled to maintain a predetermined desired temperature profile in the glass.

  12. Low melting high lithia glass compositions and methods

    DOE Patents [OSTI]

    Jantzen, Carol M.; Pickett, John B.; Cicero-Herman, Connie A.; Marra, James C.

    2003-09-23T23:59:59.000Z

    The invention relates to methods of vitrifying waste and for lowering the melting point of glass forming systems by including lithia formers in the glass forming composition in significant amounts, typically from about 0.16 wt % to about 11 wt %, based on the total glass forming oxides. The lithia is typically included as a replacement for alkali oxide glass formers that would normally be present in a particular glass forming system. Replacement can occur on a mole percent or weight percent basis, and typically results in a composition wherein lithia forms about 10 wt % to about 100 wt % of the alkali oxide glass formers present in the composition. The present invention also relates to the high lithia glass compositions formed by these methods. The invention is useful for stabilization of numerous types of waste materials, including aqueous waste uranium oxides The decrease in melting point achieved by the present invention desirably prevents volatilization of hazardous or radioactive species during vitrification.

  13. Ammonia-treated phosphate glasses useful for sealing to metals

    DOE Patents [OSTI]

    Brow, R.K.; Day, D.E.

    1991-09-03T23:59:59.000Z

    A method of improving surface-dependent properties of phosphate glass such as durability and wear resistance without significantly affecting its thermal expansion coefficient is provided which comprises annealing the glass in a dry ammonia atmosphere at temperatures approximating the transition temperature of the glass. The ammonia annealing treatment of the present invention is carried out for a time sufficient to allow incorporation of a thin layer of nitrogen into the surface of the phosphate glass, and the treatment improves the durability of the glass without the reduction in the thermal expansion coefficient that has restricted the effectiveness of prior ammonia treatments. The improved phosphate glass resulting from this method is superior in wear resistance, yet maintains suitable thermal expansion properties so that it may be used effectively in a variety of applications requiring hermetic glass-metal seals.

  14. Laboratory work in support of West Valley glass development

    SciTech Connect (OSTI)

    Bunnell, L.R.

    1988-05-01T23:59:59.000Z

    Over the past six years, Pacific Northwest Laboratory (PNL) has conducted several studies in support of waste glass composition development and testing of glass compositions suitable for immobilizing the nuclear wastes stored at West Valley, New York. As a result of pilot-scale testing conducted by PNL, the glass composition was changed from that originally recommended in response to changes in the waste stream, and several processing-related problems were discovered. These problems were solved, or sufficiently addressed to determine their likely effect on the glass melting operations to be conducted at West Valley. This report describes the development of the waste glass composition, WV-205, and discusses solutions to processing problems such as foaming and insoluble sludges, as well as other issues such as effects of feed variations on processing of the resulting glass. An evaluation of the WV-205 glass from a repository perspective is included in the appendix to this report.

  15. Thermodynamics of free Domain Wall fermions

    E-Print Network [OSTI]

    R. V. Gavai; Sayantan Sharma

    2008-11-19T23:59:59.000Z

    Studying various thermodynamic quantities for the free domain wall fermions for both finite and infinite fifth dimensional extent N_5, we find that the lattice corrections are minimum for $N_T\\geq10$ for both energy density and susceptibility, for its irrelevant parameter M in the range 1.45-1.50. The correction terms are, however, quite large for small lattice sizes of $N_T\\leq8$. We propose modifications of the domain wall operator, as well as the overlap operator, to reduce the finite cut-off effects to within 10% of the continuum results of the thermodynamic quantities for the currently used N_T=6-8 lattices. Incorporating chemical potential, we show that \\mu^2 divergences are absent for a large class of such domain wall fermion actions although the chiral symmetry is broken for $\\mu\

  16. INTEGRATED ENERGY EFFICIENT WINDOW-WALL SYSTEMS

    SciTech Connect (OSTI)

    Michael Arney, Ph.D.

    2002-12-31T23:59:59.000Z

    The building industry faces the challenge of reducing energy use while simultaneously improving construction methods and marketability. This paper describes the first phase of a project to address these concerns by designing an Integrated Window Wall System (IWWS) that can be commercialized. This work builds on previous research conducted during the 1990's by Lawrence Berkeley national Laboratories (LBNL). During this phase, the objective was to identify appropriate technologies, problems and issues and develop a number of design concepts. Four design concepts were developed into prototypes and preliminary energy analyses were conducted Three of these concepts (the foam wall, steel wall, and stiffened plate designs) showed particular potential for meeting the project objectives and will be continued into a second phase where one or two of the systems will be brought closer to commercialization.

  17. Turbine airfoil with a compliant outer wall

    DOE Patents [OSTI]

    Campbell, Christian X. (Oviedo, FL); Morrison, Jay A. (Oviedo, FL)

    2012-04-03T23:59:59.000Z

    A turbine airfoil usable in a turbine engine with a cooling system and a compliant dual wall configuration configured to enable thermal expansion between inner and outer layers while eliminating stress formation in the outer layer is disclosed. The compliant dual wall configuration may be formed a dual wall formed from inner and outer layers separated by a support structure. The outer layer may be a compliant layer configured such that the outer layer may thermally expand and thereby reduce the stress within the outer layer. The outer layer may be formed from a nonplanar surface configured to thermally expand. In another embodiment, the outer layer may be planar and include a plurality of slots enabling unrestricted thermal expansion in a direction aligned with the outer layer.

  18. Glass transition and crystallization kinetics of a barium borosilicate glass by a non-isothermal method

    SciTech Connect (OSTI)

    Lopes, Andreia A. S.; Soares, Roque S.; Lima, Maria M. A.; Monteiro, Regina C. C., E-mail: rcm@fct.unl.pt [Department of Materials Science, CENIMAT/I3N, Faculty of Sciences and Technology, Universidade Nova de Lisboa, 2829-516 Caparica (Portugal)

    2014-01-28T23:59:59.000Z

    The glass transition and crystallization kinetics of a glass with a molar composition 60BaO-30B{sub 2}O{sub 3}-10SiO{sub 2} were investigated by differential scanning calorimetry (DSC) under non-isothermal conditions. DSC curves exhibited an endothermic peak associated with the glass transition and two partially overlapped exothermic peaks associated with the crystallization of the glass. The dependence of the glass transition temperature (T{sub g}) and of the maximum crystallization temperature (T{sub p}) on the heating rate was used to determine the activation energy associated with the glass transition (E{sub g}), the activation energy for crystallization (E{sub c}), and the Avrami exponent (n). X-ray diffraction (XRD) revealed that barium borate (?-BaB{sub 2}O{sub 4}) was the first crystalline phase to be formed followed by the formation of barium silicate (Ba{sub 5}Si{sub 8}O{sub 21}). The variations of activation energy for crystallization and of Avrami exponent with the fraction of crystallization (?) were also examined. When the crystallization fraction (?) increased from 0.1 to 0.9, the value of local activation energy (E{sub c}(?)) decreased from 554 to 458?kJ/mol for the first exothermic peak and from 1104 to 831?kJ/mol for the second exothermic peak. The value determined for the Avrami exponent was near 2 indicating a similar one-dimensional crystallization mechanism for both crystalline phases. This was confirmed by the morphological studies performed by scanning electron microscopy (SEM) on glass samples heat-treated at the first and at the second crystallization temperatures.

  19. Standing gravitational waves from domain walls

    SciTech Connect (OSTI)

    Gogberashvili, Merab [Andronikashvili Institute of Physics, 6 Tamarashvili Street, Tbilisi 0177 (Georgia); Javakhishvili Tbilisi State University, 3 Chavchavadze Avenue, Tbilisi 0128 (Georgia); California State University, Fresno, Physics Department, Fresno, California 93740-8031 (United States); Myrzakul, Shynaray [Department of General and Theoretical Physics, Gumilev Eurasian National University, Astana, 010008 (Kazakhstan); California State University, Fresno, Physics Department, Fresno, California 93740-8031 (United States); Singleton, Douglas [California State University, Fresno, Physics Department, Fresno, California 93740-8031 (United States); Institute of Gravitation and Cosmology, Peoples' Friendship University of Russia, Moscow 117198 (Russian Federation)

    2009-07-15T23:59:59.000Z

    We construct a plane symmetric, standing gravitational wave for a domain wall plus a massless scalar field. The scalar field can be associated with a fluid which has the properties of 'stiff' matter, i.e., matter in which the speed of sound equals the speed of light. Although domain walls are observationally ruled out in the present era, the solution has interesting features which might shed light on the character of exact nonlinear wave solutions to Einstein's equations. Additionally this solution may act as a template for higher dimensional 'brane-world' model standing waves.

  20. Enhancement of wall jet transport properties

    DOE Patents [OSTI]

    Claunch, Scott D. (Broomfield, CO); Farrington, Robert B. (Golden, CO)

    1997-01-01T23:59:59.000Z

    By enhancing the natural instabilities in the boundary layer and in the free shear layer of a wall jet, the boundary is minimized thereby increasing the transport of heat and mass. Enhancing the natural instabilities is accomplished by pulsing the flow of air that creates the wall jet. Such pulsing of the flow of air can be accomplished by sequentially occluding and opening a duct that confines and directs the flow of air, such as by rotating a disk on an axis transverse to the flow of air in the duct.

  1. Non-Abelian Webs of Walls

    E-Print Network [OSTI]

    Minoru Eto; Youichi Isozumi; Muneto Nitta; Keisuke Ohashi; Norisuke Sakai

    2005-09-15T23:59:59.000Z

    Domain wall junctions are studied in N=2 supersymmetric U(Nc) gauge theory with Nf(>Nc) flavors. We find that all three possibilities are realized for positive, negative and zero junction charges. The positive junction charge is found to be carried by a topological charge in the Hitchin system of an SU(2) gauge subgroup. We establish rules of the construction of the webs of walls. Webs can be understood qualitatively by grid diagram and quantitatively by associating moduli parameters to web configurations.

  2. Enhancement of wall jet transport properties

    DOE Patents [OSTI]

    Claunch, S.D.; Farrington, R.B.

    1997-02-04T23:59:59.000Z

    By enhancing the natural instabilities in the boundary layer and in the free shear layer of a wall jet, the boundary is minimized thereby increasing the transport of heat and mass. Enhancing the natural instabilities is accomplished by pulsing the flow of air that creates the wall jet. Such pulsing of the flow of air can be accomplished by sequentially occluding and opening a duct that confines and directs the flow of air, such as by rotating a disk on an axis transverse to the flow of air in the duct. 17 figs.

  3. Read: What Kathmandu is Reading?

    E-Print Network [OSTI]

    Fineprint Bookclub

    2011-01-05T23:59:59.000Z

    maoe from the sale of OUt prodlKt$ goes to the benefits of orphaned chlld.en. PRODUCT ITEMS, Photo album, photo frame, lam p ahade. diary/ note book. stationary Items (Creetln, cards. pen hold,". file holder, etc~ curtains. wall paper. wrappin... back, from a Rana family Instead of demolishing the house and building a new house in its place, he retrofitted all the rooms of the house to give them a more modern touch. In one of these retrofitted room he led us in. He put his glasses on the L...

  4. DWPF Glass Melter Technology Manual: Volume 1

    SciTech Connect (OSTI)

    Iverson, D.C.

    1993-12-31T23:59:59.000Z

    This document details information about the design of a glass melter to be used at the Defense Waste Processing Facility located at the Savannah River Site. Topics include: melter overview, design basis, materials, vessel configuration, insulation, refractory configuration, electrical isolation, electrodes, riser and pour spout heater design, dome heaters, feed tubes, drain valves, differential pressure pouring, and melter test results. Information is conveyed using many diagrams and photographs.

  5. Glass Property Models and Constraints for Estimating the Glass to be Produced at Hanford by Implementing Current Advanced Glass Formulation Efforts

    SciTech Connect (OSTI)

    Vienna, John D.; Kim, Dong-Sang; Skorski, Daniel C.; Matyas, Josef

    2013-07-31T23:59:59.000Z

    Recent glass formulation and melter testing data have suggested that significant increases in waste loading in HLW and LAW glasses are possible over current system planning estimates. The data (although limited in some cases) were evaluated to determine a set of constraints and models that could be used to estimate the maximum loading of specific waste compositions in glass. It is recommended that these models and constraints be used to estimate the likely HLW and LAW glass volumes that would result if the current glass formulation studies are successfully completed. It is recognized that some of the models are preliminary in nature and will change in the coming years. Plus the models do not currently address the prediction uncertainties that would be needed before they could be used in plant operations. The models and constraints are only meant to give an indication of rough glass volumes and are not intended to be used in plant operation or waste form qualification activities. A current research program is in place to develop the data, models, and uncertainty descriptions for that purpose. A fundamental tenet underlying the research reported in this document is to try to be less conservative than previous studies when developing constraints for estimating the glass to be produced by implementing current advanced glass formulation efforts. The less conservative approach documented herein should allow for the estimate of glass masses that may be realized if the current efforts in advanced glass formulations are completed over the coming years and are as successful as early indications suggest they may be. Because of this approach there is an unquantifiable uncertainty in the ultimate glass volume projections due to model prediction uncertainties that has to be considered along with other system uncertainties such as waste compositions and amounts to be immobilized, split factors between LAW and HLW, etc.

  6. Sink property of metallic glass free surfaces

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Shao, Lin; Fu, Engang; Price, Lloyd; Chen, Di; Chen, Tianyi; Wang, Yongqiang; Xie, Guoqiang; Lucca, Don A.

