National Library of Energy BETA

Sample records for gila bend arizona

  1. Gila Bend, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Gila Bend, Arizona: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 32.9478236, -112.7168305 Show Map Loading map... "minzoom":false,"mappingse...

  2. Could Gila Bend, Arizona, Become the Solar Capital of the World?

    Broader source: Energy.gov [DOE]

    Serving approximately 9,000 homes with clean renewable energy, the Paloma and Cotton Center solar plants highlight the rapidly rising solar corridor in Gila Bend, Arizona.

  3. DOE/EA-1683: Finding of No Significant Impact Department of Energy Loan Guarantee to Abengoa Solar Inc. for the Solana Concentrating Solar Power Facility Near Gila Bend, Arizona (05/06/10)

    Office of Environmental Management (EM)

    FINDING OF NO SIGNIFICANT IMPACT DEPARTMENT OF ENERGY LOAN GUARANTEE TO ABENGOA SOLAR INC. FOR THE SOLANA CONCENTRATING SOLAR POWER FACILITY NEAR GILA BEND, ARIZONA AGENCY: U.S. Department of Energy, Loan Guarantee Program Office ACTION: Finding of No Significant Impact SUMMARY: The U.S. Department of Energy (DOE) has conducted an environmental assessment (EA) that analyzed the potential environmental impacts associated with a 280 Megawatt (MW) concentrating solar power (CSP) plant (Solana

  4. EA-1948: Gila-North Gila Transmission Line Rebuild and Upgrade Project, Yuma County, Arizona

    Broader source: Energy.gov [DOE]

    DOE’s Western Area Power Administration (Western) prepared this EA to analyze the potential environmental impacts of a proposal to rebuild and upgrade two parallel 4.8-mile transmission lines between the Gila and North Gila Substations and take actions in support of portions of Arizona Public Service’s construction of a new, 12.8 mile 230-kV transmission line between North Gila and a proposed substation in Yuma County, Arizona. The U.S. Bureau of Reclamation and U.S. Army Corps of Engineers are cooperating agencies.

  5. EA-1683: Abengoa Solar's Solana Concentrating Solar Power Facility, Gila

    Office of Environmental Management (EM)

    Bend, AZ | Department of Energy 83: Abengoa Solar's Solana Concentrating Solar Power Facility, Gila Bend, AZ EA-1683: Abengoa Solar's Solana Concentrating Solar Power Facility, Gila Bend, AZ May 3, 2010 EA-1683: Final Environmental Assessment Loan Guarantee to Abengoa Solar Inc. for the Solana Thermal Electric Power Project near Gila Bend, Arizona May 6, 2010 EA-1683: Finding of No Significant Impact Abengoa Solar Inc., the Solana Thermal Electric Power Project near Gila Bend, Arizona

  6. Gila County, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Day, Arizona Central Heights-Midland City, Arizona Claypool, Arizona Gisela, Arizona Globe, Arizona Hayden, Arizona Miami, Arizona Payson, Arizona Peridot, Arizona Pine, Arizona...

  7. Arizona

    U.S. Energy Information Administration (EIA) Indexed Site

    Arizona

  8. Modeling the Gila-San Francisco Basin using system dynamics in support of the 2004 Arizona Water Settlement Act.

    SciTech Connect (OSTI)

    Tidwell, Vincent Carroll; Sun, Amy Cha-Tien; Peplinski, William J.; Klise, Geoffrey Taylor

    2012-04-01

    Water resource management requires collaborative solutions that cross institutional and political boundaries. This work describes the development and use of a computer-based tool for assessing the impact of additional water allocation from the Gila River and the San Francisco River prescribed in the 2004 Arizona Water Settlements Act. Between 2005 and 2010, Sandia National Laboratories engaged concerned citizens, local water stakeholders, and key federal and state agencies to collaboratively create the Gila-San Francisco Decision Support Tool. Based on principles of system dynamics, the tool is founded on a hydrologic balance of surface water, groundwater, and their associated coupling between water resources and demands. The tool is fitted with a user interface to facilitate sensitivity studies of various water supply and demand scenarios. The model also projects the consumptive use of water in the region as well as the potential CUFA (Consumptive Use and Forbearance Agreement which stipulates when and where Arizona Water Settlements Act diversions can be made) diversion over a 26-year horizon. Scenarios are selected to enhance our understanding of the potential human impacts on the rivers ecological health in New Mexico; in particular, different case studies thematic to water conservation, water rights, and minimum flow are tested using the model. The impact on potential CUFA diversions, agricultural consumptive use, and surface water availability are assessed relative to the changes imposed in the scenarios. While it has been difficult to gage the acceptance level from the stakeholders, the technical information that the model provides are valuable for facilitating dialogues in the context of the new settlement.

  9. Gila River Indian Community- 2012 Project

    Broader source: Energy.gov [DOE]

    The Gila River Indian Community (GRIC) will conduct feasibility studies of potential renewable energy projects on its lands in south central Arizona.

  10. Project Reports for Gila River Indian Community- 2012 Project

    Broader source: Energy.gov [DOE]

    The Gila River Indian Community (GRIC) will conduct feasibility studies of potential renewable energy projects on its lands in south central Arizona.

  11. Gila River Indian Community - Renewable Energy Development Feasibility Study

    Office of Environmental Management (EM)

    Gila River Indian Community Renewable Energy Development Feasibility Study Committed to a Cleaner, Safer and Healthier Community 2 Indian Reservations in Arizona 3 Gila River Indian Community § Central Arizona, adjacent to Phoenix § Akimel O'odham (Pima) & Pee Posh (Maricopa) § Culturally an agricultural people § Located in Maricopa & Pinal counties § Established in 1859 by Executive Order § 374,000 acres (640 Square Miles) § Population 23,000 members §

  12. Gila Hot Springs District Heating Low Temperature Geothermal...

    Open Energy Info (EERE)

    Low Temperature Geothermal Facility Facility Gila Hot Springs Sector Geothermal energy Type District Heating Location Gila Hot Springs, New Mexico Coordinates Show Map...

  13. Arizona - Compare - U.S. Energy Information Administration (EIA)

    U.S. Energy Information Administration (EIA) Indexed Site

    Arizona Arizona

  14. Arizona - Rankings - U.S. Energy Information Administration (EIA)

    U.S. Energy Information Administration (EIA) Indexed Site

    Arizona Arizona

  15. Arizona - Search - U.S. Energy Information Administration (EIA)

    U.S. Energy Information Administration (EIA) Indexed Site

    Arizona Arizona

  16. Gila River Indian Community Renewable Energy Feasibility Study

    Office of Environmental Management (EM)

    antaresgroupinc.com Gila River Indian Community Renewable Energy Feasibility Study Presented by: ANTARES Group Inc. Tim Rooney Anneliese Schmidt Gila River Indian Community DEQ Rudy Mix March 25, 2014 ANTARES Group Incorporated www.antaresgroupinc.com Presentation Outline * Summary of Gila River Indian Community * Project overview * Summary of feasibility study assessment - Solar projects - Biomass resource assessment - Biomass projects * Project status and future plans 2 www.antaresgroupinc.com

  17. EA-1683: Finding of No Significant Impact | Department of Energy

    Office of Environmental Management (EM)

    Impact EA-1683: Finding of No Significant Impact Abengoa Solar Inc., the Solana Thermal Electric Power Project near Gila Bend, Arizona The Department of Energy has...

  18. Pinal County, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Chuichu, Arizona Coolidge, Arizona Dudleyville, Arizona Eloy, Arizona Florence, Arizona Gold Camp, Arizona Hayden, Arizona Kearny, Arizona Mammoth, Arizona Maricopa, Arizona...

  19. Navajo County, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Mesa, Arizona Shongopovi, Arizona Shonto, Arizona Show Low, Arizona Snowflake, Arizona Taylor, Arizona Whiteriver, Arizona Winslow West, Arizona Winslow, Arizona Retrieved from...

  20. Apache County, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Houck, Arizona Lukachukai, Arizona Many Farms, Arizona McNary, Arizona Nazlini, Arizona Red Mesa, Arizona Rock Point, Arizona Rough Rock, Arizona Round Rock, Arizona Sawmill,...

  1. Pima County, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Arizona Flowing Wells, Arizona Green Valley, Arizona Littletown, Arizona Marana, Arizona Oro Valley, Arizona Picture Rocks, Arizona Pisinemo, Arizona Sahuarita, Arizona Santa Rosa,...

  2. Annotated bibliography for the humpback chub (Gila cypha) with emphasis on the Grand Canyon population.

    SciTech Connect (OSTI)

    Goulet, C. T.; LaGory, K. E.; Environmental Science Division

    2009-10-05

    Glen Canyon Dam is a hydroelectric facility located on the Colorado River in Arizona that is operated by the U.S. Bureau of Reclamation (Reclamation) for multiple purposes including water storage, flood control, power generation, recreation, and enhancement of fish and wildlife. Glen Canyon Dam operations have been managed for the last several years to improve conditions for the humpback chub (Gila cypha) and other ecosystem components. An extensive amount of literature has been produced on the humpback chub. We developed this annotated bibliography to assist managers and researchers in the Grand Canyon as they perform assessments, refine management strategies, and develop new studies to examine the factors affecting humpback chub. The U.S. Geological Survey recently created a multispecies bibliography (including references on the humpback chub) entitled Bibliography of Native Colorado River Big Fishes (available at www.fort.usgs.gov/Products/data/COFishBib). That bibliography, while quite extensive and broader in scope than ours, is not annotated, and, therefore, does not provide any of the information in the original literature. In developing this annotated bibliography, we have attempted to assemble abstracts from relevant published literature. We present here abstracts taken unmodified from individual reports and articles except where noted. The bibliography spans references from 1976 to 2009 and is organized in five broad topical areas, including: (1) biology, (2) ecology, (3) impacts of dam operations, (4) other impacts, and (5) conservation and management, and includes twenty subcategories. Within each subcategory, we present abstracts alphabetically by author and chronologically by year. We present relevant articles not specific to either the humpback chub or Glen Canyon Dam, but cited in other included reports, under the Supporting Articles subcategory. We provide all citations in alphabetical order in Section 7.

  3. Yuma County, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Solar Project Places in Yuma County, Arizona Fortuna Foothills, Arizona Gadsden, Arizona San Luis, Arizona Somerton, Arizona Tacna, Arizona Wellton, Arizona Yuma, Arizona...

  4. Cochise County, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Douglas, Arizona Huachuca City, Arizona Naco, Arizona Pirtleville, Arizona Sierra Vista Southeast, Arizona Sierra Vista, Arizona St. David, Arizona Tombstone, Arizona...

  5. Coconino County, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Sedona, Arizona Supai, Arizona Tonalea, Arizona Tuba City, Arizona Tusayan, Arizona Williams, Arizona Winslow West, Arizona Retrieved from "http:en.openei.orgw...

  6. 2015 Arizona Housing Forum

    Broader source: Energy.gov [DOE]

    The 12th annual Arizona Housing Forum provides a platform for affordable housing professionals to network and share ideas to improve and create housing choices for Arizona. Registration is $350.

  7. Funding & Financing for Energy Projects | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Projects Funding & Financing for Energy Projects A concentrating solar power system being installed in Gila Bend, Arizona. | Photo by Dennis Schroeder. A concentrating solar power system being installed in Gila Bend, Arizona. | Photo by Dennis Schroeder. Are you a state, local or tribal government, or private sector partner, looking for resources or financing to support an energy project? Learn about funding and financing opportunities. AT THE ENERGY DEPARTMENT Loan Programs Office: The

  8. Graham County, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    B. Places in Graham County, Arizona Peridot, Arizona Pima, Arizona Safford, Arizona Swift Trail Junction, Arizona Thatcher, Arizona Retrieved from "http:en.openei.orgw...

  9. Mohave County, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Creek, Arizona Mohave Valley, Arizona Mojave Ranch Estates, Arizona New Kingman-Butler, Arizona Peach Springs, Arizona Willow Valley, Arizona Retrieved from "http:...

  10. Reversal bending fatigue testing

    DOE Patents [OSTI]

    Wang, Jy-An John; Wang, Hong; Tan, Ting

    2014-10-21

    Embodiments for apparatuses for testing reversal bending fatigue in an elongated beam are disclosed. Embodiments are configured to be coupled to first and second end portions of the beam and to apply a bending moment to the beam and create a pure bending condition in an intermediate portion of the beam. Embodiments are further configured to cyclically alternate the direction of the bending moment applied to the beam such that the intermediate portion of the beam cyclically bends in opposite directions in a pure bending condition.

  11. DOE - Office of Legacy Management -- Arizona

    Office of Legacy Management (LM)

    Arizona Arizona az_map Monument Valley Processing Site Tuba City Disposal

  12. Arizona Electric Power Cooperative | Open Energy Information

    Open Energy Info (EERE)

    Arizona Electric Power Cooperative Jump to: navigation, search Name: Arizona Electric Power Cooperative Place: Benson, Arizona Zip: 85602 Product: AEPCO was originally founded in...

  13. Arizona Solar Center | Open Energy Information

    Open Energy Info (EERE)

    Center Jump to: navigation, search Logo: Arizona Solar Center Name: Arizona Solar Center Place: Mesa, Arizona Number of Employees: 1-10 Year Founded: 1999 Website:...

  14. Benson, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Act Smart Grid Projects in Benson, Arizona Southwest Transmission Cooperative, Inc. Smart Grid Project Registered Energy Companies in Benson, Arizona Arizona Electric Power...

  15. Microhole Tubing Bending Report

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Oglesby, Ken

    2012-01-01

    A downhole tubing bending study was made and is reported herein. IT contains a report and 2 excel spreadsheets to calculate tubing bending and to estimate contact points of the tubing to the drilled hole wall (creating a new support point).

  16. Microhole Tubing Bending Report

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Oglesby, Ken

    A downhole tubing bending study was made and is reported herein. IT contains a report and 2 excel spreadsheets to calculate tubing bending and to estimate contact points of the tubing to the drilled hole wall (creating a new support point).

  17. Energy Department, Arizona Utilities Announce Transmission Infrastruct...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Arizona Utilities Announce Transmission Infrastructure Project Energization Energy Department, Arizona Utilities Announce Transmission Infrastructure Project Energization February ...

  18. Arizona/Transmission/Agency Links | Open Energy Information

    Open Energy Info (EERE)

    and Fish Department Arizona State Historic Preservation Office Arizona Department of Transportation Arizona Department of Agriculture Arizona Department of Water Resources Central...

  19. MONUMENT VALLEY, ARIZONA

    Office of Legacy Management (LM)

    VALLEY, ARIZONA Sampled August 1997 DATA PACKAGE CONTENTS This data package includes the following information: Item No. Descriotion of Contents 1. Site Sampling Lead Summary 2. Data Package Assessment, which includes the following: a. Field procedures verification checklist b. Confirmation that chain-of-custody was maintained. c. Confirmation that holding time requirements were met. d. Evaluation of the adequacy of the QC sample results. Data Assessment Summary, which describes problems

  20. Arizona City, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    City, Arizona: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 32.7558935, -111.6709584 Show Map Loading map... "minzoom":false,"mappingservice...

  1. Energy Exchange 2015: Phoenix, Arizona

    Broader source: Energy.gov [DOE]

    Presentations from Energy Exchange, a two-and-a-half day training scheduled for August 11-13, 2015, at the Phoenix Convention Center in Phoenix, Arizona.

  2. Grecycle Arizona LLC | Open Energy Information

    Open Energy Info (EERE)

    to: navigation, search Name: Grecycle Arizona LLC Place: Tucson, Arizona Product: Biodiesel producer out of cooking oil that operates a 1.2m liter plant in Tucson, Arizona....

  3. Phoenix, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    is a stub. You can help OpenEI by expanding it. Phoenix is a city in Maricopa County, Arizona. It falls under Arizona's 2nd congressional district and Arizona's 3rd congressional...

  4. Phoenix, Arizona Data Dashboard | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Data Dashboard Phoenix, Arizona Data Dashboard The data dashboard for Phoenix, Arizona, a partner in the Better Buildings Neighborhood Program. File Phoenix Data Dashboard More ...

  5. Arizona State Land Department | Open Energy Information

    Open Energy Info (EERE)

    Department Jump to: navigation, search Logo: Arizona State Land Department Name: Arizona State Land Department Abbreviation: ASLD Address: 1616 W. Adams St. Place: Phoenix, AZ Zip:...

  6. Arizona State University | Open Energy Information

    Open Energy Info (EERE)

    University Jump to: navigation, search Name: Arizona State University Place: Tempe, Arizona Zip: 85287 Website: asu.edu Coordinates: 33.4183159, -111.9311939 Show Map Loading...

  7. Arizona/Incentives | Open Energy Information

    Open Energy Info (EERE)

    Incentive Incentive Type Active APS - Energy Efficiency Solutions for Business (Arizona) Utility Rebate Program Yes APS - GEOSmart Financing Program (Arizona) Utility Loan Program...

  8. Arizona Corporation Commission | Open Energy Information

    Open Energy Info (EERE)

    Commission Jump to: navigation, search Name: Arizona Corporation Commission Abbreviation: ACC Service Territory: Arizona Website: www.azcc.gov EIA Form 861 Data This article is a...

  9. Arizona Solar Tech | Open Energy Information

    Open Energy Info (EERE)

    Tech Jump to: navigation, search Name: Arizona Solar Tech Place: Phoenix, Arizona Zip: 85040 Sector: Solar, Vehicles Product: Designs and installs solar PV systems for vehicles,...

  10. Arizona Administrative Code | Open Energy Information

    Open Energy Info (EERE)

    Arizona Administrative Code Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- RegulationRegulation: Arizona Administrative CodeLegal Abstract This...

  11. Geothermal energy in Arizona. Final report

    SciTech Connect (OSTI)

    Stone, C.; Witcher, J.C.

    1982-09-01

    Current knowledge and basic data on geothermal resources in Arizona are compiled. The following are covered: specific area investigations, thermal aspects of Arizona, and exploration methods. (MHR)

  12. Property:BendingMeasurement | Open Energy Information

    Open Energy Info (EERE)

    Type String Description MHK Bending Measurement Categories Used in FormTemplate MHKSensor & MHKInstrument Allows Values Angle (Bending);Strain (Bending);3-axis...

