Powered by Deep Web Technologies
Note: This page contains sample records for the topic "giner electrochemical systems" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Giner Electrochemicals Inc | Open Energy Information  

Open Energy Info (EERE)

Giner Electrochemicals Inc Giner Electrochemicals Inc Jump to: navigation, search Name Giner Electrochemicals Inc Place Newton, Massachusetts Zip 2466 Product Specializes in the development of fuel cell technologies and products. Coordinates 43.996685°, -87.803724° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.996685,"lon":-87.803724,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

2

Giner, Inc./GES  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Giner, Inc.: Founded in 1973 Giner, Inc.: Founded in 1973 * Giner Electrochemical Systems, LLC (GES): Founded in 2000 with a 30% Ownership by General Motors Specializing in development of PEM based electrochemical technology, devices, and systems Giner, Inc./GES Newton , Ma. Monjid Hamdan Senior Program Manager May 23, 2011 Synergy of Giner, Inc./GES Technologies PEM Electrolyzer Stack Technology Over 7500 units in the field Over last 15 years there has been rapid development of high-efficiency PEM- based water electrolyzer stacks for both military and commercial applications PEM Electrolyzer can generate hydrogen at high or low, balanced or differential pressure PEM Stacks have shown high durability and reliability with over 7500 Giner stacks in field use today Electrolyzers are also used for oxygen

3

Hydrogen Production by PEM Electrolysis: Spotlight on Giner and Proton  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

BY BY PEM ELECTROLYSIS: SPOTLIGHT ON GINER AND PROTON US DOE WEBINAR (May 23, 2011) 2 Webinar Outline *Water Electrolysis H 2 Production Overview DOE-EERE-FCT: Eric L. Miller *Spotlight: PEM Electrolysis R&D at Giner Giner Electrochemical Systems: Monjid Hamdan *Spotlight: PEM Electrolysis R&D at Proton Proton OnSite: Kathy Ayers *Q&A 3 DOE EERE-FCT Goals and Objectives Develop technologies to produce hydrogen from clean, domestic resources at a delivered and dispensed cost of $2-$4/gge Capacity (kg/day) Distributed Central 100,000,000 100,000 50,000 10,000 1,000 10 Natural Gas Reforming Photo- electro- chemical Biological Water Electrolysis (Solar) 2015-2020 Today-2015 2020-2030 Coal Gasification (No Carbon Capture) Electrolysis Water (Grid) Coal Gasification (Carbon Capture)

4

Hydrogen Production by Polymer Electrolyte Membrane (PEM) ElectrolysisSpotlight on Giner and Proton  

Broader source: Energy.gov [DOE]

Slides presented at the DOE Fuel Cell Technologies Office webinar "Hydrogen Production by Polymer Electrolyte Membrane (PEM) ElectrolysisSpotlight on Giner and Proton" on May 23, 2011.

5

Webinar: Hydrogen Production by Polymer Electrolyte Membrane (PEM) ElectrolysisSpotlight on Giner and Proton  

Broader source: Energy.gov [DOE]

Video recording of the webinar, Hydrogen Production by Polymer Electrolyte Membrane (PEM) ElectrolysisSpotlight on Giner and Proton, originally presented on May 23, 2011.

6

Premio Nacional de Sociologa y Presidente del Institut d'Estudis Catalans, Salvador Giner aborda el futuro del capitalismo  

E-Print Network [OSTI]

Premio Nacional de Sociología y Presidente del Institut d'Estudis Catalans, Salvador Giner aborda de Chicago (EEUU) y catedrático de la Universidad de Barcelona, Salvador Giner será el encargado de, Manuel Atienza y abordará El futur del capitalisme: teories i realitats. Salvador Giner ha sido profesor

Escolano, Francisco

7

Electrochemical hydrogen Storage Systems  

SciTech Connect (OSTI)

As the global need for energy increases, scientists and engineers have found a possible solution by using hydrogen to power our world. Although hydrogen can be combusted as a fuel, it is considered an energy carrier for use in fuel cells wherein it is consumed (oxidized) without the production of greenhouse gases and produces electrical energy with high efficiency. Chemical storage of hydrogen involves release of hydrogen in a controlled manner from materials in which the hydrogen is covalently bound. Sodium borohydride and aminoborane are two materials given consideration as chemical hydrogen storage materials by the US Department of Energy. A very significant barrier to adoption of these materials as hydrogen carriers is their regeneration from 'spent fuel,' i.e., the material remaining after discharge of hydrogen. The U.S. Department of Energy (DOE) formed a Center of Excellence for Chemical Hydrogen Storage, and this work stems from that project. The DOE has identified boron hydrides as being the main compounds of interest as hydrogen storage materials. The various boron hydrides are then oxidized to release their hydrogen, thereby forming a 'spent fuel' in the form of a lower boron hydride or even a boron oxide. The ultimate goal of this project is to take the oxidized boron hydrides as the spent fuel and hydrogenate them back to their original form so they can be used again as a fuel. Thus this research is essentially a boron hydride recycling project. In this report, research directed at regeneration of sodium borohydride and aminoborane is described. For sodium borohydride, electrochemical reduction of boric acid and sodium metaborate (representing spent fuel) in alkaline, aqueous solution has been investigated. Similarly to literature reports (primarily patents), a variety of cathode materials were tried in these experiments. Additionally, approaches directed at overcoming electrostatic repulsion of borate anion from the cathode, not described in the previous literature for electrochemical reduction of spent fuels, have been attempted. A quantitative analytical method for measuring the concentration of sodium borohydride in alkaline aqueous solution has been developed as part of this work and is described herein. Finally, findings from stability tests for sodium borohydride in aqueous solutions of several different compositions are reported. For aminoborane, other research institutes have developed regeneration schemes involving tributyltin hydride. In this report, electrochemical reduction experiments attempting to regenerate tributyltin hydride from tributyltin chloride (a representative by-product of the regeneration scheme) are described. These experiments were performed in the non-aqueous solvents acetonitrile and 1,2-dimethoxyethane. A non-aqueous reference electrode for electrolysis experiments in acetonitrile was developed and is described. One class of boron hydrides, called polyhedral boranes, became of interest to the DOE due to their ability to contain a sufficient amount of hydrogen to meet program goals and because of their physical and chemical safety attributes. Unfortunately, the research performed here has shown that polyhedral boranes do not react in such a way as to allow enough hydrogen to be released, nor do they appear to undergo hydrogenation from the spent fuel form back to the original hydride. After the polyhedral boranes were investigated, the project goals remained the same but the hydrogen storage material was switched by the DOE to ammonia borane. Ammonia borane was found to undergo an irreversible hydrogen release process, so a direct hydrogenation was not able to occur. To achieve the hydrogenation of the spent ammonia borane fuel, an indirect hydrogenation reaction is possible by using compounds called organotin hydrides. In this process, the organotin hydrides will hydrogenate the spent ammonia borane fuel at the cost of their own oxidation, which forms organotin halides. To enable a closed-loop cycle, our task was then to be able to hydrogenate the organotin halides back to th

Dr. Digby Macdonald

2010-08-09T23:59:59.000Z

8

System and method for networking electrochemical devices  

DOE Patents [OSTI]

An improved electrochemically active system and method including a plurality of electrochemical devices, such as fuel cells and fluid separation devices, in which the anode and cathode process-fluid flow chambers are connected in fluid-flow arrangements so that the operating parameters of each of said plurality of electrochemical devices which are dependent upon process-fluid parameters may be individually controlled to provide improved operating efficiency. The improvements in operation include improved power efficiency and improved fuel utilization in fuel cell power generating systems and reduced power consumption in fluid separation devices and the like through interstage process fluid parameter control for series networked electrochemical devices. The improved networking method includes recycling of various process flows to enhance the overall control scheme.

Williams, Mark C. (Morgantown, WV); Wimer, John G. (Morgantown, WV); Archer, David H. (Pittsburgh, PA)

1995-01-01T23:59:59.000Z

9

Low-temperature thermally regenerative electrochemical system  

DOE Patents [OSTI]

A thermally regenerative electrochemical system is described including an electrochemical cell with two water-based electrolytes separated by an ion exchange membrane, at least one of the electrolytes containing a complexing agent and a salt of a multivalent metal whose respective order of potentials for a pair of its redox couples is reversible by a change in the amount of the ocmplexing agent in the electrolyte, the complexing agent being removable by distillation to cause the reversal.

Loutfy, R.O.; Brown, A.P.; Yao, N.P.

1982-04-21T23:59:59.000Z

10

Low temperature thermally regenerative electrochemical system  

DOE Patents [OSTI]

A thermally regenerative electrochemical system including an electrochemical cell with two water-based electrolytes separated by an ion exchange membrane, at least one of the electrolytes containing a complexing agent and a salt of a multivalent metal whose respective order of potentials for a pair of its redox couples is reversible by a change in the amount of the complexing agent in the electrolyte, the complexing agent being removable by distillation to cause the reversal.

Loutfy, Raouf O. (Tucson, AZ); Brown, Alan P. (Bolingbrook, IL); Yao, Neng-Ping (Clarendon Hills, IL)

1983-01-01T23:59:59.000Z

11

Diffuse-Charge Dynamics in Electrochemical Systems  

E-Print Network [OSTI]

The response of a model micro-electrochemical system to a time-dependent applied voltage is analyzed. The article begins with a fresh historical review including electrochemistry, colloidal science, and microfluidics. The model problem consists of a symmetric binary electrolyte between parallel-plate, blocking electrodes which suddenly apply a voltage. Compact Stern layers on the electrodes are also taken into account. The Nernst-Planck-Poisson equations are first linearized and solved by Laplace transforms for small voltages, and numerical solutions are obtained for large voltages. The ``weakly nonlinear'' limit of thin double layers is then analyzed by matched asymptotic expansions in the small parameter $\\epsilon = \\lambda_D/L$, where $\\lambda_D$ is the screening length and $L$ the electrode separation. At leading order, the system initially behaves like an RC circuit with a response time of $\\lambda_D L / D$ (not $\\lambda_D^2/D$), where $D$ is the ionic diffusivity, but nonlinearity violates this common picture and introduce multiple time scales. The charging process slows down, and neutral-salt adsorption by the diffuse part of the double layer couples to bulk diffusion at the time scale, $L^2/D$. In the ``strongly nonlinear'' regime (controlled by a dimensionless parameter resembling the Dukhin number), this effect produces bulk concentration gradients, and, at very large voltages, transient space charge. The article concludes with an overview of more general situations involving surface conduction, multi-component electrolytes, and Faradaic processes.

Martin Z. Bazant; Katsuyo Thornton; Armand Ajdari

2004-01-08T23:59:59.000Z

12

Measuring Physical Properties of Polymer Electrolyte Membranes  

Broader source: Energy.gov [DOE]

Presented by Cortney Mittelsteadt of Giner Electrochemical Systems, LLC, at the DOE High Temperature Membrane Working Group held September 14, 2006.

13

Regenerative Fuel Cells for Energy Storage | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Regenerative Fuel Cells for Energy Storage Regenerative Fuel Cells for Energy Storage Presentation by Corky Mittelsteadt, Giner Electrochemical Systems, at the NREL Reversible Fuel...

14

A New Concept of an Electrochemical Heat Pump System: Theoretical Consideration and Experimental Results  

Science Journals Connector (OSTI)

A new concept of an electrochemical heat pump system is described which consists of two identical electrochemical cells operating at different temperatures in opposite directions. The principle is based on the...

L. Dittmar; K. Jttner; G. Kreysa

1994-01-01T23:59:59.000Z

15

Systems, methods and computer-readable media for modeling cell performance fade of rechargeable electrochemical devices  

DOE Patents [OSTI]

A system includes an electrochemical cell, monitoring hardware, and a computing system. The monitoring hardware periodically samples performance characteristics of the electrochemical cell. The computing system determines cell information from the performance characteristics of the electrochemical cell. The computing system also develops a mechanistic level model of the electrochemical cell to determine performance fade characteristics of the electrochemical cell and analyzing the mechanistic level model to estimate performance fade characteristics over aging of a similar electrochemical cell. The mechanistic level model uses first constant-current pulses applied to the electrochemical cell at a first aging period and at three or more current values bracketing a first exchange current density. The mechanistic level model also is based on second constant-current pulses applied to the electrochemical cell at a second aging period and at three or more current values bracketing the second exchange current density.

Gering, Kevin L

2013-08-27T23:59:59.000Z

16

Current-potential characteristics of electrochemical systems  

SciTech Connect (OSTI)

This dissertation contains investigations in three distinct areas. Chapters 1 and 2 provide an analysis of the effects of electromagnetic phenomena during the initial stages of cell discharge. Chapter 1 includes the solution to Maxwell`s equations for the penetration of the axial component of an electric field into an infinitely long cylindrical conductor. Chapter 2 contains the analysis of the conductor included in a radial circuit. Chapter 3 provides a complete description of the equations that describe the growth of an oxide film. A finite difference program was written to solve the equations. The system investigated is the iron/iron oxide in a basic, aqueous solution. Chapters 4 and 5 include the experimental attempts for replacing formaldehyde with an innocuous reducing agent for electroless deposition. In chapter 4, current-versus-voltage curves are provided for a sodium thiosulfate bath in the presence of a copper disk electrode. Also provided are the cathodic polarization curves of a copper/EDTA bath in the presence of a copper electrode. Chapter 5 contains the experimental results of work done with sodium hypophosphite as a reducing agent. Mixed-potential-versus-time curves for solutions containing various combinations of copper sulfate, nickel chloride, and hypophosphite in the presence of a palladium disk electrode provide an indication of the reducing power of the solutions.

Battaglia, V.S.

1993-07-01T23:59:59.000Z

17

Microsoft PowerPoint - SRNL_20apr09.ppt  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

, 2009 , 2009 Giner Electrochemical Systems, LLC Novel Approaches to the HyS SDE Anode Simon G. Stone Giner Electrochemical Systems, LLC April 20, 2009 April 20, 2009 Giner Electrochemical Systems, LLC Hybrid Sulfur Electrolyzers ('SDEs') S R N L U S C D O E P h I S B I R April 20, 2009 Giner Electrochemical Systems, LLC Narrow-Gap Anode for HyS Electrolyzer Objectives: * Demonstrate concept of NGA configuration for HyS electrolyzer * Determine i-V performance and SO 2 crossover characteristics * Project suitability of NGA approach for large scale application * US Publ. Pat. Appl. 2009/0045073 * SRNL Subcontract AC54775O April 20, 2009 Giner Electrochemical Systems, LLC Narrow-Gap Anode for HyS Electrolyzer * Employs a gas diffusion electrode

18

Systems, methods and computer readable media for estimating capacity loss in rechargeable electrochemical cells  

DOE Patents [OSTI]

A system includes an electrochemical cell, monitoring hardware, and a computing system. The monitoring hardware periodically samples charge characteristics of the electrochemical cell. The computing system periodically determines cell information from the charge characteristics of the electrochemical cell. The computing system also periodically adds a first degradation characteristic from the cell information to a first sigmoid expression, periodically adds a second degradation characteristic from the cell information to a second sigmoid expression and combines the first sigmoid expression and the second sigmoid expression to develop or augment a multiple sigmoid model (MSM) of the electrochemical cell. The MSM may be used to estimate a capacity loss of the electrochemical cell at a desired point in time and analyze other characteristics of the electrochemical cell. The first and second degradation characteristics may be loss of active host sites and loss of free lithium for Li-ion cells.

Gering, Kevin L.

2013-06-18T23:59:59.000Z

19

Systems, methods and computer-readable media to model kinetic performance of rechargeable electrochemical devices  

DOE Patents [OSTI]

A system includes an electrochemical cell, monitoring hardware, and a computing system. The monitoring hardware samples performance characteristics of the electrochemical cell. The computing system determines cell information from the performance characteristics. The computing system also analyzes the cell information of the electrochemical cell with a Butler-Volmer (BV) expression modified to determine exchange current density of the electrochemical cell by including kinetic performance information related to pulse-time dependence, electrode surface availability, or a combination thereof. A set of sigmoid-based expressions may be included with the modified-BV expression to determine kinetic performance as a function of pulse time. The determined exchange current density may be used with the modified-BV expression, with or without the sigmoid expressions, to analyze other characteristics of the electrochemical cell. Model parameters can be defined in terms of cell aging, making the overall kinetics model amenable to predictive estimates of cell kinetic performance along the aging timeline.

Gering, Kevin L.

2013-01-01T23:59:59.000Z

20

Monolithic three-dimensional electrochemical energy storage system on aerogel or nanotube scaffold  

DOE Patents [OSTI]

A monolithic three-dimensional electrochemical energy storage system is provided on an aerogel or nanotube scaffold. An anode, separator, cathode, and cathodic current collector are deposited on the aerogel or nanotube scaffold.

Farmer, Joseph Collin; Stadermann, Michael

2014-07-15T23:59:59.000Z

Note: This page contains sample records for the topic "giner electrochemical systems" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Mass transport corrected Tafel analysis for electrochemically reversible systems of complex stoichiometry  

Science Journals Connector (OSTI)

A general expression which allows Tafel analysis of electrochemically reversible systems of the form mAe??nB at hydrodynamic electrodes such as the rotating disk or wall-tube is presented.

Oleksiy V. Klymenko; Richard G. Compton

2004-01-01T23:59:59.000Z

22

Giner, Inc./GES  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

(DSM TM ) Perfluorosulfonic acid (PFSA) ionomer incorporated in an engineering plastic support High-strength High-efficiency No x-y dimensional changes upon wetdry or...

23

Special issue to ICMAT 2009, Symposium F: nanostructured materials for electrochemical energy systems: lithium batteries, supercapacitors and fuel cells, June 28-July 3, 2009, Singapore  

Science Journals Connector (OSTI)

The Symposium F on Nanostructured Materials for Electrochemical Energy Systems: Lithium Batteries, Supercapacitors and Fuel Cells provided an excellent opportunity for interdisciplinary ... (cathodes and anodes...

Palani Balaya; San Ping Jiang; Atsuo Yamada

2010-10-01T23:59:59.000Z

24

Electrochemical sensing systems for arsenate estimation by oxidation of l-cysteine  

Science Journals Connector (OSTI)

In this study, rapid electrochemical sensing systems for detection of arsenate by oxidation of l-cysteine are proposed. Three different sensing systems comprising of screen-printed electrode and standard electrodes were used for this study. The detector element i.e. l-cysteine was immobilized on the working electrodes of the transducers by in-situ polymerization of acylamide. The electrocatalytic oxidation of l-cysteine was performed by cyclic voltammentry and amperometry. All the systems presented linear response range up to 30?gL?1 of arsenic. The sensors were able to estimate arsenic below 10?gL?1 with a detection limit of 1.24.6?gL?1.

Priyabrata Sarkar; Suchanda Banerjee; Dipankar Bhattacharyay; Anthony P.F. Turner

2010-01-01T23:59:59.000Z

25

Creating systems that effectively convert energy, such as efficient solar cells and electrochemical batteries, has been a  

E-Print Network [OSTI]

SEMTE abstract Creating systems that effectively convert energy, such as efficient solar cells stimuli, the solar energy from sunlight, and the mechanical motion is commonplace, indeed fundamental and electrochemical batteries, has been a longstanding scientific pursuit, especially given the global energy

Reisslein, Martin

26

Microstructural manipulation and architecture design of carbon-based electrochemical systems  

E-Print Network [OSTI]

Carbon materials are important in electrochemistry. The often cited advantages of carbonaceous materials for electrochemical applications include wide potential working windows, tunable electrocatalytic activity for a ...

Mao, Xianwen

2014-01-01T23:59:59.000Z

27

Electrochemical behavior of liquid Sb anode system for electrolytic reduction of UO2  

Science Journals Connector (OSTI)

Electrolytic reduction of metal oxides is a key technique of pyroprocessing, the combination of several electrochemical processes to...16]. The spent nuclear fuels are mainly composed of metal oxides including U...

Sung-Wook Kim; Wooshin Park; Hun Suk Im

2014-09-01T23:59:59.000Z

28

Some recent studies with the solid-ionomer electrochemical capacitor  

Science Journals Connector (OSTI)

Giner, Inc. has developed a high-energy-density, all-solid-ionomer electrochemical capacitor, completely free of liquid electrolyte. The novel features of this device include (i) a three-dimensional metal oxide-particulate-ionomer composite electrode structure and (ii) a unitized repeating cell element. The composite electrode structures are bonded to opposite sides of a thin sheet of a solid proton-conducting ionomer membrane and form an integrally bonded membrane and electrode assembly (MEA). Individual \\{MEAs\\} can be stacked in series as bipolar elements to form a multiple cell device. The discharge characteristics and energy storage properties of these devices are described. Typical capacitance measured for a unit cell is 1 F/cm2. Life testing of a multicell capacitor on an intermittent basis has shown, that over a 10 000 h period, the capacitance and resistance of the cell has remained invariant. There has been no maintenance required on the device since it was fabricated. Other multicell units of shorter life duration have exhibited similar reliable performance characteristics. Recent work has focused on increasing the capacitance of the unitized structure and improving the low-temperature characteristics. The approaches and experimental results will be presented. Some possible advanced NASA applications for these unique all-solid-ionomer devices will be discussed.

S. Sarangapani; J. Forchione; A. Griffith; A.B. LaConti; R. Baldwin

1991-01-01T23:59:59.000Z

29

Modeling and simulations of electrical energy storage in electrochemical capacitors  

E-Print Network [OSTI]

electrochemical capacitor energy storage systems. 1.2 Energyto electrochemical energy storage in TiO 2 (anatase)3D nanoarchitec- tures for energy storage and conversion,

Wang, Hainan

2013-01-01T23:59:59.000Z

30

A mathematical model of the current-potential characteristics for the bromine/bromide ion electrochemical system  

E-Print Network [OSTI]

ZI Susan Elaine Lorimer, B. S. , Texas A&M University Chairman of Advisory Committee: Dr. R. E. white A mathematical model was developed for the BrZ/Br electro- chemical system and was used to predict the current density produced by the Hr /Br... toward the study of the Hr /Br electrochemical system. First, the Z model was shown to be a good tool for electrode kinetic analysis. The detailed expressions for current density, developed for two electrode kinetic mechanisms commonly proposed...

Lorimer, Susan Elaine

2012-06-07T23:59:59.000Z

31

Compact lightweight power PEMFC operating from a unique hydrogen generating system. Final report, September 1993-March 1995  

SciTech Connect (OSTI)

The goal of this program was to investigate the feasibility, for the military, of a 120-watt, 20,000- watt-power source weighing near ten pounds. An air breathing proton exchange membrane fuel cell (PEMFC) utilizing hydrogen from Lithium Borohydride (LiBH4) could theoretically meet this specification. Giner, Inc. has established that a hydrogen generator, utilizing LiBH4, provides a hydrogen current flux of 150 Amps/sq ft with about 60% long-term utilization. Additionally, Giner, Inc. demonstrated a 120-watt fuel cell system, which operated at approximately 12 volts at 100 Amps/sq ft (10 amps through a 0.1 -sq ft active area). Integrating the two systems will require further effort and development work.

Theriault, R.

1995-11-01T23:59:59.000Z

32

Normal-form approach to spatiotemporal pattern formation in globally coupled electrochemical systems  

Science Journals Connector (OSTI)

We show that the experimental global coupling (GC) of spatially extended electrochemical oscillators is weak close to a supercritical Hopf bifurcation. A center manifold reduction allows then the normal form which comprises the GC and the naturally existing nonlocal (migration) coupling (NLC) to be derived. We show that the interaction between NLC and GC widens the spectrum of coherent structures found in globally coupled oscillatory media and allows for wavelength selection of standing waves, stabilization of phase clusters without breaking phase invariance, and creation of heteroclinic networks connecting families of oscillatory states characterized by different spatial symmetries.

Vladimir Garca-Morales and Katharina Krischer

2008-11-11T23:59:59.000Z

33

Speaker biographies for the Fuel Cell Technologies Program Webinar titled Hydrogen Production by PEM Electrolysis … Spotlight on Giner and Proton  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Professional Bios - Kathy Ayers and Monjid Hamdan Professional Bios - Kathy Ayers and Monjid Hamdan Kathy Ayers, Director of Research, Proton Energy Systems Kathy Ayers is the Director of Research at Proton Energy Systems. She is responsible for developing the long term research direction for improvements in performance, reliability, and cost of Proton's electrolyzer cell stack as well as overseeing Proton's military and

34

Electrochemical Characterization Laboratory (Fact Sheet)  

SciTech Connect (OSTI)

This fact sheet describes the purpose, lab specifications, applications scenarios, and information on how to partner with NREL's Electrochemical Characterization Laboratory at the Energy Systems Integration Facility. The research focus at the Electrochemical Characterization Laboratory at NREL's Energy Systems Integration Facility (ESIF) is evaluating the electrochemical properties of novel materials synthesized by various techniques and understanding and delineating the reaction mechanisms to provide practical solutions to PEMFCs commercialization issues of cost, performance and durability. It is also involved in the development of new tools and techniques for electrochemical characterization. The laboratory concentrates on the development and characterization of new materials for PEMFCs such as electrocatalysts, catalyst supports in terms of electrochemical activity, electrochemical surface area and corrosion/durability. The impact of impurities and/or contaminants on the catalyst activity is also under study. Experiments that can be performed include: (1) Determination and benchmarking of novel electrocatalyst activity; (2) Determination of electrochemical surface area; (3) Determination of electrocatalyst and support corrosion resistance and durability; (4) Synthesis and characterization of novel electrocatalyst; (5) Determination of fundamental electrochemical parameters; and (6) Estimation of electrocatalyst utilization.

Not Available

2011-10-01T23:59:59.000Z

35

Alternating-polarity operation for complete regeneration of electrochemical deionization system  

DOE Patents [OSTI]

An electrically regeneratable battery of electrochemical cells for capacitive deionization (including electrochemical purification) and regeneration of electrodes is operated at alternate polarities during consecutive cycles. In other words, after each regeneration step operated at a given polarity in a deionization-regeneration cycle, the polarity of the deionization step in the next cycle is maintained. In one embodiment, two end electrodes are arranged one at each end of the battery, adjacent to end plates. An insulator layer is interposed between each end plate and the adjacent end electrode. Each end electrode includes a single sheet of conductive material having a high specific surface area and sorption capacity, preferably a sheet formed of carbon aerogel composite. The batter further includes a plurality of generally identical double-sided intermediate electrodes that are equidistally separated from each other, between the two end electrodes. As the electrolyte enters the battery of ells, t flows through a continuous open serpentine channel defined by the electrodes, substantially parallel to the surfaces of the electrodes. By polarizing the cells, ions are removed from the electrolyte and are held in the electric double layers formed at the carbon aerogel surfaces of the electrodes. As the electrodes of each cell of the battery are saturated with the removed ions, the battery is regenerated electrically at a reversed polarity from that during the deionization step of the cycle, thus significantly minimizing secondary wastes.

Tran, Tri D. (Livermore, CA); Lenz, David J. (Livermore, CA)

2006-11-21T23:59:59.000Z

36

A High Temperature Electrochemical Energy Storage System Based on Sodium Beta-Alumina Solid Electrolyte (Base)  

SciTech Connect (OSTI)

This report summarizes the work done during the period September 1, 2005 and March 31, 2008. Work was conducted in the following areas: (1) Fabrication of sodium beta{double_prime} alumina solid electrolyte (BASE) using a vapor phase process. (2) Mechanistic studies on the conversion of {alpha}-alumina + zirconia into beta{double_prime}-alumina + zirconia by the vapor phase process. (3) Characterization of BASE by X-ray diffraction, SEM, and conductivity measurements. (4) Design, construction and electrochemical testing of a symmetric cell containing BASE as the electrolyte and NaCl + ZnCl{sub 2} as the electrodes. (5) Design, construction, and electrochemical evaluation of Na/BASE/ZnCl{sub 2} electrochemical cells. (6) Stability studies in ZnCl{sub 2}, SnCl{sub 2}, and SnI{sub 4} (7) Design, assembly and testing of planar stacks. (8) Investigation of the effect of porous surface layers on BASE on cell resistance. The conventional process for the fabrication of sodium ion conducting beta{double_prime}-alumina involves calcination of {alpha}-alumina + Na{sub 2}CO{sub 3} + LiNO{sub 3} at 1250 C, followed by sintering powder compacts in sealed containers (platinum or MgO) at {approx}1600 C. The novel vapor phase process involves first sintering a mixture of {alpha}-alumina + yttria-stabilized zirconia (YSZ) into a dense ceramic followed by exposure to soda vapor at {approx}1450 C to convert {alpha}-alumina into beta{double_prime}-alumina. The vapor phase process leads to a high strength BASE, which is also resistant to moisture attack, unlike BASE made by the conventional process. The PI is the lead inventor of the process. Discs and tubes of BASE were fabricated in the present work. In the conventional process, sintering of BASE is accomplished by a transient liquid phase mechanism wherein the liquid phase contains NaAlO{sub 2}. Some NaAlO{sub 2} continues to remain at grain boundaries; and is the root cause of its water sensitivity. In the vapor phase process, NaAlO{sub 2} is never formed. Conversion occurs by a coupled transport of Na{sup +} through BASE formed and of O{sup 2-} through YSZ to the reaction front. Transport to the reaction front is described in terms of a chemical diffusion coefficient of Na{sub 2}O. The conversion kinetics as a function of microstructure is under investigation. The mechanism of conversion is described in this report. A number of discs and tubes of BASE have been fabricated by the vapor phase process. The material was investigated by X-ray diffraction (XRD), optical microscopy and scanning electron microscopy (SEM), before and after conversion. Conductivity (which is almost exclusively due to sodium ion transport at the temperatures of interest) was measured. Conductivity was measured using sodium-sodium tests as well as by impedance spectroscopy. Various types of both planar and tubular electrochemical cells were assembled and tested. In some cases the objective was to determine if there was any interaction between the salt and BASE. The interaction of interest was mainly ion exchange (possible replacement of sodium ion by the salt cation). It was noted that Zn{sup 2+} did not replace Na+ over the conditions of interest. For this reason much of the work was conducted with ZnCl{sub 2} as the cathode salt. In the case of Sn-based, Sn{sup 2+} did ion exchange, but Sn{sup 4+} did not. This suggests that Sn{sup 4+} salts are viable candidates. These results and implications are discussed in the report. Cells made with Na as the anode and ZnCl{sub 2} as the cathode were successfully charged/discharged numerous times. The key advantages of the batteries under investigation here over the Na-S batteries are: (1) Steel wool can be used in the cathode compartment unlike Na-S batteries which require expensive graphite. (2) Planar cells can be constructed in addition to tubular, allowing for greater design flexibility and integration with other devices such as planar SOFC. (3) Comparable or higher open circuit voltage (OCV) than the Na-S battery. (4) Wider operating temperature range and higher temper

Anil Virkar

2008-03-31T23:59:59.000Z

37

PEM Electrolyzer Incorporating an Advanced Low-Cost Membrane - DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

1 1 FY 2012 Annual Progress Report DOE Hydrogen and Fuel Cells Program Monjid Hamdan (Primary Contact), Tim Norman Giner, Inc. (Formerly Giner Electrochemical Systems, LLC.) 89 Rumford Ave. Newton, MA 02466 Phone: (781) 529-0526 Email: mhamdan@ginerinc.com DOE Managers HQ: Erika Sutherland Phone: (202) 586-3152 Email: Erika.Sutherland@ee.doe.gov GO: David Peterson Phone: (720) 356-1747 Email: David.Peterson@go.doe.gov Contract Number: DE-FG36-08GO18065 Subcontractors: * Virginia Polytechnic Institute and University, Blacksburg, VA * Parker Hannifin Ltd domnick hunter Division, Hemel Hempstead, United Kingdom Project Start Date: May 1, 2008

38

Electrochemical cell  

DOE Patents [OSTI]

An improved secondary electrochemical cell is disclosed having a negative electrode of lithium aluminum, a positive electrode of iron sulfide, a molten electrolyte of lithium chloride and potassium chloride, and the combination that the fully charged theoretical capacity of the negative electrode is in the range of 0.5-1.0 that of the positive electrode. The cell thus is negative electrode limiting during discharge cycling. Preferably, the negative electrode contains therein, in the approximate range of 1-10 volume % of the electrode, an additive from the materials of graphitized carbon, aluminum-iron alloy, and/or magnesium oxide.

Kaun, Thomas D. (New Lenox, IL)

1984-01-01T23:59:59.000Z

39

Development of a Versatile in Vitro Platform for Studying Biological Systems Using Micro-3D Printing and Scanning Electrochemical Microscopy  

Science Journals Connector (OSTI)

We report a novel strategy for studying a broad range of cellular behaviors in real time by combining two powerful analytical techniques, micro-3D printing and scanning electrochemical microscopy (SECM). This allows one, in microbiological studies, to ...

Jiyeon Kim; Jodi L. Connell; Marvin Whiteley; Allen J. Bard

2014-11-17T23:59:59.000Z

40

The Ural Electrochemical Integrated Plant Process for Managing Equipment Intended for Nuclear Material Protection, Control and Accounting System Upgrades  

SciTech Connect (OSTI)

Since 1996, the Ural Electrochemical Integrated Plant (UEIP) located in the town of Novouralsk, Russia, (previously known as Sverdlovsk-44) and the United States Department of Energy (U.S. DOE) have been cooperating under the Nuclear Material Protection, Control and Accounting (MPC&A) Program. Because UEIP is involved in the processing of highly enriched uranium (HEU) into low enriched uranium (LEU), and there are highly enriched nuclear materials on its territory, the main goal of the MPC&A cooperation is to upgrade those systems that ensure secure storage, processing and transportation of nuclear materials at the plant. UEIP has completed key upgrades (equipment procurement and installation) aimed at improving MPC&A systems through significant investments made by both the U.S. DOE and UEIP. These joint cooperative efforts resulted in bringing MPC&A systems into compliance with current regulations, which led to nuclear material (NM) theft risk reduction and prevention from other unlawful actions with respect to them. Upon the U.S. MPC&A project teams suggestion, UEIP has developed an equipment inventory control process to track all the property provided through the MPC&A Program. The UEIP process and system for managing equipment provides many benefits including: greater ease and efficiency in determining the quantities, location, maintenance and repair schedule for equipment; greater assurance that MPC&A equipment is in continued satisfactory operation; and improved control in the development of a site sustainability program. While emphasizing UEIPs equipment inventory control processes, this paper will present process requirements and a methodology that may have practical and helpful applications at other sites.

Yuldashev, Rashid; Nosov, Andrei; Carroll, Michael F.; Garrett, Albert G.; Dabbs, Richard D.; Ku, Esther M.

2008-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "giner electrochemical systems" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

An electrochemical system for efficiently harvesting low-grade heat energy  

E-Print Network [OSTI]

Efficient and low-cost thermal energy-harvesting systems are needed to utilize the tremendous low-grade heat sources. Although thermoelectric devices are attractive, its efficiency is limited by the relatively low ...

Lee, Seok Woo

42

Anode-cathode power distribution systems and methods of using the same for electrochemical reduction  

DOE Patents [OSTI]

Power distribution systems are useable in electrolytic reduction systems and include several cathode and anode assembly electrical contacts that permit flexible modular assembly numbers and placement in standardized connection configurations. Electrical contacts may be arranged at any position where assembly contact is desired. Electrical power may be provided via power cables attached to seating assemblies of the electrical contacts. Cathode and anode assembly electrical contacts may provide electrical power at any desired levels. Pairs of anode and cathode assembly electrical contacts may provide equal and opposite electrical power; different cathode assembly electrical contacts may provide different levels of electrical power to a same or different modular cathode assembly. Electrical systems may be used with an electrolyte container into which the modular cathode and anode assemblies extend and are supported above, with the modular cathode and anode assemblies mechanically and electrically connecting to the respective contacts in power distribution systems.

Koehl, Eugene R; Barnes, Laurel A; Wiedmeyer, Stanley G; Williamson, Mark A; Willit, James L

2014-01-28T23:59:59.000Z

43

In-situ short circuit protection system and method for high-energy electrochemical cells  

DOE Patents [OSTI]

An in-situ thermal management system for an energy storage device. The energy storage device includes a plurality of energy storage cells each being coupled in parallel to common positive and negative connections. Each of the energy storage cells, in accordance with the cell's technology, dimensions, and thermal/electrical properties, is configured to have a ratio of energy content-to-contact surface area such that thermal energy produced by a short-circuit in a particular cell is conducted to a cell adjacent the particular cell so as to prevent the temperature of the particular cell from exceeding a breakdown temperature. In one embodiment, a fuse is coupled in series with each of a number of energy storage cells. The fuses are activated by a current spike capacitively produced by a cell upon occurrence of a short-circuit in the cell, thereby electrically isolating the short-circuited cell from the common positive and negative connections.

Gauthier, Michel (La Prairie, CA); Domroese, Michael K. (South St. Paul, MN); Hoffman, Joseph A. (Minneapolis, MN); Lindeman, David D. (Hudson, WI); Noel, Joseph-Robert-Gaetan (St-Hubert, CA); Radewald, Vern E. (Austin, TX); Rouillard, Jean (Saint-Luc, CA); Rouillard, Roger (Beloeil, CA); Shiota, Toshimi (St. Bruno, CA); Trice, Jennifer L. (Eagan, MN)

2000-01-01T23:59:59.000Z

44

In-situ short-circuit protection system and method for high-energy electrochemical cells  

DOE Patents [OSTI]

An in-situ thermal management system for an energy storage device. The energy storage device includes a plurality of energy storage cells each being coupled in parallel to common positive and negative connections. Each of the energy storage cells, in accordance with the cell's technology, dimensions, and thermal/electrical properties, is configured to have a ratio of energy content-to-contact surface area such that thermal energy produced by a short-circuit in a particular cell is conducted to a cell adjacent the particular cell so as to prevent the temperature of the particular cell from exceeding a breakdown temperature. In one embodiment, a fuse is coupled in series with each of a number of energy storage cells. The fuses are activated by a current spike capacitively produced by a cell upon occurrence of a short-circuit in the cell, thereby electrically isolating the short-circuited cell from the common positive and negative connections.

Gauthier, Michel (La Prairie, CA); Domroese, Michael K. (South St. Paul, MN); Hoffman, Joseph A. (Minneapolis, MN); Lindeman, David D. (Hudson, WI); Noel, Joseph-Robert-Gaetan (St-Hubert, CA); Radewald, Vern E. (Austin, TX); Rouillard, Jean (Saint-Luc, CA); Rouillard, Roger (Beloeil, CA); Shiota, Toshimi (St. Bruno, CA); Trice, Jennifer L. (Eagan, MN)

2003-04-15T23:59:59.000Z

45

654 IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, VOL. 18, NO. 3, MAY 2010 Model-Based Electrochemical Estimation and  

E-Print Network [OSTI]

in the literature. Accurate estimation of the battery's internal electrochemical state enables an expanded range governor, state-of-charge (SOC) estimation. I. INTRODUCTION MODEL-BASED battery monitoring algorithms theories, captures relevant solid-state and electrolyte diffusion dynamics and accurately predicts current

46

Journal of The Electrochemical Society, 161 (8) E3149-E3157 (2014) E3149 JES FOCUS ISSUE ON MATHEMATICAL MODELING OF ELECTROCHEMICAL SYSTEMS AT MULTIPLE SCALES  

E-Print Network [OSTI]

thermal runaway reactions. These challenges reduce the functional capacity of the battery available of Lithium-Ion Battery Models for Enabling Electric Transportation Paul W. C. Northrop,a, Bharatkumar Suthar, Massachusetts 02139, USA Improving the efficiency and utilization of battery systems can increase the viability

Subramanian, Venkat

47

Tunable Electrochemical Properties of Fluorinated Graphene. ...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Tunable Electrochemical Properties of Fluorinated Graphene. Tunable Electrochemical Properties of Fluorinated Graphene. Abstract: The structural and electrochemical properties of...

48

Electrochemical implications of defects in carbon nanotubes  

E-Print Network [OSTI]

ESR is the equivalent series resistance and is calculatedESR is the equivalent series resistance and is calculatedequivalent circuit of the electrochemical system under inves- tigation. R s is the solution resistance,

Hoefer, Mark

2012-01-01T23:59:59.000Z

49

MATERIALS, INTERFACES, AND ELECTROCHEMICAL PHENOMENA Hydrophilic Zeolite Coatings for Improved  

E-Print Network [OSTI]

MATERIALS, INTERFACES, AND ELECTROCHEMICAL PHENOMENA Hydrophilic Zeolite Coatings for Improved Heat the system, decreases the oper- ation noise and the pumping cost. Another major consideration for a heat

Aguilar, Guillermo

50

Electrochemical methane sensor  

DOE Patents [OSTI]

A method and instrument including an electrochemical cell for the detection and measurement of methane in a gas by the oxidation of methane electrochemically at a working electrode in a nonaqueous electrolyte at a voltage about 1.4 volts vs R.H.E. (the reversible hydrogen electrode potential in the same electrolyte), and the measurement of the electrical signal resulting from the electrochemical oxidation.

Zaromb, S.; Otagawa, T.; Stetter, J.R.

1984-08-27T23:59:59.000Z

51

A review of Continuum Electrochemical Engineering Models and a Novel Monte Carlo Approach to Understand Electrochemical Behavior of Lithium-Ion Batteries  

Science Journals Connector (OSTI)

Electrochemical phenomenon associated with systems from electrochemical energy (Batteries, Fuel cells and capacitors) to electro deposition are multistep and multi-phenomena processes and hence can be very tediou...

Vinten D. Diwakar; S. Harinipriya

2010-01-01T23:59:59.000Z

52

Planar electrochemical device assembly  

DOE Patents [OSTI]

A pre-fabricated electrochemical device having a dense electrolyte disposed between an anode and a cathode preferably deposited as thin films is bonded to a porous electrically conductive support. A second porous electrically conductive support may be bonded to a counter electrode of the electrochemical device. Multiple electrochemical devices may be bonded in parallel to a single porous support, such as a perforated sheet to provide a planar array. Planar arrays may be arranged in a stacked interconnected array. A method of making a supported electrochemical device is disclosed wherein the method includes a step of bonding a pre-fabricated electrochemical device layer to an existing porous metal or porous metal alloy layer.

Jacobson; Craig P. (Lafayette, CA), Visco; Steven J. (Berkeley, CA), De Jonghe; Lutgard C. (Lafayette, CA)

2010-11-09T23:59:59.000Z

53

U.S. DOE Office of Energy Efficiency and Renewable Energy Categorical Exclusion Determination Form  

Broader source: Energy.gov (indexed) [DOE]

Office of Energy Efficiency and Renewable Energy: Office of Energy Efficiency and Renewable Energy: Phase III Xlerator Program Funding Opportunity Number DE-FOA-0000397 Applicant Name: Giner Electrochemical Systems, LLC Location: Newton, MA Project Title Dimensionally Stable High Performance Membrane Proposed Action or Project Description American Recovery and Reinvestment Act: The use of fuel cells for automobiles, stationary power and grid stability is limited in part due to the expense and durability of the membrane at the heart of the fuel cell. Scale-up of a highly durable membrane for fuel cells is proposed. The focus of this program is to develop a method to generate Dimensionally Stable Membranes as a roll-good product. In Phase I Giner Electrochemical Systems, LLC (GES), demonstrated methods for incorporating the polymer electrolyte and the support structure.

54

Handbook of Electrochemical Nanotechnology  

SciTech Connect (OSTI)

This 2-volume handbook provides an overview of recent advances in the field of electrochemical nanotechnology. It will be of great interst to graduate students, scientists, and engineering professionals whose research is at the interface of electrochemistry and nanotechnology.

Lin, Yuehe; Nalwa, H. S.

2009-02-12T23:59:59.000Z

55

HIGH TEMPERATURE REMOVAL OF H{sub 2}S FROM COAL GASIFICATION PROCESS STREAMS USING AN ELECTROCHEMICAL MEMBRANE SYSTEM  

SciTech Connect (OSTI)

A bench scale set-up was constructed to test the cell performance at 600-700 C and 1 atm. The typical fuel stream inlet proportions were 34% CO, 22% CO{sub 2}, 35% H{sub 2}, 8% H{sub 2}O, and 450-2000 ppm H{sub 2}S. The fundamental transport restrictions for sulfur species in an electrochemical cell were examined. Temperature and membrane thickness were varied to examine how these parameters affect the maximum flux of H{sub 2}S removal. It was found that higher temperature allows more sulfide species to enter the electrolyte, thus increasing the sulfide flux across the membrane and raising the maximum flux of H{sub 2}S removal. The results identify sulfide diffusion across the membrane as the rate-limiting step in H{sub 2}S removal. The maximum H{sub 2}S removal flux of 1.1 x 10-6 gmol H{sub 2}S min{sup -1} cm{sup -2} (or 3.5 mA cm{sup -2}) was obtained at 650 C, with a membrane that was 0.9 mm thick, 36% porous, and had an estimated tortuosity of 3.6. Another focus of this thesis was to examine the stability of cathode materials in full cell trials. A major hurdle that remains in process scale-up is cathode selection, as the lifetime of the cell will depend heavily on the lifetime of the cathode material, which is exposed to very sour gas. Materials that showed success in the past (i.e. cobalt sulfides and Y{sub 0.9}Ca{sub 0.1}FeO{sub 3}) were examined but were seen to have limitations in operating environment and temperature. Therefore, other novel metal oxide compounds were studied to find possible candidates for full cell trials. Gd{sub 2}TiMoO{sub 7} and La{sub 0.7}Sr{sub 0.3}VO{sub 3} were the compounds that retained their structure best even when exposed to high H{sub 2}S, CO{sub 2}, and H{sub 2}O concentrations.

Jack Winnick; Meilin Liu

2003-06-01T23:59:59.000Z

56

Nanotechnology-Based Electrochemical Sensors for Biomonitoring...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Nanotechnology-Based Electrochemical Sensors for Biomonitoring Chemical Exposures . Nanotechnology-Based Electrochemical Sensors for Biomonitoring Chemical Exposures . Abstract:...

57

A nanoparticle label/immunochromatographic electrochemical biosensor...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

nanoparticle labelimmunochromatographic electrochemical biosensor for rapid and sensitive detection of prostate-specific A nanoparticle labelimmunochromatographic electrochemical...

58

Disposable Electrochemical Immunosensor Diagnosis Device Based...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Disposable Electrochemical Immunosensor Diagnosis Device Based on Nanoparticle Probe and Immunochromatographic Strip. Disposable Electrochemical Immunosensor Diagnosis Device Based...

59

Nanoporous carbon for electrochemical capacitors.  

SciTech Connect (OSTI)

Nanoporous carbon (NPC) is a purely graphitic material with highly controlled densities ranging from less than 0.1 to 2.0 g/cm3, grown via pulsed-laser deposition. Decreasing the density of NPC increases the interplanar spacing between graphene-sheet fragments. This ability to tune the interplanar spacing makes NPC an ideal model system to study the behavior of carbon electrodes in electrochemical capacitors and batteries. We examine the capacitance of NPC films in alkaline and acidic electrolytes, and measure specific capacitances as high as 242 F/g.

Siegal, Michael P.; Bunker, Bruce Conrad; Limmer, Steven J.; Yelton, William Graham

2010-05-01T23:59:59.000Z

60

Nanoporous carbon for electrochemical capacitors.  

SciTech Connect (OSTI)

Nanoporous carbon (NPC) is a purely graphitic material with highly controlled densities ranging from less than 0.1 to 2.0 g/cm3, grown via pulsed-laser deposition. Decreasing the density of NPC increases the interplanar spacing between graphene-sheet fragments. This ability to tune the interplanar spacing makes NPC an ideal model system to study the behavior of carbon electrodes in electrochemical capacitors and batteries. We examine the capacitance of NPC films in alkaline and acidic electrolytes, and measure specific capacitances as high as 242 F/g.

Overmyer, Donald L.; Siegal, Michael P.; Bunker, Bruce Conrad; Limmer, Steven J.; Yelton, William Graham

2010-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "giner electrochemical systems" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Argonne Chemical Sciences & Engineering - Facilities - Electrochemical  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Electrochemical Analysis and Diagnostics Laboratory Electrochemical Analysis and Diagnostics Laboratory Panagiotis Prezas Argonne researcher Panagiotis Prezas prepares lithium-ion cells for evaluation. At the EADL, researchers can test everything from a quarter-sized coin cell to an 800-kilogram automotive battery pack. The Electrochemical Analysis and Diagnostics Laboratory (EADL) provides battery and fuel cell developers with reliable, independent, and unbiased performance evaluations of their cells, modules, and battery packs. These evaluations have been performed for the U.S. Department of Energy (DOE), government and industry consortia, and industrial developers to provide insight into the factors that limit the performance and life of advanced battery systems. Such evaluations help battery developers and DOE

62

Electrochemical micro sensor  

DOE Patents [OSTI]

A micro-amperometric electrochemical sensor for detecting the presence of a pre-determined species in a fluid material is disclosed. The sensor includes a smooth substrate having a thin coating of solid electrolytic material deposited thereon. The working and counter electrodes are deposited on the surface of the solid electrolytic material and adhere thereto. Electrical leads connect the working and counter electrodes to a potential source and an apparatus for measuring the change in an electrical signal caused by the electrochemical oxidation or reduction of the species. Alternatively, the sensor may be fabricated in a sandwich structure and also may be cylindrical, spherical or other shapes.

Setter, Joseph R. (Naperville, IL); Maclay, G. Jordan (Maywood, IL)

1989-09-12T23:59:59.000Z

63

Separators for electrochemical cells  

DOE Patents [OSTI]

Provided are separators for use in an electrochemical cell comprising (a) an inorganic oxide and (b) an organic polymer, wherein the inorganic oxide comprises organic substituents. Preferably, the inorganic oxide comprises an hydrated aluminum oxide of the formula Al.sub.2O.sub.3.xH.sub.2O, wherein x is less than 1.0, and wherein the hydrated aluminum oxide comprises organic substituents, preferably comprising a reaction product of a multifunctional monomer and/or organic carbonate with an aluminum oxide, such as pseudo-boehmite and an aluminum oxide. Also provided are electrochemical cells comprising such separators.

Carlson, Steven Allen; Anakor, Ifenna Kingsley

2014-11-11T23:59:59.000Z

64

Electrochemical Membrane Incinerator  

SciTech Connect (OSTI)

Electrochemical incineration of benzoquinone was evaluated as a model for the mineralization of carbon in toxic aromatic compounds. A Ti or Pt anode was coated with a film of the oxides of Ti, Ru, Sn and Sb. This quaternary metal oxide film was stable; elemental analysis of the electrolyzed solution indicated the concentration of these metal ions to be 3 {micro}g/L or less. The anode showed good reactivity for the electrochemical incineration of benzoquinone. The use of a dissolved salt matrix as the so-called ''supporting electrolyte'' was eliminated in favor of a solid-state electrolyte sandwiched between the anode and cathode.