    2015-03-16T23:59:59.000Z

    When heated to a temperature close to glass transition temperature, metallic glasses (MGs) begin to crystallize. Under deformation or particle irradiation, crystallization occurs at even lower temperatures. Hence, phase instability represents an application limit for MGs. Here, we report that MG membranes of a few nanometers thickness exhibit properties different from their bulk MG counterparts. The study uses in situ transmission electron microscopy with concurrent heavy ion irradiation and annealing to observe crystallization behaviors of MGs. For relatively thick membranes, ion irradiations introduce excessive free volumes and thus induce nanocrystal formation at a temperature linearly decreasing with increasing ion fluences.more »For ultra-thin membranes, however, the critical temperature to initiate crystallization is about 100 K higher than the bulk glass transition temperature. Molecular dynamics simulations indicate that this effect is due to the sink property of the surfaces which can effectively remove excessive free volumes. These findings suggest that nanostructured MGs having a higher surface to volume ratio are expected to have higher crystallization resistance, which could pave new paths for materials applications in harsh environments requiring higher stabilities.« less

  7. Hot wire production of single-wall and multi-wall carbon nanotubes

    DOE Patents [OSTI]

    Dillon, Anne C. (Boulder, CO); Mahan, Archie H. (Golden, CO); Alleman, Jeffrey L. (Lakewood, CO)

    2010-10-26T23:59:59.000Z

    Apparatus (210) for producing a multi-wall carbon nanotube (213) may comprise a process chamber (216), a furnace (217) operatively associated with the process chamber (216), and at least one filament (218) positioned within the process chamber (216). At least one power supply (220) operatively associated with the at least one filament (218) heats the at least one filament (218) to a process temperature. A gaseous carbon precursor material (214) operatively associated with the process chamber (216) provides carbon for forming the multi-wall carbon nanotube (213). A metal catalyst material (224) operatively associated with the process (216) catalyzes the formation of the multi-wall carbon nanotube (213).

  8. Kinetics of growth of spinel crystals in a borosilicate glass

    SciTech Connect (OSTI)

    Alton, Jesse; Plaisted, Trevor J.; Hrma, Pavel R.

    2002-07-01T23:59:59.000Z

    Three aspects of the kinetics of spinel crystallization in a high-level waste (HLW) glass were studied: (1) the effect of nucleation agents on the number density (ns) of spinel crystals, (2) crystallization kinetics in a crushed glass, and (3) crystallization kinetics in a glass preheated at T > TL (liquidus temperature). In glass lacking in nucleation agents, ns was a strong function of temperature. In glasses with noble metals (Rh, Ru, Pd, and Pt), ns increased by up to four orders of magnitude and was nearly independent of temperature. The kinetics of spinel crystallization in crushed glass lacking nucleation agents was dominated by surface crystallization and was described by the Kolmogorov-Johnson-Mehl-Avrami (KJMA) equation with the Avrami exponent n {at} 0.5. For application to HLW glass melter processing, it was necessary to preheat glass at T > TL to eliminate the impact of temperature history and surface crystallization on crystal nucleation and growth. In the temperature range of glass processing, crystals descend under gravity when they reach a critical size. Below this critical size, crystallization kinetics is described by the KJMA equation and above the critical size by the Hixson-Crowell equation. At low temperatures, at which glass viscosity is high and diffusion is slow, the KJMA equation represents crystal growth from nucleation to equilibrium. As ns increases, the temperature interval of the transition from the KJMA to Hixson-Crowell regime shifts to a higher temperature.

  9. Kinetics of growth of spinel crystals in a borosilicate glass

    SciTech Connect (OSTI)

    Alton, Jesse; Plaisted, Trevor J.; Hrma, Pavel R.

    2002-08-08T23:59:59.000Z

    Three aspects of the kinetics of spinel crystallization in a high-level waste (HLW) glass were studied: (1) the effect of nucleation agents on the number density (ns) of spinel crystals, (2) crystallization kinetics in a crushed glass, and (3) crystallization kinetics in a glass preheated at T>TL (liquidus temperature). In glass lacking in nucleation agens, ns was a strong function of temperature. In glasses with noble metals (Rh, Ru, Pd, and Pt), ns increased by up to four orders of magnitude and was nearly independent of temperature. The kinetics of spinel crystallization in crushed glass lacking nucleation agents was dominated by surface crystallization and was described by the Kolmogorov-Johnson-Mehl-Avrami (KJMA) equation with the Avrami exponent n~0.5. For application to HLW glass melter processing, it was necessary to preheat glass at T>TL to eliminate the impact of temperature history and surface crystallization on crystal nucleation and growth. In the temperature range of glass processing, crystals descend under gravity when they reach a critical size. Below this critical size, crystallization kinetics is described by the KJMA equation and above the critical size by the Hixson-Crowell equation. At low temperatures, at which glass viscosity is high and diffusion is slow, the KJMA equation represents crystal growth from nucleation to equilibrium. As ns increases, the temperature interval of the transition from the KJMA to Hisxon-Crowell regime shifts to a higher temperature.

  10. THE CHINESE WALL LATTICE Ravi Sandhu

    E-Print Network [OSTI]

    Sandhu, Ravi

    of interest class #12;4 CHINESE WALL EXAMPLE BANKS OIL COMPANIESBANKS OIL COMPANIES A B X Y #12;5 READ ACCESS A Bank B Oil Company X Oil Company XOil Company X Oil Company X · cooperating Trojan Horses can transfer Bank A information to Bank B objects, and vice versa, using Oil Company X objects as intermediaries #12

  11. Domain wall partition functions and KP

    E-Print Network [OSTI]

    O Foda; M Wheeler; M Zuparic

    2009-01-15T23:59:59.000Z

    We observe that the partition function of the six vertex model on a finite square lattice with domain wall boundary conditions is (a restriction of) a KP tau function and express it as an expectation value of charged free fermions (up to an overall normalization).

  12. Liquid Walls Innovative High Power Density Concepts

    E-Print Network [OSTI]

    California at Los Angeles, University of

    Surface Heat Flux > 2 MW/m2 2. High Power Conversion Efficiency (> 40%) 3. High Availability -Lower rrr ×= V r J r PV r B r 1P 2P g r + - V r #12;V(initial momentum) g rFluidIn FluidOutBackingWall 2Dsurfaceturbulence · Poloidal Pumping + - J r - flowpoloidal direction - Enhancesurfaceheat transferwith2D turbulence

  13. Solitons and Domain Walls in Odd Dimensions

    E-Print Network [OSTI]

    N. D. Lambert; G. W. Gibbons

    2000-07-04T23:59:59.000Z

    We discuss the existance of smooth soliton solutions which interpolate between supersymmetric vacua in odd-dimensional theories. In particular we apply this analysis to a wide class of supergravities to argue against the existence of smooth domain walls interpolating between supersymmetric vacua. We find that if the superpotential changes sign then any Goldstino modes will diverge.

  14. Design of wetted wall bioaerosol concentration cyclones

    E-Print Network [OSTI]

    Seo, Youngjin

    2009-05-15T23:59:59.000Z

    wall bioaerosol cyclone concentrators that consume very low power and are capable of delivering very small liquid effluent flow rate of highly-concentrated hydrosol. The aerosol-to-aerosol penetration cutpoint for the cyclones is about 1µm. The aerosol...

  15. ROOM AIR CONDITIONER WALL MOUNTED type

    E-Print Network [OSTI]

    Kleinfeld, David

    SPLIT TYPE ROOM AIR CONDITIONER WALL MOUNTED type Reciprocating Compressor Models Indoor unit.6 - 11.4 ----- MOISTURE REMOVAL ( / hr) 2.0 1.8 2.7 2.7 4.3 3 AIR CIRCULATION - Hi (m / hr) 800 800 1

  16. Case study of the 424 West 33rd Street Apartment House

    SciTech Connect (OSTI)

    White, C.S.; Converse, A.O.

    1981-07-01T23:59:59.000Z

    The case study of a proposed retrofit project - the conversion of a 69-year old industrial loft in midtown Manhattan to an apartment building - shows that dramatic energy economies are possible by renovation rather than replacement. The proposed retrofitted building is projected to yield savings of 80 to 86% in space heating over the average pre-war New York City apartment building. The type and amount of south wall fenestration have important and somewhat surprising consequences for energy use in apartment buildings. Maximizing the use of south glass in itself is not a good idea. Three south wall fenestration models are examined in a dynamic thermal network computer simulation: direct gain, or curtain wall, with essentially 100% glass; conventional windows, in an insulated wall; and sunspace: outer wall 100% glass; inner wall 50% glass, 50% masonry. The direct gain south-facing apartment has a 12% greater thermal energy requirement - heating and cooling combined - as the north-facing apartment with conventional window openings; the conventional model has 77% of the energy requirement of the north-facing apartment; and the sunspace has 49% of the energy requirement of the north-facing apartment. The background and existing conditions; architectural design; evaluation of building design through simulated thermal performance; heating, ventilating, and air conditioning system design; embodied energy; active solar system evaluation; and solar access litigation and legislation are discussed.

  17. Effect of Stainless Steel Can/Glass-Ceramic Interaction Layer on Aqueous Durability

    SciTech Connect (OSTI)

    McGlinn, Peter J.; Zhang, Yingjie; Li, Huijun; Payne, Timothy E. [Australian Nuclear Science and Technology Organisation, New Illawarra Road, Lucas Heights (Australia)

    2007-07-01T23:59:59.000Z

    Calcined high-level radioactive waste (HLW) stored at the Idaho National Laboratory (INL) will eventually be immobilised in a suitable wasteform before disposal. A tailored glass-ceramic wasteform, produced by hot isostatic pressing (HIPing) in stainless steel (SS) cans, has been developed at the Australian Nuclear Science and Technology Organisation (ANSTO) as a cost-saving alternative to glass which would improve waste loading and density, and reduce waste volume. We have studied the SS/wasteform interactions under HIPing conditions to understand whether such interactions would have any detrimental effect on long-term wasteform stability. This has been demonstrated by carrying out aqueous durability tests, under near-neutral and alkaline conditions, on the wasteform at the interaction layer, and on the wasteform distal to this reaction edge. Reaction during HIPing resulted in verifiable Cr diffusion from the can wall into the wasteform, yet without any detectable detrimental impact on the HIP can or the aqueous durability of the wasteform. (authors)

  18. Triple stack glass-to-glass anodic bonding for optogalvanic spectroscopy cells with electrical feedthroughs

    SciTech Connect (OSTI)

    Daschner, R.; Kübler, H.; Löw, R.; Pfau, T., E-mail: t.pfau@physik.uni-stuttgart.de [5. Physikalisches Institut, Universität Stuttgart, Pfaffenwaldring 57, 70550 Stuttgart (Germany); Baur, H.; Frühauf, N. [Institut für Großflächige Mikroelektronik, Universität Stuttgart, 70569 Stuttgart (Germany)

    2014-07-28T23:59:59.000Z

    We demonstrate the use of an anodic bonding technique for building a vacuum tight vapor cell for the use of Rydberg spectroscopy of alkali atoms with thin film electrodes on the inside of the cell. The cell is fabricated by simultaneous triple stack glass-to-glass anodic bonding at 300?°C. This glue-free, low temperature sealing technique provides the opportunity to include thin film electric feedthroughs. The pressure broadening is only limited by the vapor pressure of rubidium and the lifetime is at least four months with operating temperatures up to 230?°C.

  19. Indentation size effect and the plastic compressibility of glass

    SciTech Connect (OSTI)

    Smedskjaer, Morten M., E-mail: mos@bio.aau.dk [Section of Chemistry, Aalborg University, 9000 Aalborg (Denmark)

    2014-06-23T23:59:59.000Z

    Oxide glasses exhibit significant densification under an applied isostatic pressure at the glass transition temperature. The glass compressibility is correlated with the chemical composition and atomic packing density, e.g., borate glasses with planar triangular BO{sub 3} units are more disposed for densification than silicate glasses with tetrahedral units. We here show that there is a direct relation between the plastic compressibility following hot isostatic compression and the extent of the indentation size effect (ISE), which is the decrease of hardness with indentation load exhibited by most materials. This could suggest that the ISE is correlated with indentation-induced shear bands, which should form in greater density when the glass network is more adaptable to volume changes through structural and topological rearrangements under an applied pressure.

  20. Phosphate Glasses for Vitrification of Waste with High Sulfur Content

    SciTech Connect (OSTI)

    Kim, Dong-Sang; Vienna, John D.; Hrma, Pavel R.; Cassingham, Nathan J.

    2002-10-31T23:59:59.000Z

    The low solubility of sulfate in silicate-based glasses, approximately 1 mass% as SO3, limits the loading of high-level waste (HLW) and low-activity waste (LAW) containing high concentrations of sulfur. Based on crucible melting studies, we have shown that the phosphate glasses may incorporate more than 5 mass% SO3; hence, the waste loading can be increased until another constraint is met, such as glass durability. A high-sulfate HLW glass has been formulated and tested to demonstrate the advantages of phosphate glasses. The effect of waste loading on the chemical durability of quenched and slow-cooled phosphate glasses was determined using the Product Consistency Test.

