National Library of Energy BETA

Sample records for giner electrochemical systems

  1. Giner Electrochemicals Inc | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsource History View New Pages RecentPlant <Silver PeakGiner Electrochemicals Inc Jump

  2. Giner, Inc./GES

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum12,Executive CompensationEnergyGet Current: Switch onDepartment ofGillsGiner,

  3. Electrochemical thermodynamic measurement system

    DOE Patents [OSTI]

    Reynier, Yvan (Meylan, FR); Yazami, Rachid (Los Angeles, CA); Fultz, Brent T. (Pasadena, CA)

    2009-09-29

    The present invention provides systems and methods for accurately characterizing thermodynamic and materials properties of electrodes and electrochemical energy storage and conversion systems. Systems and methods of the present invention are configured for simultaneously collecting a suite of measurements characterizing a plurality of interconnected electrochemical and thermodynamic parameters relating to the electrode reaction state of advancement, voltage and temperature. Enhanced sensitivity provided by the present methods and systems combined with measurement conditions that reflect thermodynamically stabilized electrode conditions allow very accurate measurement of thermodynamic parameters, including state functions such as the Gibbs free energy, enthalpy and entropy of electrode/electrochemical cell reactions, that enable prediction of important performance attributes of electrode materials and electrochemical systems, such as the energy, power density, current rate and the cycle life of an electrochemical cell.

  4. Webinar: Hydrogen Production by Polymer Electrolyte Membrane (PEM) Electrolysis—Spotlight on Giner and Proton

    Broader source: Energy.gov [DOE]

    Video recording of the webinar, Hydrogen Production by Polymer Electrolyte Membrane (PEM) Electrolysis—Spotlight on Giner and Proton, originally presented on May 23, 2011.

  5. Electrochemical hydrogen Storage Systems

    SciTech Connect (OSTI)

    Dr. Digby Macdonald

    2010-08-09

    As the global need for energy increases, scientists and engineers have found a possible solution by using hydrogen to power our world. Although hydrogen can be combusted as a fuel, it is considered an energy carrier for use in fuel cells wherein it is consumed (oxidized) without the production of greenhouse gases and produces electrical energy with high efficiency. Chemical storage of hydrogen involves release of hydrogen in a controlled manner from materials in which the hydrogen is covalently bound. Sodium borohydride and aminoborane are two materials given consideration as chemical hydrogen storage materials by the US Department of Energy. A very significant barrier to adoption of these materials as hydrogen carriers is their regeneration from 'spent fuel,' i.e., the material remaining after discharge of hydrogen. The U.S. Department of Energy (DOE) formed a Center of Excellence for Chemical Hydrogen Storage, and this work stems from that project. The DOE has identified boron hydrides as being the main compounds of interest as hydrogen storage materials. The various boron hydrides are then oxidized to release their hydrogen, thereby forming a 'spent fuel' in the form of a lower boron hydride or even a boron oxide. The ultimate goal of this project is to take the oxidized boron hydrides as the spent fuel and hydrogenate them back to their original form so they can be used again as a fuel. Thus this research is essentially a boron hydride recycling project. In this report, research directed at regeneration of sodium borohydride and aminoborane is described. For sodium borohydride, electrochemical reduction of boric acid and sodium metaborate (representing spent fuel) in alkaline, aqueous solution has been investigated. Similarly to literature reports (primarily patents), a variety of cathode materials were tried in these experiments. Additionally, approaches directed at overcoming electrostatic repulsion of borate anion from the cathode, not described in the previous literature for electrochemical reduction of spent fuels, have been attempted. A quantitative analytical method for measuring the concentration of sodium borohydride in alkaline aqueous solution has been developed as part of this work and is described herein. Finally, findings from stability tests for sodium borohydride in aqueous solutions of several different compositions are reported. For aminoborane, other research institutes have developed regeneration schemes involving tributyltin hydride. In this report, electrochemical reduction experiments attempting to regenerate tributyltin hydride from tributyltin chloride (a representative by-product of the regeneration scheme) are described. These experiments were performed in the non-aqueous solvents acetonitrile and 1,2-dimethoxyethane. A non-aqueous reference electrode for electrolysis experiments in acetonitrile was developed and is described. One class of boron hydrides, called polyhedral boranes, became of interest to the DOE due to their ability to contain a sufficient amount of hydrogen to meet program goals and because of their physical and chemical safety attributes. Unfortunately, the research performed here has shown that polyhedral boranes do not react in such a way as to allow enough hydrogen to be released, nor do they appear to undergo hydrogenation from the spent fuel form back to the original hydride. After the polyhedral boranes were investigated, the project goals remained the same but the hydrogen storage material was switched by the DOE to ammonia borane. Ammonia borane was found to undergo an irreversible hydrogen release process, so a direct hydrogenation was not able to occur. To achieve the hydrogenation of the spent ammonia borane fuel, an indirect hydrogenation reaction is possible by using compounds called organotin hydrides. In this process, the organotin hydrides will hydrogenate the spent ammonia borane fuel at the cost of their own oxidation, which forms organotin halides. To enable a closed-loop cycle, our task was then to be able to hydrogenate the organotin halides back to th

  6. System and method for networking electrochemical devices

    DOE Patents [OSTI]

    Williams, Mark C. (Morgantown, WV); Wimer, John G. (Morgantown, WV); Archer, David H. (Pittsburgh, PA)

    1995-01-01

    An improved electrochemically active system and method including a plurality of electrochemical devices, such as fuel cells and fluid separation devices, in which the anode and cathode process-fluid flow chambers are connected in fluid-flow arrangements so that the operating parameters of each of said plurality of electrochemical devices which are dependent upon process-fluid parameters may be individually controlled to provide improved operating efficiency. The improvements in operation include improved power efficiency and improved fuel utilization in fuel cell power generating systems and reduced power consumption in fluid separation devices and the like through interstage process fluid parameter control for series networked electrochemical devices. The improved networking method includes recycling of various process flows to enhance the overall control scheme.

  7. Sheet electrode for electrochemical systems

    DOE Patents [OSTI]

    Tsien, Hsue C. (Chatham Township, Morris County, NJ); Newby, Kenneth R. (Berkeley Heights, NJ); Grimes, Patrick G. (Westfield, NJ); Bellows, Richard J. (Westfield, NJ)

    1983-04-12

    An electrochemical cell construction features a novel co-extruded plastic electrode in an interleaved construction with a novel integral separator-spacer. Also featured is a leak and impact resistant construction for preventing the spill of corrosive materials in the event of rupture.

  8. Lithium based electrochemical cell systems having a degassing agent

    DOE Patents [OSTI]

    Hyung, Yoo-Eup (Naperville, IL); Vissers, Donald R. (Naperville, IL); Amine, Khalil (Downers Grove, IL)

    2012-05-01

    A lithium based electrochemical cell system includes a positive electrode; a negative electrode; an electrolyte; and a degassing agent.

  9. Gas permeable electrode for electrochemical system

    DOE Patents [OSTI]

    Ludwig, Frank A. (Rancho Palos Verdes, CA); Townsend, Carl W. (Los Angeles, CA)

    1989-01-01

    An electrode apparatus adapted for use in electrochemical systems having an anode compartment and a cathode compartment in which gas and ions are produced and consumed in the compartments during generation of electrical current. The electrode apparatus includes a membrane for separating the anode compartment from the cathode compartment wherein the membrane is permeable to both ions and gas. The cathode and anode for the assembly are provided on opposite sides of the membrane. During use of the membrane-electrode apparatus in electrochemical cells, the gas and ions generated at the cathode or anode migrate through the membrane to provide efficient transfer of gas and ions between the anode and cathode compartments.

  10. Gas permeable electrode for electrochemical system

    DOE Patents [OSTI]

    Ludwig, F.A.; Townsend, C.W.

    1989-09-12

    An electrode apparatus is described which is adapted for use in electrochemical systems having an anode compartment and a cathode compartment in which gas and ions are produced and consumed in the compartments during generation of electrical current. The electrode apparatus includes a membrane for separating the anode compartment from the cathode compartment wherein the membrane is permeable to both ions and gas. The cathode and anode for the assembly are provided on opposite sides of the membrane. During use of the membrane-electrode apparatus in electrochemical cells, the gas and ions generated at the cathode or anode migrate through the membrane to provide efficient transfer of gas and ions between the anode and cathode compartments. 3 figs.

  11. Separator-spacer for electrochemical systems

    DOE Patents [OSTI]

    Grimes, Patrick G. (Westfield, NJ); Einstein, Harry (Springfield, NJ); Newby, Kenneth R. (Berkeley Heights, NJ); Bellows, Richard J. (Westfield, NJ)

    1983-08-02

    An electrochemical cell construction features a novel co-extruded plastic electrode in an interleaved construction with a novel integral separator-spacer. Also featured is a leak and impact resistant construction for preventing the spill of corrosive materials in the event of rupture.

  12. Measuring Physical Properties of Polymer Electrolyte Membranes

    Broader source: Energy.gov [DOE]

    Presented by Cortney Mittelsteadt of Giner Electrochemical Systems, LLC, at the DOE High Temperature Membrane Working Group held September 14, 2006.

  13. Systems, methods and computer-readable media for modeling cell performance fade of rechargeable electrochemical devices

    DOE Patents [OSTI]

    Gering, Kevin L

    2013-08-27

    A system includes an electrochemical cell, monitoring hardware, and a computing system. The monitoring hardware periodically samples performance characteristics of the electrochemical cell. The computing system determines cell information from the performance characteristics of the electrochemical cell. The computing system also develops a mechanistic level model of the electrochemical cell to determine performance fade characteristics of the electrochemical cell and analyzing the mechanistic level model to estimate performance fade characteristics over aging of a similar electrochemical cell. The mechanistic level model uses first constant-current pulses applied to the electrochemical cell at a first aging period and at three or more current values bracketing a first exchange current density. The mechanistic level model also is based on second constant-current pulses applied to the electrochemical cell at a second aging period and at three or more current values bracketing the second exchange current density.

  14. Electrochemical system including lamella settler crystallizer

    DOE Patents [OSTI]

    Maimoni, Arturo (Orinda, CA)

    1988-01-01

    A crystallizer which incorporates a lamella settler and which is particularly applicable for use in batteries and power cells for electric vehicles or stationary applications. The lamella settler can be utilized for coarse particle separation or for agglomeration, and is particularly applicable to aluminum-air batteries or power cells for solving the hydrargillite (aluminum-hydroxide) removal problems from such batteries. This invention provides the advantages of very low energy consumption, turbulence, shear, cost and maintenance. Thus, due to the low shear and low turbulence of this invention, it is particularly effective in the control of aluminum hydroxide particle size distribution in the various sections of an aluminum-air system, as will as in other elecrochemical systems requiring separation for phases of different densities.

  15. A Mathematical Model for a Lithium-Ion Battery/Electrochemical Capacitor Hybrid System

    E-Print Network [OSTI]

    Popov, Branko N.

    A Mathematical Model for a Lithium-Ion Battery/Electrochemical Capacitor Hybrid System Godfrey those of high-energy battery systems such as lithium ion. Al- though advanced battery systems and double the performance of a battery/electrochemical capacitor-hybrid system has been developed. Simulation results

  16. Systems, methods and computer readable media for estimating capacity loss in rechargeable electrochemical cells

    DOE Patents [OSTI]

    Gering, Kevin L.

    2013-06-18

    A system includes an electrochemical cell, monitoring hardware, and a computing system. The monitoring hardware periodically samples charge characteristics of the electrochemical cell. The computing system periodically determines cell information from the charge characteristics of the electrochemical cell. The computing system also periodically adds a first degradation characteristic from the cell information to a first sigmoid expression, periodically adds a second degradation characteristic from the cell information to a second sigmoid expression and combines the first sigmoid expression and the second sigmoid expression to develop or augment a multiple sigmoid model (MSM) of the electrochemical cell. The MSM may be used to estimate a capacity loss of the electrochemical cell at a desired point in time and analyze other characteristics of the electrochemical cell. The first and second degradation characteristics may be loss of active host sites and loss of free lithium for Li-ion cells.

  17. Systems, methods and computer-readable media to model kinetic performance of rechargeable electrochemical devices

    DOE Patents [OSTI]

    Gering, Kevin L.

    2013-01-01

    A system includes an electrochemical cell, monitoring hardware, and a computing system. The monitoring hardware samples performance characteristics of the electrochemical cell. The computing system determines cell information from the performance characteristics. The computing system also analyzes the cell information of the electrochemical cell with a Butler-Volmer (BV) expression modified to determine exchange current density of the electrochemical cell by including kinetic performance information related to pulse-time dependence, electrode surface availability, or a combination thereof. A set of sigmoid-based expressions may be included with the modified-BV expression to determine kinetic performance as a function of pulse time. The determined exchange current density may be used with the modified-BV expression, with or without the sigmoid expressions, to analyze other characteristics of the electrochemical cell. Model parameters can be defined in terms of cell aging, making the overall kinetics model amenable to predictive estimates of cell kinetic performance along the aging timeline.

  18. Characterization of electrochemical systems and batteries: Materials and systems

    SciTech Connect (OSTI)

    McBreen, J.

    1992-12-01

    Materials are a pacing problem in battery development. The battery environment, particularly in rechargeable batteries, places great demands on materials. Characterization of battery materials is difficult because of their complex nature. In many cases meaningful characterization requires iii situ methods. Fortunately, several new electrochemical and spectroscopic techniques for in situ characterization studies have recently become available, and reports of new techniques have become more frequent. The opportunity now exists to utilize advanced instrumentation to define detailed features, participating chemical species and interfacial structure of battery materials with a precision heretofore not possible. This overview gives key references to these techniques and discusses the application of x-ray absorption spectroscopy to the study of battery materials.

  19. Characterization of electrochemical systems and batteries: Materials and systems

    SciTech Connect (OSTI)

    McBreen, J.

    1992-01-01

    Materials are a pacing problem in battery development. The battery environment, particularly in rechargeable batteries, places great demands on materials. Characterization of battery materials is difficult because of their complex nature. In many cases meaningful characterization requires iii situ methods. Fortunately, several new electrochemical and spectroscopic techniques for in situ characterization studies have recently become available, and reports of new techniques have become more frequent. The opportunity now exists to utilize advanced instrumentation to define detailed features, participating chemical species and interfacial structure of battery materials with a precision heretofore not possible. This overview gives key references to these techniques and discusses the application of x-ray absorption spectroscopy to the study of battery materials.

  20. Solid electrolyte-electrode system for an electrochemical cell

    DOE Patents [OSTI]

    Tuller, Harry L. (Wellesley, MA); Kramer, Steve A. (Somerville, MA); Spears, Marlene A. (Woburn, MA)

    1995-01-01

    An electrochemical device including a solid electrolyte and solid electrode composed of materials having different chemical compositions and characterized by different electrical properties but having the same crystalline phase is provided. A method for fabricating an electrochemical device having a solid electrode and solid electrolyte characterized by the same crystalline phase is also provided.

  1. Solid electrolyte-electrode system for an electrochemical cell

    DOE Patents [OSTI]

    Tuller, H.L.; Kramer, S.A.; Spears, M.A.

    1995-04-04

    An electrochemical device including a solid electrolyte and solid electrode composed of materials having different chemical compositions and characterized by different electrical properties but having the same crystalline phase is provided. A method for fabricating an electrochemical device having a solid electrode and solid electrolyte characterized by the same crystalline phase is also provided. 17 figures.

  2. Reproducibility of electrochemical noise data from coated metal systems

    SciTech Connect (OSTI)

    Bierwagen, G.P.; Mills, D.J.; Tallman, D.E.; Skerry, B.S.

    1996-12-31

    The use of electrochemical noise (ECN) as a method to characterize the corrosion-protection properties of organic coatings on metal substrates was pioneered by Skerry and Eden, and since then has been used by others as a probe for coating metal corrosion studies. However, no statistical examination of the reproducibility of the data from such measurements has been published. In the data the authors present, they have done a systematic analysis of important experimental variables in such systems. They have examined the method for accuracy and reproducibility with respect to sample preparation, sample immersion, and metal substrate preparation. They have taken several marine coatings systems typical of US Navy use, prepared duplicate samples of coating metal systems, and examined them under the same immersion exposure. The variables they considered for reproducibility are paint application (in three-coat systems), metal panel preparation (grit-blasted steel), and immersion conditions. The authors present ECN data with respect to immersion time on the values of noise voltage standard deviation {sigma}{sub V}, noise current standard deviation {sigma}{sub I}, and the noise resistance R{sub n} as given by {sigma}{sub V}/{sigma}{sub I}. The variation among supposedly identical sample pairs in identical immersion monitored under identical conditions is presented. The statistics of the time records of the data are considered, and the variations with respect to specific coatings classes are also considered within the limits of the data. Based on these data, comments concerning ECN on coated metal systems as a predictive test method are presented along with special considerations that must be made to properly use the method for coating ranking and lifetime prediction.

  3. Integrated Microfluidics/Electrochemical Sensor System for Field-Monitoring of Toxic Metals

    SciTech Connect (OSTI)

    Lin, Yuehe; Matson, Dean W.; Bennett, Wendy D.; Thrall, K D.; Timchalk, Chuck; W. Ehrfeld

    2000-01-01

    Discusses a miniaturized analytical system based on a microfluidics/electrochemical detection scheme. Individual modules, such as microfabricated piezoelectrically actuated pumps, a micro-membrane separator and a microelectrochemical cell will be integrated onto a portable platform.

  4. Charging-free electrochemical system for harvesting low-grade thermal energy

    E-Print Network [OSTI]

    Yang, Yuan

    Efficient and low-cost systems are needed to harvest the tremendous amount of energy stored in low-grade heat sources (<100 °C). Thermally regenerative electrochemical cycle (TREC) is an attractive approach which uses the ...

  5. Monolithic three-dimensional electrochemical energy storage system on aerogel or nanotube scaffold

    DOE Patents [OSTI]

    Farmer, Joseph Collin; Stadermann, Michael

    2014-07-15

    A monolithic three-dimensional electrochemical energy storage system is provided on an aerogel or nanotube scaffold. An anode, separator, cathode, and cathodic current collector are deposited on the aerogel or nanotube scaffold.

  6. Monolithic three-dimensional electrochemical energy storage system on aerogel or nanotube scaffold

    DOE Patents [OSTI]

    Farmer, Joseph C; Stadermann, Michael

    2013-11-12

    A monolithic three-dimensional electrochemical energy storage system is provided on an aerogel or nanotube scaffold. An anode, separator, cathode, and cathodic current collector are deposited on the aerogel or nanotube scaffold.

  7. Electrochemical Techniques

    SciTech Connect (OSTI)

    Chen, Gang; Lin, Yuehe

    2008-07-20

    Sensitive and selective detection techniques are of crucial importance for capillary electrophoresis (CE), microfluidic chips, and other microfluidic systems. Electrochemical detectors have attracted considerable interest for microfluidic systems with features that include high sensitivity, inherent miniaturization of both the detection and control instrumentation, low cost and power demands, and high compatibility with microfabrication technology. The commonly used electrochemical detectors can be classified into three general modes: conductimetry, potentiometry, and amperometry.

  8. Two Postdoctoral Researcher and Two PhD Positions in Electrochemical Systems (Salinity Gradient Energy Focus)

    E-Print Network [OSTI]

    Alpay, S. Pamir

    , electrochemical batteries, microbial fuel cells, or similar. Experience in electrode or ion-exchange membrane of a state-funded, $1 million collaborative project to optimize and assess the potential of electricity). The Postdoctoral Researchers and PhD students will focus on optimization of RED systems, including (but not limited

  9. Charging-free electrochemical system for harvesting low-grade thermal energy

    E-Print Network [OSTI]

    Cui, Yi

    Charging-free electrochemical system for harvesting low-grade thermal energy Yuan Yanga,1 , Seok processes, environment, solar-thermal, and geothermal en- ergy (1­3). It is generally difficult to convert Cuib,d,3 , and Gang Chena,3 a Department of Mechanical Engineering, Massachusetts Institute

  10. A biofilm microreactor system for simultaneous electrochemical and nuclear magnetic resonance techniques

    SciTech Connect (OSTI)

    Renslow, Ryan S.; Babauta, Jerome T.; Majors, Paul D.; Mehta, Hardeep S.; Ewing, R. James; Ewing, Thomas; Mueller, Karl T.; Beyenal, Haluk

    2014-03-01

    In order to fully understand electrochemically active biofilms and the limitations to their scale-up in industrial biofilm reactors, a complete picture of the microenvironments inside the biofilm is needed. Nuclear magnetic resonance (NMR) techniques are ideally suited for the study of biofilms and for probing their microenvironments because these techniques allow for non-invasive interrogation and in situ monitoring with high resolution. By combining NMR with simultaneous electrochemical techniques, it is possible to sustain and study live electrochemically active biofilms. Here, we introduce a novel biofilm microreactor system that allows for simultaneous electrochemical and NMR techniques (EC-NMR) at the microscale. Microreactors were designed with custom radiofrequency resonator coils, which allowed for NMR measurements of biofilms growing on polarized gold electrodes. For an example application of this system, we grew Geobacter sulfurreducens biofilms. NMR was used to investigate growth media flow velocities, which were compared to simulated laminar flow, and electron donor concentrations inside the biofilms. We use Monte Carlo error analysis to estimate standard deviations of the electron donor concentration measurements within the biofilm. The EC-NMR biofilm microreactor system can ultimately be used to correlate extracellular electron transfer rates with metabolic reactions and explore extracellular electron transfer mechanisms.

  11. Panel 3, Giner Overview

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ? * Coordinating partners to develop 10+ MW H 2 GenStore Site from Renewables (Wind Solar) to be coupled with Mobility users * Infrastructure to speed Renewable Energy...

  12. Panel 3, Giner Overview

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCED MANUFACTURINGEnergy Bills andOrder 422.1, CONDUCT P - .EnergyHYDROGEN ENERGY H 25 th , 2014

  13. System and method for charging electrochemical cells in series

    DOE Patents [OSTI]

    DeLuca, William H. (Naperville, IL); Hornstra, Jr, Fred (St. Charles, IL); Gelb, George H. (Rancho Palos Verdes, CA); Berman, Baruch (Rancho Palos Verdes, CA); Moede, Larry W. (Manhattan Beach, CA)

    1980-01-01

    A battery charging system capable of equalizing the charge of each individual cell at a selected full charge voltage includes means for regulating charger current to first increase current at a constant rate until a bulk charging level is achieved or until any cell reaches a safe reference voltage. A system controller then begins to decrease the charging rate as long as any cell exceeds the reference voltage until an equalization current level is reached. At this point, the system controller activates a plurality of shunt modules to permit shunting of current around any cell having a voltage exceeding the reference voltage. Leads extending between the battery of cells and shunt modules are time shared to permit alternate shunting of current and voltage monitoring without the voltage drop caused by the shunt current. After each cell has at one time exceeded the reference voltage, the charging current is terminated.

  14. Electrochemical Double Layered Capacitor Development and Implementation System

    E-Print Network [OSTI]

    Strunk, Gavin

    2014-08-31

    strategy for a fuel cell/battery/ultra-capacitor hybrid vehicular power system." Journal of Power Sources 194(1): 369-380. [12] Paladini, V., et al. (2007). "Super-capacitors fuel-cell hybrid electric vehicle optimization and control strategy...

  15. A Novel System for Carbon Dioxide Capture Utilizing Electrochemical Membrane Technology

    SciTech Connect (OSTI)

    Ghezel-Ayagh, Hossein; Jolly, Stephen; Patel, Dilip; Hunt, Jennifer; Steen, William A.; Richardson, Carl F.; Marina, Olga A.

    2013-06-03

    FuelCell Energy, Inc. (FCE), in collaboration with Pacific Northwest National Laboratory (PNNL) and URS Corporation, is developing a novel Combined Electric Power and Carbon-Dioxide Separation (CEPACS) system, under a contract from the U.S. Department of Energy (DE-FE0007634), to efficiently and cost effectively separate carbon dioxide from the emissions of existing coal fired power plants. The CEPACS system is based on FCE’s electrochemical membrane (ECM) technology utilizing the Company’s internal reforming carbonate fuel cell products carrying the trade name of Direct FuelCell® (DFC®). The unique chemistry of carbonate fuel cells offers an innovative approach for separation of CO2 from existing fossil-fuel power plant exhaust streams (flue gases). The ECM-based CEPACS system has the potential to become a transformational CO2-separation technology by working as two devices in one: it separates the CO2 from the exhaust of other plants such as an existing coal-fired plant and simultaneously produces clean and environmentally benign (green) electric power at high efficiency using a supplementary fuel. The overall objective of this project is to successfully demonstrate the ability of FCE’s electrochemical membrane-based CEPACS system technology to separate ? 90% of the CO2 from a simulated Pulverized Coal (PC) power plant flue-gas stream and to compress the captured CO2 to a state that can be easily transported for sequestration or beneficial use. Also, a key project objective is to show, through a Technical and Economic Feasibility Study and bench scale testing (11.7 m2 area ECM), that the electrochemical membrane-based CEPACS system is an economical alternative for CO2 capture in PC power plants, and that it meets DOE objectives for the incremental cost of electricity (COE) for post-combustion CO2 capture.

  16. Compact electrochemical sensor system and method for field testing for metals in saliva or other fluids

    SciTech Connect (OSTI)

    Lin, Yuehe; Bennett, Wendy D.; Timchalk, Charles; Thrall, Karla D.

    2004-03-02

    Microanalytical systems based on a microfluidics/electrochemical detection scheme are described. Individual modules, such as microfabricated piezoelectrically actuated pumps and a microelectrochemical cell were integrated onto portable platforms. This allowed rapid change-out and repair of individual components by incorporating "plug and play" concepts now standard in PC's. Different integration schemes were used for construction of the microanalytical systems based on microfluidics/electrochemical detection. In one scheme, all individual modules were integrated in the surface of the standard microfluidic platform based on a plug-and-play design. Microelectrochemical flow cell which integrated three electrodes based on a wall-jet design was fabricated on polymer substrate. The microelectrochemical flow cell was then plugged directly into the microfluidic platform. Another integration scheme was based on a multilayer lamination method utilizing stacking modules with different functionality to achieve a compact microanalytical device. Application of the microanalytical system for detection of lead in, for example, river water and saliva samples using stripping voltammetry is described.

  17. Electrochemical nitridation of metal surfaces

    DOE Patents [OSTI]

    Wang, Heli; Turner, John A.

    2015-06-30

    Electrochemical nitridation of metals and the produced metals are disclosed. An exemplary method of electrochemical nitridation of metals comprises providing an electrochemical solution at low temperature. The method also comprises providing a three-electrode potentiostat system. The method also comprises stabilizing the three-electrode potentiostat system at open circuit potential. The method also comprises applying a cathodic potential to a metal.

  18. Investigation of Synergy Between Electrochemical Capacitors, Flywheels, and Batteries in Hybrid Energy Storage for PV Systems

    SciTech Connect (OSTI)

    Miller, John; Sibley, Lewis, B.; Wohlgemuth, John

    1999-06-01

    This report describes the results of a study that investigated the synergy between electrochemical capacitors (ECs) and flywheels, in combination with each other and with batteries, as energy storage subsystems in photovoltaic (PV) systems. EC and flywheel technologies are described and the potential advantages and disadvantages of each in PV energy storage subsystems are discussed. Seven applications for PV energy storage subsystems are described along with the potential market for each of these applications. A spreadsheet model, which used the net present value method, was used to analyze and compare the costs over time of various system configurations based on flywheel models. It appears that a synergistic relationship exists between ECS and flywheels. Further investigation is recommended to quantify the performance and economic tradeoffs of this synergy and its effect on overall system costs.

  19. In-situ TEM Characterization of Electrochemical Processess in Energy Storage Systems

    SciTech Connect (OSTI)

    Unocic, Raymond R [ORNL; Adamczyk, Leslie A [ORNL; Dudney, Nancy J [ORNL; Alsem, D. H. [Hummingbird Scientific; Salmon, Norman [Hummingbird Scientific; More, Karren Leslie [ORNL

    2011-01-01

    The accelerated development of materials for utilization in electrical energy storage systems will hinge critically upon our understanding of how interfaces (particularly electrode-electrolyte solid liquid interfaces) control the physical and electrochemical energy conversion processes in energy storage systems. A prime example is found in Lt ion-based battery systems, where a passive multiphase layer grows at the electrode/electrolyte interface due to the decomposition of the liquid electrolyte [ l]. Once formed, this solid electrolyte interphase (SEI) protects the active electrode materials from degradation and also regulates the transport and intercalation of Lt ions during battery charge/discharge cycling [2]. Due to the dynamically evolving nature of this nm-scaled interface, it has proven difficult to design experiments that will not only elucidate the fundamental mechanisms controlling SEI nucleation and growth, but will enable the SEI microstructural and chemical evolution as a function of charge/discharge cycling to be monitored in real time.

  20. Portable system and method combining chromatography and array of electrochemical sensors

    DOE Patents [OSTI]

    Zaromb, Solomon (Hinsdale, IL); Stetter, Joseph R. (Naperville, IL)

    1989-01-01

    A portable system for analyzing a fluid sample includes a small, portable, low-pressure and low-power chromatographic analyzer and a chemical parameter spectrometry monitor including an array of sensors for detecting, identifying and measuring the concentrations of a variety of components in the eluent from the chromatographic analyzer. The monitor includes one or more operating condition controllers which may be used to change one or more of the operating conditions during exposure of the sensors to the eluent from the chromatography analyzer to form a response pattern which is then compared with a library of previously established patterns. Gas and liquid chromatographic embodiments are disclosed. In the gas embodiment, the operating condition controllers include heated filaments which may convert electrochemically inactive components to electrochemically active products. In the liquid chromatography embodiment, low-power, liquid-phase equivalents of heated filaments are used with appropriate sensors. The library response patterns may be divided into subsets and the formed pattern may be assigned for comparison only with the patterns of a particular subset.

  1. Creating systems that effectively convert energy, such as efficient solar cells and electrochemical batteries, has been a

    E-Print Network [OSTI]

    Reisslein, Martin

    SEMTE abstract Creating systems that effectively convert energy, such as efficient solar cells stimuli, the solar energy from sunlight, and the mechanical motion is commonplace, indeed fundamental and electrochemical batteries, has been a longstanding scientific pursuit, especially given the global energy

  2. Microstructural manipulation and architecture design of carbon-based electrochemical systems

    E-Print Network [OSTI]

    Mao, Xianwen

    2014-01-01

    Carbon materials are important in electrochemistry. The often cited advantages of carbonaceous materials for electrochemical applications include wide potential working windows, tunable electrocatalytic activity for a ...

  3. Solid state electrochemical composite

    DOE Patents [OSTI]

    Visco, Steven J. (Berkeley, CA); Jacobson, Craig P. (Moraga, CA); DeJonghe, Lutgard C. (Lafayette, CA)

    2009-06-30

    Provided is a composite electrochemical device fabricated from highly electronically conductive materials such as metals, metal alloys, or electronically conductive ceramics. The electronic conductivity of the electrode substrate is maximized. The invention allows for an electrode with high electronic conductivity and sufficient catalytic activity to achieve high power density in ionic (electrochemical) devices such as fuel cells and electrolytic gas separation systems including oxygen generation system.

  4. Pathways to Improved Lifetime of Electrochemical Energy Systems: Understanding the Influence of

    E-Print Network [OSTI]

    Bergman, Keren

    of Technology In novel materials for electrochemical energy storage and conversion, dynamic processes with silicon nanostructures (a novel negative electrode material for Li-ion batteries) is explored with in situ

  5. Theoretical approach for optical response in electrochemical systems: Application to electrode potential dependence of surface-enhanced Raman scattering

    SciTech Connect (OSTI)

    Iida, Kenji; Noda, Masashi; Nobusada, Katsuyuki, E-mail: nobusada@ims.ac.jp [Department of Theoretical and Computational Molecular Science, Institute for Molecular Science, Okazaki 444-8585 (Japan)

    2014-09-28

    We propose a theoretical approach for optical response in electrochemical systems. The fundamental equation to be solved is based on a time-dependent density functional theory in real-time and real-space in combination with its finite temperature formula treating an electrode potential. Solvation effects are evaluated by a dielectric continuum theory. The approach allows us to treat optical response in electrochemical systems at the atomistic level of theory. We have applied the method to surface-enhanced Raman scattering (SERS) of 4-mercaptopyridine on an Ag electrode surface. It is shown that the SERS intensity has a peak as a function of the electrode potential. Furthermore, the real-space computational approach facilitates visualization of variation of the SERS intensity depending on an electrode potential.

  6. Alternating-polarity operation for complete regeneration of electrochemical deionization system

    DOE Patents [OSTI]

    Tran, Tri D. (Livermore, CA); Lenz, David J. (Livermore, CA)

    2002-01-01

    An electrically regeneratable battery of electrochemical cells for capacitive deionization (including electrochemical purification) and regeneration of electrodes is operated at alternate polarities during consecutive cycles. By polarizing the cells, ions are removed from the electrolyte and are held in the electric double layers formed at the carbon aerogel surfaces of the electrodes. As the electrodes of each cell of the battery are saturated with the removed ions, the battery is regenerated electrically at a reversed polarity from that during the deionization step of the cycle, thus significantly minimizing secondary wastes.

  7. Electrochemical cell

    DOE Patents [OSTI]

    Redey, L.I.; Vissers, D.R.; Prakash, J.

    1996-07-16

    An electrochemical cell is described having a bimodal positive electrode, a negative electrode of an alkali metal, and a compatible electrolyte including an alkali metal salt molten at the cell operating temperature. The positive electrode has an electrochemically active layer of at least one transition metal chloride at least partially present as a charging product, and additives of bromide and/or iodide and sulfur in the positive electrode or the electrolyte. Electrode volumetric capacity is in excess of 400 Ah/cm{sup 3}; the cell can be 90% recharged in three hours and can operate at temperatures below 160 C. There is also disclosed a method of reducing the operating temperature and improving the overall volumetric capacity of an electrochemical cell and for producing a positive electrode having a BET area greater than 6{times}10{sup 4}cm{sup 2}/g of Ni. 6 figs.

  8. Electrochemical cell

    DOE Patents [OSTI]

    Redey, L.I.; Vissers, D.R.; Prakash, J.

    1994-02-01

    An electrochemical cell is described having a bimodal positive electrode, a negative electrode of an alkali metal, and a compatible electrolyte including an alkali metal salt molten at the cell operating temperature. The positive electrode has an electrochemically active layer of at least one transition metal chloride at least partially present as a charging product, and additives of bromide and/or iodide and sulfur in the positive electrode or the electrolyte. Electrode volumetric capacity is in excess of 400 Ah/cm[sup 3]; the cell can be 90% recharged in three hours and can operate at temperatures below 160 C. There is also disclosed a method of reducing the operating temperature and improving the overall volumetric capacity of an electrochemical cell and for producing a positive electrode having a BET area greater than 6[times]10[sup 4] cm[sup 2]/g of Ni. 8 figures.

  9. Electrochemical cell

    DOE Patents [OSTI]

    Redey, Laszlo I. (Downers Grove, IL); Vissers, Donald R. (Naperville, IL); Prakash, Jai (Downers Grove, IL)

    1994-01-01

    An electrochemical cell having a bimodal positive electrode, a negative electrode of an alkali metal, and a compatible electrolyte including an alkali metal salt molten at the cell operating temperature. The positive electrode has an electrochemically active layer of at least one transition metal chloride at least partially present as a charging product, and additives of bromide and/or iodide and sulfur in the positive electrode or the electrolyte. Electrode volumetric capacity is in excess of 400 Ah/cm.sup.3 ; the cell can be 90% recharged in three hours and can operate at temperatures below 160.degree. C. There is also disclosed a method of reducing the operating temperature and improving the overall volumetric capacity of an electrochemical cell and for producing a positive electrode having a BET area greater than 6.times.10.sup.4 cm.sup.2 /g of Ni.

  10. Electrochemical cell

    DOE Patents [OSTI]

    Redey, Laszlo I. (6851 Carpenter St., Downers Grove, IL 60516); Vissers, Donald R. (611 Clover Ct., Naperville, IL 60540); Prakash, Jai (2205 Arbor Cir. 8, Downers Grove, IL 60515)

    1996-01-01

    An electrochemical cell having a bimodal positive electrode, a negative electrode of an alkali metal, and a compatible electrolyte including an alkali metal salt molten at the cell operating temperature. The positive electrode has an electrochemically active layer of at least one transition metal chloride at least partially present as a charging product, and additives of bromide and/or iodide and sulfur in the positive electrode or the electrolyte. Electrode volumetric capacity is in excess of 400 Ah/cm.sup.3 ; the cell can be 90% recharged in three hours and can operate at temperatures below 160.degree. C. There is also disclosed a method of reducing the operating temperature and improving the overall volumetric capacity of an electrochemical cell and for producing a positive electrode having a BET area greater than 6.times.10.sup.4 cm.sup.2 /g of Ni.

  11. Supported liquid membrane electrochemical separators

    DOE Patents [OSTI]

    Pemsler, J. Paul (Lexington, MA); Dempsey, Michael D. (Revere, MA)

    1986-01-01

    Supported liquid membrane separators improve the flexibility, efficiency and service life of electrochemical cells for a variety of applications. In the field of electrochemical storage, an alkaline secondary battery with improved service life is described in which a supported liquid membrane is interposed between the positive and negative electrodes. The supported liquid membranes of this invention can be used in energy production and storage systems, electrosynthesis systems, and in systems for the electrowinning and electrorefining of metals.

  12. Alternating-polarity operation for complete regeneration of electrochemical deionization system

    DOE Patents [OSTI]

    Tran, Tri D. (Livermore, CA); Lenz, David J. (Livermore, CA)

    2006-11-21

    An electrically regeneratable battery of electrochemical cells for capacitive deionization (including electrochemical purification) and regeneration of electrodes is operated at alternate polarities during consecutive cycles. In other words, after each regeneration step operated at a given polarity in a deionization-regeneration cycle, the polarity of the deionization step in the next cycle is maintained. In one embodiment, two end electrodes are arranged one at each end of the battery, adjacent to end plates. An insulator layer is interposed between each end plate and the adjacent end electrode. Each end electrode includes a single sheet of conductive material having a high specific surface area and sorption capacity, preferably a sheet formed of carbon aerogel composite. The batter further includes a plurality of generally identical double-sided intermediate electrodes that are equidistally separated from each other, between the two end electrodes. As the electrolyte enters the battery of ells, t flows through a continuous open serpentine channel defined by the electrodes, substantially parallel to the surfaces of the electrodes. By polarizing the cells, ions are removed from the electrolyte and are held in the electric double layers formed at the carbon aerogel surfaces of the electrodes. As the electrodes of each cell of the battery are saturated with the removed ions, the battery is regenerated electrically at a reversed polarity from that during the deionization step of the cycle, thus significantly minimizing secondary wastes.

  13. Electrochemical construction

    DOE Patents [OSTI]

    Einstein, Harry (Springfield, NJ); Grimes, Patrick G. (Westfield, NJ)

    1983-08-23

    An electrochemical cell construction features a novel co-extruded plastic electrode in an interleaved construction with a novel integral separator-spacer. Also featured is a leak and impact resistant construction for preventing the spill of corrosive materials in the event of rupture.

  14. Electrochemical device

    DOE Patents [OSTI]

    Grimes, Patrick G. (Westfield, NJ); Einstein, Harry (Springfield, NJ); Bellows, Richard J. (Westfield, NJ)

    1988-01-12

    A tunnel protected electrochemical device features channels fluidically communicating between manifold, tunnels and cells. The channels are designed to provide the most efficient use of auxiliary power. The channels have a greater hydraulic pressure drop and electrical resistance than the manifold. This will provide a design with the optimum auxiliary energy requirements.

  15. Electrochemical cell

    SciTech Connect (OSTI)

    Walsh, F.M.

    1986-12-23

    This patent describes an electrochemical cell having a metal anode wherein the metal is selected from zinc and cadmium; a bromine cathode; and an aqueous electrolyte containing a metal bromide, the metal bromide having the same metal as the metal of the anode. The improvement described here comprises: a bromine complexing agent in the aqueous metal bromide electrolyte, the complexing agent consisting solely of a quaternary ammonium salt of an N-organo substituted alpha amino acid, ester, or betaine.

  16. Electrochemical cell

    DOE Patents [OSTI]

    Nagy, Z.; Yonco, R.M.; You, H.; Melendres, C.A.

    1992-08-25

    An electrochemical cell has a layer-type or sandwich configuration with a Teflon center section that houses working, reference and counter electrodes and defines a relatively narrow electrolyte cavity. The center section is surrounded on both sides with thin Teflon membranes. The membranes are pressed in place by a pair of Teflon inner frames which are in turn supported by a pair of outer metal frames. The pair of inner and outer frames are provided with corresponding, appropriately shaped slits that are in plane generally transverse to the plane of the working electrode and permit X-ray beams to enter and exit the cell through the Teflon membranes that cover the slits so that the interface between the working electrode and the electrolyte within the cell may be analyzed by transmission geometry. In one embodiment, the center section consists of two parts, one on top of the other. Alternatively, the center section of the electrochemical cell may consist of two intersliding pieces or may be made of a single piece of Teflon sheet material. The electrolyte cavity is shaped so that the electrochemical cell can be rotated 90[degree] in either direction while maintaining the working and counter electrodes submerged in the electrolyte. 5 figs.

  17. Blend Down Monitoring System Fissile Mass Flow Monitor Implementation at the ElectroChemical Plant, Zelenogorsk, Russia

    SciTech Connect (OSTI)

    Uckan, T.

    2005-11-11

    The implementation plans and preparations for installation of the Fissile Mass Flow Monitor (FMFM) equipment at the ElectroChemical Plant (ECP), Zelenogorsk, Russia, are presented in this report. The FMFM, developed at Oak Ridge National Laboratory, is part of the Blend Down Monitoring System (BDMS), developed for the U.S. Department of Energy Highly Enriched Uranium (HEU) Transparency Implementation Program. The BDMS provides confidence to the United States that the Russian nuclear facilities supplying the lower-assay ({approx}4%) product low enriched uranium (P-LEU) to the United States from down-blended weapons-grade HEU are meeting the nonproliferation goals of the government-to-government HEU Purchase Agreement, signed between the Russian Federation and the United States in 1993. The first BDMS has been operational at Ural Electrochemical Integrated Plant, Novouralsk, since February 1999 and is successfully providing HEU transparency data to the United States. The second BDMS was installed at ECP in February 2003. The FMFM makes use of a set of thermalized californium-252 ({sup 252}Cf) spontaneous neutron sources for a modulated fission activation of the UF{sub 6} gas stream for measuring the {sup 235}U fissile mass flow rate. To do this, the FMFM measures the transport time of the fission fragments created from the fission activation process under the modulated source to the downstream detectors by detecting the delayed gamma rays from the fission fragments. The FMFM provides unattended, nonintrusive measurements of the {sup 235}U mass flow in the HEU, LEU blend stock, and P-LEU process legs. The FMFM also provides the traceability of the HEU flow to the product process leg. This report documents the technical installation requirements and the expected operational characteristics of the ECP FMFM.

  18. A High Temperature Electrochemical Energy Storage System Based on Sodium Beta-Alumina Solid Electrolyte (Base)

    SciTech Connect (OSTI)

    Anil Virkar

    2008-03-31

    This report summarizes the work done during the period September 1, 2005 and March 31, 2008. Work was conducted in the following areas: (1) Fabrication of sodium beta{double_prime} alumina solid electrolyte (BASE) using a vapor phase process. (2) Mechanistic studies on the conversion of {alpha}-alumina + zirconia into beta{double_prime}-alumina + zirconia by the vapor phase process. (3) Characterization of BASE by X-ray diffraction, SEM, and conductivity measurements. (4) Design, construction and electrochemical testing of a symmetric cell containing BASE as the electrolyte and NaCl + ZnCl{sub 2} as the electrodes. (5) Design, construction, and electrochemical evaluation of Na/BASE/ZnCl{sub 2} electrochemical cells. (6) Stability studies in ZnCl{sub 2}, SnCl{sub 2}, and SnI{sub 4} (7) Design, assembly and testing of planar stacks. (8) Investigation of the effect of porous surface layers on BASE on cell resistance. The conventional process for the fabrication of sodium ion conducting beta{double_prime}-alumina involves calcination of {alpha}-alumina + Na{sub 2}CO{sub 3} + LiNO{sub 3} at 1250 C, followed by sintering powder compacts in sealed containers (platinum or MgO) at {approx}1600 C. The novel vapor phase process involves first sintering a mixture of {alpha}-alumina + yttria-stabilized zirconia (YSZ) into a dense ceramic followed by exposure to soda vapor at {approx}1450 C to convert {alpha}-alumina into beta{double_prime}-alumina. The vapor phase process leads to a high strength BASE, which is also resistant to moisture attack, unlike BASE made by the conventional process. The PI is the lead inventor of the process. Discs and tubes of BASE were fabricated in the present work. In the conventional process, sintering of BASE is accomplished by a transient liquid phase mechanism wherein the liquid phase contains NaAlO{sub 2}. Some NaAlO{sub 2} continues to remain at grain boundaries; and is the root cause of its water sensitivity. In the vapor phase process, NaAlO{sub 2} is never formed. Conversion occurs by a coupled transport of Na{sup +} through BASE formed and of O{sup 2-} through YSZ to the reaction front. Transport to the reaction front is described in terms of a chemical diffusion coefficient of Na{sub 2}O. The conversion kinetics as a function of microstructure is under investigation. The mechanism of conversion is described in this report. A number of discs and tubes of BASE have been fabricated by the vapor phase process. The material was investigated by X-ray diffraction (XRD), optical microscopy and scanning electron microscopy (SEM), before and after conversion. Conductivity (which is almost exclusively due to sodium ion transport at the temperatures of interest) was measured. Conductivity was measured using sodium-sodium tests as well as by impedance spectroscopy. Various types of both planar and tubular electrochemical cells were assembled and tested. In some cases the objective was to determine if there was any interaction between the salt and BASE. The interaction of interest was mainly ion exchange (possible replacement of sodium ion by the salt cation). It was noted that Zn{sup 2+} did not replace Na+ over the conditions of interest. For this reason much of the work was conducted with ZnCl{sub 2} as the cathode salt. In the case of Sn-based, Sn{sup 2+} did ion exchange, but Sn{sup 4+} did not. This suggests that Sn{sup 4+} salts are viable candidates. These results and implications are discussed in the report. Cells made with Na as the anode and ZnCl{sub 2} as the cathode were successfully charged/discharged numerous times. The key advantages of the batteries under investigation here over the Na-S batteries are: (1) Steel wool can be used in the cathode compartment unlike Na-S batteries which require expensive graphite. (2) Planar cells can be constructed in addition to tubular, allowing for greater design flexibility and integration with other devices such as planar SOFC. (3) Comparable or higher open circuit voltage (OCV) than the Na-S battery. (4) Wider operating temperature range and higher temper

  19. Electrochemical flow capacitors

    DOE Patents [OSTI]

    Gogotsi, Yury; Presser, Volker; Kumbar, Emin Caglan

    2015-11-05

    The present invention generally relates to devices for energy storage technologies, and more particularly to electrochemical flow capacitor systems and applications. In some aspects, these flow capacitors have at least one electrode comprising a non-stationary solid or semi-solid composition comprising supercapacitive particles and an electrolytic solvent in electrical communication with at least one current collector, and energy is stored and/or released by charging and/or discharging the electrode(s).

