National Library of Energy BETA

Sample records for gila bend arizona

  1. Gila Bend, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Gila Bend, Arizona: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 32.9478236, -112.7168305 Show Map Loading map... "minzoom":false,"mappingse...

  2. Could Gila Bend, Arizona, Become the Solar Capital of the World?

    Broader source: Energy.gov [DOE]

    Serving approximately 9,000 homes with clean renewable energy, the Paloma and Cotton Center solar plants highlight the rapidly rising solar corridor in Gila Bend, Arizona.

  3. EA-1948: Gila-North Gila Transmission Line Rebuild and Upgrade Project, Yuma County, Arizona

    Broader source: Energy.gov [DOE]

    DOE’s Western Area Power Administration (Western) prepared this EA to analyze the potential environmental impacts of a proposal to rebuild and upgrade two parallel 4.8-mile transmission lines between the Gila and North Gila Substations and take actions in support of portions of Arizona Public Service’s construction of a new, 12.8 mile 230-kV transmission line between North Gila and a proposed substation in Yuma County, Arizona. The U.S. Bureau of Reclamation and U.S. Army Corps of Engineers are cooperating agencies.

  4. EA-1683: Abengoa Solar's Solana Concentrating Solar Power Facility, Gila

    Energy Savers [EERE]

    Bend, AZ | Department of Energy 83: Abengoa Solar's Solana Concentrating Solar Power Facility, Gila Bend, AZ EA-1683: Abengoa Solar's Solana Concentrating Solar Power Facility, Gila Bend, AZ May 3, 2010 EA-1683: Final Environmental Assessment Loan Guarantee to Abengoa Solar Inc. for the Solana Thermal Electric Power Project near Gila Bend, Arizona May 6, 2010 EA-1683: Finding of No Significant Impact Abengoa Solar Inc., the Solana Thermal Electric Power Project near Gila Bend, Arizona

  5. Gila County, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Day, Arizona Central Heights-Midland City, Arizona Claypool, Arizona Gisela, Arizona Globe, Arizona Hayden, Arizona Miami, Arizona Payson, Arizona Peridot, Arizona Pine, Arizona...

  6. Arizona

    U.S. Energy Information Administration (EIA) Indexed Site

    Arizona

  7. Modeling the Gila-San Francisco Basin using system dynamics in support of the 2004 Arizona Water Settlement Act.

    SciTech Connect (OSTI)

    Tidwell, Vincent Carroll; Sun, Amy Cha-Tien; Peplinski, William J.; Klise, Geoffrey Taylor

    2012-04-01

    Water resource management requires collaborative solutions that cross institutional and political boundaries. This work describes the development and use of a computer-based tool for assessing the impact of additional water allocation from the Gila River and the San Francisco River prescribed in the 2004 Arizona Water Settlements Act. Between 2005 and 2010, Sandia National Laboratories engaged concerned citizens, local water stakeholders, and key federal and state agencies to collaboratively create the Gila-San Francisco Decision Support Tool. Based on principles of system dynamics, the tool is founded on a hydrologic balance of surface water, groundwater, and their associated coupling between water resources and demands. The tool is fitted with a user interface to facilitate sensitivity studies of various water supply and demand scenarios. The model also projects the consumptive use of water in the region as well as the potential CUFA (Consumptive Use and Forbearance Agreement which stipulates when and where Arizona Water Settlements Act diversions can be made) diversion over a 26-year horizon. Scenarios are selected to enhance our understanding of the potential human impacts on the rivers ecological health in New Mexico; in particular, different case studies thematic to water conservation, water rights, and minimum flow are tested using the model. The impact on potential CUFA diversions, agricultural consumptive use, and surface water availability are assessed relative to the changes imposed in the scenarios. While it has been difficult to gage the acceptance level from the stakeholders, the technical information that the model provides are valuable for facilitating dialogues in the context of the new settlement.

  8. Gila River Indian Community- 2012 Project

    Broader source: Energy.gov [DOE]

    The Gila River Indian Community (GRIC) will conduct feasibility studies of potential renewable energy projects on its lands in south central Arizona.

  9. Project Reports for Gila River Indian Community- 2012 Project

    Broader source: Energy.gov [DOE]

    The Gila River Indian Community (GRIC) will conduct feasibility studies of potential renewable energy projects on its lands in south central Arizona.

  10. Gila Hot Springs District Heating Low Temperature Geothermal...

    Open Energy Info (EERE)

    Low Temperature Geothermal Facility Facility Gila Hot Springs Sector Geothermal energy Type District Heating Location Gila Hot Springs, New Mexico Coordinates Show Map...

  11. Arizona - Compare - U.S. Energy Information Administration (EIA)

    U.S. Energy Information Administration (EIA) Indexed Site

    Arizona Arizona

  12. Arizona - Rankings - U.S. Energy Information Administration (EIA)

    U.S. Energy Information Administration (EIA) Indexed Site

    Arizona Arizona

  13. Arizona - Search - U.S. Energy Information Administration (EIA)

    U.S. Energy Information Administration (EIA) Indexed Site

    Arizona Arizona

  14. EA-1683: Final Environmental Assessment

    Broader source: Energy.gov [DOE]

    Loan Guarantee to Abengoa Solar Inc. for the Solana Thermal Electric Power Project near Gila Bend, Arizona

  15. Gila River Indian Community Renewable Energy Feasibility Study

    Energy Savers [EERE]

    antaresgroupinc.com Gila River Indian Community Renewable Energy Feasibility Study Presented by: ANTARES Group Inc. Tim Rooney Anneliese Schmidt Gila River Indian Community DEQ Rudy Mix March 25, 2014 ANTARES Group Incorporated www.antaresgroupinc.com Presentation Outline * Summary of Gila River Indian Community * Project overview * Summary of feasibility study assessment - Solar projects - Biomass resource assessment - Biomass projects * Project status and future plans 2 www.antaresgroupinc.com

  16. EA-1683: Finding of No Significant Impact | Department of Energy

    Office of Environmental Management (EM)

    EA-1683: Finding of No Significant Impact Abengoa Solar Inc., the Solana Thermal Electric Power Project near Gila Bend, Arizona The Department of Energy has conducted an ...

  17. SOLANA | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    PROJECT STATISTICS: SOLANA PROJECT SUMMARY OWNERS Atlantica Yield & Liberty Interactive Corporation LOCATION Gila Bend, Arizona FINANCIAL SUMMARY LOAN PROGRAM TITLE XVII LOAN ...

  18. DOE/EA-1683: Finding of No Significant Impact Department of Energy...

    Office of Environmental Management (EM)

    plant (Solana Generating Plant) and associated 230 kilovolt transmission line (Solana Gen-Tie) proposed by Abengoa Solar Inc. (Abengoa) near Gila Bend, Arizona (Solana Project)....

  19. Pinal County, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Chuichu, Arizona Coolidge, Arizona Dudleyville, Arizona Eloy, Arizona Florence, Arizona Gold Camp, Arizona Hayden, Arizona Kearny, Arizona Mammoth, Arizona Maricopa, Arizona...

  20. Annotated bibliography for the humpback chub (Gila cypha) with emphasis on the Grand Canyon population.

    SciTech Connect (OSTI)

    Goulet, C. T.; LaGory, K. E.; Environmental Science Division

    2009-10-05

    Glen Canyon Dam is a hydroelectric facility located on the Colorado River in Arizona that is operated by the U.S. Bureau of Reclamation (Reclamation) for multiple purposes including water storage, flood control, power generation, recreation, and enhancement of fish and wildlife. Glen Canyon Dam operations have been managed for the last several years to improve conditions for the humpback chub (Gila cypha) and other ecosystem components. An extensive amount of literature has been produced on the humpback chub. We developed this annotated bibliography to assist managers and researchers in the Grand Canyon as they perform assessments, refine management strategies, and develop new studies to examine the factors affecting humpback chub. The U.S. Geological Survey recently created a multispecies bibliography (including references on the humpback chub) entitled Bibliography of Native Colorado River Big Fishes (available at www.fort.usgs.gov/Products/data/COFishBib). That bibliography, while quite extensive and broader in scope than ours, is not annotated, and, therefore, does not provide any of the information in the original literature. In developing this annotated bibliography, we have attempted to assemble abstracts from relevant published literature. We present here abstracts taken unmodified from individual reports and articles except where noted. The bibliography spans references from 1976 to 2009 and is organized in five broad topical areas, including: (1) biology, (2) ecology, (3) impacts of dam operations, (4) other impacts, and (5) conservation and management, and includes twenty subcategories. Within each subcategory, we present abstracts alphabetically by author and chronologically by year. We present relevant articles not specific to either the humpback chub or Glen Canyon Dam, but cited in other included reports, under the Supporting Articles subcategory. We provide all citations in alphabetical order in Section 7.

  1. Navajo County, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Mesa, Arizona Shongopovi, Arizona Shonto, Arizona Show Low, Arizona Snowflake, Arizona Taylor, Arizona Whiteriver, Arizona Winslow West, Arizona Winslow, Arizona Retrieved from...

  2. Pima County, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Arizona Flowing Wells, Arizona Green Valley, Arizona Littletown, Arizona Marana, Arizona Oro Valley, Arizona Picture Rocks, Arizona Pisinemo, Arizona Sahuarita, Arizona Santa Rosa,...

  3. Apache County, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Houck, Arizona Lukachukai, Arizona Many Farms, Arizona McNary, Arizona Nazlini, Arizona Red Mesa, Arizona Rock Point, Arizona Rough Rock, Arizona Round Rock, Arizona Sawmill,...

  4. Yuma County, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Solar Project Places in Yuma County, Arizona Fortuna Foothills, Arizona Gadsden, Arizona San Luis, Arizona Somerton, Arizona Tacna, Arizona Wellton, Arizona Yuma, Arizona...

  5. Cochise County, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Douglas, Arizona Huachuca City, Arizona Naco, Arizona Pirtleville, Arizona Sierra Vista Southeast, Arizona Sierra Vista, Arizona St. David, Arizona Tombstone, Arizona...

  6. Coconino County, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Sedona, Arizona Supai, Arizona Tonalea, Arizona Tuba City, Arizona Tusayan, Arizona Williams, Arizona Winslow West, Arizona Retrieved from "http:en.openei.orgw...

  7. Funding & Financing for Energy Projects | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Projects Funding & Financing for Energy Projects A concentrating solar power system being installed in Gila Bend, Arizona. | Photo by Dennis Schroeder. A concentrating solar power system being installed in Gila Bend, Arizona. | Photo by Dennis Schroeder. Are you a state, local or tribal government, or private sector partner, looking for resources or financing to support an energy project? Learn about funding and financing opportunities. AT THE ENERGY DEPARTMENT Loan Programs Office: The

  8. 2015 Arizona Housing Forum

    Broader source: Energy.gov [DOE]

    The 12th annual Arizona Housing Forum provides a platform for affordable housing professionals to network and share ideas to improve and create housing choices for Arizona. Registration is $350.

  9. Graham County, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    B. Places in Graham County, Arizona Peridot, Arizona Pima, Arizona Safford, Arizona Swift Trail Junction, Arizona Thatcher, Arizona Retrieved from "http:en.openei.orgw...

  10. Mohave County, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Creek, Arizona Mohave Valley, Arizona Mojave Ranch Estates, Arizona New Kingman-Butler, Arizona Peach Springs, Arizona Willow Valley, Arizona Retrieved from "http:...

  11. DOE - Office of Legacy Management -- Arizona

    Office of Legacy Management (LM)

    Arizona Arizona az_map Monument Valley Processing Site Tuba City Disposal

  12. Reversal bending fatigue testing

    DOE Patents [OSTI]

    Wang, Jy-An John; Wang, Hong; Tan, Ting

    2014-10-21

    Embodiments for apparatuses for testing reversal bending fatigue in an elongated beam are disclosed. Embodiments are configured to be coupled to first and second end portions of the beam and to apply a bending moment to the beam and create a pure bending condition in an intermediate portion of the beam. Embodiments are further configured to cyclically alternate the direction of the bending moment applied to the beam such that the intermediate portion of the beam cyclically bends in opposite directions in a pure bending condition.

  13. Benson, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Act Smart Grid Projects in Benson, Arizona Southwest Transmission Cooperative, Inc. Smart Grid Project Registered Energy Companies in Benson, Arizona Arizona Electric Power...

  14. Arizona Electric Power Cooperative | Open Energy Information

    Open Energy Info (EERE)

    Arizona Electric Power Cooperative Jump to: navigation, search Name: Arizona Electric Power Cooperative Place: Benson, Arizona Zip: 85602 Product: AEPCO was originally founded in...

  15. Arizona Solar Center | Open Energy Information

    Open Energy Info (EERE)

    Center Jump to: navigation, search Logo: Arizona Solar Center Name: Arizona Solar Center Place: Mesa, Arizona Number of Employees: 1-10 Year Founded: 1999 Website:...

  16. Microhole Tubing Bending Report

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Oglesby, Ken

    2012-01-01

    A downhole tubing bending study was made and is reported herein. IT contains a report and 2 excel spreadsheets to calculate tubing bending and to estimate contact points of the tubing to the drilled hole wall (creating a new support point).

  17. Microhole Tubing Bending Report

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Oglesby, Ken

    A downhole tubing bending study was made and is reported herein. IT contains a report and 2 excel spreadsheets to calculate tubing bending and to estimate contact points of the tubing to the drilled hole wall (creating a new support point).

  18. Arizona/Transmission/Agency Links | Open Energy Information

    Open Energy Info (EERE)

    and Fish Department Arizona State Historic Preservation Office Arizona Department of Transportation Arizona Department of Agriculture Arizona Department of Water Resources Central...

  19. Arizona City, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    City, Arizona: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 32.7558935, -111.6709584 Show Map Loading map... "minzoom":false,"mappingservice...

  20. Energy Exchange 2015: Phoenix, Arizona

    Broader source: Energy.gov [DOE]

    Presentations from Energy Exchange, a two-and-a-half day training scheduled for August 11-13, 2015, at the Phoenix Convention Center in Phoenix, Arizona.

  1. Grecycle Arizona LLC | Open Energy Information

    Open Energy Info (EERE)

    to: navigation, search Name: Grecycle Arizona LLC Place: Tucson, Arizona Product: Biodiesel producer out of cooking oil that operates a 1.2m liter plant in Tucson, Arizona....

  2. Phoenix, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    is a stub. You can help OpenEI by expanding it. Phoenix is a city in Maricopa County, Arizona. It falls under Arizona's 2nd congressional district and Arizona's 3rd congressional...

  3. Geothermal energy in Arizona. Final report

    SciTech Connect (OSTI)

    Stone, C.; Witcher, J.C.

    1982-09-01

    Current knowledge and basic data on geothermal resources in Arizona are compiled. The following are covered: specific area investigations, thermal aspects of Arizona, and exploration methods. (MHR)

  4. Arizona State Land Department | Open Energy Information

    Open Energy Info (EERE)

    Department Jump to: navigation, search Logo: Arizona State Land Department Name: Arizona State Land Department Abbreviation: ASLD Address: 1616 W. Adams St. Place: Phoenix, AZ Zip:...

  5. Arizona State University | Open Energy Information

    Open Energy Info (EERE)

    University Jump to: navigation, search Name: Arizona State University Place: Tempe, Arizona Zip: 85287 Website: asu.edu Coordinates: 33.4183159, -111.9311939 Show Map Loading...

  6. Arizona/Incentives | Open Energy Information

    Open Energy Info (EERE)

    Incentive Incentive Type Active APS - Energy Efficiency Solutions for Business (Arizona) Utility Rebate Program Yes APS - GEOSmart Financing Program (Arizona) Utility Loan Program...

  7. Arizona Corporation Commission | Open Energy Information

    Open Energy Info (EERE)

    Commission Jump to: navigation, search Name: Arizona Corporation Commission Abbreviation: ACC Service Territory: Arizona Website: www.azcc.gov EIA Form 861 Data This article is a...

  8. Arizona Solar Tech | Open Energy Information

    Open Energy Info (EERE)

    Tech Jump to: navigation, search Name: Arizona Solar Tech Place: Phoenix, Arizona Zip: 85040 Sector: Solar, Vehicles Product: Designs and installs solar PV systems for vehicles,...

  9. Arizona Administrative Code | Open Energy Information

    Open Energy Info (EERE)

    Arizona Administrative Code Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- RegulationRegulation: Arizona Administrative CodeLegal Abstract This...

  10. Property:BendingMeasurement | Open Energy Information

    Open Energy Info (EERE)

    Type String Description MHK Bending Measurement Categories Used in FormTemplate MHKSensor & MHKInstrument Allows Values Angle (Bending);Strain (Bending);3-axis...

  11. EA-1683: Abengoa Solar's Solana Concentrating Solar Power Facility...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    83: Abengoa Solar's Solana Concentrating Solar Power Facility, Gila Bend, AZ EA-1683: Abengoa Solar's Solana Concentrating Solar Power Facility, Gila Bend, AZ May 3, 2010 EA-1683: ...

  12. Arizona Oil and Gas Commission | Open Energy Information

    Open Energy Info (EERE)

    Commission Jump to: navigation, search Logo: Arizona Oil and Gas Commission Name: Arizona Oil and Gas Commission Address: 416 W. Congress Street, Suite 100 Place: Arizona Zip:...

  13. Arizona Department of Environmental Quality | Open Energy Information

    Open Energy Info (EERE)

    Arizona Department of Environmental Quality Name: Arizona Department of Environmental Quality Abbreviation: ADEQ Address: 1110 West Washington Street Phoenix, Arizona 85007 Place:...

  14. Arizona's 7th congressional district: Energy Resources | Open...

    Open Energy Info (EERE)

    in Arizona's 7th congressional district Agenera, LLC Amereco Biofuels Corp Arizona Public Service Company APS Arizona Solar Tech EDGE Energy LLC EGreenIdeas Ecotality North...

  15. Arizona's 4th congressional district: Energy Resources | Open...

    Open Energy Info (EERE)

    in Arizona's 4th congressional district Agenera, LLC Amereco Biofuels Corp Arizona Public Service Company APS Arizona Solar Tech EDGE Energy LLC EGreenIdeas Ecotality North...

  16. Arizona's 2nd congressional district: Energy Resources | Open...

    Open Energy Info (EERE)

    in Arizona's 2nd congressional district Agenera, LLC Amereco Biofuels Corp Arizona Public Service Company APS Arizona Solar Tech EDGE Energy LLC EGreenIdeas Ecotality North...

  17. Arizona Solar Energy Industries Association | Open Energy Information

    Open Energy Info (EERE)

    Arizona Solar Energy Industries Association Name: Arizona Solar Energy Industries Association Place: Arizona Website: www.arizonasolarindustry.org Coordinates: 34.0489281,...

  18. Sunshine Arizona Wind Energy LLC | Open Energy Information

    Open Energy Info (EERE)

    Sunshine Arizona Wind Energy LLC Jump to: navigation, search Name: Sunshine Arizona Wind Energy LLC Place: Flagstaff, Arizona Zip: 86001 Sector: Wind energy Product: Formed to...

  19. Arizona Regions | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    is designated for your school's state, county, city, or district. For more information, please visit the High School Coach page. Arizona Region High School Regional Arizona Arizona...

  20. Arizona Regions | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    for your school's state, county, city, or district. For more information, please visit the Middle School Coach page. Arizona Region Middle School Regional Arizona Arizona...

  1. Yavapai County, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    EV Solar Products Energy Generation Facilities in Yavapai County, Arizona Prescott Airport Solar Plant Solar Power Plant Places in Yavapai County, Arizona Ash Fork, Arizona...

  2. EA-134-APS Arizona Public Service Company | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    EA-134-APS Arizona Public Service Company Order authorizing Arizona Public Service Company to export electric energy to Mexico. PDF icon EA-134-APS Arizona Public Service Company ...

  3. EA-108 Arizona Public Service Company | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    EA-108 Arizona Public Service Company Order authorizing Arizona Public Service to export electric energy to Mexico. PDF icon EA-108 Arizona Public Service.pdf More Documents & ...

  4. Northern Arizona University Wind Projects | Open Energy Information

    Open Energy Info (EERE)

    Northern Arizona University Wind Projects (Redirected from Northern Arizona University Wind Project) Jump to: navigation, search Northern Arizona University ARD Wind Project...

  5. PP-108 Arizona Public Service Company | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    8 Arizona Public Service Company PP-108 Arizona Public Service Company Presidential Permit authorizing APSC to construct, operate and maintain electric transmission facitilites at the U.S. - Mexico Border. PDF icon PP-108 Arizona Public Service Company More Documents & Publications PP-107-1 Arizona Public Service Company PP-106 Arizona Public Service Company PP-107 Arizona Public Service

  6. Active mines in Arizona and Arizona exploration offices

    SciTech Connect (OSTI)

    Not Available

    1988-01-01

    This book is a directory that lists 91 mining operations and 107 sand and gravel operations. It lists the company name, address, key personnel, mine, mill, or smelter location, and a description of the operation. A map plotting the locations of all the active mines is also available ($2). Arizona Exploration Offices is a directory that lists 68 exploration companies in Arizona, 80% of whom list gold or silver as their principal exploration target. Other exploration companies are searching for industrial minerals, uranium, beryllium, rare earths, ferroalloys, and sulfur.

  7. Flagstaff, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    a stub. You can help OpenEI by expanding it. Flagstaff is a city in Coconino County, Arizona. It falls under Arizona's 1st congressional district.12 Contents 1 Registered...

  8. Arizona Power Authority | Open Energy Information

    Open Energy Info (EERE)

    Arizona Power Authority Place: Arizona Phone Number: 602-368-4265 Website: www.powerauthority.org Outage Hotline: 602-368-4265 References: EIA Form EIA-861 Final Data File for...

  9. Arizona: Building Smart from the Start

    SciTech Connect (OSTI)

    2003-06-01

    A fact sheet that describes Arizona's Housing Tax Credit Program, to make sure houses were built more efficiently.

  10. Energy Incentive Programs, Arizona | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Arizona Energy Incentive Programs, Arizona Updated February 2015 What public-purpose-funded energy efficiency programs are available in my state? Arizona's restructuring law provides for a systems benefits charge (SBC) to fund energy efficiency programs. The SBC is collected through a non-bypassable surcharge on electricity bills. Although some of these funds have been devoted to renewable energy programs, in 2013 Arizona utilities budgeted over $160 million to promote energy efficiency and load

  11. Energy Department, Arizona Utilities Announce Transmission Infrastructure

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Project Energization | Department of Energy Arizona Utilities Announce Transmission Infrastructure Project Energization Energy Department, Arizona Utilities Announce Transmission Infrastructure Project Energization February 12, 2015 - 2:30pm Addthis News Media Contact 202 586 4940 DOENews@hq.doe.gov Energy Department, Arizona Utilities Announce Transmission Infrastructure Project Energization Transmission Line Increases Reliability, Access to Affordable Energy in Southwest States WASHINGTON

  12. Tribal Water in Arizona Conference

    Broader source: Energy.gov [DOE]

    The Law Seminars International is hosting the Tribal Water in Arizona: New Development for Indian Water Rights, Regulations, and Settlement Processes. The two-day conference will present an overview of the law governing tribal water rights and impacting the development of tribal water projects.

  13. Passive, achromatic, nearly isochronous bending system

    DOE Patents [OSTI]

    Douglas, David R.; Yunn, Byung C.

    2004-05-18

    A particle beam bending system having a geometry that applies active bending only beyond the chord of the orbit for any momentum component. Using this bending configuration, all momentum components emerge dispersed in position only; all trajectories are parallel by construction. Combining a pair of such bends with reflective symmetry produces a bend cell that is, by construction, achromatic to all orders. By the particular choice of 45.degree. individual bends, a pair of such achromats can be used as the basis of a 180.degree. recirculation arc. Other rational fractions of a full 180.degree. bend serve equally well (e.g., 2 bends/cell.times.90.degree./bend.times.1 cell /arc; 2 bends/cell.times.30.degree./bend.times.3 cells/arc, etc), as do combinations of multiple bending numerologies (e.g., 2 bends/cell.times.22.5.degree./bend.times.2 cells+2 bends/cell.times.45.degree./bend.times.1 cell). By the choice of entry pole face rotation of the first magnet and exit pole face rotation of the second magnet (with a value to be determined from the particular beam stability requirements imposed by the choice of bending angle and beam properties to be used in any particular application), desirable focusing properties can be introduced and beam stability can be insured.

  14. PP-106 Arizona Public Service Company | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    6 Arizona Public Service Company PP-106 Arizona Public Service Company Presidential permit authorizing Arizona Public Service Company to construct, operate, and maintain electric transmission facilities at the U.S-Mexico border. PDF icon PP-106 Arizona Public Service Company More Documents & Publications PP-107-1 Arizona Public Service Company PP-107

  15. Compaction managed mirror bend achromat

    DOE Patents [OSTI]

    Douglas, David

    2005-10-18

    A method for controlling the momentum compaction in a beam of charged particles. The method includes a compaction-managed mirror bend achromat (CMMBA) that provides a beamline design that retains the large momentum acceptance of a conventional mirror bend achromat. The CMMBA also provides the ability to tailor the system momentum compaction spectrum as desired for specific applications. The CMMBA enables magnetostatic management of the longitudinal phase space in Energy Recovery Linacs (ERLs) thereby alleviating the need for harmonic linearization of the RF waveform.