  13. EA-1683: Abengoa Solar's Solana Concentrating Solar Power Facility...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    83: Abengoa Solar's Solana Concentrating Solar Power Facility, Gila Bend, AZ EA-1683: Abengoa Solar's Solana Concentrating Solar Power Facility, Gila Bend, AZ May 3, 2010 EA-1683:...

  14. Arizona Solar Energy Industries Association | Open Energy Information

    Open Energy Info (EERE)

    Arizona Solar Energy Industries Association Name: Arizona Solar Energy Industries Association Place: Arizona Website: www.arizonasolarindustry.org Coordinates: 34.0489281,...

  15. Sunshine Arizona Wind Energy LLC | Open Energy Information

    Open Energy Info (EERE)

    Sunshine Arizona Wind Energy LLC Jump to: navigation, search Name: Sunshine Arizona Wind Energy LLC Place: Flagstaff, Arizona Zip: 86001 Sector: Wind energy Product: Formed to...

  16. Arizona Oil and Gas Commission | Open Energy Information

    Open Energy Info (EERE)

    Commission Jump to: navigation, search Logo: Arizona Oil and Gas Commission Name: Arizona Oil and Gas Commission Address: 416 W. Congress Street, Suite 100 Place: Arizona Zip:...

  17. Yavapai County, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    EV Solar Products Energy Generation Facilities in Yavapai County, Arizona Prescott Airport Solar Plant Solar Power Plant Places in Yavapai County, Arizona Ash Fork, Arizona...

  18. Northern Arizona University Wind Projects | Open Energy Information

    Open Energy Info (EERE)

    Northern Arizona University Wind Projects (Redirected from Northern Arizona University Wind Project) Jump to: navigation, search Northern Arizona University ARD Wind Project...

  19. Arizona's 7th congressional district: Energy Resources | Open...

    Open Energy Info (EERE)

    in Arizona's 7th congressional district Agenera, LLC Amereco Biofuels Corp Arizona Public Service Company APS Arizona Solar Tech EDGE Energy LLC EGreenIdeas Ecotality North...

  20. Arizona's 4th congressional district: Energy Resources | Open...

    Open Energy Info (EERE)

    in Arizona's 4th congressional district Agenera, LLC Amereco Biofuels Corp Arizona Public Service Company APS Arizona Solar Tech EDGE Energy LLC EGreenIdeas Ecotality North...

  1. Arizona's 2nd congressional district: Energy Resources | Open...

    Open Energy Info (EERE)

    in Arizona's 2nd congressional district Agenera, LLC Amereco Biofuels Corp Arizona Public Service Company APS Arizona Solar Tech EDGE Energy LLC EGreenIdeas Ecotality North...

  2. Arizona Department of Environmental Quality | Open Energy Information

    Open Energy Info (EERE)

    Arizona Department of Environmental Quality Name: Arizona Department of Environmental Quality Abbreviation: ADEQ Address: 1110 West Washington Street Phoenix, Arizona 85007 Place:...

  3. Active mines in Arizona and Arizona exploration offices

    SciTech Connect (OSTI)

    Not Available

    1988-01-01

    This book is a directory that lists 91 mining operations and 107 sand and gravel operations. It lists the company name, address, key personnel, mine, mill, or smelter location, and a description of the operation. A map plotting the locations of all the active mines is also available ($2). Arizona Exploration Offices is a directory that lists 68 exploration companies in Arizona, 80% of whom list gold or silver as their principal exploration target. Other exploration companies are searching for industrial minerals, uranium, beryllium, rare earths, ferroalloys, and sulfur.

  4. PP-108 Arizona Public Service Company | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    8 Arizona Public Service Company PP-108 Arizona Public Service Company Presidential Permit authorizing APSC to construct, operate and maintain electric transmission facitilites at the U.S. - Mexico Border. PDF icon PP-108 Arizona Public Service Company More Documents & Publications PP-107-1 Arizona Public Service Company PP-106 Arizona Public Service Company PP-107 Arizona Public Service

  5. Flagstaff, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    a stub. You can help OpenEI by expanding it. Flagstaff is a city in Coconino County, Arizona. It falls under Arizona's 1st congressional district.12 Contents 1 Registered...

  6. Arizona Power Authority | Open Energy Information

    Open Energy Info (EERE)

    Arizona Power Authority Place: Arizona Phone Number: 602-368-4265 Website: www.powerauthority.org Outage Hotline: 602-368-4265 References: EIA Form EIA-861 Final Data File for...

  7. Arizona: Building Smart from the Start

    SciTech Connect (OSTI)

    2003-06-01

    A fact sheet that describes Arizona's Housing Tax Credit Program, to make sure houses were built more efficiently.

  8. Energy Department, Arizona Utilities Announce Transmission Infrastructure

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Project Energization | Department of Energy Arizona Utilities Announce Transmission Infrastructure Project Energization Energy Department, Arizona Utilities Announce Transmission Infrastructure Project Energization February 12, 2015 - 2:30pm Addthis News Media Contact 202 586 4940 DOENews@hq.doe.gov Energy Department, Arizona Utilities Announce Transmission Infrastructure Project Energization Transmission Line Increases Reliability, Access to Affordable Energy in Southwest States WASHINGTON

  9. Passive, achromatic, nearly isochronous bending system

    DOE Patents [OSTI]

    Douglas, David R.; Yunn, Byung C.

    2004-05-18

    A particle beam bending system having a geometry that applies active bending only beyond the chord of the orbit for any momentum component. Using this bending configuration, all momentum components emerge dispersed in position only; all trajectories are parallel by construction. Combining a pair of such bends with reflective symmetry produces a bend cell that is, by construction, achromatic to all orders. By the particular choice of 45.degree. individual bends, a pair of such achromats can be used as the basis of a 180.degree. recirculation arc. Other rational fractions of a full 180.degree. bend serve equally well (e.g., 2 bends/cell.times.90.degree./bend.times.1 cell /arc; 2 bends/cell.times.30.degree./bend.times.3 cells/arc, etc), as do combinations of multiple bending numerologies (e.g., 2 bends/cell.times.22.5.degree./bend.times.2 cells+2 bends/cell.times.45.degree./bend.times.1 cell). By the choice of entry pole face rotation of the first magnet and exit pole face rotation of the second magnet (with a value to be determined from the particular beam stability requirements imposed by the choice of bending angle and beam properties to be used in any particular application), desirable focusing properties can be introduced and beam stability can be insured.

  10. EA-108 Arizona Public Service Company | Department of Energy

    Energy Savers [EERE]

    8 Arizona Public Service Company EA-108 Arizona Public Service Company Order authorizing Arizona Public Service to export electric energy to Mexico. PDF icon EA-108 Arizona Public Service.pdf More Documents & Publications EA-106 Arizona Public Service Company EA-127-A Southwestern Public Service Company EA-336-A ConocoPhillips Company

  11. PP-106 Arizona Public Service Company | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    6 Arizona Public Service Company PP-106 Arizona Public Service Company Presidential permit authorizing Arizona Public Service Company to construct, operate, and maintain electric transmission facilities at the U.S-Mexico border. PDF icon PP-106 Arizona Public Service Company More Documents & Publications PP-107-1 Arizona Public Service Company PP-107

  12. Compaction managed mirror bend achromat

    DOE Patents [OSTI]

    Douglas, David (Yorktown, VA)

    2005-10-18

    A method for controlling the momentum compaction in a beam of charged particles. The method includes a compaction-managed mirror bend achromat (CMMBA) that provides a beamline design that retains the large momentum acceptance of a conventional mirror bend achromat. The CMMBA also provides the ability to tailor the system momentum compaction spectrum as desired for specific applications. The CMMBA enables magnetostatic management of the longitudinal phase space in Energy Recovery Linacs (ERLs) thereby alleviating the need for harmonic linearization of the RF waveform.

  13. Recovery Act State Memos Arizona

    Broader source: Energy.gov (indexed) [DOE]

    Arizona For questions about DOE's Recovery Act activities, please contact the DOE Recovery Act Clearinghouse: 1-888-DOE-RCVY (888-363-7289), Monday through Friday, 9 a.m. to 7 p.m. Eastern Time https://recoveryclearinghouse.energy.gov/contactUs.htm. All numbers and projects listed as of June 1, 2010 TABLE OF CONTENTS RECOVERY ACT SNAPSHOT................................................................................... 1 FUNDING ALLOCATION

  14. Arizona Geological Society Digest 22

    National Nuclear Security Administration (NNSA)

    Arizona Geological Society Digest 22 2008 437 Tectonic infuences on the spatial and temporal evolution of the Walker Lane: An incipient transform fault along the evolving Pacifc - North American plate boundary James E. Faulds and Christopher D. Henry Nevada Bureau of Mines and Geology, University of Nevada, Reno, Nevada, 89557, USA ABSTRACT Since ~30 Ma, western North America has been evolving from an Andean type mar- gin to a dextral transform boundary. Transform growth has been marked by

  15. Categorical Exclusion Determinations: Arizona | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Arizona Categorical Exclusion Determinations: Arizona Location Categorical Exclusion Determinations issued for actions in Arizona. DOCUMENTS AVAILABLE FOR DOWNLOAD November 2, 2015 CX-100397 Categorical Exclusion Determination Tonto Apache Tribe Solar, Phase II Award Number: DE- EE-0006946 CX(s) Applied: A9, B5.16 Indian Energy Date: 11/02/2015 Location(s): AZ Office(s): Golden Field Office November 2, 2015 CX-100396 Categorical Exclusion Determination Regional Algal Feedstock Testbed

  16. Monument Valley, Arizona, Processing Site Fact Sheet

    Office of Legacy Management (LM)

    Monument Valley, Arizona, Processing Site This fact sheet provides information about the Uranium Mill Tailings Radiation Control Act of 1978 Title I processing site at Monument Valley, Arizona. This site is managed by the U.S. Department of Energy Office of Legacy Management. Site Description and History The Monument Valley processing site is located on the Navajo Nation in northeastern Arizona, approximately 15 miles south of Mexican Hat, Utah, on the west side of Cane Valley. A uranium-ore

  17. Arizona Department of Environmental Quality's AZPDES Website...

    Open Energy Info (EERE)

    AZPDES Website Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Arizona Department of Environmental Quality's AZPDES Website Abstract This website...

  18. Arizona Indian Gaming Association (AIGA) Expo

    Broader source: Energy.gov [DOE]

    This year’s EXPO will take place November 5-7, 2014 at the Radisson Fort McDowell Resort & Casino located in Scottsdale, Arizona.

  19. Mesa, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Inc. ETA Engineering Renegy Holdings Inc The Arizona Center for Algae Technology and Innovation References US Census Bureau Incorporated place and minor civil division...

  20. Arizona Center for Innovation | Open Energy Information

    Open Energy Info (EERE)

    Innovation Jump to: navigation, search Name: Arizona Center for Innovation Place: United States Sector: Services Product: General Financial & Legal Services ( Academic Research...

  1. Tucson, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    in Tucson, Arizona Environmentally Protective Power Generation EPPG Ethanol Capital Management Expert Solar Systems General Plasma Inc Genesis Solar LLC GeoInnovation Global...

  2. ARIZONA RECOVERY ACT SNAPSHOT | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Arizona has substantial natural resources, including coal, solar, and hydroelectric resources. The American Recovery & Reinvestment Act (ARRA) is making a meaningful down payment ...

  3. Arizona/Wind Resources | Open Energy Information

    Open Energy Info (EERE)

    source History View New Pages Recent Changes All Special Pages Semantic SearchQuerying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Arizona...

  4. Prescott, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    district.12 Energy Generation Facilities in Prescott, Arizona Prescott Airport Solar Plant Solar Power Plant References US Census Bureau Incorporated place and...

  5. Burnside, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Burnside, Arizona: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 35.7511228, -109.6245514 Show Map Loading map... "minzoom":false,"mappingser...

  6. Summit, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Summit, Arizona: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 32.0670238, -110.9514796 Show Map Loading map... "minzoom":false,"mappingservi...

  7. Cameron, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Arizona: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 35.8758285, -111.4129207 Show Map Loading map... "minzoom":false,"mappingservice":"goo...

  8. Ganado, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Ganado, Arizona: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 35.7114022, -109.5420492 Show Map Loading map... "minzoom":false,"mappingservi...

  9. Avondale, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Avondale, Arizona: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 33.4355977, -112.3496021 Show Map Loading map... "minzoom":false,"mappingser...

  10. Jerome, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Arizona: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 34.7489107, -112.1137716 Show Map Loading map... "minzoom":false,"mappingservice":"goo...

  11. Northern Arizona University | Open Energy Information

    Open Energy Info (EERE)

    University Jump to: navigation, search Name: Northern Arizona University Place: Flagstaff, AZ Zip: 86011 Phone Number: 928-523-0715 Website: nau.edu Coordinates: 35.1905403,...

  12. Littletown, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Littletown, Arizona: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 32.1303561, -110.8728658 Show Map Loading map... "minzoom":false,"mappings...

  13. Peoria, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Peoria, Arizona: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 33.5805955, -112.2373779 Show Map Loading map... "minzoom":false,"mappingservi...

  14. Springerville, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Springerville, Arizona: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 34.1333799, -109.2859196 Show Map Loading map... "minzoom":false,"mappi...

  15. Surprise, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Surprise, Arizona: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 33.6305938, -112.333216 Show Map Loading map... "minzoom":false,"mappingserv...

  16. Cottonwood, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Arizona: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 34.7391876, -112.0098791 Show Map Loading map... "minzoom":false,"mappingservice":"goo...

  17. Maricopa, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Arizona: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 33.0581063, -112.0476423 Show Map Loading map... "minzoom":false,"mappingservice":"goo...

  18. Kaibab, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Kaibab, Arizona: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 36.896652, -112.7407596 Show Map Loading map... "minzoom":false,"mappingservic...

  19. Coolidge, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Coolidge, Arizona: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 32.977839, -111.517624 Show Map Loading map... "minzoom":false,"mappingservi...

  20. Gadsden, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Gadsden, Arizona: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 32.5544974, -114.7849577 Show Map Loading map... "minzoom":false,"mappingserv...

  1. Whetstone, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Whetstone, Arizona: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 31.701705, -110.340746 Show Map Loading map... "minzoom":false,"mappingserv...

  2. Chinle, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Chinle, Arizona: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 36.1544483, -109.5526072 Show Map Loading map... "minzoom":false,"mappingservi...

  3. Blackwater, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Blackwater, Arizona: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 33.0311702, -111.582627 Show Map Loading map... "minzoom":false,"mappingse...

  4. Vail, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Arizona: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 32.0478583, -110.7120272 Show Map Loading map... "minzoom":false,"mappingservice":"goo...

  5. Cornville, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Cornville, Arizona: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 34.7177989, -111.9215438 Show Map Loading map... "minzoom":false,"mappingse...

  6. Tsaile, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Tsaile, Arizona: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 36.303712, -109.214705 Show Map Loading map... "minzoom":false,"mappingservice...

  7. Wilhoit, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Wilhoit, Arizona: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 34.4258586, -112.5868398 Show Map Loading map... "minzoom":false,"mappingserv...

  8. Mountainaire, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Mountainaire, Arizona: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 35.0852924, -111.6659925 Show Map Loading map... "minzoom":false,"mappin...

  9. Kingman, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Arizona: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 35.189443, -114.0530065 Show Map Loading map... "minzoom":false,"mappingservice":"goog...

  10. Oracle, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Oracle, Arizona: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 32.6109054, -110.7709348 Show Map Loading map... "minzoom":false,"mappingservi...

  11. Fredonia, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Arizona: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 36.945542, -112.5265889 Show Map Loading map... "minzoom":false,"mappingservice":"goog...

  12. Chuichu, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Chuichu, Arizona: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 32.752002, -111.7831837 Show Map Loading map... "minzoom":false,"mappingservi...

  13. Sahuarita, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Sahuarita, Arizona: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 31.9575818, -110.955646 Show Map Loading map... "minzoom":false,"mappingser...

  14. Tortolita, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Tortolita, Arizona: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 32.4005302, -111.0400795 Show Map Loading map... "minzoom":false,"mappingse...

  15. Sacaton, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Sacaton, Arizona: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 33.0767225, -111.7392993 Show Map Loading map... "minzoom":false,"mappingserv...

  16. Moenkopi, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Moenkopi, Arizona: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 36.1111043, -111.2223624 Show Map Loading map... "minzoom":false,"mappingser...

  17. Paulden, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Paulden, Arizona: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 34.8855756, -112.4682271 Show Map Loading map... "minzoom":false,"mappingserv...

  18. Parks, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Parks, Arizona: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 35.2605664, -111.9487743 Show Map Loading map... "minzoom":false,"mappingservic...

  19. Tacna, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Tacna, Arizona: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 32.6975472, -113.9535427 Show Map Loading map... "minzoom":false,"mappingservic...

  20. Houck, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Houck, Arizona: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 35.2830803, -109.2070391 Show Map Loading map... "minzoom":false,"mappingservic...

  1. Tucson, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Tucson, Arizona: Energy Resources (Redirected from Tucson, AZ) Jump to: navigation, search Equivalent URI DBpedia Coordinates 32.2217429, -110.926479 Show Map Loading map......

  2. Congress, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Congress, Arizona: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 34.162526, -112.8507374 Show Map Loading map... "minzoom":false,"mappingserv...

  3. Supai, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Supai, Arizona: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 36.2369265, -112.6890791 Show Map Loading map... "minzoom":false,"mappingservic...

  4. Superior, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Superior, Arizona: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 33.293945, -111.0962305 Show Map Loading map... "minzoom":false,"mappingserv...

  5. Wellton, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Wellton, Arizona: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 32.6728256, -114.1468821 Show Map Loading map... "minzoom":false,"mappingserv...

  6. Carefree, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Carefree, Arizona: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 33.8222611, -111.918203 Show Map Loading map... "minzoom":false,"mappingserv...

  7. Willcox, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Willcox, Arizona: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 32.2528519, -109.8320124 Show Map Loading map... "minzoom":false,"mappingserv...

  8. Chandler, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Chandler, Arizona: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 33.3061605, -111.8412502 Show Map Loading map... "minzoom":false,"mappingser...

  9. Pirtleville, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Pirtleville, Arizona: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 31.3570467, -109.561734 Show Map Loading map... "minzoom":false,"mappings...

