National Library of Energy BETA

Sample records for glass buttes oregon

  1. EA-1925: Midnight Point and Mahogany Geothermal Exploration Projects, Glass Buttes, Oregon

    Broader source: Energy.gov [DOE]

    This EA evaluates Ormat Nevada, Inc.’s (Ormat’s) proposed geothermal project consists of drilling up to 16 wells for geothermal exploration approximately 70 miles southeast of Bend, Oregon and 50 miles northwest of Burns, Oregon just south of U.S. Highway 20. The proposed project includes three distinct drilling areas. Up to three wells would be drilled on lands managed by the Bureau of Land Management (BLM) Prineville District (Mahogany), up to ten wells would be drilled on lands managed by the BLM Burns District (Midnight Point), and up to three wells would be drilled on private land located adjacent to the federal geothermal leases west of Glass Butte (Private Lands). DOE funding would be associated with three of the sixteen proposed wells. BLM is the lead agency and DOE is participating as a cooperating agency.

  2. Glass Buttes Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View New PagesSustainable UrbanKentucky:BoreOpenGilliam County, Oregon:GlacierGlasco,Glass Buttes

  3. Glass Buttes Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LISTStar2-0057-EA Jump to:ofEniaElectric Jump to:GerGlacialGlacialGlass Buttes

  4. Glass Buttes Exploration and Drilling: 2010 Geothermal Technologies Program Peer Review Presentation, Walsh, et al, Ormat

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Zemach, Ezra

    Glass Buttes Exploration and Drilling: 2010 Geothermal Technologies Program Peer Review Presentation, Walsh, et al, Ormat

  5. Glass Buttes Exploration and Drilling: 2010 Geothermal Technologies Program Peer Review Presentation, Walsh, et al, Ormat

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Zemach, Ezra

    2010-01-01

    Glass Buttes Exploration and Drilling: 2010 Geothermal Technologies Program Peer Review Presentation, Walsh, et al, Ormat

  6. EA-1996: Glass Buttes Radio Station, Lake County, Oregon

    Broader source: Energy.gov [DOE]

    The Bureau of Land Management (BLM), with DOE’s Bonneville Power Administration (BPA) as a cooperating agency, is preparing an EA that will evaluate the potential environmental impacts of a proposal to construct two telecommunications facilities, one of which would provide BPA telecommunications services, on BLM land. Additional information is available at http://www.blm.gov/or/districts/prineville/plans/glassbuttes/.

  7. Innovative Exploration Technologies Maui Hawaii & Glass Buttes, Oregon |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Financing Tool Fits the BillDepartment of Energy InNovember 25, 2008InnovationDepartment of

  8. Innovative Exploration Technologies Maui Hawaii & Glass Buttes, Oregon |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Financing Tool Fits the BillDepartment of Energy InNovember 25, 2008InnovationDepartment

  9. Innovative Exploration Technologies Maui Hawaii & Glass Buttes, Oregon

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCED MANUFACTURING OFFICE INDUSTRIAL TECHNICAL ASSISTANCEPueblo, New Mexico | Department ofInnovative

  10. FMI Log At Glass Buttes Area (DOE GTP) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoopButtePowerEdisto Electric Coop,Erosion FlumeEventFAOFBASSESSMENTInformation

  11. Gas Sampling At Glass Buttes Area (DOE GTP) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoopButtePowerEdistoWhiskeyFootprintGEXA Corp. (Delaware)GalvestonWind

  12. Compound and Elemental Analysis At Glass Buttes Area (DOE GTP) | Open

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoopButtePower Ventures JumpCommercial Jump to:TechnologyEnergyEnergy| Open

  13. EA-1996: Glass Buttes Radio Station, Lake County, Oregon | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum Based|Department of Energy 8:Final78: Sand

  14. Flow Test At Glass Buttes Area (DOE GTP) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View New PagesSustainable Urban Transport Jump to:Flanders,Information85-1986) JumpFortGlass

  15. Field Mapping At Glass Buttes Area (DOE GTP) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTIONRobertsdale, AlabamaETEC GmbHFarinello GeothermalFideris Inc formerly1-2003) Jump to:OpenGlass

  16. Merging high resolution geophysical and geochemical surveys to...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Innovative Exploration Technologies Maui Hawaii & Glass Buttes, Oregon Innovative Exploration Technologies Maui Hawaii & Glass Buttes,...

  17. Burley Butte | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop IncIowaWisconsin:PontiacInformationAssessmentExplorationButte Jump to:

  18. Butte Falls, Oregon: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmentalBowerbank, Maine:Kansas: Energy Resources Jump to: navigation,ButlerSouth

  19. Butte, Montana: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoopButte County, California: Energy Resources Jump to: navigation, searchButte,

  20. Kac polymers Paolo Butt`a

    E-Print Network [OSTI]

    Procacci, Aldo

    Kac polymers Paolo Butt`a Aldo Procacci Benedetto Scoppola Abstract We show how a polymer in two- sidered on the appropriate scale. Key words: Polymers, Kac potentials, phase transition. Running title: Kac polymers Dedicated to a Marzio Cassandro's birthday. 1 Introduction In the last two decades

  1. Multispectral Imaging At Glass Buttes Area (DOE GTP) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsourceII Jump to: navigation, searchsourceEnergy Information Martin, Et Al.,

  2. Aeromagnetic Survey At Glass Buttes Area (DOE GTP) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop IncIowaWisconsin: Energy Resources JumpAdelan UKRenewable2004)Information

  3. USG OREGON | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    USG OREGON USG OREGON DOE-LPOProject-PostersGEOUSG-Oregon.pdf More Documents & Publications GRANITE RELIABLE BLUE MOUNTAIN ORMAT NEVADA...

  4. Horse Butte Wind Project | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsource History View NewGuam: Energyarea,Magazine Jump to:II Wind Farm JumpHorse Butte

  5. Butte Springs Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoopButte County, California: Energy Resources Jump to: navigation, search

  6. EnergyConnect (Oregon) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoopButtePowerEdisto Electric Coop, Incsource HistoryEnergyConnect (Oregon) Jump to:

  7. SUTTER BASIN, SUTTER & BUTTE COUNTIES, CA FLOOD RISK MANAGEMENT PROJECT

    E-Print Network [OSTI]

    US Army Corps of Engineers

    SUTTER BASIN, SUTTER & BUTTE COUNTIES, CA FLOOD RISK MANAGEMENT PROJECT 22 October 2013 ABSTRACT: The purpose of the Sutter Basin Project is to reduce overall flood risk to the Sutter Basin study area the risk to property damage due to flooding to the Sutter Basin area located in the Sutter and Butte

  8. Oregon: Oregon’s Clean Energy Resources and Economy

    SciTech Connect (OSTI)

    2013-03-25

    This document highlights the Office of Energy Efficiency and Renewable Energy's investments and impacts in the state of Oregon.

  9. Crested Butte, Colorado: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoopButtePower VenturesInformation EU-UNDP ClimatePublic SchoolsCrested Butte,

  10. CORRECTION OF BUTT-WELDING INDUCED DISTORTIONS BY LASER FORMING

    E-Print Network [OSTI]

    Yao, Y. Lawrence

    CORRECTION OF BUTT-WELDING INDUCED DISTORTIONS BY LASER FORMING Peng Cheng, Andrew J. Birnbaum, Y Egland Technology and Solutions Division Caterpillar Inc. Peoria, IL KEYWORDS Welding, Distortion, Correction, Laser Forming ABSTRACT Welding-induced distortion is an intrinsic phenomenon arising due

  11. Demand Response Programs for Oregon

    E-Print Network [OSTI]

    Demand Response Programs for Oregon Utilities Public Utility Commission May 2003 Public Utility ....................................................................................................................... 1 Types of Demand Response Programs............................................................................ 3 Demand Response Programs in Oregon

  12. Glass Production

    E-Print Network [OSTI]

    Shortland, Andrew

    2009-01-01

    40, pp. 162 - 186. Glass Production, Shortland, UEE 2009AINES Short Citation: Shortland 2009, Glass Production. UEE.Andrew, 2009, Glass Production. In Willeke Wendrich (ed. ),

  13. EIS-0077-S: Bonneville Power Administration Crow Butte Slough Crossing

    Broader source: Energy.gov [DOE]

    The Bonneville Power Administration developed this SEIS to evaluate potential impacts resulting from construction of a 4,700-foot segment of the Ashe-Slatt transmission line at Crow Butte Slough, overhead on towers on the existing right-of-way. This SEIS is a supplement to DOE/EIS-0077, Ashe-Slatt (Pebble Springs) 500-kilovolt Transmission Line, originally filed as FES 75-79.

  14. Red Butte, Wyoming: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onRAPID/Geothermal/Exploration/Colorado <RAPID/Geothermal/WaterEnergy MarketingNewOpenRecycled EnergyButte, Wyoming:

  15. The Western Environmental Technology Office (WETO), Butte, Montana. Technology summary

    SciTech Connect (OSTI)

    NONE

    1996-03-01

    The Western Environmental Technology Office (WETO) is a multi-purpose engineering test facility located in Butte, Montana, and is managed by MSE, Inc. WETO seeks to contribute to environmental research by emphasizing projects to develop heavy metals removal and recovery processes, thermal vitrification systems, and waste minimization/pollution prevention technologies. WETO`s environmental technology research and testing activities focus on the recovery of usable resources from waste. In one of WETO`s areas of focus, groundwater contamination, water from the Berkeley Pit, located near the WETO site, is being used in demonstrations directed toward the recovery of potable water and metal from the heavy metal-bearing water. The Berkeley Pit is part of an inactive copper mine near Butte that was once part of the nation`s largest open-pit mining operation. The Pit contains approximately 25 billion gallons of Berkeley Pit groundwater and surface water containing many dissolved minerals. As part of DOE/OST`s Resource Recovery Project (RRP), technologies are being demonstrated to not only clean the contaminated water but to recover metal values such as copper, zinc, and iron with an estimated gross value of more than $100 million. When recovered, the Berkeley Pit waters could benefit the entire Butte valley with new water resources for fisheries, irrigation, municipal, and industrial use. At WETO, the emphasis is on environmental technology development and commercialization activities, which will focus on mine cleanup, waste treatment, resource recovery, and water resource management.

  16. Clean Energy Works Oregon (CEWO)

    Broader source: Energy.gov [DOE]

    Presents Clean Energy Works Oregon's program background and the four easy steps to lender selection.

  17. Butts County, Georgia: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmentalBowerbank, Maine:Kansas: Energy Resources Jump to: navigation,ButlerSouthJumpButts

  18. Butte County, California: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoopButte County, California: Energy Resources Jump to: navigation, search Equivalent

  19. Glass Mountain Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LISTStar2-0057-EA Jump to:ofEniaElectric Jump to:GerGlacialGlacialGlass ButtesGlass

  20. Oregon Climate Assessment Report December 2010

    E-Print Network [OSTI]

    Pierce, Stephen

    Oregon Climate Assessment Report December 2010 Oregon Climate Change Research Institute #12;Oregon Climate Assessment Report December 2010 Oregon Climate Change Research Institute Recommended citation: Oregon Climate Change Research Institute (2010), Oregon Climate Assessment Report, K.D. Dello and P

  1. Oregon: Oregon's Clean Energy Resources and Economy (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2013-03-01

    This document highlights the Office of Energy Efficiency and Renewable Energy's investments and impacts in the state of Oregon.

  2. Glass Production

    E-Print Network [OSTI]

    Shortland, Andrew

    2009-01-01

    Late Bronze Age glasses. Journal of Archaeological Science781 - 789. Turner, W.E.S. 1954 Studies in ancient glassesand glass making processes. Part I: Crucibles and melting

  3. Ground Gravity Survey At Glass Buttes Area (DOE GTP) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View New PagesSustainableGlynn County,Solar Jump to:ResourcesGriggsOpen| Open

  4. Gas Sampling At Glass Buttes Area (DOE GTP) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View New PagesSustainable UrbanKentucky: Energy ResourcesMaui Area (DOE

  5. Development Wells At Glass Buttes Area (DOE GTP) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTIONRobertsdale, Alabama (UtilityInstruments IncMississippi:DeltaFishDesertDetroitSolarSurveyOpen1987)

  6. Slim Holes At Glass Buttes Area (DOE GTP) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EA EIS ReportEurope GmbH Jump to:Idaho-UtahSkyline HighBlackFlintDOEGlass

  7. Static Temperature Survey At Glass Buttes Area (DOE GTP) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EA EIS ReportEurope GmbHSoloPageBefore the Senate Select

  8. Cuttings Analysis At Glass Buttes Area (DOE GTP) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTIONRobertsdale, Alabama (UtilityInstruments Inc Jump to: navigation, searchCut and1983) | Open

  9. LiDAR At Glass Buttes Area (DOE GTP) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsource History ViewInformationWinds Jump to:LaredoLeelanauLeonicsLewisville,Li

  10. Pressure Temperature Log At Glass Buttes Area (DOE GTP) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsourceII JumpQuarterly SmartDB-2, BluePoulsen Hybrid,Areas-Wind ProjectInformation

  11. The Western Environmental Technology Office (WETO), Butte, Montana, technology summary

    SciTech Connect (OSTI)

    Not Available

    1994-09-01

    This document has been prepared by the DOE Environmental Management (EM) Office of Technology Development (OTD) to highlight its research, development, demonstration, testing, and evaluation activities funded through the Western Environmental Technology Office (WETO) in Butte, Montana. Technologies and processes described have the potential to enhance DOE`s cleanup and waste management efforts, as well as improve US industry`s competitiveness in global environmental markets. WETO`s environmental technology research and testing activities focus on the recovery of useable resources from waste. Environmental technology development and commercialization activities will focus on mine cleanup, waste treatment, resource recovery, and water resource management. Since the site has no record of radioactive material use and no history of environmental contamination/remediation activities, DOE-EM can concentrate on performing developmental and demonstration activities without the demands of regulatory requirements and schedules. Thus, WETO will serve as a national resource for the development of new and innovative environmental technologies.

  12. Nanotechnology Commercialization in Oregon

    E-Print Network [OSTI]

    Moeck, Peter

    Nanotechnology Commercialization in Oregon February 27, 2012 Portland State University Physics Seminar Robert D. "Skip" Rung President and Executive Director #12;2 Nanotechnology Commercialization on "green" nanotechnology and gap fund portfolio company examples #12;3 Goals of the National Nanotechnology

  13. Handbook 2014 Oregon State

    E-Print Network [OSTI]

    Handbook 2014 Oregon State MBA COLLEGE OF BUSINESS - GRADUATE BUSINESS PROGRAMS #12;2 College of Business MBA Handbook 2014 #12;Contents THE COLLEGE OF BUSINESS......................................... ........................................................................................................23 - 25 Integrity | Respect | Responsibility 3 #12;4 College of Business MBA Handbook 2014 #12

  14. Oregon State University Hatfield Marine Science Center

    E-Print Network [OSTI]

    Wright, Dawn Jeannine

    ....................................................... 3 Northwest National Marine Renewable Energy Center..........4 Oregon Sea GrantOregon State University Hatfield Marine Science Center 2009 - 2010 Annual Report 2030 SE Marine.....................................2 Coastal Oregon Marine Experiment Station...........................2 Cooperative Institute

  15. Oregon State University Hatfield Marine Science Center

    E-Print Network [OSTI]

    Wright, Dawn Jeannine

    ....................................................... 4 Northwest National Marine Renewable Energy Center..........5 Oregon Sea GrantOregon State University Hatfield Marine Science Center 2011 - 2012 Annual Report 2030 SE Marine.................................... 2 Coastal Oregon Marine Experiment Station...........................2 Cooperative Institute

  16. Oregon State University Hatfield Marine Science Center

    E-Print Network [OSTI]

    Wright, Dawn Jeannine

    ....................................................... 4 Northwest National Marine Renewable Energy Center..........5 Oregon Sea GrantOregon State University Hatfield Marine Science Center 2008 - 2009 Annual Report 2030 SE Marine.....................................2 Coastal Oregon Marine Experiment Station...........................2 Cooperative Institute

  17. Glass balls

    E-Print Network [OSTI]

    There is a building with 100 floors in it, and glass balls, and an integer k with the following property. If one drops a glass ball from the floor number k or higher, ...

  18. Oregon Water Quality Permit Program (Stormwater - Industrial...

    Open Energy Info (EERE)

    Oregon Water Quality Permit Program (Stormwater - Industrial Activities) Website Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Oregon Water Quality...

  19. Oregon/Transmission | Open Energy Information

    Open Energy Info (EERE)

    Electric Cooperative, Columbia Grid, Northern Tier Transmission Group, and Bonneville Power Administration. Oregon Energy Policy The Oregon Department of Energy's Governor's...

  20. Effect of welding on impact toughness of butt-joints in a titanium alloy

    E-Print Network [OSTI]

    Zhou, Wei

    Effect of welding on impact toughness of butt-joints in a titanium alloy Wei Zhou a, *, K.G. Chew b Abstract Impact toughness of a gas tungsten arc welded TiÁ/6AlÁ/4V alloy butt-joint was evaluated at room located either in the parent metal, in the heat- affected zone (HAZ), or in the weld metal. Optical

  1. Cardinal Glass Industries | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoopButte County,Camilla, Georgia: Energy ResourcesRanchCirculatingGlass Industries

  2. Rare Earth Phosphate Glass and Glass-Ceramic Proton Conductors

    E-Print Network [OSTI]

    De Jonghe, Lutgard C.

    2010-01-01

    Phosphate Glass and Glass-Ceramic Proton Conductors Hannah.phosphate glasses and glass-ceramics were investigated. Therare earth phosphate ceramics, glasses, and glass-ceramics

  3. Clean Energy Works Oregon (CEWO) | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    an exploration of Clean Energy Works Oregon's loan offerings its on-bill program to date. Clean Energy Works Oregon More Documents & Publications Clean Energy Works Oregon (CEWO)...

  4. Clean Energy Works Oregon (CEWO) | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Clean Energy Works Oregon's program background and the four easy steps to lender selection. Clean Energy Works Oregon More Documents & Publications Clean Energy Works Oregon (CEWO)...

  5. Status of Oregon's Bull Trout.

    SciTech Connect (OSTI)

    Buchanan, David V.; Hanson, Mary L.; Hooton, Robert M.

    1997-10-01

    Limited historical references indicate that bull trout Salvelinus confluentus in Oregon were once widely spread throughout at least 12 basins in the Klamath River and Columbia River systems. No bull trout have been observed in Oregon's coastal systems. A total of 69 bull trout populations in 12 basins are currently identified in Oregon. A comparison of the 1991 bull trout status (Ratliff and Howell 1992) to the revised 1996 status found that 7 populations were newly discovered and 1 population showed a positive or upgraded status while 22 populations showed a negative or downgraded status. The general downgrading of 32% of Oregon's bull trout populations appears largely due to increased survey efforts and increased survey accuracy rather than reduced numbers or distribution. However, three populations in the upper Klamath Basin, two in the Walla Walla Basin, and one in the Willamette Basin showed decreases in estimated population abundance or distribution.

  6. Computational Modeling of Microstructural-Evolution in AISI 1005 Steel During Gas Metal Arc Butt Welding

    E-Print Network [OSTI]

    Grujicic, Mica

    Welding M. Grujicic, S. Ramaswami, J.S. Snipes, R. Yavari, A. Arakere, C.-F. Yen, and B.A. Cheeseman-mechanical finite-element procedure is developed to model conventional gas metal arc welding (GMAW) butt of the workpiece and the weld temperature- dependent and by allowing the potential work of plastic deformation

  7. Modeling of AA5083 Material-Microstructure Evolution During Butt Friction-Stir Welding

    E-Print Network [OSTI]

    Grujicic, Mica

    Modeling of AA5083 Material-Microstructure Evolution During Butt Friction-Stir Welding M. Grujicic yet a fairly comprehensive overview of the friction stir welding (FSW) process is provided-element procedure developed in our prior study. Particular attention is given to proper modeling of the welding work

  8. ITP Glass: Glass Industry of the Future: Energy and Environmental...

    Broader source: Energy.gov (indexed) [DOE]

    ITP Glass: Industrial Glass Bandwidth Analysis Final Report, August 2007 ITP Glass: A Clear Vision for a Bright Future ITP Glass: Glass Industry Technology Roadmap; April 2002...

  9. Through a glass darkly

    E-Print Network [OSTI]

    Hall, James E

    2012-01-01

    Closeup Through a glass darklyThrough a glass darkly James E. Hall Keywords: AKAP2; AQP0;Medicine Closeup Through a glass darkly GLUT1 Glucose

  10. Pacific AC Intertie (Oregon -Washington -Canada)

    E-Print Network [OSTI]

    GORGE ELK CREEK Black Butte Lake COVELO LAYTONVILLE FORT BRAGG BIG RIVER ELK WILLITS A POTTER VALLEY. A&B GREENLEAF 2 Nevada City BRUNSWICK GRASS VALLEY BANGOR DOBBINS COLGATE COLUMBIA HILL CAPE HORN

  11. Wave Energy Development in Oregon Licensing & Permitting Requirements

    E-Print Network [OSTI]

    July 09 Wave Energy Development in Oregon Licensing & Permitting Requirements Prepared by Pacific Energy Ventures on behalf of the Oregon Wave Energy Trust w w w . o r e g o n w a v e . o r g #12;This study was commissioned by Oregon Wave Energy Trust. Oregon Wave Energy Trust is funded by the Oregon

  12. Biofuels in Oregon and Washington

    E-Print Network [OSTI]

    's Office of Energy Efficiency and Renewable Energy, Office of Biomass Programs Prepared by Pacific within the Office of Energy Efficiency and Renewable Energy, particularly Mr. Zia Haq, for co- fundingPNNL-17351 Biofuels in Oregon and Washington A Business Case Analysis of Opportunities

  13. DEPARTMENT OF GEOLOGICAL SCIENCES 1272 University of Oregon, Eugene, Oregon 97403-1272

    E-Print Network [OSTI]

    Roering, Joshua J.

    Mining Area, Paisley, Oregon (Staples) ARANDA-GOMEZ, Jose Jorge, Ph.D., 1981 Ultramafic and high grade

  14. Oregon Institute of Technology District Heating Low Temperature...

    Open Energy Info (EERE)

    Oregon Institute of Technology District Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Oregon Institute of Technology District Heating Low Temperature...

  15. EIS-0492: Oregon LNG Export Project (Warrenton, OR) and Washington...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2: Oregon LNG Export Project (Warrenton, OR) and Washington Expansion Project (between Sumas and Woodland, WA) EIS-0492: Oregon LNG Export Project (Warrenton, OR) and Washington...

  16. Portland, Oregon: Solar in Action (Brochure), Solar America Cities...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Portland, Oregon: Solar in Action (Brochure), Solar America Cities, Energy Efficiency & Renewable Energy (EERE) Portland, Oregon: Solar in Action (Brochure), Solar America Cities,...

  17. Oregon Construction/Installation Permit for Onsite Wastewater...

    Open Energy Info (EERE)

    cited 20141112. Available from: http:licenseinfo.oregon.govindex.cfm?fuseactionlicenseseng&linkitemid14245 Retrieved from "http:en.openei.orgwindex.php?titleOregon...

  18. ,"Oregon Natural Gas LNG Storage Additions (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","Oregon Natural Gas LNG Storage Additions (MMcf)",1,"Annual",2014 ,"Release Date:","9302015" ,"Next Release...

  19. ,"Oregon Natural Gas LNG Storage Withdrawals (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","Oregon Natural Gas LNG Storage Withdrawals (MMcf)",1,"Annual",2014 ,"Release Date:","9302015" ,"Next Release...

  20. Oregon Underground Injection Control Program Authorized Injection...

    Open Energy Info (EERE)

    Systems Webpage Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Oregon Underground Injection Control Program Authorized Injection Systems Webpage...

  1. ,"Oregon Natural Gas Gross Withdrawals and Production"

    U.S. Energy Information Administration (EIA) Indexed Site

    Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Oregon Natural Gas Gross Withdrawals and Production",10,"Annual",2014,"06301979" ,"Release...

  2. Bonneville Power Administration, Oregon Energy Northwest, Washington...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Bonneville Power Administration, Oregon Energy Northwest, Washington; Wholesale Electric Primary Credit Analyst: David N Bodek, New York (1) 212-438-7969; david.bodek@standardandpo...

  3. Oregon Underground Injection Control Registration Geothermal...

    Open Energy Info (EERE)

    Underground Injection Control Registration Geothermal Heating Systems (DEQ Form UICGEO-1004(f)) Jump to: navigation, search OpenEI Reference LibraryAdd to library Form: Oregon...

  4. Oregon/Geothermal | Open Energy Information

    Open Energy Info (EERE)

    Phase III - Permitting and Initial Development Neal Hot Springs Geothermal Area Snake River Plain Neal Hot Springs II Geothermal Project U.S. Geothermal Vale, Oregon Phase I -...

  5. Demand Response Programs Oregon Public Utility Commission

    E-Print Network [OSTI]

    Demand Response Programs Oregon Public Utility Commission January 6, 2005 Mike Koszalka Director;Demand Response Results, 2004 Load Control ­ Cool Keeper ­ ID Irrigation Load Control Price Responsive

  6. What is the Ocean Like off Oregon?

    E-Print Network [OSTI]

    Kurapov, Alexander

    meters. The sampling grid was reminiscent of the more ambitious CalCOFI survey grid off California, begunWhat is the Ocean Like off Oregon? Exploring, Monitoring, and Understanding the Northern California g o 76 Introduction The dynamic, ever-changing ocean off Oregon is home to a rich, productive

  7. MICHAEL G. RAYMER Curriculum Vitae (07/2010) Department of Physics and Oregon Center for Optics, University of Oregon, Eugene, OR 97403

    E-Print Network [OSTI]

    Richmond, Geraldine L.

    for Optics, University of Oregon, Eugene, OR 97403 (503) 346-4785 PROFESSIONAL EXPERIENCE Knight Professor, 1998 - 1999. Director, Oregon Center for Optics, University of Oregon, Eugene, Oregon; 1997 ­ 1998 of Physics, University of Oregon, Eugene, Oregon; 1988 - 1990. Associate Professor of Optics, The Institute

  8. NEWS & VIEWS Glass dynamics

    E-Print Network [OSTI]

    Weeks, Eric R.

    NEWS & VIEWS Glass dynamics Diverging views on glass transition Gregory B. mc.mckenna@ttu.edu T he glass transition is one of the most intriguing phenomena in the world of soft condensed matter. Despite decades of study, many aspects of the behaviour of glass-forming liquids remain elusive

  9. Glass-silicon column

    DOE Patents [OSTI]

    Yu, Conrad M.

    2003-12-30

    A glass-silicon column that can operate in temperature variations between room temperature and about 450.degree. C. The glass-silicon column includes large area glass, such as a thin Corning 7740 boron-silicate glass bonded to a silicon wafer, with an electrode embedded in or mounted on glass of the column, and with a self alignment silicon post/glass hole structure. The glass/silicon components are bonded, for example be anodic bonding. In one embodiment, the column includes two outer layers of silicon each bonded to an inner layer of glass, with an electrode imbedded between the layers of glass, and with at least one self alignment hole and post arrangement. The electrode functions as a column heater, and one glass/silicon component is provided with a number of flow channels adjacent the bonded surfaces.

  10. Pacific AC Intertie (Oregon -Washington -Canada)

    E-Print Network [OSTI]

    Willows WILLOWS A LOGAN CREEK & SCHULLER JACINTO PROVIDENT STONY GORGE ELK CREEK Black Butte Lake COVELO LAYTONVILLE FORT BRAGG BIG RIVER ELK WILLITS A POTTER VALLEY MENDOCINO CALPELLA Ukiah MASONITE UKIAH UPPER BRUNSWICK GRASS VALLEY BANGOR DOBBINS COLGATE COLUMBIA HILL CAPE HORN SHADY GLEN BEALE AFB 2 BEALE AFB 1

  11. ITP Glass: Industrial Glass Bandwidth Analysis Final Report,...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Industrial Glass Bandwidth Analysis Final Report, August 2007 ITP Glass: Industrial Glass Bandwidth Analysis Final Report, August 2007 industrialbandwidth.pdf More Documents &...

  12. The Western Environmental Technology Office (WETO), Butte, Montana. Technology summary (Revised)

    SciTech Connect (OSTI)

    NONE

    1996-03-01

    This document has been prepared by the US Department of Energy`s (DOE`s) Office of Environmental Management (EM) Office of Science and Technology (OST) to highlight its research, development, demonstration, testing, and evaluation (RDDT&E) activities funded through the Western environmental Technology Office (WETO) in Butte, Montana. Technologies and processes described in this document have the potential to enhance DOE`s cleanup and waste management efforts, as well as improve US industry`s competitiveness in global environmental markets. The information presented in this document has been assembled from recently produced OST documents that highlight technology development activities within each of the OST program elements and Focus Areas. This document presents one in a series for each of DOE`s Operations Office and Energy Technology Centers.

  13. The Urgent Need for Carbon Dioxide Sequestration Klaus S. Lackner, Darryl P. Butt, Reed Jensen and Hans Ziock

    E-Print Network [OSTI]

    1 The Urgent Need for Carbon Dioxide Sequestration Klaus S. Lackner, Darryl P. Butt, Reed Jensen in this field. This memo explains why the development of a viable sequestration technology is a long term stra- tegic goal of utmost importance and why sequestration provides a goal worthy of the attention

  14. University of Oregon Libraries Types of Periodicals

    E-Print Network [OSTI]

    Lockery, Shawn

    University of Oregon Libraries Types of Periodicals Scholarly Sources Popular Sources SCHOLARLY American Quarterly RN Automotive News Library Journal Restaurants & Institutions Chemical Engineering News & biographical information Statistics, including forecasts Some book reviews Commentary on political & social

  15. Campus Operations Page 1 University of Oregon

    E-Print Network [OSTI]

    Operations and Maintenance; 2.) Capital Construction; 3.) Utilities Services, 4.) Custodial Services; and 5 the operations, maintenance, and cleaning of campus buildings, building systems, utilities, equipmentCampus Operations Page 1 University of Oregon Campus Operations Strategic Diversity Action Plan

  16. PacifiCorp (Oregon) | Open Energy Information

    Open Energy Info (EERE)

    Territory: Oregon Phone Number: 1-888-221-7070 Website: www.pacificorp.comindex.html Outage Hotline: 1-877-508-5088 Green Button Access: Implemented Green Button Reference...

  17. Low-temperature geothermal database for Oregon

    SciTech Connect (OSTI)

    Black, G.

    1994-11-01

    The goals of the low-temperature assessment project, performed by the Oregon Department of Geology and Mineral Industries (DOGAMI) is aimed primarily at updating the inventory of the nation's low and moderate temperature geothermal resources. The study has begun in Oregon, where the areas of Paisley, Lakeview, Burns/Hines, Lagrande, and Vale were identified over 40 sites as having potential for direct heat utilization. Specifics sites are outlined, detailing water temperature, flow, and current uses of the sites.

  18. The Oregon State University Kelley Engineering Center 

    E-Print Network [OSTI]

    Schroeder, B.

    2010-01-01

    collector system ? Provides domestic hot water at 70% utilization efficiency Project Features: Solar Technology About Kelley Design Process Project Features Building Performance Building Performance About Kelley Design Process Project Features... University Kelley Engineering Center Bob Schroeder, P.E., LEED AP, Principal Glumac August, 2010 Agenda 1 About Kelley 2 Design Process 3 Project Features 4 Building Performance 5 Q&A ? Oregon State University, Corvallis, Oregon ? First LEED? Gold...

  19. Glass Working, Use and Discard

    E-Print Network [OSTI]

    Nicholson, Paul

    2011-01-01

    Beck, Horace C. 1934 Glass before 1500 BC. Ancient Egypt7 - 21. Cooney, John 1960 Glass sculpture in ancient Egypt.Journal of Glass Studies 2, pp. 10 - 43. 1976 Glass.