  16. ARIZONA RECOVERY ACT SNAPSHOT | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Arizona has substantial natural resources, including coal, solar, and hydroelectric resources. The American Recovery & Reinvestment Act (ARRA) is making a meaningful down payment on the nation's energy and environmental future. The Recovery Act investments in Arizona reflect a broad range of clean energy projects, from energy efficiency and the smart grid to transportation, carbon capture and storage, and geothermal energy. Through these investments, Arizona's businesses, universities,

  17. Arizona Department of Environmental Quality's Individual Permits...

    Open Energy Info (EERE)

    search OpenEI Reference LibraryAdd to library Web Site: Arizona Department of Environmental Quality's Individual Permits Website Abstract This website contains information...

  18. Arizona Department of Environmental Quality's General Permits...

    Open Energy Info (EERE)

    search OpenEI Reference LibraryAdd to library Web Site: Arizona Department of Environmental Quality's General Permits Website Abstract This website provides information...

  19. Arizona Department of Environmental Quality's Application Forms...

    Open Energy Info (EERE)

    search OpenEI Reference LibraryAdd to library Web Site: Arizona Department of Environmental Quality's Application Forms and Guidance Website Abstract This site contains forms...

  20. Williams, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Williams, Arizona: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 35.2494566, -112.1910031 Show Map Loading map... "minzoom":false,"mappingser...

  1. Havasupai Indian Reservation, Supai Village, Arizona | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Havasupai Indian Reservation, Supai Village, Arizona Photo of Photovoltaic Energy System ... Three photovoltaic (PV) energy systems will supply up to 2 kilowatts of electrical power ...

  2. Energy Department, Arizona Utilities Announce Transmission Infrastruct...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    expand opportunity, and improve the competitiveness of the American economy. "This newly ... while improving opportunities for new renewable energy generation in Arizona," said ...

  3. Flagstaff, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Arizona Wind Energy LLC References US Census Bureau Incorporated place and minor civil division population dataset (All States, all geography) US Census Bureau...

  4. Tucson, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    in Tucson, Arizona Environmentally Protective Power Generation EPPG Ethanol Capital Management Expert Solar Systems General Plasma Inc Genesis Solar LLC GeoInnovation Global...

  5. Arizona/Wind Resources | Open Energy Information

    Open Energy Info (EERE)

    source History View New Pages Recent Changes All Special Pages Semantic SearchQuerying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Arizona...

  6. Arizona Department of Environmental Quality's AZPDES Website...

    Open Energy Info (EERE)

    AZPDES Website Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Arizona Department of Environmental Quality's AZPDES Website Abstract This website...

  7. Phoenix, Arizona Data Dashboard | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    The data dashboard for Phoenix, Arizona, a partner in the Better Buildings Neighborhood Program. File Phoenix Data Dashboard More Documents & Publications Austin Energy Data ...

  8. Prescott, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    district.12 Energy Generation Facilities in Prescott, Arizona Prescott Airport Solar Plant Solar Power Plant References US Census Bureau Incorporated place and...

  9. Arizona Teachers Prepare Students for Green Economy

    Broader source: Energy.gov [DOE]

    Students led by their building trades teacher , are wiring parts of the Raymond S. Kellis High School in Glendale, Arizona for solar power.

  10. Arizona Indian Gaming Association (AIGA) Expo

    Broader source: Energy.gov [DOE]

    This year’s EXPO will take place November 5-7, 2014 at the Radisson Fort McDowell Resort & Casino located in Scottsdale, Arizona.

  11. Burnside, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Burnside, Arizona: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 35.7511228, -109.6245514 Show Map Loading map... "minzoom":false,"mappingser...

  12. Summit, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Summit, Arizona: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 32.0670238, -110.9514796 Show Map Loading map... "minzoom":false,"mappingservi...

  13. Cameron, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Arizona: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 35.8758285, -111.4129207 Show Map Loading map... "minzoom":false,"mappingservice":"goo...

  14. Ganado, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Ganado, Arizona: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 35.7114022, -109.5420492 Show Map Loading map... "minzoom":false,"mappingservi...

  15. Avondale, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Avondale, Arizona: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 33.4355977, -112.3496021 Show Map Loading map... "minzoom":false,"mappingser...

  16. Jerome, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Arizona: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 34.7489107, -112.1137716 Show Map Loading map... "minzoom":false,"mappingservice":"goo...

  17. Northern Arizona University | Open Energy Information

    Open Energy Info (EERE)

    University Jump to: navigation, search Name: Northern Arizona University Place: Flagstaff, AZ Zip: 86011 Phone Number: 928-523-0715 Website: nau.edu Coordinates: 35.1905403,...

  18. Littletown, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Littletown, Arizona: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 32.1303561, -110.8728658 Show Map Loading map... "minzoom":false,"mappings...

  19. Peoria, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Peoria, Arizona: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 33.5805955, -112.2373779 Show Map Loading map... "minzoom":false,"mappingservi...

  20. Springerville, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Springerville, Arizona: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 34.1333799, -109.2859196 Show Map Loading map... "minzoom":false,"mappi...

  1. Surprise, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Surprise, Arizona: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 33.6305938, -112.333216 Show Map Loading map... "minzoom":false,"mappingserv...

  2. Cottonwood, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Arizona: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 34.7391876, -112.0098791 Show Map Loading map... "minzoom":false,"mappingservice":"goo...

  3. Maricopa, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Arizona: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 33.0581063, -112.0476423 Show Map Loading map... "minzoom":false,"mappingservice":"goo...

  4. Kaibab, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Kaibab, Arizona: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 36.896652, -112.7407596 Show Map Loading map... "minzoom":false,"mappingservic...

  5. Coolidge, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Coolidge, Arizona: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 32.977839, -111.517624 Show Map Loading map... "minzoom":false,"mappingservi...

  6. Gadsden, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Gadsden, Arizona: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 32.5544974, -114.7849577 Show Map Loading map... "minzoom":false,"mappingserv...

  7. Whetstone, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Whetstone, Arizona: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 31.701705, -110.340746 Show Map Loading map... "minzoom":false,"mappingserv...

  8. Chinle, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Chinle, Arizona: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 36.1544483, -109.5526072 Show Map Loading map... "minzoom":false,"mappingservi...

  9. Blackwater, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Blackwater, Arizona: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 33.0311702, -111.582627 Show Map Loading map... "minzoom":false,"mappingse...

  10. Vail, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Arizona: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 32.0478583, -110.7120272 Show Map Loading map... "minzoom":false,"mappingservice":"goo...

  11. Cornville, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Cornville, Arizona: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 34.7177989, -111.9215438 Show Map Loading map... "minzoom":false,"mappingse...

  12. Tsaile, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Tsaile, Arizona: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 36.303712, -109.214705 Show Map Loading map... "minzoom":false,"mappingservice...

  13. Wilhoit, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Wilhoit, Arizona: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 34.4258586, -112.5868398 Show Map Loading map... "minzoom":false,"mappingserv...

  14. Mountainaire, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Mountainaire, Arizona: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 35.0852924, -111.6659925 Show Map Loading map... "minzoom":false,"mappin...

  15. Kingman, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Arizona: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 35.189443, -114.0530065 Show Map Loading map... "minzoom":false,"mappingservice":"goog...

  16. Oracle, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Oracle, Arizona: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 32.6109054, -110.7709348 Show Map Loading map... "minzoom":false,"mappingservi...

  17. Fredonia, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Arizona: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 36.945542, -112.5265889 Show Map Loading map... "minzoom":false,"mappingservice":"goog...

  18. Chuichu, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Chuichu, Arizona: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 32.752002, -111.7831837 Show Map Loading map... "minzoom":false,"mappingservi...

  19. Sahuarita, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Sahuarita, Arizona: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 31.9575818, -110.955646 Show Map Loading map... "minzoom":false,"mappingser...

  20. Tortolita, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Tortolita, Arizona: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 32.4005302, -111.0400795 Show Map Loading map... "minzoom":false,"mappingse...

  1. Sacaton, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Sacaton, Arizona: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 33.0767225, -111.7392993 Show Map Loading map... "minzoom":false,"mappingserv...

  2. Moenkopi, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Moenkopi, Arizona: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 36.1111043, -111.2223624 Show Map Loading map... "minzoom":false,"mappingser...

  3. Paulden, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Paulden, Arizona: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 34.8855756, -112.4682271 Show Map Loading map... "minzoom":false,"mappingserv...

  4. Parks, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Parks, Arizona: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 35.2605664, -111.9487743 Show Map Loading map... "minzoom":false,"mappingservic...

  5. Arizona Natural Gas Repressuring (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    12312015 Next Release Date: 01292016 Referring Pages: Natural Gas Used for Repressuring Arizona Natural Gas Gross Withdrawals and Production Natural Gas Used for Repressuring...

  6. Tacna, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Tacna, Arizona: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 32.6975472, -113.9535427 Show Map Loading map... "minzoom":false,"mappingservic...

  7. Houck, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Houck, Arizona: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 35.2830803, -109.2070391 Show Map Loading map... "minzoom":false,"mappingservic...

  8. Tucson, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Tucson, Arizona: Energy Resources (Redirected from Tucson, AZ) Jump to: navigation, search Equivalent URI DBpedia Coordinates 32.2217429, -110.926479 Show Map Loading map......

  9. Congress, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Congress, Arizona: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 34.162526, -112.8507374 Show Map Loading map... "minzoom":false,"mappingserv...

  10. Supai, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Supai, Arizona: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 36.2369265, -112.6890791 Show Map Loading map... "minzoom":false,"mappingservic...

  11. Superior, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Superior, Arizona: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 33.293945, -111.0962305 Show Map Loading map... "minzoom":false,"mappingserv...

  12. Wellton, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Wellton, Arizona: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 32.6728256, -114.1468821 Show Map Loading map... "minzoom":false,"mappingserv...

  13. Carefree, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Carefree, Arizona: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 33.8222611, -111.918203 Show Map Loading map... "minzoom":false,"mappingserv...

  14. Willcox, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Willcox, Arizona: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 32.2528519, -109.8320124 Show Map Loading map... "minzoom":false,"mappingserv...

  15. Chandler, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Chandler, Arizona: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 33.3061605, -111.8412502 Show Map Loading map... "minzoom":false,"mappingser...

  16. Pirtleville, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Pirtleville, Arizona: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 31.3570467, -109.561734 Show Map Loading map... "minzoom":false,"mappings...

  17. Dudleyville, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Dudleyville, Arizona: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 32.914267, -110.733779 Show Map Loading map... "minzoom":false,"mappingse...

  18. Tonalea, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Tonalea, Arizona: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 36.3224923, -110.9634781 Show Map Loading map... "minzoom":false,"mappingserv...

  19. Mayer, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Mayer, Arizona: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 34.3978054, -112.2362734 Show Map Loading map... "minzoom":false,"mappingservic...

  20. Ajo, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Ajo, Arizona: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 32.3717248, -112.8607099 Show Map Loading map... "minzoom":false,"mappingservice"...

  1. Wickenburg, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Wickenburg, Arizona: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 33.9686412, -112.729622 Show Map Loading map... "minzoom":false,"mappingse...

  2. Glendale, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Arizona: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 33.5386523, -112.1859866 Show Map Loading map... "minzoom":false,"mappingservice":"goo...

  3. Bisbee, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Bisbee, Arizona: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 31.4481547, -109.9284084 Show Map Loading map... "minzoom":false,"mappingservi...

  4. Eloy, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Eloy, Arizona: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 32.7558962, -111.554844 Show Map Loading map... "minzoom":false,"mappingservice"...

  5. Tolleson, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Tolleson, Arizona: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 33.4500425, -112.259321 Show Map Loading map... "minzoom":false,"mappingserv...

  6. Nazlini, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Nazlini, Arizona: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 35.8963986, -109.4487147 Show Map Loading map... "minzoom":false,"mappingserv...

  7. Tombstone, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Tombstone, Arizona: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 31.7128683, -110.0675764 Show Map Loading map... "minzoom":false,"mappingse...

  8. Sedona, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Sedona, Arizona: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 34.8697395, -111.7609896 Show Map Loading map... "minzoom":false,"mappingservi...

  9. Sawmill, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Sawmill, Arizona: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 33.6181083, -110.3964911 Show Map Loading map... "minzoom":false,"mappingserv...

  10. Pisinemo, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Pisinemo, Arizona: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 32.0378487, -112.3209689 Show Map Loading map... "minzoom":false,"mappingser...

  11. Sells, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Sells, Arizona: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 31.9120215, -111.881234 Show Map Loading map... "minzoom":false,"mappingservice...

  12. Hayden, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Hayden, Arizona: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 33.0047878, -110.7853836 Show Map Loading map... "minzoom":false,"mappingservi...

  13. Kearny, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Arizona: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 33.0570085, -110.9106656 Show Map Loading map... "minzoom":false,"mappingservice":"goo...

  14. Eagar, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Eagar, Arizona: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 34.1111581, -109.291475 Show Map Loading map... "minzoom":false,"mappingservice...

  15. Stanfield, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Stanfield, Arizona: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 32.8825531, -111.9620805 Show Map Loading map... "minzoom":false,"mappingse...

  16. Mammoth, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Mammoth, Arizona: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 32.722568, -110.6406547 Show Map Loading map... "minzoom":false,"mappingservi...

  17. Lukachukai, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Lukachukai, Arizona: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 36.416946, -109.2287125 Show Map Loading map... "minzoom":false,"mappingse...

  18. Florence, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Arizona: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 33.0314508, -111.3873431 Show Map Loading map... "minzoom":false,"mappingservice":"goo...

  19. Lechee, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Lechee, Arizona: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 35.0322421, -110.7529145 Show Map Loading map... "minzoom":false,"mappingservi...

  20. Guadalupe, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Guadalupe, Arizona: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 33.3708798, -111.9629216 Show Map Loading map... "minzoom":false,"mappingse...

  1. Dennehotso, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Dennehotso, Arizona: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 35.479167, -111.2375 Show Map Loading map... "minzoom":false,"mappingservi...

  2. Naco, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Naco, Arizona: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 31.3353801, -109.9481297 Show Map Loading map... "minzoom":false,"mappingservice...

  3. Marana, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Marana, Arizona: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 32.414432, -111.172754 Show Map Loading map... "minzoom":false,"mappingservice...

  4. Winkelman, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Winkelman, Arizona: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 32.9875659, -110.7709387 Show Map Loading map... "minzoom":false,"mappingse...

  5. Somerton, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Somerton, Arizona: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 32.5964404, -114.709677 Show Map Loading map... "minzoom":false,"mappingserv...

  6. Williamson, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Williamson, Arizona: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 34.6900229, -112.5410052 Show Map Loading map... "minzoom":false,"mappings...

  7. Buckeye, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Buckeye, Arizona: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 33.3703197, -112.5837766 Show Map Loading map... "minzoom":false,"mappingserv...

  8. Santan, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Santan, Arizona: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 33.145476, -111.801546 Show Map Loading map... "minzoom":false,"mappingservice...

  9. Gilbert, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Arizona: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 33.3528264, -111.789027 Show Map Loading map... "minzoom":false,"mappingservice":"goog...

  10. Kaibito, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Kaibito, Arizona: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 36.5972186, -111.0743114 Show Map Loading map... "minzoom":false,"mappingserv...

  11. Page, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Page, Arizona: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 36.9147222, -111.4558333 Show Map Loading map... "minzoom":false,"mappingservice...

  12. Douglas, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Douglas, Arizona: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 31.3445471, -109.5453447 Show Map Loading map... "minzoom":false,"mappingserv...

  13. Steamboat, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Steamboat, Arizona: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 35.7513983, -109.8478915 Show Map Loading map... "minzoom":false,"mappingse...

  14. Phoenix, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Phoenix, Arizona: Energy Resources (Redirected from Phoenix, AZ) Jump to: navigation, search Equivalent URI DBpedia Coordinates 33.4483771, -112.0740373 Show Map Loading map......

  15. Leupp, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Leupp, Arizona: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 35.2980659, -111.0062528 Show Map Loading map... "minzoom":false,"mappingservic...

  16. Seligman, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Seligman, Arizona: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 35.3255608, -112.8774057 Show Map Loading map... "minzoom":false,"mappingser...

  17. Tusayan, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Tusayan, Arizona: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 35.9735954, -112.1265569 Show Map Loading map... "minzoom":false,"mappingserv...

  18. Goodyear, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Goodyear, Arizona: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 33.4353199, -112.3582135 Show Map Loading map... "minzoom":false,"mappingser...

  19. Catalina, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Catalina, Arizona: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 32.5000731, -110.9212146 Show Map Loading map... "minzoom":false,"mappingser...

  20. Yarnell, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Yarnell, Arizona: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 34.2216927, -112.7474007 Show Map Loading map... "minzoom":false,"mappingserv...

  1. Yuma, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Yuma, Arizona: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 32.7253248, -114.624397 Show Map Loading map... "minzoom":false,"mappingservice"...

  2. Mesa, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Inc. ETA Engineering Renegy Holdings Inc The Arizona Center for Algae Technology and Innovation References US Census Bureau Incorporated place and minor civil division...

  3. Arizona Center for Innovation | Open Energy Information

    Open Energy Info (EERE)

    Innovation Jump to: navigation, search Name: Arizona Center for Innovation Place: United States Sector: Services Product: General Financial & Legal Services ( Academic Research...

  4. BLM Arizona State Office | Open Energy Information

    Open Energy Info (EERE)

    Arizona Address: One North Central Avenue, Suite 800 Place: Phoenix, AZ Zip: 85004 Phone Number: 602-417-9200 ParentHolding Organization: Bureau of Land Management...

  5. EA-106 Arizona Public Service Company | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    EA-106 Arizona Public Service Company Order authorizing Arizona Public Service Company to export electric energy to Mexico. PDF icon EA-106 Arizona Public Service (MX).pdf More ...

  6. The Future of Electric Vehicles and Arizona State University's MAIL

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Battery | Department of Energy The Future of Electric Vehicles and Arizona State University's MAIL Battery The Future of Electric Vehicles and Arizona State University's MAIL Battery August 11, 2010 - 4:26pm Addthis Cody Friesen and his team at Arizona State University | Photo Credit Arizona State University Cody Friesen and his team at Arizona State University | Photo Credit Arizona State University Andy Oare Andy Oare Former New Media Strategist, Office of Public Affairs What does this

  7. A Solar Win for Arizona | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    A Solar Win for Arizona A Solar Win for Arizona January 9, 2013 - 5:11pm Addthis The 150 megawatt Mesquite Solar 1 installation in Maricopa County, Arizona. | Photo courtesy of Sempra Energy. The 150 megawatt Mesquite Solar 1 installation in Maricopa County, Arizona. | Photo courtesy of Sempra Energy. The 150 megawatt Mesquite Solar 1 installation in Maricopa County, Arizona. | Photo courtesy of Sempra Energy. The 150 megawatt Mesquite Solar 1 installation in Maricopa County, Arizona. | Photo

  8. Arizona's 3rd congressional district: Energy Resources | Open...

    Open Energy Info (EERE)

    congressional district Agenera, LLC Alchemix Corporation Amereco Biofuels Corp Arizona Public Service Company APS Arizona Solar Tech EDGE Energy LLC EGreenIdeas Ecotality North...

  9. Arizona Public Service Company APS | Open Energy Information

    Open Energy Info (EERE)

    Public Service Company APS Jump to: navigation, search Name: Arizona Public Service Company (APS) Place: Phoenix, Arizona Zip: 85004 Product: Generates, transmits and distributes...

  10. Arizona Const. Art.15 - The Corporation Commission | Open Energy...

    Open Energy Info (EERE)

    Arizona Const. Art.15 - The Corporation CommissionLegal Abstract This article sets forth the Constitutional provisions governing the Arizona Corporations Commission. Published...

  11. City of Williams - AZ, Arizona (Utility Company) | Open Energy...

    Open Energy Info (EERE)

    Williams - AZ, Arizona (Utility Company) Jump to: navigation, search Name: City of Williams - AZ Place: Arizona Phone Number: 928-635-2667 or 928-635-4451 Website:...

  12. Phoenix, Arizona Summary of Reported Data | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Summary of Reported Data Phoenix, Arizona Summary of Reported Data Summary of data reported by Better Buildings Neighborhood Program partner Phoenix, Arizona. PDF icon Phoenix, ...

  13. EERE Success Story-Arizona: Solar Panels Replace Inefficient...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    These projects typically have payback periods under five ... consumption of gasoline, diesel, propane, and electricity. Location Arizona Partners State of Arizona EERE Investment ...

  14. Northern Arizona University Wind Projects | Open Energy Information

    Open Energy Info (EERE)

    Wind Projects Jump to: navigation, search Northern Arizona University ARD Wind Project Northern Arizona University SHRM Wind Project Retrieved from "http:en.openei.orgw...

  15. Arizona Transmission Line Siting Committee | Open Energy Information

    Open Energy Info (EERE)

    Line Siting Committee Jump to: navigation, search Name: Arizona Transmission Line Siting Committee Abbreviation: TLSC Address: 1200 West Washington Street Place: Phoenix, Arizona...

  16. The Arizona Center for Algae Technology and Innovation | Open...

    Open Energy Info (EERE)

    Arizona Center for Algae Technology and Innovation Jump to: navigation, search Name: The Arizona Center for Algae Technology and Innovation Abbreviation: AzCATI Address: 7418 East...

  17. Arizona Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    nuclear power plants, summer capacity and net generation, 2010" "Plant name/total reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net generation (percent)","Owner" "Palo Verde Unit 1, Unit 2, Unit 3","3,937","31,200",100.0,"Arizona Public Service Co" "1 Plant 3 Reactors","3,937","31,200",100.0 "Note: Totals may not equal sum of

  18. Bisfuel links - Arizona State University

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Arizona State University http://chemistry.asu.edu/" target="_blank">ASU Department of Chemistry and Biochemistry http://sustainability.asu.edu/index.php" target="_blank">ASU Global Institute of Sustainability http://asulightworks.com/" target="_blank">ASU Lightworks http://sols.asu.edu/" target="_blank">ASU School of Life Sciences http://www.biodesign.asu.edu/" target="_blank">Biodesign Institute

  19. Northern Arizona University | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Northern Arizona University Northern Arizona University Team Roster: Anas Alkandari, Mechanical Engineering; Randon Allen, Electrical Engineering; Hashim Alramadhan, Mechanical Engineering; Jessica Bauer, Mechanical Engineering; Luke Baxter, Business Administration; Thomas Begay, Business Administration; Connor Campbell, Business Administration; Nathan Ceniceros, Mechanical Engineering; Norman Clark, Mechanical Engineering; Michael Coil, Business Administration; Jeremy Cook, Mechanical

  20. Phoenix, Arizona Data Dashboard | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Data Dashboard Phoenix, Arizona Data Dashboard The data dashboard for Phoenix, Arizona, a partner in the Better Buildings Neighborhood Program. File Phoenix Data Dashboard More Documents & Publications Austin Energy Data Dashboard Massachusetts -- SEP Data Dashboard Camden, New Jersey Data Dashboard

  1. PP-107 Arizona Public Service Company | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Arizona Public Service Company PP-107 Arizona Public Service Company Presidential permit authorizing Arizona Public Service Company to construct, operate, and maintain electric transmission facilities at the U.S-Mexico border. PDF icon PP-107 Arizona Public Service Company More Documents & Publications PP-107-1

  2. Alternative Fuels Data Center: Arizona Transportation Data for Alternative

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Fuels and Vehicles Arizona Transportation Data for Alternative Fuels and Vehicles to someone by E-mail Share Alternative Fuels Data Center: Arizona Transportation Data for Alternative Fuels and Vehicles on Facebook Tweet about Alternative Fuels Data Center: Arizona Transportation Data for Alternative Fuels and Vehicles on Twitter Bookmark Alternative Fuels Data Center: Arizona Transportation Data for Alternative Fuels and Vehicles on Google Bookmark Alternative Fuels Data Center: Arizona

  3. Louisiana Nuclear Profile - River Bend

    U.S. Energy Information Administration (EIA) Indexed Site

    River Bend" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License expiration date" 1,974,"8,363",98.0,"BWR","application/vnd.ms-excel","application/vnd.ms-excel" ,974,"8,363",98.0 "Data for 2010" "BWR = Boiling

  4. ,"Arizona Natural Gas Gross Withdrawals and Production"

    U.S. Energy Information Administration (EIA) Indexed Site

    ,,"(202) 586-8800",,,"4292016 6:48:23 AM" "Back to Contents","Data 1: Arizona Natural Gas Gross Withdrawals and Production" "Sourcekey","N9010AZ2","N9011AZ2","N9012AZ2","NGME...

  5. ,"Arizona Natural Gas Gross Withdrawals and Production"

    U.S. Energy Information Administration (EIA) Indexed Site

    ,,"(202) 586-8800",,,"4292016 6:48:22 AM" "Back to Contents","Data 1: Arizona Natural Gas Gross Withdrawals and Production" "Sourcekey","N9010AZ2","N9011AZ2","N9012AZ2","NGME...

  6. ,"Arizona Natural Gas Consumption by End Use"

    U.S. Energy Information Administration (EIA) Indexed Site

    Consumption by End Use" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Arizona Natural Gas ...

  7. EIS-0322: Sundance Energy Project, Arizona

    Broader source: Energy.gov [DOE]

    This EIS analyzes Western Area Power Administration (Western) decision to approve Sundance Energy LLC (Sundance) to interconnect a planned generator facility to Westerns transmission system in the vicinity of Coolidge, Arizona.

  8. Arizona Natural Gas Repressuring (Million Cubic Feet)

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Repressuring (Million Cubic Feet) Arizona Natural Gas Repressuring (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 103...

  9. PARTICLE ACCELERATORS; ACCELERATORS; BEAM DUMPS; BENDING; CHANNELING...

    Office of Scientific and Technical Information (OSTI)

    Channeling through Bent Crystals Mack, Stephanie; Ottawa U. SLAC 43 PARTICLE ACCELERATORS; ACCELERATORS; BEAM DUMPS; BENDING; CHANNELING; CRYSTAL LATTICES; DETECTION; FORTRAN;...