  10. Dudleyville, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Dudleyville, Arizona: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 32.914267, -110.733779 Show Map Loading map... "minzoom":false,"mappingse...

  11. Tonalea, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Tonalea, Arizona: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 36.3224923, -110.9634781 Show Map Loading map... "minzoom":false,"mappingserv...

  12. Mayer, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Mayer, Arizona: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 34.3978054, -112.2362734 Show Map Loading map... "minzoom":false,"mappingservic...

  13. Ajo, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Ajo, Arizona: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 32.3717248, -112.8607099 Show Map Loading map... "minzoom":false,"mappingservice"...

  14. Wickenburg, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Wickenburg, Arizona: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 33.9686412, -112.729622 Show Map Loading map... "minzoom":false,"mappingse...

  15. Glendale, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Arizona: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 33.5386523, -112.1859866 Show Map Loading map... "minzoom":false,"mappingservice":"goo...

  16. Bisbee, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Bisbee, Arizona: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 31.4481547, -109.9284084 Show Map Loading map... "minzoom":false,"mappingservi...

  17. Eloy, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Eloy, Arizona: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 32.7558962, -111.554844 Show Map Loading map... "minzoom":false,"mappingservice"...

  18. Tolleson, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Tolleson, Arizona: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 33.4500425, -112.259321 Show Map Loading map... "minzoom":false,"mappingserv...

  19. Nazlini, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Nazlini, Arizona: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 35.8963986, -109.4487147 Show Map Loading map... "minzoom":false,"mappingserv...

  20. Tombstone, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Tombstone, Arizona: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 31.7128683, -110.0675764 Show Map Loading map... "minzoom":false,"mappingse...

  1. Sedona, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Sedona, Arizona: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 34.8697395, -111.7609896 Show Map Loading map... "minzoom":false,"mappingservi...

  2. Sawmill, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Sawmill, Arizona: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 33.6181083, -110.3964911 Show Map Loading map... "minzoom":false,"mappingserv...

  3. Pisinemo, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Pisinemo, Arizona: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 32.0378487, -112.3209689 Show Map Loading map... "minzoom":false,"mappingser...

  4. Sells, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Sells, Arizona: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 31.9120215, -111.881234 Show Map Loading map... "minzoom":false,"mappingservice...

  5. Hayden, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Hayden, Arizona: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 33.0047878, -110.7853836 Show Map Loading map... "minzoom":false,"mappingservi...

  6. Kearny, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Arizona: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 33.0570085, -110.9106656 Show Map Loading map... "minzoom":false,"mappingservice":"goo...

  7. Eagar, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Eagar, Arizona: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 34.1111581, -109.291475 Show Map Loading map... "minzoom":false,"mappingservice...

  8. Stanfield, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Stanfield, Arizona: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 32.8825531, -111.9620805 Show Map Loading map... "minzoom":false,"mappingse...

  9. Mammoth, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Mammoth, Arizona: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 32.722568, -110.6406547 Show Map Loading map... "minzoom":false,"mappingservi...

  10. Lukachukai, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Lukachukai, Arizona: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 36.416946, -109.2287125 Show Map Loading map... "minzoom":false,"mappingse...

  11. Florence, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Arizona: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 33.0314508, -111.3873431 Show Map Loading map... "minzoom":false,"mappingservice":"goo...

  12. Lechee, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Lechee, Arizona: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 35.0322421, -110.7529145 Show Map Loading map... "minzoom":false,"mappingservi...

  13. Guadalupe, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Guadalupe, Arizona: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 33.3708798, -111.9629216 Show Map Loading map... "minzoom":false,"mappingse...

  14. Dennehotso, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Dennehotso, Arizona: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 35.479167, -111.2375 Show Map Loading map... "minzoom":false,"mappingservi...

  15. Naco, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Naco, Arizona: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 31.3353801, -109.9481297 Show Map Loading map... "minzoom":false,"mappingservice...

  16. Marana, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Marana, Arizona: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 32.414432, -111.172754 Show Map Loading map... "minzoom":false,"mappingservice...

  17. Winkelman, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Winkelman, Arizona: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 32.9875659, -110.7709387 Show Map Loading map... "minzoom":false,"mappingse...

  18. Somerton, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Somerton, Arizona: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 32.5964404, -114.709677 Show Map Loading map... "minzoom":false,"mappingserv...

  19. Williamson, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Williamson, Arizona: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 34.6900229, -112.5410052 Show Map Loading map... "minzoom":false,"mappings...

  20. Buckeye, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Buckeye, Arizona: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 33.3703197, -112.5837766 Show Map Loading map... "minzoom":false,"mappingserv...

  1. Santan, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Santan, Arizona: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 33.145476, -111.801546 Show Map Loading map... "minzoom":false,"mappingservice...

  2. Gilbert, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Arizona: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 33.3528264, -111.789027 Show Map Loading map... "minzoom":false,"mappingservice":"goog...

  3. Kaibito, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Kaibito, Arizona: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 36.5972186, -111.0743114 Show Map Loading map... "minzoom":false,"mappingserv...

  4. Page, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Page, Arizona: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 36.9147222, -111.4558333 Show Map Loading map... "minzoom":false,"mappingservice...

  5. Douglas, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Douglas, Arizona: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 31.3445471, -109.5453447 Show Map Loading map... "minzoom":false,"mappingserv...

  6. Steamboat, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Steamboat, Arizona: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 35.7513983, -109.8478915 Show Map Loading map... "minzoom":false,"mappingse...

  7. Phoenix, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Phoenix, Arizona: Energy Resources (Redirected from Phoenix, AZ) Jump to: navigation, search Equivalent URI DBpedia Coordinates 33.4483771, -112.0740373 Show Map Loading map......

  8. Leupp, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Leupp, Arizona: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 35.2980659, -111.0062528 Show Map Loading map... "minzoom":false,"mappingservic...

  9. Seligman, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Seligman, Arizona: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 35.3255608, -112.8774057 Show Map Loading map... "minzoom":false,"mappingser...

  10. Tusayan, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Tusayan, Arizona: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 35.9735954, -112.1265569 Show Map Loading map... "minzoom":false,"mappingserv...

  11. Goodyear, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Goodyear, Arizona: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 33.4353199, -112.3582135 Show Map Loading map... "minzoom":false,"mappingser...

  12. Catalina, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Catalina, Arizona: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 32.5000731, -110.9212146 Show Map Loading map... "minzoom":false,"mappingser...

  13. Yarnell, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Yarnell, Arizona: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 34.2216927, -112.7474007 Show Map Loading map... "minzoom":false,"mappingserv...

  14. Yuma, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Yuma, Arizona: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 32.7253248, -114.624397 Show Map Loading map... "minzoom":false,"mappingservice"...

  15. Energy Incentive Programs, Arizona | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    What public-purpose-funded energy efficiency programs are available in my state? Arizona's restructuring law provides for a systems benefits charge (SBC) to fund energy efficiency ...

  16. Arizona Teachers Prepare Students for Green Economy

    Broader source: Energy.gov [DOE]

    Students led by their building trades teacher , are wiring parts of the Raymond S. Kellis High School in Glendale, Arizona for solar power.

  17. Arizona Department of Environmental Quality's Individual Permits...

    Open Energy Info (EERE)

    search OpenEI Reference LibraryAdd to library Web Site: Arizona Department of Environmental Quality's Individual Permits Website Abstract This website contains information...

  18. Arizona Department of Environmental Quality's General Permits...

    Open Energy Info (EERE)

    search OpenEI Reference LibraryAdd to library Web Site: Arizona Department of Environmental Quality's General Permits Website Abstract This website provides information...

  19. Arizona Department of Environmental Quality's Application Forms...

    Open Energy Info (EERE)

    search OpenEI Reference LibraryAdd to library Web Site: Arizona Department of Environmental Quality's Application Forms and Guidance Website Abstract This site contains forms...

  20. Flagstaff, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Arizona Wind Energy LLC References US Census Bureau Incorporated place and minor civil division population dataset (All States, all geography) US Census Bureau...

  1. Williams, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Williams, Arizona: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 35.2494566, -112.1910031 Show Map Loading map... "minzoom":false,"mappingser...

  2. Tuba City, Arizona, Disposal Site Fact Sheet

    Office of Legacy Management (LM)

    UMTRCA Title I UMTRCA Title I Page 1 of 3 Fact Sheet Tuba City, Arizona, Disposal Site This fact sheet provides information about the Tuba City, Arizona, Disposal Site. This site is managed by the U.S. Department of Energy Office of Legacy Management under Title I of the Uranium Mill Tailings Radiation Control Act of 1978. Location of the Tuba City, Arizona, Disposal Site Site Description and History The Tuba City, Arizona, Disposal Site is within the Navajo Nation and close to the Hopi

  3. BLM Arizona State Office | Open Energy Information

    Open Energy Info (EERE)

    Arizona Address: One North Central Avenue, Suite 800 Place: Phoenix, AZ Zip: 85004 Phone Number: 602-417-9200 ParentHolding Organization: Bureau of Land Management...

  4. The Future of Electric Vehicles and Arizona State University's MAIL

    Energy Savers [EERE]

    Battery | Department of Energy The Future of Electric Vehicles and Arizona State University's MAIL Battery The Future of Electric Vehicles and Arizona State University's MAIL Battery August 11, 2010 - 4:26pm Addthis Cody Friesen and his team at Arizona State University | Photo Credit Arizona State University Cody Friesen and his team at Arizona State University | Photo Credit Arizona State University Andy Oare Andy Oare Former New Media Strategist, Office of Public Affairs What does this

  5. Alternative Fuels Data Center: Rolling Down the Arizona EV Highway

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Rolling Down the Arizona EV Highway to someone by E-mail Share Alternative Fuels Data Center: Rolling Down the Arizona EV Highway on Facebook Tweet about Alternative Fuels Data Center: Rolling Down the Arizona EV Highway on Twitter Bookmark Alternative Fuels Data Center: Rolling Down the Arizona EV Highway on Google Bookmark Alternative Fuels Data Center: Rolling Down the Arizona EV Highway on Delicious Rank Alternative Fuels Data Center: Rolling Down the Arizona EV Highway on Digg Find More

  6. Phoenix, Arizona Summary of Reported Data | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Summary of Reported Data Phoenix, Arizona Summary of Reported Data Summary of data reported by Better Buildings Neighborhood Program partner Phoenix, Arizona. PDF icon Phoenix, ...

  7. EERE Success Story-Arizona: Solar Panels Replace Inefficient...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Arizona: Solar Panels Replace Inefficient Fossil Fuel-Powered Energy Systems EERE Success Story-Arizona: ... fossil-fueled agricultural production systems to renewable energy power. ...

  8. The Arizona Center for Algae Technology and Innovation | Open...

    Open Energy Info (EERE)

    Arizona Center for Algae Technology and Innovation Jump to: navigation, search Name: The Arizona Center for Algae Technology and Innovation Abbreviation: AzCATI Address: 7418 East...

  9. Northern Arizona University Wind Projects | Open Energy Information

    Open Energy Info (EERE)

    Wind Projects Jump to: navigation, search Northern Arizona University ARD Wind Project Northern Arizona University SHRM Wind Project Retrieved from "http:en.openei.orgw...

  10. Arizona Transmission Line Siting Committee | Open Energy Information

    Open Energy Info (EERE)

    Line Siting Committee Jump to: navigation, search Name: Arizona Transmission Line Siting Committee Abbreviation: TLSC Address: 1200 West Washington Street Place: Phoenix, Arizona...

  11. Arizona's 3rd congressional district: Energy Resources | Open...

    Open Energy Info (EERE)

    congressional district Agenera, LLC Alchemix Corporation Amereco Biofuels Corp Arizona Public Service Company APS Arizona Solar Tech EDGE Energy LLC EGreenIdeas Ecotality North...

  12. Arizona Public Service Company APS | Open Energy Information

    Open Energy Info (EERE)

    Public Service Company APS Jump to: navigation, search Name: Arizona Public Service Company (APS) Place: Phoenix, Arizona Zip: 85004 Product: Generates, transmits and distributes...

  13. Analysis of MSE Cores Tuba City, Arizona, Site | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Arizona, Site More Documents & Publications Analysis of Contaminant Rebound in Ground Water in Extraction Wells at the Tuba City, Arizona, Site Diffusion Multilayer Sampling of...

  14. Arizona Const. Art.15 - The Corporation Commission | Open Energy...

    Open Energy Info (EERE)

    Arizona Const. Art.15 - The Corporation CommissionLegal Abstract This article sets forth the Constitutional provisions governing the Arizona Corporations Commission. Published...

  15. City of Williams - AZ, Arizona (Utility Company) | Open Energy...

    Open Energy Info (EERE)

    Williams - AZ, Arizona (Utility Company) Jump to: navigation, search Name: City of Williams - AZ Place: Arizona Phone Number: 928-635-2667 or 928-635-4451 Website:...

  16. Bisfuel links - Arizona State University

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Arizona State University http://chemistry.asu.edu/" target="_blank">ASU Department of Chemistry and Biochemistry http://sustainability.asu.edu/index.php" target="_blank">ASU Global Institute of Sustainability http://asulightworks.com/" target="_blank">ASU Lightworks http://sols.asu.edu/" target="_blank">ASU School of Life Sciences http://www.biodesign.asu.edu/" target="_blank">Biodesign Institute

  17. Arizona Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    nuclear power plants, summer capacity and net generation, 2010" "Plant name/total reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net generation (percent)","Owner" "Palo Verde Unit 1, Unit 2, Unit 3","3,937","31,200",100.0,"Arizona Public Service Co" "1 Plant 3 Reactors","3,937","31,200",100.0 "Note: Totals may not equal sum of

  18. Phoenix, Arizona Data Dashboard | Department of Energy

    Energy Savers [EERE]

    Data Dashboard Phoenix, Arizona Data Dashboard The data dashboard for Phoenix, Arizona, a partner in the Better Buildings Neighborhood Program. File Phoenix Data Dashboard More Documents & Publications Austin Energy Data Dashboard Massachusetts -- SEP Data Dashboard Camden, New Jersey Data Dashboard

  19. PP-107 Arizona Public Service Company | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Arizona Public Service Company PP-107 Arizona Public Service Company Presidential permit authorizing Arizona Public Service Company to construct, operate, and maintain electric transmission facilities at the U.S-Mexico border. PDF icon PP-107 Arizona Public Service Company More Documents & Publications PP-107-1

  20. Louisiana Nuclear Profile - River Bend

    U.S. Energy Information Administration (EIA) Indexed Site

    River Bend" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License expiration date" 1,974,"8,363",98.0,"BWR","application/vnd.ms-excel","application/vnd.ms-excel" ,974,"8,363",98.0 "Data for 2010" "BWR = Boiling

  1. Alternative Fuels Data Center: Arizona Transportation Data for Alternative

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Fuels and Vehicles Arizona Transportation Data for Alternative Fuels and Vehicles to someone by E-mail Share Alternative Fuels Data Center: Arizona Transportation Data for Alternative Fuels and Vehicles on Facebook Tweet about Alternative Fuels Data Center: Arizona Transportation Data for Alternative Fuels and Vehicles on Twitter Bookmark Alternative Fuels Data Center: Arizona Transportation Data for Alternative Fuels and Vehicles on Google Bookmark Alternative Fuels Data Center: Arizona

  2. EIS-0322: Sundance Energy Project, Arizona

    Broader source: Energy.gov [DOE]

    This EIS analyzes Western Area Power Administration (Western) decision to approve Sundance Energy LLC (Sundance) to interconnect a planned generator facility to Western’s transmission system in the vicinity of Coolidge, Arizona.

  3. Federal Correctional Institution - Phoenix, Arizona | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Federal Correctional Institution - Phoenix, Arizona Photo of a Parabolic-Trough Solar Water-H... 50,000 gallons of hot water per day for kitchen, shower, laundry, and sanitation needs. ...

  4. Northern Arizona University | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Northern Arizona University Northern Arizona University Pictured: Torey Schreiner, Mariflor Caronan, Ian Mason, Andrew Hoffman, Jonathan Pepper, Carlos Tarango, Chris Feyen, Stephen Kuluris, Jared Parks, Nathan Croswell, Devon Martindale, Kyle Yates, Anna Manning, Kenny Saxer, Norman Khoo, Charles Burge, Melissa Head, Chris Bozworth, Gabriel O'Reilly, Lukas Loehr, Kelsey Morales, Ashley Jerome, Frank Spitznogle, Karin Wadsack, and David Willy. Photo by MIWhittakerPhotos. Pictured: Torey

  5. PARTICLE ACCELERATORS; ACCELERATORS; BEAM DUMPS; BENDING; CHANNELING...

    Office of Scientific and Technical Information (OSTI)

    Channeling through Bent Crystals Mack, Stephanie; Ottawa U. SLAC 43 PARTICLE ACCELERATORS; ACCELERATORS; BEAM DUMPS; BENDING; CHANNELING; CRYSTAL LATTICES; DETECTION; FORTRAN;...

  6. EA-1948: Finding of No Significant Impact | Department of Energy

    Office of Environmental Management (EM)

    Finding of No Significant Impact EA-1948: Finding of No Significant Impact Gila-North Gila Transmission Line Rebuild and Upgrade Project, Yuma County, Arizona DOE's Western Area Power Administration issued a finding of no significant impact for a proposal to rebuild and upgrade two parallel 4.8-mile transmission lines between the Gila and North Gila Substations, to expand its right-of-way, and to grant Arizona Power Service Company the right to cross Western's Gila Substation with its North

  7. SOURCE PHENOMENOLOGY EXPERIMENTS IN ARIZONA

    SciTech Connect (OSTI)

    Jessie L. Bonner; Brian Stump; Mark Leidig; Heather Hooper; Xiaoning Yang; Rongmao Zhou; Tae Sung Kim; William R. Walter; Aaron Velasco; Chris Hayward; Diane Baker; C. L. Edwards; Steven Harder; Travis Glenn; Cleat Zeiler; James Britton; James F. Lewkowicz

    2005-09-30

    The Arizona Source Phenomenology Experiments (SPE) have resulted in an important dataset for the nuclear monitoring community. The 19 dedicated single-fired explosions and multiple delay-fired mining explosions were recorded by one of the most densely instrumented accelerometer and seismometer arrays ever fielded, and the data have already proven useful in quantifying confinement and excitation effects for the sources. It is very interesting to note that we have observed differences in the phenomenology of these two series of explosions resulting from the differences between the relatively slow (limestone) and fast (granodiorite) media. We observed differences at the two SPE sites in the way the rock failed during the explosions, how the S-waves were generated, and the amplitude behavior as a function of confinement. Our consortium's goal is to use the synergy of the multiple datasets collected during this experiment to unravel the phenomenological differences between the two emplacement media. The data suggest that the main difference between single-fired chemical and delay-fired mining explosion seismograms at regional distances is the increased surface wave energy for the latter source type. The effect of the delay-firing is to decrease the high-frequency P-wave amplitudes while increasing the surface wave energy because of the longer source duration and spall components. The results suggest that the single-fired explosions are surrogates for nuclear explosions in higher frequency bands (e.g., 6-8 Hz Pg/Lg discriminants). We have shown that the SPE shots, together with the mining explosions, are efficient sources of S-wave energy, and our next research stage is to postulate the possible sources contributing to the shear-wave energy.