  20. Electrochemical flow capacitors

    DOE Patents [OSTI]

    Gogotsi, Yury; Presser, Volker; Kumbur, Emin Caglan

    2015-10-27

    The present invention generally relates to devices for energy storage technologies, and more particularly to electrochemical flow capacitor systems and applications. In some aspects, these flow capacitors have at least one electrode comprising a non-stationary solid or semi-solid composition comprising supercapacitive particles and an electrolytic solvent in electrical communication with at least one current collector, and energy is stored and/or released by charging and/or discharging the electrode(s).

  1. Electrochemical cell

    DOE Patents [OSTI]

    Redey, L.I.; Vissers, D.R.; Prakash, J.

    1994-08-23

    An electrochemical cell is described having an alkali metal negative electrode such as sodium and a positive electrode including Ni or transition metals, separated by a [beta] alumina electrolyte and NaAlCl[sub 4] or other compatible material. Various concentrations of a bromine, iodine and/or sulfur containing additive and pore formers are disclosed, which enhance cell capacity and power. The pore formers may be the ammonium salts of carbonic acid or a weak organic acid or oxamide or methylcellulose. 6 figs.

  2. ELECTROCHEMICAL POWER FOR TRANSPORTATION

    SciTech Connect (OSTI)

    Cairns, Elton J.; Hietbrink, Earl H.

    1981-01-01

    This section includes some historical background of the rise and fall and subsequent rebirth of the electric vehicle; and a brief discussion of current transportation needs, and environmental and energy utilization issues that resulted in the renewed interest in applying electrochemical energy conversion technology to electric vehicle applications. Although energy utilization has evolved to be the most significant and important issue, the environmental issue will be discussed first in this section only because of its chronological occurrence. The next part of the chapter is a review of passenger and commercial electric vehicle technology with emphasis on vehicle design and demonstrated performance of vehicles with candidate power sources being developed. This is followed by a discussion of electrochemical power source requirements associated with future electric vehicles that can play a role in meeting modern transportation needs. The last part of the chapter includes first a discussion of how to identify candidate electrochemical systems that might be of interest in meeting electric vehicle power source requirements. This is then followed by a review of the current technological status of these systems and a discussion of the most significant problems that must be resolved before each candidate system can be a viable power source.

  3. Electrochemical supercapacitors

    DOE Patents [OSTI]

    Rudge, Andrew J. (Los Alamos, NM); Ferraris, John P. (Dallas, TX); Gottesfeld, Shimshon (Los Alamos, NM)

    1996-01-01

    A new class of electrochemical capacitors provides in its charged state a positive electrode including an active material of a p-doped material and a negative electrode including an active material of an n-doped conducting polymer, where the p-doped and n-doped materials are separated by an electrolyte. In a preferred embodiment, the positive and negative electrode active materials are selected from conducting polymers consisting of polythiophene, polymers having an aryl group attached in the 3-position, polymers having aryl and alkyl groups independently attached in the 3- and 4-positions, and polymers synthesized from bridged dimers having polythiophene as the backbone. A preferred electrolyte is a tetraalykyl ammonium salt, such as tetramethylammonium trifluoromethane sulphonate (TMATFMS), that provides small ions that are mobile through the active material, is soluble in acetonitrile, and can be used in a variety of capacitor configurations.

  4. An electrochemical system for efficiently harvesting low-grade heat energy

    E-Print Network [OSTI]

    Lee, Seok Woo

    Efficient and low-cost thermal energy-harvesting systems are needed to utilize the tremendous low-grade heat sources. Although thermoelectric devices are attractive, its efficiency is limited by the relatively low ...

  5. Anode-cathode power distribution systems and methods of using the same for electrochemical reduction

    DOE Patents [OSTI]

    Koehl, Eugene R; Barnes, Laurel A; Wiedmeyer, Stanley G; Williamson, Mark A; Willit, James L

    2014-01-28

    Power distribution systems are useable in electrolytic reduction systems and include several cathode and anode assembly electrical contacts that permit flexible modular assembly numbers and placement in standardized connection configurations. Electrical contacts may be arranged at any position where assembly contact is desired. Electrical power may be provided via power cables attached to seating assemblies of the electrical contacts. Cathode and anode assembly electrical contacts may provide electrical power at any desired levels. Pairs of anode and cathode assembly electrical contacts may provide equal and opposite electrical power; different cathode assembly electrical contacts may provide different levels of electrical power to a same or different modular cathode assembly. Electrical systems may be used with an electrolyte container into which the modular cathode and anode assemblies extend and are supported above, with the modular cathode and anode assemblies mechanically and electrically connecting to the respective contacts in power distribution systems.

  6. Microfluidic electrochemical reactors

    DOE Patents [OSTI]

    Nuzzo, Ralph G. (Champaign, IL); Mitrovski, Svetlana M. (Urbana, IL)

    2011-03-22

    A microfluidic electrochemical reactor includes an electrode and one or more microfluidic channels on the electrode, where the microfluidic channels are covered with a membrane containing a gas permeable polymer. The distance between the electrode and the membrane is less than 500 micrometers. The microfluidic electrochemical reactor can provide for increased reaction rates in electrochemical reactions using a gaseous reactant, as compared to conventional electrochemical cells. Microfluidic electrochemical reactors can be incorporated into devices for applications such as fuel cells, electrochemical analysis, microfluidic actuation, pH gradient formation.

  7. 654 IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, VOL. 18, NO. 3, MAY 2010 Model-Based Electrochemical Estimation and

    E-Print Network [OSTI]

    -Based Electrochemical Estimation and Constraint Management for Pulse Operation of Lithium Ion Batteries Kandler A. Smith Technologies, Graduate Automotive Technology Education Pro- gram. This work was performed at the Pennsylvania-mail: kandlers@hotmail.com; kandler_smith@nrel.gov). C. D. Rahn and C.-Y. Wang are with the Department

  8. Breakthrough Flow Battery Cell Stack: Transformative Electrochemical Flow Storage System (TEFSS)

    SciTech Connect (OSTI)

    2010-09-09

    GRIDS Project: UTRC is developing a flow battery with a unique design that provides significantly more power than today's flow battery systems. A flow battery is a cross between a traditional battery and a fuel cell. Flow batteries store their energy in external tanks instead of inside the cell itself. Flow batteries have traditionally been expensive because the battery cell stack, where the chemical reaction takes place, is costly. In this project, UTRC is developing a new stack design that achieves 10 times higher power than today’s flow batteries. This high power output means the size of the cell stack can be smaller, reducing the amount of expensive materials that are needed. UTRC’s flow battery will reduce the cost of storing electricity for the electric grid, making widespread use feasible.

  9. In-situ short-circuit protection system and method for high-energy electrochemical cells

    DOE Patents [OSTI]

    Gauthier, Michel (La Prairie, CA); Domroese, Michael K. (South St. Paul, MN); Hoffman, Joseph A. (Minneapolis, MN); Lindeman, David D. (Hudson, WI); Noel, Joseph-Robert-Gaetan (St-Hubert, CA); Radewald, Vern E. (Austin, TX); Rouillard, Jean (Saint-Luc, CA); Rouillard, Roger (Beloeil, CA); Shiota, Toshimi (St. Bruno, CA); Trice, Jennifer L. (Eagan, MN)

    2003-04-15

    An in-situ thermal management system for an energy storage device. The energy storage device includes a plurality of energy storage cells each being coupled in parallel to common positive and negative connections. Each of the energy storage cells, in accordance with the cell's technology, dimensions, and thermal/electrical properties, is configured to have a ratio of energy content-to-contact surface area such that thermal energy produced by a short-circuit in a particular cell is conducted to a cell adjacent the particular cell so as to prevent the temperature of the particular cell from exceeding a breakdown temperature. In one embodiment, a fuse is coupled in series with each of a number of energy storage cells. The fuses are activated by a current spike capacitively produced by a cell upon occurrence of a short-circuit in the cell, thereby electrically isolating the short-circuited cell from the common positive and negative connections.

  10. In-situ short circuit protection system and method for high-energy electrochemical cells

    DOE Patents [OSTI]

    Gauthier, Michel (La Prairie, CA); Domroese, Michael K. (South St. Paul, MN); Hoffman, Joseph A. (Minneapolis, MN); Lindeman, David D. (Hudson, WI); Noel, Joseph-Robert-Gaetan (St-Hubert, CA); Radewald, Vern E. (Austin, TX); Rouillard, Jean (Saint-Luc, CA); Rouillard, Roger (Beloeil, CA); Shiota, Toshimi (St. Bruno, CA); Trice, Jennifer L. (Eagan, MN)

    2000-01-01

    An in-situ thermal management system for an energy storage device. The energy storage device includes a plurality of energy storage cells each being coupled in parallel to common positive and negative connections. Each of the energy storage cells, in accordance with the cell's technology, dimensions, and thermal/electrical properties, is configured to have a ratio of energy content-to-contact surface area such that thermal energy produced by a short-circuit in a particular cell is conducted to a cell adjacent the particular cell so as to prevent the temperature of the particular cell from exceeding a breakdown temperature. In one embodiment, a fuse is coupled in series with each of a number of energy storage cells. The fuses are activated by a current spike capacitively produced by a cell upon occurrence of a short-circuit in the cell, thereby electrically isolating the short-circuited cell from the common positive and negative connections.

  11. Separator material for electrochemical cells

    DOE Patents [OSTI]

    Cieslak, Wendy R. (1166 Laurel Loop NE., Albuquerque, NM 87122); Storz, Leonard J. (2215 Ambassador NE., Albuquerque, NM 87112)

    1991-01-01

    An electrochemical cell characterized as utilizing an aramid fiber as a separator material. The aramid fibers are especially suited for lithium/thionyl chloride battery systems. The battery separator made of aramid fibers possesses superior mechanical strength, chemical resistance, and is flame retardant.

  12. Separator material for electrochemical cells

    DOE Patents [OSTI]

    Cieslak, W.R.; Storz, L.J.

    1991-03-26

    An electrochemical cell is characterized as utilizing an aramid fiber as a separator material. The aramid fibers are especially suited for lithium/thionyl chloride battery systems. The battery separator made of aramid fibers possesses superior mechanical strength, chemical resistance, and is flame retardant.

  13. Recognized Leader in Electrochemical Purification

    SciTech Connect (OSTI)

    Hoppe, Eric

    2013-11-20

    PNNL scientists developed an electrochemical method for purifying copper, a key material that makes possible radiation detection systems of unprecedented sensitivity. The method begins with the purest copper materials available, and results in the lowest-background copper in the world. Chemist Eric Hoppe explains the process.

  14. Recognized Leader in Electrochemical Purification

    ScienceCinema (OSTI)

    Hoppe, Eric

    2014-07-24

    PNNL scientists developed an electrochemical method for purifying copper, a key material that makes possible radiation detection systems of unprecedented sensitivity. The method begins with the purest copper materials available, and results in the lowest-background copper in the world. Chemist Eric Hoppe explains the process.

  15. A mathematical model of the current-potential characteristics for the bromine/bromide ion electrochemical system 

    E-Print Network [OSTI]

    Lorimer, Susan Elaine

    1982-01-01

    . Trzeciakowski who provided unmeasurable moral support. TABLE OF CONTENTS Volume I PAGE INTRODUCTION. LITERATURE SURVEY Modeling of the Br2/Br Electrochemical Reaction. . Scope of Present Model. Past Modeling of Electrode Kinetics. . . Past Modeling... OF SYMBOLS. 275 REFERENCES 281 Volume II APPENDIX A. . . 285 APPENDIX B. . . 341 APPENDIX C 355 APPENDIX D. 430 VITA 452 TABLE LIST OF TABLES Volume I PAGE Summary of proposed electrode kinetic mechanisms. . . . . . 15 Simplified forms of the V-H...

  16. Electrochemical Biosensors: Recommended Definitions and Classification

    E-Print Network [OSTI]

    Wilson, George S.; Thé venot, Daniel R.; Toth, Klara; Durst, Richard A.

    1999-01-01

    with an electrochemical transduction element. Because of their ability to be repeatedly calibrated, we recommend that a biosensor should be clearly distinguished from a bioanalytical system, which requires additional processing steps, such as reagent addition. A device...

  17. Feedback Controlled High Frequency Electrochemical Micromachining 

    E-Print Network [OSTI]

    Ozkeskin, Fatih Mert

    2008-10-10

    are different from those for silicon. A promising mass production method for micro/meso scale components is electrochemical micromachining. The complex system, however, requires high precision mechanical fixtures and sophisticated instrumentation for proper...

  18. Mediated electrochemical oxidation of organic wastes using a Co (III) mediator in a nitric acid based system

    DOE Patents [OSTI]

    Balazs, G.B.; Chiba, Z.; Lewis, P.R.; Nelson, N.; Steward, G.A.

    1999-06-15

    An electrochemical cell with a Co(III) mediator and nitric acid electrolyte provides efficient destruction of organic and mixed wastes. The organic waste is concentrated in the anolyte reservoir, where the mediator oxidizes the organics and insoluble transuranic compounds and is regenerated at the anode until the organics are converted to CO[sub 2]. The nitric acid is an excellent oxidant that facilitates the destruction of the organic components. The anode is not readily attacked by the nitric acid solution, thus the cell can be used for extended continual operation without electrode replacement. 2 figs.

  19. Electrochemical methane sensor

    DOE Patents [OSTI]

    Zaromb, S.; Otagawa, T.; Stetter, J.R.

    1984-08-27

    A method and instrument including an electrochemical cell for the detection and measurement of methane in a gas by the oxidation of methane electrochemically at a working electrode in a nonaqueous electrolyte at a voltage about 1.4 volts vs R.H.E. (the reversible hydrogen electrode potential in the same electrolyte), and the measurement of the electrical signal resulting from the electrochemical oxidation.

  20. Electrochemical cell stack assembly

    DOE Patents [OSTI]

    Jacobson, Craig P.; Visco, Steven J.; De Jonghe, Lutgard C.

    2010-06-22

    Multiple stacks of tubular electrochemical cells having a dense electrolyte disposed between an anode and a cathode preferably deposited as thin films arranged in parallel on stamped conductive interconnect sheets or ferrules. The stack allows one or more electrochemical cell to malfunction without disabling the entire stack. Stack efficiency is enhanced through simplified gas manifolding, gas recycling, reduced operating temperature and improved heat distribution.

  1. ELLIPSOMETRY OF ELECTROCHEMICAL SURFACE LAYERS

    E-Print Network [OSTI]

    Muller, R.H.

    2010-01-01

    in Advances In Electrochemistry and Electrochemicalistry, in Advances in Electrochemistry and Electrochemical ,

  2. Electrochemical heat engine

    DOE Patents [OSTI]

    Elliott, Guy R. B. (Los Alamos, NM); Holley, Charles E. (Alcalde, NM); Houseman, Barton L. (Cockeysville, MD); Sibbitt, Jr., Wilmer L. (Albuquerque, NM)

    1978-01-01

    Electrochemical heat engines produce electrochemical work, and mechanical motion is limited to valve and switching actions as the heat-to-work cycles are performed. The electrochemical cells of said heat engines use molten or solid electrolytes at high temperatures. One or more reactions in the cycle will generate a gas at high temperature which can be condensed at a lower temperature with later return of the condensate to electrochemical cells. Sodium, potassium, and cesium are used as the working gases for high temperature cells (above 600 K) with halogen gases or volatile halides being used at lower temperature. Carbonates and halides are used as molten electrolytes and the solid electrolyte in these melts can also be used as a cell separator.

  3. Handbook of Electrochemical Nanotechnology

    SciTech Connect (OSTI)

    Lin, Yuehe; Nalwa, H. S.

    2009-02-12

    This 2-volume handbook provides an overview of recent advances in the field of electrochemical nanotechnology. It will be of great interst to graduate students, scientists, and engineering professionals whose research is at the interface of electrochemistry and nanotechnology.

  4. Nanoelectrode array for electrochemical analysis

    DOE Patents [OSTI]

    Yelton, William G. (Sandia Park, NM); Siegal, Michael P. (Albuquerque, NM)

    2009-12-01

    A nanoelectrode array comprises a plurality of nanoelectrodes wherein the geometric dimensions of the electrode controls the electrochemical response, and the current density is independent of time. By combining a massive array of nanoelectrodes in parallel, the current signal can be amplified while still retaining the beneficial geometric advantages of nanoelectrodes. Such nanoelectrode arrays can be used in a sensor system for rapid, non-contaminating field analysis. For example, an array of suitably functionalized nanoelectrodes can be incorporated into a small, integrated sensor system that can identify many species rapidly and simultaneously under field conditions in high-resistivity water, without the need for chemical addition to increase conductivity.

  5. Electrochemical fabrication of capacitors

    DOE Patents [OSTI]

    Mansour, Azzam N. (Fairfax Sta., VA); Melendres, Carlos A. (Lemont, IL)

    1999-01-01

    A film of nickel oxide is anodically deposited on a graphite sheet held in osition on an electrochemical cell during application of a positive electrode voltage to the graphite sheet while exposed to an electrolytic nickel oxide solution within a volumetrically variable chamber of the cell. An angularly orientated x-ray beam is admitted into the cell for transmission through the deposited nickel oxide film in order to obtain structural information while the film is subject to electrochemical and in-situ x-ray spectroscopy from which optimum film thickness, may be determined by comparative analysis for capacitor fabrication purposes.

  6. Electrochemical membrane incinerator

    DOE Patents [OSTI]

    Johnson, Dennis C. (Ames, IA); Houk, Linda L. (Ames, IA); Feng, Jianren (Ames, IA)

    2001-03-20

    Electrochemical incineration of p-benzoquinone was evaluated as a model for the mineralization of carbon in toxic aromatic compounds. A Ti or Pt anode was coated with a film of the oxides of Ti, Ru, Sn and Sb. This quaternary metal oxide film was stable; elemental analysis of the electrolyzed solution indicated the concentration of these metal ions to be 3 .mu.g/L or less. The anode showed good reactivity for the electrochemical incineration of benzoquinone. The use of a dissolved salt matrix as the so-called "supporting electrolyte" was eliminated in favor of a solid-state electrolyte sandwiched between the anode and cathode.

  7. Separators for electrochemical cells

    DOE Patents [OSTI]

    Carlson, Steven Allen; Anakor, Ifenna Kingsley

    2014-11-11

    Provided are separators for use in an electrochemical cell comprising (a) an inorganic oxide and (b) an organic polymer, wherein the inorganic oxide comprises organic substituents. Preferably, the inorganic oxide comprises an hydrated aluminum oxide of the formula Al.sub.2O.sub.3.xH.sub.2O, wherein x is less than 1.0, and wherein the hydrated aluminum oxide comprises organic substituents, preferably comprising a reaction product of a multifunctional monomer and/or organic carbonate with an aluminum oxide, such as pseudo-boehmite and an aluminum oxide. Also provided are electrochemical cells comprising such separators.

  8. Electrochemical cells for medium- and large-scale energy storage

    SciTech Connect (OSTI)

    Wang, Wei; Wei, Xiaoliang; Choi, Daiwon; Lu, Xiaochuan; Yang, G.; Sun, C.

    2014-12-12

    This is one of the chapters in the book titled “Advances in batteries for large- and medium-scale energy storage: Applications in power systems and electric vehicles” that will be published by the Woodhead Publishing Limited. The chapter discusses the basic electrochemical fundamentals of electrochemical energy storage devices with a focus on the rechargeable batteries. Several practical secondary battery systems are also discussed as examples

  9. Remote electrochemical sensor

    DOE Patents [OSTI]

    Wang, Joseph (Las Cruces, NM); Olsen, Khris (Richland, WA); Larson, David (Las Cruces, NM)

    1997-01-01

    An electrochemical sensor for remote detection, particularly useful for metal contaminants and organic or other compounds. The sensor circumvents technical difficulties that previously prevented in-situ remote operations. The microelectrode, connected to a long communications cable, allows convenient measurements of the element or compound at timed and frequent intervals and instrument/sample distances of ten feet to more than 100 feet. The sensor is useful for both downhole groundwater monitoring and in-situ water (e.g., shipboard seawater) analysis.

  10. In-Situ Electrochemical Transmission Electron Microscopy for Battery Research

    SciTech Connect (OSTI)

    Mehdi, Beata L; Gu, Meng; Parent, Lucas; Xu, WU; Nasybulin, Eduard; Chen, Xilin; Unocic, Raymond R; Xu, Pinghong; Welch, David; Abellan, Patricia; Zhang, Ji-Guang; Liu, Jun; Wang, Chongmin; Arslan, Ilke; Evans, James E; Browning, Nigel

    2014-01-01

    The recent development of in-situ liquid stages for (scanning) transmission electron microscopes now makes it possible for us to study the details of electrochemical processes under operando conditions. As electrochemical processes are complex, care must be taken to calibrate the system before any in-situ/operando observations. In addition, as the electron beam can cause effects that look similar to electrochemical processes at the electrolyte/electrode interface, an understanding of the role of the electron beam in modifying the operando observations must also be understood. In this paper we describe the design, assembly, and operation of an in-situ electrochemical cell, paying particular attention to the method for controlling and quantifying the experimental parameters. The use of this system is then demonstrated for the lithiation/delithiation of silicon nanowires.

  11. Advanced Hybrid Water Heater using Electrochemical Compressor...

    Energy Savers [EERE]

    Advanced Hybrid Water Heater using Electrochemical Compressor Advanced Hybrid Water Heater using Electrochemical Compressor Xergy is using its Electro Chemical Compression (ECC)...

  12. Metal halogen electrochemical cell

    SciTech Connect (OSTI)

    Walsh, F.M.

    1986-06-03

    An electrochemical cell is described having a metal anode selected from the group consisting of zinc and cadmium; a bromine cathode; and, an aqueous electrolyte containing a metal bromide, the metal having the same metal as the metal of the anode, the improvement comprising: a bromine complexing agent in the aqueous metal bromide electrolyte consisting solely of a tetraorgano substituted ammonium salt, which salt is soluble of water and forms and substantially water immiscible liquid bromine complex at temperatures in the range of about 10/sup 0/C. to about 60/sup 0/C. and wherein the tetraorgano substituted ammonium salt is selected from asymmetric quaternary ammonium compounds.

  13. Electrochemical thinning of silicon

    DOE Patents [OSTI]

    Medernach, John W. (Albuquerque, NM)

    1994-01-01

    Porous semiconducting material, e.g. silicon, is formed by electrochemical treatment of a specimen in hydrofluoric acid, using the specimen as anode. Before the treatment, the specimen can be masked. The porous material is then etched with a caustic solution or is oxidized, depending of the kind of structure desired, e.g. a thinned specimen, a specimen, a patterned thinned specimen, a specimen with insulated electrical conduits, and so on. Thinned silicon specimen can be subjected to tests, such as measurement of interstitial oxygen by Fourier transform infra-red spectroscopy (FTIR).

  14. Electrochemical thinning of silicon

    DOE Patents [OSTI]

    Medernach, J.W.

    1994-01-11

    Porous semiconducting material, e.g. silicon, is formed by electrochemical treatment of a specimen in hydrofluoric acid, using the specimen as anode. Before the treatment, the specimen can be masked. The porous material is then etched with a caustic solution or is oxidized, depending of the kind of structure desired, e.g. a thinned specimen, a specimen, a patterned thinned specimen, a specimen with insulated electrical conduits, and so on. Thinned silicon specimen can be subjected to tests, such as measurement of interstitial oxygen by Fourier transform infra-red spectroscopy (FTIR). 14 figures.

  15. Remote electrochemical sensor

    DOE Patents [OSTI]

    Wang, J.; Olsen, K.; Larson, D.

    1997-10-14

    An electrochemical sensor is described for remote detection, particularly useful for metal contaminants and organic or other compounds. The sensor circumvents technical difficulties that previously prevented in-situ remote operations. The microelectrode, connected to a long communications cable, allows convenient measurements of the element or compound at timed and frequent intervals and instrument/sample distances of ten feet to more than 100 feet. The sensor is useful for both downhole groundwater monitoring and in-situ water (e.g., shipboard seawater) analysis. 21 figs.

  16. Electrochemical planarization for multilevel metallization

    SciTech Connect (OSTI)

    Contolini, R.J.; Bernhardt, A.F.; Mayer, S.T. (Lawrence Livermore National Lab., Livermore, CA (United States))

    1994-09-01

    The authors describe an electrochemical planarization technology involving electroplating followed by electropolishing, resulting in a very flat surface containing embedded conductors. Electrochemical planarization technology has been used to produce silicon substrate multichip modules. Both the electroplating and electropolishing processes have a thickness uniformity of better than [+-] 2% ([+-]3[sigma]) across a 100 mm wafer.

  17. Electrochemical photovoltaic cells and electrodes

    DOE Patents [OSTI]

    Skotheim, Terje A. (East Patchogue, NY)

    1984-01-01

    Improved electrochemical photovoltaic cells and electrodes for use therein, particularly electrodes employing amorphous silicon or polyacetylene coating are produced by a process which includes filling pinholes or porous openings in the coatings by electrochemical oxidation of selected monomers to deposit insulating polymer in the openings.

  18. Electrochemical sensor for monitoring electrochemical potentials of fuel cell components

    DOE Patents [OSTI]

    Kunz, Harold R. (Vernon, CT); Breault, Richard D. (Coventry, CT)

    1993-01-01

    An electrochemical sensor comprised of wires, a sheath, and a conduit can be utilized to monitor fuel cell component electric potentials during fuel cell shut down or steady state. The electrochemical sensor contacts an electrolyte reservoir plate such that the conduit wicks electrolyte through capillary action to the wires to provide water necessary for the electrolysis reaction which occurs thereon. A voltage is applied across the wires of the electrochemical sensor until hydrogen evolution occurs at the surface of one of the wires, thereby forming a hydrogen reference electrode. The voltage of the fuel cell component is then determined with relation to the hydrogen reference electrode.

  19. Technology Base Research Project for electrochemical energy storage

    SciTech Connect (OSTI)

    Kinoshita, Kim (ed.)

    1991-06-01

    The US DOE's Office of Propulsion Systems provides support for an electrochemical energy storage program, which includes R D on advanced rechargeable batteries and fuel cells. A major goal of this program is to develop electrochemical power sources suitable for application in electric vehicles (EVs). The program centers on advanced systems that offer the potential for high performance and low life-cycle costs, both of which are necessary to permit significant penetration into commercial markets. The general R D areas addressed by the project include identification of new electrochemical couples for advanced batteries, determination of technical feasibility of the new couples, improvements in battery components and materials, establishment of engineering principles applicable to electrochemical energy storage and conversion, and the development of air-system (fuel cell, metal/air) technology for transportation applications. Major emphasis is given to applied research which will lead to superior performance and lower life-cycle costs. The TBR Project is divided into three major project elements: Exploratory Research, Applied Science Research, and Air Systems Research. Highlights of each project element are summarized according to the appropriate battery system or electrochemical research area. 16 figs., 4 tabs.

  20. Renewable-reagent electrochemical sensor

    DOE Patents [OSTI]

    Wang, J.; Olsen, K.B.

    1999-08-24

    A new electrochemical probe(s) design allowing for continuous (renewable) reagent delivery is described. The probe comprises an integrated membrane sampling/electrochemical sensor that prevents interferences from surface-active materials and greatly extends the linear range. The probe(s) is useful for remote or laboratory-based monitoring in connection with microdialysis sampling and electrochemical measurements of metals and organic compounds that are not readily detected in the absence of reacting with the compound. Also disclosed is a method of using the probe(s). 19 figs.

  1. Renewable-reagent electrochemical sensor

    DOE Patents [OSTI]

    Wang, Joseph (Las Cruces, NM); Olsen, Khris B. (Richland, WA)

    1999-01-01

    A new electrochemical probe(s) design allowing for continuous (renewable) reagent delivery. The probe comprises an integrated membrane-sampling/electrochemical sensor that prevents interferences from surface-active materials and greatly extends the linear range. The probe(s) is useful for remote or laboratory-based monitoring in connection with microdialysis sampling and electrochemical measurements of metals and organic compounds that are not readily detected in the absence of reacting with the compound. Also disclosed is a method of using the probe(s).

  2. Process for electrochemically gasifying coal

    DOE Patents [OSTI]

    Botts, T.E.; Powell, J.R.

    1985-10-25

    A process is claimed for electrochemically gasifying coal by establishing a flowing stream of coal particulate slurry, electrolyte and electrode members through a transverse magnetic field that has sufficient strength to polarize the electrode members, thereby causing them to operate in combination with the electrolyte to electrochemically reduce the coal particulate in the slurry. Such electrochemical reduction of the coal produces hydrogen and carbon dioxide at opposite ends of the polarized electrode members. Gas collection means are operated in conjunction with the process to collect the evolved gases as they rise from the slurry and electrolyte solution. 7 figs.

  3. Electrochemical catalyst recovery method

    DOE Patents [OSTI]

    Silva, L.J.; Bray, L.A.

    1995-05-30

    A method of recovering catalyst material from latent catalyst material solids includes: (a) combining latent catalyst material solids with a liquid acid anolyte solution and a redox material which is soluble in the acid anolyte solution to form a mixture; (b) electrochemically oxidizing the redox material within the mixture into a dissolved oxidant, the oxidant having a potential for oxidation which is effectively higher than that of the latent catalyst material; (c) reacting the oxidant with the latent catalyst material to oxidize the latent catalyst material into at least one oxidized catalyst species which is soluble within the mixture and to reduce the oxidant back into dissolved redox material; and (d) recovering catalyst material from the oxidized catalyst species of the mixture. The invention is expected to be particularly useful in recovering spent catalyst material from petroleum hydroprocessing reaction waste products having adhered sulfides, carbon, hydrocarbons, and undesired metals, and as well as in other industrial applications. 3 figs.

  4. US DRIVE Electrochemical Energy Storage Technical Team Roadmap...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Electrochemical Energy Storage Technical Team Roadmap US DRIVE Electrochemical Energy Storage Technical Team Roadmap This U.S. DRIVE electrochemical energy storage roadmap...

  5. Electrochemical Lithium Harvesting from Waste Li-ion Batteries Byron M. Wolfe III1

    E-Print Network [OSTI]

    Zhou, Yaoqi

    Electrochemical Lithium Harvesting from Waste Li-ion Batteries Byron M. Wolfe III1 , Wen Chao Lee1 This study demonstrates the feasibility of using water and the contents of waste Li-ion batteries for the electrodes in a Li-liquid battery system. Li metal was collected electrochemically from a waste Li

  6. Wick-and-pool electrodes for electrochemical cell

    DOE Patents [OSTI]

    Roche, Michael F. (Downers Grove, IL); Faist, Suzan M. (Haddonfield, NJ); Eberhart, James G. (Naperville, IL); Ross, Laurids E. (Naperville, IL)

    1980-01-01

    An electrode system includes a reservoir of liquid-metal reactant, and a wick extending from a submersed location within the reservoir into the molten electrolyte of an electrochemical cell structure. The wick is flooded with the liquid metal and thereby serves as one electrode within the cell. This electrode system has application in high-temperature batteries employing molten alkali metals or their alloys as active material within an electrode submersed within a molten salt electrolyte. It also can be used in electrochemical cells where the purification, separation or electrowinning of liquid metals is accomplished.

  7. Electrochemical Grafting of Naphthylmethyl Radicals to Epitaxial Graphene: A Versatile Platform to Reversibly Engineer the Band Structure and Transport Properties of Graphene

    E-Print Network [OSTI]

    Sarkar, Santanu; Haddon, Robert C

    2013-01-01

    The Kolbe electrochemical oxidation strategy has been utilized to achieve an efficient quasireversible electrochemical grafting of the alpha-naphthylmethyl functional group to graphene. The method facilitates reversible bandgap engineering in graphene and preparation of electrochemically erasable organic dielectric films. The picture shows Raman D-band maps of both systems.

  8. Electrochemical polishing of notches

    DOE Patents [OSTI]

    Kephart, Alan R. (Scotia, NY); Alberts, Alfred H. (Scotia, NY)

    1989-01-01

    An apparatus and method are disclosed for the selective electrochemical polishing of a lateral tip of a deep longitudinal notch in a work piece used to test crack initiation properties of materials. A DC power source is connected to the work piece and to an electrode disposed laterally along the distal end of an insulated body which is inserted in the longitudinal notch. The electrode and distal end of the body are disposed along the tip of the notch, but are spaced from the notch so as to provide a lateral passage for an electrolyte. The electrolyte is circulated through the passage so that the electrolyte only contacts the work piece adjacent the passage. Conveniently, the electrolyte is circulated by use of an inlet tube and an outlet tube provided at opposite ends of the passage. These tubes are preferably detachably located adjacent the ends of the passage and suitable seals are provided. A holding device including arms to which the tubes are attached is conveniently used to rapidly and easily locate the test specimen with the passage aligned with the tubes. The electrode is preferably a wire which is located in grooves along the distal end of the insulated body and up one side of the body or a plastic sheath insulated thin metal strip.

  9. Electrochemical polishing of notches

    DOE Patents [OSTI]

    Kephart, A.R.; Alberts, A.H.

    1989-02-21

    An apparatus and method are disclosed for the selective electrochemical polishing of a lateral tip of a deep longitudinal notch in a work piece used to test crack initiation properties of materials. A DC power source is connected to the work piece and to an electrode disposed laterally along the distal end of an insulated body which is inserted in the longitudinal notch. The electrode and distal end of the body are disposed along the tip of the notch, but are spaced from the notch so as to provide a lateral passage for an electrolyte. The electrolyte is circulated through the passage so that the electrolyte only contacts the work piece adjacent the passage. Conveniently, the electrolyte is circulated by use of an inlet tube and an outlet tube provided at opposite ends of the passage. These tubes are preferably detachably located adjacent the ends of the passage and suitable seals are provided. A holding device including arms to which the tubes are attached is conveniently used to rapidly and easily locate the test specimen with the passage aligned with the tubes. The electrode is preferably a wire which is located in grooves along the distal end of the insulated body and up one side of the body or a plastic sheath insulated thin metal strip. 4 figs.

  10. Electrochemical planarization of copper surfaces with submicron features

    SciTech Connect (OSTI)

    Chalupa, R.; Andryushchenko, T.; Han, J.; Ghosh, T.; Shankar, S.; Fischer, P. [Design Technology Solutions Department, Intel Corporation, Hillsboro, Oregon 97124 (United States); Components Research Department, Intel Corporation, Hillsboro, Oregon 97124 (United States); Design Technology Solutions Department, Intel Corporation, Hillsboro, Oregon 97124 (United States); Components Research Department, Intel Corporation, Hillsboro, Oregon 97124 (United States)

    2007-07-15

    Electrochemical planarization (ECP) of copper surfaces in a phosphoric acid-based electrolyte solution is discussed. A first-principles, quantum chemistry modeling work is presented that further validates the water-facilitated (and water rate limited) chemistry model for copper oxidation at the anode. This model has been previously deduced by other researchers [R. Vidal and A. West, J. Electrochem. Soc. 142, 2689 (1995); B. Du and I. I. Suni, J. Appl. Electrochem. 34, 1215 (2004); R. Vidal and A. West J. Electrochem. Soc. 142, 2682 (1995)] based on electrochemical experiments. Resulting water-limited model is validated against experimental data and applied to study the planarization behavior of a set of surface features. Aspect ratios and dimensions of these features were chosen to represent realistic (nonidealized, low aspect ratio structures) post-Damascene electroplate surface topography. Results are presented in a form of remaining feature amplitude versus mean copper thickness removed [A. C. West et al., J. Electrochem. Soc. 152, C652 (2005)]--allowing at-a-glance evaluation of the process against desired targets. The dominant effects of the mass transport boundary layer (BL) thickness on this planarization efficiency are discussed as are the challenges seen at typical flow conditions in ECP systems. Impact of changing the BL thickness and the requisite modulation of flow conditions analysis is included. Insights into practical challenges associated with BL buildup transient and associated surface roughening are summarized [D. Padhi et al., J. Electrochem. Soc. 150, 610 (2003)]. Challenges of applying ECP as a straightforward substitute to the robust chemical mechanical polish (CMP) process are significant. Practical modifications to upstream process flow to enable ECP would include optimized electroplating process or a CMP preprocessing step.

  11. ELECTROCHEMICAL POWER FOR TRANSPORTATION

    E-Print Network [OSTI]

    Cairns, Elton J.

    2012-01-01

    130, Flow schematic for an electric vehicle battery system.37. Flow schematic for an electric vehicle battery system.

  12. Hydrogen Production by PEM Electrolysis: Spotlight on Giner and Proton

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum12,ExecutiveFinancingR Walls -Hydro-Pac Inc.,1 DOEPRODUCTION BY PEM ELECTROLYSIS:

  13. Fracture of crystalline silicon nanopillars during electrochemical lithium insertion

    E-Print Network [OSTI]

    Cui, Yi

    - chanism for energy storage is the insertion of secondary species into solid electrodes, as opposedFracture of crystalline silicon nanopillars during electrochemical lithium insertion Seok Woo Leea ion battery plasticity silicon anode In modern high-energy density battery systems, the primary me

  14. Performance Characteristics of an Electrochemically Powered Turboprop: A Comparison with State of the Art Gas Turbines 

    E-Print Network [OSTI]

    Johnson, M. C.; Swan, D. H.

    1993-01-01

    As we search for alternative fuels and energy efficient vehicles it is important to consider the role of electrochemical fuel cells in aircraft propulsion systems. This paper focuses on this issue with regards to small turboprop aircraft...

  15. ELECTROCHEMICAL POWER FOR TRANSPORTATION

    E-Print Network [OSTI]

    Cairns, Elton J.

    2012-01-01

    of the Fuel Cell in Transportation Applications Workshop,practical fuel cell for commercial or consumer applicationfuel cell system engineer- ing is made, vehicle applications

  16. Electrochemical synthesis of multisegmented nanowires

    SciTech Connect (OSTI)

    Kok, Kuan-Ying; Ng, Inn-Khuan; Saidin, Nur Ubaidah

    2012-11-27

    Electrochemical deposition has emerged as a promising route for nanostructure fabrication in recent years due to the many inherent advantages it possesses. This study focuses on the synthesis of high-aspect-ratio multisegmented Au/Ni nanowires using template-directed sequential electrochemical deposition techniques. By selectively removing the Ni segments in the nanowires, high-yield of pure gold nanorods of predetermined lengths was obtained. Alternatively, the sacrificial Ni segments in the nanowires can be galvanically displaced with Bi and Te to form barbells structures with Bi{sub x}Te{sub y} nanotubes attached to neighbouring gold segments. Detailed studies on the nanostructures obtained were carried out using various microscopy, diffraction and probebased techniques for structural, morphological and chemical characterizations.

  17. Graphene-based Electrochemical Energy Conversion and Storage: Fuel cells, Supercapacitors and Lithium Ion Batteries

    SciTech Connect (OSTI)

    Hou, Junbo; Shao, Yuyan; Ellis, Michael A.; Moore, Robert; Yi, Baolian

    2011-09-14

    Graphene has attracted extensive research interest due to its strictly 2-dimensional (2D) structure, which results in its unique electronic, thermal, mechanical, and chemical properties and potential technical applications. These remarkable characteristics of graphene, along with the inherent benefits of a carbon material, make it a promising candidate for application in electrochemical energy devices. This article reviews the methods of graphene preparation, introduces the unique electrochemical behavior of graphene, and summarizes the recent research and development on graphene-based fuel cells, supercapacitors and lithium ion batteries. In addition, promising areas are identified for the future development of graphene-based materials in electrochemical energy conversion and storage systems.

  18. Simplified Electrochemical and Thermal Model of LiFePO4-Graphite Li-Ion Batteries for Fast Charge Applications

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Simplified Electrochemical and Thermal Model of LiFePO4- Graphite Li-Ion Batteries for Fast Charge, a simplified electrochemical and thermal model of LiFePO4-graphite based Li-ion batteries is developed for battery management system (BMS) applications and comprehensive aging investigations. Based on a modified

  19. Solid state electrochemical current source

    DOE Patents [OSTI]

    Potanin, Alexander Arkadyevich (Sarov, RU); Vedeneev, Nikolai Ivanovich (Sarov, RU)

    2002-04-30

    A cathode and a solid state electrochemical cell comprising said cathode, a solid anode and solid fluoride ion conducting electrolyte. The cathode comprises a metal oxide and a compound fluoride containing at least two metals with different valences. Representative compound fluorides include solid solutions of bismuth fluoride and potassium fluoride; and lead fluoride and potassium fluoride. Representative metal oxides include copper oxide, lead oxide, manganese oxide, vanadium oxide and silver oxide.

  20. Compacted carbon for electrochemical cells

    DOE Patents [OSTI]

    Greinke, R.A.; Lewis, I.C.

    1997-10-14

    This invention provides compacted carbon that is useful in the electrode of an alkali metal/carbon electrochemical cell of improved capacity selected from the group consisting of: (a) coke having the following properties: (1) an x-ray density of at least 2.00 grams per cubic centimeters, (2) a closed porosity of no greater than 5%, and (3) an open porosity of no greater than 47%; and (b) graphite having the following properties: (1) an x-ray density of at least 2.20 grams per cubic centimeters, (2) a closed porosity of no greater than 5%, and (3) an open porosity of no greater than 25%. This invention also relates to an electrode for an alkali metal/carbon electrochemical cell comprising compacted carbon as described above and a binder. This invention further provides an alkali metal/carbon electrochemical cell comprising: (a) an electrode as described above, (b) a non-aqueous electrolytic solution comprising an organic aprotic solvent and an electrolytically conductive salt and an alkali metal, and (c) a counter electrode. 10 figs.

  1. Shock-activated electrochemical power supplies

    DOE Patents [OSTI]

    Benedick, W.B.; Graham, R.A.; Morosin, B.

    1987-04-20

    A shock-activated electrochemical power supply is provided which is initiated extremely rapidly and which has a long shelf life. Electrochemical power supplies of this invention are initiated much faster than conventional thermal batteries. Power supplies of this invention comprise an inactive electrolyte and means for generating a high-pressure shock wave such that the shock wave is propagated through the electrolyte rendering the electrolyte electrochemically active. 2 figs.

  2. Shock-activated electrochemical power supplies

    DOE Patents [OSTI]

    Benedick, W.B.; Graham, R.A.; Morosin, B.

    1988-11-08

    A shock-activated electrochemical power supply is provided which is initiated extremely rapidly and which has a long shelf life. Electrochemical power supplies of this invention are initiated much faster than conventional thermal batteries. Power supplies of this invention comprise an inactive electrolyte and means for generating a high-pressure shock wave such that the shock wave is propagated through the electrolytes rendering the electrolyte electrochemically active. 2 figs.

  3. Shock-activated electrochemical power supplies

    DOE Patents [OSTI]

    Benedick, William B. (Albuquerque, NM); Graham, Robert A. (Los Lunas, NM); Morosin, Bruno (Albuquerque, NM)

    1988-01-01

    A shock-activated electrochemical power supply is provided which is initiated extremely rapidly and which has a long shelf life. Electrochemical power supplies of this invention are initiated much faster than conventional thermal batteries. Power supplies of this invention comprise an inactive electrolyte and means for generating a high-pressure shock wave such that the shock wave is propagated through the electrolytes rendering the electrolyte electrochemically active.

  4. Electrochemical components employing polysiloxane-derived binders

    DOE Patents [OSTI]

    Delnick, Frank M.

    2013-06-11

    A processed polysiloxane resin binder for use in electrochemical components and the method for fabricating components with the binder. The binder comprises processed polysiloxane resin that is partially oxidized and retains some of its methyl groups following partial oxidation. The binder is suitable for use in electrodes of various types, separators in electrochemical devices, primary lithium batteries, electrolytic capacitors, electrochemical capacitors, fuel cells and sensors.

  5. An isoperibolic calorimeter to study electrochemical insertion of deuterium into palladium

    SciTech Connect (OSTI)

    Gur, T.M. ); Schreiber, M. ); Lucier, G.; Ferrante, J.A.; Chao, J. ); Huggins, R.A. )

    1994-07-01

    The design and the operational characteristics of a new isoperibolic calorimeter that is developed to study the electrochemical insertion of deuterium into palladium are described. The design is simple and involves inexpensive materials to build. It possesses a number of distinct advantages that makes it suitable for thermal measurements in other electrochemical systems. It is insensitive to the nature and the location of the heat source within the electrochemical cell. The calibration constant is found to be stable with [+-]0.5% uncertainty over a wide range of input power levels up to 22 W. It also has the capability of operating over a wide temperature range. In principle, the calorimeter can be used up to 600[degrees]C, provided that the electrochemical cell design and materials are chosen appropriately. The design also provides flexibility to adjust the sensitivity of the calorimeter according to the needs of the system under study. 25 refs., 11 figs.

  6. Solid flexible electrochemical supercapacitor using Tobacco mosaic...

    Office of Scientific and Technical Information (OSTI)

    Solid flexible electrochemical supercapacitor using Tobacco mosaic virus nanostructures and ALD ruthenium oxide Citation Details In-Document Search Title: Solid flexible...

  7. Electrochemical NOx Sensor for Monitoring Diesel Emissions

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of oxide electrodes * Decision point: Down select to metal or electronically- conducting oxide electrodes Electrochemical NO x Sensor for Monitoring Diesel Emissions 17 Plans for...

  8. Electrochemical Energy Storage | ornl.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Electrochemical Energy Storage Apr 16 2014 08:00 AM - 05:00 PM Multiple Speakers, in multiple disciplines, from multiple institutions ASM International, Oak Ridge Chapter,...

  9. Apparatus for combinatorial screening of electrochemical materials

    DOE Patents [OSTI]

    A high throughput combinatorial screening method and apparatus for the evaluation of electrochemical materials using a single voltage source (2) is disclosed wherein temperature changes arising from the application of an electrical load to a cell array (1) are used to evaluate the relative electrochemical efficiency of the materials comprising the array. The apparatus may include an array of electrochemical cells (1) that are connected to each other in parallel or in series, an electronic load (2) for applying a voltage or current to the electrochemical cells (1), and a device (3), external to the cells, for monitoring the relative temperature of each cell when the load is applied.

    2009-12-15

    A high throughput combinatorial screening method and apparatus for the evaluation of electrochemical materials using a single voltage source (2) is disclosed wherein temperature changes arising from the application of an electrical load to a cell array (1) are used to evaluate the relative electrochemical efficiency of the materials comprising the array. The apparatus may include an array of electrochemical cells (1) that are connected to each other in parallel or in series, an electronic load (2) for applying a voltage or current to the electrochemical cells (1), and a device (3), external to the cells, for monitoring the relative temperature of each cell when the load is applied.

  10. Nanomaterial-Based Electrochemical Biosensors and Bioassays

    SciTech Connect (OSTI)

    Liu, Guodong; Mao, Xun; Gurung, Anant; Baloda, Meenu; Lin, Yuehe; He, Yuqing

    2010-08-31

    This book chapter summarizes the recent advance in nanomaterials for electrochemical biosensors and bioassays. Biofunctionalization of nanomaterials for biosensors fabrication and their biomedical applications are discussed.

  11. Sandia Energy - Electro-Chemical Processes

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    transients and produce fuels to replace petroleum. Electrochemical devices such as batteries, electrolyzers, and fuel cells are the most promising because of their inherently...

  12. Electronic structural and electrochemical properties of lithium...

    Office of Scientific and Technical Information (OSTI)

    Journal Article: Electronic structural and electrochemical properties of lithium zirconates and their capabilities of CO2 capture: A first-principles density-functional theory and...

  13. Coating Active Materials for Applications in Electrochemical...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Coating Active Materials for Applications in Electrochemical Devices Technology available for licensing: A process that includes suspendingdissolving an electro-active material...