  20. MECS 2006- Glass

    Broader source: Energy.gov [DOE]

    Manufacturing Energy and Carbon Footprint for Glass (NAICS 3272, 327993) Sector with Total Energy Input, October 2012 (MECS 2006)

  1. EIS-0296: South Oregon Coast Reinforcement Project, Coos Bay/North Bend, Oregon

    Broader source: Energy.gov [DOE]

    This EIS analyzes BPA's proposed action to build a 500- kilovolt (kV) transmission line and new substation to reinforce electrical service to the southern coast of the state of Oregon. Nucor Steel, a division of Nucor Corporation, may build a new steel mill in the Coos Bay/North Bend, Oregon, area.

  2. EIS-0296: South Oregon Coast Reinforcement Project, Coos Bay/North Bend, Oregon

    Broader source: Energy.gov [DOE]

    Bonneville Power Administration proposes to build a 500- kilovolt (kV) transmission line and new substation to reinforce electrical service to the southern coast of the state of Oregon. Nucor Steel, a division of Nucor Corporation, may build a new steel mill in the Coos Bay/North Bend, Oregon, area.

  3. Old World Monkeys Stephen R Frost, University of Oregon, Eugene, Oregon, USA

    E-Print Network [OSTI]

    Rosenberger, Alfred H.

    Old World Monkeys Stephen R Frost, University of Oregon, Eugene, Oregon, USA Alfred L Rosenberger) article, Old World Monkeys by Walter Carl Hartwig and Alfred L Rosenberger. Old World monkeys (hominoids) than they are to the monkeys of Central and South America. Introduction Old World monkeys

  4. UNIVERSITY OF OREGON SOLAR MONITORING LABORATORY The University of Oregon (UO) Solar Moni-

    E-Print Network [OSTI]

    Oregon, University of

    i UNIVERSITY OF OREGON SOLAR MONITORING LABORATORY The University of Oregon (UO) Solar Moni- toring Laboratory has been measuring incident solar radiation since 1975. Current support for this work comes from the Regional Solar Radiation Monitoring Project (RSRMP), a utility consortium project including the Bon

  5. Oxynitride glass production procedure

    DOE Patents [OSTI]

    Weidner, Jerry R. (Idaho Falls, ID); Schuetz, Stanley T. (Idaho Falls, ID); O'Brien, Michael H. (Idaho Falls, ID)

    1991-01-01

    The invention is a process for the preparation of high quality oxynitride glasses without resorting to high pressures. Nitrogen-containing compounds such as Si.sub.3 N.sub.4 are first encapsulated in a low melting temperature glass. Particles of the encapsulated nitrogen-containing compound are mixed with other oxide glass-formers and melted in an atmosphere of flowing nitrogen and in the presence of buffering gas to form the oxynitride glass. Glasses containing up to 15 at % nitrogen have been prepared by this method.

  6. Oregon State University School of Mechanical, Industrial, and Manufacturing

    E-Print Network [OSTI]

    Balasubramanian, Ravi

    Oregon State University School of Mechanical, Industrial, and Manufacturing Engineering Industrial and Manufacturing Engineering Graduate Programs, Policies, and Procedures Manual Effective September 2014 School of Mechanical, Industrial, and Manufacturing Engineering 204 Rogers Hall Oregon State University Corvallis

  7. Oregon State University School of Mechanical, Industrial, and Manufacturing

    E-Print Network [OSTI]

    Balasubramanian, Ravi

    Oregon State University School of Mechanical, Industrial, and Manufacturing Engineering Industrial and Manufacturing Engineering Graduate Programs, Policies, and Procedures Manual Effective September 2013 School of Mechanical, Industrial, and Manufacturing Engineering 204 Rogers Hall Oregon State University Corvallis

  8. Current Activities Assessing Butt Fusion Joint Integrity in High Density Polyethylene Piping

    SciTech Connect (OSTI)

    Crawford, Susan L.; Cinson, Anthony D.; Doctor, Steven R.; Denslow, Kayte M.

    2012-09-01

    The Pacific Northwest National Laboratory (PNNL) in Richland, Washington, conducted initial studies to evaluate the effectiveness of nondestructive examinations (NDE) coupled with mechanical testing for assessing butt fusion joint integrity in high density polyethylene (HDPE) pipe. The work provided insightful information to the United States Nuclear Regulatory Commission (NRC) on the effectiveness of volumetric inspection techniques for detecting lack of fusion (LOF) conditions in the fusion joints. HDPE has been installed on a limited basis in American Society of Mechanical Engineers (ASME) Class 3, buried piping systems at several operating U.S. nuclear power plants and has been proposed for use in new construction. A comparison was made between the results from ultrasonic and microwave nondestructive examinations and the results from mechanical destructive evaluations, specifically the high-speed tensile test and the side-bend test, for determining joint integrity. The data comparison revealed that none of the NDE techniques detected all of the lack-of-fusion conditions that were revealed by the destructive tests. Follow-on work has recently been initiated at PNNL to accurately characterize the NDE responses from machined flaws of varying size and location in PE 4710 materials as well as the LOF condition. This effort is directed at quantifying the ability of volumetric NDE techniques to detect flaws in relation to the critical flaw size associated with joint integrity. A status of these latest investigations is presented.

  9. Report on the Oregon Ballast Water Management Program in 2004

    E-Print Network [OSTI]

    Ballast Water Management Program in 2004 Produced for the Oregon State Legislature By The Oregon Ballast regulations; shipping industry's compliance with Oregon law; and ballast water treatment technology as inefficient and having some safety constraints, ballast water exchange is still the primary treatment method

  10. 2030 SE Marine Science Drive Newport, Oregon 973665-5296

    E-Print Network [OSTI]

    Wright, Dawn Jeannine

    2030 SE Marine Science Drive Newport, Oregon 973665-5296 Telephone 541-867-0100 Fax 541-867-0138 Web Page http://hmsc.oregonstate.edu Oregon State University Hatfield Marine Science Center 2006.....................................2 Coastal Oregon Marine Experiment Station...........................2 OSU-COMES Seafood Research

  11. 1982 Oregon energy resource manual

    SciTech Connect (OSTI)

    Ebert, R.; Ebert, J. (eds.)

    1982-01-01

    This manual is divided into three distinct sections. Part one contains 40 passive solar home plans designed for the Pacific Northwest by Oregon architects and designers. Floor plans and exterior renderings of multi-family and single-family dwellings, earth sheltered and bermed designs, and light commercial structures are included. The degree of solar contribution each residence achieves is graphically presented for ease of understanding. Part two, renewable-energy-resource guide, is primarily designed as a locator to indepth publications that explain specific energy resources in detail. It contains illustrated book reviews of pertinent private and government publications available. Various tables, forms, diagrams, energy system evaluation criteria, an illustrated glossary, BPA energy programs, utility programs, financial outlooks and non-profit organizations are included. The product locator index makes up part three. This indexed directory contains the listings of businesses, including the address, phone number, contact person and a 30 to 50 word description of the product or services currently offered. These renewable energy companies range from architectural and engineering services to research and development firms.

  12. Economic Implications of Farmer Storage of Surface Water in Federal Projects: Elephant Butte Irrigahon District, Dona Ana and Sierra Counties, New Mexico 

    E-Print Network [OSTI]

    Ellis, J. R.; Teague, P. W.; Lacewell, R. D.

    1982-01-01

    This study estimated the expected regional impact and economic feasibility of a proposed water accumulation or water saving option for agricultural producers operating in the Elephant Butte Irrigation District in southern ...

  13. Gladstone, Oregon: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View New PagesSustainable UrbanKentucky:BoreOpenGilliam County, Oregon:Glacier ElectricOregon:

  14. Lyons, Oregon: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View NewTexas:Montezuma, Arizona:Oregon:Lowell Point,Massachusetts:Kansas: Energy ResourcesOregon:

  15. Diamond turning of glass

    SciTech Connect (OSTI)

    Blackley, W.S.; Scattergood, R.O.

    1988-12-01

    A new research initiative will be undertaken to investigate the critical cutting depth concepts for single point diamond turning of brittle, amorphous materials. Inorganic glasses and a brittle, thermoset polymer (organic glass) are the principal candidate materials. Interrupted cutting tests similar to those done in earlier research are Ge and Si crystals will be made to obtain critical depth values as a function of machining parameters. The results will provide systematic data with which to assess machining performance on glasses and amorphous materials

  16. HLW Glass Waste Loadings

    Office of Environmental Management (EM)

    HLW Glass Waste Loadings Ian L. Pegg Vitreous State Laboratory The Catholic University of America Washington, DC Overview Overview Vitrification - general background Joule...

  17. ITP Glass: Glass Industry Technology Roadmap; April 2002

    Office of Energy Efficiency and Renewable Energy (EERE)

    Glass is a unique material that has been produced for thousands of years. The glass industry's products are an integral part of the American economy and everyday life. Glass products are used in food and beverage packaging, lighting, communications, etc.

  18. Rare Earth Phosphate Glass and Glass-Ceramic Proton Conductors

    E-Print Network [OSTI]

    De Jonghe, Lutgard C.

    2010-01-01

    300-500°C. Doping rare earth phosphate glasses with Ce, andRare Earth Phosphate Glass and Glass-Ceramic Protonconductivity of alkaline-earth doped rare earth phosphate

  19. Rare Earth Phosphate Glass and Glass-Ceramic Proton Conductors

    SciTech Connect (OSTI)

    De Jonghe, Lutgard C.; Ray, Hannah L.; Wang, Ruigang

    2008-12-03

    The structure and conductivity of cerium and lanthanum phosphate glasses and glass-ceramics were investigated. The effects of varying the metal to phosphate ratio in the glasses, doping LaP3O9 glasses with Ce, and recrystallization of CeP3O9 glasses, on the glasses' microstructure and total conductivity were investigated using XRD, SEM, and AC impedance techniques. Strong increases in conductivity occurred when the glasses were recrystallized: the conductivity of a cerium metaphosphate glass increased conductivity after recrystallization from 10-7.5 S/cm to 10-6 S/cm at 400oC.

  20. The art of glass blowing

    E-Print Network [OSTI]

    Dugan, David; Macfarlane, Alan

    2004-08-23

    Alan Macfarlane talks to Tony Cummins, one of the last traditional glass blowers, as he demonstrates his art and the making of a flat glass object in an old glass house near Birmingham....

  1. EIS-0204: Hermiston Generating Project, Hermiston, Oregon

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy’s Bonneville Power Administration prepared this statement to analyze the alternatives and environmental and socioeconomic impacts thereof of transferring electrical power from a proposed privately-owned, combined cycle combustion turbine cogeneration plant in Oregon.

  2. Defense HLW Glass Degradation Model

    SciTech Connect (OSTI)

    D. Strachan

    2004-10-20

    The purpose of this report is to document the development of a model for calculating the release rate for radionuclides and other key elements from high-level radioactive waste (HLW) glasses under exposure conditions relevant to the performance of the repository. Several glass compositions are planned for the repository, some of which have yet to be identified (i.e., glasses from Hanford and Idaho National Engineering and Environmental Laboratory). The mechanism for glass dissolution is the same for these glasses and the glasses yet to be developed for the disposal of DOE wastes. All of these glasses will be of a quality consistent with the glasses used to develop this report.

  3. A Methodology for the Assessment of Unconventional (Continuous) Resources with an Application to the Greater Natural Buttes Gas Field, Utah

    SciTech Connect (OSTI)

    Olea, Ricardo A.; Cook, Troy A.; Coleman, James L.

    2010-12-15

    The Greater Natural Buttes tight natural gas field is an unconventional (continuous) accumulation in the Uinta Basin, Utah, that began production in the early 1950s from the Upper Cretaceous Mesaverde Group. Three years later, production was extended to the Eocene Wasatch Formation. With the exclusion of 1100 non-productive ('dry') wells, we estimate that the final recovery from the 2500 producing wells existing in 2007 will be about 1.7 trillion standard cubic feet (TSCF) (48.2 billion cubic meters (BCM)). The use of estimated ultimate recovery (EUR) per well is common in assessments of unconventional resources, and it is one of the main sources of information to forecast undiscovered resources. Each calculated recovery value has an associated drainage area that generally varies from well to well and that can be mathematically subdivided into elemental subareas of constant size and shape called cells. Recovery per 5-acre cells at Greater Natural Buttes shows spatial correlation; hence, statistical approaches that ignore this correlation when inferring EUR values for untested cells do not take full advantage of all the information contained in the data. More critically, resulting models do not match the style of spatial EUR fluctuations observed in nature. This study takes a new approach by applying spatial statistics to model geographical variation of cell EUR taking into account spatial correlation and the influence of fractures. We applied sequential indicator simulation to model non-productive cells, while spatial mapping of cell EUR was obtained by applying sequential Gaussian simulation to provide multiple versions of reality (realizations) having equal chances of being the correct model. For each realization, summation of EUR in cells not drained by the existing wells allowed preparation of a stochastic prediction of undiscovered resources, which range between 2.6 and 3.4 TSCF (73.6 and 96.3 BCM) with a mean of 2.9 TSCF (82.1 BCM) for Greater Natural Buttes. A second approach illustrates the application of multiple-point simulation to assess a hypothetical frontier area for which there is no production information but which is regarded as being similar to Greater Natural Buttes.

  4. Glass, Brian 1 BRIAN DANIEL GLASS, M.A.

    E-Print Network [OSTI]

    Maddox, W. Todd

    Glass, Brian 1 BRIAN DANIEL GLASS, M.A. University Department of Psychology, A8000 The University of Texas at Austin Austin, TX 78712 (512) 232-2883 e-mail: glass@mail.utexas.edu EDUCATION 2006 ­ Cognitive include: Designing and constructing experiments, statistical #12;Glass, Brian 2 analysis, manuscript

  5. Glass, Brian 1 BRIAN DANIEL GLASS, M.A.

    E-Print Network [OSTI]

    Maddox, W. Todd

    Glass, Brian 1 BRIAN DANIEL GLASS, M.A. University Department of Psychology, A8000 The University Making, The University of Texas at Austin #12;Glass, Brian 2 Duties include: Designing and constructing, constructing, and running experiments, statistical analysis. JOURNAL PUBLICATIONS Glass, B. D., Chotibut, T

  6. Glass, Brian 1 BRIAN DANIEL GLASS, M.A.

    E-Print Network [OSTI]

    Maddox, W. Todd

    Glass, Brian 1 BRIAN DANIEL GLASS, M.A. University Department of Psychology, A8000 The University of Categorization and Decision Making, The University of Texas at Austin #12;Glass, Brian 2 Duties include: Programming, constructing, and running experiments, statistical analysis. JOURNAL PUBLICATIONS Glass, B. D

  7. Glass electrolyte composition

    DOE Patents [OSTI]

    Kucera, G.H.; Roche, M.F.

    1985-01-08

    An ionically conductive glass is disclosed for use as electrolyte in a high temperature electrochemical cell, particularly a cell with sodium anode and sulfur cathode. The glass includes the constituents Na/sub 2/O, ZrO/sub 2/, Al/sub 2/O/sub 3/ and SiO/sub 2/ in selected proportions to be a single phase solid solution substantially free of crystalline regions and undissolved constituents. Other advantageous properties are an ionic conductivity in excess of 2 x 10/sup -3/ (ohm-cm)/sup -1/ at 300/sup 0/C and a glass transition temperature in excess of 500/sup 0/C.

  8. EXELFS of Metallic Glasses

    SciTech Connect (OSTI)

    Ito, Y.; Alamgir, F.M.; Schwarz, R.B.; Jain, H.; Williams, D.B.

    1999-11-30

    The feasibility of using extended energy-loss fine structure (EXELFS) obtained from {approximately}1 nm regions of metallic glasses to study their short-range order has been examined. Ionization edges of the metallic glasses in the electron energy-loss spectrum (EELS) have been obtained from PdNiP bulk metallic glass and Ni{sub 2}P polycrystalline powder in a transmission electron microscope. The complexity of EXELFS analysis of L- and M-ionization edges of heavy elements (Z>22, i.e. Ni and Pd) is addressed by theoretical calculations using an ab initio computer code, and its results are compared with the experimental data.

  9. Focus Series: OREGON-On Bill Financing Program: On-Bill Financing...

    Broader source: Energy.gov (indexed) [DOE]

    Focus Series: OREGON-On Bill Financing Program: On-Bill Financing Brings Lenders and Homeowners On Board. Focus Series: Oregon More Documents & Publications Better Buildings...

  10. Baseline LAW Glass Formulation Testing

    SciTech Connect (OSTI)

    Kruger, Albert A. [USDOE Office of River Protection, Richland, WA (United States); Mooers, Cavin [The Catholic University of America, Washington, DC (United States). Vitreous State Lab.; Bazemore, Gina [The Catholic University of America, Washington, DC (United States). Vitreous State Lab; Pegg, Ian L. [The Catholic University of America, Washington, DC (United States). Vitreous State Lab; Hight, Kenneth [The Catholic University of America, Washington, DC (United States). Vitreous State Lab; Lai, Shan Tao [The Catholic University of America, Washington, DC (United States). Vitreous State Lab; Buechele, Andrew [The Catholic University of America, Washington, DC (United States). Vitreous State Lab; Rielley, Elizabeth [The Catholic University of America, Washington, DC (United States). Vitreous State Lab; Gan, Hao [The Catholic University of America, Washington, DC (United States). Vitreous State Lab; Muller, Isabelle S. [The Catholic University of America, Washington, DC (United States). Vitreous State Lab; Cecil, Richard [The Catholic University of America, Washington, DC (United States). Vitreous State Lab

    2013-06-13

    The major objective of the baseline glass formulation work was to develop and select glass formulations that are compliant with contractual and processing requirements for each of the LAW waste streams. Other objectives of the work included preparation and characterization of glasses with respect to the properties of interest, optimization of sulfate loading in the glasses, evaluation of ability to achieve waste loading limits, testing to demonstrate compatibility of glass melts with melter materials of construction, development of glass formulations to support ILAW qualification activities, and identification of glass formulation issues with respect to contract specifications and processing requirements.

  11. Better Buildings: Workforce: Spotlight on Portland, Oregon: Making...

    Energy Savers [EERE]

    Oregon; Financing and Incetntives: Use Incentives to Get Attention and Encourage Deep Savings Portland Summary of Reported Data Voluntary Initiative: Designing Incentives...

  12. Oregon Section 401 Removal/Fill Certification Webpage | Open...

    Open Energy Info (EERE)

    Certification Webpage Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Oregon Section 401 RemovalFill Certification Webpage Abstract Provides overview...

  13. Oregon: DOE Advances Game-Changing EGS Geothermal Technology...

    Broader source: Energy.gov (indexed) [DOE]

    The AltaRock Enhanced Geothermal Systems (EGS) demonstration project, at Newberry Volcano near Bend, Oregon, represents a key step in geothermal energy development, demonstrating...

  14. Oregon Senator Jeff Merkley to Visit Surprise Valley Electrification...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Geothermal Technologies Program Recovery Act award to develop a geothermal resource in Paisley, Oregon for the benefit of its rural electric cooperative members. DOE is...

  15. ,"Oregon Natural Gas Gross Withdrawals from Shale Gas (Million...

    U.S. Energy Information Administration (EIA) Indexed Site

    Shale Gas (Million Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Oregon...

  16. Oregon: Clean Energy Works Coordinates Energy Efficiency Efforts...

    Office of Environmental Management (EM)

    Clean Energy Works Coordinates Energy Efficiency Efforts Oregon: Clean Energy Works Coordinates Energy Efficiency Efforts July 26, 2013 - 12:00am Addthis With an eroding coast and...

  17. Southern Oregon University Highlighted by U.S. Energy Department...

    Energy Savers [EERE]

    investments by Southern Oregon University (SOU). The school's investments in renewable energy, sustainability, and purchasing Renewable Energy Certificates (RECs) are benefiting...

  18. Energy Department Conditionally Authorizes Oregon LNG to Export...

    Broader source: Energy.gov (indexed) [DOE]

    WASHINGTON - The Energy Department announced today that it has conditionally authorized LNG Development Co., LLC (Oregon LNG) to export domestically produced liquefied natural gas...

  19. Oregon Federal and State Compliance for Historic and Archaeological...

    Open Energy Info (EERE)

    Resources Webpage Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Oregon Federal and State Compliance for Historic and Archaeological Resources...

  20. Oregon Department of Land Conservation and Department - Forest...

    Open Energy Info (EERE)

    Land Protectio Program Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Oregon Department of Land Conservation and Department - Forest Land Protectio...

  1. Oregon Department of Land Conservation and Development - Farmland...

    Open Energy Info (EERE)

    Not Provided DOI Not Provided Check for DOI availability: http:crossref.org Online Internet link for Oregon Department of Land Conservation and Development - Farmland Protection...

  2. Oregon Procedure and Criteria for Hazardous Waste Treatment,...

    Open Energy Info (EERE)

    Oregon Procedure and Criteria for Hazardous Waste Treatment, Storage or Disposal Permits Fact Sheet Jump to: navigation, search OpenEI Reference LibraryAdd to library Permitting...

  3. Oregon Guidelines for Stormwater Management Plans for Removal...

    Open Energy Info (EERE)

    Oregon Guidelines for Stormwater Management Plans for RemovalFill Permit Applications Jump to: navigation, search OpenEI Reference LibraryAdd to library PermittingRegulatory...

  4. Oregon: DOE Advances Game-Changing EGS Geothermal Technology...

    Office of Environmental Management (EM)

    at the Newberry Volcano April 9, 2013 - 12:00am Addthis The AltaRock Enhanced Geothermal Systems (EGS) demonstration project, at Newberry Volcano near Bend, Oregon,...

  5. ,"Oregon Natural Gas Vehicle Fuel Price (Dollars per Thousand...

    U.S. Energy Information Administration (EIA) Indexed Site

    ame","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Oregon Natural Gas Vehicle Fuel Price (Dollars per Thousand Cubic Feet)",1,"Annual",2012 ,"Release...

  6. Super ionic conductive glass

    DOE Patents [OSTI]

    Susman, Sherman (Park Forest, IL); Volin, Kenneth J. (Fort Collins, CO)

    1984-01-01

    An ionically conducting glass for use as a solid electrolyte in a power or secondary cell containing an alkali metal-containing anode and a cathode separated by an alkali metal ion conducting glass having an ionic transference number of unity and the general formula: A.sub.1+x D.sub.2-x/3 Si.sub.x P.sub.3-x O.sub.12-2x/3, wherein A is a network modifier for the glass and is an alkali metal of the anode, D is an intermediate for the glass and is selected from the class consisting of Zr, Ti, Ge, Al, Sb, Be, and Zn and X is in the range of from 2.25 to 3.0. Of the alkali metals, Na and Li are preferred and of the intermediate, Zr, Ti and Ge are preferred.

  7. Waterloo, Oregon: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-EnhancingEt Al.,Turin,VillageWarrensource HistoryOregon: Energy Resources Jump to:

  8. Yamhill, Oregon: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-EnhancingEtGeorgia:Illinois:Wizard PowerWyandanch,Yamhill, Oregon: Energy Resources

  9. Sumpter, Oregon: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-Enhancing CapacityVectren)Model for the EntireOpenSumpter, Oregon: Energy Resources

  10. Energy Incentive Programs, Oregon | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: AlternativeCommunication3-EDepartment ofArizona EnergyHampshire EnergyOregon Energy Incentive

  11. Richland, Oregon: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onRAPID/Geothermal/Exploration/ColoradoRemsenburg-Speonk, New York: EnergyOpenReykjanesMinnesota:RichlandOregon: Energy

  12. Rivergrove, Oregon: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onRAPID/Geothermal/Exploration/ColoradoRemsenburg-Speonk, New York:Virginia:Riva, Maryland:Rivergrove, Oregon: Energy

  13. Rockcreek, Oregon: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onRAPID/Geothermal/Exploration/ColoradoRemsenburg-Speonk, NewMichigan: Energy ResourcesRockcreek, Oregon: Energy Resources

  14. Scio, Oregon: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onRAPID/Geothermal/Exploration/ColoradoRemsenburg-Speonk,SageScheuco International JumpSchuylkillScio, Oregon: Energy

  15. Lafayette, Oregon: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View NewTexas: EnergyKulpsville,LEDSGP/activitiesPlata ElectricLackawanna,Oregon: Energy Resources

  16. Lebanon, Oregon: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View NewTexas:Montezuma, Arizona: EnergyLebanon County, Pennsylvania: Energy ResourcesYork:Oregon:

  17. Oregon Environmental Quality Commission | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History ViewMayo, Maryland:NPIProtectio Program | Open Energy Information OregonLands Jump

  18. Cornelius, Oregon: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTIONRobertsdale, Alabama (Utility Company)| Open(Evans,Oregon:Volcano, Hawaii |North Carolina:

  19. Energy Trust of Oregon | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum12, 2015 Infographic courtesyEducationNevadaSessionToo! |OctoberTrust of Oregon

  20. DWPF GLASS BEADS AND GLASS FRIT TRANSPORT DEMONSTRATION

    SciTech Connect (OSTI)

    Adamson, D; Bradley Pickenheim, B

    2008-11-24

    DWPF is considering replacing irregularly shaped glass frit with spherical glass beads in the Slurry Mix Evaporator (SME) process to decrease the yield stress of the melter feed (a non-Newtonian Bingham Plastic). Pilot-scale testing was conducted on spherical glass beads and glass frit to determine how well the glass beads would transfer when compared to the glass frit. Process Engineering Development designed and constructed the test apparatus to aid in the understanding and impacts that spherical glass beads may have on the existing DWPF Frit Transfer System. Testing was conducted to determine if the lines would plug with the glass beads and the glass frit slurry and what is required to unplug the lines. The flow loop consisted of vertical and horizontal runs of clear PVC piping, similar in geometry to the existing system. Two different batches of glass slurry were tested: a batch of 50 wt% spherical glass beads and a batch of 50 wt% glass frit in process water. No chemicals such as formic acid was used in slurry, only water and glass formers. The glass beads used for this testing were commercially available borosilicate glass of mesh size -100+200. The glass frit was Frit 418 obtained from DWPF and is nominally -45+200 mesh. The spherical glass beads did not have a negative impact on the frit transfer system. The transferring of the spherical glass beads was much easier than the glass frit. It was difficult to create a plug with glass bead slurry in the pilot transfer system. When a small plug occurred from setting overnight with the spherical glass beads, the plug was easy to displace using only the pump. In the case of creating a man made plug in a vertical line, by filling the line with spherical glass beads and allowing the slurry to settle for days, the plug was easy to remove by using flush water. The glass frit proved to be much more difficult to transfer when compared to the spherical glass beads. The glass frit impacted the transfer system to the point that the test apparatus had to be disassembled to dislodge the plugs created in the system.

  1. The Seduction of the Glass Box

    E-Print Network [OSTI]

    Ackerly, Katie

    2013-01-01

    Visual, and Spatial Effects of Glass, New York: PrincetonBauten, Perspektiven (Glass Architects: Concepts, Buildings,Taking a Second Look: Glass Pavilion at Broadfield House in

  2. Glass blowing on a wafer level

    E-Print Network [OSTI]

    Eklund, E. Jesper; Shkel, Andrei M.

    2007-01-01

    E. Shelby, Introduction to Glass Science and Technology. :Properties of Corning Glasses [Online]. Available: http://1981. [15] R. H. Doremus, Glass Science. New York: Wiley,

  3. COLLECTIONS BY THE OREGON IN THE GULF OF MEXICO

    E-Print Network [OSTI]

    COLLECTIONS BY THE OREGON IN THE GULF OF MEXICO Marine Biological Laboratory MAR G - 1957 WOODS COLLECTIONS BY THE OHEG-ON IN THE GULF OF MEXICO List of Crustaceans, Mollusks, ard Fishes Identified From Collections Made by the Exploratory Fishing Vessel Oregon in the Gulf of Mexico and Adjacent Seas 1950 Through

  4. State of Oregon Department of Geology and Mineral Industries

    E-Print Network [OSTI]

    Goldfinger, Chris

    State of Oregon Department of Geology and Mineral Industries Vicki S. McConnell, State Geologist A ND M INERALINDUSTRIES 1937 2009 1 Oregon Department of Geology and Mineral Industries, Coastal Field Department of Geology and Mineral Industries Special Paper 41 Published in conformance with ORS 516

  5. State of Oregon Department of Geology and Mineral Industries

    E-Print Network [OSTI]

    Goldfinger, Chris

    State of Oregon Department of Geology and Mineral Industries Vicki S. McConnell, State Geologist Open-File Report O-08-14 PRELIMINARY GEOLOGIC MAPS OF THE CORVALLIS, WREN, AND MARYS PEAK 7 G Y A ND M INERALINDUSTRIES 1937 2008 1 Oregon Department of Geology and Mineral Industries, Grants

  6. Rebuilding Our Local Economy One Home at a Time-- Clean Energy Works Oregon

    Broader source: Energy.gov [DOE]

    Provides an overview of the Clean Energy Works Oregon program including progress and rebates offered.

  7. A Light-weight Approach to Reducing Energy Management Delays in Disks Guanying Wang, Ali R. Butt, Chris Gniady, Puranjoy Bhattacharjee

    E-Print Network [OSTI]

    Butt, Ali R.

    A Light-weight Approach to Reducing Energy Management Delays in Disks Guanying Wang, Ali R. Butt techniques such as turning machines off overnight and dynamic energy management during the business hours. Unfortunately, dynamic energy management, especially that for disks, introduces delays when an accessed disk

  8. The Passivity and Breakdown of Beryllium in Aqueous Solutions M.A. Hill, D.P. Butt, and R.S. Lillard

    E-Print Network [OSTI]

    The Passivity and Breakdown of Beryllium in Aqueous Solutions M.A. Hill, D.P. Butt, and R beryllium (Be) has been studied as a function of pH. Below pH 2, Be exhibited active dissolution at all, the presence of the fluoride increased the passive current density of beryllium, but had no effect

  9. Glass | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum12,Executive CompensationEnergyGet Current: Switch onDepartment2GlassGlass

  10. Unity, Oregon: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-EnhancingEt Al.,Turin, New York:Power Company Jump to:AssociationOregon: Energy

  11. Wasco, Oregon: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-EnhancingEt Al.,Turin,VillageWarren Park, Indiana: EnergyWarrick County,WascoOregon:

  12. Tangent, Oregon: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-Enhancing CapacityVectren)ModelTalbotts Ltd JumpJump to: navigation,Tangent, Oregon:

  13. Harrisburg, Oregon: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View New PagesSustainableGlynnMassachusetts: EnergySoftware IncHarmon,Tennessee:New York:Oregon:

  14. Damascus, Oregon: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTIONRobertsdale, Alabama (UtilityInstruments Inc JumpIowa: Energy Resources Jump to:City,Oregon: Energy

  15. Sodaville, Oregon: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-Enhancing Capacity forSilicium de ProvenceSolarProjectHill, NewSodaville, Oregon:

  16. Millersburg, Oregon: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History ViewMayo, Maryland: Energy ResourcesDec 2005 WindPROLLC JumpEthanol LLC Jump to:Missouri:Oregon:

  17. Albany, Oregon: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LIST OFAMERICA'SHeavyAgencyTendoMassachusetts:RenewableInc Jump&Oregon: Energy

  18. Medford, Oregon: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop Inc Jump to: navigation, searchScotland JumpPlantationBiofuelOregon: Energy

  19. Newberg, Oregon: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop Inc Jump to:Newberg, Oregon: Energy Resources Jump to: navigation, search

  20. Oregon Department of Energy | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop Inc Jump to:Newberg, Oregon:OGEProjects/DefinitionsOrchid Bioenergy Group Ltd

  1. Oregon State University Hydrodynamics | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop Inc Jump to:Newberg, Oregon:OGEProjects/DefinitionsOrchid Bioenergy Group

  2. PacifiCorp (Oregon) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop Inc Jump to:Newberg,Energy LLC Jump to:3 of Mason County JumpPVA TePlaIdahoOregon)

  3. Idaho Power Co (Oregon) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LISTStar2-0057-EA JumpDuimen RiverScoringUtilitiesRenov veis do BrasilIcsaCo (Oregon)

  4. Ashland, Oregon: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EAandAmminex A SOpen EnergyInformationAshkelonMaine: EnergyOregon:

  5. Beaverton, Oregon: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental JumpInformation Beaufort County, South CarolinaInformationBeaverton, Oregon:

  6. Bend, Oregon: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental JumpInformation Beaufort County,BelBelvedere, SouthBend, Oregon: Energy

  7. Bend, Oregon: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental JumpInformation Beaufort County,BelBelvedere, SouthBend, Oregon:

  8. Corvallis, Oregon: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTIONRobertsdale, Alabama (Utility Company)| Open(Evans,Oregon:Volcano,Corson County,Corum Solar Co

  9. Clackamas, Oregon: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTIONRobertsdale, Alabama (Utility Company) Jump to: navigation,Vineland, NewCityClackamas, Oregon:

  10. Adrian, Oregon: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop IncIowaWisconsin: Energy Resources JumpAdelan UK Ltd JumpAdrian(RedirectedOregon:

  11. BLM Oregon State Office | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop IncIowaWisconsin: EnergyYorkColorado State Office Jump to:FourOregon State Office

  12. Adams, Oregon: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop IncIowa (UtilityMichigan)dataSuccessfulAdairsville,Washington:Nebraska:Oregon:

  13. Categorical Exclusion Determinations: Oregon | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i n c i p a lCaribElectric powerMeasuresEnergyNew York.RenewableOregon.