  8. San Luis, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Hide Map This article is a stub. You can help OpenEI by expanding it. San Luis is a city in Yuma County, Arizona. It falls under Arizona's 7th congressional...

  9. Casa Grande, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Hide Map This article is a stub. You can help OpenEI by expanding it. Casa Grande is a city in Pinal County, Arizona. It falls under Arizona's 1st congressional...

  10. Arizona Natural Gas Gross Withdrawals (Million Cubic Feet per...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Arizona Natural Gas Gross Withdrawals (Million Cubic Feet per Day) Arizona Natural Gas Gross Withdrawals (Million Cubic Feet per Day) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct...

  11. Fort Defiance, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    OpenEI by expanding it. Fort Defiance is a census-designated place in Apache County, Arizona.1 US Recovery Act Smart Grid Projects in Fort Defiance, Arizona Navajo Tribal...

  12. ,"Arizona Natural Gas Industrial Price (Dollars per Thousand...

    U.S. Energy Information Administration (EIA) Indexed Site

    586-8800",,,"1292016 12:15:23 AM" "Back to Contents","Data 1: Arizona Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)" "Sourcekey","N3035AZ3" "Date","Arizona...

  13. ,"Arizona Natural Gas Industrial Price (Dollars per Thousand...

    U.S. Energy Information Administration (EIA) Indexed Site

    586-8800",,,"1292016 12:15:22 AM" "Back to Contents","Data 1: Arizona Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)" "Sourcekey","N3035AZ3" "Date","Arizona...

  14. EA-134-APS Arizona Public Service Company | Department of Energy

    Energy Savers [EERE]

    4-APS Arizona Public Service Company EA-134-APS Arizona Public Service Company Order authorizing Arizona Public Service Company to export electric energy to Mexico. PDF icon EA-134-APS Arizona Public Service Company More Documents & Publications EA-184 Morgan Stanley Capital Group Inc. EA-166 Duke Energy Trading and Marketing, L.L.C EA-181 H.Q Energy Services (U.S) Inc

  15. Arizona Recovery Act State Memo | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Arizona Recovery Act State Memo Arizona Recovery Act State Memo Arizona has substantial natural resources, including coal, solar, and hydroelectric resources. The American Recovery & Reinvestment Act (ARRA) is making a meaningful down payment on the nation's energy and environmental future. The Recovery Act investments in Arizona reflect a broad range of clean energy projects, from energy efficiency and the smart grid to transportation, carbon capture and storage, and geothermal energy.

  16. Havasupai Indian Reservation, Supai Village, Arizona | Department of Energy

    Office of Environmental Management (EM)

    Havasupai Indian Reservation, Supai Village, Arizona Havasupai Indian Reservation, Supai Village, Arizona Photo of Photovoltaic Energy System at Havasupai Indian Reservation Village of Supai, Arizona The Havasupai Indian Reservation village of Supai, Arizona, is located approximately 40 miles northwest of Grand Canyon Village, AZ. It is one of the most remote Native American communities in the nation. Most supplies must be either flown in by helicopter or trekked in on horseback or by mule

  17. Arizona Natural Gas Repressuring (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Repressuring (Million Cubic Feet) Arizona Natural Gas Repressuring (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 103 1990's - 0 0 0 2000's 0 0 0 0 0 0 0 0 0 0 2010's 0 0 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date: 3/31/2016 Referring Pages: Natural Gas Used for Repressuring Arizona Natural Gas Gross Withdrawals

  18. Phoenix, Arizona Summary of Reported Data | Department of Energy

    Energy Savers [EERE]

    Summary of Reported Data Phoenix, Arizona Summary of Reported Data Summary of data reported by Better Buildings Neighborhood Program partner Phoenix, Arizona. PDF icon Phoenix, Arizona Summary of Reported Data More Documents & Publications Virginia -- SEP Summary of Reported Data University Park Summary of Reported Data Alabama -- SEP Summary of Reported Data

  19. Big Bend Hot Springs Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    Big Bend Hot Springs Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Big Bend Hot Springs Geothermal Area Contents 1 Area Overview 2 History and...

  20. Big Bend Preventorium Greenhouse Low Temperature Geothermal Facility...

    Open Energy Info (EERE)

    Greenhouse Low Temperature Geothermal Facility Jump to: navigation, search Name Big Bend Preventorium Greenhouse Low Temperature Geothermal Facility Facility Big Bend...

  1. Bend, Oregon: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Energy Companies in Bend, Oregon Davenport Power LLC Geopower Texas Co IdaTech plc Northwest Geothermal Company PV Powered Inc Silvan Power Company SunEnergy Power Corp...

  2. Northern Arizona University: Technical Design Report

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    the Department of Energy Submitted towards partial fulfillment of the requirements for The Design Review Subcontest Northern Arizona University Wind Turbine Technical Design Report The Collegiate Wind Competition 1 Table of Contents 1.0 Design Objective ..................................................................................................................................... 3 2.0 Design Overview

  3. EA-1683: Final Environmental Assessment | Department of Energy

    Office of Environmental Management (EM)

    83: Final Environmental Assessment EA-1683: Final Environmental Assessment Loan Guarantee to Abengoa Solar Inc. for the Solana Thermal Electric Power Project near Gila Bend, Arizona The U.S. Department of Energy (DOE) is considering whether to issue Abengoa Solar, Inc. a loan guarantee for construction of a 280 megawatt gross output (250 megawatt nominal output) concentrating solar power (CSP) plant (Solana Generating Plant) and associated 230 kilovolt transmission line (Solana Gen-Tie) near

  4. CX-011203: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Emergency Storm Damage Repairs to the Gila North Gila, Gila Knob, and Sonora San Luis Transmission Lines, near Yuma, Yuma County, Arizona CX(s) Applied: B4.6 Date: 08/26/2013 Location(s): Arizona Offices(s): Western Area Power Administration-Desert Southwest Region

  5. UNIVERSITY OF ARIZONA HIGH ENERGY PHYSICS PROGRAM

    SciTech Connect (OSTI)

    Rutherfoord, John P.; Johns, Kenneth A.; Shupe, Michael A.; Cheu, Elliott C.; Varnes, Erich W.; Dienes, Keith; Su, Shufang; Toussaint, William Doug; Sarcevic, Ina

    2013-07-29

    The High Energy Physics Group at the University of Arizona has conducted forefront research in elementary particle physics. Our theorists have developed new ideas in lattice QCD, SUSY phenomenology, string theory phenomenology, extra spatial dimensions, dark matter, and neutrino astrophysics. The experimentalists produced significant physics results on the ATLAS experiment at CERN's Large Hadron Collider and on the D0 experiment at the Fermilab Tevatron. In addition, the experimentalists were leaders in detector development and construction, and on service roles in these experiments.

  6. University of Arizona Compressed Air Energy Storage

    SciTech Connect (OSTI)

    Simmons, Joseph; Muralidharan, Krishna

    2012-12-31

    Boiled down to its essentials, the grant’s purpose was to develop and demonstrate the viability of compressed air energy storage (CAES) for use in renewable energy development. While everyone agrees that energy storage is the key component to enable widespread adoption of renewable energy sources, the development of a viable scalable technology has been missing. The Department of Energy has focused on expanded battery research and improved forecasting, and the utilities have deployed renewable energy resources only to the extent of satisfying Renewable Portfolio Standards. The lack of dispatchability of solar and wind-based electricity generation has drastically increased the cost of operation with these components. It is now clear that energy storage coupled with accurate solar and wind forecasting make up the only combination that can succeed in dispatchable renewable energy resources. Conventional batteries scale linearly in size, so the price becomes a barrier for large systems. Flow batteries scale sub-linearly and promise to be useful if their performance can be shown to provide sufficient support for solar and wind-base electricity generation resources. Compressed air energy storage provides the most desirable answer in terms of scalability and performance in all areas except efficiency. With the support of the DOE, Tucson Electric Power and Science Foundation Arizona, the Arizona Research Institute for Solar Energy (AzRISE) at the University of Arizona has had the opportunity to investigate CAES as a potential energy storage resource.

  7. EA-2023: Crossman Peak Communications Facility; Mohave County, Arizona |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy EA-2023: Crossman Peak Communications Facility; Mohave County, Arizona EA-2023: Crossman Peak Communications Facility; Mohave County, Arizona Summary Western Area Power Administration is preparing an EA that assesses the potential environmental impacts of a proposed new microwave communication facility to be located adjacent to a privately-owned one near Crossman Peak, east of Lake Havasu City in Mohave County, Arizona. The proposal would consist of a microwave

  8. EIS-0441: Mohave County Wind Farm Project, Mohave County, Arizona |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy 41: Mohave County Wind Farm Project, Mohave County, Arizona EIS-0441: Mohave County Wind Farm Project, Mohave County, Arizona Summary This EIS, prepared by the Bureau of Land Management with DOE's Western Area Power Administration as a cooperating agency, evaluated the environmental impacts of a proposed wind energy project on public lands in Mohave County, Arizona. Power generated by this project would tie to the electrical power grid through an interconnection to one

  9. DOE - Office of Legacy Management -- University of Arizona Southwest

    Office of Legacy Management (LM)

    Experiment Station Buildings - AZ 01 Arizona Southwest Experiment Station Buildings - AZ 01 FUSRAP Considered Sites Site: UNIVERSITY OF ARIZONA (SOUTHWEST EXPERIMENT STATION BUILDINGS) (AZ.01) Eliminated from consideration under FUSRAP Designated Name: Not Designated Alternate Name: U.S. Bureau of Mines AZ.01-1 Location: Tucson , Arizona AZ.01-1 Evaluation Year: 1987 AZ.01-2 AZ.01-3 Site Operations: Conducted research and development work on the processing of uranium ores. AZ.01-1 Site

  10. Arizona State Land Department Applications and Permits Website...

    Open Energy Info (EERE)

    to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Arizona State Land Department Applications and Permits Website Abstract This website contains supplemental...

  11. Arizona's 6th congressional district: Energy Resources | Open...

    Open Energy Info (EERE)

    ETA Engineering Renegy Holdings Inc The Arizona Center for Algae Technology and Innovation WindPower Innovations Inc Retrieved from "http:en.openei.orgw...

  12. Arizona's 1st congressional district: Energy Resources | Open...

    Open Energy Info (EERE)

    System Solar Power Plant Retrieved from "http:en.openei.orgwindex.php?titleArizona%27s1stcongressionaldistrict&oldid175300" Feedback Contact needs updating Image needs...

  13. Arizona State Historic Preservation Office | Open Energy Information

    Open Energy Info (EERE)

    Historic Preservation Office Jump to: navigation, search Name: Arizona State Historic Preservation Office Abbreviation: SHPO Address: 1300 West Washington Street Place: Phoenix,...

  14. Arizona State University TUV Rheinland JV | Open Energy Information

    Open Energy Info (EERE)

    University TUV Rheinland JV Jump to: navigation, search Name: Arizona State University & TUV Rheinland JV Sector: Solar Product: Solar JV formed for technology testing and...

  15. La Paz County, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Paz County, Arizona: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 34.0061091, -113.9536466 Show Map Loading map... "minzoom":false,"mappings...

  16. Arizona Online Environmental Review Tool | Open Energy Information

    Open Energy Info (EERE)

    Online Environmental Review ToolInfo GraphicMapChart Abstract The Arizona Game and Fish Department's Heritage Data Management System (HDMS) and Project Evaluation Program...

  17. Green Valley, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Arizona: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 31.8542511, -110.9937019 Show Map Loading map... "minzoom":false,"mappingservice":"goo...

  18. Ash Fork, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Ash Fork, Arizona: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 35.2250114, -112.4840675 Show Map Loading map... "minzoom":false,"mappingser...

  19. St. David, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    David, Arizona: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 31.9042517, -110.2142399 Show Map Loading map... "minzoom":false,"mappingservic...

  20. EIS-0474: Southline Transmission Line Project; Arizona and New...

    Broader source: Energy.gov (indexed) [DOE]

    consist of a new 225-mile transmission line between existing substations at Afton, New Mexico, and Apache, Arizona, and improvements to approximately 130 miles of existing...

  1. Sun City, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Sun City, Arizona: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 33.5975393, -112.2718239 Show Map Loading map... "minzoom":false,"mappingser...

  2. Prescott Valley, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Page Edit with form History Prescott Valley, Arizona: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 34.6100243, -112.315721 Show Map Loading...

  3. Sierra Vista, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Vista, Arizona: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 31.5545394, -110.3036912 Show Map Loading map... "minzoom":false,"mappingservic...

  4. Sierra Vista Southeast, Arizona: Energy Resources | Open Energy...

    Open Energy Info (EERE)

    Vista Southeast, Arizona: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 31.460592, -110.217428 Show Map Loading map... "minzoom":false,"mappi...

  5. Arizona Electric Pwr Coop Inc | Open Energy Information

    Open Energy Info (EERE)

    Facebook: https:www.facebook.compagesArizonas-GT-Cooperatives347352335037?refts Outage Hotline: (520) 586-3631 References: EIA Form EIA-861 Final Data File for 2010...

  6. UNIVERSITY OF ARIZONA HIGH ENERGY PHYSICS PROGRAM (Technical...

    Office of Scientific and Technical Information (OSTI)

    Physics Group at the University of Arizona has conducted forefront research in elementary particle physics. Our theorists have developed new ideas in lattice QCD, SUSY...

  7. Desert Hills, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Desert Hills, Arizona: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 34.5538996, -114.3724569 Show Map Loading map... "minzoom":false,"mappin...

  8. St. Johns, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Johns, Arizona: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 34.5058698, -109.3609327 Show Map Loading map... "minzoom":false,"mappingservic...

  9. Greenlee County, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Greenlee County, Arizona: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 33.2405598, -109.2831531 Show Map Loading map... "minzoom":false,"map...

  10. South Tucson, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Tucson, Arizona: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 32.199521, -110.968425 Show Map Loading map... "minzoom":false,"mappingservice...

  11. Winslow West, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    West, Arizona: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 35.0322421, -110.7529145 Show Map Loading map... "minzoom":false,"mappingservice...

  12. Chino Valley, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Valley, Arizona: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 34.7575227, -112.4537809 Show Map Loading map... "minzoom":false,"mappingservi...

  13. Apache Junction, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Junction, Arizona: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 33.4150485, -111.5495777 Show Map Loading map... "minzoom":false,"mappingser...

  14. Queen Creek, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Creek, Arizona: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 33.2486638, -111.6342993 Show Map Loading map... "minzoom":false,"mappingservic...

  15. McNary, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    McNary, Arizona: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 34.0736564, -109.8570472 Show Map Loading map... "minzoom":false,"mappingservi...

  16. Bitter Springs, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Bitter Springs, Arizona: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 36.6285991, -111.6543255 Show Map Loading map... "minzoom":false,"mapp...

  17. Bullhead City, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Bullhead City, Arizona: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 35.1477774, -114.5682983 Show Map Loading map... "minzoom":false,"mappi...

  18. Mohave Valley, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Valley, Arizona: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 34.9330585, -114.5888533 Show Map Loading map... "minzoom":false,"mappingservi...

  19. Paradise Valley, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Valley, Arizona: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 33.5311541, -111.9426452 Show Map Loading map... "minzoom":false,"mappingservi...

  20. Drexel Heights, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Drexel Heights, Arizona: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 32.1411888, -111.028427 Show Map Loading map... "minzoom":false,"mappi...

  1. Colorado City, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    City, Arizona: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 36.9902621, -112.9757702 Show Map Loading map... "minzoom":false,"mappingservice...

  2. Huachuca City, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Huachuca City, Arizona: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 31.6278703, -110.3339678 Show Map Loading map... "minzoom":false,"mappi...

  3. Cordes Lakes, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Lakes, Arizona: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 34.3078074, -112.1034912 Show Map Loading map... "minzoom":false,"mappingservic...

  4. Tribal Water in Arizona Conference | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Tribal Water in Arizona Conference Tribal Water in Arizona Conference January 21, 2016 8:00AM MST to January 22, 2016 5:00PM MST Phoenix, Arizona Radisson Phoenix North 10220 N Metro Pkwy E Phoenix, AZ 85051 The Law Seminars International is hosting the Tribal Water in Arizona: New Development for Indian Water Rights, Regulations, and Settlement Processes. The two-day conference will present an overview of the law governing tribal water rights and impacting the development of tribal water

  5. Big Park, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Park, Arizona: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 34.780297, -111.7626535 Show Map Loading map... "minzoom":false,"mappingservice"...

  6. Munds Park, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Munds Park, Arizona: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 34.945574, -111.6401551 Show Map Loading map... "minzoom":false,"mappingse...

  7. Litchfield Park, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Park, Arizona: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 33.4933743, -112.3579364 Show Map Loading map... "minzoom":false,"mappingservice...

  8. New Kingman-Butler, Arizona: Energy Resources | Open Energy Informatio...

    Open Energy Info (EERE)

    Kingman-Butler, Arizona: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 35.2593696, -114.0190671 Show Map Loading map... "minzoom":false,"mapp...

  9. Arizona's 5th congressional district: Energy Resources | Open...

    Open Energy Info (EERE)

    Registered Energy Companies in Arizona's 5th congressional district AFV Solutions Inc AZ Biodiesel Advanced Energy Systems Inc AESI also Advanced Energy Inc AeroElektra...