  14. Electrochemical NOx Sensor for Monitoring Diesel Emissions |...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Sensor for Monitoring Diesel Emissions Electrochemical NOx Sensor for Monitoring Diesel Emissions Presentation from the U.S. DOE Office of Vehicle Technologies "Mega" Merit Review...

  15. Thermal regeneration of an electrochemical concentration cell

    DOE Patents [OSTI]

    Krumpelt, M.; Bates, J.K.

    1980-05-09

    A system and method are described for thermally regenerating an electrochemical concentration cell having first and second aluminum electrodes respectively positioned in contact with first and second electrolytes separated by an ion exchange member, the first and second electrolytes being composed of different concentrations of an ionic solvent and a salt, preferably an aluminum halide. The ionic solvent may be either organic or inorganic with a relatively low melting point, the ionic solvent and the salt form a complex wherein the free energy of formation of said complex is less than about -5 kcal/mole. A distillation column using solar heat or low grade industrial waste heat receives the first and second electrolytes and thermally decomposes the salt-solvent complex to provide feed material for the two half cells.

  16. Thermal regeneration of an electrochemical concentration cell

    DOE Patents [OSTI]

    Krumpelt, Michael (Naperville, IL); Bates, John K. (Plainfield, IL)

    1981-01-01

    A system and method for thermally regenerating an electrochemical concentration cell having first and second aluminum electrodes respectively positioned in contact with first and second electrolytes separated by an ion exchange member, the first and second electrolytes being composed of different concentrations of an ionic solvent and a salt, preferably an aluminum halide. The ionic solvent may be either organic or inorganic with a relatively low melting point, the ionic solvent and the salt form a complex wherein the free energy of formation of said complex is less than about -5 Kcal/mole. A distillation column using solar heat or low grade industrial waste heat receives the first and second electrolytes and thermally decomposes the salt-solvent complex to provide feed material for the two half cells.

  17. Electrochemical method of controlling thiolate coverage on a conductive substrate such as gold

    DOE Patents [OSTI]

    Porter, Marc D. (Ames, IA); Weisshaar, Duane E. (Sioux Falls, SD)

    1998-10-27

    An electrochemical method for forming a partial monomolecular layer of a predetermined extent of coverage of a thiolate of the formula, XRS--, therein R can be a linear or branched chain hydrocarbon or an aromatic or the like and X can be any compatible end group, e.g., OH, COOH, CH.sub.3 or the like, upon a substrate such as gold, which involves applying in an electrochemical system a constant voltage preselected to yield the desired predetermined extent of coverage.

  18. Low-Cost Electrochemical Compressor Utilizing Green Refrigerants...

    Office of Environmental Management (EM)

    Low-Cost Electrochemical Compressor Utilizing Green Refrigerants for HVAC Applications Low-Cost Electrochemical Compressor Utilizing Green Refrigerants for HVAC Applications...

  19. Graphene-Au Nanoparticles Composite-Based Electrochemical Aptamer...

    Office of Scientific and Technical Information (OSTI)

    Graphene-Au Nanoparticles Composite-Based Electrochemical Aptamer Biosensors Citation Details In-Document Search Title: Graphene-Au Nanoparticles Composite-Based Electrochemical...

  20. Materials for electrochemical capacitors: Theoretical and experimental constraints

    SciTech Connect (OSTI)

    Sarangapani, S.; Tilak, B.V.; Chen, C.P.

    1996-11-01

    Electrochemical capacitors, also called supercapacitors, are unique devices exhibiting 20 to 200 times greater capacitance than conventional capacitors. The large capacitance exhibited by these systems has been demonstrated to arise from a combination of the double-layer capacitance and pseudocapacitance associated with surface redox-type reactions. The purpose of this review is to survey the published data of available electrode materials possessing high specific double-layer or pseudocapacitance and examine their reported performance data in relation to their theoretical expectations.

  1. Electrochemical formation of field emitters

    SciTech Connect (OSTI)

    Bernhardt, Anthony F. (Berkeley, CA)

    1999-01-01

    Electrochemical formation of field emitters, particularly useful in the fabrication of flat panel displays. The fabrication involves field emitting points in a gated field emitter structure. Metal field emitters are formed by electroplating and the shape of the formed emitter is controlled by the potential imposed on the gate as well as on a separate counter electrode. This allows sharp emitters to be formed in a more inexpensive and manufacturable process than vacuum deposition processes used at present. The fabrication process involves etching of the gate metal and the dielectric layer down to the resistor layer, and then electroplating the etched area and forming an electroplated emitter point in the etched area.

  2. Zelenay named Electrochemical Society Fellow

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorkingLos Alamos verifies largestnamed Electrochemical Society Fellow June

  3. Method for making an electrochemical cell

    DOE Patents [OSTI]

    Tuller, Harry L. (Wellesley, MA); Kramer, Steve A. (Somerville, MA); Spears, Marlene A. (Woburn, MA); Pal, Uday B. (Needham, MA)

    1996-01-01

    An electrochemical device including a solid electrolyte and solid electrode composed of materials having different chemical compositions and characterized by different electrical properties but having the same crystalline phase is provided. A method for fabricating an electrochemical device having a solid electrode and solid electrolyte characterized by the same crystalline phase is provided.

  4. ELECTROCHEMICAL NOISE BASED CORROSION MONITORING HANFORD SITE PROGRAM STATUS

    SciTech Connect (OSTI)

    EDGEMON, G.L.

    2005-03-21

    The Hanford Site near Richland, Washington has 177 underground waste tanks that store approximately 253 million liters of radioactive waste from 50 years of plutonium production. Prior to 1995 no online corrosion monitoring systems were in place at Hanford to facilitate the early detection of the onset of localized corrosion should it occur in a waste tank. Because of this, a program was started in 1995 to develop an electrochemical noise (EN) corrosion monitoring system to improve Hanford's corrosion monitoring strategy. Three systems are now installed and operating at Hanford. System design, performance history, data and the results of a recent analysis of tank vapor space data are presented.

  5. Material protection, control and accounting cooperation at the Urals Electrochemical Integrated Plant (UEIP), Novouralsk, Russia

    SciTech Connect (OSTI)

    McAllister, S., LLNL

    1998-07-15

    The Urals Electrochemical Integrated Plant is one of the Russian Ministry of Atomic Energy`s nuclear material production sites participating in the US Department of Energy`s Material Protection, Control and Accounting (MPC&A) Program. The Urals Electrochemical Integrated Plant is Russia`s largest uranium enrichment facility and blends tons of high-enriched uranium into low enriched uranium each year as part of the US high-enriched uranium purchase. The Electrochemical Integrated Plant and six participating national laboratories are cooperating to implement a series of enhancements to the nuclear material protection, control, and accountability systems at the site This paper outlines the overall objectives of the MPC&A program at Urals Electrochemical Integrated Plant and the work completed as of the date of the presentation.

  6. Bussing Structure In An Electrochemical Cell

    DOE Patents [OSTI]

    Romero, Antonio L. (Parkton, MD)

    2001-06-12

    A bussing structure for bussing current within an electrochemical cell. The bussing structure includes a first plate and a second plate, each having a central aperture therein. Current collection tabs, extending from an electrode stack in the electrochemical cell, extend through the central aperture in the first plate, and are then sandwiched between the first plate and second plate. The second plate is then connected to a terminal on the outside of the case of the electrochemical cell. Each of the first and second plates includes a second aperture which is positioned beneath a safety vent in the case of the electrochemical cell to promote turbulent flow of gasses through the vent upon its opening. The second plate also includes protrusions for spacing the bussing structure from the case, as well as plateaus for connecting the bussing structure to the terminal on the case of the electrochemical cell.

  7. Buffered Electrochemical Polishing of Niobium

    SciTech Connect (OSTI)

    Gianluigi Ciovati, Hui Tian, Sean Corcoran

    2011-03-01

    The standard preparation of superconducting radio-frequency (SRF) cavities made of pure niobium include the removal of a 'damaged' surface layer, by buffered chemical polishing (BCP) or electropolishing (EP), after the cavities are formed. The performance of the cavities is characterized by a sharp degradation of the quality factor when the surface magnetic field exceeds about 90 mT, a phenomenon referred to as 'Q-drop'. In cavities made of polycrystalline fine grain (ASTM 5) niobium, the Q-drop can be significantly reduced by a low-temperature ({approx} 120 C) 'in-situ' baking of the cavity if the chemical treatment was EP rather than BCP. As part of the effort to understand this phenomenon, we investigated the effect of introducing a polarization potential during buffered chemical polishing, creating a process which is between the standard BCP and EP. While preliminary results on the application of this process to Nb cavities have been previously reported, in this contribution we focus on the characterization of this novel electrochemical process by measuring polarization curves, etching rates, surface finish, electrochemical impedance and the effects of temperature and electrolyte composition. In particular, it is shown that the anodic potential of Nb during BCP reduces the etching rate and improves the surface finish.

  8. Solid oxide electrochemical reactor science.

    SciTech Connect (OSTI)

    Sullivan, Neal P.; Stechel, Ellen Beth; Moyer, Connor J.; Ambrosini, Andrea; Key, Robert J.

    2010-09-01

    Solid-oxide electrochemical cells are an exciting new technology. Development of solid-oxide cells (SOCs) has advanced considerable in recent years and continues to progress rapidly. This thesis studies several aspects of SOCs and contributes useful information to their continued development. This LDRD involved a collaboration between Sandia and the Colorado School of Mines (CSM) ins solid-oxide electrochemical reactors targeted at solid oxide electrolyzer cells (SOEC), which are the reverse of solid-oxide fuel cells (SOFC). SOECs complement Sandia's efforts in thermochemical production of alternative fuels. An SOEC technology would co-electrolyze carbon dioxide (CO{sub 2}) with steam at temperatures around 800 C to form synthesis gas (H{sub 2} and CO), which forms the building blocks for a petrochemical substitutes that can be used to power vehicles or in distributed energy platforms. The effort described here concentrates on research concerning catalytic chemistry, charge-transfer chemistry, and optimal cell-architecture. technical scope included computational modeling, materials development, and experimental evaluation. The project engaged the Colorado Fuel Cell Center at CSM through the support of a graduate student (Connor Moyer) at CSM and his advisors (Profs. Robert Kee and Neal Sullivan) in collaboration with Sandia.

  9. Molecular-scale measurements of electric fields at electrochemical interfaces.

    SciTech Connect (OSTI)

    Hayden, Carl C.; Farrow, Roger L.

    2011-01-01

    Spatially resolved measurements of electric fields at electrochemical interfaces would be a critical step toward further understanding and modeling the detailed structure of electric double layers. The goal of this project was to perform proof-of-principle experiments to demonstrate the use of field-sensitive dyes for optical measurements of fields in electrochemical systems. A confocal microscope was developed that provides sensitive detection of the lifetime and high resolution spectra of excited fluorescence for dyes tethered to electrically conductive surfaces. Excited state lifetimes for the dyes were measured and found to be relatively unquenched when linked to indium tin oxide, but strongly quenched on gold surfaces. However, our fluorescence detection is sufficiently sensitive to measure spectra of submonolayer dye coatings even when the fluorescence was strongly quenched. Further work to create dye labeled interfaces on flat, uniform and durable substrates is necessary to make electric field measurements at interfaces using field sensitive dyes.

  10. Electrical characterization of electrochemically grown single copper nanowires

    E-Print Network [OSTI]

    Ludwig-Maximilians-Universität, München

    of a contamination layer or oxidation of the wire. Electrical measurements on electrochemically grown nanowires were

  11. Electrochemical oxygen pumps. Final CRADA report.

    SciTech Connect (OSTI)

    Carter, J. D. Noble, J.

    2009-10-01

    All tasks of the Work Plan of ISTC Project 2277p have been completed, thus: (1) techniques of chemical synthesis were developed for more than ten recipes of electrolyte based on cerium oxide doped with 20 mole% of gadolinium (CeGd)O{sub 2}, doped by more than 10 oxide systems including 6 recipes in addition to the Work Plan; (2) electric conductivity and mechanical strength of CeGd specimens with additions of oxide systems were performed, two candidate materials for the electrolyte of electrochemical oxygen pump (pure CeGd and CeGd doped by 0.2 wt% of a transition metal) were chosen; (3) extended studies of mechanical strength of candidate material specimens were performed at room temperature and at 400, 600, 800 C; (4) fixtures for determination of mechanical strength of tubes by external pressure above 40 atmospheres at temperature up to 700 C were developed and fabricated; and (5) technology of slip casting of tubes from pure (Ce,Gd)O{sub 2} and of (Ce,Gd)O{sub 2} doped by 0.2 wt% of a transition metal, withstanding external pressure of minimum 40 atmospheres at temperature up to 700 C was developed, a batch of tubes was sent for testing to Argonne National Laboratory; (6) technology of making nanopowder from pure (Ce,Gd)O{sub 2} was developed based on chemical synthesis and laser ablation techniques, a batch of nanopowder with the weight 1 kg was sent for testing to Argonne National Laboratory; (7) a business plan for establishing a company for making powders of materials for electrochemical oxygen pump was developed; and (8) major results obtained within the Project were reported at international conferences and published in the Russian journal Electrochemistry. In accordance with the Work Plan a business trip of the following project participants was scheduled for April 22-29, 2006, to Tonawanda, NY, USA: Manager Victor Borisov; Leader of technology development Gennady Studenikin; Leader of business planning Elena Zadorozhnaya; Leader of production Vasily Lepalovsky; and Translator Vladimir Litvinov. During this trip project participants were to discuss with the project Technical Monitor J.D. Carter and representative of Praxair Inc. J. Chen the results of project activities (prospects of transition metal-doped material application in oxygen pumps), as well as the prospects of cooperation with Praxair at the meeting with the company management in the following fields: (1) Deposition of thin films of oxide materials of complex composition on support by magnetron and ion sputtering, research of coatings properties; (2) Development of block-type structure technology (made of porous and dense ceramics) for oxygen pump. The block-type structure is promising because when the size of electrolyte block is 2 x 2 inches and assembly height is 10 inches (5 blocks connected together) the area of active surface is ca. 290 square inches (in case of 8 slots), that roughly corresponds to one tube with diameter 1 inch and height 100 inches. So performance of the system made of such blocks may be by a factor of two or three higher than that of tube-based system. However one month before the visit, J. Chen notified us of internal changes at Praxair and the cancellation of the visit to Tonawanda, NY. During consultations with the project Technical Monitor J.D. Carter and Senior Project Manager A. Taylor a decision was made to extend the project term by 2 quarters to prepare proposals for follow-on activities during this extension (development of block-type structures made of dense and porous oxide ceramics for electrochemical oxygen pumps) using the funds that were not used for the trip to the US.

  12. Mapping Ionic Currents and Reactivity on the Nanoscale: Electrochemical Strain Microscopy

    SciTech Connect (OSTI)

    Kalinin, S.V. (Center for Nanophase Materials Sciences, ORNL) [Center for Nanophase Materials Sciences, ORNL

    2010-10-19

    Solid-state electrochemical processes in oxides underpin a broad spectrum of energy and information storage devices, ranging from Li-ion and Li-air batteries, to solid oxide fuel cells (SOFC) to electroresistive and memristive systems. These functionalities are controlled by the bias-driven diffusive and electromigration transport of mobile ionic species, as well as intricate a set of electrochemical and defect-controlled reactions at interfaces and in bulk. Despite the wealth of device-level and atomistic studies, little is known on the mesoscopic mechanisms of ion diffusion and electronic transport on the level of grain clusters, individual grains, and extended defects. The development of the capability for probing ion transport on the nanometer scale is a key to deciphering complex interplay between structure, functionality, and performance in these systems. Here we introduce Electrochemical Strain Microscopy, a scanning probe microscopy technique based on strong strain-bias coupling in the systems in which local ion concentrations are changed by electrical fields. The imaging capability, as well as time- and voltage spectroscopies analogous to traditional current based electrochemical characterization methods are developed. The reversible intercalation of Li and mapping electrochemical activity in LiCoO2 is demonstrated, illustrating higher Li diffusivity at non-basal planes and grain boundaries. In Si-anode device structure, the direct mapping of Li diffusion at extended defects and evolution of Li-activity with charge state is explored. The electrical field-dependence of Li mobility is studied to determine the critical bias required for the onset of electrochemical transformation, allowing reaction and diffusion processes in the battery system to be separated at each location. Finally, the applicability of ESM for probing oxygen vacancy diffusion and oxygen reduction/evolution reactions is illustrated, and the high resolution ESM maps are correlated with aberration corrected scanning transmission electron microscopy imaging. The future potential for deciphering mechanisms of electrochemical transformations on an atomically-defined single-defect level is discussed.

  13. Process for electrochemically gasifying coal using electromagnetism

    DOE Patents [OSTI]

    Botts, Thomas E. (Markham, VA); Powell, James R. (Shoreham, NY)

    1987-01-01

    A process for electrochemically gasifying coal by establishing a flowing stream of coal particulate slurry, electrolyte and electrode members through a transverse magnetic field that has sufficient strength to polarize the electrode members, thereby causing them to operate in combination with the electrolyte to electrochemically reduce the coal particulate in the slurry. Such electrochemical reduction of the coal produces hydrogen and carbon dioxide at opposite ends of the polarized electrode members. Gas collection means are operated in conjunction with the process to collect the evolved gases as they rise from the slurry and electrolyte solution.

  14. Electrochemical formation of field emitters

    DOE Patents [OSTI]

    Bernhardt, A.F.

    1999-03-16

    Electrochemical formation of field emitters, particularly useful in the fabrication of flat panel displays is disclosed. The fabrication involves field emitting points in a gated field emitter structure. Metal field emitters are formed by electroplating and the shape of the formed emitter is controlled by the potential imposed on the gate as well as on a separate counter electrode. This allows sharp emitters to be formed in a more inexpensive and manufacturable process than vacuum deposition processes used at present. The fabrication process involves etching of the gate metal and the dielectric layer down to the resistor layer, and then electroplating the etched area and forming an electroplated emitter point in the etched area. 12 figs.

  15. Electrolyte for an electrochemical cell

    DOE Patents [OSTI]

    Bates, J.B.; Dudney, N.J.

    1997-01-28

    Described is a thin-film battery, especially a thin-film microbattery, and a method for making the same having application as a backup or primary integrated power source for electronic devices. The battery includes a novel electrolyte amorphous lithium phosphorus oxynitride which is electrochemically stable and does not react with the lithium anode and a novel vanadium oxide cathode Configured as a microbattery, the battery can be fabricated directly onto a semiconductor chip, onto the semiconductor die or onto any portion of the chip carrier. The battery can be fabricated to any specified size or shape to meet the requirements of a particular application. The battery is fabricated of solid state materials and is capable of operation between {minus}15 C and 150 C. 9 figs.

  16. Electrolyte for an electrochemical cell

    DOE Patents [OSTI]

    Bates, John B. (Oak Ridge, TN); Dudney, Nancy J. (Knoxville, TN)

    1997-01-01

    Described is a thin-film battery, especially a thin-film microbattery, and a method for making same having application as a backup or primary integrated power source for electronic devices. The battery includes a novel electrolyte amorphous lithium phosphorus oxynitride which is electrochemically stable and does not react with the lithium anode and a novel vanadium oxide cathode Configured as a microbattery, the battery can be fabricated directly onto a semiconductor chip, onto the semiconductor die or onto any portion of the chip carrier. The battery can be fabricated to any specified size or shape to meet the requirements of a particular application. The battery is fabricated of solid state materials and is capable of operation between -15.degree. C. and 150.degree. C.

  17. Cathode for an electrochemical cell

    DOE Patents [OSTI]

    Bates, John B. (Oak Ridge, TN); Dudney, Nancy J. (Knoxville, TN); Gruzalski, Greg R. (Oak Ridge, TN); Luck, Christopher F. (Knoxville, TN)

    2001-01-01

    Described is a thin-film battery, especially a thin-film microbattery, and a method for making same having application as a backup or primary integrated power source for electronic devices. The battery includes a novel electrolyte which is electrochemically stable and does not react with the lithium anode and a novel vanadium oxide cathode. Configured as a microbattery, the battery can be fabricated directly onto a semiconductor chip, onto the semiconductor die or onto any portion of the chip carrier. The battery can be fabricated to any specified size or shape to meet the requirements of a particular application. The battery is fabricated of solid state materials and is capable of operation between -15.degree. C. and 150.degree. C.

  18. Minimizing Wind Power Producer's Balancing Costs Using Electrochemical Energy Storage: Preprint

    SciTech Connect (OSTI)

    Miettinen, J.; Tikka, V.; Lassila, J.; Partanen, J.; Hodge, B. M.

    2014-08-01

    This paper examines how electrochemical energy storage can be used to decrease the balancing costs of a wind power producer in the Nordic market. Because electrochemical energy storage is developing in both technological and financial terms, a sensitivity analysis was carried out for the most important variables in the wind-storage hybrid system. The system was studied from a wind power producer's point of view. The main result is that there are no technical limitations to using storage for reducing the balancing costs. However, in terms of economic feasibility, installing hybrid wind-storage systems such as the one studied in this paper faces challenges in both the short and long terms.

  19. BF[subscript 3]-Promoted Electrochemical Properties of Quinoxaline in Propylene Carbonate

    E-Print Network [OSTI]

    Diesendruck, Charles E.

    Electrochemical and density functional studies demonstrate that coordination of electrolyte constituents to quinoxalines modulates their electrochemical properties. Quinoxalines are shown to be electrochemically inactive ...

  20. Development of Microfluidic Devices Incorporating Electrochemical Detection

    E-Print Network [OSTI]

    Regel, Anne

    2014-05-31

    with electrochemical (EC) detection for the determination of dopamine and nitrite is described. Different fabrication processes were evaluated and optimized to create low cost polymer microchips. A polydimethylsiloxane (PDMS)/glass hybrid microchip capable...

  1. Boundary Layer Analysis of Membraneless Electrochemical Cells

    E-Print Network [OSTI]

    Braff, William

    A mathematical theory is presented for the charging and discharging behavior of membraneless electrochemical cells that rely on slow diffusion in laminar flow to separate the half reactions. Ion transport is described by ...

  2. Electrochemical NOx Sensors for Monitoring Diesel Emissions

    Broader source: Energy.gov [DOE]

    A unique electrochemical sensing strategy correlating the level of NOx with an impedance-based signal shows promise for sensitivity, stability, and accuracy while incorporating single-cell structures and simple electronics into low-cost designs

  3. Microfluidic Actuation Using Electrochemically Generated Bubbles

    E-Print Network [OSTI]

    Sachs, Frederick

    Microfluidic Actuation Using Electrochemically Generated Bubbles Susan Z. Hua,*, Frederick Sachs, Buffalo, New York 14260 Bubble-based actuation in microfluidic applications is attractive owing closing) rate increases with applied voltage, small microfluidic dimensions accelerate bubble deflation

  4. From corrosion to batteries: Electrochemical interface studies...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    From corrosion to batteries: Electrochemical interface studies Thursday, October 18, 2012 - 11:00am SSRL, Bldg. 137, Rm 226 Dr. Frank Uwe Renner Max-Planck-Institut fr...

  5. Bismuth-based electrochemical stripping analysis

    DOE Patents [OSTI]

    Wang, Joseph

    2004-01-27

    Method and apparatus for trace metal detection and analysis using bismuth-coated electrodes and electrochemical stripping analysis. Both anodic stripping voltammetry and adsorptive stripping analysis may be employed.

  6. Rechargeable thin-film electrochemical generator

    DOE Patents [OSTI]

    Rouillard, Roger (Beloeil, CA); Domroese, Michael K. (South St. Paul, MN); Hoffman, Joseph A. (Minneapolis, MN); Lindeman, David D. (Hudson, WI); Noel, Joseph-Robert-Gaetan (St-Hubert, CA); Radewald, Vern E. (Austin, TX); Ranger, Michel (Lachine, CA); Sudano, Anthony (Laval, CA); Trice, Jennifer L. (Eagan, MN); Turgeon, Thomas A. (Fridley, MN)

    2000-09-15

    An improved electrochemical generator is disclosed. The electrochemical generator includes a thin-film electrochemical cell which is maintained in a state of compression through use of an internal or an external pressure apparatus. A thermal conductor, which is connected to at least one of the positive or negative contacts of the cell, conducts current into and out of the cell and also conducts thermal energy between the cell and thermally conductive, electrically resistive material disposed on a vessel wall adjacent the conductor. The thermally conductive, electrically resistive material may include an anodized coating or a thin sheet of a plastic, mineral-based material or conductive polymer material. The thermal conductor is fabricated to include a resilient portion which expands and contracts to maintain mechanical contact between the cell and the thermally conductive material in the presence of relative movement between the cell and the wall structure. The electrochemical generator may be disposed in a hermetically sealed housing.

  7. Electrochemical chlorination for purifying domestic water supplies 

    E-Print Network [OSTI]

    Peters, Joseph Ludwig

    1973-01-01

    ELECTROCHEMICAL CHLORINATION FOR PURIFYING DOMESTIC WATER SUPPLIES A Thesis by JOSEPH LUDWIG PETERS' JR' Submitted to the Graduate College of Texas A&M University in partial fulfillment of the requirement for the degree of MASTER OF SCIENCE... December 1973 Major Subject: Agricultural Engineering ELECTROCHEMICAL CHLORINATION FOR PURIFYING DOMESTIC WATER SUPPLIES A Thesis JOSEPH LUDWIG PETERS, JR. Approved as to style and content by: (Chairman of Committee) ( ead of epartm nt) (Member...

  8. Electrochemical Energy Storage Technical Team Roadmap

    SciTech Connect (OSTI)

    2013-06-01

    This U.S. DRIVE electrochemical energy storage roadmap describes ongoing and planned efforts to develop electrochemical energy storage technologies for plug-in electric vehicles (PEVs). The Energy Storage activity comprises a number of research areas (including advanced materials research, cell level research, battery development, and enabling R&D which includes analysis, testing and other activities) for advanced energy storage technologies (batteries and ultra-capacitors).

  9. An Electrochemical Potentiostat Interface for Mobile Devices: Enabling Remote Medical Diagnostics

    E-Print Network [OSTI]

    Fu, Henry; Lew, Michael; Menon, Shruti; Scratchley, Craig; Parameswaran, M Ash

    2015-01-01

    An electrochemical potentiostat interface for mobile devices has been designed and implemented. The interface consists of a potentiostat module, a microcontroller module, and a Bluetooth module. The potentiostat module performs electrochemical measurements and detects the responses from the samples. The microcontroller module controls the test and communication processes. The Bluetooth module links the system to a mobile device, where the mobile device acts as a control-console, data storage system, communication unit, and graphical plotter for the overall diagnostic processes. This interface is suitable for point-of-care and remote diagnostics, enhancing the capabilities of mobile devices in telemedicine.

  10. Electrochemical Monitoring of TiO2 Atomic Layer Deposition by Chronoamperometry and Scanning Electrochemical Microscopy

    E-Print Network [OSTI]

    Yu, Edward T.

    Electrochemical Monitoring of TiO2 Atomic Layer Deposition by Chronoamperometry and Scanning) was used to characterize the atomic layer deposition (ALD) of TiO2 on indium-doped tin oxide (ITO). KEYWORDS: atomic layer deposition (ALD), scanning electrochemical microscopy (SECM), nanoporous films

  11. Exploratory technology research program for electrochemical energy storage. Annual report for 1995

    SciTech Connect (OSTI)

    Kinoshita, Kim

    1996-06-01

    The US DOE Office of Transportation Technologies provides support for an Electrochemical Energy Storage Program, that includes research and development (R&D) on advanced rechargeable batteries and fuel cells. A major goal of this program is to develop electrochemical power sources suitable for application in electric vehicles (EV`s)and hybrid systems. The program centers on advanced electrochemical systems that offer the potential for high performance and low life- cycle costs, both of which are necessary to permit significant penetration into commercial markets. The DOE Electric Vehicle Technology Program is divided into two project areas: the US Advanced Battery Consortium (USABC) and Advanced battery R&D which includes the Exploratory Technology Research (ETR) program managed by the Lawrence Berkeley National Laboratory. The role of the ETR program is to perform supporting research on the advanced battery systems under development by the USABC and the Sandia Laboratories (SNL) Electric Vehicle Advanced Battery Systems (EVABS) program, and to evaluate new systems with potentially superior performance, durability and/of cost characteristics. The specific goal of the ETR program is to identify the most promising electrochemical technologies and development and scale-up. This report summarizes the research, financial and management activities relevant to the ETR program in CY 1995. This is a continuing program, and reports for prior years have been published; they are listed in this report.The general R&D areas addressed by the program include identification of new electrochemical couples for advanced batteries, determination of technical feasibility of the new couples, improvements in battery components and materials, establishment of engineering principles applicable to electrochemical energy storage and conversion, and the development of fuel cell technology for transportation applications.

  12. On the Electrochemical Response of Porous Functionalized Graphene Electrodes

    E-Print Network [OSTI]

    Aksay, Ilhan A.

    devices such as fuel cells6-8 or dye-sensitized solar cells,9-12 where porosity enables the diffusive a significant impact on effective kinetics of electrochemical reactions. With the advent of electrochemical

  13. OVERVIEW OF THE APPLIED BATTERY AND ELECTROCHEMICAL RESEARCH PROGRAM

    E-Print Network [OSTI]

    McLarnon, Frank

    2012-01-01

    ENERGY AND ENVIRONMENT DIVISION APPLIED BATTERY AND ELECTROCHEMICAL RESEARCH PROGRAM CONDUCT RESEARCH 30 SUBCONTRACTORS 9 IN-HOUSE PROJECTS

  14. Electrochemical detector integrated on microfabricated capillary electrophoresis chips

    DOE Patents [OSTI]

    Mathies, Richard A. (Moraga, CA); Glazer, Alexander N. (Orinda, CA); Lao, Kaiqin (San Francisco, CA); Woolley, Adam T. (Albany, CA)

    1999-01-01

    A microfabricated capillary electrophoresis chip which includes an integral thin film electrochemical detector for detecting molecules separated in the capillary.

  15. Electrochemical detector integrated on microfabricated capilliary electrophoresis chips

    DOE Patents [OSTI]

    Mathies, Richard A. (Moraga, CA); Glazer, Alexander N. (Orinda, CA); Woolley, Adam T. (Albany, CA); Lao, Kaigin (San Francisco, CA)

    2000-01-01

    A microfabricated capillary electrophoresis chip which includes an integral thin film electrochemical detector for detecting molecules separated in the capillary.

  16. The intersection of interfacial forces and electrochemical reactions

    E-Print Network [OSTI]

    2013-01-01

    Electrochem. Soc. (61) Pourbaix, M. Atlas of Electrochemicalas well as the calculated Pourbaix diagram for gold. 61 The

  17. Electrochemical method of controlling thiolate coverage on a conductive substrate such as gold

    DOE Patents [OSTI]

    Porter, Marc D. (Ames, IA); Weisshaar, Duane E. (Sioux Falls, SD)

    1997-06-03

    An electrochemical method for forming a partial monomolecular layer of a predetermined extent of coverage of a thiolate of the formula, XRS.sup.-, wherein R can be a linear or branched chain hydrocarbon or an aromatic or the like and X can be any compatible end group, e.g., OH, COOH, CH.sub.3 or the like, upon a substrate such as gold, which involves applying in an electrochemical system a constant voltage preselected to yield the desired predetermined extent of coverage.

  18. Electrochemical method of controlling thiolate coverage on a conductive substrate such as gold

    DOE Patents [OSTI]

    Porter, M.D.; Weisshaar, D.E.

    1998-10-27

    An electrochemical method is described for forming a partial monomolecular layer of a predetermined extent of coverage of a thiolate of the formula, XRS-, therein R can be a linear or branched chain hydrocarbon or an aromatic or the like and X can be any compatible end group, e.g., OH, COOH, CH{sub 3} or the like, upon a substrate such as gold, which involves applying in an electrochemical system a constant voltage preselected to yield the desired predetermined extent of coverage. 13 figs.

  19. Lithium-Assisted Electrochemical Welding in Silicon Nanowire Battery Electrodes

    E-Print Network [OSTI]

    Li, Teng

    Lithium-Assisted Electrochemical Welding in Silicon Nanowire Battery Electrodes Khim Karki, Eric of lithium- assisted welding between physically contacted silicon nano- wires (SiNWs) induced by electrochemical lithiation and delithiation. This electrochemical weld between two SiNWs demonstrates facile

  20. Capacitance studies of cobalt oxide films formed via electrochemical precipitation

    E-Print Network [OSTI]

    Weidner, John W.

    Capacitance studies of cobalt oxide films formed via electrochemical precipitation Venkat prepared by electrochemically precipitating the hydroxide and heating it in air to form Co3O4, it is desirable to study the generality of the electrochemical precipitation technique as a means of fab- ricating

  1. Electrochemical apparatus comprising modified disposable rectangular cuvette

    DOE Patents [OSTI]

    Dattelbaum, Andrew M; Gupta, Gautam; Morris, David E

    2013-09-10

    Electrochemical apparatus includes a disposable rectangular cuvette modified with at least one hole through a side and/or the bottom. Apparatus may include more than one cuvette, which in practice is a disposable rectangular glass or plastic cuvette modified by drilling the hole(s) through. The apparatus include two plates and some means of fastening one plate to the other. The apparatus may be interfaced with a fiber optic or microscope objective, and a spectrometer for spectroscopic studies. The apparatus are suitable for a variety of electrochemical experiments, including surface electrochemistry, bulk electrolysis, and flow cell experiments.

  2. Tunable Electrochemical Properties of Fluorinated Graphene

    SciTech Connect (OSTI)

    Meduri, Praveen; Chen, Honghao; Xiao, Jie; Martinez, Jayson J.; Carlson, Thomas J.; Zhang, Jiguang; Deng, Zhiqun

    2013-06-18

    The structural and electrochemical properties of fluorinated graphene have been investigated by using a series of graphene fluorides (CFx, x=0.47, 0.66, 0.89). Fluorinated graphene exhibited high capacity retentions of 75-81% of theoretical capacity at moderate rates as cathode materials for primary lithium batteries. Specifically, CF0.47 maintained a capacity of 356 mAhg-1 at a 5C rate, superior to that of traditional fluorinated graphite. The discharged graphene fluorides also provide an electrochemical tool to probe the chemical bonding on the parent graphene substrate.

  3. Nanomaterial Labels in Electrochemical Immunosensors and Immunoassays

    SciTech Connect (OSTI)

    Liu, Guodong; Lin, Yuehe

    2007-12-15

    This article reviews recent advances in nanomaterial labels in electrochemical immunosensors and immunoassays. Various nanomaterial labels are discussed, including colloidal gold/silver, semiconductor nanoparticles, and markers loaded nanocarriers (carbon nanotubes, apoferritin, silica nanoparticles, and liposome beads). The enormous signal enhancement associated with the use of nanomaterial labels and with the formation of nanomaterial–antibody-antigen assemblies provides the basis for ultrasensitive electrochemical detection of disease-related protein biomarkers, biothreat agents, or infectious agents. In general, all endeavors cited here are geared to achieve one or more of the following goals: signal amplification by several orders of magnitude, lower detection limits, and detecting multiple targets.

  4. The Electrochemical Society Interface Summer 2010 37 n recent years, energy research has

    E-Print Network [OSTI]

    Subramanian, Venkat

    the development and implementation of cost effective solar-based technologies and energy-storage technologiesThe Electrochemical Society Interface · Summer 2010 37 I n recent years, energy research has had. The development of next-generation bio- fuels from plant-based sources will require a systems approach to account

  5. Investigations of the Electrochemical Stability of Aqueous Electrolytes for Lithium Battery Applications

    E-Print Network [OSTI]

    Cui, Yi

    Investigations of the Electrochemical Stability of Aqueous Electrolytes for Lithium Battery dominate commercial lithium battery applications in which the major consideration is the specific energy. The use of aqueous electrolytes in lithium battery systems was pioneered by the Dahn group,7-10 which

  6. Fundamental-mode laser-beam propagation in optically inhomogeneous electrochemical media with

    E-Print Network [OSTI]

    Mandelis, Andreas

    of fuel cells and photoelectrochemical cells for solar energy conversion, electrochemical reactors and ofthe spot shape on the electrochemicalparameters of the system. 1. Introduction Reactions taking place with incident radiation. These processes can be influenced by the chemical species present on the electrode

  7. Electrochemical Filtering of CO from Fuel-Cell Reformate Balasubramanian Lakshmanan,a,

    E-Print Network [OSTI]

    Weidner, John W.

    electronically September 27, 2002. Proton exchange membrane fuel cells PEMFC operating on pure hydrogen show good concentrations of CO in the fuel render the PEMFC inoperable due to the poisoning of the anode catalysts.4 system may be replaced. Namely, an electrochemical filter EF for CO using current PEMFC technol- ogy

  8. Exploratory technology research program for electrochemical energy storage, annual report for 1997

    SciTech Connect (OSTI)

    Kinoshita, K. [ed.

    1998-06-01

    The US Department of Energy`s (DOE) Office of Transportation Technologies provides support for an Electrochemical Energy Storage Program, that includes research and development on advanced rechargeable batteries. A major goal of this program is to develop electrochemical power sources suitable for application in electric vehicles (EVs) and hybrid systems. The program centers on advanced electrochemical systems that offer the potential for high performance and low life-cycle costs, both of which are necessary to permit significant penetration into commercial markets. The DOE Electric Vehicle Technology Program is divided into two project areas: the US Advanced Battery Consortium (USABC) and Advanced Battery R and D which includes the Exploratory Technology Research (ETR) Program managed by the Lawrence Berkeley National Laboratory (LBNL). The specific goal of the ETR Program is to identify the most promising electrochemical technologies and transfer them to the USABC, the battery industry and/or other Government agencies for further development and scale-up. This report summarizes the research, financial and management activities relevant to the ETR Program in CY 1997. This is a continuing program, and reports for prior years have been published; they are listed at the end of this Executive Summary. The general R and D areas addressed by the program include identification of new electrochemical couples for advanced batteries, determination of technical feasibility of the new couples, improvements in battery components and materials, and establishment of engineering principles applicable to electrochemical energy storage. Major emphasis is given to applied research which will lead to superior performance and lower life-cycle costs.

  9. Safeguards and security modeling for electrochemical plants

    SciTech Connect (OSTI)

    Cipiti, B.B.; Duran, F.A.; Mendoza, L.A.; Parks, M.J.; Dominguez, D.; Le, T.D. [Sandia National Laboratories, PO Box 5800 MS 0747, Albuquerque, NM 87185 (United States)

    2013-07-01

    Safeguards and security design for reprocessing plants can lead to excessive costs if not incorporated early in the design process. The design for electrochemical plants is somewhat uncertain since these plants have not been built at a commercial scale in the past. The Separation and Safeguards Performance Model (SSPM), developed at Sandia National Laboratories, has been used for safeguards design and evaluation for multiple reprocessing plant types. The SSPM includes the following capabilities: -) spent fuel source term library, -) mass tracking of elements 1-99 and bulk solid/liquids, -) tracking of heat load and activity, -) customisable measurement points, -) automated calculation of ID and error propagation, -) alarm conditions and statistical tests, and -) user-defined diversion scenarios. Materials accountancy and process monitoring data can provide more timely detection of material loss specifically to protect against the insider threat. While the SSPM is capable of determining detection probabilities and examining detection times for material loss scenarios, it does not model the operations or spatial effects for a plant design. The STAGE software was chosen to model the physical protection system. STAGE provides a framework to create end-to-end scalable force-on-force combat simulations. It allows for a complete 3D model of a facility to be designed along with the design of physical protection elements. This software, then, can be used to model operations and response for various material loss scenarios. The future integration of the SSPM model data with the STAGE software will provide a more complete analysis of diversion scenarios to assist plant designers.

  10. Exploratory Technology Research Program for electrochemical energy storage: Annual report for 1993

    SciTech Connect (OSTI)

    Kinoshita, K. [ed.

    1994-09-01

    The U.S. Department of Energy`s Office of Propulsion Systems provides support for an Electrochemical Energy Storage Program, that includes research and development (R&D) on advanced rechargeable batteries and fuel cells. A major goal of this program is to develop electrochemical power sources suitable for application in electric vehicles (EVs). The program centers on advanced systems that offer the potential for high performance and low life-cycle costs, both of which are necessary to permit significant penetration into commercial markets. The DOE Electrochemical Energy Storage Program is divided into two projects: the Electric Vehicle Advanced Battery Systems (EVABS) Development Program and the Exploratory Technology Research (ETR) Program. The EVABS Program management responsibility has been assigned to Sandia National Laboratories (SNL); Lawrence Berkeley Laboratory (LBL) is responsible for management of the ETR Program. The EVABS and ETR Programs include an integrated matrix of R&D efforts designed to advance progress on selected candidate electrochemical systems. The United States Advanced Battery Consortium (USABC), a tripartite undertaking between DOE, the U.S. automobile manufacturers and the Electric Power Research Institute (EPRI), was formed in 1991 to accelerate the development of advanced batteries for consumer EVs. The role of the FIR Program is to perform supporting research on the advanced battery systems under development by the USABC and EVABS Program, and to evaluate new systems with potentially superior performance, durability and/or cost characteristics. The specific goal of the ETR Program is to identify the most promising electrochemical technologies and transfer them to the USABC, the battery industry and/or the EVABS Program for further development and scale-up. This report summarizes the research, financial and management activities relevant to the ETR Program in CY 1993.

  11. Minimizing electrode contamination in an electrochemical cell

    DOE Patents [OSTI]

    Kim, Yu Seung; Zelenay, Piotr; Johnston, Christina

    2014-12-09

    An electrochemical cell assembly that is expected to prevent or at least minimize electrode contamination includes one or more getters that trap a component or components leached from a first electrode and prevents or at least minimizes them from contaminating a second electrode.

  12. Method of constructing an improved electrochemical cell

    DOE Patents [OSTI]

    Grimes, Patrick G. (Westfield, NJ); Einstein, Harry (Springfield, NJ)

    1984-10-09

    An electrochemical cell construction features a novel co-extruded plastic electrode in an interleaved construction with a novel integral separator-spacer. Also featured is a leak and impact resistant construction for preventing the spill of corrosive materials in the event of rupture.

  13. BioElectrochemically Assisted Microbial Reactor

    E-Print Network [OSTI]

    Lee, Dongwon

    microbial fuel cell-based technologies. Bruce Logan and John M. Regan Hydrogen Energy CenterBioElectrochemically Assisted Microbial Reactor (BEAMR) The BEAMR reactor uses only >0.2 V needed/mol) expected Energy recovery from acetate: 5x the energy in electricity used recovered as H2 (heat

  14. Characterization of electrochemically modified polycrystalline platinum surfaces

    SciTech Connect (OSTI)

    Krebs, L.C.; Ishida, Takanobu

    1991-12-01

    The characterization of electrochemically modified polycrystalline platinum surfaces has been accomplished through the use of four major electrochemical techniques. These were chronoamperometry, chronopotentiommetry, cyclic voltammetry, and linear sweep voltammetry. A systematic study on the under-potential deposition of several transition metals has been performed. The most interesting of these were: Ag, Cu, Cd, and Pb. It was determined, by subjecting the platinum electrode surface to a single potential scan between {minus}0.24 and +1.25 V{sub SCE} while stirring the solution, that the electrocatalytic activity would be regenerated. As a consequence of this study, a much simpler method for producing ultra high purity water from acidic permanganate has been developed. This method results in water that surpasses the water produced by pyrocatalytic distillation. It has also been seen that the wettability of polycrystalline platinum surfaces is greatly dependent on the quantity of oxide present. Oxide-free platinum is hydrophobic and gives a contact angle in the range of 55 to 62 degrees. We have also modified polycrystalline platinum surface with the electrically conducting polymer poly-{rho}-phenylene. This polymer is very stable in dilute sulfuric acid solutions, even under applied oxidative potentials. It is also highly resistant to electrochemical hydrogenation. The wettability of the polymer modified platinum surface is severely dependent on the choice of supporting electrolyte chosen for the electrochemical polymerization. Tetraethylammonium tetrafluoroborate produces a film that is as hydrophobic as Teflon, whereas tetraethylammonium perchlorate produces a film that is more hydrophilic than oxide-free platinum.

  15. Alternative Waste Forms for Electro-Chemical Salt Waste

    SciTech Connect (OSTI)

    Crum, Jarrod V.; Sundaram, S. K.; Riley, Brian J.; Matyas, Josef; Arreguin, Shelly A.; Vienna, John D.

    2009-10-28

    This study was undertaken to examine alternate crystalline (ceramic/mineral) and glass waste forms for immobilizing spent salt from the Advanced Fuel Cycle Initiative (AFCI) electrochemical separations process. The AFCI is a program sponsored by U.S. Department of Energy (DOE) to develop and demonstrate a process for recycling spent nuclear fuel (SNF). The electrochemical process is a molten salt process for the reprocessing of spent nuclear fuel in an electrorefiner and generates spent salt that is contaminated with alkali, alkaline earths, and lanthanide fission products (FP) that must either be cleaned of fission products or eventually replaced with new salt to maintain separations efficiency. Currently, these spent salts are mixed with zeolite to form sodalite in a glass-bonded waste form. The focus of this study was to investigate alternate waste forms to immobilize spent salt. On a mole basis, the spent salt is dominated by alkali and Cl with minor amounts of alkaline earth and lanthanides. In the study reported here, we made an effort to explore glass systems that are more compatible with Cl and have not been previously considered for use as waste forms. In addition, alternate methods were explored with the hope of finding a way to produce a sodalite that is more accepting of as many FP present in the spent salt as possible. This study was done to investigate two different options: (1) alternate glass families that incorporate increased concentrations of Cl; and (2) alternate methods to produce a mineral waste form.

  16. Project summaries: seventh battery and electrochemical contractors' conference

    SciTech Connect (OSTI)

    Not Available

    1985-11-01

    The overall goal of the United States' energy policy is to foster an adequate supply of energy at a reasonable cost. This policy recognizes that ''adequate supply'' requires flexibility in the energy system, with no reliance on any single source of supply. The Energy Storage Program of the Office of Energy Storage and Distribution is supporting this policy by providing the technology base and exploratory development required for the more effective use of electrochemical technologies, aimed at improved energy flexibility in transportation, electric utility, and industrial applications. This document represents a compilation of seventy-four project summaries of research supported by the US Department of Energy, Energy Storage Program. Sections included in this report are: Sodium Sulfur Research and Development, Flow Battery Research and Development, Advanced Battery Research, Systems Analysis, Performance and Testing, Metal Air Batteries, and Fuel Cells.

  17. Electrochemical Processing of Used Nuclear Fuel

    SciTech Connect (OSTI)

    K. M. Goff; J. C. Wass; G. M. Teske

    2011-08-01

    As part of the Department of Energy’s Fuel Cycle Research and Development Program an electrochemical technology employing molten salts is being developed for recycle of metallic fast reactor fuel and treatment of light water reactor oxide fuel to produce a feed for fast reactors. This technology has been deployed for treatment of used fuel from the Experimental Breeder Reactor II (EBR-II) in the Fuel Conditioning Facility, located at the Materials and Fuel Complex of Idaho National Laboratory. This process is based on dry (non-aqueous) technologies that have been developed and demonstrated since the 1960s. These technologies offer potential advantages compared to traditional aqueous separations including: compactness, resistance to radiation effects, criticality control benefits, compatibility with advanced fuel types, and ability to produce low purity products. This paper will summarize the status of electrochemical development and demonstration activities with used nuclear fuel, including preparation of associated high-level waste forms.