Johnson, Dennis C.; Houk, Linda L.; Feng, Jianren

1998-12-08T23:59:59.000Z

65

Unitized Design for Home Refueling Appliance for Hydrogen Generation to 5,000 psi - DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

2 2 DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report Timothy Norman (Primary Contact), Monjid Hamdan Giner, Inc. (formerly Giner Electrochemical Systems, LLC) 89 Rumford Avenue Newton, MA 02466 Phone: (781) 529-0556 Email: tnorman@ginerinc.com DOE Manager HQ: Eric L. Miller Phone: (202) 287-5829 Email: Eric.Miller@hq.doe.gov Contract Number: DE-SC0001486 Project Start Date: August 15, 2010 Project End Date: August 14, 2012 Fiscal Year (FY) 2012 Objectives Detail design and demonstrate subsystems for a unitized * electrolyzer system for residential refueling at 5,000 psi to meet DOE targets for a home refueling appliance (HRA) Fabricate and demonstrate unitized 5,000 psi system * Identify and team with commercialization partner(s) * Technical Barriers

66

A flexible, highly stable electrochemical scanning probe microscope for nanoscale studies at the solid-liquid interface  

E-Print Network [OSTI]

low-noise measurements in ambient, in situ, and electrochemical environments. II. DESIGNA flexible, highly stable electrochemical scanning probe microscope for nanoscale studies at the solid-liquid interface, specifically in electrolyte environments. Quantification of system noise limits

Gimzewski, James

67

DOE project awards for Giner, US Hybrid, Vision Industries  

Science Journals Connector (OSTI)

The US Department of Energy's Office of Energy Efficiency & Renewable Energy (EERE) recently announced the selection of 40 new Small Business Innovation Research (SBIR) awards worth more than $6 million. Among the selections is a first-of-its-kind award under a new EERE SBIR technology-to-market topic that moves existing inventions developed at DOE's national labs to the marketplace and accelerates the pace of commercialisation. Two fuel cell projects were also included in the SBIR awards.

2014-01-01T23:59:59.000Z

68

Hydrogen Production by PEM Electrolysis: Spotlight on Giner and...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

inputs for zero carbon footprint - PEM technology can be integrated with solar and wind power Cost competitive with current commercial delivered hydrogen costs - Currently...

69

Electrochemical treatment of landfill leachate  

Science Journals Connector (OSTI)

Electrochemical methods can offer an elegant contribution towards environmental control as electrons provide a means of removing pollutants by redox reactions. In the process of electrochemical oxidation the main aim has been to convert oxidisable species into carbon dioxide. Leachate originating in landfills is complex wastewater that could exert high environmental impact. This study aims to treat the landfill leachate in order to meet the inland disposal standards. The removal of pollutants was studied with different anode materials in electrochemical process. The treatment of leachate by electrochemical oxidation was carried out in a batch electrolytic parallel plate reactor. The electrochemical process was carried out separately with stainless steel as cathode and anode materials aluminium and titanium/platinum electrodes. The effects of the operating factors such as current density, reaction time, chloride ion concentration, additional electrolyte such as sulphuric acid that influence the removal of pollutant from leachate electrochemically were studied.

C. Ramprasad; A. Navaneetha Gopalakrishnan

2012-01-01T23:59:59.000Z

70

In-Situ Electrochemical Transmission Electron Microscopy for Battery Research  

SciTech Connect (OSTI)

The recent development of in-situ liquid stages for (scanning) transmission electron microscopes now makes it possible for us to study the details of electrochemical processes under operando conditions. As electrochemical processes are complex, care must be taken to calibrate the system before any in-situ/operando observations. In addition, as the electron beam can cause effects that look similar to electrochemical processes at the electrolyte/electrode interface, an understanding of the role of the electron beam in modifying the operando observations must also be understood. In this paper we describe the design, assembly, and operation of an in-situ electrochemical cell, paying particular attention to the method for controlling and quantifying the experimental parameters. The use of this system is then demonstrated for the lithiation/delithiation of silicon nanowires.

Mehdi, Beata L [Pacific Northwest National Laboratory (PNNL)] [Pacific Northwest National Laboratory (PNNL); Gu, Meng [Pacific Northwest National Laboratory (PNNL)] [Pacific Northwest National Laboratory (PNNL); Parent, Lucas [Pacific Northwest National Laboratory (PNNL)] [Pacific Northwest National Laboratory (PNNL); Xu, WU [Pacific Northwest National Laboratory (PNNL)] [Pacific Northwest National Laboratory (PNNL); Nasybulin, Eduard [Pacific Northwest National Laboratory (PNNL)] [Pacific Northwest National Laboratory (PNNL); Chen, Xilin [Pacific Northwest National Laboratory (PNNL)] [Pacific Northwest National Laboratory (PNNL); Unocic, Raymond R [ORNL] [ORNL; Xu, Pinghong [University of California, Davis] [University of California, Davis; Welch, David [Pacific Northwest National Laboratory (PNNL)] [Pacific Northwest National Laboratory (PNNL); Abellan, Patricia [Pacific Northwest National Laboratory (PNNL)] [Pacific Northwest National Laboratory (PNNL); Zhang, Ji-Guang [Pacific Northwest National Laboratory (PNNL)] [Pacific Northwest National Laboratory (PNNL); Liu, Jun [Pacific Northwest National Laboratory (PNNL)] [Pacific Northwest National Laboratory (PNNL); Wang, Chongmin [Pacific Northwest National Laboratory (PNNL)] [Pacific Northwest National Laboratory (PNNL); Arslan, Ilke [Pacific Northwest National Laboratory (PNNL)] [Pacific Northwest National Laboratory (PNNL); Evans, James E [Pacific Northwest National Laboratory (PNNL)] [Pacific Northwest National Laboratory (PNNL); Browning, Nigel [Pacific Northwest National Laboratory (PNNL)] [Pacific Northwest National Laboratory (PNNL)

2014-01-01T23:59:59.000Z

71

Electrochemical Apparatus with Disposable and Modifiable Parts  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Electrochemical Apparatus with Disposable and Modifiable Parts Electrochemical Apparatus with Disposable and Modifiable Parts Electrochemical Apparatus with Disposable and Modifiable Parts The invention also includes electrochemical apparatus that can interface with optical instrumentation. If the working electrode is transparent, light from an optical fiber may be directed through the working electrode and into a cuvette. July 3, 2013 Electrochemical Apparatus with Disposable and Modifiable Parts Available for thumbnail of Feynman Center (505) 665-9090 Email Electrochemical Apparatus with Disposable and Modifiable Parts Applications: Electrochemical experiments in solution Electrochemical experiments on surfaces Bulk electrolysis experiments Fuel cells Corrosion studies Academic Labs Teaching and research Benefits: Incorporates disposable, commercially available cuvettes

72

Advanced Hybrid Water Heater using Electrochemical Compressor...  

Energy Savers [EERE]

Advanced Hybrid Water Heater using Electrochemical Compressor Advanced Hybrid Water Heater using Electrochemical Compressor Xergy is using its Electro Chemical Compression (ECC)...

73

Asymptotic analysis of extreme electrochemical transport  

E-Print Network [OSTI]

In the study of electrochemical transport processes, experimental exploration currently outpaces theoretical understanding of new phenomena. Classical electrochemical transport theory is not equipped to explain the behavior ...

Chu, Kevin Taylor

2005-01-01T23:59:59.000Z

74

Facile and controllable electrochemical reduction of graphene...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

and controllable electrochemical reduction of graphene oxide and its applications. Facile and controllable electrochemical reduction of graphene oxide and its applications....

75

Electrochemical thinning of silicon  

DOE Patents [OSTI]

Porous semiconducting material, e.g. silicon, is formed by electrochemical treatment of a specimen in hydrofluoric acid, using the specimen as anode. Before the treatment, the specimen can be masked. The porous material is then etched with a caustic solution or is oxidized, depending of the kind of structure desired, e.g. a thinned specimen, a specimen, a patterned thinned specimen, a specimen with insulated electrical conduits, and so on. Thinned silicon specimen can be subjected to tests, such as measurement of interstitial oxygen by Fourier transform infra-red spectroscopy (FTIR).

Medernach, John W. (Albuquerque, NM)

1994-01-01T23:59:59.000Z

76

Electrochemical thinning of silicon  

DOE Patents [OSTI]

Porous semiconducting material, e.g. silicon, is formed by electrochemical treatment of a specimen in hydrofluoric acid, using the specimen as anode. Before the treatment, the specimen can be masked. The porous material is then etched with a caustic solution or is oxidized, depending of the kind of structure desired, e.g. a thinned specimen, a specimen, a patterned thinned specimen, a specimen with insulated electrical conduits, and so on. Thinned silicon specimen can be subjected to tests, such as measurement of interstitial oxygen by Fourier transform infra-red spectroscopy (FTIR). 14 figures.

Medernach, J.W.

1994-01-11T23:59:59.000Z

77

Electrochemical photovoltaic cells and electrodes  

DOE Patents [OSTI]

Improved electrochemical photovoltaic cells and electrodes for use therein, particularly electrodes employing amorphous silicon or polyacetylene coating are produced by a process which includes filling pinholes or porous openings in the coatings by electrochemical oxidation of selected monomers to deposit insulating polymer in the openings.

Skotheim, Terje A. (East Patchogue, NY)

1984-01-01T23:59:59.000Z

78

Electrochemical sensor for monitoring electrochemical potentials of fuel cell components  

DOE Patents [OSTI]

An electrochemical sensor comprised of wires, a sheath, and a conduit can be utilized to monitor fuel cell component electric potentials during fuel cell shut down or steady state. The electrochemical sensor contacts an electrolyte reservoir plate such that the conduit wicks electrolyte through capillary action to the wires to provide water necessary for the electrolysis reaction which occurs thereon. A voltage is applied across the wires of the electrochemical sensor until hydrogen evolution occurs at the surface of one of the wires, thereby forming a hydrogen reference electrode. The voltage of the fuel cell component is then determined with relation to the hydrogen reference electrode.

Kunz, Harold R. (Vernon, CT); Breault, Richard D. (Coventry, CT)

1993-01-01T23:59:59.000Z

79

4 - Graphene produced by electrochemical exfoliation  

Science Journals Connector (OSTI)

Abstract: The production of graphene by electrochemical exfoliation is described and methods of synthesis of high-quality graphene nanosheets on a large scale via the electrochemical exfoliation of graphite and/or electrochemical reduction of exfoliated graphite oxide in a selected electrolyte solution are discussed in depth. The potential of the process is explored and applications of electrochemically exfoliated graphene are examined.

S. Bose; T. Kuila; N.H. Kim; J.H. Lee

2014-01-01T23:59:59.000Z

80

Electrochemical Hydrogen Compression (EHC)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Electrochemical Hydrogen Compression (EHC) Pinakin Patel and Ludwig Lipp Presentation at DOE Hydrogen Compression, Storage and Dispensing Workshop at ANL Argonne, IL March 20, 2013 2 * Experience with all fuel cells - MCFC, SOFC, PEM, PAFC, etc. * Excellent progress in commercialization of MCFC technology (>300 MW installed + backlog, >50 MW per year production rate, 11 MW single site unit in Korea, >1.5 billion kWh produced) * Unique internal reforming technology for high efficiency fuel cells FCE Overview $- $2,000 $4,000 $6,000 $8,000 $10,000 2003 2007 2011 mid-term Product cost per kW 3 H 2 Peak and Back- up Power Fuel Cell Cars DFC ® Power Plant (Electricity + Hydrogen) Solid State Hydrogen Separator (EHS) Solid State Hydrogen

Note: This page contains sample records for the topic "giner electrochemical systems" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Electrochemical catalyst recovery method  

DOE Patents [OSTI]

A method of recovering catalyst material from latent catalyst material solids includes: (a) combining latent catalyst material solids with a liquid acid anolyte solution and a redox material which is soluble in the acid anolyte solution to form a mixture; (b) electrochemically oxidizing the redox material within the mixture into a dissolved oxidant, the oxidant having a potential for oxidation which is effectively higher than that of the latent catalyst material; (c) reacting the oxidant with the latent catalyst material to oxidize the latent catalyst material into at least one oxidized catalyst species which is soluble within the mixture and to reduce the oxidant back into dissolved redox material; and (d) recovering catalyst material from the oxidized catalyst species of the mixture. The invention is expected to be particularly useful in recovering spent catalyst material from petroleum hydroprocessing reaction waste products having adhered sulfides, carbon, hydrocarbons, and undesired metals, and as well as in other industrial applications. 3 figs.

Silva, L.J.; Bray, L.A.

1995-05-30T23:59:59.000Z

82

Evaluation of SAFT America, Inc. electrochemical capacitors  

SciTech Connect (OSTI)

The electrochemical capacitor devices described in this report were deliverables from Lawrence Berkeley National Laboratory (LBNL), Contract No. 4606510 with SAFT America, Inc., as part of LBNL`s exploratory research program. Dr. Kimio Kinoshita is the Program Manager at LBNL. The contract was in support of the US Department of Energy`s (DOE) exploratory electrochemical energy storage program which includes development projects for a wide variety of advanced high-energy/high-power energy storage systems for electric and hybrid vehicle programs. The DOE is currently developing various electrochemical capacitors as candidate power assist devices for the Partnership for a New Generation of Vehicles (PNGV) fast-response engine requirements. The LBNL contract with SAFT America, Inc., was intended to evaluate various activated carbon-based electrode formulations and develop an electrical model of the double-layer capacitor. The goal is to design and deliver prototypes meeting the DOE requirement of > 1,000 W/kg, 16 Wh/kg. Deliverables were sent to the INEEL EST laboratory for independent testing and evaluation. The following report describes performance testing on ten devices received September 2, 1996. Due to the initial performance of these early devices, life-cycle testing was not conducted. Additional devices, with improved performance, are expected to be tested. Future results will be reported in a follow-on report.

Wright, R.B.; Murphy, T.C.

1997-12-01T23:59:59.000Z

83

Electrochemical Hydrogen Compressor  

SciTech Connect (OSTI)

The Electrochemical Hydrogen Compressor EHC was evaluated against DOE applications for compressing hydrogen at automobile filling stations, in future hydrogen pipelines and as a commercial replacement for conventional diaphragm hydrogen compressors. It was also evaluated as a modular replacement for the compressors used in petrochemical refineries. If the EHC can be made inexpensive, reliable and long lived then it can satisfy all these applications save pipelines where the requirements for platinum catalyst exceeds the annual world production. The research performed did not completely investigate Molybdenum as a hydrogen anode or cathode, it did show that photoetched 316 stainless steel is inadequate for an EHC. It also showed that: molybdenum bipolar plates, photochemical etching processes, and Gortex Teflon seals are too costly for a commercial EHC. The use of carbon paper in combination with a perforated thin metal electrode demonstrated adequate anode support strength, but is suspect in promoting galvanic corrosion. The nature of the corrosion mechanisms are not well understood, but locally high potentials within the unit cell package are probably involved. The program produced a design with an extraordinary high cell pitch, and a very low part count. This is one of the promising aspects of the redesigned EHC. The development and successful demonstration of the hydraulic cathode is also important. The problem of corrosion resistant metal bipolar plates is vital to the development of an inexpensive, commercial PEM fuel cell. Our research suggests that there is more to the corrosion process in fuel cells and electrochemical compressors than simple, steady state, galvanic stability. It is an important area for scientific investigation. The experiments and analysis conducted lead to several recommended future research directions. First, we need a better understanding of the corrosion mechanisms involved. The diagnosis of experimental cells with titration to determine the loss of membrane active sites is recommended. We suspect that the corrosion includes more than simple galvanic mechanisms. The mechanisms involved in this phenomenon are poorly understood. Shunt currents at hydraulic cathode ports were problematic, but are not difficult to cure. In addition to corrosion there is evidence of high component resistivity. This may be due to the deposition of organic compounds, which may be produced electrochemically on the surface of the metal support screens that contact carbon gas diffusion layers (GDLs) or catalyst supports. An investigation of possible electro-organic sythesis mechanisms with emphasis on oxalates formation is warranted. The contaminated cell parts can be placed in an oxidizing atmosphere at high temperature and the weight loss can be observed. This would reveal the existence of organic compounds. Investigation into the effects of conductivity enhancers such as carbon microlayers on supporting carbon paper is also needed. Corrosion solutions should be investigated such as surface passivation of 316 SS parts using nitric acid. Ultra thin silane/siloxane polymer coatings should be tried. These may be especially useful in conjunction with metal felt replacement of carbon paper. A simple cure for the very high, localized corrosion of the anode might be to diffusion bond the metal electrode support screen to bipolar plate. This will insure uniform resistance perpendicular to the plane of the cell and eliminate some of the dependence of the resistance on high stack compression. Alternative materials should be explored. Alternatives to carbon in the cell may be helpful in any context. In particular, alternatives to carbon paper GDLs such as metal felts and alternatives to carbon supports for Pt such as TiC and TiB2 might also be worthwhile and would be helpful to fuel cells as well. Some alternative to the metals we used in the cell, Mo and 316 SS, are potentially useful. These include Al/Mg/Si alloys. Corrosion resistant materials such as Nb and Mo might prove useful as cladding materials that can be hot stamp

David P. Bloomfield; Brian S. MacKenzie

2006-05-01T23:59:59.000Z

84

High-resolution friction force microscopy under electrochemical control Aleksander Labuda,1  

E-Print Network [OSTI]

High-resolution friction force microscopy under electrochemical control Aleksander Labuda,1 William and development of a friction force microscope for high-resolution studies in electrochemical environments in liquids. The noise of the system is analyzed based on a methodology for the quantification of all

Grütter, Peter

85

Zelenay wins Electrochemical Society's Research Award  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Electrochemical Society's Research Award Electrochemical Society's Research Award Zelenay wins Electrochemical Society's Research Award The award includes a monetary prize and membership in the Electrochemical Society's Energy Technology Division. December 11, 2012 Piotr Zelenay Piotr Zelenay The award recognizes Zelenay's "outstanding and original contributions to the science and technology of energy-related research areas that include scientific and technological aspects of fossil fuels and alternative energy sources, energy management and environmental consequences of energy utilization." Piotr Zelenay of LANL's Sensors and Electrochemical Devices group has won the 2012 Research Award presented by the Energy Technology Division of The Electrochemical Society. The award recognizes Zelenay's "outstanding

86

The Scope and History of Electrochemical Engineering  

Science Journals Connector (OSTI)

The Scope of Electrochemical Engineering was the title of a contribution of Carl Wagner in the second volume of Advances in Electrochemistry and Electrochemical Engineering in 1962. On ten pages he described s...

Prof. Dr. Hartmut Wendt; Prof. Dr. Gerhard Kreysa

1999-01-01T23:59:59.000Z

87

ELECTROCHEMICAL POWER FOR TRANSPORTATION  

E-Print Network [OSTI]

Battery Type Overall Electric Drive System Demonstration ofof batteries and electric drive components and to obtain ain Section 5. Overall Electric Drive System The electric

Cairns, Elton J.

2012-01-01T23:59:59.000Z

88

Electrochem Inc | Open Energy Information  

Open Energy Info (EERE)

Electrochem Inc Electrochem Inc Jump to: navigation, search Name Electrochem Inc Address 400 W. Cummings Park Place Woburn, Massachusetts Zip 01801 Sector Hydrogen Product Fuel cell hardware and testing equipment Website http://fuelcell.com/ Coordinates 42.4964246°, -71.1263367° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.4964246,"lon":-71.1263367,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

89

Development of an electrochemical hydrogen separator  

SciTech Connect (OSTI)

The EHS is an electrochemical hydrogen separator based on the uniquely reversible nature of hydrogen oxidation-reduction reactions in electrochemical systems. The principle and the hardware concept are shown in Figure 1. Hydrogen from the mixed gas stream is oxidized to H{sup +} ions, transported through a cation transport electrolyte membrane (matrix) under an applied electric field and discharged in a pure hydrogen state on the cathode. The cation transfer electrolyte membrane provides a barrier between the feed and product gases. The EHS design is an offshoot of phosphoric acid fuel cell development. Although any proton transfer electrolyte can be used, the phosphoric acid based system offers a unique advantage because its operating temperature of {approximately}200{degree}C makes it tolerant to trace CO and also closely matches the water-shift reactor exit gas temperature ({approximately}250{degree}C). Hydrogen-containing streams in coal gasification systems have large carbon monoxide contents. For efficient hydrogen recovery, most of the CO must be converted to hydrogen by the low temperature water-shift reaction (Figure 2). Advanced coal gasification and gas separation technologies offer an important pathway to the clean utilization of coal resources.

Abens, S.; Fruchtman, J.; Kush, A.

1993-09-01T23:59:59.000Z

90

Electrochemical Quantification of Single Nucleotide Polymorphisms...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Quantification of Single Nucleotide Polymorphisms Using Nanoparticle Probes. Electrochemical Quantification of Single Nucleotide Polymorphisms Using Nanoparticle Probes. Abstract:...

91

Electrochemically Stable Cathode Current Collectors for Rechargeable...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Stable Cathode Current Collectors for Rechargeable Magnesium Batteries . Electrochemically Stable Cathode Current Collectors for Rechargeable Magnesium Batteries . Abstract:...

92

Portable chamber for the study of UHV prepared electrochemical interfaces by hard x-ray diffraction  

SciTech Connect (OSTI)

We report on a new electrochemical cell setup, combined with a portable UHV chamber, for in situ x-ray diffraction using synchrotron radiation. In contrast to more traditional electrochemical sample preparation schemes, atomically clean and well-ordered surfaces are routinely prepared by UHV methods, even in the case of reactive elements or alloys. Samples can be transferred from larger UHV systems into the portable chamber without exposure to ambient air. They can then be studied successively in UHV, in controlled gas atmospheres, and in contact with electrolyte solutions under applied electrochemical potential. The electrochemical setup employs a droplet geometry, which guarantees good electrochemical conditions during in situ x-ray measurements combined with voltammetry. We present first experimental results of Cu deposition on GaAs(001) and on freshly produced nanometric Pd(001) islands on Cu{sub 0.83}Pd{sub 0.17}(001), respectively.

Renner, Frank Uwe; Gruender, Yvonne; Zegenhagen, Joerg [European Synchrotron Radiation Facility, BP 220, 38043 Grenoble (France)

2007-03-15T23:59:59.000Z

93

Exploratory Technology Research Program for electrochemical energy storage. Annual report fr 1994  

SciTech Connect (OSTI)

The US Department of Energy`s Office of Propulsion Systems provides support for an Electrochemical Energy Storage Program, that includes research and development (R&D) on advanced rechargeable batteries and fuel cells. A major goal of this program is to develop electrochemical power sources suitable for application in electric vehicles (EVs). The program centers on advanced systems that offer the potential for high performance and low life-cycle costs, both of which are necessary to permit significant penetration into commercial markets. The DOE Electrochemical Energy Storage Program is divided into two projects: the Electric Vehicle Advanced Battery Systems (EVABS) Development Program and the Exploratory Technology Research (ETR) Program. The general R&D areas addressed by the program include identification of new electrochemical couples for advanced batteries, determination of technical feasibility of the new couples, improvements in battery components and materials, establishment of engineering principles applicable to electrochemical energy storage and conversion, and the development of air-system (fuel cell, metal/air) technology for transportation applications. Major emphasis is given to applied research which will lead to superior performance and lower life-cycle costs. The ETR Program is divided into three major program elements: Exploratory Research, Applied Science Research, and Air Systems Research. Highlights of each program element are summarized according to the appropriate battery system or electrochemical research area.

Kinoshita, K. [ed.

1995-09-01T23:59:59.000Z

94

Development of Electrochemical Micro Machining  

E-Print Network [OSTI]

= Number of burrs under tool C = Electrochemical constant sat C = Surface concentration D = Effective diffusion coefficient E = Voltage f = Feed rate F = Faradays constant g = Gap between the tool and the workpiece h... by the laws established by Faraday. 2.1. ELECTROLYSIS Electrolysis is the chemical reaction that occurs when an electric current is passed between two conductors dipped in a liquid solution. The completeness of this electric circuit is found...

Srinivas Sundarram, Sriharsha

2008-10-10T23:59:59.000Z

95

Simplified Electrochemical and Thermal Model of LiFePO4-Graphite Li-Ion Batteries for Fast Charge Applications  

E-Print Network [OSTI]

Simplified Electrochemical and Thermal Model of LiFePO4- Graphite Li-Ion Batteries for Fast Charge, a simplified electrochemical and thermal model of LiFePO4-graphite based Li-ion batteries is developed for battery management system (BMS) applications and comprehensive aging investigations. Based on a modified

Paris-Sud XI, Université de

96

Shock-activated electrochemical power supplies  

DOE Patents [OSTI]

A shock-activated electrochemical power supply is provided which is initiated extremely rapidly and which has a long shelf life. Electrochemical power supplies of this invention are initiated much faster than conventional thermal batteries. Power supplies of this invention comprise an inactive electrolyte and means for generating a high-pressure shock wave such that the shock wave is propagated through the electrolyte rendering the electrolyte electrochemically active. 2 figs.

Benedick, W.B.; Graham, R.A.; Morosin, B.

1987-04-20T23:59:59.000Z

97

Reliability of electrochemical noise measurements: results of round-robin testing on electrochemical noise  

E-Print Network [OSTI]

1 Reliability of electrochemical noise measurements: results of round-robin testing on electrochemical noise Rik-Wouter BOSCHa , Robert A. COTTISb,* , Kinga CSECSc , Thomas DORSCHc , Lucia DUNBARd), Switzerland; p) University of Cadiz, Spain. Abstract Sixteen laboratories have performed electrochemical noise

98

Electrochemical Immunoassay of Carcinoembryonic Antigen Based...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Carcinoembryonic Antigen Based on A Lead Sulfide Nanoparticle Label. Electrochemical Immunoassay of Carcinoembryonic Antigen Based on A Lead Sulfide Nanoparticle Label. Abstract:...

99

Apparatus for combinatorial screening of electrochemical materials  

DOE Patents [OSTI]

A high throughput combinatorial screening method and apparatus for the evaluation of electrochemical materials using a single voltage source (2) is disclosed wherein temperature changes arising from the application of an electrical load to a cell array (1) are used to evaluate the relative electrochemical efficiency of the materials comprising the array. The apparatus may include an array of electrochemical cells (1) that are connected to each other in parallel or in series, an electronic load (2) for applying a voltage or current to the electrochemical cells (1), and a device (3), external to the cells, for monitoring the relative temperature of each cell when the load is applied.

A high throughput combinatorial screening method and apparatus for the evaluation of electrochemical materials using a single voltage source (2) is disclosed wherein temperature changes arising from the application of an electrical load to a cell array (1) are used to evaluate the relative electrochemical efficiency of the materials comprising the array. The apparatus may include an array of electrochemical cells (1) that are connected to each other in parallel or in series, an electronic load (2) for applying a voltage or current to the electrochemical cells (1), and a device (3), external to the cells, for monitoring the relative temperature of each cell when the load is applied.

2009-12-15T23:59:59.000Z

100

Thermal regeneration of an electrochemical concentration cell  

DOE Patents [OSTI]

A system and method for thermally regenerating an electrochemical concentration cell having first and second aluminum electrodes respectively positioned in contact with first and second electrolytes separated by an ion exchange member, the first and second electrolytes being composed of different concentrations of an ionic solvent and a salt, preferably an aluminum halide. The ionic solvent may be either organic or inorganic with a relatively low melting point, the ionic solvent and the salt form a complex wherein the free energy of formation of said complex is less than about -5 Kcal/mole. A distillation column using solar heat or low grade industrial waste heat receives the first and second electrolytes and thermally decomposes the salt-solvent complex to provide feed material for the two half cells.

Krumpelt, Michael (Naperville, IL); Bates, John K. (Plainfield, IL)

1981-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "giner electrochemical systems" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Thermal regeneration of an electrochemical concentration cell  

DOE Patents [OSTI]

A system and method are described for thermally regenerating an electrochemical concentration cell having first and second aluminum electrodes respectively positioned in contact with first and second electrolytes separated by an ion exchange member, the first and second electrolytes being composed of different concentrations of an ionic solvent and a salt, preferably an aluminum halide. The ionic solvent may be either organic or inorganic with a relatively low melting point, the ionic solvent and the salt form a complex wherein the free energy of formation of said complex is less than about -5 kcal/mole. A distillation column using solar heat or low grade industrial waste heat receives the first and second electrolytes and thermally decomposes the salt-solvent complex to provide feed material for the two half cells.

Krumpelt, M.; Bates, J.K.

1980-05-09T23:59:59.000Z

102

A Renewable Electrochemical Magnetic Immunosensor Based on Gold...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Renewable Electrochemical Magnetic Immunosensor Based on Gold Nanoparticle Labels. A Renewable Electrochemical Magnetic Immunosensor Based on Gold Nanoparticle Labels. Abstract: A...

103

Carbon Nanotubes (CNTs) for the Development of Electrochemical...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

(CNTs) for the Development of Electrochemical Biosensors . Carbon Nanotubes (CNTs) for the Development of Electrochemical Biosensors . Abstract: Carbon nanotube (CNT) is a very...

104

Nitrogen-Doped Graphene and its Application in Electrochemical...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Doped Graphene and its Application in Electrochemical Biosensing. Nitrogen-Doped Graphene and its Application in Electrochemical Biosensing. Abstract: Chemical doping with foreign...

105

A graphene-based electrochemical sensor for sensitive detection...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

graphene-based electrochemical sensor for sensitive detection of paracetamol . A graphene-based electrochemical sensor for sensitive detection of paracetamol . Abstract: An...

106

Nitrogen-doped Graphene and Its Electrochemical Applications...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

doped Graphene and Its Electrochemical Applications. Nitrogen-doped Graphene and Its Electrochemical Applications. Abstract: Nitrogen-doped graphene (N-graphene) is obtained by...

107

A novel nanoparticle-based disposable electrochemical immunosensor...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

nanoparticle-based disposable electrochemical immunosensor for diagnosis of exposure to toxic organophosphorus agents. A novel nanoparticle-based disposable electrochemical...

108

Electrochemical NOxSensor for Monitoring Diesel Emissions | Department...  

Broader source: Energy.gov (indexed) [DOE]

Diesel Emissions Electrochemical NOxSensor for Monitoring Diesel Emissions pm02glass.pdf More Documents & Publications Electrochemical NOx Sensor for Monitoring Diesel...

109

Argonne Chemical Sciences & Engineering - People - Electrochemical Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Electrochemical Analysis and Diagnostics Laboratory Electrochemical Analysis and Diagnostics Laboratory Ira Bloom, Inorganic Chemist and Manager/Group Leader phone 630/252-4516, fax: 630/252-4176, e-mail: ira.bloom@anl.gov Ph.D., Inorganic Chemistry, University of Chicago Battery and fuel cell evaluation and testing Javier Bareño, Assistant Materials Scientist (630) 252-5856, fax: 630/972-4528, e-mail: bareno@anl.gov John K. Basco, Engineering Specialist Sr. phone: 630/252-7627, fax: 630/252-4418, e-mail: jkbasco@anl.gov Testing and evaluation of advanced battery systems Testing and evaluation of advanced hydrogen fuel cell systems Panos D. Prezas, Engineering Specialist phone: 630/252-3360, fax: 630/972-4422, e-mail: Prezas@anl.gov BS, Electrical Engineering, Illinois Institute of Technology Battery and fuel cell analysis for HEV/PHEV applications

110

ESM of Ionic and Electrochemical Phenomena on the Nanoscale  

SciTech Connect (OSTI)

Operation of energy storage and conversion devices is ultimately controlled by series of intertwined ionic and electronic transport processes and electrochemical reactions at surfaces and interfaces, strongly mediated by strain and mechanical processes [1-4]. In a typical fuel cell, these include chemical species transport in porous cathode and anode materials, gas-solid electrochemical reactions at grains and triple-phase boundaries (TPBs), ionic and electronic flows in multicomponent electrodes, and chemical and electronic potential drops at internal interfaces in electrodes and electrolytes. All these phenomena are sensitively affected by the microstructure of materials from device level to the atomic scales as illustrated in Fig. 1. Similar spectrum of length scales and phenomena underpin operation of other energy systems including primary and secondary batteries, as well as hybrid systems such flow and metal-air/water batteries.

Kalinin, Sergei V [ORNL; Kumar, Amit [Pennsylvania State University; Balke, Nina [ORNL; McCorkle, Morgan L [ORNL; Guo, Senli [ORNL; Arruda, Thomas M [ORNL; Jesse, Stephen [ORNL

2011-01-01T23:59:59.000Z

111

Electrochemical formation of field emitters  

DOE Patents [OSTI]

Electrochemical formation of field emitters, particularly useful in the fabrication of flat panel displays. The fabrication involves field emitting points in a gated field emitter structure. Metal field emitters are formed by electroplating and the shape of the formed emitter is controlled by the potential imposed on the gate as well as on a separate counter electrode. This allows sharp emitters to be formed in a more inexpensive and manufacturable process than vacuum deposition processes used at present. The fabrication process involves etching of the gate metal and the dielectric layer down to the resistor layer, and then electroplating the etched area and forming an electroplated emitter point in the etched area.

Bernhardt, Anthony F. (Berkeley, CA)

1999-01-01T23:59:59.000Z

112

Rapid electrochemical screening of engine coolants. Correlation of electrochemical potentiometric measurements with ASTM D 1384 glassware corrosion test  

SciTech Connect (OSTI)

Engine coolants are typically subjected to comprehensive performance evaluations that involve multiple laboratory and field tests. These tests can take several weeks to conduct and can be expensive. The tests can involve everything from preliminary chemical screening to long term fleet tests. An important test conducted at the beginning of coolant formula development to screen the corrosion performance of engine coolants is described in ASTM D 1384. If the coolant formula passes the test, it is then subjected to more rigorous testing. Conducting the test described in ASTM D 1384 takes two weeks, and determining the coolant corrosion performance under several test parameters can takes resources and time that users seldom have. Therefore, it is very desirable to have tests that can be used for rapid screening and quality assurance of coolants. The purpose of this study was to conduct electrochemical tests that can ultimately be used for quick initial screening of engine coolants. The specific intent of the electrochemical tests is to use ASTM D 1384 as a model and to attempt to duplicate its results. Implementation of the electrochemical tests could accelerate the process of selecting promising coolant formulas and reduce coolant evaluation time and cost. Various electrochemical tests were conducted to determine the corrosion performance of several engine coolant formulas. The test results were compared to those obtained from the ASTM D 1384 test. These tests were conducted on the same metal specimens and under similar conditions as those used in the ASTM D 1384 test. The electrochemical tests included the determination of open circuit potential (OCP) for the various metal specimens, anodic and cathodic polarization curves for the various metal specimens, corrosion rate for metal specimens involved in a galvanic triad, and critical pitting potential (CPP) for aluminum (pitting of aluminum engine components and cooling systems is a cause for concern). The details for the methods and the correlation of the results to ASTM D 1384 tests results will be presented.

Doucet, G.P. [Shell Chemical Co., Houston, TX (United States); Jackson, J.M.; Kriegel, O.A.; Passwater, D.K. [Shell Oil Products Co., Houston, TX (United States); Prieto, N.E. [Petroferm Inc., Fernandina Beach, FL (United States)

1999-08-01T23:59:59.000Z

113

Electrochemically Stable Cathode Current Collectors for Rechargeable Magnesium Batteries  

SciTech Connect (OSTI)

Rechargeable Mg batteries are attractive energy storage systems and could bring cost-effective energy solutions. Currently, however, no practical cathode current collectors that can withstand high voltages in Mg2+ electrolytes has been identified and therefore cathode research is greatly hindered. Here we identified that two metals, Mo and W, are electrochemically stable through formation of surface passive layers. The presented results could have significant impacts on the developments of high voltage Mg batteries.

Cheng, Yingwen; Liu, Tianbiao L.; Shao, Yuyan; Engelhard, Mark H.; Liu, Jun; Li, Guosheng

2014-01-01T23:59:59.000Z

114

Fuel cells and electrochemical energy storage  

Science Journals Connector (OSTI)

Fuel cells and electrochemical energy storage ... Fuel cells and electrochemical energy storage : types of fuel cells, batteries for electrical energy storage, major batteries presently being investigated, and a summary of present major materials problems in the sodium-sulfur and lithium-alloy metal sulfide battery. ...

Anthony F. Sammells

1983-01-01T23:59:59.000Z

115

Solid oxide electrochemical reactor science.  

SciTech Connect (OSTI)

Solid-oxide electrochemical cells are an exciting new technology. Development of solid-oxide cells (SOCs) has advanced considerable in recent years and continues to progress rapidly. This thesis studies several aspects of SOCs and contributes useful information to their continued development. This LDRD involved a collaboration between Sandia and the Colorado School of Mines (CSM) ins solid-oxide electrochemical reactors targeted at solid oxide electrolyzer cells (SOEC), which are the reverse of solid-oxide fuel cells (SOFC). SOECs complement Sandia's efforts in thermochemical production of alternative fuels. An SOEC technology would co-electrolyze carbon dioxide (CO{sub 2}) with steam at temperatures around 800 C to form synthesis gas (H{sub 2} and CO), which forms the building blocks for a petrochemical substitutes that can be used to power vehicles or in distributed energy platforms. The effort described here concentrates on research concerning catalytic chemistry, charge-transfer chemistry, and optimal cell-architecture. technical scope included computational modeling, materials development, and experimental evaluation. The project engaged the Colorado Fuel Cell Center at CSM through the support of a graduate student (Connor Moyer) at CSM and his advisors (Profs. Robert Kee and Neal Sullivan) in collaboration with Sandia.

Sullivan, Neal P. (Colorado School of Mines, Golden, CO); Stechel, Ellen Beth; Moyer, Connor J. (Colorado School of Mines, Golden, CO); Ambrosini, Andrea; Key, Robert J. (Colorado School of Mines, Golden, CO)

2010-09-01T23:59:59.000Z

116

Electrochemical  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

A. N. Morozovska Institute of Physics, National Academy of Sciences of Ukraine, 46, pr. Nauki, 03028 Kiev, Ukraine J Electroceram (2014) 32:51-59 DOI 10.1007...

117

Electrochemical studies of corrosion inhibiting effect of polyaniline coatings  

SciTech Connect (OSTI)

A series of electrochemical measurements, including corrosion potential (E{sub corr}), corrosion current (i{sub corr}), Tafel`s constants and polarization resistance (R{sub p}), have been made on polyaniline-coated cold rolled steel specimen under various conditions. Both the base and acid-doped forms of polyaniline were studied. The base form of polyaniline was found to offer good corrosion protection. This phenomenon may not originate merely from the barrier effect of the coatings, because the nonconjugated polymers such as polystyrene and epoxy did not show the same electrochemical behavior. The polyaniline base with zinc nitrate plus epoxy topcoat appeared to give better overall protection relative to other coating systems in this study.

Wei, Yen; Wang, Jianguo; Jia, Xinru [and others

1995-12-01T23:59:59.000Z

118

Electrochemical oxygen pumps. Final CRADA report.  

SciTech Connect (OSTI)

All tasks of the Work Plan of ISTC Project 2277p have been completed, thus: (1) techniques of chemical synthesis were developed for more than ten recipes of electrolyte based on cerium oxide doped with 20 mole% of gadolinium (CeGd)O{sub 2}, doped by more than 10 oxide systems including 6 recipes in addition to the Work Plan; (2) electric conductivity and mechanical strength of CeGd specimens with additions of oxide systems were performed, two candidate materials for the electrolyte of electrochemical oxygen pump (pure CeGd and CeGd doped by 0.2 wt% of a transition metal) were chosen; (3) extended studies of mechanical strength of candidate material specimens were performed at room temperature and at 400, 600, 800 C; (4) fixtures for determination of mechanical strength of tubes by external pressure above 40 atmospheres at temperature up to 700 C were developed and fabricated; and (5) technology of slip casting of tubes from pure (Ce,Gd)O{sub 2} and of (Ce,Gd)O{sub 2} doped by 0.2 wt% of a transition metal, withstanding external pressure of minimum 40 atmospheres at temperature up to 700 C was developed, a batch of tubes was sent for testing to Argonne National Laboratory; (6) technology of making nanopowder from pure (Ce,Gd)O{sub 2} was developed based on chemical synthesis and laser ablation techniques, a batch of nanopowder with the weight 1 kg was sent for testing to Argonne National Laboratory; (7) a business plan for establishing a company for making powders of materials for electrochemical oxygen pump was developed; and (8) major results obtained within the Project were reported at international conferences and published in the Russian journal Electrochemistry. In accordance with the Work Plan a business trip of the following project participants was scheduled for April 22-29, 2006, to Tonawanda, NY, USA: Manager Victor Borisov; Leader of technology development Gennady Studenikin; Leader of business planning Elena Zadorozhnaya; Leader of production Vasily Lepalovsky; and Translator Vladimir Litvinov. During this trip project participants were to discuss with the project Technical Monitor J.D. Carter and representative of Praxair Inc. J. Chen the results of project activities (prospects of transition metal-doped material application in oxygen pumps), as well as the prospects of cooperation with Praxair at the meeting with the company management in the following fields: (1) Deposition of thin films of oxide materials of complex composition on support by magnetron and ion sputtering, research of coatings properties; (2) Development of block-type structure technology (made of porous and dense ceramics) for oxygen pump. The block-type structure is promising because when the size of electrolyte block is 2 x 2 inches and assembly height is 10 inches (5 blocks connected together) the area of active surface is ca. 290 square inches (in case of 8 slots), that roughly corresponds to one tube with diameter 1 inch and height 100 inches. So performance of the system made of such blocks may be by a factor of two or three higher than that of tube-based system. However one month before the visit, J. Chen notified us of internal changes at Praxair and the cancellation of the visit to Tonawanda, NY. During consultations with the project Technical Monitor J.D. Carter and Senior Project Manager A. Taylor a decision was made to extend the project term by 2 quarters to prepare proposals for follow-on activities during this extension (development of block-type structures made of dense and porous oxide ceramics for electrochemical oxygen pumps) using the funds that were not used for the trip to the US.

Carter, J. D.

2009-10-01T23:59:59.000Z

119

Electrochemical investigations of various high-temperature superconductor phases  

Science Journals Connector (OSTI)

Electrochemical investigations of various high-temperature superconductor phases ... Electrochemistry of High-Temperature Superconductors ...

David R. Riley; A. Manthiram; John T. McDevitt

1992-11-01T23:59:59.000Z

120

Mapping Ionic Currents and Reactivity on the Nanoscale: Electrochemical Strain Microscopy  

SciTech Connect (OSTI)

Solid-state electrochemical processes in oxides underpin a broad spectrum of energy and information storage devices, ranging from Li-ion and Li-air batteries, to solid oxide fuel cells (SOFC) to electroresistive and memristive systems. These functionalities are controlled by the bias-driven diffusive and electromigration transport of mobile ionic species, as well as intricate a set of electrochemical and defect-controlled reactions at interfaces and in bulk. Despite the wealth of device-level and atomistic studies, little is known on the mesoscopic mechanisms of ion diffusion and electronic transport on the level of grain clusters, individual grains, and extended defects. The development of the capability for probing ion transport on the nanometer scale is a key to deciphering complex interplay between structure, functionality, and performance in these systems. Here we introduce Electrochemical Strain Microscopy, a scanning probe microscopy technique based on strong strain-bias coupling in the systems in which local ion concentrations are changed by electrical fields. The imaging capability, as well as time- and voltage spectroscopies analogous to traditional current based electrochemical characterization methods are developed. The reversible intercalation of Li and mapping electrochemical activity in LiCoO2 is demonstrated, illustrating higher Li diffusivity at non-basal planes and grain boundaries. In Si-anode device structure, the direct mapping of Li diffusion at extended defects and evolution of Li-activity with charge state is explored. The electrical field-dependence of Li mobility is studied to determine the critical bias required for the onset of electrochemical transformation, allowing reaction and diffusion processes in the battery system to be separated at each location. Finally, the applicability of ESM for probing oxygen vacancy diffusion and oxygen reduction/evolution reactions is illustrated, and the high resolution ESM maps are correlated with aberration corrected scanning transmission electron microscopy imaging. The future potential for deciphering mechanisms of electrochemical transformations on an atomically-defined single-defect level is discussed.

Kalinin, S.V. (Center for Nanophase Materials Sciences, ORNL) [Center for Nanophase Materials Sciences, ORNL

2010-10-19T23:59:59.000Z

Note: This page contains sample records for the topic "giner electrochemical systems" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Process for electrochemically gasifying coal using electromagnetism  

DOE Patents [OSTI]

A process for electrochemically gasifying coal by establishing a flowing stream of coal particulate slurry, electrolyte and electrode members through a transverse magnetic field that has sufficient strength to polarize the electrode members, thereby causing them to operate in combination with the electrolyte to electrochemically reduce the coal particulate in the slurry. Such electrochemical reduction of the coal produces hydrogen and carbon dioxide at opposite ends of the polarized electrode members. Gas collection means are operated in conjunction with the process to collect the evolved gases as they rise from the slurry and electrolyte solution.

Botts, Thomas E. (Markham, VA); Powell, James R. (Shoreham, NY)

1987-01-01T23:59:59.000Z

122

Electrolyte for an electrochemical cell  

DOE Patents [OSTI]

Described is a thin-film battery, especially a thin-film microbattery, and a method for making same having application as a backup or primary integrated power source for electronic devices. The battery includes a novel electrolyte amorphous lithium phosphorus oxynitride which is electrochemically stable and does not react with the lithium anode and a novel vanadium oxide cathode Configured as a microbattery, the battery can be fabricated directly onto a semiconductor chip, onto the semiconductor die or onto any portion of the chip carrier. The battery can be fabricated to any specified size or shape to meet the requirements of a particular application. The battery is fabricated of solid state materials and is capable of operation between -15.degree. C. and 150.degree. C.

Bates, John B. (Oak Ridge, TN); Dudney, Nancy J. (Knoxville, TN)

1997-01-01T23:59:59.000Z

123

Cathode for an electrochemical cell  

DOE Patents [OSTI]

Described is a thin-film battery, especially a thin-film microbattery, and a method for making same having application as a backup or primary integrated power source for electronic devices. The battery includes a novel electrolyte which is electrochemically stable and does not react with the lithium anode and a novel vanadium oxide cathode. Configured as a microbattery, the battery can be fabricated directly onto a semiconductor chip, onto the semiconductor die or onto any portion of the chip carrier. The battery can be fabricated to any specified size or shape to meet the requirements of a particular application. The battery is fabricated of solid state materials and is capable of operation between -15.degree. C. and 150.degree. C.

Bates, John B. (Oak Ridge, TN); Dudney, Nancy J. (Knoxville, TN); Gruzalski, Greg R. (Oak Ridge, TN); Luck, Christopher F. (Knoxville, TN)

2001-01-01T23:59:59.000Z

124

Electrochemical formation of field emitters  

DOE Patents [OSTI]

Electrochemical formation of field emitters, particularly useful in the fabrication of flat panel displays is disclosed. The fabrication involves field emitting points in a gated field emitter structure. Metal field emitters are formed by electroplating and the shape of the formed emitter is controlled by the potential imposed on the gate as well as on a separate counter electrode. This allows sharp emitters to be formed in a more inexpensive and manufacturable process than vacuum deposition processes used at present. The fabrication process involves etching of the gate metal and the dielectric layer down to the resistor layer, and then electroplating the etched area and forming an electroplated emitter point in the etched area. 12 figs.

Bernhardt, A.F.

1999-03-16T23:59:59.000Z

125

Minimizing Wind Power Producer's Balancing Costs Using Electrochemical Energy Storage: Preprint  

SciTech Connect (OSTI)

This paper examines how electrochemical energy storage can be used to decrease the balancing costs of a wind power producer in the Nordic market. Because electrochemical energy storage is developing in both technological and financial terms, a sensitivity analysis was carried out for the most important variables in the wind-storage hybrid system. The system was studied from a wind power producer's point of view. The main result is that there are no technical limitations to using storage for reducing the balancing costs. However, in terms of economic feasibility, installing hybrid wind-storage systems such as the one studied in this paper faces challenges in both the short and long terms.

Miettinen, J.; Tikka, V.; Lassila, J.; Partanen, J.; Hodge, B. M.

2014-08-01T23:59:59.000Z

126

Analysis and Simulation of Electrochemical Energy Systems  

Broader source: Energy.gov [DOE]

2010 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C.

127

Analysis and Simulation of Electrochemical Energy Systems  

Broader source: Energy.gov [DOE]

2009 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting, May 18-22, 2009 -- Washington D.C.

128

From corrosion to batteries: Electrochemical interface studies...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

From corrosion to batteries: Electrochemical interface studies Thursday, October 18, 2012 - 11:00am SSRL, Bldg. 137, Rm 226 Dr. Frank Uwe Renner Max-Planck-Institut fr...

129

Electrochemical Detection for Paper-Based Microfluidics  

Science Journals Connector (OSTI)

We report the first demonstration of electrochemical detection for paper-based microfluidic devices. Photolithography was used to make microfluidic channels on filter paper, and screen-printing technology was used to fabricate electrodes on the paper-...

Wijitar Dungchai; Orawon Chailapakul; Charles S. Henry

2009-06-01T23:59:59.000Z

130

Electrochemical NOx Sensors for Monitoring Diesel Emissions  

Broader source: Energy.gov [DOE]

A unique electrochemical sensing strategy correlating the level of NOx with an impedance-based signal shows promise for sensitivity, stability, and accuracy while incorporating single-cell structures and simple electronics into low-cost designs

131

Electrochemical detection of leukemia oncogenes using enzyme...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

solution. The effect of DP and HRP loading of the CNT-based labels on its signal-to-noise ratio of electrochemical detection was studied systematically for the first time....

132

Electrochemical Biosensors Using Aptamers for Theranostics  

Science Journals Connector (OSTI)

Theranostics, a new term consisting of the words ... development of a molecular targeting drug, the theranostics approach is effective. Therefore, the market ... we focus on aptamer-based electrochemical biosenso...

