National Library of Energy BETA

Sample records for gila river power

  1. Gila River Indian Community- 2012 Project

    Broader source: Energy.gov [DOE]

    The Gila River Indian Community (GRIC) will conduct feasibility studies of potential renewable energy projects on its lands in south central Arizona.

  2. Project Reports for Gila River Indian Community- 2012 Project

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Gila River Indian Community (GRIC) will conduct feasibility studies of potential renewable energy projects on its lands in south central Arizona.

  3. River of Power (1987)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMassR&D100NationalquestionnairesDrought-induced forestNovember 2012) Page

  4. Annotated bibliography for the humpback chub (Gila cypha) with emphasis on the Grand Canyon population.

    SciTech Connect (OSTI)

    Goulet, C. T.; LaGory, K. E.; Environmental Science Division

    2009-10-05

    Glen Canyon Dam is a hydroelectric facility located on the Colorado River in Arizona that is operated by the U.S. Bureau of Reclamation (Reclamation) for multiple purposes including water storage, flood control, power generation, recreation, and enhancement of fish and wildlife. Glen Canyon Dam operations have been managed for the last several years to improve conditions for the humpback chub (Gila cypha) and other ecosystem components. An extensive amount of literature has been produced on the humpback chub. We developed this annotated bibliography to assist managers and researchers in the Grand Canyon as they perform assessments, refine management strategies, and develop new studies to examine the factors affecting humpback chub. The U.S. Geological Survey recently created a multispecies bibliography (including references on the humpback chub) entitled Bibliography of Native Colorado River Big Fishes (available at www.fort.usgs.gov/Products/data/COFishBib). That bibliography, while quite extensive and broader in scope than ours, is not annotated, and, therefore, does not provide any of the information in the original literature. In developing this annotated bibliography, we have attempted to assemble abstracts from relevant published literature. We present here abstracts taken unmodified from individual reports and articles except where noted. The bibliography spans references from 1976 to 2009 and is organized in five broad topical areas, including: (1) biology, (2) ecology, (3) impacts of dam operations, (4) other impacts, and (5) conservation and management, and includes twenty subcategories. Within each subcategory, we present abstracts alphabetically by author and chronologically by year. We present relevant articles not specific to either the humpback chub or Glen Canyon Dam, but cited in other included reports, under the Supporting Articles subcategory. We provide all citations in alphabetical order in Section 7.

  5. Columbia River Basin Research Plan Northwest Power and Conservation Council

    E-Print Network [OSTI]

    Columbia River Basin Research Plan By the Northwest Power and Conservation Council February 2006................................................................................................................. 20 (11) Human Development

  6. New River Geothermal Exploration (Ram Power Inc.)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Miller, Clay

    2013-11-15

    The New River Geothermal Exploration (DOE Award No. EE0002843) is located approximately 25km south of the Salton Sea, near town of Brawley in Imperial County and approximately 150km east of San Diego, California. A total of 182 MT Logger sites were completed covering the two separate Mesquite and New River grids. The data was collected over a frequency range of 320Hz to 0.001Hz with variable site spacing. A number of different inversion algorithms in 1D, 2D and 3D were used to produce resistivity-depth profiles and maps of subsurface resistivity variations over the survey area. For 2D inversions, a total of eighteen lines were constructed in east-west and north-south orientations crossing the entire survey area. For MT 3D inversion, the New River property was divided in two sub-grids, Mesquite and New River areas. The report comprises of two parts. For the first part, inversions and geophysical interpretation results are presented with some recommendations of the potential targets for future follow up on the property. The second part of the report describes logistics of the survey, survey parameters, methodology and the survey results (data) in digital documents. The report reviews a Spartan MT survey carried out by Quantec Geoscience Limited over the New River Project in California, USA on behalf of Ram Power Inc. Data was acquired over a period of 29 days from 2010/06/26 to 2010/07/24.

  7. New River Geothermal Exploration (Ram Power Inc.)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Miller, Clay

    The New River Geothermal Exploration (DOE Award No. EE0002843) is located approximately 25km south of the Salton Sea, near town of Brawley in Imperial County and approximately 150km east of San Diego, California. A total of 182 MT Logger sites were completed covering the two separate Mesquite and New River grids. The data was collected over a frequency range of 320Hz to 0.001Hz with variable site spacing. A number of different inversion algorithms in 1D, 2D and 3D were used to produce resistivity-depth profiles and maps of subsurface resistivity variations over the survey area. For 2D inversions, a total of eighteen lines were constructed in east-west and north-south orientations crossing the entire survey area. For MT 3D inversion, the New River property was divided in two sub-grids, Mesquite and New River areas. The report comprises of two parts. For the first part, inversions and geophysical interpretation results are presented with some recommendations of the potential targets for future follow up on the property. The second part of the report describes logistics of the survey, survey parameters, methodology and the survey results (data) in digital documents. The report reviews a Spartan MT survey carried out by Quantec Geoscience Limited over the New River Project in California, USA on behalf of Ram Power Inc. Data was acquired over a period of 29 days from 2010/06/26 to 2010/07/24.

  8. Platte River Power Authority | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop Inc Jump to:Newberg,Energy LLC JumpPhono Solar JumpMaunaPionicsPlateauRiver Power

  9. Singing River Electric Power Association- Comfort Advantage Home Program

    Broader source: Energy.gov [DOE]

    Singing River Electric Power Association provides rebates on energy efficiency measures in new homes and heat pumps that meet Comfort Advantage weatherization standards. To qualify for this rebate...

  10. Visual Sensitivity of River Recreation to Power Plants1

    E-Print Network [OSTI]

    the sensitivity of river-related recreational activities to visual intrusion by large coal-fired power plants is determined for each landscape type. These visual absorption values are then mapped along the case study river The State of Minnesota anticipates the construction of a considerable number of large new coal-fired power

  11. Could Gila Bend, Arizona, Become the Solar Capital of the World?

    Broader source: Energy.gov [DOE]

    Serving approximately 9,000 homes with clean renewable energy, the Paloma and Cotton Center solar plants highlight the rapidly rising solar corridor in Gila Bend, Arizona.

  12. Gila Bend, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LISTStar2-0057-EA Jump to:ofEniaElectric Jump to:Ger teGetwattUNDPGigha RenewableGila

  13. Modeling the Gila-San Francisco Basin using system dynamics in support of the 2004 Arizona Water Settlement Act.

    SciTech Connect (OSTI)

    Tidwell, Vincent Carroll; Sun, Amy Cha-Tien; Peplinski, William J.; Klise, Geoffrey Taylor

    2012-04-01

    Water resource management requires collaborative solutions that cross institutional and political boundaries. This work describes the development and use of a computer-based tool for assessing the impact of additional water allocation from the Gila River and the San Francisco River prescribed in the 2004 Arizona Water Settlements Act. Between 2005 and 2010, Sandia National Laboratories engaged concerned citizens, local water stakeholders, and key federal and state agencies to collaboratively create the Gila-San Francisco Decision Support Tool. Based on principles of system dynamics, the tool is founded on a hydrologic balance of surface water, groundwater, and their associated coupling between water resources and demands. The tool is fitted with a user interface to facilitate sensitivity studies of various water supply and demand scenarios. The model also projects the consumptive use of water in the region as well as the potential CUFA (Consumptive Use and Forbearance Agreement which stipulates when and where Arizona Water Settlements Act diversions can be made) diversion over a 26-year horizon. Scenarios are selected to enhance our understanding of the potential human impacts on the rivers ecological health in New Mexico; in particular, different case studies thematic to water conservation, water rights, and minimum flow are tested using the model. The impact on potential CUFA diversions, agricultural consumptive use, and surface water availability are assessed relative to the changes imposed in the scenarios. While it has been difficult to gage the acceptance level from the stakeholders, the technical information that the model provides are valuable for facilitating dialogues in the context of the new settlement.

  14. EA-1683: Abengoa Solar's Solana Concentrating Solar Power Facility, Gila

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum Based| Department8,DepartmentFinalin Fairbault, MN |Finding of NoEnergyBend,

  15. Farmington River Power Company | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoopButtePowerEdisto Electric Coop,ErosionNewCoal

  16. U. 5. COLUMBIA RIVER POWER SYS1

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorking With WIPP UPDATE: April 15,Gas Reserve Class Ventura Basin Oil andby

  17. Power of the River History Book

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room NewsInformationJesseworkSURVEYI/OPerformancePi Day PiSafetyContact Power Services

  18. Solutions of the stream power equation and application to the evolution of river longitudinal profiles

    E-Print Network [OSTI]

    Royden, Leigh H.

    Erosion by bedrock river channels is commonly modeled with the stream power equation. We present a two-part approach to solving this nonlinear equation analytically and explore the implications for evolving river profiles. ...

  19. Guangnan Duimen River Power Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LISTStar2-0057-EA JumpDuimen River Power Co Ltd Jump to: navigation, search Name:

  20. Northwest Power and Conservation Council Columbia River Basin Fish and Wildlife Program

    E-Print Network [OSTI]

    Northwest Power and Conservation Council Columbia River Basin Fish and Wildlife Program Findings) of the Northwest Power Act, the Northwest Power and Conservation Council oversees the development, amendment by the development and operation of the hydroelectric facilities on the Columbia River and its tributaries, known

  1. Northwest Power and Conservation Council Columbia River Basin Fish and Wildlife Program

    E-Print Network [OSTI]

    1 Northwest Power and Conservation Council Columbia River Basin Fish and Wildlife Program Findings) of the Northwest Power Act, the Northwest Power and Conservation Council oversees the development, amendment by the development and operation of the hydroelectric facilities on the Columbia River and its tributaries, known

  2. Pearl River Valley Electric Power Association- Residential Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Pearl River Valley Electric Power Association provides incentives through its Comfort Advantage Program to encourage energy efficiency within the residential sector. Rebates are available for heat...

  3. EA-1683: Abengoa Solar's Solana Concentrating Solar Power Facility...

    Office of Environmental Management (EM)

    Bend, AZ May 3, 2010 EA-1683: Final Environmental Assessment Loan Guarantee to Abengoa Solar Inc. for the Solana Thermal Electric Power Project near Gila Bend, Arizona May 6,...

  4. A Brief History of the Federal Columbia River Power System

    E-Print Network [OSTI]

    facilities, beginning in the late 1800s. Congress directed the Bonneville Power Administration. The administrator of the Bonneville Power Administration and the Division Engineer of the Northwestern Division Northwest Power Conservation Council and Bonneville Dam Construction, 1930s #12;The development

  5. Kings River Conservation District (KRCD) Solar Farm Solar Power Plant |

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View NewTexas: Energy ResourcesOrderInformation Kilauea SouthwestofKings River ConservationOpen

  6. Federal Columbia River Power System (FCRPS) FY 2011 THIRD QUARTER...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the change in accounting for power "bookout" transactions made after adoption of new accounting guidance as of Oct 1, 2003. Actual Net Revenues for FY 2010 with the...

  7. WABASH RIVER INTEGRATED METHANOL AND POWER PRODUCTION FROM CLEAN COAL TECHNOLOGIES (IMPPCCT)

    SciTech Connect (OSTI)

    Albert Tsang

    2003-03-14

    The Wabash River Integrated Methanol and Power Production from Clean Coal Technologies (IMPPCCT) project is evaluating integrated electrical power generation and methanol production through clean coal technologies. The project is conducted by a multi-industry team lead by Gasification Engineering Corporation (GEC), a company of Global Energy Inc., and supported by Air Products and Chemicals, Inc., Dow Chemical Company, Dow Corning Corporation, Methanex Corporation, and Siemens Westinghouse Power Corporation. Three project phases are planned for execution over several years, including: (1) Feasibility study and conceptual design for an integrated demonstration facility, and for fence-line commercial embodiment plants (CEP) operated at Dow Chemical or Dow Corning chemical plant locations (2) Research, development, and testing to define any technology gaps or critical design and integration issues (3) Engineering design and financing plan to install an integrated commercial demonstration facility at the existing Wabash River Energy Limited (WREL) plant in West Terre Haute, Indiana.

  8. What explains the increased utilization of Powder River Basin coal in electric power generation?

    SciTech Connect (OSTI)

    Gerking, S.; Hamilton, S.F. [University of Central Florida, Orlando, FL (United States)

    2008-11-15

    This article examines possible explanations for increased utilization of Powder River Basin (PRB) coal in electric power generation that occurred over the last two decades. Did more stringent environmental policy motivate electric power plants to switch to less polluting fuels? Or, did greater use of PRB coal occur because relative price changes altered input markets in favor of this fuel. A key finding is that factors other than environmental policy such as the decline in railroad freight rates together with elastic demand by power plants were major contributors to the increased utilization of this fuel.

  9. Loup River Public Power Dist | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LISTStar2-0057-EAInvervarLeeds, UnitedLibertyLiteHuixinEnergyLorain-MedinaPublic Power

  10. Northland Power Mississippi River LLC | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsourceII Jump to:Information 3rd|Northfork Electric Coop, Inc Jump to:Northland Power

  11. Microsoft PowerPoint - Arkansa River System Operation.ppt

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass map shines light on darkMicroorganisms toPalladium wavy nanowires with

  12. Microsoft PowerPoint - River Protection Project HAB.ppt [Read-Only]

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass map shines light on darkMicroorganismsnow widelySmallBPARegulating EnergyRiver

  13. WABASH RIVER INTEGRATED METHANOL AND POWER PRODUCTION FROM CLEAN COAL TECHNOLOGIES (IMPPCCT)

    SciTech Connect (OSTI)

    Thomas Lynch

    2004-01-07

    The Wabash River Integrated Methanol and Power Production from Clean Coal Technologies (IMPPCCT) project is evaluating integrated electrical power generation and methanol production through clean coal technologies. The project is conducted by a multi-industry team lead previously by Gasification Engineering Corporation (GEC). The project is now under the leadership of ConocoPhillips Company (COP) after it acquired GEC and the E-Gas{trademark} gasification technology from Global Energy in July 2003. The Phase I of this project was supported by Air Products and Chemicals, Inc., Dow Chemical Company, Dow Corning Corporation, Methanex Corporation, and Siemens Westinghouse Power Corporation, while the Phase II is supported by Gas Technology Institute, TDA Research, Inc., and Nucon International, Inc. The two project phases planned for execution include: (1) Feasibility study and conceptual design for an integrated demonstration facility at Global Energy's existing Wabash River Energy Limited (WREL) plant in West Terre Haute, Indiana, and for a fence-line commercial embodiment plants (CEP) operated at Dow Chemical or Dow Corning chemical plant locations (2) Research, development, and testing (RD&T) to define any technology gaps or critical design and integration issues. The WREL facility was designed, constructed, and operated under a project selected and co-funded under the Round IV of the United States Department of Energy's (DOE's) Clean Coal Technology Program. In this project, coal and/or other solid fuel feedstocks are gasified in an oxygen-blown, entrained-flow gasifier with continuous slag removal and a dry particulate removal system. The resulting product synthesis gas is used to fuel a combustion turbine generator whose exhaust is integrated with a heat recovery steam generator to drive a refurbished steam turbine generator. The gasifier uses technology initially developed by The Dow Chemical Company (the Destec Gasification Process), and now acquired and offered commercially by COP as the E-GAS{trademark} technology. In a joint effort with the DOE, a Cooperative Agreement was awarded under the Early Entrance Coproduction Plant (EECP) solicitation. GEC, and now COP and the industrial partners are investigating the use of synthesis gas produced by the E-GAS{trademark} technology in a coproduction environment to enhance the efficiency and productivity of solid fuel gasification combined cycle power plants. The objectives of this effort are to determine the feasibility of an EECP located at a specific site which produces some combination of electric power (or heat), fuels, and/or chemicals from synthesis gas derived from coal, or, coal in combination with some other carbonaceous feedstock. The project's intended result is to provide the necessary technical, economic, and environmental information that will be needed to move the EECP forward to detailed design, construction, and operation by industry.

  14. WABASH RIVER INTEGRATED METHANOL AND POWER PRODUCTION FROM CLEAN COAL TECHNOLOGIES (IMPPCCT)

    SciTech Connect (OSTI)

    Gary Harmond; Albert Tsang

    2003-03-14

    The Wabash River Integrated Methanol and Power Production from Clean Coal Technologies (IMPPCCT) project is evaluating integrated electrical power generation and methanol production through clean coal technologies. The project is conducted by a multi-industry team lead by Gasification Engineering Corporation (GEC), a company of Global Energy Inc., and supported by Air Products and Chemicals, Inc., Dow Chemical Company, Dow Corning Corporation, Methanex Corporation, and Siemens Westinghouse Power Corporation. Three project phases are planned for execution over a three year period, including: (1) Feasibility study and conceptual design for an integrated demonstration facility, and for fence-line commercial embodiment plants (CEP) operated at Dow Chemical or Dow Corning chemical plant locations (2) Research, development, and testing to define any technology gaps or critical design and integration issues (3) Engineering design and financing plan to install an integrated commercial demonstration facility at the existing Wabash River Energy Limited (WREL) plant in West Terre Haute, Indiana. The WREL facility is a project selected and co-funded under the Round IV of the U.S. Department of Energy's (DOE's) Clean Coal Technology Program. In this project, coal and/or other solid fuel feedstocks are gasified in an oxygen-blown, entrained-flow gasifier with continuous slag removal and a dry particulate removal system. The resulting product synthesis gas is used to fuel a combustion turbine generator whose exhaust is integrated with a heat recovery steam generator to drive a refurbished steam turbine generator. The gasifier uses technology initially developed by The Dow Chemical Company (the Destec Gasification Process), and now offered commercially by Global Energy, Inc., as the E-GAS{trademark} technology. In a joint effort with the DOE, a Cooperative Agreement was awarded under the Early Entrance Coproduction Plant (EECP) solicitation. GEC and an Industrial Consortium are investigating the use of synthesis gas produced by the E-GAS{trademark} technology in a coproduction environment to enhance the efficiency and productivity of solid fuel gasification combined cycle power plants. During the reporting period, various methods to remove low-level contaminants for the synthesis gas were reviewed. In addition, there was a transition of the project personnel for GEC which has slowed the production of the outstanding project reports.

  15. Spatial design principles for sustainable hydropower development in river basins

    E-Print Network [OSTI]

    Jager, Henriette I.

    : Freshwater reserve design Hydroelectric power Network theory Optimization Regulated rivers River portfolio

  16. Negotiating river ecosystems: Impact assessment and conflict mediation in the cases of hydro-power construction

    SciTech Connect (OSTI)

    Karjalainen, Timo P., E-mail: timopauli.karjalainen@oulu.f [Thule Institute, University of Oulu, P.O. Box 7300, FI-90014 University of Oulu (Finland); Jaervikoski, Timo, E-mail: timo.jarvikoski@oulu.f [Unit of Sociology, University of Oulu, P.O. Box 2000, FI-90014 University of Oulu (Finland)

    2010-09-15

    In this paper we discuss how the legitimacy of the impact assessment process is a key issue in conflict mediation in environmental impact assessment. We contrast two EIA cases in hydro-power generation plans made for the Ii River, Finland in different decades, and evaluate how impact assessment in these cases has contributed to the creation, mediation and resolution of conflicts. We focus on the elements of distributional and procedural justice that made the former EIA process more legitimate and consensual and the latter more conflictual. The results indicate that it is crucial for conflict mediation to include all the values and interests of the parties in the goal-setting process and in the definition and assessment of alternatives. The analysis also indicates that procedural justice is the most important to help the people and groups involved to accept the legitimacy of the impact assessment process: how different parties and their values and interests are recognized, and how participation and distribution of power are organized in an impact assessment process. It is confirmed in this article that SIA may act as a mediator or a forum providing a process through which competing knowledge claims, various values and interests can be discussed and linked to the proposed alternatives and interventions.

  17. WABASH RIVER INTEGRATED METHANOL AND POWER PRODUCTION FROM CLEAN COAL TECHNOLGIES (IMPPCCT)

    SciTech Connect (OSTI)

    Albert C. Tsang

    2004-03-26

    The Wabash River Integrated Methanol and Power Production from Clean Coal Technologies (IMPPCCT) project is evaluating integrated electrical power generation and methanol production through clean coal technologies. The project is under the leadership of ConocoPhillips Company (COP), after it acquired Gasification Engineering Corporation (GEC) and the E-Gas gasification technology from Global Energy in July 2003. The project has completed Phase I, and is currently in Phase II of development. The two project phases include: (1) Feasibility study and conceptual design for an integrated demonstration facility at Global Energy's existing Wabash River Energy Limited (WREL) plant in West Terre Haute, Indiana, and for a fence-line commercial embodiment plants (CEP) operated at Dow Chemical or Dow Corning chemical plant locations; and (2) Research, development, and testing (RD&T) to define any technology gaps or critical design and integration issues. The Phase I of this project was supported by a multi-industry team consisting of Air Products and Chemicals, Inc., Dow Chemical Company, Dow Corning Corporation, Methanex Corporation, and Siemens Westinghouse Power Corporation, while Phase II is supported by Gas Technology Institute, TDA Research Inc., and Nucon International, Inc. The WREL integrated gasification combined cycle (IGCC) facility was designed, constructed, and operated under a project selected and co-funded under the Round IV of the United States Department of Energy's (DOE's) Clean Coal Technology Program. In this project, coal and/or other solid fuel feedstocks are gasified in an oxygen-blown, entrained-flow gasifier with continuous slag removal and a dry particulate removal system. The resulting product synthesis gas is used to fuel a combustion turbine generator whose exhaust is integrated with a heat recovery steam generator to drive a refurbished steam turbine generator. The gasifier uses technology initially developed by The Dow Chemical Company (the Destec Gasification Process), and now acquired and offered commercially by COP as the E-Gas technology. In a joint effort with the DOE, a Cooperative Agreement was awarded under the Early Entrance Coproduction Plant (EECP) solicitation. GEC, and now COP and the industrial partners are investigating the use of synthesis gas produced by the E-Gas technology in a coproduction environment to enhance the efficiency and productivity of solid fuel gasification combined cycle power plants. The objectives of this effort are to determine the feasibility of an EECP located at a specific site which produces some combination of electric power (or heat), fuels, and/or chemicals from synthesis gas derived from coal, or, coal in combination with some other carbonaceous feedstock. The project's intended result is to provide the necessary technical, economic, and environmental information that will be needed to move the EECP forward to detailed design, construction, and operation by industry. The early entrance coproduction plant study conducted in Phase I of the IMPPCCT project confirmed that the concept for the integration of gasification-based (E-Gas) electricity generation from coal and/or petroleum coke and methanol production (Liquid Phase Methanol or LPMEOH{trademark}) processes was feasible for the coproduction of power and chemicals. The results indicated that while there are minimal integration issues that impact the deployment of an IMPPCCT CEP, the major concern was the removal of sulfur and other trace contaminants, which are known methanol catalyst poisons, from the synthesis gas (syngas). However, economic concerns in the domestic methanol market which is driven by periodic low natural gas prices and cheap offshore supplies limit the commercial viability of this more capital intensive concept. The objective of Phase II is to conduct RD&T as outlined in the Phase I RD&T Plan to enhance the development and commercial acceptance of coproduction technology. Studies will address the technical concerns that will make the IMPPCCT concept competitive with natural

  18. Wabash River Integrated Methanol and Power Production from Clean Coal Technologies (IMPPCCT)

    SciTech Connect (OSTI)

    Conocophillips

    2007-09-30

    The Wabash River Integrated Methanol and Power Production from Clean Coal Technologies (IMPPCCT) project was established to evaluate integrated electrical power generation and methanol production through clean coal technologies. The project was under the leadership of ConocoPhillips Company (COP), after it acquired Gasification Engineering Corporation (GEC) and the E-Gas gasification technology from Global Energy Inc. in July 2003. The project has completed both Phase 1 and Phase 2 of development. The two project phases include the following: (1) Feasibility study and conceptual design for an integrated demonstration facility at SG Solutions LLC (SGS), previously the Wabash River Energy Limited, Gasification Facility located in West Terre Haute, Indiana, and for a fence-line commercial embodiment plant (CEP) operated at the Dow Chemical Company or Dow Corning Corporation chemical plant locations. (2) Research, development, and testing (RD&T) to define any technology gaps or critical design and integration issues. Phase 1 of this project was supported by a multi-industry team consisting of Air Products and Chemicals, Inc., The Dow Chemical Company, Dow Corning Corporation, Methanex Corporation, and Siemens Westinghouse Power Corporation, while Phase 2 was supported by Gas Technology Institute, TDA Research Inc., and Nucon International, Inc. The SGS integrated gasification combined cycle (IGCC) facility was designed, constructed, and operated under a project selected and co-funded under the Round IV of the United States Department of Energy's (DOE's) Clean Coal Technology Program. In this project, coal and/or other carbonaceous fuel feedstocks are gasified in an oxygen-blown, entrained-flow gasifier with continuous slag removal and a dry particulate removal system. The resulting product synthesis gas (syngas) is used to fuel a combustion turbine generator whose exhaust is integrated with a heat recovery steam generator to drive a refurbished steam turbine generator. The gasifier uses technology initially developed by The Dow Chemical Company (the Destec Gasification Process), and now acquired and offered commercially by COP as the E-Gas technology. In a joint effort with the DOE, a Cooperative Agreement was awarded under the Early Entrance Coproduction Plant (EECP) solicitation. GEC, and later COP and the industrial partners investigated the use of syngas produced by the E-Gas technology in a coproduction environment to enhance the efficiency and productivity of solid fuel gasification combined cycle power plants. The objectives of this effort were to determine the feasibility of an EECP located at a specific site which produces some combination of electric power (or heat), fuels, and/or chemicals from syngas derived from coal, or, coal in combination with some other carbonaceous feedstock. The intended result of the project was to provide the necessary technical, economic, and environmental information that would be needed to move the EECP forward to detailed design, construction, and operation by industry. The EECP study conducted in Phase 1 of the IMPPCCT Project confirmed that the concept for the integration of gasification-based (E-Gas) electricity generation from coal and/or petroleum coke and methanol production (Liquid Phase Methanol or LPMEOH{trademark}) processes was feasible for the coproduction of power and chemicals. The results indicated that while there were minimal integration issues that impact the deployment of an IMPPCCT CEP, the major concern was the removal of sulfur and other trace contaminants, which are known methanol catalyst poisons, from the syngas. However, economic concerns in the domestic methanol market which is driven by periodic low natural gas prices and cheap offshore supplies limit the commercial viability of this more capital intensive concept. The objective of Phase 2 was to conduct RD&T as outlined in the Phase 1 RD&T Plan to enhance the development and commercial acceptance of coproduction technology. Studies were designed to address the technical concerns that would mak

  19. WABASH RIVER INTEGRATED METHANOL AND POWER PRODUCTION FROM CLEAN COAL TECHNOLOGIES (IMPPCCT)

    SciTech Connect (OSTI)

    Albert Tsang

    2003-03-14

    The Wabash River Integrated Methanol and Power Production from Clean Coal Technologies (IMPPCCT) project is evaluating integrated electrical power generation and methanol production through clean coal technologies. The project is conducted by a multi-industry team lead by Gasification Engineering Corporation (GEC), and supported by Air Products and Chemicals, Inc., Dow Chemical Company, Dow Corning Corporation, Methanex Corporation, and Siemens Westinghouse Power Corporation. Three project phases are planned for execution, including: (1) Feasibility study and conceptual design for an integrated demonstration facility, and for fence-line commercial embodiment plants (CEP) operated at Dow Chemical or Dow Corning chemical plant locations (2) Research, development, and testing (RD&T) to define any technology gaps or critical design and integration issues (3) Engineering design and financing plan to install an integrated commercial demonstration facility at the existing Wabash River Energy Limited (WREL) plant in West Terre Haute, Indiana. The WREL facility is a project selected and co-funded under the Round IV of the United States Department of Energy's (DOE's) Clean Coal Technology Program. In this project, coal and/or other solid fuel feedstocks are gasified in an oxygen-blown, entrained-flow gasifier with continuous slag removal and a dry particulate removal system. The resulting product synthesis gas is used to fuel a combustion turbine generator whose exhaust is integrated with a heat recovery steam generator to drive a refurbished steam turbine generator. The gasifier uses technology initially developed by The Dow Chemical Company (the Destec Gasification Process), and now offered commercially by Global Energy, Inc., parent company of GEC and WREL, as the E-GAS{trademark} technology. In a joint effort with the DOE, a Cooperative Agreement was awarded under the Early Entrance Coproduction Plant (EECP) solicitation. GEC and an Industrial Consortium are investigating the use of synthesis gas produced by the E-GAS{trademark} technology in a coproduction environment to enhance the efficiency and productivity of solid fuel gasification combined cycle power plants. The objectives of this effort are to determine the feasibility of an EECP located at a specific site which produces some combination of electric power (or heat), fuels, and/or chemicals from synthesis gas derived from coal, or, coal in combination with some other carbonaceous feedstock. The project's intended result is to provide the necessary technical, economic, and environmental information that will be needed to move the EECP forward to detailed design, construction, and operation by industry. During the reporting period, effort continues on identifying potential technologies for removing contaminants from synthesis gas to the level required by methanol synthesis. A liquid phase Claus process and a direct sulfur oxidation process were evaluated. Preliminary discussion was held with interested parties on cooperating on RD&T in Phase II of the project. Also, significant progress was made during the period in the submission of project deliverables. A meeting was held at DOE's National Energy Technology Laboratory in Morgantown between GEC and the DOE IMPPCCT Project Manager on the status of the project, and reached an agreement on the best way to wrap up Phase I and transition into the Phase II RD&T. Potential projects for the Phase II, cost, and fund availability were also discussed.

  20. Northwest Power and Conservation Council's1 Columbia River Basin

    E-Print Network [OSTI]

    .................................................................................9 A. Vision for the Columbia River Basin......................................................................... 9 1. The Overall Vision for the Fish and Wildlife Program............................................................................. 30 3. Artificial Production Strategies

  1. Gansu Diantou Tao River Hydro Power Development Co Ltd | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LISTStar2-0057-EA Jump to:ofEnia SpAFlexStock CoGTOMarket JumpInformation River

  2. Hubei Badong County Yandu River Electric Power Development Co Ltd | Open

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LISTStar2-0057-EA JumpDuimen RiverScoring Tool JumpHuaning Xin JiulongChunJiang

  3. Yun County Pan River Metal Electric Power Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop IncIowa (UtilityMichigan) Jump to:Sanming LianfaYoungstown,YumaRiver Metal

  4. TVA's Integrated River System

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and controlling floods. So far as may be consistent with such purposes, ...for the generation of electric energy... TVA Power Service Area TVA'S INTEGRATED RIVER SYSTEM | 3...

  5. Power Plant Power Plant

    E-Print Network [OSTI]

    Stillwater Power Plant Wabuska Power Plant Casa Diablo Power Plant Glass Mountain Geothermal Area Lassen Geothermal Area Coso Hot Springs Power Plants Lake City Geothermal Area Thermo Geothermal Area Lakeview Geothermal Area Raft River Geothermal Area Cove Fort Power Plant Roosevelt Power Plant Borax Lake

  6. Tour of Entergy's Nuclear Power Plant in River Bend Owner: Entergy Gulf States Inc.

    E-Print Network [OSTI]

    Ervin, Elizabeth K.

    : Boiling Water Reactor Reactor Manufacturer: General Electric Turbine Generator Manufacturer: General a nuclear power plant. Plant was Entergy, a Boiling Water Reactor (BWR) type. Built in the 80's, it has from the reactor is stored under water. An alternative storage is the dry cask storage which

  7. Microsoft PowerPoint - Zachara HAB-River Plateau Mtg 1-8-09.ppt

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass map shines light on darkMicroorganismsnowReport ARM28GregM. Zachara Pacific Northwest

  8. HydroPower: How Electricity gets from the River to Your House

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would likeUniverse (JournalvivoHighHussein Khalil Hussein KhalilStatistical Self-Similarity in

  9. Federal Columbia River Power System (FCRPS) FY 2011 THIRD QUARTER REVIEW

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would like submitKansasCommunitiesofExtransScientific UserflowFebruaryFebruaryDepartment1

  10. Microsoft PowerPoint - 2011_1012_Hansen_ColumbiaRiverComponent_Eco.pptx

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass map shines light on darkMicroorganisms to Speed ProductionRyutaro Himeno11Sh t T d

  11. Microsoft PowerPoint - Columbia_River_Corridor_Rev_2_v2.ppt [Compatibility Mode]

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass map shines light on darkMicroorganisms toPalladium wavyfamily of newAqueous9 Columbia

  12. Passage Distribution and Federal Columbia River Power System Survival for Steelhead Kelts Tagged Above and at Lower Granite Dam, Year 2

    SciTech Connect (OSTI)

    Colotelo, Alison HA; Harnish, Ryan A.; Jones, Bryan W.; Hanson, Amanda C.; Trott, Donna M.; Greiner, Michael J.; McMichael, Geoffrey A.; Ham, Kenneth D.; Deng, Zhiqun; Brown, Richard S.; Weiland, Mark A.; Li, X.; Fu, Tao

    2014-03-28

    Steelhead (Oncorhynchus mykiss) populations have declined throughout their range in the last century and many populations, including those of the Snake River Basin are listed under the Endangered Species Act of 1973. The reasons for their decline are many and complex, but include habitat loss and degradation, overharvesting, and dam construction. The 2008 Biological Opinion calls for an increase in the abundance of female steelhead through an increase in iteroparity (i.e., repeat spawning) and this can be realized through a combination of reconditioning and in-river survival of migrating kelts. The goal of this study is to provide the data necessary to inform fisheries managers and dam operators of Snake River kelt migration patterns, survival, and routes of dam passage. Steelhead kelts (n = 487) were captured and implanted with acoustic transmitters and passive integrated transponder (PIT)-tags at the Lower Granite Dam (LGR) Juvenile Fish Facility and at weirs located in tributaries of the Snake and Clearwater rivers upstream of LGR. Kelts were monitored as they moved downstream through the Federal Columbia River Power System (FCRPS) by 15 autonomous and 3 cabled acoustic receiver arrays. Cabled receiver arrays deployed on the dam faces allowed for three-dimensional tracking of fish as they approached the dam face and were used to determine the route of dam passage. Overall, 27.3% of the kelts tagged in this study successfully migrated to Martin Bluff (rkm 126, as measured from the mouth of the Columbia River), which is located downstream of all FCRPS dams. Within individual river reaches, survival per kilometer estimates ranged from 0.958 to 0.999; the lowest estimates were observed in the immediate forebay of FCRPS dams. Steelhead kelts tagged in this study passed over the spillway routes (spillway weirs, traditional spill bays) in greater proportions and survived at higher rates compared to the few fish passed through powerhouse routes (turbines and juvenile bypass systems). The results of this study provide information about the route of passage and subsequent survival of steelhead kelts that migrated through the Snake and Columbia rivers from LGR to Bonneville Dam in 2013. These data may be used by fisheries managers and dam operators to identify potential ways to increase the survival of kelts during their seaward migrations.