  14. The Color Glass Condensate

    E-Print Network [OSTI]

    F. Gelis; E. Iancu; J. Jalilian-Marian; R. Venugopalan

    2010-02-01

    We provide a broad overview of the theoretical status and phenomenological applications of the Color Glass Condensate effective field theory describing universal properties of saturated gluons in hadron wavefunctions that are extracted from deeply inelastic scattering and hadron-hadron collision experiments at high energies.

  15. *Department of Neurological Surgery, Oregon Health & Science University, Portland, Oregon, USA Department of Molecular Biosciences, UC Davis School of Veterinary Medicine, Davis, California, USA

    E-Print Network [OSTI]

    Hammock, Bruce D.

    blood flow, modulation of neuronal pain processing in the brainstem, control of neurohormone release*Department of Neurological Surgery, Oregon Health & Science University, Portland, Oregon, USA acid that critically influence neuronal and vascu- lar function and disease, primarily via potent

  16. Production of glass or glass-ceramic to metal seals with the application of pressure

    DOE Patents [OSTI]

    Kelly, M.D.; Kramer, D.P.

    1985-01-04

    In a process for preparing a glass or glass-ceramic to metal seal comprising contacting the glass with the metal and heat-treating the glass and metal under conditions whereby the glass to metal seal is effected and, optionally, the glass is converted to a glass-ceramic, an improvement comprises carrying out the heat-treating step using hot isostatic pressing.

  17. University of Oregon: GPS-based Precipitable Water Vapor (PWV)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Vignola, F.; Andreas, A.

    2013-08-22

    A partnership with the University of Oregon and U.S. Department of Energy's National Renewable Energy Laboratory (NREL) to collect Precipitable Water Vapor (PWV) data to compliment existing resource assessment data collection by the university.

  18. Biomass Boiler to Heat Oregon School | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    British Thermal Units (MMBTU) per hour and will be fueled by locally derived wood-pellet feedstocks. A new school in Vernonia, Oregon is beginning to take form as the town...

  19. University of Oregon: GPS-based Precipitable Water Vapor (PWV)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Vignola, F.; Andreas, A.

    A partnership with the University of Oregon and U.S. Department of Energy's National Renewable Energy Laboratory (NREL) to collect Precipitable Water Vapor (PWV) data to compliment existing resource assessment data collection by the university.

  20. Wind Taking Flight in Oregon | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    The Deputy Secretary tours Oregons Caithness Shepherds Flat wind farm, which is able to create up to 845 megawatts of emission-free wind power (enough electricity to power...

  1. Analytical Plan for Roman Glasses

    SciTech Connect (OSTI)

    Strachan, Denis M.; Buck, Edgar C.; Mueller, Karl T.; Schwantes, Jon M.; Olszta, Matthew J.; Thevuthasan, Suntharampillai; Heeren, Ronald M.

    2011-01-01

    Roman glasses that have been in the sea or underground for about 1800 years can serve as the independent “experiment” that is needed for validation of codes and models that are used in performance assessment. Two sets of Roman-era glasses have been obtained for this purpose. One set comes from the sunken vessel the Iulia Felix; the second from recently excavated glasses from a Roman villa in Aquileia, Italy. The specimens contain glass artifacts and attached sediment or soil. In the case of the Iulia Felix glasses quite a lot of analytical work has been completed at the University of Padova, but from an archaeological perspective. The glasses from Aquileia have not been so carefully analyzed, but they are similar to other Roman glasses. Both glass and sediment or soil need to be analyzed and are the subject of this analytical plan. The glasses need to be analyzed with the goal of validating the model used to describe glass dissolution. The sediment and soil need to be analyzed to determine the profile of elements released from the glass. This latter need represents a significant analytical challenge because of the trace quantities that need to be analyzed. Both pieces of information will yield important information useful in the validation of the glass dissolution model and the chemical transport code(s) used to determine the migration of elements once released from the glass. In this plan, we outline the analytical techniques that should be useful in obtaining the needed information and suggest a useful starting point for this analytical effort.

  2. A Paleoclimatic and Paleohydrologic Reconstruction of Pleistocene Fossil Lake, Oregon

    E-Print Network [OSTI]

    Retrum, Julie Beth

    2010-09-30

    A PALEOCLIMATIC AND PALEOHYDROLOGIC RECONSTRUCTION OF PLEISTOCENE FOSSIL LAKE, OREGON By © 2010 Julie Beth Retrum B.A., University of Minnesota Morris, 2001 M.S., The University of Kansas, 2004 Submitted to the Department of Geology...: _______________________ ii The dissertation committee for Julie Beth Retrum certifies that this is the approved version of the following dissertation: A PALEOCLIMATIC AND PALEOHYDROLOGIC RECONSTRUCTION OF PLEISTOCENE FOSSIL LAKE, OREGON...

  3. Clean Energy Works Oregon Final Technical Report

    SciTech Connect (OSTI)

    Jacob, Andria; Cyr, Shirley

    2013-12-31

    In April 2010, the City of Portland received a $20 million award from the U.S. Department of Energy, as part of the Energy Efficiency and Conservation Block Grant program. This award was appropriated under the American Recovery and Reinvestment Act (ARRA), passed by President Obama in 2009. DOE’s program became known as the Better Buildings Neighborhood Program (BBNP). The BBNP grant objectives directed the City of Portland Bureau of Planning and Sustainability (BPS) as the primary grantee to expand the BPS-led pilot program, Clean Energy Works Portland, into Clean Energy Works Oregon (CEWO), with the mission to deliver thousands of home energy retrofits, create jobs, save energy and reduce carbon dioxide emissions.The Final Technical Report explores the successes and lessons learned from the first 3 years of program implementation.

  4. Glass Property Models and Constraints for Estimating the Glass...

    Office of Scientific and Technical Information (OSTI)

    increases in waste loading in HLW and LAW glasses are possible over current system planning estimates. The data (although limited in some cases) were evaluated to determine a...

  5. Mixed polyanion glass cathodes: Iron phosphate vanadate glasses

    SciTech Connect (OSTI)

    Kercher, Andrew K [ORNL; Ramey, Joanne Oxendine [ORNL; Carroll, Kyler J [Massachusetts Institute of Technology (MIT); Kiggans Jr, James O [ORNL; Veith, Gabriel M [ORNL; Meisner, Roberta [Oak Ridge National Laboratory (ORNL); Boatner, Lynn A [ORNL; Dudney, Nancy J [ORNL

    2014-01-01

    Mixed polyanion (MP) glasses have been investigated for use as cathodes in lithium ion batteries. MP glass cathodes are similar in composition to theoretically promising crystalline polyanionic (CP) cathodes (e.g., lithium cobalt phosphate, lithium manganese silicate), but with proper polyanion substitution, they can be designed to overcome the key shortcomings of CP cathodes, such as poor electrical conductivity and irreversible phase changes. Iron phosphate/vanadate glasses were chosen as a first demonstration of the MP glass concept. Polyanion substitution with vanadate was shown to improve the intercalation capacity of an iron phosphate glass from almost zero to full theoretical capacity. In addition, the MP glass cathodes also exhibited an unexpected second high-capacity electrochemical reaction. X-ray absorption near-edge structure (XANES) and x-ray diffraction (XRD) of cathodes from cells having different states of charge suggested that this second electrochemical reaction is a glass-state conversion reaction. With a first demonstration established, MP glass materials utilizing an intercalation and/or glass-state conversion reaction are promising candidates for future high-energy cathode research.

  6. ITP Glass: Glass Industry of the Future: Energy and Environmental...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    remove air pollutants through the use of aqueous media, filters, and precipitators. Air pollution control technologies used in the glass industry commonly transfer...

  7. Glass Ceiling or Glass Elevator: Are Voters Biased in Favor of Women Candidates in California Elections?

    E-Print Network [OSTI]

    Abney, Ronni Marie; Peterson, Rolfe Daus

    2011-01-01

    10.2202/1944-4370.1103 Abney and Peterson: Glass Ceilingor Glass Elevator Table 7A. Positive Gender Bias ModelAbney and Peterson: Glass Ceiling or Glass Elevator Huddy,

  8. Weihai Blue Star Glass Holding Co Ltd aka Shandong Lanxing Glass...

    Open Energy Info (EERE)

    Blue Star Glass Holding Co Ltd aka Shandong Lanxing Glass Group Co Ltd Jump to: navigation, search Name: Weihai Blue Star Glass Holding Co Ltd (aka Shandong Lanxing Glass Group Co...

  9. Electronic structure of metallic glasses

    SciTech Connect (OSTI)

    Oelhafen, P.; Lapka, R.; Gubler, U.; Krieg, J.; DasGupta, A.; Guentherodt, H.J.; Mizoguchi, T.; Hague, C.; Kuebler, J.; Nagel, S.R.

    1981-01-01

    This paper is organized in six sections and deals with (1) the glassy transition metal alloys, their d-band structure, the d-band shifts on alloying and their relation to the alloy heat of formation (..delta..H) and the glass forming ability, (2) the glass to crystal phase transition viewed by valence band spectroscopy, (3) band structure calculations, (4) metallic glasses prepared by laser glazing, (5) glassy normal metal alloys, and (6) glassy hydrides.

  10. Method for heating a glass sheet

    DOE Patents [OSTI]

    Boaz, P.T.

    1998-07-21

    A method for heating a glass sheet includes the steps of heating a glass sheet to a first predetermined temperature and applying microwave energy to the glass sheet to heat the glass sheet to at least a second predetermined temperature to allow the glass sheet to be formed. 5 figs.

  11. The GLASS CHAIR Edited by Manuel Heitor

    E-Print Network [OSTI]

    Instituto de Sistemas e Robotica

    The GLASS CHAIR Edited by Manuel Heitor IST Press, 2000 #12;Collaborative Design of... The GLASS the glass chair, but also for the numerous discussions on glass production processes. And last · Carmo Valente Chapter 4. GLASS: BEAUTY WITH STRENGTH Sushil Kumar Mendiratta Chapter 5. The IDEA

  12. Method for heating a glass sheet

    DOE Patents [OSTI]

    Boaz, Premakaran Tucker (Livonia, MI)

    1998-01-01

    A method for heating a glass sheet includes the steps of heating a glass sheet to a first predetermined temperature and applying microwave energy to the glass sheet to heat the glass sheet to at least a second predetermined temperature to allow the glass sheet to be formed.

  13. Color Glass Condensate and Glasma

    E-Print Network [OSTI]

    Francois Gelis

    2010-09-06

    In this talk, I review the Color Glass Condensate theory of gluon saturation, and its application to the early stages of heavy ion collisions.

  14. POROUS WALL, HOLLOW GLASS MICROSPHERES

    SciTech Connect (OSTI)

    Sexton, W.

    2012-06-30

    Hollow Glass Microspheres (HGM) is not a new technology. All one has to do is go to the internet and Google{trademark} HGM. Anyone can buy HGM and they have a wide variety of uses. HGM are usually between 1 to 100 microns in diameter, although their size can range from 100 nanometers to 5 millimeters in diameter. HGM are used as lightweight filler in composite materials such as syntactic foam and lightweight concrete. In 1968 a patent was issued to W. Beck of the 3M{trademark} Company for 'Glass Bubbles Prepared by Reheating Solid Glass Particles'. In 1983 P. Howell was issued a patent for 'Glass Bubbles of Increased Collapse Strength' and in 1988 H. Marshall was issued a patent for 'Glass Microbubbles'. Now Google{trademark}, Porous Wall, Hollow Glass Microspheres (PW-HGMs), the key words here are Porous Wall. Almost every article has its beginning with the research done at the Savannah River National Laboratory (SRNL). The Savannah River Site (SRS) where SRNL is located has a long and successful history of working with hydrogen and its isotopes for national security, energy, waste management and environmental remediation applications. This includes more than 30 years of experience developing, processing, and implementing special ceramics, including glasses for a variety of Department of Energy (DOE) missions. In the case of glasses, SRS and SRNL have been involved in both the science and engineering of vitreous or glass based systems. As a part of this glass experience and expertise, SRNL has developed a number of niches in the glass arena, one of which is the development of porous glass systems for a variety of applications. These porous glass systems include sol gel glasses, which include both xerogels and aerogels, as well as phase separated glass compositions, that can be subsequently treated to produce another unique type of porosity within the glass forms. The porous glasses can increase the surface area compared to 'normal glasses of a 1 to 2 order of magnitude, which can result in unique properties in areas such as hydrogen storage, gas transport, gas separations and purifications, sensors, global warming applications, new drug delivery systems and so on. One of the most interesting porous glass products that SRNL has developed and patented is Porous Wall, Hollow Glass Microspheres (PW-HGMs) that are being studied for many different applications. The European Patent Office (EPO) just recently notified SRS that the continuation-in-part patent application for the PW-HGMs has been accepted. The original patent, which was granted by the EPO on June 2, 2010, was validated in France, Germany and the United Kingdom. The microspheres produced are generally in the range of 2 to 100 microns, with a 1 to 2 micron wall. What makes the SRNL microspheres unique from all others is that the team in Figure 1 has found a way to induce and control porosity through the thin walls on a scale of 100 to 3000 {angstrom}. This is what makes the SRNL HW-HGMs one-of-a-kind, and is responsible for many of their unique properties and potential for various applications, including those in tritium storage, gas separations, H-storage for vehicles, and even a variety of new medical applications in the areas of drug delivery and MRI contrast agents. SRNL Hollow Glass Microspheres, and subsequent, Porous Wall, Hollow Glass Microspheres are fabricated using a flame former apparatus. Figure 2 is a schematic of the apparatus.

  15. First results from a marine controlled-source electromagnetic survey to detect gas hydrates offshore Oregon

    E-Print Network [OSTI]

    Constable, Steve

    offshore Oregon K. A. Weitemeyer, S. C. Constable, K. W. Key, and J. P. Behrens Scripps Institution from a marine controlled-source electromagnetic survey to detect gas hydrates offshore Oregon, Geophys

  16. A Case Study of Improvement Partnerships in New Mexico and Oregon

    E-Print Network [OSTI]

    Hayden, Nancy J.

    A Case Study of Improvement Partnerships in New Mexico and Oregon Evolving State Quality Mexico and Oregon for generously sharing their time and insights. This report was prepared by Academy...............................................................................................................................2 III. New Mexico Case Study

  17. Aspects of the mechanics of metallic glasses

    E-Print Network [OSTI]

    Henann, David Lee

    2011-01-01

    Metallic glasses are amorphous materials that possess unique mechanical properties, such as high tensile strengths and good fracture toughnesses. Also, since they are amorphous, metallic glasses exhibit a glass transition, ...

  18. Efficient Breach Theory Through the Looking Glass

    E-Print Network [OSTI]

    Adler, Barry E.

    2007-01-01

    in Wonderland and Through the Looking Glass (Signet 1960).Theory Through the Looking Glass such an award a put by theTheory Through the Looking Glass Consider also the hoary

  19. Glass blowing on a wafer level

    E-Print Network [OSTI]

    Eklund, E. Jesper; Shkel, Andrei M.

    2007-01-01

    Wafer-Level Micro-Glass-Blowing UCI Of?ce of Technology176, 2005. [3] ——, Glass Blowing on a Wafer Scale (Expandedmodels. EKLUND AND SHKEL: GLASS BLOWING ON A WAFER LEVEL [5

  20. Quinary metallic glass alloys

    DOE Patents [OSTI]

    Lin, X.; Johnson, W.L.

    1998-04-07

    At least quinary alloys form metallic glass upon cooling below the glass transition temperature at a rate less than 10{sup 3}K/s. Such alloys comprise zirconium and/or hafnium in the range of 45 to 65 atomic percent, titanium and/or niobium in the range of 4 to 7.5 atomic percent, and aluminum and/or zinc in the range of 5 to 15 atomic percent. The balance of the alloy compositions comprise copper, iron, and cobalt and/or nickel. The composition is constrained such that the atomic percentage of iron is less than 10 percent. Further, the ratio of copper to nickel and/or cobalt is in the range of from 1:2 to 2:1. The alloy composition formula is: (Zr,Hf){sub a}(Al,Zn){sub b}(Ti,Nb){sub c}(Cu{sub x}Fe{sub y}(Ni,Co){sub z}){sub d} wherein the constraints upon the formula are: a ranges from 45 to 65 atomic percent, b ranges from 5 to 15 atomic percent, c ranges from 4 to 7.5 atomic percent, d comprises the balance, d{hor_ellipsis}y is less than 10 atomic percent, and x/z ranges from 0.5 to 2.

  1. Quinary metallic glass alloys

    DOE Patents [OSTI]

    Lin, Xianghong (Pasadena, CA); Johnson, William L. (Pasadena, CA)

    1998-01-01

    At least quinary alloys form metallic glass upon cooling below the glass transition temperature at a rate less than 10.sup.3 K/s. Such alloys comprise zirconium and/or hafnium in the range of 45 to 65 atomic percent, titanium and/or niobium in the range of 4 to 7.5 atomic percent, and aluminum and/or zinc in the range of 5 to 15 atomic percent. The balance of the alloy compositions comprise copper, iron, and cobalt and/or nickel. The composition is constrained such that the atomic percentage of iron is less than 10 percent. Further, the ratio of copper to nickel and/or cobalt is in the range of from 1:2 to 2:1. The alloy composition formula is: (Zr,Hf).sub.a (Al,Zn).sub.b (Ti,Nb).sub.c (Cu.sub.x Fe.sub.y (Ni,Co).sub.z).sub.d wherein the constraints upon the formula are: a ranges from 45 to 65 atomic percent, b ranges from 5 to 15 atomic percent, c ranges from 4 to 7.5 atomic percent, d comprises the balance, d.multidot.y is less than 10 atomic percent, and x/z ranges from 0.5 to 2.

  2. Laboratory Waste Disposal HAZARDOUS GLASS

    E-Print Network [OSTI]

    Sheridan, Jennifer

    Laboratory Waste Disposal HAZARDOUS GLASS Items that could cut or puncture skin or trash- can without any treatment. Hazardous Glass and Plastic: Items that can puncture, cut or scratch if disposed a significant hazard. Bags of misc. plasticware that has been autoclaved to remove bio contamination. Syringe

  3. Method of determining glass durability

    DOE Patents [OSTI]

    Jantzen, C.M.; Pickett, J.B.; Brown, K.G.; Edwards, T.B.

    1998-12-08

    A process is described for determining one or more leachate concentrations of one or more components of a glass composition in an aqueous solution of the glass composition by identifying the components of the glass composition, including associated oxides, determining a preliminary glass dissolution estimator, {Delta}G{sub p}, based upon the free energies of hydration for the component reactant species, determining an accelerated glass dissolution function, {Delta}G{sub a}, based upon the free energy associated with weak acid dissociation, {Delta}G{sub a}{sup WA}, and accelerated matrix dissolution at high pH, {Delta}G{sub a}{sup SB} associated with solution strong base formation, and determining a final hydration free energy, {Delta}G{sub f}. This final hydration free energy is then used to determine leachate concentrations for elements of interest using a regression analysis and the formula log{sub 10}(N C{sub i}(g/L))=a{sub i} + b{sub i}{Delta}G{sub f}. The present invention also includes a method to determine whether a particular glass to be produced will be homogeneous or phase separated. The present invention is also directed to methods of monitoring and controlling processes for making glass using these determinations to modify the feedstock materials until a desired glass durability and homogeneity is obtained. 4 figs.

  4. Method of determining glass durability

    DOE Patents [OSTI]

    Jantzen, Carol Maryanne (Aiken, SC); Pickett, John Butler (Aiken, SC); Brown, Kevin George (Augusta, GA); Edwards, Thomas Barry (Aiken, SC)

    1998-01-01

    A process for determining one or more leachate concentrations of one or more components of a glass composition in an aqueous solution of the glass composition by identifying the components of the glass composition, including associated oxides, determining a preliminary glass dissolution estimator, .DELTA.G.sub.p, based upon the free energies of hydration for the component reactant species, determining an accelerated glass dissolution function, .DELTA.G.sub.a, based upon the free energy associated with weak acid dissociation, .DELTA.G.sub.a.sup.WA, and accelerated matrix dissolution at high pH, .DELTA.G.sub.a.sup.SB associated with solution strong base formation, and determining a final hydration free energy, .DELTA.G.sub.f. This final hydration free energy is then used to determine leachate concentrations for elements of interest using a regression analysis and the formula log.sub.10 (N C.sub.i (g/L))=a.sub.i +b.sub.i .DELTA.G.sub.f. The present invention also includes a method to determine whether a particular glass to be produced will be homogeneous or phase separated. The present invention is also directed to methods of monitoring and controlling processes for making glass using these determinations to modify the feedstock materials until a desired glass durability and homogeneity is obtained.

  5. Refractory Glass Seals for SOFC

    SciTech Connect (OSTI)

    Chou, Y. S.; Stevenson, Jeffry W.

    2011-07-01

    One of the critical challenges facing planar solid oxide fuel cell (SOFC) technology is the need for reliable sealing technology. Seals must exhibit long-term stability and mechanical integrity in the high temperature SOFC environment during normal and transient operation. Several different approaches for sealing SOFC stacks are under development, including glass or glass-ceramic seals, metallic brazes, and compressive seals. Among glass seals, rigid glass-ceramics, self-healing glass, and composite glass approaches have been investigated under the SECA Core Technology Program. The U.S. Department of Energy's Pacific Northwest National Laboratory (PNNL) has developed the refractory glass approach in light of the fact that higher sealing temperatures (e.g., 930-1000 degrees C) may enhance the ultimate in-service bulk strength and electrical conductivity of contact materials, as well as the bonding strength between contact materials and adjacent SOFC components, such as interconnect coatings and electrodes. This report summarizes the thermal, chemical, mechanical, and electrical properties of the refractory sealing glass.

  6. TRENDS IN DIRECT NORMAL SOLAR IRRADIANCE IN OREGON FROM 1979-2003 Laura Riihimaki

    E-Print Network [OSTI]

    Oregon, University of

    TRENDS IN DIRECT NORMAL SOLAR IRRADIANCE IN OREGON FROM 1979-2003 Laura Riihimaki Frank Vignola of trends in direct normal irradiance from three sites around Oregon over a period of 25 years. An overall. This article studies the trends in direct normal beam irradiance at three locations in Oregon. These sites have

  7. Lead phosphate glass compositions for optical components

    DOE Patents [OSTI]

    Sales, Brian C. (Oak Ridge, TN); Boatner, Lynn A. (Oak Ridge, TN)

    1987-01-01

    A lead phosphate glass to which has been added indium oxide or scandium oe to improve chemical durability and provide a lead phosphate glass with good optical properties.

  8. Glass Ceramic Formulation Data Package

    SciTech Connect (OSTI)

    Crum, Jarrod V.; Rodriguez, Carmen P.; McCloy, John S.; Vienna, John D.; Chung, Chul-Woo

    2012-06-17

    A glass ceramic waste form is being developed for treatment of secondary waste streams generated by aqueous reprocessing of commercial used nuclear fuel (Crum et al. 2012b). The waste stream contains a mixture of transition metals, alkali, alkaline earths, and lanthanides, several of which exceed the solubility limits of a single phase borosilicate glass (Crum et al. 2009; Caurant et al. 2007). A multi-phase glass ceramic waste form allows incorporation of insoluble components of the waste by designed crystallization into durable heat tolerant phases. The glass ceramic formulation and processing targets the formation of the following three stable crystalline phases: (1) powellite (XMoO4) where X can be (Ca, Sr, Ba, and/or Ln), (2) oxyapatite Yx,Z(10-x)Si6O26 where Y is alkaline earth, Z is Ln, and (3) lanthanide borosilicate (Ln5BSi2O13). These three phases incorporate the waste components that are above the solubility limit of a single-phase borosilicate glass. The glass ceramic is designed to be a single phase melt, just like a borosilicate glass, and then crystallize upon slow cooling to form the targeted phases. The slow cooling schedule is based on the centerline cooling profile of a 2 foot diameter canister such as the Hanford High-Level Waste canister. Up to this point, crucible testing has been used for glass ceramic development, with cold crucible induction melter (CCIM) targeted as the ultimate processing technology for the waste form. Idaho National Laboratory (INL) will conduct a scaled CCIM test in FY2012 with a glass ceramic to demonstrate the processing behavior. This Data Package documents the laboratory studies of the glass ceramic composition to support the CCIM test. Pacific Northwest National Laboratory (PNNL) measured melt viscosity, electrical conductivity, and crystallization behavior upon cooling to identify a processing window (temperature range) for melter operation and cooling profiles necessary to crystallize the targeted phases in the waste form.

  9. Geothermal Exploration of Newberry Volcano, Oregon

    SciTech Connect (OSTI)

    Waibel, Albert F.; Frone, Zachary S.; Blackwell, David D.

    2014-12-01

    Davenport Newberry (Davenport) has completed 8 years of exploration for geothermal energy on Newberry Volcano in central Oregon. Two deep exploration test wells were drilled by Davenport on the west flank of the volcano, one intersected a hydrothermal system; the other intersected isolated fractures with no hydrothermal interconnection. Both holes have bottom-hole temperatures near or above 315°C (600°F). Subsequent to deep test drilling an expanded exploration and evaluation program was initiated. These efforts have included reprocessing existing data, executing multiple geological, geophysical, geochemical programs, deep exploration test well drilling and shallow well drilling. The efforts over the last three years have been made possible through a DOE Innovative Exploration Technology (IET) Grant 109, designed to facilitate innovative geothermal exploration techniques. The combined results of the last 8 years have led to a better understanding of the history and complexity of Newberry Volcano and improved the design and interpretation of geophysical exploration techniques with regard to blind geothermal resources in volcanic terrain.

  10. A Topological Glass

    E-Print Network [OSTI]

    Jean-Pierre Eckmann

    2007-04-07

    We propose and study a model with glassy behavior. The state space of the model is given by all triangulations of a sphere with $n$ nodes, half of which are red and half are blue. Red nodes want to have 5 neighbors while blue ones want 7. Energies of nodes with different numbers of neighbors are supposed to be positive. The dynamics is that of flipping the diagonal of two adjacent triangles, with a temperature dependent probability. We show that this system has an approach to a steady state which is exponentially slow, and show that the stationary state is unordered. We also study the local energy landscape and show that it has the hierarchical structure known from spin glasses. Finally, we show that the evolution can be described as that of a rarefied gas with spontaneous generation of particles and annihilating collisions.

  11. Grass Valley, Oregon: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View New PagesSustainableGlynn County, Georgia:Oregon: Energy Resources JumpSouth,GrapeGrassOregon:

  12. Wave Power Demonstration Project at Reedsport, Oregon

    SciTech Connect (OSTI)

    Mekhiche, Mike; Downie, Bruce

    2013-10-21

    Ocean wave power can be a significant source of large?scale, renewable energy for the US electrical grid. The Electrical Power Research Institute (EPRI) conservatively estimated that 20% of all US electricity could be generated by wave energy. Ocean Power Technologies, Inc. (OPT), with funding from private sources and the US Navy, developed the PowerBuoy? to generate renewable energy from the readily available power in ocean waves. OPT's PowerBuoy converts the energy in ocean waves to electricity using the rise and fall of waves to move the buoy up and down (mechanical stroking) which drives an electric generator. This electricity is then conditioned and transmitted ashore as high?voltage power via underwater cable. OPT's wave power generation system includes sophisticated techniques to automatically tune the system for efficient conversion of random wave energy into low cost green electricity, for disconnecting the system in large waves for hardware safety and protection, and for automatically restoring operation when wave conditions normalize. As the first utility scale wave power project in the US, the Wave Power Demonstration Project at Reedsport, OR, will consist of 10 PowerBuoys located 2.5 miles off the coast. This U.S. Department of Energy Grant funding along with funding from PNGC Power, an Oregon?based electric power cooperative, was utilized for the design completion, fabrication, assembly and factory testing of the first PowerBuoy for the Reedsport project. At this time, the design and fabrication of this first PowerBuoy and factory testing of the power take?off subsystem are complete; additionally the power take?off subsystem has been successfully integrated into the spar.

  13. Reinforced glass beamsReinforced glass beamsg Auteur Dr. Christian LOUTER 1

    E-Print Network [OSTI]

    Reinforced glass beamsReinforced glass beamsg EDCE Auteur Dr. Christian LOUTER 1 ENAC/EDCE 2011In contemporary architecture glass is increasinglyIn contemporary architecture glass is increasingly applied for structural components such as beamsapplied for structural components such as beams. However glass

  14. Glass Membrane For Controlled Diffusion Of Gases

    DOE Patents [OSTI]

    Shelby, James E. (Alfred Station, NY); Kenyon, Brian E. (Pittsburgh, PA)

    2001-05-15

    A glass structure for controlled permeability of gases includes a glass vessel. The glass vessel has walls and a hollow center for receiving a gas. The glass vessel contains a metal oxide dopant formed with at least one metal selected from the group consisting of transition metals and rare earth metals for controlling diffusion of the gas through the walls of the glass vessel. The vessel releases the gas through its walls upon exposure to a radiation source.

  15. BNFL Report Glass Formers Characterization

    SciTech Connect (OSTI)

    Schumacher, R.F.

    2000-07-27

    The objective of this task was to obtain powder property data on candidate glass former materials, sufficient to guide conceptual design and estimate the cost of glass former handling facilities as requested under Part B1 of BNFL Technical and Development Support. Twenty-nine glass forming materials were selected and obtained from vendors for the characterization of their physical properties, durability in caustic solution, and powder flow characteristics. A glass former was selected based on the characterization for each of the ten oxide classes required for Envelope A, B, and C mixtures. Three blends (A, B, and C) were prepared based on formulations provided by Vitreous State Laboratory and evaluated with the same methods employed for the glass formers. The properties obtained are presented in a series of attached Tables. It was determined that five of the ten glass formers, (kyanite, iron oxide, titania, zircon, and zinc oxide) have the potential to cause some level of solids f low problems. The problems might include arching or ratholing in the silo/hopper. In addition, all of the blends may require consideration for their handling.

  16. BNFL Report Glass Formers Characterization

    SciTech Connect (OSTI)

    Schumacher, R.F.

    2000-07-27

    The objective of this task was to obtain powder property data on candidate glass former materials, sufficient to guide conceptual design and estimate the cost of glass former handling facilities as requested under Part B1 of BNFL Technical and Development Support. Twenty-nine glass forming materials were selected and obtained from vendors for the characterization of their physical properties, durability in caustic solution, and powder flow characteristics. A glass former was selected based on the characterization for each of the ten oxide classes required for Envelope A, B, and C mixtures. Three blends (A, B, and C) were prepared based on formulations provided by Vitreous State Laboratory and evaluated with the same methods employed for the glass formers. The properties obtained are presented in a series of attached Tables. It was determined that five of the ten glass formers, (kyanite, iron oxide, titania, zircon, and zinc oxide) have the potential to cause some level of solids f low problems. In addition, all of the blends may require consideration for their handling. A number of engineering considerations and recommendations were prepared based on the experimental findings, experience, and other process considerations. Recommendations for future testing are included. In conjunction with future work, it is recommended that a professional consultant be engaged to guide and assist with testing and design input.