Koichi Abe; Wataru Yoshida; Kazunori Ikebukuro

2014-01-01T23:59:59.000Z

133

Microfluidic Actuation Using Electrochemically Generated Bubbles  

E-Print Network [OSTI]

Microfluidic Actuation Using Electrochemically Generated Bubbles Susan Z. Hua,*, Frederick Sachs, Buffalo, New York 14260 Bubble-based actuation in microfluidic applications is attractive owing closing) rate increases with applied voltage, small microfluidic dimensions accelerate bubble deflation

Sachs, Frederick

134

NETL: Electrochemical Membranes for Carbon Dioxide Capture and Power  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Electrochemical Membranes for Carbon Dioxide Capture and Power Generation Electrochemical Membranes for Carbon Dioxide Capture and Power Generation Project No.: DE-FE0007634 FuelCell Energy, Inc. has developed a novel system concept for the separation of carbon dioxide (CO2) from greenhouse gas (GHG) emission sources using an electrochemical membrane. The proposed membrane has its genesis from the company's patented Direct FuelCell® (DFC®) technology. The prominent feature of the DFC membrane is its capability to produce power while capturing CO2 from the flue gas from a pulverized coal (PC) plant. The DFC membrane does not require flue gas compression as it operates on the principles of electrochemistry, resulting in net efficiency gains. The membrane utilizes a fuel (different from the plant flue gas, such as coal-derived syngas, natural gas, or a renewable resource) as the driver for the combined carbon capture and electric power generation. The electrochemical membrane consists of ceramic-based layers filled with carbonate salts, separating CO2 from the flue gas. Because of the electrode's high reaction rates, the membrane does not require a high CO2 concentration in its feed gas. The planar geometry of the membrane offers ease of scalability to large sizes suitable for deployment in PC plants, which is an important attribute in membrane design. The membrane has been tested at the laboratory scale, verifying the feasibility of the technology for CO2 separation from simulated flue gases of PC plants as well as combined cycle power plants and other industrial facilities. Fuel Cell Energy, Inc. is advancing the technology to a maturity level suitable for adaption by industry for pilot-scale demonstration and subsequent commercial deployment.

135

Recent DOE sponsored electrochemical capacitor test results  

SciTech Connect (OSTI)

Electrochemical capacitors (ultracapacitors) are being developed for hybrid vehicles as candidate power assist devices for the fast response engine and for other energy storage systems that can utilize the high power densities available from these devices. Ultracapacitors show promise toward being able to accept high regenerative pulses and high power delivery capabilities while exhibiting very high cycle life. This paper will present recent test data from two US Department of Energy (DOE) supported ultracapacitor projects designed to meet the fast response engine requirements. Constant-current and constant-power test results will be presented that have been acquired from recent prototype capacitors supplied by SAFT America, Inc. (ten devices), and Maxwell Energy Products, Inc. (two devices). The SAFT capacitors are rated at 0.5 V to 3 V with capacitance ratings ranging from 135 F to 138 F. Capacitor cells rated at 2.3 V and 101.4 F were also evaluated that were produced by Maxwell Energy Products, Inc. Both sets of devices used proprietary carbon electrodes with non-aqueous electrolytes in their design. From the constant-current discharge tests, the discharge current dependence of the capacitance, equivalent series resistance, and RC-time constant were determined as well as the capacitors' voltage dependence of the capacitance. Constant-power discharge tests permitted the specific energy as a function of the specific power to be determined, and also the discharge/charge round trip efficiency as a function of the magnitude of the constant-power discharge.

Wright, R.B.; Murphy, T.C.; Jamison, D.K.; Rogers, S.A.

2000-07-01T23:59:59.000Z

136

Refractory lining for electrochemical cell  

DOE Patents [OSTI]

Apparatus for processing a metallic fluid containing iron oxide, container for a molten metal including an electrically conductive refractory disposed for contact with the molten metal which contains iron oxide, an electrolyte in the form of a basic slag on top of the molten metal, an electrode in the container in contcat with the slag electrically separated from the refractory, and means for establishing a voltage across the refractory and the electrode to reduce iron oxide to iron at the surface of the refractory in contact with the iron oxide containing fluid. A process is disclosed for refining an iron product containing not more than about 10% by weight oxygen and not more than about 10% by weight sulfur, comprising providing an electrolyte of a slag containing one or more of calcium oxide, magnesium oxide, silica or alumina, providing a cathode of the iron product in contact with the electrolyte, providing an anode in contact with the electrolyte electrically separated from the cathode, and operating an electrochemical cell formed by the anode, the cathode and the electrolyte to separate oxygen or sulfur present in the iron product therefrom.

Blander, Milton (Palos Park, IL); Cook, Glenn M. (Naperville, IL)

1987-01-01T23:59:59.000Z

137

Experimental electrochemical capacitor test results  

SciTech Connect (OSTI)

Various electrochemical capacitors (ultracapacitors) are being developed for hybrid vehicles as candidate power assist devices for the fast response engine. The primary functions of the ultracapacitor are to level the dynamic power loads on the primary propulsion device and recover available energy from regenerative breaking during off-peak power periods. Ultracapacitors show promise toward being able to accept high regenerative pulses while exhibiting very high cycle life. This paper will present test data from selected US Department of Energy (DOE) supported ultracapacitor projects designed to meet the fast response engine requirements. Devices containing carbon, conducting polymers, and metal oxide electrode materials in combination with aqueous or organic electrolytes are being supported by the DOE. This paper will present and discuss testing data obtained from recent prototype capacitors supplied by Maxwell Energy Products, Inc., SAFT America, Inc., Federal Fabrics-Fibers and the University of Wisconsin-Madison. Constant-current, constant-power, leakage-current, and self-discharge testing of these various capacitors have been conducted. All devices were cycled between the rated charged voltage and zero volts for the constant-current tests and between the rated charged voltage and half that value for the constant-power tests.

Wright, R.B.; Murphy, T.C.; Kramer, W.E. [Lockheed Martin Idaho Technology Co., Idaho Falls, ID (United States). Idaho National Engineering and Environmental Lab.; Satula, R.A.; Rogers, S.A. [Dept. of Energy, Washington, DC (United States)

1997-11-01T23:59:59.000Z

138

Spectroscopic ellipsometry of electrochemical precipitation and oxidation  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Spectroscopic ellipsometry of electrochemical precipitation and oxidation Spectroscopic ellipsometry of electrochemical precipitation and oxidation of nickel hydroxide films Title Spectroscopic ellipsometry of electrochemical precipitation and oxidation of nickel hydroxide films Publication Type Journal Article Year of Publication 1998 Authors Kong, Fanping, Robert Kostecki, Frank R. McLarnon, and Rolf H. Muller Journal Thin Solid Films Volume 313-314 Pagination 775-780 Keywords effective medium approximation, electrochemical precipitation, inhomogeneous films, nickel hydroxide, spectroscopic ellipsometry Abstract In situ spectroscopic ellipsometry was used to investigate the electrochemical precipitation of nickel hydroxide films. By use of optical models for inhomogeneous films it was found that a specific precipitation current density produced the most compact and homogeneous film structures. The density of nickel hydroxide films was derived to be 1.25-1.50 g/cm3. The redox behavior of precipitated nickel hydroxide films was studied with an effective-medium optical model. Incomplete conversion to nickel oxyhydroxide and a reduction in film thickness were found during the oxidation cycle.

139

Novel electrochemical method for monitoring and predicting localized corrosion.  

E-Print Network [OSTI]

??This PhD research project was conducted to develop new electrochemical methods for studying localized corrosion processes in various environment. An electrochemically integrated multi-electrode array, namely (more)

Naing Naing Aung.

2008-01-01T23:59:59.000Z

140

SEPARATION OF OVERLAPPED ELECTROCHEMICAL PEAKS USING THE KALMAN FILTER  

E-Print Network [OSTI]

the structure of the electrochemical noise than do the othernoise assumptions can be met in terms of that variable, For electrochemicalnoise ratios often encountered in trace analysis and by the use of electrochemical

Brown, T.F.

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "giner electrochemical systems" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Development and demonstration of advanced technologies for direct electrochemical oxidation of hydrocarbons (methanol, methane, propane)  

SciTech Connect (OSTI)

Direct methanol fuel cells use methanol directly as a fuel, rather than the reformate typically required by fuel cells, thus eliminating the reformer and fuel processing train. In this program, Giner, Inc. advanced development of two types of direct methanol fuel cells for military applications. Advancements in direct methanol proton-exchange membrane fuel cell (DMPEMFC) technology included developement of a Pt-Ru anode catalyst and an associated electrode structure which provided some of the highest DMPEMFC performance reported to date. Scale-up from a laboratory-scale single cell to a 5-cell stack of practical area, providing over 100 W of power, was also demonstrated. Stable stack performance was achieved in over 300 hours of daily on/off cycling. Direct methanol aqueous carbonate fuel cells were also advanced with development of an anode catalyst and successful operation at decreased pressure. Improved materials for the cell separator/matrix and the hardware were also identified.

Kosek, J.A.; LaConti, A.B.

1994-07-01T23:59:59.000Z

142

An electrochemical model for prediction of CO{sub 2} corrosion  

SciTech Connect (OSTI)

A predictive model of CO{sub 2} corrosion, based on modelling of individual electrochemical reactions occurring in a water CO{sub 2} system, is presented. The model takes into account the following electrochemical reactions: hydrogen ion reduction, carbonic acid reduction, direct water reduction, oxygen reduction and anodic dissolution of iron. The required electrochemical parameters in the model such as: exchange current densities and Tafel slopes for different reactions are determined from experiments conducted in glass cells. In those experiments the corrosion process was monitored with the following electrochemical measuring techniques: polarization resistance, potentiodynamic sweep, electrochemical impedance in addition to weight loss measurements. The model has been calibrated for two different mild steels over a wide range of parameters: t = 20--80C, pH 3--6, p(CO{sub 2})= 0--1 bar, {omega} = 0--5,000 rpm. In its present stage of development the model applies for the case of uniform corrosion with no protective films present. Performance of the model is validated by comparing the predictions with results from independent loop experiments. The predictions made with the present model were also compared with performance of other CO{sub 2} corrosion prediction models. Compared to the previous largely empirical models, the present model gives a much clearer picture of the corrosion mechanisms and of the effect of key parameters.

Nesic, S.; Postlethwaite, J. [Inst. for Energiteknikk, Kjeller (Norway); Olsen, S. [Statoil, Trondheim (Norway)

1995-10-01T23:59:59.000Z

143

Polymer electrolyte membrane water electrolysis: status of technologies and potential applications in combination with renewable power sources  

Science Journals Connector (OSTI)

Presently, there are only a few industrial PEMWEs manufacturers (GE, Giner, NorskHydro, Proton, ITM). The Proton Energy Systems produces the HOGEN 40 for industrial applications and the HOGEN RE for use in conj...

A. S. Aric; S. Siracusano; N. Briguglio; V. Baglio

2013-02-01T23:59:59.000Z

144

MIT- Electrochemical Energy Laboratory | Open Energy Information  

Open Energy Info (EERE)

MIT- Electrochemical Energy Laboratory MIT- Electrochemical Energy Laboratory Jump to: navigation, search Name MIT- Electrochemical Energy Laboratory Address 77 Massachusetts Avenue Place Cambridge, Massachusetts Zip 02139 Region Greater Boston Area Coordinates 42.359089°, -71.093412° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.359089,"lon":-71.093412,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

145

Electrochemical Energy Storage Technical Team Roadmap  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Electrochemical Energy Storage Electrochemical Energy Storage Technical Team Roadmap June 2013 This roadmap is a document of the U.S. DRIVE Partnership. U.S. DRIVE (Driving Research and Innovation for Vehicle efficiency and Energy sustainability) is a voluntary, non-binding, and nonlegal partnership among the U.S. Department of Energy; USCAR, representing Chrysler Group LLC, Ford Motor Company, and General Motors; Tesla Motors; five energy companies - BP America, Chevron Corporation, Phillips 66 Company, ExxonMobil Corporation, and Shell Oil Products US; two utilities - Southern California Edison and DTE Energy; and the Electric Power Research Institute (EPRI). The Electrochemical Energy Storage Technical Team is one of 12 U.S. DRIVE technical teams ("tech teams") whose mission is to accelerate the development of pre-competitive and innovative technologies to

146

ENHANCED ELECTROCHEMICAL PROCESSES IN SUBCRITICAL WATER  

SciTech Connect (OSTI)

This project involved designing and performing preliminary electrochemical experiments in subcritical water. An electrochemical cell with substantially better performance characteristics than presently available was designed, built, and tested successfully. The electrochemical conductivity of subcritical water increased substantially with temperature, e.g., conductivities increased by a factor of 120 when the temperature was increased from 25 to 250 C. Cyclic voltammograms obtained with platinum and nickel demonstrated that the voltage required to produce hydrogen and oxygen from water can be dropped by a factor of three in subcritical water compared to the voltages required at ambient temperatures. However, no enhancement in the degradation of 1,2-dichlorobenzene and the polychlorinated biphenyl 3,3',4,4'-tetrachlorobiphenyl was observed with applied potential in subcritical water.

Steven B. Hawthorne

2000-07-01T23:59:59.000Z

147

Modeling and simulations of electrical energy storage in electrochemical capacitors  

E-Print Network [OSTI]

and carbon nanotubes, Advanced Energy Materials, vol. 1,carbon nanotubes supercapacitors: Improving both energy andcarbon nanotubes for enhanced electrochemical energy

Wang, Hainan

2013-01-01T23:59:59.000Z

148

Electrochemical reduction of liquid CO[sub 2]: Drastic enhancement of current density  

SciTech Connect (OSTI)

A novel electrochemical CO[sub 2] reduction system has been developed in which liquid CO[sub 2] was reduced electrochemically at a Cu electrode producing CO, CH[sub 4], C[sub 2]H[sub 4], and HCOOCH[sub 3]. The authors have succeeded in reducing CO[sub 2] with a current density of 420 mA/cm[sup 2] and a current efficiency of 85%; the former is higher than that used in industrial electrolysis such as in the chloralkali industry. The Tafel plots indicate that the supply of CO[sub 2] is no longer limited by its mass transfer.

Saeki, Tomonori; Hashimoto, Kazuhito; Fujishima, Akira (Univ. of Tokyo (Japan). Dept. of Applied Chemistry); Noguchi, Yoshikazu; Omata, Koji (Electric Power Development Co., Tokyo (Japan))

1994-09-01T23:59:59.000Z

149

Flowsheet model for the electrochemical treatment of liquid radioactive wastes. Final report  

SciTech Connect (OSTI)

The objective of this report is to describe the modeling and optimization procedure for the electrochemical removal of nitrates and nitrites from low level radioactive wastes. The simulation is carried out in SPEEDUP{trademark}, which is a state of the art flowsheet modeling package. The flowsheet model will provide a better understanding of the process and aid in the scale-up of the system. For example, the flowsheet model has shown that the electrochemical cell must be operated in batch mode to achieve 95 percent destruction. The flowsheet model is detailed in this report along with a systematic description of the batch optimization of the electrochemical cell. Results from two batch runs and one optimization run are also presented.

Hobbs, D.T. [Westinghouse Savannah River Co., Aiken, SC (United States); Prasad, S.; Farell, A.E.; Weidner, J.W.; White, R.E. [South Carolina Univ., Columbia, SC (United States). Dept. of Chemical Engineering

1995-12-31T23:59:59.000Z

150

Development of electrochemical photovoltaic cells. Third technical progress report, November 1, 1979-January 31, 1980  

SciTech Connect (OSTI)

The development of stable, efficient, electrochemical photovoltaic cells based on silicon and gallium arsenide in non-aqueous electrolyte systems is being investigated. The effect of surface condition of silicon electrodes on electrochemical and physical characteristics has been studied. An electrode-supporting electrolyte interaction in acetonitrile has been identified which leads to etching of the surface. Improved performance can result, which has practical significance. Gallium arsenide electrodes have been electrochemically characterized in cells containing propylene carbonate with a ferrocene/ferricenium redox additive. Degradation of the ferricenium salt under illumination has been investigated. Other redox couples studied to date have not given promising results. Long-term stability experiments have been deferred while a better understanding of electrode behavior is being obtained.

Byker, H.J.; Schwerzel, R.E.; Wood, V.E.; Austin, A.E.; Brooman, E.W.

1980-03-07T23:59:59.000Z

151

Tunable Electrochemical Properties of Fluorinated Graphene  

SciTech Connect (OSTI)

The structural and electrochemical properties of fluorinated graphene have been investigated by using a series of graphene fluorides (CFx, x=0.47, 0.66, 0.89). Fluorinated graphene exhibited high capacity retentions of 75-81% of theoretical capacity at moderate rates as cathode materials for primary lithium batteries. Specifically, CF0.47 maintained a capacity of 356 mAhg-1 at a 5C rate, superior to that of traditional fluorinated graphite. The discharged graphene fluorides also provide an electrochemical tool to probe the chemical bonding on the parent graphene substrate.

Meduri, Praveen; Chen, Honghao; Xiao, Jie; Martinez, Jayson J.; Carlson, Thomas J.; Zhang, Jiguang; Deng, Zhiqun

2013-06-18T23:59:59.000Z

152

Electrochemical apparatus comprising modified disposable rectangular cuvette  

DOE Patents [OSTI]

Electrochemical apparatus includes a disposable rectangular cuvette modified with at least one hole through a side and/or the bottom. Apparatus may include more than one cuvette, which in practice is a disposable rectangular glass or plastic cuvette modified by drilling the hole(s) through. The apparatus include two plates and some means of fastening one plate to the other. The apparatus may be interfaced with a fiber optic or microscope objective, and a spectrometer for spectroscopic studies. The apparatus are suitable for a variety of electrochemical experiments, including surface electrochemistry, bulk electrolysis, and flow cell experiments.

Dattelbaum, Andrew M; Gupta, Gautam; Morris, David E

2013-09-10T23:59:59.000Z

153

Stochastic resonance of electrochemical aperiodic spike trains P. Parmananda,1  

E-Print Network [OSTI]

-output correlation as a function of the noise amplitude. Numerical simulations with an electrochemical model of the electrochemical cell can be found in our previously published work 26 . The imposed external noise was producedStochastic resonance of electrochemical aperiodic spike trains P. Parmananda,1 Gerardo J. Escalera

Showalter, Kenneth

154

Application of the inverse wavelet transform on electrochemical current signals  

E-Print Network [OSTI]

, Frequency distribution charts, Frequencies Paper type Research paper 1. Introduction Electrochemical noise, 1968). Two main methods can be used to analyze electrochemical noise, namely sequence of electrochemical noise signals due to their dynamic nature. The wavelet transform was first applied to noise

Volinsky, Alex A.

155

Fluctuation enhanced electrochemical reaction rates at the nanoscale  

Science Journals Connector (OSTI)

...coupled to the electric circuit. We show...that render all elementary electrochemical reactions...electrodes an ohmic resistance is often introduced...coupled to the electric circuit. We show...that render all elementary electrochemical...Peroxide | Algorithms Electric Conductivity Electrochemical...

Vladimir Garca-Morales; Katharina Krischer

2010-01-01T23:59:59.000Z

156

Exploratory Technology Research Program for electrochemical energy storage: Annual report for 1993  

SciTech Connect (OSTI)

The U.S. Department of Energy`s Office of Propulsion Systems provides support for an Electrochemical Energy Storage Program, that includes research and development (R&D) on advanced rechargeable batteries and fuel cells. A major goal of this program is to develop electrochemical power sources suitable for application in electric vehicles (EVs). The program centers on advanced systems that offer the potential for high performance and low life-cycle costs, both of which are necessary to permit significant penetration into commercial markets. The DOE Electrochemical Energy Storage Program is divided into two projects: the Electric Vehicle Advanced Battery Systems (EVABS) Development Program and the Exploratory Technology Research (ETR) Program. The EVABS Program management responsibility has been assigned to Sandia National Laboratories (SNL); Lawrence Berkeley Laboratory (LBL) is responsible for management of the ETR Program. The EVABS and ETR Programs include an integrated matrix of R&D efforts designed to advance progress on selected candidate electrochemical systems. The United States Advanced Battery Consortium (USABC), a tripartite undertaking between DOE, the U.S. automobile manufacturers and the Electric Power Research Institute (EPRI), was formed in 1991 to accelerate the development of advanced batteries for consumer EVs. The role of the FIR Program is to perform supporting research on the advanced battery systems under development by the USABC and EVABS Program, and to evaluate new systems with potentially superior performance, durability and/or cost characteristics. The specific goal of the ETR Program is to identify the most promising electrochemical technologies and transfer them to the USABC, the battery industry and/or the EVABS Program for further development and scale-up. This report summarizes the research, financial and management activities relevant to the ETR Program in CY 1993.

Kinoshita, K. [ed.

1994-09-01T23:59:59.000Z

157

Exploratory Technology Research Program for electrochemical energy storage. Annual report for 1991  

SciTech Connect (OSTI)

The US Department of Energy`s Office of Propulsion Systems provides support for an electrochemical energy storage program, that includes research and development (R&D) on advanced rechargeable batteries and fuel cells. A major goal of this program is to develop electrochemical power sources suitable for application in electric vehicles. The program centers on advanced systems that offer the potential for high performance and low life-cycle costs. The DOE Electrochemical Energy Storage Program is divided into two projects: the Electric Vehicle Advanced Battery Systems Development (EVABS) Program and the Exploratory Technology Research (ETR) Program. The EVABS Program management responsibility has been assigned to Sandia National Laboratory, and the Lawrence Berkeley Laboratory is responsible for management of the ETR Program. The EVABS and ETR Programs include an integrated matrix of R&D efforts designed to advance progress on several candidate electrochemical systems. The United States Advanced Battery Consortium (USABC), a tripartite undertaking between DOE, the US automobile manufacturers and the Electric Power Research Institute (EPRI), was formed in 1991 to accelerate the development of advanced batteries for consumer EVs. The role of the ETR Program is to perform supporting research on the advanced battery systems under development by the USABC and EVABS Program, and to evaluate new systems with potentially superior performance, durability and/or cost characteristics. The specific goal of the ETR Program is to identify the most promising electrochemical technologies and transfer them to the USABC, the battery industry and/or the EVABS Program for further development and scaleup. This report summarizes the research, financial and management activities relevant to the ETR Program in CY 1991.

Kinoshita, K. [ed.

1992-06-01T23:59:59.000Z

158

Argonne Chemical Sciences & Engineering -Electrochemical Energy Storage -  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Basic Research Basic Research * Members * Contact * Publications * Overview * CEES EES Home Electrochemical Energy Storage - Basic Research Electrochemical Energy Storage Chemistry co-op student Sara Busking loads a lithium-ion battery cell in a pouch into a test oven to evaluate its electrochemical performance. EES conducts basic research to support its applied electrochemical energy storage R&D initiatives. EES also leads an Energy Frontier Research Center (EFRC), recently awarded by DOE's Office of Science, with partners at Northwestern University and the University of Illinois (Urbana Champaign). The EFRC, the Center for Electrical Energy Storage: Tailored Interfaces (CEES), focuses on understanding electrochemical phenomena at electrode/electrolyte interfaces

159

Argonne Chemical Sciences & Engineering - Publications - Electrochemical  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Electrochemical Energy Storage Electrochemical Energy Storage Basic Research S.-H. Kang and M. M. Thackeray, "Stabilization of xLi2MnO3·(1-x)LiMO2 Electrode Surfaces (M=Mn, Ni, Co) with Mildly Acidic, Fluorinated Solutions," Journal of the Electrochemical Society, 155, A269 (2008) C. S. Johnson, N. Li, C. Lefief, J. T. Vaughey and M. M. Thackeray, "Synthesis, Characterization and Electrochemistry of Lithium Battery Electrodes: xLi2MnO3*(1-x)LiMn0.333Ni0.333Co0.333O2 (0Electrochemical Society 155, A448 (2008)

160

Characterization of electrochemically modified polycrystalline platinum surfaces  

SciTech Connect (OSTI)

The characterization of electrochemically modified polycrystalline platinum surfaces has been accomplished through the use of four major electrochemical techniques. These were chronoamperometry, chronopotentiommetry, cyclic voltammetry, and linear sweep voltammetry. A systematic study on the under-potential deposition of several transition metals has been performed. The most interesting of these were: Ag, Cu, Cd, and Pb. It was determined, by subjecting the platinum electrode surface to a single potential scan between {minus}0.24 and +1.25 V{sub SCE} while stirring the solution, that the electrocatalytic activity would be regenerated. As a consequence of this study, a much simpler method for producing ultra high purity water from acidic permanganate has been developed. This method results in water that surpasses the water produced by pyrocatalytic distillation. It has also been seen that the wettability of polycrystalline platinum surfaces is greatly dependent on the quantity of oxide present. Oxide-free platinum is hydrophobic and gives a contact angle in the range of 55 to 62 degrees. We have also modified polycrystalline platinum surface with the electrically conducting polymer poly-{rho}-phenylene. This polymer is very stable in dilute sulfuric acid solutions, even under applied oxidative potentials. It is also highly resistant to electrochemical hydrogenation. The wettability of the polymer modified platinum surface is severely dependent on the choice of supporting electrolyte chosen for the electrochemical polymerization. Tetraethylammonium tetrafluoroborate produces a film that is as hydrophobic as Teflon, whereas tetraethylammonium perchlorate produces a film that is more hydrophilic than oxide-free platinum.

Krebs, L.C.; Ishida, Takanobu.

1991-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "giner electrochemical systems" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Titanium Carbide Bipolar Plate for Electrochemical Devices  

SciTech Connect (OSTI)

Titanium carbide comprises a corrosion resistant, electrically conductive, non-porous bipolar plate for use in an electrochemical device. The process involves blending titanium carbide powder with a suitable binder material, and molding the mixture, at an elevated temperature and pressure.

LaConti, Anthony B.; Griffith, Arthur E.; Cropley, Cecelia C.; Kosek, John A.

1998-05-08T23:59:59.000Z

162

Development of Microfluidic Devices Incorporating Electrochemical Detection  

E-Print Network [OSTI]

Development of Microfluidic Devices Incorporating Electrochemical Detection Anne Regel Submitted to the Department of Chemistry and the Graduate School of the University of Kansas in partial fulfillment of the requirements for the degree... _______________________________ Karen Nordheden Dissertation Defense: August 21, 2013 ii The Dissertation Committee for Anne Regel certifies that this is the approved version of the following dissertation: Development of Microfluidic Devices Incorporating...

Regel, Anne

2014-05-31T23:59:59.000Z

163

Simulation of the electrochemical machining process  

SciTech Connect (OSTI)

An algorithm for simulating a two-dimensional electrochemical machining process is presented. A major part of the calculation, the solution of Laplace's equation, is accomplished by a boundary element method based upon Green's formula. Polarization, in the form of the Tafel equation, is included in the model. The computer program is discussed in detail.

Gray, L.J.; Serbin, C.A.; Dietrich, W.C.

1984-11-01T23:59:59.000Z

164

Exploratory Technology Research Program for Electrochemical Energy Storage. Annual report, 1992  

SciTech Connect (OSTI)

This report summarizes the progress made by the Exploratory Technology Research (ETR) Program for Electrochemical Energy Storage during calendar year 1992. The primary objective of the ETR Program, which is sponsored by the US Department of Energy (DOE) and managed by Lawrence Berkeley Laboratory (LBL), is to identify electrochemical technologies that can satisfy stringent performance, durability and economic requirements for electric vehicles (EVs). The ultimate goal is to transfer the most-promising electrochemical technologies to the private sector or to another DOE program (e.g., SNL`s Electric Vehicle Advanced Battery Systems Development Program, EVABS) for further development and scale-up. Besides LBL, which has overall responsibility for the ETR Program, LANL and BNL have participated in the ETR Program by providing key research support in several of the program elements. The ETR Program consists of three major elements: Exploratory Research; Applied Science Research; and Air Systems Research. The objectives and the specific battery and electrochemical systems addressed by each program element are discussed in the following sections, which also include technical summaries that relate to the individual programs. Financial information that relates to the various programs and a description of the management activities for the ETR Program are described in the Executive Summary.

Kinoshita, K. [ed.

1993-10-01T23:59:59.000Z

165

Design of electrochemical processes for treatment of unusual waste streams  

SciTech Connect (OSTI)

UCRL- JC- 129438 PREPRINT This document was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor the University of California nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or the University of California, and shall not be used for advertising or product endorsement purposes. Introduction. An overview of work done on the development of three electrochemical processes that meet the specific needs of low- level waste treatment is presented. These technologies include: mediated electrochemical oxidation [I- 4]; bipolar membrane electrodialysis [5]; and electrosorption of carbon aerogel electrodes [6- 9]. Design strategies are presented to assess the suitability of these electrochemical processes for Mediated electrochemical oxidation. Mixed wastes include both hazardous and radioactive components. It is desirable to reduce the overall volume of the waste before immobilization and disposal in repositories. While incineration is an attractive technique for the destruction of organic fractions of mixed wastes, such high-temperature thermal processes pose the threat of volatilizing various radionuclides. By destroying organics in the aqueous phase at low temperature and ambient pressure, the risk of volatilization can be reduced. One approach that is attractive is the use of eiectrochemically generated mediators such as Ag( ll), Co( Ill) and Fe( III). These oxidants react with organicsin Bipolar membrane electrodialysis. in the aqueous processing of nuclear materials, process steps arise that require the neutralization of an acidic stream with a strong base. Ultimately, these neutralized salt solutions become aqueous waste streams, requiring further treatment and disposal. By "splitting" such neutralized salt solutions into their acid and base components, the generation of aqueous mixed waste can be greatly reduced. At LLNL, a bipolar membrane electrodialysis cell has been used to separate neutral solutions of NaCl, NaNO1 and Na, SO, into product streams of NaOH, HCI, HNOj and H2S0,, which could be recycled. The eftlciency of this particular process will be discussed, as well as practical limitations of the technology. Basic principles of engineering design of such systems will be reviewed.

Farmer, J.C.

1998-01-01T23:59:59.000Z

166

Alternative Waste Forms for Electro-Chemical Salt Waste  

SciTech Connect (OSTI)

This study was undertaken to examine alternate crystalline (ceramic/mineral) and glass waste forms for immobilizing spent salt from the Advanced Fuel Cycle Initiative (AFCI) electrochemical separations process. The AFCI is a program sponsored by U.S. Department of Energy (DOE) to develop and demonstrate a process for recycling spent nuclear fuel (SNF). The electrochemical process is a molten salt process for the reprocessing of spent nuclear fuel in an electrorefiner and generates spent salt that is contaminated with alkali, alkaline earths, and lanthanide fission products (FP) that must either be cleaned of fission products or eventually replaced with new salt to maintain separations efficiency. Currently, these spent salts are mixed with zeolite to form sodalite in a glass-bonded waste form. The focus of this study was to investigate alternate waste forms to immobilize spent salt. On a mole basis, the spent salt is dominated by alkali and Cl with minor amounts of alkaline earth and lanthanides. In the study reported here, we made an effort to explore glass systems that are more compatible with Cl and have not been previously considered for use as waste forms. In addition, alternate methods were explored with the hope of finding a way to produce a sodalite that is more accepting of as many FP present in the spent salt as possible. This study was done to investigate two different options: (1) alternate glass families that incorporate increased concentrations of Cl; and (2) alternate methods to produce a mineral waste form.

Crum, Jarrod V.; Sundaram, S. K.; Riley, Brian J.; Matyas, Josef; Arreguin, Shelly A.; Vienna, John D.

2009-10-28T23:59:59.000Z

167

Rechargeable Batteries, Photochromics, Electrochemical Lithography: From  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Rechargeable Batteries, Photochromics, Electrochemical Lithography: From Rechargeable Batteries, Photochromics, Electrochemical Lithography: From Interfacial Studies to Practical Applications Speaker(s): Robert Kostecki Date: January 11, 2001 - 12:00pm Location: Bldg 90 Seminar Host/Point of Contact: Satkartar K. Kinney The constantly growing power requirements of portable electronic devices and the need for high-power batteries for electric vehicles have created a strong demand for new batteries or substantial improvements of existing ones. Fundamental problems associated with complex interfacial processes in batteries must be resolved to enhance battery performance and lifetime. An overview of the principles of electrode-electrolyte interfacial studies, experimental methods, recent results, and potential applications will be presented. Advanced instrumental techniques and

168

Electrochemically Modulated Separation for Plutonium Safeguards  

SciTech Connect (OSTI)

Accurate and timely analysis of plutonium in spent nuclear fuel is critical in nuclear safeguards for detection of both protracted and rapid plutonium diversions. Gamma spectroscopy is a viable method for accurate and timely measurements of plutonium provided that the plutonium is well separated from the interfering fission and activation products present in spent nuclear fuel. Electrochemically modulated separation (EMS) is a method that has been used successfully to isolate picogram amounts of Pu from nitric acid matrices. With EMS, Pu adsorption may be turned "on" and "off" depending on the applied voltage, allowing for collection and stripping of Pu without the addition of chemical reagents. In this work, we have scaled up the EMS process to isolate microgram quantities of Pu from matrices encountered in spent nuclear fuel during reprocessing. Several challenges have been addressed including surface area limitations, radiolysis effects, electrochemical cell performance stability, and chemical interferences. After these challenges were resolved, 6 g Pu was deposited in the electrochemical cell with approximately an 800-fold reduction of fission and activation product levels from a spent nuclear fuel sample. Modeling showed that these levels of Pu collection and interference reduction may not be sufficient for Pu detection by gamma spectroscopy. The main remaining challenges are to achieve a more complete Pu isolation and to deposit larger quantities of Pu for successful gamma analysis of Pu. If gamma analyses of Pu are successful, EMS will allow for accurate and timely on-site analysis for enhanced Pu safeguards.

Pratt, Sandra H.; Breshears, Andrew T.; Arrigo, Leah M.; Schwantes, Jon M.; Duckworth, Douglas C.

2013-12-31T23:59:59.000Z

169

High temperature electrochemical corrosion rate probes  

SciTech Connect (OSTI)

Corrosion occurs in the high temperature sections of energy production plants due to a number of factors: ash deposition, coal composition, thermal gradients, and low NOx conditions, among others. Electrochemical corrosion rate (ECR) probes have been shown to operate in high temperature gaseous environments that are similar to those found in fossil fuel combustors. ECR probes are rarely used in energy production plants at the present time, but if they were more fully understood, corrosion could become a process variable at the control of plant operators. Research is being conducted to understand the nature of these probes. Factors being considered are values selected for the Stern-Geary constant, the effect of internal corrosion, and the presence of conductive corrosion scales and ash deposits. The nature of ECR probes will be explored in a number of different atmospheres and with different electrolytes (ash and corrosion product). Corrosion rates measured using an electrochemical multi-technique capabilities instrument will be compared to those measured using the linear polarization resistance (LPR) technique. In future experiments, electrochemical corrosion rates will be compared to penetration corrosion rates determined using optical profilometry measurements.

Bullard, Sophie J.; Covino, Bernard S., Jr.; Holcomb, Gordon R.; Ziomek-Moroz, M.

2005-09-01T23:59:59.000Z

170

PEM Electrolyzer Incorporating an Advanced  

E-Print Network [OSTI]

PEM Electrolyzer Incorporating an Advanced Low Cost Membrane Monjid Hamdan Giner Electrochemical (Academic)­ Membrane Development Collaborations 3M Fuel Cell Components Program­ NSTF Catalyst & Membrane Entegris ­ Carbon Cell Separators Tokuyama ­ Low-Cost Membrane Prof. R. Zalosh (WPI) ­ Hydrogen Safety

171

Using Transcriptomics To Improve Butanol Tolerance of Synechocystis sp. Strain PCC 6803  

Science Journals Connector (OSTI)

...the transmembrane electrochemical gradient and hence of the proton-motive force. Reactive oxygen species (ROS) may accumulate...in bacteria. Arch. Biochem. Biophys. 373 :1-6. 47. Giner-Lamia, J , L Lopez-Maury, JC Reyes and FJ Florencio...

Josefine Anfelt; Bjrn Hallstrm; Jens Nielsen; Mathias Uhln; Elton P. Hudson

2013-09-20T23:59:59.000Z

172

Electrochemical Polishing Applications and EIS of a Vitamin B{sub 4}-Based Ionic Liquid  

SciTech Connect (OSTI)

Modern particle accelerators require minimal interior surface roughness for Niobium superconducting radio frequency (SRF) cavities. Polishing of the Nb is currently achieved via electrochemical polishing with concentrated mixtures of sulfuric and hydrofluoric acids. This acid-based approach is effective at reducing the surface roughness to acceptable levels for SRF use, but due to acid-related hazards and extra costs (including safe disposal of used polishing solutions), an acid-free method would be preferable. This study focuses on an alternative electrochemical polishing method for Nb, using a novel ionic liquid solution containing choline chloride, also known as Vitamin B{sub 4} (VB{sub 4}). Potentiostatic electrochemical impedance spectroscopy (EIS) was also performed on the VB4-based system. Nb polished using the VB4-based method was found to have a final surface roughness comparable to that achieved via the acid-based method, as assessed by atomic force microscopy (AFM). These findings indicate that acid-free VB{sub 4}-based electrochemical polishing of Nb represents a promising replacement for acid-based methods of SRF cavity preparation.

Wixtrom, Alex I. [Christopher Newport University, Newport News, VA (United States); Buhler, Jessica E. [Christopher Newport University, Newport News, VA (United States); Reece, Charles E. [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Abdel-Fattah, Tarek M. [Christopher Newport University, Newport News, VA (United States)

2013-01-01T23:59:59.000Z

173

An electrochemical model for prediction of corrosion of mild steel in aqueous carbon dioxide solutions  

SciTech Connect (OSTI)

A predictive model was developed for uniform carbon dioxide corrosion, based on modeling of individual electrochemical reactions in a water-CO{sub 2} system. The model takes into account the electrochemical reactions of hydrogen ion reduction, carbonic acid reduction, direct water reduction, oxygen reduction, and anodic dissolution of iron. The required electrochemical parameters (e.g., exchange current densities and Tafel slopes) for different reactions were determined from experiments conducted in glass cells. The corrosion process was monitored using polarization resistance, potentiodynamic sweep, electrochemical impedance, and weight-loss measurements. The model was calibrated for two mild steels over a range of parameters: temperature (t) = 20 C to 80 C, pH = 3 to 6, partial pressure of CO{sub 2} (P{sub CO{sub 2}}) = 0 bar to 1 bar (0 kPa to 100 kPa), and {omega} = 0 rpm to 5,000 rpm (v{sub p} = 0 m/s to 2.5 m/s). The model was applicable for uniform corrosion with no protective films present. Performance of the model was validated by comparing predictions to results from independent loop experiments. Predictions also were compared to those of other CO{sub 2} corrosion prediction models. Compared to the previous largely empirical models, the model gave a clearer picture of the corrosion mechanisms by considering the effects of pH, temperature, and solution flow rate on the participating anodic and cathodic reactions.

Nesic, S. [Inst. for Energiteknikk, Kjeller (Norway); Postlethwaite, J. [Univ. of Saskatchewan, Saskatoon (Canada); Olsen, S. [Statoil, Trondheim (Norway)

1996-04-01T23:59:59.000Z

174

High temperature electrochemical corrosion rate probes for combustion environments  

SciTech Connect (OSTI)

Electrochemical corrosion rate probes have been constructed and tested along with mass loss coupons in an air plus water vapor and a N2/O2/CO2 plus water vapor environment. Temperatures ranged from 200? to 700?C. Results show that electrochemical corrosion rates for ash-covered mild steel are a function of time, temperature and process environment. Correlation between the electrochemical and mass loss corrosion rates was poor.

Covino, Bernard S., Jr.; Bullard, Sophie J.; Cramer, Stephen D.; Holcomb, Gordon R.; Ziomek-Moroz, Margaret; Eden, David A. (Intercorr International Inc.); Kane, Russell D. (Intercorr International Inc.); Eden, Dawn C. (Intercorr International Inc.)

2004-01-01T23:59:59.000Z

175

Electrochemical Sensors for the Detection of Lead and Other Toxic...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Sensors for the Detection of Lead and Other Toxic Heavy Metals: The Next Generation of Personal Exposure Electrochemical Sensors for the Detection of Lead and Other Toxic Heavy...

176

Electrochemical Studies of Packed Iron Powder Electrodes: Effects...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

of Packed Iron Powder Electrodes: Effects of Common Constituents of Natural Waters on Corrosion Electrochemical Studies of Packed Iron Powder Electrodes: Effects of Common...

177

E-Print Network 3.0 - accompanying electrochemical intercalation...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

on magnetism in undoped Summary: into electrochemical energy 1 and batteries, electrochromic devices based on lithium intercalation. A theoretical... Physica B 328 (2003)...

178

Electrochemical Branched-DNA Assay for Polymerase Chain Reaction...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Branched-DNA Assay for Polymerase Chain Reaction-Free Detection and Quantification of Oncogenes in Messenger RNA Electrochemical Branched-DNA Assay for Polymerase Chain...

179

Sensitive electrochemical immunoassay for 2,4,6-trinitrotoluene...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

immunoassay for 2,4,6-trinitrotoluene based on functionalized silica nanoparticle labels. Sensitive electrochemical immunoassay for 2,4,6-trinitrotoluene based on functionalized...

180

Electrochemical Immunoassay of Cotinine in Serum Based on Nanoparticle...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Cotinine in Serum Based on Nanoparticle Probe and Immunochromatographic Strip . Electrochemical Immunoassay of Cotinine in Serum Based on Nanoparticle Probe and...

Note: This page contains sample records for the topic "giner electrochemical systems" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Optical and electrochemical properties of hydrogen-bondedphenol...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Optical and electrochemical properties of hydrogen-bonded phenol-pyrrolidino60fullerenes Authors: Moore, G. F., Megiatto, J. D., Hambourger, M., Gervaldo, M., Kodis, G., Moore,...

182

Vehicle Technologies Office Merit Review 2014: Electrochemical Performance Testing  

Broader source: Energy.gov [DOE]

Presentation given by Argonne National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about electrochemical...

183

Structural and Electrochemical Properties of Nanocomposite Polymer Electrolyte for Electrochemical Devices  

Science Journals Connector (OSTI)

This report describes the structural and electrochemical properties of the nanocomposite polymer electrolyte (70PEO:30AgI) incorporating SiO2 filler of different weight percentage (wt %) ranging between 1 and 10 wt %. Studies on inorganic filler in ...

Mohan L Verma; Manickam Minakshi; Nirbhay K Singh

2014-09-05T23:59:59.000Z

184

Electrochemical Biosensors: Recommended Definitions and Classification  

E-Print Network [OSTI]

of the general signicance of the word, a transducer provides bidirectional signal transfer (non-electrical to electrical and vice versa); the transducer part of a sensor is also called a detector, sensor or electrode, but the term transducer is preferred... with an electrochemical transducer (Table 2). It is considered to be a chemically modied electrode (CME) [4,5] as electronic conducting, semiconducting or ionic conducting material is coated with a biochemical lm. A biosensor is an integrated receptortransducer device...

Wilson, George S.; Thé venot, Daniel R.; Toth, Klara; Durst, Richard A.

1999-01-01T23:59:59.000Z

185

Electrochemical aspects of stress-corrosion cracking in. cap alpha. -brass  

SciTech Connect (OSTI)

This paper considers a number of aspects of the stress-corrosion cracking of brass from the point of view of the localized electrochemical processes occurring at the tip of a propagating crack. The principal system examined is the intergranular SCC of 70-30 brass in near-neutral ammoniacal solutions, for which a detailed mechanism is developed. In addition, the effects of nitrite ions in promoting SCC of both brass and copper are considered.

Burstein, G T; Newman, R C

1981-01-01T23:59:59.000Z

186

Characterization of Microbial Fuel Cells at Microbially and Electrochemically Meaningful Time scales  

Science Journals Connector (OSTI)

Characterization of Microbial Fuel Cells at Microbially and Electrochemically Meaningful Time scales ... This direct link of MFC anode biofilm evolution with external resistance and electricity production offers several operational strategies for system optimization. ... Different approaches have been used to improve MFC performance, including reducing internal resistance,(1, 2) optimizing operations by sequential anode?cathode flow-through or electrolyte recirculation,(3-5) and improving biocatalyst attachment on the electrodes. ...

Zhiyong Ren; Hengjing Yan; Wei Wang; Matthew M. Mench; John M. Regan

2011-02-17T23:59:59.000Z

187

CX-004036: Categorical Exclusion Determination | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

4036: Categorical Exclusion Determination 4036: Categorical Exclusion Determination CX-004036: Categorical Exclusion Determination Dimensionally Stable High Performance Membrane CX(s) Applied: B3.6, B5.1 Date: 09/14/2010 Location(s): Newton, Massachusetts Office(s): Energy Efficiency and Renewable Energy In Phase III of the program, Giner Electrochemical Systems, LLC (GES) will take the molding methods that were generated in Phase II and apply them to a roll-good process. A number of different methods will be used to generate the molds. The Phase III tasks for scaling up the fabrication of patterned porous polymer membrane support structures using micro-molding technology is designed around six tasks: improve process parameters for Polydimethylsiloxane (PDMS) micromolding from the Phase II program; seek

188

PowerPoint Presentation  

Broader source: Energy.gov (indexed) [DOE]

Nanostructured Electrode and Electrolyte Nanostructured Electrode and Electrolyte Development for Energy Storage Devices Presented by Karen Waldrip Sandia National Laboratories Albuquerque, NM Funded by the Energy Storage Systems Program of the U.S. Department Of Energy (DOE/ESS) and by the Small Business Innovation Research (SBIR) program, and managed by Sandia National Laboratories (SNL). Sandia is a multi-program laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration, under contract DE-AC04-94AL85000. - SNL, GINER, and ADA - Electrochemical Storage Program Reviews - Capacitor Development Activities D. Ingersoll, F.M. Delnick, and K.E. Waldrip Sandia National Laboratories PO Box 5800 Albuquerque, NM 87185-0614

189

Transport in PEMFC Stacks - DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

0 0 DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report Cortney Mittelsteadt (Primary Contact), Hui Xu, Junqing Ma (GES); John Van Zee, Sirivatch Shimpalee, Visarn Lilavivat (USC); James E. McGrath Myoungbae Lee, Nobuo Hara, Kwan-Soo Lee, Chnng Hyun (VT); Don Conners, Guy Ebbrell (Ballard); Kevin Russell (Tech Etch) Giner Electrochemical Systems, LLC 89 Rumford Ave. Newton, MA 02466 Phone: (781) 529-0529 Email: cmittelsteadt@ginerinc.com DOE Managers HQ: Donna Ho Phone: (202) 586-8000 Email: Donna.Ho@ee.doe.gov GO: Gregory Kleen Phone: (720) 356-1672 Email: Gregory.Kleen@go.doe.gov Contract Number: DE-EE0000471 Subcontractors: * Tech-Etch, Plymouth, MA * Ballard Material Products, Inc., Lowell, MA

190

Thermodynamic, thermomechanical, and electrochemical evaluation of CsHSO4  

E-Print Network [OSTI]

over long-term operation. The volume change accompanying the superprotonic transition of solid acids(Electrochemical conversion and storage: electrochemical cells and batteries; fuel cells); 66.10.Ed(Ionic conduction); 82 activity and ease of waste heat management. Furthermore, solid acid electro- lytes are expected

191

A Low Noise Readout Circuit for Integrated Electrochemical Biosensor Arrays  

E-Print Network [OSTI]

A Low Noise Readout Circuit for Integrated Electrochemical Biosensor Arrays Jichun Zhang, Nicholas 48823, USA {zhangjic, tromblyn, mason}@egr.msu.edu Abstract This paper presents a low noise electrochemical interface circuit that is tuned to the needs of protein-based biosensor arrays and compatible

Mason, Andrew

192

J.M. Tarascon, et al. , Electrochemical energy storage  

E-Print Network [OSTI]

opportunities for Electrochemical Energy Storage (EES) Mass storage (MW): Which technology? Compressed air #12J.M. Tarascon, et al. , Electrochemical energy storage for renewable energies CNRS, Jeudi 3 Octobre 28 TW Renewable EnergiesRenewable EnergiesRenewable Energies WHY ENERGY STORAGE ? Billionsdebarils

Canet, Léonie

193

Journal of The Electrochemical Society, 159 (3) R31-R45 (2012) R31 0013-4651/2012/159(3)/R31/15/$28.00 The Electrochemical Society  

E-Print Network [OSTI]

/15/$28.00 © The Electrochemical Society Modeling and Simulation of Lithium-Ion Batteries from a Systems Engineering Perspective,c and Venkat R. Subramaniana,,z aDepartment of Energy, Environmental and Chemical Engineering, Washington Renewable Energy Laboratory, Golden, Colorado 80401, USA cDepartment of Chemical Engineering, Massachusetts

Subramanian, Venkat

194

Synthesis of cobalt oxide-reduced graphene nanocomposite and its enhanced electrochemical properties as negative material for alkaline secondary battery  

Science Journals Connector (OSTI)

Abstract A potential negative electrode material Co3O4@rGO is synthesized via a facile reflux condensation route. The electrochemical performances of Co3O4@rGO composite for alkaline rechargeable Ni/Co batteries have been systemically investigated for the first time. The reduced-graphene can remarkably enhance the electrochemical activity of Co3O4 materials, leading to a notable improvement of discharge capacity, cycle stability and rate capability. Interestingly, the maximum discharge capacity of Co3O4@rGO-20 (additive amount of GO is 20mg) electrode can reach 511.4mAhg?1 with the capacity retention of 89.1% after 100 cycles at a discharge current of 100mAg?1. A properly electrochemical reaction mechanism of Co3O4@rGO electrode is also constructed in detail.

Yanan Xu; Xiaofeng Wang; Cuihua An; Yijing Wang; Lifang Jiao; Huatang Yuan

2014-01-01T23:59:59.000Z

195

Sensor apparatus using an electrochemical cell  

DOE Patents [OSTI]

A novel technology for sensing mechanical quantities such as force, stress, strain, pressure and acceleration has been invented. This technology is based on a change in the electrochemically generated voltage (electromotive force) with application of force, stress, strain, pressure or acceleration. The change in the voltage is due to a change in the internal resistance of the electrochemical cell with a change in the relative position or orientation of the electrodes (anode and cathode) in the cell. The signal to be detected (e.g. force, stress, strain, pressure or acceleration) is applied to one of the electrodes to cause a change in the relative position or orientation between the electrodes. Various materials, solid, semisolid, gel, paste or liquid can be utilized as the electrolyte. The electrolyte must be an ion conductor. The examples of solid electrolytes include specific polymer conductors, polymer composites, ion conducting glasses and ceramics. The electrodes are made of conductors such as metals with dissimilar electronegativities. Significantly enhanced sensitivities, up to three orders of magnitude higher than that of comparable commercial sensors, are obtained. The materials are substantially less expensive than commercially used materials for mechanical sensors.

Thakur, Mrinal (1309 Gatewood Dr., Apt. 1703, Auburn, AL 36830)

2002-01-01T23:59:59.000Z

196

A Combined Electrochemical and Ultra-High Vacuum Approach to Heterogeneous  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

A Combined Electrochemical and Ultra-High Vacuum Approach to Heterogeneous A Combined Electrochemical and Ultra-High Vacuum Approach to Heterogeneous Electrocatalysis Friday, February 24, 2012 - 11:00am SSRL Bldg. 137-322, 3rd floor Conference Room Matthew A. Rigsby, Oak Ridge National Laboratory Improved energy conversion and storage technologies are crucial for meeting the growing energy demands of the world. Understanding the factors that are currently limiting the advancement of these technologies is vital. One must examine the fundamental properties of electrocatalyst/photoelectrocatalyst materials and the fluid-solid interfaces of which they are a part, and one of the simplest ways to do this is to study model electrocatalyst systems. In the work presented here, studies began with real nanoparticle fuel cell electrocatalysts that demonstrated the key relationship between reactivity

197

Real space mapping of ionic diffusion and electrochemical activity in energy storage and conversion materials  

DOE Patents [OSTI]

A method and system for probing mobile ion diffusivity and electrochemical reactivity on a nanometer length scale of a free electrochemically active surface includes a control module that biases the surface of the material. An electrical excitation signal is applied to the material and induces the movement of mobile ions. An SPM probe in contact with the surface of the material detects the displacement of mobile ions at the surface of the material. A detector measures an electromechanical strain response at the surface of the material based on the movement and reactions of the mobile ions. The use of an SPM tip to detect local deformations allows highly reproducible measurements in an ambient environment without visible changes in surface structure. The measurements illustrate effective spatial resolution comparable with defect spacing and well below characteristic grain sizes of the material.