  10. SOURCE PHENOMENOLOGY EXPERIMENTS IN ARIZONA

    SciTech Connect (OSTI)

    Jessie L. Bonner; Brian Stump; Mark Leidig; Heather Hooper; Xiaoning Yang; Rongmao Zhou; Tae Sung Kim; William R. Walter; Aaron Velasco; Chris Hayward; Diane Baker; C. L. Edwards; Steven Harder; Travis Glenn; Cleat Zeiler; James Britton; James F. Lewkowicz

    2005-09-30

    The Arizona Source Phenomenology Experiments (SPE) have resulted in an important dataset for the nuclear monitoring community. The 19 dedicated single-fired explosions and multiple delay-fired mining explosions were recorded by one of the most densely instrumented accelerometer and seismometer arrays ever fielded, and the data have already proven useful in quantifying confinement and excitation effects for the sources. It is very interesting to note that we have observed differences in the phenomenology of these two series of explosions resulting from the differences between the relatively slow (limestone) and fast (granodiorite) media. We observed differences at the two SPE sites in the way the rock failed during the explosions, how the S-waves were generated, and the amplitude behavior as a function of confinement. Our consortium's goal is to use the synergy of the multiple datasets collected during this experiment to unravel the phenomenological differences between the two emplacement media. The data suggest that the main difference between single-fired chemical and delay-fired mining explosion seismograms at regional distances is the increased surface wave energy for the latter source type. The effect of the delay-firing is to decrease the high-frequency P-wave amplitudes while increasing the surface wave energy because of the longer source duration and spall components. The results suggest that the single-fired explosions are surrogates for nuclear explosions in higher frequency bands (e.g., 6-8 Hz Pg/Lg discriminants). We have shown that the SPE shots, together with the mining explosions, are efficient sources of S-wave energy, and our next research stage is to postulate the possible sources contributing to the shear-wave energy.

  11. San Luis, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Hide Map This article is a stub. You can help OpenEI by expanding it. San Luis is a city in Yuma County, Arizona. It falls under Arizona's 7th congressional...

  12. 1,"Palo Verde","Nuclear","Arizona Public Service Co",3937

    U.S. Energy Information Administration (EIA) Indexed Site

    Arizona" ,"Plant","Primary energy source","Operating company","Net summer capacity (MW)" 1,"Palo Verde","Nuclear","Arizona Public Service Co",3937 2,"Navajo","Coal","Salt River ...

  13. ,"Arizona Natural Gas Industrial Price (Dollars per Thousand...

    U.S. Energy Information Administration (EIA) Indexed Site

    586-8800",,,"1292016 12:15:22 AM" "Back to Contents","Data 1: Arizona Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)" "Sourcekey","N3035AZ3" "Date","Arizona...

  14. Arizona Natural Gas Gross Withdrawals (Million Cubic Feet per...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Arizona Natural Gas Gross Withdrawals (Million Cubic Feet per Day) Arizona Natural Gas Gross Withdrawals (Million Cubic Feet per Day) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct...

  15. Alternative Fuels Data Center: Rolling Down the Arizona EV Highway

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Rolling Down the Arizona EV Highway to someone by E-mail Share Alternative Fuels Data Center: Rolling Down the Arizona EV Highway on Facebook Tweet about Alternative Fuels Data...

  16. Fort Defiance, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    OpenEI by expanding it. Fort Defiance is a census-designated place in Apache County, Arizona.1 US Recovery Act Smart Grid Projects in Fort Defiance, Arizona Navajo Tribal...

  17. Casa Grande, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Hide Map This article is a stub. You can help OpenEI by expanding it. Casa Grande is a city in Pinal County, Arizona. It falls under Arizona's 1st congressional...

  18. Federal Correctional Institution - Phoenix, Arizona | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Federal Correctional Institution - Phoenix, Arizona Federal Correctional Institution - Phoenix, Arizona Photo of a Parabolic-Trough Solar Water-Heating System Installed at the Federal Correctional Institution Facility north of Phoenix, Arizona A parabolic-trough solar water-heating system was installed at the Federal Correctional Institution (FCI) facility north of Phoenix, Arizona. This medium security prison for males has a current population of about 1,200 inmates and uses an average of

  19. Final Report - Arizona Rooftop Solar Challenge | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Arizona Rooftop Solar Challenge Final Report - Arizona Rooftop Solar Challenge Awardee: Arizona Governor's Office of Energy Policy Location: Phoenix, AZ Subprogram: Soft Costs Funding Program: Rooftop Solar Challenge 1 The Arizona Rooftop Solar Challenge (ARC) is a regional partnership of the Rooftop Solar Challenge. Funded through the U.S. Department of Energy's SunShot Initiative, this program is focused on streamlining processes and reducing costs to make solar more affordable for the

  20. Arizona Recovery Act State Memo | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Arizona Recovery Act State Memo Arizona Recovery Act State Memo Arizona has substantial natural resources, including coal, solar, and hydroelectric resources. The American Recovery & Reinvestment Act (ARRA) is making a meaningful down payment on the nation's energy and environmental future. The Recovery Act investments in Arizona reflect a broad range of clean energy projects, from energy efficiency and the smart grid to transportation, carbon capture and storage, and geothermal energy.

  1. Phoenix, Arizona Summary of Reported Data | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Summary of Reported Data Phoenix, Arizona Summary of Reported Data Summary of data reported by Better Buildings Neighborhood Program partner Phoenix, Arizona. PDF icon Phoenix, Arizona Summary of Reported Data More Documents & Publications Virginia -- SEP Summary of Reported Data University Park Summary of Reported Data Alabama -- SEP Summary of Reported Data

  2. Big Bend Hot Springs Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    Big Bend Hot Springs Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Big Bend Hot Springs Geothermal Area Contents 1 Area Overview 2 History and...

  3. Big Bend Preventorium Greenhouse Low Temperature Geothermal Facility...

    Open Energy Info (EERE)

    Greenhouse Low Temperature Geothermal Facility Jump to: navigation, search Name Big Bend Preventorium Greenhouse Low Temperature Geothermal Facility Facility Big Bend...

  4. Bending-induced Symmetry Breaking of Lithiation in Germanium...

    Office of Scientific and Technical Information (OSTI)

    Bending-induced Symmetry Breaking of Lithiation in Germanium Nanowires Citation Details In-Document Search Title: Bending-induced Symmetry Breaking of Lithiation in Germanium ...

  5. Progress Letter Report on Bending Fatigue Test System Development...

    Office of Scientific and Technical Information (OSTI)

    Technical Report: Progress Letter Report on Bending Fatigue Test System Development for ... Title: Progress Letter Report on Bending Fatigue Test System Development for Spent Nuclear ...

  6. Bend, Oregon: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Energy Companies in Bend, Oregon Davenport Power LLC Geopower Texas Co IdaTech plc Northwest Geothermal Company PV Powered Inc Silvan Power Company SunEnergy Power Corp...

  7. CX-011203: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Emergency Storm Damage Repairs to the Gila North Gila, Gila Knob, and Sonora San Luis Transmission Lines, near Yuma, Yuma County, Arizona CX(s) Applied: B4.6 Date: 08/26/2013 Location(s): Arizona Offices(s): Western Area Power Administration-Desert Southwest Region

  8. CX-007805: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Gila-Gila Valley Structure Replacement CX(s) Applied: B4.13 Date: 09/29/2011 Location(s): Arizona Offices(s): Western Area Power Administration-Desert Southwest Region

  9. University of Arizona Compressed Air Energy Storage

    SciTech Connect (OSTI)

    Simmons, Joseph; Muralidharan, Krishna

    2012-12-31

    Boiled down to its essentials, the grant’s purpose was to develop and demonstrate the viability of compressed air energy storage (CAES) for use in renewable energy development. While everyone agrees that energy storage is the key component to enable widespread adoption of renewable energy sources, the development of a viable scalable technology has been missing. The Department of Energy has focused on expanded battery research and improved forecasting, and the utilities have deployed renewable energy resources only to the extent of satisfying Renewable Portfolio Standards. The lack of dispatchability of solar and wind-based electricity generation has drastically increased the cost of operation with these components. It is now clear that energy storage coupled with accurate solar and wind forecasting make up the only combination that can succeed in dispatchable renewable energy resources. Conventional batteries scale linearly in size, so the price becomes a barrier for large systems. Flow batteries scale sub-linearly and promise to be useful if their performance can be shown to provide sufficient support for solar and wind-base electricity generation resources. Compressed air energy storage provides the most desirable answer in terms of scalability and performance in all areas except efficiency. With the support of the DOE, Tucson Electric Power and Science Foundation Arizona, the Arizona Research Institute for Solar Energy (AzRISE) at the University of Arizona has had the opportunity to investigate CAES as a potential energy storage resource.

  10. DOE - Office of Legacy Management -- University of Arizona Southwest

    Office of Legacy Management (LM)

    Experiment Station Buildings - AZ 01 Arizona Southwest Experiment Station Buildings - AZ 01 FUSRAP Considered Sites Site: UNIVERSITY OF ARIZONA (SOUTHWEST EXPERIMENT STATION BUILDINGS) (AZ.01) Eliminated from consideration under FUSRAP Designated Name: Not Designated Alternate Name: U.S. Bureau of Mines AZ.01-1 Location: Tucson , Arizona AZ.01-1 Evaluation Year: 1987 AZ.01-2 AZ.01-3 Site Operations: Conducted research and development work on the processing of uranium ores. AZ.01-1 Site

  11. Sun City, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Sun City, Arizona: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 33.5975393, -112.2718239 Show Map Loading map... "minzoom":false,"mappingser...

  12. Big Park, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Park, Arizona: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 34.780297, -111.7626535 Show Map Loading map... "minzoom":false,"mappingservice"...

  13. Munds Park, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Munds Park, Arizona: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 34.945574, -111.6401551 Show Map Loading map... "minzoom":false,"mappingse...

  14. Litchfield Park, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Park, Arizona: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 33.4933743, -112.3579364 Show Map Loading map... "minzoom":false,"mappingservice...

  15. Arizona Electric Pwr Coop Inc | Open Energy Information

    Open Energy Info (EERE)

    Facebook: https:www.facebook.compagesArizonas-GT-Cooperatives347352335037?refts Outage Hotline: (520) 586-3631 References: EIA Form EIA-861 Final Data File for 2010...

  16. Prescott Valley, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Page Edit with form History Prescott Valley, Arizona: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 34.6100243, -112.315721 Show Map Loading...

  17. St. David, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    David, Arizona: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 31.9042517, -110.2142399 Show Map Loading map... "minzoom":false,"mappingservic...

  18. Flowing Wells, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Wells, Arizona: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 32.2939638, -111.0098178 Show Map Loading map... "minzoom":false,"mappingservic...

  19. La Paz County, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Paz County, Arizona: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 34.0061091, -113.9536466 Show Map Loading map... "minzoom":false,"mappings...

  20. Ash Fork, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Ash Fork, Arizona: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 35.2250114, -112.4840675 Show Map Loading map... "minzoom":false,"mappingser...

  1. UNIVERSITY OF ARIZONA HIGH ENERGY PHYSICS PROGRAM (Technical...

    Office of Scientific and Technical Information (OSTI)

    The High Energy Physics Group at the University of Arizona has conducted forefront research in elementary particle physics. Our theorists have developed new ideas in lattice QCD, ...

  2. Fort Defiance, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Act Smart Grid Projects in Fort Defiance, Arizona Navajo Tribal Utility Association Smart Grid Project References US Census Bureau 2005 Place to 2006 CBSA Retrieved from...

  3. Oro Valley, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Oro Valley, Arizona: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 32.3909071, -110.966488 Show Map Loading map... "minzoom":false,"mappingse...

  4. Geothermal-Exploration In Arizona | Open Energy Information

    Open Energy Info (EERE)

    In Arizona Authors C. Stone and W. R. Hahman Published Journal Transactions-American Geophysical Union, 1978 DOI Not Provided Check for DOI availability: http:...

  5. ,"Arizona Natural Gas Vehicle Fuel Price (Dollars per Thousand...

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","Arizona Natural Gas Vehicle Fuel Price (Dollars per Thousand Cubic Feet)",1,"Annual",2012 ,"Release...

  6. Peach Springs, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Springs, Arizona: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 35.5291589, -113.425491 Show Map Loading map... "minzoom":false,"mappingservi...

  7. Arizona State Historic Preservation Office | Open Energy Information

    Open Energy Info (EERE)

    Historic Preservation Office Jump to: navigation, search Name: Arizona State Historic Preservation Office Abbreviation: SHPO Address: 1300 West Washington Street Place: Phoenix,...

  8. Arizona State University TUV Rheinland JV | Open Energy Information

    Open Energy Info (EERE)

    University TUV Rheinland JV Jump to: navigation, search Name: Arizona State University & TUV Rheinland JV Sector: Solar Product: Solar JV formed for technology testing and...

  9. EIS-0441: Mohave County Wind Farm Project, Mohave County, Arizona...

    Office of Environmental Management (EM)

    as a cooperating agency, evaluated the environmental impacts of a proposed wind energy project on public lands in Mohave County, Arizona. Power generated by this project...

  10. Arizona State Land Department Applications and Permits Website...

    Open Energy Info (EERE)

    to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Arizona State Land Department Applications and Permits Website Abstract This website contains supplemental...

  11. Sierra Vista, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Vista, Arizona: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 31.5545394, -110.3036912 Show Map Loading map... "minzoom":false,"mappingservic...

  12. Sierra Vista Southeast, Arizona: Energy Resources | Open Energy...

    Open Energy Info (EERE)

    Vista Southeast, Arizona: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 31.460592, -110.217428 Show Map Loading map... "minzoom":false,"mappi...

  13. RAPID/BulkTransmission/Arizona | Open Energy Information

    Open Energy Info (EERE)

    the Regional Entity responsible for coordinating and promoting Bulk Electric System reliability in the Western Interconnection, including Arizona. WECC also provides an...

  14. Arizona's 1st congressional district: Energy Resources | Open...

    Open Energy Info (EERE)

    System Solar Power Plant Retrieved from "http:en.openei.orgwindex.php?titleArizona%27s1stcongressionaldistrict&oldid175300" Feedback Contact needs updating Image needs...

  15. EIS-0474: Southline Transmission Line Project; Arizona and New...

    Broader source: Energy.gov (indexed) [DOE]

    consist of a new 225-mile transmission line between existing substations at Afton, New Mexico, and Apache, Arizona, and improvements to approximately 130 miles of existing...

  16. Green Valley, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Arizona: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 31.8542511, -110.9937019 Show Map Loading map... "minzoom":false,"mappingservice":"goo...

  17. Camp Verde, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Verde, Arizona: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 34.5636358, -111.8543178 Show Map Loading map... "minzoom":false,"mappingservic...

  18. Rio Verde, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Verde, Arizona: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 33.7225429, -111.6756942 Show Map Loading map... "minzoom":false,"mappingservic...

  19. Tanque Verde, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Tanque Verde, Arizona: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 32.2517422, -110.7373056 Show Map Loading map... "minzoom":false,"mappin...

  20. Cottonwood-Verde Village, Arizona: Energy Resources | Open Energy...

    Open Energy Info (EERE)

    Cottonwood-Verde Village, Arizona: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 34.6949847, -111.9820582 Show Map Loading map......

  1. Ajo Improvement Co (Arizona) EIA Revenue and Sales - April 2008...

    Open Energy Info (EERE)

    Ajo Improvement Co (Arizona) EIA Revenue and Sales - April 2008 Jump to: navigation, search EIA Monthly Electric Utility Sales and Revenue Data for Ajo Improvement Co for April...

  2. Ajo Improvement Co (Arizona) EIA Revenue and Sales - October...

    Open Energy Info (EERE)

    Ajo Improvement Co (Arizona) EIA Revenue and Sales - October 2008 Jump to: navigation, search EIA Monthly Electric Utility Sales and Revenue Data for Ajo Improvement Co for October...

  3. Arizona Online Environmental Review Tool | Open Energy Information

    Open Energy Info (EERE)

    Online Environmental Review ToolInfo GraphicMapChart Abstract The Arizona Game and Fish Department's Heritage Data Management System (HDMS) and Project Evaluation Program...

  4. New Kingman-Butler, Arizona: Energy Resources | Open Energy Informatio...

    Open Energy Info (EERE)

    Kingman-Butler, Arizona: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 35.2593696, -114.0190671 Show Map Loading map... "minzoom":false,"mapp...

  5. Dewey-Humboldt, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Dewey-Humboldt, Arizona: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 34.53, -112.2422222 Show Map Loading map... "minzoom":false,"mappingse...

  6. Phoenix Convention Center * Phoenix, Arizona Playing the Entire...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Phoenix, Arizona Playing the Entire Value Chain for Energy Storage Session 6: Innovation ... Critical infrastructure project - Davis-Monthan AFB, AZ AxionPower - one MW battery ...

  7. James Knox with the Arizona Department of Public Service performs...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Arizona, where more than 200 participants attended a three-hour panel discussion titled "Lessons Learned and Return to Operations Following 2014 Operational Incidents." The panel...

  8. Desert Hills, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Desert Hills, Arizona: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 34.5538996, -114.3724569 Show Map Loading map... "minzoom":false,"mappin...

  9. St. Johns, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Johns, Arizona: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 34.5058698, -109.3609327 Show Map Loading map... "minzoom":false,"mappingservic...

  10. Greenlee County, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Greenlee County, Arizona: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 33.2405598, -109.2831531 Show Map Loading map... "minzoom":false,"map...

  11. South Tucson, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Tucson, Arizona: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 32.199521, -110.968425 Show Map Loading map... "minzoom":false,"mappingservice...

  12. Winslow West, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    West, Arizona: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 35.0322421, -110.7529145 Show Map Loading map... "minzoom":false,"mappingservice...

  13. Chino Valley, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Valley, Arizona: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 34.7575227, -112.4537809 Show Map Loading map... "minzoom":false,"mappingservi...

  14. Arizona Natural Gas Vented and Flared (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Date: 12312015 Next Release Date: 01292016 Referring Pages: Natural Gas Vented and Flared Arizona Natural Gas Gross Withdrawals and Production Natural Gas Vented and Flared...

  15. Apache Junction, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Junction, Arizona: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 33.4150485, -111.5495777 Show Map Loading map... "minzoom":false,"mappingser...

  16. Queen Creek, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Creek, Arizona: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 33.2486638, -111.6342993 Show Map Loading map... "minzoom":false,"mappingservic...

  17. McNary, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    McNary, Arizona: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 34.0736564, -109.8570472 Show Map Loading map... "minzoom":false,"mappingservi...

  18. Bitter Springs, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Bitter Springs, Arizona: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 36.6285991, -111.6543255 Show Map Loading map... "minzoom":false,"mapp...

  19. Bullhead City, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Bullhead City, Arizona: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 35.1477774, -114.5682983 Show Map Loading map... "minzoom":false,"mappi...

  20. Mohave Valley, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Valley, Arizona: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 34.9330585, -114.5888533 Show Map Loading map... "minzoom":false,"mappingservi...

  1. Paradise Valley, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Valley, Arizona: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 33.5311541, -111.9426452 Show Map Loading map... "minzoom":false,"mappingservi...

  2. Drexel Heights, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Drexel Heights, Arizona: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 32.1411888, -111.028427 Show Map Loading map... "minzoom":false,"mappi...

  3. Colorado City, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    City, Arizona: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 36.9902621, -112.9757702 Show Map Loading map... "minzoom":false,"mappingservice...

  4. Huachuca City, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Huachuca City, Arizona: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 31.6278703, -110.3339678 Show Map Loading map... "minzoom":false,"mappi...

  5. Cordes Lakes, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Lakes, Arizona: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 34.3078074, -112.1034912 Show Map Loading map... "minzoom":false,"mappingservic...

  6. Arizona's 5th congressional district: Energy Resources | Open...

    Open Energy Info (EERE)

    Registered Energy Companies in Arizona's 5th congressional district AFV Solutions Inc AZ Biodiesel Advanced Energy Systems Inc AESI also Advanced Energy Inc AeroElektra...

  7. Arizona's 6th congressional district: Energy Resources | Open...

    Open Energy Info (EERE)

    ETA Engineering Renegy Holdings Inc The Arizona Center for Algae Technology and Innovation WindPower Innovations Inc Retrieved from "http:en.openei.orgw...

  8. Analysis of MSE Cores Tuba City, Arizona, Site | Department of Energy

    Energy Savers [EERE]

    MSE Cores Tuba City, Arizona, Site Analysis of MSE Cores Tuba City, Arizona, Site Analysis of MSE Cores Tuba City, Arizona, Site PDF icon Analysis of MSE Cores Tuba City, Arizona, Site More Documents & Publications Analysis of Contaminant Rebound in Ground Water in Extraction Wells at the Tuba City, Arizona, Site Diffusion Multilayer Sampling of Ground Water in Five Wells at the Tuba City, Arizona, Site Third (March 2006) Coring and Analysis of Zero-Valent Iron Permeable Reactive Barrier,

  9. Microsoft Word - DOE-ID-13-056 Arizona State EC B3-6.doc

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Testing and Multiscale Simulation for Creep Fatigue Damage Analysis of Alloy 617 - Arizona State University SECTION B. Project Description Arizona State University proposes to...

  10. Arizona Renewable Electric Power Industry Statistics

    U.S. Energy Information Administration (EIA) Indexed Site

    Arizona Primary Renewable Energy Capacity Source Hydro Conventional Primary Renewable Energy Generation Source Hydro Conventional Capacity (megawatts) Value Percent of State Total Total Net Summer Electricity Capacity 26,392 100.0 Total Net Summer Renewable Capacity 2,901 11.0 Geothermal - - Hydro Conventional 2,720 10.3 Solar 20 0.1 Wind 128 0.5 Wood/Wood Waste 29 0.1 MSW/Landfill Gas 4 * Other Biomass - - Generation (thousand megawatthours) Total Electricity Net Generation 111,751 100.0 Total

  11. Arizona Renewable Electric Power Industry Statistics

    U.S. Energy Information Administration (EIA) Indexed Site

    Arizona" "Primary Renewable Energy Capacity Source","Hydro Conventional" "Primary Renewable Energy Generation Source","Hydro Conventional" "Capacity (megawatts)","Value","Percent of State Total" "Total Net Summer Electricity Capacity",26392,100 "Total Net Summer Renewable Capacity",2901,11 " Geothermal","-","-" " Hydro Conventional",2720,10.3 "

  12. Storage opportunities in Arizona bedded evaporites

    SciTech Connect (OSTI)

    Neal, J.T.; Rauzi, S.L.

    1996-10-01

    Arizona is endowed with incredibly diverse natural beauty, and has also been blessed with at least seven discrete deposits of bedded salt. These deposits are dispersed around the state and cover some 2, 500 square miles; they currently contain 14 LPG storage caverns, with preliminary plans for more in the future. The areal extent and thickness of the deposits creates the opportunity for greatly expanded storage of LPG, natural gas, and compressed air energy storage (CAES). The location of salt deposits near Tucson and Phoenix may make CAES an attractive prospect in the future. The diversity of both locations and evaporate characteristics allows for much tailoring of individual operations to meet specific requirements.

  13. Tuba City, Arizona, Disposal Site Community Information

    Office of Legacy Management (LM)

    C O M M U N I T Y I N F O R M A T I O N Tuba City, Arizona, Disposal Site Tuba City Site Background 1954-1955 Tuba City mill is built. 1956-1966 Rare Metals Corporation and El Paso Natural Gas Company operate the uranium- and vanadium-ore processing mill. Chemicals from tailings piles and ponds leak into the soil and groundwater during milling operations. 1988 U.S. Department of Energy (DOE) cleans up materials from former milling operations. 1990 Mill tailings are placed in a disposal cell. A

  14. Mission Bend, Texas: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    by expanding it. Mission Bend is a census-designated place in Fort Bend County and Harris County, Texas.1 References US Census Bureau 2005 Place to 2006 CBSA Retrieved...

  15. Fracture of surface cracks loaded in bending

    SciTech Connect (OSTI)

    Chao, Y.J.; Reuter, W.G.

    1997-12-31

    Theoretical background of the constraint effect in brittle fracture of solids is reviewed. Fracture test data from D6-aC, a high strength steel, using three-point-bend (SE(B)) specimens and surface cracked plate (SC(B)) specimens under bending are presented. It is shown that the SE(B) data has an elevated fracture toughness for increasing a/W, i.e., a crack geometry with a larger T/K corresponds to a higher K{sub c} which is consistent with the theoretical prediction. The fundamental fracture properties, i.e., the critical strain and the critical distance, determined from the SE(B) test data are then applied to the interpretation and prediction of the SC(B) test data. Reasonable agreement is achieved for the crack growth initiation site and the load.

  16. PP-107-1 Arizona Public Service Company | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    -1 Arizona Public Service Company PP-107-1 Arizona Public Service Company Presidential permit authorizing Arizona Public Service Company to construct, operate, and maintain electric transmission facilities at the U.S-Mexico border. PDF icon PP-107-1 Arizona Public Service Company More Documents & Publications PP-107

  17. Plant-Wide Energy Efficiency Assessment at the Arizona Portland Cement Plant in Rillito, Arizona

    SciTech Connect (OSTI)

    Stephen J. Coppinger, P.E.; Bruce Colburn, Ph.D., P.E., CEM

    2007-05-17

    A Department of Energy Plant-wide Assessment was undertaken by Arizona Portland Cement (APC) beginning in May 2005. The assessment was performed at APC’s cement production facility in Rillito, Arizona. The assessment included a compressed air evaluation along with a detailed process audit of plant operations and equipment. The purpose of this Energy Survey was to identify a series of energy cost savings opportunities at the Plant, and provide preliminary cost and savings estimates for the work. The assessment was successful in identifying projects that could provide annual savings of over $2.7 million at an estimated capital cost of $4.3 million. If implemented, these projects could amount to a savings of over 4.9 million kWh/yr and 384,420 MMBtu/year.