  17. Academic Advising at Oregon State University Vision Statement

    E-Print Network [OSTI]

    Tullos, Desiree

    Oregon State University academic advising is a teaching and learning process dedicated to student success that is focused on student success. We will... 1. Continually assist students in understanding the nature, purpose education. Advisor and Delivery Outcomes Student Learning Outcomes University, college, department

  18. Oceanography: The Making of a Science The Oregon State Story

    E-Print Network [OSTI]

    Kurapov, Alexander

    Oceanography: The Making of a Science The Oregon State Story People, Institutions, and Discovery "Oceanography." If any of these are truly the beginning, then the last half of the 20th century must be regarded Hole, the Scripps Institution of Oceanography and the University of Washington. In 1956 ONR asked

  19. Andree Tremoulet, PSU Vince Chiotti, Oregon Housing and Community

    E-Print Network [OSTI]

    Bertini, Robert L.

    who can't afford market-rate housing · Stigmatized · Example: Public housing #12;Nationally HUD: US Subsidies ·22 Housing Authorities in Oregon ·http://orhousing ·authorities.org/ Special Purpose Grants ·HUD 202: Senior Housing ·HUD 811: Housing for persons with disabilities ·Many others ·HUD NOFAs

  20. LNG, Public Opinion and Decision-making: Conflict in Oregon

    E-Print Network [OSTI]

    Scott, Christopher

    LNG, Public Opinion and Decision-making: Conflict in Oregon Lisa MB Harrington Kansas State University #12;2 LNG · Liquified Natural Gas · Natural gas condensed into a liquid by cooling to about -163ş;· LNG is considered cleaner than coal and petroleum- based fuels, but development also poses issues

  1. II. HISTORICAL BACKGROUND Since 1977 the University of Oregon Solar

    E-Print Network [OSTI]

    Oregon, University of

    2 II. HISTORICAL BACKGROUND Since 1977 the University of Oregon Solar Monitoring Laboratory has operated a solar radiation monitoring network in the Pacific Northwest. The number of stations participat of utilities headed by the Eugene Water and Electric Board initiated the Re- gional Solar Radiation Monitoring

  2. EIS-0201: Coyote Springs Cogeneration Project, Morrow County, Oregon

    Broader source: Energy.gov [DOE]

    This environmental impact statement analyzes the protential impacts of the Coyote Springs Cogeneration Project, a proposed natural gas-fired cogeneration power plant near Boardman, Oregon. The proposed power plant would be built on a 22-acre site in the Port of Morrow Industrial Park. The plant would have two combustion turbines that would generate 440 average megawatts of energy when completed.

  3. HIGH-LEVEL WASTE GLASS FORMULATION MODEL SENSITIVITY STUDY 2009 GLASS FORMULATION MODEL VERSUS 1996 GLASS FORMULATION MODEL

    SciTech Connect (OSTI)

    BELSHER JD; MEINERT FL

    2009-12-07

    This document presents the differences between two HLW glass formulation models (GFM): The 1996 GFM and 2009 GFM. A glass formulation model is a collection of glass property correlations and associated limits, as well as model validity and solubility constraints; it uses the pretreated HLW feed composition to predict the amount and composition of glass forming additives necessary to produce acceptable HLW glass. The 2009 GFM presented in this report was constructed as a nonlinear optimization calculation based on updated glass property data and solubility limits described in PNNL-18501 (2009). Key mission drivers such as the total mass of HLW glass and waste oxide loading are compared between the two glass formulation models. In addition, a sensitivity study was performed within the 2009 GFM to determine the effect of relaxing various constraints on the predicted mass of the HLW glass.

  4. First Wind (Formerly UPC Wind) (Oregon) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoopButtePowerEdistoWhiskey flats 100k.pdf Jump to:WindP.pdfFireFirst WindFirst Wind

  5. City of Bandon, Oregon (Utility Company) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoopButte County,Camilla,Thermal GradientChateauChoosEV JumpAnita, IowaCity of Bandon,

  6. City of Forest Grove, Oregon (Utility Company) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoopButte County,Camilla,ThermalCuba City, Wisconsin (Utility Company)CityCityCity of

  7. City of Milton-Freewater, Oregon (Utility Company) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoopButte County,Camilla,ThermalCuba City,(Redirected

  8. Clackamas County, Oregon: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoopButte County,Camilla,ThermalCubaParker,Georgia (UtilityWilliams -

  9. Introduction and Motivation Structural Model for Laminated Glass Beams Conclusions and Outlook of Laminated Glass Structures

    E-Print Network [OSTI]

    Introduction and Motivation Structural Model for Laminated Glass Beams Conclusions and Outlook 1 #12;Introduction and Motivation Structural Model for Laminated Glass Beams Conclusions and Outlook Outline 1 Introduction and Motivation 2 Structural Model for Laminated Glass Beams 3 Conclusions

  10. Nano-structured self-cleaning superhydrophobic glass

    E-Print Network [OSTI]

    Kim, Jin Yeol

    2010-01-01

    5. Optically transparent glass with vertically alignedcomposition of biosoluble glass fiber” Korean ApplicationS. Jin, “Optically Transparent Glass with Vertically Aligned

  11. Micro-Continuum Modeling of Nuclear Waste Glass Corrosion

    E-Print Network [OSTI]

    Steefel, Carl

    2014-01-01

    21. Grambow, B. (2006). Nuclear waste glasses – How durable?Continuum Modeling of Nuclear Waste Glass Corrosion AugustContinuum Modeling of Nuclear Waste Glass Corrosion Prepared

  12. Investigation of Glass Transition Temperature of Binary Tellurite Glasses

    SciTech Connect (OSTI)

    Chippy, L.; Unnithan, C. Harikuttan [Solid State Physics Laboratory, D.B. College, Sasthamcotta, Kollam, Kerala-690 521 (India); Jayakumar, S. [MSM College, Kayamkulam, Kerala (India)

    2011-10-20

    Five series of binary Tellurite glass samples containing Sb{sub 2}O{sub 4}, WO{sub 3}, Fe{sub 2}O{sub 3}, Na{sub 2}O and ZnO{sub 2} are studied in terms of the variation of glass transition temperature (T{sub g}). It is seen that Tg increases as Tellurite concentration decreases in the case of glasses containing metal oxides Sb{sub 2}O{sub 4} WO{sub 3}, and Fe{sub 2}O{sub 3} while T{sub g} shows a decreasing trend with that of Na{sub 2}O and ZnO and the corresponding changes in the network structure are accounted to possible extent. The structural variations are analyzed using the concept of electronegativity.

  13. The Geology Department at Oregon State got its start in 1914 (then OAC), one year after the Oregon Legislature approved the establishment of the School of Mines, which

    E-Print Network [OSTI]

    Kurapov, Alexander

    The Geology Department at Oregon State got its start in 1914 (then OAC), one year after the Oregon Legislature approved the establishment of the School of Mines, which had four departments, including geology. But geology courses were o ered through various programs for scores of years before that. Alice E. Biddle

  14. HLW Glass Studies: Development of Crystal-Tolerant HLW Glasses

    SciTech Connect (OSTI)

    Matyas, Josef; Huckleberry, Adam R.; Rodriguez, Carmen P.; Lang, Jesse B.; Owen, Antionette T.; Kruger, Albert A.

    2012-04-02

    In our study, a series of lab-scale crucible tests were performed on designed glasses of different compositions to further investigate and simulate the effect of Cr, Ni, Fe, Al, Li, and RuO2 on the accumulation rate of spinel crystals in the glass discharge riser of the HLW melter. The experimental data were used to expand the compositional region covered by an empirical model developed previously (Matyáš et al. 2010b), improving its predictive performance. We also investigated the mechanism for agglomeration of particles and impact of agglomerates on accumulation rate. In addition, the TL was measured as a function of temperature and composition.

  15. Glass Transition in Confined Geometry

    E-Print Network [OSTI]

    Simon Lang; Vitalie Botan; Martin Oettel; David Hajnal; Thomas Franosch; Rolf Schilling

    2010-08-23

    Extending mode-coupling theory, we elaborate a microscopic theory for the glass transition of liquids confined between two parallel flat hard walls. The theory contains the standard MCT equations in bulk and in two dimensions as limiting cases and requires as input solely the equilibrium density profile and the structure factors of the fluid in confinement. We evaluate the phase diagram as a function of the distance of the plates for the case of a hard sphere fluid and obtain an oscillatory behavior of the glass transtion line as a result of the structural changes related to layering.

  16. Additive Manufacturing of Optically Transparent Glass

    E-Print Network [OSTI]

    Klein, John

    We present a fully functional material extrusion printer for optically transparent glass. The printer is composed of scalable modular elements able to operate at the high temperatures required to process glass from a molten ...

  17. The Huge, Blue, Jesus Glass Statue

    E-Print Network [OSTI]

    Robbins, Joanna

    2013-01-01

    Later, I found a huge, blue, glass statue of Jesus stuffedOF CALIFORNIA RIVERSIDE The Huge, Blue, Jesus Glass Statue Aeyes as RED And wrote down BLUE for your hair. I had to fix

  18. Structure glass technology : systems and applications

    E-Print Network [OSTI]

    Leitch, Katherine K. (Katherine Kristen)

    2005-01-01

    Glass cannot compete with steel in terms of strength or durability, but it is the only structural material that offers the highly sought after qualities of translucency and transparency. The use of glass has evolved from ...

  19. EFFECT OF GLASS-BATCH MAKEUP ON...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    rate of heat-transfer from molten glass to the batch blanket and the kinetics of various chemical reactions and phase transitions jointly control the batch- to-glass conversion...

  20. GEOTHERMAL EXPLORATION ASSESSMENT AND INTERPRETATION, KLAMATH BASIN, OREGON-SWAN LAKE AND KLAMATH HILLS AREA

    E-Print Network [OSTI]

    Stark, M.

    2011-01-01

    review, 1977 outlook: Geothermal Energy Magazine, v.5, no.6,Lyons, T , 1976, Geothermal energy in California-statusConference on Geothermal Energy, Oregon Institute of

  1. Seasonal and interannual oxygen variability on the Washington and Oregon continental shelves

    E-Print Network [OSTI]

    2015-01-01

    oxygen variability on the Washington and Oregon continentalin Juan de Fuca Canyon, Washington, Geophys. Res. Lett. ,oxygen ?uxes on the Washington shelf and slope: A comparison

  2. Annual Coded Wire Program: Oregon Missing Production Groups: 1992 Annual Report.

    SciTech Connect (OSTI)

    Garrison, Robert L.; Isaac, Dennis L.; Lewis, Mark A.; Murry, William M.

    1992-12-01

    The goal of this project is to develop the ability to estimate hatchery production survival values and evaluate effectiveness of Oregon hatcheries.

  3. Annual Coded Wire Tag Program; Oregon Missing Production Groups, 1993 Annual Report.

    SciTech Connect (OSTI)

    Garrison, Robert L.; Lewis, Mark A.; Murray, William M.

    1994-04-01

    The goal of this project is to develop the ability to estimate hatchery production survival values and evaluate effectiveness of Oregon hatcheries.

  4. Glass Transition and the Coulomb Gap in Electron Glasses M. Muller and L. B. Ioffe

    E-Print Network [OSTI]

    Müller, Markus

    Glass Transition and the Coulomb Gap in Electron Glasses M. Mu¨ller and L. B. Ioffe Department December 2004) We establish the connection between the presence of a glass phase and the appearance correlations in a systematic way, we show that in the case of strong disorder a continuous glass transition

  5. Small Wind Electric Systems: An Oregon Consumer's Guide

    SciTech Connect (OSTI)

    Not Available

    2002-05-01

    Small Wind Electric Systems An Oregon Consumer's Guide provides consumers with enough information to help them determine if a small wind electric system can provide all or a portion of the energy they need for their home or business based on their wind resource, energy needs, and their economics. Topics discussed in the guide include: how to make your home more energy efficient, how to choose the right size turbine, the parts of a wind electric system, determining if there is enough wind resource on your site, choosing the best site for your turbine, connecting your system to the utility grid, and if it's possible to become independent of the utility grid using wind energy. In addition, the Oregon guide provides state specific information that includes and state wind resource map, state incentives, and state contacts for more information.

  6. Busted Butte Unsaturated Zone Transport Test: Fiscal Year 1998 Status Report Yucca Mountain Site Characterization Program Deliverable SPU85M4

    SciTech Connect (OSTI)

    Bussod, G.Y.; Turin, H.J.; Lowry, W.E.

    1999-11-01

    This report describes the status of the Busted Butte Unsaturated Zone Transport Test (UZTT) and documents the progress of construction activities and site and laboratory characterization activities undertaken in fiscal year 1998. Also presented are predictive flow-and-transport simulations for Test Phases 1 and 2 of testing and the preliminary results and status of these test phases. Future anticipated results obtained from unsaturated-zone (UZ) transport testing in the Calico Hills Formation at Busted Butte are also discussed in view of their importance to performance assessment (PA) needs to build confidence in and reduce the uncertainty of site-scale flow-and-transport models and their abstractions for performance for license application. The principal objectives of the test are to address uncertainties associated with flow and transport in the UZ site-process models for Yucca Mountain, as identified by the PA working group in February 1997. These include but are not restricted to: (1) The effect of heterogeneities on flow and transport in unsaturated and partially saturated conditions in the Calico Hills Formation. In particular, the test aims to address issues relevant to fracture-matrix interactions and permeability contrast boundaries; (2) The migration behavior of colloids in fractured and unfractured Calico Hills rocks; (3) The validation through field testing of laboratory sorption experiments in unsaturated Calico Hills rocks; (4) The evaluation of the 3-D site-scale flow-and-transport process model (i.e., equivalent-continuum/dual-permeability/discrete-fracture-fault representations of flow and transport) used in the PA abstractions for license application; and (5) The effect of scaling from lab scale to field scale and site scale.

  7. Heating-induced glass-glass and glass-liquid transformations in computer simulations of water

    SciTech Connect (OSTI)

    Chiu, Janet; Giovambattista, Nicolas [Department of Physics, Brooklyn College of the City University of New York, Brooklyn, New York 11210 (United States)] [Department of Physics, Brooklyn College of the City University of New York, Brooklyn, New York 11210 (United States); Starr, Francis W. [Department of Physics, Wesleyan University, Middletown, Connecticut 06459 (United States)] [Department of Physics, Wesleyan University, Middletown, Connecticut 06459 (United States)

    2014-03-21

    Water exists in at least two families of glassy states, broadly categorized as the low-density (LDA) and high-density amorphous ice (HDA). Remarkably, LDA and HDA can be reversibly interconverted via appropriate thermodynamic paths, such as isothermal compression and isobaric heating, exhibiting first-order-like phase transitions. We perform out-of-equilibrium molecular dynamics simulations of glassy water using the ST2 model to study the evolution of LDA and HDA upon isobaric heating. Depending on pressure, glass-to-glass, glass-to-crystal, glass-to-vapor, as well as glass-to-liquid transformations are found. Specifically, heating LDA results in the following transformations, with increasing heating pressures: (i) LDA-to-vapor (sublimation), (ii) LDA-to-liquid (glass transition), (iii) LDA-to-HDA-to-liquid, (iv) LDA-to-HDA-to-liquid-to-crystal, and (v) LDA-to-HDA-to-crystal. Similarly, heating HDA results in the following transformations, with decreasing heating pressures: (a) HDA-to-crystal, (b) HDA-to-liquid-to-crystal, (c) HDA-to-liquid (glass transition), (d) HDA-to-LDA-to-liquid, and (e) HDA-to-LDA-to-vapor. A more complex sequence may be possible using lower heating rates. For each of these transformations, we determine the corresponding transformation temperature as function of pressure, and provide a P-T “phase diagram” for glassy water based on isobaric heating. Our results for isobaric heating dovetail with the LDA-HDA transformations reported for ST2 glassy water based on isothermal compression/decompression processes [Chiu et al., J. Chem. Phys. 139, 184504 (2013)]. The resulting phase diagram is consistent with the liquid-liquid phase transition hypothesis. At the same time, the glass phase diagram is sensitive to sample preparation, such as heating or compression rates. Interestingly, at least for the rates explored, our results suggest that the LDA-to-liquid (HDA-to-liquid) and LDA-to-HDA (HDA-to-LDA) transformation lines on heating are related, both being associated with the limit of kinetic stability of LDA (HDA)

  8. White City, Oregon: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-EnhancingEtGeorgia: EnergyMaryland: EnergyWexfordSouthValleyCity, Oregon: Energy

  9. File:OregonSHPOClearanceForm.pdf | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View New Pages Recent Changes AllApschem.pdfgaspOregonSHPOClearanceForm.pdf Jump to: navigation,

  10. Grant County, Oregon: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View New PagesSustainableGlynn County, Georgia:Oregon: Energy Resources Jump to: navigation, search

  11. Malheur County, Oregon: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View NewTexas:Montezuma,Information MHKMHK5Transport Projects |NIESMalheur County, Oregon:

  12. Lincoln County, Oregon: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View NewTexas:Montezuma, Arizona:Oregon: Energy Resources Jump to: navigation, search Equivalent

  13. RAPID/Geothermal/Land Access/Oregon | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onRAPID/Geothermal/Exploration/Colorado < RAPID‎ |RAPID/Geothermal/LandRAPID/Geothermal/Land Access/Oregon <

  14. Raleigh Hills, Oregon: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onRAPID/Geothermal/Exploration/Colorado <RAPID/Geothermal/WaterEnergy Marketing Corp Jump to:RajasthanHills, Oregon:

  15. Oregon Department of Land Conservation and Department - Forest Land

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History ViewMayo, Maryland:NPIProtectio Program | Open Energy Information Oregon Department of Land

  16. Oregon Department of Land Conservation and Development - Farmland

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History ViewMayo, Maryland:NPIProtectio Program | Open Energy Information Oregon Department of

  17. Oregon Department of Transportation - Request for Pre-Application Meeting

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History ViewMayo, Maryland:NPIProtectio Program | Open Energy Information Oregon Department

  18. Oregon Directive for NPDES Permits and Section 401 Water Quality

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History ViewMayo, Maryland:NPIProtectio Program | Open Energy Information Oregon

  19. Oregon Federal and State Historic Preservation Laws Webpage | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History ViewMayo, Maryland:NPIProtectio Program | Open Energy Information OregonLands

  20. Oregon Fees for Underground Injection Control Program Fact Sheet | Open

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History ViewMayo, Maryland:NPIProtectio Program | Open Energy Information OregonLandsEnergy

  1. Coos County, Oregon: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTIONRobertsdale, Alabama (Utility Company)| Open(Evans,Oregon: Energy Resources Jump to: navigation,

  2. Thermal healing of realistic flaws in glass

    E-Print Network [OSTI]

    Zaccaria, Marco; Overend, Mauro

    2015-01-01

    in glass plates.â?ť Proc. Glass processing days, Tampere, Finland. 447 Anunmana, C., Anusavice, K. J., Mecholsky, J.J., (2009). â??Residual stress in glass: 448 indentation crack and fractography approaches.â?ť Dent.Mater., 40(11), 1453-1458. 449 ASTM...

  3. Do cathedral glasses flow? Edgar Dutra Zanottoa)

    E-Print Network [OSTI]

    Levi, Anthony F. J.

    simple concepts of physics to demonstrate that typical window glasses, which contain K2O­Na2O­CaO­MgO­Al2 for glass to flow and deform at ordinary temperatures, using calculated viscosity curves for several modern of Physics Teachers. I. INTRODUCTION Is glass a liquid or is it not? While teaching materials science

  4. Better Buildings- Spotlight on Portland, Oregon; Financing and Incetntives: Use Incentives to Get Attention and Encourage Deep Savings

    Broader source: Energy.gov [DOE]

    Better Buildings - Spotlight on Portland, Oregon; Financing and Incentives: Use Incentives to Get Attention and Encourage Deep Savings.

  5. Glass needs for a growing photovoltaics industry

    SciTech Connect (OSTI)

    Burrows, Keith; Fthenakis, Vasilis

    2015-01-01

    With the projected growth in photovoltaics, the demand for glass for the solar industry will far exceed the current supply, and thousands of new float-glass plants will have to be built to meet its needs over the next 20 years. Such expansion will provide an opportunity for the solar industry to obtain products better suited to their needs, such as low-iron glass and borosilicate glass at the lowest possible price. While there are no significant technological hurdles that would prevent the flat glass industry from meeting the solar industry’s projected needs, to do so will require advance planning and substantial investments.

  6. Glass needs for a growing photovoltaics industry

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Burrows, Keith; Fthenakis, Vasilis

    2014-10-18

    With the projected growth in photovoltaics, the demand for glass for the solar industry will far exceed the current supply, and thousands of new float-glass plants will have to be built to meet its needs over the next 20 years. Such expansion will provide an opportunity for the solar industry to obtain products better suited to their needs, such as low-iron glass and borosilicate glass at the lowest possible price. While there are no significant technological hurdles that would prevent the flat glass industry from meeting the solar industry’s projected needs, to do so will require advance planning and substantialmore »investments.« less

  7. Glass needs for a growing photovoltaics industry

    SciTech Connect (OSTI)

    Burrows, Keith; Fthenakis, Vasilis

    2014-10-18

    With the projected growth in photovoltaics, the demand for glass for the solar industry will far exceed the current supply, and thousands of new float-glass plants will have to be built to meet its needs over the next 20 years. Such expansion will provide an opportunity for the solar industry to obtain products better suited to their needs, such as low-iron glass and borosilicate glass at the lowest possible price. While there are no significant technological hurdles that would prevent the flat glass industry from meeting the solar industry’s projected needs, to do so will require advance planning and substantial investments.

  8. Characterization of Savannah River Plant waste glass

    SciTech Connect (OSTI)

    Plodinec, M J

    1985-01-01

    The objective of the glass characterization programs at the Savannah River Laboratory (SRL) is to ensure that glass containing Savannah River Plant high-level waste can be permanently stored in a federal repository, in an environmentally acceptable manner. To accomplish this objective, SRL is carrying out several experimental programs, including: fundamental studies of the reactions between waste glass and water, particularly repository groundwater; experiments in which candidate repository environments are simulated as accurately as possible; burial tests of simulated waste glass in candidate repository geologies; large-scale tests of glass durability; and determination of the effects of process conditions on glass quality. In this paper, the strategy and current status of each of these programs is discussed. The results indicate that waste packages containing SRP waste glass will satisfy emerging regulatory criteria.

  9. Recirculation bubbler for glass melter apparatus

    DOE Patents [OSTI]

    Guerrero, Hector (Evans, GA); Bickford, Dennis (Folly Beach, SC)

    2007-06-05

    A gas bubbler device provides enhanced recirculation of molten glass within a glass melter apparatus. The bubbler device includes a tube member disposed within a pool of molten glass contained in the melter. The tube member includes a lower opening through which the molten glass enters and upper slots disposed close to (above or below) the upper surface of the pool of molten glass and from which the glass exits. A gas (air) line is disposed within the tube member and extends longitudinally thereof. A gas bubble distribution device, which is located adjacent to the lower end of the tube member and is connected to the lower end of the gas line, releases gas through openings therein so as to produce gas bubbles of a desired size in the molten glass and in a distributed pattern across the tube member.

  10. Pressurized heat treatment of glass ceramic

    DOE Patents [OSTI]

    Kramer, D.P.

    1984-04-19

    A method of producing a glass-ceramic having a specified thermal expansion value is disclosed. The method includes the step of pressurizing the parent glass material to a predetermined pressure during heat treatment so that the glass-ceramic produced has a specified thermal expansion value. Preferably, the glass-ceramic material is isostatically pressed. A method for forming a strong glass-ceramic to metal seal is also disclosed in which the glass-ceramic is fabricated to have a thermal expansion value equal to that of the metal. The determination of the thermal expansion value of a parent glass material placed in a high-temperature environment is also used to determine the pressure in the environment.

  11. Active Tectonics and Seafloor Mapping Laboratory Publication 02-01 Interim Seafloor Lithology Maps for Oregon And Washington

    E-Print Network [OSTI]

    Goldfinger, Chris

    for Oregon And Washington Version 1.0 Chris Goldfinger Chris Romsos Rondi Robison Randall Milstein Beth Myers for the Oregon and Washington continental margin. The project expands on one recently completed for the Oregon and Washington continental shelves and margins, incorporating many important new datasets collected since

  12. EA-1937: Pacific Direct Intertie Upgrade Project; Lake, Jefferson, Crook, Deschutes, and Wasco Counties, Oregon

    Broader source: Energy.gov [DOE]

    Bonneville Power Administration prepared an EA that assesses the potential environmental impacts of a proposal to replace equipment at BPA’s Celilo converter station and upgrade equipment on the Celilo-Sylmar 500-kilovolt (kV) transmission line from The Dalles, Oregon, to the Nevada-Oregon border.

  13. Wind stress forcing of the Oregon coastal ocean during the 1999 upwelling season

    E-Print Network [OSTI]

    Balasubramanian, Ravi

    Wind stress forcing of the Oregon coastal ocean during the 1999 upwelling season R. Samelson, P November 2001; published 1 May 2002. [1] The wind stress forcing of the Oregon coastal ocean during June hypothesis that systematic variations in local wind stress may contribute to the observed offshore

  14. A numerical modeling study of the upwelling source waters along the Oregon

    E-Print Network [OSTI]

    Kurapov, Alexander

    Rivas and R.M. Samelson College of Oceanic and Atmospheric Sciences, Oregon State University, Corvallis. E-mail: drivasc@ipn.mx #12;2 Abstract. Regional ocean circulation along the Oregon coast is studied arrives from points offshore and west of the zone. For both year 2005 and the climatological simulations

  15. Citizens' Utility Board of Oregon 610 S.W. Broadway, Suite 308

    E-Print Network [OSTI]

    1 Citizens' Utility Board of Oregon 610 S.W. Broadway, Suite 308 Portland, Oregon 97205 Phone 503 for the Future Role of the Bonneville Power Administration in Power Supply Dear Mr. Walker, The Citizens' Utility towards an allocation of the existing system through long term contracts and to serve utilities beyond

  16. THE EXTENT OF DWARF MISTLETOE IN SIX PRINCIPAL SOFTWOODS IN CALIFORNIA, OREGON, AND WASHINGTON,

    E-Print Network [OSTI]

    THE EXTENT OF DWARF MISTLETOE IN SIX PRINCIPAL SOFTWOODS IN CALIFORNIA, OREGON, AND WASHINGTON i n California, Oregon, and Washington. Infection was most widespread i n Douglas-fir (3.6 million, Washington, and California distributed over an acre. A t each point, was summarized f o r s i x principal

  17. Modeling the Columbia River Plume on the Oregon Shelf during Summer Upwelling

    E-Print Network [OSTI]

    Kurapov, Alexander

    retrospective model runs for the sum- mer upwelling period of 2001. One run includes the Columbia riverModeling the Columbia River Plume on the Oregon Shelf during Summer Upwelling D. P. Fulton August 15, 2007 Abstract The effects of the Columbia River plume on circulation on the Oregon shelf

  18. Lid heater for glass melter

    DOE Patents [OSTI]

    Phillips, T.D.

    1993-12-14

    A glass melter having a lid electrode for heating the glass melt radiantly. The electrode comprises a series of INCONEL 690 tubes running above the melt across the melter interior and through the melter walls and having nickel cores inside the tubes beginning where the tubes leave the melter interior and nickel connectors to connect the tubes electrically in series. An applied voltage causes the tubes to generate heat of electrical resistance for melting frit injected onto the melt. The cores limit heat generated as the current passes through the walls of the melter. Nickel bus connection to the electrical power supply minimizes heat transfer away from the melter that would occur if standard copper or water-cooled copper connections were used between the supply and the INCONEL 690 heating tubes. 3 figures.

  19. Melter Glass Removal and Dismantlement

    SciTech Connect (OSTI)

    Richardson, BS

    2000-10-31

    The U.S. Department of Energy (DOE) has been using vitrification processes to convert high-level radioactive waste forms into a stable glass for disposal in waste repositories. Vitrification facilities at the Savannah River Site (SRS) and at the West Valley Demonstration Project (WVDP) are converting liquid high-level waste (HLW) by combining it with a glass-forming media to form a borosilicate glass, which will ensure safe long-term storage. Large, slurry fed melters, which are used for this process, were anticipated to have a finite life (on the order of two to three years) at which time they would have to be replaced using remote methods because of the high radiation fields. In actuality the melters useable life spans have, to date, exceeded original life-span estimates. Initial plans called for the removal of failed melters by placing the melter assembly into a container and storing the assembly in a concrete vault on the vitrification plant site pending size-reduction, segregation, containerization, and shipment to appropriate storage facilities. Separate facilities for the processing of the failed melters currently do not exist. Options for handling these melters include (1) locating a facility to conduct the size-reduction, characterization, and containerization as originally planned; (2) long-term storing or disposing of the complete melter assembly; and (3) attempting to refurbish the melter and to reuse the melter assembly. The focus of this report is to look at methods and issues pertinent to size-reduction and/or melter refurbishment in particular, removing the glass as a part of a refurbishment or to reduce contamination levels (thus allowing for disposal of a greater proportion of the melter as low level waste).

  20. Color Glass Condensate and Glasma

    E-Print Network [OSTI]

    F. Gelis

    2012-11-26

    We review the Color Glass Condensate effective theory, that describes the gluon content of a high energy hadron or nucleus, in the saturation regime. The emphasis is put on applications to high energy heavy ion collisions. After describing initial state factorization, we discuss the Glasma phase, that precedes the formation of an equilibrated quark-gluon plasma. We end this review with a presentation of recent developments in the study of the isotropization and thermalization of the quark-gluon plasma.

  1. Method for heating, forming and tempering a glass sheet

    DOE Patents [OSTI]

    Boaz, P.T.; Sitzman, G.W.

    1998-10-27

    A method for heating, forming and tempering a glass sheet is disclosed including the steps of heating at least one glass sheet to at least a first predetermined temperature, applying microwave energy to the glass sheet to heat the glass sheet to at least a second predetermined temperature, forming the glass sheet to a predetermined configuration, and cooling an outer surface of the glass sheet to at least a third predetermined temperature to temper the glass sheet. 2 figs.

  2. Method for heating, forming and tempering a glass sheet

    DOE Patents [OSTI]

    Boaz, Premakaran Tucker (Livonia, MI); Sitzman, Gary W. (Walled Lake, MI)

    1998-01-01

    A method for heating, forming and tempering a glass sheet including the steps of heating at least one glass sheet to at least a first predetermined temperature, applying microwave energy to the glass sheet to heat the glass sheet to at least a second predetermined temperature, forming the glass sheet to a predetermined configuration, and cooling an outer surface of the glass sheet to at least a third predetermined temperature to temper the glass sheet.

  3. Manufacturing laser glass by continuous melting

    SciTech Connect (OSTI)

    Campbell, J H; Suratwala, T; krenitsky, S; Takeuchi, K

    2000-07-01

    A novel, continuous melting process is being used to manufacture meter-sized plates of laser glass at a rate 20-times faster, 5-times cheaper, and with 2-3 times better optical quality than with previous one-at-a-time, ''discontinuous'' technology processes. This new technology for manufacturing laser glass, which is arguably the most difficult continuously-melted optical material ever produced, comes as a result of a $60 million, six-year joint R&D program between government and industry. The glasses manufactured by the new continuous melting process are Nd-doped phosphate-based glasses and are marketed under the product names LG-770 (Schott Glass Technologies) and LHG-8 (Hoya Corporation USA). With this advance in glass manufacturing technology, it is now possible to construct high-energy, high-peak-power lasers for use in fusion energy development, national defense, and basic physics research that would have been impractical to build using the old melting technology. The development of continuously melted laser glass required technological advances that have lead to improvements in the manufacture of other optical glass products as well. For example, advances in forming, annealing, and conditioning steps of the laser glass continuous melting process are now being used in manufacture of other large-size optical glasses.