Kalinin, Sergei V; Balke, Nina; Kumar, Amit; Dudney, Nancy J; Jesse, Stephen

2014-05-06T23:59:59.000Z

198

SURFACE SEGREGATION STUDIES OF SOFC CATHODES: COMBINING SOFT X-RAYS AND ELECTROCHEMICAL IMPEDENCE SPECTROSCOPY  

SciTech Connect (OSTI)

A system to grow heteroepitaxial thin-films of solid oxide fuel cell (SOFC) cathodes on single crystal substrates was developed. The cathode composition investigated was 20% strontium-doped lanthanum manganite (LSM) grown by pulsed laser deposition (PLD) on single crystal (111) yttria-stabilized zirconia (YSZ) substrates. By combining electrochemical impedance spectroscopy (EIS) with x-ray photoemission spectroscopy (XPS) and x-ray absorption spectroscopy XAS measurements, we conclude that electrically driven cation migration away from the two-phase gas-cathode interface results in improved electrochemical performance. Our results provide support to the premise that the removal of surface passivating phases containing Sr2+ and Mn2+, which readily form at elevated temperatures even in O2 atmospheric pressures, is responsible for the improved cathodic performance upon application of a bias.

Miara, Lincoln J.; Piper, L.F.J.; Davis, Jacob N.; Saraf, Laxmikant V.; Kaspar, Tiffany C.; Basu, Soumendra; Smith, K. E.; Pal, Uday B.; Gopalan, Srikanth

2010-12-01T23:59:59.000Z

199

A new electrochemical approach for evaluation of corrosion inhibitors in neutral aqueous solutions  

SciTech Connect (OSTI)

A new comprehensive electrochemical approach to corrosion inhibitor evaluation in neutral aqueous solutions has been developed. It consists of using concurrently three different but complementary electrochemical methods. Linear polarization resistance (LPR), concentration-step potentiostatic (CSP) and constant-concentration potentiostatic (CCP) methods are used to determine the overall corrosion rates, corrosion inhibition mechanism, and stability of the passive oxide film in the presence of corrosion inhibitors. This approach has been used successfully to evaluate corrosion inhibition of three organic inhibitor systems: a phosphonate-based corrosion inhibitor (hydroxyphosphonoacetic acid, HPA), a polymeric corrosion inhibitor (polyacrylic acid, PAA) and a non-phosphorus containing corrosion inhibitor (L-tartaric acid). Short-term CSP/CCP test results for these three inhibitors are in good agreement with long-term weight loss measurements.

Jovancicevic, V. [W.R. Grace and Co., Columbia, MD (United States). Research Div.; Hartwick, D. [BetzDearborn, Mississauga, Ontario (Canada)

1997-12-01T23:59:59.000Z

200

Influence of engine coolant composition on the electrochemical degradation behavior of EPDM radiator hoses  

SciTech Connect (OSTI)

EPDM (ethylene-propylene rubber) has been used for more than 25 years as the main elastomer in radiator hoses because it offers a well-balanced price/performance ratio in this field of application. Some years ago the automotive and rubber industry became aware of a problem called electrochemical degradation and cracking. Cooling systems broke down due to a typical cracking failure of some radiator hoses. Different test methods were developed to simulate and solve the problem on laboratory scale. The influence of different variables with respect to the electrochemical degradation and cracking. Cooling systems broke down due to a typical cracking failure of some radiator hoses. Different test methods were developed to simulate and solve the problem on laboratory scale. The influence of different variables with respect to the electrochemical degradation process has been investigated, but until recently the influence of the engine coolant was ignored. Using a test method developed by DSM elastomers, the influence of the composition of the engine coolant as well as of the EPDM composition has now been evaluated. This paper gives an overview of test results with different coolant technologies and offers a plausible explanation of the degradation mechanisms as a function of the elastomer composition.

Vroomen, G.L.M. [DSM Elastomers Europe, Geleen (Netherlands). Application Center of Expertise; Lievens, S.S.; Maes, J.P. [Texaco Technology Ghent (Belgium)

1999-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "giner electrochemical systems" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

ASSESSING THE TRIBOCORROSION BEHAVIOUR OF Cu AND Al13 BY ELECTROCHEMICAL IMPEDANCE SPECTROSCOPY14  

E-Print Network [OSTI]

monitoring under15 open circuit conditions, i.e. electrochemical noise measurements [7]. Electrochemical16 BY ELECTROCHEMICAL IMPEDANCE SPECTROSCOPY14 15 16 17 18 Jean Geringera , Bernard Normandb , Catherine Alemany is focused on the interests and limits of Electrochemical Impedance Spectroscopy,4 to establish

Paris-Sud XI, Université de

202

Synthesis of graphene platelets by chemical and electrochemical route  

SciTech Connect (OSTI)

Graphical abstract: A schematic showing the overall reduction process of graphite to reduced graphene platelets by chemical and electrochemical route. - Highlights: Graphene was prepared by diverse routes viz. chemical and electrochemical methods. NaBH{sub 4} was effective for removing oxygen functional groups from graphene oxide. Sodium borohydride reduced graphene oxide (SRGO) showed high specific capacitance. Electrochemical rendered a cheap route for production of graphene in powder form. - Abstract: Graphene platelets were synthesized from graphene oxide by chemical and electrochemical route. Under the chemical method, sodium borohydride and hydrazine chloride were used as reductants to produce graphene. In this paper, a novel and cost effective electrochemical method, which can simplify the process of reduction on a larger scale, is demonstrated. The electrochemical method proposed in this paper produces graphene in powder form with good yield. The atomic force microscopic images confirmed that the graphene samples prepared by all the routes have multilayers of graphene. The electrochemical process provided a new route to make relatively larger area graphene sheets, which will have interest for further patterning applications. Attempt was made to quantify the quantum of reduction using cyclic voltammetry and choronopotentiometry techniques on reduced graphene samples. As a measure in reading the specific capacitance values, a maximum specific capacitance value of 265.3 F/g was obtained in sodium borohydride reduced graphene oxide.

Ramachandran, Rajendran; Felix, Sathiyanathan [Centre for Nanotechnology Research, VIT University, Vellore 632014, Tamil Nadu (India); Joshi, Girish M. [Materials Physics Division, School of Advanced Sciences, VIT University, Vellore 632014, Tamil Nadu (India); Raghupathy, Bala P.C., E-mail: balapraveen2000@yahoo.com [Centre for Nanotechnology Research, VIT University, Vellore 632014, Tamil Nadu (India); Research and Advanced Engineering Division (Materials), Renault Nissan Technology and Business Center India (P) Ltd., Chennai, Tamil Nadu (India); Jeong, Soon Kwan, E-mail: jeongsk@kier.re.kr [Climate Change Technology Research Division, Korea Institute of Energy Research, Yuseong-gu, Daejeon 305-343 (Korea, Republic of); Grace, Andrews Nirmala, E-mail: anirmalagrace@vit.ac.in [Centre for Nanotechnology Research, VIT University, Vellore 632014, Tamil Nadu (India); Climate Change Technology Research Division, Korea Institute of Energy Research, Yuseong-gu, Daejeon 305-343 (Korea, Republic of)

2013-10-15T23:59:59.000Z

203

Argonne Chemical Sciences & Engineering -Electrochemical Energy Storage -  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Engineering Engineering * Members * Contact * Publications * Overview EES Home Electrochemical Energy Storage - Engineering Electrochemical Energy Storage Argonne researcher Panagiotis Prezas examines a lithium-ion battery cell at the Battery Test Facility. Capabilities In support of and as part of the applied research and development (R&D) area, the Argonne's Electrochemical Energy Storage department (EES) has established and employs a variety of engineering R&D capabilities. These capabilities include electrode modeling, engineering, & fabrication; electrode/electrolyte interface modeling; cell modeling & engineering; cell, module, and battery design modeling; and cell, module, and battery cost modeling. Additionally, EES is developing new capabilities in the

204

Electrochemical Approaches to PV Busbar Application  

SciTech Connect (OSTI)

Busbars are an integral component of any thin-film photovoltaic module and must be easy and quick to apply by PV manufacturers, as well as provide long-term reliability in deployed modules. Potential reliability issues include loss of adhesion and delamination, chemical instability under current collection conditions (electromigration or corrosion), compatibility of material and application method with subsequent encapsulation steps. Several new and novel busbar materials and application methods have been explored, including adhering metal busbars with various one- and two-part conductive epoxies or conductive adhesive films, ultrasonic bonding of metal busbar strips, and bonding of busbar strips using low-temperature solders. The most promising approach to date has been the direct application of metal busbars via various electrochemical techniques, which offers a variety of distinct advantages.

Pankow, J. W.

2005-01-01T23:59:59.000Z

205

Electrochemical Isotope Effect and Lithium Isotope Separation  

Science Journals Connector (OSTI)

In a series of papers Kavner et al. (2005, 2008)(2, 3) derive an equation predicting isotopic fractionation due to an electrochemical isotope effect (?EIE), defined by the ratio of electron transfer rates (k?/k) for isotopically substituted species (prime for heavy isotopologues): where v, ?G, kB, T, m, ?eq, QP/QR, z, e, and ? denote collision frequency, activation free energy, Boltzmanns constant, temperature, mass in motion, equilibrium fractionation factor, partition function ratio of abundant isotopologues of product (P) and reactant (R), number of electrons, charge of electron, and Marcus reorganization energy, respectively. ... fractional isotope evolution of Zn isotopes during an electroplating process which stepwise removes most of the Zn from the aq. ...

Jay R. Black; Grant Umeda; Bruce Dunn; William F. McDonough; Abby Kavner

2009-07-06T23:59:59.000Z

206

Method for making an electrochemical cell  

DOE Patents [OSTI]

Described is a thin-film battery, especially a thin-film microbattery, and a method for making same having application as a backup or primary integrated power source for electronic devices. The battery includes a novel electrolyte which is electrochemically stable and does not react with the lithium anode and a novel vanadium oxide cathode Configured as a microbattery, the battery can be fabricated directly onto a semiconductor chip, onto the semiconductor die or onto any portion of the chip carrier. The battery can be fabricated to any specified size or shape to meet the requirements of a particular application. The battery is fabricated of solid state materials and is capable of operation between -15.degree. C. and 150.degree. C.

Bates, John B. (Oak Ridge, TN); Dudney, Nancy J. (Knoxville, TN)

1996-01-01T23:59:59.000Z

207

Composite electrode for use in electrochemical cells  

DOE Patents [OSTI]

A porous composite electrode for use in electrochemical cells. The electrode has a first face and a second face defining a relatively thin section therebetween. The electrode is comprised of an ion conducting material, an electron conducting material, and an electrocatalyst. The volume concentration of the ion conducting material is greatest at the first face and is decreased across the section, while the volume concentration of the electron conducting material is greatest at the second face and decreases across the section of the electrode. Substantially all of the electrocatalyst is positioned within the electrode section in a relatively narrow zone where the rate of electron transport of the electrode is approximately equal to the rate of ion transport of the electrode. 4 figs., 1 tab.

Vanderborgh, N.E.; Huff, J.R.; Leddy, J.

1987-10-16T23:59:59.000Z

208

Development of an electrochemical hydrogen separator  

SciTech Connect (OSTI)

The electrochemical hydrogen separator (EHS), under development at ERC, has several attractive features: The operating temperature (150{degree}C--200{degree}C) is higher than those associated with the currently available devices and is compatible with the low temperature shift reactors. The EHS can operate at atmospheric as well as elevated pressures and the product H{sub 2} is available at the feed stream pressure. High hydrogen recovery factor: 90% H{sub 2} recovery from feed streams containing less than 10% hydrogen is feasible. High hydrogen purity: The product H{sub 2} purity is >99% (dry basis) and is virtually independent of H{sub 2} concentration in the feed gas. The process is continuous. Low energy cost: Depending upon the operating conditions, the energy requirement varies between 2 to 6 kWh/1000 SCF of recovered hydrogen.

Abens, S.; Fruchtman, J.; Kush, A.

1992-11-01T23:59:59.000Z

209

Development of an electrochemical hydrogen separator  

SciTech Connect (OSTI)

The electrochemical hydrogen separator (EHS), under development at ERC, has several attractive features: The operating temperature (150[degree]C--200[degree]C) is higher than those associated with the currently available devices and is compatible with the low temperature shift reactors. The EHS can operate at atmospheric as well as elevated pressures and the product H[sub 2] is available at the feed stream pressure. High hydrogen recovery factor: 90% H[sub 2] recovery from feed streams containing less than 10% hydrogen is feasible. High hydrogen purity: The product H[sub 2] purity is >99% (dry basis) and is virtually independent of H[sub 2] concentration in the feed gas. The process is continuous. Low energy cost: Depending upon the operating conditions, the energy requirement varies between 2 to 6 kWh/1000 SCF of recovered hydrogen.

Abens, S.; Fruchtman, J.; Kush, A.

1992-01-01T23:59:59.000Z

210

Electrochemical Cell Design With A Hollow Gate  

DOE Patents [OSTI]

An electrochemical cell having a spiral winding around a central core, wherein the central core is provided with longitudinal grooves on its outer surface to facilitate electrolyte filing and accommodate overpressure. The core itself improves dissipation of heat generated along the center of the cell, and the hollow core design allows the cell core to have a larger radius, permitting the "jelly roll" winding to begin at a larger radius and thereby facilitate the initial turns of the winding by decreasing the amount of bending required of the electrode laminate at the beginning of the winding operation. The hollow core also provides mechanical support end-to-end. A pair of washers are used at each end of the cell to sandwich current collection tabs in a manner that improves electrical and thermal conductivity while also providing structural integrity.

Romero, Antonio (Parkton, MD); Oweis, Salah (Ellicott City, MD); Chagnon, Guy (Columbia, MD); Staniewicz, Robert (Hunt Valley, MD); Briscoe, Douglas (Westminster, MD)

2000-02-01T23:59:59.000Z

211

Electrochemical corrosion testing of metal waste forms  

SciTech Connect (OSTI)

Electrochemical corrosion tests have been conducted on simulated stainless steel-zirconium (SS-Zr) metal waste form (MWF) samples. The uniform aqueous corrosion behavior of the samples in various test solutions was measured by the polarization resistance technique. The data show that the MWF corrosion rates are very low in groundwaters representative of the proposed Yucca Mountain repository. Galvanic corrosion measurements were also conducted on MWF samples that were coupled to an alloy that has been proposed for the inner lining of the high-level nuclear waste container. The experiments show that the steady-state galvanic corrosion currents are small. Galvanic corrosion will, hence, not be an important mechanism of radionuclide release from the MWF alloys.

Abraham, D. P.; Peterson, J. J.; Katyal, H. K.; Keiser, D. D.; Hilton, B. A.

1999-12-14T23:59:59.000Z

212

Development of an Electrochemical Separator and Compressor  

SciTech Connect (OSTI)

Global conversion to sustainable energy is likely to result in a hydrogen-based economy that supports U.S. energy security objectives while simultaneously avoiding harmful carbon emissions. A key hurdle to successful implementation of a hydrogen economy is the low-cost generation, storage, and distribution of hydrogen. One of the most difficult requirements of this transformation is achieving economical, high density hydrogen storage in passenger vehicles. Transportation applications may require compression and storage of high purity hydrogen up to 12,000 psi. Hydrogen production choices range from centralized low-pressure generation of relatively impure gas in large quantities from steam-methane reformer plants to distributed generation of hydrogen under moderate pressure using water electrolysis. The Electrochemical Hydrogen Separator + Compressor (EHS+C) technology separates hydrogen from impurities and then compresses it to high pressure without any moving parts. The Phase I effort resulted in the construction and demonstration of a laboratory-scale hardware that can separate and compress hydrogen from reformate streams. The completion of Phase I has demonstrated at the laboratory scale the efficient separation and compression of hydrogen in a cost effective manner. This was achieved by optimizing the design of the Electrochemical Hydrogen Compression (EHC) cell hardware and verified by parametric testing in single cell hardware. A broad range of commercial applications exist for reclamation of hydrogen. One use this technology would be in combination with commercial fuel cells resulting in a source of clean power, heat, and compressed hydrogen. Other applications include the reclamation of hydrogen from power plants and other industrial equipment where it is used for cooling, recovery of process hydrogen from heat treating processes, and semiconductor fabrication lines. Hydrogen can also be recovered from reformate streams and cryogenic boil-offs using this technology.

Trent Molter

2011-04-28T23:59:59.000Z

213

Robust control strategies for hybrid solid oxide fuel cell systems.  

E-Print Network [OSTI]

??Solid Oxide Fuel Cell (SOFC) systems are electrochemical energy conversion devices characterized by the use of solid oxide as the electrolyte. They operate at high (more)

Mathew, Anju Ann

2010-01-01T23:59:59.000Z

214

Time Resolved in Situ XAFS Study of the Electrochemical Oxygen Intercalation in SrFeO2.5 Brownmillerite Structure: Comparison with the Homologous SrCoO2.5 System  

E-Print Network [OSTI]

as electrodes in solid oxide fuel cells (SOFCs) or batteries,1-12 sensors,13-16 magnetic recording,17 membranes fuel cells. In this regard, SrMO2.5 (M ) Fe,Co) systems with a Brownmillerite-type structure are able and batteries, a huge scientific work was performed in the past decade in order to understand the problems

Frenkel, Anatoly

215

Argonne Chemical Sciences & Engineering - Electrochemical Energy Storage  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Electrochemical Energy Storage Electrochemical Energy Storage * Basic Research * Applied R&D * Engineering * Battery Testing Electrochemical Energy Storage The Energy Storage Theme The electrochemical Energy Storage (EES) Theme is internationally recognized as a world-class center for lithium battery R&D. It effectively integrates basic research, applied R&D, engineering, and battery testing, as shown in the diagram below. ees chart Its current focus is on developing improved materials and cell chemistries that will enable lithium-ion (Li-Ion) batteries for commercial light-duty vehicle applications, e.g. hybrid electric vehicle (HEV), plug-in hybrid electric vehicle (PHEV), and electric vehicle (EV) applications. Basic Research EES recently won a new Office of Science Energy Frontier Research Center (EFRC) denoted the "Center for Electrical Energy Storage: Tailored Interfaces." This new EFRC will focus on the science of stabilizing electrode/electrolyte interfaces in lithium batteries to achieve longer life and enhanced abuse tolerance.

216

Electrochemical Corrosion Rate Sensors for Waste Incineration Applications  

SciTech Connect (OSTI)

Electrochemical corrosion rate sensors work in high temperature waste incineration applications where ash is deposited. The ash serves as the electrolyte for electrochemical measurements, such as liner polarization resistance, electrochemical noise, and harmonic distortion analyses. Results to date have shown that these types of sensors respond qualitatively to changes in temperature, gas composition, alloy composition, and type of ash. Several years of research have shown that high temperature corrosion rate probes need to be better understood before corrosion rate can be used as a process variable by power plant operators. More recent research has shown that electrochemical corrosion probes typically measure lower corrosion rates than those measured by standard mass loss techniques. While still useful for monitoring changes in corrosion rates, absolute probe corrosion rates will need a calibration factor to be useful. Ideas for research that may help resolve these issues are presented.

Covino, B.S., Jr.; Bullard, S.J.; Matthes, S.A.; Holcomb, G.R.; Ziomek-Moroz, M.; Eden, D.A. (Honeywell Intercorr)

2007-03-01T23:59:59.000Z

217

Electrochemical and Electro-Discharge Machining with a Threshold Current  

Science Journals Connector (OSTI)

......machining and electro-discharge machining of a metal...problems in which the electric potential satisfies...ECM), electro-discharge machining (EDM...method of electrochemical arc machining (ECAM...depending upon the local electric current density. In......

A. A. LACEY; M. SHILLOR

1987-01-01T23:59:59.000Z

218

Electrochemical Flocculation and Chlorination for Domestic Water Supplies  

E-Print Network [OSTI]

Three electrochemical chlorinators were developed, tested and evaluated. The first used natural chlorides in the water to produce a chlorine residual; the second and third produced chlorine residuals by electrolysis of brine solution. Brine feed...

Dillion Jr., R. C.; Hiler, E. A.; Peters, J. L.

219

Electrochemically-mediated amine regeneration for carbon dioxide separations  

E-Print Network [OSTI]

This thesis describes a new strategy for carbon dioxide (CO?) separations based on amine sorbents, which are electrochemically-mediated to facilitate the desorption and regeneration steps of the separation cycle. The ...

Stern, Michael C. (Michael Craig)

2014-01-01T23:59:59.000Z

220

Leveraging e-Science infrastructure for electrochemical research  

Science Journals Connector (OSTI)

...research-article Articles 1003 193 Theme Issue 'e-Science: novel research, new science and enduring impact' compiled and edited by David...John M. Brooke and Paul Watson Leveraging e-Science infrastructure for electrochemical research Tom...

2011-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "giner electrochemical systems" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

US DRIVE Electrochemical Energy Storage Technical Team Roadmap  

Broader source: Energy.gov [DOE]

This U.S. DRIVE electrochemical energy storage roadmap describes ongoing and planned efforts to develop electrochemical energy storage technologies for plug-in electric vehicles (PEVs). The Energy Storage activity comprises a number of research areas (including advanced materials research, cell level research, battery development, and enabling R&D which includes analysis, testing and other activities) for advanced energy storage technologies (batteries and ultra-capacitors).

222

Thermal conductor for high-energy electrochemical cells  

DOE Patents [OSTI]

A thermal conductor for use with an electrochemical energy storage device is disclosed. The thermal conductor is attached to one or both of the anode and cathode contacts of an electrochemical cell. A resilient portion of the conductor varies in height or position to maintain contact between the conductor and an adjacent wall structure of a containment vessel in response to relative movement between the conductor and the wall structure. The thermal conductor conducts current into and out of the electrochemical cell and conducts thermal energy between the electrochemical cell and thermally conductive and electrically resistive material disposed between the conductor and the wall structure. The thermal conductor may be fabricated to include a resilient portion having one of a substantially C-shaped, double C-shaped, Z-shaped, V-shaped, O-shaped, S-shaped, or finger-shaped cross-section. An elastomeric spring element may be configured so as to be captured by the resilient conductor for purposes of enhancing the functionality of the thermal conductor. The spring element may include a protrusion that provides electrical insulation between the spring conductor and a spring conductor of an adjacently disposed electrochemical cell in the presence of relative movement between the cells and the wall structure. The thermal conductor may also be fabricated from a sheet of electrically conductive material and affixed to the contacts of a number of electrochemical cells.

Hoffman, Joseph A. (Minneapolis, MN); Domroese, Michael K. (South St. Paul, MN); Lindeman, David D. (Hudson, WI); Radewald, Vern E. (Austin, TX); Rouillard, Roger (Beloeil, CA); Trice, Jennifer L. (Eagan, MN)

2000-01-01T23:59:59.000Z

223

The Use of Electrochemical Techniques to Characterize Wet Steam Environments  

SciTech Connect (OSTI)

The composition of a steam phase in equilibrium with a water phase at high temperature is remarkably affected by the varying capabilities of the water phase constituents to partition into the steam. Ionic impurities (sodium, chloride, sulfate, etc.) tend to remain in the water phase, while weakly ionic or gaseous species (oxygen) partition into the steam. Analysis of the water phase can provide misleading results concerning the steam phase composition or environment. This paper describes efforts that were made to use novel electrochemical probes and sampling techniques to directly characterize a wet steam phase environment in equilibrium with high temperature water. Probes were designed to make electrochemical measurements in the thin film of water existing on exposed surfaces in steam over a water phase. Some of these probes were referenced against a conventional high temperature electrode located in the water phase. Others used two different materials (typically tungsten and platinum) to make measurements without a true reference electrode. The novel probes were also deployed in a steam space removed from the water phase. It was necessary to construct a reservoir and an external, air-cooled condenser to automatically keep the reservoir full of condensed steam. Conventional reference and working electrodes were placed in the water phase of the reservoir and the novel probes protruded into the vapor space above it. Finally, water phase probes (both reference and working electrodes) were added to the hot condensed steam in the external condenser. Since the condensing action collapsed the volatiles back into the water phase, these electrodes proved to be extremely sensitive at detecting oxygen, which is one of the species of highest concern in high temperature power systems. Although the novel steam phase probes provided encouraging initial results, the tendency for tungsten to completely corrode away in the steam phase limited their usefulness. However, the conventional water phase electrodes, installed both in the reservoir and in the external condensing coil, provided useful data showing the adverse impact of oxygen and carbon dioxide on the REDOX potential and high temperature pH, respectively.

Bruce W. Bussert; John A. Crowley; Kenneth J. Kimball; Brian J. Lashway

2003-04-30T23:59:59.000Z

224

SISGR: Improved Electrical Energy Storage with Electrochemical Double Layer Capacitance Based on Novel Carbon Electrodes, New Electrolytes, and Thorough Development of a Strong Science Base  

SciTech Connect (OSTI)

The broad objective of the SISGR program is to advance the fundamental scientific understanding of electrochemical double layer capacitance (EDLC) and thus of ultracapacitor systems composed of a new type of electrode based on chemically modified graphene (CMG) and (primarily) with ionic liquids (ILs) as the electrolyte. Our team has studied the interplay between graphene-based and graphene-derived carbons as the electrode materials in electrochemical double layer capacitors (EDLC) systems on the one hand, and electrolytes including novel ionic liquids (ILs), on the other, based on prior work on the subject.

Ruoff, Rodney S. [PI; Alam, Todd M. [co-PI; Bielawski, Christopher W. [co-PI; Chabal, Yves [co-PI; Hwang, Gyeong [co-PI; Ishii, Yoshitaka [co-PI; Rogers, Robin [co-PI

2014-07-23T23:59:59.000Z

225

Steel refining with an electrochemical cell  

DOE Patents [OSTI]

Apparatus for processing a metallic fluid containing iron oxide, container for a molten metal including an electrically conductive refractory disposed for contact with the molten metal which contains iron oxide, an electrolyte in the form of a basic slag on top of the molten metal, an electrode in the container in contact with the slag electrically separated from the refractory, and means for establishing a voltage across the refractory and the electrode to reduce iron oxide to iron at the surface of the refractory in contact with the iron oxide containing fluid. A process is disclosed for refining an iron product containing not more than about 10% by weight oxygen and not more than about 10% by weight sulfur, comprising providing an electrolyte of a slag containing one or more of calcium oxide, magnesium oxide, silica or alumina, providing a cathode of the iron product in contact with the electrolyte, providing an anode in contact with the electrolyte electrically separated from the cathode, and operating an electrochemical cell formed by the anode, the cathode and the electrolyte to separate oxygen or sulfur present in the iron product therefrom.

Blander, Milton (Palos Park, IL); Cook, Glenn M. (Naperville, IL)

1988-01-01T23:59:59.000Z

226

Joint with application in electrochemical devices  

DOE Patents [OSTI]

A joint for use in electrochemical devices, such as solid oxide fuel cells (SOFCs), oxygen separators, and hydrogen separators, that will maintain a hermetic seal at operating temperatures of greater than 600.degree. C., despite repeated thermal cycling excess of 600.degree. C. in a hostile operating environment where one side of the joint is continuously exposed to an oxidizing atmosphere and the other side is continuously exposed to a wet reducing gas. The joint is formed of a metal part, a ceramic part, and a flexible gasket. The flexible gasket is metal, but is thinner and more flexible than the metal part. As the joint is heated and cooled, the flexible gasket is configured to flex in response to changes in the relative size of the metal part and the ceramic part brought about by differences in the coefficient of thermal expansion of the metal part and the ceramic part, such that substantially all of the tension created by the differences in the expansion and contraction of the ceramic and metal parts is absorbed and dissipated by flexing the flexible gasket.

Weil, K Scott [Richland, WA; Hardy, John S [Richland, WA

2010-09-14T23:59:59.000Z

227

Studies on current distribution in electrochemical cells  

SciTech Connect (OSTI)

Three studies of electrochemical current distribution have been performed using potential-theory models and the boundary-element method (BEM). (1) The steady-state behavior of cells with nonuniform current density over a passivating anode is investigated. Current distributions calculated for a test cell, using the measured kinetic behavior of nickel in acid-nickel-sulfate solution, are compared to estimates from earlier models. Although current-density profiles determined by weight loss on a segmented rotating cylinder agreed satisfactorily with model calculations, the measured length of the passive zone exceeds the theoretical value. The model's applicability to anodic protection is demonstrated for a stainless-steel sulfuric-acid holding tank. (2) A model is established to describe the effects of attached bubbles on the potential drop at gas-evolving electrodes including: (1) ohmic obstruction within the electrolyte; (2) area masking on the electrode surface, which raises surface overpotential; and (3) decreased local supersaturation, which lowers the concentration overpotential. The model, based on pseudosteady-stae diffusion of dissolved gas within a concentration boundary layer, is applied to an example of hydrogen evolution in KOH solution. Under Tafel kinetics, the current distribution is nearly uniform over the unmasked electrode, and the increase in surface overpotential is the dominant effect. Outside the Tafel regime, the current density is strongly enhanced near the bubble, and the lowering of concentration overpotential is a major voltage effect. (3) A model of electrodeposition in the presence of diffusion-controlled leveling agents is developed. The evolution of groove profile during deposition of nickel from a Watts-type bath containing coumarin is predicted and compared to measurements reported in the literature.

Dukovic, J.O.; Tobias, C.W.

1986-08-01T23:59:59.000Z

228

Electrochromic polyaniline/graphite oxide nanocomposites with endured electrochemical energy storage  

E-Print Network [OSTI]

Electrochromic polyaniline/graphite oxide nanocomposites with endured electrochemical energy February 2013 Keywords: Polyaniline nanocomposite film Electropolymerization Electrochromism a b s t r a c films for electrochromic displays and electrochemical energy storage devices applications were

Guo, John Zhanhu

229

Electrochemical Investigation of the Rate-Limiting Mechanisms for Trichloroethylene and Carbon Tetrachloride Reduction at Iron Surfaces  

Science Journals Connector (OSTI)

Electrochemical Investigation of the Rate-Limiting Mechanisms for Trichloroethylene and Carbon Tetrachloride Reduction at Iron Surfaces ... In zerovalent iron remedial systems, the iron serves as an electron donor that transforms chlorinated organic compounds to their nonchlorinated analogues and chloride ions. ... Over the potential range investigated in this study, reaction 4 or 5 is followed by a second electron transfer in which the trichloromethyl radical reacts according to (21, 22) The reaction byproducts observed in this study are consistent with these reactions. ...

Tie Li; James Farrell

2001-07-28T23:59:59.000Z

230

Electrochemical corrosion rate probes for high temperature energy applications  

SciTech Connect (OSTI)

Electrochemical corrosion rate (ECR) probes were constructed and exposed along with mass loss coupons in a N2/O2/CO2/H2O environment to determine ECR probe operating characteristics. Temperatures ranged from 450 to 800 C and both ECR probes and mass loss coupons were coated with ash. Results are presented in terms of the probe response to temperature, the measured zero baseline, and the quantitative nature of the probes. The effect of Stern-Geary constant and the choice of electrochemical technique used to measure the corrosion rate are also discussed. ECR probe corrosion rates were a function of time, temperature, and process environment and were found to be quantitative for some test conditions. Measured Stern-Geary constants averaged 0.0141 V/decade and the linear polarization technique was found to be more quantitative than the electrochemical noise technique.

Covino, Bernard S., Jr.; Bullard, Sophie J.; Cramer, Stephen D.; Holcomb, Gordon R.; Ziomek-Moroz, M.; Cayard, M.S. (InterCorr International Inc.); Eden, D.A. (InterCorr International Inc.)

2004-01-01T23:59:59.000Z

231

Equipment specifications for an electrochemical fuel reprocessing plant  

SciTech Connect (OSTI)

Electrochemical reprocessing is a technique used to chemically separate and dissolve the components of spent nuclear fuel, in order to produce new metal fuel. There are several different variations to electrochemical reprocessing. These variations are accounted for by both the production of different types of spent nuclear fuel, as well as different states and organizations doing research in the field. For this electrochemical reprocessing plant, the spent fuel will be in the metallurgical form, a product of fast breeder reactors, which are used in many nuclear power plants. The equipment line for this process is divided into two main categories, the fuel refining equipment and the fuel fabrication equipment. The fuel refining equipment is responsible for separating out the plutonium and uranium together, while getting rid of the minor transuranic elements and fission products. The fuel fabrication equipment will then convert this plutonium and uranium mixture into readily usable metal fuel.

Hemphill, Kevin P [Los Alamos National Laboratory

2010-01-01T23:59:59.000Z

232

SciTech Connect: Testing of a Microfluidic Sampling System for...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

of a Microfluidic Sampling System for High Temperature Electrochemical MC&A Authors: Pereira, C.; Nichols, K. (Chemical Sciences and Engineering Division) Chemical Sciences and...

233

Nonlinear electrochemical relaxation around conductors Kevin T. Chu1,2  

E-Print Network [OSTI]

­5 , but electrochemical relaxation is also being increas- ingly exploited in colloids and microfluidics 6 . For ex- ample

Chu, Kevin T.

234

Nitrogen-doped Graphene and Its Electrochemical Applications  

SciTech Connect (OSTI)

Nitrogen-doped graphene (N-graphene) is obtained by exposing graphene to nitrogen plasma. N-graphene exhibits much higher electrocatalytic activity toward oxygen reduction and H2O2 reduction than graphene, and much higher durability and selectivity than the widely-used expensive Pt. The excellent electrochemical performance of N-graphene is attributed to nitrogen functional groups and the specific properties of graphene. This indicates that N-graphene is promising for applications in electrochemical energy devices (fuel cells, metal-air batteries) and biosensors.

Shao, Yuyan; Zhang, Sheng; Engelhard, Mark H.; Li, Guosheng; Shao, Guocheng; Wang, Yong; Liu, Jun; Aksay, Ilhan A.; Lin, Yuehe

2010-06-04T23:59:59.000Z

235

Electrochemical process and production of novel complex hydrides  

DOE Patents [OSTI]

A process of using an electrochemical cell to generate aluminum hydride (AlH.sub.3) is provided. The electrolytic cell uses a polar solvent to solubilize NaAlH.sub.4. The resulting electrochemical process results in the formation of AlH.sub.3. The AlH.sub.3 can be recovered and used as a source of hydrogen for the automotive industry. The resulting spent aluminum can be regenerated into NaAlH.sub.4 as part of a closed loop process of AlH.sub.3 generation.

Zidan, Ragaiy

2013-06-25T23:59:59.000Z

236

Minimizing Nonspecific Adsorption in Protein Biosensors that Utilize Electrochemical Impedance Spectroscopy  

E-Print Network [OSTI]

, such as optical and acoustic methods.3-6 In addition, electrochemical biosensors often have lower noise levels are often sensitive to environmental noise. Electrochemical glucose biosensors detect glucose by measuringMinimizing Nonspecific Adsorption in Protein Biosensors that Utilize Electrochemical Impedance

Suni, Ian Ivar

237

Selection of Electrode Area for Electrochemical Noise Measurements to Monitor Localized CO2 Corrosion  

E-Print Network [OSTI]

1 Selection of Electrode Area for Electrochemical Noise Measurements to Monitor Localized CO2-saturated 1 wt % NaCl solution at 80o C. Electrochemical noise (EN) was obtained from both 11.6 cm2 and 1 cm, electrochemical noise, electrode size, pitting, transient INTRODUCTION CO2 corrosion of steel pipelines has been

Paris-Sud XI, Université de

238

Electrochemical separation of actinides and fission products in molten salt electrolyte  

SciTech Connect (OSTI)

Molten salt electrochemical separation may be applied to accelerator-based conversion (ABC) and transmutation systems by dissolving the fluoride transport salt in LiCl-KCl eutectic solvent. The resulting fluoride-chloride mixture will contain small concentrations of fission product rare earths (La, Nd, Gd, Pr, Ce, Eu, Sm, and Y) and actinides (U, Np, Pu, Am, and Cm). The Gibbs free energies of formation of the metal chlorides are grouped advantageously such that the actinides can be deposited on a solid cathode with the majority of the rare earths remaining in the electrolyte. Thus, the actinides are recycled for further transmutation. Rockwell and its partners have measured the thermodynamic properties of the metal chlorides of interest (rare earths and actinides) and demonstrated separation of actinides from rare earths in laboratory studies. A model is being developed to predict the performance of a commercial electrochemical cell for separations starting with PUREX compositions. This model predicts excellent separation of plutonium and other actinides from the rare earths in metal-salt systems.

Gay, R. L.; Grantham, L. F.; Fusselman, S. P.; Grimmett, D. L.; Roy, J. J. [Rockwell International/Rocketdyne Division Canoga Park, California 91309-7922 (United States)

1995-09-15T23:59:59.000Z

239

Morphological, rheological and electrochemical studies of Poly(ethylene  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Morphological, rheological and electrochemical studies of Poly(ethylene Morphological, rheological and electrochemical studies of Poly(ethylene oxide) electrolytes containing fumed silica nanoparticles Title Morphological, rheological and electrochemical studies of Poly(ethylene oxide) electrolytes containing fumed silica nanoparticles Publication Type Journal Article Year of Publication 2004 Authors Xie, Jiangbing, Robert G. Duan, Yong Bong Han, and John B. Kerr Journal Solid State Ionics Volume 175 Pagination 755-758 Keywords composite polymer electrolytes, nanoparticles, poly(ethylene oxide), rheology Abstract In this paper, the rheology and crystallization of composite Poly(ethylene oxide) (PEO) electrolytes were studied by dynamic mechanical analysis, DSC and polarized light microscopy. The effects of fumed silica nanoparticles on the conductivities of the polymer electrolytes at temperatures above and below their melting points were measured and related to their rheology and crystallization behavior, respectively. The electrolyte/electrode interfacial properties and cycling performances of the composite polymer electrolytes in Li/Li cells are also discussed. The measured electrochemical properties were found to depend heavily on the operational environments and sample processing history.

240

Electrochemically Mediated Separation for Carbon Capture Michael C. Sterna  

E-Print Network [OSTI]

1 Electrochemically Mediated Separation for Carbon Capture Michael C. Sterna , Fritz Simeona. ___________________________________________________________________________________ Abstract Carbon capture technology has been proposed as an effective approach for the mitigation potential for facilitating CO2 capture at industrial-scale carbon emitters; however, the total operational

Note: This page contains sample records for the topic "giner electrochemical systems" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Electrochemical Immunosensors for Detection of Cancer Protein Biomarkers  

Science Journals Connector (OSTI)

Sarkar, P.; Ghosh, D.; Bhattacharyay, D.; Setford, S. J.; Turner, A. P. F.Electrochemical Immunoassay for Free Prostate Specific Antigen (f-PSA) Using Magnetic Beads Electroanalysis 2008, 20, 1414 1420 ... Sarkar, P.; Ghosh, D.; Bhattacharyay, D.; Setford, S. J.; Turner, A. P. F. ...

Bhaskara V. Chikkaveeraiah; Ashwinkumar A. Bhirde; Nicole Y. Morgan; Henry S. Eden; Xiaoyuan Chen

2012-07-27T23:59:59.000Z

242

Electrochemical biosensor based on immobilized enzymes and redox polymers  

DOE Patents [OSTI]

The present invention relates to an electrochemical enzyme biosensor for use in liquid mixtures of components for detecting the presence of, or measuring the amount of, one or more select components. The enzyme electrode of the present invention is comprised of an enzyme, an artificial redox compound covalently bound to a flexible polymer backbone and an electron collector.

Skotheim, Terje A. (Shoreham, NY); Okamoto, Yoshiyuki (Fort Lee, NJ); Hale, Paul D. (Northport, NY)

1992-01-01T23:59:59.000Z

243

Electrochemical and Raman measurements on single-walled carbon nanotubes  

E-Print Network [OSTI]

Electrochemical and Raman measurements on single-walled carbon nanotubes M. Stoll a,*, P performed on a carbon nanotube mat as a working electrode using different salt solutions. The gravimetric capacitance of the nanotube material was estimated and its effective surface area was de- termined in a purely

Nabben, Reinhard

244

Raman Measurements on Electrochemically Doped Single-Walled Carbon Nanotubes  

E-Print Network [OSTI]

Raman Measurements on Electrochemically Doped Single-Walled Carbon Nanotubes P. M. Rafailov, M and studied the Raman response of electro- chemically doped single-walled carbon nanotubes (SWNT) using different salt solutions. The fre- quency shift of the radial breathing mode (RBM) and the high-energy mode

Nabben, Reinhard

245

Graphene Based Electrochemical Sensors and Biosensors: Yuyan Shao,a  

E-Print Network [OSTI]

Review Graphene Based Electrochemical Sensors and Biosensors: A Review Yuyan Shao,a Jun Wang,a Hong-mail: Yuehe.lin@pnl.gov Received: November 24, 2009 Accepted: December 23, 2009 Abstract Graphene, emerging of functionalization and mass production). This article selectively reviews recent advances in graphene

Aksay, Ilhan A.

246

Microstructure Change of SOFC Anode Caused by Electrochemical Redox Cycles  

E-Print Network [OSTI]

Microstructure Change of SOFC Anode Caused by Electrochemical Redox Cycles Norikazu Takagi@thtlab.t.u-tokyo.ac.jp Abstract During SOFC operation with typical Ni-YSZ anode, Ni is always subjected to the risk of oxidation the effect of redox cycles on anode performance has been intensively investigated, quantitative change

Kasagi, Nobuhide

247

Electrode electrolyte interlayers containing cerium oxide for electrochemical fuel cells  

DOE Patents [OSTI]

An electrochemical cell is made having a porous fuel electrode (16) and a porous air electrode (13), with solid oxide electrolyte (15) therebetween, where the air electrode surface opposing the electrolyte has a separate, attached, dense, continuous layer (14) of a material containing cerium oxide, and where electrolyte (16) contacts the continuous oxide layer (14), without contacting the air electrode (13).

Borglum, Brian P. (Edgewood, PA); Bessette, Norman F. (N. Huntingdon, PA)

2000-01-01T23:59:59.000Z

248

Capacitance studies of cobalt oxide films formed via electrochemical precipitation  

E-Print Network [OSTI]

prepared by electrochemically precipitating the hydroxide and heating it in air to form Co3O4 the need to identify more suitable materials. One promising route is the use of transi- tion metal oxides to batteries, are referred to as Faradaic or pseudocapacitors. However, the high cost of these materials has

Weidner, John W.

249

Electrochemical deposition of green rust on zero-valent iron  

E-Print Network [OSTI]

), green rust (GR) and a mixture of both. The combination of ZVI and green rust has been reported to be more effective for degrading PCE than either of them alone. Forming green rust electrochemically has the potential for depositing GR more effectively...

Kulkarni, Dhananjay Vijay

2006-08-16T23:59:59.000Z

250

VLSI POTENTIOSTAT ARRAY FOR DISTRIBUTED ELECTROCHEMICAL NEURAL Abhishek Bandyopadhyay1  

E-Print Network [OSTI]

VLSI POTENTIOSTAT ARRAY FOR DISTRIBUTED ELECTROCHEMICAL NEURAL RECORDING Abhishek Bandyopadhyay1, and digitized by a bank of current-mode delta-sigma analog-to-digital (A/D) converters. First-order noise shaping and 4,096-fold over- sampling provide high signal-to-noise ratio for the low- frequency

Cauwenberghs, Gert

251

Mediated electrochemical oxidation of organic wastes without electrode separators  

DOE Patents [OSTI]

An electrochemical cell/electrolyte/mediator combination is described for the efficient destruction of organic contaminants using metal salt mediators in a sulfuric acid electrolyte, wherein the electrodes and mediator are chosen such that hydrogen gas is produced at the cathode and no cell membrane is required. 3 figs.

Farmer, J.C.; Wang, F.T.; Hickman, R.G.; Lewis, P.R.

1996-05-14T23:59:59.000Z

252

Electrochemical treatment of human waste coupled with molecular hydrogen production  

E-Print Network [OSTI]

in a hydrogen fuel cell. Herein, we report on the efficacy of a laboratory-scale wastewater electrolysis cell an electrolysis cell for on-site wastewater treatment coupled with molecular hydrogen production for useElectrochemical treatment of human waste coupled with molecular hydrogen production Kangwoo Cho

Heaton, Thomas H.

253

Computational, electrochemical and {sup 7}Li NMR studies of lithiated disordered carbons electrodes in lithium ion cells.  

SciTech Connect (OSTI)

Disordered carbons that deliver high reversible capacity in electrochemical cells have been synthesized by using inorganic clays as templates to control the pore size and the surface area. The capacities obtained were much higher than those calculated if the resultant carbon had a graphitic-like structure. Computational chemistry was used to investigate the nature of lithium bonding in a carbon lattice unlike graphite. The lithium intercalated fullerene Li{sub n}-C{sub 60} was used as a model for our (non-graphitic) disordered carbon lattice. A dilithium-C{sub 60} system with a charge and multiplicity of (0,1) and a trilithium-C{sub 60} system with a charge and multiplicity of (0,4) were investigated. The spatial distribution of lithium ions in an electrochemical cell containing this novel disordered carbon material was investigated in situ by Li-7 NMR using an electrochemical cell that was incorporated into a toroid cavity nuclear magnetic resonance (NMR) imager. The concentration of solvated Li{sup +} ions in the carbon anode appears to be larger than in the bulk electrolyte, is substantially lower near the copper/carbon interface, and does not change with cell charging.

Sandi, G.; Gerald, R., II; Scanlon, L. G.; Carrado, K. A.; Winans, R. E.

1998-01-07T23:59:59.000Z

254

Novel Electrochemical CO2 Removal Technology For Combustion of Fossil-Fuels  

SciTech Connect (OSTI)

Electrochemical gas separation concepts are often neglected when discussing options to manage CO2 emissions. Electrochemical approaches are selective and do not require periodic regeneration. This paper will review prior work on electrochemical CO2 separation and compare the parasitic energy penalties of this approach to more conventional approaches of capturing CO2 from flue gas streams. A new concept to reduce the electrochemical parasitic energy penalties will be introduced and a preliminary analysis of the concept will be discussed. Relative to a conventional monoethanolamine (MEA) solvent approach, electrochemical CO2 capture does require less energy on a per-mole-of-CO2 basis. However, there are trade-offs since an electrochemical pumping approach requires electrical energy, instead of lower grade thermal energy. Although there are several issues with electrochemical CO2 capture, efforts to reduce parasitic losses of CO2 separation may need to consider such novel alternatives.

Douglas L. Straub; Maria Salazar-Villalpando

2008-07-14T23:59:59.000Z

255

Electrical modeling of semiconductor bridge (SCB) BNCP detonators with electrochemical capacitor firing sets  

SciTech Connect (OSTI)

In this paper the authors describe computer models that simulate the electrical characteristics and hence, the firing characteristics and performance of a semiconductor bridge (SCB) detonator for the initiation of BNCP [tetraammine-cis-bis (5-nitro-2H-tetrazolato-N{sup 2}) cobalt(III) perchlorate]. The electrical data and resultant models provide new insights into the fundamental behavior of SCB detonators, particularly with respect to the initiation mechanism and the interaction of the explosive powder with the SCB. One model developed, the Thermal Feedback Model, considers the total energy budget for the system, including the time evolution of the energy delivered to the powder by the electrical circuit, as well as that released by the ignition and subsequent chemical reaction of the powder. The authors also present data obtained using a new low-voltage firing set which employed an advanced electrochemical capacitor having a nominal capacitance of 350,000 {micro}F at 9 V, the maximum voltage rating for this particular device. A model for this firing set and detonator was developed by making measurements of the intrinsic capacitance and equivalent series resistance (ESR < 10 m{Omega}) of a single device. This model was then used to predict the behavior of BNCP SCB detonators fired alone, as well as in a multishot, parallel-string configuration using a firing set composed of either a single 9 V electrochemical capacitor or two of the capacitors wired in series and charged to 18 V.

Marx, K.D. [Sandia National Labs., Livermore, CA (United States); Ingersoll, D.; Bickes, R.W. Jr. [Sandia National Labs., Albuquerque, NM (United States)

1998-11-01T23:59:59.000Z

256

The influence of side reactions on the performance of electrochemical double-layer capacitors  

SciTech Connect (OSTI)

A constant-concentration, constant-capacitance, macrohomogeneous porous-electrode model is used to investigate the effects of side reactions on the charging and cycling of electrochemical double-layer capacitors. A porous carbon capacitor with sulfuric acid electrolyte is a typical system, and corresponding physical properties are used to illustrate the effects. Oxygen and hydrogen evolution are considered the dominant side reactions, and a Tafel form for the kinetic expressions is assumed. It is shown that keeping the cell potential within the thermodynamic stability window of the solvent does not guarantee negligible losses, even if the kinetics are not particularly facile. Losses are substantial at early cycles and decrease to a constant value at later cycles; this value can be significant. The dependences of coulombic and energy losses on the maximum cell potential, electrode thickness, and discharge rate are discussed. In a poorly designed cell, the energy lost to side reactions can be as large or larger than the ohmic loss; hence consideration of side reactions is essential for good design. Electrochemical double-layer capacitors are of interest as moderate energy and power density devices that may find application as peak-power sources for electric vehicles.

Pillay, B.; Newman, J. [Lawrence Berkeley National Lab., CA (United States). Energy and Environment Div.]|[Univ. of California, Berkeley, CA (United States). Dept. of Chemical Engineering

1996-06-01T23:59:59.000Z

257

Argonne Chemical Sciences & Engineering -Electrochemical Energy Storage -  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Applied R&D Applied R&D * Members * Contact * Publications * Overview EES Home Electrochemical Energy Storage - Applied R&D Lithium-ion Battery Research Argonne National Laboratory's battery research aims to lower the cost and increase the lifetime and safety of high-power lithium-ion batteries for transportation and other applications. Argonne's Electrochemical Energy Storage (EES) Department leads the applied battery R&D program for the U.S. Department of Energy's (DOE's) Vehicle Technologies Program in the Office of Energy Efficiency and Renewable Energy (EERE). This $10 million/year program involves five other DOE laboratories. The program is currently focused on overcoming barriers for lithium-ion (Li-ion) batteries for use in plug-in hybrid electric vehicles (PHEVs),

258

Nanodisperse transition metal electrodes (NTME) for electrochemical cells  

DOE Patents [OSTI]

Disclosed are transition metal electrodes for electrochemical cells using gel-state and solid-state polymers. The electrodes are suitable for use in primary and secondary cells. The electrodes (either negative electrode or positive electrode) are characterized by uniform dispersion of the transition metal at the nanoscale in the polymer. The transition metal moiety is structurally amorphous, so no capacity fade should occur due to lattice expansion/contraction mechanisms. The small grain size, amorphous structure and homogeneous distribution provide improved charge/discharge cycling performance, and a higher initial discharge rate capability. The cells can be cycled at high current densities, limited only by the electrolyte conductivity. A method of making the electrodes (positive and negative), and their usage in electrochemical cells are disclosed.