  10. Fort Defiance, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Act Smart Grid Projects in Fort Defiance, Arizona Navajo Tribal Utility Association Smart Grid Project References US Census Bureau 2005 Place to 2006 CBSA Retrieved from...

  11. RAPID/BulkTransmission/Arizona | Open Energy Information

    Open Energy Info (EERE)

    the Regional Entity responsible for coordinating and promoting Bulk Electric System reliability in the Western Interconnection, including Arizona. WECC also provides an...

  12. Oro Valley, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Oro Valley, Arizona: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 32.3909071, -110.966488 Show Map Loading map... "minzoom":false,"mappingse...

  13. Geothermal-Exploration In Arizona | Open Energy Information

    Open Energy Info (EERE)

    In Arizona Authors C. Stone and W. R. Hahman Published Journal Transactions-American Geophysical Union, 1978 DOI Not Provided Check for DOI availability: http:...

  14. Dewey-Humboldt, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Dewey-Humboldt, Arizona: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 34.53, -112.2422222 Show Map Loading map... "minzoom":false,"mappingse...

  15. A Solar Win for Arizona | Department of Energy

    Office of Environmental Management (EM)

    The 150 megawatt Mesquite Solar 1 installation in Maricopa County, Arizona. | Photo courtesy of Sempra Energy. The 150 megawatt Mesquite Solar 1 installation in Maricopa County, ...

  16. Ajo Improvement Co (Arizona) EIA Revenue and Sales - April 2008...

    Open Energy Info (EERE)

    Ajo Improvement Co (Arizona) EIA Revenue and Sales - April 2008 Jump to: navigation, search EIA Monthly Electric Utility Sales and Revenue Data for Ajo Improvement Co for April...

  17. Ajo Improvement Co (Arizona) EIA Revenue and Sales - October...

    Open Energy Info (EERE)

    Ajo Improvement Co (Arizona) EIA Revenue and Sales - October 2008 Jump to: navigation, search EIA Monthly Electric Utility Sales and Revenue Data for Ajo Improvement Co for October...

  18. Peach Springs, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Springs, Arizona: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 35.5291589, -113.425491 Show Map Loading map... "minzoom":false,"mappingservi...

  19. ,"Arizona Natural Gas Vehicle Fuel Price (Dollars per Thousand...

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","Arizona Natural Gas Vehicle Fuel Price (Dollars per Thousand Cubic Feet)",1,"Annual",2012 ,"Release...

  20. Flowing Wells, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Wells, Arizona: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 32.2939638, -111.0098178 Show Map Loading map... "minzoom":false,"mappingservic...

  1. Camp Verde, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Verde, Arizona: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 34.5636358, -111.8543178 Show Map Loading map... "minzoom":false,"mappingservic...

  2. Rio Verde, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Verde, Arizona: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 33.7225429, -111.6756942 Show Map Loading map... "minzoom":false,"mappingservic...

  3. Tanque Verde, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Tanque Verde, Arizona: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 32.2517422, -110.7373056 Show Map Loading map... "minzoom":false,"mappin...

  4. Cottonwood-Verde Village, Arizona: Energy Resources | Open Energy...

    Open Energy Info (EERE)

    Cottonwood-Verde Village, Arizona: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 34.6949847, -111.9820582 Show Map Loading map......

  5. Mission Bend, Texas: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    by expanding it. Mission Bend is a census-designated place in Fort Bend County and Harris County, Texas.1 References US Census Bureau 2005 Place to 2006 CBSA Retrieved...

  6. EA-1948: Draft Environmental Assessment | Department of Energy

    Office of Environmental Management (EM)

    Draft Environmental Assessment EA-1948: Draft Environmental Assessment Gila-North Gila Transmission Line Rebuild and Upgrade Project, Yuma County, Arizona DOE's Western Area Power Administration (Western) issued a draft EA to analyze the potential environmental impacts of a proposal to rebuild and upgrade two parallel 4.8-mile transmission lines between the Gila and North Gila Substations and take actions in support of portions of Arizona Public Service's construction of a new, 12.8 mile 230-kV

  7. EA-1948: Final Environmental Assessment | Department of Energy

    Office of Environmental Management (EM)

    Final Environmental Assessment EA-1948: Final Environmental Assessment Gila-North Gila Transmission Line Rebuild and Upgrade Project, Yuma County, Arizona DOE's Western Area Power Administration prepared an EA to analyze the potential environmental impacts of a proposal to rebuild and upgrade two parallel 4.8-mile transmission lines between the Gila and North Gila Substations and take actions in support of portions of Arizona Public Service's construction of a new, 12.8 mile 230-kV transmission

  8. Arizona RECORD OF CATEGORICAL EXCLUSION DETERMINATION

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    a double circuit upgrade and structure replacement along the existing Casa Grande-Empire 11~-kV transmission line, Pinal County, Arizona RECORD OF CATEGORICAL EXCLUSION DETERMINATION A. Proposed Action: Western proposes to replace structures and upgrade to a double circuit 230-kV transmission line on its Casa Grande-Empire115-kV transmission line, from Thornton Road to its Empire Substation, within Western's existing right-of-way. This will include the rebuild of 13.2 miles of transmission line,

  9. Storage opportunities in Arizona bedded evaporites

    SciTech Connect (OSTI)

    Neal, J.T.; Rauzi, S.L.

    1996-10-01

    Arizona is endowed with incredibly diverse natural beauty, and has also been blessed with at least seven discrete deposits of bedded salt. These deposits are dispersed around the state and cover some 2, 500 square miles; they currently contain 14 LPG storage caverns, with preliminary plans for more in the future. The areal extent and thickness of the deposits creates the opportunity for greatly expanded storage of LPG, natural gas, and compressed air energy storage (CAES). The location of salt deposits near Tucson and Phoenix may make CAES an attractive prospect in the future. The diversity of both locations and evaporate characteristics allows for much tailoring of individual operations to meet specific requirements.

  10. Fracture of surface cracks loaded in bending

    SciTech Connect (OSTI)

    Chao, Y.J.; Reuter, W.G.

    1997-12-31

    Theoretical background of the constraint effect in brittle fracture of solids is reviewed. Fracture test data from D6-aC, a high strength steel, using three-point-bend (SE(B)) specimens and surface cracked plate (SC(B)) specimens under bending are presented. It is shown that the SE(B) data has an elevated fracture toughness for increasing a/W, i.e., a crack geometry with a larger T/K corresponds to a higher K{sub c} which is consistent with the theoretical prediction. The fundamental fracture properties, i.e., the critical strain and the critical distance, determined from the SE(B) test data are then applied to the interpretation and prediction of the SC(B) test data. Reasonable agreement is achieved for the crack growth initiation site and the load.

  11. Plant-Wide Energy Efficiency Assessment at the Arizona Portland Cement Plant in Rillito, Arizona

    SciTech Connect (OSTI)

    Stephen J. Coppinger, P.E.; Bruce Colburn, Ph.D., P.E., CEM

    2007-05-17

    A Department of Energy Plant-wide Assessment was undertaken by Arizona Portland Cement (APC) beginning in May 2005. The assessment was performed at APC’s cement production facility in Rillito, Arizona. The assessment included a compressed air evaluation along with a detailed process audit of plant operations and equipment. The purpose of this Energy Survey was to identify a series of energy cost savings opportunities at the Plant, and provide preliminary cost and savings estimates for the work. The assessment was successful in identifying projects that could provide annual savings of over $2.7 million at an estimated capital cost of $4.3 million. If implemented, these projects could amount to a savings of over 4.9 million kWh/yr and 384,420 MMBtu/year.

  12. PP-107-1 Arizona Public Service Company | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    -1 Arizona Public Service Company PP-107-1 Arizona Public Service Company Presidential permit authorizing Arizona Public Service Company to construct, operate, and maintain electric transmission facilities at the U.S-Mexico border. PDF icon PP-107-1 Arizona Public Service Company More Documents & Publications PP-107

  13. Department of Energy Offers Support for Arizona Solar Project | Department

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of Energy Offers Support for Arizona Solar Project Department of Energy Offers Support for Arizona Solar Project January 20, 2011 - 12:00am Addthis Washington D.C. --- U.S. Energy Secretary Steven Chu today announced the offer of a conditional commitment to Agua Caliente Solar, LLC for a loan guarantee of up to $967 million. The loan guarantee will support the construction of a 290-megawatt photovoltaic solar generating facility located in Yuma County, Arizona that will use thin film solar

  14. Rancher Brings Wind Power to Arizona | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Rancher Brings Wind Power to Arizona Rancher Brings Wind Power to Arizona April 15, 2010 - 5:50pm Addthis On a blustery day in Arizona, thousands gathered at the commemoration of the state's first wind farm. A group of local residents and Interior Department officials were there to celebrate an event that had once seemed unlikely if not impossible. It all started when Bill Elkins got an idea. While on a trip to other Midwest states, he noticed their renewable energy projects and wondered why

  15. DOI Approves Three Renewable Energy Projects in Arizona and Nevada |

    Office of Environmental Management (EM)

    Department of Energy DOI Approves Three Renewable Energy Projects in Arizona and Nevada DOI Approves Three Renewable Energy Projects in Arizona and Nevada June 12, 2013 - 12:11pm Addthis The U.S. Department of the Interior (DOI) on June 3 announced the approval of three major renewable energy projects in Arizona and Nevada that are expected to deliver up to 520 megawatts to the electricity grid. When built, the projects will generate enough power for nearly 200,000 homes. The 350-megawatt

  16. EECBG Success Story: Light Shines on Better Budget for Glendale, Arizona |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Light Shines on Better Budget for Glendale, Arizona EECBG Success Story: Light Shines on Better Budget for Glendale, Arizona July 20, 2010 - 10:00am Addthis A LED light bulb is installed in one of Glendale, Arizona's traffic signals. | Photo courtesy of Glendale A LED light bulb is installed in one of Glendale, Arizona's traffic signals. | Photo courtesy of Glendale Glendale, Arizona installed energy-efficient LED lights in 190 signalized street intersections using part

  17. Town of Wickenburg, Arizona (Utility Company) | Open Energy Informatio...

    Open Energy Info (EERE)

    Name: Town of Wickenburg Place: Arizona Phone Number: (928) 684-5451 x1520 Website: www.ci.wickenburg.az.us694Ut Outage Hotline: 928-684-5411 References: EIA Form EIA-861 Final...

  18. Spring Valley, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Hide Map This article is a stub. You can help OpenEI by expanding it. Spring Valley is a census-designated place in Yavapai County, Arizona.1 References US...

  19. Valencia West, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Hide Map This article is a stub. You can help OpenEI by expanding it. Valencia West is a census-designated place in Pima County, Arizona.1 References US...

  20. Energy Upgrades to Save Small Arizona Town Big Money | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    to Save Small Arizona Town Big Money July 19, 2010 - 1:00pm Addthis An aerial shot of Oro Valley, Ariz.'s town hall campus shows proposed solar locations. | Photo courtesy of...

  1. Arizona Right-of-Way Instruction Sheet | Open Energy Information

    Open Energy Info (EERE)

    Right-of-Way Instruction Sheet Jump to: navigation, search OpenEI Reference LibraryAdd to library PermittingRegulatory Guidance - Instructions: Arizona Right-of-Way Instruction...

  2. Santa Cruz County, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Hide Map This article is a stub. You can help OpenEI by expanding it. Santa Cruz County is a county in Arizona. Its FIPS County Code is 023. It is classified as...

  3. Santa Rosa, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Hide Map This article is a stub. You can help OpenEI by expanding it. Santa Rosa is a census-designated place in Pima County, Arizona.1 References US Census...

  4. Red Mesa, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Hide Map This article is a stub. You can help OpenEI by expanding it. Red Mesa is a census-designated place in Apache County, Arizona.1 References US...

  5. Garkane Energy Coop, Inc (Arizona) | Open Energy Information

    Open Energy Info (EERE)

    Garkane Energy Coop, Inc Place: Arizona Phone Number: Kanab Office: (888)644-5026 -- Loa Office (800) 747-5403 -- Hatch Office(888)735-4288 -- Hildale Office(435) 874-2810 Website:...

  6. Phoenix, Arizona , Summary of Reported Data From July 1, 2010...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... of active contractors was mandatory for E ECBG and voluntary for S EP. Revised J une 2014 9 PHOENIX, ARIZONA, SUMMARY OF REPORTED DATA recipient divided by 520 hours per quarter. ...

  7. Gold Camp, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Hide Map This article is a stub. You can help OpenEI by expanding it. Gold Camp is a census-designated place in Pinal County, Arizona.1 References US Census...

  8. EA-106 Arizona Public Service Company | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    PDF icon EA-106 Arizona Public Service (MX).pdf More Documents & Publications EA-336-A ConocoPhillips Company EA-247-D Constellation NewEnergy, Inc EA-387 Energia Renovable S.C., ...

  9. DOI Approves Three Renewable Energy Projects in Arizona and Nevada...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The 100-megawatt Quartzsite Solar Energy Project, located on 1,600 acres of BLM-managed lands in La Paz County, Arizona, will use concentrating solar power (CSP) "power tower" ...

  10. Ak-Chin Electric Utility Authority (Arizona) EIA Revenue and...

    Open Energy Info (EERE)

    Ak-Chin Electric Utility Authority (Arizona) EIA Revenue and Sales - April 2008 Jump to: navigation, search EIA Monthly Electric Utility Sales and Revenue Data for Ak-Chin Electric...

  11. Ak-Chin Electric Utility Authority (Arizona) EIA Revenue and...

    Open Energy Info (EERE)

    Ak-Chin Electric Utility Authority (Arizona) EIA Revenue and Sales - November 2008 Jump to: navigation, search EIA Monthly Electric Utility Sales and Revenue Data for Ak-Chin...

  12. Ajo Improvement Co (Arizona) EIA Revenue and Sales - June 2008...

    Open Energy Info (EERE)

    Ajo Improvement Co (Arizona) EIA Revenue and Sales - June 2008 Jump to: navigation, search EIA Monthly Electric Utility Sales and Revenue Data for Ajo Improvement Co for June 2008....

  13. Ak-Chin Electric Utility Authority (Arizona) EIA Revenue and...

    Open Energy Info (EERE)

    Ak-Chin Electric Utility Authority (Arizona) EIA Revenue and Sales - May 2008 Jump to: navigation, search EIA Monthly Electric Utility Sales and Revenue Data for Ak-Chin Electric...

  14. Ajo Improvement Co (Arizona) EIA Revenue and Sales - July 2008...

    Open Energy Info (EERE)

    Ajo Improvement Co (Arizona) EIA Revenue and Sales - July 2008 Jump to: navigation, search EIA Monthly Electric Utility Sales and Revenue Data for Ajo Improvement Co for July 2008....

  15. Ak-Chin Electric Utility Authority (Arizona) EIA Revenue and...

    Open Energy Info (EERE)

    Ak-Chin Electric Utility Authority (Arizona) EIA Revenue and Sales - February 2008 Jump to: navigation, search EIA Monthly Electric Utility Sales and Revenue Data for Ak-Chin...

  16. Ak-Chin Electric Utility Authority (Arizona) EIA Revenue and...

    Open Energy Info (EERE)

    Ak-Chin Electric Utility Authority (Arizona) EIA Revenue and Sales - June 2008 Jump to: navigation, search EIA Monthly Electric Utility Sales and Revenue Data for Ak-Chin Electric...

  17. Ak-Chin Electric Utility Authority (Arizona) EIA Revenue and...

    Open Energy Info (EERE)

    Ak-Chin Electric Utility Authority (Arizona) EIA Revenue and Sales - February 2009 Jump to: navigation, search EIA Monthly Electric Utility Sales and Revenue Data for Ak-Chin...

  18. Ak-Chin Electric Utility Authority (Arizona) EIA Revenue and...

    Open Energy Info (EERE)

    Ak-Chin Electric Utility Authority (Arizona) EIA Revenue and Sales - January 2009 Jump to: navigation, search EIA Monthly Electric Utility Sales and Revenue Data for Ak-Chin...

  19. Ak-Chin Electric Utility Authority (Arizona) EIA Revenue and...

    Open Energy Info (EERE)

    Ak-Chin Electric Utility Authority (Arizona) EIA Revenue and Sales - March 2008 Jump to: navigation, search EIA Monthly Electric Utility Sales and Revenue Data for Ak-Chin Electric...

  20. Ak-Chin Electric Utility Authority (Arizona) EIA Revenue and...

    Open Energy Info (EERE)

    Ak-Chin Electric Utility Authority (Arizona) EIA Revenue and Sales - October 2008 Jump to: navigation, search EIA Monthly Electric Utility Sales and Revenue Data for Ak-Chin...

  1. Ak-Chin Electric Utility Authority (Arizona) EIA Revenue and...

    Open Energy Info (EERE)

    Ak-Chin Electric Utility Authority (Arizona) EIA Revenue and Sales - January 2008 Jump to: navigation, search EIA Monthly Electric Utility Sales and Revenue Data for Ak-Chin...

  2. DOE - Office of Legacy Management -- University of Arizona Southwest...

    Office of Legacy Management (LM)

    of the University of Arizona under FUSRAP; October 13, 1987 AZ.01-4 - DOE Letter; Bauer to Liverman; Past Operations and a Survey by Messrs, Jascewsky, and Smith; February 7, 1978

  3. Corona de Tucson, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Hide Map This article is a stub. You can help OpenEI by expanding it. Corona de Tucson is a census-designated place in Pima County, Arizona.1 References US...

  4. EECBG Success Story: Energy Upgrades to Save Small Arizona Town...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Upgrades to Save Small Arizona Town Big Money EECBG Success Story: Energy Upgrades to Save ... Peters, MO. | Courtesy of the City of St. Peters EECBG Success Story: Cha-Ching How One ...

  5. EIS-0427: Grapevine Canyon Wind Project, Coconino County, Arizona

    Broader source: Energy.gov [DOE]

    This EIS evaluates the environmental impacts of a proposed wind energy generation project in Coconino County, Arizona, on privately owned ranch lands and trust lands administered by the Arizona State Land Department. The proposed project includes a new transmission tie-line that would cross lands administered by Coconino National Forest and interconnect with DOE’s Western Area Power Administration’s existing Glen Canyon-Pinnacle Peak transmission lines.