  4. Oregon - Seds - U.S. Energy Information Administration (EIA)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Informationmonthly gasoline price to fall to $3.43 by September1Louisiana - SedsN O645933.0001Oregon -

  5. Sweet Home, Oregon: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-Enhancing CapacityVectren)Model forTechnologies95 Jump to:Sweden BuildingSweetOregon:

  6. Oregon - Rankings - U.S. Energy Information Administration (EIA)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Informationmonthly gasoline price toStocks 2009Cubic Foot) Year Jan FebThousand Cubic9:-Oregon

  7. Gilliam County, Oregon: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View New PagesSustainable UrbanKentucky:BoreOpenGilliam County, Oregon: Energy Resources Jump to:

  8. Energy Trust of Oregon Inc | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTIONRobertsdale, AlabamaETEC GmbH JumpEllenville, NewLtd EILEnergy DatadataCentreCoTrust of Oregon Inc

  9. Oregon Regions | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorkingLosThe23-24, 2011 HighMayOctober Advanced ScientificOklahomaOregon

  10. Shady Cove, Oregon: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-Enhancing Capacity for Low EmissionTianhong Silicon Material Co LtdShady Cove, Oregon:

  11. King City, Oregon: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View NewTexas: Energy ResourcesOrderInformation Kilauea Southwest RiftKimbleCity, Oregon:

  12. Klamath County, Oregon: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View NewTexas: Energy ResourcesOrderInformationKizildere I Geothermal Pwer PlantCounty, Oregon:

  13. Oak Grove, Oregon: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History ViewMayo, Maryland:NPI VenturesNewSt. Louis, Minnesota:Nulato,Nyack, - MiningBrook,Oregon: Energy

  14. Oregon Department of State Lands - Easement Application Form Across State

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History ViewMayo, Maryland:NPIProtectio Program | Open Energy Information Oregon Department ofLand or

  15. Oregon Department of State Lands | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History ViewMayo, Maryland:NPIProtectio Program | Open Energy Information Oregon Department ofLand

  16. Oregon Department of Transportation - Maintenance and Operations Branch |

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History ViewMayo, Maryland:NPIProtectio Program | Open Energy Information Oregon Department ofLandOpen

  17. Oregon Division of State Lands | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History ViewMayo, Maryland:NPIProtectio Program | Open Energy Information OregonLands Jump to:

  18. Oregon Federal and State Compliance for Historic and Archaeological

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History ViewMayo, Maryland:NPIProtectio Program | Open Energy Information OregonLands JumpResources

  19. Oregon Fish and Wildlife Mitigation Policy | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History ViewMayo, Maryland:NPIProtectio Program | Open Energy Information OregonLandsEnergyFish and

  20. Oregon General Industrial Water Pollution Control Facilities Webpage | Open

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History ViewMayo, Maryland:NPIProtectio Program | Open Energy Information OregonLandsEnergyFish

  1. Oregon State Endangered Species List | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History ViewMayo, Maryland:NPIProtectio Program | Open EnergyInformationSiting Process Jump to:Oregon

  2. Constellation NewEnergy, Inc (Oregon) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LISTStar EnergyLawler,CoalConcordia ElectricConstellationNewEnergy, Inc (Oregon) Jump

  3. City of Cascade Locks, Oregon (Utility Company) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LISTStar Energy LLCLtd JumpGeorgiaBurley, Idaho (UtilityMissouriLocks, Oregon (Utility

  4. Noble Americas Energy Solutions LLC (Oregon) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop Inc Jump to:Newberg, Oregon: Energy ResourcesJiuyiNoble Americas

  5. Oregon Trail El Cons Coop, Inc | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop Inc Jump to:Newberg, Oregon:OGEProjects/DefinitionsOrchid Bioenergy GroupEl Cons

  6. Sherman County, Oregon: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EA EIS ReportEurope GmbH Jump to: navigation, searchIndiaI Wind FarmOregon:

  7. EIS-0492: Oregon LNG Export Project (Warrenton, OR) and Washington

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i n cEnergy (AZ, CA, CO,Department of Energy Oregon LNG Export

  8. City of Eugene, Oregon (Utility Company) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmentalBowerbank,CammackFLIRChurch Point,BlueDeaver,Dighton,Louisiana (UtilityEugene, Oregon

  9. City of Hermiston, Oregon (Utility Company) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmentalBowerbank,CammackFLIRChurchFontanelle, Iowa (UtilityHagerstown,CityHermiston, Oregon

  10. Heavy Element Synthesis Reactions W. Loveland Oregon State University

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room NewsInformation Current HABFESOpportunitiesNERSCGrid-based29HaiWhyReactions W. Loveland Oregon

  11. Biomass Boiler to Heat Oregon School | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirley Ann JacksonDepartment of EnergyResearchers atDayWhenBethany Sparn,DepartmentWatchOregon

  12. Current status of the GLASS code

    SciTech Connect (OSTI)

    Hootman, H.E. [Westinghouse Savannah River Co., Aiken, SC (United States); Honeck, H.C. [Computer Application Technology, Inc., Aiken, SC (United States)

    1991-12-31

    This paper summarizes the current status of the Generalized Lattice Analysis SubSystem (GLASS) computer code and its supporting cross section libraries. GLASS was developed at the Savannah River Site (SRS) in the early 1970`s. The GLASS code has been instrumental in supporting safe Heavy Water Reactor (HWR) operations and predicting material production at SRS for more than 20 years. The Department of Energy Office of New Production Reactors (ONPR) program has chosen to use the GLASS code for the design of the HWR option of the New Production Reactor (NPR). A substantial body of validation calculations have been performed and additional validation calculations will be performed to qualify the new GLASS multigroup cross section libraries derived from the ENDF/B-5 and 6 nuclear data files. Several improvements to the code are in progress. Many other improvements are planned to bring GLASS up to modern physics and compute technology.

  13. Glass and Glass Products (2010 MECS) | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would likeUniverse (Journalvivo Low-Dose Low LETUseful LinksGlass Stronger than Steel Stories

  14. Glass Property Data and Models for Estimating High-Level Waste Glass Volume

    SciTech Connect (OSTI)

    Vienna, John D.; Fluegel, Alexander; Kim, Dong-Sang; Hrma, Pavel R.

    2009-10-05

    This report describes recent efforts to develop glass property models that can be used to help estimate the volume of high-level waste (HLW) glass that will result from vitrification of Hanford tank waste. The compositions of acceptable and processable HLW glasses need to be optimized to minimize the waste-form volume and, hence, to save cost. A database of properties and associated compositions for simulated waste glasses was collected for developing property-composition models. This database, although not comprehensive, represents a large fraction of data on waste-glass compositions and properties that were available at the time of this report. Glass property-composition models were fit to subsets of the database for several key glass properties. These models apply to a significantly broader composition space than those previously publised. These models should be considered for interim use in calculating properties of Hanford waste glasses.

  15. Process for preparing improved silvered glass mirrors

    DOE Patents [OSTI]

    Buckwalter, C.Q. Jr.

    1980-01-28

    Glass mirrors having improved weathering properties are prepared by an improvement in the process for making the mirrors. The glass surface after it has been cleaned but before it is silvered, is contacted with a solution of lanthanide rare earths in addition to a sensitization solution of tin or palladium. The addition of the rare earths produces a mirror which has increased resistance to delamination of the silver from the glass surface in the presence of water.

  16. 68 Glass Technology Vol. 45 No. 2 April 2004 Proc. VII Symp. on Crystallisation in Glasses and Liquids, Sheffield, 69 July 2003 Proc. VII Symp. on Crystallisation in Glasses and Liquids, Sheffield, 69 July 2003 Glass Technol., 2004, 45, 6870

    E-Print Network [OSTI]

    Sheffield, University of

    68 Glass Technology Vol. 45 No. 2 April 2004 Proc. VII Symp. on Crystallisation in Glasses and Liquids, Sheffield, 6­9 July 2003 Proc. VII Symp. on Crystallisation in Glasses and Liquids, Sheffield, 6­9 July 2003 Glass Technol., 2004, 45, 68­70 The behaviour of a simulant Magnox waste glass

  17. Radiation Characteristics of Glass Containing Gas Bubbles

    E-Print Network [OSTI]

    Pilon, Laurent; Viskanta, Raymond

    2003-01-01

    Optical properties of soda-lime silicate”, Solar Energye?ciency factors of the soda-lime silicate containing gasscattering albedo of soda-lime silicate glass containing

  18. Bioactive Glass Scaffolds for Bone Regeneration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Bioactive Glass Scaffolds for Bone Regeneration Print Natural materials are renowned for their unique combination of outstanding mechanical properties and exquisite microstructure....

  19. High-Temperature Viscosity Of Commercial Glasses

    SciTech Connect (OSTI)

    Hrma, Pavel R.; See, Clem A.; Lam, Oanh P.; Minister, Kevin B.

    2005-01-01

    Viscosity was measured for six types of commercial glasses: low-expansion-borosilicate glasses, E glasses, fiberglass wool glasses, TV panel glasses, container glasses, and float glasses. Viscosity data were obtained with rotating spindle viscometers within the temperature range between 900°C and 1550°C; the viscosity varied from 1 Pa?s to 750 Pa?s. Arrhenius coefficients were calculated for individual glasses and linear models were applied to relate them to the mass fractions of 11 major components (SiO2, CaO, Na2O, Al2O3, B2O3, BaO, SrO, K2O, MgO, PbO, and ZrO2) and 12 minor components (Fe2O3, ZnO, Li2O, TiO2, CeO2, F, Sb2O3, Cr2O3, As2O3, MnO2, SO3, and Co3O4). The models are recommended for glasses containing 42 to 84 mass% SiO2 to estimate viscosities or temperatures at a constant viscosity for melts within both the temperature range from 1100°C to 1550°C and viscosity range from 10 to 400 Pa?s.

  20. Compliant Glass Seals for SOFC Stacks

    SciTech Connect (OSTI)

    Chou, Y. S.; Choi, Jung-Pyung; Xu, Wei; Stephens, Elizabeth V.; Koeppel, Brian J.; Stevenson, Jeffry W.; Lara-Curzio, Edgar

    2014-04-01

    This report summarizes results from experimental and modeling studies performed by participants in the Solid-State Energy Conversion Alliance (SECA) Core Technology Program, which indicate that compliant glass-based seals offer a number of potential advantages over conventional seals based on de-vitrifying glasses, including reduced stresses during stack operation and thermal cycling, and the ability to heal micro-damage induced during thermal cycling. The properties and composition of glasses developed and/or investigated in these studies are reported, along with results from long-term (up to 5,800h) evaluations of seals based on a compliant glass containing ceramic particles or ceramic fibers.

  1. Characterization of Mg/Al butt joints welded by gas tungsten arc filling with Zn–29.5Al–0.5Ti filler metal

    SciTech Connect (OSTI)

    Liu, Fei; Wang, Hongyang; Liu, Liming, E-mail: liulm@dlut.edu.cn

    2014-04-01

    The multivariate alloying design of a welding joint is used in the Mg to Al welding process. A Zn–29.5Al–0.5Ti alloy is added as filler metal in gas tungsten arc welding of Mg and Al alloy joint based on the analysis of Al and Mg alloy characteristics. The tensile strength, microstructure, and phase constitution of the weld seam are analyzed. The formation of brittle and hard Mg–Al intermetallic compounds is avoided because of the effects of Zn, Al, and Ti. The average tensile strength of the joint is 148 MPa. Al{sub 3}Ti is first precipitated and functions as the nucleus of heterogeneous nucleation during solidification. Moreover, the precipitated Al–MgZn{sub 2} hypoeutectic phase exhibited a feather-like structure, which enhances the property of the Mg–Al dissimilar joint. - Highlights: • Mg alloy AZ31B and Al alloy 6061 are butt welded by fusion welding. • The effect of Ti in filler metal is investigated. • The formation of Mg–Al intermetallic compounds is avoided.

  2. Level-set method used to track the glass-air interface in the blow step of glass containers

    E-Print Network [OSTI]

    Eindhoven, Technische Universiteit

    Level-set method used to track the glass-air interface in the blow step of glass containers C. G-air interface of the blowing of a preform with non-uniform temperature. Keywords: glass forming of the second blowing step of the forming process. As the glass flows towards the mould the glass-air interface

  3. Radiative Heat Transfer in Enhanced Hydrogen Outgassing of Glass

    E-Print Network [OSTI]

    Kitamura, Rei; Pilon, Laurent

    2009-01-01

    Photo-induced hydrogen outgassing of glass”, Journal of Non-Photo-induced hydrogen outgassing of glass, PhD thesis,in Enhanced Hydrogen Outgassing of Glass Rei Kitamura and

  4. Nano-structured self-cleaning superhydrophobic glass

    E-Print Network [OSTI]

    Kim, Jin Yeol

    2010-01-01

    images of water droplet on AAO coating on soda lime glass. (a) with as- made AAO on soda lime glass (CA = 54 o ), (b)Al 2 O 3 nanowires on soda lime glass after 65 min pore-

  5. Radiative Heat Transfer in Enhanced Hydrogen Outgassing of Glass

    E-Print Network [OSTI]

    Kitamura, Rei; Pilon, Laurent

    2009-01-01

    transport in a machinable glass-ceramic”, Journal of Non-in soda-lime-silicate glasses by reaction with hydrogen”,1971. [16] I. Fanderlik, Glass Science and Technology, Vol.

  6. SRNL POROUS WALL GLASS MICROSPHERES

    SciTech Connect (OSTI)

    Wicks, G; Leung Heung, L; Ray Schumacher, R

    2008-04-15

    The Savannah River National Laboratory (SRNL) has developed a new medium for storage of hydrogen and other gases. This involves fabrication of thin, Porous Walled, Hollow Glass Microspheres (PW-HGMs), with diameters generally in the range of 1 to several hundred microns. What is unique about the glass microballons is that porosity has been induced and controlled within the thin, one micron thick walls, on the scale of 10 to several thousand Angstroms. This porosity results in interesting properties including the ability to use these channels to fill the microballons with special absorbents and other materials, thus providing a contained environment even for reactive species. Gases can now enter the microspheres and be retained on the absorbents, resulting in solid-state and contained storage of even reactive species. Also, the porosity can be altered and controlled in various ways, and even used to filter mixed gas streams within a system. SRNL is involved in about a half dozen different programs involving these PW-HGMs and an overview of some of these activities and results emerging are presented.

  7. The quantum Biroli-Mézard model: glass transition and superfluidity in a quantum lattice glass model

    E-Print Network [OSTI]

    Laura Foini; Guilhem Semerjian; Francesco Zamponi

    2011-03-12

    We study the quantum version of a lattice model whose classical counterpart captures the physics of structural glasses. We discuss the role of quantum fluctuations in such systems and in particular their interplay with the amorphous order developed in the glass phase. We show that quantum fluctuations might facilitate the formation of the glass at low enough temperature. We also show that the glass transition becomes a first-order transition between a superfluid and an insulating glass at very low temperature, and is therefore accompanied by phase coexistence between superfluid and glassy regions.

  8. Method for heating and forming a glass sheet

    DOE Patents [OSTI]

    Boaz, Premakaran Tucker (Livonia, MI)

    1997-01-01

    A method for heating and forming a glass sheet includes the steps of heating a glass sheet to at least a first predetermined temperature, applying microwave energy to the glass sheet to heat the glass sheet to at least a second predetermined temperature, cooling an outer surface of the glass sheet to at least a third predetermined temperature and forming the glass sheet using forming rollers to a predetermined configuration.

  9. Method for heating and forming a glass sheet

    DOE Patents [OSTI]

    Boaz, P.T.

    1997-08-12

    A method for heating and forming a glass sheet includes the steps of heating a glass sheet to at least a first predetermined temperature, applying microwave energy to the glass sheet to heat the glass sheet to at least a second predetermined temperature, cooling an outer surface of the glass sheet to at least a third predetermined temperature and forming the glass sheet using forming rollers to a predetermined configuration. 5 figs.

  10. Method and apparatus for melting glass batch

    DOE Patents [OSTI]

    Fassbender, Alexander G. (Kennewick, WA); Walkup, Paul C. (Richland, WA); Mudge, Lyle K. (Richland, WA)

    1988-01-01

    A glass melting system involving preheating, precalcining, and prefluxing of batch materials prior to injection into a glass furnace. The precursors are heated by convection rather than by radiation in present furnaces. Upon injection into the furnace, batch materials are intimately coated with molten flux so as to undergo or at least begin the process of dissolution reaction prior to entering the melt pool.

  11. Monitoring and analyzing waste glass compositions

    DOE Patents [OSTI]

    Schumacher, Ray F. (Aiken, SC)

    1994-01-01

    A device and method for determining the viscosity of a fluid, preferably molten glass. The apparatus and method uses the velocity of rising bubbles, preferably helium bubbles, within the molten glass to determine the viscosity of the molten glass. The bubbles are released from a tube positioned below the surface of the molten glass so that the bubbles pass successively between two sets of electrodes, one above the other, that are continuously monitoring the conductivity of the molten glass. The measured conductivity will change as a bubble passes between the electrodes enabling an accurate determination of when a bubble has passed between the electrodes. The velocity of rising bubbles can be determined from the time interval between a change in conductivity of the first electrode pair and the second, upper electrode pair. The velocity of the rise of the bubbles in the glass melt is used in conjunction with other physical characteristics, obtained by known methods, to determine the viscosity of the glass melt fluid and, hence, glass quality.

  12. Monitoring and analyzing waste glass compositions

    DOE Patents [OSTI]

    Schumacher, R.F.

    1994-03-01

    A device and method are described for determining the viscosity of a fluid, preferably molten glass. The apparatus and method use the velocity of rising bubbles, preferably helium bubbles, within the molten glass to determine the viscosity of the molten glass. The bubbles are released from a tube positioned below the surface of the molten glass so that the bubbles pass successively between two sets of electrodes, one above the other, that are continuously monitoring the conductivity of the molten glass. The measured conductivity will change as a bubble passes between the electrodes enabling an accurate determination of when a bubble has passed between the electrodes. The velocity of rising bubbles can be determined from the time interval between a change in conductivity of the first electrode pair and the second, upper electrode pair. The velocity of the rise of the bubbles in the glass melt is used in conjunction with other physical characteristics, obtained by known methods, to determine the viscosity of the glass melt fluid and, hence, glass quality. 2 figures.

  13. Viscous Glass Sealants for SOFC Applications

    SciTech Connect (OSTI)

    Scott Misture

    2012-09-30

    Two series of silicate glasses that contain gallium as the primary critical component have been identified and optimized for viscous sealing of solid oxide fuel cells operating from 650 to 850°C. Both series of glass sealants crystallize partially upon heat treatment and yield multiphase microstructures that allow viscous flow at temperatures as low as 650°C. A fully amorphous sealant was also developed by isolating, synthesizing and testing a silicate glass of the same composition as the remnant glassy phase in one of the two glass series. Of ~40 glasses tested for longer than 500 hours, a set of 5 glasses has been further tested for up to 1000h in air, wet hydrogen, and against both yttria-stabilized zirconia and aluminized stainless steel. In some cases the testing times reached 2000h. The reactivity testing has provided new insight into the effects of Y, Zr, and Al on bulk and surface crystallization in boro-gallio-silicate glasses, and demonstrated that at least 5 of the newly-developed glasses are viable viscous sealants.

  14. Glass heat pipe evacuated tube solar collector

    DOE Patents [OSTI]

    McConnell, Robert D. (Lakewood, CO); Vansant, James H. (Tracy, CA)

    1984-01-01

    A glass heat pipe is adapted for use as a solar energy absorber in an evacuated tube solar collector and for transferring the absorbed solar energy to a working fluid medium or heat sink for storage or practical use. A capillary wick is formed of granular glass particles fused together by heat on the inside surface of the heat pipe with a water glass binder solution to enhance capillary drive distribution of the thermal transfer fluid in the heat pipe throughout the entire inside surface of the evaporator portion of the heat pipe. Selective coatings are used on the heat pipe surface to maximize solar absorption and minimize energy radiation, and the glass wick can alternatively be fabricated with granular particles of black glass or obsidian.

  15. Low loss laser glass: Final report

    SciTech Connect (OSTI)

    Izumitani, T.; Toratani, H.; Meissner, H.E.

    1987-01-15

    The objective of this work was a process development on making a laser glass with loss coefficient of 10/sup -4/cm/sup -1/ at 1.05..mu... The key issues for making such a low loss glass will be to use pure raw materials, to reduce OH content and to prevent contamination from the melting environment. A sublimation method was tried to prepare pure P/sub 2/O/sub 5/ batch material. In an attempt to distinguish contributions to the overall loss, glasses were melted in furnaces which were controlled in moisture as well as contamination. Evaluation of glass samples at LLNL are expected to provide guidance on the importance of various process parameters. A new 0.5 liter furnace which almost completely prevents contamination by the furnace environment has been constructed to obtain useful information for making a low loss glass on a production scale.

  16. Titanium sealing glasses and seals formed therefrom

    DOE Patents [OSTI]

    Brow, Richard K. (Albuquerque, NM); McCollister, Howard L. (Albuquerque, NM); Phifer, Carol C. (Albuquerque, NM); Day, Delbert E. (Rolla, MO)

    1997-01-01

    Alkaline-earth lanthanoborate sealing-glass compositions containing CaO, La.sub.2 O.sub.3, B.sub.2 O.sub.3, TiO.sub.2 and Al.sub.2 O.sub.3 in various combinations of mole-% are provided. These sealing-glass compositions are useful for forming hermetic glass-to-metal seals with titanium and titanium alloys that have a high aqueous durability for component or device applications requiring exposure to moisture, water or body fluids. Particular applications of the titanium sealing-glass compositions include forming glass-to-metal seals for lithium batteries and implanted biomedical devices (e.g. batteries, pacemakers, defibrillators, pumps).

  17. Titanium sealing glasses and seals formed therefrom

    DOE Patents [OSTI]

    Brow, R.K.; McCollister, H.L.; Phifer, C.C.; Day, D.E.

    1997-12-02

    Alkaline-earth lanthanoborate sealing-glass compositions containing CaO, La{sub 2}O{sub 3}, B{sub 2}O{sub 3}, TiO{sub 2} and Al{sub 2}O{sub 3} in various combinations of mole-% are provided. These sealing-glass compositions are useful for forming hermetic glass-to-metal seals with titanium and titanium alloys that have a high aqueous durability for component or device applications requiring exposure to moisture, water or body fluids. Particular applications of the titanium sealing-glass compositions include forming glass-to-metal seals for lithium batteries and implanted biomedical devices (e.g. batteries, pacemakers, defibrillators, pumps). 2 figs.

  18. Gaseous Sulfate Solubility in Glass: Experimental Method

    SciTech Connect (OSTI)

    Bliss, Mary

    2013-11-30

    Sulfate solubility in glass is a key parameter in many commercial glasses and nuclear waste glasses. This report summarizes key publications specific to sulfate solubility experimental methods and the underlying physical chemistry calculations. The published methods and experimental data are used to verify the calculations in this report and are expanded to a range of current technical interest. The calculations and experimental methods described in this report will guide several experiments on sulfate solubility and saturation for the Hanford Waste Treatment Plant Enhanced Waste Glass Models effort. There are several tables of sulfate gas equilibrium values at high temperature to guide experimental gas mixing and to achieve desired SO3 levels. This report also describes the necessary equipment and best practices to perform sulfate saturation experiments for molten glasses. Results and findings will be published when experimental work is finished and this report is validated from the data obtained.

  19. China Glass Solar aka CG Solar formerly Weihai Bluestar Terra...

    Open Energy Info (EERE)

    China Glass Solar aka CG Solar formerly Weihai Bluestar Terra Photovoltaic Co Ltd Jump to: navigation, search Name: China Glass Solar (aka CG Solar, formerly Weihai Bluestar Terra...

  20. Metal and Glass Manufacturers Reduce Costs by Increasing Energy...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Metal and Glass Manufacturers Reduce Costs by Increasing Energy Efficiency in Process Heating Systems Metal and Glass Manufacturers Reduce Costs by Increasing Energy Efficiency in...

  1. California: Energy-Efficient Glass Saves Energy Costs, Increases...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy-Efficient Glass Saves Energy Costs, Increases Personal Comfort California: Energy-Efficient Glass Saves Energy Costs, Increases Personal Comfort April 18, 2013 - 12:00am...

  2. Waste Loading Enhancements for Hanford Low-Activity Waste Glasses

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    WASTE LOADING ENHANCEMENTS FOR HANFORD LOW-ACTIVITY WASTE GLASSES Albert A. Kruger, Glass Scientist DOE-WTP Project Office Engineering Division US Department of Energy Richland,...

  3. Refractive index of glass and its dipersion for visible light.

    SciTech Connect (OSTI)

    Smith, D. Y.; Karstens, W. (Physics); (Univ. of Vermont); (Saint Michael's Coll.)

    2010-01-01

    The classification of optical glass and empirical relations between the refractive index and its dispersion are discussed in terms of moments of the glass's IR and UV absorption spectra. The observed linear dependence of index on dispersion within glass families is shown to arise primarily from the approximately linear superposition of the electronic absorptions of glass former and glass modifiers. The binary classification into crown and flint glasses is also based primarily on electronic spectra: Crown glasses are 'wide-gap' materials with excitation energies greater than {approx}12.4 eV, while flint glasses are their 'narrow-gap' counterpart.

  4. California: Energy-Efficient Glass Saves Energy Costs, Increases...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    California: Energy-Efficient Glass Saves Energy Costs, Increases Personal Comfort California: Energy-Efficient Glass Saves Energy Costs, Increases Personal Comfort April 18, 2013 -...

  5. Glass-like thermal conductivity in high efficiency thermoelectric...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Glass-like thermal conductivity in high efficiency thermoelectric materials Glass-like thermal conductivity in high efficiency thermoelectric materials Discusses strategies to...

  6. GEOTHERMAL EXPLORATION ASSESSMENT AND INTERPRETATION, KLAMATH BASIN, OREGON-SWAN LAKE AND KLAMATH HILLS AREA

    E-Print Network [OSTI]

    Stark, M.

    2011-01-01

    1966, Energy and power of geothermal resources: Dept. o fTelluric exploration for geothermal anomalies i n Oregon:Bowen, R.G. , 1972, Geothermal o v k i e w s of t h e '

  7. Oregon - OAR 860-025-0030 - Petition for CPCN for Construction...

    Open Energy Info (EERE)

    Oregon - OAR 860-025-0030 - Petition for CPCN for Construction of Overhead Transmission Lines Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document-...

  8. Paleogene marine bivalves of the deep-water Keasey Formation in Oregon, Part III: The heteroconchs

    E-Print Network [OSTI]

    Hickman, Carole S.

    2015-01-01

    and adjacent Antarctic waters (Bivalvia: Thyasiridae).bivalves of the deep-water Keasey Formation in Oregon, partThyasiridae) from cold-water methane-rich areas of the Sea

  9. The Ecological Basis of Forest Ecosystem Management in the Oregon Coast Range

    E-Print Network [OSTI]

    Wright, Dawn Jeannine

    processes can contribute to reaching ecosystem goals. We draw primarily on information developed31 The Ecological Basis of Forest Ecosystem Management in the Oregon Coast Range Thomas A. Spies twelve major ecological themes (regional environment, ecosystem types and patterns, vegetation

  10. 851 S.W. Sixth Avenue, Suite 1100 Portland, Oregon 97204-1348 Executive Director

    E-Print Network [OSTI]

    851 S.W. Sixth Avenue, Suite 1100 Portland, Oregon 97204-1348 Executive Director www progress report on various activities that are underway. 851 S.W. Sixth Avenue, Suite 1100 Steve Crow 503

  11. WEATHERIZATION INDUSTRIES SAVE ENERGY ST SE SALEM, OREGON 97301 (503) 5691381 WEATHERIZATIONALLIES@GMAIL.COM

    E-Print Network [OSTI]

    WEATHERIZATION INDUSTRIES SAVE ENERGY 565 21ST ST SE SALEM, OREGON 97301 · (503) 5691381 AND CONSERVATION COUNCIL'S CONSERVATION PLANNING ASSUMPTIONS Weatherization Industries Save Energy (WISE · WEATHERIZATIONALLIES@GMAIL.COM COMMENTS ON ACHIEVABLE SAVINGS: A RETROSPECTIVE LOOK AT THE NORTHWEST POWER

  12. Marine Studies Initiative, Oregon State University Learning Models Working Group Report

    E-Print Network [OSTI]

    Tullos, Desiree

    Marine Studies Initiative, Oregon State University Learning Models Working Group Report January 15, 2015 Executive Summary ­ (updated on March 19, 2015) Learning models within the Marine Studies that integrates marine literacy throughout OSU academic programs while expanding innovative marine education

  13. Glass for sealing lithium cells

    DOE Patents [OSTI]

    Leedecke, C.J.

    1981-08-28

    Glass compositions resistant to corrosion by lithium cell electrolyte and having an expansion coefficient of 45 to 85 x 10/sup -70/C/sup -1/ have been made with SiO/sub 2/, 25 to 55% by weight; B/sub 2/O/sub 3/, 5 to 12%; Al/sub 2/O/sub 3/, 12 to 35%; CaO, 5 to 15%; MgO, 5 to 15%; SrO, 0 to 10%; and La/sub 2/O/sub 3/, 0 to 5%. Preferred compositions within that range contain 3 to 8% SrO and 0.5 to 2.5% La/sub 2/O/sub 3/.

  14. EA-1981: Bonneville-Hood River Transmission Line Rebuild, Multnomah and Hood River Counties, Oregon

    Office of Energy Efficiency and Renewable Energy (EERE)

    Bonneville Power Administration (BPA) is preparing an EA to assess potential environmental impacts of a proposal to rebuild its 24-mile long, 115 kilovolt Bonneville-Hood River transmission line. The existing line runs between the Bonneville Powerhouse at Bonneville Dam in Multnomah County, Oregon, and BPA's existing Hood River Substation in Hood River County, Oregon. The project would include replacing structures and conductor wires, improving access roads, and constructing new access roads or trails where needed.

  15. Small Wind Electric Systems: An Oregon Consumer's Guide

    SciTech Connect (OSTI)

    Not Available

    2005-03-01

    Small Wind Electric Systems: An Oregon Consumer's Guide provides consumers with information to help them determine whether a small wind electric system can provide all or a portion of the energy they need for their home or business based on their wind resource, energy needs, and their economics. Topics discussed in the guide include how to make a home more energy efficient, how to choose the correct turbine size, the parts of a wind electric system, how to determine whether enough wind resource exists, how to choose the best site for a turbine, how to connect a system to the utility grid, and whether it's possible to become independent of the utility grid using wind energy. In addition, the cover of the guide contains a regional wind resource map and a list of incentives and contacts for more information.

  16. U.S. hydropower resource assessment for Oregon

    SciTech Connect (OSTI)

    Conner, A.M.; Francfort, J.E.

    1998-03-01

    The US Department of Energy is developing an estimate of the undeveloped hydropower potential in the United States. The Hydropower Evaluation Software (HES) is a computer model that was developed by the Idaho National Engineering and Environmental Laboratory for this purpose. HES measures the undeveloped hydropower resources available in the US, using uniform criteria for measurement. The software was developed and tested using hydropower information and data provided by the Southwestern Power Administration. It is a menu-driven program that allows the personal computer user to assign environmental attributes to potential hydropower sites, calculate development suitability factors for each site based on the environmental attributes present, and generate reports based on these suitability factors. This report describes the resource assessment results for the State of Oregon.

  17. Small Wind Electric Systems: An Oregon Consumer's Guide

    SciTech Connect (OSTI)

    Not Available

    2007-08-01

    Small Wind Electric Systems: An Oregon Consumer's Guide provides consumers with information to help them determine whether a small wind electric system can provide all or a portion of the energy they need for their home or business based on their wind resource, energy needs, and economics. Topics include how to make a home more energy efficient, how to choose the correct turbine size, the parts of a wind electric system, how to determine whether enough wind resource exists, how to choose the best site for a turbine, how to connect a system to the utility grid, and whether it's possible to become independent of the utility grid using wind energy. In addition, the cover of the guide contains a list of contacts for more information.