Striebel, Kathryn A. (Oakland, CA); Wen, Shi-Jie (Sunnyvale, CA)

2000-01-01T23:59:59.000Z

259

Polymer-electrolyte membrane, electrochemical fuel cell, and related method  

DOE Patents [OSTI]

A polymer-electrolyte membrane is presented. The polymer-electrolyte membrane comprises an acid-functional polymer, and an additive incorporated in at least a portion of the membrane. The additive comprises a fluorinated cycloaliphatic additive, a hydrophobic cycloaliphatic additive, or combinations thereof, wherein the additive has a boiling point greater than about 120.degree. C. An electrochemical fuel cell including the polymer-electrolyte membrane, and a related method, are also presented.

Krishnan, Lakshmi; Yeager, Gary William; Soloveichik, Grigorii Lev

2014-12-09T23:59:59.000Z

260

Protective interlayer for high temperature solid electrolyte electrochemical cells  

DOE Patents [OSTI]

The invention is comprised of an electrically conducting doped or admixed cerium oxide composition with niobium oxide and/or tantalum oxide for electrochemical devices, characterized by the general formula: Nb{sub x}Ta{sub y}Ce{sub 1{minus}x{minus}y}O{sub 2} where x is about 0.0 to 0.05, y is about 0.0 to 0.05, and x+y is about 0.02 to 0.05, and where x is preferably about 0.02 to 0.05 and y is 0, and a method of making the same is also described. This novel composition is particularly applicable in forming a protective interlayer of a high temperature, solid electrolyte electrochemical cell, characterized by a first electrode; an electrically conductive interlayer of niobium and/or tantalum doped cerium oxide deposited over at least a first portion of the first electrode; an interconnect deposited over the interlayer; a solid electrolyte deposited over a second portion of the first electrode, the first portion being discontinuous from the second portion; and, a second electrode deposited over the solid electrolyte. The interlayer is characterized as being porous and selected from the group consisting of niobium doped cerium oxide, tantalum doped cerium oxide, and niobium and tantalum doped cerium oxide or admixtures of the same. The first electrode, an air electrode, is a porous layer of doped lanthanum manganite, the solid electrolyte layer is a dense yttria stabilized zirconium oxide, the interconnect layer is a dense, doped lanthanum chromite, and the second electrode, a fuel electrode, is a porous layer of nickel-zirconium oxide cermet. The electrochemical cell can take on a plurality of shapes such as annular, planar, etc. and can be connected to a plurality of electrochemical cells in series and/or in parallel to generate electrical energy. 5 figs.

Singh, P.; Vasilow, T.R.; Richards, V.L.

1996-05-14T23:59:59.000Z

Note: This page contains sample records for the topic "giner electrochemical systems" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Protective interlayer for high temperature solid electrolyte electrochemical cells  

DOE Patents [OSTI]

The invention comprises of an electrically conducting doped or admixed cerium oxide composition with niobium oxide and/or tantalum oxide for electrochemical devices, characterized by the general formula: Nb.sub.x Ta.sub.y Ce.sub.1-x-y O.sub.2 where x is about 0.0 to 0.05, y is about 0.0 to 0.05, and x+y is about 0.02 to 0.05, and where x is preferably about 0.02 to 0.05 and y is 0, and a method of making the same. This novel composition is particularly applicable in forming a protective interlayer of a high temperature, solid electrolyte electrochemical cell (10), characterized by a first electrode (12); an electrically conductive interlayer (14) of niobium and/or tantalum doped cerium oxide deposited over at least a first portion (R) of the first electrode; an interconnect (16) deposited over the interlayer; a solid electrolyte (18) deposited over a second portion of the first electrode, the first portion being discontinuous from the second portion; and, a second electrode (20) deposited over the solid electrolyte. The interlayer (14) is characterized as being porous and selected from the group consisting of niobium doped cerium oxide, tantalum doped cerium oxide, and niobium and tantalum doped cerium oxide or admixtures of the same. The first electrode (12), an air electrode, is a porous layer of doped lanthanum manganite, the solid electrolyte layer (18) is a dense yttria stabilized zirconium oxide, the interconnect layer (16) is a dense, doped lanthanum chromite, and the second electrode (20), a fuel electrode, is a porous layer of nickel-zirconium oxide cermet. The electrochemical cell (10) can take on a plurality of shapes such as annular, planar, etc. and can be connected to a plurality of electrochemical cells in series and/or in parallel to generate electrical energy.

Singh, Prabhakar (Export, PA); Vasilow, Theodore R. (Manor, PA); Richards, Von L. (Angola, IN)

1996-01-01T23:59:59.000Z

262

Protective interlayer for high temperature solid electrolyte electrochemical cells  

DOE Patents [OSTI]

A high temperature, solid electrolyte electrochemical cell is made, having a first and second electrode with solid electrolyte between them, where the electrolyte is formed by hot chemical vapor deposition, where a solid, interlayer material, which is electrically conductive, oxygen permeable, and protective of electrode material from hot metal halide vapor attack, is placed between the first electrode and the electrolyte, to protect the first electrode from the hot metal halide vapors during vapor deposition.

Isenberg, Arnold O. (Forest Hills Boro, PA); Ruka, Roswell J. (Churchill Boro, PA)

1986-01-01T23:59:59.000Z

263

Protective interlayer for high temperature solid electrolyte electrochemical cells  

DOE Patents [OSTI]

A high temperature, solid electrolyte electrochemical cell is made, having a first and second electrode with solid electrolyte between them, where the electrolyte is formed by hot chemical vapor deposition, where a solid, interlayer material, which is electrically conductive, oxygen permeable, and protective of electrode material from hot metal halide vapor attack, is placed between the first electrode and the electrolyte, to protect the first electrode from the hot metal halide vapors during vapor deposition.

Isenberg, Arnold O. (Forest Hills Boro, PA); Ruka, Roswell J. (Churchill Boro, PA); Zymboly, Gregory E. (Penn Hills Township, Allegheny County, PA)

1985-01-01T23:59:59.000Z

264

Protective interlayer for high temperature solid electrolyte electrochemical cells  

DOE Patents [OSTI]

A high temperature, solid electrolyte electrochemical cell is made, having a first and second electrode with solid electrolyte between them, where the electrolyte is formed by hot chemical vapor deposition, where a solid, interlayer material, which is electrically conductive, oxygen permeable, and protective of electrode material from hot metal halide vapor attack, is placed between the first electrode and the electrolyte, to protect the first electrode from the hot metal halide vapors during vapor deposition.

Isenberg, Arnold O. (Forest Hills Boro, PA); Ruka, Roswell J. (Churchill Boro, PA)

1987-01-01T23:59:59.000Z

265

True Performance Metrics in Electrochemical Energy Storage  

Science Journals Connector (OSTI)

...capacitance. An extreme case would be the use of a carbon aerogel with 90% porosity. The volumetric energy of such an electrode will...material used in a micrometer-thin film on a chip or a nanotube coating on a smart fabric is negligible. These systems may show a...

Y. Gogotsi; P. Simon

2011-11-18T23:59:59.000Z

266

Electrochemical cell for the detection of noxious gases  

SciTech Connect (OSTI)

An electrochemical cell for quantitatively detecting ethylene oxide is described comprising: (a) a first working electrode comprising gas diffusion membrane having bonded thereto a catalytic portion electrochemically reactive with ethylene oxide; (b) a second working electrode having electrochemical activity with oxidation/reduction products produced at the first working electrode; (c) a counter electrode; (d) a reference electrode; (e) an electrolyte in contact with the catalytic portion of the first working electrode and in contact with the second working, counter and reference electrodes; (f) means for containing the electrolyte and the first and second working electrodes; (g) means for maintaining a fixed potential on the first working electrode relative to the reference electrode of from above 1.0 to about 1.8 volts with respect to the potential of the reversible hydrogen couple in the electrolyte of the cell; and (h) means for maintaining a fixed potential on the second working electrode relative to the reference electrode of from about 1.0 to 2.2 volts with respect to the potential of the reversible hydrogen couple in the electrolyte of the cell.

Schneider, A.A.; Stewart, D.A.; Jolson, J.D.; Auel, R.M.; Price, J.F.

1987-11-17T23:59:59.000Z

267

Understanding the operation and use of high temperature electrochemical corrosion rate probes  

SciTech Connect (OSTI)

Electrochemical corrosion rate probes were constructed and tested along with mass loss coupons in a N2/O2/CO2 plus water vapor environment. Temperatures ranged from 450 to 600 C. Corrosion rates for ash-covered mild steel, 304L SS, and 316L SS probes using electrochemical techniques were a function of time, temperature, and process environment. Correlation between electrochemical and mass loss corrosion rates was good.

Covino, Bernard S., Jr.; Bullard, Sophie J.; Cramer, Stephen D.; Holcomb, Gordon R.; Ziomek-Moroz, M.; Cayard, Michael S. (InterCorr International Inc.); Eden, David A. (InterCorr International Inc.)

2004-01-01T23:59:59.000Z

268

Electrochemical modeling of lithium-ion positive electrodes during hybrid pulse power characterization tests.  

SciTech Connect (OSTI)

An electrochemical model was developed to examine hybrid pulsed power characterization (HPPC) tests on the positive electrode of lithium-ion cells. By utilizing the same fundamental equations as in previous electrochemical impedance spectroscopy studies, this investigation serves as an extension of the earlier work and a comparison of the two techniques. The electrochemical model was used to examine performance characteristics and limitations for the positive electrode during HPPC tests. Parametric studies using the electrochemical model and focusing on the positive electrode thickness were employed to examine methods of slowing electrode aging and improving performance.

Dees, D.; Gunen, E.; Abraham, D.; Jansen, A.; Prakash, J.; Chemical Sciences and Engineering Division; Illinois Inst. of Tech.

2008-01-01T23:59:59.000Z

269

SciTech Connect: Graphene-Au Nanoparticles Composite-Based Electrochem...  

Office of Scientific and Technical Information (OSTI)

Conference: Graphene-Au Nanoparticles Composite-Based Electrochemical Aptamer Biosensors Citation Details In-Document Search Title: Graphene-Au Nanoparticles Composite-Based...

270

Vehicle Technologies Office Merit Review 2014: Electrochemical Modeling of LMR-NMC Materials and Electrodes  

Broader source: Energy.gov [DOE]

Presentation given by Argonne National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about electrochemical...

271

Hydrogen Production From Crude Bio-oil and Biomass Char by Electrochemical Catalytic Reforming  

Science Journals Connector (OSTI)

We reports an efficient approach for production of hydrogen from crude bio-oil and biomass char in the dual fixed-bed system by using the electrochemical catalytic reforming method. The maximal absolute hydrogen yield reached 110.9 g H2/kg dry biomass. The product gas was a mixed gas containing 72%H2, 26%CO2, 1.9%CO, and a trace amount of CH4. It was observed that adding biomass char (a by-product of pyrolysis of biomass) could remarkably increase the absolute H2 yield (about 20%-50%). The higher reforming temperature could enhance the steam reforming reaction of organic compounds in crude bio-oil and the reaction of CO and H2O. In addition, the CuZn-Al2O3 catalyst in the water-gas shift bed could also increase the absolute H2 yield via shifting CO to CO2.

Xing-long Li; Shen Ning; Li-xia Yuan; Quan-xin Li

2011-01-01T23:59:59.000Z

272

Thermal and Electrochemical Performance of a High-Temperature Steam Electrolysis Stack  

SciTech Connect (OSTI)

A research program is under way at the Idaho National Laboratory (INL) to simultaneously address the research and scale-up issues associated with the implementation of solid-oxide electrolysis cell technology for hydrogen production from steam. We are conducting a progression of electrolysis stack testing activities, at increasing scales, along with a continuation of supporting research activities in the areas of materials development, single-cell testing, detailed computational fluid dynamics (CFD) and systems modeling. This paper will present recent experimental results obtained from testing of planar solid-oxide stacks operating in the electrolysis mode. The hydrogen-production and electrochemical performance of these stacks will be presented, over a range of operating conditions. In addition, internal stack temperature measurements will be presented, with comparisons to computational fluid dynamic predictions.

J. O'Brien; C. Stoots; G. Hawkes; J. Hartvigsen

2006-11-01T23:59:59.000Z

273

Shearforce-Based Constant-Distance Scanning Electrochemical Microscopy as Fabrication Tool for Needle-Type Carbon-Fiber Nanoelectrodes  

Science Journals Connector (OSTI)

Coating the stems but not the end of the tips of the tapered structures with anodic electrodeposition paint was the strategy for limiting the bare carbon to the foremost end and restricting a feasible voltammetry current response to exactly this section. ... The vibrating carbon fiber tip was fixed in space and the electrochemical cell for the EDP deposition was moved through a stage of three joined stepper motors (SPI Robot Systems, Oppenheim, Germany) with a nominal resolution in x-, y-, and z-direction of 10 nm per microstep. ... Furthermore, electrodeposition paints are com. ...

Emad Mohamed Hussien; Wolfgang Schuhmann; Albert Schulte

2010-06-09T23:59:59.000Z

274

Redox Properties of Structural Fe in Clay Minerals. 1. Electrochemical Quantification of Electron-Donating and -Accepting Capacities of Smectites  

Science Journals Connector (OSTI)

The Fe2+/Fe3+ redox couple is an important redox buffer in the environment that affects biogeochemical element and nutrient cycling and controls the partitioning and redox transformations of organic and inorganic contaminants. ... (14-18) These changes can alter the fate and (bio)availability of redox-inactive contaminants and nutrients (e.g., K+, Ca2+)(18) as well as dictate the viability of clay minerals in engineered systems (e.g., clay mineral backfill in radioactive waste repositories). ... In this approach, an electrochemical cell containing a pH-buffered solution is set to a constant EH-value while the current is measured over time. ...

Christopher A. Gorski; Michael Aeschbacher; Daniela Soltermann; Andreas Voegelin; Bart Baeyens; Maria Marques Fernandes; Thomas B. Hofstetter; Michael Sander

2012-07-24T23:59:59.000Z

275

Synthesis, Characterization, and Electrochemical Properties of a Series of Sterically Varied Iron(II) Alkoxide Precursors and Their Resultant Nanoparticles  

Science Journals Connector (OSTI)

Electrochemical measurements in water were performed using a Bioanalytical Systems Epsilon potentiometer at 25 mV/s at room temperature. ... Iron phosphate can be reduced/oxidized more readily than the unsupported iron phosphate at room temp., and in fact, cycling at C/10, the supported phosphate shows a utilization of 70% with respect to a value of 30% for the unsupported solid. ... Binary and ternary mixed oxide of Y/Fe/Ti with homogeneous distribution of yttrium and iron oxides into TiO2 has been prepd. ...

Timothy J. Boyle; Leigh Anna M. Ottley; Christopher A. Apblett; Constantine A. Stewart; Sarah M. Hoppe; Krista L. Hawthorne; Mark A. Rodriguez

2011-06-03T23:59:59.000Z

276

Electrochemical synthesis of nanosized hydroxyapatite by pulsed direct current method  

SciTech Connect (OSTI)

Synthesis of nanosized of hydroxyapatite (HA) by electrochemical pulsed direct current (PDC) method has been studied. The aim of this work is to study the influence of various PDC parameters (pH initial, electrode distance, duty cycle, frequency, and amplitude) on particle surface area of HA powders. The electrochemical synthesis was prepared in solution Ca{sup 2+}/EDTA{sup 4?}/PO{sub 4}{sup 3+} at concentration 0.25/0.25/0.15 M for 24 h. The electrochemical cell was consisted of two carbon rectangular electrodes connected to a function generator to produce PDC. There were two treatments for particles after electrosynthesized, namely without aging and aged for 2 days at 40 C. For both cases, the particles were filtered and washed by demineralized water to eliminate the impurities and unreacted reactants. Then, the particles were dried at 100 C for 2 days. The dried particles were characterized by X-ray diffraction, surface area analyzer, scanning electron microscopy (SEM), Fourier transform infrared spectra and thermogravimetric and differential thermal analysis. HA particles can be produced when the initial pH > 6. The aging process has significant effect on the produced HA particles. SEM images of HA particles showed that the powders consisted of agglomerates composed of fine crystallites and have morphology plate-like and sphere. The surface area of HA particles is in the range of 25 91 m{sup 2}/g. The largest particle surface area of HA was produced at 4 cm electrode distance, 80% cycle duty, frequency 0.1 Hz, amplitude 9 V and with aging process.

Nur, Adrian; Rahmawati, Alifah; Ilmi, Noor Izzati; Affandi, Samsudin; Widjaja, Arief [Departement of Chemical Engineering, Faculty of Industrial Technology, Sepuluh Nopember Institute of Technology, Kampus ITS Sukolilo, Surabaya 60111 (Indonesia)

2014-02-24T23:59:59.000Z

277

Separation of CO2 from flue gas using electrochemical cells  

SciTech Connect (OSTI)

ABSTRACT Past research with high temperature molten carbonate electrochemical cells has shown that carbon dioxide can be separated from flue gas streams produced by pulverized coal combustion for power generation, However, the presence of trace contaminants, i.e" sulfur dioxide and nitric oxides, will impact the electrolyte within the cell. If a lower temperature cell could be devised that would utilize the benefits of commercially-available, upstream desulfurization and denitrification in the power plant, then this CO2 separation technique can approach more viability in the carbon sequestration area, Recent work has led to the assembly and successful operation of a low temperature electrochemical cell. In the proof-of-concept testing with this cell, an anion exchange membrane was sandwiched between gas-diffusion electrodes consisting of nickel-based anode electrocatalysts on carbon paper. When a potential was applied across the cell and a mixture of oxygen and carbon dioxide was flowed over the wetted electrolyte on the cathode side, a stream of CO2 to O2 was produced on the anode side, suggesting that carbonate/ bicarbonate ions are the CO2 carrier in the membrane. Since a mixture of CO 2 and 02 is produced, the possibility exists to use this stream in oxy-firing of additional fuel. From this research, a novel concept for efficiently producing a carbon dioxide rich effiuent from combustion of a fossil fuel was proposed. Carbon dioxide and oxygen are captured from the flue gas of a fossilfuel combustor by one or more electrochemical cells or cell stacks. The separated stream is then transferred to an oxy-fired combustor which uses the gas stream for ancillary combustion, ultimately resulting in an effluent rich in carbon dioxide, A portion of the resulting flow produced by the oxy-fired combustor may be continuously recycled back into the oxy-fired combustor for temperature control and an optimal carbon dioxide rich effluent.

Pennline, H.W; Granite, E.J.; Luebke, D.R; Kitchin, J.R; Landon, J.; Weiland, L.M.

2010-06-01T23:59:59.000Z

278

Video STM Studies of Adsorbate Diffusion at Electrochemical Interfaces  

Science Journals Connector (OSTI)

Direct insitu studies of the surface diffusion of isolated adsorbates at an electrochemical interface by high-speed scanning tunneling microscopy (video STM) are presented for sulfide adsorbates on Cu(100) in HCl solution. As revealed by a quantitative statistical analysis, the adsorbate motion can be described by thermally activated hopping between neighboring adsorption sites with an activation energy that increases linearly with electrode potential by 0.50eV per V. This can be explained by changes in the adsorbate dipole moment during the hopping process and contributions from coadsorbates.

T. Tansel and O. M. Magnussen

2006-01-19T23:59:59.000Z

279

Anomalous Shape Changes of Silicon Nanopillars by Electrochemical Lithiation  

Science Journals Connector (OSTI)

Department of Energy, Environment, Water and Sustainability, Korea Advanced Institute of Science and Technology, 37311 Guseong Dong, Yuseong Gu, Daejeon 305-701, Republic of Korea. ... (20, 21) After pillar fabrication, the piece of Si wafer on which the nanopillars stood was used directly as the working electrode in electrochemical half cells with Li metal foil as the counter electrode, as shown in Supporting Information Figure S2. ... Finally, the cross-sectional area of all three types of pillars increased considerably after lithiation: the ?100? pillars increased 240%, the ?110? pillars increased 340%, and the ?111? pillars increased 272%. ...

Seok Woo Lee; Matthew T. McDowell; Jang Wook Choi; Yi Cui

2011-06-09T23:59:59.000Z

280

Electrochemical and Spectroscopic Characterization of Surface Sol?Gel Processes  

Science Journals Connector (OSTI)

It was found that the thiol groups in the open porous MTS aerogel matrix were accessible to the gold nanoparticles while thiol groups in the compact MTS xerogel network were not accessible to the gold nanoparticles. ... 1 The sol?gel process has been extensively studied,2 and sol?gel derived materials have shown a variety of applications in catalysis, sensors, coatings, optics, and specialty polymers. ... Teflon-coated platinum (Pt) wire (composition:? 90% Pt/10% Ir and 0.17-mm diameter) was purchased from Medwire Corp. (Mount Vernon, NY) and used for all electrochemical tests. ...

Xiaohong Chen; George S. Wilson

2004-08-21T23:59:59.000Z

Note: This page contains sample records for the topic "giner electrochemical systems" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Corner heating in rectangular solid oxide electrochemical cell generators  

DOE Patents [OSTI]

Disclosed is an improvement in a solid oxide electrochemical cell generator 1 having a rectangular design with four sides that meet at corners, and containing multiplicity of electrically connected fuel cells 11, where a fuel gas is passed over one side of said cells and an oxygen containing gas is passed into said cells, and said fuel is burned to form heat, electricity, and an exhaust gas. The improvement comprises passing the exhaust gases over the multiplicity of cells 11 in such a way that more of the heat in said exhaust gases flows at the corners of the generator, such as through channels 19.

Reichner, Philip (Plum Boro, PA)

1989-01-01T23:59:59.000Z

282

ELECTROCHEMICAL ENERGY STORAGE DEVICES Arlin Alvarado Hernandez, Guanglian Li, Sylvia Nguyen, Fouche Smith,  

E-Print Network [OSTI]

ELECTROCHEMICAL ENERGY STORAGE DEVICES By Arlin Alvarado Hernandez, Guanglian Li, Sylvia Nguyen 55455-0436 Phone: 612-624-6066 Fax: 612-626-7370 URL: http://www.ima.umn.edu #12;Electrochemical Energy Storage Devices Arlin Alvarado Hernandez University of Puerto Rico Guanglian Li Texas A & M University

283

Quantification of the electrochemical proton gradient and activation of ATP synthase in leaves  

E-Print Network [OSTI]

Quantification of the electrochemical proton gradient and activation of ATP synthase in leaves Available online 12 April 2008 Keywords: ATP synthase Electrochemical proton gradient Membrane potential We of the ATP synthase (Junge, W., Rumberg, B. and Schröder, H., Eur. J. Biochem. 14 (1970) 575

284

Electrochemical migration of Ag nanoink patterns controlled by atmospheric-pressure plasma  

Science Journals Connector (OSTI)

Highly contrasting surface energies were induced on polyimide (PI) substrates using atmospheric-pressure plasma (APP) to allow precise printing of Ag electrodes that showed mitigated electrochemical migration (ECM). The substrate surface was made uniformly ... Keywords: Atmospheric-pressure plasma, Dendritic growth, Electrochemical migration (ECM), Inkjet printing, Silver nanoink

Kwang-Seok Kim; Young-Tae Kwon; Yong-Ho Choa; Seung-Boo Jung

2013-06-01T23:59:59.000Z

285

Evidence for Epoxide Formation from the Electrochemical Reduction of Ethylene Carbonate  

E-Print Network [OSTI]

Evidence for Epoxide Formation from the Electrochemical Reduction of Ethylene Carbonate Xuerong agreed that the electrochemical reduction of ethylene carbonate EC plays an important role the monoethylcarbonate lithium salt. Ethylene oxide is suggested as a possible, but not exclusive, reduction product

286

Ultrathin Polypeptide Multilayer Films for the Fabrication of Model Liquid/Liquid Electrochemical Interfaces  

E-Print Network [OSTI]

in ion selective electrodes, and the mechanisms of phase transfer catalysis reactions.1-3 Electrochemical/L electrochemical research has been performed previously in which one of the two phases was replaced by either agar on a graphite electrode immersed in an aqueous solution for the study of electron transfer across this L/L (film

287

AN ELECTROCHEMICAL INTERFACE FOR INTEGRATED Peter Kim, Neeraj Kohli, Brian Hassler, Nathan Dotson, Andrew Mason,  

E-Print Network [OSTI]

AN ELECTROCHEMICAL INTERFACE FOR INTEGRATED BIOSENSORS Peter Kim, Neeraj Kohli, Brian Hassler. Protein-based electrochemical biosensors are ideally suited for this purpose, because they provide interfaces to couple a wide range of proteins to microelectronics chips that provide high resolution, low-noise

Mason, Andrew

288

Anal. Chem. 1986, 58,239-242 239 for probing diffusion layers in electrochemical processes for  

E-Print Network [OSTI]

Anal. Chem. 1986, 58,239-242 239 for probing diffusion layers in electrochemical processes to the total signal or noise depending on its cor- relation with the excitation beam modulation. For example. R. "Electrochemical Methods"; Wiiey: New York, 1980. (8) Mandelis, A.; Royce, B. S.N. Appl. Opt

Mandelis, Andreas

289

A microfluidic-based electrochemical biochip for label-free diffusion-restricted DNA hybridization analysis  

E-Print Network [OSTI]

A microfluidic-based electrochemical biochip for label-free diffusion-restricted DNA hybridization online 16 May 2012 Keywords: Electrochemical impedance spectroscopy DNA hybridization biosensor Biochip. However, as device footprints decrease and their complexity increase, the signal-to-noise ratio

Ghodssi, Reza

290

Reverse-bias leakage current reduction in GaN Schottky diodes by electrochemical surface treatment  

E-Print Network [OSTI]

Reverse-bias leakage current reduction in GaN Schottky diodes by electrochemical surface treatment Received 15 July 2002; accepted 27 December 2002 An electrochemical surface treatment has been developed to the large power consumption and noise levels that can be present in circuits that incorporate such devices.1

Yu, Edward T.

291

A Novel Multi-Working Electrode Potentiostat for Electrochemical Detection of Metabolites  

E-Print Network [OSTI]

A Novel Multi-Working Electrode Potentiostat for Electrochemical Detection of Metabolites Daniela single-chip and multiplexed read-out circuit for multi-electrode electrochemical sensors, in standard 0-circuited to the reference one, in order to nullify the injected current inside the counter. Low noise and low energy

De Micheli, Giovanni

292

Direct growth of nanotubes and graphene nanoflowers on electrochemical platinum electrodes  

E-Print Network [OSTI]

Direct growth of nanotubes and graphene nanoflowers on electrochemical platinum electrodes Irene the possibility of integrating the hybrid electrodes in biochip applications. 1. Introduction Electrochemical the signal-to-noise ratio and reduce the inuence of the solution resistance.2 Monitoring endogenous

De Micheli, Giovanni

293

The effect of rf-irradiation on electrochemical deposition and its stabilization by nanoparticle doping  

E-Print Network [OSTI]

(surface tension and attachment kinetics). We also studied electrochemical deposition in Zinc sulphateThe effect of rf-irradiation on electrochemical deposition and its stabilization by nanoparticle that these changes of patterning on all scales resulted from singular effects of gas-filled submicron bubbles

Jacob, Eshel Ben

294

ENCH 473 Electrochemical Energy Engineering ENCH 648K Advanced Batteries and Fuel Cells  

E-Print Network [OSTI]

ENCH 473 Electrochemical Energy Engineering ENCH 648K Advanced Batteries and Fuel Cells Spring 2014 Syllabus Course: ENCH 473 Electrochemical Energy Engineering ENCH: 648K Advanced Batteries and Fuel Cells, with emphasis on the principle and performance of batteries, supercapacitors and fuel cells. The objective

Rubloff, Gary W.

295

Genes for Production of the Enediyne Antitumor Antibiotic C-1027 in Streptomyces globisporus Are Clustered with the cagA Gene That Encodes the C-1027 Apoprotein  

Science Journals Connector (OSTI)

...proven that LfrA uses the transmembrane proton gradient in an antiporter mode to drive...bicyclododecadiyne system. . O. D. Hensens J.-L. Giner I. H. Goldberg Biosynthesis of NCS chrom...W. R. Jacobs Jr. Efflux pump of the proton antiporter family confers low-level...

Wen Liu; Ben Shen

2000-02-01T23:59:59.000Z

296

Reclamation of niobium compounds from ionic liquid electrochemical polishing of superconducting radio frequency cavities  

SciTech Connect (OSTI)

Recent research has shown that choline chloride (vitamin B4)-based solutions can be used as a greener alternative to acid-based electrochemical polishing solutions. This study demonstrated a successful method for electrochemical deposition of niobium compounds onto the surface of copper substrates using a novel choline chloride-based ionic liquid. Niobium ions present in the ionic liquid solution were dissolved into the solution prior to deposition via electrochemical polishing of solid niobium. A black coating was clearly visible on the surface of the Cu following deposition. This coating was analyzed using scanning electron microscopy (SEM), electron dispersive X-ray spectroscopy (EDX), atomic force microscopy (AFM), and X-ray fluorescence spectroscopy (XRF). This ionic liquid-based electrochemical deposition method effectively recycles previously dissolved niobium from electrochemical polishing of superconducting radio frequency (SRF) cavities.

Wixtrom, Alex I. [Christopher Newport University, Newport News, VA (United States); Buhler, Jessica E. [Christopher Newport University, Newport News, VA (United States); Reece, Charles E. [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Abdel-Fattah, Tarek M. [Christopher Newport University, Newport News, VA (United States)

2013-06-01T23:59:59.000Z

297

A controlled microfluidic electrochemical lab-on-a-chip for label-free diffusion-restricted DNA hybridization analysis  

E-Print Network [OSTI]

A controlled microfluidic electrochemical lab-on-a-chip for label-free diffusion-restricted DNA hybridization sensing Microfluidics Valve Label-free detection Electrochemical impedance spectroscopy Restricted-of-care. Here, we present a microfluidic LOC, with 3 ? 3 arrayed electrochemical sensors for the analysis of DNA

Ghodssi, Reza

298

Research interests and Activities: Most of Prof. Oren's past scientific activity focused on electrochemical-related issues.  

E-Print Network [OSTI]

Electrochemical processes for preserving the environment, surface phenomena, electrodialysis for water treatment: studies in electrochemical methods in relation to treatment of water and waste-water, investigating mass tools. Within the area of electrochemical water treatment processes, unique and pioneering work

Vardi, Amichay

299

Effects of Current upon Electrochemical Catalytic Reforming of Anisole  

Science Journals Connector (OSTI)

The reforming of anisole (as model compound of bio-oil) was performed over the NiCuZn-Al2O3 catalyst, using a recently-developed electrochemical catalytic reforming (ECR). The influence of the current on the anisole reforming in the ECR process has been investigated. It was observed that anisole reforming was significantly enhanced by the current approached over the catalyst in the electrochemical catalytic process, which was due to the non-uniform temperature distribution in the catalytic bed and the role of the thermal electrons originating from the electrified wire. The maximum hydrogen yield of 88.7% with a carbon conversion of 98.3% was obtained through the ECR reforming of anisole at 700C and 4 A. X-ray diffraction was employed to characterize catalyst features and their alterations in the anisole reforming. The apparent activation energy for the anisole reforming is calculated as 99.54 kJ/mol, which is higher than ethanol, acetic acid, and light fraction of bio-oil. It should owe to different physical and chemical properties and reforming mechanism for different hydrocarbons.

Jia-xing Xiong; Tao Kan; Xing-long Li; Tong-qi Ye; Quan-xin Li

2010-01-01T23:59:59.000Z

300

Vanadium oxide nanodisks: Synthesis, characterization, and electrochemical properties  

SciTech Connect (OSTI)

Highlights: Black-Right-Pointing-Pointer Highly crystallined VO{sub 1.6}{center_dot}H{sub 2}O nanodisks have been synthesized by using a novel solid-solution-solid growth process. Black-Right-Pointing-Pointer The nanodisks are assembled from nanoparticles. Black-Right-Pointing-Pointer PEG-4000 plays an important role for the formation of the nanodisks. Black-Right-Pointing-Pointer The as-synthesized nanodisks exhibit good electrochemical behavior. -- Abstract: Highly crystallined VO{sub 1.6}{center_dot}H{sub 2}O nanodisks assembled from nanoparticles have been successfully fabricated under hydrothermal conditions by using bulk V{sub 2}O{sub 5} and Na{sub 2}S{sub 2}O{sub 3} as the starting materials in the presence of surfactant polyethylene glycol 4000 (PEG-4000). The nanodisks have a diameter of 200 nm and thickness of 40 nm. Hollow nanodisks are occasionally observed, which is similar to Chinese ancient copper coins. The formation of nanodisks can be ascribed to a novel solid-solution-solid growth mechanism. Compared with other methods, the solid state transformation method is simple and economic. In addition, the nanodisks exhibit good electrochemical behavior and promising to be used in lithium-ion battery.

Ren, Ling [Key Laboratory of Cluster Science, Ministry of Education of China, Department of Chemistry, Beijing Institute of Technology, Beijing 100081 (China)] [Key Laboratory of Cluster Science, Ministry of Education of China, Department of Chemistry, Beijing Institute of Technology, Beijing 100081 (China); Cao, Minhua, E-mail: caomh@bit.edu.cn [Key Laboratory of Cluster Science, Ministry of Education of China, Department of Chemistry, Beijing Institute of Technology, Beijing 100081 (China)] [Key Laboratory of Cluster Science, Ministry of Education of China, Department of Chemistry, Beijing Institute of Technology, Beijing 100081 (China); Shi, Shufeng [Department of Chemistry, Northeast Normal University, Changchun 13324 (China)] [Department of Chemistry, Northeast Normal University, Changchun 13324 (China); Hu, Changwen [Key Laboratory of Cluster Science, Ministry of Education of China, Department of Chemistry, Beijing Institute of Technology, Beijing 100081 (China)] [Key Laboratory of Cluster Science, Ministry of Education of China, Department of Chemistry, Beijing Institute of Technology, Beijing 100081 (China)

2012-01-15T23:59:59.000Z

Note: This page contains sample records for the topic "giner electrochemical systems" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Cascade redox flow battery systems  

DOE Patents [OSTI]

A reduction/oxidation ("redox") flow battery system includes a series of electrochemical cells arranged in a cascade, whereby liquid electrolyte reacts in a first electrochemical cell (or group of cells) before being directed into a second cell (or group of cells) where it reacts before being directed to subsequent cells. The cascade includes 2 to n stages, each stage having one or more electrochemical cells. During a charge reaction, electrolyte entering a first stage will have a lower state-of-charge than electrolyte entering the nth stage. In some embodiments, cell components and/or characteristics may be configured based on a state-of-charge of electrolytes expected at each cascade stage. Such engineered cascades provide redox flow battery systems with higher energy efficiency over a broader range of current density than prior art arrangements.

Horne, Craig R.; Kinoshita, Kim; Hickey, Darren B.; Sha, Jay E.; Bose, Deepak

2014-07-22T23:59:59.000Z

302

Argonne Chemical Sciences & Engineering - People - Electrochemical Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Technology Development Technology Development Khalil Amine, Argonne Distinguished Fellow, Senior Materials Scientist, Group Leader phone: 630/252-3838, fax: 630/972-4451, e-mail: amine@anl.gov Ph.D. (Material Science, with high honor): University of Bordeaux 1, France Fluorine chemistry, carbon chemistry, intercalation chemistry, fuel cell polymer chemistry, and advanced electrochemical devices and battery materials Ali Abouimrane, Materials Scientist phone: 630/252-3729, e-mail: abouimrane@anl.gov Ph.D., Physical Chemistry, Hassan II University, Morocco Works on the synthesis, characterization and optimization of electrode and electrolyte materials for high energy/power lithium and sodium batteries to be utilized in PHEV, EV and smart grid applications Ilias Belharouak, Chemist/Materials Scientist

303

DEMONSTRATION OF ELECTROCHEMICAL REMEDIATION TECHNOLOGIES-INDUCED COMPLEXATION  

SciTech Connect (OSTI)

The Project Team is submitting this Topical Report on the results of its bench-scale demonstration of ElectroChemical Remediation Technologies (ECRTs) and in particular the Induced Complexation (ECRTs-IC) process for remediation of mercury contaminated soils at DOE Complex sites. ECRTs is an innovative, in-situ, geophysically based soil remediation technology with over 50 successful commercial site applications involving remediation of over two million metric tons of contaminated soils. ECRTs-IC has been successfully used to remediate 220 cu m of mercury-contaminated sediments in the Union Canal, Scotland. In that operation, ECRTs-IC reduced sediment total mercury levels from an average of 243 mg/kg to 6 mg/kg in 26 days of operation. The clean up objective was to achieve an average total mercury level in the sediment of 20 mg/kg.

Barry L. Burks

2002-12-01T23:59:59.000Z

304

Electrochemical method of producing nano-scaled graphene platelets  

SciTech Connect (OSTI)

A method of producing nano-scaled graphene platelets with an average thickness smaller than 30 nm from a layered graphite material. The method comprises (a) forming a carboxylic acid-intercalated graphite compound by an electrochemical reaction; (b) exposing the intercalated graphite compound to a thermal shock to produce exfoliated graphite; and (c) subjecting the exfoliated graphite to a mechanical shearing treatment to produce the nano-scaled graphene platelets. Preferred carboxylic acids are formic acid and acetic acid. The exfoliation step in the instant invention does not involve the evolution of undesirable species, such as NO.sub.x and SO.sub.x, which are common by-products of exfoliating conventional sulfuric or nitric acid-intercalated graphite compounds. The nano-scaled platelets are candidate reinforcement fillers for polymer nanocomposites. Nano-scaled graphene platelets are much lower-cost alternatives to carbon nano-tubes or carbon nano-fibers.

Zhamu, Aruna; Jang, Joan; Jang, Bor Z.

2013-09-03T23:59:59.000Z

305

Electro-chemical sensors, sensor arrays and circuits  

DOE Patents [OSTI]

An electro-chemical sensor includes a first electrode, a second electrode spaced apart from the first electrode, and a semiconductor channel in electrical contact with the first and second electrodes. The semiconductor channel includes a trapping material. The trapping material reduces an ability of the semiconductor channel to conduct a current of charge carriers by trapping at least some of the charge carriers to localized regions within the semiconductor channel. The semiconductor channel includes at least a portion configured to be exposed to an analyte to be detected, and the trapping material, when exposed to the analyte, interacts with the analyte so as to at least partially restore the ability of the semiconductor channel to conduct the current of charge carriers.

Katz, Howard E.; Kong, Hoyoul

2014-07-08T23:59:59.000Z

306

Electrochemical properties of all solid state Li/S battery  

SciTech Connect (OSTI)

All-solid-state lithium/sulfur (Li/S) battery is prepared using siloxane cross-linked network solid electrolyte at room temperature. The solid electrolytes show high ionic conductivity and good electrochemical stability with lithium and sulfur. In the first discharge curve, all-solid-state Li/S battery shows three plateau potential regions of 2.4 V, 2.12 V and 2.00 V, respectively. The battery shows the first discharge capacity of 1044 mAh g{sup ?1}-sulfur at room temperature. This first discharge capacity rapidly decreases in 4th cycle and remains at 512 mAh g{sup ?1}-sulfur after 10 cycles.

Yu, Ji-Hyun; Park, Jin-Woo; Wang, Qing; Ryu, Ho-Suk; Kim, Ki-Won [School of Materials Science and Engineering, WCUNGB, RIGET, Gyeongsang National University, Jinju 660-701 (Korea, Republic of)] [School of Materials Science and Engineering, WCUNGB, RIGET, Gyeongsang National University, Jinju 660-701 (Korea, Republic of); Ahn, Jou-Hyeon [Department of Chemical and Biological Engineering, Gyeongsang National University, Jinju 660-701 (Korea, Republic of)] [Department of Chemical and Biological Engineering, Gyeongsang National University, Jinju 660-701 (Korea, Republic of); Kang, Yongku [Korea Research Institute of Chemical Technology, Daejeon 305-600 (Korea, Republic of)] [Korea Research Institute of Chemical Technology, Daejeon 305-600 (Korea, Republic of); Wang, Guoxiu [School of Materials Science and Engineering, WCUNGB, RIGET, Gyeongsang National University, Jinju 660-701 (Korea, Republic of) [School of Materials Science and Engineering, WCUNGB, RIGET, Gyeongsang National University, Jinju 660-701 (Korea, Republic of); School of Chemistry and Forensic Science, University of Technology Sydney, Broadway, Sydney, NSW 2007 (Australia); Ahn, Hyo-Jun, E-mail: ahj@gnu.ac.kr [School of Materials Science and Engineering, WCUNGB, RIGET, Gyeongsang National University, Jinju 660-701 (Korea, Republic of)] [School of Materials Science and Engineering, WCUNGB, RIGET, Gyeongsang National University, Jinju 660-701 (Korea, Republic of)

2012-10-15T23:59:59.000Z

307

Method of making an electrolyte for an electrochemical cell  

DOE Patents [OSTI]

Described is a thin-film battery, especially a thin-film microbattery, and a method for making same having application as a backup or primary integrated power source for electronic devices. The battery includes a novel electrolyte which is electrochemically stable and does not react with the lithium anode and a novel vanadium oxide cathode Configured as a microbattery, the battery can be fabricated directly onto a semiconductor chip, onto the semiconductor die or onto any portion of the chip carrier. The battery can be fabricated to any specified size or shape to meet the requirements of a particular application. The battery is fabricated of solid state materials and is capable of operation between -15.degree. C. and 150.degree. C.

Bates, John B. (Oak Ridge, TN); Dudney, Nancy J. (Knoxville, TN)

1996-01-01T23:59:59.000Z

308

Method of electrode fabrication for solid oxide electrochemical cells  

DOE Patents [OSTI]

A process for fabricating cermet electrodes for solid oxide electrochemical cells by sintering is disclosed. First, a porous metal electrode is fabricated on a solid oxide cell, such as a fuel cell by, for example, sintering, and is then infiltrated with a high volume fraction stabilized zirconia suspension. A second sintering step is used to sinter the infiltrated zirconia to a high density in order to more securely attach the electrode to the solid oxide electrolyte of the cell. High performance fuel electrodes can be obtained with this process. Further electrode performance enhancement may be achieved if stabilized zirconia doped with cerium oxide, chromium oxide, titanium oxide, and/or praseodymium oxide for electronic conduction is used.

Jensen, Russell R. (Murrysville, PA)

1990-01-01T23:59:59.000Z

309

Fabrication of solid oxide fuel cell by electrochemical vapor deposition  

DOE Patents [OSTI]

In a high temperature solid oxide fuel cell (SOFC), the deposition of an impervious high density thin layer of electrically conductive interconnector material, such as magnesium doped lanthanum chromite, and of an electrolyte material, such as yttria stabilized zirconia, onto a porous support/air electrode substrate surface is carried out at high temperatures (approximately 1100.degree.-1300.degree. C.) by a process of electrochemical vapor deposition. In this process, the mixed chlorides of the specific metals involved react in the gaseous state with water vapor resulting in the deposit of an impervious thin oxide layer on the support tube/air electrode substrate of between 20-50 microns in thickness. An internal heater, such as a heat pipe, is placed within the support tube/air electrode substrate and induces a uniform temperature profile therein so as to afford precise and uniform oxide deposition kinetics in an arrangement which is particularly adapted for large scale, commercial fabrication of SOFCs.

Brian, Riley (Willimantic, CT); Szreders, Bernard E. (Oakdale, CT)

1989-01-01T23:59:59.000Z

310

Method of electrode fabrication for solid oxide electrochemical cells  

DOE Patents [OSTI]

A process for fabricating cermet electrodes for solid oxide electrochemical cells by sintering is disclosed. First, a porous metal electrode is fabricated on a solid oxide cell, such as a fuel cell by, for example, sintering, and is then infiltrated with a high volume fraction stabilized zirconia suspension. A second sintering step is used to sinter the infiltrated zirconia to a high density in order to more securely attach the electrode to the solid oxide electrolyte of the cell. High performance fuel electrodes can be obtained with this process. Further electrode performance enhancement may be achieved if stabilized zirconia doped with cerium oxide, chromium oxide, titanium oxide, and/or praseodymium oxide for electronic conduction is used. 5 figs.

Jensen, R.R.

1990-11-20T23:59:59.000Z

311

Battery paste compositions and electrochemical cells for use therewith  

SciTech Connect (OSTI)

An improved battery paste composition and a lead-acid electrochemical cell which incorporates the composition are disclosed. The cell includes a positive current collector and a negative current collector which are each coated with a paste containing one or more lead-containing compositions and a paste vehicle to form a positive plate and a negative plate. An absorbent electrolyte-containing separator member may also be positioned between the positive and negative plates. The paste on the positive current collector, the negative current collector, or both further includes a special additive consisting of polyvinyl sulfonic acid or salts thereof which provides many benefits including improved battery cycle life, increased charge capacity, and enhanced overall stability. The additive also makes the pastes smoother and more adhesive, thereby improving the paste application process. The paste compositions of interest may be used in conventional flat-plate cells or in spirally wound batteries with equal effectiveness. 2 figs.

Olson, J.B.

1999-02-16T23:59:59.000Z

312

Fabrication of solid oxide fuel cell by electrochemical vapor deposition  

DOE Patents [OSTI]

In a high temperature solid oxide fuel cell (SOFC), the deposition of an impervious high density thin layer of electrically conductive interconnector material, such as magnesium doped lanthanum chromite, and of an electrolyte material, such as yttria stabilized zirconia, onto a porous support/air electrode substrate surface is carried out at high temperatures (/approximately/1100/degree/ /minus/ 1300/degree/C) by a process of electrochemical vapor deposition. In this process, the mixed chlorides of the specific metals involved react in the gaseous state with water vapor resulting in the deposit of an impervious thin oxide layer on the support tube/air electrode substrate of between 20--50 microns in thickness. An internal heater, such as a heat pipe, is placed within the support tube/air electrode substrate and induces a uniform temperature profile therein so as to afford precise and uniform oxide deposition kinetics in an arrangement which is particularly adapted for large scale, commercial fabrication of SOFCs.

Riley, B.; Szreders, B.E.

1988-04-26T23:59:59.000Z

313

Electrochemical characterization of a supercapacitor flow cell for power production from salinity gradients  

Science Journals Connector (OSTI)

Salinity gradients could be a great source of energy in the future. Capacitive energy extraction based on Donnan Potential (CDP) is a new technique to directly convert this energy into electricity. CDP uses a supercapacitor-like device combining ion exchange membranes and capacitive materials to adsorb and desorb ions with the Donnan Potential of the membranes as only driving force. The resulting current can be extracted through an external load. In this study, traditional electrochemical techniques: galvanostatic chargedischarge and cyclic voltammetry were used to investigate intrinsic properties of this open system. This study demonstrates the feasibility to characterize the capacitive behavior of the cell in low concentration (0.5M). Presence of membranes, as well as the possibility of having the electrolyte flowing through the cell was investigated. In the studied cell, the presence of membranes showed a limitation by the anion exchange membrane at low current densities but no effect at high current densities. The flow rate did not influence the capacitance of the system either.

Bruno B. Sales; Fei Liu; Olivier Schaetzle; Cees J.N. Buisman; Hubertus V.M. Hamelers

2012-01-01T23:59:59.000Z

314

Use of high-temperature gas-tight electrochemical cells to measure electronic transport and thermodynamics in metal oxides  

SciTech Connect (OSTI)

By using a gas-tight electrochemical cell, the authors can perform high-temperature coulometric titration and measure electronic transport properties to determine the electronic defect structure of metal oxides. This technique reduces the time and expense required for conventional thermogravimetric measurements. The components of the gas-tight coulometric titration cell are an oxygen sensor, Pt/yttria stabilized zirconia (YSZ)/Pt, and an encapsulated metal oxide sample. Based on cell design, both transport and thermodynamic measurements can be performed over a wide range of oxygen partial pressures (pO{sub 2} = 10{sup {minus}35} to 1 atm). This paper describes the high-temperature gas-tight electrochemical cells used to determine electronic defect structures and transport properties for pure and doped-oxide systems, such as YSZ, doped and pure ceria (Ca-CeO{sub 2} and CeO{sub 2}), copper oxides, and copper-oxide-based ceramic superconductors, transition metal oxides, SrFeCo{sub 0.5}O{sub x}, and BaTiO{sub 3}.

Park, J.H.; Ma, B.; Park, E.T. [Argonne National Lab., IL (United States). Energy Technology Div.

1997-10-01T23:59:59.000Z

315

Electrochemical Evaluation of Self-Disassociation of PKA upon Activation by cAMP  

Science Journals Connector (OSTI)

Electrochemical Evaluation of Self-Disassociation of PKA upon Activation by cAMP ... 90406005 and 20575028) and the Program for New Century Excellent Talents in University, the Chinese Ministry of Education (NCET-04-0452). ...

Han Xiao; Jing Wang; Guifang Chen; Genxi Li

2007-02-21T23:59:59.000Z

316

Electrochemical properties of Li ion polymer battery with gel polymer electrolyte based on polyurethane  

Science Journals Connector (OSTI)

Gel polymer electrolyte (GPE) was prepared using polyurethane acrylate as polymer host and its performance was evaluated. LiCoO2/GPE/graphite cells were prepared and their electrochemical performance as a functio...

H-S. Kim; G-Y. Choi; S-I. Moon; S-P. Kim

2003-06-01T23:59:59.000Z

317

Treatment methods for spent decontamination electrolyte produced in the ABB Atom electrochemical decontamination process ELDECON  

E-Print Network [OSTI]

One of ABB Atom's methods under development, ELDECON, is an electrochemical process for decontamination of components used in nuclear power plants. ELDECON removes radioactive species while producing small amounts of waste. However, the waste sludge...

Carlsson, Charlotta Elisabeth

2012-06-07T23:59:59.000Z

318

Characterization Studies of Materials and Devices used for Electrochemical Energy Storage  

E-Print Network [OSTI]

solar and wind energy requires some form of energy storage,solar cells, fuel cells, redox flow batteries and electrochemical energy storage.energy generation and storage technologies. Dye Sensitized Solar

Membreno, Daniel Eduardo

2014-01-01T23:59:59.000Z

319

Post-combustion carbon dioxide capture using electrochemically mediated amine regeneration  

E-Print Network [OSTI]

Electrochemically mediated amine regeneration is a new post-combustion capture technology with the potential to exploit the excellent removal efficiencies of thermal amine scrubbers while reducing parasitic energy losses ...