  1. EMPIRICAL MODEL FOR FORMULATION OF CRYSTAL-TOLERANT HLW GLASSES

    SciTech Connect (OSTI)

    KRUGER AA; MATYAS J; HUCKLEBERRY AR; VIENNA JD; RODRIGUEZ CA

    2012-03-07T23:59:59.000Z

    Historically, high-level waste (HLW) glasses have been formulated with a low liquideus temperature (T{sub L}), or temperature at which the equilibrium fraction of spinel crystals in the melt is below 1 vol % (T{sub 0.01}), nominally below 1050 C. These constraints cannot prevent the accumulation of large spinel crystals in considerably cooler regions ({approx} 850 C) of the glass discharge riser during melter idling and significantly limit the waste loading, which is reflected in a high volume of waste glass, and would result in high capital, production, and disposal costs. A developed empirical model predicts crystal accumulation in the riser of the melter as a function of concentration of spinel-forming components in glass, and thereby provides guidance in formulating crystal-tolerant glasses that would allow high waste loadings by keeping the spinel crystals small and therefore suspended in the glass.

  2. Progress on a Cavity with Beryllium Walls for Muon Ionization Cooling Channel R&D.

    E-Print Network [OSTI]

    Bowring, D.L.

    2014-01-01T23:59:59.000Z

    ON A CAVITY WITH BERYLLIUM WALLS FOR MUON IONIZATION COOLINGFabricating a cavity with beryllium walls would mitigatepillbox RF cavity with beryllium walls, in order to evaluate

  3. Electrical signature of magnetic domain-wall dynamics

    E-Print Network [OSTI]

    Liu, Y.; Tretiakov, O. A.; Abanov, Artem.

    2011-01-01T23:59:59.000Z

    Current-induced domain-wall dynamics is studied in a thin ferromagnetic nanowire. The domain-wall dynamics is described by simple equations with four parameters. We propose a procedure to unambiguously determine these parameters by all...

  4. Concrete Masonry Wall Retrofit Systems for Blast Protection

    E-Print Network [OSTI]

    Johnson, Carol Faye

    2013-12-11T23:59:59.000Z

    unit (CMU) infill walls, commonly used in reinforced concrete or steel framed structures, are particularly vulnerable to blast loads. Facilities that incorporate CMU walls must either be hardened or retrofitted for explosive events. Conventional...

  5. Interaction between Drilled Shaft and Mechanically Stabilized Earth (MSE) Wall

    E-Print Network [OSTI]

    Aghahadi Forooshani, Mohammad

    2014-08-28T23:59:59.000Z

    Drilled shafts under horizontal loads are being constructed within Mechanically Stabled Earth (MSE) walls in the reinforced zone especially in overpass bridges and traffic signs. The interaction between the drilled shafts and the MSE wall...

  6. Electrical properties of single wall carbon nanotube reinforced polyimide composites

    E-Print Network [OSTI]

    Ounaies, Zoubeida

    Electrical properties of single wall carbon nanotube reinforced polyimide composites Z. Ounaiesa of single wall carbon nanotube (SWNT) reinforced polyimide composites were investigated as a function nanotube; Composites 1. Introduction Polyimides are widely used in applications ranging from

  7. TBU-0061- In the Matter of Misti Wall

    Broader source: Energy.gov [DOE]

    Misti Wall (the complainant or Wall), appeals the dismissal of her complaint of retaliation filed under 10 C.F.R. Part 708, the Department of Energy (DOE) Contractor Employee Protection Program. As...

  8. Engineering the fusion reactor first wall

    SciTech Connect (OSTI)

    Wurden, Glen [Los Alamos National Laboratory; Scott, Willms [Los Alamos National Laboratory

    2008-01-01T23:59:59.000Z

    Recently the National Academy of Engineering published a set of Grand Challenges in Engineering in which the second item listed was entitled 'Provide energy from fusion'. Clearly a key component of this challenge is the science and technology associated with creating and maintaining burning plasmas. This is being vigorously addressed with both magnetic and inertial approaches with various experiments such as ITER and NIF. Considerably less attention is being given to another key component of this challenge, namely engineering the first wall that will contain the burning plasma. This is a daunting problem requiring technologies and materials that can not only survive, but also perform multiple essential functions in this extreme environment. These functions are (1) shield the remainder of the device from radiation. (2) convert of neutron energy to useful heat and (3) breed and extract tritium to maintain the reactor fuel supply. The first wall must not contaminate the plasma with impurities. It must be infused with cooling to maintain acceptable temperatures on plasma facing and structural components. It must not degrade. It must avoid excessive build-up of tritium on surfaces, and, if surface deposits do form, must be receptive to cleaning techniques. All these functions and constraints must be met while being subjected to nuclear and thermal radiation, particle bombardment, high magnetic fields, thermal cycling and occasional impingement of plasma on the surface. And, operating in a nuclear environment, the first wall must be fully maintainable by remotely-operated manipulators. Elements of the first wall challenge have been studied since the 1970' s both in the US and internationally. Considerable foundational work has been performed on plasma facing materials and breeding blanket/shield modules. Work has included neutronics, materials fabrication and joining, fluid flow, tritium breeding, tritium recovery and containment, energy conversion, materials damage and magnetohydrodynamics. While work to date has been quite valuable, no blanket concept has been built and operated in anything approaching a realistic fusion reactor environment. Rather, work has been limited to isolated experiments on first wall components and paper studies. The need now is to complete necessary R&D on first wall components, assemble components into a practical design, and test the first wall in a realistic fusion environment. Besides supporting work, major prototype experiments could be performed in non-nuclear experiments, as part of the ITER project and as part of the Component Test Facility. The latter is under active consideration and is a proposed machine which would use a driven plasma to expose an entire first wall to a fusion environment. Key US contributors to first wall research have been UCLA, UCSD, U of Wisconsin, LANL, ORNL, PNNL, Argonne and Idaho National Lab. Current efforts have been coordinated by UCLA. It is recognized that when this work progresses to a larger scale, leadership from a national laboratory will be required. LANL is well-prepared to provide such leadership.

  9. Using sputter coated glass to stabilize microstrip gas chambers

    DOE Patents [OSTI]

    Gong, Wen G. (Albany, CA)

    1997-01-01T23:59:59.000Z

    By sputter coating a thin-layer of low-resistive, electronically-conductive glass on various substrates (including quartz and ceramics, thin-film Pestov glass), microstrip gas chambers (MSGC) of high gain stability, low leakage current, and a high rate capability can be fabricated. This design can make the choice of substrate less important, save the cost of ion-implantation, and use less glass material.

  10. Thermal phase stability of some simulated Defense waste glasses

    SciTech Connect (OSTI)

    May, R.P.

    1981-04-01T23:59:59.000Z

    Three simulated defense waste glass compositions developed by Savannah River Laboratories were studied to determine viscosity and compositional effects on the comparative thermal phase stabilities of these glasses. The glass compositions are similar except that the 411 glasses are high in lithium and low in sodium compared to the 211 glass, and the T glasses are high in iron and low in aluminum compared to the C glass. Specimens of these glasses were heat treated using isothermal anneals as short as 10 min and up to 15 days over the temperature range of 450/sup 0/C to 1100/sup 0/C. Additionally, a specimen of each glass was cooled at a constant cooling rate of 7/sup 0/C/hour from an 1100/sup 0/C melt down to 500/sup 0/C where it was removed from the furnace. The following were observed. The slow cooling rate of 7/sup 0/C/hour is possible as a canister centerline cooling rate for large canisters. Accordingly, it is important to note that a short range diffusion mechanism like cooperative growth phenomena can result in extensive devitrification at lower temperatures and higher yields than a long-range diffusion mechanism can; and can do it without the growth of large crystals that can fracture the glass. Refractory oxides like CeO/sub 2/ and (Ni, Mn, Fe)/sub 2/O/sub 4/ form very rapidly at higher temperatures than silicates and significant yields can be obtained at sufficiently high temperatures that settling of these dense phases becomes a major microstructural feature during slow cooling of some glasses. These annealing studies further show that below 500/sup 0/C there is but little devitrification occurring implying that glass canisters stored at 300/sup 0/C may be kinetically stable despite not being thermodynamically so.

  11. Formulation and Characterization of Waste Glasses with Varying Processing Temperature

    SciTech Connect (OSTI)

    Kim, Dong-Sang; Schweiger, M. J.; Rodriguez, Carmen P.; Lepry, William C.; Lang, Jesse B.; Crum, Jarrod V.; Vienna, John D.; Johnson, Fabienne; Marra, James C.; Peeler, David K.

    2011-10-17T23:59:59.000Z

    This report documents the preliminary results of glass formulation and characterization accomplished within the finished scope of the EM-31 technology development tasks for WP-4 and WP-5, including WP-4.1.2: Glass Formulation for Next Generation Melter, WP-5.1.2.3: Systematic Glass Studies, and WP-5.1.2.4: Glass Formulation for Specific Wastes. This report also presents the suggested studies for eventual restart of these tasks. The initial glass formulation efforts for the cold crucible induction melter (CCIM), operating at {approx}1200 C, with selected HLW (AZ-101) and LAW (AN-105) successfully developed glasses with significant increase of waste loading compared to that is likely to be achieved based on expected reference WTP formulations. Three glasses formulated for AZ-101HLW and one glass for AN-105 LAW were selected for the initial CCIM demonstration melter tests. Melter tests were not performed within the finished scope of the WP-4.1.2 task. Glass formulations for CCIM were expanded to cover additional HLWs that have high potential to successfully demonstrate the unique advantages of the CCIM technologies based on projected composition of Hanford wastes. However, only the preliminary scoping tests were completed with selected wastes within the finished scope. Advanced glass formulations for the reference WTP melter, operating at {approx}1200 C, were initiated with selected specific wastes to determine the estimated maximum waste loading. The incomplete results from these initial formulation efforts are summarized. For systematic glass studies, a test matrix of 32 high-aluminum glasses was completed based on a new method developed in this study.

  12. The use of glass matrices for solidification of radioactive wastes

    SciTech Connect (OSTI)

    Gromov, V.V.; Minaev, A.A. [Russian Academy of Sciences, Moscow (Russian Federation). Inst. of Physical Chemistry

    1993-12-31T23:59:59.000Z

    The physico-chemical aspects of the solidification of nuclear wastes have been studied at the Institute of Physical Chemistry of the Russian Academy of Sciences for a number of years. This method is viewed as the most reliable method of storage of nuclear wastes. Various glass systems have been studied, including phosphate, borosilicate glasses etc. The data obtained allow optimal glass compositions to be chosen for solidification of various nuclear wastes.

  13. High Performance Walls in Hot-Dry Climates

    SciTech Connect (OSTI)

    Hoeschele, M.; Springer, D.; Dakin, B.; German, A.

    2015-01-01T23:59:59.000Z

    High performance walls represent a high priority measure for moving the next generation of new homes to the Zero Net Energy performance level. The primary goal in improving wall thermal performance revolves around increasing the wall framing from 2x4 to 2x6, adding more cavity and exterior rigid insulation, achieving insulation installation criteria meeting ENERGY STAR's thermal bypass checklist, and reducing the amount of wood penetrating the wall cavity.

  14. Welding/sealing glass-enclosed space in a vacuum

    DOE Patents [OSTI]

    Tracy, C. Edwin (Golden, CO); Benson, David K. (Golden, CO)

    1996-01-01T23:59:59.000Z

    A method of welding and sealing the edges of two juxtaposed glass sheets together to seal a vacuum space between the sheets comprises the steps of positioning a radiation absorbant material, such as FeO, VO.sub.2, or NiO, between the radiation transmissive glass sheets adjacent the edges and then irradiating the absorbant material, preferably with a laser beam, through at least one of the glass sheets. Heat produced by the absorbed radiation in the absorbant material melts glass in the portions of both glass sheets that are adjacent the absorbant material, and the melted glass from both sheets flows together to create the weld when the melted glass cools and hardens. The absorbant material can be dissolved and diffused into the melted glass to the extent that it no longer absorbs enough energy to keep the glass melted, thus, with appropriate proportioning of absorbant material to source energy power and welding heat needed, the process can be made self-stopping.

  15. Dynamical heterogeneities in an attraction driven colloidal glass

    E-Print Network [OSTI]

    Antonio M. Puertas; Matthias Fuchs; Michael E. Cates

    2006-01-16T23:59:59.000Z

    The dynamical heterogeneities (DH) in non-ergodic states of an attractive colloidal glass are studied, as a function of the waiting time. Whereas the fluid states close to vitrify showed strong DH, the distribution of squared displacements of the glassy states studied here only present a tail of particles with increased mobility for the lower attraction strength at short waiting times. These particles are in the surface of the percolating cluster that comprises all of the particles, reminiscent of the fastest particles in the fluid. The quench deeper into the attractive glass is dynamically more homogeneous, in agreement with repulsive glasses (i.e. Lennard-Jones glass).

  16. Method of processing "BPS" glass ceramic and seals made therewith

    DOE Patents [OSTI]

    Reed, Scott T. (Albuquerque, NM); Stone, Ronald G. (Albuquerque, NM); McCollister, Howard L. (Albuquerque, NM); Wengert, deceased, Paul R. (late of Albuquerque, NM)

    1998-01-01T23:59:59.000Z

    A glass ceramic composition, a glass ceramic-to-metal seal, and more specifically a hermetic glass ceramic-to-metal seal prepared by subjecting a glass composition comprising, by weight percent, SiO.sub.2 (65-80%), LiO.sub.2 (8-16%), Al.sub.2 O.sub.3 (2-8%), K.sub.2 O (1-8%), P.sub.2 O.sub.5 (1-5%), B.sub.2 O.sub.3 (0.5-7%), and ZnO (0-5%) to the following processing steps: 1) heating the glass composition in a belt furnace to a temperature sufficient to melt the glass and crystallize lithium phosphate, 2) holding at a temperature and for a time sufficient to create cristobalite nuclei, 3) cooling at a controlled rate and to a temperature to cause crystallization of lithium silicates and growth of cristobalite, and 4) still further cooling in stages to ambient temperature. This process produces a glass ceramic whose high coefficient of thermal expansion (up to 200.times.10.sup.-7 in/in/.degree.C.) permits the fabrication of glass ceramic-to-metal seals, and particularly hermetic glass ceramic seals to nickel-based and stainless steel alloys and copper.