  6. Arizona - Natural Gas 2014 Million Cu. Feet Percent of

    Gasoline and Diesel Fuel Update (EIA)

    4 Arizona - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S3. Summary statistics for natural gas - Arizona, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 5 5 5 5 5 Production (million cubic feet) Gross Withdrawals From Gas Wells 183 168 117 72 106 From

  7. DOE-University of Arizona Faculty Development Project. Final report

    SciTech Connect (OSTI)

    Fillerup, Joseph M.

    1980-09-08

    The DOE-University of Arizona Faculty Development Project on Energy successfully completed a faculty development program. There were three phases of the program consisting of: a three week energy workshop for teachers, participation and cooperation with Students for Safe Energy in presentation of an Alternative Energy Festival at the University of Arizona, and workshops for teachers conducted at Flowing Wells School District. Each of these is described. Attendees are listed and a director's evaluation of the workshop is given.

  8. Arizona Regions | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    Arizona Regions National Science Bowl® (NSB) NSB Home About High School High School Students High School Coaches High School Regionals High School Rules, Forms, and Resources Middle School Attending National Event Volunteers 2015 Competition Results News Media WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 P: 202-586-6702 E: Email Us High School Regionals Arizona Regions Print Text Size: A

  9. Arizona Regions | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    Arizona Regions National Science Bowl® (NSB) NSB Home About High School Middle School Middle School Students Middle School Coaches Middle School Regionals Middle School Rules, Forms, and Resources Attending National Event Volunteers 2015 Competition Results News Media WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 P: 202-586-6702 E: Email Us Middle School Regionals Arizona Regions Print

  10. EDUconnections Highlights Arizona State University Research | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy EDUconnections Highlights Arizona State University Research EDUconnections Highlights Arizona State University Research December 6, 2010 - 5:47pm Addthis Andy Oare Andy Oare Former New Media Strategist, Office of Public Affairs For the past year, .EDUconnections has been the Office of Science and Technical Information's online portal for highlighting some of the amazing scientific research being done at our nation's universities and colleges. They're helping get the message out about

  11. Arizona: Solar Panels Replace Inefficient Fossil Fuel-Powered Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Systems | Department of Energy Arizona: Solar Panels Replace Inefficient Fossil Fuel-Powered Energy Systems Arizona: Solar Panels Replace Inefficient Fossil Fuel-Powered Energy Systems May 1, 2014 - 9:33am Addthis The Agricultural Renewable Energy Conversion Incentive Program, funded in part by DOE's State Energy Program (SEP), assists farmers and ranchers to convert fossil-fueled agricultural production systems to renewable energy power. The program will install solar panels to replace

  12. EERE Success Story-Arizona: Solar Panels Replace Inefficient Fossil

    Office of Environmental Management (EM)

    Fuel-Powered Energy Systems | Department of Energy Arizona: Solar Panels Replace Inefficient Fossil Fuel-Powered Energy Systems EERE Success Story-Arizona: Solar Panels Replace Inefficient Fossil Fuel-Powered Energy Systems May 1, 2014 - 9:33am Addthis The Agricultural Renewable Energy Conversion Incentive Program, funded in part by DOE's State Energy Program (SEP), assists farmers and ranchers to convert fossil-fueled agricultural production systems to renewable energy power. The program

  13. EIS-0474: Southline Transmission Line Project; Arizona and New Mexico |

    Office of Environmental Management (EM)

    Department of Energy 74: Southline Transmission Line Project; Arizona and New Mexico EIS-0474: Southline Transmission Line Project; Arizona and New Mexico Summary The Bureau of Land Management and Western Area Power Administration are preparing an EIS as joint lead agencies to evaluate the potential environmental impacts of the proposed Southline Transmission Project and address associated potential land use plan amendments. The project would consist of a new 225-mile transmission line

  14. Gold nanomembranes resist bending in new experiment | Argonne National

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Laboratory Gold nanomembranes resist bending in new experiment October 8, 2015 Tweet EmailPrint The first direct measurement of resistance to bending in a nanoscale membrane has been made by scientists from the University of Chicago, Peking University, the Weizmann Institute of Science and the Department of Energy's (DOE) Argonne National Laboratory. Their research provides researchers with a new, simpler method to measure nanomaterials' resistance to bending and stretching, and opens new

  15. MHK Projects/Hickman Bend Project | Open Energy Information

    Open Energy Info (EERE)

    Hickman Bend Project < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... "minzoom":false,"mappingservice":"googlemaps3","type":"ROADMA...

  16. MHK Projects/St Rose Bend | Open Energy Information

    Open Energy Info (EERE)

    Rose Bend < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... "minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5...

  17. Great Bend, North Dakota: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Great Bend, North Dakota: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 46.1538473, -96.8020228 Show Map Loading map... "minzoom":false,"mapp...

  18. MHK Projects/Miller Bend Project | Open Energy Information

    Open Energy Info (EERE)

    Miller Bend Project < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... "minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP...

  19. Sequential Activation of Molecular Breathing and Bending during...

    Office of Scientific and Technical Information (OSTI)

    Sequential Activation of Molecular Breathing and Bending during Spin-Crossover Photoswitching Revealed by Femtosecond Optical and X-Ray Absorption Spectroscopy Citation Details...

  20. MHK Projects/Bar Field Bend | Open Energy Information

    Open Energy Info (EERE)

    Bar Field Bend < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... "minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zo...

  1. EIS-0395: Final Environmental Impact Statement | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    line would originate at the proposed San Luis Rio Colorado (SLRC) Power Center in Sonora, Mexico, interconnect with Western's existing Gila Substation, and continue to Arizona...

  2. Active mines in Arizona - 1993. Directory 40

    SciTech Connect (OSTI)

    Phillips, K.A.; Niemuth, N.J.; Bain, D.R.

    1992-01-01

    A directory of the active mines in Arizona is presented. The directory was compiled in November, 1992 from field visits and information received by the Department's technical staff. For the purpose of this directory, an active mine is defined as a mine in continuous operation, either in production or under full-time development for production. Custom milling operations that are active or available on a full-time basis are also included in the directory. It is acknowledged that there are additional mines not listed that are in an exploration, evaluation, or part-time development phase. There are others where production is on an intermittent basis that are not listed. The report is dependent on the cooperation of government agencies, private industry, and individuals who voluntarily provide information on their projects and activities. The directory is arranged alphabetically by company name. Each listing includes corporate addresses, mine name and location, operation description, and key personnel. The listing for the sand and gravel operations include name, address, and phone number.

  3. Integrated solid waste management of Scottsdale, Arizona

    SciTech Connect (OSTI)

    1995-11-01

    The subject document reports the results of an in-depth investigation of the fiscal year 1992 cost of the city of Scottsdale, Arizona, integrated municipal solid waste management (IMSWM) system, the energy consumed to operate the system, and the environmental performance requirements for each of the system`s waste-processing and disposal facilities. The document reports actual data from records kept by participants. Every effort was made to minimize the use of assumptions, and no attempt is made to interpret the data reported. Analytical approaches are documented so that interested analysts may per-form manipulation or further analysis of the data. As such, the report is a reference document for municipal solid waste (MSW) management professionals who are interested in the actual costs and energy consumption, for a 1-year period, of an operating IMSWM system. The report is organized into two main parts. The first part is the executive summary and case study portion of the report. The executive summary provides a basic description of the study area and selected economic and energy information. Within the case study are detailed descriptions of each component operating during the study period; the quantities of solid waste collected, processed, and marketed within the study boundaries; the cost of MSW in Scottsdale; an energy usage analysis; a review of federal, state, and local environmental requirement compliance; a reference section; and a glossary of terms. The second part of the report focuses on a more detailed discourse on the above topics. In addition, the methodology used to determine the economic costs and energy consumption of the system components is found in the second portion of this report. The methodology created for this project will be helpful for those professionals who wish to break out the costs of their own integrated systems.

  4. SWTC v. Arizona Corp. Comn, 142 P3d 1240 (2006) | Open Energy...

    Open Energy Info (EERE)

    SWTC v. Arizona Corp. Comn, 142 P3d 1240 (2006) Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal CaseHearing: SWTC v. Arizona Corp. Comn, 142 P3d 1240...

  5. Apache County, Arizona ASHRAE 169-2006 Climate Zone | Open Energy...

    Open Energy Info (EERE)

    Apache County, Arizona ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Apache County, Arizona ASHRAE Standard ASHRAE 169-2006 Climate Zone Number...

  6. AGENCY: ACTION: REVISED FINDING OF NO SIGNIFICANT IMPACT AND FLOODPLAIN STATEMENT OF FINDINGS

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ACTION: REVISED FINDING OF NO SIGNIFICANT IMPACT AND FLOODPLAIN STATEMENT OF FINDINGS Gila to North Gila Transmission Line Rebuild and Upgrade Project Yuma County, Arizona DOE/EA-1948 U.S. Department of Energy, Western Area Power Administration Revised Finding of No Significant Impact and Floodplain Statement of Findings BACKGROUND: U.S. Department of Energy (DOE), Western Area Power Administration (Western) proposed to rebuild and upgrade the existing 4.8-mile-long Gila to North Gila

  7. Independent Confirmatory Survey Report for the University of Arizona Nuclear Reactor Laboratory, Tucson, Arizona

    SciTech Connect (OSTI)

    Nick A. Altic

    2011-11-11

    The University of Arizona (University) research reactor is a TRIGA swimming pool type reactor designed by General Atomics and constructed at the University in 1958. The reactor first went into operation in December of 1958 under U.S. Nuclear Regulatory Commission (NRC) license R-52 until final shut down on May 18, 2010. Initial site characterization activities were conducted in February 2009 during ongoing reactor operations to assess the radiological status of the Nuclear Reactor Laboratory (NRL) excluding the reactor tank, associated components, and operating systems. Additional post-shutdown characterization activities were performed to complete characterization activities as well as verify assumptions made in the Decommissioning Plan (DP) that were based on a separate activation analysis (ESI 2009 and WMG 2009). Final status survey (FSS) activities began shortly after the issuance of the FSS plan in May 2011. The contractor completed measurement and sampling activities during the week of August 29, 2011.

  8. In Arizona, Helping Communities Realize the Promise of Solar Power |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Department of Energy In Arizona, Helping Communities Realize the Promise of Solar Power In Arizona, Helping Communities Realize the Promise of Solar Power May 15, 2012 - 3:07pm Addthis 1 of 4 Image: Darrylee Cohen 2 of 4 Image: Darrylee Cohen 3 of 4 Image: Darrylee Cohen 4 of 4 Image: Darrylee Cohen Greg Stanton Greg Stanton Mayor, City of Phoenix What are the key facts? The City of Phoenix launched Solar Phoenix 2, the largest city-sponsored residential solar program. Solar Phoenix 2 puts

  9. Cast-stone sectors for lining bends in pipework

    SciTech Connect (OSTI)

    Chechulin, V.A.; Novikov, A.I.; Karpov, V.M.; Sotnik, A.A.; Sedyshev, B.L.

    1987-03-01

    The authors disclose an efficient method for lining the bends of pipelines used to deliver coal dust to the burners of coal-fired power plants or to transport coal slurries in mining and preparation enterprises. The method consists of melting a wear-resistant silicate compound and casting it in the form of rings whose increased width on the outboard side accounts for the angle of the bend when the rings are installed consecutively inside the pipe. Enhanced service life estimations and cost benefit analyses are given for pipe bends thus lined in both of the above applications.

  10. August 2015 Groundwater and Surface Water Sampling at the Tuba City, Arizona, Disposal Site

    Office of Legacy Management (LM)

    and Surface Water Sampling at the Tuba City, Arizona, Disposal Site November 2015 LMS/TUB/S00815 This page intentionally left blank U.S. Department of Energy DVP-August 2015, Tuba City, Arizona, Disposal Site November 2015 RIN 15087262 Page i Contents Sampling Event Summary ...............................................................................................................1 Tuba City, Arizona, Disposal Site, Sample Location Map

  11. Post Oak Bend City, Texas: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    is a stub. You can help OpenEI by expanding it. Post Oak Bend City is a town in Kaufman County, Texas. It falls under Texas's 5th congressional district.12 References...

  12. North Bend, Washington: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    This article is a stub. You can help OpenEI by expanding it. North Bend is a city in King County, Washington. It falls under Washington's 8th congressional district.12...

  13. Big Bend, Wisconsin: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Hide Map This article is a stub. You can help OpenEI by expanding it. Big Bend is a village in Waukesha County, Wisconsin. It falls under Wisconsin's 1st...

  14. Big Bend Electric Coop, Inc | Open Energy Information

    Open Energy Info (EERE)

    Electric Coop, Inc Jump to: navigation, search Name: Big Bend Electric Coop, Inc Place: Washington Phone Number: 509-659-1700; 866-844-2363 -- After Hours: 509-659-0487;...

  15. EIS-0417: South Mountain Freeway (Loop 202); Phoenix, Arizona

    Broader source: Energy.gov [DOE]

    Federal Highway Administration and Arizona Department of Transportation, with Western Area Power Administration as a cooperating agency, prepared an EIS that analyzes the potential environmental impacts of the proposed South Mountain Freeway (Loop 202) project in the Greater Metropolitan Phoenix Area.

  16. EIS-0441: Mohave County Wind Farm Project, Mohave County, Arizona

    Broader source: Energy.gov [DOE]

    This EIS, prepared by the Bureau of Land Management with DOE’s Western Area Power Administration as a cooperating agency, evaluated the environmental impacts of a proposed wind energy project on public lands in Mohave County, Arizona. Power generated by this project would tie to the electrical power grid through an interconnection to one of Western’s transmission lines.

  17. EA-1989: Cliffrose Solar Energy Interconnection Project, Mohave County, Arizona

    Broader source: Energy.gov [DOE]

    DOE’s Western Area Power Administration (Western) is preparing an EA that will assess the potential environmental impacts of interconnecting the proposed Cliffrose Solar Energy Project in Mohave County, Arizona, to Western’s transmission system at the existing Griffith Substation. Additional information is available at http://www.wapa.gov/dsw/environment/CliffroseSolarEnergyProject.html.

  18. EIS-0297: Griffith Energy Project, Mohave County, Arizona

    Broader source: Energy.gov [DOE]

    Western Area Power Administration (Western) intends to prepare an environmental impact statement (EIS) regarding the proposal by Griffith Energy (GE), LLC, to construct an electric generating facility on private property and to interconnect this facility with Western’s system in the vicinity of Kingman, Arizona.

  19. Top 6 Things You Didn't Know About Solar Energy | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Solar Energy Top 6 Things You Didn't Know About Solar Energy June 22, 2012 - 4:55pm Addthis Installing a concentrating solar power system in Gila Bend, Arizona. The curved mirrors are tilted toward the sun, focusing sunlight on tubes that run the length of the mirrors. The reflected sunlight heats a fluid flowing through the tubes. The hot fluid then is used to boil water in a conventional steam-turbine generator to produce electricity. | Photo by Dennis Schroeder. Installing a concentrating

  20. The effects of indoor pollution on Arizona children

    SciTech Connect (OSTI)

    Dodge, R.

    1982-05-01

    The respiratory health of a large group of Arizona school children who have been exposed to indoor pollutants-tobacco smoke and home cooking fumes-is reported. A significant relationship was found between parental smoking and symptoms of cough, wheeze, and sputum production. Also, children in homes where gas cooking fuel was used had higher rates of cough than children in homes where electricity was used. No differences in pulmonary function or yearly lung growth rates occurred among subjects grouped by exposure to tobacco smoke or cooking fuel. Thus, parental smoking and home cooking fuel affected cross-sectional respiratory symptom rates in a large group of Arizona school children. Study of pulmonary function, however, revealed no lung function or lung growth effects during 4 yr of study.

  1. EA-2023: Crossman Peak Communications Facility; Mohave County, Arizona

    Broader source: Energy.gov [DOE]

    Western Area Power Administration is preparing an EA that assesses the potential environmental impacts of a proposed new microwave communication facility to be located adjacent to a privately-owned one near Crossman Peak, east of Lake Havasu City in Mohave County, Arizona. The proposal would consist of a microwave communication facility, an access road, and an approximately 8-mile electrical service distribution line across private land and land administered by the Bureau of Land Management.

  2. EA-1987: Parker-Headgate Rock and Parker-Bouse Rebuild Project, Arizona and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    California | Department of Energy 87: Parker-Headgate Rock and Parker-Bouse Rebuild Project, Arizona and California EA-1987: Parker-Headgate Rock and Parker-Bouse Rebuild Project, Arizona and California SUMMARY DOE's Western Area Power Administration is preparing an EA that will assess the potential environmental impacts of a proposal to rebuild the existing Parker Dam-Headgate Rock and Parker Dam-Bouse 161-kilovolt transmission lines along the Colorado River in western Arizona and eastern

  3. Top-of-the-World, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Top-of-the-World, Arizona: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 33.3494997, -110.9926154 Show Map Loading map......

  4. The Clinch Bend Regional Industrial Site and economic development opportunities

    SciTech Connect (OSTI)

    1995-12-31

    This effort focuses initially on the Clinch Bend site. Other sites and developable tracts of land are identified with the assistance of communities in proximity to Oak Ridge, the State of Tennessee, and others, and compared with the projected site requirements for large industrial facilities.

  5. Tension bending ratcheting tests of 304 stainless steel

    SciTech Connect (OSTI)

    Larson, L.D.; Jones, D.P.; Rapp, D.G.

    1996-12-31

    This paper discusses results of an experimental program conducted to investigate the strain ratcheting behavior of 304 stainless steel under various combinations of applied membrane load and displacement controlled cyclic bending strain. Tests were performed on uniaxial specimens at temperatures of 70 F (21 C) and 550 F (288 C). Bending strain, ratchet strain and axial displacement of the specimens were monitored throughout the tests. Membrane stress to monotonic yield stress ratios of 2/3, 1/2, and 1/3 were tested with pseudo-elastic bending stress to yield stress ratios ranging from 1.4 to 10.7. Test output was in the form of plots of cumulative axial membrane strain versus cycles up to the point of shakedown, i.e., the point at which no additional progressive strain was observed. Shakedown was demonstrated in the 500 F tests but not the room temperature tests. The 550 F results are shown in terms of shakedown membrane strain versus equivalent bending stress ratio for each of the tested membrane stress ratios. The cyclic and monotonic stress-strain curves for the test materials are presented to enable the use of various models for predicting the ratcheting and shakedown behavior. The results may be used to develop improved ratcheting and shakedown rules permitting a relaxation of the traditional ratcheting rules in the ASME Boiler and Pressure Vessel Code.