Stern, Michael C.

320

Electrochemical Investigation of a Microbial Solar Cell Reveals a Nonphotosynthetic Biocathode Catalyst  

Science Journals Connector (OSTI)

...Electrochemical Investigation of a Microbial Solar Cell Reveals a Nonphotosynthetic Biocathode...Jose, California, USA c Microbial solar cells (MSCs) are microbial fuel cells...been hypothesized that microbial solar cells (MSCs) can continuously generate...

Sarah M. Strycharz-Glaven; Richard H. Glaven; Zheng Wang; Jing Zhou; Gary J. Vora; Leonard M. Tender

2013-04-19T23:59:59.000Z

Note: This page contains sample records for the topic "giner electrochemical systems" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Electropolymerized Polyaniline Stabilized Tungsten Oxide Nanocomposite Films: Electrochromic Behavior and Electrochemical  

E-Print Network [OSTI]

Electropolymerized Polyaniline Stabilized Tungsten Oxide Nanocomposite Films: Electrochromic. The optical properties and electrochemical capacitive behaviors of the composite films for electrochromic (EC electrochromism at both positive and negative potentials arising from PANI and WO3, respectively. A coloration

Guo, John Zhanhu

322

Electrochemical calorimetric studies on the electrolysis of water and heavy water (D2O)  

Science Journals Connector (OSTI)

Electrochemical calorimetric studies were carried out in H2O and D2O using Pd and Pt cathodes with LiOD(H) electrolytes. Two types of calorimetric cell designs were used in this attempt to detect excess enthalpy ...

D. E. Stilwell; K. H. Park; M. H. Miles

1990-09-01T23:59:59.000Z

323

Computational battery dynamics (CBD)--electrochemical/thermal coupled modeling and multi-scale modeling  

E-Print Network [OSTI]

Computational battery dynamics (CBD)--electrochemical/thermal coupled modeling and multi the development of first-principles based mathematical models for batteries developed on a framework parallel to computation fluid dynamics (CFD), herein termed computational battery dynamics (CBD). This general

324

GBL-based electrolyte for Li-ion battery: thermal and electrochemical performance  

Science Journals Connector (OSTI)

Thermal stability, flammability, and electrochemical performances of...4] have been examined in comparison with contemporary (EC/EMC, 1:3vol.%, 1M LiPF6...) electrolyte by DSC, accelerating rate calorimetry (AR...

Dmitry Belov; Deng-Tswen Shieh

2012-02-01T23:59:59.000Z

325

Electrochemical assessment of calcium carbonate deposition using a rotating disc electrode (RDE)  

Science Journals Connector (OSTI)

An electrochemically-based technique, which uses assessment of the oxygen reduction reaction at a rotating disc electrode, has been devised which shows promise as a method for studying nucleation and growth of...

A. Neville; T. Hodgkiess; A. P. Morizot

1999-04-01T23:59:59.000Z

326

Electrochemical Conversion of Oxide Precursors to Consolidated Zr and Zr?2.5Nb Tubes  

Science Journals Connector (OSTI)

Electrochemical Conversion of Oxide Precursors to Consolidated Zr and Zr?2.5Nb ... Electrochemical reduction of tubular oxide precursors in molten calcium chloride and the subsequent in situ consolidation induced by electro-deoxygenation promise a low energy and fast route for manufacturing of zirconium-alloy-based artifacts, such as the nuclear fuel cladding tubes. ... Zircaloy) in a mold of Plaster of Paris. ...

Junjun Peng; Kai Jiang; Wei Xiao; Dihua Wang; Xianbo Jin; George Z. Chen

2008-11-11T23:59:59.000Z

327

Panoramic View of Electrochemical Pseudocapacitor and Organic Solar Cell Research in Molecularly Engineered Energy Materials (MEEM)  

Science Journals Connector (OSTI)

Panoramic View of Electrochemical Pseudocapacitor and Organic Solar Cell Research in Molecularly Engineered Energy Materials (MEEM) ... His research group is engaged in a wide range of interdisciplinary research projects at the intersection between interfacial and transport phenomena, material science, and biology for sustainable energy conversion, storage, and efficiency technologies. ... Of these, carbon capture was phased out in the early stages of the project to concentrate available resources on the electrochemical pseudocapacitor and organic solar cell themes. ...

Jordan C. Aguirre; Amy Ferreira; Hong Ding; Samson A. Jenekhe; Nikos Kopidakis; Mark Asta; Laurent Pilon; Yves Rubin; Sarah H. Tolbert; Benjamin J. Schwartz; Bruce Dunn; Vidvuds Ozolins

2014-07-09T23:59:59.000Z

328

The electrochemical analysis of sodium dodecylbenzenesulfonate in solutions containing oilfield impurities  

E-Print Network [OSTI]

THE ELECTROCHEMICAL ANALYSIS OF SODIUM DODECYLBENZENESULFONATE IN SOLUTIONS CONTAINING OILFIELD IMPURITIES A Thesis by MICHAEL CARL BECKER Submitted to the Graduate College of Texas A&M University in partial fulfillment of the requirement... for the degree of MASTER OF SCIENCE December 1979 Major Subject: Chemical Engineering THE ELECTROCHEMICAL ANALYSIS OF SODIUM DODECYLBENZENESULFONATE IN SOLUTIONS CONTAINING OILFIELD IMPURITIES A Thesis by MICHAEL CARL BECKER Approved as to style...

Becker, Michael Carl

2012-06-07T23:59:59.000Z

329

Glass composition and process for sealing void spaces in electrochemical devices  

SciTech Connect (OSTI)

A glass foaming material and method are disclosed for filling void spaces in electrochemical devices. The glass material includes a reagent that foams at a temperature above the softening point of the glass. Expansion of the glass fills void spaces including by-pass and tolerance channels of electrochemical devices. In addition, cassette to cassette seals can also be formed while channels and other void spaces are filled, reducing the number of processing steps needed.

Meinhardt, Kerry D. (Richland, WA); Kirby, Brent W. (Kennewick, WA)

2012-05-01T23:59:59.000Z

330

Assessing cell polarity reversal degradation phenomena in PEM fuel cells by electrochemical impedance spectroscopy  

Science Journals Connector (OSTI)

Electrochemical impedance spectroscopy (EIS) is identified as one of the most promising in-situ diagnostics tools available for assessing fuel cell ageing and degradation. In this work, the degradation phenomena caused by cell polarity reversal due to fuel starvation of an open cathode 16 membrane electrode assembly (MEA) low power (PEM) fuel cell (15W nominal power) is reported using EIS as a base technique. Measuring the potential of individual cells, while the fuel cell is on load, was found instrumental in assessing the state of health of cells at fixed current. Location of affected cells, those farthest away from hydrogen entry in the stack, was revealed by very low or even negative potential values. EIS spectra were taken at selected break-in periods during fuel cell functioning. The analysis of impedance data was made using an a priori equivalent circuit describing the transfer function of the system in question equivalent circuit elements were evaluated by a complex non-linear least square (CNLS) fitting algorithm, and by calculating and analyzing the corresponding distribution of relaxation times (DRT). Results and interpretation of cell polarity reversal due to hydrogen starvation were complemented with ex-situ MEA cross section analysis, using scanning electron microscopy. Electrode thickness reduction and delamination of catalyst layers were observed as a result of reactions taking place during hydrogen starvation. Carbon corrosion and membrane degradation by fluoride depletion are discussed.

M.A. Travassos; Vitor V. Lopes; R.A. Silva; A.Q. Novais; C.M. Rangel

2013-01-01T23:59:59.000Z

331

Electrochemical Properties of Lanthanum Strontium Aluminum Ferrites for the Oxygen Reduction Reaction  

SciTech Connect (OSTI)

The oxygen reduction reaction was studied on the La1-xSrxAlyFe1-yO3 (x = 0.2, y = 0.1, 0.2, 0.3, 0.4) system by cyclic voltammetry and electronic conductivity. Activation energies for the bulk and film conductivities were determined. Tafel analysis afforded the activation energies from the temperature dependence of the exchange current densities as well as the charge transfer coefficient. The electrical conductivity of bulk material was found to decrease with aluminum content. Formation of the materials into thin porous films further decreased the conductivity after correcting for porosity. Aluminum substitution substantially decreased the performance through influence of the pre-exponential factor in the Butler-Volmer formulation. Neither the activation energies nor the charge transfer coefficient for these materials varied significantly. Aluminum does not adversely influence the basic mechanism of oxygen reduction. It may occupy and block electrochemically active sites on the electrode surface, but it does not appear to decrease the intrinsic activity of available surface sites.

Coffey, Greg W.; Hardy, John S.; Pederson, Larry R.; Rieke, Peter C.; Thomsen, Ed C.; Walpole, Mark B.

2003-02-01T23:59:59.000Z

332

Electrochemical Testing of Ni-Cr-Mo-Gd Alloys  

SciTech Connect (OSTI)

The waste package site recommendation design specified a boron-containing stainless steel, Neutronit 976/978, for fabrication of the internal baskets that will be used as a corrosion-resistant neutron-absorbing material. Recent corrosion test results gave higher-than-expected corrosion rates for this material. The material callout for these components has been changed to a Ni-Cr-Mo-Gd alloy (ASTM-B 932-04, UNS N06464) that is being developed at the Idaho National Laboratory. This report discusses the results of initial corrosion testing of this material in simulated in-package environments that could contact the fuel baskets after breach of the waste package outer barrier. The corrosion test matrix was executed using the potentiodynamic and potentiostatic electrochemical test techniques. The alloy performance shows low rates of general corrosion after initial removal of a gadolinium-rich second phase that intersects the surface. The high halide-containing test solutions exhibited greater tendencies toward initiation of crevice corrosion.

T. E. Lister; R. E. Mizia; H. Tian

2005-10-01T23:59:59.000Z

333

The electrochemical oxidation of organic selenides and selenoxides  

SciTech Connect (OSTI)

The electrochemical oxidation of alkyl and aryl selenides was investigated in acetonitrile. The oxidation of diphenyl selenide and di(4-methylphenyl) selenide led primarily to the formation of their respective selenoxides, which were identified by exhaustive coulometric oxidation and {sup 1}H and {sup 13}C analysis of the products. The selenoxide itself was not observed in the cyclic voltammetry of the selenide for two reasons: first, the protonation of the selenoxide by the acid formed from the reaction of water with the cation radical and second, the formation of a selenoxide hydrate. The formation of the hydrate with diphenyl selenoxide was verified by isolation of the dimethoxy derivative. In addition to the selenoxide, selenonium compounds, formed by the coupling of the oxidized material, were also observed. The alkyl selenides were generally oxidized at a lower potential than the aryl selenides. This trend is different from the sulfur analogues, where the aryl sulfides are easier to oxidize than their alkyl counterparts. As a result, the difference in their redox potentials is relatively small. These differences may occur because the oxidation of aryl sulfides is more likely to take place on the aromatic ring, which leads to a greater yield of the coupled products (about 100%) when compared to the selenide analogue.

Ryan, M.D.; Yau, J.; Hack, M. [Marquette Univ., Milwaukee, WI (United States). Dept. of Chemistry

1997-06-01T23:59:59.000Z

334

Electrochemical control of ion transport through a mesoporous carbon membrane  

SciTech Connect (OSTI)

The transport of fluids through nanometer scale channels typically on the order of 1 -100 nm often exhibit unique properties compared to the bulk fluid. These phenomena occur because the channel dimensions and molecular size become comparable to the range of several important forces including electrostatic and van der Waals forces. Small changes in properties such as the electric double layer or surface charge can significantly affect molecular transport through the channels. Based on these emerging properties, a variety of nanofluidic devices such as nanofluidic transistors, nanofluidic diodes or lab-on-a-chip devices have been developed3-7 with a diverse range of applications including water purification, biomolecular sensing, DNA separation, and rectified ion transport. Nanofluidic devices are typically fabricated using expensive lithography techniques or sacrificial templates. Here we report a carbon-based, three-dimensional nanofluidic transport membrane that enables gated, or on/off, control of the transport of organic molecular species and metal ions using an applied electrical potential. In the absence of an applied potential, both cationic and anionic molecules freely diffuse across the membrane via a concentration gradient. However, when an electrochemical potential is applied, the transport of ions through the membrane is inhibited.

Surwade, Sumedh P [ORNL] [ORNL; Chai, Songhai [ORNL] [ORNL; Choi, Jai-Pil [ORNL] [ORNL; Wang, Xiqing [ORNL] [ORNL; Lee, Jeseung [ORNL] [ORNL; Vlassiouk, Ivan V [ORNL] [ORNL; Mahurin, Shannon Mark [ORNL] [ORNL; Dai, Sheng [ORNL] [ORNL

2014-01-01T23:59:59.000Z

335

Electrochemical characterization of Polymer Electrolyte Membrane Water Electrolysis Cells  

Science Journals Connector (OSTI)

Abstract The purpose of this paper is to report on the electrochemical characterization of Polymer Electrolyte Membrane (PEM) water electrolysis cells. Results were obtained using membrane-electrode assemblies containing unsupported IrO2 catalyst at anode for the oxygen evolution reaction (OER) and carbon-supported platinum nano-particles at the cathode for the hydrogen evolution reaction (HER). Roughness factors of anodes and cathodes have been determined using an internal reference electrode. Individual cell voltage contributions have also been measured as a function of operating current density. Cell impedance spectra have been measured at different cell voltages along the polarization curve. It is shown that charge transfer processes are major cell impedance contributors at voltages up to 1.8-1.9V. At higher cell voltages, cell impedances are mainly resistive. It is shown that the impedance associated with the HER is negligible and that the two time-constants observed on experimental impedance spectra can both be attributed to the OER. Possible mechanism options are discussed. Finally, some results related to the EIS characterization of PEM water electrolysis stacks are also reported.

C. Rozain; P. Millet

2014-01-01T23:59:59.000Z

336

Electrochemical performances of PEM water electrolysis cells and perspectives  

Science Journals Connector (OSTI)

Proton Exchange Membrane (PEM) water electrolysis is potentially interesting for the decentralized production of hydrogen from renewable energy sources. The European Commission (EC) is actively supporting different projects within the 6th and 7th Framework Programmes. The purpose of this paper is to provide a summary of most significant scientific and technological achievements obtained at the end of the GenHyPEM project (FP6, 20052008), and to discuss future perspectives. Using carbon-supported platinum at the cathode for the hydrogen evolution reaction (HER) and iridium at the anode for the oxygen evolution reaction (OER), efficient membrane electrode assemblies have been prepared and characterized using cyclic voltametry and electrochemical impedance spectroscopy. Charge densities and impedances of lab-scale PEM cells have been measured and used as references to optimize the performances of a GenHy1000 PEM water electrolyser (1Nm3 H2/h) and then to extend the production capacity up to 5Nm3 H2/h. Different non-noble electrocatalysts have been successfully tested to replace platinum at the cathode. Some current limitations and future perspectives of the technology are outlined and discussed.

P. Millet; N. Mbemba; S.A. Grigoriev; V.N. Fateev; A. Aukauloo; C. Etivant

2011-01-01T23:59:59.000Z

337

Electrochemical Decontamination of Painted and Heavily Corroded Metals  

SciTech Connect (OSTI)

The radioactive metal wastes that are generated from nuclear fuel plants and radiochemical laboratories are mainly contaminated by the surface deposition of radioactive isotopes. There are presently several techniques used in removing surface contamination involving physical and chemical processes. However, there has been very little research done in the area of soiled, heavily oxidized, and painted metals. Researchers at Los Alamos National Laboratory have been developing electrochemical procedures for the decontamination of bare and painted metal objects. These methods have been found to be effective on highly corroded as well as relatively new metals. This study has been successful in decontaminating projectiles and shrapnel excavated during environmental restoration projects after 40+ years of exposure to the elements. Heavily corroded augers used in sampling activities throughout the area were also successfully decontaminated. This process has demonstrated its effectiveness and offers several advantages over the present metal decontamination practices of media blasting and chemical solvents. These advantages include the addition of no toxic or hazardous chemicals, low operating temperature and pressure, and easily scaleable equipment. It is in their future plans to use this process in the decontamination of gloveboxes destined for disposal as TRU waste.

Marczak, S.; Anderson, J.; Dziewinski, J.

1998-09-08T23:59:59.000Z

338

Double Layer Formation and Cation Pseudo-Intercalation Supercapacitor Carbon Nanotube Composite Electrodes With Enhanced Electrochemical Performances.  

E-Print Network [OSTI]

??Among electrochemical energy storage solutions, redox-free supercapacitors exhibit the highest power densities and best cycle life, easily reaching over one million cycles. Despite these attributes, (more)

Rangom, Yverick

2015-01-01T23:59:59.000Z

339

Journal of The Electrochemical Society, 146 (11) 4023-4030 (1999) 4023 S0013-4651(98)07-107-9 CCC: $7.00 The Electrochemical Society, Inc.  

E-Print Network [OSTI]

: $7.00 � The Electrochemical Society, Inc. The lithium/thionyl chloride battery (Li/SOCl2) has curves. The model equations were written under the assumption that the excess electrolyte of a carbon cathode, lithium anode, and two Whatman DBS45-1 borosilicate glass separators. The assembly

Weidner, John W.

340

Lithium-Ion battery State of Charge estimation with a Kalman Filter based on a electrochemical model  

E-Print Network [OSTI]

Lithium-Ion battery State of Charge estimation with a Kalman Filter based on a electrochemical state of charge (SOC). In this paper an averaged electrochemical Lithium-ion battery model suitable-Volmer current and the solid concentration at the interface with the electrolyte and (ii) the battery current

Stefanopoulou, Anna

Note: This page contains sample records for the topic "giner electrochemical systems" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Conductive indium-tin oxide nanowire and nanotube arrays made by electrochemically assisted deposition in template membranes: switching  

E-Print Network [OSTI]

Conductive indium-tin oxide nanowire and nanotube arrays made by electrochemically assisted-step electrochemically assisted deposition (EAD) process inside Au-plugged anodic aluminium oxide and polycarbonate electrodes in dye-sensi- tized2,6­11 and polymer12 solar cells, fillers in transparent and conductive polymer

342

Direct Electrochemical Regeneration of Enzymatically Active 1,4-NADH Using a Nickel Modified Glassy Carbon Electrode  

E-Print Network [OSTI]

Direct Electrochemical Regeneration of Enzymatically Active 1,4- NADH Using a Nickel Modified enzymatically active 1,4- NADH in a batch electrochemical reactor at different electrolysis potentials. 1m was regenerated at -1.5VMSE In comparison with bare GCE, almost the same percentage of enzymatically active 1

Barthelat, Francois

343

Electrochemical aspects of surface/solution interactions in scale initiation and growth  

SciTech Connect (OSTI)

An electrochemically-based technique, which uses assessment of the oxygen reduction reaction at a Rotating Disk Electrode (RDE), has been devised which shows promise as a method for studying nucleation and growth of scale at a solid surface. In this paper results are presented which illustrate the good correlation between the surface coverage predicted by electrochemical analysis and the actual coverage quantified by image analysis. Preliminary results in the presence of 1 ppm polyacrylic acid inhibitor have indicated that, in inhibited solution, the new technique is valid for prediction of surface coverage. The potential of this technique for mechanistic studies of surface scaling and for assessment of inhibitors is discussed.

Morizot, A.P.; Neville, A. [Heriot Watt Univ., Edinburgh (United Kingdom). Dept. of Mechanical and Chemical Engineering; Hodgkiess, T. [Univ. of Glasgow (United Kingdom). Dept. of Mechanical Engineering

1998-12-31T23:59:59.000Z

344

Scanning electrochemical microscope characterization of thin film combinatorial libraries for fuel cell electrode applications  

Science Journals Connector (OSTI)

PtRu combinatorial libraries of potential fuel cell anode catalysts are formed by sequential sputter deposition through masks onto Si wafers. Scanning electrochemical microscopy (SECM) is employed for characterization of electrocatalytic activity. Aspects of using a scanning electrochemical microscope for characterization of an array of thin film fuel cell electrode materials are discussed. It is shown that in applying SECM to library characterization, careful attention must be paid to thin film annealing, specimen topography and tip degradation in order to realize meaningful results. Results from a PtRu thin film library reveal the most active members near the 50 Pt/50 Ru composition.

M Black; J Cooper; P McGinn

2005-01-01T23:59:59.000Z

345

Method of bonding an interconnection layer on an electrode of an electrochemical cell  

DOE Patents [OSTI]

An electrochemical cell containing an air electrode, contacting electrolyte and electronically conductive interconnection layer, and a fuel electrode, has the interconnection layer attached by: (A) applying a thin, closely packed, discrete layer of LaCrO[sub 3] particles, doped with an element selected from the group consisting of Ca, Sr, Co, Ba, Mg and their mixtures on a portion of the air electrode, and then (B) electrochemical vapor depositing a dense skeletal structure between and around the doped LaCrO[sub 3] particles. 2 figs.

Pal, U.B.; Isenberg, A.O.; Folser, G.R.

1992-01-14T23:59:59.000Z

346

Papers Based Electrochemical Biosensors: From Test Strips to Paper-Based Microfluidics  

SciTech Connect (OSTI)

Papers based biosensors such as lateral flow test strips and paper-based microfluidic devices (or paperfluidics) are inexpensive, rapid, flexible, and easy-to-use analytical tools. An apparent trend in their detection is to interpret sensing results from qualitative assessment to quantitative determination. Electrochemical detection plays an important role in quantification. This review focuses on electrochemical (EC) detection enabled biosensors. The first part provides detailed examples in paper test strips. The second part gives an overview of paperfluidics engaging EC detections. The outlook and recommendation of future directions of EC enabled biosensors are discussed in the end.

Liu, Bingwen; Du, Dan; Hua, Xin; Yu, Xiao-Ying; Lin, Yuehe

2014-05-08T23:59:59.000Z

347

Reactive air brazing: A novel method of sealing SOFCs and other solid-state electrochemical devices  

SciTech Connect (OSTI)

High temperature electrochemical devices operate via an ion gradient that develops across a solid electrolyte; consequently, hermeticity across this membrane is paramount. Not only must the electrolyte contain no interconnected porosity, but it must be connected to device chassis with a gas-tight seal. Here we report a new method of brazing developed specifically for solid-state electrochemical applications. We demonstrate that the seal is hermetic and resistant to thermal aging, can be thermally cycled under rapid heating rates with no measurable loss in seal strength, and has shown promise in sealing full-size pSOFC components.

Weil, K. Scott; Kim, Jin Yong Y.; Hardy, John S.

2005-02-28T23:59:59.000Z

348

Electrochemical polarization measurement on 304 SS in high temperature, high purity water  

SciTech Connect (OSTI)

The polarization behavior of the redox reactions of hydrogen (H{sub 2}), oxygen (O{sub 2}), and hydrogen peroxide (H{sub 2}O{sub 2}) on 304 stainless steel (SS) in high temperature, high purity water was studied in order to determine the electrochemical kinetic constants, such as Tafel slopes, exchange currents, orders of reaction and other parameters. These values are necessary to develop the electrochemical corrosion potential (ECP) predictive model for boiling water reactors (BWRs), which is used to monitor the intergranular stress corrosion cracking (IGSCC) susceptibility of sensitized austenitic SS.

Kim, Y.J.; Niedrach, L.W. [General Electric Corp., Schenectady, NY (United States). Corporate Research and Development Center

1997-12-01T23:59:59.000Z

349

Coupling Temperature Control with Electrochemically Modulated Liquid Chromatography: Fundamental Aspects and Applications  

SciTech Connect (OSTI)

The primary focus of the doctoral research presented herein has been the integration of temperature control into electrochemically modulated liquid chromatography (EMLC). The combination of temperature control and the tunable characteristics of carbonaceous EMLC stationary phases have been invaluable in deciphering the subtleties of the retention mechanism. The effects of temperature and E{sub app} on the retention of several naphthalene disulfonates were therefore examined by the van' Hoff relationship. The results indicate that while the retention of both compounds is exothermic at levels comparable to that in many reversed-phase separations, the potential dependence of the separation is actually entropically affected in a manner paralleling that of several classical ion exchange systems. Furthermore, the retention of small inorganic anions at constant temperature also showed evidence of an ion exchange type of mechanism. While a more complete mechanistic description will come from examining the thermodynamics of retention for a wider variety of analytes, this research has laid the groundwork for full exploitation of temperature as a tool to develop retention rules for EMLC. Operating EMLC at elevated temperature and flow conditions has decreased analysis time and has enabled the separation of analytes not normally achievable on a carbon stationary phase. The separation of several aromatic sulfonates was achieved in less than 1 min, a reduction of analysis time by more than a factor of 20 as compared to room temperature separations. The use of higher operating temperatures also facilitated the separation of this mixture with an entirely aqueous mobile phase in less than 2 min. This methodology was extended to the difficult separation of polycyclic aromatic hydrocarbons on PGC. This study also brought to light the mechanistic implications of the unique retention behavior of these analytes through variations of the mobile phase composition.

Lisa M. Ponton

2004-12-19T23:59:59.000Z

350

ElectroChemical Arsenic Removal (ECAR) for Rural Bangladesh-Merging  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

ElectroChemical Arsenic Removal (ECAR) for Rural Bangladesh-Merging ElectroChemical Arsenic Removal (ECAR) for Rural Bangladesh-Merging Technology with Sustainable Implementation Title ElectroChemical Arsenic Removal (ECAR) for Rural Bangladesh-Merging Technology with Sustainable Implementation Publication Type Report Year of Publication 2009 Authors Addy, Susan E., Ashok J. Gadgil, Kristin Kowolik, and Robert Kostecki Publisher Lawrence Berkeley National Laboratory City Berkeley Abstract Today, 35-77 million Bangladeshis drink arsenic-contaminated groundwater from shallow tube wells. Arsenic remediation efforts have focused on the development and dissemination of household filters that frequently fall into disuse due to the amount of attention and maintenance that they require. A community scale clean water center has many advantages over household filters and allows for both chemical and electricity-based technologies to be beneficial to rural areas. Full cost recovery would enable the treatment center to be sustainable over time. ElectroChemical Arsenic Remediation (ECAR) is compatible with community scale water treatment for rural Bangladesh. We demonstrate the ability of ECAR to reduce arsenic levels > 500 ppb to less than 10 ppb in synthetic and real Bangladesh groundwater samples and examine the influence of several operating parameters on arsenic removal effectiveness. Operating cost and waste estimates are provided. Policy implication recommendations that encourage sustainable community treatment centers are discussed.

351

Effective Panchromatic Sensitization of Electrochemical Solar Cells: Strategy and Organizational Rules for Spatial Separation of  

E-Print Network [OSTI]

Effective Panchromatic Sensitization of Electrochemical Solar Cells: Strategy and Organizational efficiencies. In only a few cases, however, have significant overall improvements been obtained. In most other (JSC = 14.6 mA cm-2 ) and double the efficiency of randomly mixed dyes, once the dyes were optimally

352

Electrochemical gating of individual single-wall carbon nanotubes observed by electron transport measurements and resonant  

E-Print Network [OSTI]

, the Fermi energy of a nanotube can be changed, as ions from the solution accu- mulate on the surface gating of nanotubes has been shown previously to effectively shift the Fermi energy of semiconducting with the laser energy, we can observe the Raman spectrum from a single SWNT.7 Electrochemical gating of nanotubes

353

Electrochemical method for defect delineation in silicon-on-insulator wafers  

DOE Patents [OSTI]

An electrochemical method for defect delineation in thin-film SOI or SOS wafers in which a surface of a silicon wafer is electrically connected so as to control the voltage of the surface within a specified range, the silicon wafer is then contacted with an electrolyte, and, after removing the electrolyte, defects and metal contamination in the silicon wafer are identified.

Guilinger, Terry R. (Albuquerque, NM); Jones, Howland D. T. (Albuquerque, NM); Kelly, Michael J. (Albuquerque, NM); Medernach, John W. (Albuquerque, NM); Stevenson, Joel O. (Albuquerque, NM); Tsao, Sylvia S. (Albuquerque, NM)

1991-01-01T23:59:59.000Z

354

Electrochemical hydrogenation of aromatic compounds chemisorbed at polycrystalline and single-crystal Pd surfaces  

E-Print Network [OSTI]

, electrochemistry (EC), and electrochemical mass spectrometry (EC-MS). H2Q was found to form a slightly tilted flat-oriented quinone (Q) adlayer, when adsorbed from low concentrations; when chemisorbed from high concentrations, an edgewise-oriented H2Q adlayer...

Sanabria-Chinchilla, Jean

2009-06-02T23:59:59.000Z

355

Comparison study of biomimetic strontium-doped calcium phosphate coatings by electrochemical deposition and air plasma  

E-Print Network [OSTI]

Comparison study of biomimetic strontium-doped calcium phosphate coatings by electrochemical April 2012 ? Springer Science+Business Media, LLC 2012 Abstract In this study, strontium-doped calcium of the strontium-doped calcium phosphate coatings were evaluated using bone cell culture using MC3T3-E1 osteoblast

Meng, Yizhi

356

Hybrid Capillary-Microfluidic Device for the Separation, Lysis, and Electrochemical Detection of Vesicles  

Science Journals Connector (OSTI)

Hybrid Capillary-Microfluidic Device for the Separation, Lysis, and Electrochemical Detection of Vesicles ... This publication was supported by The Pennsylvania State University Materials Research Institute Nano Fabrication Network and the National Science Foundation Cooperative Agreement No. 0335765, National Nanotechnology Infrastructure Network, with Cornell University. ...

Donna M. Omiatek; Michael F. Santillo; Michael L. Heien; Andrew G. Ewing

2009-02-19T23:59:59.000Z

357

Modeling integrated photovoltaicelectrochemical devices using steady-state equivalent circuits  

Science Journals Connector (OSTI)

...Engineering andbChemistry, Massachusetts Institute of Technology, Cambridge, MA 02139bChemistry, Massachusetts Institute of Technology...string of single-band-gap solar cells to an electrochemical...limitations that arise from using solar cells with a single band gap...

Mark T. Winkler; Casandra R. Cox; Daniel G. Nocera; Tonio Buonassisi

2013-01-01T23:59:59.000Z

358

The hydrothermal synthesis and characterization of olivines and related compounds for electrochemical applications  

E-Print Network [OSTI]

this material is inherently low cost, a manufacturing process that produces electrochemically-active LiFePO4 1. Introduction Critical to the success of new cathode materials, is their preparation, which to the synthesis of active materials, but in the end a commercially viable approach must be used [1]. Soft chemical

Suzuki, Masatsugu

359

The electrochemical lithium reactions of monoclinic ZnP2 material{{ Haesuk Hwang,a  

E-Print Network [OSTI]

The electrochemical lithium reactions of monoclinic ZnP2 material{{ Haesuk Hwang,a Min Gyu Kim was developed, and out to 545 mAh g21 , only topotactic lithium ion intercalation into the molecule pores was observed. The excess Li ion uptake beyond simple Li intercalation (.545 mAh g21 ) into molecular pores can

Cho, Jaephil

360

Homogeneous, dual layer, solid state, thin film deposition for structural and/or electrochemical characteristics  

DOE Patents [OSTI]

Solid state, thin film, electrochemical devices (10) and methods of making the same are disclosed. An exemplary device 10 includes at least one electrode (14) and an electrolyte (16) deposited on the electrode (14). The electrolyte (16) includes at least two homogenous layers of discrete physical properties. The two homogenous layers comprise a first dense layer (15) and a second porous layer (16).

Pitts, J. Roland; Lee, Se-Hee; Tracy, C. Edwin; Li, Wenming

2014-04-08T23:59:59.000Z

Note: This page contains sample records for the topic "giner electrochemical systems" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Thermo-electrochemical analysis of lithium ion batteries for space applications using Thermal Desktop  

Science Journals Connector (OSTI)

Abstract Lithium-ion batteries (LIBs) are replacing the NickelHydrogen batteries used on the International Space Station (ISS). Knowing that LIB efficiency and survivability are greatly influenced by temperature, this study focuses on the thermo-electrochemical analysis of \\{LIBs\\} in space orbit. Current finite element modeling software allows for advanced simulation of the thermo-electrochemical processes; however the heat transfer simulation capabilities of said software suites do not allow for the extreme complexities of orbital-space environments like those experienced by the ISS. In this study, we have coupled the existing thermo-electrochemical models representing heat generation in \\{LIBs\\} during discharge cycles with specialized orbital-thermal software, Thermal Desktop (TD). Our model's parameters were obtained from a previous thermo-electrochemical model of a 185Amp-Hour (Ah) LIB with 13C (C) discharge cycles for both forced and natural convection environments at 300K. Our TD model successfully simulates the temperature vs. depth-of-discharge (DOD) profiles and temperature ranges for all discharge and convection variations with minimal deviation through the programming of FORTRAN logic representing each variable as a function of relationship to DOD. Multiple parametrics were considered in a second and third set of cases whose results display vital data in advancing our understanding of accurate thermal modeling of LIBs.

W. Walker; H. Ardebili

2014-01-01T23:59:59.000Z

362

Nitrogen-doped graphene and its electrochemical applications Yuyan Shao,a  

E-Print Network [OSTI]

Nitrogen-doped graphene and its electrochemical applications Yuyan Shao,a Sheng Zhang,a Mark Hst March 2010, Accepted 4th June 2010 DOI: 10.1039/c0jm00782j Nitrogen-doped graphene (N-graphene) is obtained by exposing graphene to nitrogen plasma. N-graphene exhibits much higher electrocatalytic activity

Aksay, Ilhan A.

363

Electrochemical Removal of Carbon Monoxide in Reformate Hydrogen for Fueling Proton Exchange Membrane  

E-Print Network [OSTI]

Electrochemical Removal of Carbon Monoxide in Reformate Hydrogen for Fueling Proton Exchange Membrane Fuel Cells Sivagaminathan Balasubramanian, Charles E. Holland,* and John W. Weidner*,z Center in reformate hydrogen. In this design, the potential and gas flow are switched between the two filter cells so

Weidner, John W.

364

ALUMINUM-BRIDGED BISGLYOXIMATO COBALT COMPLEXES: SYNTHESIS AND ELECTROCHEMICAL PROTON REDUCTION PROPERTIES  

E-Print Network [OSTI]

194 CHAPTER 6 ALUMINUM-BRIDGED BISGLYOXIMATO COBALT COMPLEXES: SYNTHESIS AND ELECTROCHEMICAL PROTON diglyoximato complexes connected by one or two aluminum bridges are described. The aluminum centers that the number of aluminum bridges and the nature of the substituents on the phenoxide ligands significantly

Winfree, Erik

365

Electrochemical detection of single molecules using abiotic nanopores having electrically tunable dimensions  

DOE Patents [OSTI]

A barrier structure for use in an electrochemical stochastic membrane sensor for single molecule detection. The sensor is based upon inorganic nanopores having electrically tunable dimensions. The inorganic nanopores are formed from inorganic materials and an electrically conductive polymer. Methods of making the barrier structure and sensing single molecules using the barrier structure are also described.

Sansinena, Jose-Maria (Los Alamos, NM); Redondo, Antonio (Los Alamos, NM); Olazabal, Virginia (Los Alamos, NM); Hoffbauer, Mark A. (Los Alamos, NM); Akhadov, Elshan A. (Los Alamos, NM)

2009-12-29T23:59:59.000Z

366

The Effect of rf-Irradiation on Electrochemical Deposition and Its Stabilization by Nanoparticle Doping  

E-Print Network [OSTI]

studied microscale singular perturbation mechanisms in the deposit surface tension and attachment kineticsThe Effect of rf-Irradiation on Electrochemical Deposition and Its Stabilization by Nanoparticle resulted from singular effects of gas-filled submicrometer bubbles or nanobubbles, which are generated

Jacob, Eshel Ben

367

TAS-2013-0043 1 Abstract--Fuel cells are electrochemical energy converters  

E-Print Network [OSTI]

of the perfectly direct current relies upon a fuel cell fed by hydrogen. The main advantages to be taken from fuelTAS-2013-0043 1 Abstract--Fuel cells are electrochemical energy converters which allow generation. Fuel cells are then by essence low voltage sources , so that for most practical applications

Boyer, Edmond

368

CONTROLLED PART-TO-SUBSTRATE MICRO-ASSEMBLY VIA ELECTROCHEMICAL MODULATION OF SURFACE ENERGY  

E-Print Network [OSTI]

the hydro- phobicity of the binding sites between micro-parts and substrates. Active assembly sites consistCONTROLLED PART-TO-SUBSTRATE MICRO-ASSEMBLY VIA ELECTROCHEMICAL MODULATION OF SURFACE ENERGY-2500, USA ABSTRACT A process designed for repeated parallel micro- assembly has been achieved by controlling

369

An electrochemically reduced graphite-cobalt compound : synthesis and magnetic study  

E-Print Network [OSTI]

direct intercalation of transition metals into graphite. One of the reasons could be the very high to metal- carbides formation than G.I.C.'s. Only indirect pre- paration methods have been described by many authors mostly consisting on a chemical [2-7] or electrochemical [8-10] reduction of the transition metal

Paris-Sud XI, Université de

370

Solar Water Splitting To Generate Hydrogen Fuel:? Photothermal Electrochemical Analysis  

Science Journals Connector (OSTI)

A photoelectrolysis system can contain multiple photoharvesting units and electrolysis units, where the ratio of electrolysis to photovolatic units is defined as R. ...

Stuart Licht

2003-04-11T23:59:59.000Z

371

Modeling and simulations of electrical energy storage in electrochemical capacitors  

E-Print Network [OSTI]

energy storage systems (EES) have been the subject of intense study as they constitute an essential element in the development of sustainable energy

Wang, Hainan

2013-01-01T23:59:59.000Z

372

Modeling and simulations of electrical energy storage in electrochemical capacitors  

E-Print Network [OSTI]

density of di?erent electrical energy stor- age systems (carbonate in electrical energy storage applications,challenges facing electrical energy storage, MRS Bulletin,

Wang, Hainan

2013-01-01T23:59:59.000Z

373

Electrochemical determination of the corrosion behavior of candidate alloys proposed for containment of high level nuclear waste in tuff  

SciTech Connect (OSTI)

Long-term geological disposal of nuclear waste requires corrosion-resistant canister materials for encapsulation. Several austenitic stainless steels are under consideration for such purposes for the disposal of high-level waste at the candidate repository site located at Yucca Mountain, Nevada. With regard to corrosion considerations, a worst case scenario at this prospective repository location would result from the intrusion of vadose water. This preliminary study focuses on the electrochemical and corrosion behavior of the candidate canister materials under worst-case repository environments. Electrochemical parameters related to localized attack (e.g., pitting potentials) and the electrochemical corrosion rates have been examined. 15 references, 15 figures, 4 tables.

Glass, R.S.; Overturf, G.E.; Garrison, R.E.; McCright, R.D.

1984-06-18T23:59:59.000Z

374

Selective detection of primary aromatic amines in complex mixtures by liquid chromatography with electrochemical detection using a short reversed-phase column  

SciTech Connect (OSTI)

Selective detection of primary aromatic amines (PAAs) in the presence of phenols by liquid chromatography with electrochemical detection was investigated. PAAs were resolved from other aromatic compounds, using three mobile phases, at various electrode potentials and flow rates. The phases used a combination of pH and organic modifiers (tetrahydrofuran, acetonitrile, or n-propanol) to optimize the degree of separation. As the pH of the mobile phase was increased, the signals for two- and three-ring PAAs decreased and became independent of pH at values between 4 and 8, while the signals from aniline and phenols increased. Selective detection of PAAs is feasible at pH 2.2 at potentials of 0.7 to 0.85 V vs Ag/AgCl. The best result was obtained with a 35 vol % tetrahydrofuran/water mobile phase, which yielded the highest signal for aniline and the lowest signal for phenol at pH 2.2 with satisfactory retention times. Electrochemical detectors are about one thousand times more sensitive to PAAs and phenols than ultraviolet detectors. The results obtained will permit design and construction of a portable PAA monitor with an appropriate sample concentrator, pump, and injection system. 20 refs., 11 figs., 2 tabs.

Otagawa, T.; Zaromb, S.; Stetter, J.R.

1985-01-01T23:59:59.000Z

375

Proceedings of the 31. intersociety energy conversion engineering conference. Volume 2: Conversion technologies, electro-chemical technologies, Stirling engines, thermal management  

SciTech Connect (OSTI)

The 148 papers contained in Volume 2 are arranged topically as follows -- (A) Conversion Technologies: Superconductivity applications; Advanced cycles; Heat engines; Heat pumps; Combustion and cogeneration; Advanced nuclear reactors; Fusion Power reactors; Magnetohydrodynamics; Alkali metal thermal to electric conversion; Thermoelectrics; Thermionic conversion; Thermophotovoltaics; Advances in electric machinery; and Sorption technologies; (B) Electrochemical Technologies: Terrestrial fuel cell technology; and Batteries for terrestrial power; (C) Stirling Engines: Stirling machine analysis; Stirling machine development and testing; and Stirling component analysis and testing; (D) Thermal Management: Cryogenic heat transfer; Electronic components and power systems; Environmental control systems; Heat pipes; Numeric analysis and code verification; and Two phase heat and mass transfer. Papers within the scope of the data base have been processed separately.

Chetty, P.R.K.; Jackson, W.D.; Dicks, E.B. [eds.

1996-12-31T23:59:59.000Z

376

Determining Nanocapillary Geometry from Electrochemical Impedance Spectroscopy Using a  

E-Print Network [OSTI]

and nanocapillaries find increasing use in a variety of applications including DNA sequencing, synthetic nanopores years to develop synthetic systems for ion- channel studies,3-7 single molecule sensing,8,9 DNA

377

Real-time monitoring of quorum sensing in 3D-printed bacterial aggregates using scanning electrochemical microscopy  

Science Journals Connector (OSTI)

...manipulating small populations. Micro-3D printing is a lithographic technique capable...cells or small populations. This 3D-printing strategy can organize bacteria...behaviors. Here, we combined micro-3D printing and scanning electrochemical...

Jodi L. Connell; Jiyeon Kim; Jason B. Shear; Allen J. Bard; Marvin Whiteley

2014-01-01T23:59:59.000Z

378

Neutron Energy Response and Background of Electrochemically Etched Nuclear Track Detectors: Study of Various CR-39 Materials  

Science Journals Connector (OSTI)

......Radiation Protection Dosimetry Article Neutron Energy Response and Background of Electrochemically Etched Nuclear Track Detectors: Study of Various CR-39...experiments. Results are presented for the energy dependence of the response of the various......

M. Luszik-Bhadra; W.G. Alberts; E. Piesch

1990-08-01T23:59:59.000Z

379

Electrochemical performance and thermal property of electrospun PPESK/PVDF/PPESK composite separator for lithium-ion battery  

Science Journals Connector (OSTI)

In this study, PPESK/PVDF/PPESK tri-layer composite separators for lithium-ion batteries were prepared by electrospinning technique. The physical properties, electrochemical performances and thermal properties of...

Chun Lu; Wen Qi; Li Li; Jialong Xu; Ping Chen

2013-07-01T23:59:59.000Z

380

Co3O4/Carbon Aerogel Hybrids as Anode Materials for Lithium-Ion Batteries with Enhanced Electrochemical Properties  

Science Journals Connector (OSTI)

Co3O4/Carbon Aerogel Hybrids as Anode Materials for Lithium-Ion Batteries with Enhanced Electrochemical Properties ... A facile hydrothermal and solgel polymerization route was developed for large-scale fabrication of well-designed Co3O4 nanoparticles anchored carbon aerogel (CA) architecture hybrids as anode materials for lithium-ion batteries with improved electrochemical properties. ... carbon aerogel; oxide; hybrid; mesoporous structure; lithium-ion battery ...

Fengbin Hao; Zhiwei Zhang; Longwei Yin

2013-08-08T23:59:59.000Z

Note: This page contains sample records for the topic "giner electrochemical systems" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Electrochemical Reversible Formation of Alane - DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

5 5 FY 2012 Annual Progress Report DOE Hydrogen and Fuel Cells Program Ragaiy Zidan 1 (Primary Contact), Douglas A. Knight 1 , Scott Greenway 2 1 Savannah River National Laboratory 999-2W Room 121 Savannah River Site Aiken, SC 29808 Phone: (803) 646-8876 Email: ragaiy.zidan@srnl.doe.gov 2 Greenway Energy DOE Manager HQ: Ned Stetson Phone: (202) 586-9995 Email: Ned.Stetson@ee.doe.gov Project Start Date: October 1, 2006 Project End Date: October 1, 2012 Fiscal Year (FY) 2012 Objectives Identify means for achieving energy efficiency * improvements of over 50%. Perform electrochemical production of alane and alane * adducts in a pressurized electrochemical cell and demonstrate production of α-alane. Demonstrate the formation of alane and the regeneration *

382

Application of a passive electrochemical noise technique to localized corrosion of candidate radioactive waste container materials  

SciTech Connect (OSTI)

One of the key engineered barriers in the design of the proposed Yucca Mountain repository is the waste canister that encapsulates the spent fuel elements. Current candidate metals for the canisters to be emplaced at Yucca Mountain include cast iron, carbon steel, Incoloy 825 and titanium code-12. This project was designed to evaluate passive electrochemical noise techniques for measuring pitting and corrosion characteristics of candidate materials under prototypical repository conditions. Experimental techniques were also developed and optimized for measurements in a radiation environment. These techniques provide a new method for understanding material response to environmental effects (i.e., gamma radiation, temperature, solution chemistry) through the measurement of electrochemical noise generated during the corrosion of the metal surface. In addition, because of the passive nature of the measurement the technique could offer a means of in-situ monitoring of barrier performance.

Korzan, M.A.

1994-05-01T23:59:59.000Z

383

Direct electrochemical conversion of carbon anode fuels in molton salt media  

SciTech Connect (OSTI)

We are conducting research into the direct electrochemical conversion of reactive carbons into electricity--with experimental evidence of total efficiencies exceeding 80% of the heat of combustion of carbon. Together with technologies for extraction of reactive carbons from broad based fossil fuels, direct carbon conversion addresses the objectives of DOE's ''21st Century Fuel Cell'' with exceptionally high efficiency (>70% based on standard heat of reaction, {Delta}H{sub std}), as well as broader objectives of managing CO{sub 2} emissions. We are exploring the reactivity of a wide range of carbons derived from diverse sources, including pyrolyzed hydrocarbons, petroleum cokes, purified coals and biochars, and relating their electrochemical reactivity to nano/microstructural characteristics.

Cherepy, N; Krueger, R; Cooper, J F

2001-01-17T23:59:59.000Z

384

Method of enhancing the wettability of boron nitride for use as an electrochemical cell separator  

DOE Patents [OSTI]

A felt or other fabric of boron nitride suitable for use as an interelecte separator within an electrochemical cell is wetted with a solution containing a thermally decomposable organic salt of an alkaline earth metal. An aqueous solution of magnesium acetate is the preferred solution for this purpose. After wetting the boron nitride, the solution is dried by heating at a sufficiently low temperature to prevent rapid boiling and the creation of voids within the separator. The dried material is then calcined at an elevated temperature in excess of 400.degree. C. to provide a coating of an oxide of magnesium on the surface of the boron nitride fibers. A fabric or felt of boron nitride treated in this manner is easily wetted by molten electrolytic salts, such as the alkali metal halides or alkaline earth metal halides, that are used in high temperature, secondary electrochemical cells.

McCoy, Lowell R. (Woodland Hills, CA)

1982-01-01T23:59:59.000Z

385

Method of enhancing the wettability of boron nitride for use as an electrochemical cell separator  

DOE Patents [OSTI]

A felt or other fabric of boron nitride suitable for use as an interelectrode separator within an electrochemical cell is wetted with a solution containing a thermally decomposable organic salt of an alkaline earth metal. An aqueous solution of magnesium acetate is the preferred solution for this purpose. After wetting the boron nitride, the solution is dried by heating at a sufficiently low temperature to prevent rapid boiling and the creation of voids within the separator. The dried material is then calcined at an elevated temperature in excess of 400/sup 0/C to provide a coating of an oxide of magnesium on the surface of the boron nitride fibers. A fabric or felt of boron nitride treated in this manner is easily wetted by molten electrolytic salts, such as the alkali metal halides or alkaline earth metal halides, that are used in high temperature, secondary electrochemical cells.

McCoy, L.R.

1981-01-23T23:59:59.000Z

386

The nanostructure and microstructure of steels: Electrochemical Tafel behaviour and atomic force microscopy  

Science Journals Connector (OSTI)

The influence of chemical composition and heat treatment on a low-carbon steel, chromium steel and high speed steel has been examined by polarisation curves and electrochemical parameters deduced from the Tafel plots. The electrochemical corrosion resistance, which is small between the as-received steels become greater after heat treatment, following the order: carbon steel

Valria A. Alves; Ana M. Chiorcea Paquim; Albano Cavaleiro; Christopher M.A. Brett

2005-01-01T23:59:59.000Z

387

Electrochemical study of uranium cations in LiCl-KCl melt using a rotating disk electrode  

SciTech Connect (OSTI)

A rotating disk electrode (RDE) measurement technique was employed to investigate the electrochemical REDOX reactions of actinide (An) and lanthanide (Ln) ions in LiCl-KCl molten salt. By using RDE, it is possible to access more exact values of the diffusion coefficient, Tafel slope, and exchange current density. In this work, we constructed RDE setup and electrodes for RDE measurements in high temperature molten salt and measured the electrochemical parameters of the An and Ln ions. The RDE setup is composed of a Pine model MSRX rotator equipped with a rod type of W electrode. The active electrode area was confined to the planar part of the W rod by making meniscus at the LiCl-KCl melt surface.

Bae, Sang-Eun; Kim, Dae-Hyun; Kim, Jong-Yoon; Park, Tae-Hong; Cho, Young Hwan; Yeon, Jei-Won; Song, Kyuseok [Nuclear Chemistry Research Division, Korea Atomic Energy Research Institute,989-111 Daedeok-daero, Yuseong-gu, Daejeon, 305-353 (Korea, Republic of)

2013-07-01T23:59:59.000Z

388

Current Collection Through The Ends Of A Spirally Wound Electrochemical Cell  

DOE Patents [OSTI]

An electrochemical cell, including a jelly-roll type electrode stack, and a method for making such cell. The electrochemical cell includes folded electrode portions which form a plane recessed from the end of the electrode stack. The folded electrode portions are preferably formed by making pairs of slits in the electrode end and bending over the electrode portions between each pair of slits. The recessed plane forms a large area to which a current collection tab is subsequently connected. A coating may be applied to the folded portions of the electrode to further increase the contact area with the current collection tab by eliminating the slight variations in the recessed plane which are due to the overlap of the folded electrode portions.