  17. Breaking through the Glass Ceiling: The Correlation Between the...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    between krypton permeation through and the self-diffusivity of supercooled liquid methanol at temperatures near (100-115 K) the glass transition temperature, Tg (103 K)....

  18. Welding/sealing glass-enclosed space in a vacuum

    DOE Patents [OSTI]

    Tracy, C.E.; Benson, D.K.

    1996-02-06T23:59:59.000Z

    A method of welding and sealing the edges of two juxtaposed glass sheets together to seal a vacuum space between the sheets comprises the steps of positioning a radiation absorbent material, such as FeO, VO{sub 2}, or NiO, between the radiation transmissive glass sheets adjacent the edges and then irradiating the absorbent material, preferably with a laser beam, through at least one of the glass sheets. Heat produced by the absorbed radiation in the absorbent material melts glass in the portions of both glass sheets that are adjacent the absorbent material, and the melted glass from both sheets flows together to create the weld when the melted glass cools and hardens. The absorbent material can be dissolved and diffused into the melted glass to the extent that it no longer absorbs enough energy to keep the glass melted, thus, with appropriate proportioning of absorbent material to source energy power and welding heat needed, the process can be made self-stopping. 8 figs.

  19. Alkali-lead-iron phosphate glass and associated method

    DOE Patents [OSTI]

    Boatner, L.A.; Sales, B.C.; Franco, S.C.S.

    1994-03-29T23:59:59.000Z

    A glass composition and method of preparation utilizes a mixture consisting of phosphorus oxide within the range of about 40 to 49 molar percent, lead oxide within the range of about 10 to 25 molar percent, iron oxide within the range of about 10 to 17 molar percent and an alkali oxide within the range of about 23 to 30 molar percent. The glass resulting from the melting and subsequent solidifying of the mixture possesses a high degree of durability and a coefficient of thermal expansion as high as that of any of a number of metals. Such features render this glass highly desirable in glass-to-metal seal applications. 6 figures.

  20. Alkali-lead-iron phosphate glass and associated method

    DOE Patents [OSTI]

    Boatner, Lynn A. (Oak Ridge, TN); Sales, Brian C. (Knoxville, TN); Franco, Sofia C. S. (Santafe de Bogota, CO)

    1994-01-01T23:59:59.000Z

    A glass composition and method of preparation utilizes a mixture consisting of phosphorus oxide within the range of about 40 to 49 molar percent, lead oxide within the range of about 10 to 25 molar percent, iron oxide within the range of about 10 to 17 molar percent and an alkali oxide within the range of about 23 to 30 molar percent. The glass resulting from the melting and subsequent solidifying of the mixture possesses a high degree of durability and a coefficient of thermal expansion as high as that of any of a number of metals. Such features render this glass highly desirable in glass-to-metal seal applications.

  1. Thermal Predictions of the Cooling of Waste Glass Canisters

    SciTech Connect (OSTI)

    Donna Post Guillen

    2014-11-01T23:59:59.000Z

    Radioactive liquid waste from five decades of weapons production is slated for vitrification at the Hanford site. The waste will be mixed with glass forming additives and heated to a high temperature, then poured into canisters within a pour cave where the glass will cool and solidify into a stable waste form for disposal. Computer simulations were performed to predict the heat rejected from the canisters and the temperatures within the glass during cooling. Four different waste glass compositions with different thermophysical properties were evaluated. Canister centerline temperatures and the total amount of heat transfer from the canisters to the surrounding air are reported.

  2. aging colloidal glass: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Matter (arXiv) Summary: We use confocal microscopy to directly visualize the dynamics of aging colloidal glasses. We prepare a colloidal suspension at high density, a...

  3. Color Glass Condensate in QCD at High Energy

    E-Print Network [OSTI]

    Kazunori Itakura

    2004-10-28T23:59:59.000Z

    I give a brief review about the color glass condensate, which is the universal form of hadrons and nuclei at high energies.

  4. Economic manufacturing of bulk metallic glass compositions by microalloying

    DOE Patents [OSTI]

    Liu, Chain T.

    2003-05-13T23:59:59.000Z

    A method of making a bulk metallic glass composition includes the steps of:a. providing a starting material suitable for making a bulk metallic glass composition, for example, BAM-11; b. adding at least one impurity-mitigating dopant, for example, Pb, Si, B, Sn, P, to the starting material to form a doped starting material; and c. converting the doped starting material to a bulk metallic glass composition so that the impurity-mitigating dopant reacts with impurities in the starting material to neutralize deleterious effects of the impurities on the formation of the bulk metallic glass composition.

  5. From local to global ground states in Ising spin glasses

    E-Print Network [OSTI]

    Ilia Zintchenko; Matthew B. Hastings; Matthias Troyer

    2015-01-09T23:59:59.000Z

    We consider whether it is possible to find ground states of frustrated spin systems by solving them locally. Using spin glass physics and Imry-Ma arguments in addition to numerical benchmarks we quantify the power of such local solution methods and show that for the average low-dimensional spin glass problem outside the spin- glass phase the exact ground state can be found in polynomial time. In the second part we present a heuristic, general-purpose hierarchical approach which for spin glasses on chimera graphs and lattices in two and three dimensions outperforms, to our knowledge, any other solver currently around, with significantly better scaling performance than simulated annealing.

  6. Research Needs: Glass Solar Reflectance and Vinyl Siding

    E-Print Network [OSTI]

    Hart, Robert

    2012-01-01T23:59:59.000Z

    properties of reflected solar radiation from glass surfaces,transfer at the siding surface. Direct solar radiation tosiding, reflected solar radiation from nearby surfaces,

  7. alternatives glass jars: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Small amounts). When looking at the cost effectiveness of recycling versus waste to landfill, it's worth bearing Melham, Tom 100 Overview of Energy Efficiency for Glass...

  8. activity glass melts: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    tested strains. Rehab Mahmoud; Abd El-baky; Sanya Maised Hussien 36 Retrospective radon progeny measurements through measurements of 210 activities on glass objects using stacked...

  9. area glass sheets: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    applications. - Int. J. Solids & Struct. 49 and Motivation Components of Thin Film Solar Modules back sheet or glass encapsulant electrical conductor thin 14 Lavender Foal...

  10. STEEL PLATE SHEAR WALL BUILDINGS: DESIGN REQUIREMENTS AND RESEARCH

    E-Print Network [OSTI]

    Bruneau, Michel

    , University at Buffalo, Buffalo, NY 14260. #12;plate shear wall design and use of light-gage cold form platesSTEEL PLATE SHEAR WALL BUILDINGS: DESIGN REQUIREMENTS AND RESEARCH Michel Bruneau, P.E. 1 Dr areas. This paper provides an overview of the current state-of-the-art in steel plate shear wall design

  11. Building Cathedrals and Breaking down Reinforced Concrete Walls

    E-Print Network [OSTI]

    Broué, Michel - Institut de Mathématiques de Jussieu, Université Paris 7

    Building Cathedrals and Breaking down Reinforced Concrete Walls Michel Brou´e Institut Henri distinction between great mathematicians Concrete walls breakers Michel Brou´e (Institut Henri Poincar´e) John Concrete walls breakers Cathedrals builders Michel Brou´e (Institut Henri Poincar´e) John Thompson

  12. Designing Precast Concrete Cross Wall Joints Against Progressive Collapse

    E-Print Network [OSTI]

    Birmingham, University of

    Designing Precast Concrete Cross Wall Joints Against Progressive Collapse Researcher: Mohamad concrete cross wall constructions. Ronan Point Collapse (http://en.wikipedia.org/wiki/Ronan_Point) #12;Due gap is listed as follows: · Limited number of studies for designing precast concrete cross wall

  13. Enhanced reactive metal wall for dehalogenation of hydrocarbons

    DOE Patents [OSTI]

    Howson, P.E.; Mackenzie, P.D.; Horney, D.P.

    1996-08-06T23:59:59.000Z

    A method is provided for remediation of contaminated solutions using a tiered metal wall or column. The tiered metal wall or column has at least three zones with graduated sizes of reducing metal particles. Contaminated solutions pass through the tiered wall or column to dehalogenate contaminant halogenated hydrocarbons. 3 figs.

  14. Phosphate glass useful in high power lasers

    DOE Patents [OSTI]

    Hayden, J.S.; Sapak, D.L.; Ward, J.M.

    1990-05-29T23:59:59.000Z

    A low- or no-silica phosphate glass useful as a laser medium and having a high thermal conductivity, K[sub 90 C] > 0.8 W/mK, and a low coefficient of thermal expansion, [alpha][sub 20--40 C] < 80[times]10[sup [minus]7]/C, consists essentially of (on a batch composition basis Mole %): P[sub 2]O[sub 5], 45-70; Li[sub 2]O, 15-35; Na[sub 2]O, 0-10; Al[sub 2]O[sub 3], 10-15; Nd[sub 2]O[sub 3], 0.01-6; La[sub 2]O[sub 3], 0-6; SiO[sub 2], 0-8; B[sub 2]O[sub 3], 0-8; MgO, 0-18; CaO, 0-15; SrO, 0-9; BaO, 0-9; ZnO, 0-15; the amounts of Li[sub 2]O and Na[sub 2]O providing an average alkali metal ionic radius sufficiently low whereby said glass has K[sub 90 C] > 0.8 W/mK and [alpha][sub 20--40 C] < 80[times]10[sup [minus]7]/C, and wherein, when the batch composition is melted in contact with a silica-containing surface, the final glass composition contains at most about 3.5 mole % of additional silica derived from such contact during melting. The Nd[sub 2]O[sub 3] can be replaced by other lasing species. 3 figs.

  15. Molten Glass for Thermal Storage: Advanced Molten Glass for Heat Transfer and Thermal Energy Storage

    SciTech Connect (OSTI)

    None

    2012-01-01T23:59:59.000Z

    HEATS Project: Halotechnics is developing a high-temperature thermal energy storage system using a new thermal-storage and heat-transfer material: earth-abundant and low-melting-point molten glass. Heat storage materials are critical to the energy storage process. In solar thermal storage systems, heat can be stored in these materials during the day and released at night—when the sun is not out—to drive a turbine and produce electricity. In nuclear storage systems, heat can be stored in these materials at night and released to produce electricity during daytime peak-demand hours. Halotechnics new thermal storage material targets a price that is potentially cheaper than the molten salt used in most commercial solar thermal storage systems today. It is also extremely stable at temperatures up to 1200°C—hundreds of degrees hotter than the highest temperature molten salt can handle. Being able to function at high temperatures will significantly increase the efficiency of turning heat into electricity. Halotechnics is developing a scalable system to pump, heat, store, and discharge the molten glass. The company is leveraging technology used in the modern glass industry, which has decades of experience handling molten glass.

  16. Melting a granular glass by cooling

    E-Print Network [OSTI]

    Jan Plagge; Claus Heussinger

    2013-02-05T23:59:59.000Z

    Driven granular systems readily form glassy phases at high particle volume fractions and low driving amplitudes. We use computer simulations of a driven granular glass to evidence a re-entrance melting transition into a fluid state, which, contrary to intuition, occurs by \\emph{reducing} the amplitude of the driving. This transition is accompanied by anomalous particle dynamics and super-diffusive behavior on intermediate time-scales. We highlight the special role played by frictional interactions, which help particles to escape their glassy cages. Such an effect is in striking contrast to what friction is expected to do: reduce particle mobility by making them stick.

  17. Radiation Induced Nanocrystal Formation in Metallic Glasses 

    E-Print Network [OSTI]

    Carter, Jesse

    2010-01-14T23:59:59.000Z

    simple system consisting of only two elements, several intermetallic compounds can exist, each with their own crystal structure (face-centered cubic, body-centered, etc), and the system gets much more complicated when the number of constituents... of Alloys and Compounds, Vol 431, Q.S. Zhang, W. Zhang, G.Q. Xie, K.S. Nakayama, H. Kimura and A. Inoue, Formation of bulk metallic glass in situ composites in Cu50Zr45Ti5 alloy, Pages 236-240, Copyright 2007, with permission from Elsevier. 16 Fig. 9...

  18. Viscosity of many-component glasses

    SciTech Connect (OSTI)

    Hrma, Pavel R.; Arrigoni, Benjamin M.; Schweiger, Michael J.

    2009-06-01T23:59:59.000Z

    The effect of composition on the viscosity of multicomponent glasses was expressed as a function of temperature and composition for three composition regions containing various subsets of Al2O3, B2O3, Bi2O3, CaO, Cr2O3, F, Fe2O3, K2O, Li2O, MgO, MnO, Na2O, NiO, P2O5, SiO2, UO2, and ZrO2. Limits of applicability of the composition models are discussed.

  19. Advanced radioactive waste-glass melters

    SciTech Connect (OSTI)

    Bickford, D.F.