  13. Passage Distribution and Federal Columbia River Power System Survival for Steelhead Kelts Tagged Above and at Lower Granite Dam, Year 2

    SciTech Connect (OSTI)

    Colotelo, Alison H.A.; Harnish, Ryan A.; Jones, Bryan W.; Hanson, Amanda C.; Trott, Donna M.; Greiner, Michael J.; Mcmichael, Geoffrey A.; Ham, Kenneth D.; Deng, Zhiqun; Brown, Richard S.; Weiland, Mark A.; Li, Xinya; Fu, Tao

    2014-12-15

    Steelhead (Oncorhynchus mykiss) populations have declined throughout their range in the last century and many populations, including those of the Snake River Basin are listed under the Endangered Species Act of 1973. The reasons for their decline are many and complex, but include habitat loss and degradation, overharvesting, and dam construction. The 2008 Biological Opinion calls for an increase in the abundance of female steelhead through an increase in iteroparity (i.e., repeat spawning) and this can be realized through a combination of reconditioning and in-river survival of migrating kelts. The goal of this study is to provide the data necessary to inform fisheries managers and dam operators of Snake River kelt migration patterns, survival, and routes of dam passage. Steelhead kelts (n = 487) were captured and implanted with acoustic transmitters and passive integrated transponder (PIT)-tags at the Lower Granite Dam (LGR) Juvenile Fish Facility and at weirs located in tributaries of the Snake and Clearwater rivers upstream of LGR. Kelts were monitored as they moved downstream through the Federal Columbia River Power System (FCRPS) by 15 autonomous and 3 cabled acoustic receiver arrays. Cabled receiver arrays deployed on the dam faces allowed for three-dimensional tracking of fish as they approached the dam face and were used to determine the route of dam passage. Overall, 27.3% of the kelts tagged in this study successfully migrated to Martin Bluff (rkm 126, as measured from the mouth of the Columbia River), which is located downstream of all FCRPS dams. Within individual river reaches, survival per kilometer estimates ranged from 0.958 to 0.999; the lowest estimates were observed in the immediate forebay of FCRPS dams. Steelhead kelts tagged in this study passed over the spillway routes (spillway weirs, traditional spill bays) in greater proportions and survived at higher rates compared to the few fish passed through powerhouse routes (turbines and juvenile bypass systems). The results of this study provide information about the route of passage and subsequent survival of steelhead kelts that migrated through the Snake and Columbia rivers from LGR to Bonneville Dam in 2013. These data may be used by fisheries managers and dam operators to identify potential ways to increase the survival of kelts during their seaward migrations.

  14. Hydropower production and river rehabilitation: A case study on an alpine river

    E-Print Network [OSTI]

    Introduction For centuries, man has modified running waters [51]. In alpine rivers, production of hydropower of power plants are commonly in use: (1) run-of-river power plants that continuously pro- cessHydropower production and river rehabilitation: A case study on an alpine river M. Fette & C. Weber

  15. EA-1973: Kootenai River Restoration at Bonners Ferry, Boundary...

    Energy Savers [EERE]

    73: Kootenai River Restoration at Bonners Ferry, Boundary County, Idaho EA-1973: Kootenai River Restoration at Bonners Ferry, Boundary County, Idaho Summary Bonneville Power...

  16. Northwest Power and Conservation Council Striking a Balance Between Energy and the Environment in the Columbia River Basin

    E-Print Network [OSTI]

    the Bonneville Power Administration acquired a conservation easement as partial mitigation for the impacts Power Administration have signed an agreement that will direct about $160 million over the next 15 years hydropower turbines. Bonneville transmits and markets the power generated from eight of the dams

  17. Striking a Balance Between Energy and the Environment in the Columbia River Basin Regional Power Plan Touts Efficiency to Meet

    E-Print Network [OSTI]

    and utilities need new generation in addition to renewable power and efficiency improvements. Natural gas Plan Touts Efficiency to Meet Demand and Create Jobs (Continued on page 2) Northwest Power its regional power plan at its February meet- ing, calling for efficiency, as much as 85 percent

  18. Clinch River: an alternate financing plan. Hearing before the Subcommittee on Energy Conservation and Power, House of Representatives, Ninety-Eighth Congress, first session, 20 Sep 1983

    SciTech Connect (OSTI)

    Not Available

    1984-01-01

    Representatives of the Clinch River Breeder Reactor (CRBR) project, the nuclear industry, taxpayers, the financial community, and legislators testified at a hearing held to review administration plans for completing the CRBR by attaching its financing to a continuing resolution and avoiding the legislative process. A Congressional Budget Office report noted that the administration's financing proposal will generate up to 37% return on investment from tax relief alone, which is more appropriate for high-risk than government-backed investment. The Congressional Research Service challenged that the plant's power production capacity was overstated and its price overvalued. Of concern to the committee was the fairness of asking taxpayers to share in the $2.5 billion needed to complete the project. Additional material submitted for the record follows the testimony of 20 witnesses.

  19. Terrestrial Carbon Inventory at the Savannah River Site, 1951 – 2001.

    SciTech Connect (OSTI)

    US Forest Service - Annonymous,

    2012-02-01

    A Power Point slide presentation/report on the terestrial carbon inventory at the Savannah River Site.

  20. Hydraulic Effects of Changes in Bottom-Land Vegetation on Three

    E-Print Network [OSTI]

    Hydraulic Effects of Changes in Bottom-Land Vegetation on Three Major Floods, Gila RiverKelvey, Director Library of Congress Cataloging in Publication Data Burkham, D. E. 1927 Hydraulic effects 19.16:655-J 1. Gila River-Floods. 2. Hydraulics. 3. Botany-Ecology-Gila River. 1. Title: Hydraulic

  1. Microsoft Word - CROOKED RIVER VALLEY REHABILITATION PROJECT...

    Broader source: Energy.gov (indexed) [DOE]

    Power Act). Among other things, this Act directs BPA to protect, mitigate, and enhance fish and wildlife affected by the development and operation of the Federal Columbia River...

  2. Development of an Implementation Plan Related to Biological Opinion on Operation of the Federal Columbia River Power System ; Step 1: Review and Critique of Implementation Plans.

    SciTech Connect (OSTI)

    Neitzel, Duane A.; Bunn, Amoret

    2000-12-01

    The Draft Biological Opinion on Operation of the Federal Columbia River Power System calls for the development of 1- and 5-year implementation plans. These plans will provide the roadmap for planning and subsequent implementation of actions intended to meet specific performance standards (i.e., biological objectives) in a timely manner. To develop implementation plans the key tasks and sequences of steps must be determined. Those responsible for specific tasks must be identified and they must understand what they need to do. There must be assurances that the resources (human, physical, and fiscal) to complete the tasks are available. Motivation and incentive systems should be set up. Systems to coordinate efforts and guide activity must be devised and installed. An information management system must be designed to manage and analyze data and ensure that appropriate data are collected. This will aid managers in assessing whether individual activities or actions are tracking with stated goals and objectives. Training programs to improve managerial and worker capability in making and implementing plans should be designed. Managerial leadership to guide the efforts of all individuals in achieving the goals of the anadromous and resident fish recovery must be developed. It is the entire process of managing fish recovery in relationship to the Biological Opinion that will guide, coordinate, motivate, and control work and determine the effectiveness and efficiency of plan implementation.

  3. EVALUATION OF THE EMISSION, TRANSPORT, AND DEPOSITION OF MERCURY, FINE PARTICULATE MATTER, AND ARSENIC FROM COAL-BASED POWER PLANTS IN THE OHIO RIVER VALLEY REGION

    SciTech Connect (OSTI)

    Kevin Crist

    2004-10-02

    Ohio University, in collaboration with CONSOL Energy, Advanced Technology Systems, Inc (ATS) and Atmospheric and Environmental Research, Inc. (AER) as subcontractors, is evaluating the impact of emissions from coal-fired power plants in the Ohio River Valley region as they relate to the transport and deposition of mercury, arsenic, and associated fine particulate matter. This evaluation will involve two interrelated areas of effort: ambient air monitoring and regional-scale modeling analysis. The scope of work for the ambient air monitoring will include the deployment of a surface air monitoring (SAM) station in southeastern Ohio. The SAM station will contain sampling equipment to collect and measure mercury (including speciated forms of mercury and wet and dry deposited mercury), arsenic, particulate matter (PM) mass, PM composition, and gaseous criteria pollutants (CO, NOx, SO{sub 2}, O{sub 3}, etc.). Laboratory analysis of time-integrated samples will be used to obtain chemical speciation of ambient PM composition and mercury in precipitation. Near-real-time measurements will be used to measure the ambient concentrations of PM mass and all gaseous species including Hg{sup 0} and RGM. Approximately of 18 months of field data will be collected at the SAM site to validate the proposed regional model simulations for episodic and seasonal model runs. The ambient air quality data will also provide mercury, arsenic, and fine particulate matter data that can be used by Ohio Valley industries to assess performance on multi-pollutant control systems. The scope of work for the modeling analysis will include (1) development of updated inventories of mercury and arsenic emissions from coal plants and other important sources in the modeled domain; (2) adapting an existing 3-D atmospheric chemical transport model to incorporate recent advancements in the understanding of mercury transformations in the atmosphere; (3) analyses of the flux of Hg{sup 0}, RGM, arsenic, and fine particulate matter in the different sectors of the study region to identify key transport mechanisms; (4) comparison of cross correlations between species from the model results to observations in order to evaluate characteristics of specific air masses associated with long-range transport from a specified source region; and (5) evaluation of the sensitivity of these correlations to emissions from regions along the transport path. This will be accomplished by multiple model runs with emissions simulations switched on and off from the various source regions. To the greatest extent possible, model results will also be compared to field data collected at other air monitoring sites in the Ohio Valley region, operated independently of this project. These sites may include (1) the DOE National Energy Technologies Laboratory's monitoring site at its suburban Pittsburgh, PA facility; (2) sites in Pittsburgh (Lawrenceville) PA and Holbrook, PA operated by ATS; (3) sites in Steubenville, OH and Pittsburgh, PA operated by U.S. EPA and/or its contractors; and (4) sites operated by State or local air regulatory agencies. Field verification of model results and predictions will provide critical information for the development of cost effective air pollution control strategies by the coal-fired power plants in the Ohio River Valley region.

  4. Evaluation of the Emission, Transport, and Deposition of Mercury and Fine Particulate Matter from Coal-Based Power Plants in the Ohio River Valley Region

    SciTech Connect (OSTI)

    Kevin Crist

    2008-12-31

    As stated in the proposal: Ohio University, in collaboration with CONSOL Energy, Advanced Technology Systems, Inc (ATS) and Atmospheric and Environmental Research, Inc. (AER) as subcontractors, evaluated the impact of emissions from coal-fired power plants in the Ohio River Valley region as they relate to the transport and deposition of mercury and associated fine particulate matter. This evaluation involved two interrelated areas of effort: ambient air monitoring and regional-scale modeling analysis. The scope of work for the ambient air monitoring included the deployment of a surface air monitoring (SAM) station in southeastern Ohio. The SAM station contains sampling equipment to collect and measure mercury (including speciated forms of mercury and wet and dry deposited mercury), particulate matter (PM) mass, PM composition, and gaseous criteria pollutants (CO, NOx, SO2, O3, etc.). Laboratory analyses of time-integrated samples were used to obtain chemical speciation of ambient PM composition and mercury in precipitation. Nearreal- time measurements were used to measure the ambient concentrations of PM mass and all gaseous species including Hg0 and RGM. Approximately 30 months of field data were collected at the SAM site to validate the proposed regional model simulations for episodic and seasonal model runs. The ambient air quality data provides mercury, and fine particulate matter data that can be used by Ohio Valley industries to assess performance on multi-pollutant control systems. The scope of work for the modeling analysis includes (1) development of updated inventories of mercury emissions from coal plants and other important sources in the modeled domain; (2) adapting an existing 3-D atmospheric chemical transport model to incorporate recent advancements in the understanding of mercury transformations in the atmosphere; (3) analyses of the flux of Hg0, RGM, and fine particulate matter in the different sectors of the study region to identify key transport mechanisms; (4) comparison of cross correlations between species from the model results to observations in order to evaluate characteristics of specific air masses associated with long-range transport from a specified source region; and (5) evaluation of the sensitivity of these correlations to emissions from regions along the transport path. This is accomplished by multiple model runs with emissions simulations switched on and off from the various source regions. To the greatest extent possible, model results were compared to field data collected at other air monitoring sites in the Ohio Valley region, operated independently of this project. These sites may include (1) the DOE National Energy Technologies Laboratory’s monitoring site at its suburban Pittsburgh, PA facility; (2) sites in Pittsburgh (Lawrenceville) PA and Holbrook, PA operated by ATS; (3) sites in Steubenville, OH and Pittsburgh, PA operated by the USEPA and/or its contractors; and (4) sites operated by State or local air regulatory agencies. Field verification of model results and predictions provides critical information for the development of cost effective air pollution control strategies by the coal-fired power plants in the Ohio River Valley region.

  5. CX-010680: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Herbicide Application at One Substation: Lone Butte, located on the Gila River Indian Community During Fiscal Year 2014 CX(s) Applied: B1.3 Date: 07/01/2013 Location(s): Arizona Offices(s): Western Area Power Administration-Desert Southwest Region

  6. 2010 Expenditures Report Columbia River Basin Fish

    E-Print Network [OSTI]

    tables 27 Table 1A: Total Cost of BPA Fish & Wildlife Actions 29 Table 1B: Cumulative Expenditures 1978 and habitat, of the Columbia River Basin that have been affected by hydroelectric development. This program fish and wildlife affected by hydropower dams in the Columbia River Basin. The Power Act requires

  7. Fast Facts About the Columbia River Basin

    E-Print Network [OSTI]

    cost and availability, and the effect of the hydropower system on fish and wildlife. columbia River, and fish and wildlife affected by, the columbia River Basin hydropower dams. the council is a unique of the Council under the Act are to: 1. Develop a regional power plan to assure the Northwest an adequate

  8. Hydroelectric power provides a cheap source of electricity with few carbon emissions. Yet, reservoirs are not operated sustainably, which we define as meeting societal needs for water and power while protecting long-term health of the river ecosystem. Reservoirs that generate hydropower are typically operated with the goal of maximizing energy reve

    SciTech Connect (OSTI)

    Jager, Yetta; Smith, Brennan T

    2008-02-01

    Hydroelectric power provides a cheap source of electricity with few carbon emissions. Yet, reservoirs are not operated sustainably, which we define as meeting societal needs for water and power while protecting long-term health of the river ecosystem. Reservoirs that generate hydropower are typically operated with the goal of maximizing energy revenue, while meeting other legal water requirements. Reservoir optimization schemes used in practice do not seek flow regimes that maximize aquatic ecosystem health. Here, we review optimization studies that considered environmental goals in one of three approaches. The first approach seeks flow regimes that maximize hydropower generation, while satisfying legal requirements, including environmental (or minimum) flows. Solutions from this approach are often used in practice to operate hydropower projects. In the second approach, flow releases from a dam are timed to meet water quality constraints on dissolved oxygen (DO), temperature and nutrients. In the third approach, flow releases are timed to improve the health of fish populations. We conclude by suggesting three steps for bringing multi-objective reservoir operation closer to the goal of ecological sustainability: (1) conduct research to identify which features of flow variation are essential for river health and to quantify these relationships, (2) develop valuation methods to assess the total value of river health and (3) develop optimal control softwares that combine water balance modelling with models that predict ecosystem responses to flow.

  9. EA-1981: Bonneville-Hood River Transmission Line Rebuild, Multnomah and Hood River Counties, Oregon

    Office of Energy Efficiency and Renewable Energy (EERE)

    Bonneville Power Administration (BPA) is preparing an EA to assess potential environmental impacts of a proposal to rebuild its 24-mile long, 115 kilovolt Bonneville-Hood River transmission line. The existing line runs between the Bonneville Powerhouse at Bonneville Dam in Multnomah County, Oregon, and BPA's existing Hood River Substation in Hood River County, Oregon. The project would include replacing structures and conductor wires, improving access roads, and constructing new access roads or trails where needed.

  10. Annual Report to the Bonneville Power Administration, Reporting Period: April 2008 - February 2009 [re: "Survival and Growth in the Columbia River Plume and north California Current"].

    SciTech Connect (OSTI)

    Northwest Fisheries Science Center, NOAA Fisheries; Cooperative Institute for Marine Resources Studies, Oregon State University; OGI School of Science & Engineering, Oregon Health Sciences University.

    2009-07-17

    We have made substantial progress toward our objectives outlined in our BPA supported proposal entitled 'Columbia River Basin Juvenile Salmonids: Survival and Growth in the Columbia River Plume and northern California Current' which we report on herein. During 2008, we were able to successfully conduct 3 mesoscale cruises. We also were able to conduct 7 biweekly predator cruises, along with substantial shore-based visual observations of seabirds. Detailed results of the mesoscale cruises are available in the Cruise Reports and summarized in the next section. We have taken a proactive approach to getting the results of our research to fisheries managers and the general public. We have begun to make annual predictions based on ocean conditions of the relative survival of juvenile coho and Chinook salmon well before they return as adults. This is based on both biological and physical indicators that we measure during our surveys or collect from outside data sources. Examples of our predictions for 2009 and 2010 are available on the following web site: http://www.nwfsc.noaa.gov/research/divisions/fed/oeip/a-ecinhome.cfm.

  11. River Basin Commissions (Indiana)

    Broader source: Energy.gov [DOE]

    This legislation establishes river basin commissions, for the Kankakee, Maumee, St. Joseph, and Upper Wabash Rivers. The commissions facilitate and foster cooperative planning and coordinated...

  12. Grays River Watershed Geomorphic Analysis

    SciTech Connect (OSTI)

    Geist, David R.

    2005-04-30

    This investigation, completed for the Pacific Northwest National Laboratory (PNNL), is part of the Grays River Watershed and Biological Assessment commissioned by Bonneville Power Administration under project number 2003-013-00 to assess impacts on salmon habitat in the upper Grays River watershed and present recommendations for habitat improvement. This report presents the findings of the geomorphic assessment and is intended to support the overall PNNL project by evaluating the following: 􀂃 The effects of historical and current land use practices on erosion and sedimentation within the channel network 􀂃 The ways in which these effects have influenced the sediment budget of the upper watershed 􀂃 The resulting responses in the main stem Grays River upstream of State Highway 4 􀂃 The past and future implications for salmon habi

  13. Sedimentation in Shallow ReservoirsPoster n 21 Large shallow reservoirs of run-of-river

    E-Print Network [OSTI]

    Dalang, Robert C.

    Sedimentation in Shallow ReservoirsPoster n° 21 Large shallow reservoirs of run-of-river power plants on rivers with high suspended sediments are endangered by significant sedimentation. INTRODUCTION

  14. Categorical Exclusion Determinations: Western Area PowerAdministratio...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Center October 26, 2009 CX-005544: Categorical Exclusion Determination Power Rate Formula for the Provo River Project of the Western Area Power Administration CX(s) Applied:...

  15. QuarterlyCouncilNorthwest Power and Conservation Council > Spring 2013 STRIKING A BALANCE BETWEEN ENERGY AND THE ENVIRONMENT IN THE COLUMBIA RIVER BASIN

    E-Print Network [OSTI]

    in the nation, one that last year paid for nearly $250 million in habitat work, hatchery operations, hydropower and wildlife that have been affected by hydropower dams. Under the Power Act,the Council bases the program that, the Council will develop a draft program by mid-December and make it available for public comment

  16. CX-011203: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Emergency Storm Damage Repairs to the Gila North Gila, Gila Knob, and Sonora San Luis Transmission Lines, near Yuma, Yuma County, Arizona CX(s) Applied: B4.6 Date: 08/26/2013 Location(s): Arizona Offices(s): Western Area Power Administration-Desert Southwest Region

  17. BONNEVILLE POWER ADMINISTRATION FOR IMMEDIATE RELEASE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    selling its products and services. BPA markets wholesale electrical power from 31 federal hydro projects in the Columbia River Basin, one nonfederal nuclear plant and several other...

  18. Columbia River Food Webs: Developing a Broader Scientific Foundation for

    E-Print Network [OSTI]

    Columbia River Food Webs: Developing a Broader Scientific Foundation for Fish and Wildlife and Conservation Council Intern Eric Schrepel, Technical and Web Data Specialist, Northwest Power and Conservation Council #12;i Columbia River Food Webs: Developing a Broader Scientific Foundation for Fish

  19. River Corridor Achievements

    Broader source: Energy.gov [DOE]

    Washington Closure Hanford and previous contractors have completed much of the cleanup work in the River Corridor, shown here.

  20. EIS-0241-SA-01: Supplement Analysis for the Hood River Fisheries...

    Broader source: Energy.gov (indexed) [DOE]

    Fisheries Project The project is consistent with the Northwest Power Planning Council's Fish and Wildlife Program, as well as BPA's Hood River Fisheries Project EIS (DOEEIS-0241)...

  1. Evolution of the Upper Rhone River discharge and suspended sediment load during the last 80 years

    E-Print Network [OSTI]

    Gilli, Adrian

    , numerous hydroelectric dams have been constructed on the course of the Rhone River tributaries. At present hydroelectric dams have been constructed on tributaries of the Upper Rhone River, the principal river electric power supply, have been reviewed by Grandjean (1990). These include both flood control (cf

  2. Northwest Power and Conservation Council Northwest Power and

    E-Print Network [OSTI]

    by the Columbia River hydroelectric system. Today, as the Council continues to fulfill that mandate, we can look of Seattle -- at a cost that is about four times less than the cost of power from new generating plants

  3. Ultralow-Power Silicon Microphotonic Communications Platform

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    renewable power sources such as Google's recent investment by the Columbia River for its hydroelectric power and Iceland's recent quest to become a data center hub with its vast...

  4. Raft River Geothermal Area Data Models - Conceptual, Logical and Fact Models

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Cuyler, David

    2012-07-19

    Conceptual and Logical Data Model for Geothermal Data Concerning Wells, Fields, Power Plants and Related Analyses at Raft River a. Logical Model for Geothermal Data Concerning Wells, Fields, Power Plants and Related Analyses, David Cuyler 2010 b. Fact Model for Geothermal Data Concerning Wells, Fields, Power Plants and Related Analyses, David Cuyler 2010 Derived from Tables, Figures and other Content in Reports from the Raft River Geothermal Project: "Technical Report on the Raft River Geothermal Resource, Cassia County, Idaho," GeothermEx, Inc., August 2002. "Results from the Short-Term Well Testing Program at the Raft River Geothermal Field, Cassia County, Idaho," GeothermEx, Inc., October 2004.

  5. Raft River Geothermal Area Data Models - Conceptual, Logical and Fact Models

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Cuyler, David

    Conceptual and Logical Data Model for Geothermal Data Concerning Wells, Fields, Power Plants and Related Analyses at Raft River a. Logical Model for Geothermal Data Concerning Wells, Fields, Power Plants and Related Analyses, David Cuyler 2010 b. Fact Model for Geothermal Data Concerning Wells, Fields, Power Plants and Related Analyses, David Cuyler 2010 Derived from Tables, Figures and other Content in Reports from the Raft River Geothermal Project: "Technical Report on the Raft River Geothermal Resource, Cassia County, Idaho," GeothermEx, Inc., August 2002. "Results from the Short-Term Well Testing Program at the Raft River Geothermal Field, Cassia County, Idaho," GeothermEx, Inc., October 2004.

  6. d Onion River Review d river run by

    E-Print Network [OSTI]

    Weaver, Adam Lee

    d Onion River Review d 2009 d river run by Eireann Aspell Jamie Gorton Heidi Lynch Matt Serron #12 lives. #12;BLANK Editors' Note There were portents hinting at the Onion River Review's future as early

  7. Funding & Financing for Energy Projects | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Projects Funding & Financing for Energy Projects A concentrating solar power system being installed in Gila Bend, Arizona. | Photo by Dennis Schroeder. A concentrating solar power...

  8. Brochure: Federal Columbia River Power System (FCRPS)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 OutreachProductswsicloudwsiclouddenDVA N C E D B L OBransen Plasma Asher An O2 RFand1120019BringingFederal

  9. Arkansas River Power Authority | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EAandAmminex A S JumpArchuletaAriseCounty, Arkansas: Energy Resources

  10. Wisconsin River Power Company | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop IncIowa (UtilityMichigan) Jump to: navigation, search Name: WisconsinW W &

  11. Large River Floodplains

    E-Print Network [OSTI]

    Dunne, T; Aalto, RE

    2013-01-01

    River, California. Sedimentology 57, 389–407. http://J. (Eds. ), Fluvial Sedimentology VI. Special PublicationsAnatomy of an avulsion. Sedimentology 36, 1–24. Stallard,

  12. Coho Salmon Master Plan, Clearwater River Basin.

    SciTech Connect (OSTI)

    Nez Perce Tribe; FishPro

    2004-10-01

    The Nez Perce Tribe has a desire and a goal to reintroduce and restore coho salmon to the Clearwater River Subbasin at levels of abundance and productivity sufficient to support sustainable runs and annual harvest. Consistent with the Clearwater Subbasin Plan (EcoVista 2003), the Nez Perce Tribe envisions developing an annual escapement of 14,000 coho salmon to the Clearwater River Subbasin. In 1994, the Nez Perce Tribe began coho reintroduction by securing eggs through U.S. v. Oregon; by 1998 this agreement provided an annual transfer of 550,000 coho salmon smolts from lower Columbia River hatchery facilities for release in the Clearwater River Subbasin. In 1998, the Northwest Power and Conservation Council authorized the Bonneville Power Administration to fund the development of a Master Plan to guide this reintroduction effort. This Master Plan describes the results of experimental releases of coho salmon in the Clearwater River Subbasin, which have been ongoing since 1995. These data are combined with results of recent coho reintroduction efforts by the Yakama Nation, general coho life history information, and historical information regarding the distribution and life history of Snake River coho salmon. This information is used to assess a number of alternative strategies aimed at restoring coho salmon to historical habitats in the Clearwater River subbasin. These data suggest that there is a high probability that coho salmon can be restored to the Clearwater River subbasin. In addition, the data also suggest that the re-establishment of coho salmon could be substantially aided by: (1) the construction of low-tech acclimation facilities; (2) the establishment of a 'localized' stock of coho salmon; and (3) the construction of hatchery facilities to provide a source of juvenile coho salmon for future supplementation activities. The Nez Perce Tribe recognizes that there are factors which may limit the success of coho reintroduction. As a result of these uncertainties, the Nez Perce Tribe proposes to utilize a phased approach for coho reintroductions. This Master Plan seeks authorization and funding to move forward to Step 2 in the Northwest Power and Conservation Council 3-Step review process to further evaluate Phase I of the coho reintroduction program, which would focus on the establishment of a localized coho salmon stock capable of enduring the migration to the Clearwater River subbasin. To achieve this goal, the Nez Perce Tribe proposes to utilize space at existing Clearwater River subbasin hatchery facilities in concert with the construction of two low-tech acclimation facilities, to capitalize on the higher survival observed for acclimated versus direct stream released coho. In addition, Phase I would document the natural productivity of localized coho salmon released in two targeted tributaries within the Clearwater River subbasin. If Phase I is successful at establishing a localized coho salmon stock in an abundance capable of filling existing hatchery space, the rates of natural productivity are promising, and the interspecific interactions between coho and sympatric resident and anadromous salmonids are deemed acceptable, then Phase II would be triggered. Phase II of the coho reintroduction plan would focus on establishing natural production in a number of Clearwater River subbasin tributaries. To accomplish this goal, Phase II would utilize existing Clearwater River subbasin hatchery facilities, and expand facilities at the Nez Perce Tribal Hatchery Site 1705 facility to rear approximately 687,700 smolts annually for use in a rotating supplementation schedule. In short, this document identifies a proposed alternative (Phase I), complete with estimates of capital, operations and maintenance, monitoring and evaluation, and permitting that is anticipated to raise average smolt replacement rates from 0.73 (current) to 1.14 using primarily existing facilities, with a limited capital investment for low-tech acclimation facilities. This increase in survival is expected to provide the opportunity for the establishm

  13. STATEMENT OF ELLIOT MAINZER ACTING ADMINISTRATOR BONNEVILLE POWER...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ELLIOT MAINZER ACTING ADMINISTRATOR BONNEVILLE POWER ADMINISTRATION, CHAIRMAN, UNITED STATES ENTITY FOR THE COLUMBIA RIVER TREATY AND BRIGADIER GENERAL JOHN KEM COMMANDER UNITED...

  14. Microsoft PowerPoint - FY 2016 AOP MEETING.pptx

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of FY 2015 Annual Operating Plan * Preliminary FY 2016 Annual Operating Plan * FY 2016 Purchase Power Estimates 1 Colorado River Basin above Lake Powell Water Year Precipitation...

  15. Distribution and movement of domestic rainbow trout, Oncorhynchus mykiss, during pulsed flows in the South Fork American River, California

    E-Print Network [OSTI]

    2010-01-01

    Upper American River Hydroelectric Project, FERC Project No.California, Chili Bar Hydroelectric Project, FERC Projectthe night, as part of hydroelectric power generation by the

  16. Onion River OnionRiverReview2011dd

    E-Print Network [OSTI]

    Weaver, Adam Lee

    2011 d river run by Lauren Fish Heather Lessard Jenna McCarthy Philip Noonan Erica Sabelawski #12;TheOnion River Review OnionRiverReview2011dd 2011 Our Lives in Dance Alex Dugas We were born with bare. Then we tap-danced on our graves, and back through the womb again, shoeless. #12;d Onion River Review d

  17. d Onion River Review d river run by

    E-Print Network [OSTI]

    Weaver, Adam Lee

    d Onion River Review d 2013 d river run by Alex Dugas Sarah Fraser Bryan Hickey Nick Lemon Diana Marchessault Mickey O'Neill Amy Wilson #12;#12;Editors' Note For this edition of the Onion River Review, we are finally able to present to you this year's edition of the Onion River Review: our love child, our shining

  18. Part One: Overview I. The Columbia River Basin

    E-Print Network [OSTI]

    included the construction of dams throughout the basin for such purposes as hydroelectric power, flood tributaries comprise one of the most intensively developed river basins for hydroelectric power in the world. Hydroelectric dams in the basin (Links marked are external, not part of the adopted Program) 7 #12;produce

  19. Columbia River : Terminal Fisheries Research Report : Annual Report 1994.

    SciTech Connect (OSTI)

    Hirose, Paul; Miller, Marc; Hill, Jim

    1996-12-01

    In 1993 the Northwest Power Planning Council recommended in its Strategy for Salmon that terminal fishing sites be identified and developed. The Council called on the Bonneville Power Administration to fund a 10-year study to investigate the feasibility of creating and expanding terminal known stock fisheries in the Columbia River Basin.

  20. Independent Scientific Advisory Board for the Northwest Power and Conservation Council,

    E-Print Network [OSTI]

    Independent Scientific Advisory Board for the Northwest Power and Conservation Council, Columbia ongoing evaluation for the new Federal Columbia River Power System Biological Opinion (BiOp). COMPASS) realistically portray the hydro-system and variable river conditions - The fit to available in-river and hydro

  1. Rules of the River

    E-Print Network [OSTI]

    Anonymous,

    1980-01-01

    't overexert. Be careful of sunburn, heat exhaustion and heat stroke. ? Leave car keys hidden at launch point or take-out (with shuttle cars), or firmly attach them to an article of clothing on your person with a strong safety pin. Don't leave valuables... are organized into four parts: ? Planning Your River Trip ? Selecting Your Equipment ? Rules of Safety ? Rules of Conduct When put into practice, these "Rules of the River" may turn an uncomfortable river trip into a lasting and special experience. Read...

  2. Columbia River Treaty History and 2014/2024 Review

    SciTech Connect (OSTI)

    2009-02-01

    The Columbia River, the fourth largest river on the continent as measured by average annual ?ow, generates more power than any other river in North America. While its headwaters originate in British Columbia, only about 15 percent of the 259,500 square miles of the Columbia River Basin is actually located in Canada. Yet the Canadian waters account for about 38 percent of the average annual volume, and up to 50 percent of the peak ?ood waters, that ?ow by The Dalles Dam on the Columbia River between Oregon and Washington. In the 1940s, of?cials from the United States and Canada began a long process to seek a joint solution to the ?ooding caused by the unregulated Columbia River and to the postwar demand for greater energy resources. That effort culminated in the Columbia River Treaty, an international agreement between Canada and the United States for the cooperative development of water resources regulation in the upper Columbia River Basin. It was signed in 1961 and implemented in 1964.

  3. Wind Power

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Wind Power Bioenergy Power Systems Wind Power Wind Power Main Page Outreach Programs Image Gallery FAQs Links Software Hydro Power INL Home Wind Power Introduction The Wind Power...

  4. On tropospheric rivers

    E-Print Network [OSTI]

    Hu, Yuanlong, 1964-

    2002-01-01

    In this thesis, we investigate atmospheric water vapor transport through a distinct synoptic phenomenon, namely, the Tropospheric River (TR), which is a local filamentary structure on a daily map of vertically integrated ...

  5. Savannah River Site Waste Disposition Project

    Office of Environmental Management (EM)

    Terrel J. Spears Assistant Manager Waste Disposition Project DOE Savannah River Operations Office Savannah River Site Savannah River Site Waste Disposition Project Waste...