  18. Electrochemically controlled charging circuit for storage batteries

    DOE Patents [OSTI]

    Onstott, E.I.

    1980-06-24

    An electrochemically controlled charging circuit for charging storage batteries is disclosed. The embodiments disclosed utilize dc amplification of battery control current to minimize total energy expended for charging storage batteries to a preset voltage level. The circuits allow for selection of Zener diodes having a wide range of reference voltage levels. Also, the preset voltage level to which the storage batteries are charged can be varied over a wide range.

  19. Zelenay wins Electrochemical Society's Research Award

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorkingLos Alamos verifies largestnamed Electrochemical Society Fellow

  20. Electrochemical Hydrogen Compression (EHC) | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum Based|DepartmentStatementofAprilof EnergyBreakout SessionElectrochemical

  1. Sealed joint structure for electrochemical device

    DOE Patents [OSTI]

    Tucker, Michael C; Jacobson, Craig P; De Jonghe, Lutgard C; Visco, Steven J

    2013-05-21

    Several members make up a joint in a high-temperature electrochemical device, wherein the various members perform different functions. The joint is useful for joining multiple cells (generally tubular modules) of an electrochemical device to produce a multi-cell segment-in-series stack for a solid oxide fuel cell, for instance. The joint includes sections that bond the joining members to each other; one or more seal sections that provide gas-tightness, and sections providing electrical connection and/or electrical insulation between the various joining members. A suitable joint configuration for an electrochemical device has a metal joint housing, a first porous electrode, a second porous electrode, separated from the first porous electrode by a solid electrolyte, and an insulating member disposed between the metal joint housing and the electrolyte and second electrode. One or more brazes structurally and electrically connects the first electrode to the metal joint housing and forms a gas tight seal between the first electrode and the second electrode.

  2. Portable Analyzer Based on Microfluidics/Nanoengineered Electrochemical Sensors for in Situ Characterization of Mixed Wastes

    SciTech Connect (OSTI)

    Wang, Joseph

    2006-06-01

    This research effort aims at developing a portable analytical system for fast, sensitive, and inexpensive, on-site monitoring of toxic transition metals and radionuclides in contaminated DOE Sites. The portable devices will be based on Microscale Total Analytical systems ( -TAS) or ''Lab-on-a-chip'' in combination with electrochemical (stripping-voltammetric) sensors. The resulting microfluidics/electrochemical sensor system would allow testing for toxic metals to be performed more rapidly, inexpensively, and reliably in a field setting. Progress Summary/Accomplishments: This report summarizes the ASU activity over the second year of the project. In accordance to our original objectives our studies have focused on various fundamental and practical aspects of sensing and microchip devices for monitoring metal contaminants. As described in this section, we have made a substantial progress, and introduced effective routes for improving the on-site detection of toxic metals and for interfacing microchips with the real world.

  3. Method of determining methane and electrochemical sensor therefor

    DOE Patents [OSTI]

    Zaromb, Solomon (Hinsdale, IL); Otagawa, Takaaki (Westmont, IL); Stetter, Joseph R. (Naperville, IL)

    1986-01-01

    A method and instrument including an electrochemical cell for the detection and measurement of methane in a gas by the oxidation of methane electrochemically at a working electrode in a nonaqueous electrolyte at a voltage about about 1.4 volts versus R.H.E. (the reversible hydrogen electrode potential in the same electrolyte), and the measurement of the electrical signal resulting from the electrochemical oxidation.

  4. Electrochemical Characterization of Voltage Fade in LMR-NMC cells...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Characterization of Voltage Fade in LMR-NMC cells Electrochemical Characterization of Voltage Fade in LMR-NMC cells 2013 DOE Hydrogen and Fuel Cells Program and Vehicle...

  5. Reactive MD Simulations of Electrochemical Oxide Interfaces at...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    National Laboratory Reactive MD Simulations of Electrochemical Oxide Interfaces at Mesoscale PI Name: Subramanian Sankaranarayanan PI Email: skrssank@anl.gov Institution:...

  6. Variable temperature electrochemical strain microscopy of Sm-doped ceria

    SciTech Connect (OSTI)

    Jesse, Stephen; Morozovska, A. N.; Kalinin, Sergei V; Eliseev, E. A.; Yang, Nan; Doria, Sandra; Tebano, Antonello

    2013-01-01

    Variable temperature electrochemical strain microscopy has been used to study the electrochemical activity of Sm-doped ceria as a function of temperature and bias. The electrochemical strain microscopy hysteresis loops have been collected across the surface at different temperatures and the relative activity at different temperatures has been compared. The relaxation behavior of the signal at different temperatures has been also evaluated to relate kinetic process during bias induced electrochemical reactions with temperature and two different kinetic regimes have been identified. The strongly non-monotonic dependence of relaxation behavior on temperature is interpreted as evidence for water-mediated mechanisms.

  7. Electrochemical Surface Potential due to Classical Point Charge...

    Office of Scientific and Technical Information (OSTI)

    Potential due to Classical Point Charge Models Drives Anion Adsorption to the Air-Water Interface Citation Details In-Document Search Title: Electrochemical Surface Potential...

  8. Vehicle Technologies Office Merit Review 2014: INL Electrochemical...

    Broader source: Energy.gov (indexed) [DOE]

    company name at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about INL electrochemical performance...

  9. Microbial Electrochemical Technology (MxCs): Challenges and Opportunit...

    Broader source: Energy.gov (indexed) [DOE]

    and Bioproduct Precursors from Wastewaters Workshop held March 18-19, 2015. Microbial Electrochemical Technology (MxCs): Challenges and Opportunities More Documents &...

  10. Vehicle Technologies Office Merit Review 2015: Electrochemical Performance Testing

    Broader source: Energy.gov [DOE]

    Presentation given by Argonne National Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about electrochemical...

  11. Modeling and simulations of electrical energy storage in electrochemical capacitors

    E-Print Network [OSTI]

    Wang, Hainan

    2013-01-01

    3D nanoarchitec- tures for energy storage and conversion,”functionality in energy storage materials and devices byto electrochemical energy storage in TiO 2 (anatase)

  12. Vehicle Technologies Office Merit Review 2015: INL Electrochemical Performance Testing

    Office of Energy Efficiency and Renewable Energy (EERE)

    Presentation given by Idaho National Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about INL electrochemical...

  13. Water at an electrochemical interface - a simulation study

    E-Print Network [OSTI]

    Willard, Adam

    2009-01-01

    Water at an electrochemical interface - a simulation studyof the properties of water in an aqueous ionic solutionis passing. We show how water is strongly attracted to and

  14. Vehicle Technologies Office Merit Review 2014: Electrochemical Performance Testing

    Broader source: Energy.gov [DOE]

    Presentation given by Argonne National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about electrochemical...

  15. Vehicle Technologies Office Merit Review 2014: INL Electrochemical Performance Testing

    Broader source: Energy.gov [DOE]

    Presentation given by [company name] at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about INL electrochemical...

  16. Manganese porphyrin multilayer films assembled on ITO electrodes via zirconium phosphonate chemistry: chemical and electrochemical

    E-Print Network [OSTI]

    chemistry: chemical and electrochemical catalytic oxidation activity So-Hye Cho, SonBinh T. Nguyen of 1.20 V. The electrochemically generated active intermediate exhibited oxidative catalytic activity; styrene epoxidation; supported catalysts; carbamazepine; electrochemical catalytic oxidation. 1

  17. MEMS Materials and Temperature Sensors for Down Hole Geothermal System Monitoring

    E-Print Network [OSTI]

    Wodin-Schwartz, Sarah

    2013-01-01

    Journal of Microelectromechanical Systems, 5(4), 1996. [25]bon for microelectromechanical systems and electrochemicalJournal of Microelectromechanical Systems, 22(1), 2013. [98

  18. 3516 J. Electrochem. Soc., Vol. 141, No. 12, December 1994 9 The Electrochemical Society, Inc. i. S.P. Murarka, J. Steigerwald, and R. J. Gutmann, MRS

    E-Print Network [OSTI]

    Florida, University of

    , Pittsburgh, PA (1994). 9. M. Pourbaix, Atlas of Electrochemical Equilibria in Aqueous Solutions, p. 384, NACE

  19. Cell structure for electrochemical devices and method of making same

    DOE Patents [OSTI]

    Kaun, Thomas D.

    2007-03-27

    An electrochemical device comprising alternating layers of positive and negative electrodes separated from each other by separator layers. The electrode layers extend beyond the periphery of the separator layers providing superior contact between the electrodes and battery terminals, eliminating the need for welding the electrode to the terminal. Electrical resistance within the battery is decreased and thermal conductivity of the cell is increased allowing for superior heat removal from the battery and increased efficiency. Increased internal pressure within the battery can be alleviated without damaging or removing the battery from service while keeping the contents of the battery sealed off from the atmosphere by a pressure release system. Nonoperative cells within a battery assembly can also be removed from service by shorting the nonoperative cell thus decreasing battery life.

  20. Electrochemical Corrosion Testing of Borated Stainless Steel Alloys

    SciTech Connect (OSTI)

    lister, tedd e; Mizia, Ronald E

    2007-05-01

    The Department of Energy Office of Civilian Radioactive Waste Management has specified borated stainless steel manufactured to the requirements of ASTM A 887-89, Grade A, UNS S30464, to be the material used for the fabrication of the fuel basket internals of the preliminary transportation, aging, and disposal canister system preliminary design. The long-term corrosion resistance performance of this class of borated materials must be verified when exposed to expected YMP repository conditions after a waste package breach. Electrochemical corrosion tests were performed on crevice corrosion coupons of Type 304 B4 and Type 304 B5 borated stainless steels exposed to single postulated in-package chemistry at 60°C. The results show low corrosion rates for the test period

  1. High-Power Electrochemical Storage Devices and Plug-in Hybrid...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    High-Power Electrochemical Storage Devices and Plug-in Hybrid Electric Vehicle Battery Development High-Power Electrochemical Storage Devices and Plug-in Hybrid Electric Vehicle...

  2. Exploratory technology research program for electrochemical energy storage. Annual report for 1996

    SciTech Connect (OSTI)

    Kinoshita, K. [ed.

    1997-06-01

    The U.S. Department of Energy`s Office of Transportation Technologies provides support for an Electrochemical Energy Storage Program, that includes research and development on advanced rechargeable batteries and fuel cells. A major goal of this program is to develop electrochemical power sources suitable for application in electric vehicles (EVs) and hybrid systems. The program centers on advanced electrochemical systems that offer the potential for high performance and low life-cycle costs, both of which are necessary to permit significant penetration into commercial markets. The DOE Electric Vehicle Technology Program is divided into two project areas: the United States Advanced Battery Consortium (USABC) and Advanced Battery R&D which includes the Exploratory Technology Research (ETR) Program managed by the Lawrence Berkeley National Laboratory (LBNL). The USABC, a tripartite undertaking between DOE, the U.S. automobile manufacturers and the Electric Power Research Institute (EPRI), was formed in 1991 to accelerate the development of advanced batteries for EVs. In addition, DOE is actively involved in the Partnership for a New Generation of Vehicles (PNGV) Program which seeks to develop passenger vehicles with a range equivalent to 80 mpg of gasoline. The role of the ETR Program is to perform supporting research on the advanced battery systems under development by the USABC and the PNGV Program, and to evaluate new systems with potentially superior performance, durability and/or cost characteristics. The specific goal of the ETR Program is to identify the most promising electrochemical technologies and transfer them to the USABC, the battery industry and/or other Government agencies for further development and scale-up. This report summarizes the research, financial and management activities relevant to the ETR Program in CY 1996. This is a continuing program, and reports for prior years have been published; they are listed at the end of this Executive Summary.

  3. Electrochemical Cells with Intermediate Capacitor Elements

    E-Print Network [OSTI]

    Grebel, Haim

    2015-01-01

    Our goal is to electronically regulate electrochemical cells. For this, we introduced a third element, called the gate, which was placed between the cathode and the anode electrodes of the cell. Voltage applied to this element controlled the local potential of the electrolyte, thus impacting the flow of ions within the cell. The flow of ions was monitored by the electronic current in the external cell's circuit. We provide simulations and experimental data as proof to the validity of this concept. This is but the first step towards a demonstration of a two-dimensional, bi-carrier ion transistors.

  4. Electrochemical mercerization, souring, and bleaching of textiles

    DOE Patents [OSTI]

    Cooper, John F. (Oakland, CA)

    1995-01-01

    Economical, pollution-free treatment of textiles occurs in a low voltage electrochemical cell that mercerizes (or scours), sours, and optionally bleaches without effluents and without the purchase of bulk caustic, neutralizing acids, or bleaches. The cell produces base in the cathodic chamber for mercerization and an equivalent amount of acid in the anodic chamber for neutralizing the fabric. Gas diffusion electrodes are used for one or both electrodes and may simultaneously generate hydrogen peroxide for bleaching. The preferred configuration is a stack of bipolar electrodes, in which one or both of the anode and cathode are gas diffusion electrodes, and where no hydrogen gas is evolved at the cathode.

  5. Methods for performing electrochemical nitration reactions

    DOE Patents [OSTI]

    Lister, Tedd Edward; Fox, Robert Vincent

    2010-05-11

    A method for the electrochemical synthesis of dinitro compounds is disclosed. The method comprises using an anode to oxidize an inactive chemical mediator, such as a ferrocyanide (Fe(CN).sub.6.sup.-4) ion, to an active chemical mediator or oxidizing agent, such as a ferricyanide (Fe(CN).sub.6.sup.-3) ion, in the presence of a differential voltage. The oxidizing agent reacts with a nitro compound and a nitrite ion to form a geminal dinitro compound. The anode may continuously oxidize ferrocyanide to regenerate active ferricyanide, thus keeping sufficient amounts of ferricyanide available for reaction..

  6. Solid oxide electrochemical cell fabrication process

    DOE Patents [OSTI]

    Dollard, Walter J. (Churchill Borough, PA); Folser, George R. (Lower Burrell, PA); Pal, Uday B. (Cambridge, MA); Singhal, Subhash C. (Murrysville, PA)

    1992-01-01

    A method to form an electrochemical cell (12) is characterized by the steps of thermal spraying stabilized zirconia over a doped lanthanum manganite air electrode tube (14) to provide an electrolyte layer (15), coating conductive particles over the electrolyte, pressurizing the outside of the electrolyte layer, feeding halide vapors of yttrium and zirconium to the outside of the electrolyte layer and feeding a source of oxygen to the inside of the electrolyte layer, heating to cause oxygen reaction with the halide vapors to close electrolyte pores if there are any and to form a metal oxide coating on and between the particles and provide a fuel electrode (16).

  7. Electrochemically-Mediated Amine Regeneration for Carbon Dioxide Separations

    E-Print Network [OSTI]

    - 1 - Electrochemically-Mediated Amine Regeneration for Carbon Dioxide Separations by Michael C Students #12;- 2 - Electrochemically-Mediated Amine Regeneration for Carbon Dioxide Separations by Michael This thesis describes a new strategy for carbon dioxide (CO2) separations based on amine sorbents, which

  8. Electrochemical NOx Sensor for Monitoring Diesel Emissions

    SciTech Connect (OSTI)

    Woo, L Y; Glass, R S

    2008-11-14

    Increasingly stringent emissions regulations will require the development of advanced gas sensors for a variety of applications. For example, compact, inexpensive sensors are needed for detection of regulated pollutants, including hydrocarbons (HCs), CO, and NO{sub x}, in automotive exhaust. Of particular importance will be a sensor for NO{sub x} to ensure the proper operation of the catalyst system in the next generation of diesel (CIDI) automobiles. Because many emerging applications, particularly monitoring of automotive exhaust, involve operation in harsh, high-temperature environments, robust ceramic-oxide-based electrochemical sensors are a promising technology. Sensors using yttria-stabilized zirconia (YSZ) as an oxygen-ion-conducting electrolyte have been widely reported for both amperometric and potentiometric modes of operation. These include the well-known exhaust gas oxygen (EGO) sensor. More recently, ac impedance-based (i.e., impedance-metric) sensing techniques using YSZ have been reported for sensing water vapor, hydrocarbons, CO, and NO{sub x}. Typically small-amplitude alternating signal is applied, and the sensor response is measured at a specified frequency. Most impedance-metric techniques have used the modulus (or magnitude) at low frequencies (< 1 Hz) as the sensing signal and attribute the measured response to interfacial phenomena. Work by our group has also investigated using phase angle as the sensing signal at somewhat higher frequencies (10 Hz). The higher frequency measurements would potentially allow for reduced sampling times during sensor operation. Another potential advantage of impedance-metric NO{sub x} sensing is the similarity in response to NO and NO{sub 2} (i.e., total-NO{sub x} sensing). Potentiometric NO{sub x} sensors typically show higher sensitivity to NO2 than NO, and responses that are opposite in sign. However, NO is more stable than NO{sub 2} at temperatures > 600 C, and thermodynamic calculations predict {approx}90% NO, balance NO{sub 2}. Since automotive exhaust sensors will probably be required to operate at temperatures > 600 C, NO is the dominant component in thermodynamic equilibrium and the target NOx species. Also, the use of upstream catalysts could further promote the conversion of NO{sub x} species to NO. Therefore, the focus of current work is to investigate the response to NO. Nevertheless, minimizing the sensitivity to a variety of competing species is important in order to obtain the accuracy necessary for achieving the emission limits. Mitigating the effect of interfering gases (e.g., O{sub 2}, water vapor, HCs, etc.) is an area of current study. For impedance metric NO{sub x} sensors, our previous work has demonstrated that the cross-sensitivity to O{sub 2} may be accounted for by comparing measurements at multiple frequencies. Other strategies for compensation are also being explored, including calibration using data from existing sensors located nearby. Our current work has made significant advances in terms of developing prototype sensors more suitable for commercialization. Also, dynamometer testing has provided real-world sensor performance data that will be useful in approaching potential suppliers to whom we can transfer the technology for commercialization. The advances are a direct result of understanding the sensing mechanisms responsible for impedance-based NO{sub x} sensing and the effect of materials choice and sensor design/geometry.

  9. Journal of The Electrochemical Society, 158 (12) A1461-A1477 (2011) A1461 0013-4651/2011/158(12)/A1461/17/$28.00 The Electrochemical Society

    E-Print Network [OSTI]

    Subramanian, Venkat

    2011-01-01

    the behavior of a 1-D battery sub- ject to isothermal conditions. This is a system of ten partial differential Reformulation and Simulation of Electrochemical-Thermal Behavior of Lithium-Ion Battery Stacks Paul W. C-isothermal lithium-ion pseudo 2-D battery model. The transformed model is then conveniently discretized using

  10. Electrochemical Aging of Thermal-Sprayed Zinc Anodes on Concrete

    SciTech Connect (OSTI)

    Holcomb, G.R.; Bullard, S.J.; Covino, B.S. Jr.; Cramer, S.D.; Cryer, C.B.; McGill, G.E.

    1996-10-01

    Thermal-sprayed zinc anodes are used in impressed current cathodic protection systems for some of Oregon's coastal reinforced concrete bridges. Electrochemical aging of zinc anodes results in physical and chemical changes at the zinc-concrete interface. Concrete surfaces heated prior to thermal-spraying had initial adhesion strengths 80 pct higher than unheated surfaces. For electrochemical aging greater than 200 kC/m{sup 2} (5.2 A h/ft{sup 2}), there was no difference in adhesion strengths for zinc on preheated and unheated concrete. Adhesion strengths decreased monotonically after about 400 to 600 kC/m{sup 2} (10.4 to 15.6 A-h/ft{sup 2}) as a result of the reaction zones at the zinc-concrete interface. A zone adjacent to the metallic zinc (and originally part of the zinc coating) was primarily zincite (ZnO), with minor constituents of wulfingite (Zn(OH){sub 2}), simonkolleite (Zn{sub 5}(OH) {sub 8}C{sub l2}{sup .}H{sub 2}O), and hydrated zinc hydroxide sulfates (Zn{sub 4}SO{sub 4}(OH){sub 6}{sup .}xH{sub 2}O). This zone is the locus for cohesive fracture when the zinc coating separates from the concrete during adhesion tests. Zinc ions substitute for calcium in the cement paste adjacent to the coating as the result of secondary mineralization. The initial estimate of the coating service life based on adhesion strength measurements in accelerated impressed current cathodic protection tests is about 27 years.

  11. A review of iron and cobalt porphyrins, phthalocyanines, and related complexes for electrochemical and photochemical reduction of carbon dioxide

    SciTech Connect (OSTI)

    Manbeck, Gerald F. [Brookhaven National Lab. (BNL), Upton, NY (United States); Fujita, Etsuko [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2015-01-01

    This review summarizes research on the electrochemical and photochemical reduction of CO? using a variety of iron and cobalt porphyrins, phthalocyanines, and related complexes. Metalloporphyrins and metallophthalocyanines are visible light absorbers with extremely large extinction coefficients. However, yields of photochemically-generated active catalysts for CO? reduction are typically low owing to the requirement of a second photoinduced electron. This requirement is not relevant to the case of electrochemical CO? reduction. Recent progress on efficient and stable electrochemical systems includes the use of FeTPP catalysts that have prepositioned phenyl OH groups in their second coordination spheres. This has led to remarkable progress in carrying out coupled proton-electron transfer reactions for CO? reduction. Such ground-breaking research has to be continued in order to produce renewable fuels in an economically feasible manner.

  12. A review of iron and cobalt porphyrins, phthalocyanines, and related complexes for electrochemical and photochemical reduction of carbon dioxide

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Manbeck, Gerald F.; Fujita, Etsuko

    2015-03-30

    This review summarizes research on the electrochemical and photochemical reduction of CO? using a variety of iron and cobalt porphyrins, phthalocyanines, and related complexes. Metalloporphyrins and metallophthalocyanines are visible light absorbers with extremely large extinction coefficients. However, yields of photochemically-generated active catalysts for CO? reduction are typically low owing to the requirement of a second photoinduced electron. This requirement is not relevant to the case of electrochemical CO? reduction. Recent progress on efficient and stable electrochemical systems includes the use of FeTPP catalysts that have prepositioned phenyl OH groups in their second coordination spheres. This has led to remarkable progressmore »in carrying out coupled proton-electron transfer reactions for CO? reduction. Such ground-breaking research has to be continued in order to produce renewable fuels in an economically feasible manner.« less

  13. Do not forget the electrochemical characteristics of the Membrane-Electrode-Assembly when designing a PEMFC stack

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    , France I Introduction: Principle of Fuel Cells I.1 Fuel Cell system I.2 Proton Exchange Membrane Fuel Cell (PEMFC) I.3 Components of a PEM Elementary Cell (Membrane, Catalysts, GDL) I.4 Electrical Characterization of the MEA by Electrochemical Spectroscopy (EIS) II.4 Optimization of the Membrane

  14. A Simplified Electrochemical and Thermal Aging Model of LiFePO4-Graphite Li-ion Batteries

    E-Print Network [OSTI]

    1 A Simplified Electrochemical and Thermal Aging Model of LiFePO4-Graphite Li-ion Batteries: Power of a commercial LiFePO4-graphite Li-ion battery. Compared to the isothermal reference, the mechanism of porosity;2 Due to their high power and energy densities, Li-ion technologies are the leading battery systems

  15. Cr-Ga-N materials for negative electrodes in Li rechargeable batteries : structure, synthesis and electrochemical performance

    E-Print Network [OSTI]

    Kim, Miso

    2007-01-01

    Electrochemical performances of two ternary compounds (Cr2GaN and Cr3GaN) in the Cr-Ga-N system as possible future anode materials for lithium rechargeable batteries were studied. Motivation for this study was dealt in ...

  16. Sensor apparatus using an electrochemical cell

    DOE Patents [OSTI]

    Thakur, Mrinal

    2003-07-01

    A method for sensing mechanical quantities such as force, stress, strain, pressure and acceleration is disclosed. This technology is based on a change in the electrochemically generated voltage (electromotive force) with application of force, stress, strain, pressure or acceleration. The change in the voltage is due to a change in the internal resistance of the electrochemical cell with a change in the relative position or orientation of the electrodes (anode and cathode) in the cell. The signal to be detected (e.g. force, stress, strain, pressure or acceleration) is applied to one of the electrodes to cause a change in the relative position or orientation between the electrodes. Various materials, solid, semisolid, gel, paste or liquid can be utilized as the electrolyte. The electrolyte must be an ion conductor. The examples of solid electrolytes include specific polymer conductors, polymer composites, ion conducting glasses and ceramics. The electrodes are made of conductors such as metals with dissimilar electro negativities. Significantly enhanced sensitivities, up to three orders of magnitude higher than that of comparable commercial sensors, are obtained. The materials are substantially less expensive than commercially used materials for mechanical sensors. An apparatus for sensing such mechanical quantities using materials such as doped 1,4 cis-polyisopropene and nafion. The 1,4 cis-polyisopropene may be doped with lithium perchlorate or iodine. The output voltage signal increases with an increase of the sensing area for a given stress. The device can be used as an intruder alarm, among other applications.

  17. Sensor apparatus using an electrochemical cell

    DOE Patents [OSTI]

    Thakur, Mrinal (1309 Gatewood Dr., Apt. 1703, Auburn, AL 36830)

    2002-01-01

    A novel technology for sensing mechanical quantities such as force, stress, strain, pressure and acceleration has been invented. This technology is based on a change in the electrochemically generated voltage (electromotive force) with application of force, stress, strain, pressure or acceleration. The change in the voltage is due to a change in the internal resistance of the electrochemical cell with a change in the relative position or orientation of the electrodes (anode and cathode) in the cell. The signal to be detected (e.g. force, stress, strain, pressure or acceleration) is applied to one of the electrodes to cause a change in the relative position or orientation between the electrodes. Various materials, solid, semisolid, gel, paste or liquid can be utilized as the electrolyte. The electrolyte must be an ion conductor. The examples of solid electrolytes include specific polymer conductors, polymer composites, ion conducting glasses and ceramics. The electrodes are made of conductors such as metals with dissimilar electronegativities. Significantly enhanced sensitivities, up to three orders of magnitude higher than that of comparable commercial sensors, are obtained. The materials are substantially less expensive than commercially used materials for mechanical sensors.

  18. Investigation of the suppression effect of polyethylene glycol on copper electroplating by electrochemical impedance spectroscopy

    SciTech Connect (OSTI)

    Hung, C.-C.; Lee, W.-H.; Wang, Y.-L.; Chan, D.-Y.; Hwang, G.-J. [Department of Electrical Engineering, National Cheng Kung University, Tainan 701, Taiwan (China); Department of Electrical Engineering, National Chiayi University, Chiayi, Taiwan (China); College of Science and Engineering, National University of Tainan, Tainan 700, Taiwan (China)

    2008-09-15

    Polyethylene glycol (PEG) is an additive that is commonly used as a suppressor in the semiconductor copper (Cu)-electroplating process. In this study, electrochemical impedance spectroscopy (EIS) was used to analyze the electrochemical behavior of PEG in the Cu-electroplating process. Polarization analysis, cyclic-voltammetry stripping, and cell voltage versus plating time were examined to clarify the suppression behavior of PEG. The equivalent circuit simulated from the EIS data shows that PEG inhibited the Cu-electroplating rate by increasing the charge-transfer resistance as well as the resistance of the adsorption layer. The presence of a large inductance demonstrated the strong adsorption of cuprous-PEG-chloride complexes on the Cu surface during the Cu-electroplating process. Increasing the PEG concentration appears to increase the resistances of charge transfer, the adsorption layer, and the inductance of the electroplating system.

  19. Real space mapping of ionic diffusion and electrochemical activity in energy storage and conversion materials

    DOE Patents [OSTI]

    Kalinin, Sergei V; Balke, Nina; Kumar, Amit; Dudney, Nancy J; Jesse, Stephen

    2014-05-06

    A method and system for probing mobile ion diffusivity and electrochemical reactivity on a nanometer length scale of a free electrochemically active surface includes a control module that biases the surface of the material. An electrical excitation signal is applied to the material and induces the movement of mobile ions. An SPM probe in contact with the surface of the material detects the displacement of mobile ions at the surface of the material. A detector measures an electromechanical strain response at the surface of the material based on the movement and reactions of the mobile ions. The use of an SPM tip to detect local deformations allows highly reproducible measurements in an ambient environment without visible changes in surface structure. The measurements illustrate effective spatial resolution comparable with defect spacing and well below characteristic grain sizes of the material.

  20. Gas venting system

    DOE Patents [OSTI]

    Khan, Amjad; Dreier, Ken Wayne; Moulthrop, Lawrence Clinton; White, Erik James

    2010-06-29

    A system to vent a moist gas stream is disclosed. The system includes an enclosure and an electrochemical cell disposed within the enclosure, the electrochemical cell productive of the moist gas stream. A first vent is in fluid communication with the electrochemical cell for venting the moist gas stream to an exterior of the enclosure, and a second vent is in fluid communication with an interior of the enclosure and in thermal communication with the first vent for discharging heated air to the exterior of the enclosure. At least a portion of the discharging heated air is for preventing freezing of the moist gas stream within the first vent.

  1. Synthesis of graphene platelets by chemical and electrochemical route

    SciTech Connect (OSTI)

    Ramachandran, Rajendran; Felix, Sathiyanathan [Centre for Nanotechnology Research, VIT University, Vellore 632014, Tamil Nadu (India); Joshi, Girish M. [Materials Physics Division, School of Advanced Sciences, VIT University, Vellore 632014, Tamil Nadu (India); Raghupathy, Bala P.C., E-mail: balapraveen2000@yahoo.com [Centre for Nanotechnology Research, VIT University, Vellore 632014, Tamil Nadu (India); Research and Advanced Engineering Division (Materials), Renault Nissan Technology and Business Center India (P) Ltd., Chennai, Tamil Nadu (India); Jeong, Soon Kwan, E-mail: jeongsk@kier.re.kr [Climate Change Technology Research Division, Korea Institute of Energy Research, Yuseong-gu, Daejeon 305-343 (Korea, Republic of); Grace, Andrews Nirmala, E-mail: anirmalagrace@vit.ac.in [Centre for Nanotechnology Research, VIT University, Vellore 632014, Tamil Nadu (India); Climate Change Technology Research Division, Korea Institute of Energy Research, Yuseong-gu, Daejeon 305-343 (Korea, Republic of)

    2013-10-15

    Graphical abstract: A schematic showing the overall reduction process of graphite to reduced graphene platelets by chemical and electrochemical route. - Highlights: • Graphene was prepared by diverse routes viz. chemical and electrochemical methods. • NaBH{sub 4} was effective for removing oxygen functional groups from graphene oxide. • Sodium borohydride reduced graphene oxide (SRGO) showed high specific capacitance. • Electrochemical rendered a cheap route for production of graphene in powder form. - Abstract: Graphene platelets were synthesized from graphene oxide by chemical and electrochemical route. Under the chemical method, sodium borohydride and hydrazine chloride were used as reductants to produce graphene. In this paper, a novel and cost effective electrochemical method, which can simplify the process of reduction on a larger scale, is demonstrated. The electrochemical method proposed in this paper produces graphene in powder form with good yield. The atomic force microscopic images confirmed that the graphene samples prepared by all the routes have multilayers of graphene. The electrochemical process provided a new route to make relatively larger area graphene sheets, which will have interest for further patterning applications. Attempt was made to quantify the quantum of reduction using cyclic voltammetry and choronopotentiometry techniques on reduced graphene samples. As a measure in reading the specific capacitance values, a maximum specific capacitance value of 265.3 F/g was obtained in sodium borohydride reduced graphene oxide.

  2. Selectively-etched nanochannel electrophoretic and electrochemical devices

    DOE Patents [OSTI]

    Surh, Michael P.; Wilson, William D.; Barbee, Jr., Troy W.; Lane, Stephen M.

    2004-11-16

    Nanochannel electrophoretic and electrochemical devices having selectively-etched nanolaminates located in the fluid transport channel. The normally flat surfaces of the nanolaminate having exposed conductive (metal) stripes are selectively-etched to form trenches and baffles. The modifications of the prior utilized flat exposed surfaces increase the amount of exposed metal to facilitate electrochemical redox reaction or control the exposure of the metal surfaces to analytes of large size. These etched areas variously increase the sensitivity of electrochemical detection devices to low concentrations of analyte, improve the plug flow characteristic of the channel, and allow additional discrimination of the colloidal particles during cyclic voltammetry.

  3. Selectively-etched nanochannel electrophoretic and electrochemical devices

    DOE Patents [OSTI]

    Surh, Michael P. (Livermore, CA); Wilson, William D. (Pleasanton, CA); Barbee, Jr., Troy W. (Palo Alto, CA); Lane, Stephen M. (Oakland, CA)

    2006-06-27

    Nanochannel electrophoretic and electrochemical devices having selectively-etched nanolaminates located in the fluid transport channel. The normally flat surfaces of the nanolaminate having exposed conductive (metal) stripes are selectively-etched to form trenches and baffles. The modifications of the prior utilized flat exposed surfaces increase the amount of exposed metal to facilitate electrochemical redox reaction or control the exposure of the metal surfaces to analytes of large size. These etched areas variously increase the sensitivity of electrochemical detection devices to low concentrations of analyte, improve the plug flow characteristic of the channel, and allow additional discrimination of the colloidal particles during cyclic voltammetry.

  4. Method for making an electrochemical cell

    DOE Patents [OSTI]

    Bates, J.B.; Dudney, N.J.

    1996-10-22

    Described is a thin-film battery, especially a thin-film microbattery, and a method for making the same, having application as a backup or primary integrated power source for electronic devices. The battery includes a novel electrolyte which is electrochemically stable and does not react with the lithium anode and a novel vanadium oxide cathode. Configured as a microbattery, the battery can be fabricated directly onto a semiconductor chip, onto the semiconductor die or onto any portion of the chip carrier. The battery can be fabricated to any specified size or shape to meet the requirements of a particular application. The battery is fabricated of solid state materials and is capable of operation between {minus}15 C and 150 C. 9 figs.

  5. Method for making an electrochemical cell

    DOE Patents [OSTI]

    Bates, John B. (Oak Ridge, TN); Dudney, Nancy J. (Knoxville, TN)

    1996-01-01

    Described is a thin-film battery, especially a thin-film microbattery, and a method for making same having application as a backup or primary integrated power source for electronic devices. The battery includes a novel electrolyte which is electrochemically stable and does not react with the lithium anode and a novel vanadium oxide cathode Configured as a microbattery, the battery can be fabricated directly onto a semiconductor chip, onto the semiconductor die or onto any portion of the chip carrier. The battery can be fabricated to any specified size or shape to meet the requirements of a particular application. The battery is fabricated of solid state materials and is capable of operation between -15.degree. C. and 150.degree. C.

  6. Electrochemical Cell Design With A Hollow Gate

    DOE Patents [OSTI]

    Romero, Antonio (Parkton, MD); Oweis, Salah (Ellicott City, MD); Chagnon, Guy (Columbia, MD); Staniewicz, Robert (Hunt Valley, MD); Briscoe, Douglas (Westminster, MD)

    2000-02-01

    An electrochemical cell having a spiral winding around a central core, wherein the central core is provided with longitudinal grooves on its outer surface to facilitate electrolyte filing and accommodate overpressure. The core itself improves dissipation of heat generated along the center of the cell, and the hollow core design allows the cell core to have a larger radius, permitting the "jelly roll" winding to begin at a larger radius and thereby facilitate the initial turns of the winding by decreasing the amount of bending required of the electrode laminate at the beginning of the winding operation. The hollow core also provides mechanical support end-to-end. A pair of washers are used at each end of the cell to sandwich current collection tabs in a manner that improves electrical and thermal conductivity while also providing structural integrity.

  7. Nanoparticles for Enhanced Sensitivity in Electrochemical Immunoassays

    SciTech Connect (OSTI)

    Lin, Yuehe; Wang, Jun; Wang, Hua; Wu, Hong; Tang, Zhiwen

    2008-10-12

    In this manuscript, we report on electrochemical biosensors based on various nanoparticles (NPs) as labels for sensitive detection of protein biomarkers. We used silica nanoparticle as a carrier to loading a large amount of electroactive species such as poly(guanine) for sensitive immunoassay of tumor necrosis factor-alpha (TNF-a). We took the advantages of the unique hollow structure and reconstruction properties of apoferritin to prepare Cd3(PO4)2 nanoparticles as labels for sensitive assay of TNF-a. A novel immunochromatographic/electro-chemical biosensor based on quantum dots as labels has also been developed for rapid and sensitive detection of prostate-specific antigen (PSA) in human serum. These biosensors are quite sensitive with the detection limit at pM level and these approaches based on nanoparticle labels offer a new avenue for sensitive detection of protein biomarkers.

  8. Composite electrode for use in electrochemical cells

    DOE Patents [OSTI]

    Vanderborgh, N.E.; Huff, J.R.; Leddy, J.

    1987-10-16

    A porous composite electrode for use in electrochemical cells. The electrode has a first face and a second face defining a relatively thin section therebetween. The electrode is comprised of an ion conducting material, an electron conducting material, and an electrocatalyst. The volume concentration of the ion conducting material is greatest at the first face and is decreased across the section, while the volume concentration of the electron conducting material is greatest at the second face and decreases across the section of the electrode. Substantially all of the electrocatalyst is positioned within the electrode section in a relatively narrow zone where the rate of electron transport of the electrode is approximately equal to the rate of ion transport of the electrode. 4 figs., 1 tab.

  9. Development of an Electrochemical Separator and Compressor

    SciTech Connect (OSTI)

    Trent Molter

    2011-04-28

    Global conversion to sustainable energy is likely to result in a hydrogen-based economy that supports U.S. energy security objectives while simultaneously avoiding harmful carbon emissions. A key hurdle to successful implementation of a hydrogen economy is the low-cost generation, storage, and distribution of hydrogen. One of the most difficult requirements of this transformation is achieving economical, high density hydrogen storage in passenger vehicles. Transportation applications may require compression and storage of high purity hydrogen up to 12,000 psi. Hydrogen production choices range from centralized low-pressure generation of relatively impure gas in large quantities from steam-methane reformer plants to distributed generation of hydrogen under moderate pressure using water electrolysis. The Electrochemical Hydrogen Separator + Compressor (EHS+C) technology separates hydrogen from impurities and then compresses it to high pressure without any moving parts. The Phase I effort resulted in the construction and demonstration of a laboratory-scale hardware that can separate and compress hydrogen from reformate streams. The completion of Phase I has demonstrated at the laboratory scale the efficient separation and compression of hydrogen in a cost effective manner. This was achieved by optimizing the design of the Electrochemical Hydrogen Compression (EHC) cell hardware and verified by parametric testing in single cell hardware. A broad range of commercial applications exist for reclamation of hydrogen. One use this technology would be in combination with commercial fuel cells resulting in a source of clean power, heat, and compressed hydrogen. Other applications include the reclamation of hydrogen from power plants and other industrial equipment where it is used for cooling, recovery of process hydrogen from heat treating processes, and semiconductor fabrication lines. Hydrogen can also be recovered from reformate streams and cryogenic boil-offs using this technology.

  10. Thermoelectrochemical system and method

    DOE Patents [OSTI]

    Ludwig, F.A.; Townsend, C.W.; Eliash, B.M.

    1995-11-28

    A thermal electrochemical system is described in which an electrical current is generated between a cathode immersed in a concentrated aqueous solution of phosphoric acid and an anode immersed in a molten salt solution of ammonium phosphate and monohydric ammonium phosphate. Reactants consumed at the electrodes during the electrochemical reaction are thermochemically regenerated and recycled to the electrodes to provide continuous operation of the system. 5 figs.

  11. A Combined Electrochemical and Ultra-High Vacuum Approach to...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A Combined Electrochemical and Ultra-High Vacuum Approach to Heterogeneous Electrocatalysis Friday, February 24, 2012 - 11:00am SSRL Bldg. 137-322, 3rd floor Conference Room...

  12. Electrochemical charge transfer at a metallic electrode: a simulation study 

    E-Print Network [OSTI]

    Pounds, Michael A.

    2010-01-01

    Part I Electrochemical charge transfer at a metallic electrode: a simulation study The factors which affect the rate of heterogeneous electron transfer at a metallic electrode in the context of Marcus theory are ...

  13. Theory of Membraneless Electrochemical Cells William A. Braffa

    E-Print Network [OSTI]

    Bazant, Martin Z.

    electrochemical cells, such as flow batteries and electrolyzers, that rely on slow diffusion in laminar flow analytically. The theory is applied to the membrane-less Hydrogen Bromine Laminar Flow Battery and found

  14. Electrochemical Impedance Spectroscopy using adjustable nanometer-gap electrodes

    E-Print Network [OSTI]

    Ma, Hongshen, 1978-

    2007-01-01

    Electrochemical Impedance Spectroscopy (EIS) is a simple yet powerful chemical analysis technique for measuring the electrical permittivity and conductivity of liquids and gases. Presently, the limiting factor for using ...

  15. Development of a morphing helicopter blade with electrochemical actuators

    E-Print Network [OSTI]

    Tubilla Kuri, Fernando

    2007-01-01

    The use of the expansion of electrochemical cells, upon ion intercalation, for the development of a morphing helicopter blade is explored. Using commercially available lithium-ion batteries as demostrators of the technology, ...

  16. Electrochemical Flocculation and Chlorination for Domestic Water Supplies 

    E-Print Network [OSTI]

    Dillion Jr., R. C.; Hiler, E. A.; Peters, J. L.

    1975-01-01

    Three electrochemical chlorinators were developed, tested and evaluated. The first used natural chlorides in the water to produce a chlorine residual; the second and third produced chlorine residuals by electrolysis of ...

  17. Electrochemical development of hydrogen silsesquioxane by applying an electrical potential

    E-Print Network [OSTI]

    Strobel, Sebastian

    We present a new method for developing hydrogen silsesquioxane (HSQ) by using electrical potentials and deionized water. Nested-L test structures with a pitch as small as 9 nm were developed using this electrochemical ...

  18. Carbon Nanotubes-Based Electrochemical Sensing for Cell Culture Monitoring

    E-Print Network [OSTI]

    De Micheli, Giovanni

    Carbon Nanotubes-Based Electrochemical Sensing for Cell Culture Monitoring Cristina Boero, Sandro different presented strategies to develop biosensors, carbon nanotubes exhibit great properties, particularly suitable for biosensing. In this work nanostructured electrodes by using multi-walled carbon

  19. Leveraging National Lab Capabilities in Fuel Cells and Electrochemical...

    Office of Environmental Management (EM)

    August 26, 2015 - 1:45pm Addthis On October 12 and 13, the U.S. Department of Energy's Fuel Cell Technologies Office will host several events at the Electrochemical Energy...

  20. Electrochemically-mediated amine regeneration for carbon dioxide separations

    E-Print Network [OSTI]

    Stern, Michael C. (Michael Craig)

    2014-01-01

    This thesis describes a new strategy for carbon dioxide (CO?) separations based on amine sorbents, which are electrochemically-mediated to facilitate the desorption and regeneration steps of the separation cycle. The ...

  1. Thermal conductor for high-energy electrochemical cells

    DOE Patents [OSTI]

    Hoffman, Joseph A. (Minneapolis, MN); Domroese, Michael K. (South St. Paul, MN); Lindeman, David D. (Hudson, WI); Radewald, Vern E. (Austin, TX); Rouillard, Roger (Beloeil, CA); Trice, Jennifer L. (Eagan, MN)

    2000-01-01

    A thermal conductor for use with an electrochemical energy storage device is disclosed. The thermal conductor is attached to one or both of the anode and cathode contacts of an electrochemical cell. A resilient portion of the conductor varies in height or position to maintain contact between the conductor and an adjacent wall structure of a containment vessel in response to relative movement between the conductor and the wall structure. The thermal conductor conducts current into and out of the electrochemical cell and conducts thermal energy between the electrochemical cell and thermally conductive and electrically resistive material disposed between the conductor and the wall structure. The thermal conductor may be fabricated to include a resilient portion having one of a substantially C-shaped, double C-shaped, Z-shaped, V-shaped, O-shaped, S-shaped, or finger-shaped cross-section. An elastomeric spring element may be configured so as to be captured by the resilient conductor for purposes of enhancing the functionality of the thermal conductor. The spring element may include a protrusion that provides electrical insulation between the spring conductor and a spring conductor of an adjacently disposed electrochemical cell in the presence of relative movement between the cells and the wall structure. The thermal conductor may also be fabricated from a sheet of electrically conductive material and affixed to the contacts of a number of electrochemical cells.

  2. BF3-promoted electrochemical properties of quinoxaline in propylene carbonate

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Carino, Emily V.; Diesendruck, Charles E.; Moore, Jeffrey S.; Curtiss, Larry A.; Assary, Rajeev S.; Brushett, Fikile R.

    2015-02-04

    Electrochemical and density functional studies demonstrate that coordination of electrolyte constituents to quinoxalines modulates their electrochemical properties. Quinoxalines are shown to be electrochemically inactive in most electrolytes in propylene carbonate, yet the predicted reduction potential is shown to match computational estimates in acetonitrile. We find that in the presence of LiBF4 and trace water, an adduct is formed between quinoxaline and the Lewis acid BF3, which then displays electrochemical activity at 1–1.5 V higher than prior observations of quinoxaline electrochemistry in non-aqueous media. Direct synthesis and testing of a bis-BF3 quinoxaline complex further validates the assignment of the electrochemically activemore »species, presenting up to a ~26-fold improvement in charging capacity, demonstrating the advantages of this adduct over unmodified quinoxaline in LiBF4-based electrolyte. The use of Lewis acids to effectively “turn on” the electrochemical activity of organic molecules may lead to the development of new active material classes for energy storage applications.« less

  3. SISGR: Improved Electrical Energy Storage with Electrochemical Double Layer Capacitance Based on Novel Carbon Electrodes, New Electrolytes, and Thorough Development of a Strong Science Base

    SciTech Connect (OSTI)

    Ruoff, Rodney S.; Alam, Todd M.; Bielawski, Christopher W.; Chabal, Yves; Hwang, Gyeong; Ishii, Yoshitaka; Rogers, Robin

    2014-07-23

    The broad objective of the SISGR program is to advance the fundamental scientific understanding of electrochemical double layer capacitance (EDLC) and thus of ultracapacitor systems composed of a new type of electrode based on chemically modified graphene (CMG) and (primarily) with ionic liquids (ILs) as the electrolyte. Our team has studied the interplay between graphene-based and graphene-derived carbons as the electrode materials in electrochemical double layer capacitors (EDLC) systems on the one hand, and electrolytes including novel ionic liquids (ILs), on the other, based on prior work on the subject.

  4. Steel refining with an electrochemical cell

    DOE Patents [OSTI]

    Blander, M.; Cook, G.M.

    1988-05-17

    Apparatus is described for processing a metallic fluid containing iron oxide, container for a molten metal including an electrically conductive refractory disposed for contact with the molten metal which contains iron oxide, an electrolyte in the form of a basic slag on top of the molten metal, an electrode in the container in contact with the slag electrically separated from the refractory, and means for establishing a voltage across the refractory and the electrode to reduce iron oxide to iron at the surface of the refractory in contact with the iron oxide containing fluid. A process is disclosed for refining an iron product containing not more than about 10% by weight oxygen and not more than about 10% by weight sulfur, comprising providing an electrolyte of a slag containing one or more of calcium oxide, magnesium oxide, silica or alumina, providing a cathode of the iron product in contact with the electrolyte, providing an anode in contact with the electrolyte electrically separated from the cathode, and operating an electrochemical cell formed by the anode, the cathode and the electrolyte to separate oxygen or sulfur present in the iron product therefrom. 2 figs.