  18. Solid oxide fuel cell having a glass composite seal

    DOE Patents [OSTI]

    De Rose, Anthony J.; Mukerjee, Subhasish; Haltiner, Jr., Karl Jacob

    2013-04-16

    A solid oxide fuel cell stack having a plurality of cassettes and a glass composite seal disposed between the sealing surfaces of adjacent cassettes, thereby joining the cassettes and providing a hermetic seal therebetween. The glass composite seal includes an alkaline earth aluminosilicate (AEAS) glass disposed about a viscous glass such that the AEAS glass retains the viscous glass in a predetermined position between the first and second sealing surfaces. The AEAS glass provides geometric stability to the glass composite seal to maintain the proper distance between the adjacent cassettes while the viscous glass provides for a compliant and self-healing seal. The glass composite seal may include fibers, powders, and/or beads of zirconium oxide, aluminum oxide, yttria-stabilized zirconia (YSZ), or mixtures thereof, to enhance the desirable properties of the glass composite seal.

  19. HGMS: Glasses and Nanocomposites for Hydrogen Storage.

    SciTech Connect (OSTI)

    Lipinska, Kris; Hemmers, Oliver

    2013-02-17

    The primary goal of this project is to fabricate and investigate different glass systems and glass-derived nanocrystalline composite materials. These glass-based, two-phased materials will contain nanocrystals that can attract hydrogen and be of potential interest as hydrogen storage media. The glass materials with intrinsic void spaces that are able to precipitate functional nanocrystals capable to attract hydrogen are of particular interest. Proposed previously, but never practically implemented, one of promising concepts for storing hydrogen are micro-containers built of glass and shaped into hollow microspheres. The project expanded this concept to the exploration of glass-derived nanocrystalline composites as potential hydrogen storage media. It is known that the most desirable materials for hydrogen storage do not interact chemically with hydrogen and possess a high surface area to host substantial amounts of hydrogen. Glasses are built of disordered networks with ample void spaces that make them permeable to hydrogen even at room temperature. Glass-derived nanocrystalline composites (two-phased materials), combination of glasses (networks with ample voids) and functional nanocrystals (capable to attract hydrogen), appear to be promising candidates for hydrogen storage media. Key advantages of glass materials include simplicity of preparation, flexibility of composition, chemical durability, non-toxicity and mechanical strength, as well as low production costs and environmental friendliness. This project encompasses a fundamental research into physics and chemistry of glasses and nanocrystalline composite materials, derived from glass. Studies are aimed to answer questions essential for considering glass-based materials and composites as potential hydrogen storage media. Of particular interest are two-phased materials that combine glasses with intrinsic voids spaces for physisorption of hydrogen and nanocrystals capable of chemisorption. This project does not directly address any hydrogen storage technical barriers or targets in terms of numbers. Specifically, hydrogen sorption and desorption tests or kinetics measurements were not part of the project scope. However, the insights gained from these studies could help to answer fundamental questions necessary for considering glass-based materials as hydrogen storage media and could be applied indirectly towards the DOE hydrogen storage technical targets such as system weight and volume, system cost and energy density. Such questions are: Can specific macro-crystals, proven to attract hydrogen when in a macroscopic form (bulk), be nucleated in glass matrices as nanocrystals to create two-phased materials? What are suitable compositions that enable to synthetize glass-based, two-phase materials with nanocrystals that can attract hydrogen via surface or bulk interactions? What are the limits of controlling the microstructure of these materials, especially limits for nanocrystals density and size? Finally, from a technological point of view, the fabrication of glass-derived nanocomposites that we explore is a very simple, fast and inexpensive process that does not require costly or specialized equipment which is an important factor for practical applications.

  20. Glass ceramic-to-metal seals

    DOE Patents [OSTI]

    Not Available

    1982-04-19

    A glass ceramic composition prepared by subjecting a glass composition comprising, by weight, 65 to 80% SiO/sub 2/, 8 to 16% Li/sub 2/O, 2 to 8% Al/sub 2/O/sub 3/, 1 to 8% K/sub 2/O, 1 to 5% P/sub 2/O/sub 5/ and 1.5 to 7% B/sub 2/O/sub 3/, to the following processing steps of heating the glass composition to a temperature sufficient to crystallize lithium metasilicate therein, holding the glass composition at a temperature and for a time period sufficient to dissolve the lithium metasilicate therein thereby creating cristobalite nucleii, cooling the glass composition and maintaining the composition at a temperature and for a time period sufficient to recrystallize lithium metasilicate therein, and thermally treating the glass composition at a temperature and for a time period sufficient to caus growth of cristobalite and further crystallization of lithium metasilicate producing a glass ceramic composition having a specific thermal expansion coefficient and products containing said composition.

  1. Novel lead-iron phosphate glass

    DOE Patents [OSTI]

    Boatner, L.A.; Sales, B.C.

    1989-07-11

    The invention described and claimed in the specification relates to the discovery that effective addition of Fe[sub 2]O[sub 3] to a lead phosphate glass results in a glass having enhanced chemical durability and physical stability, and consists essentially of the glass resulting from melting a mixture consisting essentially of, in weight percent, 40--66 percent PbO, 30--55 percent P[sub 2]O[sub 5] and an effective concentration up to 12 percent Fe[sub 2]O[sub 3].

  2. Spin Glasses: Old and New Complexity

    SciTech Connect (OSTI)

    Stein, D. L.

    2011-09-22

    Spin glasses are disordered magnetic systems that exhibit a variety of properties that are characteristic of 'complex systems'. After a brief review of the systems themselves, I will discuss how spin glass concepts have found use in and, in some cases, further advanced areas such as computer science, biology, and other fields: what one might term 'old complexity'. I will then turn to a discussion of more recent concepts and ideas that have flowed from studies of spin glasses, and using these introduce a proposal for a kind of 'new complexity'.

  3. The Color Glass Condensate and Glasma

    E-Print Network [OSTI]

    Larry McLerran

    2008-04-10

    These two lectures concern the Color Glass Condensate and the Glasma. These are forms of matter which might be studied in high energy hadronic collisions. The Color Glass Condensate is high energy density gluonic matter. It constitutes the part of a hadron wavefunction important for high energy processes. The Glasma is matter produced from the collision of two high energy hadrons. Both types of matter are associated with coherent fields. The Color Glass Condensate is static and related to a hadron wavefunction where the glasma is transient and evolves quickly after a collision. I present the properties of such matter, and some aspects of what is known of their properties.

  4. Stress in shaped glass evacuated collectors

    SciTech Connect (OSTI)

    Garrison, J.D.; Fischer-Cripps, A.

    1997-02-01

    Shaped glass evacuated collectors have the lower vacuum envelope formed with a CPC shape. The internal surface is silvered. This surface concentrates solar radiation onto an internal absorbing tube. The upper part of the vacuum envelope is a window to pass the solar radiation in to the absorbing tube. A computer program using analytical equations is used to design these collectors while keeping the glass tensile stress arising from evacuation below acceptable limits. A finite element computer program is used to test the accuracy of the stress calculated analytically. The calculations agree within about 1 MPa. Wind and thermal stresses in the glass are lower than the stresses caused by evacuation.

  5. Planning and scheduling of PPG glass production, model and implementation.

    E-Print Network [OSTI]

    Grossmann, Ignacio E.

    considering waste glass management x Synchronization of the production and consumption of waste glass with 2Planning and scheduling of PPG glass production, model and implementation. Ricardo Lima Ignacio of the glass production x Capture the essence of the process that is not considered in the Master Production

  6. Community Geothermal Technology Program: Hawaii glass project. Final report

    SciTech Connect (OSTI)

    Miller, N.; Irwin, B.

    1988-01-20

    Objective was to develop a glass utilizing the silica waste material from geothermal energy production, and to supply local artists with this glass to make artistic objects. A glass composed of 93% indigenous Hawaiian materials was developed; 24 artists made 110 objects from this glass. A market was found for art objects made from this material.

  7. Glass/polymer composites and methods of making

    DOE Patents [OSTI]

    Samuels, W.D.; Exarhos, G.J.

    1995-06-06

    The present invention relates to new glass/polymer composites and methods for making them. More specifically, the invention is glass/polymer composites having phases that are at the molecular level and thereby practicably indistinguishable. The invention further discloses making molecular phase glass/polymer composites by mixing a glass and a polymer in a compatible solvent.

  8. Non-photorealistic Rendering of Images as Evolutionary Stained Glass

    E-Print Network [OSTI]

    Ashlock, Dan

    Non-photorealistic Rendering of Images as Evolutionary Stained Glass Daniel Ashlock Mathematics glass. A collection of points that are the centers of weighted Voronoi tilings are evolved to minimize. A fractal model of stained glass is then run to create a stained glass texture with a similar average color

  9. Finding Glass Kenton McHenry, Jean Ponce

    E-Print Network [OSTI]

    Forsyth, David

    Finding Glass Kenton McHenry, Jean Ponce Beckman Institute University of Illinois Urbana, IL 61801. This paper addresses the problem of finding glass ob- jects in images. Visual cues obtained by combining with the strong highlights typical of glass surfaces are used to train a hierarchy of classifiers, identify glass

  10. Optimization of Automated Float Glass Lines Byungsoo Na, Shabbir Ahmed

    E-Print Network [OSTI]

    Ahmed, Shabbir

    Optimization of Automated Float Glass Lines Byungsoo Na, Shabbir Ahmed , George Nemhauser and Joel flat glass products being manufactured on float glass lines. New technologies are allowing float glass manufacturers to increase the level of automation in their plants, but the question of how to effectively use

  11. Mill Creek Summit Lovejoy Buttes

    E-Print Network [OSTI]

    -CDMG 10% in 50 yr WGCE 50% in 1000 yr Ward 2% in 50 yr Stirling & Wesnousky 2% in 50 yr in Brune (1996 Summit, previously classified as Engineering Rock "A" (>760 m/s 30-m average shear-wave velocity

  12. Gordon Butte | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsource History View New Pages RecentPlantMagma EnergyGoogle lends support to the

  13. Compositional Models of Glass/Melt Properties and their Use for Glass Formulation

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Vienna, John D.; USA, Richland Washington

    2014-12-18

    Nuclear waste glasses must simultaneously meet a number of criteria related to their processability, product quality, and cost factors. The properties that must be controlled in glass formulation and waste vitrification plant operation tend to vary smoothly with composition allowing for glass property-composition models to be developed and used. Models have been fit to the key glass properties. The properties are transformed so that simple functions of composition (e.g., linear, polynomial, or component ratios) can be used as model forms. The model forms are fit to experimental data designed statistically to efficiently cover the composition space of interest. Examples ofmore »these models are found in literature. The glass property-composition models, their uncertainty definitions, property constraints, and optimality criteria are combined to formulate optimal glass compositions, control composition in vitrification plants, and to qualify waste glasses for disposal. An overview of current glass property-composition modeling techniques is summarized in this paper along with an example of how those models are applied to glass formulation and product qualification at the planned Hanford high-level waste vitrification plant.« less

  14. Compositional Models of Glass/Melt Properties and their Use for Glass Formulation

    SciTech Connect (OSTI)

    Vienna, John D. [Pacific Northwest National Laboratory; Richland Washington USA

    2014-12-18

    Nuclear waste glasses must simultaneously meet a number of criteria related to their processability, product quality, and cost factors. The properties that must be controlled in glass formulation and waste vitrification plant operation tend to vary smoothly with composition allowing for glass property-composition models to be developed and used. Models have been fit to the key glass properties. The properties are transformed so that simple functions of composition (e.g., linear, polynomial, or component ratios) can be used as model forms. The model forms are fit to experimental data designed statistically to efficiently cover the composition space of interest. Examples of these models are found in literature. The glass property-composition models, their uncertainty definitions, property constraints, and optimality criteria are combined to formulate optimal glass compositions, control composition in vitrification plants, and to qualify waste glasses for disposal. An overview of current glass property-composition modeling techniques is summarized in this paper along with an example of how those models are applied to glass formulation and product qualification at the planned Hanford high-level waste vitrification plant.

  15. Bioactive Glass Scaffolds for Bone Regeneration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of glass scaffolds, including polymer foam replication, sol-gel, and freeze-casting; however, the low compressive strength of these scaffolds (0.2-28 MPa for porosity of...

  16. Free energy of sheared colloidal glasses

    E-Print Network [OSTI]

    M. T. Dang; V. Chikkadi; R. Zargar; D. M. Miedema; D. Bonn; A. Zaccone; P. Schall

    2015-05-25

    We develop a free energy framework to describe the response of glasses to applied stress. Unlike crystals, for which the free energy increases quadratically with strain due to affine displacements, for glasses, the nonequilibrium free energy decreases due to complex interplay of non-affine displacements and dissipation. We measure this free energy directly in strained colloidal glasses, and use mean-field theory to relate it to affine and nonaffine displacements. Nonaffine displacements grow with applied shear due to shear-induced loss of structural connectivity. Our mean-field model allows for the first time to disentangle the complex contributions of affine and nonaffine displacements and dissipation in the transient deformation of glasses.

  17. Glass Furnace Combustion and Melting Research Facility.

    SciTech Connect (OSTI)

    Connors, John J.; McConnell, John F.; Henry, Vincent I.; MacDonald, Blake A.; Gallagher, Robert J.; Field, William B.; Walsh, Peter M.; Simmons, Michael C.; Adams, Michael E.; Leadbetter, James M.; Tomasewski, Jack W.; Operacz, Walter J.; Houf, William G.; Davis, James W.; Marvin, Bart G.; Gunner, Bruce E.; Farrell, Rick G.; Bivins, David P.; Curtis, Warren; Harris, James E.

    2004-08-01

    The need for a Combustion and Melting Research Facility focused on the solution of glass manufacturing problems common to all segments of the glass industry was given high priority in the earliest version of the Glass Industry Technology Roadmap (Eisenhauer et al., 1997). Visteon Glass Systems and, later, PPG Industries proposed to meet this requirement, in partnership with the DOE/OIT Glass Program and Sandia National Laboratories, by designing and building a research furnace equipped with state-of-the-art diagnostics in the DOE Combustion Research Facility located at the Sandia site in Livermore, CA. Input on the configuration and objectives of the facility was sought from the entire industry by a variety of routes: (1) through a survey distributed to industry leaders by GMIC, (2) by conducting an open workshop following the OIT Glass Industry Project Review in September 1999, (3) from discussions with numerous glass engineers, scientists, and executives, and (4) during visits to glass manufacturing plants and research centers. The recommendations from industry were that the melting tank be made large enough to reproduce the essential processes and features of industrial furnaces yet flexible enough to be operated in as many as possible of the configurations found in industry as well as in ways never before attempted in practice. Realization of these objectives, while still providing access to the glass bath and combustion space for optical diagnostics and measurements using conventional probes, was the principal challenge in the development of the tank furnace design. The present report describes a facility having the requirements identified as important by members of the glass industry and equipped to do the work that the industry recommended should be the focus of research. The intent is that the laboratory would be available to U.S. glass manufacturers for collaboration with Sandia scientists and engineers on both precompetitive basic research and the solution of proprietary glass production problems. As a consequence of the substantial increase in scale and scope of the initial furnace concept in response to industry recommendations, constraints on funding of industrial programs by DOE, and reorientation of the Department's priorities, the OIT Glass Program is unable to provide the support for construction of such a facility. However, it is the present investigators' hope that a group of industry partners will emerge to carry the project forward, taking advantage of the detailed furnace design presented in this report. The engineering, including complete construction drawings, bill of materials, and equipment specifications, is complete. The project is ready to begin construction as soon as the quotations are updated. The design of the research melter closely follows the most advanced industrial practice, firing by natural gas with oxygen. The melting area is 13 ft x 6 ft, with a glass depth of 3 ft and an average height in the combustion space of 3 ft. The maximum pull rate is 25 tons/day, ranging from 100% batch to 100% cullet, continuously fed, with variable batch composition, particle size distribution, and raft configuration. The tank is equipped with bubblers to control glass circulation. The furnace can be fired in three modes: (1) using a single large burner mounted on the front wall, (2) by six burners in a staggered/opposed arrangement, three in each breast wall, and (3) by down-fired burners mounted in the crown in any combination with the front wall or breast-wall-mounted burners. Horizontal slots are provided between the tank blocks and tuck stones and between the breast wall and skewback blocks, running the entire length of the furnace on both sides, to permit access to the combustion space and the surface of the glass for optical measurements and sampling probes. Vertical slots in the breast walls provide additional access for measurements and sampling. The furnace and tank are to be fully instrumented with standard measuring equipment, such as flow meters, thermocouples, continuous gas composition

  18. Bipolaron Model of Superconductivity in Chalcogenide Glasses

    E-Print Network [OSTI]

    Liang-You Zheng; Bo-Cheng Wang; Shan T. Lai

    2010-10-25

    In this paper we propose a small bipolaron model for the superconductivity in the Chalcogenide glasses (c-As2Te3 and c-GeTe). The results are agree with the experiments.

  19. Demonstration of chalcogenide glass racetrack microresonators

    E-Print Network [OSTI]

    Kimerling, Lionel C.

    We have demonstrated what we believe to be the first chalcogenide glass racetrack microresonator using a complementary metal-oxide semiconductor-compatible lift-off technique with thermally evaporated As[subscript 2]S[subscript ...

  20. Glass blowing on a wafer level

    E-Print Network [OSTI]

    Eklund, E. Jesper; Shkel, Andrei M.

    2007-01-01

    are then heated inside a furnace at a temperature above theof glass curs at 821 is ?rst heated inside a furnace. Thegob is then removed from the furnace and blown into desired

  1. Preparation of fullerene/glass composites

    DOE Patents [OSTI]

    Mattes, B.R.; McBranch, D.W.; Robinson, J.M.; Koskelo, A.C.; Love, S.P.

    1995-05-30

    Synthesis of fullerene/glass composites is described. A direct method for preparing solid solutions of C{sub 60} in silicon dioxide (SiO{sub 2}) glass matrices by means of sol-gel chemistry is described. In order to produce highly concentrated fullerene-sol-gel-composites it is necessary to increase the solubility of these ``guests`` in a delivery solvent which is compatible with the starter sol (receiving solvent). Sonication results in aggregate disruption by treatment with high frequency sound waves, thereby accelerating the rate of hydrolysis of the alkoxide precursor, and the solution process for the C{sub 60}. Depending upon the preparative procedure, C{sub 60} dispersed within the glass matrix as microcrystalline domains, or dispersed as true molecular solutions of C{sub 60} in a solid glass matrix, is generated by the present method.

  2. Tiny Glass Bubbles With Big Potential

    Broader source: Energy.gov [DOE]

    If these glass microspheres' walls could talk…They would explain how their tiny pores allow the potential for handling, storing and transporting a variety of materials, including drugs that have...

  3. Preparation of fullerene/glass composites

    DOE Patents [OSTI]

    Mattes, Benjamin R. (Santa Fe, NM); McBranch, Duncan W. (Santa Fe, NM); Robinson, Jeanne M. (Los Alamos, NM); Koskelo, Aaron C. (Los Alamos, NM); Love, Steven P. (Los Alamos, NM)

    1995-01-01

    Synthesis of fullerene/glass composites. A direct method for preparing solid solutions of C.sub.60 in silicon dioxide (SiO.sub.2) glass matrices by means of sol-gel chemistry is described. In order to produce highly concentrated fullerene-sol-gel-composites it is necessary to increase the solubility of these "guests" in a delivery solvent which is compatible with the starter sol (receiving solvent). Sonication results in aggregate disruption by treatment with high frequency sound waves, thereby accelerating the rate of hydrolysis of the alkoxide precursor, and the solution process for the C.sub.60. Depending upon the preparative procedure, C.sub.60 dispersed within the glass matrix as microcrystalline domains, or dispersed as true molecular solutions of C.sub.60 in a solid glass matrix, is generated by the present method.

  4. Initial Conditions from Color Glass Condensate 

    E-Print Network [OSTI]

    Chen, Guangyao

    2013-08-06

    Nuclei at very high energy, characterized by a saturation scale, can be described by an e?ective theory of Quantum ChromoDynamics (QCD) called Color Glass Condensates. The earliest phase of the collision of two nuclei is ...

  5. The Thermal Collector With Varied Glass Covers

    SciTech Connect (OSTI)

    Luminosu, I.; Pop, N.

    2010-08-04

    The thermal collector with varied glass covers represents an innovation realized in order to build a collector able to reach the desired temperature by collecting the solar radiation from the smallest surface, with the highest efficiency. In the case of the thermal collector with variable cover glasses, the number of the glass plates covering the absorber increases together with the length of the circulation pipe for the working fluid. The thermal collector with varied glass covers compared to the conventional collector better meet user requirements because: for the same temperature increase, has the collecting area smaller; for the same collection area, realizes the highest temperature increase and has the highest efficiency. This works is addressed to researchers in the solar energy and to engineers responsible with air-conditioning systems design or industrial and agricultural products drying.

  6. THE COLOUR GLASS CONDENSATE: AN INTRODUCTION

    SciTech Connect (OSTI)

    IANCU,E.; LEONIDOV,A.; MCLERRAN,L.

    2001-08-06

    In these lectures, the authors develop the theory of the Colour Glass Condensate. This is the matter made of gluons in the high density environment characteristic of deep inelastic scattering or hadron-hadron collisions at very high energy. The lectures are self contained and comprehensive. They start with a phenomenological introduction, develop the theory of classical gluon fields appropriate for the Colour Glass, and end with a derivation and discussion of the renormalization group equations which determine this effective theory.

  7. High expansion, lithium corrosion resistant sealing glasses

    DOE Patents [OSTI]

    Brow, R.K.; Watkins, R.D.

    1991-06-04

    Glass compositions containing CaO, Al[sub 2]O[sub 3], B[sub 2]O[sub 3], SrO and BaO in various combinations of mole % are provided. These compositions are capable of forming stable glass-to-metal seals with pin materials of 446 Stainless Steel and Alloy-52 rather than molybdenum, for use in harsh chemical environments, specifically in lithium batteries.

  8. High expansion, lithium corrosion resistant sealing glasses

    DOE Patents [OSTI]

    Brow, Richard K. (Albuquerque, NM); Watkins, Randall D. (Albuquerque, NM)

    1991-01-01

    Glass compositions containing CaO, Al.sub.2 O.sub.3, B.sub.2 O.sub.3, SrO and BaO in various combinations of mole % are provided. These compositions are capable of forming stable glass-to-metal seals with pin materials of 446 Stainless Steel and Alloy-52 rather than molybdenum, for use in harsh chemical environments, specifically in lithium batteries.

  9. Equivalence of Glass Transition and Colloidal Glass Transition in the Hard-Sphere Limit Thomas K. Haxton,2

    E-Print Network [OSTI]

    Weeks, Eric R.

    Equivalence of Glass Transition and Colloidal Glass Transition in the Hard-Sphere Limit Ning Xu,1 that the slowing of the dynamics in simulations of several model glass-forming liquids is equivalent to the hard-sphere glass transition in the low-pressure limit. In this limit, we find universal behavior of the relaxation

  10. Sealed glass coating of high temperature ceramic superconductors

    DOE Patents [OSTI]

    Wu, Weite (Tainan, TW); Chu, Cha Y. (Garnerville, NY); Goretta, Kenneth C. (Downers Grove, IL); Routbort, Jules L. (Darien, IL)

    1995-01-01

    A method and article of manufacture of a lead oxide based glass coating on a high temperature superconductor. The method includes preparing a dispersion of glass powders in a solution, applying the dispersion to the superconductor, drying the dispersion before applying another coating and heating the glass powder dispersion at temperatures below oxygen diffusion onset and above the glass melting point to form a continuous glass coating on the superconductor to establish compressive stresses which enhance the fracture strength of the superconductor.

  11. Hysteretic Optimization For Spin Glasses

    E-Print Network [OSTI]

    B. Goncalves; S. Boettcher

    2007-12-10

    The recently proposed Hysteretic Optimization (HO) procedure is applied to the 1D Ising spin chain with long range interactions. To study its effectiveness, the quality of ground state energies found as a function of the distance dependence exponent, $\\sigma$, is assessed. It is found that the transition from an infinite-range to a long-range interaction at $\\sigma=0.5$ is accompanied by a sharp decrease in the performance . The transition is signaled by a change in the scaling behavior of the average avalanche size observed during the hysteresis process. This indicates that HO requires the system to be infinite-range, with a high degree of interconnectivity between variables leading to large avalanches, in order to function properly. An analysis of the way auto-correlations evolve during the optimization procedure confirm that the search of phase space is less efficient, with the system becoming effectively stuck in suboptimal configurations much earlier. These observations explain the poor performance that HO obtained for the Edwards-Anderson spin glass on finite-dimensional lattices, and suggest that its usefulness might be limited in many combinatorial optimization problems.

  12. High thermal expansion, sealing glass

    DOE Patents [OSTI]

    Brow, Richard K. (Albuquerque, NM); Kovacic, Larry (Albuquerque, NM)

    1993-01-01

    A glass composition for hermetically sealing to high thermal expansion materials such as aluminum alloys, stainless steels, copper, and copper/beryllium alloys, which includes between about 10 and about 25 mole percent Na.sub.2 O, between about 10 and about 25 mole percent K.sub.2 O, between about 5 and about 15 mole percent Al.sub.2 O.sub.3, between about 35 and about 50 mole percent P.sub.2 O.sub.5 and between about 5 and about 15 mole percent of one of PbO, BaO, and mixtures thereof. The composition, which may also include between 0 and about 5 mole percent Fe.sub.2 O.sub.3 and between 0 and about 10 mole percent B.sub.2 O.sub.3, has a thermal expansion coefficient in a range of between about 160 and 210.times.10-7/.degree.C. and a dissolution rate in a range of between about 2.times.10.sup.- 7 and 2.times.10.sup.-9 g/cm.sup.2 -min. This composition is suitable to hermetically seal to metallic electrical components which will be subjected to humid environments over an extended period of time.

  13. High thermal expansion, sealing glass

    DOE Patents [OSTI]

    Brow, R.K.; Kovacic, L.

    1993-11-16

    A glass composition is described for hermetically sealing to high thermal expansion materials such as aluminum alloys, stainless steels, copper, and copper/beryllium alloys, which includes between about 10 and about 25 mole percent Na[sub 2]O, between about 10 and about 25 mole percent K[sub 2]O, between about 5 and about 15 mole percent Al[sub 2]O[sub 3], between about 35 and about 50 mole percent P[sub 2]O[sub 5] and between about 5 and about 15 mole percent of one of PbO, BaO, and mixtures thereof. The composition, which may also include between 0 and about 5 mole percent Fe[sub 2]O[sub 3] and between 0 and about 10 mole percent B[sub 2]O[sub 3], has a thermal expansion coefficient in a range of between about 160 and 210[times]10[sup [minus]7]/C and a dissolution rate in a range of between about 2[times]10[sup [minus]7] and 2[times]10[sup [minus]9]g/cm[sup 2]-min. This composition is suitable to hermetically seal to metallic electrical components which will be subjected to humid environments over an extended period of time.

  14. Oregon Trust Agreement Planning Project : Potential Mitigations to the Impacts on Oregon Wildlife Resources Associated with Relevant Mainstem Columbia River and Willamette River Hydroelectric Projects.

    SciTech Connect (OSTI)

    United States. Bonneville Power Administration.

    1993-10-01

    A coalition of the Oregon wildlife agencies and tribes (the Oregon Wildlife Mitigation Coalition) have forged a cooperative effort to promote wildlife mitigation from losses to Oregon wildlife resources associated with the four mainstream Columbia River and the eight Willamette River Basin hydroelectric projects. This coalition formed a Joint Advisory Committee, made up of technical representatives from all of the tribes and agencies, to develop this report. The goal was to create a list of potential mitigation opportunities by priority, and to attempt to determine the costs of mitigating the wildlife losses. The information and analysis was completed for all projects in Oregon, but was gathered separately for the Lower Columbia and Willamette Basin projects. The coalition developed a procedure to gather information on potential mitigation projects and opportunities. All tribes, agencies and interested parties were contacted in an attempt to evaluate all proposed or potential mitigation. A database was developed and minimum criteria were established for opportunities to be considered. These criteria included the location of the mitigation site within a defined area, as well as other criteria established by the Northwest Power Planning Council. Costs were established for general habitats within the mitigation area, based on estimates from certified appraisers. An analysis of the cost effectiveness of various types of mitigation projects was completed. Estimates of operation and maintenance costs were also developed. The report outlines strategies for gathering mitigation potentials, evaluating them, determining their costs, and attempting to move towards their implementation.

  15. Workforce Development Oregon Academic Research Facilities Research Expertise Oregon was the first statein the U.S. to install photovoltaics on its

    E-Print Network [OSTI]

    Oregon, University of

    and universities are educating new graduates who are highly trained in solar energy technologies and have hands tools and faculty expertise aimed at fast-tracking solar technologies and serving solar energy of the solar industry. By building unique partnerships between Oregon's universities and the solar industry

  16. EA-1992: Funding for Principle Power, Inc., for the WindFloat Pacific Offshore Wind Demonstration Project, offshore of Coos Bay, Oregon

    Office of Energy Efficiency and Renewable Energy (EERE)

    Funding for Principle Power, Inc., for the WindFloat Pacific Offshore Wind Demonstration Project, offshore of Coos Bay, Oregon

  17. Natural glass analogues to alteration of nuclear waste glass: A review and recommendations for further study

    SciTech Connect (OSTI)

    McKenzie, W.F.

    1990-01-01

    The purpose of this report is to review previous work on the weathering of natural glasses; and to make recommendations for further work with respect to studying the alteration of natural glasses as it relates quantifying rates of dissolution. the first task was greatly simplified by the published papers of Jercinovic and Ewing (1987) and Byers, Jercinovic, and Ewing (1987). The second task is obviously the more difficult of the two and the author makes no claim of completeness in this regard. Glasses weather in the natural environment by reacting with aqueous solutions producing a rind of secondary solid phases. It had been proposed by some workers that the thickness of this rind is a function of the age of the glass and thus could be used to estimate glass dissolution rates. However, Jercinovic and Ewing (1987) point out that in general the rind thickness does not correlate with the age of the glass owing to the differences in time of contact with the solution compared to the actual age of the sample. It should be noted that the rate of glass dissolution is also a function of the composition of both the glass and the solution, and the temperature. Quantification of the effects of these parameters (as well as time of contact with the aqueous phase and flow rates) would thus permit a prediction of the consequences of glass-fluid interactions under varying environmental conditions. Defense high- level nuclear waste (DHLW), consisting primarily of liquid and sludge, will be encapsulated by and dispersed in a borosilicate glass before permanent storage in a HLW repository. This glass containing the DHLW serves to dilute the radionuclides and to retard their dispersion into the environment. 318 refs.

  18. The development of design factors for heat-strengthened and tempered glass based on the glass failure prediction model 

    E-Print Network [OSTI]

    Oakes, Timothy Andrew

    1991-01-01

    - strengthened and tempered glass are then used for determining the design load after the annealed glass design load is calculated. The widely accepted design factors for heat-strengthened and tempered glass are 2. 0 and 4. 0 respectively. The traditional...-STRENGTHENED AND TEMPERED GLASS DESIGN FACTOR TABLES LOWEST FACTOR WITHIN ASPECT RATIO CHARTS . . . . . . . ~ . ~ . ~ 193 VITA 212 LIST OF FIGURES Page Figure 1 Typical stress profile of tempered and heat-strengthened glass Figure 2 Expected wind velocities on a 50...