  6. Ecology of the river dolphin, Inia geoffrensis, in the Cinaruco River, Venezuela 

    E-Print Network [OSTI]

    McGuire, Tamara Lee

    1995-01-01

    The Cinaruco River is a tributary of the Orinoco River, and forms the southern boundary of Venezuela's newest national park, Santos Luzardo. Like other rivers of this region, the Cinaruco River undergoes an extreme seasonal flood cycle. River...

  7. Water Power for a Clean Energy Future (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2010-07-01

    Water power technologies harness energy from rivers and oceans to generate electricity for the nation's homes and businesses, and can help the United States meet its pressing energy, environmental, and economic challenges. Water power technologies; fall into two broad categories: conventional hydropower and marine and hydrokinetic technologies. Conventional hydropower uses dams or impoundments to store river water in a reservoir. Marine and hydrokinetic technologies capture energy from waves, tides, ocean currents, free-flowing rivers, streams, and ocean thermal gradients.

  8. Savannah River Site Retires Coal-Fired D-Area Powerhouse after Nearly 60 Years of Service

    Broader source: Energy.gov [DOE]

    AIKEN, S.C. – The Savannah River Site (SRS) has shut down the massive, coal-powered D-Area powerhouse as the site turns to new, clean and highly efficient power generation technology.

  9. NORTHWEST POWER AND CONSERVATION COUNCIL BRIEFING BOOK

    E-Print Network [OSTI]

    ......................................................................................................................................................................................4 1. Columbia River hydropower development as the construction of the hydropower system itself had seemed during the New Deal two generations before. -- Joseph, 1996, Page 216. ... the Northwest Power Act forged a link between regional energy development and fish

  10. Salmon River Habitat Enhancement, 1989 Annual Report.

    SciTech Connect (OSTI)

    Rowe, Mike

    1989-04-01

    This project was funded by the Bonneville Power Administration (BPA). The annual report contains three individual subproject papers detailing tribal fisheries work completed during the summer and fall of 1989. Subproject 1 contains summaries of evaluation/monitoring efforts associated with the Bear Valley Creek, Idaho enhancement project. Subproject 2 contains an evaluation of the Yankee Fork of the Salmon River habitat enhancement project. This report has been sub-divided into two parts: Part 1; stream evaluation and Part 2; pond series evaluation. Subproject 3 concerns the East Fork of the Salmon River, Idaho. This report summarizes the evaluation of the project to date including the 1989 pre-construction evaluation conducted within the East Fork drainage. Dredge mining has degraded spawning and rearing habitat for chinook salmon and steelhead trout in the Yankee Fork drainage of the Salmon River and in Bear Valley Creek. Mining, agricultural, and grazing practices degraded habitat in the East Fork of the Salmon River. Biological monitoring of the success of habitat enhancement for Bear Valley Creek and Yankee Fork are presented in this report. Physical and biological inventories prior to habitat enhancement in East Fork were also conducted. Four series of off-channel ponds of the Yankee Fork are shown to provide effective rearing habitat for chinook salmon. 45 refs., 49 figs., 24 tabs.

  11. Department of Energy Bonneville Power Administration

    E-Print Network [OSTI]

    Department of Energy Bonneville Power Administration P.O. Box 3621 Portland, Oregon 97208 to the Northwest Governors on Expenditures of the Bonneville Power Administration to Implement the Columbia River-3621 POWER SERVICES July 10, 2009 In reply refer to: P-6 Mark Walker, Director of Public Affairs Northwest

  12. d Onion River Review d river run by

    E-Print Network [OSTI]

    Weaver, Adam Lee

    d Onion River Review d 2012 d river run by Alex Dugas Lauren Fish Heather Lessard Jenna Mc jokes. Together these things helped shape the 2012 edition of the Onion River Review. A worthwhile departing on an adventure, you simply have no idea what will happen or who you will meet. You may run

  13. Rivanna River Basin Commission (Virginia)

    Broader source: Energy.gov [DOE]

    The Rivanna River Basin Commission is an independent local entity tasked with providing guidance for the stewardship and enhancement of the water quality and natural resources of the Rivanna River...

  14. Hood River Production Program Review, Final Report 1991-2001.

    SciTech Connect (OSTI)

    Underwood, Keith; Chapman, Colin; Ackerman, Nicklaus

    2003-12-01

    This document provides a comprehensive review of Bonneville Power Administration (BPA) funded activities within the Hood River Basin from 1991 to 2001. These activities, known as the Hood River Production Program (HRPP), are intended to mitigate for fish losses related to operation of federal dams in the Columbia River Basin, and to contribute to recovery of endangered and/or threatened salmon and steelhead, as directed by Nation Oceanic and Atmospheric Administration - Fisheries (NOAA Fisheries). The Environmental Impact Statement (EIS) for the HRPP, which authorized BPA to fund salmon and steelhead enhancement activities in the Hood River Basin, was completed in 1996 (BPA 1996). The EIS specified seven years of monitoring and evaluation (1996-2002) after program implementation to determine if program actions needed modification to meet program objectives. The EIS also called for a program review after 2002, that review is reported here.

  15. 1992 Columbia River Salmon Flow Measures Options Analysis/EIS.

    SciTech Connect (OSTI)

    Not Available

    1992-01-01

    This Options Analysis/Environmental Impact Statement (OA/EIS) identifies, presents effects of, and evaluates the potential options for changing instream flow levels in efforts to increase salmon populations in the lower Columbia and Snake rivers. The potential actions would be implemented during 1992 to benefit juvenile and adult salmon during migration through eight run-of-river reservoirs. The Corps of Engineers (Corps) prepared this document in cooperation with the Bonneville Power Administration and the Bureau of Reclamation. The US Fish and Wildlife Service (FSWS) is a participating agency. The text and appendices of the document describe the characteristics of 10 Federal projects and one private water development project in the Columbia River drainage basin. Present and potential operation of these projects and their effects on the salmon that spawn and rear in the Columbia and Snake River System are presented. The life history, status, and response of Pacific salmon to current environmental conditions are described.

  16. Rio Grande River

    E-Print Network [OSTI]

    Hills Photo Shop

    2011-09-05

    FORKS BIRDBEAR-NISKU JEFFERSON GROUP DUPEROW O (IJ o BEAVER HILL LAKE GR UP ELK POINT GROUP SOURIS RIVER Ist. RED BED DAWSON BAY 2ll(IRED BED PRAIRIE EVAP WI NI ASHERN INTERLAKE STONY MOUNTAIN RED RIVER WINN IP EG Figure 3... and is bounded by the Sioux Arch, the Black Hills Uplift, the Miles City Arch, and the Bowdoin Dome. The structural trends within the basin parallel the major structural trends of the Rocky Mountain Belt. The Williston Basin is characterized by gently...

  17. VOLUNTEER-BASED SALMON RIVER

    E-Print Network [OSTI]

    Institute Environment Canada VOLUNTEER-BASED MONITORING PROGRAM FOR THE SALMON RIVER BASIN: USING BENTHICVOLUNTEER-BASED MONITORING PROGRAM FOR THE SALMON RIVER BASIN: USING BENTHIC INDICATORS TO ASSESS INDICATORS TO ASSESS STREAM ECOSYSTEM HEALTH #12;Volunteer-Based Monitoring Program for the Salmon River

  18. UPPER SACRAMENTO RIVER SPORT FISHERY

    E-Print Network [OSTI]

    UPPER SACRAMENTO RIVER SPORT FISHERY Marine Biological Laborato«y L I B R. A. R "ST OCT 2 31950 significant changes in the environmental conditions which affect fisheries in Sacramento River have resulted number of sportsmen who are turning to the Upper Sacramento River is indicative of the magnitude

  19. Wind River Watershed Restoration: 1999 Annual Report.

    SciTech Connect (OSTI)

    Connolly, Patrick J.

    2001-09-01

    This document represents work conducted as part of the Wind River Watershed Restoration Project during its first year of funding through the Bonneville Power Administration (BPA). The project is a comprehensive effort involving public and private entities seeking to restore water quality and fishery resources in the basin through cooperative actions. Project elements include coordination, watershed assessment, restoration, monitoring, and education. Entities involved with implementing project components are the Underwood Conservation District (UCD), USDA Forest Service (USFS), U.S. Geological Survey--Columbia River Research Lab (USGS-CRRL), and WA Department of Fish & Wildlife (WDFW). Following categories given in the FY1999 Statement of Work, the broad categories, the related objectives, and the entities associated with each objective (lead entity in boldface) were as follows: Coordination--Objective 1: Coordinate the Wind River watershed Action Committee (AC) and Technical Advisory Committee (TAC) to develop a prioritized list of watershed enhancement projects. Monitoring--Objective 2: Monitor natural production of juvenile, smolt, and adult steelhead in the Wind River subbasin. Objective 3: Evaluate physical habitat conditions in the Wind River subbasin. Assessment--Objective 4: Assess watershed health using an ecosystem-based diagnostic model that will provide the technical basis to prioritize out-year restoration projects. Restoration--Objective 5: Reduce road related sediment sources by reducing road densities to less than 2 miles per square mile. Objective 6: Rehabilitate riparian corridors, flood plains, and channel morphology to reduce maximum water temperatures to less than 61 F, to increase bank stability to greater than 90%, to reduce bankfull width to depth ratios to less than 30, and to provide natural levels of pools and cover for fish. Objective 7: Maintain and evaluate passage for adult and juvenile steelhead at artificial barriers. Education--Objective 8: Promote watershed stewardship among students, the community, private landowners, and local governments. Progress towards six of eight of these objectives is described within nine separate reports included in a four-volume document.

  20. Savannah River Site Robotics

    ScienceCinema (OSTI)

    None

    2012-06-14

    Meet Sandmantis and Frankie, two advanced robotic devices that are key to cleanup at Savannah River Site. Sandmantis cleans hard, residual waste off huge underground storage tanks. Frankie is equipped with unique satellite capabilities and sensing abilties that can determine what chemicals still reside in the tanks in a cost effective manner.

  1. EA-0956: South Fork Snake River/Palisades Wildlife Mitigation Project, Bonneville County, Idaho

    Broader source: Energy.gov [DOE]

    This EA evaluates the environmental impacts of the U.S. Department of Energy's Bonneville Power Administration proposal to fund the implementation of the South Fork Snake River Programmatic...

  2. EA-1969: Clark Fork River Delta Restoration Project, Bonner County, Idaho

    Broader source: Energy.gov [DOE]

    Bonneville Power Administration prepared an environmental assessment to analyze the potential effects of a proposal to restore wetland and riparian (riverbank) habitat and to reduce erosion in the Clark Fork River delta located in Bonner County, Idaho.

  3. EA-2003: Sandy River Delta Section 536 Ecosystem Restoration Project, Multnomah County, Oregon

    Broader source: Energy.gov [DOE]

    The U.S. Army Corps of Engineers, with DOE’s Bonneville Power Administration as a cooperating agency, prepared an EA that assessed the potential environmental impacts of the proposed removal of a dam from the east channel of the Sandy River. The proposal would help fulfill a portion of the 2010-2013 Federal Columbia River Power System Biological Opinion Implementation Plan to improve estuary habitat for salmon and steelhead species listed under the Endangered Species Act.

  4. An Analysis of Texas Waterways: A Report on the Physical Characteristics of Rivers, Streams, and Bayous in Texas. 

    E-Print Network [OSTI]

    Belisle, Harold J.; Josselet, Ron

    1977-01-01

    Cree k San Jacinto River, East Fork Spring Creek Taylor Bayou Turkey Creek V. CENTRAL TEXAS WATE RWAYS A. Major Waterways Blanco River Bosque River Brazos River Colorado River Concho River . Frio River Guadalupe River Lampasas River... MAJOR CENTRAL TEXAS WATERWAYS 13. Blanco River 14. Bosque River 15. Brazos River 16. Colorado River 17. Concho River 18. Frio River 19. Guadal upe River 20. Lampasas River 21. Lavaca River 22. Leon River 23. Little River 24. Llano River 25...

  5. 2011Columbia River Basin Fish and Wildlife Program

    E-Print Network [OSTI]

    2011Columbia River Basin Fish and Wildlife Program Costs Report AnnuAl RePoRt to the noRthWest Gove | Northwest Power & Conservation Council Document 2012-11 | September 2012 #12;FIsh & WIlDlIFe Costs ANNUAL REPORt tO thE NORthWESt GOvERNORS costs 08

  6. CONFLICTS IN RIVER MANAGEMENT: A CONSERVATIONIST'S PERSPECTIVE ON SACRAMENTO RIVER RIPARIAN HABITATS--

    E-Print Network [OSTI]

    CONFLICTS IN RIVER MANAGEMENT: A CONSERVATIONIST'S PERSPECTIVE ON SACRAMENTO RIVER RIPARIAN, Defenders of Wildlife, Sacramento, California. Abstract: The Sacramento River's historic riparian habi- tats on this conference's plenary session panel, I will provide a conservationist perspective on Sacramento River riparian

  7. Hood River Passive House

    SciTech Connect (OSTI)

    Hales, D.

    2013-03-01

    The Hood River Passive Project was developed by Root Design Build of Hood River Oregon using the Passive House Planning Package (PHPP) to meet all of the requirements for certification under the European Passive House standards. The Passive House design approach has been gaining momentum among residential designers for custom homes and BEopt modeling indicates that these designs may actually exceed the goal of the U.S. Department of Energy's (DOE) Building America program to reduce home energy use by 30%-50% (compared to 2009 energy codes for new homes). This report documents the short term test results of the Shift House and compares the results of PHPP and BEopt modeling of the project.

  8. Savannah River Remediation (SRR) Expanded Staff Meeting

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust, High-ThroughputUpcoming ReleaseSecurity AdministrationFlamingo BayGroveSavannah River

  9. American River Ventures | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EAand DaltonSolarOpen5AllEnergyAmeriPower LLCAmerican RecoveryRiver Ventures

  10. d Onion River Review d OnionRiverReview2010dd

    E-Print Network [OSTI]

    Weaver, Adam Lee

    ://www.smcvt.edu/onionriver/. #12;d Onion River Review d 2010 d river run by Eireann Aspell Lauren Fish Jamie Gorton Heidi Lynchd Onion River Review d 2010 d OnionRiverReview2010dd #12;The Onion River Review is the literary Matt Serron #12;BLANK Editors' Note The only certainty of the Onion River Review is the editors' un

  11. Fluctuations, Colorado River

    E-Print Network [OSTI]

    in hydroelectric power in the whole country. The SPI, as defined by McKee et al. (1993, 1995), quantifies

  12. Proceedings from a Workshop on Ecological Carrying Capacity of Salmonids in the Columbia River Basin : Measure 7.1A of the Northwest Power Planning Council`s 1994 Fish and Wildlife Program : Report 3 of 4, Final Report.

    SciTech Connect (OSTI)

    Johnson, Gary E.; Neitzel, D.A.; Mavros, William V.

    1996-05-01

    This report contains the proceedings of a workshop held during 1995 in Portland, Oregon. The objective of the workshop was to assemble a group of experts that could help us define carrying capacity for Columbia River Basin salmonids. The workshop was one activity designed to answer the questions asked in Measure 7.1A of the Council`s Fish and Wildlife Program. Based, in part, on the information we learned during the workshop we concluded that the approach inherent in 7.1A will not increase understanding of ecology, carrying capacity, or limiting factors that influence salmon under current conditions. Measure 7.1A requires a definition of carrying capacity and a list of determinants (limiting factors) of capacity. The implication or inference then follows that by asking what we know and do not know about the determinants will lead to research that increases our understanding of what is limiting salmon survival. It is then assumed that research results will point to management actions that can remove or repair the limiting factors. Most ecologists and fisheries scientists that have studied carrying capacity clearly conclude that this approach is an oversimplification of complex ecological processes. To pursue the capacity parameter, that is, a single number or set of numbers that quantify how many salmon the basin or any part of the basin can support, is meaningless by itself and will not provide useful information.

  13. RiverHeath Appleton, WI

    Broader source: Energy.gov [DOE]

    The goal of the project is to produce a closed loop neighborhood-wide geothermal exchange system using the river as the source of heat exchange.

  14. Florida Nuclear Profile - Crystal River

    U.S. Energy Information Administration (EIA) Indexed Site

    Crystal River1" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License expiration date"...

  15. Louisiana Nuclear Profile - River Bend

    U.S. Energy Information Administration (EIA) Indexed Site

    River Bend" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License expiration date"...

  16. Rappahannock River Basin Commission (Virginia)

    Broader source: Energy.gov [DOE]

    The Rappahannock River Basin Commission is an independent local entity tasked with providing guidance for the stewardship and enhancement of the water quality and natural resources of the...

  17. Susquehanna River Basin Compact (Maryland)

    Broader source: Energy.gov [DOE]

    This legislation enables the state's entrance into the Susquehanna River Basin Compact, which provides for the conservation, development, and administration of the water resources of the...

  18. Department of Energy Bonneville Power Administration

    E-Print Network [OSTI]

    , monitoring, and evaluation requirements, will be considered to ensure that adaptive management principlesDepartment of Energy Bonneville Power Administration P.O. Box 3621 Portland, Oregon 97208 Federal Columbia River Power System Biological Opinion (BiOp), we request that the review

  19. Department of Energy Bonneville Power Administration

    E-Print Network [OSTI]

    monitoring programs and information sharing that is critical to making adaptive management decisions. BPADepartment of Energy Bonneville Power Administration P.O. Box 3621 Portland, Oregon 97208 Program (Program) and to track performance indicators under the Federal Columbia River Power System (FCRPS

  20. Preliminary Notice of Violation, Westinghouse Savannah River...

    Broader source: Energy.gov (indexed) [DOE]

    March 6, 2000 Issued to Westinghouse Savannah River Company, related to Procurement Quality Assurance and Quality Improvement Deficiencies at the Savannah River Site. On March 6,...

  1. Preliminary Notice of Violation, Westinghouse Savannah River...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    EA 98-09 Preliminary Notice of Violation, Westinghouse Savannah River Company - EA 98-09 September 21, 1998 Preliminary Notice of Violation issued to Westinghouse Savannah River...

  2. PIA - Savannah River Nuclear Solutions Electronic Safeguards...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Electronic Safeguards Security System (E3S) PIA - Savannah River Nuclear Solutions Electronic Safeguards Security System (E3S) PIA - Savannah River Nuclear Solutions Electronic...

  3. Project Management Institute Highlights Savannah River Nuclear...

    Office of Environmental Management (EM)

    Management Institute Highlights Savannah River Nuclear Solutions in Publication Project Management Institute Highlights Savannah River Nuclear Solutions in Publication February 6,...

  4. Independent Oversight Review, Savannah River Operations Office...

    Office of Environmental Management (EM)

    Savannah River Operations Office - July 2013 Independent Oversight Review, Savannah River Operations Office - July 2013 July 2013 Review of the Employee Concerns Program at the...

  5. Flambeau River Biofuels Demonstration-Scale Biorefinery

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    in Wisconsin (NewPage Corporation in Wisconsin Rapids and Flambeau River Papers, LLC in Park Falls). NewPage and Flambeau River have demonstrated successful collaboration on...

  6. River Corridor - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home RoomPreservation of Fe(II) byMultiday ProductionDesigningResourcesfeed-image Digg:RisingRiver

  7. GOLF COURSES FRASER RIVER BASIN

    E-Print Network [OSTI]

    : Fraser Pollution Abatement Office Fraser River Action Plan Environment Canada North Vancouver, B judgement in light of the knowledge and information available to UMA at the time of preparation. UMA denies by Environment Canada under the Fraser River Action Plan through the Fraser Pollution Abatement Office. The views

  8. Aquatic Supplement Hood River Subbasin

    E-Print Network [OSTI]

    . Table 4. Out-of-subbasin production for three Hood River steelhead populations. Table 5. Life cycle river mile 6 13 Dee ID seepage 13 cold springs 2 city of HR overflow? riverside drive reservoir? 2 stone springs 4 city of HR riverside drive reservoir? 4 middle fork coe branch 15 MFID 15 clear branch 19 MFID

  9. Hood River Passive House

    SciTech Connect (OSTI)

    Hales, D.

    2014-01-01

    The Hood River Passive Project was developed by Root Design Build of Hood River Oregon using the Passive House Planning Package (PHPP) to meet all of the requirements for certification under the European Passive House standards. The Passive House design approach has been gaining momentum among residential designers for custom homes and BEopt modeling indicates that these designs may actually exceed the goal of the U.S. Department of Energy's (DOE) Building America program to reduce home energy use by 30%-50% (compared to 2009 energy codes for new homes). This report documents the short term test results of the Shift House and compares the results of PHPP and BEopt modeling of the project. The design includes high R-Value assemblies, extremely tight construction, high performance doors and windows, solar thermal DHW, heat recovery ventilation, moveable external shutters and a high performance ductless mini-split heat pump. Cost analysis indicates that many of the measures implemented in this project did not meet the BA standard for cost neutrality. The ductless mini-split heat pump, lighting and advanced air leakage control were the most cost effective measures. The future challenge will be to value engineer the performance levels indicated here in modeling using production based practices at a significantly lower cost.

  10. Hood River Passive House

    SciTech Connect (OSTI)

    Hales, David

    2014-01-01

    The Hood River Passive Project was developed by Root Design Build of Hood River Oregon using the Passive House Planning Package (PHPP) to meet all of the requirements for certification under the European Passive House standards. The Passive House design approach has been gaining momentum among residential designers for custom homes and BEopt modeling indicates that these designs may actually exceed the goal of the U.S. Department of Energy's (DOE) Building America program to "reduce home energy use by 30%-50% (compared to 2009 energy codes for new homes). This report documents the short term test results of the Shift House and compares the results of PHPP and BEopt modeling of the project. The design includes high R-Value assemblies, extremely tight construction, high performance doors and windows, solar thermal DHW, heat recovery ventilation, moveable external shutters and a high performance ductless mini-split heat pump. Cost analysis indicates that many of the measures implemented in this project did not meet the BA standard for cost neutrality. The ductless mini-split heat pump, lighting and advanced air leakage control were the most cost effective measures. The future challenge will be to value engineer the performance levels indicated here in modeling using production based practices at a significantly lower cost.

  11. EIS-0163-S: Supplemental EIS/1993 Interim Columbia and Snake Rivers Flow Improvement Measures for Salmon

    Broader source: Energy.gov [DOE]

    The U.S. Army Corps of Engineers – Walla Walla District has prepared this statement to assess alternatives to improve flows of water in the lower Columbia-Snake rivers in 1993 and future years to assist the migration of juvenile and adult anadromous fish past eight hydropower dams. The U.S. Department of Energy’s Bonneville Power Administration served as a cooperating agency in developing this supplement due to its key role in direct operation of the integrated and coordinated Columbia-Snake River System, and adopted this statement in March of 1993. This statement supplements the 1992 Columbia River Salmon Flow Measures Options Analysis Environmental Impact Statement, which evaluated ways to alter water management operations in 1992 on the lower Columbia and Snake rivers to enhance the survival of wild Snake River salmon.

  12. Columbia River System Operation Review : Final Environmental Impact Statement, Appendix N: Wildlife.

    SciTech Connect (OSTI)

    Columbia River System Operation Review

    1995-11-01

    The Columbia River System is a vast and complex combination of Federal and non-Federal facilities used for many purposes including power production, irrigation, navigation, flood control, recreation, fish and wildlife habitat and municipal and industrial water supply. Each river use competes for the limited water resources in the Columbia River Basin. This technical appendix addresses only the effects of alternative system operating strategies for managing the Columbia River system. The environmental impact statement (EIS) itself and some of the other appendices present analyses of the alternative approaches to the other three decisions considered as part of the SOR. This document is the product of the Wildlife Work Group, focusing on wildlife impacts but not including fishes. Topics covered include the following: scope and process; existing and affected environment, including specific discussion of 18 projects in the Columbia river basin. Analysis, evaluation, and alternatives are presented for all projects. System wide impacts to wildlife are also included.

  13. Columbia River System Operation Review : Final Environmental Impact Statement, Appendix O: Economic and Social Impact.

    SciTech Connect (OSTI)

    Columbia River System Operation Review (U.S.)

    1995-11-01

    This Appendix O of the Final Environmental Impact Statement for the Columbia River System measures the economic and social effects of the alternative system operation strategies and includes both geographic and methodology components. Areas discussed in detail include the following: purpose, scope and process; an economic history of the Columbia River Basin and its use today including the Columbia River and Socio-economic development in the Northwest and Major uses of the River System; Analysis procedures and methodologies including national economic evaluation, the concepts, analysis of assumptions, analysis for specific river uses, water quality, Regional evaluation, analysis, and social impacts; alternatives and impacts including implementation costs, andromous fish, resident fish and wildlife, flood control, irrigation and municipal and industrial water supply, navigation impacts, power, recreation, annual costs, regional economic analysis. Extensive comparison of alternatives is included.

  14. Columbia River Basin Seasonal Volumes and Statistics, 1928-1989. 1990 Level Modified Streamflows Computed Seasonal Volumes 61-Year Statistics.

    SciTech Connect (OSTI)

    A.G. Crook Company

    1993-04-01

    This report was prepared by the A.G. Crook Company, under contract to Bonneville Power Administration, and provides statistics of seasonal volumes and streamflow for 28 selected sites in the Columbia River Basin.

  15. 2 Upscaling river biomass using dimensional analysis and 3 hydrogeomorphic scale-invariance

    E-Print Network [OSTI]

    Power, Mary Eleanor

    Elizabeth A. Barnes,1,2 Mary E. Power,3 Efi Foufoula-Georgiou,1 Miki Hondzo,1 5 and William E. Dietrich4 6 analysis and 10 hydro-geomorphologic scaling laws. We first demonstrate 11 the use of dimensional analysis cyanobacterium (Nostoc parmeloides) in a northern 19 California river. Citation: Barnes, E. A., M. E. Power, 20 E

  16. Rainbow trout Oncorhynchus mykiss energetic responses to pulsed flows in the American River, California, assessed

    E-Print Network [OSTI]

    Klimley, A. Peter

    to hydroelectric-power-generation-related pulsed flows, the associated energetic costs are un- known. We implanted consumption rates were estimated for their in-river EMG data, through a complete hydroelectric power . Hydroelectric . Electromyogram . Radio telemetry. Rainbow trout Introduction Human-controlled pulsed flows

  17. Savannah River Site Environmental Data for 1998

    SciTech Connect (OSTI)

    Arnett, M.

    1999-06-09

    This document presents data from Savannah River Site routine effluent monitoring and environmental surveillance programs.

  18. Wood River Levee Reconstruction, Madison County, IL

    E-Print Network [OSTI]

    US Army Corps of Engineers

    Wood River Levee Reconstruction, Madison County, IL 25 October 2006 Abstract: The recommended plan provides for flood damage reduction and restores the original degree of protection of the Wood River Levee-federal sponsor is the Wood River Drainage and Levee District. The Wood River Levee System was authorized

  19. EIS-0395: San Luis Rio Colorado Project, AZ

    Broader source: Energy.gov [DOE]

    This EIS analyzes DOE's decision to construct and operate a proposed transmission line originating at the proposed San Luis Rio Colorado (SLRC) Power Center in Sonora, Mexico, interconnect with Western's existing Gila Substation, and continue to Arizona Public Service Company’s (APS) North Gila Substation

  20. Gila County, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View New PagesSustainable UrbanKentucky:BoreOpen EnergyGermencikWorldGig Harbor, Washington:

  1. Gila Hot Springs District Heating Low Temperature Geothermal Facility |

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View New PagesSustainable UrbanKentucky:BoreOpen EnergyGermencikWorldGig Harbor, Washington:Open

  2. Gila Hot Springs Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View New PagesSustainable UrbanKentucky:BoreOpen EnergyGermencikWorldGig Harbor,

  3. The Columbia River Estuary the Columbia River Basin

    E-Print Network [OSTI]

    " fish and wildlife in the Columbia River as affected by development and operation of the hydroelectric modified in terms of physical and biological processes. The development and operation of the hydroelectric

  4. Scaleup tests and supporting research for the development of duct injection technology. Topical report No. 2, Task 3.1: Evaluation of system performance, Duct Injection Test Facility, Muskingum River Power Plant, Beverly, Ohio

    SciTech Connect (OSTI)

    Felix, L.G.; Dismukes, E.B.; Gooch, J.P. [Southern Research Inst., Birmingham, AL (United States); Klett, M.G.; Demian, A.G. [Gilbert/Commonwealth, Inc., Reading, PA (United States)

    1992-04-20

    This Topical Report No. 2 is an interim report on the Duct Injection Test Facility being operated for the Department of Energy at Beverly, Ohio. Either dry calcium hydroxide or an aqueous slurry of calcium hydroxide (prepared by slaking quicklime) is injected into a slipstream of flue gas to achieve partial removal of SO{sub 2} from a coal-burning power station. Water injected with the slurry or injected separately from the dry sorbents cools the flue gas and increases the water vapor content of the gas. The addition of water, either in the slurry or in a separate spray, makes the extent of reaction between the sorbent and the SO{sub 2} more complete; the presumption is that water is effective in the liquid state, when it is able to wet the sorbent particles physically, and not especially effective in the vapor state. An electrostatic precipitator collects the combination of suspended solids (fly ash from the boiler and sorbent from the duct injection process). All of the operations are being carried out on the scale of approximately 50,000 acfm of flue gas.

  5. Dayao County Yupao River BasDayao County Yupao River Basin Hydro...

    Open Energy Info (EERE)

    Dayao County Yupao River BasDayao County Yupao River Basin Hydro electricity Development Co Ltd in Jump to: navigation, search Name: Dayao County Yupao River BasDayao County Yupao...

  6. Bureau Home > Australia > Queensland > Rainfall & River Conditions > River Brochures > Mary FLOOD WARNING SYSTEM

    E-Print Network [OSTI]

    Greenslade, Diana

    Risk · Previous Flooding · Flood Forecasting · Local Information · Flood Warnings and Bulletins · Interpreting Flood Warnings and River Height Bulletins · Flood Classifications · Other Links Flood RiskBureau Home > Australia > Queensland > Rainfall & River Conditions > River Brochures > Mary FLOOD

  7. Bureau Home > Australia > Queensland > Rainfall & River Conditions > River Brochures > Nerang FLOOD WARNING SYSTEM

    E-Print Network [OSTI]

    Greenslade, Diana

    is information about: (Last updated June 2015) · Flood Risk · Previous Flooding · Flood Forecasting · Local Height Bulletins · Flood Classifications · Other Links Flood Risk The Nerang River catchment is locatedBureau Home > Australia > Queensland > Rainfall & River Conditions > River Brochures > Nerang FLOOD

  8. The River Runs Dry: Examining Water Shortages in the Yellow River Basin

    E-Print Network [OSTI]

    Zusman, Eric

    2000-01-01

    in Transition Zusman/The River Runs Dry Wang Liurong.YRCC’sin Transition Zusman/The River Runs Dry not just importantin Transition Zusman/The River Runs Dry emerging market

  9. Raft River Idaho Magnetotelluric Data

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Gregory Nash

    2015-05-13

    Raw magnetotelluric (MT) data covering the geothermal system at Raft River, Idaho. The data was acquired by Quantec Geoscience. This is a zipped file containing .edi raw MT data files.

  10. Exhibit D: Mirant Potomac River Schedule of Unit Operations:...

    Broader source: Energy.gov (indexed) [DOE]

    Operating Plan of Mirant Potomac River, LLC Exhibit D: Mirant Potomac River Schedule of Unit Operations More Documents & Publications Exhibit D: Mirant Potomac River Schedule of...

  11. Sacramento River Steelhead: Hatchery vs. Natural Smolt Outmigration

    E-Print Network [OSTI]

    Sandstrom, Phil

    2012-01-01

    DELTA SCIENCE PROGRAM Sacramento River Steelhead: HatcheryUC Davis BACKGROUND The Sacramento River steelhead trout (a tributary of the upper Sacramento River. Smolts are young,

  12. EA-1692: Red River Environmental Products, LLC Activated Carbon...

    Office of Environmental Management (EM)

    2: Red River Environmental Products, LLC Activated Carbon Manufacturing Facility, Red River Parish, LA EA-1692: Red River Environmental Products, LLC Activated Carbon Manufacturing...

  13. Water management for hydroelectric power generation at Matera and Kidatu in Tanzania

    SciTech Connect (OSTI)

    Matondo, J.I.; Rutashobya, D.G.

    1995-12-31

    The major sources of power in Tanzania are hydropower and thermo power. Most of the hydroelectric power is generated in the Great Ruaha river system (280 MW) and in the Pangani river system (46 MW). However, the generated power (hydro and thermo) does not meet the power demand and as a result, an accute power shortage occurred in August 1992. This paper explores the hydropower generation mechanism at Mtera and Kidatu hydroelectric power plants. It also looks into what measures could have been taken in order to avoid the massive power shedding which officially lasted for about six months, although unofficially, power shedding was continued well beyond that period. Strategies for future water management in the Great Ruaha river system for efficient generation of power are also presented.

  14. Kootenai River Focus Watershed Coordination, 2002-2003 Annual Report.

    SciTech Connect (OSTI)

    Munson, Bob; Munson, Vicki; Rogers, Rox

    2003-10-01

    The Kootenai River Network Inc. (KRN) was incorporated in Montana in early 1995 with a mission ''to involve stakeholders in the protection and restoration of the chemical, physical and biological integrity of the Kootenai River Basin waters''. The KRN operates with funding from donations, membership dues, private, state and federal grants, and with funding through the Bonneville Power Administration (BPA) for a Focus Watershed Coordinator Program. The Focus Watershed Program is administered to KRN as of October 2001, through a Memorandum of Understanding. Katie Randall resigned her position as Watershed Coordinator in late January 2003 and Munson Consulting was contracted to fill that position through the BPA contract period ending May 30, 2003. To improve communications with in the Kootenai River watershed, the board and staff engaged watershed stakeholders in a full day KRN watershed conference on May 15 and 16 in Bonners Ferry, Idaho. This Annual General Meeting was a tremendous success with over 75 participants representing over 40 citizen groups, tribes and state/provincial/federal agencies from throughout northern Montana and Idaho as well as British Columbia and Alberta. Membership in the KRN increased during the course of the BPA 02/03 grant period. The board of directors grew in numbers during this same time frame and an Advisory Council was formed to assist in transboundary efforts while developing two reorganized KRN committees (Habitat/Restoration/Monitoring (HRM) and Communication/Education/Outreach (CEO)). These committees will serve pivotal roles in communications, outreach, and education about watershed issues, as well as habitat restoration work being accomplished throughout the entire watershed. During this BPA grant period, the KRN has capitalized on the transboundary interest in the Kootenai River watershed. Jim and Laura Duncan of Kimberley, British Columbia, have been instrumental volunteers who have acted as Canadian liaisons to the KRN. As a result, restoration work is in the planning stages for Canadian tributaries that flow into the Moyie River in northern Idaho and the Yaak River in northwest Montana.