    1990-12-31T23:59:59.000Z

    During pilot scale operations of the Scale Glass Melter for the US Department of Energy a team of engineers and scientists was formed to assess the need for continued melter design development to support the Defense Waste Processing Facility (DWPF), and prioritize future efforts. Recently this has taken on new importance because of selection of the DWPF Melter design as the reference for the Hanford Waste Vitrification Project (HWVP), and increased interest at the West Valley Demonstration Project on melter life and replacement. Results of the study are summarized, and goals produced by the study are compared to the results of current programs at the Savannah River Laboratory (SRL).

  20. Advanced radioactive waste-glass melters

    SciTech Connect (OSTI)

    Bickford, D.F.

    1990-01-01T23:59:59.000Z

    During pilot scale operations of the Scale Glass Melter for the US Department of Energy a team of engineers and scientists was formed to assess the need for continued melter design development to support the Defense Waste Processing Facility (DWPF), and prioritize future efforts. Recently this has taken on new importance because of selection of the DWPF Melter design as the reference for the Hanford Waste Vitrification Project (HWVP), and increased interest at the West Valley Demonstration Project on melter life and replacement. Results of the study are summarized, and goals produced by the study are compared to the results of current programs at the Savannah River Laboratory (SRL).

  1. Xinyi Glass Holdings Limited | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit withTianlinPapers Home Kyoung'sWoongjinXenergaXinhuaHenengXinyi Glass Holdings

  2. Glass Buttes Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetec AG Contracting Jump to: navigation,GilaGirasoleWest Virginia: EnergyGlass

  3. MECS 2006 - Glass | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(FactDepartment ofLetterEconomy andTermsDepartment1| DepartmentCementFoodGlass MECS

  4. Bioactive Glass Scaffolds for Bone Regeneration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced Materials Find Find More Like This Return toBioactive Glass

  5. Bioactive Glass Scaffolds for Bone Regeneration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced Materials Find Find More Like This ReturnBioactive Glass Scaffolds

  6. Bioactive Glass Scaffolds for Bone Regeneration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisiting the TWP TWPAlumniComplexMaterial Science |Materials CenterBioactive Glass

  7. Glass Mountain Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluating AGeothermal/Exploration <Glacial Energy HoldingsGlacial LakesGlass

  8. Isuzu Glass Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroup | OpenHunanInformation sourceInvensysIsland Gas JumpIsuzu Glass Co

  9. Light quark masses using domain wall fermions

    E-Print Network [OSTI]

    Tom Blum; Amarjit Soni; Matthew Wingate

    1998-09-10T23:59:59.000Z

    We compute the one-loop self-energy correction to the massive domain wall quark propagator. Combining this calculation with simulations at several gauge couplings, we estimate the strange quark mass in the continuum limit. The perturbative one-loop mass renormalization is comparable to that for Wilson quarks and considerably smaller than that for Kogut-Susskind quarks. Also, scaling violations appear mild in comparison to other errors at present. Given their good chiral behavior and these features, domain wall quarks are attractive for evaluating the light quark masses. Our preliminary quenched result is m_s(2 GeV) = 82(15) MeV in the ${\\bar{MS}}$ scheme.

  10. Enhanced dielectric-wall linear accelerator

    DOE Patents [OSTI]

    Sampayan, S.E.; Caporaso, G.J.; Kirbie, H.C.

    1998-09-22T23:59:59.000Z

    A dielectric-wall linear accelerator is enhanced by a high-voltage, fast e-time switch that includes a pair of electrodes between which are laminated alternating layers of isolated conductors and insulators. A high voltage is placed between the electrodes sufficient to stress the voltage breakdown of the insulator on command. A light trigger, such as a laser, is focused along at least one line along the edge surface of the laminated alternating layers of isolated conductors and insulators extending between the electrodes. The laser is energized to initiate a surface breakdown by a fluence of photons, thus causing the electrical switch to close very promptly. Such insulators and lasers are incorporated in a dielectric wall linear accelerator with Blumlein modules, and phasing is controlled by adjusting the length of fiber optic cables that carry the laser light to the insulator surface. 6 figs.

  11. Analysis and Research on the Thermal Properties of Energy-efficient Building Glass: A Case Study in PVB Laminated Glass

    E-Print Network [OSTI]

    Chen, Z.; Meng, Q.

    2006-01-01T23:59:59.000Z

    , are analyzed. The methods on usage of energy-saving glass are promoted based on the differences of their thermal properties. Meanwhile, a new kind of glass?PVB laminated glass (Fig.1), is introduced. Fl at cl ear gl ass 0. 05mmLOWE coati ng Fl at cl ear g... lass 3 mm( 5 mm) 0. 38mmPVB 3 mm( 5 mm) 0. 38mmPVB Fig. 1 Structure of PVB laminated glass ICEBO2006, Shenzhen, China Envelope Technologies for Building Energy Efficiency, Vol.II-4-5 2. EVALUATION STANDARDS OF SOLAR-OPTICAL PROPERTY The main...

  12. Wall Drying in Hot and Humid Climates

    E-Print Network [OSTI]

    Boone, K.; Weston, T.; Pascual, X.

    2004-01-01T23:59:59.000Z

    WALL DRYING IN HOT AND HUMID CLIMATES Kimdolyn Boone Theresa Weston, PhD Xuaco Pascual Product Development Engineer Building Scientist Field Services Engineer E.I. du Pont de Nemours and Company Richmond, VA ABSTRACT... time based on the varying weather conditions. Constant interior conditions of 70?F and 55% RH were chosen. This corresponds to typical interior temperatures and a high level of moisture production within the house. This was chosen as a worse...

  13. Soft wall model for a holographic superconductor

    E-Print Network [OSTI]

    Afonin, S S

    2015-01-01T23:59:59.000Z

    We apply the soft wall holographic model from hadron physics to a description of the high-$T_c$ superconductivity. In comparison with the existing bottom-up holographic superconductors, the proposed approach is more phenomenological. On the other hand, it is much simpler and has more freedom for fitting the conductivity properties of the real high-$T_c$ materials. We demonstrate some examples of emerging models and discuss a possible origin of the approach.

  14. Hollow clay tile wall program summary report

    SciTech Connect (OSTI)

    Henderson, R.C.; Jones, W.D. [Gilbert/Commonwealth, Inc., Oak Ridge, TN (United States); Beavers, J.E. [MS Technology, Inc. (United States)

    1995-07-30T23:59:59.000Z

    Many of the Y-12 Plant buildings, constructed during the 1940s and 1950s, consist of steel ed concrete framing infilled with hollow clay tile (HCT). The infill was intended to provide for building enclosure and was not designed to have vertical or lateral load-carrying capacity. During the late 1970s and early 1980s, seismic and wind evaluations were performed on many of these buildings in conjunction with the preparation of a site-wide safety analysis report. This analytical work, based on the best available methodology, considered lateral load-carrying capacity of the HCT infill on the basis of building code allowable shear values. In parallel with the analysis effort, DOE initiated a program to develop natural phenomena capacity and performance criteria for existing buildings, but these criteria did not specify guidelines for determining the lateral force capacity of frames infilled with HCT. The evaluation of infills was, therefore, based on the provisions for the design of unreinforced masonry as outlined in standard masonry codes. When the results of the seismic and wind evaluations were compared with the new criteria, the projected building capacities fell short of the requirements. Apparently, if the buildings were to meet the new criteria, many millions of dollars would be required for building upgrades. Because the upgrade costs were significant, the assumptions and approaches used in the analyses were reevaluated. Four issues were identified: (1) Once the infilled walls cracked, what capacity (nonlinear response), if any, would the walls have to resist earthquake or wind loads applied in the plane of the infill (in-plane)? (2) Would the infilled walls remain within the steel or reinforced concrete framing when subjected to earthquake or high wind loads applied perpendicular to the infill (out-of-plane)? (3) What was the actual shear capacity of the HCT infill? (4) Was modeling the HCT infill as a shear wall the best approach?

  15. ADVANCED HIGH PERFORMANCE SOLID WALL BLANKET CONCEPTS

    SciTech Connect (OSTI)

    WONG, CPC; MALANG, S; NISHIO, S; RAFFRAY, R; SAGARA, S

    2002-04-01T23:59:59.000Z

    OAK A271 ADVANCED HIGH PERFORMANCE SOLID WALL BLANKET CONCEPTS. First wall and blanket (FW/blanket) design is a crucial element in the performance and acceptance of a fusion power plant. High temperature structural and breeding materials are needed for high thermal performance. A suitable combination of structural design with the selected materials is necessary for D-T fuel sufficiency. Whenever possible, low afterheat, low chemical reactivity and low activation materials are desired to achieve passive safety and minimize the amount of high-level waste. Of course the selected fusion FW/blanket design will have to match the operational scenarios of high performance plasma. The key characteristics of eight advanced high performance FW/blanket concepts are presented in this paper. Design configurations, performance characteristics, unique advantages and issues are summarized. All reviewed designs can satisfy most of the necessary design goals. For further development, in concert with the advancement in plasma control and scrape off layer physics, additional emphasis will be needed in the areas of first wall coating material selection, design of plasma stabilization coils, consideration of reactor startup and transient events. To validate the projected performance of the advanced FW/blanket concepts the critical element is the need for 14 MeV neutron irradiation facilities for the generation of necessary engineering design data and the prediction of FW/blanket components lifetime and availability.

  16. Reduction of Glass Surface Reflectance by Ion Beam Surface Modification

    SciTech Connect (OSTI)

    Mark Spitzer

    2011-03-11T23:59:59.000Z

    This is the final report for DOE contract DE-EE0000590. The purpose of this work was to determine the feasibility of the reduction of the reflection from the front of solar photovoltaic modules. Reflection accounts for a power loss of approximately 4%. A solar module having an area of one square meter with an energy conversion efficiency of 18% generates approximately 180 watts. If reflection loss can be eliminated, the power output can be increased to 187 watts. Since conventional thin-film anti-reflection coatings do not have sufficient environmental stability, we investigated the feasibility of ion beam modification of the glass surface to obtain reduction of reflectance. Our findings are generally applicable to all solar modules that use glass encapsulation, as well as commercial float glass used in windows and other applications. Ion implantation of argon, fluorine, and xenon into commercial low-iron soda lime float glass, standard float glass, and borosilicate glass was studied by implantation, annealing, and measurement of reflectance. The three ions all affected reflectance. The most significant change was obtained by argon implantation into both low-iron and standard soda-lime glass. In this way samples were formed with reflectance lower than can be obtained with a single-layer coatings of magnesium fluoride. Integrated reflectance was reduced from 4% to 1% in low-iron soda lime glass typical of the glass used in solar modules. The reduction of reflectance of borosilicate glass was not as large; however borosilicate glass is not typically used in flat plate solar modules. Unlike conventional semiconductor ion implantation doping, glass reflectance reduction was found to be tolerant to large variations in implant dose, meaning that the process does not require high dopant uniformity. Additionally, glass implantation does not require mass analysis. Simple, high current ion implantation equipment can be developed for this process; however, before the process can be employed on full scale solar modules, equipment must be developed for ion implanting large sheets of glass. A cost analysis shows that the process can be economical. Our finding is that the reduction of reflectance by ion beam surface modification is technically and economically feasible. The public will benefit directly from this work by the improvement of photovoltaic module efficiency, and indirectly by the greater understanding of the modification of glass surfaces by ion beams.

  17. Evolution of glass properties during a substitution of S by Se in Ge28Sb12S60-xSex glass Guillaume Guery1,2

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Evolution of glass properties during a substitution of S by Se in Ge28Sb12S60-xSex glass network, Université de Bordeaux I, Avenue du Dr Schweitzer, 33608 Pessac Cedex, France. Keywords: Chalcogenide glass; Raman spectroscopy; X-ray photoelectron spectroscopy; Glass properties Author whom correspondence should

  18. The mechanics of glass and functionalised glass surfaces E. Barthel, M. Beauvais, R. Briard, N. Chemin, D. Dalmas, C. Heitz, M. Klotz, P. Nael, A.

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    The mechanics of glass and functionalised glass surfaces E. Barthel, M. Beauvais, R. Briard, N Aubervilliers Cedex France etienne.barthel@saint-gobain.com Abstract Glass is highly sensitive to surface flaws in glass functionalisation by grafting or coating lend an even more prominent role to the surface

  19. Coexistence of spin-glass and ferromagnetic order in the J Heisenberg spin-glass model A. D. Beath and D. H. Ryan

    E-Print Network [OSTI]

    Ryan, Dominic

    Coexistence of spin-glass and ferromagnetic order in the ±J Heisenberg spin-glass model A. D. Beath temperature spin-glass transition at TSG=0.220 5 . Remarkably, this transition temperature is composition dependent, rising to TSG=0.25 1 by the ferromagnet­spin-glass boundary. Coexistence of ferromagnetic

  20. Optical Basicity and Nepheline Crystallization in High Alumina Glasses

    SciTech Connect (OSTI)

    Rodriguez, Carmen P.; McCloy, John S.; Schweiger, M. J.; Crum, Jarrod V.; Winschell, Abigail E.