  19. 851 S.W. Sixth Avenue, Suite 1100 Steve Crow 503-222-5161 Portland, Oregon 97204-1348 Executive Director 800-452-5161

    E-Print Network [OSTI]

    lines indicate LNG imports Gray lines indicate pipeline flows LNG · Sunstone · Blue Bridge · Ruby P ifi C t· Pacific Connector · Pacific Trail · Oregon LNG Bradwood Landing LNG LNG Terminals Kitimat LNG (export) Bradwood Landing Oregon LNG g g Oregon LNG Jordan Cove LNG

  20. Marine Reserves for All of Oregon: Statewide Survey of Social Values, Attitudes, and Drs. Elise Granek (ESM), Max Nielsen-Pincus (ESM), Amy Lubitow (Sociology), and

    E-Print Network [OSTI]

    Marine Reserves for All of Oregon: Statewide Survey of Social Values, Attitudes, and Opinions Drs and Wildlife's Human Dimensions Program and Paul Klarin, Marine Affairs Coordinator for Oregon Department of Land Conservation and Development. Although the Oregon marine reserves program and Territorial Sea Plan

  1. An Insulating Glass Knowledge Base

    SciTech Connect (OSTI)

    Michael L. Doll; Gerald Hendrickson; Gerard Lagos; Russell Pylkki; Chris Christensen; Charlie Cureija

    2005-08-01

    This report will discuss issues relevant to Insulating Glass (IG) durability performance by presenting the observations and developed conclusions in a logical sequential format. This concluding effort discusses Phase II activities and focuses on beginning to quantifying IG durability issues while continuing the approach presented in the Phase I activities (Appendix 1) which discuss a qualitative assessment of durability issues. Phase II developed a focus around two specific IG design classes previously presented in Phase I of this project. The typical box spacer and thermoplastic spacer design including their Failure Modes and Effect Analysis (FMEA) and Fault Tree diagrams were chosen to address two currently used IG design options with varying components and failure modes. The system failures occur due to failures of components or their interfaces. Efforts to begin quantifying the durability issues focused on the development and delivery of an included computer based IG durability simulation program. The focus/effort to deliver the foundation for a comprehensive IG durability simulation tool is necessary to address advancements needed to meet current and future building envelope energy performance goals. This need is based upon the current lack of IG field failure data and the lengthy field observation time necessary for this data collection. Ultimately, the simulation program is intended to be used by designers throughout the current and future industry supply chain. Its use is intended to advance IG durability as expectations grow around energy conservation and with the growth of embedded technologies as required to meet energy needs. In addition the tool has the immediate benefit of providing insight for research and improvement prioritization. Included in the simulation model presentation are elements and/or methods to address IG materials, design, process, quality, induced stress (environmental and other factors), validation, etc. In addition, acquired data is presented in support of project and model assumptions. Finally, current and suggested testing protocol and procedure for future model validation and IG physical testing are discussed.

  2. Glass science tutorial: Lecture No. 4, commercial glass melting and associated air emission issues

    SciTech Connect (OSTI)

    Kruger, A.A.

    1995-01-01

    This document serves as a manual for a workshop on commercial glass melting and associated air emission issues. Areas covered include: An overview of the glass industry; Furnace design and construction practices; Melting furnace operation; Energy input methods and controls; Air legislation and regulations; Soda lime emission mechanisms; and, Post furnace emission controls. Supporting papers are also included.

  3. Hood River Passive House, Hood River, Oregon (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2014-02-01

    The Hood River Passive Project was developed by Root Design Build of Hood River Oregon using the Passive House Planning Package (PHPP) to meet all of the requirements for certification under the European Passive House standards. The Passive House design approach has been gaining momentum among residential designers for custom homes and BEopt modeling indicates that these designs may actually exceed the goal of the U.S. Department of Energy's (DOE) Building America program to "reduce home energy use by 30%-50%" (compared to 2009 energy codes for new homes). This report documents the short term test results of the Shift House and compares the results of PHPP and BEopt modeling of the project. The design includes high R-Value assemblies, extremely tight construction, high performance doors and windows, solar thermal DHW, heat recovery ventilation, moveable external shutters and a high performance ductless mini-split heat pump. Cost analysis indicates that many of the measures implemented in this project did not meet the BA standard for cost neutrality. The ductless mini-split heat pump, lighting and advanced air leakage control were the most cost effective measures. The future challenge will be to value engineer the performance levels indicated here in modeling using production based practices at a significantly lower cost.

  4. Transport properties of lithium- lead-vanadium-telluride glass and glass ceramics

    SciTech Connect (OSTI)

    Sathish, M.; Eraiah, B.

    2014-04-24

    Glasses with the chemical composition 35Li{sub 2}O-(45-x)V{sub 2}O{sub 5?}20PbO-xTeO{sub 2} (where x = 2.5, 5, 7.5, 10, 15 mol %) have prepared by conventional melt quenching method. The electrical conductivity of Li{sup +} ion conducting lead vanadium telluride glass samples has been carried out both as a function of temperature and frequency in the temperature range 503K-563K and over frequencies 40 Hz to 10 MHz. The electronic conduction has been observed in the present systems. When these samples annealed around 400°C for 2hour become the glass ceramic, which also shows increase tendency of conductivity. SEM confines glass and glass ceramic nature of the prepared samples.

  5. GLASS AND GLASS-DERIVATIVE SEALS FOR USE IN ENERGY-EFFICIENT FUEL CELLS AND LAMPS

    SciTech Connect (OSTI)

    Scott Misture; Arun Varshneya; Matthew Hall; Sylvia DeCarr; Steve Bancheri

    2004-08-15

    As the project approaches the end of the first year, the materials screening components of the work are ahead of schedule, while all other tasks are on schedule. For solid oxide fuel cells (SOFC), a series of 16 sealing glasses have been prepared and characterized. Traditional melting was used to prepare all of the glasses, and the sol-gel approach has been used to prepare some of the glasses as well as other compositions that might be viable because of the low processing temperatures afforded by the sol-gel method. The glass characterization included measurements of the viscosity and thermal expansion of the glasses, as well as the thermal expansion of the partly crystalline glass ceramics. In addition, the wetting and sintering behavior of all glasses has been measured, as well as the crystallization behavior. The time and temperature at which crystalline phases form from the glasses has been determined for all of the glasses. Each glass ceramic contains at least two crystalline phases, and most of the crystalline phases have been positively identified. Room temperature leak testing has been completed for all sealants, and experiments are in progress to determine the DC electrochemical degradation and degradation in wet hydrogen. The second component of the work, focused on seals for higher-temperature discharge lighting, has focused on determining the phase relations in the yttria--alumina--silica system at various silica levels. Again, traditional melting and sol-gel synthesis have been employed, and the sol-gel method was successful for preparing new phases that were discovered during the work. High temperature diffraction and annealing studies have clarified the phase relations for the samples studies, although additional work remains. Four new phases have been identified and synthesized in pure form, from which full structure solutions were obtained as well as the anisotropic thermal expansion for each phase. Functional testing of lamps are on on-going and will be analyzed during year 2 of the contract.

  6. Measurement and Control of Glass Feedstocks

    SciTech Connect (OSTI)

    Arel Weisberg

    2007-04-26

    ERCo has developed a laser-based technology for rapid compositional measurements of batch, real-time sorting of cullet, and in-situ measurements of molten glass. This technology, termed LIBS (Laser Induced Breakdown Spectroscopy) can determine whether or not the batch was formulated accurately in order to control glass quality. It can also be used to determine if individual batch ingredients are within specifications. In the case of cullet feedstocks, the sensor can serve as part of a system to sort cullet by color and ensure that it is free of contaminants. In-situ compositional measurements of molten glass are achieved through immersing a LIBS probe directly into the melt in a glass furnace. This technology has been successfully demonstrated in ERCo’s LIBS laboratory for batch analysis, cullet sorting, and glass melt measurements. A commercial batch analyzer has been operating in a PPG fiberglass plant since August 2004. LIBS utilizes a highly concentrated laser pulse to rapidly vaporize and ionize nanograms of the material being studied. As this vapor cools, it radiates light at specific wavelengths corresponding to the elemental constituents (e.g. silicon, aluminum, iron) of the material. The strengths of the emissions correlate to the concentrations of each of the elemental constituents. By collecting the radiated light with a spectrometer capable of resolving and measuring these wavelengths, the elemental composition of the sample is found.

  7. Sealing glasses for titanium and titanium alloys

    DOE Patents [OSTI]

    Brow, Richard K. (Albuquerque, NM); McCollister, Howard L. (Albuquerque, NM); Phifer, Carol C. (Albuquerque, NM); Day, Delbert E. (Rolla, MO)

    1997-01-01

    Barium lanthanoborate sealing-glass compositions are provided comprising various combinations (in terms of mole-%) of boron oxide (B.sub.2 O.sub.3), barium oxide (BaO), lanthanum oxide (La.sub.2 O.sub.3), and at least one other oxide selected from the group consisting of aluminum oxide (Al.sub.2 O.sub.3), calcium oxide (CaO), lithium oxide (Li.sub.2 O), sodium oxide (Na.sub.2 O), silicon dioxide (SiO.sub.2), or titanium dioxide (TiO.sub.2). These sealing-glass compositions are useful for forming hermetic glass-to-metal seals with titanium and titanium alloys having an improved aqueous durability and favorable sealing characteristics. Examples of the sealing-glass compositions are provided having coefficients of thermal expansion about that of titanium or titanium alloys, and with sealing temperatures less than about 900.degree. C., and generally about 700.degree.-800.degree. C. The barium lanthanoborate sealing-glass compositions are useful for components and devices requiring prolonged exposure to moisture or water, and for implanted biomedical devices (e.g. batteries, pacemakers, defibrillators, pumps).

  8. Vacuum fusion bonding of glass plates

    DOE Patents [OSTI]

    Swierkowski, Steve P. (Livermore, CA); Davidson, James C. (Livermore, CA); Balch, Joseph W. (Livermore, CA)

    2001-01-01

    An improved apparatus and method for vacuum fusion bonding of large, patterned glass plates. One or both glass plates are patterned with etched features such as microstructure capillaries and a vacuum pumpout moat, with one plate having at least one hole therethrough for communication with a vacuum pumpout fixture. High accuracy alignment of the plates is accomplished by a temporary clamping fixture until the start of the fusion bonding heat cycle. A complete, void-free fusion bond of seamless, full-strength quality is obtained through the plates; because the glass is heated well into its softening point and because of a large, distributed force that is developed that presses the two plates together from the difference in pressure between the furnace ambient (high pressure) and the channeling and microstructures in the plates (low pressure) due to the vacuum drawn. The apparatus and method may be used to fabricate microcapillary arrays for chemical electrophoresis; for example, any apparatus using a network of microfluidic channels embedded between plates of glass or similar moderate melting point substrates with a gradual softening point curve, or for assembly of glass-based substrates onto larger substrates, such as in flat panel display systems.

  9. Vacuum fusion bonding of glass plates

    DOE Patents [OSTI]

    Swierkowski, Steve P. (Livermore, CA); Davidson, James C. (Livermore, CA); Balch, Joseph W. (Livermore, CA)

    2000-01-01

    An improved apparatus and method for vacuum fusion bonding of large, patterned glass plates. One or both glass plates are patterned with etched features such as microstructure capillaries and a vacuum pumpout moat, with one plate having at least one hole therethrough for communication with a vacuum pumpout fixture. High accuracy alignment of the plates is accomplished by a temporary clamping fixture until the start of the fusion bonding heat cycle. A complete, void-free fusion bond of seamless, full-strength quality is obtained through the plates; because the glass is heated well into its softening point and because of a large, distributed force that is developed that presses the two plates together from the difference in pressure between the furnace ambient (high pressure) and the channeling and microstructures in the plates (low pressure) due to the vacuum drawn. The apparatus and method may be used to fabricate microcapillary arrays for chemical electrophoresis; for example, any apparatus using a network of microfluidic channels embedded between plates of glass or similar moderate melting point substrates with a gradual softening point curve, or for assembly of glass-based substrates onto larger substrates, such as in flat panel display systems.

  10. Sealing glasses for titanium and titanium alloys

    DOE Patents [OSTI]

    Brow, R.K.; McCollister, H.L.; Phifer, C.C.; Day, D.E.

    1997-07-15

    Barium lanthanoborate sealing-glass compositions are provided comprising various combinations (in terms of mole-%) of boron oxide (B{sub 2}O{sub 3}), barium oxide (BaO), lanthanum oxide (La{sub 2}O{sub 3}), and at least one other oxide selected from the group consisting of aluminum oxide (Al{sub 2}O{sub 3}), calcium oxide (CaO), lithium oxide (Li{sub 2}O), sodium oxide (Na{sub 2}O), silicon dioxide (SiO{sub 2}), or titanium dioxide (TiO{sub 2}). These sealing-glass compositions are useful for forming hermetic glass-to-metal seals with titanium and titanium alloys having an improved aqueous durability and favorable sealing characteristics. Examples of the sealing-glass compositions are provided having coefficients of thermal expansion about that of titanium or titanium alloys, and with sealing temperatures less than about 900 C, and generally about 700--800 C. The barium lanthanoborate sealing-glass compositions are useful for components and devices requiring prolonged exposure to moisture or water, and for implanted biomedical devices (e.g. batteries, pacemakers, defibrillators, pumps). 1 fig.

  11. GLASS FORMULATION FOR INEEL SODIUM BEARING WASTE

    SciTech Connect (OSTI)

    Vienna, John D.; Kim, Dong-Sang; Peeler, David K.

    2002-10-31

    Studies were performed to develop and test a glass formulation for immobilization of sodium-bearing waste (SBW), which is a high soda, acidic, high-activity waste stored at the Idaho National Engineering and Environmental Laboratory (INEEL) in 10 underground tanks. It was determined in previous studies that SBW?s sulfur content dictates its loading in borosilicate glasses to be melted by currently assumed processes. If the sulfur content (which is ~4.5 mass% SO3 on a non-volatile oxide basis in SBW) of the melter feed is too high, then a molten, alkali-sulfate-containing salt phase accumulates on the melt surface. The avoidance of salt accumulation during the melter process and the maximization of sulfur incorporation into the glass melt were the main focus of this development work. A glass was developed for 20 mass% SBW (on a non-volatile oxide basis), which contained 0.91 mass% SO3, that met all the processing and product-quality constraints determined for SBW vitrification at a planned INEEL treatment plant?SBW-22-20. This paper summarizes the formulation efforts and presents the data developed on a series of glasses with simulated SBW.

  12. Research and development of new ultraphosphate laser glasses

    SciTech Connect (OSTI)

    Izumitani, T.; Toratani, H.; Matsukawa, T.; Kanamori, C.; Miyade, H.

    1985-01-30

    Requirements for Zeus laser glass and HAP laser glass were small {sigma}, low water, low concentration quenching and high mechanical and thermal strength in the former and high {sigma}, low water, low concentration quenching and high mechanical, thermal shock resistance in the later. In order to get a high mechanical and thermal shock resistance, we introduced SiO{sub 2} into phosphate glass, because SiO{sub 2} gives a low expansion coefficient. In this report, we discuss the research and development of the laser glass. Chemical durability, water content, lasing properties, mechanical and thermo-mechanical properties, glass composition and glass structures are discussed.

  13. The Hydrogeologic Character of the Lower Tuff Confining Unit and the Oak Springs Butte Confining Unit in the Tuff Pile Area of Central Yucca Flat

    SciTech Connect (OSTI)

    Drellack, Jr., Sigmund L.; Prothro, Lance B.; Gonzales, Jose L.; Mercadante, Jennifer M.

    2010-07-30

    The lower tuff confining unit (LTCU) in the Yucca Flat Corrective Action Unit (CAU) consists of a monotonous sequence of pervasively zeolitized volcanic tuff (i.e., mostly bedded with lesser nonwelded to poorly welded tuff; not fractured) (Bechtel Nevada, 2006). The LTCU is an important confining unit beneath Yucca Flat because it separates the alluvial and volcanic aquifers, where many underground nuclear tests were conducted, from the regional lower carbonate aquifer. Recent sub-CAU-scale modeling by Los Alamos National Laboratory in the Tuff Pile area of Yucca Flat (Boryta, et al., in review) includes postulated low-porosity, high-permeability zones (i.e., fractured welded-tuff aquifers) within the LTCU. This scenario indicates that such postulated low-porosity, high-permeability zones could provide fast-path lateral conduits to faults, and eventually to the lower carbonate aquifer. A fractured and faulted lower carbonate aquifer is postulated to provide a flow path(s) for underground test-derived contaminants to potential offsite receptors. The ramifications of such a scenario are obvious for groundwater flow and contaminant migration beneath Yucca Flat. This paper describes the reasoning for not including postulated low-porosity, high-permeability zones within the LTCU in the Tuff Pile area or within the LTCU in the Yucca Flat CAU-scale model. Both observational and analytical data clearly indicate that the LTCU in the Tuff Pile area consists of pervasively zeolitic, nonwelded to poorly welded tuffs that are classified as tuff confining units (i.e., high-porosity, low-permeability). The position regarding the LTCU in the Tuff Pile area is summarized as follows: • The LTCU in the Tuff Pile area consists of a monotonous sequence of predominantly zeolitic nonwelded to poorly welded tuffs, and thus is accurately characterized hydrogeologically as a tuff confining unit (aquitard) in the Yucca Flat-Climax Mine hydrostratigraphic framework model (Bechtel Nevada, 2006). • No welded-tuff (or lava-flow aquifers), referred to as low-porosity, high-permeability zones in Boryta et al. (in review), are present within the LTCU in the Tuff Pile area. • Fractures within the LTCU are poorly developed, a characteristic of zeolitic tuffs; and fracture distributions are independent of stratigraphic and lithologic units (Prothro, 2008). • Groundwater flow and radionuclide transport will not be affected by laterally extensive zones of significantly higher permeability within the LTCU in the Tuff Pile area. Although not the primary focus of this report, the hydrogeologic character of the Oak Spring Butte confining unit (OSBCU), located directly below the LTCU, is also discussed. The OSBCU is lithologically more diverse, and does include nonwelded to partially welded ash-flow tuffs. However, these older ash-flow tuffs are poorly welded and altered (zeolitic to quartzofeldspathic), and consequently, would tend to have properties similar to a tuff confining unit rather than a welded-tuff aquifer.

  14. Glass/ceramic coatings for implants

    DOE Patents [OSTI]

    Tomsia, Antoni P. (Pinole, CA); Saiz, Eduardo (Berkeley, CA); Gomez-Vega, Jose M. (Nagoya, JP); Marshall, Sally J. (Larkspur, CA); Marshall, Grayson W. (Larkspur, CA)

    2011-09-06

    Glass coatings on metals including Ti, Ti6A14V and CrCo were prepared for use as implants. The composition of the glasses was tailored to match the thermal expansion of the substrate metal. By controlling the firing atmosphere, time, and temperature, it was possible to control the reactivity between the glass and the alloy and to fabricate coatings (25-150 .mu.m thick) with excellent adhesion to the substrate. The optimum firing temperatures ranged between 800 and 840.degree. C. at times up to 1 min in air or 15 min in N.sub.2. The same basic technique was used to create multilayered coatings with concentration gradients of hydroxyapatite (HA) particles and SiO.sub.2.

  15. Opal photonic crystals infiltrated with chalcogenide glasses

    SciTech Connect (OSTI)

    Astratov, V. N.; Adawi, A. M.; Skolnick, M. S.; Tikhomirov, V. K.; Lyubin, V.; Lidzey, D. G.; Ariu, M.; Reynolds, A. L.

    2001-06-25

    Composite opal structures for nonlinear applications are obtained by infiltration with chalcogenide glasses As{sub 2}S{sub 3} and AsSe by precipitation from solution. Analysis of spatially resolved optical spectra reveals that the glass aggregates into submillimeter areas inside the opal. These areas exhibit large shifts in the optical stop bands by up to 80 nm, and by comparison with modelling are shown to have uniform glass filling factors of opal pores up to 40%. Characterization of the domain structure of the opals prior to infiltration by large area angle-resolved spectroscopy is an important step in the analysis of the properties of the infiltrated regions. {copyright} 2001 American Institute of Physics.

  16. Glass Frit Clumping And Dusting

    SciTech Connect (OSTI)

    Steimke, J. L.

    2013-09-26

    DWPF mixes a slurry of glass frit (Frit 418) and dilute (1.5 wt%) formic acid solution with high level waste in the Slurry Mix Evaporator (SME). There would be advantages to introducing the frit in a non-slurry form to minimize water addition to the SME, however, adding completely dry frit has the potential to generate dust which could clog filters or condensers. Prior testing with another type of frit, Frit 320, and using a minimal amount of water reduced dust generation, however, the formation of hard clumps was observed. To examine options and behavior, a TTQAP [McCabe and Stone, 2013] was written to initiate tests that would address these concerns. Tests were conducted with four types of glass frit; Frit 320, DWPF Frit 418, Bekeson Frit 418 and Multi-Aspirator Frit 418. The last two frits are chemically identical to DWPF Frit 418 but smaller particles were removed by the respective vendors. Test results on Frit Clumping and Dusting are provided in this report. This report addresses the following seven questions. Short answers are provided below with more detailed answers to follow. 1. Will the addition of a small amount of water, 1.5 wt%, to dry DWPF Frit 418 greatly reduce the dust generation during handling at DWPF? a. Yes, a small scale test showed that adding a little water to the frit greatly reduced dust generation during handling. 2. Will the addition of small amounts of water to the frit cause clumping that will impair frit handling at DWPF? a. No, not with Frit 418. Although clumps were observed to form when 1.5 wt% water was mixed with DWPF Frit 418, then compressed and air-dried overnight, the clumps were easily crushed and did not form the hardened material noted when Frit 320 was tested. 3. What is the measured size distribution of dust generated when dry frit is handled? (This affects the feasibility and choice of processing equipment for removing the dust generating fraction of the frit before it is added to the SME.) a. The size distribution for the dust removed from fresh DWPF Frit 418 while it was being shaken in a small scale LabRAM test was measured. The median size on a volume basis was 7.6 ?m and 90% of the frit particles were between 1.6 and 28 ?m. The mass of dust collected using this test protocol was much less than 1% of the original frit. 4. Can the dust be removed in a small number of processing steps and without the larger frit particles continuing to spall additional dust sized particles? a. Test results using a LabRAM were inconclusive. The LaRAM performs less efficient particle size separation than the equipment used by Bekeson and Multi-Aspirator. 5. What particle size of frit is expected to create a dust problem? a. The original criterion for creating a dusting problem was those particle sizes that were readily suspended when being shaken. For that criterion calculations and Microtrac size analyses indicated that particles smaller than 37 ?m are likely dust generators. Subsequently a more sophisticated criterion for dust problem was considered, particle sizes that would become suspended in the air flow patterns inside the SME and possibly plug the condenser. That size may be larger than 37 ?m but has not yet been determined. 6. If particles smaller than 37 ?m are removed will bulk dust generation be eliminated? a. Video-taped tests were performed using three gallons each of three types of frit 418, DWPF frit, Bekeson frit and Multi-Aspirator frit. Frit was poured through air from a height of approximately eight feet into a container half filled with water. Pouring Bekeson frit or Multi-Aspirator frit generated markedly less visible dust, but there was still a significant amount, which still has the potential of causing a dust problem. 7. Can completely dry frit be poured into the SME without having dust plug the condenser at the top of the vessel? a. Because of the complexity of air currents inside the SME and the difficulty of defensible size scaling a more prototypical test will be required to answer this question. We recommend construction of a full scale

  17. Data Center Energy Efficiency and Renewable Energy Site Assessment: Anderson Readiness Center; Salem, Oregon

    SciTech Connect (OSTI)

    Metzger, I.; Van Geet, O.

    2014-06-01

    This report summarizes the results from the data center energy efficiency and renewable energy site assessment conducted for the Oregon Army National Guard in Salem, Oregon. A team led by NREL conducted the assessment of the Anderson Readiness Center data centers March 18-20, 2014 as part of ongoing efforts to reduce energy use and incorporate renewable energy technologies where feasible. Although the data centers in this facility account for less than 5% of the total square footage, they are estimated to be responsible for 70% of the annual electricity consumption.

  18. GLASS FABRICATION AND PRODUCT CONSISTENCY TESTING OF LANTHANIDE BOROSILICATE GLASS FOR PLUTONIUM DISPOSITION

    SciTech Connect (OSTI)

    Crawford, C; James Marra, J; Ned Bibler, N

    2007-02-12

    The Department of Energy Office of Environmental Management (DOE/EM) plans to conduct the Plutonium Disposition Project at the Savannah River Site (SRS) in Aiken, SC, to disposition excess weapons-usable plutonium. A plutonium glass waste form is a leading candidate for immobilization of the plutonium for subsequent disposition in a geologic repository. The objectives of this present task were to fabricate plutonium-loaded lanthanide borosilicate (LaBS) Frit B glass and perform testing to provide near-term data that will increase confidence that LaBS glass product is suitable for disposal in the proposed Federal Repository. Specifically, testing was conducted in an effort to provide data to Yucca Mountain Project (YMP) personnel for use in performance assessment calculations. Plutonium containing LaBS glass with the Frit B composition with a 9.5 wt% PuO{sub 2} loading was prepared for testing. Glass was prepared to support glass durability testing via the ASTM Product Consistency Testing (PCT) at Savannah River National Laboratory (SRNL). The glass was characterized with X-ray diffraction (XRD) and scanning electron microscopy coupled with energy dispersive spectroscopy (SEM/EDS) prior to performance testing. This characterization revealed some crystalline PuO{sub 2} inclusions with disk-like morphology present in the as fabricated, quench-cooled glass. A series of PCTs was conducted at SRNL with varying exposed surface area and test durations. Filtered leachates from these tests were analyzed to determine the dissolved concentrations of key elements. The leachate solutions were also ultrafiltered to quantify colloid formation. Leached solids from select PCTs were examined in an attempt to evaluate the Pu and neutron absorber release behavior from the glass and to investigate formation of alteration phases on the glass surface. A series of PCTs was conducted at 90 C in ASTM Type 1 water to compare the Pu LaBS Frit B glass durability to current requirements for High Level Waste (HLW) glass in a geologic repository. The PCT (7-day static test with powdered glass) results on the Pu-containing LaBS Frit B glass at SA/V of {approx} 2000 m{sup -1} showed that the glass was very durable with an average normalized elemental release value for boron of 0.013 g/m{sup 2}. This boron release value is {approx} 640X lower than normalized boron release from current Environmental Assessment (EA) glass used for repository acceptance. The PCT-B (7, 14, 28 and 56-day, static test with powdered glass) normalized elemental releases were similar to the normalized elemental release values from PCT-A testing, indicating that the LaBS Frit B glass is very durable as measured by the PCT. Normalized plutonium releases were essentially the same within the analytical uncertainty of the ICP-MS methods used to quantify plutonium in the 0.45 {micro}m-filtered leachates and ultra-filtered leachates, indicating that colloidal plutonium species do not form under the PCT conditions used in this study.

  19. Direction of CRT waste glass processing: Electronics recycling industry communication

    SciTech Connect (OSTI)

    Mueller, Julia R., E-mail: mueller.143@osu.edu [Ohio State University, William G. Lowrie Department of Chemical and Biomolecular Engineering, OH (United States) and University of Queensland, School of Chemical Engineering (Australia) and Ohio State University, Materials Science and Engineering, OH (United States); Boehm, Michael W. [University of Queensland, School of Chemical Engineering (Australia); Drummond, Charles [Ohio State University, Materials Science and Engineering, OH (United States)

    2012-08-15

    Highlights: Black-Right-Pointing-Pointer Given a large flow rate of CRT glass {approx}10% of the panel glass stream will be leaded. Black-Right-Pointing-Pointer The supply of CRT waste glass exceeded demand in 2009. Black-Right-Pointing-Pointer Recyclers should use UV-light to detect lead oxide during the separation process. Black-Right-Pointing-Pointer Recycling market analysis techniques and results are given for CRT glass. Black-Right-Pointing-Pointer Academic initiatives and the necessary expansion of novel product markets are discussed. - Abstract: Cathode Ray Tube, CRT, waste glass recycling has plagued glass manufacturers, electronics recyclers and electronics waste policy makers for decades because the total supply of waste glass exceeds demand, and the formulations of CRT glass are ill suited for most reuse options. The solutions are to separate the undesirable components (e.g. lead oxide) in the waste and create demand for new products. Achieving this is no simple feat, however, as there are many obstacles: limited knowledge of waste glass composition; limited automation in the recycling process; transportation of recycled material; and a weak and underdeveloped market. Thus one of the main goals of this paper is to advise electronic glass recyclers on how to best manage a diverse supply of glass waste and successfully market to end users. Further, this paper offers future directions for academic and industry research. To develop the recommendations offered here, a combination of approaches were used: (1) a thorough study of historic trends in CRT glass chemistry; (2) bulk glass collection and analysis of cullet from a large-scale glass recycler; (3) conversations with industry members and a review of potential applications; and (4) evaluation of the economic viability of specific uses for recycled CRT glass. If academia and industry can solve these problems (for example by creating a database of composition organized by manufacturer and glass source) then the reuse of CRT glass can be increased.

  20. Structure of rhenium-containing sodium borosilicate glass

    SciTech Connect (OSTI)

    Goel, Ashutosh; McCloy, John S.; Windisch, Charles F.; Riley, Brian J.; Schweiger, Michael J.; Rodriguez, Carmen P.; Ferreira, Jose M.

    2013-03-01

    A series of sodium borosilicate glasses were synthesized with increasing fractions of KReO4 or Re2O7, to 10000 ppm (1 mass%) target Re in glass, to assess the effects of large concentrations of rhenium on glass structure and to estimate the solubility of technetium, a radioactive component in typical low active waste nuclear waste glasses. Magic angle spinning nuclear magnetic resonance (MAS-NMR), Fourier transform infrared (FTIR) spectroscopy, and Raman spectroscopy were performed to characterize the glasses as a function of Re source additions. In general, silicon was found coordinated in a mixture of Q2 and Q3 structural units, while Al was 4-coordinated and B was largely 3-coordinate and partially 4-coordinated. The rhenium source did not appear to have significant effects on the glass structure. Thus, at the up to the concentrations that remain in dissolved in glass, ~3000 ppm Re by mass maximum. , the Re appeared to be neither a glass-former nor a strong glass modifier., Rhenium likely exists in isolated ReO4- anions in the interstices of the glass network, as evidenced by the polarized Raman spectrum of the Re glass in the absence of sulfate. Analogous to SO42-¬ in similar glasses, ReO4- is likely a network modifier and forms alkali salt phases on the surface and in the bulk glass above solubility.

  1. PLUTONIUM SOLUBILITY IN HIGH-LEVEL WASTE ALKALI BOROSILICATE GLASS

    SciTech Connect (OSTI)

    Marra, J.; Crawford, C.; Fox, K.; Bibler, N.

    2011-01-04

    The solubility of plutonium in a Sludge Batch 6 (SB6) reference glass and the effect of incorporation of Pu in the glass on specific glass properties were evaluated. A Pu loading of 1 wt % in glass was studied. Prior to actual plutonium glass testing, surrogate testing (using Hf as a surrogate for Pu) was conducted to evaluate the homogeneity of significant quantities of Hf (Pu) in the glass, determine the most appropriate methods to evaluate homogeneity for Pu glass testing, and to evaluate the impact of Hf loading in the glass on select glass properties. Surrogate testing was conducted using Hf to represent between 0 and 1 wt % Pu in glass on an equivalent molar basis. A Pu loading of 1 wt % in glass translated to {approx}18 kg Pu per Defense Waste Processing Facility (DWPF) canister, or about 10X the current allowed limit per the Waste Acceptance Product Specifications (2500 g/m{sup 3} of glass or about 1700 g/canister) and about 30X the current allowable concentration based on the fissile material concentration limit referenced in the Yucca Mountain Project License Application (897 g/m{sup 3}3 of glass or about 600 g Pu/canister). Based on historical process throughput data, this level was considered to represent a reasonable upper bound for Pu loading based on the ability to provide Pu containing feed to the DWPF. The task elements included evaluating the distribution of Pu in the glass (e.g. homogeneity), evaluating crystallization within the glass, evaluating select glass properties (with surrogates), and evaluating durability using the Product Consistency Test -- Method A (PCT-A). The behavior of Pu in the melter was evaluated using paper studies and corresponding analyses of DWPF melter pour samples.The results of the testing indicated that at 1 wt % Pu in the glass, the Pu was homogeneously distributed and did not result in any formation of plutonium-containing crystalline phases as long as the glass was prepared under 'well-mixed' conditions. The incorporation of 1 wt % Pu in the glass did not adversely impact glass viscosity (as assessed using Hf surrogate) or glass durability. Finally, evaluation of DWPF glass pour samples that had Pu concentrations below the 897 g/m{sup 3} limit showed that Pu concentrations in the glass pour stream were close to targeted compositions in the melter feed indicating that Pu neither volatilized from the melt nor stratified in the melter when processed in the DWPF melter.