  15. Columbia River: Terminal fisheries research project. 1994 Annual report

    SciTech Connect (OSTI)

    Hirose, P.; Miller, M.; Hill, J.

    1996-12-01

    Columbia River terminal fisheries have been conducted in Youngs Bay, Oregon, since the early 1960`s targeting coho salmon produced at the state facility on the North Fork Klaskanine River. In 1977 the Clatsop County Economic Development Council`s (CEDC) Fisheries Project began augmenting the Oregon Department of Fish and Wildlife production efforts. Together ODFW and CEDC smolt releases totaled 5,060,000 coho and 411,300 spring chinook in 1993 with most of the releases from the net pen acclimation program. During 1980-82 fall commercial terminal fisheries were conducted adjacent to the mouth of Big Creek in Oregon. All past terminal fisheries were successful in harvesting surplus hatchery fish with minimal impact on nonlocal weak stocks. In 1993 the Northwest Power Planning Council recommended in its` Strategy for Salmon that terminal fishing sites be identified and developed. The Council called on the Bonneville Power Administration to fund a 10-year study to investigate the feasibility of creating and expanding terminal known stock fisheries in the Columbia River Basin. The findings of the initial year of the study are included in this report. The geographic area considered for study extends from Bonneville Dam to the river mouth. The initial year`s work is the beginning of a 2-year research stage to investigate potential sites, salmon stocks, and methodologies; a second 3-year stage will focus on expansion in Youngs Bay and experimental releases into sites with greatest potential; and a final 5-year phase establishing programs at full capacity at all acceptable sites. After ranking all possible sites using five harvest and five rearing criteria, four sites in Oregon (Tongue Point, Blind Slough, Clifton Channel and Wallace Slough) and three in Washington (Deep River, Steamboat Slough and Cathlamet Channel) were chosen for study.

  16. Columbia River System Operation Review : Final Environmental Impact Statement, Appendix D: Exhibits.

    SciTech Connect (OSTI)

    Columbia River System Operation Review

    1995-11-01

    The Columbia River and its tributaries are the primary water system in the Pacific Northwest, draining some 219,000 square miles in seven states and another 39,500 square miles in British Columbia. Beginning in the 1930`s, the Columbia River has been significantly modified by construction of 30 major dams on the river and its tributaries, along with dozens of non-Federal projects. Construction and subsequent operation of these water development projects have contributed to eight primary uses of the river system, including navigation, flood control, irrigation, electric power generation, fish migration, fish and wildlife habitat, recreation, and water supply and quality considerations. Increasing stress on the water development of the Columbia River and its tributaries has led primary Federal agencies to undertake intensive analysis and evaluation of the operation of these projects. These agencies are the U.S. Army Corps of Engineers and the Bureau of Reclamation, who operate the large Federal dams on the river, and the Bonneville Power Administration who sells the power generated at the dams. This review, termed the System Operation Review (SOR), has as its ultimate goal to define a strategy for future operation of the major Columbia River projects which effectively considers the needs of all river uses. This volume, Appendix D: Cultural resources appendix, Technical imput includes the following: Development of geomorphology based framework for cultural resources management, Dworshak Reservoir, Idaho; Impact profiles for SOR reservoirs; comments from the following Native American tribes: Burns Paiute Tribe; Coville Confederated Tribes; Confederated Tribes of the Warm Springs Indian Reservation; Confederated Tribes and bands of the Yakama Indian Nation (comments); Nez Perce Tribe; Coeur D`Alene Tribe; Spokane Tribe of Indians; The confederated Tribes of the Umatilla Indian Reservation.

  17. Columbia River Basin Fish and Wildlife Program Work Plan for Fiscal Year 1988.

    SciTech Connect (OSTI)

    United States. Bonneville Power Administration; Northwest Power Planning Council; Columbia Basin Fish and Wildlife Authority

    1987-10-01

    The FY 1988 Columbia River Basin Fish and Wildlife Program Work Plan (Work Plan) presents Bonneville Power Administration's plans for implementing the Columbia River Basin Fish and Wildlife Program (Program) in FY 1988. The Work Plan focuses on individual Action Items found in the amended Program for which Bonneville Power Administration (BPA) has determined it has authority and responsibility to implement. The FY 1988 Work Plan emphasizes continuation of 95 ongoing projects, most of which involve protection, mitigation, or enhancement of anadromous fishery resources. These continuing activities are summarized briefly by Program area: (1) mainstem passage; (2) artificial propagation; (3) natural propagation; (4) resident fish and wildlife; and (5) planning activities.

  18. Savannah River Ecology Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust, High-ThroughputUpcoming ReleaseSecurity Administration

  19. Model-Free Based Water Level Control for Hydroelectric Power Plants

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Model-Free Based Water Level Control for Hydroelectric Power Plants Cédric JOIN Gérard ROBERT for hydroelectric run-of-the river power plants. To modulate power generation, a level trajectory is planned, the set-point is followed even in severe operating conditions. Keywords: Hydroelectric power plants

  20. Preliminary Notice of Violation, Westinghouse Savannah River...

    Broader source: Energy.gov (indexed) [DOE]

    8, 2000 Issued to Westinghouse Savannah River Company, related to Unplanned Exposures and Radioactive Material Intakes at the Savannah River Site (EA-2000-08) On July 18, 2000, the...

  1. BITTERROOT RIVER SUBBASIN INVENTORY FOR FISH AND

    E-Print Network [OSTI]

    of the Columbia River hydropower system. Nothing in this Plan, or the participation in its development, or related to, the development and operation of the Columbia River hydropower system. Nothing in this Plan

  2. BITTERROOT RIVER SUBBASIN MANAGEMENT PLAN FOR FISH

    E-Print Network [OSTI]

    from the development and operation of the Columbia River hydropower system. Nothing in this Plan and exclusively resulting from, or related to, the development and operation of the Columbia River hydropower

  3. WAMweisman art museum 333 east river road

    E-Print Network [OSTI]

    Thomas, David D.

    WAMweisman art museum press release 333 east river road minneapolis, MN 55455 www government that allowed tax-supported institutions (like the University of Minnesota) to acquire these works: The Weisman is located at 333 E. River Road in

  4. INTEGRATED RIVER QUALITY MANAGEMENT USING INTERNET TECHNOLOGIES

    E-Print Network [OSTI]

    INTEGRATED RIVER QUALITY MANAGEMENT USING INTERNET TECHNOLOGIES P. Cianchi*, S. Marsili such a computing architecture can be implemented using current internet technologies. Based on the "intelligent a normal web browser. KEYWORDS River water quality, Environmental management, Internet computing, Systems

  5. Pacific Northwest Electric Power Planning and Conservation Act : Legislative History of the Act to Assist the Electrical Consumers of the Pacific Northwest through use of the Federal Columbia River Power System to Achieve Cost-Effective Energy Conservation : P.L. 96-501, 94 Stat. 2697.

    SciTech Connect (OSTI)

    United States. Bonneville Power Administration.

    1981-01-01

    The Pacific Northwest Electric Power Planning and Conservation Act became effective when it was signed into law by President Carter on December 5, 1980. This ended a four-year debate over legislation designed to plan and coordinate the region's energy future. This legislative history is an abbreviated version taken from the larger historical file maintained by the BPA Law Library. It is intended to assist BPA personnel and others who are studying the Northwest Power Act and working on its implementation. The documents included were selected for their value in determining what Congress meant in enacting the statute and to provide the researcher with a starting point for further investigation. These documents include: a history of the Act, a chronology of the legislative action leading to passage of the law; a section-by-section analysis of the Act; the Congressional Records of Senate and House debates on the bill and its amendments, and a list of Congressional committee hearings.

  6. Bureau Home > Australia> Queensland> Rainfall& River Conditions > River Brochures> Barron FLOOD WARNING SYSTEM

    E-Print Network [OSTI]

    Greenslade, Diana

    in this document is information about: (Last updated June 2015) · Flood Risk · Previous Flooding · Flood Warning and River Height Bulletins · Flood Classifications · Other Links Flood Risk The Barron River has a catchmentBureau Home > Australia> Queensland> Rainfall& River Conditions > River Brochures> Barron FLOOD

  7. Effect of spill on adult salmon passage delay at Columbia River and Snake River dams

    E-Print Network [OSTI]

    Washington at Seattle, University of

    Effect of spill on adult salmon passage delay at Columbia River and Snake River dams W. Nicholas dams in the Columbia/Snake River hydrosystem may delay the upstream passage of the adults. To evaluate-to-day variations of spill and upstream fish passage at the eight dams of the Columbia/Snake river hydrosystem

  8. In-River Backwards Run Reconstruction of Fraser River Sockeye Fisheries from 2002 -2009 and

    E-Print Network [OSTI]

    In-River Backwards Run Reconstruction of Fraser River Sockeye Fisheries from 2002 - 2009: Master of Resource Management Title of Research Project: In-River Backwards Run Reconstruction of Fraser managers I develop an in-river backwards run reconstruction to provide Conservation Unit (CU) specific

  9. Bayer Material Science (TRL 1 2 3 System)- River Devices to Recover Energy with Advanced Materials(River DREAM)

    Broader source: Energy.gov [DOE]

    Bayer Material Science (TRL 1 2 3 System) - River Devices to Recover Energy with Advanced Materials(River DREAM)

  10. Prediction of Leakage Power Under Process Uncertainties

    E-Print Network [OSTI]

    Sapatnekar, Sachin

    to further improve run-time efficiency. We show that the proposed methods are effective in predicting: Hongliang Chang (hchang@cadence.com), Cadence Design Systems, 555 River Oaks Pkwy, Bldg. 2, San Jose, CA design, and so that it is possible to effectively optimize the total power consumption of a chip

  11. Columbia River Component Data Evaluation Summary Report

    SciTech Connect (OSTI)

    C.S. Cearlock

    2006-08-02

    The purpose of the Columbia River Component Data Compilation and Evaluation task was to compile, review, and evaluate existing information for constituents that may have been released to the Columbia River due to Hanford Site operations. Through this effort an extensive compilation of information pertaining to Hanford Site-related contaminants released to the Columbia River has been completed for almost 965 km of the river.

  12. Wabash River coal gasification repowering project: Public design report

    SciTech Connect (OSTI)

    NONE

    1995-07-01

    The Wabash River Coal Gasification Repowering Project (the Project), conceived in October of 1990 and selected by the US Department of Energy as a Clean Coal IV demonstration project in September 1991, is expected to begin commercial operations in August of 1995. The Participants, Destec Energy, Inc., (Destec) of Houston, Texas and PSI Energy, Inc., (PSI) of Plainfield, Indiana, formed the Wabash River Coal Gasification Repowering Project Joint Venture (the JV) to participate in the DOE`s Clean Coal Technology (CCT) program by demonstrating the coal gasification repowering of an existing 1950`s vintage generating unit affected by the Clean Air Act Amendments (CAAA). The Participants, acting through the JV, signed the Cooperative Agreement with the DOE in July 1992. The Participants jointly developed, and separately designed, constructed, own, and will operate an integrated coal gasification combined cycle (CGCC) power plant using Destec`s coal gasification technology to repower Unit {number_sign}1 at PSI`s Wabash River Generating Station located in Terre Haute, Indiana. PSI is responsible for the new power generation facilities and modification of the existing unit, while Destec is responsible for the coal gasification plant. The Project demonstrates integration of the pre-existing steam turbine generator, auxiliaries, and coal handling facilities with a new combustion turbine generator/heat recovery steam generator tandem and the coal gasification facilities.

  13. Reintroduction of Lower Columbia River Chum Salmon into Duncan Creek, 2007 Annual Report.

    SciTech Connect (OSTI)

    Hillson, Todd D.

    2009-06-12

    The National Marine Fisheries Service (NMFS) listed Lower Columbia River (LCR) chum salmon as threatened under the Endangered Species Act (ESA) in March, 1999 (64 FR 14508, March 25, 1999). The listing was in response to the reduction in abundance from historical levels of more than one-half million returning adults to fewer than 10,000 present-day spawners. Harvest, habitat degradation, changes in flow regimes, riverbed movement and heavy siltation have been largely responsible for this decline. The timing of seasonal changes in river flow and water temperatures is perhaps the most critical factor in structuring the freshwater life history of this species. This is especially true of the population located directly below Bonneville Dam, where hydropower operations can block access to spawning sites, dewater redds, strand fry, cause scour or fill of redds and increase sedimentation of spawning gravels. Prior to 1997, only two chum salmon populations were recognized as genetically distinct in the Columbia River, although spawning had been documented in many Lower Columbia River tributaries. The first population was in the Grays River (RKm 34), a tributary of the Columbia River, and the second was a group of spawners utilizing the mainstem Columbia River just below Bonneville Dam (RKm 235) adjacent to Ives Island and in Hardy and Hamilton creeks. Using additional DNA samples, Small et al. (2006) grouped chum salmon spawning in the mainstem Columbia River and the Washington State tributaries into three groups: the Coastal, the Cascade and the Gorge. The Coastal group comprises those spawning in the Grays River, Skamokawa Creek and the broodstock used at the Sea Resources facility on the Chinook River. The Cascade group comprises those spawning in the Cowlitz (both summer and fall stocks), Kalama, Lewis, and East Fork Lewis rivers, with most supporting unique populations. The Gorge group comprises those spawning in the mainstem Columbia River from the I-205 Bridge up to Bonneville Dam and those spawning in Hamilton and Hardy creeks. Response to the federal ESA listing has been primarily through direct-recovery actions: reducing harvest, hatchery supplementation using local broodstock for populations at catastrophic risk, habitat restoration (including construction of spawning channels) and flow agreements to protect spawning and rearing areas. Both state and federal agencies have built controlled spawning areas. In 1998, the Washington Department of Fish and Wildlife (WDFW) began a chum salmon supplementation program using native stock on the Grays River. This program was expanded during 1999 - 2001 to include reintroduction into the Chinook River using eggs from the Grays River Supplementation Program. These eggs are incubated at the Grays River Hatchery, reared to release size at the Sea Resources Hatchery on the Chinook River, and the fry are released at the mouth of the Chinook River. Native steelhead, chum, and coho salmon are present in Duncan Creek, and are recognized as subpopulations of the Lower Gorge population, and are focal species in the Lower Columbia Fish Recovery Board (LCFRB) plan. Steelhead, chum and coho salmon that spawn in Duncan Creek are listed as Threatened under the ESA. Duncan Creek is classified by the LCFRB plan as a watershed for intensive monitoring (LCFRB 2004). This project was identified in the 2004 Federal Columbia River Power System (FCRPS) revised Biological Opinion (revised BiOp) to increase survival of chum salmon, 'BPA will continue to fund the program to re-introduce Columbia River chum salmon into Duncan Creek as long as NOAA Fisheries determines it to be an essential and effective contribution to reducing the risk of extinction for this ESU'. (USACE et al. 2004, page 85-86). The Governors Forum on Monitoring and Salmon Recovery and Watershed Health recommends one major population from each ESU have adult and juvenile monitoring. Duncan Creek chum salmon are identified in this plan to be intensively monitored. Planners recommended that a combination of natural and hatchery production

  14. Diets of the Arkansas River Shiner and Peppered Chub in the Canadian River, New Mexico and Texas

    E-Print Network [OSTI]

    Wilde, Gene

    Diets of the Arkansas River Shiner and Peppered Chub in the Canadian River, New Mexico and Texas)collectedfrom the Canadian River in New Mexico andTexasfrom September1996to August 1998. Both the Ark~n~~ River streamsand rivers of the Arkansas River drainage systemof Arkansas,Colorado, Kansas,New Mexico, Kansas

  15. Bonneville Power Administration 1991 Annual Report.

    SciTech Connect (OSTI)

    United States. Bonneville Power Administration.

    1992-01-01

    Congress enacted the Bonneville Project Act in 1937, creating the Bonneville Power Administration to market and transmit the power produced by Bonneville Dam on the Columbia River. Since then, Congress has directed BPA to sell at wholesale the power produced at a total of 30 Federal dams in the Pacific Northwest, and to acquire conservation and generating resources sufficient to meet the needs of BPA`s customer utilities. The dams and the electrical system are known as the Federal Columbia River Power System. Bonneville sells wholesale power to public and private utilities, rural cooperatives, large industries, and Federal agencies. BPA also sells or exchanges power with utilities in California. BPA uses revenues from the sale of power and transmission services to recover its own expenses, to repay the Federal investment in the power system, and to pay for the resources it has acquired. BPA pays for operation and maintenance expenses at the Federal dams and at non-Federal power plants. It also pays for irrigation benefits of Federal projects allocated to power to repay, and for fish and wildlife projects which offset damage to these resources by the Federal hydropower system. This document is the 1991 statement of budget, financial statement, cash flows, capitalization, expenses, and projects. An organization chart is included.

  16. OFFICE OF RIVER PROTECTION

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass map shinesSolarNewsusceptometer under pressureNavyNumericalO K H AAnnual

  17. River and Plateau Committee

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMassR&D100NationalquestionnairesDrought-induced forestNovember 2012) Page 1 Area

  18. River and Plateau Committee

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMassR&D100NationalquestionnairesDrought-induced forestNovember 2012) Page 1

  19. River and Plateau Committee

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMassR&D100NationalquestionnairesDrought-induced forestNovember 2012) Page 12/15

  20. Savannah River Ecology Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust, High-ThroughputUpcoming ReleaseSecurity Administration winsSarah L.7:Accreditation

  1. Savannah River Ecology Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust, High-ThroughputUpcoming ReleaseSecurity Administration winsSarah

  2. Savannah River Ecology Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust, High-ThroughputUpcoming ReleaseSecurity Administration winsSarahRuth Patrick - Myers

  3. Savannah River Ecology Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust, High-ThroughputUpcoming ReleaseSecurity Administration winsSarahRuth Patrick - Myers2

  4. Savannah River Ecology Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust, High-ThroughputUpcoming ReleaseSecurity Administration winsSarahRuth Patrick -

  5. Savannah River Ecology Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust, High-ThroughputUpcoming ReleaseSecurity Administration winsSarahRuth Patrick -Mature

  6. Savannah River Ecology Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust, High-ThroughputUpcoming ReleaseSecurity Administration winsSarahRuth Patrick

  7. Savannah River Ecology Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust, High-ThroughputUpcoming ReleaseSecurity Administration winsSarahRuth PatrickRainbow

  8. Savannah River Ecology Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust, High-ThroughputUpcoming ReleaseSecurity Administration winsSarahRuth

  9. Savannah River Ecology Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust, High-ThroughputUpcoming ReleaseSecurity Administration winsSarahRuthBoiling Springs

  10. Savannah River Ecology Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust, High-ThroughputUpcoming ReleaseSecurity Administration winsSarahRuthBoiling

  11. Savannah River Ecology Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust, High-ThroughputUpcoming ReleaseSecurity Administration winsSarahRuthBoilingUniversity

  12. Savannah River Ecology Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust, High-ThroughputUpcoming ReleaseSecurity AdministrationFlamingo Bay The 165.8-acre (67

  13. Savannah River Ecology Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust, High-ThroughputUpcoming ReleaseSecurity AdministrationFlamingo Bay The 165.8-acre

  14. Savannah River Ecology Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust, High-ThroughputUpcoming ReleaseSecurity AdministrationFlamingo Bay The 165.8-acreDry

  15. Savannah River Ecology Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust, High-ThroughputUpcoming ReleaseSecurity AdministrationFlamingo Bay The

  16. Savannah River Ecology Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust, High-ThroughputUpcoming ReleaseSecurity AdministrationFlamingo Bay TheMona Bay and

  17. Savannah River Ecology Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust, High-ThroughputUpcoming ReleaseSecurity AdministrationFlamingo Bay TheMona Bay

  18. Savannah River Ecology Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust, High-ThroughputUpcoming ReleaseSecurity AdministrationFlamingo Bay TheMona BayRoad 6

  19. Savannah River Ecology Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust, High-ThroughputUpcoming ReleaseSecurity AdministrationFlamingo Bay TheMona BayRoad

  20. Savannah River Ecology Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust, High-ThroughputUpcoming ReleaseSecurity AdministrationFlamingo Bay TheMona

  1. Savannah River Ecology Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust, High-ThroughputUpcoming ReleaseSecurity AdministrationFlamingo Bay TheMonaSite This

  2. Savannah River Ecology Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust, High-ThroughputUpcoming ReleaseSecurity AdministrationFlamingo Bay TheMonaSite ThisE.

  3. Savannah River Ecology Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust, High-ThroughputUpcoming ReleaseSecurity AdministrationFlamingo Bay TheMonaSite

  4. Savannah River Ecology Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust, High-ThroughputUpcoming ReleaseSecurity AdministrationFlamingo Bay TheMonaSite1 This

  5. Savannah River Ecology Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust, High-ThroughputUpcoming ReleaseSecurity AdministrationFlamingo Bay TheMonaSite1

  6. Savannah River Ecology Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust, High-ThroughputUpcoming ReleaseSecurity AdministrationFlamingo Bay TheMonaSite1Mixed

  7. Savannah River Ecology Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust, High-ThroughputUpcoming ReleaseSecurity AdministrationFlamingo Bay

  8. Savannah River Ecology Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust, High-ThroughputUpcoming ReleaseSecurity AdministrationFlamingo BayGrove / Stave

  9. Great River (1973)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would likeUniverse (Journalvivo Low-Dose Lowï‚— We want USDOE to vitrify all Low

  10. Perovskite Power

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Perovskite Power 1663 Los Alamos science and technology magazine Latest Issue:October 2015 past issues All Issues submit Perovskite Power A breakthrough in the production of...

  11. Microsoft PowerPoint - Allison - Savannah River Presentation

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirley Ann Jackson About1996How to Apply forNavalReginald Agunwah Water(DOE)Making Progress

  12. Longzhou County Pinger River Electric Power Development Co Ltd | Open

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LISTStar2-0057-EAInvervarLeeds, UnitedLibertyLiteHuixinEnergy Information Longzhou

  13. New River Light & Power Co | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop Inc Jump to: navigation,MeregNIFESpinningLtdElectric&Water Util

  14. Qiaojia River Power Co Ltd Li County | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop Inc Jump to:Newberg,Energy LLCALLETE Inc dEAPrysmianPvT CapitalCo Ltd Li County

  15. Gengma County Tiechang River Power Plant | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LISTStar2-0057-EA Jump to:ofEnia SpAFlexStock|Genesa HidroCantabricoSwitzerland:Gengma

  16. Jichuan Taiyang River Hydro Power Development Co Ltd | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LISTStar2-0057-EAInvervar Hydro Jump to:Huilun SolarLongjiangJiaozuo

  17. Kangding County Zheduo River Electric Power Development Co Ltd | Open

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LISTStar2-0057-EAInvervar Hydro JumpHuari SiliconEnergy Information Kangding

  18. Yingjiang County Binglang River Hydroelectric Power Co Ltd | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop IncIowa (UtilityMichigan) Jump to:Sanming Lianfa Co Ltd Jump to:

  19. Tapping the Power of Alaska's Rivers | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative FuelsofProgram: Report15 Meeting StateOctoberSustainableFAQS TITLETank Waste

  20. River System Hydrology in Texas 

    E-Print Network [OSTI]

    Wurbs, R.; Zhang, Y.

    2014-01-01

    and databases maintained by the Texas Water Development Board and the U.S. Geological Survey. River basin volume budgets and trend and frequency metrics for simulated naturalized and regulated stream flows and reservoir storage are developed using the WAM System...

  1. Savannah River Site generic data base development

    SciTech Connect (OSTI)

    Blanchard , A.

    2000-01-04

    This report describes the results of a project to improve the generic component failure database for the Savannah River Site (SRS). Additionally, guidelines were developed further for more advanced applications of database values. A representative list of components and failure modes for SRS risk models was generated by reviewing existing safety analyses and component failure data bases and from suggestions from SRS safety analysts. Then sources of data or failure rate estimates were identified and reviewed for applicability. A major source of information was the Nuclear Computerized Library for Assessing Reactor Reliability, or NUCLARR. This source includes an extensive collection of failure data and failure rate estimates for commercial nuclear power plants. A recent Idaho National Engineering Laboratory report on failure data from the Idaho Chemical Processing Plant was also reviewed. From these and other recent sources, failure data and failure rate estimates were collected for the components and failure modes of interest. For each component failure mode, this information was aggregated to obtain a recommended generic failure rate distribution (mean and error factor based on a lognormal distribution). Results are presented in a table in this report. A major difference between generic database and previous efforts is that this effort estimates failure rates based on actual data (failure events) rather than on existing failure rate estimates. This effort was successful in that over 75% of the results are now based on actual data. Also included is a section on guidelines for more advanced applications of failure rate data. This report describes the results of a project to improve the generic component failure database for the Savannah River site (SRS). Additionally, guidelines were developed further for more advanced applications of database values.

  2. Historical Shoreline Evolution as a Response to Dam Placement on the Elwha River, Washington

    E-Print Network [OSTI]

    Nagid, Bethany Marie

    2015-01-01

    of the Elwha River, Washington- Biological and physicalthe Elwha River, Washington, U.S. , Fisheries Management &on the Elwha River, Washington, USA: River channel and

  3. Malheur River Wildlife Mitigation Project, Annual Report 2003.

    SciTech Connect (OSTI)

    Ashley, Paul

    2004-01-01

    Hydropower development within the Columbia and Snake River Basins has significantly affected riparian, riverine, and adjacent upland habitats and the fish and wildlife species dependent upon them. Hydroelectric dams played a major role in the extinction or major loss of both anadromous and resident salmonid populations and altered instream and adjacent upland habitats, water quality, and riparian/riverine function. Hydroelectric facility construction and inundation directly affected fish and wildlife species and habitats. Secondary and tertiary impacts including road construction, urban development, irrigation, and conversion of native habitats to agriculture, due in part to the availability of irrigation water, continue to affect wildlife and fish populations throughout the Columbia and Snake River Basins. Fluctuating water levels resulting from facility operations have created exposed sand, cobble, and/or rock zones. These zones are generally devoid of vegetation with little opportunity to re-establish riparian plant communities. To address the habitat and wildlife losses, the United States Congress in 1980 passed the Pacific Northwest Electric Power Planning and Conservation Act (Act) (P.L. 96-501), which authorized the states of Idaho, Montana, Oregon, and Washington to create the Northwest Power Planning Council (Council). The Act directed the Council to prepare a program in conjunction with federal, state, and tribal wildlife resource authorities to protect, mitigate, and enhance fish and wildlife species affected by the construction, inundation and operation of hydroelectric dams in the Columbia River Basin (NPPC 2000). Under the Columbia Basin Fish and Wildlife Program (Program), the region's fish and wildlife agencies, tribes, non-government organizations (NGOs), and the public propose fish and wildlife projects that address wildlife and fish losses resulting from dam construction and subsequent inundation. As directed by the Council, project proposals are subjected to a rigorous review process prior to receiving final approval. An eleven-member panel of scientists referred to as the Independent Scientific Review Panel (ISRP) examines project proposals. The ISRP recommends project approval based on scientific merit. The Bonneville Power Administration (BPA), the Columbia Basin Fish and Wildlife Authority (CBFWA), Council staff, the U.S. Fish and Wildlife Service (USFWS), the National Oceanic and Atmospheric Administration (NOAA), and subbasin groups also review project proposals to ensure each project meets regional and subbasin goals and objectives. The Program also includes a public involvement component that gives the public an opportunity to provide meaningful input on management proposals. After a thorough review, the Burns Paiute Tribe (BPT) acquired the Malheur River Mitigation Project (Project) with BPA funds to compensate, in part, for the loss of fish and wildlife resources in the Columbia and Snake River Basins and to address a portion of the mitigation goals identified in the Council's Program (NPPC 2000).

  4. Snake River Fall Chinook Draft, Chapters 1 and 2, September 30, 2013, Predecisional, not for Citation

    E-Print Network [OSTI]

    indicates are necessary for the conservation and survival of listed species. Plans are developedpublished whether an action would jeopardize the continued existence of a listed species or adversely modify Page 2-1 Mainstem Snake River dams operated by Idaho Power Company 2-2 Types of sites and essential

  5. Savannah River Plant/Savannah River Laboratory radiation exposure report

    SciTech Connect (OSTI)

    Rogers, C.D.; Hyman, S.D.; Keisler, L.L. and Co., Aiken, SC . Savannah River Plant); Reeder, D.F.; Jolly, L.; Spoerner, M.T.; Schramm, G.R. and Co., Aiken, SC . Savannah River Lab.)

    1989-01-01

    The protection of worker health and safety is of paramount concern at the Savannah River Site. Since the site is one of the largest nuclear sites in the nation, radiation safety is a key element in the protection program. This report is a compendium of the results in 1988 of the programs at the Savannah River Plant and the Savannah River Laboratory to protect the radiological health of employees. By any measure, the radiation protection performance at this site in 1988 was the best since the beginning of operations. This accomplishment was made possible by the commitment and support at all levels of the organizations to reduce radiation exposures to ALARA (As Low As Reasonably Achievable). The report provides detailed information about the radiation doses received by departments and work groups within these organizations. It also includes exposure data for recent years to allow Plant and Laboratory units to track the effectiveness of their ALARA efforts. Many of the successful practices and methods that reduced radiation exposure are described. A new goal for personnel contamination cases has been established for 1989. Only through continual and innovative efforts to minimize exposures can the goals be met. The radiation protection goals for 1989 and previous years are included in the report. 27 figs., 58 tabs.

  6. Savannah River Laboratory Decontamination Program

    SciTech Connect (OSTI)

    Rankin, W.N.

    1991-01-01

    Savannah River Laboratory (SRL) has had a Decontamination and Decommissioning (D D) Technology program since 1981. The objective of this program is to provide state-of-the-art technology for use in D D operations that will enable our customers to minimize waste generated and personal exposure, increase productivity and safety, and to minimize the potential for release and uptake of radioactive material. The program identifies and evaluates existing technology, develops new technology, and provides technical assistance to implement its use onsite. This program has impacted not only the Savannah River Site (SRS), but the entire Department of Energy (DOE) complex. To document and communicate the technology generated by this program, 28 papers have been presented at National and International meetings in the United States and Foreign Countries.

  7. Savannah River Laboratory Decontamination Program

    SciTech Connect (OSTI)

    Rankin, W.N.

    1991-12-31

    Savannah River Laboratory (SRL) has had a Decontamination and Decommissioning (D&D) Technology program since 1981. The objective of this program is to provide state-of-the-art technology for use in D&D operations that will enable our customers to minimize waste generated and personal exposure, increase productivity and safety, and to minimize the potential for release and uptake of radioactive material. The program identifies and evaluates existing technology, develops new technology, and provides technical assistance to implement its use onsite. This program has impacted not only the Savannah River Site (SRS), but the entire Department of Energy (DOE) complex. To document and communicate the technology generated by this program, 28 papers have been presented at National and International meetings in the United States and Foreign Countries.

  8. Two-dimensional river modeling 

    E-Print Network [OSTI]

    Thompson, James Cameron

    1988-01-01

    heavily vegetated flood plain. It is found that the two-dimensional model can determine the flow more completely and more accurately than a corresponding one- dimensional model. Two-dimensional models are best applied where the flow conditions... committee, W. P. James, R. A. Wurbs, and R. 0. Reid, for their support and interest in this research. Dr. James, in particular, has shown great foresight in supporting broader use of two-dimensional river modeling. Dave Froehlich deserves much...

  9. Savannah River | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousMathematicsEnergyInterestedReplacement-2-AA-1 SECTION JSTEM-ing theSummarySavannah River Site

  10. Interim survey report, Wailua River hydropower, Kauai, Hawaii

    SciTech Connect (OSTI)

    Not Available

    1982-09-01

    Installation of hydroelectric facilities on the South Fork Wailua River three and five miles upstream of Wailua Falls on the Island of Kauai, Hawaii is proposed. The hydroelectric facilities would provide an additional source of energy for the island, effectively utilizing available waters. Addition of hydropower to the island's power system, which is primarily reliant on fuel and diesel oils, would diversify the system's base. Hydropower diversion would reduce flows downstream of the structures, affecting fishery, recreational, and aesthetic resources. Construction activities would disturb approximately 2.7 acres of cropland and create temporary turbidity downstream of the sites.

  11. Fall River Rural Elec Coop Inc (Wyoming) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTIONRobertsdale, AlabamaETEC GmbH JumpEllenville,PowerEvaporative||NewFale-Safe, Inc JumpFall River

  12. Colorado River Comm of Nevada | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LISTStar EnergyLawler,Coal TechnologiesClio Power LtdCountyNations CompanyRiver Comm

  13. Guizhou Tongzi River Hydropower Development Co Ltd | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LISTStar2-0057-EA JumpDuimen River Power Co Ltd JumpGuanh

  14. Hunan Rivers Bioengineering Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LISTStar2-0057-EA JumpDuimen RiverScoring ToolHuaihua Power GroupBioengineering Co Ltd

  15. Savannah River Site Museum Ribbon Cutting | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust, High-ThroughputUpcoming ReleaseSecurity AdministrationFlamingoSavannah River Site

  16. Madelyn Creedon visits Savannah River Site | National Nuclear Security

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would likeUniverseIMPACTThousandReport) |Administration Savannah River Site | National

  17. Hinson Power Company LLC | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LISTStar2-0057-EA JumpDuimen River PowerHeckertHidrotermicaPower Pvt LtdHinson Power

  18. FAWNdamentally Power-efficient Clusters Vijay Vasudevan, Jason Franklin, David Andersen

    E-Print Network [OSTI]

    hotel reservations in a certain city, which you know is located on a river with a large hydroelectric power dam. From these facts you might infer that the dam is likely to be a terrorist target

  19. Raft River geoscience case study

    SciTech Connect (OSTI)

    Dolenc, M.R.; Hull, L.C.; Mizell, S.A.; Russell, B.F.; Skiba, P.A.; Strawn, J.A.; Tullis, J.A.