  5. An electrochemical Claus process for sulfur recovery

    SciTech Connect (OSTI)

    Pujare, N.U.; Tsai, K.J.; Sammuells, A.F. (Eltron Research, Inc., Aurora, IL (US))

    1989-12-01

    Electrochemical oxidation of H{sub 2}S to give sulfur and water was achieved at 900{degrees}C using fuel cells possessing the general configuration where anode electrocatalysts experimentally investigated for promoting the subject oxidation reaction included WS{sub 2} and the thiospinels CuNi{sub 2}S{sub 4}, CuCo{sub 2}S{sub 4}, CuFe{sub 2}S{sub 4}, and NiFe{sub 2}S{sub 4}. The predominant oxidizable electroactive species present in the fuel cell anode compartment was suggested to be hydrogen originating from the initial thermal dissociation of H{sub 2}S (H{sub 2}S {r reversible} H{sub 2} + 1/2 S{sub 2}) at fuel cell operating temperatures. Rapid anode kinetics were found for the anodic reaction with the empirical trend for exchange currents (i{sub o}) per geometric area being found to be NiFe{sub 2}S{sub 4}{gt}WS{sub 2}{gt}CuCo{sub 2}S{sub 4}{gt}CuFe{sub 2}S{sub 4}{approx equal}NiCo{sub 2}S{sub 4}{gt}CuNi{sub 2}S{sub 4}.

  6. Steel refining with an electrochemical cell

    DOE Patents [OSTI]

    Blander, M.; Cook, G.M.

    1985-05-21

    Disclosed is an apparatus for processing a metallic fluid containing iron oxide, container for a molten metal including an electrically conductive refractory disposed for contact with the molten metal which contains iron oxide, an electrolyte in the form of a basic slag on top of the molten metal, an electrode in the container in contact with the slag electrically separated from the refractory, and means for establishing a voltage across the refractory and the electrode to reduce iron oxide to iron at the surface of the refractory in contact with the iron oxide containing fluid. A process is disclosed for refining an iron product containing not more than about 10% by weight sulfur, comprising providing an electrolyte of a slag containing one or more of calcium oxide, magnesium oxide, silica or alumina, providing a cathode of the iron product in contact with the electrolyte, providing an anode in contact with the electrolyte electrically separated from the cathode, and operating an electrochemical cell formed by the anode, the cathode and the electrolyte to separate oxygen or sulfur present in the iron product therefrom.

  7. Joint with application in electrochemical devices

    DOE Patents [OSTI]

    Weil, K Scott [Richland, WA; Hardy, John S [Richland, WA

    2010-09-14

    A joint for use in electrochemical devices, such as solid oxide fuel cells (SOFCs), oxygen separators, and hydrogen separators, that will maintain a hermetic seal at operating temperatures of greater than 600.degree. C., despite repeated thermal cycling excess of 600.degree. C. in a hostile operating environment where one side of the joint is continuously exposed to an oxidizing atmosphere and the other side is continuously exposed to a wet reducing gas. The joint is formed of a metal part, a ceramic part, and a flexible gasket. The flexible gasket is metal, but is thinner and more flexible than the metal part. As the joint is heated and cooled, the flexible gasket is configured to flex in response to changes in the relative size of the metal part and the ceramic part brought about by differences in the coefficient of thermal expansion of the metal part and the ceramic part, such that substantially all of the tension created by the differences in the expansion and contraction of the ceramic and metal parts is absorbed and dissipated by flexing the flexible gasket.

  8. Analysis of the published calorimetric evidence for electrochemical fusion of deuterium in palladium

    SciTech Connect (OSTI)

    Miskelly, G.M.; Heben, M.J.; Kumar, A.; Penner, R.M.; Sailor, M.J.; Lewis, N.S. )

    1989-11-10

    Estimates are given of the raw data that are the basis for the claims of excess power production by the electrochemical charging of palladium in deuterium oxide (D{sub 2}O). Calorimetric results are also presented that show no anomalous power production in either 0.1M LiOD/D{sub 2}O or 0.1M LiOH/H{sub 2}O (LiOH is lithium hydroxide). Several possible sources of error in open-system calorimetry are discussed that can confound interpretation of temperature changes in terms of anomalous power production. 13 refs., 3 figs., 2 tab.

  9. A New Electrochemical Gradient Generator in Thylakoid Membranes of Green Fabrice Rappaport, Giovanni Finazzi, Yves Pierre,| and Pierre Bennoun*,

    E-Print Network [OSTI]

    A New Electrochemical Gradient Generator in Thylakoid Membranes of Green Algae Fabrice Rappaport generator present in the thylakoid membranes. We have studied the permanent electrochemical gradient (µ~)1

  10. Electrochemical-thermal modeling and microscale phase change for passive internal thermal management of lithium ion batteries.

    SciTech Connect (OSTI)

    Fuller, Thomas F.; Bandhauer, Todd; Garimella, Srinivas

    2012-01-01

    A fully coupled electrochemical and thermal model for lithium-ion batteries is developed to investigate the impact of different thermal management strategies on battery performance. In contrast to previous modeling efforts focused either exclusively on particle electrochemistry on the one hand or overall vehicle simulations on the other, the present work predicts local electrochemical reaction rates using temperature-dependent data on commercially available batteries designed for high rates (C/LiFePO{sub 4}) in a computationally efficient manner. Simulation results show that conventional external cooling systems for these batteries, which have a low composite thermal conductivity ({approx}1 W/m-K), cause either large temperature rises or internal temperature gradients. Thus, a novel, passive internal cooling system that uses heat removal through liquid-vapor phase change is developed. Although there have been prior investigations of phase change at the microscales, fluid flow at the conditions expected here is not well understood. A first-principles based cooling system performance model is developed and validated experimentally, and is integrated into the coupled electrochemical-thermal model for assessment of performance improvement relative to conventional thermal management strategies. The proposed cooling system passively removes heat almost isothermally with negligible thermal resistances between the heat source and cooling fluid. Thus, the minimization of peak temperatures and gradients within batteries allow increased power and energy densities unencumbered by thermal limitations.

  11. Cooperative efforts of the materials protection control and accounting program at the electrochemical plant (Krasnoyarsk-45) in Russia-011

    SciTech Connect (OSTI)

    Moore, L.

    1998-07-22

    The USDOE Material Protection Control and Accountability Program (MPC&A) has established a Project Team with the goal of providing the Russian Electrochemical Plant (ECP) with equipment and training to enable ECP to evaluate, develop, and implement a comprehensive plan and systems for physical protection, material controls, and accountancy upgrades. The MPC&A project will provide for improvements such as risk assessments, access control upgrades, computerized MC&A, communications systems upgrades, building perimeter surveillance and intrusion detection upgrades, vault upgrades, metal and nuclear material detection upgrades, along with mass measurement and non- destructive analysis (NDA) instrumentation. This paper outlines the overall objectives of the MPC&A project at the Electrochemical Plant.

  12. Portable Analyzer Based on Microfluidics/Nanoengineered Electrochemical Sensors for In-situ Characterization of Mixed Wastes

    SciTech Connect (OSTI)

    Yuehe Lin; Glen E. Fryxell; Wassana Yantasee; Guodong Liu; Zheming Wang

    2006-06-01

    Required characterizations of the DOE's transuranic (TRU) and mixed wastes (MW) before disposing and treatment of the wastes are currently costly and have lengthy turnaround. Research toward developing faster and more sensitive characterization and analysis tools to reduce costs and accelerate throughputs is therefore desirable. This project is aimed at the development of electrochemical sensors, specific to toxic transition metals, uranium, and technetium, that can be integrated into the portable sensor systems. This system development will include fabrication and performance evaluation of electrodes as well as understanding of electrochemically active sites on the electrodes specifically designed for toxic metals, uranium and technetium detection. Subsequently, these advanced measurement units will be incorporated into a microfluidic prototype specifically designed and fabricated for field-deployable characterizations of such species.

  13. Minimizing Nonspecific Adsorption in Protein Biosensors that Utilize Electrochemical Impedance Spectroscopy

    E-Print Network [OSTI]

    Suni, Ian Ivar

    Minimizing Nonspecific Adsorption in Protein Biosensors that Utilize Electrochemical Impedance. These results suggest that nonspecific adsorption does not in general limit the utility of biosensors based. Electrochemical biosensors based on amperometry have been widely employed for glucose detection, including

  14. Electrochromic polyaniline/graphite oxide nanocomposites with endured electrochemical energy storage

    E-Print Network [OSTI]

    Guo, John Zhanhu

    films for electrochromic displays and electrochemical energy storage devices applications were. Introduction The development of sustainable and renewable energy storage resources with both high power densityElectrochromic polyaniline/graphite oxide nanocomposites with endured electrochemical energy

  15. Batteries and electrochemical energy storage are central to any future alternative energy scenario. Future energy generation

    E-Print Network [OSTI]

    Kemner, Ken

    Batteries and electrochemical energy storage are central to any future alternative energy energy storage for uninterrupted power supply units, the electrical grid, and transportation. Of all electrochemical energy storage devices, these corrosive reactions are not always detrimental to the operation

  16. Cathodic ALD V2O5 thin films for high-rate electrochemical energy...

    Office of Scientific and Technical Information (OSTI)

    Cathodic ALD V2O5 thin films for high-rate electrochemical energy storage Citation Details In-Document Search Title: Cathodic ALD V2O5 thin films for high-rate electrochemical...

  17. Bipolar Electrochemical Mechanism for the Propulsion of Catalytic Nanomotors in Hydrogen Peroxide Solutions

    E-Print Network [OSTI]

    Bipolar Electrochemical Mechanism for the Propulsion of Catalytic Nanomotors in Hydrogen Peroxide the bipolar electrochemical propulsion mechanism for bimetallic nanorods. Introduction Catalyic molecular nonbiological schemes for making micro/nanoscale ma- chines involve externally applied magnetic2 or electrical

  18. Portable Analyzer Based on Microfluidics/Nanoengineered Electrochemical Sensors for in Situ Characterization of Mixed Wastes

    SciTech Connect (OSTI)

    Wang, Joseph

    2006-06-01

    Portable Analyzer Based on Microfluidic/Nanoengineered Electrochemical Sensors for in Situ Characterization of Mixed Wastes PI: Dr. Joseph Wang (In Collaboration with the PNNL PI Dr. Y. Lin). Objective of Research: This research effort aims at developing a portable analytical system for fast, sensitive, and inexpensive, on-site monitoring of toxic transition metals and radionuclides in contaminated DOE Sites. The portable devices will be based on Microscale Total Analytical systems ( -TAS) or 'Lab-on-a-chip' in combination with electrochemical (stripping-voltammetric) sensors. The resulting microfluidics/electrochemical sensor system would allow testing for toxic metals to be performed more rapidly, inexpensively, and reliably in a field setting. Progress Summary/Accomplishments: This report summarizes the ASU activity over the second year of the project. In accordance to our original objectives our studies have focused on various fundamental and practical aspects of sensing and microchip devices for monitoring metal contaminants. As described in this section, we have made a substantial progress, and introduced effective routes for improving the on-site detection of toxic metals and for interfacing microchips with the real world. This activity has already resulted in 7 research papers (published or in press in major international journals). The electrochemical sensors being developed rely on the highly sensitive adsorptive stripping voltammetry (AdSV) technique to detect metal ions of interest to the DOE, particularly uranium and chromium. Traditionally, AdSV measurements of U and Cr require the use of mercury electrodes which are not suitable attractive for field deployment. Our initial goal was thus to replace these toxic mercury electrodes with 'environmentally-friendly' sensor materials. In particular, we demonstrated recently that bismuth-film electrodes offer high-quality measurements of heavy metals that compare favorably with that of mercury electrodes. Bismuth is a 'green' element, with very low toxicity, and widespread pharmaceutical use. A major effort of our activity this year has been devoted to the development of a 'mercury-free' uranium sensor based on the bismuth film electrode. Bismuth-coated carbon-fiber electrodes have thus been successfully applied for adsorptive-stripping voltammetric measurements of trace uranium in the presence of the cupferron complexing agent.

  19. Equipment specifications for an electrochemical fuel reprocessing plant

    SciTech Connect (OSTI)

    Hemphill, Kevin P [Los Alamos National Laboratory

    2010-01-01

    Electrochemical reprocessing is a technique used to chemically separate and dissolve the components of spent nuclear fuel, in order to produce new metal fuel. There are several different variations to electrochemical reprocessing. These variations are accounted for by both the production of different types of spent nuclear fuel, as well as different states and organizations doing research in the field. For this electrochemical reprocessing plant, the spent fuel will be in the metallurgical form, a product of fast breeder reactors, which are used in many nuclear power plants. The equipment line for this process is divided into two main categories, the fuel refining equipment and the fuel fabrication equipment. The fuel refining equipment is responsible for separating out the plutonium and uranium together, while getting rid of the minor transuranic elements and fission products. The fuel fabrication equipment will then convert this plutonium and uranium mixture into readily usable metal fuel.

  20. Electrochemical Performance of Graphene as Effected by Electrode Porosity and Graphene Functionalization

    E-Print Network [OSTI]

    Aksay, Ilhan A.

    of electrochemical activity are not yet understood. Here, we present data from NADH oxidation and ferri/ferrocyanide

  1. Effect of Pore Morphology on the Electrochemical Properties of Electric Double Layer Carbon Cryogel Supercapacitors

    SciTech Connect (OSTI)

    Garcia, B.B.; Feaver, A.M.; Zhang, Q.; Champion, R.D.; Cao, G.; Fister, T.T.; Nagle, K.P.; Seidler, G.T.

    2008-07-28

    In this study, a group of carbon cryogels have been synthesized using resorcinol formaldehyde as precursors, and altered via catalysis and activation, to obtain varied nanostructures and pore size distributions. To understand the relation between structure and electrochemical properties, an alternate approach to de Levi's cylindrical pore, transmission line method was utilized. Using electrochemical impedance spectroscopy, the capacitor can be studied as a dielectric system composed of a porous electrode and the electrolyte (tetraethylammonium tetrafluoroborate in propylene carbonate). The complex capacitance and power are used to study the behavior of the system below the relaxation frequency f{sub 0} ({var_phi} = -45{sup o}). Therefore, the relaxation of the capacitor system at the low frequency range, f

  2. Fuel cell system with interconnect

    DOE Patents [OSTI]

    Goettler, Richard; Liu, Zhien

    2015-08-11

    The present invention includes a fuel cell system having a plurality of adjacent electrochemical cells formed of an anode layer, a cathode layer spaced apart from the anode layer, and an electrolyte layer disposed between the anode layer and the cathode layer. The fuel cell system also includes at least one interconnect, the interconnect being structured to conduct free electrons between adjacent electrochemical cells. Each interconnect includes a primary conductor embedded within the electrolyte layer and structured to conduct the free electrons.

  3. Fuel cell system with interconnect

    SciTech Connect (OSTI)

    Liu, Zhien; Goettler, Richard

    2015-09-29

    The present invention includes a fuel cell system having a plurality of adjacent electrochemical cells formed of an anode layer, a cathode layer spaced apart from the anode layer, and an electrolyte layer disposed between the anode layer and the cathode layer. The fuel cell system also includes at least one interconnect, the interconnect being structured to conduct free electrons between adjacent electrochemical cells. Each interconnect includes a primary conductor embedded within the electrolyte layer and structured to conduct the free electrons.

  4. Fuel cell system with interconnect

    DOE Patents [OSTI]

    Goettler, Richard; Liu, Zhien

    2015-03-10

    The present invention includes a fuel cell system having a plurality of adjacent electrochemical cells formed of an anode layer, a cathode layer spaced apart from the anode layer, and an electrolyte layer disposed between the anode layer and the cathode layer. The fuel cell system also includes at least one interconnect, the interconnect being structured to conduct free electrons between adjacent electrochemical cells. Each interconnect includes a primary conductor embedded within the electrolyte layer and structured to conduct the free electrons.

  5. ELECTROCHEMICAL STUDIES OF CARBON STEEL CORROSION IN HANFORD DOUBLE SHELL TANK (DST) WASTE

    SciTech Connect (OSTI)

    DUNCAN, J.B.; WINDISCH, C.F.

    2006-10-13

    This paper reports on the electrochemical scans for the supernatant of Hanford double-shell tank (DST) 241-SY-102 and the electrochemical scans for the bottom saltcake layer for Hanford DST 241-AZ-102. It further reports on the development of electrochemical test cells adapted to both sample volume and hot cell constraints.

  6. Electrochemical cell for in-situ x-ray characterization

    SciTech Connect (OSTI)

    Doughty, D.H.; Ingersoll, D.; Rodriguez, M.A.

    1998-08-04

    An electrochemical cell suitable for in-situ XRD analysis is presented. Qualitative information such as phase formation and phase stability can be easily monitored using the in-situ cell design. Quantitative information such as lattice parameters and kinetic behavior is also straightforward. Analysis of the LiMn&sub2;O&sub4; spinel using this cell design shows that the lattice undergoes two major structural shrinkages at approx. 4.0 V and approx. 4.07 V during charging. These shrinkages correlate well with the two electrochemical waves observed and indicate the likelihood of two separate redox processes which charging and discharging.

  7. Nitrogen-doped Graphene and Its Electrochemical Applications

    SciTech Connect (OSTI)

    Shao, Yuyan; Zhang, Sheng; Engelhard, Mark H.; Li, Guosheng; Shao, Guocheng; Wang, Yong; Liu, Jun; Aksay, Ilhan A.; Lin, Yuehe

    2010-06-04

    Nitrogen-doped graphene (N-graphene) is obtained by exposing graphene to nitrogen plasma. N-graphene exhibits much higher electrocatalytic activity toward oxygen reduction and H2O2 reduction than graphene, and much higher durability and selectivity than the widely-used expensive Pt. The excellent electrochemical performance of N-graphene is attributed to nitrogen functional groups and the specific properties of graphene. This indicates that N-graphene is promising for applications in electrochemical energy devices (fuel cells, metal-air batteries) and biosensors.

  8. Electrochemical process and production of novel complex hydrides

    DOE Patents [OSTI]

    Zidan, Ragaiy

    2013-06-25

    A process of using an electrochemical cell to generate aluminum hydride (AlH.sub.3) is provided. The electrolytic cell uses a polar solvent to solubilize NaAlH.sub.4. The resulting electrochemical process results in the formation of AlH.sub.3. The AlH.sub.3 can be recovered and used as a source of hydrogen for the automotive industry. The resulting spent aluminum can be regenerated into NaAlH.sub.4 as part of a closed loop process of AlH.sub.3 generation.

  9. Regeneration of anion exchange resins by catalyzed electrochemical reduction

    DOE Patents [OSTI]

    Gu, Baohua (Oak Ridge, TN); Brown, Gilbert M. (Knoxville, TN)

    2002-01-01

    Anion exchange resins sorbed with perchlorate may be regenerated by a combination of chemical reduction of perchlorate to chloride using a reducing agent and an electrochemical reduction of the oxidized reducing agent. Transitional metals including Ti, Re, and V are preferred chemical reagents for the reduction of perchlorate to chloride. Complexing agents such as oxalate are used to prevent the precipitation of the oxidized Ti(IV) species, and ethyl alcohol may be added to accelerate the reduction kinetics of perchlorate. The regeneration may be performed by continuously recycling the regenerating solution through the resin bed and an electrochemical cell so that the secondary waste generation is minimized.

  10. Electrochemical hydrogen permeation studies of several mono- and diamines

    SciTech Connect (OSTI)

    Al-Janabi, Y.T.; Lewis, A.L. [Saudi Aramco, Dhahran (Saudi Arabia). Lab. Research and Development Center; Oweimreen, G.A. [King Fahd Univ. of Petroleum and Minerals, Dhahran (Saudi Arabia). Dept. of Chemistry

    1995-09-01

    The combined presence of moisture and hydrogen sulfide, known in the oil industry as a sour environment, enhances corrosion reactions at a metal surface as well as promotes the entry of hydrogen atoms, resulting from these reactions, into the metal. Increased entry of hydrogen atoms increases the probability of occurrence of hydrogen-induced cracking. The objective of this study is to evaluate the ability of several organic amines to inhibit the overall process of hydrogen entry and to relate their inhibition abilities to their molecular structures. The diffusion coefficients for the permeation of hydrogen atoms through steel estimated in this study using the time-lag and Laplace methods are of the same order of magnitude as those in the published literature. In several hydrogen permeation curves, a characteristic hump was observed. The authors propose that this hump is due to the trapping of hydrogen at sites other than voids and microvoids. The electrochemical system was also sued to study the effectiveness of diethanolamine (DEA), morpholine (MOR), triethanolamine (TEA), ethylenediamine (EDA), and hexamethylene diamine (HMDA) in inhibiting the entry of hydrogen atoms into steel. The diamines were found to be more effective than the monoamines. A nonlinear relationship was observed between the inhibition effectiveness and the concentration of the amines studied. The inhibiting abilities of the monoamines were similar at the high concentration limit (0.01 M) but followed the trend TEA > MOR > DEA at the low concentration limit (5 {times} 10{sup {minus}5} M). For the diamines the inhibiting abilities were also similar at the high concentration limit (5 {times} 10{sup {minus}3} M) and followed the trend HMDA > EDA at the low concentration limit (5 {times} 10{sup {minus}5} M).

  11. A Novel System for Carbon Dioxide Capture Utilizing Electrochemical...

    Office of Scientific and Technical Information (OSTI)

    of other plants such as an existing coal-fired plant and simultaneously produces clean and environmentally benign (green) electric power at high efficiency using a...

  12. CO.sub.2 utilization in electrochemical systems

    DOE Patents [OSTI]

    Boxley, Chett; Akash, Akash; Zhao, Qiang

    2013-01-22

    A process for treating fly ash to render it highly usable as a concrete additive. A quantity of fly ash is obtained that contains carbon and which is considered unusable fly ash for concrete based upon foam index testing. The fly ash is mixed with a quantity of spray dryer ash (SDA) and water to initiate a geopolymerization reaction and form a geopolymerized fly ash. The geopolymerized fly ash is granulated. The geopolymerized fly ash is considered usable fly ash for concrete according to foam index testing. The geopolymerized fly ash may have a foam index less than 40%, and in some cases less than 20%, of the foam index of the untreated fly ash. An optional alkaline activator may be mixed with the fly ash and SDA to facilitate the geopolymerization reaction. The alkaline activator may contain an alkali metal hydroxide, carbonate, silicate, aluminate, or mixtures thereof.

  13. Electrochemical studies of calcium chloride-based molten salt systems

    SciTech Connect (OSTI)

    Blanchard, T.P. Jr.

    1992-12-01

    Conductance and EMF studies of CaCl{sub 2}-based melts were performed in the temperature range 790--990 C. Conductivity data collected using magnesia tubes and capillaries showed deviations from the data recommended by the National Bureau of Standards. These deviations are attributed to the slow dissolution of magnesia by the CaCl{sub 2}-CaO melt. Conductivity data for molten CaCl{sub 2} using a pyrolytic boron nitride capillary were in reasonable agreement with the recommended data; however, undissolved CaO in CaCl{sub 2} may have caused blockage of the pyrolytic boron nitride capillary, resulting in fluctuations in the measured resistance. The utility of the AgCl/Ag reference electrode in CaCl{sub 2}-AgCl and CaCl{sub 2}-CaO-AgCl melts, using asbestos diaphragms and Vycor glass as reference half-cell membranes, was also investigated. Nernstian behavior was observed using both types of reference half-cell membranes in CaCl{sub 2}-AgCl melts. The AgCl/Ag reference electrode also exhibited Nernstian behavior in CaCl{sub 2}-CaO-AgCl melts using a Vycor reference half-cell membrane and a magnesia crucible. The use of CaCl{sub 2} as a solvent is of interest since it is used in plutonium metal purification, as well as various other commercial applications. 97 refs., 33 figs., 13 tabs.

  14. Analysis and Simulation of Electrochemical Energy Systems | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum Based Fuels Research at 1 Table of ContentsAn

  15. Analysis and Simulation of Electrochemical Energy Systems | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum Based Fuels Research at 1 Table of ContentsAnEnergy 09 DOE Hydrogen Program

  16. A Novel System for Carbon Dioxide Capture Utilizing Electrochemical

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefield MunicipalTechnicalInformation4563 LLNL Small-scaleCoherentCharacterizationArticle)A(JournalMembrane

  17. Interpretation of Self-Potential Anomalies Using Constitutive Relationships for Electrochemical and Thermoelectric Coupling Coefficients

    SciTech Connect (OSTI)

    Knapp, R. B.; Kasameyer, P. W.

    1988-01-01

    Constitutive relationships for electrochemical and thermoelectric cross-coupling coefficients are derived using ionic mobilities, applying a general derivative of chemical potential and employing the zero net current condition. The general derivative of chemical potential permits thermal variations which give rise to the thermoelectric effect. It also accounts for nonideal solution behavior. An equation describing electric field strength is similarly derived with the additional assumption of electrical neutrality in the fluid Planck approximation. The Planck approximation implies that self-potential (SP) is caused only by local sources and also that the electric field strength has only first order spatial variations. The derived relationships are applied to the NaCl-KCl concentration cell with predicted and measured voltages agreeing within 0.4 mV. The relationships are also applied to the Long Valley and Yellowstone geothermal systems. There is a high degree of correlation between predicted and measured SP response for both systems, giving supporting evidence for the validity of the approach. Predicted SP amplitude exceeds measured in both cases; this is a possible consequence of the Planck approximation. Electrochemical sources account for more than 90% of the predicted response in both cases while thermoelectric mechanisms account for the remaining 10%; electrokinetic effects are not considered. Predicted electrochemical and thermoelectric voltage coupling coefficients are comparable to values measured in the laboratory. The derived relationships are also applied to arbitrary distributions of temperature and fluid composition to investigate the geometric diversity of observed SP anomalies. Amplitudes predicted for hypothetical saline spring and hot spring environments are less than 40 mV. In contrast, hypothetical near surface steam zones generate very large amplitudes, over 2 V in one case. These results should be viewed with some caution due to the uncertain validity of the Planck approximation for these conditions. All amplitudes are controlled by electrochemical mechanisms. Polarities are controlled by the curvature of the concentration or thermal profile. Concave upward thermal profiles produce positive anomalies, for constant fluid concentrations, whereas concave upward concentration profiles produce negative anomalies. Concave downward concentration profiles are characterized by small negative closures bounding a larger, positive SP anomaly.

  18. Mediated electrochemical oxidation of organic wastes without electrode separators

    DOE Patents [OSTI]

    Farmer, J.C.; Wang, F.T.; Hickman, R.G.; Lewis, P.R.

    1996-05-14

    An electrochemical cell/electrolyte/mediator combination is described for the efficient destruction of organic contaminants using metal salt mediators in a sulfuric acid electrolyte, wherein the electrodes and mediator are chosen such that hydrogen gas is produced at the cathode and no cell membrane is required. 3 figs.

  19. MATERIALS, INTERFACES, AND ELECTROCHEMICAL PHENOMENA Hydrophilic Zeolite Coatings for Improved

    E-Print Network [OSTI]

    Aguilar, Guillermo

    MATERIALS, INTERFACES, AND ELECTROCHEMICAL PHENOMENA Hydrophilic Zeolite Coatings for Improved Heat on the surface of a bare, ZSM-5 coated, and Zeolite-A coated stainless steel 304 substrate at different initial surface temperatures was experimentally studied. ZSM-5 and Zeolite-A coated SS-304 are more much more

  20. J.M. Tarascon, et al. , Electrochemical energy storage

    E-Print Network [OSTI]

    Canet, Léonie

    J.M. Tarascon, et al. , Electrochemical energy storage for renewable energies CNRS, Jeudi 3 Octobre 28 TW Renewable EnergiesRenewable EnergiesRenewable Energies WHY ENERGY STORAGE ? Billionsdebarils Integration of RES requires massive energy storage to improve grid , reliability, quality and utilization

  1. Electrode electrolyte interlayers containing cerium oxide for electrochemical fuel cells

    DOE Patents [OSTI]

    Borglum, Brian P. (Edgewood, PA); Bessette, Norman F. (N. Huntingdon, PA)

    2000-01-01

    An electrochemical cell is made having a porous fuel electrode (16) and a porous air electrode (13), with solid oxide electrolyte (15) therebetween, where the air electrode surface opposing the electrolyte has a separate, attached, dense, continuous layer (14) of a material containing cerium oxide, and where electrolyte (16) contacts the continuous oxide layer (14), without contacting the air electrode (13).

  2. Lithium-Assisted Electrochemical Welding in Silicon Nanowire Battery Electrodes

    E-Print Network [OSTI]

    Rubloff, Gary W.

    Lithium-Assisted Electrochemical Welding in Silicon Nanowire Battery Electrodes Khim Karki, Eric-healing, interfacial lithium diffusivity, in situ TEM, lithium-ion battery Silicon is an auspicious candidate to replace today's widely utilized graphitic anodes in lithium ion batteries because its specific energy

  3. EFFECTS OF GAMMA RADIATION ON ELECTROCHEMICAL PROPERTIES OF IONIC LIQUIDS

    SciTech Connect (OSTI)

    Visser, A; Nicholas Bridges, N; Thad Adams, T; John Mickalonis, J; Mark02 Williamson, M

    2009-04-21

    The electrochemical properties of ionic liquids (ILs) make them attractive for possible replacement of inorganic salts in high temperature molten salt electrochemical processing of nuclear fuel. To be a feasible replacement solvent, ILs need to be stable in moderate and high doses of radiation without adverse chemical and physical effects. Here, we exposed seven different ILs to a 1.2 MGy dose of gamma radiation to investigate their physical and chemical properties as they related to radiological stability. The azolium-based ILs experienced the greatest change in appearance, but these ILs were chemically more stable to gamma radiation than some of the other classes of ILs tested, due to the presence of aromatic electrons in the azolium ring. All the ILs exhibited a decrease in their conductivity and electrochemical window (at least 1.1 V), both of which could affect the utility of ILs in electrochemical processing. The concentration of the irradiation decomposition products was less than 3 mole %, with no impurities detectable using NMR techniques.

  4. Oxide modified air electrode surface for high temperature electrochemical cells

    DOE Patents [OSTI]

    Singh, Prabhakar (Export, PA); Ruka, Roswell J. (Churchill Boro, Allegheny County, PA)

    1992-01-01

    An electrochemical cell is made having a porous cermet electrode (16) and a porous lanthanum manganite electrode (14), with solid oxide electrolyte (15) between them, where the lanthanum manganite surface next to the electrolyte contains a thin discontinuous layer of high surface area cerium oxide and/or praseodymium oxide, preferably as discrete particles (30) in contact with the air electrode and electrolyte.

  5. Graphene Based Electrochemical Sensors and Biosensors: Yuyan Shao,a

    E-Print Network [OSTI]

    Aksay, Ilhan A.

    Review Graphene Based Electrochemical Sensors and Biosensors: A Review Yuyan Shao,a Jun Wang,a Hong-mail: Yuehe.lin@pnl.gov Received: November 24, 2009 Accepted: December 23, 2009 Abstract Graphene, emerging of functionalization and mass production). This article selectively reviews recent advances in graphene

  6. "Studying the electrochemical and chemical conditions of corrosion in

    E-Print Network [OSTI]

    Zhigilei, Leonid V.

    of nuclear waste, compressor blades for jet engines, and high strength aluminum alloys for aerospace Professor rgkelly@virginia.edu www.virginia.edu/cese/ Dept. of Materials Science & Engineering University of Virginia Charlottesville, VA 434.982.5783 Center for Electrochemical Science & Engineering Corrosion

  7. Hierarchical nanostructured conducting polymer hydrogel with high electrochemical activity

    E-Print Network [OSTI]

    Cui, Yi

    and have been used in many applications such as bioelectronics and energy storage devices. They are often demonstrated great potential for a broad range of applications from energy storage devices such as biofuelHierarchical nanostructured conducting polymer hydrogel with high electrochemical activity Lijia

  8. Electrochemical Membrane for Carbon Dioxide Separation and Power Generation

    SciTech Connect (OSTI)

    Jolly, Stephen; Ghezel-Ayagh, Hossein; Hunt, Jennifer; Patel, Dilip; Steen, William A.; Richardson, Carl F.; Marina, Olga A.

    2012-12-28

    uelCell Energy, Inc. (FCE) has developed a novel system concept for separation of carbon dioxide (CO2) from greenhouse gas (GHG) emission sources using an electrochemical membrane (ECM). The salient feature of the ECM is its capability to produce electric power while capturing CO2 from flue gas, such as from an existing pulverized coal (PC) plant. Laboratory scale testing of the ECM has verified the feasibility of the technology for CO2 separation from simulated flue gases of PC plants as well as combined cycle power plants and other industrial facilities. Recently, FCE was awarded a contract (DE-FE0007634) from the U.S. Department of Energy to evaluate the use of ECM to efficiently and cost effectively separate CO2 from the emissions of existing coal fired power plants. The overarching objective of the project is to verify that the ECM can achieve at least 90% CO2 capture from flue gas of an existing PC plant with no more than 35% increase in the cost of electricity (COE) produced by the plant. The specific objectives and related activities planned for the project include: 1) conduct bench scale tests of a planar membrane assembly consisting of ten or more cells of about 0.8 m2 area each, 2) develop the detailed design for an ECM-based CO2 capture system applied to an existing PC plant, and 3) evaluate the effects of impurities (pollutants such as SO2, NOx, Hg) present in the coal plant flue gas by conducting laboratory scale performance tests of the membrane. The results of this project are anticipated to demonstrate that the ECM is an advanced technology, fabricated from inexpensive materials, based on proven operational track records, modular, scalable to large sizes, and a viable candidate for >90% carbon capture from existing PC plants. In this paper, the fundamentals of ECM technology including: material of construction, principal mechanisms of operation, carbon capture test results and the benefits of applications to PC plants will be presented.

  9. Electrical modeling of semiconductor bridge (SCB) BNCP detonators with electrochemical capacitor firing sets

    SciTech Connect (OSTI)

    Marx, K.D.; Ingersoll, D.; Bickes, R.W. Jr.

    1998-11-01

    In this paper the authors describe computer models that simulate the electrical characteristics and hence, the firing characteristics and performance of a semiconductor bridge (SCB) detonator for the initiation of BNCP [tetraammine-cis-bis (5-nitro-2H-tetrazolato-N{sup 2}) cobalt(III) perchlorate]. The electrical data and resultant models provide new insights into the fundamental behavior of SCB detonators, particularly with respect to the initiation mechanism and the interaction of the explosive powder with the SCB. One model developed, the Thermal Feedback Model, considers the total energy budget for the system, including the time evolution of the energy delivered to the powder by the electrical circuit, as well as that released by the ignition and subsequent chemical reaction of the powder. The authors also present data obtained using a new low-voltage firing set which employed an advanced electrochemical capacitor having a nominal capacitance of 350,000 {micro}F at 9 V, the maximum voltage rating for this particular device. A model for this firing set and detonator was developed by making measurements of the intrinsic capacitance and equivalent series resistance (ESR < 10 m{Omega}) of a single device. This model was then used to predict the behavior of BNCP SCB detonators fired alone, as well as in a multishot, parallel-string configuration using a firing set composed of either a single 9 V electrochemical capacitor or two of the capacitors wired in series and charged to 18 V.

  10. Electrochemical behavior of carbon aerogels derived from different precursors

    SciTech Connect (OSTI)

    Pekala, R.W.; Alviso, C.T.; Nielson, J.K.; Tran, T.D. [Lawrence Livermore National Lab., CA (United States); Reynolds, G.M.; Dresshaus, M.S. [Massachusetts Inst. of Tech., Cambridge, MA (United States). Dept. of Physics

    1995-04-01

    The ability to tailor the structure and properties of porous carbons has led to their increased use as electrodes in energy storage devices. Our research focuses on the synthesis and characterization of carbon aerogels for use in electrochemical double layer capacitors. Carbon aerogels are formed from the sol-gel polymerization of (1) resorcinol-formaldehyde or (2) phenolic-furfural, followed by supercritical drying from carbon dioxide, and subsequent pyrolysis in an inert atmosphere. These materials can be produced as monoliths, composites, thin films, powders, or microspheres. In all cases, the areogels have an open-cell structure with an ultrafine pore size (<100 nm), high surface area (400-1 100 m{sup 2}/g), and a solid matrix composed of interconnected particles, fibers, or platelets with characteristic dimensions of 10 nm. This paper examines the effects of the carbon precursor and processing conditions on electrochemical performance in aqueous and organic electrolytes.

  11. Electrochemical Proteolytic Beacon for Detection of Matrix Metalloproteinase Activities

    SciTech Connect (OSTI)

    Liu, Guodong; Wang, Jun; Wunschel, David S.; Lin, Yuehe

    2006-09-27

    This communication describes a novel method for detecting of matrix metalloproteinase-7 activity using a peptide substrate labeled with a ferrocene reporter. The substrate serves as a selective ‘electrochemical proteolytic beacon’ (EPB) for this metalloproteinase. The EPB is immobilized on a gold electrode surface to enable ‘on-off’ electrochemical signaling capability for uncleaved and cleaved events. The EPB is efficiently and selectively cleaved by MMP-7 as measured by the rate of decrease in redox current of ferrocene. Direct transduction of a signal corresponding to peptide cleavage events into an electronic signal thus provides a simple, sensitive route for detecting the MMP activity. The new method allows for identification of the activity of MMP-7 in concentrations as low as 3.4 pM. The concept can be extended to design multiple peptide substrate labeled with different electroactive reporters for assaying multiple MMPs activities.

  12. Enzyme electrochemical sensor electrode and method of making it

    DOE Patents [OSTI]

    Rishpon, Judith (Los Alamos, NM); Zawodzinski, Thomas A. (Los Alamos, NM); Gottesfeld, Shimshon (Los Alamos, NM)

    1992-01-01

    An electrochemical sensor electrode is formed from an electronic conductor coated with a casting solution containing a perfluorosulfonic acid ionomer and a selected enzyme. The selected enzyme catalyzes a reaction between a predetermined substance in a solution and oxygen to form an electrochemically active compound that is detected at the electronic conductor. The resulting perfluorosulfonic acid polymer provides a stable matrix for the enzyme for long lived enzyme activity, wherein only thin coatings are required on the metal conductor. The polymer also advantageously repels interfering substances from contacting the enzyme and contains quantities of oxygen to maintain a sensing capability during conditions of oxygen depletion in the sample. In one particular embodiment, glucose oxidase is mixed with the perfluorosulfonic acid ionomer to form an electrode for glucose detection.

  13. Continuous-feed electrochemical cell with nonpacking particulate electrode

    DOE Patents [OSTI]

    Cooper, John F. (Oakland, CA)

    1995-01-01

    An electrochemical cell providing full consumption of electrochemically active particles in a nonpacking, electrolyte-permeable bed has a tapered cell cavity bounded by two nonparallel surfaces separated by a distance that promotes bridging of particles across the cavity. The gap/particle size ratio is maintained as the particles are consumed, decrease in size, and travel from the point of entry to the narrower end of the cell. A cell of this configuration supports a bed of low packing density maintained in a dynamic steady state by alternate formation and collapse of particle bridges across the gap and associated voids over the entire active area of the cell. The cell design can be applied to refuelable zinc/air cells and zinc/ferrocyanide storage batteries.

  14. Continuous-feed electrochemical cell with nonpacking particulate electrode

    DOE Patents [OSTI]

    Cooper, J.F.

    1995-07-18

    An electrochemical cell providing full consumption of electrochemically active particles in a nonpacking, electrolyte-permeable bed has a tapered cell cavity bounded by two nonparallel surfaces separated by a distance that promotes bridging of particles across the cavity. The gap/particle size ratio is maintained as the particles are consumed, decrease in size, and travel from the point of entry to the narrower end of the cell. A cell of this configuration supports a bed of low packing density maintained in a dynamic steady state by alternate formation and collapse of particle bridges across the gap and associated voids over the entire active area of the cell. The cell design can be applied to refuelable zinc/air cells and zinc/ferrocyanide storage batteries. 6 figs.

  15. Structures and fabrication techniques for solid state electrochemical devices

    DOE Patents [OSTI]

    Visco, Steven J.; Jacobson, Craig P.; DeJonghe, Lutgard C.

    2006-10-10

    Low-cost, mechanically strong, highly electronically conductive porous substrates and associated structures for solid-state electrochemical devices, techniques for forming these structures, and devices incorporating the structures provide solid state electrochemical device substrates of novel composition and techniques for forming thin electrode/membrane/electrolyte coatings on the novel or more conventional substrates. In particular, in one aspect the invention provides techniques for co-firing of device substrate (often an electrode) with an electrolyte or membrane layer to form densified electrolyte/membrane films 5 to 20 microns thick. In another aspect, densified electrolyte/membrane films 5 to 20 microns thick may be formed on a pre-sintered substrate by a constrained sintering process. In some cases, the substrate may be a porous metal, alloy, or non-nickel cermet incorporating one or more of the transition metals Cr, Fe and Cu, or alloys thereof.

  16. Structures And Fabrication Techniques For Solid State Electrochemical Devices

    DOE Patents [OSTI]

    Visco, Steven J. (Berkeley, CA); Jacobson, Craig P. (El Cerrito, CA); DeJonghe, Lutgard C. (Lafayette, CA)

    2005-12-27

    Provided are low-cost, mechanically strong, highly electronically conductive porous substrates and associated structures for solid-state electrochemical devices, techniques for forming these structures, and devices incorporating the structures. The invention provides solid state electrochemical device substrates of novel composition and techniques for forming thin electrode/membrane/electrolyte coatings on the novel or more conventional substrates. In particular, in one embodiment the invention provides techniques for co-firing of device substrate (often an electrode) with an electrolyte or membrane layer to form densified electrolyte/membrane films 5 to 20 microns thick. In another embodiment, densified electrolyte/membrane films 5 to 20 microns thick may be formed on a pre-sintered substrate by a constrained sintering process. In some cases, the substrate may be a porous metal, alloy, or non-nickel cermet incorporating one or more of the transition metals Cr, Fe, Cu and Ag, or alloys thereof.

  17. Structures and fabrication techniques for solid state electrochemical devices

    DOE Patents [OSTI]

    Visco, Steven J. (Berkeley, CA); Jacobson, Craig P. (El Cerrito, CA); DeJonghe, Lutgard C. (Lafayette, CA)

    2003-08-12

    Provided are low-cost, mechanically strong, highly electronically conductive porous substrates and associated structures for solid-state electrochemical devices, techniques for forming these structures, and devices incorporating the structures. The invention provides solid state electrochemical device substrates of novel composition and techniques for forming thin electrode/membrane/electrolyte coatings on the novel or more conventional substrates. In particular, in one embodiment the invention provides techniques for co-firing of device substrate (often an electrode) with an electrolyte or membrane layer to form densified electrolyte/membrane films 5 to 20 microns thick. In another embodiment, densified electrolyte/membrane films 5 to 20 microns thick may be formed on a pre-sintered substrate by a constrained sintering process. In some cases, the substrate may be a porous metal, alloy, or non-nickel cermet incorporating one or more of the transition metals Cr, Fe, Cu and Ag, or alloys thereof.

  18. Electrochemical reactions in a pure Na2SO4 melt

    SciTech Connect (OSTI)

    Fang, W.C.; Rapp, R.A.

    1983-12-01

    Cyclic voltammetry and chronopotentiometry were used to study the electrochemical reduction reactions of SO3 gas O2 and SO4S ions in a Na2SO4 melt at 900C. The reduction reaction of SO3 follows a ce mechanism: SO3 first reacts chemically with SO4S to form S2O7S and then proceeds via a one-electron electrochemical reduction reaction to form SO3 . The reduction of peroxide O2 ions forms either OS or both OS and superoxide O2S ions. Sulfate ions are subjected to decomposition at either very positive or very negative potentials. At very high positive potentials, sulfate ions decompose to evolve SO2 and O2 gases, in addition superoxide ions are also formed. At very negative potentials, sulfate ions decompose to form sulfide and peroxide. 24 references, 11 figures, 2 tables.

  19. Single particle electrochemical sensors and methods of utilization

    DOE Patents [OSTI]

    Schoeniger, Joseph (Oakland, CA); Flounders, Albert W. (Berkeley, CA); Hughes, Robert C. (Albuquerque, NM); Ricco, Antonio J. (Los Gatos, CA); Wally, Karl (Lafayette, CA); Kravitz, Stanley H. (Placitas, NM); Janek, Richard P. (Oakland, CA)

    2006-04-04

    The present invention discloses an electrochemical device for detecting single particles, and methods for using such a device to achieve high sensitivity for detecting particles such as bacteria, viruses, aggregates, immuno-complexes, molecules, or ionic species. The device provides for affinity-based electrochemical detection of particles with single-particle sensitivity. The disclosed device and methods are based on microelectrodes with surface-attached, affinity ligands (e.g., antibodies, combinatorial peptides, glycolipids) that bind selectively to some target particle species. The electrodes electrolyze chemical species present in the particle-containing solution, and particle interaction with a sensor element modulates its electrolytic activity. The devices may be used individually, employed as sensors, used in arrays for a single specific type of particle or for a range of particle types, or configured into arrays of sensors having both these attributes.

  20. Structures and fabrication techniques for solid state electrochemical devices

    DOE Patents [OSTI]

    Visco, Steven J.; Jacobson, Craig P.; DeJonghe, Lutgard C.

    2012-10-09

    Porous substrates and associated structures for solid-state electrochemical devices, such as solid-oxide fuel cells (SOFCs), are low-cost, mechanically strong and highly electronically conductive. Some preferred structures have a thin layer of an electrocatalytically active material (e.g., Ni--YSZ) coating a porous high-strength alloy support (e.g., SS-430) to form a porous SOFC fuel electrode. Electrode/electrolyte structures can be formed by co-firing or constrained sintering processes.

  1. Structures and fabrication techniques for solid state electrochemical devices

    DOE Patents [OSTI]

    Visco, Steven J. (Berkeley, CA); Jacobson, Craig P. (El Cerrito, CA); DeJonghe, Lutgard C. (Lafayette, CA)

    2008-04-01

    Porous substrates and associated structures for solid-state electrochemical devices, such as solid-oxide fuel cells (SOFCs), are low-cost, mechanically strong and highly electronically conductive. Some preferred structures have a thin layer of an electrocatalytically active material (e.g., Ni--YSZ) coating a porous high-strength alloy support (e.g., SS-430) to form a porous SOFC fuel electrode. Electrode/electrolyte structures can be formed by co-firing or constrained sintering processes.

  2. Electrochemical cell with powdered electrically insulative material as a separator

    DOE Patents [OSTI]

    Mathers, James P. (Downers Grove, IL); Olszanski, Theodore W. (Justice, IL); Boquist, Carl W. (Chicago, IL)

    1978-01-01

    A secondary electrochemical cell includes electrodes separated by a layer of electrically insulative powder. The powder includes refractory materials selected from the oxides and nitrides of metals and metaloids. The powdered refractory material, blended with electrolyte particles, can be compacted in layers with electrode materials to form an integral electrode structure or separately assembled into the cell. The assembled cell is heated to operating temperature leaving porous layers of electrically insulative, refractory particles, containing molten electrolyte between the electrodes.