  2. Thermally Activated Processes in Polymer Glasses

    E-Print Network [OSTI]

    V. Parihar; D. Drosdoff; A. Widom; Y. N. Srivastava

    2005-12-03

    A derivation is given for the Vogel-Fulcher-Tammann thermal activation law for the glassy state of a bulk polymer. Our microscopic considerations involve the entropy of closed polymer molecular chains (i.e. polymer closed strings). For thin film polymer glasses, one obtains open polymer strings in that the boundary surfaces serve as possible string endpoint locations. The Vogel-Fulcher-Tammann thermal activation law thereby holds true for a bulk polymer glass but is modified in the neighborhood of the boundaries of thin film polymers.

  3. Two glass transitions in miscible polymer blends?

    SciTech Connect (OSTI)

    Dudowicz, Jacek; Freed, Karl F.; Douglas, Jack F.

    2014-06-28

    In contrast to mixtures of two small molecule fluids, miscible binary polymer blends often exhibit two structural relaxation times and two glass transition temperatures. Qualitative explanations postulate phenomenological models of local concentration enhancements due to chain connectivity in ideal, fully miscible systems. We develop a quantitative theory that explains qualitative trends in the dynamics of real miscible polymer blends which are never ideal mixtures. The theory is a synthesis of the lattice cluster theory of blend thermodynamics, the generalized entropy theory for glass-formation in polymer materials, and the Kirkwood-Buff theory for concentration fluctuations in binary mixtures.

  4. Nonlinear mechanics of thermoreversibly associating dendrimer glasses

    E-Print Network [OSTI]

    Arvind Srikanth; Robert S. Hoy; Berend C. Rinderspacher; Jan W. Andzelm

    2013-08-06

    We model the mechanics of associating trivalent dendrimer network glasses with a focus on their energy dissipation properties. Various combinations of sticky bond (SB) strength and kinetics are employed. The toughness (work-to-fracture) of these systems displays a surprising deformation-protocol dependence; different association parameters optimize different properties. In particular, "strong, slow" SBs optimize strength, while "weak, fast" SBs optimize ductility via self-healing during deformation. We relate these observations to breaking, reformation, and partner-switching of SBs during deformation. These studies point the way to creating associating-polymer network glasses with tailorable mechanical properties.

  5. Energy Assessment Protocol for Glass Furnaces 

    E-Print Network [OSTI]

    Plodinec, M. J.; Kauffman, B. M.; Norton, O. P.; Richards, C.; Connors, J.; Wishnick, D.

    2005-01-01

    of the protocol are implemented, resulting in cost savings of greater than $200,000 per year. PROJECT OVERVIEW The glass industry is a major energy consumer. Depending on the market sector, a glass furnace heated by oxy-fuel burners may use from 3..., the manufacturer of the burners used in the PPG furnace, brought extensive field experience to the team, as well as in-depth knowledge of burner performance. ENERGY ASSESSMENT PROTOCOL The project team developed the protocol based on DIAL, Eclipse and PPG...

  6. Scaling of fluctuations in a colloidal glass

    E-Print Network [OSTI]

    P. Wang; C. Song; H. A. Makse

    2006-11-01

    We report experimental measurements of particle dynamics in a colloidal glass in order to understand the dynamical heterogeneities associated with the cooperative motion of the particles in the glassy regime. We study the local and global fluctuation of correlation and response functions in an aging colloidal glass. The observables display universal scaling behavior following a modified power-law, with a plateau dominating the less heterogeneous short-time regime and a power-law tail dominating the highly heterogeneous long-time regime.

  7. CX-012813: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Redmond-Pilot Butte #1 Wood Pole Replacements CX(s) Applied: B1.3Date: 41893 Location(s): OregonOffices(s): Bonneville Power Administration

  8. Radiative Heat Transfer in Enhanced Hydrogen Outgassing of Glass

    E-Print Network [OSTI]

    Kitamura, Rei; Pilon, Laurent

    2009-01-01

    reduction of iron in soda-lime-silicate glasses by reactionand solubility [13]. In soda-lime silicate glass, Johnston0.4 and 0.8 µm for soda-lime silicate. Rapp [9] con?rmed

  9. Effect of furnace atmosphere on E-glass foaming

    E-Print Network [OSTI]

    Kim, D. S.; Dutton, Bryan C.; Hrma, Pavel R.; Pilon, Laurent

    2006-01-01

    on soda-silicate or soda-lime- silicate melts [2-5,9], or on6]. However, even for soda- lime glasses and metallurgicalon the foaming of soda-lime glass batch in air atmospheres

  10. Thermal Analysis of Waste Glass Batches: Effect of Batch Makeup...

    Office of Scientific and Technical Information (OSTI)

    Book: Thermal Analysis of Waste Glass Batches: Effect of Batch Makeup on Gas-Evolving Reactions Citation Details In-Document Search Title: Thermal Analysis of Waste Glass Batches:...

  11. Combustion Technology Development for an Advanced Glass Melting System 

    E-Print Network [OSTI]

    Stickler, D. B.; Westra, L.; Woodroffe, J.; Jeong, K. M.; Donaldson, L. W.

    1987-01-01

    Concept feasibility of an innovative technology for glass production has recently been demonstrated. It is based on suspension heating of the glass-forming batch minerals while entrained in a combustion flow of preheated air and natural gas...

  12. A user interface for customizing cane layouts in Virtual Glass

    E-Print Network [OSTI]

    Baldauf, Kimberly (Kimberly B.)

    2013-01-01

    Cane pulling is a technique used in glass blowing to build up intricate patterns which come out in the final piece. Virtual Glass was created to model the cane pulling process from start to finish. There are a variety of ...

  13. Improving Glass Walls Thermal Resistance In Air-Conditioned Buildings 

    E-Print Network [OSTI]

    Galal, T.; Kulaib, A. M.; Alajmi, R.; Al-Ansary. A; Abuzaid, M.

    2010-01-01

    walls; as one of envelope surfaces; has an important impact on solar radiation. Design and construction of glass walls have significant effects on building comfort and energy consumption. This paper describes methods of improving glass walls thermal...

  14. Electrical and optical properties of vanadium tellurite glasses 

    E-Print Network [OSTI]

    Flynn, Brian William

    1977-01-01

    Glasses in the system v?o?-Te0? were prepared at intervals throughout the glass-forming composition range. The vanadium valence state was varied for each composition by the addition of elemental tellurium to reduce the ...

  15. ORNL superhydrophobic glass coating offers clear benefits | ornl...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    interconnected nanoporous nature of our coatings significantly suppresses Fresnel light reflections from glass surfaces, providing enhanced transmission over a wide...

  16. Energy efficient residential new construction: market transformation. Spectral selective glass. Final project report

    SciTech Connect (OSTI)

    Hammon, Robert

    2000-12-18

    This final report describes the following tasks associated with this project: cost and availability of spectrally selective glass (SSG); window labeling problem and field verification of glass; availability of SSG replacement glass and tempered glass; HVAC load reduction due to spectrally selective glass; and comsumer appreciation of spectrally selective glass. Also included in the report are four attachments: builder and HVAC subcontractor presentation, sample advertisements, spectrally selective glass demonstration model, and invitation to SCE Glass mini trade-show.

  17. GLASS TRANSITION SEEN THROUGH ASYMPTOTIC JULIEN OLIVIER AND MICHAEL RENARDY

    E-Print Network [OSTI]

    GLASS TRANSITION SEEN THROUGH ASYMPTOTIC EXPANSIONS JULIEN OLIVIER AND MICHAEL RENARDY Abstract of the model at low shear rate changes when a certain parameter (which we call the glass parameter) crosses´ebraud-Lequeux model, a Fokker-Planck-like description of soft glassy material, exhibits such a glass transition

  18. Glass Concrete Thin Sheets Reinforced with Prestressed Aramid Fabrics

    E-Print Network [OSTI]

    Meyer, Christian

    Glass Concrete Thin Sheets Reinforced with Prestressed Aramid Fabrics Gregor Vilkner Submitted Glass Concrete Thin Sheets Reinforced with Prestressed Aramid Fabrics Gregor Vilkner Thin sheet concrete crushed glass as aggregate, a multitude of different esthetic effects can be produced, which again open up

  19. condmat/9801215 Crossovers in the Two Dimensional Ising Spin Glass

    E-Print Network [OSTI]

    Roma "La Sapienza", Universitŕ di

    cond­mat/9801215 v2 26 Jan 1998 Crossovers in the Two Dimensional Ising Spin Glass of extensive computer simulations we analyze in detail the two dimen­ sional \\SigmaJ Ising spin glass with ferromagnetic next­nearest­neighbor interactions. We found a crossover from ferromagnetic to ``spin glass'' like

  20. Saga of Glass Damage in Urban Environments Continues

    E-Print Network [OSTI]

    Kareem, Ahsan

    Saga of Glass Damage in Urban Environments Continues: Consequences of Aerodynamics and Debris Laboratory University of Notre Dame The Saga of Glass Damage in Urban Environments Continues: Consequences east of the city of Houston. Initial reconnaissance suggested that the observed glass/cladding damage

  1. A new method for solving radiative heat problems in glass

    E-Print Network [OSTI]

    Eindhoven, Technische Universiteit

    RANA 99­06 A new method for solving radiative heat problems in glass B.J. van der Linden --- R, The Netherlands e­mail: linden@win.tue.nl 15th May 2000 #12; Abstract In the production of glass, temperature Conclusion 25 2 #12; Chapter 1 Introduction The production of glass belongs to the oldest forms of human

  2. Calorimetric glass transition explained by hierarchical dynamic facilitation

    E-Print Network [OSTI]

    Garrahan, Juan P.

    Calorimetric glass transition explained by hierarchical dynamic facilitation Aaron S. Keysa Contributed by David Chandler, February 11, 2013 (sent for review November 15, 2012) The glass transition different on cooling than on heating, and the response to melting a glass depends markedly on the cooling

  3. A new method for solving radiative heat problems in glass

    E-Print Network [OSTI]

    Eindhoven, Technische Universiteit

    RANA 99-06 A new method for solving radiative heat problems in glass B.J. van der Linden -- R, The Netherlands e-mail: linden@win.tue.nl 15th May 2000 #12;Abstract In the production of glass, temperature plays Conclusion 25 2 #12;Chapter 1 Introduction The production of glass belongs to the oldest forms of human

  4. 5D Data Storage by Ultrafast Laser Nanostructuring in Glass

    E-Print Network [OSTI]

    Anderson, Jim

    5D Data Storage by Ultrafast Laser Nanostructuring in Glass Jingyu Zhang* , Mindaugas Gecevicius-assembled form birefringence and retrieved in glass opening the era of unlimited lifetime data storage. © 2013 laser writing in glass were proposed for the polarization multiplexed optical memory, where

  5. Rectilinear Glass-Cut Dissections of Rectangles to Squares

    E-Print Network [OSTI]

    Urrutia, Jorge

    Rectilinear Glass-Cut Dissections of Rectangles to Squares Jurek Czyzowicz§ czyzowic is made using only rectilinear glass-cuts, i.e., vertical or horizontal straight-line cuts separating pieces into two. 1 Introduction A glass-cut of a rectangle is a cut by a straight-line segment

  6. Department of Electrical Engineering Spring 2011 Glass Block Solar Collector

    E-Print Network [OSTI]

    Demirel, Melik C.

    PENNSTATE Department of Electrical Engineering Spring 2011 Glass Block Solar Collector Overview of the team to incorporate solar collectors into glass blocks and provide an application for the collected energy. Objectives The team's objective was to deliver a working glass block solar collector

  7. Nanodiamond in tellurite glass Part I: origin of loss in nanodiamond-doped glass

    E-Print Network [OSTI]

    Ebendorff-Heidepriem, Heike; Ji, Hong; Greentree, Andrew D; Gibson, Brant C; Monro, Tanya M

    2014-01-01

    Tellurite glass fibers with embedded nanodiamond are attractive materials for quantum photonic applications. Reducing the loss of these fibers in the 600-800 nm wavelength range of nanodiamond fluorescence is essential to exploit the unique properties of nanodiamond in the new hybrid material. In the first part of this study, we report the effect of interaction of the tellurite glass melt with the embedded nanodiamond on the loss of the glasses. The glass fabrication conditions such as melting temperature and concentration of NDs added to the melt were found to have critical influence on the interaction. Based on this understanding, we identified promising fabrication conditions for decreasing the loss to levels required for practical applications.

  8. Glass Forming Ability and Relaxation Behavior of Zr Based Metallic Glasses 

    E-Print Network [OSTI]

    Kamath, Aravind Miyar

    2012-07-16

    was studied by using thermal techniques to determine important GFA indicators for Zr-based bulk metallic glasses (BMG). The effect of alloying elements, annealing temperature and annealing time on the thermal and structural relaxation of the BMGs was studied...

  9. DWPF Glass Melter Technology Manual: Volume 4

    SciTech Connect (OSTI)

    Iverson, D.C.

    1993-12-31

    This document details information about the design of a glass melter to be used at the Defense Waste Processing Facility located at the Savannah River Plant. Information contained in this document consists solely of a machine drawing and parts list and purchase orders with specifications of equipment used in the development of the melter.

  10. DWPF Glass Melter Technology Manual: Volume 3

    SciTech Connect (OSTI)

    Iverson, D.C.

    1993-12-31

    This document details information about the design of a glass melter to be used at the Defense Waste Processing Facility located at the Savannah River Site. Topics discussed include: Information collected during testing, equipment, materials, design basis, feed tubes, and an evaluation of the performance of various components. Information is conveyed using many diagrams and photographs.

  11. Modeling Human Foraging Brian D. Glass

    E-Print Network [OSTI]

    Maddox, W. Todd

    Modeling Human Foraging Brian D. Glass Department of Psychology University of Texas at Austin Thanks to W. Todd Maddox Arthur B. Markman Scott Lauritzen Cognition & Perception Group #12;Foraging What from group experiments like these? You learn about group behavior, with little to say about behavior

  12. Equilibrium ultrastable glasses produced by random pinning

    E-Print Network [OSTI]

    Glen M Hocky; Ludovic Berthier; David R. Reichman

    2014-12-08

    Ultrastable glasses have risen to prominence due to their potentially useful material properties and the tantalizing possibility of a general method of preparation via vapor deposition. Despite the importance of this novel class of amorphous materials, numerical studies have been scarce because achieving ultrastability in atomistic simulations is an enormous challenge. Here we bypass this difficulty and establish that randomly pinning the position of a small fraction of particles inside an equilibrated supercooled liquid generates ultrastable configurations at essentially no numerical cost, while avoiding undesired structural changes due to the preparation protocol. Building on the analogy with vapor-deposited ultrastable glasses, we study the melting kinetics of these configurations following a sudden temperature jump into the liquid phase. In homogeneous geometries, we find that enhanced kinetic stability is accompanied by large scale dynamic heterogeneity, while a competition between homogeneous and heterogeneous melting is observed when a liquid boundary invades the glass at constant velocity. Our work demonstrates the feasibility of large-scale, atomistically resolved, and experimentally relevant simulations of the kinetics of ultrastable glasses.

  13. Mössbauer study of conductive oxide glass

    SciTech Connect (OSTI)

    Matsuda, Koken; Kubuki, Shiro [Tokyo Metropolitan University, Hachi-Oji, Tokyo 192-0397 (Japan); Nishida, Tetsuaki, E-mail: nishida@fuk.kindai.ac.jp [Kinki University, Iizuka, Fukuoka 820-8555 (Japan)

    2014-10-27

    Heat treatment of barium iron vanadate glass, BaO?Fe{sub 2}O{sub 3}?V{sub 2}O{sub 5}, at temperatures higher than crystallization temperature causes a marked decrease in resistivity (?) from several M?cm to several ?cm. {sup 57}Fe Mössbauer spectrum of heat-treated vanadate glass shows a marked decrease in quadrupole splitting (?) of Fe{sup III}, reflecting a structural relaxation, i.e., an increased symmetry of 'distorted' FeO{sub 4} and VO{sub 4} tetrahedra which are connected to each other by sharing corner oxygen atoms. Structural relaxation of 3D-network of vanadate glass accompanies a decrease in the activation energy for the conduction, reflecting a decreased energy gap between the donor level and conduction band. A marked increase in the conductivity was observed in CuO- or Cu{sub 2}O-containing barium iron vanadate glass after heat treatment at 450 °C for 30 min or more. 'n-type semiconductor model combined with small polaron hopping theory' was proposed in order to explain the high conductivity.

  14. Overview of Energy Efficiency for Glass Furnace

    E-Print Network [OSTI]

    Banerjee, Rangan

    ,Particulates (Environmental norms) Global competitiveness #12;3 April, 2006 4Source: www.oilnergy.com Crude Oil Price #12, 2006 8 Energy Consumption in Glass Plant Melting 75% Forehearth 7% Anneling 4% Other 10% Printing Energy Consumption Specific Energy Consumption (SEC)­ Energy Consumption per unit of product output Units

  15. HIGH ALUMINUM HLW GLASSES FOR HANFORDS WTP

    SciTech Connect (OSTI)

    KRUGER AA; JOSEPH I; BOWMAN BW; GAN H; KOT W; MATLACK KS; PEGG IL

    2009-08-19

    The world's largest radioactive waste vitrification facility is now under construction at the United State Department of Energy's (DOE's) Hanford site. The Hanford Tank Waste Treatment and Immobilization Plant (WTP) is designed to treat nearly 53 million gallons of mixed hazardous and radioactive waste now residing in 177 underground storage tanks. This multi-decade processing campaign will be one of the most complex ever undertaken because of the wide chemical and physical variability of the waste compositions generated during the cold war era that are stored at Hanford. The DOE Office of River Protection (ORP) has initiated a program to improve the long-term operating efficiency of the WTP vitrification plants with the objective of reducing the overall cost of tank waste treatment and disposal and shortening the duration of plant operations. Due to the size, complexity and duration of the WTP mission, the lifecycle operating and waste disposal costs are substantial. As a result, gains in High Level Waste (HLW) and Low Activity Waste (LAW) waste loadings, as well as increases in glass production rate, which can reduce mission duration and glass volumes for disposal, can yield substantial overall cost savings. EnergySolutions and its long-term research partner, the Vitreous State Laboratory (VSL) of the Catholic University of America, have been involved in a multi-year ORP program directed at optimizing various aspects of the HLW and LAW vitrification flow sheets. A number of Hanford HLW streams contain high concentrations of aluminum, which is challenging with respect to both waste loading and processing rate. Therefore, a key focus area of the ORP vitrification process optimization program at EnergySolutions and VSL has been development of HLW glass compositions that can accommodate high Al{sub 2}O{sub 3} concentrations while maintaining high processing rates in the Joule Heated Ceramic Melters (JHCMs) used for waste vitrification at the WTP. This paper, reviews the achievements of this program with emphasis on the recent enhancements in Al{sub 2}O{sub 3} loadings in HLW glass and its processing characteristics. Glass formulation development included crucible-scale preparation and characterization of glass samples to assess compliance with all melt processing and product quality requirements, followed by small-scale screening tests to estimate processing rates. These results were used to down-select formulations for subsequent engineering-scale melter testing. Finally, further testing was performed on the DM1200 vitrification system installed at VSL, which is a one-third scale (1.20 m{sup 2}) pilot melter for the WTP HLW melters and which is fitted with a fully prototypical off-gas treatment system. These tests employed glass formulations with high waste loadings and Al{sub 2}O{sub 3} contents of {approx}25 wt%, which represents a near-doubling of the present WTP baseline maximum Al{sub 2}O{sub 3} loading. In addition, these formulations were processed successfully at glass production rates that exceeded the present requirements for WTP HLW vitrification by up to 88%. The higher aluminum loading in the HLW glass has an added benefit in that the aluminum leaching requirements in pretreatment are reduced, thus allowing less sodium addition in pretreatment, which in turn reduces the amount of LAW glass to be produced at the WTP. The impact of the results from this ORP program in reducing the overall cost and schedule for the Hanford waste treatment mission will be discussed.

  16. Blocking effect of crystal–glass interface in lanthanum doped barium strontium titanate glass–ceramics

    SciTech Connect (OSTI)

    Wang, Xiangrong; Zhang, Yong; Baturin, Ivan; Liang, Tongxiang

    2013-10-15

    Graphical abstract: The blocking effect of the crystal–glass interface on the carrier transport behavior in the lanthanum doped barium strontium titanate glass–ceramics: preparation and characterization. - Highlights: • La{sub 2}O{sub 3} addition promotes the crystallization of the major crystalline phase. • The Z? and M? peaks exist a significant mismatch for 0.5 mol% La{sub 2}O{sub 3} addition. • The Z? and M? peaks separate obviously for 1.0 mol% La{sub 2}O{sub 3} addition. • Crystallite impedance decreases while crystal–glass interface impedance increases. • La{sub 2}O{sub 3} addition increases blocking factor of the crystal–glass interface. - Abstract: The microstructures and dielectric properties in La{sub 2}O{sub 3}-doped barium strontium titanate glass–ceramics have been investigated by scanning electron microscopy (SEM) and impedance spectroscopy. SEM analysis indicated that La{sub 2}O{sub 3} additive decreases the average crystallite size. Impedance spectroscopy revealed that the positions of Z? and M? peaks are close for undoped samples. When La{sub 2}O{sub 3} concentration is 0.5 mol%, the Z? and M? peaks show a significant mismatch. Furthermore, these peaks separate obviously for 1.0 mol% La{sub 2}O{sub 3} addition. With increasing La{sub 2}O{sub 3} concentration, the contribution of the crystallite impedance becomes smaller, while the contribution of the crystal–glass interface impedance becomes larger. More interestingly, it was found that La{sub 2}O{sub 3} additive increases blocking factor of the crystal–glass interface in the temperature range of 250–450 °C. This may be attributed to a decrease of activation energy of the crystallite and an increase of the crystal–glass interface area.

  17. The politics of marginality in Wallowa County, Oregon: Contesting the production of landscapes of consumption

    E-Print Network [OSTI]

    Kurapov, Alexander

    The politics of marginality in Wallowa County, Oregon: Contesting the production of landscapes of consumption Jesse B. Abrams a,b,*, Hannah Gosnell c a Department of Sociology, Whitman College, 345 Boyer Ave not only technical issues of land productivity, but also broader community contestations over

  18. Post-fire geomorphic response in steep, forested landscapes: Oregon Coast Range, USA

    E-Print Network [OSTI]

    Roering, Joshua J.

    Post-fire geomorphic response in steep, forested landscapes: Oregon Coast Range, USA Molly Jackson Accepted 7 May 2008 a b s t r a c t The role of fire in shaping steep, forested landscapes depends, several studies postulate that fire primarily modulates sediment production via root reinforcement

  19. Introduction by Prof. Dawn Wright, Oregon State University GIS for the Oceans

    E-Print Network [OSTI]

    Turner, Monica G.

    Introduction by Prof. Dawn Wright, Oregon State University GIS for the Oceans January 2011 #12 in the 20th century for aviation, for aerospace. "Where does GIS come in to all of this? I'll put it another way. Where doesn't GIS come in to the understanding of the ocean? After all, marine ecosystems, just

  20. Dynamics of wood in stream networks of the western Cascades Range, Oregon

    E-Print Network [OSTI]

    Kurapov, Alexander

    Dynamics of wood in stream networks of the western Cascades Range, Oregon Nicole M. Czarnomski a conceptual model of wood dynamics in stream networks that considers legacies of forest management practices, floods, and debris flows. We combine an observational study of wood in 25 km of 2nd- through 5th

  1. Pyrogenic carbon emission from a large wildfire in Oregon, United States

    E-Print Network [OSTI]

    Turner, Monica G.

    : area burned, fuel density (biomass per unit area), combustion factor (fraction of biomass consumedPyrogenic carbon emission from a large wildfire in Oregon, United States John Campbell,1 Dan Donato carbon emissions from the Biscuit Fire, an exceptionally large wildfire, which in 2002 burned over 200

  2. Atmospheric forcing of the Oregon coastal ocean during the 2001 upwelling season

    E-Print Network [OSTI]

    Kurapov, Alexander

    by nonlinear internal ocean tides. The diurnal cycle of wind stress was similar for both southwardAtmospheric forcing of the Oregon coastal ocean during the 2001 upwelling season J. M. Bane,1 M. D. Southward wind stresses of 0.05Ŕ0.1 N mŔ2 occurred roughly 75% of the time, with a sustained period

  3. Extreme flood sensitivity to snow and forest harvest, western Cascades, Oregon, United States

    E-Print Network [OSTI]

    Kurapov, Alexander

    Extreme flood sensitivity to snow and forest harvest, western Cascades, Oregon, United States J. A; published 3 December 2010. [1] We examined the effects of snow, event size, basin size, and forest harvest delivered 75% more water to soils than rain events. Peak discharges of >10 year rainonsnow events were

  4. CDC's National Environmental Public Health Tracking Network OREGON Keeping Track, Promoting Health

    E-Print Network [OSTI]

    CS225774_M CDC's National Environmental Public Health Tracking Network OREGON Keeping Track, Promoting Health "CDC's National Environmental Public Health Tracking Network is the most important accomplishment of the past decade." Thomas A. Burke, Ph.D., M.P.H. Associate Dean for Public Health Practice

  5. Sediment production from forest roads in western Oregon Charles H. Luce and Thomas A. Black

    E-Print Network [OSTI]

    Sediment production from forest roads in western Oregon Charles H. Luce and Thomas A. Black USDA erosion from forest roads requires an understanding of how road design and maintenance affect sediment the relationship between sediment production and road attributes such as distance between culverts, road slope

  6. Using Layered Manufacturing for Scientific Visualization Mike Bailey, Oregon State University

    E-Print Network [OSTI]

    Bailey, Mike

    Manufacturing, on the other hand, is characterized by additive manufacturing processes. They start with nothing, but there are significant advantages to additive manufacturing for scientific visualization: · Extremely complex parts can1 Using Layered Manufacturing for Scientific Visualization Mike Bailey, Oregon State University

  7. Shear wave splitting and the pattern of mantle flow beneath eastern Oregon Maureen D. Long a,

    E-Print Network [OSTI]

    period of bimodal (basaltic and silicic) volcanism in both the High Lava Plains and Snake River Plain October 2009 Editor: Y. Ricard Keywords: intraplate volcanism High Lava Plains Blue Mountains Pacific Oregon includes the volcanically active High Lava Plains (HLP) province and the accreted terrains

  8. The effects of fire and tephra deposition on forest vegetation in the Central Cascades, Oregon

    E-Print Network [OSTI]

    Long, Colin

    The effects of fire and tephra deposition on forest vegetation in the Central Cascades, Oregon watershed and to examine the short-term effects that tephra deposition have on forest composition and fire Pinus forest with Artemisia as a common understory species. Fire episodes occurred on average every 115

  9. Oregon State University Extension Service 4-H Volunteer Screening and Education Process

    E-Print Network [OSTI]

    Tullos, Desiree

    Oregon State University Extension Service 4-H Volunteer Screening and Education Process Screening Process Rationale: The Extension Service is committed to providing a safe environment for young people participating in its programs. With this in mind, the Extension Service will provide the needed screening

  10. HPHY 381 Biomechanics Fall 2014 University of Oregon, Department of Human Physiology

    E-Print Network [OSTI]

    Lockery, Shawn

    HPHY 381 Biomechanics ­ Fall 2014 University of Oregon, Department of Human Physiology Instructor-3:20 pm, 240C McKenzie Hall Textbook Biomechanics of Sport and Exercise, 3rd Edition, Peter McGinnis Course Description This course provides an introduction to the principles of biomechanics, emphasizing

  11. July 1, 2006 -OHSU Ancillaries (Indirect Providers1 & Revisions to Oregon's Genetic Privacy Law

    E-Print Network [OSTI]

    Chapman, Michael S.

    July 1, 2006 - OHSU Ancillaries (Indirect Providers1 ) & Revisions to Oregon's Genetic Privacy Law Reports. OHSU Ancillaries (Indirect Providers) Who Receive Specimens or Health Information from non encryption that is kept separately from the specimen or information. Last Updated 6/27/2006 http://ozone.ohsu.edu/cc/gen/ancillary

  12. Blending World MapBlending World Map ProjectionsProjections Bernhard Jenny, Oregon State University, USA

    E-Print Network [OSTI]

    Clarke, Keith

    Blending World MapBlending World Map ProjectionsProjections Bernhard Jenny, Oregon State University via combination of two projections is well established. Some of the most popular world map projections Tripel projection). These two methods for creating new world map projections are included in the latest

  13. EA-1946: Salem-Albany Transmission Line Rebuild Project; Polk, Benton, Marion, and Linn Counties, Oregon

    Broader source: Energy.gov [DOE]

    Bonneville Power Administration is preparing an EA to assess the potential environmental impacts of the proposed rebuild of the 24-mile Salem-Albany No. 1 and 28-mile Salem-Albany No. 2 transmission lines between Salem and Albany, Oregon.

  14. Status Review of Wildlife Mitigation at Columbia Basin Hydroelectric Projects, Oregon Facilities, Final Report.

    SciTech Connect (OSTI)

    Bedrossian, Karen L.

    1984-08-01

    The report presents a review and documentation of existing information on wildlife resources at Columbia River Basin hydroelectric facilities within Oregon. Effects of hydroelectric development and operation; existing agreements; and past, current and proposed wildlife mitigation, enhancement, and protection activities were considered. (ACR)

  15. 74th OREGON LEGISLATIVE ASSEMBLY--2007 Regular Session Senate Bill 1054

    E-Print Network [OSTI]

    Wright, Dawn Jeannine

    and gener- ation; and Whereas the technology for harnessing wave energy is rapidly evolving in many. Whereas wave energy is a renewable power source with a great potential to reduce our de- pendence on oil and other fossil fuels; and Whereas the Oregon coast is particularly well suited for wave energy development

  16. Coseismic slip on the southern Cascadia megathrust implied by tsunami deposits in an Oregon lake

    E-Print Network [OSTI]

    Goldfinger, Chris

    Coseismic slip on the southern Cascadia megathrust implied by tsunami deposits in an Oregon lake August 2012; published 9 October 2012. [1] We test hypothetical tsunami scenarios against a 4,600-year for prehistoric Cascadia tsunamis. Tsunami simulations constrain coseismic slip estimates for the southern

  17. Annual Coded Wire Tag Program; Oregon Missing Production Groups, 1994 Annual Report.

    SciTech Connect (OSTI)

    Garrison, Robert L.; Isaac, Dennis L.; Lewis, Mark A.

    1994-12-01

    The goal of this program is to develop the ability to estimate hatchery production survival values and evaluate effectiveness of Oregon hatcheries. To accomplish this goal. We are tagging missing production groups within hatcheries to assure each production group is identifiable to allow future evaluation upon recovery of tag data.

  18. Oregon Sea Grant Marine Education Program at Hatfield Marine Science Center Squid Dissection

    E-Print Network [OSTI]

    Wright, Dawn Jeannine

    Oregon Sea Grant Marine Education Program at Hatfield Marine Science Center Squid Dissection The Squid Dissection program at Hatfield Marine Science Center is designed to be a 50- minute lab the directions of their marine educator, to systematically dissect a thawed squid and explore the many

  19. Oregon Sea Grant Marine Education Program at Hatfield Marine Science Center Build a Habitat

    E-Print Network [OSTI]

    Wright, Dawn Jeannine

    Oregon Sea Grant Marine Education Program at Hatfield Marine Science Center Build a Habitat The Build a Habitat program at Hatfield Marine Science Center is designed to be a 50- minute hands a number of live marine organisms, learn about what they need to survive, and discover how they function

  20. Oregon Sea Grant Marine Education Program at Hatfield Marine Science Center Plankton Lab

    E-Print Network [OSTI]

    Wright, Dawn Jeannine

    Oregon Sea Grant Marine Education Program at Hatfield Marine Science Center Plankton Lab The Plankton Lab at Hatfield Marine Science center is designed to be a 50-minute program for 5th -12th grade holoplankton. Others that spend only part of their lives as plankton are called meroplankton. Most marine