    1981-11-01

    The Raft River Geothermal Site has been evaluated over the past eight years by the United States Geological Survey and the Idaho National Engineering Laboratory as a moderate-temperature geothermal resource. The geoscience data gathered in the drilling and testing of seven geothermal wells suggest that the Raft River thermal reservoir is: (a) produced from fractures found at the contact metamorphic zone, apparently the base of detached normal faulting from the Bridge and Horse Well Fault zones of the Jim Sage Mountains; (b) anisotropic, with the major axis of hydraulic conductivity coincident to the Bridge Fault Zone; (c) hydraulically connected to the shallow thermal fluid of the Crook and BLM wells based upon both geochemistry and pressure response; (d) controlled by a mixture of diluted meteoric water recharging from the northwest and a saline sodium chloride water entering from the southwest. Although the hydrogeologic environment of the Raft River geothermal area is very complex and unique, it is typical of many Basin and Range systems.

  20. Low Infrastructure Hydro-Electric Power Generation Team Trevor Doney, Tyler Hogenson, Ginny Llewellyn, Dean Simmonds, Aaron Wernerehl

    E-Print Network [OSTI]

    van den Berg, Jur

    PowerPail Low Infrastructure Hydro-Electric Power Generation Team Trevor Doney, Tyler Hogenson near potential hydro-electric power generation sources. There are several disadvantages to hydro Pipe PowerPail http://mrenergy.co.in/run-of-river-hydro.html #12;

  1. Deep drilling data, Raft River geothermal area, Idaho-Raft River...

    Open Energy Info (EERE)

    Deep drilling data, Raft River geothermal area, Idaho-Raft River geothermal exploration well sidetrack-C Jump to: navigation, search OpenEI Reference LibraryAdd to library Report:...

  2. Power supply

    DOE Patents [OSTI]

    Yakymyshyn, Christopher Paul (Seminole, FL); Hamilton, Pamela Jane (Seminole, FL); Brubaker, Michael Allen (Loveland, CO)

    2007-12-04

    A modular, low weight impedance dropping power supply with battery backup is disclosed that can be connected to a high voltage AC source and provide electrical power at a lower voltage. The design can be scaled over a wide range of input voltages and over a wide range of output voltages and delivered power.

  3. The Columbia River System : the Inside Story.

    SciTech Connect (OSTI)

    United States. Bonneville Power Administration.

    1991-09-01

    The Columbia Ricer is one of the greatest natural resources in the western United States. The river and its tributaries touch the lives of nearly every resident of the Northwest-from providing the world-famous Pacific salmon to supplying the clean natural fuel for over 75 percent of the region's electrical generation. Since early in the century, public and private agencies have labored to capture the benefits of this dynamic river. Today, dozens of major water resource projects throughout the region are fed by the waters of the Columbia Basin river system. And through cooperative efforts, the floods that periodically threaten developments near the river can be controlled. This publication presents a detailed explanation of the planning and operation of the multiple-use dams and reservoirs of the Columbia River system. It describes the river system, those who operate and use it, the agreements and policies that guide system operation, and annual planning for multiple-use operation.

  4. Green River Locks and Dams 3, 4, 5, 6 and Barren River Lock and Dam 1 Disposition, Kentucky

    E-Print Network [OSTI]

    US Army Corps of Engineers

    Green River Locks and Dams 3, 4, 5, 6 and Barren River Lock and Dam 1 Disposition, Kentucky 16 September 2014 ABSTRACT: Green River Locks and Dams 3 through 6 and Barren River Lock and Dam 1 were. The Green River Locks and Dams 5 and 6 ceased operations in 1951 due to a marked decline in navigation

  5. North University Dr. Indian River Street

    E-Print Network [OSTI]

    Marques, Oge

    ) around campus and running path on Indian River Street. Participants MUST run WITH tra c on all roads 39 4 31B 31A 7636 8W 6 80 46 89 92 31E 31 31D 31C 81 49 North University Dr. Indian River Street B-04.LucieAve.South Indian River St. BrevardCt. BrevardCt. Lot 23 Lot 22 Lot 11 Lot 7 Lot 6 Lot 21 LakeFPL Substation Lot 9

  6. ENEE 719B: Advanced Power Electronics Course Outline Instructor: Alireza Khaligh

    E-Print Network [OSTI]

    Anlage, Steven

    drives, to high-power active filters, renewable (Solar, wind, and ocean) energy systems, and flexible AC] J. P. Agrawal, Power Electronic Systems Theory and Design, Prentice Hall PTR, Upper Saddle River, NJ] N. Mohan, T. M. Undeland, and W. Robbins, Power Electronics: Converters, Applications, and Design

  7. rom the beginning of time, the power of water has captured the human imagination and influenced

    E-Print Network [OSTI]

    the mighty Colorado River -- providing hydro-electrical power to millions of people. It also canF rom the beginning of time, the power of water has captured the human imagination and influenced the power of flowing water across a road! It's an incredibly senseless way to die and is completely

  8. Hood River and Pelton Ladder Evaluation Studies, Annual Report 2000-2001.

    SciTech Connect (OSTI)

    Olsen, Erik

    2009-09-01

    The Bonneville Power Administration (BPA) funded the development of two master plans which outline the rationale, and general approach, for implementing a defined group of projects that are an integral part of a comprehensive watershed goal to 'Protect, enhance and restore wild and natural populations of anadromous and resident fish within the Hood River Subbasin'. The Hood River Production Master Plan and the Pelton Ladder Master Plan were completed in 1991 and subsequently approved by the Northwest Power Planning Council in 1992. Action items identified in the two master plans, as well as in a later document entitled 'Hood River/Pelton Ladder Master Agreement' (ODFW and CTWSRO Undated), are designed to achieve two biological fish objectives: (1) to increase production of wild summer and winter steelhead (Oncorhynchus mykiss) to levels commensurate with the subbasins current carrying capacity and (2) re-establishing a self-sustaining population of spring chinook salmon (Oncorhynchus tshawytscha). Numerical fish objectives for subbasin escapement, spawner escapement, and subbasin harvest are defined for each of these species in Coccoli (2000). Several projects are presently funded by the BPA to achieve the Hood River subbasin's numerical fish objectives for summer and winter steelhead and spring chinook salmon. They include BPA project numbers 1998-021-00 (Hood River Fish Habitat), 1998-053-03 (Hood River Production Program - CTWSRO: M&E), 1998-053-07 (Parkdale Fish Facility), 1998-053-08 (Powerdale/Oak Springs O&M), and 1998-053-12 (Hood River Steelhead Genetics Study). Collectively, they are implemented under the umbrella of what has come to be defined as the Hood River Production Program (HRPP). The HRPP is jointly implemented by the Oregon Department of Fish and Wildlife (ODFW) and The Confederated Tribes of the Warm Springs Reservation of Oregon (CTWSRO). Strategies for achieving the HRPP's biological fish objectives for the Hood River subbasin were initially devised based on various assumptions about (1) subbasin carrying capacity, (2) survival rates for selected life history stages, and (3) historic and current escapements of wild, natural, and hatchery stocks of anadromous salmonids to the Hood River subbasin. The Oregon Department of Fish and Wildlife began funding a monitoring and evaluation (M&E) project in December 1991 to collect the quantitative biological information needed to (1) more accurately assess the validity of these assumptions and (2) evaluate the proposed hatchery supplementation component of the HRPP. Bonneville Power Administration assumed funding of the M&E project in August 1992. The M&E project was initially confined to sampling anadromous salmonids escaping to an adult trapping facility operated at Powerdale Dam; which is located at River Mile (RM) 4.5 on the mainstem of the Hood River. Stock specific life history and biological data was collected to (1) monitor subbasin spawner escapements and (2) collect pre-implementation data critical to evaluating the newly proposed HRPP's potential biological impact on indigenous populations of resident fish. The scope of the M&E project was expanded in 1994 to collect the data needed to quantify (1) subbasin smolt production and carrying capacity, (2) smolt to adult survival rates, and (3) the spatial distribution of indigenous populations of summer and winter steelhead, spring and fall chinook salmon, and coho salmon. A creel was incorporated into the M&E project in December 1996 to evaluate the HRPP with respect to its defined subbasin and spawner escapement objectives for Hood River stocks of wild and hatchery summer and winter steelhead and for natural and Deschutes stock hatchery spring chinook salmon. In 1996, the M&E project also began monitoring streamflow at various locations in the Hood River subbasin. Streamflow data will be used to correlate subbasin smolt production with summer streamflows. Data collected from 1991-1999 is reported in the following annual progress reports: Olsen et al. (1994), Olsen et al

  9. The Columbia River System Inside Story

    SciTech Connect (OSTI)

    none,

    2001-04-01

    The Columbia River is one of the greatest natural resources in the western United States. The river and its tributaries touch the lives of nearly every resident of the Pacific Northwest—from fostering world-famous Pacific salmon to supplying clean natural fuel for 50 to 65 percent of the region’s electrical generation. Since early in the 20th century, public and private agencies have labored to capture the benefits of this dynamic river. Today, dozens of major water resource projects throughout the region are fed by the waters of the Columbia Basin river system.

  10. New Columbia River Estuary purchases benefit salmon

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the mouth of the Columbia River to permanently protect riverside habitat for Northwest fish and wildlife, including threatened and endangered salmon and steelhead. The...

  11. River Falls Municipal Utilities - Residential Energy Efficiency...

    Broader source: Energy.gov (indexed) [DOE]

    Name Utility Administrator River Falls Municipal Utilities Website http:www.rfmu.orgindex.aspx?nid681 Funding Source Wisconsin Focus on Energy State Wisconsin Program Type...

  12. Lumbee River EMC- Residential Energy Efficiency Program

    Broader source: Energy.gov [DOE]

    Lumbee River EMC (LREMC) offers rebates to its residential customers who purchase and install qualified energy efficient products or services. Rebates are available for water heaters, refrigerator...

  13. Voluntary Protection Program Onsite Review, Washington River...

    Broader source: Energy.gov (indexed) [DOE]

    February 13, 2014 Evaluation to determine whether Washington River Protection Solutions, LLC, Hanford is performing at a level deserving DOE-VPP Star recognition. Voluntary...

  14. Cuivre River Electric- Energy Efficiency Rebate Programs

    Broader source: Energy.gov [DOE]

    Cuivre River Electric Cooperative, through the Take Control & Save program, offers rebates for cooperative members who purchase efficient geothermal and dual fuel heat pumps, and electric water...

  15. Savannah River Laboratory monthly report, October 1991

    SciTech Connect (OSTI)

    Ferrell, J.M.

    1991-01-01

    This document details monthly activities at the Savannah River Laboratory. Topics addressed are reactor operation, tritium facilities and production; separations operations; environmental concerns; and waste management. (FI)

  16. Savannah River Laboratory monthly report, October 1991

    SciTech Connect (OSTI)

    Ferrell, J.M.

    1991-12-31

    This document details monthly activities at the Savannah River Laboratory. Topics addressed are reactor operation, tritium facilities and production; separations operations; environmental concerns; and waste management. (FI)

  17. Savannah River National Laboratory (SRNL) Environmental Sciences...

    Office of Environmental Management (EM)

    (SRNL) Environmental Sciences and Biotechnology Support of Waste Isolation Pilot Plant (WIPP) Savannah River National Laboratory (SRNL) Environmental Sciences and Biotechnology...

  18. ENVIRONMENTAL SCIENCES; SAVANNAH RIVER PLANT; ENVIRONMENTAL EFFECTS...

    Office of Scientific and Technical Information (OSTI)

    5 audit of SRP radioactive waste Ashley, C. 05 NUCLEAR FUELS; 54 ENVIRONMENTAL SCIENCES; SAVANNAH RIVER PLANT; ENVIRONMENTAL EFFECTS; RADIOACTIVE EFFLUENTS; EMISSION; HIGH-LEVEL...

  19. Savannah River Laboratory monthly report, November 1991

    SciTech Connect (OSTI)

    Ferrell, J.M.

    1991-12-31

    This document details monthly activities at the Savannah River Laboratory. Topics addressed are reactor operation; tritium facilities and production; separation operations; environmental concerns; and waste management. (FI)

  20. Savannah River Laboratory monthly report, November 1991

    SciTech Connect (OSTI)

    Ferrell, J.M.

    1991-01-01

    This document details monthly activities at the Savannah River Laboratory. Topics addressed are reactor operation; tritium facilities and production; separation operations; environmental concerns; and waste management. (FI)

  1. Savannah River Laboratory monthly report, September 1991

    SciTech Connect (OSTI)

    Ferrell, J.M.

    1991-01-01

    This document details monthly activities at the Savannah River Laboratory. Topics addressed are reactor operation, tritium facilities and production; separation operations; environmental concerns; and waste management. (FI)

  2. Savannah River Laboratory monthly report, September 1991

    SciTech Connect (OSTI)

    Ferrell, J.M.

    1991-12-31

    This document details monthly activities at the Savannah River Laboratory. Topics addressed are reactor operation, tritium facilities and production; separation operations; environmental concerns; and waste management. (FI)

  3. Savannah River Laboratory monthly report, July 1991

    SciTech Connect (OSTI)

    Ferrell, J.M.

    1991-01-01

    This document details monthly activities at the Savannah River Laboratory. Topics addressed are reactor operation; tritium facilities and production; separation operations; environmental concerns; and waste management. (FI)

  4. Savannah River Laboratory monthly report, July 1991

    SciTech Connect (OSTI)

    Ferrell, J.M.

    1991-12-31

    This document details monthly activities at the Savannah River Laboratory. Topics addressed are reactor operation; tritium facilities and production; separation operations; environmental concerns; and waste management. (FI)

  5. Savannah River Laboratory monthly report, August 1991

    SciTech Connect (OSTI)

    Ferrell, J.M.

    1991-12-31

    This document details monthly activities at the Savannah River Laboratory. Topics addressed are reactor operation, tritium facilities and production; separation operations; environmental concerns; and waste management. (FI)

  6. Savannah River Laboratory monthly report, August 1991

    SciTech Connect (OSTI)

    Ferrell, J.M.

    1991-01-01

    This document details monthly activities at the Savannah River Laboratory. Topics addressed are reactor operation, tritium facilities and production; separation operations; environmental concerns; and waste management. (FI)

  7. Bureau Home > Australia > Queensland > Rainfall & River Conditions > River Brochures > Kolan FLOOD WARNING SYSTEM

    E-Print Network [OSTI]

    Greenslade, Diana

    is information about: (Last updated June 2015) · Flood Risk · Previous Flooding · Flood Forecasting · Local Classifications · Other Links Flood Risk The Kolan River catchment is located in south east Queensland and coversBureau Home > Australia > Queensland > Rainfall & River Conditions > River Brochures > Kolan FLOOD

  8. Bureau Home > Australia > Queensland > Rainfall & River Conditions > River Brochures > Bulloo FLOOD WARNING SYSTEM

    E-Print Network [OSTI]

    Greenslade, Diana

    in this document is information about: (Last updated June 2015) · Flood Risk · Previous Flooding · Flood Bulletins · Flood Classifications · Other Links Flood Risk The Bulloo River catchment is located in southBureau Home > Australia > Queensland > Rainfall & River Conditions > River Brochures > Bulloo FLOOD

  9. Bureau Home > Australia > Queensland > Rainfall & River Conditions > River Brochures > Noosa FLOOD WARNING SYSTEM

    E-Print Network [OSTI]

    Greenslade, Diana

    is information about: (Last updated June 2015) · Flood Risk · Previous Flooding · Flood Forecasting · Local Height Bulletins · Flood Classifications · Other Links Flood Risk The Noosa River has a catchment areaBureau Home > Australia > Queensland > Rainfall & River Conditions > River Brochures > Noosa FLOOD

  10. Bureau Home > Australia > Queensland > Rainfall & River Conditions > River Brochures > Burrum and Cherwell

    E-Print Network [OSTI]

    Greenslade, Diana

    River at Howard Contained in this document is information about: (Last updated June 2015) · Flood Risk · Other Links Flood Risk The Burrum River catchment covers an area of about 935 square kilometres which and Cherwell FLOOD WARNING SYSTEM for the BURRUM AND CHERWELL RIVERS This brochure describes the flood warning

  11. Bureau Home > Australia > Queensland > Rainfall & River Conditions > River Brochures > FLOOD WARNING SYSTEM

    E-Print Network [OSTI]

    Greenslade, Diana

    Contained in this document is information about: (Last updated June 2015) · Flood Risk · Previous Flooding and River Height Bulletins · Flood Classifications · Other Links Flood Risk The Leichhardt River catchment FLOOD WARNING SYSTEM for the LEICHHARDT RIVER This brochure describes the flood warning system operated

  12. Bureau Home > Australia > Queensland > Rainfall & River Conditions > River Brochures > Paroo FLOOD WARNING SYSTEM

    E-Print Network [OSTI]

    Greenslade, Diana

    is information about : (Last updated June 2015) · Flood Risk · Previous Flooding · Flood Forecasting · Local Classifications · Other Links Flood Risk The Paroo River catchment is located in south west Queensland and coversBureau Home > Australia > Queensland > Rainfall & River Conditions > River Brochures > Paroo FLOOD

  13. Bureau Home > Australia > Queensland > Rainfall & River Conditions > River Brochures > Lower FLOOD WARNING SYSTEM

    E-Print Network [OSTI]

    Greenslade, Diana

    2015) · Flood Risk · Previous Flooding · Flood Forecasting · Local Information · Brisbane River ALERT Classifications · Other Links Flood Risk The Brisbane River catchment covers an area of approximately 15 Brisbane FLOOD WARNING SYSTEM for the BRISBANE RIVER BELOW WIVENHOE DAM TO BRISBANE CITY This brochure

  14. Bureau Home > Australia > Queensland > Rainfall & River Conditions > River Brochures > Moonie FLOOD WARNING SYSTEM

    E-Print Network [OSTI]

    Greenslade, Diana

    is information about : (Last updated June 2015) · Flood Risk · Previous Flooding · Flood Forecasting · Local Classifications · Other Links Flood Risk The Moonie River basin is located in southwest Queensland and drainsBureau Home > Australia > Queensland > Rainfall & River Conditions > River Brochures > Moonie FLOOD

  15. Bureau Home > Australia > Queensland > Rainfall & River Conditions > River Brochures > Daintree FLOOD WARNING SYSTEM

    E-Print Network [OSTI]

    Greenslade, Diana

    Post Contained in this document is information about: (Last updated June 2015) · Flood Risk · Previous Warnings and River Height Bulletins · Flood Classifications · Other Links Flood Risk The Daintree River FLOOD WARNING SYSTEM for the DAINTREE RIVER This brochure describes the flood warning system operated

  16. Bureau Home > Australia> Queensland> Rainfall& River Conditions > River Brochures> Gilbert FLOOD WARNING SYSTEM

    E-Print Network [OSTI]

    Greenslade, Diana

    in this document is information about: (Last updated June 2015) · Flood Risk · Previous Flooding · Flood Bulletins · Flood Classifications · Other Links Flood Risk The Gilbert River catchment is located in northBureau Home > Australia> Queensland> Rainfall& River Conditions > River Brochures> Gilbert FLOOD

  17. Bureau Home > Australia > Queensland > Rainfall & River Conditions > River Brochures > Haughton FLOOD WARNING SYSTEM

    E-Print Network [OSTI]

    Greenslade, Diana

    in this document is information about: (Last updated June 2015) · Flood Risk · Previous Flooding · Flood Warnings and River Height Bulletins · Flood Classifications · Other Links Flood Risk The Haughton River FLOOD WARNING SYSTEM for the HAUGHTON RIVER This brochure describes the flood warning system operated

  18. Bureau Home > Australia > Queensland > Rainfall & River Conditions > River Brochures > Bremer FLOOD WARNING SYSTEM

    E-Print Network [OSTI]

    Greenslade, Diana

    Contained in this document is information about: (Last updated June 2015) · Flood Risk · Previous Flooding Flood Warnings and River Height Bulletins · Flood Classifications · Other Links Flood Risk The BremerBureau Home > Australia > Queensland > Rainfall & River Conditions > River Brochures > Bremer FLOOD

  19. Bureau Home > Australia > Queensland > Rainfall & River Conditions > River Brochures > Pine and FLOOD SYSTEM

    E-Print Network [OSTI]

    Greenslade, Diana

    and Caboolture FLOOD SYSTEM for the PINE & CABOOLTURE RIVERS This brochure describes the flood system operated information which will be useful for understanding River Height Bulletins issued by the Bureau's Flood Warning Centre during periods of high rainfall and flooding. Pine River at Murrumba Downs Contained

  20. Malheur River Wildlife Mitigation Project : 2008 Annual Report.

    SciTech Connect (OSTI)

    Kesling, Jason; Abel, Chad; Schwabe, Laurence

    2009-01-01

    In 1998, the Burns Paiute Tribe (BPT) submitted a proposal to Bonneville Power Administration (BPA) for the acquisition of the Malheur River Wildlife Mitigation Project (Project). The proposed mitigation site was for the Denny Jones Ranch and included Bureau of Land Management (BLM) and Oregon Division of State Lands (DSL) leases and grazing allotments. The Project approval process and acquisition negotiations continued for several years until the BPT and BPA entered into a Memorandum of Agreement, which allowed for purchase of the Project in November 2000. The 31,781 acre Project is located seven miles east of Juntura, Oregon and is adjacent to the Malheur River (Figure 1). Six thousand three hundred eighty-five acres are deeded to BPT, 4,154 acres are leased from DSL, and 21,242 acres are leased from BLM (Figure 2). In total 11 grazing allotments are leased between the two agencies. Deeded land stretches for seven miles along the Malheur River. It is the largest private landholding on the river between Riverside and Harper, Oregon. Approximately 938 acres of senior water rights are included with the Ranch. The Project is comprised of meadow, wetland, riparian and shrub-steppe habitats. The BLM grazing allotment, located south of the ranch, is largely shrub-steppe habitat punctuated by springs and seeps. Hunter Creek, a perennial stream, flows through both private and BLM lands. Similarly, the DSL grazing allotment, which lies north of the Ranch, is predominantly shrub/juniper steppe habitat with springs and seeps dispersed throughout the upper end of draws (Figure 2).

  1. EIS-0163: 1992 Columbia River Salmon Flow Measures Options Analysis/EIS

    Broader source: Energy.gov [DOE]

    The U.S. Army Corps of Engineers – Walla Walla District prepared this statement to analyze four general alternatives to modify the flow of water in the lower Columbia-Snake River in order to help anadromous fish migrate past eight multipurpose Federal dams. The U.S. Department of Energy’s Bonneville Power Administration served as a cooperating agency due to its key role in direct operation of the integrated and coordinated Columbia-Snake River System, and adopted this statement on February 10, 1992.

  2. Microbial risk assessment for recreational use of the Malden River

    E-Print Network [OSTI]

    Jacques, Margaret (Margaret Rose)

    2015-01-01

    The Malden River is located in the Greater Boston area of Massachusetts. The River has a long history of abuse and neglect stemming from urbanization and industrial activity along the River and in the surrounding areas. ...

  3. Lesson Learned by Savannah River Site Activity-level Work Planning and Control

    Broader source: Energy.gov [DOE]

    Slide Presentation by Bonnie Barnes, Savannah River Remediation. Work Planning and Control at Savannah River Remediation.

  4. CX-012738: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Gila Substation Geotechnical Study CX(s) Applied: B3.1Date: 41857 Location(s): ArizonaOffices(s): Western Area Power Administration-Desert Southwest Region

  5. CX-004898: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Gila-Wellton-Mohawk (Structure Maintenance)CX(s) Applied: B1.3Date: 11/05/2010Location(s): Yuma County, ArizonaOffice(s): Western Area Power Administration-Desert Southwest Region

  6. CX-007157: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    North Gila-Senator Wash Pole ReplacementCX(s) Applied: B4.6Date: 11/03/2010Location(s): Yuma County, ArizonaOffice(s): Western Area Power Administration-Desert Southwest Region

  7. Fall Chinook Salmon Spawning Ground Surveys in the Snake River Basin Upriver of Lower Granite Dam, Annual Report 2002.

    SciTech Connect (OSTI)

    Garcia, Aaron P.; Bradbury, S.M.; Arnsberg, Billy D.

    2003-09-01

    Redd counts were used to document the spawning distribution of fall chinook salmon (Oncorhynchus tshawytscha) in the Snake River basin upriver of Lower Granite Dam. The first reported redd counts were from aerial searches conducted intermittently between 1959 and 1978 (Irving and Bjornn 1981, Witty 1988; Groves and Chandler 1996)(Appendix 1). In 1986, the Washington Department of Fish and Wildlife began an annual monitoring program that, in addition to the Snake River, included aerial searches of the Grande Ronde River the first year (Seidel and Bugert 1987), and the Imnaha River in subsequent years (Seidel et al. 1988; Bugert et al. 1989-1991; Mendel et al. 1992). The U. S. Fish and Wildlife Service and Idaho Power Company began contributing to this effort in 1991 by increasing the number of aerial searches conducted each year and adding underwater searches in areas of the Snake River that were too deep to be searched from the air (Connor et al. 1993; Garcia et al. 1994a, 1994b, 1996-2001; Groves 1993; Groves and Chandler 1996). The Nez Perce Tribe added aerial searches in the Clearwater River basin beginning in 1988 (Arnsberg et. al 1992) and the Salmon River beginning in 1992. Currently searches are conducted cooperatively by the Nez Perce Tribe, Idaho Power Company, and U. S. Fish and Wildlife Service. Our objective for this report was to consolidate the findings from annual redd searches into a single document containing detailed information about the searches from the most recent spawning season, and summary information from previous years. The work conducted in 2002 was funded by the Bonneville Power Administration (Projects 1998-01-003 and 1994-03-400) and the Idaho Power Company.

  8. CRAD, Emergency Management - Office of River Protection K Basin...

    Energy Savers [EERE]

    CRAD, Emergency Management - Office of River Protection K Basin Sludge Waste System CRAD, Emergency Management - Office of River Protection K Basin Sludge Waste System May 2004 A...

  9. Letter from Commonwealth to Mirant Potomac River Concerning Serious...

    Office of Environmental Management (EM)

    to Mirant Potomac River Concerning Serious Violations of the National Ambient Air Quality Standards for Sulfur Dioxide Letter from Commonwealth to Mirant Potomac River Concerning...

  10. Savannah River Site - Mixed Waste Management Facility Northwest...

    Energy Savers [EERE]

    state determination for entire site. Addthis Related Articles Savannah River Site - Mixed Waste Management Facility Northeast Plume Savannah River Site - D-Area Oil Seepage Basin...

  11. Savannah River Site - Mixed Waste Management Facility Northeast...

    Energy Savers [EERE]

    state determination for entire site. Addthis Related Articles Savannah River Site - Mixed Waste Management Facility Northwest Plume Savannah River Site - D-Area Oil Seepage Basin...

  12. Columbia River Treaty Review #2 - April 2009.indd

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the Columbia River Treaty has provided signifi cant benefi ts to the United States and Canada through coordinated river management by the two countries. It remains the standard...

  13. Lessons Learned and Best Practices in Savannah River Site Saltstone...

    Office of Environmental Management (EM)

    Lessons Learned and Best Practices in Savannah River Site Saltstone and Tank Farm Performance Assessments Lessons Learned and Best Practices in Savannah River Site Saltstone and...

  14. Trona Injection Tests: Mirant Potomac River Station, Unit 1,...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Trona Injection Tests: Mirant Potomac River Station, Unit 1, November 12 to December 23, 2005, Summary Report Trona Injection Tests: Mirant Potomac River Station, Unit 1, November...

  15. Exhibit D: Mirant Potomac River Schedule of Unit Operations:...

    Office of Environmental Management (EM)

    Exhibit D: Mirant Potomac River Schedule of Unit Operations: Supplement 4, January - March 2006 Exhibit D: Mirant Potomac River Schedule of Unit Operations: Supplement 4, January -...

  16. CRAD, Engineering - Office of River Protection K Basin Sludge...

    Energy Savers [EERE]

    CRAD, Engineering - Office of River Protection K Basin Sludge Waste System CRAD, Engineering - Office of River Protection K Basin Sludge Waste System May 2004 A section of Appendix...

  17. Savannah River Field Office | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    Us Our Operations Management and Budget Office of Civil Rights Workforce Statistics Savannah River Field Office Savannah River Field Office FY15 Semi Annual Report...

  18. 2013 Annual Planning Summary for the Office of River Protection...

    Energy Savers [EERE]

    River Protection and Richland Operations Office 2013 Annual Planning Summary for the Office of River Protection and Richland Operations Office The ongoing and projected...

  19. LiT Electrolysis Research at Savannah River National Laboratory...

    Office of Environmental Management (EM)

    LiT Electrolysis Research at Savannah River National Laboratory (SRNL) LiT Electrolysis Research at Savannah River National Laboratory (SRNL) Presentation from the 35th Tritium...

  20. PIA - Savannah River Nuclear Solutions (SRNS) Human Resource...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (SRNS) Human Resource Management System (HRMS) PIA - Savannah River Nuclear Solutions (SRNS) Human Resource Management System (HRMS) PIA - Savannah River Nuclear Solutions (SRNS)...

  1. PIA - Savannah River Nuclear Solutions Training Records and Informatio...

    Energy Savers [EERE]

    Nuclear Solutions Training Records and Information Network (TRAIN) PIA - Savannah River Nuclear Solutions Training Records and Information Network (TRAIN) PIA - Savannah River...

  2. PIA - Savannah River Nuclear Solutions Badge Request and Site...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Badge Request and Site Personnel Roster Systems PIA - Savannah River Nuclear Solutions Badge Request and Site Personnel Roster Systems PIA - Savannah River Nuclear Solutions Badge...

  3. PIA - Savannah River Nuclear Solution SRNS ProRad Environment...

    Energy Savers [EERE]

    SRNS ProRad Environment Management PIA - Savannah River Nuclear Solution SRNS ProRad Environment Management PIA - Savannah River Nuclear Solution SRNS ProRad Environment Management...

  4. Independent Oversight Review, Savannah River Site Tritium Facilities...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    June 2012 Independent Oversight Review, Savannah River Site Tritium Facilities - June 2012 June 2012 Review of the Savannah River Site Tritium Facilities Implementation...

  5. Independent Oversight Activity Report, Savannah River Site Waste...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Report, Savannah River Site Waste Solidification Building May 2013 Savannah River Site Waste Solidification Building Corrective Actions from the January 2013 Report on...

  6. Raft River Geothermal Area Data Models - Conceptual, Logical...

    Open Energy Info (EERE)

    Tables, Figures and other Content in Reports from the Raft River Geothermal Project: "Technical Report on the Raft River Geothermal Resource, Cassia County, Idaho," GeothermEx,...

  7. UVA Hydraulic and Transport Engineering Lab for Sustainable River Resources

    E-Print Network [OSTI]

    Zhigilei, Leonid V.

    #12;UVA Hydraulic and Transport Engineering Lab for Sustainable River Resources Some Applications: Small and Large Dam Removal River Restoration / Rehabilitation In Stream Flow Calculation Stormwater

  8. Employee of Savannah River Site Contractor Recognized as Exemplary...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Employee of Savannah River Site Contractor Recognized as Exemplary in Safety and Health Employee of Savannah River Site Contractor Recognized as Exemplary in Safety and Health...

  9. Hood River Passive House, Hood River, Oregon (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2014-02-01

    The Hood River Passive Project was developed by Root Design Build of Hood River Oregon using the Passive House Planning Package (PHPP) to meet all of the requirements for certification under the European Passive House standards. The Passive House design approach has been gaining momentum among residential designers for custom homes and BEopt modeling indicates that these designs may actually exceed the goal of the U.S. Department of Energy's (DOE) Building America program to "reduce home energy use by 30%-50%" (compared to 2009 energy codes for new homes). This report documents the short term test results of the Shift House and compares the results of PHPP and BEopt modeling of the project. The design includes high R-Value assemblies, extremely tight construction, high performance doors and windows, solar thermal DHW, heat recovery ventilation, moveable external shutters and a high performance ductless mini-split heat pump. Cost analysis indicates that many of the measures implemented in this project did not meet the BA standard for cost neutrality. The ductless mini-split heat pump, lighting and advanced air leakage control were the most cost effective measures. The future challenge will be to value engineer the performance levels indicated here in modeling using production based practices at a significantly lower cost.

  10. Savannah River Site dose control

    SciTech Connect (OSTI)

    Smith, L.S.

    1992-06-01

    Health physicists from the Brookhaven National Laboratory (BNL) visited the Savannah River Site (SRS) as one of 12 facilities operated by the Department of Energy (DOE) contractors with annual collective dose equivalents greater than 100 person-rem (100 person-cSv). Their charter was to review, evaluate and summarize as low as reasonably achievable (ALARA) techniques, methods and practices as implemented. This presentation gives an overview of the two selected ALARA practices implemented at the SRS: Administrative Exposure Limits and Goal Setting. These dose control methods are used to assure that individual and collective occupational doses are ALARA and within regulatory limits.

  11. Power Systems Development Facility

    SciTech Connect (OSTI)

    None

    2003-07-01

    This report discusses Test Campaign TC12 of the Kellogg Brown & Root, Inc. (KBR) Transport Gasifier train with a Siemens Westinghouse Power Corporation (SW) particle filter system at the Power Systems Development Facility (PSDF) located in Wilsonville, Alabama. The Transport Gasifier is an advanced circulating fluidized-bed reactor designed to operate as either a combustor or a gasifier using a particulate control device (PCD). While operating as a gasifier, either air or oxygen can be used as the oxidant. Test run TC12 began on May 16, 2003, with the startup of the main air compressor and the lighting of the gasifier start-up burner. The Transport Gasifier operated until May 24, 2003, when a scheduled outage occurred to allow maintenance crews to install the fuel cell test unit and modify the gas clean-up system. On June 18, 2003, the test run resumed when operations relit the start-up burner, and testing continued until the scheduled end of the run on July 14, 2003. TC12 had a total of 733 hours using Powder River Basin (PRB) subbituminous coal. Over the course of the entire test run, gasifier temperatures varied between 1,675 and 1,850 F at pressures from 130 to 210 psig.