  18. EIS-0395: Final Environmental Impact Statement | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    line would originate at the proposed San Luis Rio Colorado (SLRC) Power Center in Sonora, Mexico, interconnect with Western's existing Gila Substation, and continue to Arizona...

  19. Town of Wickenburg, Arizona (Utility Company) | Open Energy Informatio...

    Open Energy Info (EERE)

    Name: Town of Wickenburg Place: Arizona Phone Number: (928) 684-5451 x1520 Website: www.ci.wickenburg.az.us694Ut Outage Hotline: 928-684-5411 References: EIA Form EIA-861 Final...

  20. Garkane Energy Coop, Inc (Arizona) | Open Energy Information

    Open Energy Info (EERE)

    Garkane Energy Coop, Inc Place: Arizona Phone Number: Kanab Office: (888)644-5026 -- Loa Office (800) 747-5403 -- Hatch Office(888)735-4288 -- Hildale Office(435) 874-2810 Website:...

  1. Valencia West, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Hide Map This article is a stub. You can help OpenEI by expanding it. Valencia West is a census-designated place in Pima County, Arizona.1 References US...

  2. Santa Cruz County, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Hide Map This article is a stub. You can help OpenEI by expanding it. Santa Cruz County is a county in Arizona. Its FIPS County Code is 023. It is classified as...

  3. Santa Rosa, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Hide Map This article is a stub. You can help OpenEI by expanding it. Santa Rosa is a census-designated place in Pima County, Arizona.1 References US Census...

  4. DOI Approves Three Renewable Energy Projects in Arizona and Nevada

    Broader source: Energy.gov [DOE]

    The U.S. Department of the Interior (DOI) on June 3 announced the approval of three major renewable energy projects in Arizona and Nevada that are expected to deliver up to 520 megawatts to the electricity grid.

  5. DOI Approves Three Renewable Energy Projects in Arizona and Nevada...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The 100-megawatt Quartzsite Solar Energy Project, located on 1,600 acres of BLM-managed lands in La Paz County, Arizona, will use concentrating solar power (CSP) "power tower" ...

  6. Corona de Tucson, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Hide Map This article is a stub. You can help OpenEI by expanding it. Corona de Tucson is a census-designated place in Pima County, Arizona.1 References US...

  7. ,"Arizona Natural Gas Price Sold to Electric Power Consumers...

    U.S. Energy Information Administration (EIA) Indexed Site

    ,,"(202) 586-8800",,,"1292016 12:16:41 AM" "Back to Contents","Data 1: Arizona Natural Gas Price Sold to Electric Power Consumers (Dollars per Thousand Cubic Feet)"...

  8. Spring Valley, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Hide Map This article is a stub. You can help OpenEI by expanding it. Spring Valley is a census-designated place in Yavapai County, Arizona.1 References US...

  9. Red Mesa, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Hide Map This article is a stub. You can help OpenEI by expanding it. Red Mesa is a census-designated place in Apache County, Arizona.1 References US...

  10. DOE - Office of Legacy Management -- University of Arizona Southwest...

    Office of Legacy Management (LM)

    of the University of Arizona under FUSRAP; October 13, 1987 AZ.01-4 - DOE Letter; Bauer to Liverman; Past Operations and a Survey by Messrs, Jascewsky, and Smith; February 7, 1978

  11. Ak-Chin Electric Utility Authority (Arizona) EIA Revenue and...

    Open Energy Info (EERE)

    Ak-Chin Electric Utility Authority (Arizona) EIA Revenue and Sales - April 2008 Jump to: navigation, search EIA Monthly Electric Utility Sales and Revenue Data for Ak-Chin Electric...

  12. Ak-Chin Electric Utility Authority (Arizona) EIA Revenue and...

    Open Energy Info (EERE)

    Ak-Chin Electric Utility Authority (Arizona) EIA Revenue and Sales - November 2008 Jump to: navigation, search EIA Monthly Electric Utility Sales and Revenue Data for Ak-Chin...

  13. Ajo Improvement Co (Arizona) EIA Revenue and Sales - June 2008...

    Open Energy Info (EERE)

    Ajo Improvement Co (Arizona) EIA Revenue and Sales - June 2008 Jump to: navigation, search EIA Monthly Electric Utility Sales and Revenue Data for Ajo Improvement Co for June 2008....

  14. Ak-Chin Electric Utility Authority (Arizona) EIA Revenue and...

    Open Energy Info (EERE)

    Ak-Chin Electric Utility Authority (Arizona) EIA Revenue and Sales - May 2008 Jump to: navigation, search EIA Monthly Electric Utility Sales and Revenue Data for Ak-Chin Electric...

  15. Ajo Improvement Co (Arizona) EIA Revenue and Sales - July 2008...

    Open Energy Info (EERE)

    Ajo Improvement Co (Arizona) EIA Revenue and Sales - July 2008 Jump to: navigation, search EIA Monthly Electric Utility Sales and Revenue Data for Ajo Improvement Co for July 2008....

  16. Ak-Chin Electric Utility Authority (Arizona) EIA Revenue and...

    Open Energy Info (EERE)

    Ak-Chin Electric Utility Authority (Arizona) EIA Revenue and Sales - February 2008 Jump to: navigation, search EIA Monthly Electric Utility Sales and Revenue Data for Ak-Chin...

  17. Ak-Chin Electric Utility Authority (Arizona) EIA Revenue and...

    Open Energy Info (EERE)

    Ak-Chin Electric Utility Authority (Arizona) EIA Revenue and Sales - June 2008 Jump to: navigation, search EIA Monthly Electric Utility Sales and Revenue Data for Ak-Chin Electric...

  18. Ak-Chin Electric Utility Authority (Arizona) EIA Revenue and...

    Open Energy Info (EERE)

    Ak-Chin Electric Utility Authority (Arizona) EIA Revenue and Sales - February 2009 Jump to: navigation, search EIA Monthly Electric Utility Sales and Revenue Data for Ak-Chin...

  19. Ak-Chin Electric Utility Authority (Arizona) EIA Revenue and...

    Open Energy Info (EERE)

    Ak-Chin Electric Utility Authority (Arizona) EIA Revenue and Sales - January 2009 Jump to: navigation, search EIA Monthly Electric Utility Sales and Revenue Data for Ak-Chin...

  20. Ak-Chin Electric Utility Authority (Arizona) EIA Revenue and...

    Open Energy Info (EERE)

    Ak-Chin Electric Utility Authority (Arizona) EIA Revenue and Sales - March 2008 Jump to: navigation, search EIA Monthly Electric Utility Sales and Revenue Data for Ak-Chin Electric...

  1. Ak-Chin Electric Utility Authority (Arizona) EIA Revenue and...

    Open Energy Info (EERE)

    Ak-Chin Electric Utility Authority (Arizona) EIA Revenue and Sales - October 2008 Jump to: navigation, search EIA Monthly Electric Utility Sales and Revenue Data for Ak-Chin...

  2. Ak-Chin Electric Utility Authority (Arizona) EIA Revenue and...

    Open Energy Info (EERE)

    Ak-Chin Electric Utility Authority (Arizona) EIA Revenue and Sales - January 2008 Jump to: navigation, search EIA Monthly Electric Utility Sales and Revenue Data for Ak-Chin...

  3. Arizona Right-of-Way Instruction Sheet | Open Energy Information

    Open Energy Info (EERE)

    Right-of-Way Instruction Sheet Jump to: navigation, search OpenEI Reference LibraryAdd to library PermittingRegulatory Guidance - Instructions: Arizona Right-of-Way Instruction...

  4. Arizona Natural Gas Lease and Plant Fuel Consumption (Million...

    U.S. Energy Information Administration (EIA) Indexed Site

    and Plant Fuel Consumption (Million Cubic Feet) Arizona Natural Gas Lease and Plant Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6...

  5. Arizona Natural Gas Lease Fuel Consumption (Million Cubic Feet...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Fuel Consumption (Million Cubic Feet) Arizona Natural Gas Lease Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9...

  6. Arizona Natural Gas Total Consumption (Million Cubic Feet)

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Total Consumption (Million Cubic Feet) Arizona Natural Gas Total Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9...

  7. Arizona Natural Gas Vented and Flared (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Vented and Flared (Million Cubic Feet) Arizona Natural Gas Vented and Flared (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9...

  8. Arizona Natural Gas Number of Residential Consumers (Number of...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Residential Consumers (Number of Elements) Arizona Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

  9. Arizona Natural Gas Input Supplemental Fuels (Million Cubic Feet...

    Gasoline and Diesel Fuel Update (EIA)

    Input Supplemental Fuels (Million Cubic Feet) Arizona Natural Gas Input Supplemental Fuels (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

  10. Arizona Natural Gas Exports (No Intransit Deliveries) (Million...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Exports (No Intransit Deliveries) (Million Cubic Feet) Arizona Natural Gas Exports (No Intransit Deliveries) (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

  11. Arizona Natural Gas % of Total Residential Deliveries (Percent...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    % of Total Residential Deliveries (Percent) Arizona Natural Gas % of Total Residential Deliveries (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8...

  12. Arizona Natural Gas Number of Commercial Consumers (Number of...

    U.S. Energy Information Administration (EIA) Indexed Site

    Commercial Consumers (Number of Elements) Arizona Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

  13. Arizona Price of Natural Gas Sold to Commercial Consumers (Dollars...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sold to Commercial Consumers (Dollars per Thousand Cubic Feet) Arizona Price of Natural Gas Sold to Commercial Consumers (Dollars per Thousand Cubic Feet) Year Jan Feb Mar Apr May...

  14. ,"Arizona Dry Natural Gas Production (Million Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    ,,"(202) 586-8800",,,"01042016 7:36:54 AM" "Back to Contents","Data 1: Arizona Dry Natural Gas Production (Million Cubic Feet)" "Sourcekey","NA1160SAZ2"...

  15. EECBG Success Story: Energy Upgrades to Save Small Arizona Town...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Oro Valley Energy Upgrades to Save Small Arizona Town Big Money Workers demonstrate the nitrogen tank used to inflate tires in St. Peters, MO. | Courtesy of the City of St. ...

  16. Gold Camp, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Hide Map This article is a stub. You can help OpenEI by expanding it. Gold Camp is a census-designated place in Pinal County, Arizona.1 References US Census...

  17. EIS-0474: Southline Transmission Line Project; Arizona and New Mexico |

    Energy Savers [EERE]

    Department of Energy 474: Southline Transmission Line Project; Arizona and New Mexico EIS-0474: Southline Transmission Line Project; Arizona and New Mexico Summary The Bureau of Land Management and Western Area Power Administration are preparing an EIS as joint lead agencies to evaluate the potential environmental impacts of the proposed Southline Transmission Project and address associated potential land use plan amendments. The project would consist of a new 225-mile transmission line

  18. EIS-0427: Grapevine Canyon Wind Project, Coconino County, Arizona

    Broader source: Energy.gov [DOE]

    This EIS evaluates the environmental impacts of a proposed wind energy generation project in Coconino County, Arizona, on privately owned ranch lands and trust lands administered by the Arizona State Land Department. The proposed project includes a new transmission tie-line that would cross lands administered by Coconino National Forest and interconnect with DOE’s Western Area Power Administration’s existing Glen Canyon-Pinnacle Peak transmission lines.

  19. DOE-University of Arizona Faculty Development Project. Final report

    SciTech Connect (OSTI)

    Fillerup, Joseph M.

    1980-09-08

    The DOE-University of Arizona Faculty Development Project on Energy successfully completed a faculty development program. There were three phases of the program consisting of: a three week energy workshop for teachers, participation and cooperation with Students for Safe Energy in presentation of an Alternative Energy Festival at the University of Arizona, and workshops for teachers conducted at Flowing Wells School District. Each of these is described. Attendees are listed and a director's evaluation of the workshop is given.

  20. Arizona - Natural Gas 2014 Million Cu. Feet Percent of

    U.S. Energy Information Administration (EIA) Indexed Site

    4 Arizona - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S3. Summary statistics for natural gas - Arizona, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 5 5 5 5 5 Production (million cubic feet) Gross Withdrawals From Gas Wells 183 168 117 72 106 From

  1. Gold nanomembranes resist bending in new experiment | Argonne National

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Laboratory Gold nanomembranes resist bending in new experiment October 8, 2015 Tweet EmailPrint The first direct measurement of resistance to bending in a nanoscale membrane has been made by scientists from the University of Chicago, Peking University, the Weizmann Institute of Science and the Department of Energy's (DOE) Argonne National Laboratory. Their research provides researchers with a new, simpler method to measure nanomaterials' resistance to bending and stretching, and opens new

  2. Sequential Activation of Molecular Breathing and Bending during...

    Office of Scientific and Technical Information (OSTI)

    Sequential Activation of Molecular Breathing and Bending during Spin-Crossover Photoswitching Revealed by Femtosecond Optical and X-Ray Absorption Spectroscopy Citation Details...

  3. MHK Projects/St Rose Bend | Open Energy Information

    Open Energy Info (EERE)

    Rose Bend < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... "minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5...

  4. MHK Projects/Miller Bend Project | Open Energy Information

    Open Energy Info (EERE)

    Miller Bend Project < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... "minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP...

  5. MHK Projects/Hickman Bend Project | Open Energy Information

    Open Energy Info (EERE)

    Hickman Bend Project < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... "minzoom":false,"mappingservice":"googlemaps3","type":"ROADMA...

  6. Great Bend, North Dakota: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Great Bend, North Dakota: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 46.1538473, -96.8020228 Show Map Loading map... "minzoom":false,"mapp...

  7. MHK Projects/Bar Field Bend | Open Energy Information

    Open Energy Info (EERE)

    Bar Field Bend < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... "minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zo...

  8. Active mines in Arizona - 1993. Directory 40

    SciTech Connect (OSTI)

    Phillips, K.A.; Niemuth, N.J.; Bain, D.R.

    1992-01-01

    A directory of the active mines in Arizona is presented. The directory was compiled in November, 1992 from field visits and information received by the Department's technical staff. For the purpose of this directory, an active mine is defined as a mine in continuous operation, either in production or under full-time development for production. Custom milling operations that are active or available on a full-time basis are also included in the directory. It is acknowledged that there are additional mines not listed that are in an exploration, evaluation, or part-time development phase. There are others where production is on an intermittent basis that are not listed. The report is dependent on the cooperation of government agencies, private industry, and individuals who voluntarily provide information on their projects and activities. The directory is arranged alphabetically by company name. Each listing includes corporate addresses, mine name and location, operation description, and key personnel. The listing for the sand and gravel operations include name, address, and phone number.

  9. AGENCY: ACTION: REVISED FINDING OF NO SIGNIFICANT IMPACT AND FLOODPLAIN STATEMENT OF FINDINGS

    Energy Savers [EERE]

    AGENCY: ACTION: REVISED FINDING OF NO SIGNIFICANT IMPACT AND FLOODPLAIN STATEMENT OF FINDINGS Gila to North Gila Transmission Line Rebuild and Upgrade Project Yuma County, Arizona DOE/EA-1948 U.S. Department of Energy, Western Area Power Administration Revised Finding of No Significant Impact and Floodplain Statement of Findings BACKGROUND: U.S. Department of Energy (DOE), Western Area Power Administration (Western) proposed to rebuild and upgrade the existing 4.8-mile-long Gila to North Gila

  10. Oil and gas exploration and development in Arizona

    SciTech Connect (OSTI)

    Nations, D.; Doss, A.K.; Ubarra, R.

    1984-07-01

    Recent oil and gas exploration activity has been widespread throughout Arizona. Development drilling has continued in the Dineh-bi-keyah and Teec-nos-Pos fields in the northeastern corner, and exploratory drilling continues to test potential Paleozoic reservoirs elsewhere on the plateau. Several shallow wells north of the Grand Canyon encountered shows and limited recoveries of oil from Permian and Triassic rocks. The greatest activity has occurred along the Overthrust trend from northwestern to southeastern Arizona. Several million acres were leased and eight exploratory wells drilled along this trend. None were discoveries, but the presence of a Laramide thrust fault in the vicinity of Tombstone was established. The other tests have neither proved nor disproved the concept of the Overthrust belt in southern Arizona. Recent discoveries in the nonmarine Tertiary and marine Paleozoic of southern Nevada have stimulated interest in the oil potential of similar rocks and structures in the Basin and Range province of Arizona, which are coincident with the Overthrust trend. Reported gas discoveries by Pemex in Miocene marine sediments of the Gulf of California have stimulated leasing in the Yuma area, where one uncompleted well is reported to be a potential producer. The Pedregosa basin of extreme southeastern Arizona remains an area of great interest to explorationists because of the presence of a 25,000-ft (7600-m) sequence of Paleozoic marine sediments similar to those of the Permian basin, and Cretaceous marine rocks, including coral-rudist reefs, similar to those that produce in Texas and Mexico.

  11. Integrated solid waste management of Scottsdale, Arizona

    SciTech Connect (OSTI)

    1995-11-01

    The subject document reports the results of an in-depth investigation of the fiscal year 1992 cost of the city of Scottsdale, Arizona, integrated municipal solid waste management (IMSWM) system, the energy consumed to operate the system, and the environmental performance requirements for each of the system`s waste-processing and disposal facilities. The document reports actual data from records kept by participants. Every effort was made to minimize the use of assumptions, and no attempt is made to interpret the data reported. Analytical approaches are documented so that interested analysts may per-form manipulation or further analysis of the data. As such, the report is a reference document for municipal solid waste (MSW) management professionals who are interested in the actual costs and energy consumption, for a 1-year period, of an operating IMSWM system. The report is organized into two main parts. The first part is the executive summary and case study portion of the report. The executive summary provides a basic description of the study area and selected economic and energy information. Within the case study are detailed descriptions of each component operating during the study period; the quantities of solid waste collected, processed, and marketed within the study boundaries; the cost of MSW in Scottsdale; an energy usage analysis; a review of federal, state, and local environmental requirement compliance; a reference section; and a glossary of terms. The second part of the report focuses on a more detailed discourse on the above topics. In addition, the methodology used to determine the economic costs and energy consumption of the system components is found in the second portion of this report. The methodology created for this project will be helpful for those professionals who wish to break out the costs of their own integrated systems.

  12. Apache County, Arizona ASHRAE 169-2006 Climate Zone | Open Energy...

    Open Energy Info (EERE)

    Apache County, Arizona ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Apache County, Arizona ASHRAE Standard ASHRAE 169-2006 Climate Zone Number...

  13. SWTC v. Arizona Corp. Comn, 142 P3d 1240 (2006) | Open Energy...

    Open Energy Info (EERE)

    SWTC v. Arizona Corp. Comn, 142 P3d 1240 (2006) Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal CaseHearing: SWTC v. Arizona Corp. Comn, 142 P3d 1240...

  14. Independent Confirmatory Survey Report for the University of Arizona Nuclear Reactor Laboratory, Tucson, Arizona

    SciTech Connect (OSTI)

    Nick A. Altic

    2011-11-11

    The University of Arizona (University) research reactor is a TRIGA swimming pool type reactor designed by General Atomics and constructed at the University in 1958. The reactor first went into operation in December of 1958 under U.S. Nuclear Regulatory Commission (NRC) license R-52 until final shut down on May 18, 2010. Initial site characterization activities were conducted in February 2009 during ongoing reactor operations to assess the radiological status of the Nuclear Reactor Laboratory (NRL) excluding the reactor tank, associated components, and operating systems. Additional post-shutdown characterization activities were performed to complete characterization activities as well as verify assumptions made in the Decommissioning Plan (DP) that were based on a separate activation analysis (ESI 2009 and WMG 2009). Final status survey (FSS) activities began shortly after the issuance of the FSS plan in May 2011. The contractor completed measurement and sampling activities during the week of August 29, 2011.

  15. August 2015 Groundwater and Surface Water Sampling at the Tuba City, Arizona, Disposal Site

    Office of Legacy Management (LM)

    and Surface Water Sampling at the Tuba City, Arizona, Disposal Site November 2015 LMS/TUB/S00815 This page intentionally left blank U.S. Department of Energy DVP-August 2015, Tuba City, Arizona, Disposal Site November 2015 RIN 15087262 Page i Contents Sampling Event Summary ...............................................................................................................1 Tuba City, Arizona, Disposal Site, Sample Location Map

  16. Cast-stone sectors for lining bends in pipework

    SciTech Connect (OSTI)

    Chechulin, V.A.; Novikov, A.I.; Karpov, V.M.; Sotnik, A.A.; Sedyshev, B.L.

    1987-03-01

    The authors disclose an efficient method for lining the bends of pipelines used to deliver coal dust to the burners of coal-fired power plants or to transport coal slurries in mining and preparation enterprises. The method consists of melting a wear-resistant silicate compound and casting it in the form of rings whose increased width on the outboard side accounts for the angle of the bend when the rings are installed consecutively inside the pipe. Enhanced service life estimations and cost benefit analyses are given for pipe bends thus lined in both of the above applications.

  17. EIS-0417: South Mountain Freeway (Loop 202); Phoenix, Arizona

    Broader source: Energy.gov [DOE]

    Federal Highway Administration and Arizona Department of Transportation, with Western Area Power Administration as a cooperating agency, prepared an EIS that analyzes the potential environmental impacts of the proposed South Mountain Freeway (Loop 202) project in the Greater Metropolitan Phoenix Area.

  18. EA-1989: Cliffrose Solar Energy Interconnection Project, Mohave County, Arizona

    Broader source: Energy.gov [DOE]

    DOE’s Western Area Power Administration (Western) is preparing an EA that will assess the potential environmental impacts of interconnecting the proposed Cliffrose Solar Energy Project in Mohave County, Arizona, to Western’s transmission system at the existing Griffith Substation. Additional information is available at http://www.wapa.gov/dsw/environment/CliffroseSolarEnergyProject.html.

  19. EIS-0441: Mohave County Wind Farm Project, Mohave County, Arizona

    Broader source: Energy.gov [DOE]

    This EIS, prepared by the Bureau of Land Management with DOE’s Western Area Power Administration as a cooperating agency, evaluated the environmental impacts of a proposed wind energy project on public lands in Mohave County, Arizona. Power generated by this project would tie to the electrical power grid through an interconnection to one of Western’s transmission lines.

  20. EIS-0297: Griffith Energy Project, Mohave County, Arizona

    Broader source: Energy.gov [DOE]

    Western Area Power Administration (Western) intends to prepare an environmental impact statement (EIS) regarding the proposal by Griffith Energy (GE), LLC, to construct an electric generating facility on private property and to interconnect this facility with Western’s system in the vicinity of Kingman, Arizona.

  1. Big Bend, Wisconsin: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Hide Map This article is a stub. You can help OpenEI by expanding it. Big Bend is a village in Waukesha County, Wisconsin. It falls under Wisconsin's 1st...

  2. Big Bend Electric Coop, Inc | Open Energy Information

    Open Energy Info (EERE)

    Electric Coop, Inc Jump to: navigation, search Name: Big Bend Electric Coop, Inc Place: Washington Phone Number: 509-659-1700; 866-844-2363 -- After Hours: 509-659-0487;...

  3. North Bend, Washington: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    This article is a stub. You can help OpenEI by expanding it. North Bend is a city in King County, Washington. It falls under Washington's 8th congressional district.12...

  4. Post Oak Bend City, Texas: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    is a stub. You can help OpenEI by expanding it. Post Oak Bend City is a town in Kaufman County, Texas. It falls under Texas's 5th congressional district.12 References...

  5. 2,"Big Bend Dam","Hydroelectric","USCE-Missouri River District...

    U.S. Energy Information Administration (EIA) Indexed Site

    River District",714 2,"Big Bend Dam","Hydroelectric","USCE-Missouri River District",520 3,"Big Stone","Coal","Otter Tail Power Co",475.6 4,"Fort Randall","Hydroelectric","USCE-Mis...

  6. The effects of indoor pollution on Arizona children

    SciTech Connect (OSTI)

    Dodge, R.

    1982-05-01

    The respiratory health of a large group of Arizona school children who have been exposed to indoor pollutants-tobacco smoke and home cooking fumes-is reported. A significant relationship was found between parental smoking and symptoms of cough, wheeze, and sputum production. Also, children in homes where gas cooking fuel was used had higher rates of cough than children in homes where electricity was used. No differences in pulmonary function or yearly lung growth rates occurred among subjects grouped by exposure to tobacco smoke or cooking fuel. Thus, parental smoking and home cooking fuel affected cross-sectional respiratory symptom rates in a large group of Arizona school children. Study of pulmonary function, however, revealed no lung function or lung growth effects during 4 yr of study.

  7. EA-2023: Crossman Peak Communications Facility; Mohave County, Arizona

    Broader source: Energy.gov [DOE]

    Western Area Power Administration is preparing an EA that assesses the potential environmental impacts of a proposed new microwave communication facility to be located adjacent to a privately-owned one near Crossman Peak, east of Lake Havasu City in Mohave County, Arizona. The proposal would consist of a microwave communication facility, an access road, and an approximately 8-mile electrical service distribution line across private land and land administered by the Bureau of Land Management.

  8. Top-of-the-World, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Top-of-the-World, Arizona: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 33.3494997, -110.9926154 Show Map Loading map......

  9. Tension bending ratcheting tests of 304 stainless steel

    SciTech Connect (OSTI)

    Larson, L.D.; Jones, D.P.; Rapp, D.G.