  6. Experimental estimation of dynamic plastic bending moments by plastic hinge models

    SciTech Connect (OSTI)

    Sogo, T.; Ujihashi, S.; Matsumoto, H.; Adachi, T.

    1995-12-31

    In the present paper, the experimental estimation of dynamic plastic bending moments for metallic materials is investigated. The three-point bending, test under impact and static loads is applied to aluminum alloy (JIS A6063S) and mild steel (JIS SS400). It is confirmed that tile dynamic bending deformations in three-point bending test can be modeled as a plastic hinge, tile experimental results show that the consumed energies of the specimens are proportional to the bending angles. The ratio of the consumed energy to the bending angle is approximately equal to the plastic bending moment. In the case of aluminum alloy, the dynamic plastic bending moments for the different average bending angular velocities coincide with the static plastic bending moments. On the other hand, in the case of mild steel, the dynamic plastic bending moments are proportional to the average bending angular velocities. As a result, we confirm that the present method based on the plastic hinge model and the consumed energy is efficient for determining tile dynamic plastic bending moment.

  7. Arizona Natural Gas Lease Fuel Consumption (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Fuel Consumption (Million Cubic Feet) Arizona Natural Gas Lease Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 7 7 6 5 6 5 35 1990's 71 45 41 49 61 57 58 51 46 35 2000's 36 40 58 18 25 23 23 20 20 17 2010's 19 17 12 4 3 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date: 3/31/2016 Referring Pages: Natural Gas

  8. Arizona Natural Gas Number of Industrial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial Consumers (Number of Elements) Arizona Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 358 344 354 1990's 526 532 532 526 519 530 534 480 514 555 2000's 526 504 488 450 414 425 439 395 383 390 2010's 368 371 379 383 386 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date:

  9. Arizona Quantity of Production Associated with Reported Wellhead Value

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Quantity of Production Associated with Reported Wellhead Value (Million Cubic Feet) Arizona Quantity of Production Associated with Reported Wellhead Value (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 26 10 0 0 0 0 1,360 1990's 2,125 1,225 730 548 691 500 405 401 411 439 2000's 332 266 243 426 306 211 588 634 503 695 2010's 165 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid

  10. EA-1948: Revised Finding of No Significant Impact | Department of Energy

    Energy Savers [EERE]

    8: Revised Finding of No Significant Impact EA-1948: Revised Finding of No Significant Impact Gila-North Gila Transmission Line Rebuild and Upgrade Project, Yuma County, Arizona On March 21, 2014, DOE's Western Area Power Administration issued a finding of no significant impact (FONSI) for a proposal to rebuild and upgrade two parallel 4.8-mile transmission lines between the Gila and North Gila Substations, to expand its right-of-way, and to grant Arizona Power Service Company the right to cross

  11. GATEWAY Demonstrations: Trial Demonstration of Area Lighting Retrofit, Yuma Border Patrol, Yuma, Arizona

    SciTech Connect (OSTI)

    Wilkerson, A. M.; McCullough, J. J.

    2014-12-31

    Along the Yuma Sector Border Patrol Area in Yuma, Arizona, the GATEWAY program conducted a trial demonstration in which the incumbent quartz metal halide area lighting was replaced with LED at three pole locations at the Yuma Sector Border Patrol Area in Yuma, Arizona. The retrofit was documented to better understand LED technology performance in high-temperature environments.

  12. Control of Prestressing Force in Rod for Reducing Bending in Beams

    SciTech Connect (OSTI)

    Wong, M. B.

    2010-05-21

    This paper presents a method to determine the prestressing force required in a rod for reducing the bending effects in a beam. The rod is positioned underneath the beam such that the prestressing force is counteracting the effects of beam bending. It has been found that the prestressing force may also increase the bending as a result of P-delta effect. Therefore, the choice of both the prestressing force and the rod eccentricity from the beam axis is important in determining the appropriate actions to resist the bending of the beam. Over-prestressing the rod may even induce bending or buckling failure in the beam in the reverse direction.

  13. Reversible Bending Fatigue Testing on Zry-4 Surrogate Rods

    SciTech Connect (OSTI)

    Wang, Jy-An John; Wang, Hong; Bevard, Bruce Balkcom; Howard, Rob L

    2014-01-01

    Testing high-burnup spent nuclear fuel (SNF) presents many challenges in areas such as specimen preparation, specimen installation, mechanical loading, load control, measurements, data acquisition, and specimen disposal because these tasks are complicated by the radioactivity of the test specimens. Research and comparison studies conducted at Oak Ridge National Laboratory (ORNL) resulted in a new concept in 2010 for a U-frame testing setup on which to perform hot-cell reversible bending fatigue testing. Subsequently, the three-dimensional finite element analysis and the engineering design of components were completed. In 2013 the ORNL team finalized the upgrade of the U-frame testing setup and the integration of the U-frame setup into a Bose dual linear motor test bench to develop a cyclic integrated reversible-bending fatigue tester (CIRFT). A final check was conducted on the CIRFT test system in August 2013, and the CIRFT was installed in the hot cell in September 2013 to evaluate both the static and dynamic mechanical response of SNF rods under simulated loads. The fatigue responses of Zircaloy-4 (Zry-4) cladding and the role of pellet pellet and pellet clad interactions are critical to SNF vibration integrity, but such data are not available due to the unavailability of an effective testing system. While the deployment of the developed CIRFT test system in a hot cell will provide the opportunity to generate the data, the use of a surrogate rod has proven quite effective in identifying the underlying deformation mechanism of an SNF composite rod under an equivalent loading condition. This paper presents the experimental results of using surrogate rods under CIRFT reversible cyclic loading. Specifically, monotonic and cyclic bending tests were conducted on surrogate rods made of a Zry-4 tube and alumina pellet inserts, both with and without an epoxy bond.

  14. U.S. hydropower resource assessment for Arizona

    SciTech Connect (OSTI)

    Conner, A.M.; Francfort, J.E.

    1997-10-01

    The US Department of Energy is developing an estimate of the undeveloped hydropower potential in the US. The Hydropower Evaluation Software (HES) is a computer model that was developed by the Idaho National Engineering Laboratory for this purpose. HES measures the undeveloped hydropower resources available in the US, using uniform criteria for measurement. The software was developed and tested using hydropower information and data provided by the Southwestern Power Administration. It is a menu-driven program that allows the personal computer user to assign environmental attributes to potential hydropower sites, calculate development suitability factors for each site based on the environmental attributes present, and generate reports based on these suitability factors. This report describes the resource assessment results for the State of Arizona.

  15. Arizona Natural Gas % of Total Residential Deliveries (Percent)

    Gasoline and Diesel Fuel Update (EIA)

    % of Total Residential Deliveries (Percent) Arizona Natural Gas % of Total Residential Deliveries (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 0.57 0.61 0.55 0.53 0.62 0.80 0.70 2000's 0.70 0.76 0.72 0.71 0.78 0.74 0.83 0.81 0.79 0.73 2010's 0.79 0.82 0.84 0.81 0.64 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date: 3/31/2016

  16. Arizona Natural Gas Vented and Flared (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Vented and Flared (Million Cubic Feet) Arizona Natural Gas Vented and Flared (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 347 367 277 26 47 32 101 1980's 143 106 162 108 182 124 122 125 123 95 1990's 22 56 23 21 8 0 0 1 0 0 2000's 0 0 0 0 0 0 0 0 0 0 2010's 0 0 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date:

  17. National uranium resource evaluation, Marble Canyon Quadrangle, Arizona and Utah

    SciTech Connect (OSTI)

    Field, M T; Blauvelt, R P

    1982-05-01

    The Marble Canyon Quadrangle (2/sup 0/), northeast Arizona, was evaluated to a depth of 1500 m for uranium favorability using National Uranium Resource Evaluation criteria. Known mines and prospects were examined; field reconnaissance was done in selected areas of the quadrangle; and a ground-water geochemical survey was made in the southeast third of the quadrangle. The Shinarump and Petrified Forest Members of the Triassic Chinle Formation, which is exposed in the western and northeastern parts of the quadrangle and is present beneath the surface of much of the quadrangle, were found favorable for channel-sandstone uranium deposits. A portion of the Cretaceous Toreva Formation in the southeast part of the quadrangle was found favorable for peneconcordant-sandstone uranium deposits. The western part of the quadrangle was found favorable for uranium concentrations in breccia pipes.

  18. UMTRA project water sampling and analysis plan, Tuba City, Arizona

    SciTech Connect (OSTI)

    1996-02-01

    Planned, routine ground water sampling activities at the U.S. Department of Energy (DOE) Uranium Mill Tailings Remedial Action (UMTRA) Project site in Tuba City, Arizona, are described in the following sections of this water sampling and analysis plan (WSAP). This plan identifies and justifies the sampling locations, analytical parameters, detection limits, and sampling frequency for the stations routinely monitored at the site. The ground water data are used for site characterization and risk assessment. The regulatory basis for routine ground water monitoring at UMTRA Project sites is derived from the U.S. Environmental Protection Agency (EPA) regulations in 40 CFR Part 192 (1994) and the final EPA standards of 1995 (60 FR 2854). Sampling procedures are guided by the UMTRA Project standard operating procedures (SOP) (JEG, n.d.), and the most effective technical approach for the site.

  19. Arizona Natural Gas Exports (No Intransit Deliveries) (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Exports (No Intransit Deliveries) (Million Cubic Feet) Arizona Natural Gas Exports (No Intransit Deliveries) (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 1,694 1,646 1,757 1,813 1,525 1,757 1,905 1,469 1990's 1,676 1,597 2,565 3,253 2,459 42 3,405 3,901 4,166 4,279 2000's 9,099 8,452 11,257 10,840 7,544 7,376 15,720 16,207 46,581 44,152 2010's 44,693 45,086 46,385 54,139 64,692 - = No Data Reported; -- = Not Applicable; NA = Not

  20. Arizona Natural Gas Input Supplemental Fuels (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Input Supplemental Fuels (Million Cubic Feet) Arizona Natural Gas Input Supplemental Fuels (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0 0 0 1970's 0 0 0 0 0 0 0 0 0 0 1980's 7 0 0 0 91 101 0 0 1990's 0 0 0 0 0 0 0 0 0 0 2000's 0 0 0 0 0 0 0 0 0 0 2010's 0 0 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date:

  1. Arizona Natural Gas Number of Commercial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Commercial Consumers (Number of Elements) Arizona Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 46 46,702 46,636 46,776 1990's 47,292 53,982 47,781 47,678 48,568 49,145 49,693 50,115 51,712 53,022 2000's 54,056 54,724 56,260 56,082 56,186 56,572 57,091 57,169 57,586 57,191 2010's 56,676 56,547 56,532 56,585 56,649 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to

  2. Arizona Natural Gas Number of Residential Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential Consumers (Number of Elements) Arizona Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 545 567,962 564,195 572,461 1990's 586,866 642,659 604,899 610,337 635,335 661,192 689,597 724,911 764,167 802,469 2000's 846,016 884,789 925,927 957,442 993,885 1,042,662 1,088,574 1,119,266 1,128,264 1,130,047 2010's 1,138,448 1,146,286 1,157,688 1,172,003 1,186,794 - = No Data Reported; -- = Not

  3. Arizona Natural Gas Pipeline and Distribution Use (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Arizona Natural Gas Pipeline and Distribution Use (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 18,597 19,585 18,570 2000's 20,657 22,158 20,183 18,183 15,850 17,558 20,617 20,397 22,207 20,846 2010's 15,447 13,158 12,372 12,619 13,484 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date: 3/31/2016

  4. Arizona Natural Gas Total Consumption (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Total Consumption (Million Cubic Feet) Arizona Natural Gas Total Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 134,706 158,355 165,076 2000's 205,235 240,812 250,734 272,921 349,622 321,584 358,069 392,954 399,188 369,739 2010's 330,914 288,802 332,068 332,073 307,946 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release

  5. EECBG Success Story: Energy Upgrades to Save Small Arizona Town Big Money |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Upgrades to Save Small Arizona Town Big Money EECBG Success Story: Energy Upgrades to Save Small Arizona Town Big Money July 19, 2010 - 1:00pm Addthis An aerial shot of Oro Valley, Ariz.'s town hall campus shows proposed solar locations. | Photo courtesy of Oro Valley An aerial shot of Oro Valley, Ariz.'s town hall campus shows proposed solar locations. | Photo courtesy of Oro Valley The small town of Oro Valley, Arizona is making improvements that could save the city an

  6. Ice plug employed on subsea pipeline bend during repair

    SciTech Connect (OSTI)

    1997-12-22

    The first controlled-temperature ice plug in the bend of an offshore gas trunkline has been carried out for Phillips Petroleum Co. Norway on its Norpipe A.S. platform in the German sector of the North Sea. The procedure was part of a subsea valve repair operation. The ice plug was successfully formed offshore and tested to a differential pressure of 1,450 psi. Repair of two valves required only 5 days during which time gas production was operating at close to 50--60% via the platform bypass, says the service company. The paper discusses the procedure.

  7. Particle deposition in ventilation ducts: Connectors, bends anddeveloping flow

    SciTech Connect (OSTI)

    Sippola, Mark R.; Nazaroff, William W.

    2004-03-01

    In ventilation duct flow the turbulent flow profile is commonly disturbed or not fully developed and these conditions are likely to influence particle deposition to duct surfaces. Particle deposition rates at eight S-connectors, in two 90{sup o} duct bends and in two ducts where the turbulent flow profile was not fully developed were measured in a laboratory duct system with both galvanized steel and internally insulated ducts with hydraulic diameters of 15.2 cm. In the steel duct system, experiments with nominal particle diameters of 1, 3, 5, 9 and 16 {micro}m were conducted at each of three nominal air speeds: 2.2, 5.3 and 9.0 m/s. In the insulated duct system, deposition of particles with nominal diameters of 1, 3, 5, 8 and 13 {micro}m was measured at nominal air speeds of 2.2, 5.3 and 8.8 m/s. Fluorescent techniques were used to directly measure the deposition velocities of monodisperse fluorescent particles to duct surfaces. Deposition at S-connectors, in bends and in straight ducts with developing turbulence was often greater than deposition in straight ducts with fully developed turbulence for equal particle sizes, air speeds and duct surface orientations. Deposition rates at all locations were found to increase with an increase in particle size or air speed. High deposition rates at S-connectors resulted from impaction and these rates were nearly independent of the orientation of the S-connector. Deposition rates in the two 90{sup o} bends differed by more than an order of magnitude in some cases, probably because of the difference in turbulence conditions at the bend inlets. In straight steel ducts where the turbulent flow profile was developing, the deposition enhancement relative to fully developed turbulence generally increased with air speed and decreased with downstream distance from the duct inlet. This enhancement was greater at the duct ceiling and wall than at the duct floor. In insulated ducts, deposition enhancement was less pronounced overall than in steel ducts. Trends that were observed in steel ducts were present, but weaker, in insulated ducts.

  8. Experiments and analyses on undermatched interleaf specimens in bending

    SciTech Connect (OSTI)

    Parks, D.M.; Ganti, S.; McClintock, F.A.; Epstein, J.S.; Lloyd, L.R.; Reuter, W.G.

    1995-12-31

    Model weldment fracture specimens have been fabricated, tested, and analyzed using finite elements. The specimens consist of an interleaf of commercially pure titanium diffusion-bonded to a harder alloy titanium. A deep edge crack is introduced symmetrically into the interleaf, and the specimens are loaded in pure bending. Variation of the thickness (2h) of the soft interleaf layer provides insight into effects of weld geometry in strongly undermatched weldments tested in plane strain bending. Ductile crack growth (beyond blunting) initiated at loads giving J {doteq} 95 kJ/m{sup 2} in all specimens. In the thickest interleaf geometries, stable tearing was obtained, but in the thinnest interleaf (2h {doteq} 3mm), crack initiation resulted in a massive pop-in of 5.4 mm across an initial ligament of 12 mm. Finite element studies show that the thinnest interleaf geometry had slightly higher peak stress triaxiality at the beginning of cracking, and that the highest triaxiality extended over a larger region than in the thicker interleaf specimens loaded to the same initiation J-values. More importantly, the blockage of plastic straining above and below the crack tip in the 3 mm interleaf specimen forced higher values of plastic strain to spread forward into the {+-} 45{degree} sector of highest stress triaxiality directly ahead of the crack tip. The higher strains, in conjunction with the slightly higher stress triaxiality, led to the unstable pop-in initiation.

  9. FIA-12-0053- In the Matter of Arizona Nevada District Organization

    Broader source: Energy.gov [DOE]

    On October 11, 2012, the Department of Energy’s (DOE) Office of Hearings and Appeals (OHA) denied a Freedom of Information Act (FOIA) Appeal filed by the California Arizona Nevada District...

  10. Arizona State Land Department Rights-of-Way Website | Open Energy...

    Open Energy Info (EERE)

    to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Arizona State Land Department Rights-of-Way Website Abstract This website provides general information...

  11. FIA-12-0054- In the Matter of California-Arizona-Nevada District Organization Contract Compliance

    Broader source: Energy.gov [DOE]

    On September 14, 2012, California-Arizona-Nevada District Organization Contract Compliance (CANDO) filed an appeal from a final determination issued by the Loan Guarantee Program Office (LGPO) of...

  12. 49 A.R.S. 255 et seq.: Arizona Pollutant Discharge Elimination...

    Open Energy Info (EERE)

    search OpenEI Reference LibraryAdd to library Legal Document- StatuteStatute: 49 A.R.S. 255 et seq.: Arizona Pollutant Discharge Elimination System ProgramLegal Abstract...

  13. FIA-12-0059- In the Matter of California Arizona Nevada District Organization

    Broader source: Energy.gov [DOE]

    On October 31, 2012, the Department of Energy’s (DOE) Office of Hearings and Appeals (OHA) denied a Freedom of Information Act (FOIA) Appeal filed by the California Arizona Nevada District...