  12. Power LCAT

    SciTech Connect (OSTI)

    Drennen, Thomas

    2012-08-15

    POWER LCAT is a software tool used to compare elements of efficiency, cost, and environmental effects between different sources of energy.

  13. QM Power

    Broader source: Energy.gov [DOE]

    QM Power’s Q-Sync™ is an innovative, highly efficient and cost effective motor technology. Utilizing DoE SBIR funding, QM Power has developed advanced Q-Sync fan motor technology for 9-12 watt commercial refrigeration fan applications and is launching its first product lines targeting both new and existing commercial refrigeration equipment. For this project, QM Power will team with Oak Ridge National Labs, market leading OEMs, subject matter experts, end users, retrofit contractors and utilities to install and demonstrate approximately 10,000 high efficiency Q-Sync fan motors in over 50 grocery sites throughout the US.

  14. Power LCAT

    ScienceCinema (OSTI)

    Drennen, Thomas

    2014-06-27

    POWER LCAT is a software tool used to compare elements of efficiency, cost, and environmental effects between different sources of energy.

  15. FLOOD RESPONSE PLAN River Flood Guide

    E-Print Network [OSTI]

    Lennard, William N.

    1 FLOOD RESPONSE PLAN River Flood Guide Effective Date: January 2013 Updated: February 2014 #12 Thames River basin have the potential to cause flooding on Western properties. PURPOSE To establish areas) closing of parking lots and clearing of parked vehicles and other Western property in flood

  16. The State of the Columbia River Basin

    E-Print Network [OSTI]

    1 The State of the Columbia River Basin Draft Fiscal Year 2009 ANNUAL REPORT To Congress and fish and wildlife policy in the Columbia River Basin and to inform the public about energy and fish Basin, and a synopsis of the major activities of the Council during the fiscal year ending September 30

  17. BLUE RIVER BASIN (Dodson Industrial District)

    E-Print Network [OSTI]

    US Army Corps of Engineers

    BLUE RIVER BASIN (Dodson Industrial District) Kansas City, Missouri MODIFICATION REQUEST capability to support this request. PROJECT PURPOSE Dodson Industrial District is located along the Blue of a 6,800 foot long levee- floodwall along the north bank of the Blue River from the Bannister Road

  18. Prospective Climate Change Impact on Large Rivers

    E-Print Network [OSTI]

    Julien, Pierre Y.

    1 Prospective Climate Change Impact on Large Rivers in the US and South Korea Pierre Y. Julien Dept. of Civil and Environ. Eng. Colorado State University Seoul, South Korea August 11, 2009 Climate Change and Large Rivers 1. Climatic changes have been on-going for some time; 2. Climate changes usually predict

  19. Savannah River Site Environmental Report for 1998

    SciTech Connect (OSTI)

    Arnett, M.

    1999-06-09

    The mission at the Savannah River Site (SRS) is focused primarily on support of the national defense, nonproliferation, and environmental cleanup. SRS-through its prime operating contractor, Westinghouse Savannah River Company-continues to maintain a comprehensive environmental monitoring program.

  20. Financial Sustainability of International River Basin Organizations

    E-Print Network [OSTI]

    Wolf, Aaron

    Financial Sustainability of International River Basin Organizations Final Report #12;Published by financing of a sample of African, Asian and European River Basin Organizations (RBOs). Its focus contributions to cov- er their regular run-ning costs. To a degree, the financial challenges some African RBOs

  1. WAMweisman art museum 333 east river road

    E-Print Network [OSTI]

    Thomas, David D.

    WAMweisman art museum press release 333 east river road minneapolis, MN 55455 www per person (current Individual and Dual level members) FREE for members at the Sustainer level: The Weisman is located at 333 E. River Road in Minneapolis. There is no admission fee to the Weisman

  2. Interannual variations of river water storage from a multiple satellite approach: A case study for the Rio Negro River basin

    E-Print Network [OSTI]

    Frappart, Frédéric; Papa, Fabrice; Famiglietti, James S; Prigent, Catherine; Rossow, William B; Seyler, Frédérique

    2008-01-01

    satellite track runs along the river. As T/P cross track (orthe T/P tracks run parallel to the river. In these cases,

  3. Columbia River Hatchery Reform System-Wide Report.

    SciTech Connect (OSTI)

    Warren, Dan

    2009-04-16

    The US Congress funded the Puget Sound and Coastal Washington Hatchery Reform Project via annual appropriations to the US Fish and Wildlife Service (USFWS) beginning in fiscal year 2000. Congress established the project because it recognized that while hatcheries have a necessary role to play in meeting harvest and conservation goals for Pacific Northwest salmonids, the hatchery system was in need of comprehensive reform. Most hatcheries were producing fish for harvest primarily to mitigate for past habitat loss (rather than for conservation of at-risk populations) and were not taking into account the effects of their programs on naturally spawning populations. With numerous species listed as threatened or endangered under the Endangered Species Act (ESA), conservation of salmon in the Puget Sound area was a high priority. Genetic resources in the region were at risk and many hatchery programs as currently operated were contributing to those risks. Central to the project was the creation of a nine-member independent scientific review panel called the Hatchery Scientific Review Group (HSRG). The HSRG was charged by Congress with reviewing all state, tribal and federal hatchery programs in Puget Sound and Coastal Washington as part of a comprehensive hatchery reform effort to: conserve indigenous salmonid genetic resources; assist with the recovery of naturally spawning salmonid populations; provide sustainable fisheries; and improve the quality and cost-effectiveness of hatchery programs. The HSRG worked closely with the state, tribal and federal managers of the hatchery system, with facilitation provided by the non-profit organization Long Live the Kings and the law firm Gordon, Thomas, Honeywell, to successfully complete reviews of over 200 hatchery programs at more than 100 hatcheries across western Washington. That phase of the project culminated in 2004 with the publication of reports containing the HSRG's principles for hatchery reform and recommendations for Puget Sound/Coastal Washington hatchery programs, followed by the development in 2005 of a suite of analytical tools to support application of the principles (all reports and tools are available at www.hatcheryreform.us). In 2005, Congress directed the National Oceanic and Atmospheric Administration-Fisheries (NOAA Fisheries) to replicate the Puget Sound and Coastal Washington Hatchery Reform Project in the Columbia River Basin. The HSRG was expanded to 14 members to include individuals with specific knowledge about the Columbia River salmon and steelhead populations. This second phase was initially envisioned as a one-year review, with emphasis on the Lower Columbia River hatchery programs. It became clear however, that the Columbia River Basin needed to be viewed as an inter-connected ecosystem in order for the review to be useful. The project scope was subsequently expanded to include the entire Basin, with funding for a second year provided by the Bonneville Power Administration (BPA) under the auspices of the Northwest Power and Conservation Council's (NPCC) Fish and Wildlife Program. The objective of the HSRG's Columbia River Basin review was to change the focus of the Columbia River hatchery system. In the past, these hatchery programs have been aimed at supplying adequate numbers of fish for harvest as mitigation primarily for hydropower development in the Basin. A new, ecosystem-based approach is founded on the idea that harvest goals are sustainable only if they are compatible with conservation goals. The challenge before the HSRG was to determine whether or not conservation and harvest goals could be met by fishery managers and, if so, how. The HSRG determined that in order to address these twin goals, both hatchery and harvest reforms are necessary. The HSRG approach represents an important change of direction in managing hatcheries in the region. It provides a clear demonstration that current hatchery programs can indeed be redirected to better meet both conservation and harvest goals. For each Columbia River Basin Environmentally Significant Unit

  4. Galena Electric Power A Situational Analysis

    SciTech Connect (OSTI)

    Robert E. Chaney; Stephen G. Colt; Ronald A. Johnson; Richard W. Wiles; Gregory J. White

    2008-12-31

    The purpose of the investigation is to compare the economics of various electrical power generation options for the City of Galena. Options were assessed over a 30-year project period, beginning in 2010, and the final results were compared on the basis of residential customer electric rates ($/kWh). Galena's electric utility currently generates power using internal combustion diesel engines and generator sets. Nearby, there is an exposed coal seam, which might provide fuel for a power plant. Contributions to the energy mix might come from solar, municipal solid waste, or wood. The City has also been approached by Toshiba, Inc., as a demonstration site for a small (Model 4S) nuclear reactor power plant. The Yukon River is possibly a site for in-river turbines for hydroelectric power. This report summarizes the comparative economics of various energy supply options. This report covers: (1) thermal and electric load profiles for Galena; (2) technologies and resources available to meet or exceed those loads; (3) uses for any extra power produced by these options; (4) environmental and permitting issues and then; and (5) the overall economics of each of the primary energy options.

  5. PowerMand | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History ViewMayo, Maryland:NPIProtectio1975) |Texas:Pottawattamie County,River,GeneratingPowerChem

  6. BONNEVILLE POWER ADMINISTRATION FOR IMMEDIATE RELEASE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy's Lower Snake River Wind Project, which PGE renamed the Tucannon River Wind Farm, required construction activities to begin this spring. The Tucannon River Wind Farm is...

  7. 2007 Wholesale Power Rate Case Initial Proposal : Revenue Requirement Study.

    SciTech Connect (OSTI)

    United States. Bonneville Power Administration.

    2005-11-01

    The purpose of this Study is to establish the level of revenues from wholesale power rates necessary to recover, in accordance with sound business principles, the Federal Columbia River Power System (FCRPS) costs associated with the production, acquisition, marketing, and conservation of electric power. The generation revenue requirement includes: recovery of the Federal investment in hydro generation, fish and wildlife and conservation costs; Federal agencies' operations and maintenance (O&M) expenses allocated to power; capitalized contract expenses associated with non-Federal power suppliers such as Energy Northwest (EN); other power purchase expenses, such as short-term power purchases; power marketing expenses; cost of transmission services necessary for the sale and delivery of FCRPS power; and all other generation-related costs incurred by the Administrator pursuant to law.

  8. Power system

    DOE Patents [OSTI]

    Hickam, Christopher Dale (Glasford, IL)

    2008-03-18

    A power system includes a prime mover, a transmission, and a fluid coupler having a selectively engageable lockup clutch. The fluid coupler may be drivingly connected between the prime mover and the transmission. Additionally, the power system may include a motor/generator drivingly connected to at least one of the prime mover and the transmission. The power-system may also include power-system controls configured to execute a control method. The control method may include selecting one of a plurality of modes of operation of the power system. Additionally, the control method may include controlling the operating state of the lockup clutch dependent upon the mode of operation selected. The control method may also include controlling the operating state of the motor/generator dependent upon the mode of operation selected.

  9. River 

    E-Print Network [OSTI]

    Unknown

    2011-09-05

    ............................................................ 29 14 Alluvial fans along the Guadalupe Mountains in Big Dog Canyon........ 31 15 Alluvial fans along the Brokeoff Mountains in Big Dog Canyon........... 35 16 View of alluvial fans from their drainage basins.................................. 75 27 Salt Basin-Brokeoff Mountains alluvial fan group ................................. 76 28 Big Dog Canyon-Brokeoff Mountains alluvial fan group....................... 77 29 Big Dog Canyon-Guadalupe Mountains alluvial fan group...

  10. Neuse River Basin, North Carolina Ecosystem Restoration Project

    E-Print Network [OSTI]

    US Army Corps of Engineers

    Neuse River Basin, North Carolina Ecosystem Restoration Project 5 October 2012 ABSTRACT: The study area encompasses the Neuse River Basin, the third-largest river basin in North Carolina. The Basin, upstream of the city of New Bern, North Carolina. At New Bern the river broadens dramatically and changes

  11. Willamette River Transit Bridge PSU CTS Seminar January 16, 2009

    E-Print Network [OSTI]

    Bertini, Robert L.

    Willamette River Transit Bridge PSU CTS Seminar January 16, 2009 Dave Unsworth, TriMet Guenevere River Transit Bridge · Portland-Milwaukie Light Rail Project · Plans for a new Willamette River Bridge · Public Process Today's Agenda #12;Willamette River Transit BridgePortland-Milwaukie Light Rail Project

  12. Independent Oversight Inspection, Savannah River Site- December 2009

    Office of Energy Efficiency and Renewable Energy (EERE)

    Inspection of Reinforced Concrete Construction at the Savannah River Site Mixed Oxide Fuel Fabrication Facility

  13. Independent Oversight Inspection, Savannah River Site, Summary Report- February 2004

    Broader source: Energy.gov [DOE]

    Inspection of Environment, Safety, and Health Management and Emergency Management at the Savannah River Site

  14. HL Green Power Co | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LISTStar2-0057-EA JumpDuimen River Power Co LtdGuntherGreen Power Co Jump to:

  15. High Plains Power Inc | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LISTStar2-0057-EA JumpDuimen River PowerHeckertHidrotermica JumpPower Inc Jump to:

  16. Hitec Power Protection | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LISTStar2-0057-EA JumpDuimen River PowerHeckertHidrotermicaPower

  17. River Data Package for Hanford Assessments

    SciTech Connect (OSTI)

    Rakowski, Cynthia L.; Guensch, Gregory R.; Patton, Gregory W.

    2006-08-01

    This data package documents the technical basis for selecting physical and hydraulic parameters and input values that will be used in river modeling for Hanford assessments. This work was originally conducted as part of the Characterization of Systems Task of the Groundwater Remediation Project managed by Fluor Hanford, Inc. and revised as part of the Characterization of Systems Project managed by PNNL for DOE. The river data package provides calculations of flow and transport in the Columbia River system. The module is based on the legacy code for the Modular Aquatic Simulation System II (MASS2), which is a two-dimensional, depth-averaged model that provides the capability to simulate the lateral (bank-to-bank) variation of flow and contaminants. It simulates river hydrodynamics (water velocities and surface elevations), sediment transport, contaminant transport, biotic transport, and sediment-contaminant interaction, including both suspended sediments and bed sediments. This document presents the data assembled to run the river module components for the section of the Columbia River from Vernita Bridge to the confluence with the Yakima River. MASS2 requires data on the river flow rate, downstream water surface elevation, groundwater influx and contaminants flux, background concentrations of contaminants, channel bathymetry, and the bed and suspended sediment properties. Stochastic variability for some input parameters such as partition coefficient (kd) values and background radionuclide concentrations is generated by the Environmental Stochastic Preprocessor. River flow is randomized on a yearly basis. At this time, the conceptual model does not incorporate extreme flooding (for example, 50 to 100 years) or dam removal scenarios.

  18. Ecology of Juvenile Salmon in Shallow Tidal Freshwater Habitats in the Vicinity of the Sandy River Delta, Lower Columbia River, 2008 Annual Report.

    SciTech Connect (OSTI)

    Sather, NK; Johnson, GE; Storch, AJ [Pacific Northwest National Laboratory

    2009-07-06

    The tidal freshwater monitoring (TFM) project reported herein is part of the research, monitoring, and evaluation effort developed by the Action Agencies (Bonneville Power Administration, the U.S. Army Corps of Engineers [USACE], and the U.S. Bureau of Reclamation) in response to obligations arising from the Endangered Species Act (ESA) as a result of operation of the Federal Columbia River Power System. The project is being performed under the auspices of the Northwest Power and Conservation Council's Columbia Basin Fish and Wildlife Program (Project No. 2005-001-00). The research is a collaborative effort among the Pacific Northwest National Laboratory, the Oregon Department of Fish and Wildlife, the National Marine Fisheries Service, and the University of Washington. The overarching goal of the TFM project is to bridge the gap in knowledge between tidal freshwater habitats and the early life history attributes of migrating salmon. The research questions include: In what types of habitats within the tidal freshwater area of the Columbia River are juvenile salmon found, when are they present, and under what environmental conditions? What is the ecological contribution of shallow (0-5 m) tidal freshwater habitats to the recovery of ESA-listed salmon in the Columbia River basin? Field data collection for the TFM project commenced in June 2007 and since then has continued monthly at six to nine sites in the vicinity of the Sandy River delta (river kilometer 192-208). While this report includes summary data spanning the 19-month period of study from June 2007 through December 2008, it highlights sampling conducted during calendar year 2008. Detailed data for calendar year 2007 were reported previously. The 2008 research objectives were as follows: (1) Characterize the vegetation composition and percent cover, conventional water quality, water surface elevation, substrate composition, bathymetry, and beach slope at the study sites within the vicinity of the Sandy River delta. (2) Characterize the fish community and juvenile salmon migration, including species composition, length-frequency distribution, density (number/m{sup 2}), and temporal and spatial distributions in the vicinity of the Sandy River delta in the lower Columbia River and estuary (LCRE). (3) Determine the stock of origin for juvenile Chinook salmon (Oncorhynchus tshawytscha) captured at sampling sites through genetic identification. (4) Characterize the diets of juvenile Chinook and coho (O. kisutch) salmon captured within the study area. (5) Estimate run timing, residence times, and migration pathways for acoustic-tagged fish in the study area. (6) Conduct a baseline evaluation of the potential restoration to reconnect the old Sandy River channel with the delta. (7) Apply fish density data to initiate a design for a juvenile salmon monitoring program for beach habitats within the tidal freshwater segment of the LCRE (river kilometer 56-234).

  19. Holocene versus modern catchment erosion rates at 300 MW Baspa II hydroelectric power plant (India, NW Himalaya)

    E-Print Network [OSTI]

    Bookhagen, Bodo

    Holocene versus modern catchment erosion rates at 300 MW Baspa II hydroelectric power plant (India private hydroelectric facility, located at the Baspa River which is an important left-hand tributary

  20. WABASH RIVER COAL GASIFICATION REPOWERING PROJECT

    SciTech Connect (OSTI)

    Unknown

    2000-09-01

    The close of 1999 marked the completion of the Demonstration Period of the Wabash River Coal Gasification Repowering Project. This Final Report summarizes the engineering and construction phases and details the learning experiences from the first four years of commercial operation that made up the Demonstration Period under Department of Energy (DOE) Cooperative Agreement DE-FC21-92MC29310. This 262 MWe project is a joint venture of Global Energy Inc. (Global acquired Destec Energy's gasification assets from Dynegy in 1999) and PSI Energy, a part of Cinergy Corp. The Joint Venture was formed to participate in the Department of Energy's Clean Coal Technology (CCT) program and to demonstrate coal gasification repowering of an existing generating unit impacted by the Clean Air Act Amendments. The participants jointly developed, separately designed, constructed, own, and are now operating an integrated coal gasification combined-cycle power plant, using Global Energy's E-Gas{trademark} technology (E-Gas{trademark} is the name given to the former Destec technology developed by Dow, Destec, and Dynegy). The E-Gas{trademark} process is integrated with a new General Electric 7FA combustion turbine generator and a heat recovery steam generator in the repowering of a 1950's-vintage Westinghouse steam turbine generator using some pre-existing coal handling facilities, interconnections, and other auxiliaries. The gasification facility utilizes local high sulfur coals (up to 5.9% sulfur) and produces synthetic gas (syngas), sulfur and slag by-products. The Project has the distinction of being the largest single train coal gasification combined-cycle plant in the Western Hemisphere and is the cleanest coal-fired plant of any type in the world. The Project was the first of the CCT integrated gasification combined-cycle (IGCC) projects to achieve commercial operation.

  1. Nuclear Power 

    E-Print Network [OSTI]

    2010-01-01

    be inherently safe and environmentally benign. These realities of today's world are among the reasons that lead to serious interest in deploying nuclear power as a sustainable energy source. Today's nuclear reactors are safe and highly efficient energy systems...

  2. Power combiner

    DOE Patents [OSTI]

    Arnold, Mobius; Ives, Robert Lawrence

    2006-09-05

    A power combiner for the combining of symmetric and asymmetric traveling wave energy comprises a feed waveguide having an input port and a launching port, a reflector for reflecting launched wave energy, and a final waveguide for the collection and transport of launched wave energy. The power combiner has a launching port for symmetrical waves which comprises a cylindrical section coaxial to the feed waveguide, and a launching port for asymmetric waves which comprises a sawtooth rotated about a central axis.

  3. Genetic and Phenotypic Catalog of Native Resident Trout of the interior Columbia River Basin : FY-2001 Report : Populations in the Wenatchee, Entiat, Lake Chelan and Methow River Drainages.

    SciTech Connect (OSTI)

    Trotter, Patrick C.

    2001-10-01

    The 1994 Fish and Wildlife Program of the Northwest Power Planning Council specifies the recovery and preservation of population health of native resident fishes of the Columbia River Basin. Among the native resident species of concern are interior rainbow trout of the Columbia River redband subspecies Oncorhynchus mykiss gairdneri 1 and westslope cutthroat trout O. clarki lewisi. The westslope cutthroat trout has been petitioned for listing under the U. S. Endangered Species Act (American Wildlands et al. 1997). Before at-risk populations can be protected, their presence and status must be established. Where introgression from introduced species is a concern, as in the case of both westslope cutthroat trout and redband rainbow trout, genetic issues must be addressed as well. As is true with native trout elsewhere in the western United States (Behnke 1992), most of the remaining pure populations of these species in the Columbia River Basin are in relatively remote headwater reaches. The objective of this project was to photo-document upper Columbia Basin native resident trout populations in Washington, and to ascertain their species or subspecies identity and relative genetic purity using a nonlethal DNA technique. FY-2001 was year three (and final year) of a project in which we conducted field visits to remote locations to seek out and catalog these populations. In FY-2001 we worked in collaboration with the Wenatchee National Forest to catalog populations in the Wenatchee, Entiat, Lake Chelan, and Methow River drainages of Washington State.

  4. Modeling the influence of river rehabilitation scenarios on bed material sediment flux in a large river over decadal timescales

    E-Print Network [OSTI]

    Singer, Michael

    Modeling the influence of river rehabilitation scenarios on bed material sediment flux in a large and calibrated sediment transport formulae were used to assess the decadal impact of major river rehabilitation the implementation of three major river rehabilitation strategies being considered in the Sacramento River Valley

  5. The influence of sediment cover variability on longterm river incision rates: An example from the Peikang River,

    E-Print Network [OSTI]

    Mueller, Karl

    The influence of sediment cover variability on longterm river incision rates: An example from reach of the Peikang River. Sediment from these landslides produced widespread aggradation the spatial and temporal variability of sediment cover for the Peikang River. Because the river is undergoing

  6. River Data Package for the 2004 Composite Analysis

    SciTech Connect (OSTI)

    Rakowski, Cynthia L.; Guensch, Gregory R.; Patton, Gregory W.

    2004-08-01

    Beginning in fiscal year 2003, the DOE Richland Operations Office initiated activities, including the development of data packages, to support the 2004 Composite Analysis. The river data package provides calculations of flow and transport in the Columbia River system. This document presents the data assembled to run the river module components for the section of the Columbia River from Vernita Bridge to the confluence with the Yakima River.

  7. Exploring the Potential Impact of Reforestation on the Hydrology of the Upper Tana River Catchment and the Masinga Dam, Kenya

    E-Print Network [OSTI]

    DRAFT Exploring the Potential Impact of Reforestation on the Hydrology of the Upper Tana River water and hydroelectric power for 65% of the Nation. Unregulated deforestation and expansion to assess the impact of meeting a national goal for reforestation of 30% of deforested lands

  8. Flathead River Focus Watershed Coordinator, 2005-2006 Annual Report.

    SciTech Connect (OSTI)

    DuCharme, Lynn

    2006-05-01

    The Bonneville Power Administration (BPA) has long been involved with funding of the Cooperative Habitat Protection and Improvement with Private Landowners program in accordance with the Northwest Power Planning Council's (NPPC) Fish & Wildlife Program (Section 7.7). Section 7.7B.1 requires the establishment of ''at least one model watershed coordinator selected by each representative state''. This project was initiated in 1997 with the purpose of fulfilling the NWPCC's watershed program within the Flathead River basin in western Montana. Currently, the Flathead watershed has been radically altered by hydropower and other land uses. With the construction of Hungry Horse, Bigfork and Kerr dams, the Flathead River system has been divided into isolated populations. Bull trout have been listed as threatened by the US Fish and Wildlife Service and westslope cutthroat trout have been petitioned for listing. Many streams in the drainage have been destabilized during recent decades. Past legal and illegal species introductions are also causing problems. This project fosters in-kind, out-of-place mitigation to offset the impacts of hydroelectric power to 72 miles of the South Fork of the Flathead River and its tributaries upstream of Hungry Horse Dam. Key subbasins within the Flathead drainage, which are critical to native species restoration, are experiencing rapid changes in land ownership and management direction. Subdivision and residential development of agricultural and timber lands adjacent to waterways in the drainage pose one of the greatest threats to weak but recoverable stocks of trout species. Plum Creek Timber Company, a major landholder in the Flathead drainage is currently divesting itself of large tracks of its lakeshore and streamside holdings. Growth of small tract development throughout the area and its tributaries is occurring at a record rate. Immediate to short-term action is required to protect stream corridors through many of these areas if cost-effective recovery efforts are to be implemented. In order to adequately address the issues, other segments of society and other (non-BPA) funding sources must be incorporated into the solution. As stated in the 1994 Fish and Wildlife Program (section 7.7), ''Comprehensive watershed management should enhance and expedite implementation of actions by clearly identifying gaps in programs and knowledge, by striving over time to resolve conflicts, and by keying on activities that address priorities''. A watershed coordinator helps to initiate and facilitate efforts for addressing the issues mentioned above and pulling together a plan for mitigation. Local support is essential before local governments and individual citizens are going to allow government initiatives to be implemented.

  9. Flathead River Focus Watershed Coordinator, 2004-2005 Annual Report.

    SciTech Connect (OSTI)

    DuCharme, Lynn

    2006-06-26

    The Bonneville Power Administration (BPA) has long been involved with funding of the Cooperative Habitat Protection and Improvement with Private Landowners program in accordance with the Northwest Power Planning Council's (NPPC) Fish & Wildlife Program (Section 7.7). Section 7.7B.1 requires the establishment of ''at least one model watershed coordinator selected by each representative state''. This project was initiated in 1997 with the purpose of fulfilling the NWPCC's watershed program within the Flathead River basin in western Montana. Currently, the Flathead watershed has been radically altered by hydropower and other land uses. With the construction of Hungry Horse, Bigfork and Kerr dams, the Flathead River system has been divided into isolated populations. Bull trout have been listed as threatened by the US Fish and Wildlife Service and westslope cutthroat trout have been petitioned for listing. Many streams in the drainage have been destabilized during recent decades. Past legal and illegal species introductions are also causing problems. This project fosters in-kind, out-of-place mitigation to offset the impacts of hydroelectric power to 72 miles of the South Fork of the Flathead River and its tributaries upstream of Hungry Horse Dam. Key subbasins within the Flathead drainage, which are critical to native species restoration, are experiencing rapid changes in land ownership and management direction. Subdivision and residential development of agricultural and timber lands adjacent to waterways in the drainage pose one of the greatest threats to weak but recoverable stocks of trout species. Plum Creek Timber Company, a major landholder in the Flathead drainage is currently divesting itself of large tracks of its lakeshore and streamside holdings. Growth of small tract development throughout the area and its tributaries is occurring at a record rate. Immediate to short-term action is required to protect stream corridors through many of these areas if cost-effective recovery efforts are to be implemented. In order to adequately address the issues, other segments of society and other (non-BPA) funding sources must be incorporated into the solution. As stated in the 1994 Fish and Wildlife Program (section 7.7), ''Comprehensive watershed management should enhance and expedite implementation of actions by clearly identifying gaps in programs and knowledge, by striving over time to resolve conflicts, and by keying on activities that address priorities''. A watershed coordinator helps to initiate and facilitate efforts for addressing the issues mentioned above and pulling together a plan for mitigation. Local support is essential before local governments and individual citizens are going to allow government initiatives to be implemented.

  10. Flathead River Focus Watershed Coordinator, 2003-2004 Annual Report.

    SciTech Connect (OSTI)

    DuCharme, Lynn

    2004-06-01

    The Bonneville Power Administration (BPA) has long been involved with funding of the Cooperative Habitat Protection and Improvement with Private Landowners program in accordance with the Northwest Power Planning Council's (NPPC) Fish & Wildlife Program (Section 7.7). Section 7.7B.1 requires the establishment of ''at least one model watershed coordinator selected by each representative state''. This project was initiated in 1997 with the purpose of fulfilling the NWPCC's watershed program within the Flathead River basin in western Montana. Currently, the Flathead watershed has been radically altered by hydropower and other land uses. With the construction of Hungry Horse, Bigfork and Kerr dams, the Flathead River system has been divided into isolated populations. Bull trout have been listed as threatened by the US Fish and Wildlife Service and westslope cutthroat trout have been petitioned for listing. Many streams in the drainage have been destabilized during recent decades. Past legal and illegal species introductions are also causing problems. This project fosters in-kind, out-of-place mitigation to offset the impacts of hydroelectric power to 72 miles of the South Fork of the Flathead River and its tributaries upstream of Hungry Horse Dam. Key subbasins within the Flathead drainage, which are critical to native species restoration, are experiencing rapid changes in land ownership and management direction. Subdivision and residential development of agricultural and timber lands adjacent to waterways in the drainage pose one of the greatest threats to weak but recoverable stocks of trout species. Plum Creek Timber Company, a major landholder in the Flathead drainage is currently divesting itself of large tracks of its lakeshore and streamside holdings. Growth of small tract development throughout the area and its tributaries is occurring at a record rate. Immediate to short-term action is required to protect stream corridors through many of these areas if cost-effective recovery efforts are to be implemented. In order to adequately address the issues, other segments of society and other (non-BPA) funding sources must be incorporated into the solution. As stated in the 1994 Fish and Wildlife Program (section 7.7), ''Comprehensive watershed management should enhance and expedite implementation of actions by clearly identifying gaps in programs and knowledge, by striving over time to resolve conflicts, and by keying on activities that address priorities''. A watershed coordinator helps to initiate and facilitate efforts for addressing the issues mentioned above and pulling together a plan for mitigation. Local support is essential before local governments and individual citizens are going to allow government initiatives to be implemented.

  11. BITTERROOT RIVER SUBBASIN ASSESSMENT FOR FISH AND

    E-Print Network [OSTI]

    that respond to impacts from the development and operation of the Columbia River hydropower system. Nothing hydropower system. Nothing in this Plan or the participation in its development is intended to, and shall

  12. Think water : reconditioning the Malden River

    E-Print Network [OSTI]

    Oda, Kazuyo, 1969-

    2003-01-01

    The purpose of this thesis is to link water, history and culture through architectural and urban design by researching the potential for the rejuvenation of a neglected industrial site at the edge of a river. The Malden ...

  13. Lumbee River EMC- Residential Weatherization Loan Program

    Broader source: Energy.gov [DOE]

    Lumbee River Electric Membership Corporation (LREMC) offers low interest loans to help residential members increase the energy efficiency of homes. Loans up to $17,000 are available for the...

  14. BPA research aids Columbia River white sturgeon

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    research aids Columbia River white sturgeon 8142015 12:00 AM Tweet Page Content BPA fish biologist Scott Bettin (left) and Brad Cady of the Washington Dept. of Fish and...

  15. Savannah River Site Environmental Report for 1997

    SciTech Connect (OSTI)

    Arnett, M.W.; Mamatey, A.R.

    1998-08-01

    The mission at the Savannah River Site has changed from the production of nuclear weapons materials for national defense to the management of waste, restoration of the environment, and the development of industry in and around the site.

  16. Savannah River Site Achieves Waste Transfer First

    Broader source: Energy.gov [DOE]

    AIKEN, S.C. – The EM program and its liquid waste contractor at the Savannah River Site (SRS) made history recently by safely transferring radioactive liquid waste from F Tank Farm to H Tank Farm using a central control room.

  17. EIS-0241: Hood River Fisheries Program

    Broader source: Energy.gov [DOE]

    This EIS evaluates a BPA proposal to protect and improve anadromous salmonid populations in the Hood River Basin. These actions are proposed in an attempt to mitigate the losses of fish and...

  18. Delaware River Basin Commission (Multiple States)

    Broader source: Energy.gov [DOE]

    The Delaware River Basin Commission (DRBC) is a federal-interstate compact government agency that was formed by concurrent legislation enacted in 1961 by the United States and the four basin states...

  19. River Basins Advisory Commissions (South Carolina)

    Broader source: Energy.gov [DOE]

    The Catawba/Wateree and Yadkin/Pee Dee River Basins Advisory Commissions are permanent public bodies jointly established by North and South Carolina. The commissions are responsible for assessing...

  20. Low Power Design Low PowerLow Power

    E-Print Network [OSTI]

    Pedram, Massoud

    Low Power Design USC/LPCAD Page 1 USCUSC Low PowerLow Power CADCAD MassoudMassoud PedramPedram High-Level Design Challenges and Solutions for Low Power Systems Massoud Pedram University of Southern California Department of EE-Systems Los Angeles CA 90089-256 Email: massoud@zugros.usc.edu USCUSC Low PowerLow Power

  1. A History of Irrigation in the Arkansas River Valley in Western Kansas, 1880-1910

    E-Print Network [OSTI]

    Sorensen, Conner

    1968-01-01

    , "The High Plains and their Utilization," United States Geological Survey, Twenty- First Annual Report (1899-1900), facing p. 609. Note that the Arkansas River in western Kansas is depicted as an intermittent stream. CHAPTER I THE NATURAL SETTING...-21. St. John, "Notes on the Geology of Southwest Kansas," Kansas State Board of Agriculture, Fifth Biennial Report (1885-1886), p. 13$. k Plains of Eastern Colorado and Western Kansas.** As a result of the absorptive powers of the tertiary mantle...