    1996-12-31

    This paper discusses results of an experimental program conducted to investigate the strain ratcheting behavior of 304 stainless steel under various combinations of applied membrane load and displacement controlled cyclic bending strain. Tests were performed on uniaxial specimens at temperatures of 70 F (21 C) and 550 F (288 C). Bending strain, ratchet strain and axial displacement of the specimens were monitored throughout the tests. Membrane stress to monotonic yield stress ratios of 2/3, 1/2, and 1/3 were tested with pseudo-elastic bending stress to yield stress ratios ranging from 1.4 to 10.7. Test output was in the form of plots of cumulative axial membrane strain versus cycles up to the point of shakedown, i.e., the point at which no additional progressive strain was observed. Shakedown was demonstrated in the 500 F tests but not the room temperature tests. The 550 F results are shown in terms of shakedown membrane strain versus equivalent bending stress ratio for each of the tested membrane stress ratios. The cyclic and monotonic stress-strain curves for the test materials are presented to enable the use of various models for predicting the ratcheting and shakedown behavior. The results may be used to develop improved ratcheting and shakedown rules permitting a relaxation of the traditional ratcheting rules in the ASME Boiler and Pressure Vessel Code.

  10. The Clinch Bend Regional Industrial Site and economic development opportunities

    SciTech Connect (OSTI)

    1995-12-31

    This effort focuses initially on the Clinch Bend site. Other sites and developable tracts of land are identified with the assistance of communities in proximity to Oak Ridge, the State of Tennessee, and others, and compared with the projected site requirements for large industrial facilities.

  11. Residual stress analysis of alloy 600 U-bends, reverse U-bends, and C-rings: Final report

    SciTech Connect (OSTI)

    Rudd, C.O.

    1994-11-01

    Over the last several years, one of the leading causes of alloy 600 steam generator tubing leaks has been the primary-side-initiated, intergranular stress corrosion cracking (IGSCC) in heavily cold-worked regions of the U-bends or tubesheet expansion transitions. Field and laboratory experiences have demonstrated that high residual stresses contribute significantly to the initiation of primary water stress corrosion cracking (PWSCC). EPRI initiated this project to measure and quantify the magnitude of these residual stresses in steam generator tubes as well as in various laboratory tests specimens. the objectives were: To measure the residual stresses in steam generator tube U-bends; To measure residual stresses in reverse U-bend (RUB) specimens as well as residual stresses and X-ray diffraction peak broadening in C-ring specimens used in laboratory tests; and To determine whether residual stress occurs as a result of exposure to steam generator operating temperature. Using an advanced X-ray instrument, investigators measured residual stresses on both the outside diameter (OD) and inside diameter (ID) surfaces and subsurfaces of steam generator U-bends and on the test surfaces of laboratory RUB and C-ring specimens. They measured these residual stresses in the hoop and axial directions and also calculated equivalent stresses. Results are discussed. 25 refs., 92 figs., 6 tabs.

  12. Experimental estimation of dynamic plastic bending moments by plastic hinge models

    SciTech Connect (OSTI)

    Sogo, T.; Ujihashi, S.; Matsumoto, H.; Adachi, T.

    1995-12-31

    In the present paper, the experimental estimation of dynamic plastic bending moments for metallic materials is investigated. The three-point bending, test under impact and static loads is applied to aluminum alloy (JIS A6063S) and mild steel (JIS SS400). It is confirmed that tile dynamic bending deformations in three-point bending test can be modeled as a plastic hinge, tile experimental results show that the consumed energies of the specimens are proportional to the bending angles. The ratio of the consumed energy to the bending angle is approximately equal to the plastic bending moment. In the case of aluminum alloy, the dynamic plastic bending moments for the different average bending angular velocities coincide with the static plastic bending moments. On the other hand, in the case of mild steel, the dynamic plastic bending moments are proportional to the average bending angular velocities. As a result, we confirm that the present method based on the plastic hinge model and the consumed energy is efficient for determining tile dynamic plastic bending moment.

  13. Arizona Natural Gas Number of Industrial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial Consumers (Number of Elements) Arizona Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 358 344 354 1990's 526 532 532 526 519 530 534 480 514 555 2000's 526 504 488 450 414 425 439 395 383 390 2010's 368 371 379 383 386 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 4/29/2016 Next Release Date:

  14. Arizona Quantity of Production Associated with Reported Wellhead Value

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Quantity of Production Associated with Reported Wellhead Value (Million Cubic Feet) Arizona Quantity of Production Associated with Reported Wellhead Value (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 26 10 0 0 0 0 1,360 1990's 2,125 1,225 730 548 691 500 405 401 411 439 2000's 332 266 243 426 306 211 588 634 503 695 2010's 165 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid

  15. Arizona Total Electric Power Industry Net Generation, by Energy Source

    U.S. Energy Information Administration (EIA) Indexed Site

    Arizona" "Energy Source",2006,2007,2008,2009,2010 "Fossil",73385,79794,82715,74509,73386 " Coal",40443,41275,43840,39707,43644 " Petroleum",73,49,52,63,66 " Natural Gas",32869,38469,38822,34739,29676 " Other Gases","-","-","-","-","-" "Nuclear",24012,26782,29250,30662,31200 "Renewables",6846,6639,7400,6630,6941 "Pumped Storage",149,125,95,169,209

  16. GATEWAY Demonstrations: Trial Demonstration of Area Lighting Retrofit, Yuma Border Patrol, Yuma, Arizona

    SciTech Connect (OSTI)

    Wilkerson, A. M.; McCullough, J. J.

    2014-12-31

    Along the Yuma Sector Border Patrol Area in Yuma, Arizona, the GATEWAY program conducted a trial demonstration in which the incumbent quartz metal halide area lighting was replaced with LED at three pole locations at the Yuma Sector Border Patrol Area in Yuma, Arizona. The retrofit was documented to better understand LED technology performance in high-temperature environments.

  17. Control of Prestressing Force in Rod for Reducing Bending in Beams

    SciTech Connect (OSTI)

    Wong, M. B.

    2010-05-21

    This paper presents a method to determine the prestressing force required in a rod for reducing the bending effects in a beam. The rod is positioned underneath the beam such that the prestressing force is counteracting the effects of beam bending. It has been found that the prestressing force may also increase the bending as a result of P-delta effect. Therefore, the choice of both the prestressing force and the rod eccentricity from the beam axis is important in determining the appropriate actions to resist the bending of the beam. Over-prestressing the rod may even induce bending or buckling failure in the beam in the reverse direction.

  18. Arizona Natural Gas Pipeline and Distribution Use (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Arizona Natural Gas Pipeline and Distribution Use (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 18,597 19,585 18,570 2000's 20,657 22,158 20,183 18,183 15,850 17,558 20,617 20,397 22,207 20,846 2010's 15,447 13,158 12,372 12,619 13,484 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 4/29/2016 Next Release Date: 5/31/2016

  19. U.S. hydropower resource assessment for Arizona

    SciTech Connect (OSTI)

    Conner, A.M.; Francfort, J.E.

    1997-10-01

    The US Department of Energy is developing an estimate of the undeveloped hydropower potential in the US. The Hydropower Evaluation Software (HES) is a computer model that was developed by the Idaho National Engineering Laboratory for this purpose. HES measures the undeveloped hydropower resources available in the US, using uniform criteria for measurement. The software was developed and tested using hydropower information and data provided by the Southwestern Power Administration. It is a menu-driven program that allows the personal computer user to assign environmental attributes to potential hydropower sites, calculate development suitability factors for each site based on the environmental attributes present, and generate reports based on these suitability factors. This report describes the resource assessment results for the State of Arizona.

  20. Arizona Renewable Electric Power Industry Net Generation, by Energy Source

    U.S. Energy Information Administration (EIA) Indexed Site

    Arizona" "Energy Source",2006,2007,2008,2009,2010 "Geothermal","-","-","-","-","-" "Hydro Conventional",6793,6598,7286,6427,6622 "Solar",13,9,15,14,16 "Wind","-","-","-",30,135 "Wood/Wood Waste",8,"-",76,137,140 "MSW Biogenic/Landfill Gas",28,29,19,18,24 "Other Biomass",4,4,4,4,4 "Total",6846,6639,7400,6630,694

  1. National uranium resource evaluation, Marble Canyon Quadrangle, Arizona and Utah

    SciTech Connect (OSTI)

    Field, M T; Blauvelt, R P

    1982-05-01

    The Marble Canyon Quadrangle (2/sup 0/), northeast Arizona, was evaluated to a depth of 1500 m for uranium favorability using National Uranium Resource Evaluation criteria. Known mines and prospects were examined; field reconnaissance was done in selected areas of the quadrangle; and a ground-water geochemical survey was made in the southeast third of the quadrangle. The Shinarump and Petrified Forest Members of the Triassic Chinle Formation, which is exposed in the western and northeastern parts of the quadrangle and is present beneath the surface of much of the quadrangle, were found favorable for channel-sandstone uranium deposits. A portion of the Cretaceous Toreva Formation in the southeast part of the quadrangle was found favorable for peneconcordant-sandstone uranium deposits. The western part of the quadrangle was found favorable for uranium concentrations in breccia pipes.

  2. UMTRA project water sampling and analysis plan, Tuba City, Arizona

    SciTech Connect (OSTI)

    1996-02-01

    Planned, routine ground water sampling activities at the U.S. Department of Energy (DOE) Uranium Mill Tailings Remedial Action (UMTRA) Project site in Tuba City, Arizona, are described in the following sections of this water sampling and analysis plan (WSAP). This plan identifies and justifies the sampling locations, analytical parameters, detection limits, and sampling frequency for the stations routinely monitored at the site. The ground water data are used for site characterization and risk assessment. The regulatory basis for routine ground water monitoring at UMTRA Project sites is derived from the U.S. Environmental Protection Agency (EPA) regulations in 40 CFR Part 192 (1994) and the final EPA standards of 1995 (60 FR 2854). Sampling procedures are guided by the UMTRA Project standard operating procedures (SOP) (JEG, n.d.), and the most effective technical approach for the site.

  3. Reversible Bending Fatigue Testing on Zry-4 Surrogate Rods

    SciTech Connect (OSTI)

    Wang, Jy-An John; Wang, Hong; Bevard, Bruce Balkcom; Howard, Rob L

    2014-01-01

    Testing high-burnup spent nuclear fuel (SNF) presents many challenges in areas such as specimen preparation, specimen installation, mechanical loading, load control, measurements, data acquisition, and specimen disposal because these tasks are complicated by the radioactivity of the test specimens. Research and comparison studies conducted at Oak Ridge National Laboratory (ORNL) resulted in a new concept in 2010 for a U-frame testing setup on which to perform hot-cell reversible bending fatigue testing. Subsequently, the three-dimensional finite element analysis and the engineering design of components were completed. In 2013 the ORNL team finalized the upgrade of the U-frame testing setup and the integration of the U-frame setup into a Bose dual linear motor test bench to develop a cyclic integrated reversible-bending fatigue tester (CIRFT). A final check was conducted on the CIRFT test system in August 2013, and the CIRFT was installed in the hot cell in September 2013 to evaluate both the static and dynamic mechanical response of SNF rods under simulated loads. The fatigue responses of Zircaloy-4 (Zry-4) cladding and the role of pellet pellet and pellet clad interactions are critical to SNF vibration integrity, but such data are not available due to the unavailability of an effective testing system. While the deployment of the developed CIRFT test system in a hot cell will provide the opportunity to generate the data, the use of a surrogate rod has proven quite effective in identifying the underlying deformation mechanism of an SNF composite rod under an equivalent loading condition. This paper presents the experimental results of using surrogate rods under CIRFT reversible cyclic loading. Specifically, monotonic and cyclic bending tests were conducted on surrogate rods made of a Zry-4 tube and alumina pellet inserts, both with and without an epoxy bond.

  4. Ice plug employed on subsea pipeline bend during repair

    SciTech Connect (OSTI)

    1997-12-22

    The first controlled-temperature ice plug in the bend of an offshore gas trunkline has been carried out for Phillips Petroleum Co. Norway on its Norpipe A.S. platform in the German sector of the North Sea. The procedure was part of a subsea valve repair operation. The ice plug was successfully formed offshore and tested to a differential pressure of 1,450 psi. Repair of two valves required only 5 days during which time gas production was operating at close to 50--60% via the platform bypass, says the service company. The paper discusses the procedure.

  5. Particle deposition in ventilation ducts: Connectors, bends anddeveloping flow

    SciTech Connect (OSTI)

    Sippola, Mark R.; Nazaroff, William W.

    2004-03-01

    In ventilation duct flow the turbulent flow profile is commonly disturbed or not fully developed and these conditions are likely to influence particle deposition to duct surfaces. Particle deposition rates at eight S-connectors, in two 90{sup o} duct bends and in two ducts where the turbulent flow profile was not fully developed were measured in a laboratory duct system with both galvanized steel and internally insulated ducts with hydraulic diameters of 15.2 cm. In the steel duct system, experiments with nominal particle diameters of 1, 3, 5, 9 and 16 {micro}m were conducted at each of three nominal air speeds: 2.2, 5.3 and 9.0 m/s. In the insulated duct system, deposition of particles with nominal diameters of 1, 3, 5, 8 and 13 {micro}m was measured at nominal air speeds of 2.2, 5.3 and 8.8 m/s. Fluorescent techniques were used to directly measure the deposition velocities of monodisperse fluorescent particles to duct surfaces. Deposition at S-connectors, in bends and in straight ducts with developing turbulence was often greater than deposition in straight ducts with fully developed turbulence for equal particle sizes, air speeds and duct surface orientations. Deposition rates at all locations were found to increase with an increase in particle size or air speed. High deposition rates at S-connectors resulted from impaction and these rates were nearly independent of the orientation of the S-connector. Deposition rates in the two 90{sup o} bends differed by more than an order of magnitude in some cases, probably because of the difference in turbulence conditions at the bend inlets. In straight steel ducts where the turbulent flow profile was developing, the deposition enhancement relative to fully developed turbulence generally increased with air speed and decreased with downstream distance from the duct inlet. This enhancement was greater at the duct ceiling and wall than at the duct floor. In insulated ducts, deposition enhancement was less pronounced overall than in steel ducts. Trends that were observed in steel ducts were present, but weaker, in insulated ducts.

  6. Builders Challenge High Performance Builder Spotlight: Yavapai College, Chino Valley, Arizona

    SciTech Connect (OSTI)

    2009-12-22

    Building America Builders Challenge fact sheet on Yavapai College of Chino Valley, Arizona. These college students built a Building America Builders Challenge house that achieved the remarkably low HERS score of -3 and achieved a tight building envelope.

  7. FIA-12-0053- In the Matter of Arizona Nevada District Organization

    Broader source: Energy.gov [DOE]

    On October 11, 2012, the Department of Energy’s (DOE) Office of Hearings and Appeals (OHA) denied a Freedom of Information Act (FOIA) Appeal filed by the California Arizona Nevada District...

  8. FIA-12-0054- In the Matter of California-Arizona-Nevada District Organization Contract Compliance

    Broader source: Energy.gov [DOE]

    On September 14, 2012, California-Arizona-Nevada District Organization Contract Compliance (CANDO) filed an appeal from a final determination issued by the Loan Guarantee Program Office (LGPO) of...

  9. Arizona State Land Department Rights-of-Way Website | Open Energy...

    Open Energy Info (EERE)

    to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Arizona State Land Department Rights-of-Way Website Abstract This website provides general information...

  10. 49 A.R.S. 255 et seq.: Arizona Pollutant Discharge Elimination...

    Open Energy Info (EERE)

    search OpenEI Reference LibraryAdd to library Legal Document- StatuteStatute: 49 A.R.S. 255 et seq.: Arizona Pollutant Discharge Elimination System ProgramLegal Abstract...

  11. FIA-12-0059- In the Matter of California Arizona Nevada District Organization

    Broader source: Energy.gov [DOE]

    On October 31, 2012, the Department of Energy’s (DOE) Office of Hearings and Appeals (OHA) denied a Freedom of Information Act (FOIA) Appeal filed by the California Arizona Nevada District...

  12. NPDES compliance monitoring report: Silver bell mine, Pima County, Arizona. Final report

    SciTech Connect (OSTI)

    Ganter, W.

    1992-10-01

    This presents the findings of a compliance evaluation inspection of the Silver Bell Mine in Pima County, Arizona, conducted on August 19, 1992. It is part of a series of inspections of uncontrolled discharges of mine drainage.

  13. NPDES compliance monitoring report: Paloverde decline, Pima County, Arizona. Final report

    SciTech Connect (OSTI)

    Ganter, W.

    1992-10-07

    This presents the findings of a compliance evaluation inspection of the Paloverde Decline in Pima County, Arizona, conducted on August 21, 1992. It is part of a series of inspections of uncontrolled discharges of mine drainage.

  14. Arizona Natural Gas Number of Gas and Gas Condensate Wells (Number...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Gas and Gas Condensate Wells (Number of Elements) Arizona Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

  15. NPDES compliance monitoring report: Oracle Ridge Mine, San Manuel, Arizona. Draft report

    SciTech Connect (OSTI)

    Stevens, J.

    1992-11-03

    This presents the findings of a compliance evaluation inspection of the Oracle Ridge Copper Mine near San Manuel, Arizona, conducted on August 17, 1992. It is part of a series of inspections of uncontrolled discharges of mine drainage.

  16. EIS-0395: San Luis Rio Colorado Project, AZ

    Broader source: Energy.gov [DOE]

    This EIS analyzes DOE's decision to construct and operate a proposed transmission line originating at the proposed San Luis Rio Colorado (SLRC) Power Center in Sonora, Mexico, interconnect with Western's existing Gila Substation, and continue to Arizona Public Service Company’s (APS) North Gila Substation

  17. Tuba City, Arizona, Disposal Site Groundwater Compliance Path Forward Fact Sheet

    Office of Legacy Management (LM)

    Tuba City, Arizona, Disposal Site Groundwater Compliance Path Forward Fact Sheet Fact Sheet The U.S. Department of Energy Office of Legacy Management is responsible for site management and for ensuring that the selected groundwater compliance strategy at the Tuba City, Arizona, Disposal Site continues to be protective of human health and the environment. Southwesterly view of Tuba City mill in operation, circa 1966. Tuba City site, 2010. Tuba City Site background The Tuba City uranium mill

  18. Experiments and analyses on undermatched interleaf specimens in bending

    SciTech Connect (OSTI)

    Parks, D.M.; Ganti, S.; McClintock, F.A.; Epstein, J.S.; Lloyd, L.R.; Reuter, W.G.

    1995-12-31

    Model weldment fracture specimens have been fabricated, tested, and analyzed using finite elements. The specimens consist of an interleaf of commercially pure titanium diffusion-bonded to a harder alloy titanium. A deep edge crack is introduced symmetrically into the interleaf, and the specimens are loaded in pure bending. Variation of the thickness (2h) of the soft interleaf layer provides insight into effects of weld geometry in strongly undermatched weldments tested in plane strain bending. Ductile crack growth (beyond blunting) initiated at loads giving J {doteq} 95 kJ/m{sup 2} in all specimens. In the thickest interleaf geometries, stable tearing was obtained, but in the thinnest interleaf (2h {doteq} 3mm), crack initiation resulted in a massive pop-in of 5.4 mm across an initial ligament of 12 mm. Finite element studies show that the thinnest interleaf geometry had slightly higher peak stress triaxiality at the beginning of cracking, and that the highest triaxiality extended over a larger region than in the thicker interleaf specimens loaded to the same initiation J-values. More importantly, the blockage of plastic straining above and below the crack tip in the 3 mm interleaf specimen forced higher values of plastic strain to spread forward into the {+-} 45{degree} sector of highest stress triaxiality directly ahead of the crack tip. The higher strains, in conjunction with the slightly higher stress triaxiality, led to the unstable pop-in initiation.

  19. Finite element residual stress analysis of induction heating bended ferritic steel piping

    SciTech Connect (OSTI)

    Kima, Jong Sung; Kim, Kyoung-Soo; Oh, Young-Jin; Chang, Hyung-Young; Park, Heung-Bae

    2014-10-06

    Recently, there is a trend to apply the piping bended by induction heating process to nuclear power plants. Residual stress can be generated due to thermo-mechanical mechanism during the induction heating bending process. It is well-known that the residual stress has important effect on crack initiation and growth. The previous studies have focused on the thickness variation. In part, some studies were performed for residual stress evaluation of the austenitic stainless steel piping bended by induction heating. It is difficult to find the residual stresses of the ferritic steel piping bended by the induction heating. The study assessed the residual stresses of induction heating bended ferriticsteel piping via finite element analysis. As a result, it was identified that high residual stresses are generated on local outersurface region of the induction heating bended ferritic piping.

  20. Ultrafast dynamics of liquid water: Frequency fluctuations of the OH stretch and the HOH bend

    SciTech Connect (OSTI)

    Imoto, Sho; Xantheas, Sotiris S.; Saito, Shinji

    2013-07-28

    Frequency fluctuations of the OH stretch and the HOH bend in liquid water are reported from the third-order response function evaluated using the TTM3-F potential for water. The simulated two-dimensional infrared (IR) spectra of the OH stretch are similar to previously reported theoretical results. The present study suggests that the frequency fluctuation of the HOH bend is faster than that of the OH stretch. The ultrafast loss of the frequency correlation of the HOH bend is due to the strong couplings with the OH stretch as well as the intermolecular hydrogen bond bend.

  1. Bending stiffness and interlayer shear modulus of few-layer graphene

    SciTech Connect (OSTI)

    Chen, Xiaoming; Yi, Chenglin; Ke, Changhong

    2015-03-09

    Interlayer shear deformation occurs in the bending of multilayer graphene with unconstrained ends, thus influencing its bending rigidity. Here, we investigate the bending stiffness and interlayer shear modulus of few-layer graphene through examining its self-folding conformation on a flat substrate using atomic force microscopy in conjunction with nonlinear mechanics modeling. The results reveal that the bending stiffness of 26 layers graphene follows a square-power relationship with its thickness. The interlayer shear modulus is found to be in the range of 0.360.49?GPa. The research findings show that the weak interlayer shear interaction has a substantial stiffening effect for multilayer graphene.

  2. Arizona Natural Gas Pipeline and Distribution Use Price (Dollars per

    U.S. Energy Information Administration (EIA) Indexed Site

    Thousand Cubic Feet) Price (Dollars per Thousand Cubic Feet) Arizona Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0.15 0.15 0.15 1970's 0.17 0.17 0.19 0.22 0.28 0.36 0.44 0.64 0.75 1.29 1980's 1.62 2.22 2.86 3.16 2.83 2.79 2.22 1.49 1.79 1.50 1990's 1.65 1.26 1.25 1.68 1.28 1.19 1.80 2.20 1.90 2.08 2000's 3.61 3.96 NA -- -- -- - = No Data Reported; -- = Not Applicable; NA

  3. Socioeconomic impact of photovoltaic power at Schuchulik, Arizona. Final report

    SciTech Connect (OSTI)

    Bahr, D.; Garrett, B.G.; Chrisman, C.

    1980-10-01

    Schuchuli, a small remote village on the Papago Indian Reservation in southwest Arizona, is 27 kilometers (17 miles) from the nearest available utility power. In some respects, Schuchuli resembles many of the rural villages in other parts of the world. For example, it's relatively small in size (about 60 residents), composed of a number of extended family groupings, and remotely situated relative to major population centers (190 km, or 120 miles, from Tucson). Its lack of conventional power is due to the prohibitive cost of supplying a small electrical load with a long-distance distribution line. Furthermore, alternate energy sources are expensive and place a burden on the resources of the villagers. On December 16, 1978, as part of a federally funded project, a solar cell power system was put into operation at Schuchuli. The system powers the village water pump, lighting for homes ad other village buildings, family refrigerators and a communal washing machine and sewing machine. The project, managed for the US Department of Energy by the NASA Lewis Research Center, provided for a one-year socio-economic study to assess the impact of a relatively small amount of electricity on the basic living environment of the villagers. The results of that study are presented, including village history, group life, energy use in general and the use of the photovoltaic-powered appliances. No significant impacts due to the photovoltaic power system were observed.

  4. Arizona Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Wellhead Price (Dollars per Thousand Cubic Feet) Arizona Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0.15 0.16 0.18 1970's 0.17 0.18 0.18 0.18 0.20 0.28 0.28 0.33 0.37 0.41 1980's 2.59 3.08 2.90 1.80 1990's 1.20 1.50 1.85 1.30 1.40 1.20 1.65 2.40 1.88 2.08 2000's 3.50 4.12 2.60 4.33 5.12 6.86 5.70 5.98 7.09 3.19 2010's 4.11 - = No Data Reported; -- = Not Applicable; NA = Not Available; W =

  5. UMTRA project water sampling and analysis plan, Monument Valley, Arizona

    SciTech Connect (OSTI)

    Not Available

    1994-04-01

    The Monument Valley Uranium Mill Tailings Remedial Action (UMTRA) Project site in Cane Valley is a former uranium mill that has undergone surface remediation in the form of tailings and contaminated materials removal. Contaminated materials from the Monument Valley (Arizona) UMTRA Project site have been transported to the Mexican Hat (Utah) UMTRA Project site for consolidation with the Mexican Hat tailings. Tailings removal was completed in February 1994. Three geologic units at the site contain water: the unconsolidated eolian and alluvial deposits (alluvial aquifer), the Shinarump Conglomerate (Shinarump Member), and the De Chelly Sandstone. Water quality analyses indicate the contaminant plume has migrated north of the site and is mainly in the alluvial aquifer. An upward hydraulic gradient in the De Chelly Sandstone provides some protection to that aquifer. This water sampling and analysis plan recommends sampling domestic wells, monitor wells, and surface water in April and September 1994. The purpose of sampling is to continue periodic monitoring for the surface program, evaluate changes to water quality for site characterization, and provide data for the baseline risk assessment. Samples taken in April will be representative of high ground water levels and samples taken in September will be representative of low ground water levels. Filtered and nonfiltered samples will be analyzed for plume indicator parameters and baseline risk assessment parameters.