Oweis, Salah (Ellicott City, MD); Chagnon, Guy (Columbia, MD); Alunans, Peter (Baltimore, MD); Romero, Antonio (Parkton, MD)

1999-10-26T23:59:59.000Z

389

Method and apparatus for capacitive deionization and electrochemical purification and regeneration of electrodes  

DOE Patents [OSTI]

An electrically regeneratable electrochemical cell (30) for capacitive deionization and electrochemical purification and regeneration of electrodes includes two end plates (31, 32), one at each end of the cell (30). A new regeneration method is applied to the cell (30) which includes slowing or stopping the purification cycle, electrically desorbing contaminants and removing the desorbed contaminants. The cell (30) further includes a plurality of generally identical double-sided intermediate electrodes (37-43) that are equidistally separated from each other, between the two end electrodes (35, 36). As the electrolyte enters the cell, it flows through a continuous open serpentine channel (65-71) defined by the electrodes, substantially parallel to the surfaces of the electrodes. By polarizing the cell (30), ions are removed from the electrolyte and are held in the electric double layers formed at the carbon aerogel surfaces of the electrodes. The cell (30) is regenerated electrically to desorb such previously removed ions.

Tran, Tri D. (Livermore, CA); Farmer, Joseph C. (Tracy, CA); Murguia, Laura (Manteca, CA)

2001-01-01T23:59:59.000Z

390

Mediated electrochemical oxidation of organic wastes using a Co(III) mediator in a neutral electrolyte  

DOE Patents [OSTI]

An electrochemical cell with a Co(III) mediator and neutral pH anolyte provides efficient destruction of organic and mixed wastes. The organic waste is concentrated in the anolyte reservoir, where the cobalt mediator oxidizes the organics and insoluble radioactive species and is regenerated at the anode until all organics are converted to carbon dioxide and destroyed. The neutral electrolyte is non-corrosive, and thus extends the lifetime of the cell and its components.

Balazs, G. Bryan (Livermore, CA); Lewis, Patricia R. (Livermore, CA)

1999-01-01T23:59:59.000Z

391

Electrochemical evaluation of LiCoO2 synthesized by decomposition and intercalation of hydroxides  

E-Print Network [OSTI]

in commercial lithi- um-ion battery manufacturing [4±6]. Synthesis of LiCoO2 is typically carried out by a solid-state March 1998; accepted in revised form 19 May 1998 LiCoO2 has been synthesized by a solid-state synthesis the electrochemical perfor- mance. In a previous paper [13], we reported a new solid- state reaction method that can

Sadoway, Donald Robert

392

Electrochemical studies of the film formation on lithium in propylene carbonate solutions under open circuit conditions  

SciTech Connect (OSTI)

The nature of protective surface layers formed on lithium in propylene carbonate solutions of LiClO/sub 4/ and LiAsF/sub 6/ at open circuit has been investigated by electrochemical pulse measurements and other techniques. The results are consistent with the fast formation of a compact thin layer of Li/sub 2/O by reaction with residual water. This layer acts as a solid ionic conductor. Slow corrosion processes produce a thicker porous overlayer.

Geronov, Y.; Schwager, F.; Muller, R.H.

1981-04-01T23:59:59.000Z

393

In Situ Solid-State NMR Spectroscopy of Electrochemical Cells: Batteries, Supercapacitors, and Fuel Cells  

Science Journals Connector (OSTI)

In Situ Solid-State NMR Spectroscopy of Electrochemical Cells: Batteries, Supercapacitors, and Fuel Cells ... In situ NMR studies of lithium-ion batteries are performed on the entire battery, by using a coin cell design, a flat sealed plastic bag, or a cylindrical cell. ... In situ NMR studies on fuel cells (FCs) have focused on probing the chemical reactions at the electrodes and the fate of fuels such as methanol during FC operation. ...

Frdric Blanc; Michal Leskes; Clare P. Grey

2013-06-21T23:59:59.000Z

394

Chemical Fabrication and Electrochemical Characterization of Graphene Nanosheets Using a Lithium Battery Platform  

Science Journals Connector (OSTI)

For instance, graphene-based nanocomposites have found extensive applications in Li-ion batteries (LIBs) as scientists and engineers seek to achieve superior electrochemical performances. ... Second-Year Undergraduate; Graduate Education/Research; Interdisciplinary/Multidisciplinary; Hands-On Learning/Manipulatives; Electrochemistry; Materials Science; Nanotechnology; Upper-Division Undergraduate; Laboratory Instruction ... International Journal of Pharmaceutical Sciences and Drug Research (2010), 2 (2), 127-133 CODEN: IJPSPP; ISSN:0975-248X. ...

Aaron J. Blake; Hong Huang

2014-11-20T23:59:59.000Z

395

ELECTROCHEMICAL CORROSION STUDIES CORE 308 SEGMENTS 14R1 & 14R2 TANK 241-AY-102  

SciTech Connect (OSTI)

This document reports the results of electrochemical corrosion tests on AS1S Grade 60 carbon steel coupons exposed to tank 241-AY-102 sludge under conditions similar to those near the bottom of the tank. The tests were performed to evaluate the corrosive behavior of the waste in contact with sludge that does not meet the chemistry control limits of Administrative Control (AC) 5.15, Corrosion Mitigation Program.

DUNCAN JB; COOKE GA

2003-10-30T23:59:59.000Z

396

Polymerization of aniline in the interlayer space of molybdenum trioxide and its electrochemical properties  

SciTech Connect (OSTI)

Molybdenum trioxide/polyaniline (MoO{sub 3}/PANI) composite was prepared first by ion-exchange reaction between aniline (ANI) and dodecylamine (DDA) which was intercalated precursor, and then was formed under the polymerization of ANI within the interlayer space of MoO{sub 3} at 120 deg. C for 3 d in air. According to powder X-ray diffraction, scanning electron microscopy, thermogravimetric analysis, infrared spectroscopy and electrochemical testing, MoO{sub 3}/PANI composite has layered structure, and its interlayer spacing is 1.127 nm. Moreover, it has high thermal stability with the compound and completes its weight loss at 751.9 deg. C. Electrochemical investigation shows that MoO{sub 3} is the major active substance in the MoO{sub 3}/PANI electrode, and MoO{sub 3}/PANI electrode demonstrates better conductivity and electrochemical activity than pure MoO{sub 3} electrode, attributed to the promotion of Li{sup +} and/or electron transport. In addition, the alternating current impedance proves that if the resistance of MoO{sub 3}/PANI electrode reduces apparently, the electrochemical activity will increase correspondingly, the same as the relationship between the ohmic resistance and the electrical conductivity. - Graphical abstract: Aniline (ANI) monomer was intercalated into the interlayer space of molybdenum trioxide (MoO{sub 3}) and heat-treated at 120 deg. C for 3 d in air, and then polymerized to form layered structure of molybdenum trioxide/polyaniline (MoO{sub 3}/PANI) composite. Its interlayer spacing of MoO{sub 3}/PANI composite is 1.127 nm.

Li Yanping; Xiang Yixian; Dong Xiaowen; Xu Jiaqiang; Ruan Fei [Department of Chemistry, Shanghai University, 99 Shang Da Road, Shanghai 200444 (China); Pan Qingyi, E-mail: qypan@shu.edu.c [Department of Chemistry, Shanghai University, 99 Shang Da Road, Shanghai 200444 (China)

2009-08-15T23:59:59.000Z

397

Electrochemical cell with negative active material based on an alkali or alkaline earth metal  

SciTech Connect (OSTI)

In an electrochemical cell the negative active material is an alkali or alkaline earth metal, such as lithium, and the electrolyte comprises a solute and at least one solvent selected from the liquid oxyhalides and which serves also as the positive active material. The electrolyte further comprises a mineral substance the effect of which is to significantly reduce the voltage rise delay of the cell.

Vallin, D.; Chenebault, P.; Grassien, J.-V.; Kerouanton, A.

1985-10-15T23:59:59.000Z

398

Leveraging e-Science infrastructure for electrochemical research  

Science Journals Connector (OSTI)

...providing a unified platform for accessing scientific...measure the response of a chemical system when an electrical...expertise required will be chemical and mathematical, rather...coupled homogeneous chemical reactions on the response...providing a unified platform for accessing scientific...

2011-01-01T23:59:59.000Z

399

Real-time studies of battery electrochemical reactions inside a transmission electron microscope.  

SciTech Connect (OSTI)

We report the development of new experimental capabilities and ab initio modeling for real-time studies of Li-ion battery electrochemical reactions. We developed three capabilities for in-situ transmission electron microscopy (TEM) studies: a capability that uses a nanomanipulator inside the TEM to assemble electrochemical cells with ionic liquid or solid state electrolytes, a capability that uses on-chip assembly of battery components on to TEM-compatible multi-electrode arrays, and a capability that uses a TEM-compatible sealed electrochemical cell that we developed for performing in-situ TEM using volatile battery electrolytes. These capabilities were used to understand lithiation mechanisms in nanoscale battery materials, including SnO{sub 2}, Si, Ge, Al, ZnO, and MnO{sub 2}. The modeling approaches used ab initio molecular dynamics to understand early stages of ethylene carbonate reduction on lithiated-graphite and lithium surfaces and constrained density functional theory to understand ethylene carbonate reduction on passivated electrode surfaces.

Leung, Kevin; Hudak, Nicholas S.; Liu, Yang; Liu, Xiaohua H.; Fan, Hongyou; Subramanian, Arunkumar; Shaw, Michael J.; Sullivan, John Patrick; Huang, Jian Yu

2012-01-01T23:59:59.000Z

400

Sulfur nanocrystals anchored graphene composite with highly improved electrochemical performance for lithiumsulfur batteries  

Science Journals Connector (OSTI)

Abstract Two kinds of graphenesulfur composites with 50wt% of sulfur are prepared using hydrothermal method and thermal mixing, respectively. Transmission Electron Microscopy (TEM) and Energy Dispersive X-ray Spectra mapping show that sulfur nanocrystals with size of ?5nm dispersed on graphene sheets homogeneously for the sample prepared by hydrothermal method (NanoS@G). While for the thermal mixed graphenesulfur composite (SG mixture), sulfur shows larger and uneven size (50200nm). X-ray Photoelectron Spectra (XPS) reveals the strong chemical bonding between the sulfur nanocrystals and graphene. Comparing with the SG mixture, the NanoS@G composite shows highly improved electrochemical performance as cathode for lithiumsulfur (LiS) battery. The NanoS@G composite delivers an initial capacity of 1400mAhg?1 with the sulfur utilization of 83.7% at a current density of 335mAg?1. The capacity keeps above 720mAhg?1 over 100 cycles. The strong adherence of the sulfur nanocrystals on graphene immobilizes sulfur and polysulfides species and suppressed the shuttle effect, resulting higher coulombic efficiency and better capacity retention. Electrochemical impedance also suggests that the strong bonding enabled rapid electronic/ionic transport and improved electrochemical kinetics, therefore good rate capability is obtained. These results demonstrate that the NanoS@G composite is a very promising candidate for high-performance LiS batteries.

Jun Zhang; Zimin Dong; Xiuli Wang; Xuyang Zhao; Jiangping Tu; Qingmei Su; Gaohui Du

2014-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "giner electrochemical systems" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

A microcalorimeter for measuring heat effects of electrochemical reactions with submonolayer conversions  

SciTech Connect (OSTI)

We present a microcalorimeter for measuring heat effects during electrochemical reactions with conversions down to a few percent of a monolayer, referenced to the electrode's surface atoms. The design uses a thin pyroelectric polymer foil for temperature measurement at the backside of a thin electrode, similar to the concepts pioneered by the groups of D. A. King and Ch. T. Campbell for UHV adsorption microcalorimetry. To establish intimate thermal contact between electrode and sensor and utmost sensitivity, the free standing sensor and electrode foils are pressed together by air pressure, acting on the electrochemical cell. Pyroelectric temperature sensing is combined with pulsed electrochemistry, where the electrochemical heat is released on a time scale of about 10 ms, which is long enough for thermal equalization of the electrode-sensor assembly but short enough to avoid significant heat loss into electrolyte and cell compartment. As examples heat effects upon Ag deposition and dissolution as well as the electron transfer reaction of [Fe(CN){sub 6}]{sup 4-}/[Fe(CN){sub 6}]{sup 3-} are presented. The latter reaction was also employed for the calibration of the calorimeter.

Etzel, Kai D.; Bickel, Katrin R.; Schuster, Rolf [Institut fuer Physikalische Chemie, Karlsruhe Institute of Technology, D-76131 Karlsruhe (Germany)

2010-03-15T23:59:59.000Z

402

Electrochemical studies of hydrogen storage in amorphous Ni[sub 64]Zr[sub 36] alloy  

SciTech Connect (OSTI)

The capacity of amorphous Ni-Zr alloys to absorb large amounts of hydrogen has been investigated recently in connection with their possible use for hydrogen storage. This property also makes them possible candidates as anodes in metal hydride-nickel hydroxide rechargeable batteries. The characteristic features of the electrochemical behavior of the amorphous Ni[sub 64]Zr[sub 36] alloy in alkaline media have been investigated. Changes occurring in both the physical state and the composition of the surface layer during chemical etching and electrochemical activation were studied by scanning electron microscopy, Auger electron spectroscopy, x-ray diffraction, and cyclic voltammetry. The kinetics of the hydrogen evolution reaction (HER) on the alloy under investigation was studied in terms of the cathodic polarization curves. The Tafel plots contain two different ranges: (i) a low-overpotential range, in which the slope of the linear [eta] versus log i is characteristic for charge transfer controlled processes; (ii) a high-overvoltage range, in which a combined mechanism, charge transfer and hydrogen diffusion into the bulk, is operative. To get information about the parameters influencing the hydrogen charging and discharging processes, chronopotentiometric experiments were performed. The changes of anodic overvoltage with time during constant current discharge were used to determine the electrochemical parameters i[sub 0] and [beta], as well as the diffusion coefficients (D) of the H atoms in the bulk of the alloy.

Ciureanu, M.; Ryan, D.H.; Stroem-Olsen, J.O. (McGill Univ., Montreal, Quebec (Canada)); Trudeau, M.L. (Hydro Quebec Research Inst., Varennes (Canada))

1993-03-01T23:59:59.000Z

403

A mathematical model for a parallel plate electrochemical reactor, CSTR, and associated recirculation system  

E-Print Network [OSTI]

0. 5 0. 5 0. 5 0. 5 0. 438 0 0. 233 0. 1144 Component H CI C Q. C I CuCI ' T = 298. 15K Reaction 1 (j = 1) 0 0 0 -2 0 2 1 1 0 -1 0 1 Reaction 2 (j = 2) po 0 0 0 3 3 0 -1 0 1 0 0 0 Pcataoee = 0 V S = 0. 1 cm W =' 10 cm Component...CI+, feed 5flCCuCl, feed j53] 2RCSTR, CuC'le, feed = 2~CCuC I+, feed 54l RCS TR, Be, feed [55', v, here k is the reaction rate constant and is chosen arbitrary. Replacing the reaction term. Rc s T R, , f ?d. in Eq. j51i for each species involved with its...

Nguyen, Trung Van

2012-06-07T23:59:59.000Z

404

A robust, electrochemically driven microwell drug delivery system for controlled vasopressin release  

E-Print Network [OSTI]

localization of therapeutic compounds than is possible with existing technology. Despite recent advance- ments release Aram J. Chung & Yun Suk Huh & David Erickson Published online: 8 April 2009 # Springer Science the survival rate in porcine cases and more recently Krismer et al. (2005) reported for human as well

Erickson, David

405

Charging-free electrochemical system for harvesting low-grade thermal energy  

Science Journals Connector (OSTI)

...Mechanical Engineering, Massachusetts Institute of Technology...Mechanical Engineering, Massachusetts Institute of Technology...processes, environment, solar-thermal, and geothermal energy (1...Commun 2 : 550 Work at Massachusetts Institute of Technology...by the Solid State Solar-Thermal Energy Conversion...

Yuan Yang; Seok Woo Lee; Hadi Ghasemi; James Loomis; Xiaobo Li; Daniel Kraemer; Guangyuan Zheng; Yi Cui; Gang Chen

2014-01-01T23:59:59.000Z

406

Design of a Safeguards Instrument for Plutonium Quantification in an Electrochemical Refining System  

E-Print Network [OSTI]

There has been a strong international interest in using pyroprocessing to close the fast nuclear reactor fuel cycle and reprocess spent fuel efficiently. To commercialize pyroprocessing, safeguards technologies are required to be developed...

Le Coq, Annabelle G

2013-06-25T23:59:59.000Z

407

Thermal-fluid and electrochemical modeling and performance study of a planar solid oxide electrolysis cell : analysis on SOEC resistances, size, and inlet flow conditions.  

SciTech Connect (OSTI)

Argonne National Laboratory and Idaho National Laboratory researchers are analyzing the electrochemical and thermal-fluid behavior of solid oxide electrolysis cells (SOECs) for high temperature steam electrolysis using computational fluid dynamics (CFD) techniques. The major challenges facing commercialization of steam electrolysis technology are related to efficiency, cost, and durability of the SOECs. The goal of this effort is to guide the design and optimization of performance for high temperature electrolysis (HTE) systems. An SOEC module developed by FLUENT Inc. as part of their general CFD code was used for the SOEC analysis by INL. ANL has developed an independent SOEC model that combines the governing electrochemical mechanisms based on first principals to the heat transfer and fluid dynamics in the operation of SOECs. The ANL model was embedded into the commercial STAR-CD CFD software, and is being used for the analysis of SOECs by ANL. The FY06 analysis performed by ANL and reported here covered the influence of electrochemical properties, SOEC component resistances and their contributing factors, SOEC size and inlet flow conditions, and SOEC flow configurations on the efficiency and expected durability of these systems. Some of the important findings from the ANL analysis are: (1) Increasing the inlet mass flux while going to larger cells can be a compromise to overcome increasing thermal and current density gradients while increasing the cell size. This approach could be beneficial for the economics of the SOECs; (2) The presence of excess hydrogen at the SOEC inlet to avoid Ni degradation can result in a sizeable decrease in the process efficiency; (3) A parallel-flow geometry for SOEC operation (if such a thing be achieved without sealing problems) yields smaller temperature gradients and current density gradients across the cell, which is favorable for the durability of the cells; (4) Contact resistances can significantly influence the total cell resistance and cell temperatures over a large range of operating potentials. Thus it is important to identify and avoid SOEC stack conditions leading to such high resistances due to poor contacts.

Yildiz, B.; Smith, J.; Sofu, T.; Nuclear Engineering Division

2008-06-25T23:59:59.000Z

408

In situ soft X-ray absorption spectroscopy investigation of electrochemical corrosion of copper in aqueous NaHCO3 solution  

SciTech Connect (OSTI)

A novel electrochemical setup has been developed for soft x-ray absorption studies of the electronic structure of electrode materials during electrochemical cycling. In this communication we illustrate the operation of the cell with a study of the corrosion behavior of copper in aqueous NaHCO3 solution via the electrochemically induced changes of its electronic structure. This development opens the way for in situ investigations of electrochemical processes, photovoltaics, batteries, fuel cells, water splitting, corrosion, electrodeposition, and a variety of important biological processes.

Jiang, Peng; Chen, Jeng-Lung; Borondics, Ferenc; Glans, Per-Anders; West, Mark W.; Chang, Ching-Lin; Salmeron, Miquel; Guo, Jinghua

2010-03-31T23:59:59.000Z

409

Commissioning Measurements and Experience Obtained from the Installation of a Fissile Mass Flow monitor in the URAL Electrochemical Integrated Plant (UEIP) in Novouralsk  

SciTech Connect (OSTI)

The Blend Down Monitoring System (BDMS) equipment sent earlier to the Ural Electrochemical Integrated Plant (UEIP) at Novouralsk, Russia, was installed and implemented successfully on February 2, 1999. The BDMS installation supports the highly enriched uranium (HEU) Transparency Implementation Program for material subject to monitoring under the HEU purchase agreement between the United States of America (USA) and the Russian Federation (RF). The BDMS consists of the Oak Ridge National Laboratory (ORNL) Fissile (uranium-235) Mass Flow Monitor (FMFM) and the Los Alamos National Laboratory (LANL) Enrichment Monitor (EM). Two BDMS?s for monitoring the Main and Reserve HEU blending process lines were installed at UEIP. Independent operation of the FMFM Main and FMFM Reserve was successfully demonstrated for monitoring the fissile mass flow as well as the traceability of HEU to the product low enriched uranium. The FMFM systems failed when both systems were activated during the calibration phase due to a synchronization problem between the systems. This operational failure was caused by the presence of strong electromagnetic interference (EMI) in the blend point. The source-modulator shutter motion of the two FMFM systems was not being properly synchronized because of EMI producing a spurious signal on the synchronization cable connecting the two FMFM cabinets. The signature of this failure was successfully reproduced at ORNL after the visit. This unexpected problem was eliminated by a hardware modification and software improvements during a recent visit (June 9-11, 1999) to UEIP, and both systems are now operating as expected.

March-Leuba, J.; Mastal, E.; Powell, D.; Sumner, J.; Uckan, T.; Vines, V.

1999-07-25T23:59:59.000Z

410

Electrochemical Energy Storage Technologies and the Automotive Industry  

ScienceCinema (OSTI)

The first portion of the lecture will relate global energy challenges to trends in personal transportation. Following this introduction, a short overview of technology associated with lithium ion batteries for traction applications will be provided. Last, I shall present new research results that enable adaptive characterization of lithium ion cells. Experimental and modeling results help to clarify the underlying electrochemistry and system performance. Specifically, through chemical modification of the electrodes, it is possible to place markers within the electrodes that signal the state of charge of a battery through abrupt voltage changes during cell operation, thereby allowing full utilization of the battery in applications. In closing, I shall highlight some promising materials research efforts that are expected to lead to substantially improved battery technology

Mark Verbrugge

2010-01-08T23:59:59.000Z

411

Development of electrochemical denitrification from waste water containing ammonium nitrate  

SciTech Connect (OSTI)

The authors developed processes to dentrify waste water containing ammonium nitrate discharged from the nuclear fuel manufacturing works and to recover nitric acid and ammonia. For denitrification they applied the operating method and the conditions of operation to make 0.4mM or less from NH{sub 4}NO{sub 3} waste water of 1.5 M by 3 stages of electrodialysis cells. To recover nitric acid and ammonium water, they separated HNO{sub 3} solution of 6 M and NH{sub 4}OH solution with one unit of electrolysis cell, then absorbed NH{sub 3} gas from NH{sub 4}OH solution with water and applied the condition of operation to recover 8 M NH{sub 4}OH solution. The authors demonstrated that treatment and recovery can be carried out stably with actual waste water with a system through the combination of previously mentioned electrodialysis cells, electrolysis cells and an ammonia gas absorber. At present they are planning a plant where NH{sub 4}NO{sub 3} waste water of 4,500 mol can be treated per day.

Sawa, Toshio; Hirose, Yasuo; Ishii, Yoshinori; Takatsudo, Atsushi; Wakasugi, Kazuhico; Hayashi, Hiroshi

1995-12-31T23:59:59.000Z

412

Determination of Electrochemical Performance and Thermo-Mechanical-Chemical Stability of SOFCs from Defect Modeling  

SciTech Connect (OSTI)

This research was focused on two distinct but related issues. The first issue concerned using defect modeling to understand the relationship between point defect concentration and the electrochemical, thermo-chemical and mechano-chemical properties of typical solid oxide fuel cell (SOFC) materials. The second concerned developing relationships between the microstructural features of SOFC materials and their electrochemical performance. To understand the role point defects play in ceramics, a coherent analytical framework was used to develop expressions for the dependence of thermal expansion and elastic modulus on point defect concentration in ceramics. These models, collectively termed the continuum-level electrochemical model (CLEM), were validated through fits to experimental data from electrical conductivity, I-V characteristics, elastic modulus and thermo-chemical expansion experiments for (nominally pure) ceria, gadolinia-doped ceria (GDC) and yttria-stabilized zirconia (YSZ) with consistently good fits. The same values for the material constants were used in all of the fits, further validating our approach. As predicted by the continuum-level electrochemical model, the results reveal that the concentration of defects has a significant effect on the physical properties of ceramic materials and related devices. Specifically, for pure ceria and GDC, the elastic modulus decreased while the chemical expansion increased considerably in low partial pressures of oxygen. Conversely, the physical properties of YSZ remained insensitive to changes in oxygen partial pressure within the studied range. Again, the findings concurred exactly with the predictions of our analytical model. Indeed, further analysis of the results suggests that an increase in the point defect content weakens the attractive forces between atoms in fluorite-structured oxides. The reduction treatment effects on the flexural strength and the fracture toughness of pure ceria were also evaluated at room temperature. The results reveal that the flexural strength decreases significantly after heat treatment in very low oxygen partial pressure environments; however, in contrast, fracture toughness is increased by 30-40% when the oxygen partial pressure was decreased to 10{sup -20} to 10{sup -22} atm range. Fractographic studies show that microcracks developed at 800 oC upon hydrogen reduction are responsible for the decreased strength. To understand the role of microstructure on electrochemical performance, electrical impedance spectra from symmetric LSM/YSZ/LSM cells was de-convoluted to obtain the key electrochemical components of electrode performance, namely charge transfer resistance, surface diffusion of reactive species and bulk gas diffusion through the electrode pores. These properties were then related to microstructural features, such as triple-phase boundary length and tortuosity. From these experiments we found that the impedance due to oxygen adsorption obeys a power law with pore surface area, while the impedance due to charge transfer is found to obey a power-law with respect to triple phase boundary length. A model based on kinetic theory explaining the power-law relationships observed was then developed. Finally, during our EIS work on the symmetric LSM/YSZ/LSM cells a technique was developed to improve the quality of high-frequency impedance data and their subsequent de-convolution.

Eric Wachsman; Keith L. Duncan

2006-09-30T23:59:59.000Z

413

Pyroprocessing of Light Water Reactor Spent Fuels Based on an Electrochemical Reduction Technology  

SciTech Connect (OSTI)

A concept of pyroprocessing light water reactor (LWR) spent fuels based on an electrochemical reduction technology is proposed, and the material balance of the processing of mixed oxide (MOX) or high-burnup uranium oxide (UO{sub 2}) spent fuel is evaluated. Furthermore, a burnup analysis for metal fuel fast breeder reactors (FBRs) is conducted on low-decontamination materials recovered by pyroprocessing. In the case of processing MOX spent fuel (40 GWd/t), UO{sub 2} is separately collected for {approx}60 wt% of the spent fuel in advance of the electrochemical reduction step, and the product recovered through the rare earth (RE) removal step, which has the composition uranium:plutonium:minor actinides:fission products (FPs) = 76.4:18.4:1.7:3.5, can be applied as an ingredient of FBR metal fuel without a further decontamination process. On the other hand, the electroreduced alloy of high-burnup UO{sub 2} spent fuel (48 GWd/t) requires further decontamination of residual FPs by an additional process such as electrorefining even if RE FPs are removed from the alloy because the recovered plutonium (Pu) is accompanied by almost the same amount of FPs in addition to RE. However, the amount of treated materials in the electrorefining step is reduced to {approx}10 wt% of the total spent fuel owing to the prior UO{sub 2} recovery step. These results reveal that the application of electrochemical reduction technology to LWR spent oxide fuel is a promising concept for providing FBR metal fuel by a rationalized process.

Ohta, Hirokazu; Inoue, Tadashi; Sakamura, Yoshiharu; Kinoshita, Kensuke

2005-05-15T23:59:59.000Z

414

A New Solar Carbon Capture Process: Solar Thermal Electrochemical Photo (STEP) Carbon Capture  

Science Journals Connector (OSTI)

A New Solar Carbon Capture Process: Solar Thermal Electrochemical Photo (STEP) Carbon Capture ... CO2 can be captured from 34% to over 50% solar energy efficiency (depending on the level of solar heat inclusion), as solid carbon and stored, or used as carbon monoxide to be available for a feedstock to synthesize (with STEP generated hydrogen) solar diesel fuel, synthetic jet fuel, or chemical production. ... STEP Iron, a Chemistry of Iron Formation without CO2 Emission: Molten Carbonate Solubility and Electrochemistry of Iron Ore Impurities ...

Stuart Licht; Baohui Wang; Susanta Ghosh; Hina Ayub; Dianlu Jiang; Jason Ganley

2010-07-14T23:59:59.000Z

415

Corrosion resistant positive electrode for high-temperature, secondary electrochemical cell  

DOE Patents [OSTI]

The corrosion rate of low carbon steel within a positive electrode of a high-temperature, secondary electrochemical cell that includes FeS as active material is substantially reduced by incorporating therein finely divided iron powder in stoichiometric excess to the amount required to form FeS in the fully charged electrode. The cell typically includes an alkali metal or alkaline earth metal as negative electrode active material and a molten metal halide salt as electrolyte. The excess iron permits use of inexpensive carbon steel alloys that are substantially free of the costly corrosion resistant elements chromium, nickel and molybdenum while avoiding shorten cell life resulting from high corrosion rates.

Otto, N.C.; Warner, B.T.; Smaga, J.A.; Battles, J.E.

1982-07-07T23:59:59.000Z

416

Solar-Powered Electrochemical Oxidation of Organic Compounds Coupled with the Cathodic Production of Molecular Hydrogen  

Science Journals Connector (OSTI)

Solar-Powered Electrochemical Oxidation of Organic Compounds Coupled with the Cathodic Production of Molecular Hydrogen ... The volume percent of the headspace was calculated assuming that it was directly proportional to the ion current measured by the mass spectrometer and that the transfer of all gases through the membrane and their 70 eV electron ionization cross-sections were approximately equivalent. ... In addition, even if hydrogen is mixed with carbon dioxide, CO2 can be readily removed just by chemical absorption process (e.g., flowing carbon dioxide gas through amine solution), which is a typical CO2 separation process in gas turbine power plants. ...

Hyunwoong Park; Chad D. Vecitis; Michael R. Hoffmann

2008-07-26T23:59:59.000Z

417

Olivine electrode engineering impact on the electrochemical performance of lithium-ion batteries.  

SciTech Connect (OSTI)

High energy and power density lithium iron phosphate was studied for hybrid electric vehicle applications. This work addresses the effects of porosity in a composite electrode using a four-point probe resistivity analyzer, galvanostatic cycling, and electrochemical impedance spectroscopy (EIS). The four-point probe result indicates that the porosity of composite electrode affects the electronic conductivity significantly. This effect is also observed from the cell's pulse current discharge performance. Compared to the direct current (dc) methods used, the EIS data are more sensitive to electrode porosity, especially for electrodes with low porosity values.

Lu, W.; Jansen, A.; Dees, D.; Henriksen, G.; Chemical Sciences and Engineering Division

2010-08-01T23:59:59.000Z

418

Comparison of the electrochemical properties of several commercial graphites with a templated disordered carbon  

SciTech Connect (OSTI)

A templated carbon was prepared by the pyrolysis of pyrene impregnated into pillared clay (PILC). The electrochemical performance of this was evaluated with the goal of using this material as an anode in Li-ion cells. The reversible capacity was measured as a function of C rate and the cycling characteristics were determined for various intercalation protocols. The performance of this material was compared to that of several commercial graphites tested under the same conditions. The PILC carbon shows great promise as a Li-ion anode if the fade and first-cycle losses can be controlled.

GUIDOTTI,RONALD A.; REINHARDT,FREDERICK W.; SANDI,GISELLE

2000-03-22T23:59:59.000Z

419

Comparison of the electrochemical properties of several commercial graphites with a templated disordered carbon  

SciTech Connect (OSTI)

A templated carbon was prepared by the pyrolysis of pyrene impregnated into pillared clay (PILC). The electrochemical performance of this was evaluated with the goal of using this material as an anode in Li-ion cells. The reversible capacity was measured as a function of C rate and the cycling characteristics were determined for various intercalation protocols. The performance of this material was compared to that of several commercial graphites tested under the same conditions. The PILC carbon shows great promise as a Li-ion anode if the fade and first-cycle losses can be controlled.

Guidotti, R. A.; Reinhardt, F. W.; Sandi, G.

2000-04-11T23:59:59.000Z

420

Fluorescence emission as a probe to investigate electrochemical polymerization of 9-vinylanthracene  

SciTech Connect (OSTI)

The cationic polymerization of 9-vinylanthracene can be initiated at a transparent SnO/sub 2/ electrode with the application of anodic potentials (E > 1.1 V vs. saturated sodium chloride calomel electrode) in acetonitrile solutions. The excimer emission (emission maximum approx.500 nm) of poly(9-vinyl-anthracene) which is distinguishable from the monomer fluorescence emission (emission maxima 410, 430 nm) has been used to probe the electrochemical polymerization process directly. The in situ spectroelectrochemical technique, which would be useful in obtaining kinetic and mechanistic information of the electropolymerization process, is described.

Kamat, P.V.

1987-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "giner electrochemical systems" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Electrochemical Performance of rf Magnetron Sputtered LiCoO{sub 2} Thin Film Positive Electrodes  

SciTech Connect (OSTI)

Thin films of LiCoO{sub 2} were grown by rf magnetron sputtering technique and studied the influence of In situ annealing treatment on microstructural and electrochemical properties of the films. Annealing treatment in presence of O{sub 2} ambient develops characteristic (104) plan in relative to (003) plane texture indicating that the films have HT-layered structure with R3-bar m symmetry. The effect is discussed in terms of grain size, cycling stability, reversibility and the specific discharge capacity.

Kumar, P. Jeevan; Babu, K. Jayanth; Hussain, O. M. [Thin Film Laboratory, Department of Physics, Sri Venkateswara University, TIRUPATI-517 502 (India)

2010-12-01T23:59:59.000Z

422

Hydrophilic Electrode For An Alkaline Electrochemical Cell, And Method Of Manufacture  

DOE Patents [OSTI]

A negative electrode for an alkaline electrochemical cell. The electrode comprises an active material and a hydrophilic agent constituted by small cylindrical rods of polyolefin provided with hydrophilic groups. The mean length of the rods is less than 50 microns and the mean diameter thereof is less than 20 microns. A method of manufacturing a negative electrode in which hydrophilic rods are made by fragmenting long polyolefin fibers having a mean diameter of less than 20 microns by oxidizing them, with the rods being mixed with the active material and the mixture being applied to a current conductor.

Senyarich, Stephane (Mornac, FR); Cocciantelli, Jean-Michel (Bordeaux, FR)

2000-03-07T23:59:59.000Z

423

Economic Feasibility of Electrochemical Caustic Recycling at the Hanford Site  

SciTech Connect (OSTI)

This report contains a review of potential cost benefits of NaSICON Ceramic membranes for the separation of sodium from Hanford tank waste. The primary application is for caustic recycle to the Waste Treatment and Immobilization Plant (WTP) pretreatment leaching operation. The report includes a description of the waste, the benefits and costs for a caustic-recycle facility, and Monte Carlo results obtained from a model of these costs and benefits. The use of existing cost information has been limited to publicly available sources. This study is intended to be an initial evaluation of the economic feasibility of a caustic recycle facility based on NaSICON technology. The current pretreatment flowsheet indicates that approximately 6,500 metric tons (MT) of Na will be added to the tank waste, primarily for removing Al from the high-level waste (HLW) sludge (Kirkbride et al. 2007). An assessment (Alexander et al. 2004) of the pretreatment flowsheet, equilibrium chemistry, and laboratory results indicates that the quantity of Na required for sludge leaching will increase by 6,000 to 12,000 MT in order to dissolve sufficient Al from the tank-waste sludge material to maintain the number of HLW canisters produced at 9,400 canisters as defined in the Office of River Protection (ORP) System Plan (Certa 2003). This additional Na will significantly increase the volume of LAW glass and extend the processing time of the Waste Treatment and Immobilization Plant (WTP). Future estimates on sodium requirements for caustic leaching are expected to significantly exceed the 12,000-MT value and approach 40,000-MT of total sodium addition for leaching (Gilbert, 2007). The cost benefit for caustic recycling is assumed to consist of four major contributions: 1) the cost savings realized by not producing additional immobilized low-activity waste (ILAW) glass, 2) caustic recycle capital investment, 3) caustic recycle operating and maintenance costs, and 4) research and technology costs needed to deploy the technology. In estimating costs for each of these components, several parameters are used as inputs. Due to uncertainty in assuming a singular value for each of these parameters, a range of possible values is assumed. A Monte Carlo simulation is then performed where the range of these parameters is exercised, and the resulting range of cost benefits is determined.

Poloski, Adam P.; Kurath, Dean E.; Holton, Langdon K.; Sevigny, Gary J.; Fountain, Matthew S.

2009-03-01T23:59:59.000Z

424

An electrochemical procedure coupled with a Schiff base method; application to electroorganic synthesis of new nitrogen-containing heterocycles  

SciTech Connect (OSTI)

The synthesis of Nitrogen-containing heterocycles has been achieved using chemical and electrochemical methods, respectively. The direct chemical synthesis of nucleophiles proceeds through the Schiff base chemical reaction. This procedure offers an alternate reaction between dicarbonyl compounds and diamines leads to the formation of products. The results indicate that the Schiff base chemical method for synthesis of the product has successfully performed in excellent overall yield. In the electrochemical step, a series of Nitrogen-containing compounds were electrosynthesized. Various parameters such as the applied potential, pH of the electrolytic solution, cell configuration and also purification techniques, were carried out to optimize the yields of corresponding products. New Nitrogen-containing heterocycle derivatives were synthesized using an electrochemical procedure coupled with a Schiff base as a facile, efficient and practical method. The products have been characterized after purification by IR, {sup 1}H NMR, {sup 13}C NMR and ESI-MS{sup 2}.

Dowlati, Bahram; Othman, Mohamed Rozali [School of Chemical Sciences and Food Technology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor (Malaysia)

2013-11-27T23:59:59.000Z

425

Size-Dependent Optical and Electrochemical Energy Gaps Comparison of CdSe Nanolusters Meghan B. Teunis, Katie N. Lawrence, and Sukanta Dolai  

E-Print Network [OSTI]

Size-Dependent Optical and Electrochemical Energy Gaps Comparison of CdSe Nanolusters Meghan B, a comparison of the size dependent optical properties and electrochemical energy gaps of poly(ethylene glycol-dependent optical and electronic properties of semiconductor nanocrystals have made them the focus of much research

Zhou, Yaoqi

426

Journal of Power Sources 124 (2003) 197203 Electrochemical characterization of a polypyrrole/Co0.2CrOx composite  

E-Print Network [OSTI]

the performance of these cathode materials. They also found that polypyrrole is electrochem- ically active.2CrOx composite as a cathode material for lithium ion batteries Ramaraja P. Ramasamy, Basker the reversible capacity of the electrochemically active material up to 20%.AtC/10rate,areversiblecapacityof215 m

Popov, Branko N.

427

UHV and electrochemical studies of CO and methanol adsorbed at platinum/ruthenium surfaces, and reference to fuel cell catalysis  

Science Journals Connector (OSTI)

This paper reviews surface chemistry of carbon monoxide and methanol in ultra high vacuum (UHV) and in the electrochemical environment on clean and Ru modified Pt single crystal surfaces, and on Pt and Pt/Ru nanoparticles. The results show that CO behaves very similarly in UHV and in the electrochemical environment. Cyclic voltammetry (CV), temperature programmed desorption (TPD) and radioactive labeling all show similar behavior in terms of numbers of peaks, peak splitting etc. Both UHV and CV measurements show that there is about a 200-meV change in the potential for CO removal in the presence of ruthenium. Earlier 13C EC-NMR data indicated a 30% reduction in the Ef-LDOS of CO bound to Ru islands deposited on platinum, and 15% of CO bound to Pt sites, and TPD and CV also show that the binding of CO is modified. The present data confirm that Pt atoms away from Ru are only weakly affected, and the overall CO binding energy modification is quite moderate. We conclude that the changes in the CO binding energy only play a small role in enhancing methanol electrooxidation rates. Instead, the main effect of the ruthenium is to activate water to form OH. Quantitative estimates of the reduction in CO desorption barrier indicate that the effect of bifunctional mechanism is about four times larger than that of ligand effect. In contrast to the results for CO, methanol behaves quite differently in UHV and in an electrochemical environment. Pt(111) is unreactive at room temperature in UHV, while Pt(110) is quite reactive. Initially, clean Pt(111) is less reactive than clean Pt(110) even in the electrochemical environment. However, Pt(110) is quickly poisoned in the electrochemical environment, so at steady state, Pt(111) is more reactive than Pt(110). Another issue is that the mechanism of methanol decomposition is quite different in UHV and in the electrochemical environment. There are three pathways in UHV, a simple decomposition via a methoxonium (CH3O?(ad)) intermediate, an SN1 pathway via a methoxonium cation ([CH3OH2]+), and an SN2 pathway via a methoxonium intermediate. So far, none of these pathways have been observed in an electrochemical environment. Instead, the decomposition goes mainly through a hydroxymethyl (?CH2OH(ad)) intermediate. These results show that there are both similarities and differences in the behavior of simple molecules in UHV and in the electrochemical environment.

P. Waszczuk; G.-Q. Lu; A. Wieckowski; C. Lu; C. Rice; R.I. Masel

2002-01-01T23:59:59.000Z

428

Professional Bios Kathy Ayers and Monjid Hamdan Kathy Ayers, Director of Research, Proton Energy Systems  

E-Print Network [OSTI]

a novel, low cost regenerative fuel cell system. She was also a finalist for the Connecticut Women of electrochemical systems that include PEM-based electrolyzers and fuel cells ranging in power from 5 to 75 k focusing on PEM electrolyzers incorporating an advanced low-cost membrane. He has also been a part of a U

429

CONTROL-ORIENTED MODELING AND ANALYSIS FOR AUTOMOTIVE FUEL CELL SYSTEMS  

E-Print Network [OSTI]

CONTROL-ORIENTED MODELING AND ANALYSIS FOR AUTOMOTIVE FUEL CELL SYSTEMS Jay T. Pukrushpan Huei Peng of Michigan Ann Arbor, Michigan 48109-2125 Email: pukrushp@umich.edu Abstract Fuel Cells are electrochemical regarded as a potential future stationary and mobile power source. The response of a fuel cell system

Peng, Huei

430

Test report : Princeton power systems prototype energy storage system.  

SciTech Connect (OSTI)

The Department of Energy Office of Electricity (DOE/OE), Sandia National Laboratory (SNL) and the Base Camp Integration Lab (BCIL) partnered together to incorporate an energy storage system into a microgrid configured Forward Operating Base to reduce the fossil fuel consumption and to ultimately save lives. Energy storage vendors will be sending their systems to SNL Energy Storage Test Pad (ESTP) for functional testing and then to the BCIL for performance evaluation. The technologies that will be tested are electro-chemical energy storage systems comprised of lead acid, lithium-ion or zinc-bromide. Princeton Power Systems has developed an energy storage system that utilizes lithium ion phosphate batteries to save fuel on a military microgrid. This report contains the testing results and some limited analysis of performance of the Princeton Power Systems Prototype Energy Storage System.

Rose, David Martin; Schenkman, Benjamin L.; Borneo, Daniel R.

2013-08-01T23:59:59.000Z

431

An electrochemical method suitable for preparing nine metal-nitride powders  

SciTech Connect (OSTI)

We present an electrochemical method that is suitable for the preparation of metal-nitride ceramic materials that is both simple and general. We begin with a single-compartment electrochemical cell containing suitable metal (M) anodes and cathodes (M=Al, Mo, Nb, Ni, Ti, V, W, Zn, or Zr) and a NH{sub 3}/NH{sub 4}X (X=Br or Cl) electrolyte solution. Application of a sufficiently high voltage results in oxidation and dissolution of M to M{sup n+} at the anode and reduction of NH{sub 3} to NH{sub 2}- at the cathode. When M=Al, this results in formation of an insoluble inorganic polymer, which can subsequently be calcined above 600{degrees}C to yield phase-pure AlN. For some of the other metals, a simple ammoniated metal ion is formed at the anode, but calcination of this material also leads to the corresponding metal nitride. The phases and morphologies of the powders depends strongly on the calcining conditions. The important point is that this method is general for the preparation of metal-nitride powders even though the pathway that leads to the powders is metal-dependent. This talk will focus primarily on the preparation of AlN, which is an important packaging material for the electronics industry, and NbN, which is a superconductor (T{sub c}{approximately}17 K) with important technological applications.

Wade, T.; Crooks, R.M. [Texas A& M Univ., College Station, TX (United States)

1995-12-31T23:59:59.000Z

432

Microstructural Characterization Using Orientational Imaging Microscopy of SOFC Cathodes Subjected to Thermal and Electrochemical Loads  

SciTech Connect (OSTI)

Cathodes in SOFCs consist of interconnecting and contacting two-phase interfaces and three-phase lines in a complex three-phase microstructure. Furthermore, the interfacial crystallography is dynamic and changes in response to thermal loads and to interfacial electrochemical polarizations. Owing to this inherent complexity, a complete and fundamental understanding of both the basic mechanisms of cathodic processes and their performance degradation has not been achieved. We have carried out quantitative orientational imaging microscopy (OIM) on button-cell geometry SOFCs containing porous cathodes of yttria-stabilized zirconia and lanthanum strontium manganese oxide. A series of cathodes, taken from cells subjected to both open-circuit and current-loaded fuel-cell conditions, were characterized with OIM to determine their microstructural and crystallographic properties as a function of thermal and electrochemical history. In this presentation we will discuss the results of these studies, focusing on the crystallographic nature of the statistically important two-phase interfaces and three-phase lines.

Cao, Y. (Carnegie Mellon University); Miller, H.M. (Carnegie Mellon University); Johnson, C.; Wilson, L.C.; Rohrer, G. (Carnegie Mellon University); Salvador, P. (Carnegie Mellon University)

2006-10-01T23:59:59.000Z

433

Electrochemical noise signature analysis using power and cross-spectral densities  

SciTech Connect (OSTI)

One of the major problems faced by desalination plants is corrosion. Various alloys have been developed, and continue to be developed to combat corrosion. Stainless steels are widely used in the desalination industry, due to their superior corrosion resistance. However, they are prone to localized corrosion in stagnant saline water. The feed water for one of the desalination plants in Bahrain is highly saline, containing reduced sulphur species. The electrochemical potential and current fluctuations for different stainless steels in different environmental conditions prevailing in the desalination plants in Bahrain have been measured. Digital signal processing and analysis methods used in other branches of science and engineering were used for the analysis and interpretation of electrochemical noise signatures. By calculating the power spectral density at various frequencies, the noise signatures were compared. The results calculated using both Fast Fourier Transform and the Maximum Entropy method agree well. The Cross spectrum between the potential and current noise reveals the frequencies held in common in addition to improving the signal to noise ratio. It is suggested that the Cross Spectral Density, which maybe related to the quantity of charge in transients, maybe indicative of localized corrosion.

Alawadhi, A.A. [Ministry of Electricity and Water, Manamq (Bahrain); Cottis, R.A. [Univ. of Manchester (United Kingdom). Corrosion and Protection Centre

1999-11-01T23:59:59.000Z

434

Method and apparatus for capacitive deionization, electrochemical purification, and regeneration of electrodes  

DOE Patents [OSTI]

An electrochemical cell for capacitive deionization and electrochemical purification and regeneration of electrodes includes two oppositely disposed, spaced-apart end plates, one at each end of the cell. Two generally identical single-sided end electrodes, are arranged one at each end of the cell, adjacent to the end plates. An insulator layer is interposed between each end plate and the adjacent end electrode. Each end electrode includes a single sheet of conductive material having a high specific surface area and sorption capacity. In the preferred embodiment, the sheet of conductive material is formed of carbon aerogel composite. The cell further includes a plurality of generally identical double-sided intermediate electrodes that are equidistally separated from each other, between the two end electrodes. As the electrolyte enters the cell, it flows through a continuous open serpentine channel defined by the electrodes, substantially parallel to the surfaces of the electrodes. By polarizing the cell, ions are removed from the electrolyte and are held in the electric double layers formed at the carbon aerogel surfaces of the electrodes. As the cell is saturated with the removed ions, the cell is regenerated electrically, thus significantly minimizing secondary wastes.

Farmer, Joseph (Tracy, CA)

1995-01-01T23:59:59.000Z

435

Method and apparatus for capacitive deionization, electrochemical purification, and regeneration of electrodes  

DOE Patents [OSTI]

An electrochemical cell for capacitive deionization and electrochemical purification and regeneration of electrodes includes two oppositely disposed, spaced-apart end plates, one at each end of the cell. Two generally identical single-sided end electrodes, are arranged one at each end of the cell, adjacent to the end plates. An insulator layer is interposed between each end plate and the adjacent end electrode. Each end electrode includes a single sheet of conductive material having a high specific surface area and sorption capacity. In the preferred embodiment, the sheet of conductive material is formed of carbon aerogel composite. The cell further includes a plurality of generally identical double-sided intermediate electrodes that are equidistantly separated from each other, between the two end electrodes. As the electrolyte enters the cell, it flows through a continuous open serpentine channel defined by the electrodes, substantially parallel to the surfaces of the electrodes. By polarizing the cell, ions are removed from the electrolyte and are held in the electric double layers formed at the carbon aerogel surfaces of the electrodes. As the cell is saturated with the removed ions, the cell is regenerated electrically, thus significantly minimizing secondary wastes. 17 figs.

Farmer, J.

1995-06-20T23:59:59.000Z

436

Method and apparatus for capacitive deionization and electrochemical purification and regeneration of electrodes  

DOE Patents [OSTI]

An electrically regeneratable electrochemical cell (30) for capacitive deionization and electrochemical purification and regeneration of electrodes includes two end plates (31, 32), one at each end of the cell (30). Two end electrodes (35, 36) are arranged one at each end of the cell (30), adjacent to the end plates (31, 32). An insulator layer (33) is interposed between each end plate (31, 32) and the adjacent end electrode (35, 36). Each end electrode (35, 36) includes a single sheet (44) of conductive material having a high specific surface area and sorption capacity. In one embodiment, the sheet (44) of conductive material is formed of carbon aerogel composite. The cell (30) further includes a plurality of generally identical double-sided intermediate electrodes (37-43) that are equidistally separated from each other, between the two end electrodes (35, 36). As the electrolyte enters the cell, it flows through a continuous open serpentine channel (65-71) defined by the electrodes, substantially parallel to the surfaces of the electrodes. By polarizing the cell (30), ions are removed from the electrolyte and are held in the electric double layers formed at the carbon aerogel surfaces of the electrodes. As the cell (30) is saturated with the removed ions, the cell (30) is regenerated electrically, thus significantly minimizing secondary wastes.