    2011-02-25T23:59:59.000Z

    The purpose of this study was to find compositions that increase waste loading of high-alumina wastes beyond what is currently acceptable while avoiding crystallization of nepheline (NaAlSiO4) on slow cooling. Nepheline crystallization has been shown to have a large impact on the chemical durability of high-level waste glasses. It was hypothesized that there would be some composition regions where high-alumina would not result in nepheline crystal production, compositions not currently allowed by the nepheline discriminator. Optical basicity (OB) and the nepheline discriminator (ND) are two ways of describing a given complex glass composition. This report presents the theoretical and experimental basis for these models. They are being studied together in a quadrant system as metrics to explore nepheline crystallization and chemical durability as a function of waste glass composition. These metrics were calculated for glasses with existing data and also for theoretical glasses to explore nepheline formation in Quadrant IV (passes OB metric but fails ND metric), where glasses are presumed to have good chemical durability. Several of these compositions were chosen, and glasses were made to fill poorly represented regions in Quadrant IV. To evaluate nepheline formation and chemical durability of these glasses, quantitative X-ray diffraction (XRD) analysis and the Product Consistency Test were conducted. A large amount of quantitative XRD data is collected here, both from new glasses and from glasses of previous studies that had not previously performed quantitative XRD on the phase assemblage. Appendix A critically discusses a large dataset to be considered for future quantitative studies on nepheline formation in glass. Appendix B provides a theoretical justification for choice of the oxide coefficients used to compute the OB criterion for nepheline formation.

  1. Leaching assessments of toxic metals in waste plasma display panel glass.

    E-Print Network [OSTI]

    Chen, M; Jiang, P; Chen, H; Ogunseitan, OA; Li, Y

    2015-01-01T23:59:59.000Z

    of waste cathode-ray tube glass. Waste Manage. 26:1468–76.leachability from waste PDP glass in order to determinewaste plasma display panel glass ab a a b a Mengjun Chen ,

  2. Glass particles produced by laser ablation for ICP-MS measurements

    E-Print Network [OSTI]

    Gonzalez, J.; Liu, C.; Wen, S.; Mao, X.; Russo, R.E.

    2008-01-01T23:59:59.000Z

    Glass particles produced by laser ablation for ICP-MS266nm) was used to generate glass particles from two sets ofWhen the current data on glass were compared with the metal

  3. Graded index antireflective coatings for glass : final report, September 1978 - February 1982

    E-Print Network [OSTI]

    Haggerty, John Scarseth

    1983-01-01T23:59:59.000Z

    Glass compositions and process conditions by which broad band gradedindex antreflective films can be produced on glass surfaces have been developed. The end use for the treated glass sheet is as cover plates for flat plate ...

  4. The effect of temperature on the bending of laminated glass beams

    E-Print Network [OSTI]

    Edel, Matthew Thomas

    1997-01-01T23:59:59.000Z

    Laminated glass is comprised of multiple plates of glass bonded together with polymorphous interlayers. The interest in the use of architectural laminated glass in the construction industry has increased due to its possible advantages over...

  5. Cutting assembly including expanding wall segments of auger

    DOE Patents [OSTI]

    Treuhaft, Martin B. (San Antonio, TX); Oser, Michael S. (San Antonio, TX)

    1983-01-01T23:59:59.000Z

    A mining auger comprises a cutting head carried at one end of a tubular shaft and a plurality of wall segments which in a first position thereof are disposed side by side around said shaft and in a second position thereof are disposed oblique to said shaft. A vane projects outwardly from each wall segment. When the wall segments are in their first position, the vanes together form a substantially continuous helical wall. A cutter is mounted on the peripheral edge of each of the vanes. When the wall segments are in their second position, the cutters on the vanes are disposed radially outward from the perimeter of the cutting head.

  6. Effect of elasticity of wall on diffusion in nano channel

    SciTech Connect (OSTI)

    Tankeshwar, K., E-mail: tankesh@pu.ac.in [Computer Centre, Panjab University Chandigarh,- 160014 (India); Srivastava, Sunita [Department of Physics, Panjab University, Chandigarh 160014 (India)

    2014-04-24T23:59:59.000Z

    Confining walls of nano channel are taken to be elastic to study their effect on the diffusion coefficient of fluid flowing through the channel. The wall is elastic to the extent that it responses to molecular pressure exerted by fluid. The model to study diffusion is based on microscopic considerations. Results obtained for fluid confining to 20 atomic diameter width contrasted with results obtained by considering rigid and smooth wall. The effect of roughness of wall on diffusion can be compensated by the elastic property of wall.

  7. Initial Examination of Low Velocity Sphere Impact of Glass Ceramics

    SciTech Connect (OSTI)

    Morrissey, Timothy G [ORNL; Fox, Ethan E [ORNL; Wereszczak, Andrew A [ORNL; Ferber, Mattison K [ORNL

    2012-06-01T23:59:59.000Z

    This report summarizes US Army TARDEC sponsored work at Oak Ridge National Laboratory (ORNL) involving low velocity (< 30 m/s or < 65 mph) sphere impact testing of two materials from the lithium aluminosilicate family reinforced with different amounts of ceramic particulate, i.e., glass-ceramic materials, SCHOTT Resistan{trademark}-G1 and SCHOTT Resistan{trademark}-L. Both materials are provided by SCHOTT Glass (Duryea, PA). This work is a follow-up to similar sphere impact studies completed by the authors on PPG's Starphire{reg_sign} soda-lime silicate glass and SCHOTT BOROFLOAT{reg_sign} borosilicate glass. A gas gun or a sphere-drop test setup was used to produce controlled velocity delivery of silicon nitride (Si{sub 3}N{sub 4}) spheres against the glass ceramic tile targets. Minimum impact velocities to initiate fracture in the glass-ceramics were measured and interpreted in context to the kinetic energy of impact and the elastic property mismatch between sphere and target material. Quasistatic spherical indentation was also performed on both glass ceramics and their contact damage responses were compared to those of soda-lime silicate and borosilicate glasses. Lastly, variability of contact damage response was assessed by performing spherical indentation testing across the area of an entire glass ceramic tile. The primary observations from this low velocity (< 30 m/s or < 65 mph) testing were: (1) Resistan{trademark}-L glass ceramic required the highest velocity of sphere impact for damage to initiate. Starphire{reg_sign} soda-lime silicate glass was second best, then Resistan{trademark}-G1 glass ceramic, and then BOROFLOAT{reg_sign} borosilicate glass. (2) Glass-ceramic Resistan{trademark}-L also required the largest force to initiate ring crack from quasi-static indentation. That ranking was followed, in descending order, by Starphire{reg_sign} soda-lime silicate glass, Resistan{trademark}-G1 glass ceramic, and BOROFLOAT{reg_sign} borosilicate glass. (3) Spheres with a lower elastic modulus require less force to initiate fracture in Resistan{trademark}-G1 from quasi-static spherical indentation. This indicates that friction is affecting ring crack initiation in Resistan{trademark}-G1. Friction also affected ring crack initiation in Starphire{reg_sign} soda-lime silicate and BOROFLOAT{reg_sign} borosilicate glasses. Among these three materials, friction was the most pronounced (largest slope in the RCIF-elastic modulus graph) in the Starphire{reg_sign} and least pronounced in the BOROFLOAT{reg_sign}. The reason for this is not understood, but differences in deformation behavior under high contact stresses could be a cause or contributor to this. (4) The force necessary to initiate contact-induced fracture is higher under dynamic conditions than it is under quasi-static conditions in Resistan{trademark}-L and Resistan{trademark}-G1 glass ceramics. This is a trend observed too in Starphire{reg_sign} and BOROFLOAT{reg_sign}. (5) There is a subtle indication there was intra-tile differences in spherical indentation-induced ring crack initiation forces. This is not a material property nor is it exclusive to glass-ceramic Resistan{trademark}-G1 glass ceramic, rather, it is a statistical mechanical response to an accumulated history of processing and handling of that specific tile.

  8. Quantum computing in a piece of glass

    E-Print Network [OSTI]

    Warner A. Miller; Grigoriy Kreymerman; Christopher Tison; Paul M. Alsing; Jonathan R. McDonald

    2011-12-15T23:59:59.000Z

    Quantum gates and simple quantum algorithms can be designed utilizing the diffraction phenomena of a photon within a multiplexed holographic element. The quantum eigenstates we use are the photon's linear momentum (LM) as measured by the number of waves of tilt across the aperture. Two properties of quantum computing within the circuit model make this approach attractive. First, any conditional measurement can be commuted in time with any unitary quantum gate - the timeless nature of quantum computing. Second, photon entanglement can be encoded as a superposition state of a single photon in a higher-dimensional state space afforded by LM. Our theoretical and numerical results indicate that OptiGrate's photo-thermal refractive (PTR) glass is an enabling technology. We will review our previous design of a quantum projection operator and give credence to this approach on a representative quantum gate grounded on coupled-mode theory and numerical simulations, all with parameters consistent with PTR glass. We discuss the strengths (high efficiencies, robustness to environment) and limitations (scalability, crosstalk) of this technology. While not scalable, the utility and robustness of such optical elements for broader quantum information processing applications can be substantial.

  9. Control of magnetohydrodynamic modes with a resistive wall above the wall stabilization limit

    SciTech Connect (OSTI)

    Finn, John M. [T-15, Plasma Theory, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States)

    2006-08-15T23:59:59.000Z

    Studies are shown of control of magnetohydrodynamic (MHD) modes in the presence of a resistive wall, below and above the regime for which stabilization is possible with a perfectly conducting wall, i.e., in and above the ideal wall limit. The results show that resistive plasma (tearing-like) modes can be feedback stabilized for current profiles which are unstable above the ideal wall limit, both for tokamak-like and reversed field pinch (RFP)-like profiles. However, above the limit for wall stabilization of ideal plasma modes, resonant or nonresonant, the feedback scheme cannot provide stabilization. The control scheme senses both normal and tangential components of the perturbed magnetic field, and the feedback is proportional to a linear combination of the two. Neither plasma rotation nor complex gain is included. A cylindrical reduced MHD model, in resistive or ideal form, is used, with tokamak-like profiles [increasing profile of q(r)] or RFP-like profiles [decreasing q(r)]. The possible relevance to RFPs and tokamaks is discussed.

  10. Method of non-destructively inspecting a curved wall portion

    DOE Patents [OSTI]

    Fong, James T. (Bethel Park, PA)

    1996-01-01T23:59:59.000Z

    A method of non-destructively inspecting a curved wall portion of a large and thick walled vessel for a defect by computed tomography is provided. A collimated source of radiation is placed adjacent one side of the wall portion and an array of detectors for the radiation is placed on the other side adjacent the source. The radiation from the source passing through the wall portion is then detected with the detectors over a limited angle, dependent upon the curvature of the wall of the vessel, to obtain a dataset. The source and array are then coordinately moved relative to the wall portion in steps and a further dataset is obtained at each step. The plurality of datasets obtained over the limited angle is then processed to produce a tomogram of the wall portion to determine the presence of a defect therein. In a preferred embodiment, the curved wall portion has a center of curvature so that the source and the array are positioned at each step along a respective arc curved about the center. If desired, the detector array and source can be reoriented relative to a new wall portion and an inspection of the new wall portion can be easily obtained. Further, the source and detector array can be indexed in a direction perpendicular to a plane including the limited angle in a plurality of steps so that by repeating the detecting and moving steps at each index step, a three dimensional image can be created of the wall portion.

  11. Ideal Magnetohydrodynamics Stability Spectrum with a Resistive Wall

    SciTech Connect (OSTI)

    S.P. Smith and S.C. Jardin

    2008-05-22T23:59:59.000Z

    We show that the eigenvalue equations describing a cylindrical ideal magnetophydrodynamicsw (MHD) plasma interacting with a thin resistive wall can be put into the standard mathematical form: ??? = ??? ?. This is accomplished by using a finite element basis for the plasma, and by adding an extra degree of freedom corresponding to the electrical current in the thin wall. The standard form allows the use of linear eigenvalue solvers, without additional interations, to compute the complete spectrum of plasma modes in the presence of a surrounding restrictive wall at arbitrary separation. We show that our method recovers standard results in the limits of (1) an infinitely resistive wall (no wall), and (2) a zero resistance wall (ideal wall).

  12. Assessment, development, and testing of glass for blast environments.

    SciTech Connect (OSTI)

    Glass, Sarah Jill

    2003-06-01T23:59:59.000Z

    Glass can have lethal effects including fatalities and injuries when it breaks and then flies through the air under blast loading (''the glass problem''). One goal of this program was to assess the glass problem and solutions being pursued to mitigate it. One solution to the problem is the development of new glass technology that allows the strength and fragmentation to be controlled or selected depending on the blast performance specifications. For example the glass could be weak and fail, or it could be strong and survive, but it must perform reliably. Also, once it fails it should produce fragments of a controlled size. Under certain circumstances it may be beneficial to have very small fragments, in others it may be beneficial to have large fragments that stay together. The second goal of this program was to evaluate the performance (strength, reliability, and fragmentation) of Engineered Stress Profile (ESP) glass under different loading conditions. These included pseudo-static strength and pressure tests and free-field blast tests. The ultimate goal was to provide engineers and architects with a glass whose behavior under blast loading is less lethal. A near-term benefit is a new approach for improving the reliability of glass and modifying its fracture behavior.