  6. Evaluation of geothermal energy in Arizona. Arizona geothermal planning/commercialization team. Quarterly topical progress report, July 1-September 30, 1980

    SciTech Connect (OSTI)

    White, D.H.; Mancini, F.; Goldstone, L.A.; Malysa, L.

    1980-01-01

    Progress is reviewed on the following: area development plans, evaluation of geothermal applications, continued evaluation of geothermal resources, engineering and economic analyses, technical assistance in the state of Arizona, the impact of various growth patterns upon geothermal energy development, and the outreach program. (MHR)

  7. CX-004898: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Gila-Wellton-Mohawk (Structure Maintenance)CX(s) Applied: B1.3Date: 11/05/2010Location(s): Yuma County, ArizonaOffice(s): Western Area Power Administration-Desert Southwest Region

  8. CX-011719: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Cable Trenching in the Gila Substation CX(s) Applied: B4.6 Date: 01/13/2014 Location(s): Arizona Offices(s): Western Area Power Administration-Desert Southwest Region

  9. CX-004899: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Gila-Yuma Tap (Transmission Line Reconstruction)CX(s) Applied: B4.6Date: 07/19/2010Location(s): Yuma County, ArizonaOffice(s): Western Area Power Administration-Desert Southwest Region

  10. CX-012738: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Gila Substation Geotechnical Study CX(s) Applied: B3.1Date: 41857 Location(s): ArizonaOffices(s): Western Area Power Administration-Desert Southwest Region

  11. CX-011650: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Parker-Gila 161 Kilovolt Transmission Line - Structure 109-8 Relocation CX(s) Applied: B1.3 Date: 12/18/2013 Location(s): Arizona Offices(s): Western Area Power Administration-Desert Southwest Region

  12. CX-007159: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Parker-Gila Structure MaintenanceCX(s) Applied: B1.3Date: 10/07/2010Location(s): La Paz and Yuma Counties, ArizonaOffice(s): Western Area Power Administration-Desert Southwest Region

  13. CX-010408: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Emergency Current Transformer Replacement at Gila Substation CX(s) Applied: B4.6 Date: 04/26/2013 Location(s): Arizona Offices(s): Western Area Power Administration-Desert Southwest Region

  14. CX-007157: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    North Gila-Senator Wash Pole ReplacementCX(s) Applied: B4.6Date: 11/03/2010Location(s): Yuma County, ArizonaOffice(s): Western Area Power Administration-Desert Southwest Region

  15. CX-007148: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Gila Substation Electrical Equipment ReplacementCX(s) Applied: B4.6Date: 05/03/2011Location(s): Yuma County, ArizonaOffice(s): Western Area Power Administration-Desert Southwest Region

  16. The Effect of Element Formulation on the Prediction of Boost Effects in Numerical Tube Bending

    SciTech Connect (OSTI)

    Bardelcik, A.; Worswick, M.J.

    2005-08-05

    This paper presents advanced FE models of the pre-bending process to investigate the effect of element formulation on the prediction of boost effects in tube bending. Tube bending experiments are conducted with 3'' (OD) IF (Interstitial-Free) steel tube on a fully instrumented Eagle EPT-75 servo-hydraulic mandrel-rotary draw tube bender. Experiments were performed in which the bending boost was varied at three levels and resulted in consistent trends in the strain and thickness distribution within the pre-bent tubes. A numerical model of the rotary draw tube bender was used to simulate pre-bending of the IF tube with the three levels of boost from the experiments. To examine the effect of element formulation on the prediction of boost, the tube was modeled with shell and solid elements. Both models predicted the overall strain and thickness results well, but showed different trends in each of the models.

  17. Isotope effect in normal-to-local transition of acetylene bending modes

    SciTech Connect (OSTI)

    Ma, Jianyi; Xu, Dingguo; Guo, Hua; Tyng, Vivian; Kellman, Michael E.

    2012-01-01

    The normal-to-local transition for the bending modes of acetylene is considered a prelude to its isomerization to vinylidene. Here, such a transition in fully deuterated acetylene is investigated using a full-dimensional quantum model. It is found that the local benders emerge at much lower energies and bending quantum numbers than in the hydrogen isotopomer HCCH. This is accompanied by a transition to a second kind of bending mode called counter-rotator, again at lower energies and quantum numbers than in HCCH. These transitions are also investigated using bifurcation analysis of two empirical spectroscopic fitting Hamiltonians for pure bending modes, which helps to understand the origin of the transitions semiclassically as branchings or bifurcations out of the trans and normal bend modes when the latter become dynamically unstable. The results of the quantum model and the empirical bifurcation analysis are in very good agreement.

  18. Isotope effect in normal-to-local transition of acetylene bending modes

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Ma, Jianyi; Xu, Dingguo; Guo, Hua; Tyng, Vivian; Kellman, Michael E.

    2012-01-01

    The normal-to-local transition for the bending modes of acetylene is considered a prelude to its isomerization to vinylidene. Here, such a transition in fully deuterated acetylene is investigated using a full-dimensional quantum model. It is found that the local benders emerge at much lower energies and bending quantum numbers than in the hydrogen isotopomer HCCH. This is accompanied by a transition to a second kind of bending mode called counter-rotator, again at lower energies and quantum numbers than in HCCH. These transitions are also investigated using bifurcation analysis of two empirical spectroscopic fitting Hamiltonians for pure bending modes, which helpsmore » to understand the origin of the transitions semiclassically as branchings or bifurcations out of the trans and normal bend modes when the latter become dynamically unstable. The results of the quantum model and the empirical bifurcation analysis are in very good agreement.« less

  19. Final Technical Report for the BOOST2013 Workshop. Hosted by the University of Arizona

    SciTech Connect (OSTI)

    Johns, Kenneth

    2015-02-20

    BOOST 2013 was the 5th International Joint Theory/Experiment Workshop on Phenomenology, Reconstruction and Searches for Boosted Objects in High Energy Hadron Collisions. It was locally organized and hosted by the Experimental High Energy Physics Group at the University of Arizona and held at Flagstaff, Arizona on August 12-16, 2013. The workshop provided a forum for theorists and experimentalists to present and discuss the latest findings related to the reconstruction of boosted objects in high energy hadron collisions and their use in searches for new physics. This report gives the outcomes of the BOOST 2013 Workshop.

  20. Light Shines on Better Budget for Glendale, Arizona | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Shines on Better Budget for Glendale, Arizona Light Shines on Better Budget for Glendale, Arizona July 20, 2010 - 10:00am Addthis A LED light bulb is installed in one of Glendale, Ariz.'s traffic signals. | Photo courtesy of Glendale A LED light bulb is installed in one of Glendale, Ariz.'s traffic signals. | Photo courtesy of Glendale Glendale, Ariz., like many other cities, was facing several problems: a tight budget and aging buildings using outdated lighting - making repairs difficult and

  1. Band bending at ferroelectric surfaces and interfaces investigated by x-ray photoelectron spectroscopy

    SciTech Connect (OSTI)

    Apostol, Nicoleta Georgiana

    2014-11-24

    This work reports on the use of X-ray photoelectron spectroscopy to quantify band bending at ferroelectric free surfaces and at their interfaces with metals. Surfaces exhibiting out-of-plane ferroelectric polarization are characterized by a band bending, due to the formation of a dipole layer at the surface, composed by the uncompensated polarization charges (due to ionic displacement) and to the depolarization charge sheet of opposite sign, composed by mobile charge carriers, which migrate near surface, owing to the depolarization electric field. To this surface band bending due to out-of-plane polarization states, metal-semiconductor Schottky barriers must be considered additionally when ferroelectrics are covered by metal layers. It is found that the net band bending is not always an algebraic sum of the two effects discussed above, since sometimes the metal is able to provide additional charge carriers, which are able to fully compensate the surface charge of the ferroelectric, up to the vanishing of the ferroelectric band bending. The two cases which will be discussed in more detail are Au and Cu deposited by molecular beam epitaxy on PbZr{sub 0.2}Ti{sub 0.8}O{sub 3}(001) single crystal thin layers, prepared by pulsed laser deposition. Gold forms unconnected nanoparticles, and their effect on the band bending is the apparition of a Schottky band bending additional to the band bending due to the out-of-plane polarization. Copper, starting with a given thickness, forms continuous metal layers connected to the ground of the system, and provide electrons in sufficient quantity to compensate the band bending due to the out-of-plane polarization.

  2. Digital Method of Analyzing the Bending Stiffness of Non-Crimp Fabrics

    SciTech Connect (OSTI)

    Soteropoulos, Dimitri; Fetfatsidis, Konstantine; Sherwood, James A.; Langworthy, Joanna [Department of Mechanical Engineering, University of Massachusetts, Lowell One University Ave., Lowell, MA 01854 (United States)

    2011-05-04

    A digital-analytical method for characterizing the bending behavior of NCFs (Non-Crimp Fabrics) is developed. The study is based on a hanging fabric loaded to a known displacement. The image of the deformed fabric is captured digitally, and then analyzed to describe the deformed shape of the beam using x-y coordinates. The bending stiffness of the fabric is then determined through an iterative method using a finite element method (ABAQUS). This effective bending stiffness is of importance in the formation of wave defects in NCFs during manufacturing processes such as thermoforming, vacuum assisted resin transfer molding, and compression molding.

  3. The importance of jet bending in gamma-ray AGNsrevisited

    SciTech Connect (OSTI)

    Graham, P. J.; Tingay, S. J.

    2014-04-01

    We investigate the hypothesis that ?-ray-quiet active galactic nuclei (AGNs) have a greater tendency for jet bending than ?-ray-loud AGNs, revisiting the analysis of Tingay et al. We perform a statistical analysis using a large sample of 351 radio-loud AGNs along with ?-ray identifications from the Fermi Large Area Telescope (LAT). Our results show no statistically significant differences in jet-bending properties between ?-ray-loud and ?-ray-quiet populations, indicating that jet bending is not a significant factor for ?-ray detection in AGNs.

  4. FIA-12-0005- In the Matter of California-Arizona-Nevada District Organization Contract Compliance

    Broader source: Energy.gov [DOE]

    The Office of Hearings and Appeals issued one Decision relating to two appeals filed by California-Arizona-Nevada District Organization Contract Compliance (CANDO) from two determination letters issued by the Loan Guarantee Program Office (LGPO) of the Department of Energy (DOE) under the Freedom of Information Act (FOIA).

  5. FIA-12-0004- In the Matter of California-Arizona-Nevada District Organization Contract Compliance

    Broader source: Energy.gov [DOE]

    The Office of Hearings and Appeals issued one Decision relating to two appeals filed by California-Arizona-Nevada District Organization Contract Compliance (CANDO) from two determination letters issued by the Loan Guarantee Program Office (LGPO) of the Department of Energy (DOE) under the Freedom of Information Act (FOIA).

  6. EECBG Success Story: Energy Upgrades to Save Small Arizona Town Big Money

    Broader source: Energy.gov [DOE]

    The small town of Oro Valley, Arizona is making improvements that could save the city an estimated $164,000 annually through extensive solar-covered parking, energy efficient lighting, and solar heating units, thanks to an Energy Efficiency and Conservation Block Grant (EECBG). Learn more.

  7. EA-1987: Parker-Headgate Rock and Parker-Bouse Rebuild Project, Arizona and California

    Broader source: Energy.gov [DOE]

    DOE’s Western Area Power Administration is preparing an EA that will assess the potential environmental impacts of a proposal to rebuild the existing Parker Dam-Headgate Rock and Parker Dam-Bouse 161-kilovolt transmission lines along the Colorado River in western Arizona and eastern California.

  8. FIA-12-0020- In the Matter of California-Arizona-Nevada District Organization Contract Compliance

    Broader source: Energy.gov [DOE]

    The Office of Hearings and Appeals granted a Motion for Reconsideration of part of a Decision we issued on March 23, 2012, relating to appeals filed by California-Arizona-Nevada District Organization Contract Compliance (CANDO) under the Freedom of Information Act (FOIA).

  9. Systems Engineering Saves Energy in Southwest, Pulte Homes--Tucson, Arizona

    SciTech Connect (OSTI)

    2002-02-01

    Houses being built in Tucson, Arizona, by Pulte Homes are part of the U.S. Department of Energy Building America program. These homes reduce electric air-conditioning bill and gas-heating bills by 30-50% relative to the 1995 Model Energy Code.

  10. Curvature of a cantilever beam subjected to an equi-biaxial bending moment

    SciTech Connect (OSTI)

    Krulevitch, P.; Johnson, G.C.

    1998-04-28

    Results from a finite element analysis of a cantilever beam subjected to an equi-biaxial bending moment demonstrate that the biaxial modulus E/(I-v) must be used even for narrow beams.

  11. Energy losses in thermally cycled optical fibers constrained in small bend radii

    SciTech Connect (OSTI)

    Guild, Eric; Morelli, Gregg

    2012-09-23

    High energy laser pulses were fired into a 365μm diameter fiber optic cable constrained in small radii of curvature bends, resulting in a catastrophic failure. Q-switched laser pulses from a flashlamp pumped, Nd:YAG laser were injected into the cables, and the spatial intensity profile at the exit face of the fiber was observed using an infrared camera. The transmission of the radiation through the tight radii resulted in an asymmetric intensity profile with one half of the fiber core having a higher peak-to-average energy distribution. Prior to testing, the cables were thermally conditioned while constrained in the small radii of curvature bends. Single-bend, double-bend, and U-shaped eometries were tested to characterize various cable routing scenarios.

  12. Characterization of Optical Fiber Strength Under Applied Tensile Stress and Bending Stress

    SciTech Connect (OSTI)

    P.E. Klingsporn

    2011-08-01

    Various types of tensile testing and bend radius tests were conducted on silica core/silica cladding optical fiber of different diameters with different protective buffer coatings, fabricated by different fiber manufacturers. The tensile tests were conducted to determine not only the average fiber strengths at failure, but also the distribution in fracture strengths, as well as the influence of buffer coating on fracture strength. The times-to-failure of fiber subjected to constant applied bending stresses of various magnitudes were measured to provide a database from which failure times of 20 years or more, and the corresponding minimum bend radius, could be extrapolated in a statistically meaningful way. The overall study was done to provide an understanding of optical fiber strength in tensile loading and in applied bending stress as related to applications of optical fiber in various potential coizfgurations for weapons and enhanced surveillance campaigns.

  13. Numerical simulations of the bending of narrow-angle-tail radio jets by ram pressure or pressure gradients

    SciTech Connect (OSTI)

    Soker, N.; Sarazin, C.L.; O'Dea, C.P.

    1988-04-01

    Three-dimensional numerical hydrodynamic simulations are used to study the bending of radio jets. The simulations are compared with observations of jets in narrow-angle-tail radio sources. Two mechanisms for the observed bending are considered: direct bending of quasi-continuous jets by ram pressure from intergalactic gas and bending by pressure gradients in the interstellar gas of the host galaxy, the pressure gradients themselves being the result of ram pressure by intergalactic gas. It is shown that the pressure gradients are much less effective in bending jets, implying that the jets have roughly 30 times lower momentum fluxes if they are bent by this mechanism. Ram-pressure bending produces jets with kidney-shaped cross sections; when observed from the side, these jets appear to have diffuse extensions on the downstream side. On the other hand, pressure-gradient bending causes the jets to be densest near their upstream side. 31 references.

  14. GATEWAY Demonstrations: LED System Performance in a Trial Installation--One Year Later, Yuma Border Patrol, Yuma, Arizona

    SciTech Connect (OSTI)

    Wilkerson, A. M.; Davis, R. G.

    2015-04-01

    Along the Yuma Sector Border Patrol Area in Yuma, Arizona, the GATEWAY program conducted a trial demonstration in which the incumbent quartz metal halide area lighting was replaced with LED at three pole locations at the Yuma Sector Border Patrol Area in Yuma, Arizona. The retrofit was documented to better understand LED technology performance in high-temperature environments. This report follows the GATEWAY Yuma Phase 1.0 Report and reflects LED system results documented one year after the demonstration began.

  15. Price of Arizona Natural Gas Exports (Dollars per Thousand Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Arizona Natural Gas Exports (Dollars per Thousand Cubic Feet) Price of Arizona Natural Gas Exports (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 3.21 1990's 2.42 2.22 1.42 1.08 1.73 1.53 1.92 2.38 1.92 2.63 2000's 4.28 3.61 3.19 5.53 5.49 7.24 6.30 6.94 8.09 3.79 2010's 4.57 4.28 3.07 4.17 5.15 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release

  16. Arizona State University | OSTI, US Dept of Energy, Office of Scientific

    Office of Scientific and Technical Information (OSTI)

    and Technical Information Arizona State University Spotlights Home DOE Applauds ASU Science and Technical Programs ASU research awards grew to more than $347 million in 2010 Read about DOE's Research Initiatives Southwest Energy Innovation Forum - Report Cyanobacteria for Solar-Powered Biofuels (ARPA-E) DOE Funds Bio-Inspired Solar Fuel Center at ASU ASU awarded $6 million for biofuel research (DOE) ASU partners with Phoenix on $25 million project Hayden Library ASU's celebrated scientists,

  17. EIS-0301: NRG Energy Services, Inc., Arizona-Baja California 500 kV Transmission Line

    Broader source: Energy.gov [DOE]

    This EIS analyzes DOE's decision to approve NRG Energy, Inc. (NRG) for a Presidential permit to construct a 500,000-volt transmission line originating at the switchyard of the Palo Verde Nuclear Generating Station near Phoenix, Arizona, and extending approximately 177 miles to the southwest, where it would cross the United States (U.S.) border with Mexico in the vicinity of Calexico, California.

  18. Adoption, implementation and enforcement of commercial building energy codes in New Mexico and Arizona

    SciTech Connect (OSTI)

    Callaway, J W; Thurman, A G; Shankle, D L

    1991-07-01

    The US Department of Energy (DOE) is considering ways to encourage states to adopt energy efficiency standards for residential and commercial buildings in the private sector. Such standards are now mandatory for federal buildings, and for private buildings in 34 states; in the remaining 16 states, the standards serve as guidelines for voluntary compliance. In this study for DOE, Pacific Northwest Laboratory (PNL) assessed the process by which energy codes for commercial buildings were adopted and implemented in Arizona and New Mexico. Information was gathered primarily through a series of interviews with state officials, city building officials, architects and engineers, builders, and staff from utilities in the two states. Until other state processes are studied, the extent of the similarities and dissimilarities to the situation in New Mexico and Arizona are unknown. A more extensive study may show that at least some elements of the two state's experience have been paralleled in other parts of the country. General strategies to encourage the adoption of energy codes, assist implementation, and support enforcement were developed based on the research from Arizona and New Mexico and are presented in this report. 6 refs., 4 figs.

  19. Residual and applied stress analysis of an alloy 600 row 1 U-bend: Final report

    SciTech Connect (OSTI)

    Ruud, C.O.

    1987-09-01

    Residual stresses in Inconel alloy 600, row 1, U-bend tubes, used in heat exchanges in nuclear reactors, were studied using an advanced x-ray diffraction instrument. Both axial and circumferential (hoop) stresses on the extrados, intrados, and flanks on the O.D. surface of several U-bends were mapped. The I.D. surface residual stresses at the extrados of the U-bend were mapped on one tube and subsurface stress measurements were made on the I.D. and O.D. surfaces of that tube. Service loads were simulated on one tube to ascertain combined effect of residual and applied stresses. Data from wall thickness and profilometry measurements were also correlated with residual stress measurements. 21 refs., 42 figs.

  20. U.S. Energy Information Administration (EIA) Indexed Site

    Arizona Arizona

  1. Economic Benefits, Carbon Dioxide (CO2) Emissions Reductions, and Water Conservation Benefits from 1000 Megawatts (MW) of New Wind Power in Arizona

    SciTech Connect (OSTI)

    2008-10-01

    Analysis of the expected impacts of 1000 MW of wind power in Arizona, including economic benefits, CO2 emissions reductions, and water conservation.

  2. Effects of repetitive bending on the magnetoresistance of a flexible spin-valve

    SciTech Connect (OSTI)

    Kwon, J.-H.; Kwak, W.-Y.; Cho, B. K.; Choi, H. Y.; Kim, G. H.

    2015-05-07

    A positive magnetostrictive single layer (CoFe) and top-pinned spin-valve structure with positive magnetostrictive free (NiFe) and pinned (CoFe) layers were deposited on flexible polyethylene terephthalate film to investigate the changes in the magnetic properties in flexible environments, especially with a repetitive bending process. It was found that the stress, applied by repetitive bending, changes significantly the magnetic anisotropy of both layers in a single and spin-valve structure depending on the direction of applied stress. The changes in magnetic anisotropy were understood in terms of the inverse magnetostriction effect (the Villari effect) and the elastic recovery force from the flexibility of the polymer substrate. Repetitive bending with tensile stress transverse (or parallel) to the magnetic easy axis was found to enhance (or reduce) the magnetic anisotropy and, consequently, the magnetoresistance ratio of a spin-valve. The observed effects of bending stress in this study should be considered for the practical applications of electro-magnetic devices, especially magneto-striction sensor.

  3. Design, Manufacture and Testing of A Bend-Twist D-Spar

    SciTech Connect (OSTI)

    Ong, Cheng-Huat; Tsai, Stephen W.

    1999-06-01

    Studies have indicated that an adaptive wind turbine blade design can significantly enhance the performance of the wind turbine blade on energy capture and load mitigation. In order to realize the potential benefits of aeroelastic tailoring, a bend-twist D-spar, which is the backbone of a blade, was designed and fabricated to achieve the objectives of having maximum bend-twist coupling and fulfilling desirable structural properties (031 & GJ). Two bend-twist D-spars, a hybrid of glass and carbon fibers and an all-carbon D-spar, were fabricated using a bladder process. One of the D-spars, the hybrid D-spar, was subjected to a cantilever static test and modal testing. Various parameters such as materials, laminate schedule, thickness and internal rib were examined in designing a bend-twist D-spar. The fabrication tooling, the lay-up process and the joint design for two symmetric clamshells are described in this report. Finally, comparisons between the experimental test results and numerical results are presented. The comparisons indicate that the numerical analysis (static and modal analysis) agrees well with test results.

  4. Guided wave radiation from a point source in the proximity of a pipe bend

    SciTech Connect (OSTI)

    Brath, A. J.; Nagy, P. B.; Simonetti, F.; Instanes, G.

    2014-02-18

    Throughout the oil and gas industry corrosion and erosion damage monitoring play a central role in managing asset integrity. Recently, the use of guided wave technology in conjunction with tomography techniques has provided the possibility of obtaining point-by-point maps of wall thickness loss over the entire volume of a pipeline section between two ring arrays of ultrasonic transducers. However, current research has focused on straight pipes while little work has been done on pipe bends which are also the most susceptible to developing damage. Tomography of the bend is challenging due to the complexity and computational cost of the 3-D elastic model required to accurately describe guided wave propagation. To overcome this limitation, we introduce a 2-D anisotropic inhomogeneous acoustic model which represents a generalization of the conventional unwrapping used for straight pipes. The shortest-path ray-tracing method is then applied to the 2-D model to compute ray paths and predict the arrival times of the fundamental flexural mode, A0, excited by a point source on the straight section of pipe entering the bend and detected on the opposite side. Good agreement is found between predictions and experiments performed on an 8 diameter (D) pipe with 1.5 D bend radius. The 2-D model also reveals the existence of an acoustic lensing effect which leads to a focusing phenomenon also confirmed by the experiments. The computational efficiency of the 2-D model makes it ideally suited for tomography algorithms.

  5. EIS-0296: South Oregon Coast Reinforcement Project, Coos Bay/North Bend, Oregon

    Broader source: Energy.gov [DOE]

    This EIS analyzes BPA's proposed action to build a 500- kilovolt (kV) transmission line and new substation to reinforce electrical service to the southern coast of the state of Oregon. Nucor Steel, a division of Nucor Corporation, may build a new steel mill in the Coos Bay/North Bend, Oregon, area.

  6. EIS-0296: South Oregon Coast Reinforcement Project, Coos Bay/North Bend, Oregon

    Broader source: Energy.gov [DOE]

    Bonneville Power Administration proposes to build a 500- kilovolt (kV) transmission line and new substation to reinforce electrical service to the southern coast of the state of Oregon. Nucor Steel, a division of Nucor Corporation, may build a new steel mill in the Coos Bay/North Bend, Oregon, area.