Farmer, Joseph C. (Tracy, CA)

1999-01-01T23:59:59.000Z

437

Electrochemical oxidation of Mn(OH){sub 2} in alkaline media  

SciTech Connect (OSTI)

Redox transformations of the Mn(II)/Mn(III) and Mn(II)/Mn(IV) pairs have been studied by transient electrochemical, spectroelectrochemical, and impedance measurements in alkaline solutions at a manganese electrode. The Mn(0)/Mn(II) and Mn(II)/Mn(III) pairs, which have not been clearly identified hitherto in the literature, have been observed using these techniques. A species observed at 285 nm during oxidation of the Mn(OH){sub 2}-covered manganese electrode was assigned to MnOOH. This species eventually led to passive films whose major component is MnO{sub 2} absorbing at about 400 nm. An accumulation of the passive films was observed at longer electrolysis times. Electrochemical impedance measurements were used to construct a Tafel plot for the manganese oxidation. The polarization resistance reached a minimum at about + 0.17 V vs Ag{vert_bar}AgCl (saturated KCl) without oxygen evolution. Some kinetic information including resistance-capacitance time constants for the oxidation reaction and an exchange current density are also reported.

Cha, D.K. [Univ. of New Mexico, Albuquerque, NM (United States). Dept. of Chemistry; Park, S.M. [Pohang Univ. of Science and Technology (Korea, Republic of)

1997-08-01T23:59:59.000Z

438

Oxidation of zinc in alkaline solutions studied by electrochemical impedance spectroscopy  

SciTech Connect (OSTI)

Electrochemical dissolution and passivation reactions of zinc have been studied in 1.0 M KOH solutions by electrochemical impedance spectroscopy. Equivalent circuits have been worked out by simulating the impedance data and using the results to model the dissolution and passivation reactions. A Tafel plot constructed from the charge-transfer resistances provides an exchange current of 0.11 A/cm{sup 2} and an {alpha} value of 0.36 for zinc oxidation. The maximum rate of zinc oxidation is observed at about {minus}1.30 V vs. the Hg/HgO reference electrode as judged from the charge-transfer resistance minimum obtained from impedance measurements. A negative polarization resistance with a reverse semicircle on the Nyquist plot illustrates the transition process from an active to passive potential region at {minus}1.10 V. At high anodic over-potentials, the zinc electrode behaved as a semiconductor electrode due to a compact ZnO passive film formed on the electrode surface.

Cai, M.; Park, S.M. [Univ. of New Mexico, Albuquerque, NM (United States). Dept. of Chemistry

1996-12-01T23:59:59.000Z

439

Electrochemical Testing of Gas Tungsten ARC Welded and Reduced Pressure Electron Beam Welded Alloy 22  

SciTech Connect (OSTI)

Alloy 22 (N06022) is the material selected for the fabrication of the outer shell of the nuclear waste containers for the Yucca Mountain high-level nuclear waste repository site. A key technical issue in the waste package program has been the integrity of the container weld joints. The currently selected welding process for fabricating and sealing the containers is the traditional gas tungsten arc welding (GTAW) or TIC method. An appealing faster alternative technique is reduced pressure electron beam (RPEB) welding. It was of interest to compare the corrosion properties of specimens prepared using both types of welding techniques. Standard electrochemical tests were carried on GTAW and RPEB welds as well as on base metal (non-welded) to determine their relative corrosion behavior in simulated concentrated water (SCW) at 90 C (alkaline), 1 M HCI at 60 C (acidic) and 1 M NaCl at 90 C (neutral) solutions. Results show that for all practical purposes, the three tested materials had the same electrochemical behavior in the three tested electrolytes.

S. Daniel Day; Frank M.G. Wong; Steven R. Gordon; Lana L. Wong; Raul B. Rebak

2006-05-08T23:59:59.000Z

440

Investigation of electrochemical properties of a poly(vinyl alcohol)/poly(acrylic acid) polymer blend  

SciTech Connect (OSTI)

Chemical sensors have wide applications in medicine, environmental monitoring, industrial applications, and others because of their versatility, ruggedness, sensitivity, selectivity, and economy. Electrochemical sensors are constructed by using a conducting medium, in this case graphite, and applying a constant potential while measuring changes in the current. Polymers are used for electrochemical sensors to exclude interferents from the electrode surface, to preconcentrate the analyte near the electrode, and in some cases to provide a matrix for the immobilization of analytes, such as enzymes. These functions of the polymer can serve to improve the detection limit of the sensor. This project involves the evaluation of a new polymer for electrode modification. The poly(vinyl alcohol)/poly(acrylic acid) (PVA/PAA) polymer was originally developed as an ion exchanger for use in space batteries. It has also been used in wastewater cleanup because it will concentrate heavy metals in the presence of calcium ion. This polymer is also optically clear, so it can potentially be used for an optical sensor. We are interested in investigating the ion exchange properties of the PVA/PAA polymer, as well as the ability of this polymer to preconcentrate and exclude analytes on the basis of size, charge, and hydrophilic/hydrophobic interactions.

DeSantis, C.O.; Seliskar, C.; Heineman, W.R. [Univ. of Cincinnati, OH (United States)

1995-12-31T23:59:59.000Z

Note: This page contains sample records for the topic "giner electrochemical systems" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Electrochemical and Solid-State Letters, 3 (12) 555-558 (2000) 555 S1099-0062(00)07-101-7 CCC: $7.00 The Electrochemical Society, Inc.  

E-Print Network [OSTI]

Electrochemical and Solid-State Letters, 3 (12) 555-558 (2000) 555 S1099-0062(00)07-101-7 CCC: $7,2 photocatalytic,3,4 electrochromic,5 and battery6 applica- tions. The success of these applications relies

442

Journal of The Electrochemical Society, 160 (10) A1675-A1683 (2013) A1675 0013-4651/2013/160(10)/A1675/9/$31.00 The Electrochemical Society  

E-Print Network [OSTI]

in simulating Li-ion battery models is the need for simulating solid-phase diffusion in the second radial potential, solid-state po- tential and solid-state concentration in the porous electrodes1,2 as well1675/9/$31.00 © The Electrochemical Society Efficient Reformulation of Solid Phase Diffusion

Subramanian, Venkat

443

Electrochemical and Solid-State Letters, 3 (7) (2000), LETTERS ONLINE Ven1 S1099-0062(00)02-074-5 CCC: $7.00 The Electrochemical Society, Inc.  

E-Print Network [OSTI]

Electrochemical and Solid-State Letters, 3 (7) (2000), LETTERS ONLINE Ven1 S1099 used as the cathode in rechargeable lithium batteries, is well suited for the rapid removal factor that deter- mines the rate at which a battery can be charged and discharged. With increasing

Ceder, Gerbrand

444

Journal of The Electrochemical Society, 158 (12) A1461-A1477 (2011) A1461 0013-4651/2011/158(12)/A1461/17/$28.00 The Electrochemical Society  

E-Print Network [OSTI]

Reformulation and Simulation of Electrochemical-Thermal Behavior of Lithium-Ion Battery Stacks Paul W. C-isothermal lithium-ion pseudo 2-D battery model. The transformed model is then conveniently discretized using operation of an 8-cell battery stack subject to varying heat transfer coefficients as well as specified

Subramanian, Venkat

445

Electrochemical planarization  

DOE Patents [OSTI]

In a process for fabricating planarized thin film metal interconnects for integrated circuit structures, a planarized metal layer is etched back to the underlying dielectric layer by electropolishing, ion milling or other procedure. Electropolishing reduces processing time from hours to minutes and allows batch processing of multiple wafers. The etched back planarized thin film interconnect is flush with the dielectric layer. 12 figures.

Bernhardt, A.F.; Contolini, R.J.

1993-10-26T23:59:59.000Z

446

Viscosity of the Aqueous Liquid/Vapor Interfacial Region: 2D Electrochemical Measurements with a Piperidine Nitroxy  

E-Print Network [OSTI]

Viscosity of the Aqueous Liquid/Vapor Interfacial Region: 2D Electrochemical Measurements, and that it is coupled to the interfacial water via hydrogen bonding with H2O. In view of this postulate, the viscosity into the dynamic characteristics of aqueous interfaces. Thus, parameters such as the viscosity of water

Majda, Marcin

447

The performance of electrochemical peroxidation process for COD reduction and biodegradability improvement of the wastewater from a paper recycling plant  

Science Journals Connector (OSTI)

Abstract This study investigated pretreatment and biodegradability of wastewater from a paper recycling plant using the electrochemical peroxidation process in a bench scale reactor. The influence of wastewater pH, H2O2 concentration, current density, and reaction time was evaluated for the removal of COD from the wastewater. The COD of wastewater from paper recycling decreased from the initial level of 4300mg/L in raw wastewater to 106mg/L (95.7% removal) in wastewater treated by the electrochemical peroxidation process at optimum pH, H2O2 concentration, current densities of 4, 15 and 5mA/cm2, and a reaction time of 30min. The optimum ratio of H2O2 (mM) to Fe2+ (mM) was found to be 2. The biodegradability of wastewater increased from an initial level of 0.12 to 0.43 after treatment by the electrochemical peroxidation process under optimum experimental conditions at a reaction time of 30min. Overall, the electrochemical peroxidation process proved to be an efficient and appropriate technique for COD reduction and enhancement of biodegradability of the industrial effluents containing high concentrations of recalcitrant organic compounds.

Gholamreza Moussavi; Mohammad Aghanejad

2014-01-01T23:59:59.000Z

448

doi: 10.1149/2.048212jes 2012, Volume 159, Issue 12, Pages A1967-A1985.J. Electrochem. Soc.  

E-Print Network [OSTI]

and optimized. In the case of electrochemical energy storage devices, such as batteries, fuel cells in conjunction with impedance spectroscopy to fit and predict cell per- formance and degradation. This approach transformations. Using principles of non-equilibrium thermodynamics, we relate the cell voltage, ionic fluxes

Bazant, Martin Z.

449

The introduction of electrochemical detection of trans-mitters1 and the development of the carbon fiber micro-  

E-Print Network [OSTI]

. During amperometric recordings, a carbon fiber electrode held at a positive potential is placed againstThe introduction of electrochemical detection of trans- mitters1 and the development of the carbon fiber micro- electrode2 have provided a means to directly measure vesicular release of neurotransmitters

Cai, Long

450

Boosting the voltage of a salinity-gradient-power electrochemical cell by means of complex-forming solutions  

E-Print Network [OSTI]

with respect to other well-known techniques that work quasi-reversibly, such as reverse electrodialysis luminance decay and voltage drift in polymer light-emitting electrochemical cells: Forward bias vs. reverse is significantly higher than the voltage obtained with the other quasi-reversible techniques. We show

Carati, Andrea

451

Journal of Power Sources 134 (2004) 16 Synthesis and physical/electrochemical characterization of Pt/C  

E-Print Network [OSTI]

Journal of Power Sources 134 (2004) 1­6 Synthesis and physical/electrochemical characterization Department of Mechanical Engineering, Hong Kong University of Science and Technology, Clear Water Bay alloys on a car- bon support. The high surface area of a Pt and its alloys can be rendered by using

Zhao, Tianshou

452

Hybridizing Energy Conversion and Storage in a Mechanical-to-Electrochemical Process for Self-Charging Power Cell  

E-Print Network [OSTI]

Hybridizing Energy Conversion and Storage in a Mechanical-to- Electrochemical Process for Self-charging power cell, mechanical energy, piezoelectricity, lithium ion battery, electrochemistry Energy conversion physical units achieving the conversions from mechanical energy to electricity and then from electric

Wang, Zhong L.

453

Cobalt-Porphyrin Catalyzed Electrochemical Reduction of Carbon Dioxide in Water. 1. A Density Functional Study of Intermediates  

E-Print Network [OSTI]

hydrocarbon mol- ecules. Large-scale syngas production from CO2 feedstock in flue gas at room temperature from is a key step in the conversion of CO2 to syngas (a mixture of CO and H2), a starting material for larger aqueous solution has recently been proposed.5 Thermodynamically and electrochemically, the production

Shelnutt, John A.

454

Application of electrochemical technology for removing petroleum hydrocarbons from produced water using lead dioxide and boron-doped diamond electrodes  

Science Journals Connector (OSTI)

Abstract Although diverse methods exist for treating polluted water, the most promising and innovating technology is the electrochemical remediation process. This paper presents the anodic oxidation of real produced water (PW), generated by the petroleum exploration of the Petrobras plant-Tunisia. Experiments were conducted at different current densities (30, 50 and 100mAcm?2) using the lead dioxide supported on tantalum (Ta/PbO2) and boron-doped diamond (BDD) anodes in an electrolytic batch cell. The electrolytic process was monitored by the chemical oxygen demand (COD) and the residual total petroleum hydrocarbon [TPH] in order to know the feasibility of electrochemical treatment. The characterization and quantification of petroleum wastewater components were performed by gas chromatography mass spectrometry. The COD removal was approximately 85% and 96% using PbO2 and BDD reached after 11 and 7h, respectively. Compared with PbO2, the BDD anode showed a better performance to remove petroleum hydrocarbons compounds from produced water. It provided a higher oxidation rate and it consumed lower energy. However, the energy consumption and process time make useless anodic oxidation for the complete elimination of pollutants from PW. Cytotoxicity has shown that electrochemical oxidation using BDD could be efficiently used to reduce more than 90% of hydrocarbons compounds. All results suggest that electrochemical oxidation could be an effective approach to treat highly concentrated organic pollutants present in the industrial petrochemical wastewater and significantly reduce the cost and time of treatment.

Boutheina Gargouri; Olfa Dridi Gargouri; Bochra Gargouri; Souhel Kallel Trabelsi; Ridha Abdelhedi; Mohamed Bouaziz

2014-01-01T23:59:59.000Z

455

ELECTROCHEMICAL REMEDIATION OF ARSENIC-CONTAMINATED GROUNDWATER RESULTS OF PROTOTYPE FIELD TESTS IN BANGLADESH  

SciTech Connect (OSTI)

According to the World Health Organization (WHO), more than 50 million people in Bangladesh drink arsenic-laden water, making it the largest case of mass poisoning in human history. Many methods of arsenic removal (mostly using chemical adsorbents) have been studied, but most of these are too expensive and impractical to be implemented in poor countries such as Bangladesh. This project investigates ElectroChemical Arsenic Remediation (ECAR) as an affordable means of removing arsenic. Experiments were performed on site in Bangladesh using a prototype termed sushi. This device consists of carbon steel sheets that serve as electrodes wrapped into a cylinder, separated by plastic mesh and surrounded by a tube-like container that serves as a holding cell in which the water is treated electrochemically. During the electrochemical process, current is applied to both electrodes causing iron to oxidize to various forms of iron (hydr)oxides. These species bind to arsenic(V) with very high affi nity. ECAR also has the advantage that As(III), the more toxic form of arsenic, oxidizes to As(V) in situ. Only As(V) is known to complex with iron (hydr)oxides. One of the main objectives of this research is to demonstrate the ability of the new prototype to reduce arsenic concentrations in Bangladesh groundwater from >200 ppb to below the WHO limit of 10 ppb. In addition, varying fl ow rate and dosage and the effect on arsenic removal was investigated. Experiments showed that ECAR reduced Bangladeshi water with an initial arsenic concentration as high as 250 ppb to below 10 ppb. ECAR proved to be effective at dosages as high as 810 Coulombs/Liter (C/L) and as low as 386 C/L (current 1 A, voltage 12 V). These results are encouraging and provide great promise that ECAR is an effi cient method in the remediation of arsenic from contaminated groundwater. A preliminary investigation of arsenic removal trends with varying Coulombic dosage, complexation time and fi ltration methods is also presented.

Kowolik, K; Addy, S.E.A.; Gadgil, A.

2009-01-01T23:59:59.000Z

456

Predicting the Voltage Dependence of Interfacial Electrochemical Processes at Lithium-Intercalated Graphite Edge Planes  

E-Print Network [OSTI]

The applied potential governs lithium-intercalation and electrode passivation reactions in lithium ion batteries, but are challenging to calibrate in condensed phase DFT calculations. In this work, the "anode potential" of charge-neutral lithium-intercalated graphite (LiC(6)) with oxidized edge planes is computed as a function of Li-content n(Li)) at edge planes, using ab initio molecular dynamics (AIMD), a previously introduced Li+ transfer free energy method, and the experimental Li+/Li(s) value as reference. The voltage assignments are corroborated using explicit electron transfer from fluoroethylene carbonate radical anion markers. PF6- is shown to decompose electrochemically (i.e., not just thermally) at low potentials imposed by our voltage calibration technique. We demonstrate that excess electrons reside in localized states-in-the-gap in the organic carbonate liquid region, which is not semiconductor-like (band-state-like) as widely assumed in the literature.

Leung, Kevin

2015-01-01T23:59:59.000Z

457

Electrochemical separation and concentration of sulfur containing gases from gas mixtures  

DOE Patents [OSTI]

A method of removing sulfur oxides of H.sub.2 S from high temperature gas mixtures (150.degree.-1000.degree. C.) is the subject of the present invention. An electrochemical cell is employed. The cell is provided with inert electrodes and an electrolyte which will provide anions compatible with the sulfur containing anions formed at the anode. The electrolyte is also selected to provide inert stable cations at the temperatures encountered. The gas mixture is passed by the cathode where the sulfur gases are converted to SO.sub.4.sup.= or, in the case of H.sub.2 S, to S.sup.=. The anions migrate to the anode where they are converted to a stable gaseous form at much greater concentration levels (>10X). Current flow may be effected by utilizing an external source of electrical energy or by passing a reducing gas such as hydrogen past the anode.

Winnick, Jack (3805 Woodrail-on-the-Green, Columbia, MO 65201)

1981-01-01T23:59:59.000Z

458

Real space mapping of oxygen vacancy diffusion and electrochemical transformations by hysteretic current reversal curve measurements  

SciTech Connect (OSTI)

An excitation voltage biases an ionic conducting material sample over a nanoscale grid. The bias sweeps a modulated voltage with increasing maximal amplitudes. A current response is measured at grid locations. Current response reversal curves are mapped over maximal amplitudes of the bias cycles. Reversal curves are averaged over the grid for each bias cycle and mapped over maximal bias amplitudes for each bias cycle. Average reversal curve areas are mapped over maximal amplitudes of the bias cycles. Thresholds are determined for onset and ending of electrochemical activity. A predetermined number of bias sweeps may vary in frequency where each sweep has a constant number of cycles and reversal response curves may indicate ionic diffusion kinetics.

Kalinin, Sergei V.; Balke, Nina; Borisevich, Albina Y.; Jesse, Stephen; Maksymovych, Petro; Kim, Yunseok; Strelcov, Evgheni

2014-06-10T23:59:59.000Z

459

Electrodes including a polyphosphazene cyclomatrix, methods of forming the electrodes, and related electrochemical cells  

DOE Patents [OSTI]

An electrode comprising a polyphosphazene cyclomatrix and particles within pores of the polyphosphazene cyclomatrix. The polyphosphazene cyclomatrix comprises a plurality of phosphazene compounds and a plurality of cross-linkages. Each phosphazene compound of the plurality of phosphazene compounds comprises a plurality of phosphorus-nitrogen units, and at least one pendant group bonded to each phosphorus atom of the plurality of phosphorus-nitrogen units. Each phosphorus-nitrogen unit is bonded to an adjacent phosphorus-nitrogen unit. Each cross-linkage of the plurality of cross-linkages bonds at least one pendant group of one phosphazene compound of the plurality of phosphazene compounds with the at least one pendant group of another phosphazene compound of the plurality of phosphazene compounds. A method of forming a negative electrode and an electrochemical cell are also described.

Gering, Kevin L; Stewart, Frederick F; Wilson, Aaron D; Stone, Mark L

2014-10-28T23:59:59.000Z

460

Localized effects of macrofouling species on electrochemical corrosion of high grade alloys  

SciTech Connect (OSTI)

Interactions between macrofouling and corrosion on some stainless steels, UNS N06625 and UNS R30006 have been studied in long-term tests conducted in natural seawater off the west coast of Scotland. After a 18-month exposure period, the specimens were heavily fouled primarily with barnacles and mussels and all the materials exhibited crevice corrosion although this was less extensive on the Ni-base alloy. Localized corrosion was observed under the base of live barnacles on UNS S31603 stainless steel. DC electrochemical anodic polarization tests undertaken after the 18-month exposure period, yielded unusually high currents in the range of potential between the free corrosion value and the breakdown potential. This observation was associated with the appearance, after the anodic polarization, of black sulfide corrosion products at the specimen/resin crevices, around barnacles and around mussel byssus threads.

Hodgkiess, T. [Univ. of Glasgow (United Kingdom). Dept. of Mechanical Engineering; Nevilie, A. [Heriot Watt Univ., Edinburgh (United Kingdom). Dept. of Mechanical and Chemical Engineering

1998-12-31T23:59:59.000Z

Note: This page contains sample records for the topic "giner electrochemical systems" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Electrodes and electrochemical storage cells utilizing tin-modified active materials  

DOE Patents [OSTI]

An electrode has a substrate and a finely divided active material on the substrate. The active material is ANi.sub.x-y-z Co.sub.y Sn.sub.z, wherein A is a mischmetal or La.sub.1-w M.sub.w, M is Ce, Nd, or Zr, w is from about 0.05 to about 1.0, x is from about 4.5 to about 5.5, y is from 0 to about 3.0, and z is from about 0.05 to about 0.5. An electrochemical storage cell utilizes such an electrode as the anode. The storage cell further has a cathode, a separator between the cathode and the anode, and an electrolyte.

Anani, Anaba (Lauderhill, FL); Johnson, John (Calverton, NY); Lim, Hong S. (Agoura Hills, CA); Reilly, James (Bellport, NY); Schwarz, Ricardo (Los Alamos, NM); Srinivasan, Supramaniam (College Station, TX)

1995-01-01T23:59:59.000Z

462

Size effects in Ni/Ni(OH)2 nanomaterials for electrochemical capacitors.  

SciTech Connect (OSTI)

Electrochemical capacitors based on redox-active metal oxides show great promise for many energy-storage applications. These materials store charge through both electric double-layer charging and faradaic reactions in the oxide. The dimensions of the oxide nanomaterials have a strong influence on the performance of such capacitors. Not just due to surface area effects, which influence the double-layer capacitance, but also through bulk electrical and ionic conductivities. Ni(OH)2 is a prime candidate for such applications, due to low cost and high theoretical capacity. We have examined the relationship between diameter and capacity for Ni/Ni(OH)2 nanorods. Specific capacitances of up to 511 F/g of Ni were recorded in 47 nm diameter Ni(OH)2 nanorods.

Bunker, Bruce Conrad; Limmer, Steven J.; Yelton, William Graham

2010-04-01T23:59:59.000Z

463

Cyclic voltammetric studies for the electrochemical determination of palladium in high-level nuclear waste  

Science Journals Connector (OSTI)

Cyclic voltammetric studies of Pd(II)/Pd(0) electrode process were carried out on a Glassy Carbon Electrode (GCE) in HCl for the development of an Anodic Stripping Voltammetric (ASV) method for the determination of palladium in High-Level Nuclear Waste (HLNW). Pd(II) reduces electrochemically to Pd(0) in a wide potential range, depending upon the concentration of HCl. No significant effect of concentration was observed on the oxidation of palladium, which more or less occurs at 500 mV. Effects of HCl concentration, potential scan range, scan rate and scan repetition were studied in detail. The oxidation of palladium in HCl medium was relatively more distinct than in nitric and sulphuric acids. Maximum anodic and cathodic peak currents of unequal heights were observed at 1.0 10?2 M concentration of HCl. An ASV method was developed successfully on the basis of these studies for the determination of palladium in HLNW.

T.K. Bhardwaj

2012-01-01T23:59:59.000Z

464

Electrochemical machining process for forming surface roughness elements on a gas turbine shroud  

DOE Patents [OSTI]

The back side recessed cooling surface of a shroud defining in part the hot gas path of a turbine is electrochemically machined to provide surface roughness elements and spaces therebetween to increase the heat transfer coefficient. To accomplish this, an electrode with insulating dielectric portions and non-insulating portions is disposed in opposition to the cooling surface. By passing an electrolyte between the cooling surface and electrode and applying an electrical current between the electrode and a shroud, roughness elements and spaces therebetween are formed in the cooling surface in opposition to the insulating and non-insulating portions of the electrode, hence increasing the surface area and heat transfer coefficient of the shroud.

Lee, Ching-Pang (Cincinnati, OH); Johnson, Robert Alan (Simpsonville, SC); Wei, Bin (Mechanicville, NY); Wang, Hsin-Pang (Rexford, NY)

2002-01-01T23:59:59.000Z

465

Method of forming components for a high-temperature secondary electrochemical cell  

DOE Patents [OSTI]

A method of forming a component for a high-temperature secondary electrochemical cell having a positive electrode including a sulfide selected from the group consisting of iron sulfides, nickel sulfides, copper sulfides and cobalt sulfides, a negative electrode including an alloy of aluminum and an electrically insulating porous separator between said electrodes. The improvement comprises forming a slurry of solid particles dispersed in a liquid electrolyte such as the lithium chloride-potassium chloride eutetic, casting the slurry into a form having the shape of one of the components and smoothing the exposed surface of the slurry, cooling the cast slurry to form the solid component, and removing same. Electrodes and separators can be thus formed.

Mrazek, Franklin C. (Hickory Hills, IL); Battles, James E. (Oak Forest, IL)

1983-01-01T23:59:59.000Z

466

Method of preparing porous, rigid ceramic separators for an electrochemical cell  

DOE Patents [OSTI]

Porous, rigid separators for electrochemical cells are prepared by first calcining particles of ceramic material at temperatures above about 1200.degree. C. for a sufficient period of time to reduce the sinterability of the particles. A ceramic powder that has not been calcined is blended with the original powder to control the porosity of the completed separator. The ceramic blend is then pressed into a sheet of the desired shape and sintered at a temperature somewhat lower than the calcination temperature. Separator sheets of about 1 to 2.5 mm thickness and 30 to 70% porosity can be prepared by this technique. Ceramics such as yttria, magnesium oxide and magnesium-aluminum oxide have advantageously been used to form separators by this method.

Bandyopadhyay, Gautam (Naperville, IL); Dusek, Joseph T. (Downers Grove, IL)

1981-01-01T23:59:59.000Z

467

Electrochemical properties of magnetron sputtered WO{sub 3} thin films  

SciTech Connect (OSTI)

Thin films of tungsten oxide (WO{sub 3}) were deposited on ITO substrates by using RF magnetron sputtering at oxygen and argon atmospheres of 6 Multiplication-Sign 10{sup -2}Pa and 4 Pa respectively. The chemical composition and surface morphology of the WO{sub 3} thin films have been studied by X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM) respectively. The results indicate that the deposited WO{sub 3} thin films are nearly stoichiometric. The electrochemical performances of the WO{sub 3} thin films have been evaluated by galvonostatic charging/discharging method. The discharge capacity was 15{mu}Ah/cm{sup 2}{mu}m at the initial cycle and faded rapidly in the first few cycles and stabilized at a lesser stage.

Madhavi, V.; Kondaiah, P.; Hussain, O. M.; Uthanna, S. [Department of Physics, Sri Venkateswara University, Tirupati - 517 502 (India)

2013-02-05T23:59:59.000Z

468

Long-term monitoring of atmospheric corrosion at weathering steel bridges by an electrochemical impedance method  

Science Journals Connector (OSTI)

Abstract Weathering steel corrosion was monitored for one to two years under natural atmosphere by an electrochemical impedance technique. Two identical comb-shape weathering steel sheets embedded in epoxy resin were used as monitoring probe electrodes at two different bridges in Japan. Impedances at 10kHz (Z10kHz) and 10mHz (Z10mHz) were automatically measured every hour. Coupons (50נ50נ2mm3) prepared from the same steel sheets were exposed together to measure the corrosion mass loss. The average (Z10mHz)?1 value for half to one year exposure correlated well with the average corrosion rate determined from the corrosion mass loss.

Atsushi Nishikata; Qingjun Zhu; Eiji Tada

2014-01-01T23:59:59.000Z

469

Electrochemical noise sensors for detection of localized and general corrosion of natural gas transmission pipelines  

SciTech Connect (OSTI)

The U.S. Department of Energy, National Energy Technology Laboratory funded a Natural Gas Infrastructure Reliability program directed at increasing and enhancing research and development activities in topics such as remote leak detection, pipe inspection, and repair technologies and materials. The Albany Research Center (ARC), U.S. Department of Energy was funded to study the use of electrochemical noise sensors for detection of localized and general corrosion of natural gas transmission pipelines. As part of this, ARC entered into a collaborative effort with the corrosion sensor industry to demonstrate the capabilities of commercially available remote corrosion sensors for use with the Nation's Gas Transmission Pipeline Infrastructure needs. The goal of the research was to develop an emerging corrosion sensor technology into a monitor for the type and degree of corrosion occurring at key locations in gas transmission pipelines.

Holcomb, Gordon R.; Bullard, Sophie J.; Covino, Bernard S., Jr.; Cramer, Stephen D.; Russell, James H.; Ziomek-Moroz, Margaret

2002-09-01T23:59:59.000Z

470

Electrochemical techniques for the evaluation of porosity and corrosion rate for electroless nickel deposits on steel  

SciTech Connect (OSTI)

The use of electrochemical techniques in assessing the porosity of electroless nickel deposits (1--24 {micro}m) on steel substrates from hypophosphite baths is considered. The corrosion rate of the coated samples immersed in 0.125M H{sub 2}SO{sub 4} at 22 C was determined using Tafel extrapolation and was found to decrease with decreasing porosity. Analysis of anodic polarization curves and current-time data at fixed potentials gave a good indication of the extent of deposit porosity. The use of galvanic coupling experiments between a non-porous coating and test samples of varying deposit thickness was also examined. The shape of the porosity vs. coating thickness curve was similar for all the methods investigated, the porosity decreasing for thicker deposits.

Kerr, C.; Barker, D.; Walsh, F. [Univ. of Portsmouth (United Kingdom). School of Chemistry, Physics and Radiography

1997-12-01T23:59:59.000Z

471

Electrochemically controlled pitting corrosion in Ni film: A study of AFM and neutron reflectometry  

Science Journals Connector (OSTI)

Electrochemical behavior of pitting corrosion of a Ni film, grown on Si substrate by sputtering, prepassivated in a chloride-free sulfuric acid solution and subsequently exposed to chloride above the pitting potential is reported. Specular and off-specular unpolarized neutron reflectometry and Atomic Force Microscopy (AFM) techniques have been used to determine the depth profile of scattering length density and morphology of as-deposited as well as corroded sample. Specular neutron reflectometry measurement of the film after corrosion shows density degradation along the thickness of film. The density profile as a function of depth, maps the growth of pitting and void networks due to corrosion. The AFM and off-specular neutron reflectivity measurements has suggested that the morphology of the film remains same after exposure of the film in chloride solution.

Surendra Singh; Saibal Basu; A.K. Poswal; R.B. Tokas; S.K. Ghosh

2009-01-01T23:59:59.000Z

472

Fabrication of atomic-scale gold junctions by electrochemical plating using a common medical liquid  

Science Journals Connector (OSTI)

Fabrication of nanometer-separated gold junctions has been performed using iodine tincture a medical liquid known as a disinfectant as an etching/deposition electrolyte. In the gold-dissolved iodine tincture goldelectrodes were grown or eroded slowly enough to form quantum point contacts in an atomic scale. The resistance evolution during the electrochemicaldeposition showed plateaus at integer multiples of the resistance quantum ( 2 e 2 ? h ) ? 1 at room temperature ( e : the elementary charge h : the Planck constant). Iodine tincture is a commercially available common material which makes the fabrication process to be simple and cost effective. Moreover in contrast to the conventional electrochemical approaches this method is free from highly toxic cyanide compounds or extraordinarily strong acids.

A. Umeno; K. Hirakawa

2005-01-01T23:59:59.000Z

473

Assessment of Failure Mechanisms for Thermal Barrier Coatings by Photoluminescence, Electrochemical Impedance and Focused Ion Beam  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

H. Sohn, B. Jayaraj and V.H. Desai H. Sohn, B. Jayaraj and V.H. Desai SCIES Project 02- 01- SR103 DOE COOPERATIVE AGREEMENT DE-FC26-02NT41431 Tom J. George, Program Manager, DOE/NETL Richard Wenglarz, Manager of Research, SCIES Project Awarded (May 1, 2002, 36 Month Duration) $249,766 Total Contract Value ($208,228 DOE UTSR) Assessment of Failure Mechanisms for Thermal Barrier Coatings by Photoluminescence, Electrochemical Impedance and Focused Ion Beam YHS@UCF,10/17/05 Gas Turbine Needs: Reliable and Durable Thermal Barrier Coatings (TBCs) TBCs Provide Thermal Protection of Hot Components in Advanced Gas Turbine Engines Increase in Performance, Efficiency, Reliability and Maintainability. Reduction Life Cycle Costs. Reliable and Durable TBCs Needed as An Integral Part of Component Design.

474

Theoretical and experimental study of a heat pipe in zero-G for electrochemical cell cooling  

SciTech Connect (OSTI)

A new thermal concept to be used with Li/SOCL2 batteries is presented. A thermal model of a grooved nickel heat pipe under uniform heat input is developed, and an experimental assembly is made to simulate the operating conditions in zero-G. It is shown how this new thermal concept can provide the following for the electrochemical cell: thermal cooling by heat pipe, mechanical reinforcement, and current collection. The thermal behavior of a Li/SOCL2 cell under high rate discharge using this concept is compared with that of a traditional concept (aluminum corset around the cell which is fixed to a coldplate). A thermal model is established that uses ESACAP software including about 100 nodes to represent the cell and the aluminum pipe or the heat pipe. 10 refs.

Alain, A.; Ali, S.; Luc, F.J. (Ecole Nationale Superieure de Mecanique et d'Aerotechnique, Poitiers, (France) SAFT, Poitiers, (France))

1991-07-01T23:59:59.000Z

475

In situ x-ray photoelectron spectroscopy for electrochemical reactions in ordinary solvents  

SciTech Connect (OSTI)

In situ electrochemical X-ray photoelectron spectroscopy (XPS) apparatus, which allows XPS at solid/liquid interfaces under potential control, was constructed utilizing a microcell with an ultra-thin Si membrane, which separates vacuum and a solution. Hard X-rays from a synchrotron source penetrate into the Si membrane surface exposed to the solution. Electrons emitted at the Si/solution interface can pass through the membrane and be analyzed by an analyzer placed in vacuum. Its operation was demonstrated for potential-induced Si oxide growth in water. Effect of potential and time on the thickness of Si and Si oxide layers was quantitatively determined at sub-nanometer resolution.

Masuda, Takuya [Global Research Center for Environment and Energy Based on Nanomaterials Science (GREEN), National Institute for Materials Science (NIMS), Tsukuba 305-0044 (Japan) [Global Research Center for Environment and Energy Based on Nanomaterials Science (GREEN), National Institute for Materials Science (NIMS), Tsukuba 305-0044 (Japan); PRESTO, Japan Science and Technology Agency (JST), 4-1-8 Honcho, Kawaguchi, Saitama 333-0012 (Japan); Yoshikawa, Hideki; Kobata, Masaaki; Kobayashi, Keisuke [Synchrotron X-ray Station at SPring-8, National Institute for Materials Science (NIMS), Sayo, Hyogo 679-5148 (Japan)] [Synchrotron X-ray Station at SPring-8, National Institute for Materials Science (NIMS), Sayo, Hyogo 679-5148 (Japan); Noguchi, Hidenori [Global Research Center for Environment and Energy Based on Nanomaterials Science (GREEN), National Institute for Materials Science (NIMS), Tsukuba 305-0044 (Japan) [Global Research Center for Environment and Energy Based on Nanomaterials Science (GREEN), National Institute for Materials Science (NIMS), Tsukuba 305-0044 (Japan); PRESTO, Japan Science and Technology Agency (JST), 4-1-8 Honcho, Kawaguchi, Saitama 333-0012 (Japan); Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo, Hokkaido 060-0810 (Japan); International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), Tsukuba, Ibaraki 305-0044 (Japan); Kawasaki, Tadahiro [Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa, Nagoya 464-8603 (Japan)] [Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa, Nagoya 464-8603 (Japan); Uosaki, Kohei [Global Research Center for Environment and Energy Based on Nanomaterials Science (GREEN), National Institute for Materials Science (NIMS), Tsukuba 305-0044 (Japan) [Global Research Center for Environment and Energy Based on Nanomaterials Science (GREEN), National Institute for Materials Science (NIMS), Tsukuba 305-0044 (Japan); Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo, Hokkaido 060-0810 (Japan); International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), Tsukuba, Ibaraki 305-0044 (Japan)

2013-09-09T23:59:59.000Z

476

3D CFD ELECTROCHEMICAL AND HEAT TRANSFER MODEL OF AN INTERNALLY MANIFOLDED SOLID OXIDE ELECTROLYSIS CELL  

SciTech Connect (OSTI)

A three-dimensional computational fluid dynamics (CFD) electrochemical model has been created to model high-temperature electrolysis cell performance and steam electrolysis in an internally manifolded planar solid oxide electrolysis cell (SOEC) stack. This design is being evaluated at the Idaho National Laboratory for hydrogen production from nuclear power and process heat. Mass, momentum, energy, and species conservation and transport are provided via the core features of the commercial CFD code FLUENT. A solid-oxide fuel cell (SOFC) model adds the electrochemical reactions and loss mechanisms and computation of the electric field throughout the cell. The FLUENT SOFC user-defined subroutine was modified for this work to allow for operation in the SOEC mode. Model results provide detailed profiles of temperature, operating potential, steam-electrode gas composition, oxygen-electrode gas composition, current density and hydrogen production over a range of stack operating conditions. Single-cell and five-cell results will be presented. Flow distribution through both models is discussed. Flow enters from the bottom, distributes through the inlet plenum, flows across the cells, gathers in the outlet plenum and flows downward making an upside-down ''U'' shaped flow pattern. Flow and concentration variations exist downstream of the inlet holes. Predicted mean outlet hydrogen and steam concentrations vary linearly with current density, as expected. Effects of variations in operating temperature, gas flow rate, oxygen-electrode and steam-electrode current density, and contact resistance from the base case are presented. Contour plots of local electrolyte temperature, current density, and Nernst potential indicate the effects of heat transfer, reaction cooling/heating, and change in local gas composition. Results are discussed for using this design in the electrolysis mode. Discussion of thermal neutral voltage, enthalpy of reaction, hydrogen production, cell thermal efficiency, cell electrical efficiency, and Gibbs free energy are discussed and reported herein.

Grant L. Hawkes; James E. O'Brien; Greg Tao

2011-11-01T23:59:59.000Z

477

Surface Studies of HSLA Steel after Electrochemical Corrosion in Supercritical CO2-H2O Environment  

SciTech Connect (OSTI)

In aqueous phase saturated with CO2, X-65 sample underwent general corrosion with formation of FeCO3. In supercritical CO2 containing water phase, two major regions are present on the sample surface after the EIS experiment. One region covered with corrosion products identified as FeCO3 and the other containing Fe, oxygen, and carbon-rich islands embedded in metal matrix identified as {alpha}-Fe. Precipitation of FeCO3 from Fe2+ and CO3 2- is responsible for formation of passive layer in oxygen-deficient, CO2 rich aqueous environment. Mechanisms of corrosion degradation occurring in supercritical CO2 as a function. Transport of supercritical CO{sub 2} is a critical element for carbon capture from fossil fuel power plants and underground sequestration. Although acceptable levels of water in supercritical CO{sub 2} (up to {approx} 5 x 10{sup -4}g/dm{sup 3}) have been established, their effects on the corrosion resistance of pipeline steels are not fully known. Moreover, the presence of SO{sub 2}, O{sub 2} impurities in addition to the water can make the fluid more corrosive and, therefore, more detrimental to service materials. Also, in this case, limited data are available on materials performance of carbon steels. to advance this knowledge, other service alloys are being investigated in the high pressure high temperature cell containing impure CO{sub 2} fluids using reliable non-destructive in-situ electrochemical methods. The electrochemical results are being augmented by a number of surface analyses of the corroded surfaces.

Ziomek-Moroz, M. Holcomb, G. Tylczak, J Beck, J Fedkin, M. Lvov, S.

2011-10-01T23:59:59.000Z

478

Electrochemical cell studies on fluorinated natural graphite in propylene carbonate electrolyte with difluoromethyl acetate (MFA) additive for low temperature lithium battery application  

Science Journals Connector (OSTI)

Electrochemical cell performances of fluorinated natural graphite (abbreviated as FNG) electrode material was studied by using 1M of LiClO4? EC: DEC: PC (1: 1: 1 v%) electrolyte solution with and without 015% v/...

R. Chandrasekaran; M. Koh; Y. Ozhawa; H. Aoyoma

2009-05-01T23:59:59.000Z

479

Effect of PgTPhPBr on the electrochemical and corrosion behaviour of 304 stainless steel in H2SO4 solution  

Science Journals Connector (OSTI)

Weight-loss, potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) measurements were used to study the inhibition of 304 stainless steel corrosion in 1 M H2SO4 at 50 C by propargyltriphen...

A.A. Hermas; M.S. Morad; M.H. Wahdan

2004-01-01T23:59:59.000Z

480

A538 Journal of The Electrochemical Society, 159 (5) A538-A547 (2012) 0013-4651/2012/159(5)/A538/10/$28.00 The Electrochemical Society  

E-Print Network [OSTI]

/10/$28.00 © The Electrochemical Society Computer Modeling of Crystalline Electrolytes: Lithium Thiophosphates and Phosphates N. D to be unstable with respect to decomposition into Li3PS4 and Li4P2S6 plus excess S which has been observed at the Montreal, QC, Canada, Meeting of the Society, May 1­6, 2011. During the last 5 years, lithium thiophosphate

Holzwarth, Natalie

Note: This page contains sample records for the topic "giner electrochemical systems" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

ELECTROCHEMICAL CORROSION STUDIES FOR TANK 241-AN-107 CORE 309 SEGMENTS 21R1 & 21R2  

SciTech Connect (OSTI)

Liquid waste in tank 241-AN-107 is below Technical Safety Requirements Administrative Control 5.16 (AC 5.16) limits. Electrochemical corrosion testing was performed on Core 309, Segments 21R1 and 21R2, to provide information on the conductivity and corrosive tendencies of the tank saltcake and interstitial liquid. This report describes data obtained under the execution of RPP-PLAN-29001, 'Electrochemical Corrosion Studies for Tank 241-AN-107 Core 309, Segments 21R1 and 21R2'. Analytical results are presented that show supernatant was within the limits while the interstitial liquid remained below the limits for the analytical cores. Applicable AC 5.16 chemistry control limits for AN-107 are presented.

DUNCAN JB

2007-11-13T23:59:59.000Z

482

Electrochemical Impedance Spectroscopy Characterization of Electron Transport and Recombination in ZnO Nanorod Dye-Sensitized Solar Cells  

Science Journals Connector (OSTI)

In this work we carried out electrochemical impedance spectroscopic (EIS) characterizations on a ZnO nanorod dye-sensitized solar cell to investigate its electron transport and recombination properties and how these properties influence the cell performance. ... Supplemental figures for impedance spectra under illumination, the transmission line model, comparison of the measured capacitance to the depletion model, charge transfer resistance at open-circuit conditions, and total resistances of the cell. ...

Chuan He; Zhi Zheng; Huili Tang; Linan Zhao; Fang Lu

2009-05-26T23:59:59.000Z

483

Adsorption of Glucose Oxidase onto Plasma-Polymerized Film Characterized by Atomic Force Microscopy, Quartz Crystal Microbalance, and Electrochemical Measurement  

Science Journals Connector (OSTI)

Adsorption of glucose oxidase (GOD) onto plasma-polymerized thin films (PPF) with nanoscale thickness was characterized by atomic force microscopy (AFM), quartz crystal microbalance (QCM), and electrochemical measurements. ... The electrophoretic mobility (u) of polystyrene particles at the PPF surfaces was measured, and the mobility obtained was converted into a zeta potential using the Smoluchowski equation, ? = 4??u/?, where ? is the viscosity of the solution and ? is the dielectric constant of the solvent. ...

Hitoshi Muguruma; Yoshihiro Kase; Naoya Murata; Kazunari Matsumura

2006-12-07T23:59:59.000Z

484

Asymmetric deposition of manganese oxide in single walled carbon nanotube films as electrodes for flexible high frequency response electrochemical capacitors  

Science Journals Connector (OSTI)

Manganese oxide (MnO2) is a promising pseudocapacitive electrode material because of its high capacitance, abundant resource, low-cost, and environmental friendliness. However, its poor electrical and ionic conductivities and low stability hinder applications. Forming MnO2 nanocomposites with high surface area porous metal, carbon materials, or conducting polymers is a possible solution. In this work, we have developed a facile and scalable asymmetric in situ deposition method to incorporate MnO2 nanoparticles in conductive single walled carbon nanotube (SWCNT) films. The high porosity of vacuum filtrated SWCNT films accommodates pseudocapacitive MnO2 nanoparticles without sacrificing the mechanical flexibility and electrochemical stability of SWCNT films. We exposed one side of SWCNT films to acidic potassium permanganate (KMnO4) solution. The infiltrated \\{KMnO4\\} solution partially etches \\{SWCNTs\\} to create abundant mesopores, which ensure electrolyte ions efficiently access deposited MnO2. Meanwhile, the remaining SWCNT network serves as excellent current collectors. The electrochemical performance of the SWCNTMnO2 composite electrodes depends on the porosity of SWCNT films, pH, and concentration of \\{KMnO4\\} solution, deposition temperature and time. Our optimized two-electrode electrochemical capacitor, with 1M Na2SO4 in water as electrolyte, showed a superior performance with specific capacitance of 529.8Fg?1, energy density of 73.6Whkg?1, power density of 14.6kWkg?1, excellent capacitance retention (99.9%) after 2000 charge and discharge cycles, and one of the highest reported frequency responses (knee frequency at 1318Hz). The high performance flexible electrochemical capacitors have broad applications in portable electronics and electrical vehicles, especially when high frequency response is desired.

Jianmin Shen; Andong Liu; Yu Tu; Hong Wang; Rongrong Jiang; Jie Ouyang; Yuan Chen

2012-01-01T23:59:59.000Z

485

Electrochemically driven first-order phase transitions caused by elastic responses of ion-insertion electrodes under external kinetic control  

Science Journals Connector (OSTI)

This work is devoted to an extension of the continuum elasticity model combined with the classical lattice-gas (LG) model that recently appeared in the literature and described guest ion insertion into various host materials. The extension involves two important aspects: (i) derivation of intercalation isotherms with four different elastic parameters with the purpose to find their critical combination, leading to first-order phase transitions, and (ii) quantitative treatment of the first-order phase transition reactions controlled by slow external kinetics. This analysis helps to understand properly an important issue of the mechanism of electrochemically driven first-order phase transitions in various ion-insertion electrodes often disregarded in the literature: whatever the concerned electrochemical characteristics are measured, the underlying (often hidden, in practice) kinetic limitations must be considered. The analysis described herein refers to the dependence of the (chemical) differential intercalation capacitance, Cdif, and of the chemical diffusion coefficient, D, on the concentration of Li-ions in graphite in the course of electrochemical lithiation/delithiation of these electrodes.

M.D. Levi; D. Aurbach; J. Maier

2008-01-01T23:59:59.000Z

486

A urea electrochemical sensor based on molecularly imprinted chitosan film doping with CdS quantum dots  

Science Journals Connector (OSTI)

An improved imprinted film-based electrochemical sensor for urea recognition was developed using CdS quantum dots (QDs) doped chitosan as the functional matrix. The microstructure and composition of the imprinted films depicted by scanning electron microscopy (SEM), attenuated total reflection infrared (ATRIR), X-ray diffraction (XRD), and electrochemical impedance spectroscopy (EIS) indicated the fabricated feasibility of the nanoparticle doped films via in situ electrodeposition. Differential pulse voltammetric responses under the optimal fabrication conditions showed that the sensitivity of CdS QDsMIP (molecularly imprinted polymer) electrochemical sensor was enhanced from the favorable electron transfer and magnified surface area of CdS \\{QDs\\} with a short adsorption equilibrium time (7min), wide linear range (5.0נ10?12 to 4.0נ10?10M and 5.0נ10?10 to 7.0נ10?8M), and low detection limit (1.0נ10?12M). Meanwhile, the fabricated sensor showed excellent specific recognition to template molecule among the structural similarities and coexistence substances. Furthermore, the proposed sensor was applied to determine the urea in human blood serum samples based on its good reproducibility and stability, and the acceptable recovery implied its feasibility for practical application.

Hui-Ting Lian; Bin Liu; Yan-Ping Chen; Xiang-Ying Sun

2012-01-01T23:59:59.000Z

487

Significant influence of insufficient lithium on electrochemical performance of lithium-rich layered oxide cathodes for lithium ion batteries  

Science Journals Connector (OSTI)

Abstract With an aim to broaden the understanding of the factors that govern electrochemical performance of lithium-rich layered oxide, the influences of insufficient lithium on reversible capacity, cyclic stability and rate capability of the oxide as cathode of lithium ion battery are investigated in this study. Various concentrations of lithium precursor are introduced to synthesize a target composition Li[Li0.13Ni0.30Ni0.57]O2, and the resulting products are characterized with inductively coupled plasma spectrum, scanning electron microscope, X-ray diffraction, Raman spectroscopy, and electrochemical measurements. The results indicate that the lithium content in the resulting oxide decreases with reducing the concentration of lithium precursor from 10wt%-excess lithium to stoichiometric lithium, due to insufficient compensation for lithium volatilization during synthesis process at high temperature. However, all these oxides still exhibit typically structural and electrochemical characteristics of lithium-rich layered oxides. Interestingly, with decreasing the Li content in the oxide, its reversible capacity increases due to relatively higher content of active transition-metal ions, while the cyclic stability degrades severely because of structural instability induced by higher content of Mn3+ ions and deeper lithium extraction.

Xingde Xiang; Weishan Li

2014-01-01T23:59:59.000Z

488

Structural and electrochemical characterization of lithium excess and Al-doped nickel oxides synthesized by the solgel method  

Science Journals Connector (OSTI)

The effects of excess lithium and aluminum doping in nickel oxide were investigated in an attempt to improve electrochemical properties of the layered LiNiO2. Li1+xNiO2 (x=00.02) and LiAlyNi1?yO2 (y=00.3) powders were synthesized by a solgel method using adipic acid as a chelating agent. The electrochemical properties of the synthesized materials were explored at room and high temperatures. Gas analysis during decomposition of gel precursors revealed that oxygen might play an important role in the synthesis of highly crystallized LiNiO2. Although the electrochemical test of the Al-doped samples showed a low initial discharge capacity of about 140 mAh g?1, the capacity loss with repeated cycling was very small at room temperature. Furthermore the fade in capacity of this cell at high temperature (50C) was almost negligible. The Al-doping of the LiNiO2 cathode material was very effective in improving cycle performance at high temperature due to the enhanced stability of LiNiO2 structure.

Sang Ho Park; Ki Soo Park; Yang Kook Sun; Kee Suk Nahm; Yun Sung Lee; Masaki Yoshio

2001-01-01T23:59:59.000Z