  13. Denaturing Urea PAGE -Large Gel Preparation of Glass Plates

    E-Print Network [OSTI]

    Aris, John P.

    tube. Mix. Pour ~2.5 mls on inside surface of long glass plate. Spread and polish with Kimwipes. Repeat gel solution down middle of glass plates with 25 ml pipette. Do not trap bubbles in gel. Adjust flow rate with tilt of gel. Place gel close to horizontal (top end slightly elevated). Insert comb. Do

  14. Thermodynamics and Universality for Mean Field Quantum Spin Glasses

    E-Print Network [OSTI]

    Nick Crawford

    2006-10-13T23:59:59.000Z

    We study aspects of the thermodynamics of quantum versions of spin glasses. By means of the Lie-Trotter formula for exponential sums of operators, we adapt methods used to analyze classical spin glass models to answer analogous questions about quantum models.

  15. The Glass Transition in Fluids with Magnetic Interactions

    E-Print Network [OSTI]

    Ricardo Gutierrez; Bhaskar Sen Gupta; Itamar Procaccia

    2014-06-15T23:59:59.000Z

    We study the glass transition in fluids where particles are endowed with spins, such that magnetic and positional degrees of freedom are coupled. Novel results for slowing down in the spin time-correlation functions are described, and the effects of magnetic fields on the glass transition are studied. Aging effects in such systems and the corresponding data collapse are presented and discussed.

  16. Glass for low-cost photovoltaic solar arrays

    SciTech Connect (OSTI)

    Bouquet, F.L.

    1980-02-01T23:59:59.000Z

    In photovoltaic systems, the encapsulant material that protects the solar cells should be highly transparent and very durable. Glass satisfies these two criteria and is considered a primary candidate for low-cost, photovoltaic encapsulation systems. In this report, various aspects of glass encapsulation are treated that are important for the designer of photovoltaic systems. Candidate glasses and available information defining the state of the art of glass encapsulation materials and processes for automated, high volume production of terrestrial photovoltaic devices and related applications are presented. The criteria for consideration of the glass encapsulation systems were based on the LSA (Low-cost Solar Array) Project goals for arrays: (a) a low degradation rate, (b) high reliability, (c) an efficiency greater than 10 percent, (d) a total array price less than $500/kW, and (e) a production capacity of 5 x 10/sup 5/ kW/yr. The glass design areas treated herein include the types of glass, sources and costs, physical properties and glass modifications, such as antireflection coatings. 78 references.

  17. Integrated Disposal Facility FY 2012 Glass Testing Summary Report

    SciTech Connect (OSTI)

    Pierce, Eric M.; Kerisit, Sebastien N.; Krogstad, Eirik J.; Burton, Sarah D.; Bjornstad, Bruce N.; Freedman, Vicky L.; Cantrell, Kirk J.; Snyder, Michelle MV; Crum, Jarrod V.; Westsik, Joseph H.

    2013-03-29T23:59:59.000Z

    PNNL is conducting work to provide the technical basis for estimating radionuclide release from the engineered portion of the disposal facility for Hanford immobilized low-activity waste (ILAW). Before the ILAW can be disposed, DOE must conduct a performance assessment (PA) for the Integrated Disposal Facility (IDF) that describes the long-term impacts of the disposal facility on public health and environmental resources. As part of the ILAW glass testing program, PNNL is implementing a strategy, consisting of experimentation and modeling, to provide the technical basis for estimating radionuclide release from the glass waste form in support of future IDF PAs. Key activities in FY12 include upgrading the STOMP/eSTOMP codes to do near-field modeling, geochemical modeling of PCT tests to determine the reaction network to be used in the STOMP codes, conducting PUF tests on selected glasses to simulate and accelerate glass weathering, developing a Monte Carlo simulation tool to predict the characteristics of the weathered glass reaction layer as a function of glass composition, and characterizing glasses and soil samples exhumed from an 8-year lysimeter test. The purpose of this report is to summarize the progress made in fiscal year (FY) 2012 and the first quarter of FY 2013 toward implementing the strategy with the goal of developing an understanding of the long-term corrosion behavior of LAW glasses.

  18. Disposition of actinides released from high-level waste glass

    SciTech Connect (OSTI)

    Ebert, W.L.; Bates, J.K.; Buck, E.C.; Gong, M.; Wolf, S.F.

    1994-05-01T23:59:59.000Z

    A series of static leach tests was conducted using glasses developed for vitrifying tank wastes at the Savannah River Site to monitor the disposition of actinide elements upon corrosion of the glasses. In these tests, glasses produced from SRL 131 and SRL 202 frits were corroded at 90{degrees}C in a tuff groundwater. Tests were conducted using crushed glass at different glass surface area-to-solution volume (S/V) ratios to assess the effect of the S/V on the solution chemistry, the corrosion of the glass, and the disposition of actinide elements. Observations regarding the effects of the S/V on the solution chemistry and the corrosion of the glass matrix have been reported previously. This paper highlights the solution analyses performed to assess how the S/V used in a static leach test affects the disposition of actinide elements between fractions that are suspended or dissolved in the solution, and retained by the altered glass or other materials.

  19. Heterogeneous cavitation in liquid helium 4 near a glass plate

    E-Print Network [OSTI]

    Caupin, Frédéric

    Heterogeneous cavitation in liquid helium 4 near a glass plate X. Chavanne, S. Balibar and F wave to study cavitation, i.e. the nucleation of bubbles, in liquid helium 4 near a clean glass plate and threshold pressures in the range 0 to -3 bar, significantly less negative than for homogeneous cavitation

  20. Spectral investigations of Sm{sup 3+}-doped oxyfluorosilicate glasses

    SciTech Connect (OSTI)

    Ramachari, D. [Department of Physics, Sri Venkateswara University, Tirupati 517502 (India); Rama Moorthy, L., E-mail: lrmphysics@yahoo.co.in [Department of Physics, Sri Venkateswara University, Tirupati 517502 (India); Department of Physics, Chadalawada Ramanamma Engineering College, Renigunta Road, Tirupati 517506 (India); Jayasankar, C.K. [Department of Physics, Sri Venkateswara University, Tirupati 517502 (India)

    2013-09-01T23:59:59.000Z

    Graphical abstract: The figure shows the emission spectra of Sm{sup 3+} doped KNSZL glass for different concentrations. Among the four emission transitions {sup 4}G{sub 5/2} ? {sup 6}H{sub 5/2}, {sup 4}G{sub 5/2} ? {sup 6}H{sub 7/2}, {sup 4}G{sub 5/2} ? {sup 6}H{sub 9/2} and {sup 4}G{sub 5/2} ? {sup 6}H{sub 11/2}, the {sup 4}G{sub 5/2} ? {sup 6}H{sub 7/2} transition of KNSZLSm10 glass is more intense compared with all the transitions. The insert figure shows, the color coordinates (0.59, 0.41) of KNSZLSm10 glass is located on the perimeter of the chromaticity diagram at 592 nm which appears to be closest to the orange color. From these results the KNSZLSm10 glass could be useful for optical amplifiers, waveguides, telecommunications and orange LEDs. - Highlights: • From the DTA, the undoped KNSZL glass more precisely in fiberdrawing. • The XRD pattern confirmed the KNbO{sub 3} nanocrystallites of undoped KNSZL glass. • FTIR and Raman data of KNSZLSm10 glass revealed structural properties. • Judd–Ofelt analysis and decay measurements were carried out. • The optical gain parameter of the investigated glass is 18.13 × 10{sup ?25} cm{sup 2} s. - Abstract: Sm{sub 2}O{sub 3}-doped oxyfluorosilicate glasses were prepared by melt-quenching method. The differential thermal analysis and X-ray diffraction were carried out to investigate the glass transition temperature and structure of precursor glass. Infrared spectroscopy, Raman, optical absorption, photoluminescence and decay measurements were carried out for Sm{sup 3+}-doped oxyfluorosilicate glasses. From the absorption spectrum, the Judd–Ofelt intensity parameters have been evaluated to predict the radiative properties for the emission levels of Sm{sup 3+} ions. The lifetimes of {sup 4}G{sub 5/2} level are found to decrease from 1.17 to 0.93 ms due to the energy transfer, when the concentration of Sm{sup 3+} ions increases from 0.1 to 2.0 mol%. The optical gain parameter (18.13 × 10{sup ?25} cm{sup 2} s) of the investigated glass is found to be higher than the other Sm{sub 2}O{sub 3}-doped glass systems.

  1. Silicon-on-glass pore network micromodels with oxygen-sensing...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Silicon-on-glass pore network micromodels with oxygen-sensing fluorophore films for chemical imaging and defined spatial Silicon-on-glass pore network micromodels with...

  2. alkali-silicate glass exposed: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    applications. - Int. J. Solids & Struct. 49 and Motivation Components of Thin Film Solar Modules back sheet or glass encapsulant electrical conductor thin 40 Glass Forming...

  3. PbO-free glasses for low temperature packaging

    SciTech Connect (OSTI)

    Brow, R.K.; Bencoe, D.N.; Tallant, D.R. [and others

    1997-10-01T23:59:59.000Z

    Zinc polyphosphate glasses were examined as potential candidates for low temperature sealing applications. Glass-formation and properties were determined for the ZnO-P{sub 2}O{sub 5}, ZnO-B{sub 2}O{sub 3}-P{sub 2}O{sub 5} and ZnO-SnO-P{sub 2}O{sub 5} systems, and information about the short-range structures of these glasses was obtained by Raman and solid state nuclear magnetic resonance spectroscopies. In general, the most durable polyphosphate glasses have structures based on relatively short pyrophosphate chain lengths (i.e., 2 P-tetrahedra). Modified phosphate compositions are given, including compositions used to seal float glass substrates at temperatures as low as 500{degrees}C.

  4. IRON-PHOSPHATE GLASS FOR IMMOBILIZATION OF RADIOACTIVE TECHNETIUM

    SciTech Connect (OSTI)

    KRUGER AA; HRMA PR; XU K; CHOI J; UM W; HEO J

    2012-03-19T23:59:59.000Z

    Technetium-99 (Tc-99) can bring a serious environmental threat because of its high fission yield, long half-life, and high solubility and mobility in the ground water. The present work investigated the immobilization of Tc-99 (surrogated by Re) by heat-treating mixtures of an iron-phosphate glass with 1.5 to 6 wt.% KReO{sub 4} at {approx}1000 C. The Re retention in the glass was as high as {approx}1.2 wt. % while the loss of Re by evaporation during melting was {approx}50%. Re was uniformly distributed within the glass. The normalized Re release by the 7-day Product Consistency Test was {approx}0.39 g/m{sup 2}, comparable with that in phosphate-bonded ceramics and borosilicate glasses. These results suggest that iron-phosphate glass can provide a good matrix for immobilizing Tc-99.

  5. Nuclear waste vitrification: electric melting and glass formulation

    SciTech Connect (OSTI)

    Hrma, Pavel R.

    2007-07-10T23:59:59.000Z

    The Hanford Site contains 177 underground tanks with radioactive waste that will be vitrified, i.e., immobilized by converting it to glass in electric melters. After pretreatment, the waste slurry will be mixed with glass-forming minerals, and the resulting feed will be charged into the melter. For each waste composition, the glass must be formulated to possess acceptable processing and product behavior defined in terms of physical properties that guarantee that the glass is easily made and resists environmental degradation. On heating, the feed undergoes complex reactions. The large variability of waste compositions presents numerous technological challenges: undesirable insoluble solids and molten salts may segregate; foam may hinder heat transfer and slows down the process; and on cooling, the glass may precipitate crystalline phases.

  6. Mechanistic interpretation of glass reaction: Input to kinetic model development

    SciTech Connect (OSTI)

    Bates, J.K.; Ebert, W.L. [Argonne National Lab., IL (USA); Bradley, J.P. [McCrone Associates, Inc., Westmont, IL (USA); Bourcier, W.L. [Lawrence Livermore National Lab., CA (USA)

    1991-05-01T23:59:59.000Z

    Actinide-doped SRL 165 type glass was reacted in J-13 groundwater at 90{degree}C for times up to 278 days. The reaction was characterized by both solution and solid analyses. The glass was seen to react nonstoichiometrically with preferred leaching of alkali metals and boron. High resolution electron microscopy revealed the formation of a complex layer structure which became separated from the underlying glass as the reaction progressed. The formation of the layer and its effect on continued glass reaction are discussed with respect to the current model for glass reaction used in the EQ3/6 computer simulation. It is concluded that the layer formed after 278 days is not protective and may eventually become fractured and generate particulates that may be transported by liquid water. 5 refs., 5 figs. , 3 tabs.

  7. Parametric effects of glass reaction under unsaturated conditions

    SciTech Connect (OSTI)

    Bates, J.K.; Gerding, T.J.; Woodland, A.B.

    1989-11-01T23:59:59.000Z

    Eventual liquid water contact of high-level waste glass stored under the unsaturated conditions anticipated at the Yucca Mountain site will be by slow intrusion of water into a breached container/canister assembly. The water flow patterns under these unsaturated conditions will vary, and the Unsaturated Test method has been developed by the YMP to study glass reaction. The results from seven different sets of tests done to investigate the effect of systematically varying parameters, such as glass composition, composition and degree of sensitization of 304L stainless steel, water input volume, and the interval of water contact are discussed. Glass reaction has been monitored over a period of five years, and the parametric effects can result in up to a ten-fold variance in the degree of glass reaction.