  7. WM2015 Conference, March, 15-19, 2015, Phoenix, Arizona, USA

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    March, 15-19, 2015, Phoenix, Arizona, USA † Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. This research is funded by WIPP programs administered by the Office of Environmental Management (EM) of the U.S Department of Energy. Impacts of an Additional Exhaust Shaft on WIPP

  8. Vegetation Cover Analysis of Hazardous Waste Sites in Utah and Arizona Using Hyperspectral Remote Sensing

    Energy Savers [EERE]

    Remote Sens. 2012, 4, 327-353; doi:10.3390/rs4020327 Remote Sensing ISSN 2072-4292 www.mdpi.com/journal/remotesensing Article Vegetation Cover Analysis of Hazardous Waste Sites in Utah and Arizona Using Hyperspectral Remote Sensing Jungho Im 1, *, John R. Jensen 2 , Ryan R. Jensen 3 , John Gladden 4 , Jody Waugh 5 and Mike Serrato 4 1 Department of Environmental Resources Engineering, College of Environmental Science and Forestry, State University of New York, Syracuse, NY 13210, USA 2

  9. Arizona Renewable Electric Power Industry Net Summer Capacity, by Energy Source

    U.S. Energy Information Administration (EIA) Indexed Site

    Arizona" "Energy Source",2006,2007,2008,2009,2010 "Geothermal","-","-","-","-","-" "Hydro Conventional",2720,2720,2720,2720,2720 "Solar",9,9,9,11,20 "Wind","-","-","-",63,128 "Wood/Wood Waste",3,3,29,29,29 "MSW/Landfill Gas",4,4,4,4,4 "Other Biomass","-","-","-","-","-"

  10. Arizona Total Electric Power Industry Net Summer Capacity, by Energy Source

    U.S. Energy Information Administration (EIA) Indexed Site

    Arizona" "Energy Source",2006,2007,2008,2009,2010 "Fossil",18784,18756,18942,19351,19338 " Coal",5830,5818,5818,6227,6233 " Petroleum",90,93,93,93,93 " Natural Gas",12864,12845,13031,13031,13012 " Other Gases","-","-","-","-","-" "Nuclear",3872,3872,3942,3942,3937 "Renewables",2736,2736,2762,2826,2901 "Pumped Storage",216,216,216,216,216

  11. Weatherization assistance program. Final monitoring report for Arizona, California, the Navajo Nation, and Nevada

    SciTech Connect (OSTI)

    Not Available

    1986-08-01

    Stroud, Inc., was awarded a contract by the Department of Energy San Francisco Operations Office (DOE-SAN) to evaluate the weatherization programs for selected grantees and subgrantees in Arizona, California, the Navajo Nation, and Nevada. This final report summarizes both the findings and the recommendations that emerged from the forty (40) visits to grantees and subgrantees. The remarks are not intended to be detailed and exhaustive. Specific problems, achievements, and recommendations are to be found in the narrative reports. But some findings and traits are sufficiently general that they warrant being included in this final report. The recommendations reflect those general characteristics.

  12. Remedial action plan for stabilization of the inactive uranium mill tailings site at Monument Valley, Arizona

    SciTech Connect (OSTI)

    1986-02-01

    This Remedial Action Plan (RAP) has been developed to serve a two-fold purpose. It presents the series of activities which are proposed by the U.S. Department of Energy (DOE) to accomplish long-term stabilization and control of radioactive materials at the inactive uranium processing site located near Monument Valley, Arizona It also serves to document the concurrence of both the Navajo Nation and the U.S. Nuclear Regulatory Commission (NRC) in the remedial action. This agreement, upon execution by DOE and the Navajo Nation and concurrence by NRC, becomes Appendix B of the Cooperative Agreement.

  13. Long-term surveillance plan for the Tuba City, Arizona disposal site

    SciTech Connect (OSTI)

    1996-02-01

    This long-term surveillance plan (LTSP) for the Uranium Mill Tailings Remedial Action (UMTRA) Project disposal site at Tuba City, Arizona, describes the site surveillance activities. The U.S. Department of Energy (DOE) will carry out these activities to ensure the disposal cell continues to function as designed. This final LTSP was prepared as a requirement for acceptance under the U.S. Nuclear Regulatory Commission (NRC) general license for custody and long-term care of residual radioactive materials (RRM) (10 CFR {section}40.27).

  14. ,"Arizona Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Price (Dollars per Thousand Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Arizona Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)",1,"Monthly","2/2016" ,"Release Date:","4/29/2016" ,"Next Release Date:","5/31/2016" ,"Excel File

  15. ,"Arizona Natural Gas Vehicle Fuel Consumption (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Vehicle Fuel Consumption (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Arizona Natural Gas Vehicle Fuel Consumption (MMcf)",1,"Monthly","2/2016" ,"Release Date:","4/29/2016" ,"Next Release Date:","5/31/2016" ,"Excel File

  16. ,"Arizona Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Wellhead Price (Dollars per Thousand Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Arizona Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)",1,"Annual",2010 ,"Release Date:","4/29/2016" ,"Next Release Date:","5/31/2016" ,"Excel File

  17. Final audit report of remedial action construction at the UMTRA Project Mexican Hat, Utah -- Monument Valley, Arizona, sites

    SciTech Connect (OSTI)

    1995-10-01

    The final audit report for remedial action at the Mexican Hat, Utah, Monument Valley, Arizona, Uranium Mill Tailings Remedial Action (UMTRA) Project sites consists of a summary of the radiological surveillances/audits, quality assurance (QA) in-process surveillances, and QA remedial action close-out inspections performed by the US Department of Energy (DOE) and the Technical Assistance Contractor (TAC); on-site construction reviews (OSCR) performed by the US Nuclear Regulatory Commission (NRC); and a surveillance performed by the Navajo Nation. This report refers to remedial action activities performed at the Mexican Hat, Utah--Monument Valley, Arizona, Uranium Mill Tailings Remedial Action (UMTRA) Project sites.

  18. Heteromorphism and crystallization paths of katungites, Navajo volcanic field, Arizona, USA

    SciTech Connect (OSTI)

    Laughlin, A.W.; Charles, R.W.; Aldrich, M.J. Jr.

    1986-01-01

    A swarm of thin, isochemical but heteromorphic dikes crops out in the valley of Hasbidito Creek in NE Arizona. The swarm is part of the dominantly potassic, mid-Tertiary Navajo volcanic field of the Colorado Plateau. Whole-rock chemical analyses of five samples from four of the dikes indicate that they are chemically identical to the katungites of Uganda. These dikes show the characteristic seriate-porphyritic texture of lamprophyres. Samples of an olivine-melilitite dike from the same swarm lack this texture and the chemical analysis, while similar to those of the other dikes, shows effects from the incorporation of xenocrystic olivine. Over 20 mineral phases have been identified in the Arizona samples and as many as 18 phases may occur in a single sample. The major phases are phlogopite, olivine, perovskite, opaque oxides, +- melilite and +- clinopyroxene. Based upon the modal mineralogies and textures of ten dike samples, we recognize five general non-equilibrium assemblages. Comparison of these assemblages with recent experimental results shows that they represent various combinations of complete and incomplete reactions. Reaction relations were determined by entering melt and phase compositions into the computer program GENMIX to obtain balanced reactions. By combining petrographic observations with mineral chemical data, balanced reactions from GENMIX, and the recently determined phase diagrams we are able to trace crystallization paths for the katungite magma.

  19. Curvature-Induced Bunch Self-Interaction for an Energy-Chirped Bunch in Magnetic Bends

    SciTech Connect (OSTI)

    Rui Li

    2006-01-04

    The curvature-induced bunch collective interaction in magnetic bends can be studied using effective forces in the canonical formulation of the coherent synchrotron radiation (CSR) effect. In this paper, for an electron distribution moving ultrarelativistically in a bending system, the dynamics of a particle in the electron distribution is derived from the Hamiltonian of the particle in terms of the bunch internal coordinates. The consequent Vlasov equation manifests explicitly how the phase space distribution is perturbed by the effective CSR forces. In particular, we study the impact of an initial linear energy chirp of the bunch on the behavior of the effective longitudinal CSR force, which arises due to the modification of the retardation relation as a result of the energy-chirping-induced longitudinal-horizontal correlation of the bunch distribution (bunch tilt) in dispersive regions.

  20. Light bending in the galactic halo by Rindler-Ishak method

    SciTech Connect (OSTI)

    Bhattacharya, Amrita; Nandi, Kamal K.; Isaev, Ruslan; Scalia, Massimo; Cattani, Carlo E-mail: subfear@gmail.com E-mail: ccattani@unisa.it

    2010-09-01

    After the work of Rindler and Ishak, it is now well established that the bending of light is influenced by the cosmological constant ? appearing in the Schwarzschild-de Sitter spacetime. We show that their method, when applied to the exact Mannheim-Kazanas-de Sitter solution of the Weyl conformal gravity, nicely yields the expected answer together with several other physically interesting new terms. Apart from ?, the solution is parametrized by a conformal parameter ?, which is known to play a dominant role in the galactic halo gravity. The application of the method yields exactly the same ?? correction to Schwarzschild bending as obtained by standard methods. Different cases are analyzed, which include some corrections to the special cases considered in the original paper by Rindler and Ishak.

  1. A new hydrocarbon empirical potential in angle bending calculation for the molecular dynamics simulation

    SciTech Connect (OSTI)

    Ping, Tan Ai; Hoe, Yeak Su

    2014-07-10

    Typically, short range potential only depends on neighbouring atoms and its parameters function can be categorized into bond stretching, angle bending and bond rotation potential. In this paper, we present our work called Angle Bending (AB) potential, whereas AB potential is the extension of our previous work namely Bond Stretching (BS) potential. Basically, potential will tend to zero after truncated region, potential in specific region can be represented by different piecewise polynomial. We proposed the AB piecewise potential which is possible to solve a system involving three atoms. AB potential able to handle the potential of covalent bonds for three atoms as well as two atoms cases due to its degeneracy properties. Continuity for the piecewise polynomial has been enforced by coupling with penalty methods. There are still plenty of improvement spaces for this AB potential. The improvement for three atoms AB potential will be studied and further modified into torsional potential which are the ongoing current research.

  2. Corrosion test qualification for in situ stress relief of recirculating steam generators' U-bends

    SciTech Connect (OSTI)

    Monter, J.V.; Miglin, B.P.; Lauer, J.A.

    1989-02-01

    Highly stressed alloy 600 is susceptible to intergranular stress corrosion cracking (IGSCC) in high-purity water at nuclear steam generator (NSG) operating temperatures. Two regions in recirculating steam generators (RSG) are particularly prone to primary-side-initiated SCC: tube expansion transitions of the tube in the tubesheet and tight radii tube bends. One remedial measure to improve IGSCC in these regions is to heat the tubes and thus relieve the residual stresses that contribute significantly to the cracking problem. This article describes a corrosion test program using the accelerated SCC environments of sodium tetrathionate and sodium hydroxide to qualify an in situ stress-relief process for the most SCC-susceptible U-bends in an RSG.

  3. Methods and apparatus for twist bend coupled (TCB) wind turbine blades

    DOE Patents [OSTI]

    Moroz, Emilian Mieczyslaw; LeMieux, David Lawrence; Pierce, Kirk Gee

    2006-10-10

    A method for controlling a wind turbine having twist bend coupled rotor blades on a rotor mechanically coupled to a generator includes determining a speed of a rotor blade tip of the wind turbine, measuring a current twist distribution and current blade loading, and adjusting a torque of a generator to change the speed of the rotor blade tip to thereby increase an energy capture power coefficient of the wind turbine.

  4. Effects of bending stresses and tube curvature on remote field eddy current signals

    SciTech Connect (OSTI)

    Sutherland, J.; Atherton, D.L.

    1997-01-01

    The effects of bending stresses and tube curvature on remote field eddy current signals were investigated. This technique is a recognized method for the nondestructive evaluation of ferromagnetic tubing, as used in heat exchangers and boiler systems. Different stress states were examined (elastic stress, plastic deformation, and residual stress) and found to give distinctive behavior. Elastic and residual stresses can appear as wall loss, depending on the operating frequency and baseline used for inspection and interpretation.

  5. Ion-beam-induced bending of freestanding amorphous nanowires: The importance of the substrate material and charging

    SciTech Connect (OSTI)

    Cui, Ajuan; Li, Wuxia; Liu, Zhe; Luo, Qiang; Gu, Changzhi; Fenton, J. C.; Shen, Tiehan H.

    2013-05-27

    Ion-beam irradiation offers great flexibility and controllability in the construction of freestanding nanostructures with multiple advanced functionalities. Here, we present and discuss the bending of free-standing nanowires, against, towards, and ultimately parallel to a flux of directional ion irradiation. Bending components both along and perpendicular to the incident ion beam were observed, and the bending behavior was found to depend both on the ion beam scanning strategy and on the conductivity of the supporting substrate. This behavior is explained by an ion-irradiation-related electrostatic interaction. Our findings suggest the prospect of exploiting this technique to engineer 3D nanostructures for advanced applications.

  6. Evapotranspiration Dynamics and Effects on Groundwater Recharge and Discharge at the Tuba City, Arizona, Disposal Site: Final Report

    Office of Scientific and Technical Information (OSTI)

    Evapotranspiration Dynamics and Effects on Groundwater Recharge and Discharge at the Tuba City, Arizona, Disposal Site February 2016 LMS/TUB/S13751 ESL-RPT-2016-02 Prepared for U.S. DEPARTMENT OF ENERGY Legacy Management This page intentionally left blank Contents Abbreviations.................................................................................................................................................... iii Executive

  7. Development of U-Frame Bending System for Studying the Vibration Integrity of Spent Nuclear Fuel

    SciTech Connect (OSTI)

    Wang, Hong; Wang, Jy-An John; Tan, Ting; Jiang, Hao; Cox, Thomas S; Howard, Rob L; Bevard, Bruce Balkcom; Flanagan, Michelle E

    2013-01-01

    A bending fatigue system developed to evaluate the response of spent nuclear fuel rods to vibration loads is presented. Design and analysis, fabrication, modification, calibration, and instrumentation are described. The system is composed of a U-frame testing setup for imposing bending loads on the spent fuel rod test specimen and a method for measuring the curvature of the rod during bending. The U-frame setup consists of two rigid arms, linking members, and linkages to a universal testing machine. The test specimen s curvature of bending is obtained through a three-point deflection measurement method consisting of three LVDTs mounted to the side connecting plates of the U-frame to capture the deformation of the test specimen. The system has some unique features: 1) The test specimen is installed by simple insertion using linear bearings incorporated with rigid sleeves. 2) Reverse cyclic bending tests can be carried out effectively and efficiently by push and pull at the loading point of the setup. Any test machine with a linear motion function can be used to drive the setup. 3) The embedded and preloaded linear roller bearings eliminate the backlash that exists in the conventional reverse bend tests. 4) The number of linkages between the U-frame and the universal machine is minimized. Namely, there are only two linkages needed at the two loading points of a U-frame setup, whereas a conventional four/three-point bend test frame requires four linkages. 5) The curvature measurement is immune to the effects arising from compliant layers and the rigid body motion of the machine. The compliant layers are used at the holding areas of the specimen to prevent contact damage. The tests using surrogate specimens composed of SS cladding/tube revealed several important phenomena that may cast light on the expected response of a spent fuel rod: 1) Cyclic quasi-static load (10 N/s under force control) in compressive mode (with respect to that at the loading point of the U-frame) produced increased irreversible or plastic curvature and also increased flexural rigidity of the surrogate rod. 2) Dynamic cyclic load (at least 1 Hz) in compressive mode resulted in increased flexural rigidity of the surrogate rod prior to SS cladding fracture. 3) Pellets and epoxy bonding exhibited various effects on the response of surrogate rods during the loading process as validated from static tests. 4) Dynamic cyclic load (2 Hz) in reverse mode demonstrated a substantial cyclic softening before the fracture of the surrogate rod. The degree of decrease in flexural rigidity was consistent in both measurement and on-line monitoring. The developed U-frame system is thus verified and demonstrated to be ready for further pursuit in hot-cell tests.

  8. Arizona Natural Gas Vehicle Fuel Price (Dollars per Thousand Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Vehicle Fuel Price (Dollars per Thousand Cubic Feet) Arizona Natural Gas Vehicle Fuel Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 3.82 3.63 3.57 3.93 3.76 3.45 3.49 4.46 5.28 2000's 5.83 6.76 7.04 5.65 6.57 7.91 9.81 9.40 11.00 14.96 2010's 12.35 7.73 13.19 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 4/29/2016 Next Release

  9. Weatherization assistance program: Final monitoring report for Arizona; California; the Navajo Nation; Nevada

    SciTech Connect (OSTI)

    Not Available

    1987-07-01

    Stroud, Inc., was awarded a contract by the Department of Energy San Francisco Operations Office (DOE-SAN) to evaluate the weatherization program for selected grantees and subgrantees in Arizona, California, the Navajo Nation, and Nevada. The provisions of the contract specified an initial year and renewable optional periods of two (2) additional years. This report covers the monitoring of grantees and subgrantees for the first option year, or what is the second year of the contract. The first two (2) weeks of the second year's activities were devoted to scheduling the agencies to be monitored. The actual field monitoring began on October 14, 1986, and was completed on May 22, 1987. During this seven-month period, thirty-five (35) agencies were visited and evaluated under this contract.

  10. Summary of the engineering assessment of inactive uranium mill tailings, Tuba City site, Tuba City, Arizona

    SciTech Connect (OSTI)

    1981-09-01

    Ford, Bacon and Davis Utah Inc. has reevaluated the Tuba City site in order to revise the March 1977 engineering assessment of the problems resulting from the existence of radioactive uranium mill tailings at Tuba City, Arizona. This engineering assessment has included the preparation of topographic maps, the performance of core drillings and radiometric measurements sufficient to determine areas and volumes of tailings and radiation exposures of individuals and nearby populations, the investigations of site hydrology and meteorology, and the evaluation and costing of alternative corrective actions. Radon gas released from the 0.8 million tons of tailings at the Tuba City site constitutes the most significant environmental impact, although windblown tailings and external gamma radiation also are factors.

  11. Engineering assessment of inactive uranium mill tailings, Tuba City site, Tuba City, Arizona

    SciTech Connect (OSTI)

    Not Available

    1981-09-01

    Ford, Bacon and Davis Utah Inc. has reevaluated the Tuba City site in order to revise the March 1977 engineering assessment of the problems resulting from the existence of radioactive uranium mill tailings at Tuba City, Arizona. This engineering assessment has included the preparation of topographic maps, the performance of core drillings and radiometric measurements sufficient to determine areas and volumes of tailings and radiation exposures of individuals and nearby populations, the investigations of site hydrology and meteorology, and the evaluation and costing of alternative corrective actions. Radon gas released from the 0.8 million tons of tailings at the Tuba City site constitutes the most significant environmental impact, although windblown tailings and external gamma radiation also are factors.

  12. SALINITY AND SODICITY INTERACTIONS OF WEATHERED MINESOILS IN NORTHWESTERN NEW MEXICO AND NORTH EASTERN ARIZONA

    SciTech Connect (OSTI)

    Brent Musslewhite; Song Jin

    2006-05-01

    Weathering characteristics of minesoils and rooting patterns of key shrub and grass species were evaluated at sites reclaimed for 6 to 14 years from three surface coal mine operations in northwestern New Mexico and northeastern Arizona. Non-weathered minesoils were grouped into 11 classifications based on electrical conductivity (EC) and sodium adsorption ratio (SAR). Comparisons of saturated paste extracts, from non-weathered and weathered minesoils show significant (p < 0.05) reductions in SAR levels and increased EC. Weathering increased the apparent stability of saline and sodic minesoils thereby reducing concerns of aggregate slaking and clay particle dispersion. Root density of four-wing saltbush (Atriplex canascens), alkali sacaton (Sporobolus airoides), and Russian wildrye (Psathyrostachys junceus) were nominally affected by increasing EC and SAR levels in minesoil. Results suggest that saline and sodic minesoils can be successfully reclaimed when covered with topsoil and seeded with salt tolerant plant species.

  13. Fossil vertebrate footprints in the Coconino Sandstone (Permian) of northern Arizona: Evidence for underwater origin

    SciTech Connect (OSTI)

    Brand, L.R.; Thu Tang (Loma Linda Univ., CA (United States))

    1991-12-01

    Numerous fossil vertebrate trackways in the Coconino Sandstone of northern Arizona exhibit several features that imply that these trackways were not made in subaerial conditions. Some trackways begin or end abruptly on undisturbed bedding planes, and in other trackways the individual prints are oriented in a different direction from that of the trackway. These features indicate buoyancy of the animals in water. The animals were swimming in the water part of the time and at other times walking on the substrate, and they were sometimes orienting upslope on the surface of the underwater dunes, while being drifted sideways by lateral currents. Observations on salamander locomotion in a sedimentation tank with flowing water support this model.

  14. Four-point Bend Testing of Irradiated Monolithic U-10Mo Fuel

    SciTech Connect (OSTI)

    Rabin, B. H.; Lloyd, W. R.; Schulthess, J. L.; Wright, J. K.; Lind, R. P.; Scott, L.; Wachs, K. M.

    2015-03-01

    This paper presents results of recently completed studies aimed at characterizing the mechanical properties of irradiated U-10Mo fuel in support of monolithic base fuel qualification. Mechanical properties were evaluated in four-point bending. Specimens were taken from fuel plates irradiated in the RERTR-12 and AFIP-6 Mk. II irradiation campaigns, and tests were conducted in the Hot Fuel Examination Facility (HFEF) at Idaho National Laboratory (INL). The monolithic fuel plates consist of a U-10Mo fuel meat covered with a Zr diffusion barrier layer fabricated by co-rolling, clad in 6061 Al using a hot isostatic press (HIP) bonding process. Specimens exhibited nominal (fresh) fuel meat thickness ranging from 0.25 mm to 0.64 mm, and fuel plate average burnup ranged from approximately 0.4 x 1021 fissions/cm3 to 6.0 x 1021 fissions/cm3. After sectioning the fuel plates, the 6061 Al cladding was removed by dissolution in concentrated NaOH. Pre- and post-dissolution dimensional inspections were conducted on test specimens to facilitate accurate analysis of bend test results. Four-point bend testing was conducted on the HFEF Remote Load Frame at a crosshead speed of 0.1 mm/min using custom-designed test fixtures and calibrated load cells. All specimens exhibited substantially linear elastic behavior and failed in a brittle manner. The influence of burnup on the observed slope of the stress-strain curve and the calculated fracture strength is discussed.

  15. Control of Springback in Sheet Metal U-bending Through Design Experiment

    SciTech Connect (OSTI)

    Chirita, Bogdan; Brabie, Gheorghe

    2007-05-17

    For the U-bending of sheet metals, springback represents the most important failure mode that is affecting the parts. The purpose of this study was to develop a method for the reduction or the elimination of springback from the designing stage of the forming process. This paper describes a numerical procedure that combines simulation of springback by finite element method with a fractional factorial design and proposes the optimization of the forming parameters and tools geometry for the reduction of springback intensity. At the end of the study we were able to obtain an important improvement of part precision using the parameters predicted by the factorial design.

  16. EA-1878: U.S. Department of Energy Loan Guarantee to Southwestern Solar Power, LLC for the Southwestern Solar Power Project in Palmdale, California, and near Tucson, Arizona

    Broader source: Energy.gov [DOE]

    This EA evaluates the environmental impacts of a proposal to provide a DOE loan guarantee to Solar Power, LLC, for the Southwestern Solar Power Project in Palmdale, California, and near Tucson, Arizona. NOTE: EA has been cancelled.

  17. Reduction of Beam Emittance of Pep-X Using Quadruple Bend Achromat Cell

    SciTech Connect (OSTI)

    Wang, Min-Huey; Cai, Yunhai; Hettel, Robert; Nosochkov, Yuri; /SLAC

    2009-05-26

    SLAC National Accelerator Laboratory is studying an option of building a high brightness synchrotron light source machine, PEP-X, in the existing PEP-II tunnel [1, 2]. By replacing 6 arcs of FODO cells of PEPII High Energy Ring (HER) with two arcs of DBA and four arcs of TME and installation of 89.3 m long damping wiggler an ultra low beam emittance of 0.14 nm-rad (including intra-beam scattering) at 4.5 GeV is achieved. In this paper we study the possibility to further reduce the beam emittance by releasing the constraint of the dispersion free in the DBA straight. The QBA (Quadruple Bend Achromat) cell is used to replace the DBA. The ratio of outer and inner bending angle is optimized. The dispersion function in the non-dispersion straight is controlled to compromise with lower emittance and beam size at the dispersion straight. An undulator of period length 23 mm, maximum magnetic field of 1.053 T, and total periods of 150 is used to put in the 30 straights to simulate the effects of these IDs on the beam emittance and energy spread. The brightness including all the ID effects is calculated and compared to the original PEP-X design.

  18. The shape of the DNA minor groove directs binding by the DNA-bending protein Fis

    SciTech Connect (OSTI)

    Stella, Stefano; Cascio, Duilio; Johnson, Reid C.

    2010-06-21

    The bacterial nucleoid-associated protein Fis regulates diverse reactions by bending DNA and through DNA-dependent interactions with other control proteins and enzymes. In addition to dynamic nonspecific binding to DNA, Fis forms stable complexes with DNA segments that share little sequence conservation. Here we report the first crystal structures of Fis bound to high- and low-affinity 27-base-pair DNA sites. These 11 structures reveal that Fis selects targets primarily through indirect recognition mechanisms involving the shape of the minor groove and sequence-dependent induced fits over adjacent major groove interfaces. The DNA shows an overall curvature of {approx}65{sup o}, and the unprecedented close spacing between helix-turn-helix motifs present in the apodimer is accommodated by severe compression of the central minor groove. In silico DNA structure models show that only the roll, twist, and slide parameters are sufficient to reproduce the changes in minor groove widths and recreate the curved Fis-bound DNA structure. Models based on naked DNA structures suggest that Fis initially selects DNA targets with intrinsically narrow minor grooves using the separation between helix-turn-helix motifs in the Fis dimer as a ruler. Then Fis further compresses the minor groove and bends the DNA to generate the bound structure.