  3. Microfluidic devices with thick-film electrochemical detection

    DOE Patents [OSTI]

    Wang, Joseph; Tian, Baomin; Sahlin, Eskil

    2005-04-12

    An apparatus for conducting a microfluidic process and analysis, including at least one elongated microfluidic channel, fluidic transport means for transport of fluids through the microfluidic channel, and at least one thick-film electrode in fluidic connection with the outlet end of the microfluidic channel. The present invention includes an integrated on-chip combination reaction, separation and thick-film electrochemical detection microsystem, for use in detection of a wide range of analytes, and methods for the use thereof.

  4. Polymer-electrolyte membrane, electrochemical fuel cell, and related method

    DOE Patents [OSTI]

    Krishnan, Lakshmi; Yeager, Gary William; Soloveichik, Grigorii Lev

    2014-12-09

    A polymer-electrolyte membrane is presented. The polymer-electrolyte membrane comprises an acid-functional polymer, and an additive incorporated in at least a portion of the membrane. The additive comprises a fluorinated cycloaliphatic additive, a hydrophobic cycloaliphatic additive, or combinations thereof, wherein the additive has a boiling point greater than about 120.degree. C. An electrochemical fuel cell including the polymer-electrolyte membrane, and a related method, are also presented.

  5. Protective interlayer for high temperature solid electrolyte electrochemical cells

    DOE Patents [OSTI]

    Singh, Prabhakar (Export, PA); Vasilow, Theodore R. (Manor, PA); Richards, Von L. (Angola, IN)

    1996-01-01

    The invention comprises of an electrically conducting doped or admixed cerium oxide composition with niobium oxide and/or tantalum oxide for electrochemical devices, characterized by the general formula: Nb.sub.x Ta.sub.y Ce.sub.1-x-y O.sub.2 where x is about 0.0 to 0.05, y is about 0.0 to 0.05, and x+y is about 0.02 to 0.05, and where x is preferably about 0.02 to 0.05 and y is 0, and a method of making the same. This novel composition is particularly applicable in forming a protective interlayer of a high temperature, solid electrolyte electrochemical cell (10), characterized by a first electrode (12); an electrically conductive interlayer (14) of niobium and/or tantalum doped cerium oxide deposited over at least a first portion (R) of the first electrode; an interconnect (16) deposited over the interlayer; a solid electrolyte (18) deposited over a second portion of the first electrode, the first portion being discontinuous from the second portion; and, a second electrode (20) deposited over the solid electrolyte. The interlayer (14) is characterized as being porous and selected from the group consisting of niobium doped cerium oxide, tantalum doped cerium oxide, and niobium and tantalum doped cerium oxide or admixtures of the same. The first electrode (12), an air electrode, is a porous layer of doped lanthanum manganite, the solid electrolyte layer (18) is a dense yttria stabilized zirconium oxide, the interconnect layer (16) is a dense, doped lanthanum chromite, and the second electrode (20), a fuel electrode, is a porous layer of nickel-zirconium oxide cermet. The electrochemical cell (10) can take on a plurality of shapes such as annular, planar, etc. and can be connected to a plurality of electrochemical cells in series and/or in parallel to generate electrical energy.

  6. Quantum-Dots Based Electrochemical Immunoassay of Interleukin-1?

    SciTech Connect (OSTI)

    Wu, Hong; Liu, Guodong; Wang, Jun; Lin, Yuehe

    2007-07-01

    We describe a quantum-dot (QD, CdSe@ZnS)-based electrochemical immunoassay to detect a protein biomarker, interleukin-1? (IL-1?). QD conjugated with anti-IL-1? antibody was used as a label in an immunorecognition event. After a complete sandwich immunoreaction among the primary IL-1? antibody (immobilized on the avidin-modified magnetic beads), IL-1?, and the QD-labeled secondary antibody, QD labels were attached to the magnetic-bead surface through the antibody-antigen immunocomplex. Electrochemical stripping analysis of the captured QDs was used to quantify the concentration of IL-1? after an acid-dissolution step. The streptavidin-modified magnetic beads and the magnetic separation platform were used to integrate a facile antibody immobilization (through a biotin/streptavidin interaction) with immunoreactions and the isolation of immunocomplexes from reaction solutions in the assay. The voltammetric response is highly linear over the range of 0.5 to 50 ng mL-1 IL 1?, and the limit of detection is estimated to be 0.3 ng mL-1 (18 pM). This QD-based electrochemical immunoassay shows great promise for rapid, simple, and cost-effective analysis of protein biomarkers.

  7. Cogeneration with Thermionics and Electrochemical Cells 

    E-Print Network [OSTI]

    Miskolczy, G.; Goodale, D.; Huffman, F.; Morgan, D.

    1984-01-01

    in the design of a thermionic cogeneration system specifically applied to the chlorine caustic soda industry. A full-scale cogeneration installation of this type is expected to produce about 12 kilowatts of direct current power for each million Btu fired....

  8. Electrochemical Performance of Graphene as Effected by Electrode Porosity and Graphene Functionalization

    SciTech Connect (OSTI)

    Punckt, Christian; Pope, Michael A.; Liu, Jun; Lin, Yuehe; Aksay, Ilhan A.

    2010-11-01

    Graphene-based electrodes have recently gained popularity due to their superior electrochemical properties. However, the exact mechanisms of electrochemical activity are not yet understood. Here, we present data from NADH oxidation and ferri/ferrocyanide redox probe experiments to demonstrate that both (i) the porosity of the graphene electrodes, as effected by the packing morphology, and (ii) the functional group and the lattice defect concentration play a significant role on their electrochemical performance.

  9. Electrochemical Performance of Graphene as Effected by Electrode Porosity and Graphene Functionalization

    SciTech Connect (OSTI)

    Punckt, Christian; Pope, Michael A.; Liu, Jun; Lin, Yuehe; Aksay, Ilhan A.

    2010-12-01

    Graphene-based electrodes have recently gained popularity due to their superior electrochemical properties. However, the exact mechanisms of electrochemical activity are not yet understood. Here, we present data from NADH oxidation and ferri/ferrocyanide redox probe experiments to demonstrate that both (i) the porosity of the graphene electrodes, as effected by the packing morphology, and (ii) the functional group and the lattice defect concentration play a significant role on their electrochemical performance.

  10. Supplementary Information for: Electrochemical struvite precipitation from digestate with a fluidized bed

    E-Print Network [OSTI]

    Supplementary Information for: Electrochemical struvite precipitation from digestate for a) magnesium, b) phosphate, c) calcium and d) ammonium for the influent digestate as a function

  11. Electrochemical and spectroelectrochemical characterisation of cyano and trifluoromethyl substituted polypyridines and their transition metal complexes 

    E-Print Network [OSTI]

    Delf, Alexander Robert L.

    2011-06-27

    This thesis is concerned with the electrochemical and spectroelectrochemical characterisation of cyano (CN) and trifluoromethyl (CF3) substituted polypyridine ligands and their metal complexes. The ligands investigated ...

  12. Solid State Electrochemical Sensors for Nitrogen Oxide (NOx) Detection in Lean Exhaust Gases

    E-Print Network [OSTI]

    Rheaume, Jonathan Michael

    2010-01-01

    LSCo for Solid Oxide Electrolyzer Anodes”, J. Electrochem.gas sensors. Batteries, electrolyzers, and gas sensors allmake a sensor or an electrolyzer. By reading an open circuit

  13. Electrochemical aging of humectant-treated thermal-sprayed zinc anodes for cathodic protection

    SciTech Connect (OSTI)

    Covino, B.S. Jr.; Holcomb, G.R.; Bullard, S.J.; Russell, J.H.; Cramer, S.D.; Bennett, J.E.; Laylor, H.M.

    1999-07-01

    Humectants, substances that promote the retention of moisture, were studied to determine their effectiveness in improving the performance and extending the service life of both new and previously-aged thermal-sprayed Zn anodes used in impressed current (ICCP) and galvanic cathodic protection (GCP) systems for steel-reinforced concrete structures. Potassium acetate, lithium nitrate, and lithium bromide were applied to a series of thermal-sprayed Zn-coated concrete slabs before starting the ICCP or GCP experiment. All of the humectants altered the behavior of the thermal-sprayed Zn anodes. LiNO{sub 3} was the most beneficial for ICCP anodes and LiBr was the most beneficial for GCP anodes. Circuit resistances for ICCP anodes and galvanic current density for GCP anodes are compared on the basis of electrochemical aging, humidity, and type of humectant.

  14. Material protection control and accounting program activities at the electrochemical plant

    SciTech Connect (OSTI)

    McAllister, S.

    1997-11-14

    The Electrochemical Plant (ECP) is the one of the Russian Federation`s four uranium enrichment plants and one of three sites in Russia blending high enriched uranium (HEU) into commercial grade low enriched uranium. ECP is located approximately 200 km east of Krasnoyarsk in the closed city of Zelenogorsk (formerly Krasnoyarsk- 45). DOE`s MPC&A program first met with ECP in September of 1996. The six national laboratories participating in DOE`s Material Protection Control and Accounting program are cooperating with ECP to enhance the capabilities of the physical protection, access control, and nuclear material control and accounting systems. The MPC&A work at ECP is expected to be completed during fiscal year 2001.

  15. Material protection control and accounting program activities at the Urals electrochemical integrated plant

    SciTech Connect (OSTI)

    McAllister, S.

    1997-11-14

    The Urals Electrochemical Integrated Plant (UEIP) is the Russian Federation`s largest uranium enrichment plant and one of three sites in Russia blending high enriched uranium (HEU) into commercial grade low enriched uranium. UEIP is located approximately 70 km north of Yekaterinburg in the closed city of Novouralsk (formerly Sverdlovsk- 44). DOE`s MPC&A program first met with UEIP in June of 1996, however because of some contractual issues the work did not start until September of 1997. The six national laboratories participating in DOE`s Material Protection Control and Accounting program are cooperating with UEIP to enhance the capabilities of the physical protection, access control, and nuclear material control and accounting systems. The MPC&A work at UEIP is expected to be completed during fiscal year 2001.

  16. Test report for measurement of performance vs temperature of Whittaker Electrochemical Cell

    SciTech Connect (OSTI)

    Vargo, G.F., Fluor Daniel Hanford

    1997-02-13

    This document is the test report that summarizes the results of the tests on the Whittaker cells between the temperatures of -20{degrees}F and +120{degrees}F. These sensors are used on the Rotary Mode Core Sampling (RMCS) flammable gas interlock (FGI), to detect and quantify hydrogen gas. The test consisted of operating five Whittaker electrochemical cells in an environmental chamber that was varied in temperature from -20{degrees}F to +120{degrees}F. As the rate rise of the voltage from the cells changed, after exposure to a gas concentration of 1% hydrogen at the different temperatures, the voltage was recorded on a computer controlled data acquisition system. Analysis of the data was made to determine if the cells maximum output voltages and rise times were effected by temperature.

  17. Portable Analyzer Based on Microfluidics/Nanoengineered Electrochemical Sensors for In-situ Characterization of Mixed Wastes

    SciTech Connect (OSTI)

    Lin, Yuehe; Wang, Joseph

    2004-06-01

    Required characterizations of the DOE's transuranic (TRU) and mixed wastes (MW) before disposing and treatment of the wastes are currently costly and have lengthy turnaround. Research toward developing faster and more sensitive characterization and analysis tools to reduce costs and accelerate throughputs is therefore desirable. This project is aimed at the development of electrochemical sensors, specific to toxic transition metals, uranium, and technetium, that can be integrated into the portable sensor systems. This system development will include fabrication and performance evaluation of electrodes as well as understanding of electrochemically active sites on the electrodes specifically designed for toxic metals, uranium and technetium detection. Subsequently, these advanced measurement units will be incorporated into a microfluidic prototype specifically designed and fabricated for field-deployable characterizations of such species. The electrochemical sensors being invest igated are based on a new class of nanoengineered sorbents, Self-Assembled Monolayer on Mesoporous Supports (SAMMS). SAMMS are highly efficient sorbents due to their interfacial chemistry that can be fine-tuned to selectively sequester a specific target species. Adsorptive stripping voltammetry (AdSV) will be performed on two classes of electrodes: the SAMMS modified carbon paste electrodes, and the SAMMS thin film immobilized on microelectrode arrays. Interfacial chemistry and electrochemistry of metal species on the surfaces of SAMMS-based electrodes will be studied. This fundamental knowledge is required for predicting how the sensors will perform in the real wastes which consist of many interferences/ligands and a spectrum of pH levels. The best electrode for each specific waste constituent will be integrated onto the portable microfluidic platform. Efforts will also be focused on testing the portable microfluidics/electrochemical sensor systems with the selected MW and T RU waste samples at the Hanford site. The outcome of this project will lead to the development of a portable analytical system for in-situ characterization of MW and TRU wastes. The technology will greatly reduce costs and accelerate throughputs for characterizations of MW and TRU wastes.

  18. Analysis of the published calorimetric evidence for electrochemical fusion of deuterium in palladium. Technical report. [Cold fusion

    SciTech Connect (OSTI)

    Miskelly, G.M.; Heben, M.J.; Kumar, A.; Penner, R.M.; Sailor, M.J.

    1989-11-10

    Estimates are given of the raw data that are the basis for the claims of excess power production by the electrochemical charging of palladium in deuterium oxide (D2O). Calorimetric results are also presented that show no anomalous power production in either 0.1 M LiOD/D2O or 0.1 M LiOH/H2O (LiOH is lithium hydroxide). Several possible sources of error in open-system calorimetry are discussed that can confound interpretation of temperature changes in terms of anomalous power production.

  19. In addition to efforts producing energy from more renewable sources, microbial electrochemical cells (MXCs) can utilize anode respiring bacteria (ARB) to couple the oxidation of an organic

    E-Print Network [OSTI]

    In addition to efforts producing energy from more renewable sources, microbial electrochemical avenue for tackling some of human energy problems. Chemical Engineering Master's Defense Electrochemical and Energy #12;

  20. Hydrogen Production by Polymer Electrolyte Membrane (PEM)Electrolysis...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Electrolyte Membrane (PEM) Electrolysis-Spotlight on Giner and Proton Hydrogen Production by Polymer Electrolyte Membrane (PEM) Electrolysis-Spotlight on Giner and Proton...

  1. Synthesis and Electrochemical Properties of Monoclinic LiMnBO[subscript 3] as a Li Intercalation Material

    E-Print Network [OSTI]

    Kim, Jae Chul

    We investigated the structural stability and electrochemical properties of LiMnBO3 in the hexagonal and monoclinic form with ab initio computations and, for the first time, report electrochemical data on monoclinic ...

  2. Synthesis and Electrochemical Properties of Monoclinic LiMnBO[subscript 3] as a Li Intercalation Material

    E-Print Network [OSTI]

    Kim, Jae Chul

    We investigated the structural stability and electrochemical properties of LiMnBO[subscript 3] in the hexagonal and monoclinic form with ab initio computations and, for the first time, report electrochemical data on ...

  3. Silicon on insulator achieved using electrochemical etching

    DOE Patents [OSTI]

    McCarthy, Anthony M. (Menlo Park, CA)

    1997-01-01

    Bulk crystalline silicon wafers are transferred after the completion of circuit fabrication to form thin films of crystalline circuitry on almost any support, such as metal, semiconductor, plastic, polymer, glass, wood, and paper. In particular, this technique is suitable to form silicon-on-insulator (SOI) wafers, whereby the devices and circuits formed exhibit superior performance after transfer due to the removal of the silicon substrate. The added cost of the transfer process to conventional silicon fabrication is insignificant. No epitaxial, lift-off, release or buried oxide layers are needed to perform the transfer of single or multiple wafers onto support members. The transfer process may be performed at temperatures of 50.degree. C. or less, permits transparency around the circuits and does not require post-transfer patterning. Consequently, the technique opens up new avenues for the use of integrated circuit devices in high-brightness, high-resolution video-speed color displays, reduced-thickness increased-flexibility intelligent cards, flexible electronics on ultrathin support members, adhesive electronics, touch screen electronics, items requiring low weight materials, smart cards, intelligent keys for encryption systems, toys, large area circuits, flexible supports, and other applications. The added process flexibility also permits a cheap technique for increasing circuit speed of market driven technologies such as microprocessors at little added expense.

  4. Silicon on insulator achieved using electrochemical etching

    DOE Patents [OSTI]

    McCarthy, A.M.

    1997-10-07

    Bulk crystalline silicon wafers are transferred after the completion of circuit fabrication to form thin films of crystalline circuitry on almost any support, such as metal, semiconductor, plastic, polymer, glass, wood, and paper. In particular, this technique is suitable to form silicon-on-insulator (SOI) wafers, whereby the devices and circuits formed exhibit superior performance after transfer due to the removal of the silicon substrate. The added cost of the transfer process to conventional silicon fabrication is insignificant. No epitaxial, lift-off, release or buried oxide layers are needed to perform the transfer of single or multiple wafers onto support members. The transfer process may be performed at temperatures of 50 C or less, permits transparency around the circuits and does not require post-transfer patterning. Consequently, the technique opens up new avenues for the use of integrated circuit devices in high-brightness, high-resolution video-speed color displays, reduced-thickness increased-flexibility intelligent cards, flexible electronics on ultrathin support members, adhesive electronics, touch screen electronics, items requiring low weight materials, smart cards, intelligent keys for encryption systems, toys, large area circuits, flexible supports, and other applications. The added process flexibility also permits a cheap technique for increasing circuit speed of market driven technologies such as microprocessors at little added expense. 57 figs.

  5. Electrochemical natural gas conversion to more valuable species

    SciTech Connect (OSTI)

    Kuchynka, D.J.; Cook, R.L.; Fammells, A.F. (Eltron Research, Inc., Aurora, IL (US))

    1991-05-01

    This paper reports on the electrochemical oxidative dimerization of methane to give C{sub 2} hydrocarbon species investigated in solid oxide fuel cells possessing the general configuration: CH{sub 4}, anode electrocatalyst/ZrO{sub 2}(8 m/o Y{sub 2}O{sub 3})/La{sub 0.9}Sr{sub 0.1}MnO{sub 3}O{sub 2}(air). Perovskite anode electrocatalysts shown to possess activity toward promoting the subject reaction include Sm{sub 0.5}Ce{sub 0.5}CuO{sub 3}, Tb{sub 0.8}Sm{sub 0.2}CuO{sub 3}, Gd{sub 0.9}Th{sub 0.1}CuO{sub 3}, Gd{sub 0.9}Na{sub 0.1}MnO{sub 3}, and Th{sub 0.8}Yb{sub 0.2}NiO{sub 3}. Maximum partial faradaic current densities at active perovskite anode electrocatalysts for promoting the subject reaction were found to be directly correlatable to their calculated oxygen binding energies on the perovskite surface, where increasing binding energies were found to favor higher rates for electrochemical partial methane oxidation. Increasing surface oxygen binding energies at perovskite anode electrocatalysts were found to correlate with increasing perovskite lattice-free volumes with electrochemical measurements, supporting increasing surface oxygen binding energies and perovskite lattice-free volumes as leading to enhanced rates for the subject reaction. As a consequence, synergism was found between experimentally determined perovskite anode electrocatalyst activities, their calculated surface oxygen binding energies, and lattice ionic-free volumes.

  6. Electrochemical synthesis of nanosized hydroxyapatite by pulsed direct current method

    SciTech Connect (OSTI)

    Nur, Adrian; Rahmawati, Alifah; Ilmi, Noor Izzati; Affandi, Samsudin; Widjaja, Arief

    2014-02-24

    Synthesis of nanosized of hydroxyapatite (HA) by electrochemical pulsed direct current (PDC) method has been studied. The aim of this work is to study the influence of various PDC parameters (pH initial, electrode distance, duty cycle, frequency, and amplitude) on particle surface area of HA powders. The electrochemical synthesis was prepared in solution Ca{sup 2+}/EDTA{sup 4?}/PO{sub 4}{sup 3+} at concentration 0.25/0.25/0.15 M for 24 h. The electrochemical cell was consisted of two carbon rectangular electrodes connected to a function generator to produce PDC. There were two treatments for particles after electrosynthesized, namely without aging and aged for 2 days at 40 °C. For both cases, the particles were filtered and washed by demineralized water to eliminate the impurities and unreacted reactants. Then, the particles were dried at 100 °C for 2 days. The dried particles were characterized by X-ray diffraction, surface area analyzer, scanning electron microscopy (SEM), Fourier transform infrared spectra and thermogravimetric and differential thermal analysis. HA particles can be produced when the initial pH > 6. The aging process has significant effect on the produced HA particles. SEM images of HA particles showed that the powders consisted of agglomerates composed of fine crystallites and have morphology plate-like and sphere. The surface area of HA particles is in the range of 25 – 91 m{sup 2}/g. The largest particle surface area of HA was produced at 4 cm electrode distance, 80% cycle duty, frequency 0.1 Hz, amplitude 9 V and with aging process.

  7. DOE-EMSP Project Report FY 04: Portable Analyzer Based on Microfluidics/Nanoengineered Electrochemical Sensors for In-situ Characterization of Mixed Wastes

    SciTech Connect (OSTI)

    Lin, Yuehe; Yantasee, Wassana; Fryxell, Glen E.; Wang, Zheming; Wang, Joseph

    2004-11-02

    Required characterizations of the DOE's transuranic (TRU) and mixed wastes (MW) before disposing and treatment of the wastes are currently costly and have lengthy turnaround. Research toward developing faster and more sensitive characterization and analysis tools to reduce costs and accelerate throughputs is therefore desirable. This project is aimed at the development of electrochemical sensors, specific to toxic transition metals, uranium, and technetium, that can be integrated into the portable sensor systems. This system development will include fabrication and performance evaluation of electrodes as well as understanding of electrochemically active sites on the electrodes specifically designed for toxic metals, uranium and technetium detection. Subsequently, these advanced measurement units will be incorporated into a microfluidic prototype specifically designed and fabricated for field-deployable characterizations of such species. The electrochemical sensors being investigate d are based on a new class of nanoengineered sorbents, Self-Assembled Monolayer on Mesoporous Supports (SAMMS). SAMMS are highly efficient sorbents due to their interfacial chemistry that can be fine-tuned to selectively sequester a specific target species. Adsorptive stripping voltammetry (AdSV) will be performed on two classes of electrodes: the SAMMS modified carbon paste electrodes, and the SAMMS thin film immobilized on microelectrode arrays. Interfacial chemistry and electrochemistry of metal species on the surfaces of SAMMS-based electrodes will be studied. This fundamental knowledge is required for predicting how the sensors will perform in the real wastes which consist of many interferences/ligands and a spectrum of pH levels. The best electrode for each specific waste constituent will be integrated onto the portable microfluidic platform. Efforts will also be focused on testing the portable microfluidics/electrochemical sensor systems with the selected MW and TRU waste samples at the Hanford site. The outcome of this project will lead to the development of a portable analytical system for in-situ characterization of MW and TRU wastes. The technology will greatly reduce costs and accelerate throughputs for characterizations of MW and TRU wastes.

  8. Integrated seal for high-temperature electrochemical device

    DOE Patents [OSTI]

    Tucker, Michael C; Jacobson, Craig P

    2013-07-16

    The present invention provides electrochemical device structures having integrated seals, and methods of fabricating them. According to various embodiments the structures include a thin, supported electrolyte film with the electrolyte sealed to the support. The perimeter of the support is self-sealed during fabrication. The perimeter can then be independently sealed to a manifold or other device, e.g., via an external seal. According to various embodiments, the external seal does not contact the electrolyte, thereby eliminating the restrictions on the sealing method and materials imposed by sealing against the electrolyte.

  9. Graphene Based Electrochemical Sensors and Biosensors: A Review

    SciTech Connect (OSTI)

    Shao, Yuyan; Wang, Jun; Wu, Hong; Liu, Jun; Aksay, Ilhan A.; Lin, Yuehe

    2010-05-01

    Graphene, emerging as a true 2-dimensional material, has received increasing attention due to its unique physicochemical properties (high surface area, excellent conductivity, high mechanical strength, and ease of functionalization and mass production). This article selectively reviews recent advances in graphene-based electrochemical sensors and biosensors. In particular, graphene for direct electrochemistry of enzyme, its electrocatalytic activity toward small biomolecules (hydrogen peroxide, NADH, dopamine, etc.), and graphene-based enzyme biosensors have been summarized in more detail; Graphene-based DNA sensing and environmental analysis have been discussed. Future perspectives in this rapidly developing field are also discussed.

  10. Electrochemical cell with high discharge/charge rate capability

    DOE Patents [OSTI]

    Redey, Laszlo (Downers Grove, IL)

    1988-01-01

    A fully charged positive electrode composition for an electrochemical cell includes FeS.sub.2 and NiS.sub.2 in about equal molar amounts along with about 2-20 mole percent of the reaction product Li.sub.2 S. Through selection of appropriate electrolyte compositions, high power output or low operating temperatures can be obtained. The cell includes a substantially constant electrode impedance through most of its charge and discharge range. Exceptionally high discharge rates and overcharge protection are obtainable through use of the inventive electrode composition.

  11. Corner heating in rectangular solid oxide electrochemical cell generators

    DOE Patents [OSTI]

    Reichner, Philip (Plum Boro, PA)

    1989-01-01

    Disclosed is an improvement in a solid oxide electrochemical cell generator 1 having a rectangular design with four sides that meet at corners, and containing multiplicity of electrically connected fuel cells 11, where a fuel gas is passed over one side of said cells and an oxygen containing gas is passed into said cells, and said fuel is burned to form heat, electricity, and an exhaust gas. The improvement comprises passing the exhaust gases over the multiplicity of cells 11 in such a way that more of the heat in said exhaust gases flows at the corners of the generator, such as through channels 19.

  12. Method of low temperature operation of an electrochemical cell array

    DOE Patents [OSTI]

    Singh, P.; Ruka, R.J.; Bratton, R.J.

    1994-04-26

    A method is described for operating an electrochemical cell generator apparatus containing a generator chamber containing an array of cells having interior and exterior electrodes with solid electrolyte between the electrodes, where a hot gas contacts the outside of the cells and the generating chamber normally operates at over 850 C, where N[sub 2] gas is fed to contact the interior electrode of the cells in any case when the generating chamber temperature drops for whatever reason to within the range of from 550 C to 800 C, to eliminate cracking within the cells. 2 figures.

  13. Method of low temperature operation of an electrochemical cell array

    DOE Patents [OSTI]

    Singh, Prabhakar (Export, PA); Ruka, Roswell J. (Churchill Boro, PA); Bratton, Raymond J. (Delmont, PA)

    1994-01-01

    In the method of operating an electrochemical cell generator apparatus containing a generator chamber (20) containing an array of cells (12) having interior and exterior electrodes with solid electrolyte between the electrodes, where a hot gas (F) contacts the outside of the cells (12) and the generating chamber normally operates at over 850.degree. C., where N.sub.2 gas is fed to contact the interior electrode of the cells (12) in any case when the generating chamber (20) temperature drops for whatever reason to within the range of from 550.degree. C. to 800.degree. C., to eliminate cracking within the cells (12).

  14. Electrochemical impedance analysis of anti-corrosive latex paint films

    SciTech Connect (OSTI)

    Barbour, C.J.

    1996-10-01

    Short term Electrochemical Impedance Spectroscopic (EIS) evaluation and ranking of experimental styrene - acrylic co-polymer, a few days after the draw down, showed good correlation with long term performance in the field. The formulations containing a reactive pigment had superior EIS behavior to those without reactive pigment. EIS also differentiated between two reactive pigments and predicted their relative performance. These experiments were performed in an effort to correlate EIS data with exterior exposure data and applications data. The correlation may lead to EIS data`s use as a predictor for coating performance in the field.

  15. Non-pulsed electrochemical impregnation of flexible metallic battery plaques

    DOE Patents [OSTI]

    Maskalick, Nicholas J. (Pittsburgh, PA)

    1982-01-01

    A method of loading active battery material into porous, flexible, metallic battery plaques, comprises the following steps: precipitating nickel hydroxide active material within the plaque, by making the plaque cathodic, at a high current density, in an electro-precipitation cell also containing a consumable nickel anode and a solution comprising nickel nitrate, having a pH of between 2.0 and 2.8; electrochemically oxidizing the precipitate in caustic formation solution; and repeating the electro-precipitation step at a low current density.

  16. Experimental identification and validation of an electrochemical model of a Lithium-Ion Battery

    E-Print Network [OSTI]

    Stefanopoulou, Anna

    Experimental identification and validation of an electrochemical model of a Lithium-Ion Battery an experimental parameter iden- tification and validation for an electrochemical lithium-ion battery model. The identification procedure is based on experimental data collected from a 6.8 Ah lithium-ion battery during charge

  17. Available online at www.sciencedirect.com Electrochemical conversion of CO2 to useful chemicals: current

    E-Print Network [OSTI]

    Kenis, Paul J. A.

    ://dx.doi.org/10.1016/j.coche.2013.03.005 Introduction Carbon dioxide (CO2) emissions into the atmosphere will needAvailable online at www.sciencedirect.com Electrochemical conversion of CO2 to useful chemicals further undesirable climate change. Electrochemical reduction of CO2 into value-added chemicals using

  18. High surface area crystalline titanium dioxide: potential and limits in electrochemical energy storage and catalysis

    E-Print Network [OSTI]

    Pfeifer, Holger

    and it is widely applied, for example in photocatalysis, electrochemical energy storage, in white pigmentsHigh surface area crystalline titanium dioxide: potential and limits in electrochemical energy storage and catalysis T. Fröschl1 , U. Hörmann2 , P. Kubiak3 , G. Kucerova2 , M. Pfanzelt3 , C.K. Weiss4

  19. Microfluidic Reactor for the Electrochemical Reduction of Carbon Dioxide: The Effect of pH

    E-Print Network [OSTI]

    Kenis, Paul J. A.

    Microfluidic Reactor for the Electrochemical Reduction of Carbon Dioxide: The Effect of pH Devin T and characterization of a microfluidic reactor for the electrochemical reduction of carbon dioxide. The use of gas submitted January 27, 2010; revised manuscript received April 7, 2010. Published June 29, 2010. Carbon

  20. Current status of environmental, health, and safety issues of electrochemical capacitors for advanced vehicle applications

    SciTech Connect (OSTI)

    Vimmerstedt, L.J.; Hammel, C.J.

    1997-04-01

    Electrochemical capacitors are a candidate for traction power assists in hybrid electric vehicles (HEVs). Other advanced automotive applications, while not the primary focus of current development efforts, are also possible. These include load leveling high-energy batteries, power conditioning electronics, electrically hated catalysts, electric power steering, and engine starter power. Higher power and longer cycle life are expected for electrochemical capacitors than for batteries. Evaluation of environmental, health, and safety (EH and S) issues of electrochemical capacitors is an essential part of the development and commercialization of electrochemical capacitors for advanced vehicles. This report provides an initial EH and S assessment. This report presents electrochemical capacitor electrochemistry, materials selection, intrinsic material hazards, mitigation of those hazards, environmental requirements, pollution control options, and shipping requirements. Most of the information available for this assessment pertains to commercial devices intended for application outside the advanced vehicle market and to experiment or prototype devices. Electrochemical capacitors for power assists in HEVs are not produced commercially now. Therefore, materials for advanced vehicle electrochemical capacitors may change, and so would the corresponding EH and S issues. Although changes are possible, this report describes issues for likely electrochemical capacitor designs.

  1. ELECTROCHEMICAL ENERGY STORAGE DEVICES Arlin Alvarado Hernandez, Guanglian Li, Sylvia Nguyen, Fouche Smith,

    E-Print Network [OSTI]

    ELECTROCHEMICAL ENERGY STORAGE DEVICES By Arlin Alvarado Hernandez, Guanglian Li, Sylvia Nguyen 55455-0436 Phone: 612-624-6066 Fax: 612-626-7370 URL: http://www.ima.umn.edu #12;Electrochemical Energy Storage Devices Arlin Alvarado Hernandez University of Puerto Rico Guanglian Li Texas A & M University

  2. ENCH 473 Electrochemical Energy Engineering ENCH 648K Advanced Batteries and Fuel Cells

    E-Print Network [OSTI]

    Rubloff, Gary W.

    ENCH 473 Electrochemical Energy Engineering ENCH 648K Advanced Batteries and Fuel Cells Spring 2014 Syllabus Course: ENCH 473 Electrochemical Energy Engineering ENCH: 648K Advanced Batteries and Fuel Cells, with emphasis on the principle and performance of batteries, supercapacitors and fuel cells. The objective

  3. Metallic contacts with individual Ru nanowires prepared by electrochemical deposition and the suppression of superconductivity

    E-Print Network [OSTI]

    conducting. Nanowires of Ru were grown in commercial, track- etched polycarbonate membranes with a nominal. We have prepared Ru nanowires by electrochemical deposition in porous polycarbonate membranes on all super- conducting nanowires prepared by electrochemical deposi- tion have been limited to arrays

  4. Facile and controllable electrochemical reduction of graphene oxide and its applications

    SciTech Connect (OSTI)

    Shao, Yuyan; Wang, Jun; Engelhard, Mark H.; Wang, Chong M.; Lin, Yuehe

    2010-01-01

    Graphene oxide is electrochemically reduced which is called electrochemically reduced graphene oxide (ER-G). ER-G is characterized with scanning electron microscopy, transmission electron microscopy, X-ray photoelectron spectroscopy, and X-ray diffraction. The oxygen content is significantly decreased and the sp 2 carbon is restored after electrochemical reduction. ER-G exhibits much higher electrochemical capacitance and cycling durability than carbon nanotubes (CNTs) and chemically reduced graphene; the specific capacitance measured with cyclic voltammetry (20 mV/s) is ~165 F/g, ~86 F/g, and ~100 F/g for ER-G, CNTs, and chemically reduced graphene,1 respectively. The electrochemical reduction of oxygen and hydrogen peroxide was greatly enhanced on ER-G electrodes as compared with CNTs. ER-G has shown a good potential for applications in energy storage, biosensors, and electrocatalysis.

  5. Electrochemical energy storage device based on carbon dioxide as electroactive species

    DOE Patents [OSTI]

    Nemeth, Karoly; van Veenendaal, Michel Antonius; Srajer, George

    2013-03-05

    An electrochemical energy storage device comprising a primary positive electrode, a negative electrode, and one or more ionic conductors. The ionic conductors ionically connect the primary positive electrode with the negative electrode. The primary positive electrode comprises carbon dioxide (CO.sub.2) and a means for electrochemically reducing the CO.sub.2. This means for electrochemically reducing the CO.sub.2 comprises a conductive primary current collector, contacting the CO.sub.2, whereby the CO.sub.2 is reduced upon the primary current collector during discharge. The primary current collector comprises a material to which CO.sub.2 and the ionic conductors are essentially non-corrosive. The electrochemical energy storage device uses CO.sub.2 as an electroactive species in that the CO.sub.2 is electrochemically reduced during discharge to enable the release of electrical energy from the device.

  6. Synthesis and electrochemical properties of NiO nanospindles

    SciTech Connect (OSTI)

    Zhou, Hai; Lv, Baoliang; Xu, Yao; Wu, Dong

    2014-02-01

    Graphical abstract: NiO nanospindles with a different electrochemical activity as compared to those previous reports were synthesized via an agglomeration–dissolution–recrystallization growth process without the addition of any surfactant. - Highlights: • NiO nanospindles were synthesized without the addition of any surfactant. • The agglomeration–dissolution–recrystallization growth process was used to explain the precursors’ formation process of the spindle-like NiO. • As-obtained spindle-like NiO showed a different electrochemical activity as compared to those previous reports. - Abstract: NiO nanospindles were successfully synthesized via a hydrothermal and post-treatment method. The as-synthesized nanospindles were about several hundred nanometers in width and about one micrometer in length. X-ray diffraction (XRD) analysis revealed that the spindle-like structure was cubic NiO phase crystalline. Scanning electron microscopy (SEM) and high-resolution transmission electron microscopy (HRTEM) analysis indicated that these NiO nanospindles were of single crystal nature. On the basis of time-dependent experiments, a possible agglomeration–dissolution–recrystallization growth process was proposed to explain the formation process of the spindle-like precursors. The cyclic voltammetry (CV) measurement showed that the as-prepared spindle-like NiO exhibited a pseudo-capacitance behavior.

  7. Electrochemical Synthesis and Characterization of Nanostructured Chalcogenide Materials

    E-Print Network [OSTI]

    Chang, Chong Hyun

    2011-01-01

    circuits, microelectromechanical systems (MEMS), andcircuits, microelectromechanical systems (MEMS), surface-

  8. Pathways to low-cost electrochemical energy storage: a comparison of aqueous and nonaqueous flow batteries

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Darling, Robert M.; Gallagher, Kevin G.; Kowalski, Jeffrey A.; Ha, Seungbum; Brushett, Fikile R.

    2014-11-01

    Energy storage is increasingly seen as a valuable asset for electricity grids composed of high fractions of intermittent sources, such as wind power or, in developing economies, unreliable generation and transmission services. However, the potential of batteries to meet the stringent cost and durability requirements for grid applications is largely unquantified. We investigate electrochemical systems capable of economically storing energy for hours and present an analysis of the relationships among technological performance characteristics, component cost factors, and system price for established and conceptual aqueous and nonaqueous batteries. We identified potential advantages of nonaqueous flow batteries over those based on aqueousmore »electrolytes; however, new challenging constraints burden the nonaqueous approach, including the solubility of the active material in the electrolyte. Requirements in harmony with economically effective energy storage are derived for aqueous and nonaqueous systems. The attributes of flow batteries are compared to those of aqueous and nonaqueous enclosed and hybrid (semi-flow) batteries. Flow batteries are a promising technology for reaching these challenging energy storage targets owing to their independent power and energy scaling, reliance on facile and reversible reactants, and potentially simpler manufacture as compared to established enclosed batteries such as lead–acid or lithium-ion.« less

  9. Exploratory Technology Research Program for Electrochemical Energy Storage - Annual Report for 1998

    SciTech Connect (OSTI)

    Kinoshita, K. (editor)

    1999-06-01

    The US Department of Energy's (DOE) Office of Advanced Automotive Technologies conducts research and development on advanced rechargeable batteries for application in electric vehicles (EVs) and hybrid systems. Efforts are focused on advanced batteries that offer the potential for high performance and low life-cycle costs, both of which are necessary to permit significant penetration into commercial markets. DOE battery R and D supports two major programs: the US Advanced Battery Consortium (USABC), which develops advanced batteries for EVS, and the Partnership for a New Generation of Vehicles (PNGV), which seeks to develop passenger vehicles with a fuel economy equivalent to 80 mpg of gasoline. This report describes the activities of the Exploratory Technology Research (ETR) Program, managed by the Lawrence Berkeley National Laboratory (LBNL). The role of the ETR Program is to perform supporting research on the advanced battery systems under development by the USABC and PNGV Programs, and to evaluate new systems with potentially superior performance, durability and/or cost characteristics. The specific goal of the ETR Program is to identify the most promising electrochemical technologies and transfer them to the USABC, the battery industry and/or other Government agencies for further development and scale-up. This report summarizes the research, financial and management activities relevant to the ETR Program in CY 1998. This is a continuing program, and reports for prior years have been published; they are listed at the end of this Program Summary.

  10. Method of making an electrolyte for an electrochemical cell

    DOE Patents [OSTI]

    Bates, J.B.; Dudney, N.J.

    1996-04-30

    Described is a thin-film battery, especially a thin-film microbattery, and a method for making same having application as a backup or primary integrated power source for electronic devices. The battery includes a novel electrolyte which is electrochemically stable and does not react with the lithium anode and a novel vanadium oxide cathode. Configured as a microbattery, the battery can be fabricated directly onto a semiconductor chip, onto the semiconductor die or onto any portion of the chip carrier. The battery can be fabricated to any specified size or shape to meet the requirements of a particular application. The battery is fabricated of solid state materials and is capable of operation between {minus}15 C and 150 C. 9 figs.

  11. Survey of electrochemical production of inorganic compounds. Final report

    SciTech Connect (OSTI)

    Not Available

    1980-10-01

    The electrochemical generation of inorganic compounds, excluding chlorine/caustic, has been critically reviewed. About 60 x 10/sup 12/ Btu/y fossil fuel equivalent will be used in the year 2000 for the electrosynthesis of inorganic compounds. Significant energy savings in chlorate production can result from the development of suitable electrocatalysts for lowering the cathodic overpotential. Perchlorates, electrolytic hypochlorite, electrolytic manganese dioxide, fluorine and other miscellaneous compounds use relatively small amounts of electrical energy. Implementation of caustic scrubber technology for stack gas cleanup would result in appreciable amounts of sodium sulfate which could be electrolyzed to regenerate caustic. Hydrogen peroxide, now produced by the alkyl anthraquinone process, could be made electrolytically by a new process coupling anodic oxidation of sulfate with cathodic reduction of oxygen in alkaline solution. Ozone is currently manufactured using energy-inefficient silent discharge equipment. A novel energy-efficient approach which uses an oxygen-enhanced anodic reaction is examined.

  12. Method of making an electrolyte for an electrochemical cell

    DOE Patents [OSTI]

    Bates, John B. (Oak Ridge, TN); Dudney, Nancy J. (Knoxville, TN)

    1996-01-01

    Described is a thin-film battery, especially a thin-film microbattery, and a method for making same having application as a backup or primary integrated power source for electronic devices. The battery includes a novel electrolyte which is electrochemically stable and does not react with the lithium anode and a novel vanadium oxide cathode Configured as a microbattery, the battery can be fabricated directly onto a semiconductor chip, onto the semiconductor die or onto any portion of the chip carrier. The battery can be fabricated to any specified size or shape to meet the requirements of a particular application. The battery is fabricated of solid state materials and is capable of operation between -15.degree. C. and 150.degree. C.

  13. Solution redox couples for electrochemical energy storage and photoelectrochemical cells

    SciTech Connect (OSTI)

    Chen, Y.W.

    1982-01-01

    Some of the properties of solution redox couples in aqueous solution were investigated to obtain guidelines for designing and selecting redox couples for electrochemical energy storage (redox flow battery) or photoelectrochemical cells. Several first row transition metal ions (Fe, Co, Cu, V, Cr) and their complexes were probed. O-phenanthroline and related ligands were employed to complex iron, cobalt, and copper ions. Macrocyclic and noncyclic pentadentate complexes of iron and copper ions were also studied. Some aspects of solution chemistry, such as dissociation rate, complexation rate, air sensitivity, and the stoichiometry of the complex ions were investigated. Measurements of heterogeneous electron transfer rates, mass transfer rates, stability, standard potential and solubility of the complex ions were carried out.

  14. Battery paste compositions and electrochemical cells for use therewith

    DOE Patents [OSTI]

    Olson, J.B.

    1999-02-16

    An improved battery paste composition and a lead-acid electrochemical cell which incorporates the composition are disclosed. The cell includes a positive current collector and a negative current collector which are each coated with a paste containing one or more lead-containing compositions and a paste vehicle to form a positive plate and a negative plate. An absorbent electrolyte-containing separator member may also be positioned between the positive and negative plates. The paste on the positive current collector, the negative current collector, or both further includes a special additive consisting of polyvinyl sulfonic acid or salts thereof which provides many benefits including improved battery cycle life, increased charge capacity, and enhanced overall stability. The additive also makes the pastes smoother and more adhesive, thereby improving the paste application process. The paste compositions of interest may be used in conventional flat-plate cells or in spirally wound batteries with equal effectiveness. 2 figs.

  15. Electro-chemical sensors, sensor arrays and circuits

    DOE Patents [OSTI]

    Katz, Howard E.; Kong, Hoyoul

    2014-07-08

    An electro-chemical sensor includes a first electrode, a second electrode spaced apart from the first electrode, and a semiconductor channel in electrical contact with the first and second electrodes. The semiconductor channel includes a trapping material. The trapping material reduces an ability of the semiconductor channel to conduct a current of charge carriers by trapping at least some of the charge carriers to localized regions within the semiconductor channel. The semiconductor channel includes at least a portion configured to be exposed to an analyte to be detected, and the trapping material, when exposed to the analyte, interacts with the analyte so as to at least partially restore the ability of the semiconductor channel to conduct the current of charge carriers.

  16. Electrochemical separation and concentration of hydrogen sulfide from gas mixtures

    DOE Patents [OSTI]

    Winnick, Jack (Atlanta, GA); Sather, Norman F. (Naperville, IL); Huang, Hann S. (Darian, IL)

    1984-10-30

    A method of removing sulfur oxides of H.sub.2 S from high temperature gas mixtures (150.degree.-1000.degree. C.) is the subject of the present invention. An electrochemical cell is employed. The cell is provided with inert electrodes and an electrolyte which will provide anions compatible with the sulfur containing anions formed at the anode. The electrolyte is also selected to provide inert stable cations at the temperatures encountered. The gas mixture is passed by the cathode where the sulfur gases are converted to SO.sub.4 -- or, in the case of H.sub.2 S, to S--. The anions migrate to the anode where they are converted to a stable gaseous form at much greater concentration levels (>10X). Current flow may be effected by utilizing an external source of electrical energy or by passing a reducing gas such as hydrogen past the anode.

  17. Electrochemical cells with end-of-life indicator

    SciTech Connect (OSTI)

    Skarstad, P.M.; Hayes, T.G.

    1986-10-28

    This patent describes an electrochemical cell including an oxidizable active anode material; a non-consumable, electrically conducting, inert cathode current collector material, and electrolytic solution bridging the anode and cathode current collector. The solution includes a liquid, inorganic oxyhalide or thiohalide solvent and a solute for rendering the electrolytic solution conductive of anode metal ions. The improvement described here comprisses the addition to the cell of a quantity of an EOL component, as an initial dischargeable constituent thereof, having an electropotential lower than that of the solvent. The EOL component is selected from the group consisting of arsenic trichloride, arsenic trifluoride, arsenic tribromide, the vanadium halides, the transition metal sulfides and oxides, except for the actinide series, and technetium, and mixtures thereof whereby EOL indication in the form of a step discharge is provided during discharge of the cell.

  18. Battery paste compositions and electrochemical cells for use therewith

    DOE Patents [OSTI]

    Olson, John B. (Boulder, CO)

    1999-02-16

    An improved battery paste composition and a lead-acid electrochemical cell which incorporates the composition. The cell includes a positive current collector and a negative current collector which are each coated with a paste containing one or more lead-containing compositions and a paste vehicle to form a positive plate and a negative plate. An absorbent electrolyte-containing separator member may also be positioned between the positive and negative plates. The paste on the positive current collector, the negative current collector, or both further includes a special additive consisting of polyvinylsulfonic acid or salts thereof which provides many benefits including improved battery cycle life, increased charge capacity, and enhanced overall stability. The additive also makes the pastes smoother and more adhesive, thereby improving the paste application process. The paste compositions of interest may be used in conventional flat-plate cells or in spirally wound batteries with equal effectiveness.

  19. Battery paste compositions and electrochemical cells for use therewith

    DOE Patents [OSTI]

    Olson, John B. (Boulder, CO)

    1999-12-07

    An improved battery paste composition and a lead-acid electrochemical cell which incorporates the composition. The cell includes a positive current collector and a negative current collector which are each coated with a paste containing one or more lead-containing compositions and a paste vehicle to form a positive plate and a negative plate. An absorbent electrolyte-containing separator member may also be positioned between the positive and negative plates. The paste on the positive current collector, the negative current collector, or both further includes a special additive consisting of polyvinylsulfonic acid or salts thereof which provides many benefits including improved battery cycle life, increased charge capacity, and enhanced overall stability. The additive also makes the pastes smoother and more adhesive, thereby improving the paste application process. The paste compositions of interest may be used in conventional flat-plate cells or in spirally wound batteries with equal effectiveness.