  8. Mechanistic interpretation of glass reaction: Input to kinetic model development

    SciTech Connect (OSTI)

    Bates, J.K.; Ebert, W.L. [Argonne National Lab., IL (USA); Bradley, J.P. [McCrone Associates, Inc., Westmont, IL (USA); Bourcier, W.L. [Lawrence Livermore National Lab., CA (USA)

    1991-05-01T23:59:59.000Z

    Actinide-doped SRL 165 type glass was reacted in J-13 groundwater at 90{degrees}C for times up to 278 days. The reaction was characterized by both solution and solid analyses. The glass was seen to react nonstoichiometrically with preferred leaching of alkali metals and boron. High resolution electron microscopy revealed the formation of a complex layer structure which became separated from the underlying glass as the reaction progressed. The formation of the layer and its effect on continued glass reaction are discussed with respect to the current model for glass reaction used in the EQ3/6 computer simulation. It is concluded that the layer formed after 278 days is not protective and may eventually become fractured and generate particulates that may be transported by liquid water. 5 refs., 6 figs., 3 tabs.

  9. Effects of alteration product precipitation on glass dissolution

    SciTech Connect (OSTI)

    Strachan, Denis M.; Neeway, James J.

    2014-04-02T23:59:59.000Z

    Silicate glasses dissolve in water at a rate dependent on the solution concentration of orthosilicic acid (H4SiO4). In general, higher [H4SiO4] leads to lower dissolution rates. It has often been observed that the precipitation of certain silica-bearing alteration products can cause the dissolution of the glass to increase, even after the rate has decreased significantly. However, it has also been observed that in the concentrations of these silica-bearing solution species do not significantly decrease while other elements continue to be released. In this study, we have used the Geochemist’s Workbench code to investigate the relationship between glass dissolution rates and the precipitation rate of a silica-bearing alteration product, analcime (Na(AlSi2O6)?H2O). In this initial study and to simplify the calculations, we suppressed all alteration products except analcime, gibbsite (Al(OH)3), and amorphous silica. The ‘cross affinity’ code option allowed us to account for the fact that glass is a thermodynamically unstable solid with respect to its alteration products in contact with water. The cross-affinity option in the Geochemist’s Workbench geochemical code allowed us to substitute the amorphous silica equilibrium-constant matrix for the glass equilibrium-constant matrix. In this article, we present the results of our calculations of the glass dissolution rate at different values for the analcime precipitation rate constant and the effects of varying the glass dissolution rate constant at a constant analcime precipitation rate constant. In all cases, our results indicate that the glass dissolution rate controls the rate of analcime precipitation in the long term. Our results, compared in general terms with experiments, show the importance of the gel layer that forms during glass alteration. The meaning of these results pertinent to long-term glass durability is discussed.

  10. Modeling of Glass Making Processes for Improved Efficiency

    SciTech Connect (OSTI)

    Thomas P. Seward III

    2003-03-31T23:59:59.000Z

    The overall goal of this project was to develop a high-temperature melt properties database with sufficient reliability to allow mathematical modeling of glass melting and forming processes for improved product quality, improved efficiency and lessened environmental impact. It was initiated by the United States glass industry through the NSF Industry/University Center for Glass Research (CGR) at Alfred University [1]. Because of their important commercial value, six different types/families of glass were studied: container, float, fiberglass (E- and wool-types), low-expansion borosilicate, and color TV panel glasses. CGR member companies supplied production-quality glass from all six families upon which we measured, as a function of temperature in the molten state, density, surface tension, viscosity, electrical resistivity, infrared transmittance (to determine high temperature radiative conductivity), non-Newtonian flow behavior, and oxygen partial pres sure. With CGR cost sharing, we also studied gas solubility and diffusivity in each of these glasses. Because knowledge of the compositional dependencies of melt viscosity and electrical resistivity are extremely important for glass melting furnace design and operation, these properties were studied more fully. Composition variations were statistically designed for all six types/families of glass. About 140 different glasses were then melted on a laboratory scale and their viscosity and electrical resistivity measured as a function of temperature. The measurements were completed in February 2003 and are reported on here. The next steps will be (1) to statistically analyze the compositional dependencies of viscosity and electrical resistivity and develop composition-property response surfaces, (2) submit all the data to CGR member companies to evaluate the usefulness in their models, and (3) publish the results in technical journals and most likely in book form.

  11. Glass Formulations for Immobilizing Hanford Low-Activity Wastes

    SciTech Connect (OSTI)

    Kim, Dong-Sang; Elliott, Michael L.; Smith, Harry D.; Bagaasen, Larry M.; Hrma, Pavel R.

    2006-02-28T23:59:59.000Z

    Researchers at Pacific Northwest National Laboratory (PNNL) are developing and testing glasses for immobilizing low-activity wastes (LAW) for the full Hanford mission. PNNL is performing testing for low-activity waste glasses for both the Hanford Waste Treatment Plant (WTP) and the Bulk Vitrification Plant. The objective of this work is to increase the waste content of the glasses and ultimately increase the waste throughput of the LAW vitrification plants. This paper focuses on PNNL’s development and testing of glasses for the Bulk Vitrification process. Bulk Vitrification was selected as a potential supplemental treatment to accelerate the cleanup of LAW at Hanford. Also known as In-Container Vitrification™ (ICV™), the Bulk Vitrification process combines soil, LAW, and chemical amendments; dries the mixture; and then vitrifies the material in a batch process in a refractory lined box. The process was developed by AMEC Earth and Environmental, Inc. (AMEC). Working with AMEC, PNNL developed a glass formulation that could incorporate a broad range of Hanford LAW. The initial glass development involved a “nominal” waste composition, and a baseline glass was formulated and tested at crucible, engineering, and full scales. The performance of the baseline glass was then verified using a battery of laboratory tests as well as engineering-scale and full-scale ICV™ tests. Future testing is planned for optimizing the glass waste loading and qualifying a broader range of waste streams for treatment in the Bulk Vitrification process. This paper reviews the glass development and qualification process completed to date. This includes several series of crucible studies as well as confirmation testing at engineering-scale and full-scale. This formulation paper complements information presented by AMEC in an ICV™ processing paper.

  12. Semiconducting glasses: A new class of thermoelectric materials?

    SciTech Connect (OSTI)

    Goncalves, A.P., E-mail: apg@itn.pt [Instituto Tecnologico e Nuclear, Instituto Superior Tecnico, Universidade Tecnica de Lisboa/CFMC-UL, P-2686-953 Sacavem (Portugal); Lopes, E.B. [Instituto Tecnologico e Nuclear, Instituto Superior Tecnico, Universidade Tecnica de Lisboa/CFMC-UL, P-2686-953 Sacavem (Portugal)] [Instituto Tecnologico e Nuclear, Instituto Superior Tecnico, Universidade Tecnica de Lisboa/CFMC-UL, P-2686-953 Sacavem (Portugal); Delaizir, G. [SPCTS, UMR CNRS 7315, Centre Europeen de la Ceramique, 12 rue Atlantis, 87068 Limoges (France)] [SPCTS, UMR CNRS 7315, Centre Europeen de la Ceramique, 12 rue Atlantis, 87068 Limoges (France); Vaney, J.B.; Lenoir, B. [Institut Jean Lamour, UMR 7198 CNRS-Nancy Universite-UPVM, Ecole Nationale Superieure des Mines de Nancy, Parc de Saurupt, F-54042 Nancy (France)] [Institut Jean Lamour, UMR 7198 CNRS-Nancy Universite-UPVM, Ecole Nationale Superieure des Mines de Nancy, Parc de Saurupt, F-54042 Nancy (France); Piarristeguy, A.; Pradel, A. [Institut Charles Gerhardt (ICG), UMR 5253 CNRS, Universite de Montpellier 2, 34095 Montpellier (France)] [Institut Charles Gerhardt (ICG), UMR 5253 CNRS, Universite de Montpellier 2, 34095 Montpellier (France); Monnier, J.; Ochin, P.; Godart, C. [CNRS, ICMPE, CMTR, 2/8 rue Henri Dunant, 94320 Thiais (France)] [CNRS, ICMPE, CMTR, 2/8 rue Henri Dunant, 94320 Thiais (France)

    2012-09-15T23:59:59.000Z

    The deeper understanding of the factors that affect the dimensionless figure of merit, ZT, and the use of new synthetic methods has recently led to the development of novel systems with improved thermoelectric performances. Albeit up to now with ZT values lower than the conventional bulk materials, semiconducting glasses have also emerged as a new family of potential thermoelectric materials. This paper reviews the latest advances on semiconducting glasses for thermoelectric applications. Key examples of tellurium-based glasses, with high Seebeck coefficients, very low thermal conductivities and tunable electrical conductivities, are presented. ZT values as high as 0.2 were obtained at room temperature for several tellurium-based glasses with high copper concentrations, confirming chalcogenide semiconducting glasses as good candidates for high-performance thermoelectric materials. However, the temperature stability and electrical conductivity of the reported glasses are still not good enough for practical applications and further studies are still needed to enhance them. - Graphical abstract: Power factor as a function of the temperature for the Cu{sub 27.5}Ge{sub 2.5}Te{sub 70} and Cu{sub 30}As{sub 15}Te{sub 55} seniconducting glasses. Highlights: Black-Right-Pointing-Pointer A review of semiconducting glasses for thermoelectrics applications is presented. Black-Right-Pointing-Pointer The studied semiconducting glasses present very low thermal conductivities. Black-Right-Pointing-Pointer Composition can tune electrical conductivity and Seebeck coefficient. Black-Right-Pointing-Pointer ZT=0.2 is obtained at 300 K for different semiconducting glasses.

  13. Glasstech. Ber. Glass Sci. Technol. 75 C2 (2002) 298 Photoinduced Chemical Etching of Silicate and Borosilicate Glasses

    E-Print Network [OSTI]

    Glebov, Leon

    Glasstech. Ber. Glass Sci. Technol. 75 C2 (2002) 298 Photoinduced Chemical Etching of Silicate. However, those data are in a contradiction with published data on radiation defect generation in silicate of the photoinduced etching in silicate glasses. 2. Experimental The following materials were used as samples

  14. Effect of glass composition on activation energy of viscosity in glass-melting-temperature range

    SciTech Connect (OSTI)

    Hrma, Pavel R.; Han, Sang Soo

    2012-08-01T23:59:59.000Z

    In the high-temperature range, where the viscosity (Eta) of molten glass is <10{sup 3} Pa s, the activation energy (B) is virtually ln(Eta) = A + B/T, is nearly independent of melt composition. Hence, the viscosity-composition relationship for Eta < 10{sup 3} Pa s is defined by B as a function of composition. Using a database encompassing over 1300 compositions of high-level waste glasses with nearly 7000 viscosity data, we developed mathematical models for B(x), where x is the composition vector in terms of mass fractions of components. In this paper, we present 13 versions of B(x) as first- and second-order polynomials with coefficients for 15 to 39 components, including Others, a component that sums constituents having little effect on viscosity.

  15. Dynamic load test of Arquin-designed CMU wall.

    SciTech Connect (OSTI)

    Jensen, Richard Pearson

    2010-02-01T23:59:59.000Z

    The Arquin Corporation has developed a new method of constructing CMU (concrete masonry unit) walls. This new method uses polymer spacers connected to steel wires that serve as reinforcing as well as a means of accurately placing the spacers so that the concrete block can be dry stacked. The hollows of the concrete block are then filled with grout. As part of a New Mexico Small Business Assistance Program (NMSBA), Sandia National Laboratories conducted a series of tests that dynamically loaded wall segments to compare the performance of walls constructed using the Arquin method to a more traditional method of constructing CMU walls. A total of four walls were built, two with traditional methods and two with the Arquin method. Two of the walls, one traditional and one Arquin, had every third cell filled with grout. The remaining two walls, one traditional and one Arquin, had every cell filled with grout. The walls were dynamically loaded with explosive forces. No significant difference was noted between the performance of the walls constructed by the Arquin method when compared to the walls constructed by the traditional method.

  16. Gas turbine bucket wall thickness control

    DOE Patents [OSTI]

    Stathopoulos, Dimitrios (Glenmont, NY); Xu, Liming (Greenville, SC); Lewis, Doyle C. (Greer, SC)

    2002-01-01T23:59:59.000Z

    A core for use in casting a turbine bucket including serpentine cooling passages is divided into two pieces including a leading edge core section and a trailing edge core section. Wall thicknesses at the leading edge and the trailing edge of the turbine bucket can be controlled independent of each other by separately positioning the leading edge core section and the trailing edge core section in the casting die. The controlled leading and trailing edge thicknesses can thus be optimized for efficient cooling, resulting in more efficient turbine operation.

  17. Melting Instantons, Domain Walls, and Large N

    E-Print Network [OSTI]

    H. B. Thacker

    2008-10-22T23:59:59.000Z

    Monte Carlo studies of $CP^{N-1}$ sigma models have shown that the structure of topological charge in these models undergoes a sharp transition at $N=N_c\\approx 4$. For $NN_c$ it is dominated by extended, thin, 1-dimensionally coherent membranes of topological charge, which can be interpreted as domain walls between discrete quasi-stable vacua. These vacua differ by a unit of background electric flux. The transition can be identified as the delocalization of topological charge, or "instanton melting," a phenomenon first suggested by Witten to resolve the conflict between instantons and large $N$ behavior. Implications for $QCD$ are discussed.

  18. Wall, Pennsylvania: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTown ofNationwide Permit webpage JumpWaikane,(Redirected from WalkerWalkerton,Wall,

  19. Water Wall Turbine | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTown ofNationwideWTED Jump to: navigation,Area (Wood,Wall Turbine Jump to:

  20. CXD 4606, 9831 Wall Construction Project (4606)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced. C o w l i t z C o . C l a r8.0 -CURRICULUM9831 Wall Construction