  19. Bond-bending isomerism of Au2I3-: Competition between covalent bonding and aurophilicity

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Li, Wan -Lu; Liu, Hong -Tao; Jian, Tian; Lopez, Gary V.; Piazza, Zachary A.; Huang, Dao -Ling; Chen, Teng -Teng; Su, Jing; Yang, Ping; Chen, Xin; et al

    2015-10-13

    We report a joint photoelectron spectroscopy and theoretical investigation of the gaseous Au2I3– cluster, which is found to exhibit two types of isomers due to competition between Au–I covalent bonding and Au–Au aurophilic interactions. The covalent bonding favors a bent IAuIAuI– structure with an obtuse Au–I–Au angle (100.7°), while aurophilic interactions pull the two Au atoms much closer, leading to an acutely bent structure (72.0°) with an Au–Au distance of 3.08 Å. The two isomers are separated by a small barrier and are nearly degenerate with the obtuse isomer being slightly more stable. At low temperature, only the obtuse isomermore » is observed; distinct experimental evidence is observed for the co-existence of a combination of isomers with both acute and obtuse bending angles at room temperature. As a result, the two bond-bending isomers of Au2I3– reveal a unique example of one molecule being able to oscillate between different structures as a result of two competing chemical forces.« less

  20. Gila River Indian Community - Renewable Energy Development Feasibility...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Established in 1859 by Executive Order 374,000 acres ... supply Turbine test facility Concrete ... Quality Program 8 Other Functions Chemical Tribal ...

  1. Gila Hot Springs Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid...

  2. Ultrafast dynamics of liquid water: Energy relaxation and transfer processes of the OH stretch and the HOH bend

    SciTech Connect (OSTI)

    Imoto, Sho; Xantheas, Sotiris S.; Saito, Shinji

    2015-08-27

    The vibrational energy relaxation and transfer processes of the OH stretching and the HOH bending vibrations in liquid water are investigated via the theoretical calculation of the pump-probe spectra obtained from non-equilibrium molecular dynamics simulations with the TTM3-F interaction potential. The excitation of the OH stretch induces an instantaneous response of the high frequency librational motions in the 600-1000 cm-1 range. In addition, the excess energy of the OH stretch of a water molecule quickly transfers to the OH stretches of molecules in its first hydration shell with a time constant of ~50 fs, followed by relaxation to the HOH bends of the surrounding molecules with a time constant of 230 fs. The excitation of the HOH bend also results in the ultrafast excitation of the high frequency librational motions. The energy of the excited HOH bend of a water molecule decays, with a time constant of 200 fs, mainly to the relaxation of the HOH bends of its surrounding molecules. The energies of the HOH bends were found to transfer quickly to the intermolecular motions via the coupling with the high frequency librational motions. The excess energy of the OH stretch or the HOH bend relaxes to the high frequency intermolecular librational motions and eventually to the hot ground state with a time scale of ~1 ps via the coupling with the librational and translational motions. The energy relaxation and transfer processes were found to depend on the local hydrogen bonding network; the relaxations of the excess energy of the OH stretch and the HOH bend of four- and five-coordinated molecules are faster than those of a three-coordinated molecule due to the delocalization of the vibrational motions of the former (four- and five-coordinated molecules) compared to those of the later (three-coordinated molecules). The present results highlight the importance of the high frequency intermolecular librational modes in facilitating the ultrafast energy relaxation process in liquid water via their strong nonlinear couplings with the intramolecular OH stretching and HOH bending vibrations. S.S.X. acknowledges the support of the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences. Pacific Northwest National Laboratory (PNNL) is a multiprogram national laboratory operated for DOE by Battelle. The calculation was carried out using the computing resources at the Research Center for Computational Science in Okazaki, Japan.

  3. SiC-CMC-Zircaloy-4 Nuclear Fuel Cladding Performance during 4-Point Tubular Bend Testing

    SciTech Connect (OSTI)

    IJ van Rooyen; WR Lloyd; TL Trowbridge; SR Novascone; KM Wendt; SM Bragg-Sitton

    2013-09-01

    The U.S. Department of Energy Office of Nuclear Energy (DOE NE) established the Light Water Reactor Sustainability (LWRS) program to develop technologies and other solutions to improve the reliability, sustain the safety, and extend the life of current reactors. The Advanced LWR Nuclear Fuel Development Pathway in the LWRS program encompasses strategic research focused on improving reactor core economics and safety margins through the development of an advanced fuel cladding system. Recent investigations of potential options for accident tolerant nuclear fuel systems point to the potential benefits of silicon carbide (SiC) cladding. One of the proposed SiC-based fuel cladding designs being investigated incorporates a SiC ceramic matrix composite (CMC) as a structural material supplementing an internal Zircaloy-4 (Zr-4) liner tube, referred to as the hybrid clad design. Characterization of the advanced cladding designs will include a number of out-of-pile (nonnuclear) tests, followed by in-pile irradiation testing of the most promising designs. One of the out-of-pile characterization tests provides measurement of the mechanical properties of the cladding tube using four point bend testing. Although the material properties of the different subsystems (materials) will be determined separately, in this paper we present results of 4-point bending tests performed on fully assembled hybrid cladding tube mock-ups, an assembled Zr-4 cladding tube mock-up as a standard and initial testing results on bare SiC-CMC sleeves to assist in defining design parameters. The hybrid mock-up samples incorporated SiC-CMC sleeves fabricated with 7 polymer impregnation and pyrolysis (PIP) cycles. To provide comparative information; both 1- and 2-ply braided SiC-CMC sleeves were used in this development study. Preliminary stress simulations were performed using the BISON nuclear fuel performance code to show the stress distribution differences for varying lengths between loading points and clad configurations. The 2-ply sleeve samples show a higher bend momentum compared to those of the 1-ply sleeve samples. This is applicable to both the hybrid mock-up and bare SiC-CMC sleeve samples. Comparatively both the 1- and 2-ply hybrid mock-up samples showed a higher bend stiffness and strength compared with the standard Zr-4 mock-up sample. The characterization of the hybrid mock-up samples showed signs of distress and preliminary signs of fraying at the protective Zr-4 sleeve areas for the 1-ply SiC-CMC sleeve. In addition, the microstructure of the SiC matrix near the cracks at the region of highest compressive bending strain shows significant cracking and flaking. The 2-ply SiC-CMC sleeve samples showed a more bonded, cohesive SiC matrix structure. This cracking and fraying causes concern for increased fretting during the actual use of the design. Tomography was proven as a successful tool to identify open porosity during pre-test characterization. Although there is currently insufficient data to make conclusive statements regarding the overall merit of the hybrid cladding design, preliminary characterization of this novel design has been demonstrated.

  4. Molecular origin of the difference in the HOH bend of the IR spectra between liquid water and ice

    SciTech Connect (OSTI)

    Imoto, Sho; Xantheas, Sotiris S.; Saito, Shinji

    2013-02-07

    The intensity of the HOH bend in the IR spectrum of ice is significantly smaller than the corresponding one in liquid water. This difference in the IR intensities of the HOH bend in the two systems is investigated using MD simulations with the flexible, polarizable, ab-initio based TTM3-F model for water, a potential that correctly reproduces the experimentally observed increase of the HOH bend in liquid water and ice from the water monomer value. We have identified two factors that are responsible for the difference in the intensity of the HOH bend in liquid water and ice: (i) the decrease of the intensity of the HOH bend in ice caused by the strong anti-correlation between the permanent dipole moment of a molecule and the induced dipole moment of a neighboring hydrogen bond acceptor molecule and (ii) the weakening of this anti-correlation by the disordered hydrogen bond network in liquid water. The presence of the anti-correlation in ice is further confirmed by ab initio electronic structure calculations of water pentamer clusters extracted from the trajectories of the MD simulations for ice and liquid water.

  5. Combined Effects of Gravity, Bending Moment, Bearing Clearance, and Input Torque on Wind Turbine Planetary Gear Load Sharing: Preprint

    SciTech Connect (OSTI)

    Guo, Y.; Keller, J.; LaCava, W.

    2012-09-01

    This computational work investigates planetary gear load sharing of three-mount suspension wind turbine gearboxes. A three dimensional multibody dynamic model is established, including gravity, bending moments, fluctuating mesh stiffness, nonlinear tooth contact, and bearing clearance. A flexible main shaft, planetary carrier, housing, and gear shafts are modeled using reduced degrees-of-freedom through modal compensation. This drivetrain model is validated against the experimental data of Gearbox Reliability Collaborative for gearbox internal loads. Planet load sharing is a combined effect of gravity, bending moment, bearing clearance, and input torque. Influences of each of these parameters and their combined effects on the resulting planet load sharing are investigated. Bending moments and gravity induce fundamental excitations in the rotating carrier frame, which can increase gearbox internal loads and disturb load sharing. Clearance in carrier bearings reduces the bearing load carrying capacity and thus the bending moment from the rotor can be transmitted into gear meshes. With bearing clearance, the bending moment can cause tooth micropitting and can induce planet bearing fatigue, leading to reduced gearbox life. Planet bearings are susceptible to skidding at low input torque.

  6. Device and method for measuring multi-phase fluid flow in a conduit having an abrupt gradual bend

    DOE Patents [OSTI]

    Ortiz, Marcos German

    1998-01-01

    A system for measuring fluid flow in a conduit having an abrupt bend. The system includes pressure transducers, one disposed in the conduit at the inside of the bend and one or more disposed in the conduit at the outside of the bend but spaced a distance therefrom. The pressure transducers measure the pressure of fluid in the conduit at the locations of the pressure transducers and this information is used by a computational device to calculate fluid flow rate in the conduit. For multi-phase fluid, the density of the fluid is measured by another pair of pressure transducers, one of which is located in the conduit elevationally above the other. The computation device then uses the density measurement along with the fluid pressure measurements, to calculate fluid flow.

  7. Device and method for measuring multi-phase fluid flow in a conduit having an abrupt gradual bend

    DOE Patents [OSTI]

    Ortiz, M.G.

    1998-02-10

    A system is described for measuring fluid flow in a conduit having an abrupt bend. The system includes pressure transducers, one disposed in the conduit at the inside of the bend and one or more disposed in the conduit at the outside of the bend but spaced a distance therefrom. The pressure transducers measure the pressure of fluid in the conduit at the locations of the pressure transducers and this information is used by a computational device to calculate fluid flow rate in the conduit. For multi-phase fluid, the density of the fluid is measured by another pair of pressure transducers, one of which is located in the conduit elevationally above the other. The computation device then uses the density measurement along with the fluid pressure measurements, to calculate fluid flow. 1 fig.

  8. Comparison of ring compression testing to three point bend testing for unirradiated ZIRLO cladding

    SciTech Connect (OSTI)

    None, None

    2015-04-01

    Safe shipment and storage of nuclear reactor discharged fuel requires an understanding of how the fuel may perform under the various conditions that can be encountered. One specific focus of concern is performance during a shipment drop accident. Tests at Savannah River National Laboratory (SRNL) are being performed to characterize the properties of fuel clad relative to a mechanical accident condition such as a container drop. Unirradiated ZIRLO tubing samples have been charged with a range of hydride levels to simulate actual fuel rod levels. Samples of the hydrogen charged tubes were exposed to a radial hydride growth treatment (RHGT) consisting of heating to 400°C, applying initial hoop stresses of 90 to 170 MPa with controlled cooling and producing hydride precipitates. Initial samples have been tested using both a) ring compression test (RCT) which is shown to be sensitive to radial hydride and b) three-point bend tests which are less sensitive to radial hydride effects. Hydrides are generated in Zirconium based fuel cladding as a result of coolant (water) oxidation of the clad, hydrogen release, and a portion of the released (nascent) hydrogen absorbed into the clad and eventually exceeding the hydrogen solubility limit. The orientation of the hydrides relative to the subsequent normal and accident strains has a significant impact on the failure susceptability. In this study the impacts of stress, temperature and hydrogen levels are evaluated in reference to the propensity for hydride reorientation from the circumferential to the radial orientation. In addition the effects of radial hydrides on the Quasi Ductile Brittle Transition Temperature (DBTT) were measured. The results suggest that a) the severity of the radial hydride impact is related to the hydrogen level-peak temperature combination (for example at a peak drying temperature of 400°C; 800 PPM hydrogen has less of an impact/ less radial hydride fraction than 200 PPM hydrogen for the same thermal history) and b) for critical strains in post drying handling, storage and accident conditions the 3 point bend strain tolerance is less affected by radial hydrides than the conventional ring compression test (the radial hydride related Quasi DBTT associated with a three point bend straining is lower (better) than that measured by the ring compression tests).

  9. Device and method for measuring fluid flow in a conduit having a gradual bend

    DOE Patents [OSTI]

    Ortiz, Marcos German; Boucher, Timothy J

    1998-01-01

    A system for measuring fluid flow in a conduit having a gradual bend or arc, and a straight section. The system includes pressure transducers, one or more disposed in the conduit on the outside of the arc, and one disposed in the conduit in a straight section thereof. The pressure transducers measure the pressure of fluid in the conduit at the locations of the pressure transducers and this information is used by a computational device to calculate fluid flow rate in the conduit. For multi-phase fluid, the density of the fluid is measured by another pair of pressure transducers, one of which is located in the conduit elevationally above the other. The computation device then uses the density measurement along with the fluid pressure measurements, to calculate fluid flow.

  10. Some new schemes for producing high-accuracy elliptical X-ray mirrors by elastic bending

    SciTech Connect (OSTI)

    Padmore, H.A.; Howells, M.R.; Irick, S.; Renner, T.; Sandler, R.; Koo, Y.-M.

    1996-08-01

    Although x-ray micro-foci can be produced by a variety of diffractive methods, grazing incidence mirrors are the only route to an achromatic focus. In this paper we describe our efforts to produce elliptically shaped mirrors with the very high figure accuracy necessary for producing a micro-focus. The motivation for this work is provided by the need to produce achromatic foci for a range of applications ranging from tunable micro-focus x-ray photoelectron spectroscopy ({mu}-XPS) at soft x-ray energies to micro-focus white beam x-ray diffraction ({mu}-XRD) at hard x-ray energies. We describe the methodology of beam bending, a practical example of a system we have produced for {mu}-XRD, and results demonstrating the production of a surface with micro-radian figure accuracy.

  11. Transmission spectra of a double-clad fibre structure under bending

    SciTech Connect (OSTI)

    Zlodeev, I V; Ivanov, Oleg V

    2013-06-30

    We have studied a fibre-optic structure whose operation relies on conversion of core and cladding modes that are coupled across the interface between two fibres differing in refractive index profile. The structure contains a section of an SM630 double-clad, small-core, single-mode fibre inserted between two SMF-28 standard fibres. We have measured the transmission spectrum of the structure when the SM630 fibre was bent and analysed the mode structure of the double-clad fibre and the origin of dips in its transmission spectrum. The resonance dips have been found to shift to longer wavelengths with increasing fibre curvature. We have evaluated the shift as a function of the length of the inserted fibre, its bend direction and the nature of the input fibre. (fiber optics)

  12. Device and method for measuring fluid flow in a conduit having a gradual bend

    DOE Patents [OSTI]

    Ortiz, M.G.; Boucher, T.J.

    1998-11-10

    A system is described for measuring fluid flow in a conduit having a gradual bend or arc, and a straight section. The system includes pressure transducers, one or more disposed in the conduit on the outside of the arc, and one disposed in the conduit in a straight section thereof. The pressure transducers measure the pressure of fluid in the conduit at the locations of the pressure transducers and this information is used by a computational device to calculate fluid flow rate in the conduit. For multi-phase fluid, the density of the fluid is measured by another pair of pressure transducers, one of which is located in the conduit elevationally above the other. The computation device then uses the density measurement along with the fluid pressure measurements, to calculate fluid flow. 1 fig.

  13. Engineering assessment of inactive uranium mill tailings: Monument Valley Site, Monument Valley, Arizona

    SciTech Connect (OSTI)

    Not Available

    1981-10-01

    Ford, Bacon and Davis Utah Inc. has reevalated the Monument Valley site in order to revise the March 1977 engineering assessment of the problems resulting from the existence of radioactive uranium mill tailings at Monument Valley, Arizona. This engineering assessment has included the preparation of topographic maps, the performance of core drillings and radiometric measurements sufficient to determine areas and volumes of tailings and radiation exposure of individuals and nearby populations, the investigations of site hydrology and meteorology, and the evaluation and costing of alternative corrective actions. Radon gas released from the 1.1 million tons of tailings at the Monument Valley site constitutes the most significant environmental impact, although windblown tailings and external gamma radiation also are factors. The four alternative actions presented in this engineering assessment range from millsite decontamination with the addition of 3 m of stabilization cover material (Option I), to removal of the tailings to remote disposal sites and decontamination of the tailings site (Options II through IV). Cost estimates for the four options range from about $6,600,000 for stabilization in-place, to about $15,900,000 for disposal at a distance of about 15 mi. Three principal alternatives for reprocessing the Monument Valley tailings were examined: heap leaching; Treatment at an existing mill; and reprocessing at a new conventional mill constructed for tailings reprocessing. The cost of the uranium recovery is economically unattractive.

  14. Site observational work plan for the UMTRA Project site at Monument Valley, Arizona

    SciTech Connect (OSTI)

    1995-09-01

    The site observational work plan (SOWP) for the Monument Valley, Arizona, US Department of Energy (DOE) Uranium Mill Tailings Remedial Action (UMTRA) Project site is one of the first site-specific documents developed to achieve ground water compliance at the site. This SOWP applies information about the Monument Valley site to a regulatory compliance framework that identifies strategies that could be used to meet ground water compliance. The compliance framework was developed in the UMTRA Ground Water programmatic environmental impact statement (DOE, 1995). The DOE`s goal is to implement a cost-effective site strategy that complies with the US Environmental Protection Agency (EPA) ground water standards and protects human health and the environment. The compliance strategy that emerges in the final version of the SOWP will assess potential environmental impacts and provide stakeholder a forum for review and comment. When the compliance strategy is acceptable, it will be detailed in a remedial action plan that will be subject to review by the state and/or tribe and concurrence by the US Nuclear Regulatory Commission (NRC). Information available for the preparation of this SOWP indicates active remediation is the most likely compliance strategy for the Monument Valley site. Additional data are needed to determine the most effective remediation technology.

  15. High-Penetration PV Deployment in the Arizona Public Service System, Phase 1 Update: Preprint

    SciTech Connect (OSTI)

    Hambrick, J.; Narang, D.

    2012-06-01

    In an effort to better understand the impacts of high penetrations of photovoltaic generators on distribution systems, Arizona Public Service and its partners have begun work on a multi-year project to develop the tools and knowledge base needed to safely and reliably integrate high penetrations of utility- and residential-scale photovoltaics (PV). Building upon the APS Community Power Project -- Flagstaff Pilot, this project will analyze the impact of PV on a representative feeder in northeast Flagstaff. To quantify and catalog the effects of the estimated 1.3 MW of PV that will be installed on the feeder (both smaller units at homes as well as large, centrally located systems), high-speed weather and electrical data acquisition systems and digital 'smart' meters are being designed and installed to facilitate monitoring and to build and validate comprehensive, high-resolution models of the distribution system. These models will be used to analyze the impacts of the PV on distribution circuit protection systems (including anti-islanding), predict voltage regulation and phase balance issues, and develop volt/var control schemes. This paper continues from a paper presented at the 2011 IEEE PVSC conference that introduces the project and describes some of the preliminary consideration, as well as project plans and early results. This paper gives a status update of the project and presents selected results from Phase 2 of the project. It discusses baseline feeder modeling, load allocation, data acquisition, utility-scale PV integration, preliminary model validation, and plans for future phases.

  16. Integrating Solar PV in Utility System Operations: Analytical Framework and Arizona Case Study

    SciTech Connect (OSTI)

    Wu, Jing; Botterud, Audun; Mills, Andrew; Zhou, Zhi; Hodge, Bri-Mathias; Mike, Heaney

    2015-06-01

    A systematic framework is proposed to estimate the impact on operating costs due to uncertainty and variability in renewable resources. The framework quantifies the integration costs associated with subhourly variability and uncertainty as well as day-ahead forecasting errors in solar PV (photovoltaics) power. A case study illustrates how changes in system operations may affect these costs for a utility in the southwestern United States (Arizona Public Service Company). We conduct an extensive sensitivity analysis under different assumptions about balancing reserves, system flexibility, fuel prices, and forecasting errors. We find that high solar PV penetrations may lead to operational challenges, particularly during low-load and high solar periods. Increased system flexibility is essential for minimizing integration costs and maintaining reliability. In a set of sensitivity cases where such flexibility is provided, in part, by flexible operations of nuclear power plants, the estimated integration costs vary between $1.0 and $4.4/MWh-PV for a PV penetration level of 17%. The integration costs are primarily due to higher needs for hour-ahead balancing reserves to address the increased sub-hourly variability and uncertainty in the PV resource. (C) 2015 Elsevier Ltd. All rights reserved.

  17. Site observational work plan for the UMTRA Project site at Monument Valley, Arizona

    SciTech Connect (OSTI)

    1996-03-01

    The site observational work plan (SOWP) for the Monument Valley, Arizona, US Department of Energy (DOE) Uranium Mill Tailings Remedial Action(UMTRA) Project site is one of the first site-specific documents developed to achieve ground water compliance at the site. This SOWP applies information about the Monument Valley site to a regulatory compliance framework that identifies strategies that could be used to meet ground water compliance. The compliance framework was developed in the UMTRA Ground Water programmatic environmental impact statement (DOE, 1996). The DOE`s goal is to implement a cost-effective site strategy that complies with the US Environmental Protection Agency (EPA) ground water standards and protects human health and the environment. The compliance strategy that emerges in the final version of the SOWP will be evaluated in the site-specific environmental assessment to determine potential environmental impacts and provide stakeholders a forum for review and comment. When the compliance strategy is acceptable, it will be detailed in a remedial action plan that will be subject to review by the state and/or tribe and concurrence by the US Nuclear Regulatory Commission (NRC). Information for the preparation of this SOWP indicates active remediation is the most likely compliance strategy for the Monument Valley site. Additional data are needed to determine the most effective remediation technology.

  18. In-situ scanning electron microscopy study of fracture events during back-end-of-line microbeam bending tests

    SciTech Connect (OSTI)

    Vanstreels, K. Zahedmanesh, H.; Bender, H.; Gonzalez, M.; De Wolf, I.; Lefebvre, J.; Bhowmick, S.

    2014-11-24

    This paper demonstrates the direct observation of crack initiation, crack propagation, and interfacial delamination events during in-situ microbeam bending tests of FIB milled BEOL structures. The elastic modulus and the critical force of fracture of the BEOL beam samples were compared for beams of different length and width.

  19. Site observational work plan for the UMTRA Project Site at Tuba City, Arizona

    SciTech Connect (OSTI)

    1994-09-01

    The requirements for ground water compliance for Uranium Mill Tailings Remedial Action (UMTRA) Project sites, including the Tuba City, Arizona, site, are found in the Uranium Mill Tailings Radiation Control Act; Subparts B and C of the U.S. Environmental Protection Agency`s Health and Environmental Protection Standards for Uranium and Thorium Mill Tailings (40 CFR 192 (1994)), and the associated proposed 1987 standards (52 FR 36000). During the surface remedial action, an estimated 1,400,000 cubic yards (yd{sup 3}) (1,100,000 cubic meters [m{sup 3}]) of uranium mill tailings and other contaminated materials were consolidated and stabilized in place in an unlined disposal cell covering 50 acres (20 hectares). The surface remedial action was completed in April 1990. Ground water beneath the Tuba City site was contaminated by subsurface migration of water from uranium ore processing activities. The main source of contaminants was water from the tailings piles that began in 1956 when the mill opened and ended in 1966 when the mill closed. A total of 800,000 tons (725,000 tonnes) of uranium ore were processed onsite over a 10-year period. Two processes were used to refine the ore: an acid leach process and a sodium carbonate alkaline process. Water from these tailings then seeped into the ground and migrated downward to the ground water. The Tuba City site is currently in a post-stabilization, prelicensing status. The preliminary ground water compliance strategy at the Tuba City site is active remediation. The specific technology to be evaluated is in situ bioremediation. This selection was made because of the potential ability of bioremediation to reduce concentrations to lower levels than a conventional extraction system and to minimize disturbance of the water resource.

  20. Site observational work plan for the UMTRA Project site at Tuba City, Arizona

    SciTech Connect (OSTI)

    Not Available

    1994-09-01

    The requirements for ground water compliance for Uranium Mill Tailings Remedial Action (UMTRA) Project sites, including the Tuba City, Arizona, site, are found in the Uranium Mill Tailings Radiation Control Act; Subparts B and C of the U.S. Environmental Protection Agency`s Health and Environmental Protection Standards for Uranium and Thorium Mill Tailings (40 CFR 192 (1994)), and the associated proposed 1987 standards (52 FR 36000). During the surface remedial action, an estimated 1,400,000 cubic yards (yd{sup 3}) (1,100,000 cubic meters [m{sup 3}]) of uranium mill tailings and other contaminated materials were consolidated and stabilized in place in an unlined disposal cell covering 50 acres (20 hectares). The surface remedial action was completed in April 1990. Ground water beneath the Tuba City site was contaminated by subsurface migration of water from uranium ore processing activities. The main source of contaminants was water from the tailings piles that began in 1956 when the mill opened and ended in 1966 when the mill closed. 800,000 tons (725,000 tonnes) of uranium ore were processed onsite over a 10-year period. The wet tailings remaining after processing were placed as a slurry in three piles at the site. Water from these tailings then seeped into the ground and migrated downward to the ground water. The Tuba City site is currently in a post-stabilization, prelicensing status. The site is expected to remain in this status until licensed by the U.S. Nuclear Regulatory Commission (NRC) for long-term surveillance and maintenance. The preliminary ground water compliance strategy at the Tuba City site is active remediation-specific technology to be evaluated is in situ bioremediation. This selection was made because of the potential ability of bioremediation to reduce concentrations to lower levels than a conventional extraction system and to minimize disturbance of the water resource.