  20. Electrochemical Deposition of Iron Nanoneedles on Titanium Oxide Nanotubes

    SciTech Connect (OSTI)

    Gan Y. X.; Zhang L.; Gan B.J.

    2011-10-01

    Iron as a catalyst has wide applications for hydrogen generation from ammonia, photodecomposition of organics, and carbon nanotube growth. Tuning the size and shape of iron is meaningful for improving the catalysis efficiency. It is the objective of this work to prepare nanostructured iron with high surface area via electrochemical deposition. Iron nanoneedles were successfully electrodeposited on Ti supported TiO2 nanotube arrays in a chlorine-based electrolyte containing 0.15 M FeCl2 {center_dot} 4H2O and 2.0 M HCl. Transmission electron microscopic analysis reveals that the average length of the nanoneedles is about 200 nm and the thickness is about 10 nm. It has been found that a high overpotential at the cathode made of Ti/TiO2 nanotube arrays is necessary for the formation of the nanoneedles. Cyclic voltammetry test indicates that the electrodeposition of iron nanoneedles is a concentration-limited process.

  1. Quasi-periodic quantum dot arrays produced by electrochemical synthesis

    SciTech Connect (OSTI)

    Bandyopadhyay, S.; Miller, A.E.; Yue, D.F.; Banerjee, G.; Ricker, R.E.; Jones, S.; Eastman, J.A.; Baugher, E.; Chandrasekhar, M.

    1994-06-01

    We discuss a ``gentle`` electrochemical technique for fabricating quasi-periodic quantum dot arrays. The technique exploits a self-organizing phenomenon to produce quasi-periodic arrangement of dots and provides excellent control over dot size and interdot spacing. Unlike conventional nanolithography, it does not cause radiation damage to the structures during exposure to pattern delineating beams (e-beam, ion-beam or x-ray). Moreover, it does not require harsh processing steps like reactive ion etching, offers a minimum feature size of {approximately}40 {angstrom}, allows the fabrication of structures on nonplanar surfaces (e.g. spherical or cylindrical substrates), is amenable to mass production (millions of wafers can be processed simultaneously) and is potentially orders of magnitude cheaper than conventional nanofabrication. In this paper, we describe our initial results and show the promise of this technique for low-cost and high-yield nanosynthesis.

  2. Electrochemical method of producing eutectic uranium alloy and apparatus

    DOE Patents [OSTI]

    Horton, James A. (Livermore, CA); Hayden, H. Wayne (Oakridge, TN)

    1995-01-01

    An apparatus and method for continuous production of liquid uranium alloys through the electrolytic reduction of uranium chlorides. The apparatus includes an electrochemical cell formed from an anode shaped to form an electrolyte reservoir, a cathode comprising a metal, such as iron, capable of forming a eutectic uranium alloy having a melting point less than the melting point of pure uranium, and molten electrolyte in the reservoir comprising a chlorine or fluorine containing salt and uranium chloride. The method of the invention produces an eutectic uranium alloy by creating an electrolyte reservoir defined by a container comprising an anode, placing an electrolyte in the reservoir, the electrolyte comprising a chlorine or fluorine containing salt and uranium chloride in molten form, positioning a cathode in the reservoir where the cathode comprises a metal capable of forming an uranium alloy having a melting point less than the melting point of pure uranium, and applying a current between the cathode and the anode.

  3. Investigation of Electrochemical Recovery of Zirconium from Spent Nuclear Fuels

    SciTech Connect (OSTI)

    Michael Simpson; II-Soon Hwang

    2014-06-01

    This project uses both modeling and experimental studies to design optimal electrochemical technology methods for recovery of zirconium from used nuclear fuel rods for more effective waste management. The objectives are to provide a means of efficiently separating zirconium into metallic high-level waste forms and to support development of a process for decontamination of zircaloy hulls to enable their disposal as low- and intermediate-level waste. Modeling work includes extension of a 3D model previously developed by Seoul National University for uranium electrorefining by adding the ability to predict zirconium behavior. Experimental validation activities include tests for recovery of zirconium from molten salt solutions and aqueous tests using surrogate materials. *This is a summary of the FY 2013 progress for I-NERI project # 2010-001-K provided to the I-NERI office.

  4. Method of electrode fabrication for solid oxide electrochemical cells

    DOE Patents [OSTI]

    Jensen, Russell R. (Murrysville, PA)

    1990-01-01

    A process for fabricating cermet electrodes for solid oxide electrochemical cells by sintering is disclosed. First, a porous metal electrode is fabricated on a solid oxide cell, such as a fuel cell by, for example, sintering, and is then infiltrated with a high volume fraction stabilized zirconia suspension. A second sintering step is used to sinter the infiltrated zirconia to a high density in order to more securely attach the electrode to the solid oxide electrolyte of the cell. High performance fuel electrodes can be obtained with this process. Further electrode performance enhancement may be achieved if stabilized zirconia doped with cerium oxide, chromium oxide, titanium oxide, and/or praseodymium oxide for electronic conduction is used.

  5. Method of electrode fabrication for solid oxide electrochemical cells

    DOE Patents [OSTI]

    Jensen, R.R.

    1990-11-20

    A process for fabricating cermet electrodes for solid oxide electrochemical cells by sintering is disclosed. First, a porous metal electrode is fabricated on a solid oxide cell, such as a fuel cell by, for example, sintering, and is then infiltrated with a high volume fraction stabilized zirconia suspension. A second sintering step is used to sinter the infiltrated zirconia to a high density in order to more securely attach the electrode to the solid oxide electrolyte of the cell. High performance fuel electrodes can be obtained with this process. Further electrode performance enhancement may be achieved if stabilized zirconia doped with cerium oxide, chromium oxide, titanium oxide, and/or praseodymium oxide for electronic conduction is used. 5 figs.

  6. Fabrication of solid oxide fuel cell by electrochemical vapor deposition

    DOE Patents [OSTI]

    Brian, Riley (Willimantic, CT); Szreders, Bernard E. (Oakdale, CT)

    1989-01-01

    In a high temperature solid oxide fuel cell (SOFC), the deposition of an impervious high density thin layer of electrically conductive interconnector material, such as magnesium doped lanthanum chromite, and of an electrolyte material, such as yttria stabilized zirconia, onto a porous support/air electrode substrate surface is carried out at high temperatures (approximately 1100.degree.-1300.degree. C.) by a process of electrochemical vapor deposition. In this process, the mixed chlorides of the specific metals involved react in the gaseous state with water vapor resulting in the deposit of an impervious thin oxide layer on the support tube/air electrode substrate of between 20-50 microns in thickness. An internal heater, such as a heat pipe, is placed within the support tube/air electrode substrate and induces a uniform temperature profile therein so as to afford precise and uniform oxide deposition kinetics in an arrangement which is particularly adapted for large scale, commercial fabrication of SOFCs.

  7. Fabrication of solid oxide fuel cell by electrochemical vapor deposition

    DOE Patents [OSTI]

    Riley, B.; Szreders, B.E.

    1988-04-26

    In a high temperature solid oxide fuel cell (SOFC), the deposition of an impervious high density thin layer of electrically conductive interconnector material, such as magnesium doped lanthanum chromite, and of an electrolyte material, such as yttria stabilized zirconia, onto a porous support/air electrode substrate surface is carried out at high temperatures (/approximately/1100/degree/ /minus/ 1300/degree/C) by a process of electrochemical vapor deposition. In this process, the mixed chlorides of the specific metals involved react in the gaseous state with water vapor resulting in the deposit of an impervious thin oxide layer on the support tube/air electrode substrate of between 20--50 microns in thickness. An internal heater, such as a heat pipe, is placed within the support tube/air electrode substrate and induces a uniform temperature profile therein so as to afford precise and uniform oxide deposition kinetics in an arrangement which is particularly adapted for large scale, commercial fabrication of SOFCs.

  8. Electrochemical method of producing nano-scaled graphene platelets

    DOE Patents [OSTI]

    Zhamu, Aruna; Jang, Joan; Jang, Bor Z.

    2013-09-03

    A method of producing nano-scaled graphene platelets with an average thickness smaller than 30 nm from a layered graphite material. The method comprises (a) forming a carboxylic acid-intercalated graphite compound by an electrochemical reaction; (b) exposing the intercalated graphite compound to a thermal shock to produce exfoliated graphite; and (c) subjecting the exfoliated graphite to a mechanical shearing treatment to produce the nano-scaled graphene platelets. Preferred carboxylic acids are formic acid and acetic acid. The exfoliation step in the instant invention does not involve the evolution of undesirable species, such as NO.sub.x and SO.sub.x, which are common by-products of exfoliating conventional sulfuric or nitric acid-intercalated graphite compounds. The nano-scaled platelets are candidate reinforcement fillers for polymer nanocomposites. Nano-scaled graphene platelets are much lower-cost alternatives to carbon nano-tubes or carbon nano-fibers.

  9. Development of Advanced Electrochemical Emission Spectroscopy for Monitoring Corrosion in Simulated DOE Liquid Waste

    SciTech Connect (OSTI)

    Digby Macdonald; Brian Marx; Balaji Soundararajan; Morgan Smith

    2005-07-28

    The different tasks that have been carried out under the current program are as follows: (1) Theoretical and experimental assessment of general corrosion of iron/steel in borate buffer solutions by using electrochemical impedance spectroscopy (EIS), ellipsometry and XPS techniques; (2) Development of a damage function analysis (DFA), which would help in predicting the accumulation of damage due to pitting corrosion in an environment prototypical of DOE liquid waste systems; (3) Experimental measurement of crack growth rate, acoustic emission signals, and coupling currents for fracture in carbon and low alloy steels as functions of mechanical (stress intensity), chemical (conductivity), electrochemical (corrosion potential, ECP), and microstructural (grain size, precipitate size, etc) variables in a systematic manner, with particular attention being focused on the structure of the noise in the current and its correlation with the acoustic emissions; (4) Development of fracture mechanisms for carbon and low alloy steels that are consistent with the crack growth rate, coupling current data and acoustic emissions; (5) Inserting advanced crack growth rate models for SCC into existing deterministic codes for predicting the evolution of corrosion damage in DOE liquid waste storage tanks; (6) Computer simulation of the anodic and cathodic activity on the surface of the steel samples in order to exactly predict the corrosion mechanisms; (7) Wavelet analysis of EC noise data from steel samples undergoing corrosion in an environment similar to that of the high level waste storage containers, to extract data pertaining to general, pitting and stress corrosion processes, from the overall data. The work has yielded a number of important findings, including an unequivocal demonstration of the role of chloride ion in passivity breakdown on nickel in terms of cation vacancy generation within the passive film, the first detection and characterization of individual micro fracture events in stress corrosion cracking, and the determination of kinetic parameters for the generation and annihilation of point defects in the passive film on iron. The existence of coupling between the internal crack environment and the external cathodic environment, as predicted by the coupled environment fracture model (CEFM), has also been indisputably established for the AISI 4340/NaOH system. It is evident from the studies that analysis of coupling current noise is a very sensitive tool for studying the crack tip processes in relation to the chemical, mechanical, electrochemical, and microstructural properties of the system. Experiments are currently being carried out to explore these crack tip processes by simultaneous measurement of the acoustic activity at the crack tip in an effort to validate the coupling current data. These latter data are now being used to deterministically predict the accumulation of general and localized corrosion damage on carbon in prototypical DOE liquid waste storage tanks. Computer simulation of the cathodic and anodic activity on the steel surfaces is also being carried out in an effort to simulate the actual corrosion process. Wavelet analysis of the coupling current data promises to be a useful tool to differentiate between the different corrosion mechanisms. Hence, wavelet analysis of the coupling current data from the DOE waste containers is also being carried out to extract data pertaining to general, pitting and stress corrosion processes, from the overall data which is bound to contain noise fluctuations due to any or all of the above mentioned processes.

  10. Cascade redox flow battery systems

    DOE Patents [OSTI]

    Horne, Craig R.; Kinoshita, Kim; Hickey, Darren B.; Sha, Jay E.; Bose, Deepak

    2014-07-22

    A reduction/oxidation ("redox") flow battery system includes a series of electrochemical cells arranged in a cascade, whereby liquid electrolyte reacts in a first electrochemical cell (or group of cells) before being directed into a second cell (or group of cells) where it reacts before being directed to subsequent cells. The cascade includes 2 to n stages, each stage having one or more electrochemical cells. During a charge reaction, electrolyte entering a first stage will have a lower state-of-charge than electrolyte entering the nth stage. In some embodiments, cell components and/or characteristics may be configured based on a state-of-charge of electrolytes expected at each cascade stage. Such engineered cascades provide redox flow battery systems with higher energy efficiency over a broader range of current density than prior art arrangements.

  11. A Finite Strain Model of Stress, Diffusion, Plastic Flow and Electrochemical Reactions in a Lithium-ion Half-cell

    E-Print Network [OSTI]

    Bower, Allan F; Sethuraman, Vijay A; 10.1016/j.jmps.2011.01.003

    2011-01-01

    We formulate the continuum field equations and constitutive equations that govern deformation, stress, and electric current flow in a Li-ion half-cell. The model considers mass transport through the system, deformation and stress in the anode and cathode, electrostatic fields, as well as the electrochemical reactions at the electrode/electrolyte interfaces. It extends existing analyses by accounting for the effects of finite strains and plastic flow in the electrodes, and by exploring in detail the role of stress in the electrochemical reactions at the electrode-electrolyte interfaces. In particular, we find that that stress directly influences the rest potential at the interface, so that a term involving stress must be added to the Nernst equation if the stress in the solid is significant. The model is used to predict the variation of stress and electric potential in a model 1-D half-cell, consisting of a thin film of Si on a rigid substrate, a fluid electrolyte layer, and a solid Li cathode. The predicted c...

  12. Constructing Ordered Sensitized Heterojunctions: Bottom-Up Electrochemical Synthesis of p-Type Semiconductors in Oriented n-TiO2 Nanotube Arrays

    SciTech Connect (OSTI)

    Wang, Q.; Zhu, K.; Neale, N. R.; Frank. A. J.

    2009-01-01

    Fabrication of efficient semiconductor-sensitized bulk heterojunction solar cells requires the complete filling of the pore system of one semiconductor (host) material with nanoscale dimensions (<100 nm) with a different semiconductor (guest) material. Because of the small pore size and electrical conductivity of the host material, it is challenging to employ electrochemical approaches to fill the entire pore network. Typically, during the electrochemical deposition process, the guest material blocks the pores of the host, precluding complete pore filling. We describe a general synthetic strategy for spatially controlling the growth of p-type semiconductors in the nanopores of electrically conducting n-type materials. As an illustration of this strategy, we report on the facile electrochemical deposition of p-CuInSe{sub 2} in nanoporous anatase n-TiO{sub 2} oriented nanotube arrays and nanoparticle films. We show that by controlling the ambipolar diffusion length the p-type semiconductors can be deposited from the bottom-up, resulting in complete pore filling.

  13. In Situ Tribo-Electrochemical Characterization of Diamond-Containing Materials 

    E-Print Network [OSTI]

    Xiao, Huaping

    2014-07-31

    and the diamond surface. In the present research, the wear mechanism of diamond-reinforced composite has been demonstrated. The amorphization-wear process of diamond can be real-timely monitored using electrochemical approach. The frication force between diamond...

  14. Direct In Vivo Electrochemical Detection of Haemoglobin in Red Blood Cells

    E-Print Network [OSTI]

    Toh, Rou Jun

    The electrochemical behavior of iron ion in haemoglobin provides insight to the chemical activity in the red blood cell which is important in the field of hematology. Herein, the detection of haemoglobin in human red blood ...

  15. Supporting Information Geobacter sp. SD-1 with enhanced electrochemical activity in high salt

    E-Print Network [OSTI]

    1 Supporting Information Geobacter sp. SD-1 with enhanced electrochemical activity in high salt title: Geobacter sp. SD-1 in high salt solutions #12;2 Fig. S1. Current generation as a function of time

  16. Electrochemical phenomena provide unique methods for materials synthesis and surface modification. Within this framework, the group

    E-Print Network [OSTI]

    Zhigilei, Leonid V.

    components for information storage, sensors and energy conversion devices. "Further the understanding or photoelectrochemical solar cells. Green Processing and Electrochemical Energy Conversion Various efforts/nano-electronics and magnetics, with a recent emphasis on energy conversion applications. Our work encompasses

  17. Electrochemical polymerization of pyrene derivatives on functionalized carbon nanotubes for pseudocapacitive electrodes

    E-Print Network [OSTI]

    Kavian, Reza

    Electrochemical energy-storage devices have the potential to be clean and efficient, but their current cost and performance limit their use in numerous transportation and stationary applications. Many organic molecules are ...

  18. Modeling integrated photovoltaic-electrochemical devices using steady-state equivalent circuits

    E-Print Network [OSTI]

    Winkler, Mark Thomas

    We describe a framework for efficiently coupling the power output of a series-connected string of single-band-gap solar cells to an electrochemical process that produces storable fuels. We identify the fundamental efficiency ...

  19. Post-combustion carbon dioxide capture using electrochemically mediated amine regeneration

    E-Print Network [OSTI]

    Stern, Michael C.

    Electrochemically mediated amine regeneration is a new post-combustion capture technology with the potential to exploit the excellent removal efficiencies of thermal amine scrubbers while reducing parasitic energy losses ...

  20. Removal of Chloride from Wastewater by Advanced Softening Process Using Electrochemically Generated Aluminum Hydroxide 

    E-Print Network [OSTI]

    Mustafa, Syed Faisal

    2014-07-23

    solubility. Chloride can be removed from water and wastewater by precipitation as calcium chloroaluminate using advanced softening process. This research was conducted to evaluate chloride removal using electrochemically generated aluminum hydroxide and lime...

  1. ACS symposium on theory of electrochemical interfaces Stuctural and Dynamic Properties of Hexadecane Lubricants Under

    E-Print Network [OSTI]

    Çagin, Tahir

    4/3/00 ACS symposium on theory of electrochemical interfaces Stuctural and Dynamic Properties in designing engine surfaces with reduced engine wear. 5;6;7 The model of the present study builds upon our

  2. Structural carbohydrate availability with electrochemical ozonation and ammonia pressurization / depressurization pre-treatment technologies 

    E-Print Network [OSTI]

    Williams, James Jason

    1999-01-01

    Experiments were conducted to determine the quantity and conditions of electrochemical ozonation (O?) that maximize the dissolution of the lignin-cellulose complex. Combination treatments of anhydrous ammonia (NH?) and O? were also assessed...

  3. One-step electrochemical synthesis of a graphene–ZnO hybrid for improved photocatalytic activity

    SciTech Connect (OSTI)

    Wei, Ang; Xiong, Li; Sun, Li; Liu, Yanjun; Li, Weiwei; Lai, Wenyong; Liu, Xiangmei; Wang, Lianhui; Huang, Wei; Dong, Xiaochen

    2013-08-01

    Graphical abstract: - Highlights: • Graphene–ZnO hybrid was synthesized by one-step electrochemical deposition. • Graphene–ZnO hybrid presents a special structure and wide UV–vis absorption spectra. • Graphene–ZnO hybrid exhibits an exceptionally higher photocatalytic activity for the degradation of dye methylene blue. - Abstract: A graphene–ZnO (G-ZnO) hybrid was synthesized by one-step electrochemical deposition. During the formation of ZnO nanostructure by cathodic electrochemical deposition, the graphene oxide was electrochemically reduced to graphene simultaneously. Scanning electron microscope images, X-ray photoelectron spectroscopy, X-ray diffraction, Raman spectra, and UV–vis absorption spectra indicate the resulting G-ZnO hybrid presents a special structure and wide UV–vis absorption spectra. More importantly, it exhibits an exceptionally higher photocatalytic activity for the degradation of dye methylene blue than that of pure ZnO nanostructure under both ultraviolet and sunlight irradiation.

  4. A multiscale study of atomic interactions in the electrochemical double layer applied to electrocatalysis

    E-Print Network [OSTI]

    Bonnet, Nicéphore

    2011-01-01

    This work is an integrated study of chemical and electrostatic interactions in the electrochemical double layer, and their significance for accurate prediction of reaction kinetics in electrocatalysis. First, a kinetic ...

  5. Method for transferring thermal energy and electrical current in thin-film electrochemical cells

    DOE Patents [OSTI]

    Rouillard, Roger (Beloeil, CA); Domroese, Michael K. (South St. Paul, MN); Hoffman, Joseph A. (Minneapolis, MN); Lindeman, David D. (Hudson, WI); Noel, Joseph-Robert-Gaetan (St-Hubert, CA); Radewald, Vern E. (Austin, TX); Ranger, Michel (Lachine, CA); Sudano, Anthony (Laval, CA); Trice, Jennifer L. (Eagan, MN); Turgeon, Thomas A. (Fridley, MN)

    2003-05-27

    An improved electrochemical generator is disclosed. The electrochemical generator includes a thin-film electrochemical cell which is maintained in a state of compression through use of an internal or an external pressure apparatus. A thermal conductor, which is connected to at least one of the positive or negative contacts of the cell, conducts current into and out of the cell and also conducts thermal energy between the cell and thermally conductive, electrically resistive material disposed on a vessel wall adjacent the conductor. The thermally conductive, electrically resistive material may include an anodized coating or a thin sheet of a plastic, mineral-based material or conductive polymer material. The thermal conductor is fabricated to include a resilient portion which expands and contracts to maintain mechanical contact between the cell and the thermally conductive material in the presence of relative movement between the cell and the wall structure. The electrochemical generator may be disposed in a hermetically sealed housing.

  6. Study of the Corrosion Resistance of Benchmark Coatings Using Electrochemical Impedance Spectroscopy 

    E-Print Network [OSTI]

    Ghannam, Safwan

    2015-04-28

    The corrosion resistance of polymer-coated carbon steel exposed to corrosive environment of 3.5% NaCl solution (weight fraction) at ambient conditions was evaluated using electrochemical impedance spectroscopy (EIS) technique. The analysis...

  7. Electrochemical hydrogenation of aromatic compounds chemisorbed at polycrystalline and single-crystal Pd surfaces 

    E-Print Network [OSTI]

    Sanabria-Chinchilla, Jean

    2009-06-02

    The chemisorption and electrochemical hydrogenation of hydroquinone (H2Q) at polycrystalline (pc) Pd, well-ordered Pd(100), and Pd-modified Au(hkl) electrodes were studied using a combination of ultra-high vacuum (UHV) surface spectroscopy...

  8. The application of small amplitude square root of time potential pulses in electrochemical trace analysis 

    E-Print Network [OSTI]

    Cranston, Stacy Eugene

    1975-01-01

    THE APPLICATION OF SMALL AMPLITUDE SQUARE BOOT OF TIME POTENTIAL PULSES IN ELECTROCHEMICAL TRACE ANALYSIS A Thesis by STACY EUGENE CRANSTON Submitted to the Graduate College of Texas A&M University in partial fulfillment of the requirement... for the degree of MASTER OF SCIENCE December 1975 Ma]or Sub)ect: Chemistry THE APPLICATION OF SMALL AMPLITUDE SQUARE ROOT OF TIME POTENTIAL PULSES IN ELECTROCHEMICAL TRACE ANALYSIS A Thesis STACY EUGENE CRANSTON Approved as to style and content by...

  9. Determination of delaminated area of coated steel using electrochemical impedance spectroscopy 

    E-Print Network [OSTI]

    Alwohaibi, Mohammed Abdullaziz

    1992-01-01

    DETERMINATION OF DELAMINATED AREA OF COATED STEEL USING ELECTROCHEMICAL IMPEDANCE SPECTROSCOPY A Thesis by MOHAMMED ABDULLAZIZ ALWOHAIBI Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment... of the requirement for the degree of MASTER OF SCIENCE December 1992 Major Subject: Chemical Engineering DETERMINATION OF DELAMINATED AREA OF COATED STEEL USING ELECTROCHEMICAL IMPEDANCE SPECTROSCOPY A Thesis by MOHAMMED ABDULLAZIZ ALWOHAIBI Appmved...

  10. Electrochemical Behavior of Disposable Electrodes Prepared by Ion Beam Based Surface Modification for Biomolecular Recognition

    SciTech Connect (OSTI)

    Erdem, A.; Karadeniz, H.; Caliskan, A.; Urkac, E. Sokullu; Oztarhan, A.; Oks, E.; Nikolayev, A.

    2009-03-10

    Many important technological advances have been made in the development of technologies to monitor interactions and recognition events of biomolecules in solution and on solid substrates. The development of advanced biosensors could impact significantly the areas of genomics, proteomics, biomedical diagnostics and drug discovery. In the literature, there have recently appeared an impressive number of intensive designs for electrochemical monitoring of biomolecular recognition. Herein, the influence of ion implanted disposable graphite electrodes on biomolecular recognition and their electrochemical behaviour was investigated.

  11. Glass composition and process for sealing void spaces in electrochemical devices

    SciTech Connect (OSTI)

    Meinhardt, Kerry D. (Richland, WA); Kirby, Brent W. (Kennewick, WA)

    2012-05-01

    A glass foaming material and method are disclosed for filling void spaces in electrochemical devices. The glass material includes a reagent that foams at a temperature above the softening point of the glass. Expansion of the glass fills void spaces including by-pass and tolerance channels of electrochemical devices. In addition, cassette to cassette seals can also be formed while channels and other void spaces are filled, reducing the number of processing steps needed.

  12. Novel electrochemical method of fast and reproducible fabrication of metallic nanoelectrodes

    SciTech Connect (OSTI)

    Silva, E. L. Silva, R. F.; Oliveira, F. J.; Zheludkevich, M.

    2014-09-15

    A novel electrochemical wire etching method of fabrication of ultrasharp nanoelectrodes is reported. Tungsten wires can be sharpened to less than 10 nm tip radius in a reproducible manner in less than 1 min by using controllable hydrodynamic electrolyte flow combined with optimized electrochemical etching parameters. The method relies on the variations of the electric field at the surface of a metal wire, while the electrolyte solution is in motion, rather than on the ionic gradient generated in a static solution.

  13. Electrochemical preparation of poly(methylene blue)/graphene nanocomposite thin films

    SciTech Connect (OSTI)

    Erçar?kc?, Elif; Da?c?, Kader; Topçu, Ezgi; Alanyal?o?lu, Murat

    2014-07-01

    Highlights: • Poly(MB)/graphene thin films are prepared by a simple electrochemical approach. • Graphene layers in the film show a broad band in visible region of absorbance spectra. • Morphology of composite films indicates both disordered and ordered regions. • XRD reveals that nanocomposite films include rGO layers after electropolymerization process. • Chemically prepared graphene is better than electrochemically prepared graphene for electrooxidation of nitrite. - Abstract: Poly(methylene blue)/graphene nanocomposite thin films were prepared by electropolymerization of methylene blue in the presence of graphene which have been synthesized by two different methods of a chemical oxidation process and an electrochemical approach. Synthesized nanocomposite thin films were characterized by using cyclic voltammetry, UV–vis. absorption spectroscopy, powder X-ray diffraction, and scanning tunneling microscopy techniques. Electrocatalytical properties of prepared poly(methylene blue)/graphene nanocomposite films were compared toward electrochemical oxidation of nitrite. Under optimized conditions, electrocatalytical effect of nanocomposite films of chemically prepared graphene through electrochemical oxidation of nitrite was better than that of electrochemically prepared graphene.

  14. A Novel Thermal Electrochemical Synthesis Method for Production of Stable Colloids of "Naked" Metal (Ag) Nanocrystals

    SciTech Connect (OSTI)

    Hu, Michael Z.; Easterly, Clay E

    2009-01-01

    Solution synthesis of nanocrystal silver is reviewed. This paper reports a novel thermal electrochemical synthesis (TECS) for producing metal Ag nanocrystals as small as a few nanometers. The TECS method requires mild conditions (25-100oC), low voltage (1-50 V DC) on Ag electrodes, and simple water or aqueous solutions as reaction medium. Furthermore, a tubular dialysis membrane surround electrodes proves favorable to produce nanosized (<10 nm) Ag nanocrystals. Different from those nanocrystals reported in literature, our nanocrystals have several unique features: (1) small nanometer size, (2) nakedness , i.e., surfaces of metal nanocrystals are free of organic ligands or capping molecules and no need of dispersant in synthesis solutions, and (3) colloidally stable in water solutions. It was discovered that Ag nanoparticles with initially large size distribution can be homogenized into near-monodispersed system by a low power (< 15 mW) He-Ne laser exposure treatment. The combination of the TECS technique and the laser treatment could lead to a new technology that produces metal nanoparticles that are naked, stable, and uniform sized. In the presence of stabilizing agent (also as supporting electrolyte) such as polyvinyl alcohol (PVA), large yield of silver nanoparticles (<100nm) in the form of thick milky sols are produced.

  15. Preparation and electrochemical properties of lamellar MnO{sub 2} for supercapacitors

    SciTech Connect (OSTI)

    Yan, Jun; Wei, Tong; Cheng, Jie; Fan, Zhuangjun; Zhang, Milin

    2010-02-15

    Lamellar birnessite-type MnO{sub 2} materials were prepared by changing the pH of the initial reaction system via hydrothermal synthesis. The interlayer spacing of MnO{sub 2} with a layered structure increased gradually when the initial pH value varied from 12.43 to 2.81, while the MnO{sub 2}, composed of {alpha}-MnO{sub 2} and {gamma}-MnO{sub 2}, had a rod-like structure at pH 0.63. Electrochemical studies indicated that the specific capacitance of birnessite-type MnO{sub 2} was much higher than that of rod-like MnO{sub 2} at high discharge current densities due to the lamellar structure with fast intercalation/deintercalation of protons and high utilization of MnO{sub 2}. The initial specific capacitance of MnO{sub 2} prepared at pH 2.81 was 242.1 F g{sup -1} at 2 mA cm{sup -2} in 2 mol L{sup -1} (NH{sub 4}){sub 2}SO{sub 4} aqueous electrolyte. The capacitance increased by about 8.1% of initial capacitance after 200 cycles at a current density of 100 mA cm{sup -2}.

  16. Status of the DOE Battery and Electrochemical Technology Program V

    SciTech Connect (OSTI)

    Roberts, R.

    1985-06-01

    The program consists of two activities, Technology Base Research (TBR) managed by the Lawrence Berkeley Laboratory (LBL) and Exploratory Technology Development and Testing (EDT) managed by the Sandia National Laboratories (SNL). The status of the Battery Energy Storage Test (BEST) Facility is presented, including the status of the batteries to be tested. ECS program contributions to the advancement of the lead-acid battery and specific examples of technology transfer from this program are given. The advances during the period December 1982 to June 1984 in the characterization and performance of the lead-acid, iron/nickel-oxide, iron/air, aluminum/air, zinc/bromide, zinc/ferricyanide, and sodium/sulfur batteries and in fuel cells for transport are summarized. Novel techniques and the application of established techniques to the study of electrode processes, especially the electrode/electrolyte interface, are described. Research with the potential of leading to improved ceramic electrolytes and positive electrode container and current-collectors for the sodium/sulfur battery is presented. Advances in the electrocatalysis of the oxygen (air) electrode and the relationship of these advances to the iron/air and aluminum/air batteries and to the fuel cell are noted. The quest for new battery couples and battery materials is reviewed. New developments in the modeling of electrochemical cell and electrode performance with the approaches to test these models are reported.

  17. Electrochemical/Pyrometallurgical Waste Stream Processing and Waste Form Fabrication

    SciTech Connect (OSTI)

    Steven Frank; Hwan Seo Park; Yung Zun Cho; William Ebert; Brian Riley

    2015-07-01

    This report summarizes treatment and waste form options being evaluated for waste streams resulting from the electrochemical/pyrometallurgical (pyro ) processing of used oxide nuclear fuel. The technologies that are described are South Korean (Republic of Korea – ROK) and United States of America (US) ‘centric’ in the approach to treating pyroprocessing wastes and are based on the decade long collaborations between US and ROK researchers. Some of the general and advanced technologies described in this report will be demonstrated during the Integrated Recycle Test (IRT) to be conducted as a part of the Joint Fuel Cycle Study (JFCS) collaboration between US Department of Energy (DOE) and ROK national laboratories. The JFCS means to specifically address and evaluated the technological, economic, and safe guard issues associated with the treatment of used nuclear fuel by pyroprocessing. The IRT will involve the processing of commercial, used oxide fuel to recover uranium and transuranics. The recovered transuranics will then be fabricated into metallic fuel and irradiated to transmutate, or burn the transuranic elements to shorter lived radionuclides. In addition, the various process streams will be evaluated and tested for fission product removal, electrolytic salt recycle, minimization of actinide loss to waste streams and waste form fabrication and characterization. This report specifically addresses the production and testing of those waste forms to demonstrate their compatibility with treatment options and suitability for disposal.

  18. Air electrode material for high temperature electrochemical cells

    DOE Patents [OSTI]

    Ruka, Roswell J. (Churchill Boro, PA)

    1985-01-01

    Disclosed is a solid solution with a perovskite-like crystal structure having the general formula La.sub.1-x-w (M.sub.L).sub.x (Ce).sub.w (M.sub.S1).sub.1-y (M.sub.S2).sub.y O.sub.3 where M.sub.L is Ca, Sr, Ba, or mixtures thereof, M.sub.S1 is Mn, Cr, or mixtures thereof and M.sub.S2 is Ni, Fe, Co, Ti, Al, In, Sn, Mg, Y, Nb, Ta, or mixtures thereof, w is about 0.05 to about 0.25, x+w is about 0.1 to about 0.7, and y is 0 to about 0.5. In the formula, M.sub.L is preferably Ca, w is preferably 0.1 to 0.2, x+w is preferably 0.4 to 0.7, and y is preferably 0. The solid solution can be used in an electrochemical cell where it more closely matches the thermal expansion characteristics of the support tube and electrolyte of the cell.

  19. Electrochemical method of producing eutectic uranium alloy and apparatus

    DOE Patents [OSTI]

    Horton, J.A.; Hayden, H.W.

    1995-01-10

    An apparatus and method are disclosed for continuous production of liquid uranium alloys through the electrolytic reduction of uranium chlorides. The apparatus includes an electrochemical cell formed from an anode shaped to form an electrolyte reservoir, a cathode comprising a metal, such as iron, capable of forming a eutectic uranium alloy having a melting point less than the melting point of pure uranium, and molten electrolyte in the reservoir comprising a chlorine or fluorine containing salt and uranium chloride. The method of the invention produces an eutectic uranium alloy by creating an electrolyte reservoir defined by a container comprising an anode, placing an electrolyte in the reservoir, the electrolyte comprising a chlorine or fluorine containing salt and uranium chloride in molten form, positioning a cathode in the reservoir where the cathode comprises a metal capable of forming an uranium alloy having a melting point less than the melting point of pure uranium, and applying a current between the cathode and the anode. 2 figures.

  20. Electrochemical Testing of Ni-Cr-Mo-Gd Alloys

    SciTech Connect (OSTI)

    T. E. Lister; R. E. Mizia; H. Tian

    2005-10-01

    The waste package site recommendation design specified a boron-containing stainless steel, Neutronit 976/978, for fabrication of the internal baskets that will be used as a corrosion-resistant neutron-absorbing material. Recent corrosion test results gave higher-than-expected corrosion rates for this material. The material callout for these components has been changed to a Ni-Cr-Mo-Gd alloy (ASTM-B 932-04, UNS N06464) that is being developed at the Idaho National Laboratory. This report discusses the results of initial corrosion testing of this material in simulated in-package environments that could contact the fuel baskets after breach of the waste package outer barrier. The corrosion test matrix was executed using the potentiodynamic and potentiostatic electrochemical test techniques. The alloy performance shows low rates of general corrosion after initial removal of a gadolinium-rich second phase that intersects the surface. The high halide-containing test solutions exhibited greater tendencies toward initiation of crevice corrosion.

  1. J. Electrochem. Soc., Vol. 142, No. 11, November 1995 9 The Electrochemical Society, Inc. 3815 Q = In [c~a+ ~ ~ ~ -in io -RT ~ [5

    E-Print Network [OSTI]

    Weidner, John W.

    to be attractive for treating low level nuclear wastes. The development of a simple divided electrochemical-cell model operating in a batch mode, used for the reduction of nitrates and nitrites from nuclear wastes to the above proce- dure is 1.49 mA/cm 2,which ismore than an order of magni- tude lower than that of copper

  2. Journal of The Electrochemical Society, 147 (2) 427-434 (2000) 427 S0013-4651(99)06-102-9 CCC: $7.00 The Electrochemical Society, Inc.

    E-Print Network [OSTI]

    Weidner, John W.

    2000-01-01

    fluid dynamics (CFD) techniques in conjunc- tion with experimentation for fundamental battery research.00 © The Electrochemical Society, Inc. This paper is a continuation of the recent series of work to ex- plore computational thermal behavior. Other model- ing efforts employed concentrated solution theory and porous elec- trode

  3. Enhancing electrochemical intermediate solvation through electrolyte anion selection to increase nonaqueous Li-O$_2$ battery capacity

    E-Print Network [OSTI]

    Burke, Colin M; Khetan, Abhishek; Viswanathan, Venkatasubramanian; McCloskey, Bryan D

    2015-01-01

    Among the 'beyond Li-ion' battery chemistries, nonaqueous Li-O$_2$ batteries have the highest theoretical specific energy and as a result have attracted significant research attention over the past decade. A critical scientific challenge facing nonaqueous Li-O$_2$ batteries is the electronically insulating nature of the primary discharge product, lithium peroxide, which passivates the battery cathode as it is formed, leading to low ultimate cell capacities. Recently, strategies to enhance solubility to circumvent this issue have been reported, but rely upon electrolyte formulations that further decrease the overall electrochemical stability of the system, thereby deleteriously affecting battery rechargeability. In this study, we report that a significant enhancement (greater than four-fold) in Li-O$_2$ cell capacity is possible by appropriately selecting the salt anion in the electrolyte solution. Using $^7$Li nuclear magnetic resonance and modeling, we confirm that this improvement is a result of enhanced Li...

  4. Integration of functional components into microfluidic chemical systems: bioimmobilization and electrochemiluminescent detection on-chip 

    E-Print Network [OSTI]

    Zhan, Wei

    2005-08-29

    in microfluidic systems. By using microfluidic electrochemical cells based on either two-electrode or bipolar electrode (one-electrode), electroactive species that undergo reduction can be electrically linked to this anodic ECL process and thus be reported...

  5. The Development of a Cathodic Charging System to Form Hydrides in Zircaloy-4 

    E-Print Network [OSTI]

    Brito, Ryan

    2013-02-01

    This project investigates several methods of electrochemical insertion of hydrogen into Zircaloy nuclear fuel cladding. These systems are being assembled at Texas A & M to form zirconium hydride in cladding to model crack propagation during storage...

  6. DDQ as an electrocatalyst for amine dehydrogenation, a model system for virtual hydrogen storage

    SciTech Connect (OSTI)

    Luca, Oana R. [Yale Univ., New Haven, CT (United States); Wang, Ting [Yale Univ., New Haven, CT (United States); Konezny, Steven J. [Yale Univ., New Haven, CT (United States); Batista, Victor S. [Yale Univ., New Haven, CT (United States); Crabtree, Robert H. [Yale Univ., New Haven, CT (United States)

    2011-01-01

    2,3-Dichloro-5,6-dicyanobenzoquinone (DDQ) is an electrochemical oxidation catalyst for a secondary amine, a model system for virtual hydrogen storage by removal of a hydrogen equivalent from an amine; a computational study provides mechanistic information.

  7. Advanced Electrochemical Technologies for Hydrogen Production by Alternative Thermochemical Cycles

    SciTech Connect (OSTI)

    Lvov, Serguei; Chung, Mike; Fedkin, Mark; Lewis, Michele; Balashov, Victor; Chalkova, Elena; Akinfiev, Nikolay; Stork, Carol; Davis, Thomas; Gadala-Maria, Francis; Stanford, Thomas; Weidner, John; Law, Victor; Prindle, John

    2011-01-06

    Hydrogen fuel is a potentially major solution to the problem of climate change, as well as addressing urban air pollution issues. But a key future challenge for hydrogen as a clean energy carrier is a sustainable, low-cost method of producing it in large capacities. Most of the world's hydrogen is currently derived from fossil fuels through some type of reforming processes. Nuclear hydrogen production is an emerging and promising alternative to the reforming processes for carbon-free hydrogen production in the future. This report presents the main results of a research program carried out by a NERI Consortium, which consisted of Penn State University (PSU) (lead), University of South Carolina (USC), Tulane University (TU), and Argonne National Laboratory (ANL). Thermochemical water decomposition is an emerging technology for large-scale production of hydrogen. Typically using two or more intermediate compounds, a sequence of chemical and physical processes split water into hydrogen and oxygen, without releasing any pollutants externally to the atmosphere. These intermediate compounds are recycled internally within a closed loop. While previous studies have identified over 200 possible thermochemical cycles, only a few have progressed beyond theoretical calculations to working experimental demonstrations that establish scientific and practical feasibility of the thermochemical processes. The Cu-Cl cycle has a significant advantage over other cycles due to lower temperature requirements – around 530 °C and below. As a result, it can be eventually linked with the Generation IV thermal power stations. Advantages of the Cu-Cl cycle over others include lower operating temperatures, ability to utilize low-grade waste heat to improve energy efficiency, and potentially lower cost materials. Another significant advantage is a relatively low voltage required for the electrochemical step (thus low electricity input). Other advantages include common chemical agents and reactions going to completion without side reactions, and lower demands on materials of construction. Three university research groups from PSU, USC, and TU as well as a group from ANL have been collaborating on the development of enabling technologies for the Cu-Cl cycle, including experimental work on the Cu-Cl cycle reactions, modeling and simulation, and particularly electrochemical reaction for hydrogen production using a CuCl electrolyzer. The Consortium research was distributed over the participants and organized in the following tasks: (1) Development of CuCl electrolyzer (PSU), (2) Thermodynamic modeling of anolyte solution (PSU), (3) Proton conductive membranes for CuCl electrolysis (PSU), (4) Development of an analytical method for online analysis of copper compounds in highly concentrated aqueous solutions (USC), (5) Electrodialysis as a means for separation and purification of the streams exiting the electrolyzer in the Cu-Cl cycle (USC), (6) Development of nanostructured electrocatalysts for the Cu-Cl electrolysis (USC), (7) Cu-Cl electrolyzer modeling (USC), (8) Aspen Plus modeling of the Cu-Cl thermochemical cycle (TU), (9) International coordination of research on the development of the Cu-Cl thermochemical cycle (ANL). The results obtained in the project clearly demonstrate that the Cu-Cl alternative thermochemical cycle is a promising and viable technology to produce hydrogen efficiently.

  8. System and method for detecting gas

    DOE Patents [OSTI]

    Chow, Oscar Ken (Simsbury, CT); Moulthrop, Lawrence Clinton (Windsor, CT); Dreier, Ken Wayne (Madison, CT); Miller, Jacob Andrew (Dexter, MI)

    2010-03-16

    A system to detect a presence of a specific gas in a mixture of gaseous byproducts comprising moisture vapor is disclosed. The system includes an electrochemical cell, a transport to deliver the mixture of gaseous byproducts from the electrochemical cell, a gas sensor in fluid communication with the transport, the sensor responsive to a presence of the specific gas to generate a signal corresponding to a concentration of the specific gas, and a membrane to prevent transmission of liquid moisture, the membrane disposed between the transport and the gas sensor.

  9. Journal of The Electrochemical Society, 162 (3) A373-A377 (2015) A373 0013-4651/2015/162(3)/A373/5/$31.00 The Electrochemical Society

    E-Print Network [OSTI]

    Sottos, Nancy R.

    2015-01-01

    /5/$31.00 © The Electrochemical Society Electropolymerization of Microencapsulated 3-hexylthiophene for Lithium-Ion Battery stable up to 300C, and electrochemically stable in a Li-ion battery electrolyte. Mechanical rupture recently as life-extending additives for Li-ion batteries.10,11 The 3-HT monomer forms a stable, conductive

  10. In Proc of Direct Methanol Fuel Cell Symposium, 199th Electrochem.l Soc. Mtg, Washington DC, 3/01.

    E-Print Network [OSTI]

    Wang, Chao-Yang

    In Proc of Direct Methanol Fuel Cell Symposium, 199th Electrochem.l Soc. Mtg, Washington DC, 3/01. MATHEMATICAL MODELING OF LIQUID-FEED DIRECT METHANOL FUEL CELLS Z. H. Wang and C. Y. Wang Electrochemical methanol fuel cells (DMFC). Diffusion and convection of both gas and liquid phases are considered

  11. Boosting the voltage of a salinity-gradient-power electrochemical cell by means of complex-forming solutions

    E-Print Network [OSTI]

    Carati, Andrea

    Boosting the voltage of a salinity-gradient-power electrochemical cell by means of complex to the formation of complexes. We present the results of a cell for power produc- tion, which has excellent-based light-emitting electrochemical cells J. Appl. Phys. 116, 104504 (2014); 10.1063/1.4895060 Decoupled

  12. Surface working of 304L stainless steel: Impact on microstructure, electrochemical behavior and SCC resistance

    SciTech Connect (OSTI)

    Acharyya, S.G.; Khandelwal, A.; Kain, V.; Kumar, A.; Samajdar, I.

    2012-10-15

    The effect of surface working operations on the microstructure, electrochemical behavior and stress corrosion cracking resistance of 304L stainless steel (SS) was investigated in this study. The material was subjected to (a) solution annealing (b) machining and (c) grinding operations. Microstructural characterization was done using stereo microscopy and electron back scattered diffraction (EBSD) technique. The electrochemical nature of the surfaces in machined, ground and solution annealed condition were studied using potentiodynamic polarization and scanning electrochemical microscopy (SECM) in borate buffer solution. The stress corrosion cracking resistance of 304L SS in different conditions was studied by exposing the samples to boiling MgCl{sub 2} environment. Results revealed that the heavy plastic deformation and residual stresses present near the surface due to machining and grinding operations make 304L SS electrochemically more active and susceptible to stress corrosion cracking. Ground sample showed highest magnitude of current density in the passive potential range followed by machined and solution annealed 304L SS. Micro-electrochemical studies established that surface working promotes localized corrosion along the surface asperities which could lead to crack initiation. - Highlights: Black-Right-Pointing-Pointer Machining/grinding produce extensive grain fragmentation near the surface of 304L SS. Black-Right-Pointing-Pointer Machining/grinding result in martensitic transformation near the surface of 304L SS. Black-Right-Pointing-Pointer Machining/grinding drastically reduce the SCC resistance of 304L SS in chloride. Black-Right-Pointing-Pointer Machining/grinding make the surface of 304L SS electrochemically much more active. Black-Right-Pointing-Pointer SECM study reveal that preferential dissolution takes place along surface asperities.

  13. Papers Based Electrochemical Biosensors: From Test Strips to Paper-Based Microfluidics

    SciTech Connect (OSTI)

    Liu, Bingwen; Du, Dan; Hua, Xin; Yu, Xiao-Ying; Lin, Yuehe

    2014-05-08

    Papers based biosensors such as lateral flow test strips and paper-based microfluidic devices (or paperfluidics) are inexpensive, rapid, flexible, and easy-to-use analytical tools. An apparent trend in their detection is to interpret sensing results from qualitative assessment to quantitative determination. Electrochemical detection plays an important role in quantification. This review focuses on electrochemical (EC) detection enabled biosensors. The first part provides detailed examples in paper test strips. The second part gives an overview of paperfluidics engaging EC detections. The outlook and recommendation of future directions of EC enabled biosensors are discussed in the end.