  2. Addressing Stakeholder Concerns: Pests and Pest Control in the Sacramento River Conservation Area

    E-Print Network [OSTI]

    Langridge, Suzanne

    2010-01-01

    scale restoration on the Sacramento River. Chapter 17 inriverside forests along the Sacramento River, the source ofand levee construction. The Sacramento River CONTACT Suzanne

  3. Observations on the Review of Archaeological Investigations in the Sacramento River Canyon

    E-Print Network [OSTI]

    Raven, Christopher

    1985-01-01

    decision to excavate the Sacramento River Canyon sites wasInvestigations in the Sacramento River Canyon, Vol. I:Investigations in the Sacramento River Canyon CHRISTOPHER

  4. Local diffusion networks act as pathways?to sustainable agriculture in the Sacramento River Valley

    E-Print Network [OSTI]

    Lubell, Mark; Fulton, Allan

    2007-01-01

    agriculture in the Sacramento River Valley by Mark Lubellquality management in the Sacramento River Valley. Data fromencourage growers in the Sacramento River Valley to

  5. Historic and Present Distribution of Chinook Salmon and Steelhead in the Calaveras River

    E-Print Network [OSTI]

    Marsh, Glenda

    2007-01-01

    2001). Presently, fall run Tuolumne River still occurs inof Calaveras River King Salmon run and proposed contingencyJune and Stanislaus Rivers Fall Run 8 June – December Late

  6. Solar powered desalination system

    E-Print Network [OSTI]

    Mateo, Tiffany Alisa

    2011-01-01

    river, and be used to filter the water. The water producedppm. This system can filter natural sources of water such asstandard filter housing with the inlet concentrated water

  7. PowerPoint Presentation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    in rivers and tidal flow is crucial for the annual energy production estimation and structural design of MHK devices. * ADCP moving vessel deployments provide 3D velocity...

  8. Salmon River Habitat Enhancement, 1990 Annual Report.

    SciTech Connect (OSTI)

    Rowe, Mike

    1991-12-01

    The annual report contains three individual subproject sections detailing tribal fisheries work completed during the summer and fall of 1990. Subproject I contains summaries of evaluation/monitoring efforts associated with the Bear Valley Creek, Idaho enhancement project. Subproject II contains an evaluation of the Yankee Fork of the Salmon River habitat enhancement project. Subproject III concerns the East Fork of the Salmon River, Idaho.

  9. Qualitative assessment of the impacts of proposed system operating strategies to resident fish within selected Columbia River Reservoirs

    SciTech Connect (OSTI)

    Shreffler, D.K.; Geist, D.R.; Mavros, W.V.

    1994-01-01

    The Bonneville Power Administration (BPA), Bureau of Reclamation (BOR), and US Army Corps of Engineers (COE) are presently conducting the System Operation Review (SOR) for the Columbia River basin. The SOR began in 1990 and is expected to provide an operating strategy that will take into consideration multiple uses of the Columbia River system including navigation, flood control, irrigation, power generation, fish migration, fish and wildlife habitat, recreation, water supply, and water quality. This report provides descriptions of each of the non-modeled reservoirs and other specified river reaches. The descriptions focus on the distinct management goals for resident fish: biodiversity, species-specific concerns, and sport fisheries. In addition, this report provides a qualitative assessment of impacts to the resident fish within these reservoirs and river reaches from the 7 alternative system operating strategies. In addition to this introduction, the report contains four more sections. Section 2.0 provides the methods that were used. Reservoir descriptions appear in Section 3.0, which is a synthesis of our literature review and interviews with resident fish experts. Section 4.0 contains a discussion of potential impacts to fish within each of these reservoirs and river reaches from the 7 proposed system operating strategies. The references cited are listed in Section 5.0.

  10. RIVER PROTECTION PROJECT SYSTEM PLAN

    SciTech Connect (OSTI)

    CERTA PJ

    2008-07-10

    The U.S. Department of Energy (DOE), Office of River Protection (ORP) manages the River Protection Project (RPP). The RPP mission is to retrieve and treat Hanford's tank waste and close the tank farms to protect the Columbia River. As a result, the ORP is responsible for the retrieval, treatment, and disposal of the approximately 57 million gallons of radioactive waste contained in the Hanford Site waste tanks and closure of all the tanks and associated facilities. The previous revision of the System Plan was issued in September 2003. ORP has approved a number of changes to the tank waste treatment strategy and plans since the last revision of this document, and additional changes are under consideration. The ORP has established contracts to implement this strategy to establish a basic capability to complete the overall mission. The current strategy for completion of the mission uses a number of interrelated activities. The ORP will reduce risk to the environment posed by tank wastes by: (1) Retrieving the waste from the single-shell tanks (SST) to double-shell tanks (DST) for treatment and disposal; (2) Constructing and operating the WTP, which will safely treat all of the high-level waste (HLW) and about half of the low-activity waste (LAW) contained in the tank farms, and maximizing its capability and capacity; (3) Developing and deploying supplemental treatment capability or a second WTP LAW Facility that can safely treat about half of the LAW contained in the tank farms; (4) Developing and deploying treatment and packaging capability for transuranic (TRU) tank waste for shipment to and disposal at the Waste Isolation Pilot Plant (WIPP); (5) Deploying interim storage capacity for the immobilized HLW and shipping that waste to Yucca Mountain for disposal; (6) Operating the Integrated Disposal Facility for the disposal of immobilized LAW, along with the associated secondary waste, (7) Closing the SST and DST tank farms, ancillary facilities, and al1 waste management and treatment facilities, (8) Developing and implementing technical solutions to mitigate the impact from substantial1y increased estimates of Na added during the pretreatment of the tank waste solids, This involves a combination of: (1) refining or modifying the flowsheet to reduce the required amount of additional sodium, (2) increasing the overall LAW vitrification capacity, (3) increasing the incorporation of sodium into the LAW glass, or (4) accepting an increase in mission duration, ORP has made and continues to make modifications to the WTP contract as needed to improve projected plant performance and address known or emerging risks, Key elements of the implementation of this strategy are included within the scope of the Tank Operations Contract, currently in procurement Since 2003, the ORP has conducted over 30 design oversight assessments of the Waste Treatment and Immobilization Plant (WTP). The estimated cost at completion has increased and the schedule for construction and commissioning of the WTP has extended, The DOE, Office of Environmental Management (EM), sanctioned a comprehensive review of the WTP flowsheet, focusing on throughput. In 2005, the TFC completed interim stabilization of the SSTs and as of March 2007, has completed the retrieval of seven selected SSTs. Demonstration of supplemental treatment technologies continues. The ongoing tank waste retrieval experience, progress with supplemental treatment technologies, and changes in WTP schedule led to the FY 2007 TFC baseline submittal in November 2006. The TFC baseline submittal was developed before the WTP schedule was fully understood and approved by ORP, and therefore reflects an earlier start date for the WTP facilities. This System Plan is aligned with the current WTP schedule with hot commissioning beginning in 2018 and full operations beginning in 2019. Major decisions regarding the use of supplemental treatment and the associated technology, the ultimate needed capacity, and its relationship to the WTP have not yet been finalized. This System Plan assumes that the outcome of

  11. RIVER PROTECTION PROJECT SYSTEM PLAN

    SciTech Connect (OSTI)

    CERTA PJ; KIRKBRIDE RA; HOHL TM; EMPEY PA; WELLS MN

    2009-09-15

    The U.S. Department of Energy (DOE), Office of River Protection (ORP) manages the River Protection Project (RPP). The RPP mission is to retrieve and treat Hanford's tank waste and close the tank farms to protect the Columbia River. As a result, ORP is responsible for the retrieval, treatment, and disposal of approximately 57 million gallons 1 of radioactive waste contained in the Hanford Site waste tanks and closure2 of all the tanks and associated facilities. The previous revision of the System Plan was issued in May 2008. ORP has made a number of changes to the tank waste treatment strategy and plans since the last revision of this document, and additional changes are under consideration. ORP has contracts in place to implement the strategy for completion of the mission and establish the capability to complete the overall mission. The current strategl involves a number of interrelated activities. ORP will reduce risk to the environment posed by tank wastes by the following: (1) Retrieving the waste from the single-shell tanks (SST) to double-shell tanks (DST) and delivering the waste to the Waste Treatment and Immobilization Plant (WTP). (2) Constructing and operating the WTP, which will safely treat all of the high-level waste (HLW) fraction contained in the tank farms. About one-third of the low-activity waste (LAW) fraction separated from the HLW fraction in the WTP will be immobilized in the WTP LAW Vitrification Facility. (3) Developing and deploying supplemental treatment capability assumed to be a second LAW vitrification facility that can safely treat about two-thirds of the LAW contained in the tank farms. (4) Developing and deploying supplemental pretreatment capability currently assumed to be an Aluminum Removal Facility (ARF) using a lithium hydrotalcite process to mitigate sodium management issues. (5) Developing and deploying treatment and packaging capability for contact-handled transuranic (CH-TRU) tank waste for possible shipment to and disposal at the Waste Isolation Pilot Plant (WIPP) in New Mexico. (6) Deploying interim storage capacity for the immobilized high-level waste (IHLW) pending determination of the final disposal pathway. (7) Closing the SST and DST tank farms, ancillary facilities, and all associated waste management and treatment facilities. (8) Optimizing the overall mission by resolution of technical and programmatic uncertainties, configuring the tank farms to provide a steady, well-balanced feed to the WTP, and performing trade-offs of the required amount and type of supplemental treatment and of the amount of HLW glass versus LAW glass. ORP has made and continues to make modifications to the WTP contract as needed to improve projected plant performance and address known or emerging risks. Key elements needed to implement the strategy described above are included within the scope of the Tank Operations Contract (TOC). Interim stabilization of the SSTs was completed in March 2004. As of April 2009, retrieval of seven SSTs has been completed and retrieval of four additional SSTs has been completed to the limits of technology. Demonstration of supplemental LAW treatment technologies has stopped temporarily pending revision of mission need requirements. Award of a new contract for tank operations (TOC), the ongoing tank waste retrieval experience, HLW disposal issues, and uncertainties in waste feed delivery and waste treatment led to the revision of the Performance Measurement Baseline (PM B), which is currently under review prior to approval. 6 This System Plan is aligned with the current WTP schedule, with hot commissioning beginning in 2018, and full operations beginning in late 2019. Major decisions regarding the use of supplemental treatment and the associated technology, the ultimate needed capacity, and its relationship to the WTP have not yet been finalized. This System Plan assumes that the outcome of these decisions will be to provide a second LAW vitrification facility. No final implementation decisions regarding supplemental technology can be made until the Tank Closure and

  12. Power inverters

    DOE Patents [OSTI]

    Miller, David H. (Redondo Beach, CA); Korich, Mark D. (Chino Hills, CA); Smith, Gregory S. (Woodland Hills, CA)

    2011-11-15

    Power inverters include a frame and a power module. The frame has a sidewall including an opening and defining a fluid passageway. The power module is coupled to the frame over the opening and includes a substrate, die, and an encasement. The substrate includes a first side, a second side, a center, an outer periphery, and an outer edge, and the first side of the substrate comprises a first outer layer including a metal material. The die are positioned in the substrate center and are coupled to the substrate first side. The encasement is molded over the outer periphery on the substrate first side, the substrate second side, and the substrate outer edge and around the die. The encasement, coupled to the substrate, forms a seal with the metal material. The second side of the substrate is positioned to directly contact a fluid flowing through the fluid passageway.

  13. POWER SYSTEMS DEVELOPMENT FACILITY

    SciTech Connect (OSTI)

    Unknown

    2002-11-01

    This report discusses test campaign GCT4 of the Kellogg Brown & Root, Inc. (KBR) transport reactor train with a Siemens Westinghouse Power Corporation (Siemens Westinghouse) particle filter system at the Power Systems Development Facility (PSDF) located in Wilsonville, Alabama. The transport reactor is an advanced circulating fluidized-bed reactor designed to operate as either a combustor or a gasifier using one of two possible particulate control devices (PCDs). The transport reactor was operated as a pressurized gasifier during GCT4. GCT4 was planned as a 250-hour test run to continue characterization of the transport reactor using a blend of several Powder River Basin (PRB) coals and Bucyrus limestone from Ohio. The primary test objectives were: Operational Stability--Characterize reactor loop and PCD operations with short-term tests by varying coal-feed rate, air/coal ratio, riser velocity, solids-circulation rate, system pressure, and air distribution. Secondary objectives included the following: Reactor Operations--Study the devolatilization and tar cracking effects from transient conditions during transition from start-up burner to coal. Evaluate the effect of process operations on heat release, heat transfer, and accelerated fuel particle heat-up rates. Study the effect of changes in reactor conditions on transient temperature profiles, pressure balance, and product gas composition. Effects of Reactor Conditions on Synthesis Gas Composition--Evaluate the effect of air distribution, steam/coal ratio, solids-circulation rate, and reactor temperature on CO/CO{sub 2} ratio, synthesis gas Lower Heating Value (LHV), carbon conversion, and cold and hot gas efficiencies. Research Triangle Institute (RTI) Direct Sulfur Recovery Process (DSRP) Testing--Provide syngas in support of the DSRP commissioning. Loop Seal Operations--Optimize loop seal operations and investigate increases to previously achieved maximum solids-circulation rate.

  14. Power Recovery 

    E-Print Network [OSTI]

    Murray, F.

    1986-01-01

    , will be the use of the ASTM Theoretical Steam Rate Tables. In addition, the author's experience regarding the minimum size for power recovery units that are economic in a Culf Coast plant will be presented. INTROD\\Jr.'rION When surveying an operation...)' The pressure ~ecompression term(~2) k~l, is used in the equat10n in a manner 1 which reduces the power recovery as calculated by the first term of the equation. From a practical view a decompression ra~~y ~0.3 is a good screening point. Note...

  15. Solar Power

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effect Photovoltaics -7541 *ImpactScience(TechnicalFor Milwaukee, BySoft Solar Power

  16. Yakama Power

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorkingLos Alamos verifies largest single| National1958,1CaseYakama Power May

  17. Fusion Power

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would likeUniverse (Journal Article)Forthcoming UpgradesArea:Benefits of FES »Power

  18. Impact of entrainment and impingement on fish populations in the Hudson River estuary. Volume I. Entrainment-impact estimates for six fish populations inhabiting the Hudson River estuary

    SciTech Connect (OSTI)

    Boreman, J.; Barnthouse, L.W.; Vaughn, D.S.; Goodyear, C.P.; Christensen, S.W.; Kumar, K.D.; Kirk, B.L.; Van Winkle, W.

    1982-01-01

    This volume is concerned with the estimation of the direct (or annual) entrainment impact of power plants on populations of striped bass, white perch, Alosa spp. (blueback herring and alewife), American shad, Atlantic tomcod, and bay anchovy in the Hudson River estuary. Entrainment impact results from the killing of fish eggs, larvae, and young juveniles that are contained in the cooling water cycled through a power plant. An Empirical Transport Model (ETM) is presented as the means of estimating a conditional entrainment mortality rate (defined as the fraction of a year class which would be killed due to entrainment in the absence of any other source of mortality). Most of this volume is concerned with the estimation of several parameters required by the ETM: physical input parameters (e.g., power-plant withdrawal flow rates); the longitudinal distribution of ichthyoplankton in time and space; the duration of susceptibility of the vulnerable organisms; the W-factors, which express the ratios of densities of organisms in power plant intakes to densities of organisms in the river; and the entrainment mortality factors (f-factors), which express the probability that an organism will be killed if it is entrained. Once these values are obtained, the ETM is used to estimate entrainment impact for both historical and projected conditions.

  19. Bureau Home > Australia > Queensland > Rainfall & River Conditions > River Brochures > Georgina and Eyre FLOOD WARNING SYSTEM

    E-Print Network [OSTI]

    Greenslade, Diana

    and Eyre FLOOD WARNING SYSTEM for the GEORGINA RIVER & EYRE CREEK This brochure describes the flood warning. It includes reference information which will be useful for understanding Flood Warnings and River Height Bulletins issued by the Bureau's Flood Warning Centre during periods of high rainfall and flooding. Eyre

  20. E.2. Electronic Appendix -Food Web Elements of the Fraser River Upper River (above rkm 210)

    E-Print Network [OSTI]

    1 E.2. Electronic Appendix - Food Web Elements of the Fraser River Basin Upper River (above rkm 210) Food webs: Microbenthic algae (periphyton), detritus from riparian vegetation and littoral insects). Stressors: Water quality and habitat conditions have changed food webs in specific locations in the upper

  1. Developing a broader scientific foundation for river restoration: Columbia River food webs

    E-Print Network [OSTI]

    Developing a broader scientific foundation for river restoration: Columbia River food webs Robert J 31, 2012 (received for review August 6, 2012) Well-functioning food webs are fundamental emphasis on restoring habitat structure--without explicitly considering food webs--has been less successful

  2. Bureau Home > Australia> Queensland> Rainfall& River Conditions > River Brochures> Norman FLOOD WARNING SYSTEM

    E-Print Network [OSTI]

    Greenslade, Diana

    Range) 200 kilometres southeast of Croydon and flows in a northwesterly direction. It is joined by its. #12;The record major flood of January 1974 and the floods of February 1991 and early February 2009 The Carpentaria Shire Council for the lower Norman River and the Croydon Shire Council for the upper Norman River

  3. Bureau Home > Australia > Queensland > Rainfall & River Conditions > River Brochures > FLOOD WARNING SYSTEM

    E-Print Network [OSTI]

    Greenslade, Diana

    in this document is information about: (Last updated June 2015) · Flood Risk · Previous Flooding · Flood Bulletins · Flood Classifications · Other Links Flood Risk The Proserpine River has a total catchment area FLOOD WARNING SYSTEM for the PROSERPINE RIVER This brochure describes the flood warning system operated

  4. Bureau Home > Australia > Queensland > Rainfall & River Conditions > River Brochures > Warrego FLOOD WARNING SYSTEM

    E-Print Network [OSTI]

    Greenslade, Diana

    is information about : (Last updated June 2015) · Flood Risk · Previous Flooding · Flood Forecasting · Local Classifications · Other Links Flood Risk The Warrego River catchment is located in south west Queensland and north FLOOD WARNING SYSTEM for the WARREGO RIVER This brochure describes the flood warning system operated

  5. Bureau Home > Australia > Queensland > Rainfall & River Conditions > River Brochures > Burnett FLOOD WARNING SYSTEM

    E-Print Network [OSTI]

    Greenslade, Diana

    is information about: (Last updated June 2015) · Flood Risk · Previous Flooding · Flood Forecasting · Local Classifications · Other Links Flood Risk The Burnett River is located on the southern Queensland coast FLOOD WARNING SYSTEM for the BURNETT RIVER This brochure describes the flood warning system operated

  6. Bureau Home > Australia > Queensland > Rainfall & River Conditions > River Brochures > Tully and FLOOD WARNING SYSTEM

    E-Print Network [OSTI]

    Greenslade, Diana

    at Kareeya Contained in this document is information about: (Last updated June 2015) · Flood Risk · Previous · Interpreting Flood Warnings and River Height Bulletins · Flood Classifications · Other Links Flood Risk and Murray FLOOD WARNING SYSTEM for the TULLY-MURRAY RIVERS This brochure describes the flood warning system

  7. Bureau Home > Australia > Queensland > Rainfall & River Conditions > River Brochures > Pioneer FLOOD WARNING SYSTEM

    E-Print Network [OSTI]

    Greenslade, Diana

    at Mirani Contained in this document is information about: (Last updated June 2015) · Flood Risk · Previous · Interpreting Flood Warnings and River Height Bulletins · Flood Classifications · Other Links Flood Risk FLOOD WARNING SYSTEM for the PIONEER RIVER This brochure describes the flood warning system operated

  8. Bureau Home > Australia > Queensland > Rainfall & River Conditions > River Brochures > Don FLOOD WARNING SYSTEM

    E-Print Network [OSTI]

    Greenslade, Diana

    in this document is information about: (Last updated June 2015) · Flood Risk · Previous Flooding · Flood Warnings and River Height Bulletins · Flood Classifications · Other Links Flood Risk The Don River drains occurs in the Queens Beach and Bowen delta areas and dwellings are at risk. Previous Flooding Since

  9. Bureau Home > Australia > Queensland > Rainfall & River Conditions > River Brochures > Nicholson FLOOD WARNING SYSTEM

    E-Print Network [OSTI]

    Greenslade, Diana

    in this document is information about: (Last updated June 2015) · Flood Risk · Previous Flooding · Flood Bulletins · Flood Classifications · Other Links Flood Risk The Nicholson River catchment is located in north FLOOD WARNING SYSTEM for the NICHOLSON RIVER This brochure describes the flood warning system operated

  10. Bureau Home > Australia > Queensland > Rainfall & River Conditions > River Brochures > Herbert FLOOD WARNING SYSTEM

    E-Print Network [OSTI]

    Greenslade, Diana

    Risk · Previous Flooding · Flood Forecasting · Local Information · Flood ALERT System · Flood Warnings Flood Risk The Ross, Bohle and Black River catchments covers an area of 750 square kilometres. Two main FLOOD WARNING SYSTEM for the ROSS, BOHLE & BLACK RIVERS This brochure describes the flood warning system

  11. Bureau Home > Australia > Queensland > Rainfall & River Conditions > River Brochures > Logan and Albert FLOOD WARNING SYSTEM

    E-Print Network [OSTI]

    Greenslade, Diana

    June 2015) · Flood Risk · Previous Flooding · Flood Forecasting · Local Information · Flood Warnings Flood Risk The Logan River has a catchment area of about 3850 square kilometres and lies in the south and Albert FLOOD WARNING SYSTEM for the LOGAN & ALBERT RIVERS This brochure describes the flood warning

  12. Bureau Home > Australia > Queensland > Rainfall & River Conditions > River Brochures > Mooloolah FLOOD WARNING SYSTEM

    E-Print Network [OSTI]

    Greenslade, Diana

    in this document is information about: (Last updated June 2015) · Flood Risk · Previous Flooding · Flood Warnings and River Height Bulletins · Flood Classifications · Other Links Flood Risk The Mooloolah River. Continuing increases in population have accentuated this potential flood risk to life and property. Previous

  13. Bureau Home > Australia > Queensland > Rainfall & River Conditions > River Brochures > Flinders FLOOD WARNING SYSTEM

    E-Print Network [OSTI]

    Greenslade, Diana

    in this document is information about: (Last updated June 2015) · Flood Risk · Previous Flooding · Flood Bulletins · Flood Classifications · Other Links Flood Risk The Flinders River catchment is located in north FLOOD WARNING SYSTEM for the FLINDERS RIVER This brochure describes the flood warning system operated

  14. Bureau Home > Australia > Queensland > Rainfall & River Conditions > River Brochures > FLOOD WARNING SYSTEM

    E-Print Network [OSTI]

    Greenslade, Diana

    ) · Flood Risk · Previous Flooding · Flood Forecasting · Local Information · Johnstone ALERT System · Flood · Other Links Flood Risk The North and South Johnstone Rivers rise in the tablelands of the north tropical FLOOD WARNING SYSTEM for the JOHNSTONE RIVER This brochure describes the flood warning system operated

  15. Bureau Home > Australia > Queensland > Rainfall & River Conditions > River Brochures > Balonne and FLOOD WARNING SYSTEM

    E-Print Network [OSTI]

    Greenslade, Diana

    Pty Ltd Contained in this document is information about: (Last updated June 2015) · The Flood Risk Flood Warnings and River Height Bulletins · Flood Classifications · Other Links The Flood Risk and Maranoa FLOOD WARNING SYSTEM for the BALONNE AND MARANOA RIVERS This brochure describes the flood warning

  16. Bureau Home > Australia > Queensland > Rainfall & River Conditions > River Brochures > Mulgrave/Russell

    E-Print Network [OSTI]

    Greenslade, Diana

    ) · Flood Risk · Previous Flooding · Flood Warning · Local Information · Mulgrave/Russell ALERT System Classifications · Other Links Flood Risk The Mulgrave and Russell Rivers drain the mountain country dominated/Russell FLOOD WARNING SYSTEM for the MULGRAVE AND RUSSELL RIVERS This brochure describes the flood warning

  17. Bureau Home > Australia > Queensland > Rainfall & River Conditions > River Brochures > FLOOD WARNING SYSTEM

    E-Print Network [OSTI]

    Greenslade, Diana

    in this document is information about: (Last updated June 2015) · Flood Risk · Previous Flooding · Flood Bulletins · Flood Classifications · Other Links Flood Risk The vast Diamantina River catchment is located FLOOD WARNING SYSTEM for the DIAMANTINA RIVER This brochure describes the flood warning system operated

  18. Bureau Home > Australia> Queensland> Rainfall& River Conditions > River Brochures> Macintyre FLOOD WARNING SYSTEM

    E-Print Network [OSTI]

    Greenslade, Diana

    ) · Flood Risk · Previous Flooding · Flood Warning · Local Information · Flood Warnings and Bulletins · Interpreting Flood Warnings and River Height Bulletins · Flood Classifications · Other Links Flood Risk and Weir FLOOD WARNING SYSTEM for the MACINTYRE AND WEIR RIVERS This brochure describes the flood warning

  19. Bureau Home > Australia > Queensland > Rainfall & River Conditions > River Brochures > Condamine to Warwick

    E-Print Network [OSTI]

    Greenslade, Diana

    ) · Flood Risk · Previous Flooding · Flood Forecasting · Local Information · Warwick ALERT System · Flood · Other Links Flood Risk The Condamine River catchment to Warwick covers an area of approximately 1300 to Warwick FLOOD WARNING SYSTEM for the CONDAMINE RIVER TO WARWICK This brochure describes the flood warning

  20. Bureau Home > Australia > Queensland > Rainfall & River Conditions > River Brochures > Condamine Warwick to Cotswold

    E-Print Network [OSTI]

    Greenslade, Diana

    Ltd Contained in this document is information about: (Last updated June 2015) · The Flood Risk Flood Warnings and River Height Bulletins · Flood Classifications · Other Links The Flood Risk Warwick to Cotswold FLOOD WARNING SYSTEM for the CONDAMINE RIVER WARWICK TO COTSWOLD This brochure

  1. THE MIDDLE SACRAMENTO RIVER: HUMAN IMPACTS ON PHYSICAL AND ECOLOGICAL PROCESSES ALONG A MEANDERING RIVER1

    E-Print Network [OSTI]

    THE MIDDLE SACRAMENTO RIVER: HUMAN IMPACTS ON PHYSICAL AND ECOLOGICAL PROCESSES ALONG A MEANDERING, California. Abstract: Native plant and wildlife communities along Northern California's middle Sacramento and eroding terraces. Human-induced changes to the Sacramento River, in- cluding bank protection, gravel

  2. Indian River Hydroelectric Project Grant

    SciTech Connect (OSTI)

    Rebecca Garrett

    2005-04-29

    This Final Technical Report provides a concise retrospective and summary of all facets of the Sheldon Jackson College electrical Infrastructure Renovation portion of the Indian River Hydroelectric Project Grant of the City and Borough of Sitka, Alaska. The Project Overview describes the origins of the project, the original conditions that provided the impetus for the grant funding, how the grant amendment was developed, the conceptual design development, and the actual parameters of the final project as it went out to bid. The Project Overview also describes the ''before and after'' conditions of the project. The Objectives division of this Final Technical Report describes the amendment-funded goals of the project. It also describes the milestones of project development and implementation, as well as, the rationale behind the milestone array. The Description of Activities Performed division of this report provides an in-depth chronological analysis of progressive project implementation. Photographs will provide further illustration of particular functional aspects of the renovation project within project parameters. The Conclusions and Recommendations division of this report provides a comprehensive retrospective analysis of the project.

  3. Star Power

    ScienceCinema (OSTI)

    None

    2014-11-18

    The U.S. Department of Energy's Princeton Plasma Physics Laboratory has released ''Star Power,'' a new informational video that uses dramatic and beautiful images and thought-provoking interviews to highlight the importance of the Laboratory's research into magnetic fusion.

  4. Star Power

    SciTech Connect (OSTI)

    2014-10-17

    The U.S. Department of Energy's Princeton Plasma Physics Laboratory has released ''Star Power,'' a new informational video that uses dramatic and beautiful images and thought-provoking interviews to highlight the importance of the Laboratory's research into magnetic fusion.

  5. New River Geothermal Research Program

    Broader source: Energy.gov [DOE]

    DOE Geothermal Peer Review 2010 - Presentation: Project objectives: Demonstration of an innovative blend of modern tectonic research applied to the Imperial Valley with a proprietary compilation of existing thermal and drilling data. The developed geologic model will guide the targeting of two test wells and the identification of permeable zones capable of commercial geothermal power production.

  6. Power superconducting power transmission cable

    DOE Patents [OSTI]

    Ashworth, Stephen P. (Cambridge, GB)

    2003-01-01

    The present invention is for a compact superconducting power transmission cable operating at distribution level voltages. The superconducting cable is a conductor with a number of tapes assembled into a subconductor. These conductors are then mounted co-planarly in an elongated dielectric to produce a 3-phase cable. The arrangement increases the magnetic field parallel to the tapes thereby reducing ac losses.

  7. Internal Technical Report, Safety Analysis Report 5 MW(e) Raft River Research and Development Plant

    SciTech Connect (OSTI)

    Brown, E.S.; Homer, G.B.; Shaber, C.R.; Thurow, T.L.

    1981-11-17

    The Raft River Geothermal Site is located in Southern Idaho's Raft River Valley, southwest of Malta, Idaho, in Cassia County. EG and G idaho, Inc., is the DOE's prime contractor for development of the Raft River geothermal field. Contract work has been progressing for several years towards creating a fully integrated utilization of geothermal water. Developmental progress has resulted in the drilling of seven major DOE wells. Four are producing geothermal water from reservoir temperatures measured to approximately 149 C (approximately 300 F). Closed-in well head pressures range from 69 to 102 kPa (100 to 175 psi). Two wells are scheduled for geothermal cold 60 C (140 F) water reinjection. The prime development effort is for a power plant designed to generate electricity using the heat from the geothermal hot water. The plant is designated as the ''5 MW(e) Raft River Research and Development Plant'' project. General site management assigned to EG and G has resulted in planning and development of many parts of the 5 MW program. Support and development activities have included: (1) engineering design, procurement, and construction support; (2) fluid supply and injection facilities, their study, and control; (3) development and installation of transfer piping systems for geothermal water collection and disposal by injection; and (4) heat exchanger fouling tests.

  8. Internal Technical Report, Safety Analysis Report 5 MW(e) Raft River Pilot Plant

    SciTech Connect (OSTI)

    Brown, E.S.; Homer, G.B.; Spencer, S.G.; Shaber, C.R.

    1980-05-30

    The Raft River Geothermal Site is located in Southern Idaho's Raft River Valley, southwest of Malta, Idaho, in Cassia County. EG and G idaho, Inc., is the DOE's prime contractor for development of the Raft River geothermal field. Contract work has been progressing for several years towards creating a fully integrated utilization of geothermal water. Developmental progress has resulted in the drilling of seven major DOE wells. Four are producing geothermal water from reservoir temperatures measured to approximately 149 C (approximately 300 F). Closed-in well head pressures range from 69 to 102 kPa (100 to 175 psi). Two wells are scheduled for geothermal cold 60 C (140 F) water reinjection. The prime development effort is for a power plant designed to generate electricity using the heat from the geothermal hot water. The plant is designated as the ''5 MW(e) Raft River Research and Development Plant'' project. General site management assigned to EG and G has resulted in planning and development of many parts of the 5 MW program. Support and development activities have included: (1) engineering design, procurement, and construction support; (2) fluid supply and injection facilities, their study, and control; (3) development and installation of transfer piping systems for geothermal water collection and disposal by injection; and (4) heat exchanger fouling tests.

  9. Land and water use characteristics in the vicinity of the Savannah River Site

    SciTech Connect (OSTI)

    Hamby, D.M.

    1991-03-01

    Routine operations at the Savannah River Site (SRS) result in the release of small amounts of radionuclides to the atmosphere and to the Savannah River. The resulting radiological doses to the offsite maximum individual and the offsite population within 50 miles of the SRS are estimated on a yearly basis. These estimates are generated using dose models prescribed for the commercial nuclear power industry by the Nuclear Regulatory Commission (NRC). The NRC provides default values for dose model parameters for facilities not having enough data to develop site-specific values. A survey of land and water use characteristics for the Savannah River area has been conducted to determine as many site-specific values as possible for inclusion in the dose models used at the SRS. These site parameters include local characteristics of meat, milk, and vegetable production; river recreational activities; and meat, milk, and vegetable consumption rates. The report that follows describes the origin of the NRC default values, the methodology for deriving regional data, the results of the study, and the derivations of region-specific usage and consumption rates. 33 refs., 3 figs., 8 tabs.

  10. 1992 Columbia River Salmon Flow Measures Options Analysis/EIS : Appendices.

    SciTech Connect (OSTI)

    Not Available

    1992-01-01

    This Options Analysis/Environmental Impact Statement (OA/EIS) identifies, presents effects of, and evaluates the potential options for changing instream flow levels in efforts to increase salmon populations in the lower Columbia and Snake rivers. The potential actions would be implemented during 1992 to benefit juvenile and adult salmon during migration through eight run-of-river reservoirs. The Corps of Engineers (Corps) prepared this document in cooperation with the Bonneville Power Administration and the Bureau of Reclamation. The US Fish and Wildlife Service (FWS) is a participating agency. The text and appendices of the document describe the characteristics of 10 Federal projects and one private water development project in the Columbia River drainage basin. Present and potential operation of these projects and their effects on the salmon that spawn and rear in the Columbia and Snake River System are presented. The life history, status, and response of Pacific salmon to current environmental conditions are described. The document concludes with an evaluation of the potential effects that could result from implementing proposed actions. The conclusions are based on evaluation of existing data, utilization of numerical models, and application of logical inference. This volume contains the appendices.

  11. Savannah River Site (SRS) environmental overview

    SciTech Connect (OSTI)

    O'Rear, M.G. ); Steele, J.L.; Kitchen, B.G. )

    1990-01-01

    The environmental surveillance activities at and in the vicinity of the Savannah River Site (SRS) (formerly the Savannah River Plant (SRP)) comprise one of the most comprehensive and extensive environmental monitoring programs in the United States. This overview contains monitoring data from routine and nonroutine radiological and nonradiological environmental surveillance activities, summaries of environmental protection programs in progress, a summary of National Environmental Policy Act (NEPA) activities, and a listing of environmental permits (Appendix A) issued by regulatory agencies. This overview provides information about the impact of SRS operations on the public and the environment. The SRS occupies a large area of approximately 300 square miles along the Savannah River, principally in Aiken and Barnwell counties of South Carolina. SRS's primary function is the production of tritium, plutonium, and other special nuclear materials for national defense, for other governmental uses, and for some civilian purposes. From August 1950 to March 31, 1989, SRS was operated for the Department of Energy (DOE) by E. I. du Pont de Nemours Co. On April 1, 1989 the Westinghouse Savannah River Company assumed responsibility as the prime contractor for the Savannah River Site.

  12. High Resolution River Hydraulic and Water Quality Characterization Using Rapidly Deployable Networked Infomechanical Systems (NIMS RD)

    E-Print Network [OSTI]

    Thomas C. Harmon; Richard F. Ambrose; Robert M. Gilbert; Jason C. Fisher; Michael Stealey; William J. Kaiser

    2006-01-01

    High Resolution River Hydraulic and Water Quality1594. High Resolution River Hydraulic and Water Qualityobserving spatiotemporal hydraulic and chemical properties

  13. Ecology of Juvenile Salmon in Shallow Tidal Freshwater Habitats in the Vicinity of the Sandy River Delta, Lower Columbia River, 2008

    SciTech Connect (OSTI)

    Sather, Nichole K.; Johnson, Gary E.; Storch, Adam; Teel, David; Skalski, John R.; Jones, Tucker A.; Dawley, Earl M.; Zimmerman, Shon A.; Borde, Amy B.; Mallette, Christine; Farr, R.

    2009-05-29

    The tidal freshwater monitoring (TFM) project reported herein is part of the research, monitoring, and evaluation effort developed by the Action Agencies (Bonneville Power Administration, the U.S. Army Corps of Engineers [USACE], and the U.S. Bureau of Reclamation) in response to obligations arising from the Endangered Species Act (ESA) as a result of operation of the Federal Columbia River Power System. The project is being performed under the auspices of the Northwest Power and Conservation Council’s Columbia Basin Fish and Wildlife Program (Project No. 2005-001-00). The research is a collaborative effort among the Pacific Northwest National Laboratory, the Oregon Department of Fish and Wildlife, the National Marine Fisheries Service, and the University of Washington.

  14. G. A. Antaki Westinghouse Savannah River Company Savannah River Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would likeUniverse (Journal Article)Forthcoming UpgradesArea:Benefits ofofStack Pattern 1:W S R

  15. Snake River Steelhead Straying Risk To Oregon Mid-C Steelhead Populations and

    E-Print Network [OSTI]

    ). · Snake River hatchery strays are considered a primary threat to Deschutes River and John Day River Migration In-River Transport Year # Adults Failed # Adults Failed 1999 51 25% 46 43% 2000 1098-River 22% Migration In-River Transport Year # Adults Failed # Adults Failed 1999 188 27% 187 38% 2000 426

  16. Evaluate Status of Pacific Lamprey in the Clearwater River and Salmon River Drainages, Idaho, 2009 Technical Report.

    SciTech Connect (OSTI)

    Cochnauer, Tim; Claire, Christopher [Idaho Department of Fish and Game

    2009-05-07

    Pacific lamprey Lampetra tridentata have received little attention in fishery science until recently, even though abundance has declined significantly along with other anadromous fish species in Idaho. Pacific lamprey in Idaho have to navigate over eight lower Snake River and Columbia River hydroelectric facilities for migration downstream as juveniles to the Pacific Ocean and again as adults migrating upstream to their freshwater spawning grounds in Idaho. The number of adult Pacific lamprey annually entering the Snake River basin at Ice Harbor Dam has declined from an average of over 18,000 during 1962-1969 to fewer than 600 during 1998-2006. Based on potential accessible streams and adult escapement over Lower Granite Dam on the lower Snake River, we estimate that no more than 200 Pacific lamprey adult spawners annually utilize the Clearwater River drainage in Idaho for spawning. We utilized electrofishing in 2000-2006 to capture, enumerate, and obtain biological information regarding rearing Pacific lamprey ammocoetes and macropthalmia to determine the distribution and status of the species in the Clearwater River drainage, Idaho. Present distribution in the Clearwater River drainage is limited to the lower sections of the Lochsa and Selway rivers, the Middle Fork Clearwater River, the mainstem Clearwater River, the South Fork Clearwater River, and the lower 7.5 km of the Red River. In 2006, younger age classes were absent from the Red River.

  17. Environmental Assessment of the Lower Cape Fear River System, 2010

    E-Print Network [OSTI]

    Mallin, Michael

    along Cape Fear Estuary Persistent blue-green Microcystis algal bloom in Cape Fear River, fall 2009 UNCW. These rivers are classified as blackwater systems because of their tea colored water. The Northeast Cape Fear

  18. Environmental Assessment of the Lower Cape Fear River System, 2011

    E-Print Network [OSTI]

    Mallin, Michael

    along Cape Fear Estuary Persistent blue-green Microcystis algal bloom in Cape Fear River, fall 2009 UNCW because of their tea colored water. The Northeast Cape Fear River often seems to be more oxygen stressed

  19. ISE 2012, Vienna USING RIVER RESTORATION OPERATIONS TO TEST

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    and hydroelectricity since the 19th century. A restoration program of the river started officially in 1998. It has, the Rhône River has been regulated for navigation, irrigation and hydroelectricity since the 19th century

  20. Savannah River Ecology Laboratory 2004 Annual Technical Progress Report

    SciTech Connect (OSTI)

    Paul M. Bertsch

    2004-07-29

    2004 annual report of research conducted by the Savannah River Ecology Laboratory, a research unit of The University of Georgia operating on the Savannah River Site in Aiken, South Carolina

  1. RETURN OF THE RIVER -2000 Chapter 5 Freshwater Habitats131

    E-Print Network [OSTI]

    rivers of the world and also one of the most developed with ten major hydroelectric dams on the main the major hydroelectric projects and the owner-operator of each project. #12;RETURN OF THE RIVER - 2000

  2. BITTERROOT RIVER SUBBASIN PLAN FOR FISH AND WILDLIFE

    E-Print Network [OSTI]

    from the development and operation of the Columbia River hydropower system. Nothing in this Plan and exclusively resulting from, or related to, the development and operation of the Columbia River hydropower

  3. Type B Accident Investigation Board Report of the Savannah River...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Savannah River Site Hand Injury at the Salt Waste Processing Facility on October 6, 2009 Type B Accident Investigation Board Report of the Savannah River Site Hand Injury at the...

  4. SAVANNAH RIVER TECHNOLOGY CENTER MONTHLY REPORT AUGUST 1992

    SciTech Connect (OSTI)

    Ferrell, J.M.

    1999-06-21

    'This monthly report summarizes Programs and Accomplishments of the Savannah River Technology Center in support of activities at the Savannah River Site. The following categories are addressed: Reactor, Tritium, Separations, Environmental, Waste Management, General, and Items of Interest.'

  5. Re: Potomac River Generating Station Department of Energy, Case...

    Office of Environmental Management (EM)

    2005 ("DOE Potomac River Order") Pepco hereby files this revised notice of the planned outage of the 230 kV circuits serving the Potomac River Substation, and through that station,...

  6. Comparative Evaluation of Generalized River/Reservoir System Models 

    E-Print Network [OSTI]

    Wurbs, Ralph A.

    2005-01-01

    modeling systems that simulate the storage, flow, and diversion of water in a system of reservoirs and river reaches. Generalized means that a computer modeling system is designed for application to a range of concerns dealing with river basin systems...

  7. Voluntary Protection Program Onsite Review, Savannah River Remediation...

    Energy Savers [EERE]

    the evaluation of Savannah River Remediation, LLC (SRR), at the Savannah River Site in South Carolina during the period of November 4-13, 2014, and provides the Associate Under...

  8. Savannah River Remediation Intern Sees Nuclear Industry as Job Opportunity

    Broader source: Energy.gov [DOE]

    College intern Spencer Isom recently began her second summer with Savannah River Remediation (SRR), and her fourth year at Savannah River Site (SRS), where she continues a 31-year family legacy on site.

  9. Savannah River Ecology Laboratory FY2006 Annual Technical Progress Report

    SciTech Connect (OSTI)

    Paul M. Bertsch

    2006-10-23

    FY2006 annual report of research conducted by the Savannah River Ecology Laboratory, a research unit of the University of Georgia operating on the Savannah River Site in Aiken, County, SC.

  10. Savannah River Ecology Laboratory 2005 Annual Technical Progress Report

    SciTech Connect (OSTI)

    Paul M. Bertsch

    2005-07-19

    2005 annual report of research conducted by the Savannah River Ecology Laboratory, a research unit of The University of Georgia operating on the Savannah River Site, Aiken, South Carolina

  11. Preliminary Notice of Violation, Savannah River Nuclear Solutions...

    Energy Savers [EERE]

    to Savannah River Nuclear Solutions, LLC related to a Nitric Acid Spill Event and an Electrical Arc Flash Injury Event at the Savannah River Site On October 7, 2010, the U.S....

  12. Supplemental Recovery Plan Module for Snake River Salmon and Steelhead

    E-Print Network [OSTI]

    River Hydropower Projects June 2014 Prepared by the: National Marine Fisheries Service West Coast Region............................................................................................................................... 3 2. Hydropower System Overview Hydropower Projects (Hydro Module, dated September 24, 2008) for Snake River anadromous fish species listed

  13. Columbia River Salmon and Steelhead Returns 1999 -2008

    E-Print Network [OSTI]

    Columbia River Salmon and Steelhead Returns 1999 - 2008 Peter Hassemer Idaho Department of Fish Upper Columbia Summer Chinook Salmon Coho Salmon Shad Columbia River Salmon and Steelhead Returns 1999

  14. New Hydropower Turbines to Save Snake River Steelhead | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hydropower Turbines to Save Snake River Steelhead May 24, 2010 - 1:23pm Addthis Voith Hydro installed machines at the Bonneville Dam on the Columbia River, located about 40 miles...

  15. Mirant Potomac River, LLC, Monthly Model Evaluation Study Report...

    Office of Environmental Management (EM)

    December 2006 Mirant Potomac River, LLC, Monthly Model Evaluation Study Report, December 2006 Docket No. EO-05-01. Order No. 202-07-02: As you are aware, Mirant Potomac River,...

  16. Interstate Commission on the Potomac River Basin (Multiple States)

    Broader source: Energy.gov [DOE]

    The Interstate Commission on the Potomac River Basin's (ICPRB) mission is to enhance, protect, and conserve the water and associated land resources of the Potomac River and its tributaries through...

  17. Impacts of Western Area Power Administration`s power marketing alternatives on air quality and noise

    SciTech Connect (OSTI)

    Chun, K.C.; Chang, Y.S.; Rabchuk, J.A.

    1995-05-01

    The Western Area Power Administration, which is responsible for marketing electricity produced at the hydroelectric power-generating facilities operated by the Bureau of Reclamation on the Upper Colorado River, has proposed changes in the levels of its commitment (sales) of long-term firm capacity and energy to its customers. This report describes (1) the existing conditions of air resources (climate and meteorology, ambient air quality, and acoustic environment) of the region potentially affected by the proposed action and (2) the methodology used and the results of analyses conducted to assess the potential impacts on air resources of the proposed action and the commitment-level alternatives. Analyses were performed for the potential impacts of both commitment-level alternatives and supply options, which include combinations of electric power purchases and different operational scenarios of the hydroelectric power-generating facilities.

  18. Power Right. Power Smart. Efficient Computer Power Supplies and...

    Energy Savers [EERE]

    consume? Higher efficiency power supplies reduce energy consumption, thus cutting your electricity bill. They reduce power consumption, helping your electric utility meet peak...

  19. Snake and Columbia Rivers Sediment Sampling Project

    SciTech Connect (OSTI)

    Pinza, M.R.; Word, J.Q; Barrows, E.S.; Mayhew, H.L.; Clark, D.R. (Battelle/Marine Sciences Lab., Sequim, WA (United States))

    1992-12-01

    The disposal of dredged material in water is defined as a discharge under Section 404 of the Clean Water Act and must be evaluated in accordance with US Environmental Protection Agency regulation 40 CFR 230. Because contaminant loads in the dredged sediment or resuspended sediment may affect water quality or contaminant loading, the US Army Corps of Engineers (USACE), Walla Walla District, has requested Battelle/Marine Sciences Laboratory to collect and chemically analyze sediment samples from areas that may be dredged near the Port Authority piers on the Snake and Columbia rivers. Sediment samples were also collected at River Mile (RM) stations along the Snake River that may undergo resuspension of sediment as a result of the drawdown. Chemical analysis included grain size, total organic carbon, total volatile solids, ammonia, phosphorus, sulfides, oil and grease, total petroleum hydrocarbons, metals, polynuclear aromatic hydrocarbons, pesticides, polychlorinated biphenyls, and 21 congeners of polychlorinated dibenzodioxins and dibenzofurans.

  20. Columbia River System Operation Review : Final Environmental Impact Statement, Appendix F: Irrigation, Municipal and Industrial/Water Supply.

    SciTech Connect (OSTI)

    Columbia River System Operations Review (U.S.); United States. Bonneville Power Administration; United States. Army. Corps of Engineers. North Pacific Division; United States. Bureau of Reclamation. Pacific Northwest Region.

    1995-11-01

    Since the 1930`s, the Columbia River has been harnessed for the benefit of the Northwest and the nation. Federal agencies have built 30 major dams on the river and its tributaries. Dozens of non-Federal projects have been developed as well. The dams provide flood control, irrigation, navigation, hydro-electric power generation, recreation, fish and wildlife, and streamflows for wildlife, anadromous fish, resident fish, and water quality. This is Appendix F of the Environmental Impact Statement for the Columbia River System, focusing on irrigation issues and concerns arrising from the Irrigation and Mitigation of impacts (M&I) working Group of the SOR process. Major subheadings include the following: Scope and process of irrigation/M&I studies; Irrigation/M&I in the Columbia Basin Today including overview, irrigated acreage and water rights, Irrigation and M&I issues basin-wide and at specific locations; and the analysis of impacts and alternative for the Environmental Impact Statement.

  1. Spawning and abundance of fall chinook salmon (Oncorhynchus tshawytscha) in the Hanford Reach of the Columbia River, 1948--1988

    SciTech Connect (OSTI)

    Dauble, D.D.; Watson, D.G.

    1990-03-01

    The Hanford Reach of the Columbia River provides the only major spawning habitat for the upriver bright (URB) race of fall chinook salmon in the mainstem Columbia River. Hanford Site biologists have conducted aerial surveys of spawning salmon in the Hanford Reach since 1948. This report summarizes data on fall chinook salmon spawning in the Hanford Reach and presents a discussion of factors that may affect population trends. Most data are limited to fisheries agency reports and other working documents. Fisheries management practices in the Columbia River system have changed rapidly over the last decade, particularly under requirements of the Pacific Northwest Power Planning and Conservation Act of 1980. New information has been generated and included in this report. 75 refs., 17 figs., 11 tabs.

  2. Deep Challenges for Foundation Performance at Savannah River Site

    Broader source: Energy.gov [DOE]

    Deep Challenges for Foundation Performance at Savannah River Site Frank H. Syms and Brent Gutierrez October 22, 2014

  3. Microearthquake surveys of Snake River plain and Northwest Basin...

    Open Energy Info (EERE)

    energy; Humboldt County Nevada; Idaho; microearthquakes; Nevada; North America; passive systems; Pershing County Nevada; Raft River; reservoir rocks; seismic methods;...

  4. Exploring the Raft River geothermal area, Idaho, with the dc...

    Open Energy Info (EERE)

    the dc resistivity method (Abstract) Abstract GEOTHERMAL ENERGY; GEOTHERMAL FIELDS; ELECTRICAL SURVEYS; IDAHO; GEOTHERMAL EXPLORATION; RAFT RIVER VALLEY; ELECTRIC CONDUCTIVITY;...

  5. Independent Oversight Review, Savannah River Site- August 2011

    Broader source: Energy.gov [DOE]

    Review of Commercial Grade Dedication Plans for the Safety Instrumented System at the Savannah River Site Waste Solidification Building Project

  6. Application of a 2-D particle tracking model to simulate entrainment of winter flounder larvae at the Millstone Nuclear Power Station

    E-Print Network [OSTI]

    Dimou, Nadia K.

    1989-01-01

    A 2-D random walk model, developed by Dimou (1989) as part of this research project, was used to simulate entrainment at the Millstone Nuclear Power Station of winter flounder larvae hatched within Niantic River.

  7. Radioiodine in the Savannah River Site environment

    SciTech Connect (OSTI)

    Kantelo, M.V.; Bauer, L.R.; Marter, W.L.; Murphy, C.E. Jr.; Zeigler, C.C.

    1993-01-15

    Radioiodine, which is the collective term for all radioactive isotopes of the element iodine, is formed at the Savannah River Site (SRS) principally as a by-product of nuclear reactor operations. Part of the radioiodine is released to the environment during reactor and reprocessing operations at the site. The purpose of this report is to provide an introduction to radioiodine production and disposition, its status in the environment, and the radiation dose and health risks as a consequence of its release to the environment around the Savannah River Plant. A rigorous dose reconstruction study is to be completed by thee Center for Disease Control during the 1990s.

  8. Wind Power

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorking WithTelecentricNCubicthe FOIA?ResourceMeasurement Buoy AdvancesWind

  9. Ecological Responses to Hydrogeomorphic Fluctuations in a Sand Bed Prairie River: River Complexity, Habitat Availability, and Benthic Invertebrates

    E-Print Network [OSTI]

    O'Neill, Brian James

    2010-04-02

    Rivers with stochastic precipitation have fauna that overcome unique challenges. Organisms surmount these challenges by using refugia. Research was conducted on the sand bed Kansas River (Kaw). I (a) quantified how the hydrology affects the Kaw...

  10. 17. Integrating Engineered Log JamTechnology into River Rehabilitation

    E-Print Network [OSTI]

    Montgomery, David R.

    17. Integrating Engineered Log JamTechnology into River Rehabilitation Tim Abbe, George Pess, David R. Montgomery, and Kevin L. Fetherston ABSTRACT Reach-scale river rehabilitation projects using and engineering practices. The ELJ demonstration projects were developed as part of river rehabilitation efforts

  11. Diss. ETH No. 16895 River rehabilitation and fish

    E-Print Network [OSTI]

    Diss. ETH No. 16895 River rehabilitation and fish The challenge of initiating ecological recovery Christine Weber #12;Diss. ETH No. 16895 River rehabilitation and fish: The challenge of initiating Swiss river system prior to extensive rehabilitation 13 CHAPTER 3: Evaluation of the nature conservation

  12. EFFECTS OF BANK REVETMENT ON SACRAMENTO RIVER, CALIFORNIA1

    E-Print Network [OSTI]

    EFFECTS OF BANK REVETMENT ON SACRAMENTO RIVER, CALIFORNIA1 Michael D. Harvey and Chester C. Watson2 studied in the Butte Basin reach of Sacramento River, California, to determine whether bank revetment. Approximately 20 percent of the total bank length (both banks) in the Butte Basin reach of Sacramento River has

  13. MEANDERBELT DYNAMICS OF THE SACRAMENTO RIVER, CALIFORNIA1

    E-Print Network [OSTI]

    MEANDERBELT DYNAMICS OF THE SACRAMENTO RIVER, CALIFORNIA1 2 Michael D. Harvey 1 Presented: A 160km-long reach of Sacramento River was studied with the objective of predicting future changes for study reach of Sacramento River. In order to obtain an understanding of the meander dynamics

  14. Fraser River Hydro and Fisheries Research Project fonds

    E-Print Network [OSTI]

    Handy, Todd C.

    Fraser River Hydro and Fisheries Research Project fonds Revised by Erwin Wodarczak (1998 Fraser River Hydro and Fisheries Research Project fonds. ­ 19561961. 13 cm of textual records. Administrative History The Fraser River Hydro and Fisheries Research Project was established in 1956, financed

  15. CREEL CENSUS AND EXPENDITURE STUDY, NORTH FORK SUN RIVER,

    E-Print Network [OSTI]

    CREEL CENSUS AND EXPENDITURE STUDY, NORTH FORK SUN RIVER, MONTANA, 1951 Marine Biological STUDY, NORTH FORK SUN RIVER, MONTANA, 1951 Marine Biological Laboratory JUN16 1954 WOODS HOLE, MASS MAP CREEL CENSUS SUN RIVER MONTANA DRAWN i*^ ^ TRACED- _2£jLt:l SUBMITTED . 1 V N 01 1 VN ei

  16. STATUS OF COLUMBIA RIVER BLUEBACK SALMON RUNS, 1951

    E-Print Network [OSTI]

    STATUS OF COLUMBIA RIVER BLUEBACK SALMON RUNS, 1951 Marine Biological Laboratory J'JN13 1952 WOODS AND WILDLIFE SERVICE #12;#12;STATUS OF COLUMBIA RIVER BLUEBACK SALMON RUNS, 1951 Marine Biological Laboratory J blueback salmon counts over Bonneville and Rock Island Dams and total run data 1938-51 8 5. Columbia River

  17. SALMON RUNS -UPPER COLUMBIA RIVER, 1956-57

    E-Print Network [OSTI]

    364; SALMON RUNS - UPPER COLUMBIA RIVER, 1956-57 Marine Biological Laboratory WOODS HOLE, MAt L. McKernan, Director SALMON RUNS - UPPER COLUMBIA RIVER. 1956-57 by R. R. French and R. J. Wahle Dams. IV #12;SALMON RUNS - UPPER COLUMBIA RIVER, 1956-57 by R. R. French and R. J. Wahle ABSTRACT

  18. Drought Conditions Force Difficult Management Decisions For Sacramento River Temperatures

    E-Print Network [OSTI]

    temperatures in the river that could be catastrophic for endangered winter-run Chinook salmon. The Sacramento and everything. The winter-run Chinook salmon may not survive losses in the Sacramento River similar to last year of the river during the critical winter-run spawning and early rearing period. However, the equipment used

  19. Photo courtesy of the Penobscot River Restoration Trust

    E-Print Network [OSTI]

    sea-run fish species from this watershed. Improving access to habitat on this river is particularly in the U.S. Dams on the river and the decline of sea-run fish have contributed to a loss of recreational.S. Fish and Wildlife Service Maine Sea Grant Long-term Improve river flow and restore sea-run fish

  20. OXYGEN BLOCK IN THE MAIN -STEM WILLAMETTE RIVER

    E-Print Network [OSTI]

    ^hly publicized run of spring-chinook salmon. Pollution of the Willamette River is a problem that has receivedOXYGEN BLOCK IN THE MAIN -STEM WILLAMETTE RIVER i.iiit' I'.iological Labordtory B R A tl Y OCT 9-STEM WILIA^TETTE RIVER By Frederic F. Fish In Charge, Western Fish-Cultural Investigations and Richard A

  1. Columbia River Basin Accords -Narrative Proposal Project Number 200845800 1

    E-Print Network [OSTI]

    development of the Columbia River were largely responsible for the decline of the wild steelhead run (Mullan, lower river commercial fisheries, including tribal fisheries within Zone 6, took about 70% of the run River hydropower system, hatchery steelhead had replaced natural production in the run counts, masking

  2. The Geographic, Geological and Oceanographic Setting of the Indus River

    E-Print Network [OSTI]

    Clift, Peter

    -west monsoon of Asia that largely fill the Indus River although most of the run-off north of the Tarbela DamL1 16 The Geographic, Geological and Oceanographic Setting of the Indus River Asif Inam1 , Peter D Large Rivers: Geomorphology and Management, Edited by A. Gupta © 2007 John Wiley & Sons, Ltd 16

  3. WINTER-RUN CHINOOK SALMON IN THE SACRAMENTO RIVER, CALIFORNIA

    E-Print Network [OSTI]

    461 WINTER-RUN CHINOOK SALMON IN THE SACRAMENTO RIVER, CALIFORNIA WITH NOTES ON WATER TEMPERATURE REPORT-FISHERIES Na 461 #12;#12;WINTER-RUN CHINOOK SALMON IN THE SACRAMENTO RIVER, CALIFORNIA WITH NOTES HAMILTON CITY O Frontispiece.--Upper Sacramento River and Tributaries iv #12;WINTER-RUN CHINOOK SALMON

  4. OkanoganRiver Summer/FallChinookSalmon

    E-Print Network [OSTI]

    . Tribal Harvest Thresholds for Upper Columbia River 99 Summer/Fall Chinook (Early-Arriving Run) Table B.7. Tribal Harvest Thresholds for Upper Columbia River 99 Summer/Fall Chinook (Later-Arriving Run) Table B.8AppendixC OkanoganRiver Summer/FallChinookSalmon HatcheryGeneticManagementPlan #12;HATCHERY

  5. Columbia River Basin Accords -Narrative Proposal Project Number 200845800 1

    E-Print Network [OSTI]

    steelhead productivity in the upper Columbia River region, where the run size tripled (5,000 fish to 15Columbia River Basin Accords - Narrative Proposal Project Number 200845800 1 Narrative Table 1@easystreet.net Information transfer: A. Abstract Upper Columbia River (UCR) steelhead are listed as "Endangered" under

  6. about Savannah River National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorkingLos Alamos verifies largestnamedGroup! !aboesenb Ames LaboratoryGas

  7. about Savannah River National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorkingLos Alamos verifies largestnamedGroup! !aboesenb Ames LaboratoryGasEDM

  8. about Savannah River National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorkingLos Alamos verifies largestnamedGroup! !aboesenb Ames

  9. The Columbia River System: Inside Story

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Non-Federal without Power North Fork (Benton) Lebanon Franzen Mercer Mompano Haskins (Walter Link) Silver Creek Binford Rogue Basin Federal with Power Green Springs Lost Creek...

  10. Water Power for a Clean Energy Future (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2012-03-01

    This fact sheet provides an overview of the U.S. Department of Energy's Wind and Water Power Program's water power research activities. Water power is the nation's largest source of clean, domestic, renewable energy. Harnessing energy from rivers, manmade waterways, and oceans to generate electricity for the nation's homes and businesses can help secure America's energy future. Water power technologies fall into two broad categories: conventional hydropower and marine and hydrokinetic technologies. Conventional hydropower facilities include run-of-the-river, storage, and pumped storage. Most conventional hydropower plants use a diversion structure, such as a dam, to capture water's potential energy via a turbine for electricity generation. Marine and hydrokinetic technologies obtain energy from waves, tides, ocean currents, free-flowing rivers, streams and ocean thermal gradients to generate electricity. The United States has abundant water power resources, enough to meet a large portion of the nation's electricity demand. Conventional hydropower generated 257 million megawatt-hours (MWh) of electricity in 2010 and provides 6-7% of all electricity in the United States. According to preliminary estimates from the Electric Power Resource Institute (EPRI), the United States has additional water power resource potential of more than 85,000 megawatts (MW). This resource potential includes making efficiency upgrades to existing hydroelectric facilities, developing new low-impact facilities, and using abundant marine and hydrokinetic energy resources. EPRI research suggests that ocean wave and in-stream tidal energy production potential is equal to about 10% of present U.S. electricity consumption (about 400 terrawatt-hours per year). The greatest of these resources is wave energy, with the most potential in Hawaii, Alaska, and the Pacific Northwest. The Department of Energy's (DOE's) Water Power Program works with industry, universities, other federal agencies, and DOE's national laboratories to promote the development and deployment of technologies capable of generating environmentally sustainable and cost-effective electricity from the nation's water resources.

  11. Umatilla River Basin Anadromous Fish Habitat Enhancement Project : 1995 Annual Report.

    SciTech Connect (OSTI)

    Shaw, R.Todd

    1996-05-01

    During the 1995 - 96 project period, four new habitat enhancement projects were implemented under the Umatilla River Basin Anadromous Fish Habitat Enhancement Project by the Confederated Tribes of the Umatilla Indian Reservation (CTUIR) in the upper Umatilla River Basin. A total of 38,644 feet of high tensile smooth wire fencing was constructed along 3.6 miles of riparian corridor in the Meacham Creek, Wildhorse Creek, Greasewood Creek, West Fork of Greasewood Creek and Mission Creek watersheds. Additional enhancements on Wildhorse Creek and the lower Greasewood Creek System included: (1) installation of 0.43 miles of smooth wire between river mile (RM) 10.25 and RM 10.5 Wildhorse Creek (fence posts and structures had been previously placed on this property during the 1994 - 95 project period), (2) construction of 46 sediment retention structures in stream channels and maintenance to 18 existing sediment retention structures between RM 9.5 and RM 10.25 Wildhorse Creek, and (3) revegetation of stream corridor areas and adjacent terraces with 500 pounds of native grass seed or close species equivalents and 5,000 native riparian shrub/tree species to assist in floodplain recovery, stream channel stability and filtering of sediments during high flow periods. U.S. Fish and Wildlife Service (USFWS), Bureau of Indian Affairs (BIA) and Environmental Protection Agency (EPA) funds were cost shared with Bonneville Power Administration (BPA) funds, provided under this project, to accomplish habitat enhancements. Water quality monitoring continued and was expanded for temperature and turbidity throughout the upper Umatilla River Watershed. Physical habitat surveys were conducted on the lower 13 river miles of Wildhorse Creek and within the Greasewood Creek Project Area to characterize habitat quality and to quantify various habitat types by area.

  12. Snake River Sockeye Salmon Habitat and Limnological Research : 2008 Annual Progress Report.

    SciTech Connect (OSTI)

    Kohler, Andre E. [Shoshone-Bannock Tribes; Griswold, Robert G. [Biolines Environmental Consulting; Taki, Doug [Shoshone-Bannock Tribes

    2009-07-31

    In March 1990, the Shoshone-Bannock Tribes petitioned the National Marine Fisheries Service (NMFS) to list Snake River sockeye salmon (Oncorhynchus nerka) as endangered. Snake River sockeye salmon were officially listed as endangered in November 1991 under the Endangered Species Act (56 FR 58619). In 1991, the Snake River Sockeye Salmon Habitat and Limnological Research Project was implemented. This project is part of an interagency effort to prevent the extinction of the Redfish Lake stock of Snake River sockeye salmon. The Shoshone-Bannock Tribal goal for this project is two tiered: the immediate goal is to increase the population of Snake River sockeye salmon while preserving the unique genetic characteristics of the evolutionarily significant unit (ESU). The Tribes long term goal is to maintain a viable population that warrants delisting and provides Tribal harvest opportunities. The Bonneville Power Administration (BPA) provides funding for this interagency Recovery effort. Collaborators in the recovery effort include the National Oceanic and Atmospheric Administration (NOAA), the Idaho Department of Fish and Game (IDFG), the University of Idaho (UI), and the Shoshone-Bannock Tribes (SBT). This report summarizes activities conducted by Shoshone-Bannock Tribal Fisheries Department personnel during the 2008 calendar year. Project tasks include: (1) monitor limnological parameters of the Sawtooth Valley lakes to assess lake productivity; (2) conduct lake fertilization in Pettit and Alturas lakes; (3) reduce the number of mature kokanee salmon spawning in Alturas Lake Creek; (4) monitor, enumerate, and evaluate sockeye salmon smolt migration from Pettit and Alturas lakes; (5) monitor spawning kokanee salmon escapement and estimate fry recruitment in Fishhook and Alturas Lake creeks; (6) conduct sockeye and kokanee salmon population surveys; (7) evaluate potential competition and predation between stocked juvenile sockeye salmon and a variety of fish species in Redfish, Pettit, and Alturas lakes; and (8) assist IDFG with captive broodstock production activities.

  13. Coal River Mountain Action Several people asked for more information about the 23 June civil disobedience near Coal River

    E-Print Network [OSTI]

    Hansen, James E.

    Coal River Mountain Action Several people asked for more information about the 23 June civil disobedience near Coal River Mountain. We need Dickens to describe the local situation, but you can glean the practice of mountaintop removal. Vernon Haltom vernoncrmw@gmail.com, head of Coal River Mountain Watch

  14. Bureau Home > Australia > Queensland > Rainfall & River Conditions > River Brochures > Burdekin FLOOD WARNING SYSTEM

    E-Print Network [OSTI]

    Greenslade, Diana

    the major rivers both upstream and downstream of the Burdekin Falls Dam. Downstream of the Dam, major from the north and the Belyando from the south, which join at the Burdekin Falls Dam. Downstream

  15. EIS-0268: Shutdown of River Water System at the Savannah River Site

    Broader source: Energy.gov [DOE]

    This EIS evaluates the potential environmental impacts of a proposal to shut down the Savannah R]ver Site River Water System in order to save money; that is, to prevent further expenditure of the...

  16. Interim Columbia and Snake rivers flow improvement measures for salmon: Final Supplemental Environmental Impact Statement (SEIS)

    SciTech Connect (OSTI)

    Not Available

    1993-03-01

    Public comments are sought on this final SEIS, which supplements the 1992 Columbia River Salmon Flow Measures Options Analysis (OA)/Environmental Impact Statement (EIS). The Corps of Engineers, in cooperation with the Bonneville Power Administration and the Bureau of Reclamation proposes five alternatives to improve flows of water in the lower Columbia-Snake rivers in 1993 and future years to assist the migration of juvenile and adult anadromous fish past eight hydropower dams. These are: (1) Without Project (no action) Alternative, (2) the 1992 Operation, (3) the 1992 Operation with Libby/Hungry Horse Sensitivity, (4) a Modified 1992 Operation with Improvements to Salmon Flows from Dworshak, and (5) a Modified 1992 Operation with Upper Snake Sensitivity. Alternative 4, Modified 1992 Operations, has been identified as the preferred alternative.

  17. PowerChem | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History ViewMayo, Maryland:NPIProtectio1975) |Texas:Pottawattamie County,River,GeneratingPowerChem Jump to:

  18. PowerGenix Systems | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History ViewMayo, Maryland:NPIProtectio1975) |Texas:Pottawattamie County,River,GeneratingPowerChem Jump

  19. Gujarat Power Corporation | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LISTStar2-0057-EA JumpDuimen River Power Co Ltd JumpGuanhYuefengEnergy

  20. Gulf Power Co | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LISTStar2-0057-EA JumpDuimen River Power Co Ltd JumpGuanhYuefengEnergyCorporationGulf