  14. Method of bonding an interconnection layer on an electrode of an electrochemical cell

    DOE Patents [OSTI]

    Pal, U.B.; Isenberg, A.O.; Folser, G.R.

    1992-01-14

    An electrochemical cell containing an air electrode, contacting electrolyte and electronically conductive interconnection layer, and a fuel electrode, has the interconnection layer attached by: (A) applying a thin, closely packed, discrete layer of LaCrO[sub 3] particles, doped with an element selected from the group consisting of Ca, Sr, Co, Ba, Mg and their mixtures on a portion of the air electrode, and then (B) electrochemical vapor depositing a dense skeletal structure between and around the doped LaCrO[sub 3] particles. 2 figs.

  15. Development of Advanced Electrochemical Emission Spectroscopy for Monitoring Corrosion in Simulated DOE Liquid Waste

    SciTech Connect (OSTI)

    Digby D. Macdonald; Brian M. Marx; Sejin Ahn; Julio de Ruiz; Balaji Soundararaja; Morgan Smith; and Wendy Coulson

    2008-01-15

    Various forms of general and localized corrosion represent principal threats to the integrity of DOE liquid waste storage tanks. These tanks, which are of a single wall or double wall design, depending upon their age, are fabricated from welded carbon steel and contain a complex waste-form comprised of NaOH and NaNO{sub 3}, along with trace amounts of phosphate, sulfate, carbonate, and chloride. Because waste leakage can have a profound environmental impact, considerable interest exists in predicting the accumulation of corrosion damage, so as to more effectively schedule maintenance and repair. The different tasks that are being carried out under the current program are as follows: (1) Theoretical and experimental assessment of general corrosion of iron/steel in borate buffer solutions by using electrochemical impedance spectroscopy (EIS), ellipsometry and XPS techniques; (2) Development of a damage function analysis (DFA) which would help in predicting the accumulation of damage due to pitting corrosion in an environment prototypical of DOE liquid waste systems; (3) Experimental measurement of crack growth rate, acoustic emission signals and coupling currents for fracture in carbon and low alloy steels as functions of mechanical (stress intensity), chemical (conductivity), electrochemical (corrosion potential, ECP), and microstructural (grain size, precipitate size, etc) variables in a systematic manner, with particular attention being focused on the structure of the noise in the current and its correlation with the acoustic emissions; (4) Development of fracture mechanisms for carbon and low alloy steels that are consistent with the crack growth rate, coupling current data and acoustic emissions; (5) Inserting advanced crack growth rate models for SCC into existing deterministic codes for predicting the evolution of corrosion damage in DOE liquid waste storage tanks; (6) Computer simulation of the anodic and cathodic activity on the surface of the steel samples in order to exactly predict the corrosion mechanisms; (7) Wavelet analysis of EC noise data from steel samples undergoing corrosion in an environment similar to that of the high level waste storage containers, to extract data pertaining to general, pitting and stress corrosion processes, from the overall data. The Point Defect Model (PDM) is directly applied as the theoretical assessment method for describing the passive film formed on iron/steels. The PDM is used to describe general corrosion in the passive region of iron. In addition, previous work suggests that pit formation is due to the coalescence of cation vacancies at the metal/film interface which would make it possible to use the PDM parameters to predict the onset of pitting. This previous work suggests that once the critical vacancy density is reached, the film ruptures to form a pit. Based upon the kinetic parameters derived for the general corrosion case, two parameters relating to the cation vacancy formation and annihilation can be calculated. These two parameters can then be applied to predict the transition from general to pitting corrosion for iron/mild steels. If cation vacancy coalescence is shown to lead to pitting, it can have a profound effect on the direction of future studies involving the onset of pitting corrosion. The work has yielded a number of important findings, including an unequivocal demonstration of the role of chloride ion in passivity breakdown on nickel in terms of cation vacancy generation within the passive film, the first detection and characterization of individual micro fracture events in stress corrosion cracking, and the determination of kinetic parameters for the generation and annihilation of point defects in the passive film on iron. The existence of coupling between the internal crack environment and the external cathodic environment, as predicted by the coupled environment fracture model (CEFM), has also been indisputably established for the AISI 4340/NaOH system. It is evident from the studies that analysis of coupling current noise is a very sensitive tool f

  16. Towards a societal scale, mobile sensing system

    E-Print Network [OSTI]

    Honicky Jr., Richard Edward

    2010-01-01

    battery and electrochemical ozone sensor visible in the bottom image. . . . . . .battery and electrochemical ozone sensor visible in the bottom image.

  17. PERFORMANCE OF CdSe TETRAPODS-GOLD AS NANOSTRUCTURE ELECTROCHEMICAL MATERIALS IN PHOTOVOLTAIC CELLS

    E-Print Network [OSTI]

    Natelson, Douglas

    PERFORMANCE OF CdSe TETRAPODS-GOLD AS NANOSTRUCTURE ELECTROCHEMICAL MATERIALS IN PHOTOVOLTAIC CELLS antenna arrays are assembled by coating on CdSe tetrapod templates; the rectifying barrier is formed and reduce the costs associated with conventional solar cells, including multi-bandgap materials [5

  18. Alternative Electrochemical Salt Waste Forms, Summary of FY/CY2011 Results

    SciTech Connect (OSTI)

    Riley, Brian J.; McCloy, John S.; Crum, Jarrod V.; Rodriguez, Carmen P.; Windisch, Charles F.; Lepry, William C.; Matyas, Josef; Westman, Matthew P.; Rieck, Bennett T.; Lang, Jesse B.; Pierce, David A.

    2011-12-01

    This report summarizes the 2011 fiscal+calendar year efforts for developing waste forms for a spent salt generated in reprocessing nuclear fuel with an electrochemical separations process. The two waste forms are tellurite (TeO2-based) glasses and sol-gel-derived high-halide mineral analogs to stable minerals found in nature.

  19. Electrochemical struvite precipitation from digestate with a fluidized bed cathode microbial

    E-Print Network [OSTI]

    . Stabilization of excess activated and EBPR sludge in an anaerobic digester results in significant releases of nuElectrochemical struvite precipitation from digestate with a fluidized bed cathode microbial conditions. Soluble phosphorus removal using digester effluent ranged from 70 to 85% with current generation

  20. TAS-2013-0043 1 Abstract--Fuel cells are electrochemical energy converters

    E-Print Network [OSTI]

    Boyer, Edmond

    TAS-2013-0043 1 Abstract--Fuel cells are electrochemical energy converters which allow generation. Fuel cells are then by essence low voltage sources , so that for most practical applications of the perfectly direct current relies upon a fuel cell fed by hydrogen. The main advantages to be taken from fuel

  1. Effect of the alkali insertion ion on the electrochemical properties of nickel

    E-Print Network [OSTI]

    Cui, Yi

    to the price of the energy delivered by the primary source. Therefore, long calendar life and high energy cycle life, high energy efficiency, and high power capability. Herein, we explored the effect of the size of the alkali ion on the electrochemical properties. Introduction The demand for advanced energy

  2. Nanowire-Based Electrochemical Biosensors Adam K. Wanekaya, Wilfred Chen, Nosang V. Myung,* Ashok Mulchandani*

    E-Print Network [OSTI]

    Chen, Wilfred

    Review Nanowire-Based Electrochemical Biosensors Adam K. Wanekaya, Wilfred Chen, Nosang V. Myung@engr.ucr.edu Received: October 27, 2005 Accepted: January 17, 2006 Abstract We review recent advances in biosensors: Nanosensors, Biosensors, Field effect transistors (FETs), Carbon nanotubes, Conducting polymer nanowires

  3. MASKLESS ELECTROCHEMICAL PATTERNING OF GOLD FILMS FOR BIOSENSORS USING MICROMACHINED POLYIMIDE PROBES

    E-Print Network [OSTI]

    Basu, Amar S.

    MASKLESS ELECTROCHEMICAL PATTERNING OF GOLD FILMS FOR BIOSENSORS USING MICROMACHINED POLYIMIDE chemicals for chemical and biosensors. After gold patterns are revealed, the surface can be treated] and proteins [8] can be selectively attached to the SAMs and used in biosensor applications as depicted in Fig

  4. Synthesis and Electrochemical Performance of a Lithium Titanium Phosphate Anode for Aqueous Lithium-Ion Batteries

    E-Print Network [OSTI]

    Cui, Yi

    on larger scales. Im- provement of the safety of lithium-ion batteries must occur if they are to be utilized in aqueous cells. However, the choice of a suitable anode material for an aqueous lithium-ion battery is moreSynthesis and Electrochemical Performance of a Lithium Titanium Phosphate Anode for Aqueous Lithium-Ion

  5. Electrochemical conversion of C(1) molecules. Final report, February 1, 1986-December 31, 1988

    SciTech Connect (OSTI)

    Sammells, A.F.; Cook, R.L.; Wessels, B.W.

    1989-02-01

    This report identifies new efficient systematic electrocatalysis strategies for the electrochemical and photoelectrochemical (PEC) generation of hydrogen or hydrogenated inorganic substrate molecules to give useful gaseous fuels. Selected electrocatalysts would then be utilized in novel cell configurations. Basic insight gained would lead to new approaches for direct methane activation leading to more valuable products.

  6. Laminar Flow-Based Electrochemical Microreactor for Efficient Regeneration of Nicotinamide Cofactors for Biocatalysis

    E-Print Network [OSTI]

    Kenis, Paul J. A.

    Laminar Flow-Based Electrochemical Microreactor for Efficient Regeneration of Nicotinamide the more widespread use of biocatalysis.2 Here, we utilize multistream laminar flow in a microreactor the occurrence of laminar flow in microscale channels: Multistream laminar flow enables focusing of a reagent

  7. Comparison of High-Throughput Electrochemical Methods for Testing Direct Methanol Fuel Cell Anode Electrocatalysts

    E-Print Network [OSTI]

    power applications, fuel cells must compete with commodity power sources such as fossil fuels power sources, and mobile/portable applications, fuel cells that utilize liquid fuels can representComparison of High-Throughput Electrochemical Methods for Testing Direct Methanol Fuel Cell Anode

  8. Modeling the Effects of Electrode Composition and Pore Structure on the Performance of Electrochemical Capacitors

    E-Print Network [OSTI]

    Popov, Branko N.

    -6 Energy storage mechanisms in an electrochemical capacitor include separation of charge at the interface storage in DL capacitance is essentially electrostatic in nature, and so DL charge/discharge processes Engineering, University of South Carolina, Swearingen Engineering Center, Columbia, South Carolina 29208, USA

  9. Electrochemical method for defect delineation in silicon-on-insulator wafers

    DOE Patents [OSTI]

    Guilinger, Terry R. (Albuquerque, NM); Jones, Howland D. T. (Albuquerque, NM); Kelly, Michael J. (Albuquerque, NM); Medernach, John W. (Albuquerque, NM); Stevenson, Joel O. (Albuquerque, NM); Tsao, Sylvia S. (Albuquerque, NM)

    1991-01-01

    An electrochemical method for defect delineation in thin-film SOI or SOS wafers in which a surface of a silicon wafer is electrically connected so as to control the voltage of the surface within a specified range, the silicon wafer is then contacted with an electrolyte, and, after removing the electrolyte, defects and metal contamination in the silicon wafer are identified.

  10. Homogeneous, dual layer, solid state, thin film deposition for structural and/or electrochemical characteristics

    DOE Patents [OSTI]

    Pitts, J. Roland; Lee, Se-Hee; Tracy, C. Edwin; Li, Wenming

    2014-04-08

    Solid state, thin film, electrochemical devices (10) and methods of making the same are disclosed. An exemplary device 10 includes at least one electrode (14) and an electrolyte (16) deposited on the electrode (14). The electrolyte (16) includes at least two homogenous layers of discrete physical properties. The two homogenous layers comprise a first dense layer (15) and a second porous layer (16).

  11. Characterization and Theory of Electrocatalysts Based on Scanning Electrochemical Microscopy Screening Methods

    E-Print Network [OSTI]

    Henkelman, Graeme

    are further tested as supported electrocatalysts by larger scale electrochemical methods and in fuel cells on the material and provides better guidelines for further testing. The ultimate adoption of fuel cells as power sources depends strongly on their cost and efficiency. A key factor in both of these issues is the fuel

  12. In situ atomic-scale imaging of electrochemical lithiation in silicon

    E-Print Network [OSTI]

    Zhu, Ting

    -dependent mobility of the interfaces. L ithium-ion batteries are increasingly being used as energy storage devicesIn situ atomic-scale imaging of electrochemical lithiation in silicon Xiao Hua Liu1 *, Jiang Wei the dynamic lithiation process of single-crystal silicon with atomic resolution. We observe a sharp interface

  13. Hexavalent chromium synthesized polyaniline nanostructures: Magnetoresistance and electrochemical energy storage behaviors

    E-Print Network [OSTI]

    Guo, John Zhanhu

    energy storage behaviors Hongbo Gu a,b,1 , Huige Wei a,c,1 , Jiang Guo a,1 , Neel Haldolaarachige d 2013 Keywords: Polyaniline Magnetoresistance Energy storage a b s t r a c t In this work, the oxidant was analyzed by the wave-function shrinkage model. The electrochemical energy storage was investigated using

  14. DOI: 10.1002/celc.201402182 Electrochemical Reduction of Carbon Dioxide on Cu/CuO

    E-Print Network [OSTI]

    Kenis, Paul J. A.

    DOI: 10.1002/celc.201402182 Electrochemical Reduction of Carbon Dioxide on Cu/CuO Core/Shell Catalysts Yangchun Lan,[a, b] Chao Gai,[c] Paul J. A. Kenis,*[b] and Jiaxing Lu*[a] 1. Introduction Carbon dioxide (CO2) is the most notorious greenhouse gas, which is released by both natural and artificial

  15. Electrochemical and optical bioassays of nerve agents based on the organophosphorus-hydrolase mediated growth

    E-Print Network [OSTI]

    Chen, Wilfred

    -hydrolase mediated growth of cupric ferrocyanide nanoparticles Alberto Sa´nchez Arribas a,b , Terannie Va)-stimulated formation of cupric-ferrocyanide (CuFeCN) nanoparticles is described. The growth and accumulation; Cupric ferrocyanide; Electrochemical properties; Organophosphorus-hydrolase; Nanomate- rials 1

  16. Algorithm Development for Electrochemical Impedance Spectroscopy Diagnostics in PEM Fuel Cells

    E-Print Network [OSTI]

    Victoria, University of

    Algorithm Development for Electrochemical Impedance Spectroscopy Diagnostics in PEM Fuel Cells Abstract The purpose of this work is to develop algorithms to identify fuel cell faults using-board fuel cell diagnostic hardware. Impedance can identify faults that cannot be identified solely by a drop

  17. Science Highlight December 2010 Electrochemical Surface Science: Hard X-rays Probe Fuel Cell Model Catalyst

    E-Print Network [OSTI]

    Wechsler, Risa H.

    Science Highlight ­ December 2010 Electrochemical Surface Science: Hard X-rays Probe Fuel Cell. Proton exchange membrane fuel cells (PEMFCs) are promising power sources since they can generate distribution network. Large-scale deployment of fuel cells, however, has been hampered by cost and performance

  18. Correlating Local Structure with Electrochemical Activity in Li2MnO3

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Nanda, Jagjit; Sacci, Robert L.; Veith, Gabriel M.; Dixit, Hemant M.; Cooper, Valentino R.; Pezeshki, Alan M.; Ruther, Rose E.

    2015-07-31

    Li2MnO3 is of interest as one component of the composite lithium-rich oxides, which are under development for high capacity, high voltage cathodes in lithium ion batteries. Despite such practical importance, the mechanism of electrochemical activity in Li2MnO3 is contested in the literature, as are the effects of long-term electrochemical cycling. Here, Raman spectroscopy and mapping are used to follow the chemical and structural changes that occur in Li2MnO3. Both conventional slurry electrodes and thin films are studied as a function of the state of charge (voltage) and cycle number. Thin films have similar electrochemical properties as electrodes prepared from slurries,more »but allow for spectroscopic investigations on uniform samples without carbon additives. Spectral changes correlate well with electrochemical activity and support a mechanism whereby capacity is lost upon extended cycling due to the formation of new manganese oxide phases. Raman mapping of both thin film and slurry electrodes charged to different voltages reveals significant variation in the local structure. Poor conductivity and slow kinetics associated with a two-phase reaction mechanism contribute to the heterogeneity.« less

  19. Nitrogen-doped graphene and its electrochemical applications Yuyan Shao,a

    E-Print Network [OSTI]

    Aksay, Ilhan A.

    -graphene is promising for applications in electrochemical energy devices (fuel cells, metal­air batteries for graphitic materials of all other dimensionalities (0D fullerenes, 1D nanotubes, and 3D graphite),1 mechanical exfoliation of graphite with scotch tape,33 mild exfoliation of graphite,34 chemical vapor

  20. Int. J. Electrochem. Sci., 8 (2013) 859 -871 International Journal of

    E-Print Network [OSTI]

    2013-01-01

    acceleration or inhibition of localized corrosion [1-4]. One of the most damaging microorganisms in pipelines.electrochemsci.org Electrochemical Characterization of Microbiologically Influenced Corrosion on Linepipe Steel Exposed techniques were used to investigate the microbiologically influenced corrosion (MIC) of API 5L X52 linepipe

  1. Control oriented 1D electrochemical model of lithium ion battery Kandler A. Smith a

    E-Print Network [OSTI]

    Control oriented 1D electrochemical model of lithium ion battery Kandler A. Smith a , Christopher D Available online 28 June 2007 Abstract Lithium ion (Li-ion) batteries provide high energy and power density dynamics (i.e. state of charge). Ó 2007 Elsevier Ltd. All rights reserved. Keywords: Lithium ion battery

  2. Electrochemical detection of single molecules using abiotic nanopores having electrically tunable dimensions

    DOE Patents [OSTI]

    Sansinena, Jose-Maria (Los Alamos, NM); Redondo, Antonio (Los Alamos, NM); Olazabal, Virginia (Los Alamos, NM); Hoffbauer, Mark A. (Los Alamos, NM); Akhadov, Elshan A. (Los Alamos, NM)

    2009-12-29

    A barrier structure for use in an electrochemical stochastic membrane sensor for single molecule detection. The sensor is based upon inorganic nanopores having electrically tunable dimensions. The inorganic nanopores are formed from inorganic materials and an electrically conductive polymer. Methods of making the barrier structure and sensing single molecules using the barrier structure are also described.

  3. Freestanding TiO2 Nanotube Arrays with Ultrahigh Aspect Ratio via Electrochemical Anodization

    E-Print Network [OSTI]

    Lin, Zhiqun

    Articles Freestanding TiO2 Nanotube Arrays with Ultrahigh Aspect Ratio via Electrochemical,5 photocatalytic,6 and solar cells.7­10 In the latter context, each individual TiO2 nanotube is perpendicular acid (HF) aqueous solution was used as electrolyte, the maximum thickness of TiO2 nanotube arrays

  4. Effect of Tin+ defects on electrochemical properties of highly-ordered titania

    E-Print Network [OSTI]

    Cao, Guozhong

    Electrochemical properties X-ray photoelectron spectroscopy In this paper, highly-ordered TiO2 nanotube (TNT respectively. The surface properties of the TiO2 electrodes after annealing treatment by different gases were for these electrode materials, there are only two that are not fulfilled by TiO2. The first one concerns the energy

  5. Electrochemical polishing of thread fastener test specimens of nickel-chromium iron alloys

    DOE Patents [OSTI]

    Kephart, Alan R. (Scotia, NY)

    1991-01-01

    An electrochemical polishing device and method for selective anodic dissolution of the surface of test specimens comprised, for example, of nickel-chromium-iron alloys, which provides for uniform dissolution at the localized sites to remove metal through the use of a coiled wire electrode (cathode) placed in the immediate proximity of the working, surface resulting in a polished and uniform grain boundary.

  6. High strength porous support tubes for high temperature solid electrolyte electrochemical cells

    DOE Patents [OSTI]

    Rossing, Barry R. (Churchill, PA); Zymboly, Gregory E. (Penn Hills, PA)

    1986-01-01

    A high temperature, solid electrolyte electrochemical cell is made, having an electrode and a solid electrolyte disposed on a porous, sintered support material containing thermally stabilized zirconia powder particles and from about 3 wt. % to about 45 wt. % of thermally stable oxide fibers.

  7. Materials Development for Improved Efficiency of Hydrogen Production by Steam Electrolysis and Thermochemical-Electrochemical Processes

    E-Print Network [OSTI]

    Yildiz, Bilge

    and Thermochemical-Electrochemical Processes Jennifer Mawdsley, Deborah Myers, and Bilge Yildiz Chemical Engineering and depositing a thin doped-ceria interlayer between the perovskite electrodes and zirconia electrolytes² area) deposited on one side of a 200-m thick YSZ (8 mol% yttria-stabilized zirconia) or SSZ (10 mol

  8. Palladium deuteride formation in the cathode of an electrochemical cell: An in situ neutron diffraction study

    SciTech Connect (OSTI)

    Rotella, F.J.; Richardson, J.W. Jr.; Redey, L.; Felcher, G.P.; Hitterman, R.L.; Kleb, R.

    1991-12-31

    In this report, neutron diffraction of palladium cathodes is utilized to reveal palladium deuteride formation within the crystal structure of the metal. The experiment described in this report demonstrates the efficacy of neutron powder diffraction as a tool for structural studies of metal deuterides/hydrides and the feasibility of in situ diffraction measurements from a working electrochemical cell. (JL)

  9. Palladium deuteride formation in the cathode of an electrochemical cell: An in situ neutron diffraction study

    SciTech Connect (OSTI)

    Rotella, F.J.; Richardson, J.W. Jr.; Redey, L.; Felcher, G.P.; Hitterman, R.L.; Kleb, R.

    1991-01-01

    In this report, neutron diffraction of palladium cathodes is utilized to reveal palladium deuteride formation within the crystal structure of the metal. The experiment described in this report demonstrates the efficacy of neutron powder diffraction as a tool for structural studies of metal deuterides/hydrides and the feasibility of in situ diffraction measurements from a working electrochemical cell. (JL)

  10. Electrochemical Nanoscale Templating: Laterally Self-Aligned Growth of Organic-Metal Nanostructures

    E-Print Network [OSTI]

    Borguet, Eric

    attractive for a wide range of applications such as the fabrication of nanoscale devices, energy storage of nanostructures into 2D or 3D arrays is necessary for the further hierarchical development of devices. TemplatingElectrochemical Nanoscale Templating: Laterally Self-Aligned Growth of Organic-Metal Nanostructures

  11. Green synthesis of graphene nanosheets/ZnO composites and electrochemical properties

    SciTech Connect (OSTI)

    Wang Jun; Gao Zan; Li Zhanshuang; Wang Bin; Yan Yanxia; Liu Qi; Mann, Tom; Zhang Milin; Jiang Zhaohua

    2011-06-15

    A green and facile approach was demonstrated to prepare graphene nanosheets/ZnO (GNS/ZnO) composites for supercapacitor materials. Glucose, as a reducing agent, and exfoliated graphite oxide (GO), as precursor, were used to synthesize GNS, then ZnO directly grew onto conducting graphene nanosheets as electrode materials. The small ZnO particles successfully anchored onto graphene sheets as spacers to keep the neighboring sheets separate. The electrochemical performances of these electrodes were analyzed by cyclic voltammetry, electrochemical impedance spectrometry and chronopotentiometry. Results showed that the GNS/ZnO composites displayed superior capacitive performance with large capacitance (62.2 F/g), excellent cyclic performance, and maximum power density (8.1 kW/kg) as compared with pure graphene electrodes. Our investigation highlight the importance of anchoring of small ZnO particles on graphene sheets for maximum utilization of electrochemically active ZnO and graphene for energy storage application in supercapacitors. - Graphical abstract: Glucose was used to synthesize GNS, then ZnO directly grew onto conducting graphene nanosheets as electrode materials for supercapacitor. Results showed that the composites have superior capacitive performance. Highlights: > Graphene nanosheets were synthesized via using glucose as a reducing agent. > The reductant and the oxidized product are environmentally friendly. > ZnO grew onto conducting graphene sheets keeping neighboring sheets separate. > The structure improves the contact between the electrode and the electrolyte. > Results showed that these composites have good electrochemical property.

  12. Recent progress on the development of biofuel cells for self-powered electrochemical biosensing and logic biosensing: A review

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Zhou, Ming

    2015-06-12

    Biofuel cells (BFCs) based on enzymes and microorganisms have been recently received considerable attention because they are recognized as an attractive type of energy conversion technology. In addition to the research activities related to the application of BFCs as power source, we have witnessed recently a growing interest in using BFCs for self-powered electrochemical biosensing and electrochemical logic biosensing applications. Compared with traditional biosensors, one of the most significant advantages of the BFCs-based self-powered electrochemical biosensors and logic biosensors is their ability to detect targets integrated with chemical-to-electrochemical energy transformation, thus obviating the requirement of external power sources. Following mymore »previous review (Electroanalysis 2012, 24, 197-209), the present review summarizes, discusses and updates the most recent progress and latest advances on the design and construction of BFCs-based self-powered electrochemical biosensors and logic biosensors. In addition to the traditional approaches based on substrate effect, inhibition effect, blocking effect and gene regulation effect for BFCs-based self-powered electrochemical biosensors and logic biosensors design, some new principles including enzyme effect, co-stabilization effect, competition effect and hybrid effect are summarized and discussed by me in details. The outlook and recommendation of future directions of BFCs-based self-powered electrochemical biosensors and logic biosensors are discussed in the end.« less

  13. Glacial Energy Holdings (California) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsource History View New Pages RecentPlant <Silver PeakGiner Electrochemicals Inc

  14. Glacial Energy Holdings (Delaware) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsource History View New Pages RecentPlant <Silver PeakGiner Electrochemicals

  15. Glacial Energy Holdings (Michigan) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsource History View New Pages RecentPlant <Silver PeakGiner ElectrochemicalsMichigan)

  16. Disposable Electrochemical Immunosensor Diagnosis Device Based on Nanoparticle Probe and Immunochromatographic Strip

    SciTech Connect (OSTI)

    Liu, Guodong; Lin, Ying-Ying; Wang, Jun; Wu, Hong; Wai, Chien M.; Lin, Yuehe

    2007-10-15

    We describe a disposable electrochemical immunosensor diagnosis device that is based on the immunochromatographic strip technique and an electrochemical immunoassay based on quantum dot (QD, CdS@ZnS) labels. The device takes advantage of the speed and low-cost of the conventional immunochromatographic strip test and the high-sensitivity of the nanoparticle-based electrochemical immunoassay. A sandwich immunoreaction was performed on the immunochromatographic strip, and the captured QD labels in the test zone were determined by highly sensitive stripping voltammetric measurement of the dissolved metallic component (cadmium) with a disposable-screen-printed electrode, which is embedded underneath the membrane on the test zone. The new device coupled with a portable electrochemical analyzer shows great promise for in-field and point-of-care quantitative testing of disease-related protein biomarkers. The parameters (e.g., voltammetric measurement of QD labels, antibody immobilization, the loading amount of QD-antibody, and the immunoreaction time) that govern the sensitivity and reproducibility of the device were optimized with IgG model analyte. The voltammetric response of the optimized device is highly linear over the range of 0.1 to 10 ng mL-1 IgG, and the limit of detection is estimated to be 30 pg mL-1 in association with a 7-min immunoreaction time. The detection limit was improved to 10 pg mL-1 using a 20-min immunoreaction time. The new disposable electrochemical diagnosis device thus provides a more user-friendly, rapid, clinically accurate, less expensive, and quantitative tool for protein detection.

  17. Fuel cell system with coolant flow reversal

    DOE Patents [OSTI]

    Kothmann, Richard E. (Pittsburgh, PA)

    1986-01-01

    Method and apparatus for cooling electrochemical fuel cell system components. Periodic reversal of the direction of flow of cooling fluid through a fuel cell stack provides greater uniformity and cell operational temperatures. Flow direction through a recirculating coolant fluid circuit is reversed through a two position valve, without requiring modulation of the pumping component.

  18. First-principles calculation of atomic structure and electrochemical potential of Li{sub 1+x}V{sub 3}O{sub 8}.

    SciTech Connect (OSTI)

    Benedek, R.

    1998-08-27

    Interest in the {gamma}-bronze, Li{sub 1+x}V{sub 3}O{sub g}, as a possible electrode material in rechargeable Li batteries has stimulated several experimental studies on this system. Detailed interpretation of the electrochemical and physical-property measurements is complicated by uncertainties regarding the structural arrangement of Li atoms as a function of x and by a phase transition between two monoclinic structures ({gamma}{sub a}, {gamma}{sub b}) during intercalation. To elucidate the atomic structures and the phase transition, first-principles calculations are performed with the local-density-functional-theory (LDFT) planewave pseudopotential method for both {gamma}{sub a} and {gamma}{sub b}, as a function of lithiation. Calculations for the compositions 1 + x = 1.5 and 1 + x = 4 confirm that the Li configuration determined in the existing x-ray diffraction structure refinements (at 1 + x = 1.2 and 1 + x = 4 respectively), coincide with the predicted low-energy configurations. Structure predictions were made at intermediate compositions, for which no experimental structure measurement is available. The order in which the tetrahedrally coordinated Li sites are filled at equilibrium as a function of x in {gamma}{sub a}, was predicted. Calculated electrochemical potentials as a function of composition agree well with experimental data.

  19. Learning to Manage Combined Energy Supply Systems Azalia Mirhoseini, Farinaz Koushanfar

    E-Print Network [OSTI]

    Learning to Manage Combined Energy Supply Systems Azalia Mirhoseini, Farinaz Koushanfar Dept proposed method in maximizing the combined energy system's lifetime. I. INTRODUCTION The mobile system energy supply (EES) unit for the mobile and em- bedded systems is an electrochemical battery. The battery

  20. Direct Visualization of Solid Electrolyte Interphase Formation in Lithium-Ion Batteries with In Situ Electrochemical Transmission Electron Microscopy

    SciTech Connect (OSTI)

    Unocic, Raymond R [ORNL] [ORNL; Sun, Xiao-Guang [ORNL] [ORNL; Sacci, Robert L [ORNL] [ORNL; Adamczyk, Leslie A [ORNL] [ORNL; Alsem, Daan Hein [Hummingbird Scientific] [Hummingbird Scientific; Dai, Sheng [ORNL] [ORNL; Dudney, Nancy J [ORNL] [ORNL; More, Karren Leslie [ORNL] [ORNL

    2014-01-01

    Complex, electrochemically driven transport processes form the basis of electrochemical energy storage devices. The direct imaging of electrochemical processes at high spatial resolution and within their native liquid electrolyte would significantly enhance our understanding of device functionality, but has remained elusive. In this work we use a recently developed liquid cell for in situ electrochemical transmission electron microscopy to obtain insight into the electrolyte decomposition mechanisms and kinetics in lithium-ion (Li-ion) batteries by characterizing the dynamics of solid electrolyte interphase (SEI) formation and evolution. Here we are able to visualize the detailed structure of the SEI that forms locally at the electrode/electrolyte interface during lithium intercalation into natural graphite from an organic Li-ion battery electrolyte. We quantify the SEI growth kinetics and observe the dynamic self-healing nature of the SEI with changes in cell potential.

  1. Non-Equilibrium Pathways during Electrochemical Phase Transformations...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    reduce the amount of inactive materials such as conductive additives and binders so as to increase the energy density of a system. In this study, operando full field transmission...

  2. Three-Dimensional Thermal-Electrochemical Coupled Model for Spirally Wound Large-Format Lithium-Ion Batteries (Presentation)

    SciTech Connect (OSTI)

    Lee, K. J.; Smith K.; Kim, G. H.

    2011-04-01

    This presentation discusses the behavior of spirally wound large-format Li-ion batteries with respect to their design. The objectives of the study include developing thermal and electrochemical models resolving 3-dimensional spirally wound structures of cylindrical cells, understanding the mechanisms and interactions between local electrochemical reactions and macroscopic heat and electron transfers, and developing a tool and methodology to support macroscopic designs of cylindrical Li-ion battery cells.

  3. Copper-substituted perovskite compositions for solid oxide fuel cell cathodes and oxygen reduction electrodes in other electrochemical devices

    DOE Patents [OSTI]

    Rieke, Peter C. (Pasco, WA); Coffey, Gregory W. (Richland, WA); Pederson, Larry R. (Kennewick, WA); Marina, Olga A. (Richland, WA); Hardy, John S. (Richland, WA); Singh, Prabhaker (Richland, WA); Thomsen, Edwin C. (Richland, WA)

    2010-07-20

    The present invention provides novel compositions that find advantageous use in making electrodes for electrochemical cells. Also provided are electrochemical devices that include active oxygen reduction electrodes, such as solid oxide fuel cells, sensors, pumps and the like. The compositions comprises a copper-substituted ferrite perovskite material. The invention also provides novel methods for making and using the electrode compositions and solid oxide fuel cells and solid oxide fuel cell assemblies having cathodes comprising the compositions.

  4. Cerium-modified doped strontium titanate compositions for solid oxide fuel cell anodes and electrodes for other electrochemical devices

    DOE Patents [OSTI]

    Marina, Olga A [Richland, WA; Stevenson, Jeffry W [Richland, WA

    2010-11-23

    The present invention provides novel compositions that find advantageous use in making electrodes for electrochemical cells and electrochemical devices such as solid oxide fuel cells, electrolyzers, sensors, pumps and the like, the compositions comprising cerium-modified doped strontium titanate. The invention also provides novel methods for making and using anode material compositions and solid oxide fuel cells and solid oxide fuel cell assemblies having anodes comprising the compositions.

  5. Cerium-modified doped strontium titanate compositions for solid oxide fuel cell anodes and electrodes for other electrochemical devices

    DOE Patents [OSTI]

    Marina, Olga A [Richland, WA; Stevenson, Jeffry W [Richland, WA

    2010-03-02

    The present invention provides novel compositions that find advantageous use in making electrodes for electrochemical cells and electrochemical devices such as solid oxide fuel cells, electrolyzers, sensors, pumps and the like, the compositions comprising cerium-modified doped strontium titanate. The invention also provides novel methods for making and using anode material compositions and solid oxide fuel cells and solid oxide fuel cell assemblies having anodes comprising the compositions.

  6. Thermal management systems and methods

    DOE Patents [OSTI]

    Gering, Kevin L.; Haefner, Daryl R.

    2006-12-12

    A thermal management system for a vehicle includes a heat exchanger having a thermal energy storage material provided therein, a first coolant loop thermally coupled to an electrochemical storage device located within the first coolant loop and to the heat exchanger, and a second coolant loop thermally coupled to the heat exchanger. The first and second coolant loops are configured to carry distinct thermal energy transfer media. The thermal management system also includes an interface configured to facilitate transfer of heat generated by an internal combustion engine to the heat exchanger via the second coolant loop in order to selectively deliver the heat to the electrochemical storage device. Thermal management methods are also provided.

  7. A hydrogen peroxide electrochemical sensor based on silver nanoparticles decorated three-dimensional graphene

    SciTech Connect (OSTI)

    Zhan, Beibei; Liu, Changbing; Shi, Huaxia; Li, Chen; Wang, Lianhui [Key Laboratory for Organic Electronics and Information Displays (KLOEID), Nanjing University of Posts and Telecommunications, Nanjing 210023 (China); Huang, Wei, E-mail: iamxcdong@njtech.edu.cn, E-mail: iamwhuang@njtech.edu.cn; Dong, Xiaochen, E-mail: iamxcdong@njtech.edu.cn, E-mail: iamwhuang@njtech.edu.cn [Key Laboratory for Organic Electronics and Information Displays (KLOEID), Nanjing University of Posts and Telecommunications, Nanjing 210023 (China); Jiangsu-Singapore Joint Research Center for Organic/Bio-Electronics and Information Displays and Institute of Advanced Materials (IAM), Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816 (China)

    2014-06-16

    A facile strategy has been developed to synthesize sliver nanoparticles (Ag NPs) decorated three-dimensional graphene (3DG) through hydrothermal process. The AgNPs-3DG composites are directly fabricated into a free standing sensing electrode for electrochemical detection of hydrogen peroxide (H{sub 2}O{sub 2}) in phosphate buffered solutions. Various techniques equipments including scanning electron microscopy, X-ray diffraction, and Raman spectroscopy are used to characterize the morphology and structure of the as-prepared composite. The electrochemical experiments reveal the AgNPs-3DG based biosensor exhibits fast amperometric sensing, low detection limitation, wide linear responding range, and perfect selectivity for non-enzyme H{sub 2}O{sub 2} detection, indicating the well synergistic effect of Ag NPs high electrocatalytic activity and 3DG high conductivity and large surface area.

  8. Electrochemical cell apparatus having an integrated reformer-mixer nozzle-mixer diffuser

    DOE Patents [OSTI]

    Shockling, L.A.

    1991-09-10

    An electrochemical apparatus is made having a generator section containing electrochemical cells, a fresh gaseous feed fuel inlet, a gaseous feed oxidant inlet, and at least one hot gaseous spent fuel recirculation channel, where the spent fuel recirculation channel, passes from the generator chamber to combine with the fresh feed fuel inlet to form a reformable mixture, where a reforming chamber contains an outer portion containing reforming material, an inner portion preferably containing a mixer nozzle and a mixer-diffuser, and a middle portion for receiving spent fuel, where the mixer nozzle and mixer-diffuser are preferably both within the reforming chamber and substantially exterior to the main portion of the apparatus, where the reformable mixture flows up and then backward before contacting the reforming material, and the mixer nozzle can operate below 400 C. 1 figure.

  9. Current Collection Through The Ends Of A Spirally Wound Electrochemical Cell

    DOE Patents [OSTI]

    Oweis, Salah (Ellicott City, MD); Chagnon, Guy (Columbia, MD); Alunans, Peter (Baltimore, MD); Romero, Antonio (Parkton, MD)

    1999-10-26

    An electrochemical cell, including a jelly-roll type electrode stack, and a method for making such cell. The electrochemical cell includes folded electrode portions which form a plane recessed from the end of the electrode stack. The folded electrode portions are preferably formed by making pairs of slits in the electrode end and bending over the electrode portions between each pair of slits. The recessed plane forms a large area to which a current collection tab is subsequently connected. A coating may be applied to the folded portions of the electrode to further increase the contact area with the current collection tab by eliminating the slight variations in the recessed plane which are due to the overlap of the folded electrode portions.

  10. A comparison of the electrochemical behavior of carbon aerogels and activated carbon fiber cloths

    SciTech Connect (OSTI)

    Tran, T.D.; Alviso, C.T.; Hulsey, S.S.; Nielsen, J.K.; Pekala, R.W.

    1996-05-10

    Electrochemical capacitative behavior of carbon aerogels and commercial carbon fiber cloths was studied in 5M KOH, 3M sulfuric acid, and 0.5M tetrethylammonium tetrafluoroborate/propylene carbonate electrolytes. The resorcinol-formaldehyde based carbon aerogels with a range of denisty (0.2-0.85 g/cc) have open-cell structures with ultrafine pore sizes (5-50 nm), high surface area (400-700 m{sup 2}/g), and a solid matrix composed of interconnected particles or fibers with characteristic diameters of 10 nm. The commercial fiber cloths in the density range 0.2-04g/cc have high surface areas (1000-2500 m{sup 2}/g). The volumetric capacitances of high-density aerogels are shown to be comparable to or exceeding those from activated carbon fibers. Electrochemical behavior of these materials in various electrolytes is compared and related to their physical properties.

  11. Demonstrating Dynamic Wireless Charging of an Electric Vehicle - The benefit of Electrochemical Capacitor Smoothing

    SciTech Connect (OSTI)

    Miller , John M.; Onar, Omer C; White, Cliff P; Campbell, Steven L; Coomer, Chester; Seiber, Larry Eugene; Sepe, Raymond B; Steyerl, Anton

    2014-01-01

    The wireless charging of an electric vehicle (EV) while it is in motion presents challenges in terms of low-latency communications for roadway coil excitation sequencing and maintenance of lateral alignment, plus the need for power-flow smoothing. This article summarizes the experimental results on power smoothing of in-motion wireless EV charging performed at the Oak Ridge National Laboratory (ORNL) using various combinations of electrochemical capacitors at the grid side and in the vehicle. Electrochemical capacitors of the symmetric carbon carbon type from Maxwell Technologies comprised the in-vehicle smoothing of wireless charging current to the EV battery pack. Electro Standards Laboratories (ESL) fabricated the passive and active parallel lithium-capacitor (LiC) unit used to smooth the grid-side power. The power pulsation reduction was 81% on the grid by the LiC, and 84% on the vehicle for both the LiC and the carbon ultracapacitors (UCs).

  12. Enzyme-based electrochemical biosensors for determination of organophosphorus and carbamate pesticides

    SciTech Connect (OSTI)

    Everett, W.R.; Rechnitz, G.A.

    1999-01-01

    A mini review of enzyme-based electrochemical biosensors for inhibition analysis of organophosphorus and carbamate pesticides is presented. Discussion includes the most recent literature to present advances in detection limits, selectivity and real sample analysis. Recent reviews on the monitoring of pesticides and their residues suggest that the classical analytical techniques of gas and liquid chromatography are the most widely used methods of detection. These techniques, although very accurate in their determinations, can be quite time consuming and expensive and usually require extensive sample clean up and pro-concentration. For these and many other reasons, the classical techniques are very difficult to adapt for field use. Numerous researchers, in the past decade, have developed and made improvements on biosensors for use in pesticide analysis. This mini review will focus on recent advances made in enzyme-based electrochemical biosensors for the determinations of organophosphorus and carbamate pesticides.

  13. Towards standardizing the measurement of electrochemical properties of solid state electrolytes in lithium batteries.

    SciTech Connect (OSTI)

    Dees, D. W.; Henriksen, G. L.

    1999-05-06

    The purpose of this paper is to stimulate thought and discussion in the technical community on standardization of the experimental determination of the pertinent electrochemical properties of solid electrolytes in lithium batteries. This standardization is needed for comparison and modeling of solid electrolytes in a practical lithium battery. The appropriate electrochemical properties include transport, thermodynamic, and physical parameters that generally depend on concentration and temperature. While it is beyond the scope of this work to put forward definitive measurement techniques for all types of solid electrolytes, it is hoped that comparisons between various techniques to examine a dissolved binary lithium salt in a dry polymer solvent will lead to improved understanding and methodology for examining solid electrolytes.

  14. Electrochemically induced nuclear fusion of deuterium; The existence of negatively charged deuteride ions

    SciTech Connect (OSTI)

    Jorne, J. . Dept. of Chemical Engineering)

    1990-11-01

    In this paper cold fusion of deuterium by electrolysis of heavy water onto a palladium (or titanium) cathode is reported. Contrary to the assumption of Fleishmann and Pons that electrochemically compressed D{sup +} exists inside the palladium cathode, the observations of Jones et al. can be partially explained by the simultaneous presence of deuteride D{sup {minus}} and the highly mobile positive deuterium ion D{sup +}. The opposite charges reduce the intranuclear distance and enhance the tunneling fusion rate. Furthermore, alloying of lithium with palladium can stabilize a negatively charged deuteride ion due to the salinelike character of lithium deuteride. The enormous pressure (or fugacity), achieved by the applied electrochemical potential (10{sup 30} atm), is a virtual pressure that would have existed in equilibrium with palladium deuteride (PdD{sub x}). It is speculated that nuclear fusion occurs at the surface, and the PdD{sub x} serves as a reservoir for the supply of deuteride ions.

  15. Method and apparatus for capacitive deionization and electrochemical purification and regeneration of electrodes

    DOE Patents [OSTI]

    Tran, Tri D. (Livermore, CA); Farmer, Joseph C. (Tracy, CA); Murguia, Laura (Manteca, CA)

    2001-01-01

    An electrically regeneratable electrochemical cell (30) for capacitive deionization and electrochemical purification and regeneration of electrodes includes two end plates (31, 32), one at each end of the cell (30). A new regeneration method is applied to the cell (30) which includes slowing or stopping the purification cycle, electrically desorbing contaminants and removing the desorbed contaminants. The cell (30) further includes a plurality of generally identical double-sided intermediate electrodes (37-43) that are equidistally separated from each other, between the two end electrodes (35, 36). As the electrolyte enters the cell, it flows through a continuous open serpentine channel (65-71) defined by the electrodes, substantially parallel to the surfaces of the electrodes. By polarizing the cell (30), ions are removed from the electrolyte and are held in the electric double layers formed at the carbon aerogel surfaces of the electrodes. The cell (30) is regenerated electrically to desorb such previously removed ions.

  16. Method of preparing a powdered, electrically insulative separator for use in an electrochemical cell

    DOE Patents [OSTI]

    Cooper, Tom O. (Naperville, IL); Miller, William E. (Naperville, IL)

    1978-01-01

    A secondary electrochemical cell includes electrodes separated by a layer of electrically insulative powder. The powder includes refractory materials selected from the oxides and nitrides of metals and metaloids. The powdered refractory material, blended with electrolyte particles, is compacted as layers onto an electrode to form an integral electrode structure and assembled into the cell. The assembled cell is heated to its operating temperature leaving porous layers of electrically insulative, refractory particles, containing molten electrolyte between the electrodes.

  17. Mediated electrochemical oxidation of organic wastes using a Co(III) mediator in a neutral electrolyte

    DOE Patents [OSTI]

    Balazs, G.B.; Lewis, P.R.

    1999-07-06

    An electrochemical cell with a Co(III) mediator and neutral pH anolyte provides efficient destruction of organic and mixed wastes. The organic waste is concentrated in the anolyte reservoir, where the cobalt mediator oxidizes the organics and insoluble radioactive species and is regenerated at the anode until all organics are converted to carbon dioxide and destroyed. The neutral electrolyte is non-corrosive, and thus extends the lifetime of the cell and its components. 2 figs.

  18. Heteroclite electrochemical stability of an I based Li7P2S8I superionic conductor

    SciTech Connect (OSTI)

    Rangasamy, Ezhiylmurugan; Liu, Zengcai; Gobet, Mallory; Pilar, Kartik; Sahu, Gayatri; Greenbaum, Steve; Liang, Chengdu

    2015-01-01

    Stability from Instability: A Li7P2S8I solid state Li-ion conductor derived from -Li3PS4 and LiI demonstrates exceptional electrochemical stability. The oxidation instability of I is subverted nullified via its incorporation into the coordinated structure. The inclusion of I also creates stability with metallic Li anode while simultaneously improving the interfacial kinetics. Low temperature membrane processability enables facile fabrication of dense membranes, making it suitable for industrial adoption.

  19. The effect of hydrocarbons on the electrochemical potential across porous media 

    E-Print Network [OSTI]

    McCall, Charles Mark

    1970-01-01

    THE EFFECT OF HYDROCARBONS ON THE ELECTROCHEMICAL POTENTIAL ACROSS POROUS MEDIA A Thesis by CHARLES M. McCALL Submitted to the Graduate College of Texas ARM University in partial fulfillment of the requirement for the degree of MASTER... OF SCIENCE December 1970 Major Subject: Petroleum Engineering THE EFFECT OF HYDROCARBONS ON THE ELECTROCHEMlCAL POTENTIAL ACROSS POROUS MEDIA A Thesis by CHARLES M. McCALL Approved as to style and content by: (Head of Committee) (Me be r...

  20. Electrochemical Methods of Upgrading Pyrolysis Oils Presentation for BETO 2015 Project Peer Review

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum Based|DepartmentStatementofAprilof EnergyBreakout SessionElectrochemicalDOE