  14. Builders Challenge High Performance Builder Spotlight: Yavapai College, Chino Valley, Arizona

    SciTech Connect (OSTI)

    2009-12-22

    Building America Builders Challenge fact sheet on Yavapai College of Chino Valley, Arizona. These college students built a Building America Builders Challenge house that achieved the remarkably low HERS score of -3 and achieved a tight building envelope.

  15. NPDES compliance monitoring report: Silver bell mine, Pima County, Arizona. Final report

    SciTech Connect (OSTI)

    Ganter, W.

    1992-10-01

    This presents the findings of a compliance evaluation inspection of the Silver Bell Mine in Pima County, Arizona, conducted on August 19, 1992. It is part of a series of inspections of uncontrolled discharges of mine drainage.

  16. NPDES compliance monitoring report: Paloverde decline, Pima County, Arizona. Final report

    SciTech Connect (OSTI)

    Ganter, W.

    1992-10-07

    This presents the findings of a compliance evaluation inspection of the Paloverde Decline in Pima County, Arizona, conducted on August 21, 1992. It is part of a series of inspections of uncontrolled discharges of mine drainage.

  17. NPDES compliance monitoring report: Oracle Ridge Mine, San Manuel, Arizona. Draft report

    SciTech Connect (OSTI)

    Stevens, J.

    1992-11-03

    This presents the findings of a compliance evaluation inspection of the Oracle Ridge Copper Mine near San Manuel, Arizona, conducted on August 17, 1992. It is part of a series of inspections of uncontrolled discharges of mine drainage.

  18. Impacts of High Penetration of PV with Energy Storage at Flagstaff Arizona

    Broader source: Energy.gov [DOE]

    The project team, led by Arizona Public Service, will evaluate the impacts of high penetrations of distributed PV and energy storage on a dedicated feeder to identify the technical and operational...

  19. Finite element residual stress analysis of induction heating bended ferritic steel piping

    SciTech Connect (OSTI)

    Kima, Jong Sung; Kim, Kyoung-Soo; Oh, Young-Jin; Chang, Hyung-Young; Park, Heung-Bae

    2014-10-06

    Recently, there is a trend to apply the piping bended by induction heating process to nuclear power plants. Residual stress can be generated due to thermo-mechanical mechanism during the induction heating bending process. It is well-known that the residual stress has important effect on crack initiation and growth. The previous studies have focused on the thickness variation. In part, some studies were performed for residual stress evaluation of the austenitic stainless steel piping bended by induction heating. It is difficult to find the residual stresses of the ferritic steel piping bended by the induction heating. The study assessed the residual stresses of induction heating bended ferriticsteel piping via finite element analysis. As a result, it was identified that high residual stresses are generated on local outersurface region of the induction heating bended ferritic piping.

  20. Microsoft Word - DOE-ID-13-047 Arizona State EC B3-6.doc

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    7 SECTION A. Project Title: Radiation Hardened Electronics Destined for Severe Nuclear Reactor Environments - Arizona State University SECTION B. Project Description Arizona State University proposes to develop both board and application-specific integrated circuits (ASIC) level (radiation hardening by design) RHBD techniques for circuits destined for severe nuclear environments, specifically those that are vital to robotic circuits. The project will focus on using redundancy to achieve total

  1. Microsoft Word - DOE-ID-13-056 Arizona State EC B3-6.doc

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    6 SECTION A. Project Title: Multi-Resolution In Situ Testing and Multiscale Simulation for Creep Fatigue Damage Analysis of Alloy 617 - Arizona State University SECTION B. Project Description Arizona State University proposes to develop novel testing and experimentally validated prediction methodologies for creep- dominated creep fatigue response of structural materials (nickel-based Inconel 617) for advanced reactor systems. Objectives include: 1. Perform multi-resolution in-situ and ex-situ

  2. Microsoft Word - DOE-ID-14-016 Arizona State EC B3-6.doc

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    6 SECTION A. Project Title: Serial Sectioning Equipment for 3-D Characterization of Microstructure and Composition Effects on Mechanical Behavior of Enhanced Uranium Oxide Fuels - Arizona State University SECTION B. Project Description Arizona State University proposes to purchase and operate an ion polishing system to expand existing capabilities for 3-D microstructure characterization via serial sectioning with mechanical polishing to use ion beam polishing over large areas of oxide fuel

  3. Microsoft Word - DOE-ID-15-033 Arizona State EC B3-6.doc

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3 SECTION A. Project Title: Automatic Imagery Data Analysis for Proactive Computer-Based Workflow Management during Nuclear Power Plant Outages - Arizona State University SECTION B. Project Description Arizona State University proposes to test the hypothesis that real-time imagery-based object tracking and spatial analysis, as well as human behavior modeling of outage participants, will significantly improve efficiency of outage control while lowering the rates of accidents and incidents.

  4. James Knox with the Arizona Department of Public Service performs a mock

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    James Knox with the Arizona Department of Public Service performs a mock Commercial Vehicle Safety Alliance (CVSA) level VI inspection of a WIPP truck and transuranic waste shipping containers during this week's Waste Management Conference in Phoenix. WIPP UPDATE: March 19, 2015 WIPP is Center Stage at Waste Management Conference WIPP took center stage at this week's Waste Management Symposia 2015 in Phoenix, Arizona, where more than 200 participants attended a three-hour panel discussion titled

  5. Solar Loan Week: Conditional Loan for Arizona Solar Project | Department of

    Energy Savers [EERE]

    Energy Loan Week: Conditional Loan for Arizona Solar Project Solar Loan Week: Conditional Loan for Arizona Solar Project June 15, 2011 - 4:22pm Addthis Mesquite solar energy project area map. | Photo Courtesy of Sempra Generation Mesquite solar energy project area map. | Photo Courtesy of Sempra Generation Ginny Simmons Ginny Simmons Former Managing Editor for Energy.gov, Office of Public Affairs Today, Secretary Chu announced a conditional commitment for a loan guarantee of approximately of

  6. Bending stiffness and interlayer shear modulus of few-layer graphene

    SciTech Connect (OSTI)

    Chen, Xiaoming; Yi, Chenglin; Ke, Changhong

    2015-03-09

    Interlayer shear deformation occurs in the bending of multilayer graphene with unconstrained ends, thus influencing its bending rigidity. Here, we investigate the bending stiffness and interlayer shear modulus of few-layer graphene through examining its self-folding conformation on a flat substrate using atomic force microscopy in conjunction with nonlinear mechanics modeling. The results reveal that the bending stiffness of 2–6 layers graphene follows a square-power relationship with its thickness. The interlayer shear modulus is found to be in the range of 0.36–0.49?GPa. The research findings show that the weak interlayer shear interaction has a substantial stiffening effect for multilayer graphene.

  7. Ultrafast dynamics of liquid water: Frequency fluctuations of the OH stretch and the HOH bend

    SciTech Connect (OSTI)

    Imoto, Sho; Xantheas, Sotiris S.; Saito, Shinji

    2013-07-28

    Frequency fluctuations of the OH stretch and the HOH bend in liquid water are reported from the third-order response function evaluated using the TTM3-F potential for water. The simulated two-dimensional infrared (IR) spectra of the OH stretch are similar to previously reported theoretical results. The present study suggests that the frequency fluctuation of the HOH bend is faster than that of the OH stretch. The ultrafast loss of the frequency correlation of the HOH bend is due to the strong couplings with the OH stretch as well as the intermolecular hydrogen bond bend.

  8. EIS-0395: San Luis Rio Colorado Project, AZ

    Broader source: Energy.gov [DOE]

    This EIS analyzes DOE's decision to construct and operate a proposed transmission line originating at the proposed San Luis Rio Colorado (SLRC) Power Center in Sonora, Mexico, interconnect with Western's existing Gila Substation, and continue to Arizona Public Service Company’s (APS) North Gila Substation

  9. Socioeconomic impact of photovoltaic power at Schuchulik, Arizona. Final report

    SciTech Connect (OSTI)

    Bahr, D.; Garrett, B.G.; Chrisman, C.

    1980-10-01

    Schuchuli, a small remote village on the Papago Indian Reservation in southwest Arizona, is 27 kilometers (17 miles) from the nearest available utility power. In some respects, Schuchuli resembles many of the rural villages in other parts of the world. For example, it's relatively small in size (about 60 residents), composed of a number of extended family groupings, and remotely situated relative to major population centers (190 km, or 120 miles, from Tucson). Its lack of conventional power is due to the prohibitive cost of supplying a small electrical load with a long-distance distribution line. Furthermore, alternate energy sources are expensive and place a burden on the resources of the villagers. On December 16, 1978, as part of a federally funded project, a solar cell power system was put into operation at Schuchuli. The system powers the village water pump, lighting for homes ad other village buildings, family refrigerators and a communal washing machine and sewing machine. The project, managed for the US Department of Energy by the NASA Lewis Research Center, provided for a one-year socio-economic study to assess the impact of a relatively small amount of electricity on the basic living environment of the villagers. The results of that study are presented, including village history, group life, energy use in general and the use of the photovoltaic-powered appliances. No significant impacts due to the photovoltaic power system were observed.

  10. Arizona Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Wellhead Price (Dollars per Thousand Cubic Feet) Arizona Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0.15 0.16 0.18 1970's 0.17 0.18 0.18 0.18 0.20 0.28 0.28 0.33 0.37 0.41 1980's 2.59 3.08 2.90 1.80 1990's 1.20 1.50 1.85 1.30 1.40 1.20 1.65 2.40 1.88 2.08 2000's 3.50 4.12 2.60 4.33 5.12 6.86 5.70 5.98 7.09 3.19 2010's 4.11 - = No Data Reported; -- = Not Applicable; NA = Not Available; W =

  11. UMTRA project water sampling and analysis plan, Monument Valley, Arizona

    SciTech Connect (OSTI)

    Not Available

    1994-04-01

    The Monument Valley Uranium Mill Tailings Remedial Action (UMTRA) Project site in Cane Valley is a former uranium mill that has undergone surface remediation in the form of tailings and contaminated materials removal. Contaminated materials from the Monument Valley (Arizona) UMTRA Project site have been transported to the Mexican Hat (Utah) UMTRA Project site for consolidation with the Mexican Hat tailings. Tailings removal was completed in February 1994. Three geologic units at the site contain water: the unconsolidated eolian and alluvial deposits (alluvial aquifer), the Shinarump Conglomerate (Shinarump Member), and the De Chelly Sandstone. Water quality analyses indicate the contaminant plume has migrated north of the site and is mainly in the alluvial aquifer. An upward hydraulic gradient in the De Chelly Sandstone provides some protection to that aquifer. This water sampling and analysis plan recommends sampling domestic wells, monitor wells, and surface water in April and September 1994. The purpose of sampling is to continue periodic monitoring for the surface program, evaluate changes to water quality for site characterization, and provide data for the baseline risk assessment. Samples taken in April will be representative of high ground water levels and samples taken in September will be representative of low ground water levels. Filtered and nonfiltered samples will be analyzed for plume indicator parameters and baseline risk assessment parameters.

  12. Arizona Natural Gas Pipeline and Distribution Use Price (Dollars per

    U.S. Energy Information Administration (EIA) Indexed Site

    Thousand Cubic Feet) Price (Dollars per Thousand Cubic Feet) Arizona Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0.15 0.15 0.15 1970's 0.17 0.17 0.19 0.22 0.28 0.36 0.44 0.64 0.75 1.29 1980's 1.62 2.22 2.86 3.16 2.83 2.79 2.22 1.49 1.79 1.50 1990's 1.65 1.26 1.25 1.68 1.28 1.19 1.80 2.20 1.90 2.08 2000's 3.61 3.96 NA -- -- -- - = No Data Reported; -- = Not Applicable; NA

  13. Evaluation of geothermal energy in Arizona. Arizona geothermal planning/commercialization team. Quarterly topical progress report, July 1-September 30, 1980

    SciTech Connect (OSTI)

    White, D.H.; Mancini, F.; Goldstone, L.A.; Malysa, L.

    1980-01-01

    Progress is reviewed on the following: area development plans, evaluation of geothermal applications, continued evaluation of geothermal resources, engineering and economic analyses, technical assistance in the state of Arizona, the impact of various growth patterns upon geothermal energy development, and the outreach program. (MHR)

  14. The Effect of Element Formulation on the Prediction of Boost Effects in Numerical Tube Bending

    SciTech Connect (OSTI)

    Bardelcik, A.; Worswick, M.J.

    2005-08-05

    This paper presents advanced FE models of the pre-bending process to investigate the effect of element formulation on the prediction of boost effects in tube bending. Tube bending experiments are conducted with 3'' (OD) IF (Interstitial-Free) steel tube on a fully instrumented Eagle EPT-75 servo-hydraulic mandrel-rotary draw tube bender. Experiments were performed in which the bending boost was varied at three levels and resulted in consistent trends in the strain and thickness distribution within the pre-bent tubes. A numerical model of the rotary draw tube bender was used to simulate pre-bending of the IF tube with the three levels of boost from the experiments. To examine the effect of element formulation on the prediction of boost, the tube was modeled with shell and solid elements. Both models predicted the overall strain and thickness results well, but showed different trends in each of the models.

  15. Isotope effect in normal-to-local transition of acetylene bending modes

    SciTech Connect (OSTI)

    Ma, Jianyi; Xu, Dingguo; Guo, Hua; Tyng, Vivian; Kellman, Michael E.

    2012-01-01

    The normal-to-local transition for the bending modes of acetylene is considered a prelude to its isomerization to vinylidene. Here, such a transition in fully deuterated acetylene is investigated using a full-dimensional quantum model. It is found that the local benders emerge at much lower energies and bending quantum numbers than in the hydrogen isotopomer HCCH. This is accompanied by a transition to a second kind of bending mode called counter-rotator, again at lower energies and quantum numbers than in HCCH. These transitions are also investigated using bifurcation analysis of two empirical spectroscopic fitting Hamiltonians for pure bending modes, which helps to understand the origin of the transitions semiclassically as branchings or bifurcations out of the trans and normal bend modes when the latter become dynamically unstable. The results of the quantum model and the empirical bifurcation analysis are in very good agreement.

  16. Isotope effect in normal-to-local transition of acetylene bending modes

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Ma, Jianyi; Xu, Dingguo; Guo, Hua; Tyng, Vivian; Kellman, Michael E.

    2012-01-01

    The normal-to-local transition for the bending modes of acetylene is considered a prelude to its isomerization to vinylidene. Here, such a transition in fully deuterated acetylene is investigated using a full-dimensional quantum model. It is found that the local benders emerge at much lower energies and bending quantum numbers than in the hydrogen isotopomer HCCH. This is accompanied by a transition to a second kind of bending mode called counter-rotator, again at lower energies and quantum numbers than in HCCH. These transitions are also investigated using bifurcation analysis of two empirical spectroscopic fitting Hamiltonians for pure bending modes, which helpsmore » to understand the origin of the transitions semiclassically as branchings or bifurcations out of the trans and normal bend modes when the latter become dynamically unstable. The results of the quantum model and the empirical bifurcation analysis are in very good agreement.« less

  17. CX-004899: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Gila-Yuma Tap (Transmission Line Reconstruction)CX(s) Applied: B4.6Date: 07/19/2010Location(s): Yuma County, ArizonaOffice(s): Western Area Power Administration-Desert Southwest Region

  18. CX-012738: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Gila Substation Geotechnical Study CX(s) Applied: B3.1Date: 41857 Location(s): ArizonaOffices(s): Western Area Power Administration-Desert Southwest Region

  19. CX-007157: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    North Gila-Senator Wash Pole ReplacementCX(s) Applied: B4.6Date: 11/03/2010Location(s): Yuma County, ArizonaOffice(s): Western Area Power Administration-Desert Southwest Region

  20. CX-007159: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Parker-Gila Structure MaintenanceCX(s) Applied: B1.3Date: 10/07/2010Location(s): La Paz and Yuma Counties, ArizonaOffice(s): Western Area Power Administration-Desert Southwest Region

  1. CX-004898: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Gila-Wellton-Mohawk (Structure Maintenance)CX(s) Applied: B1.3Date: 11/05/2010Location(s): Yuma County, ArizonaOffice(s): Western Area Power Administration-Desert Southwest Region

  2. CX-010408: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Emergency Current Transformer Replacement at Gila Substation CX(s) Applied: B4.6 Date: 04/26/2013 Location(s): Arizona Offices(s): Western Area Power Administration-Desert Southwest Region

  3. CX-011650: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Parker-Gila 161 Kilovolt Transmission Line - Structure 109-8 Relocation CX(s) Applied: B1.3 Date: 12/18/2013 Location(s): Arizona Offices(s): Western Area Power Administration-Desert Southwest Region

  4. CX-011719: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Cable Trenching in the Gila Substation CX(s) Applied: B4.6 Date: 01/13/2014 Location(s): Arizona Offices(s): Western Area Power Administration-Desert Southwest Region

  5. Light Shines on Better Budget for Glendale, Arizona | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Shines on Better Budget for Glendale, Arizona Light Shines on Better Budget for Glendale, Arizona July 20, 2010 - 10:00am Addthis A LED light bulb is installed in one of Glendale, Ariz.'s traffic signals. | Photo courtesy of Glendale A LED light bulb is installed in one of Glendale, Ariz.'s traffic signals. | Photo courtesy of Glendale Glendale, Ariz., like many other cities, was facing several problems: a tight budget and aging buildings using outdated lighting - making repairs difficult and

  6. Final Technical Report for the BOOST2013 Workshop. Hosted by the University of Arizona

    SciTech Connect (OSTI)

    Johns, Kenneth

    2015-02-20

    BOOST 2013 was the 5th International Joint Theory/Experiment Workshop on Phenomenology, Reconstruction and Searches for Boosted Objects in High Energy Hadron Collisions. It was locally organized and hosted by the Experimental High Energy Physics Group at the University of Arizona and held at Flagstaff, Arizona on August 12-16, 2013. The workshop provided a forum for theorists and experimentalists to present and discuss the latest findings related to the reconstruction of boosted objects in high energy hadron collisions and their use in searches for new physics. This report gives the outcomes of the BOOST 2013 Workshop.

  7. Digital Method of Analyzing the Bending Stiffness of Non-Crimp Fabrics

    SciTech Connect (OSTI)

    Soteropoulos, Dimitri; Fetfatsidis, Konstantine; Sherwood, James A.; Langworthy, Joanna [Department of Mechanical Engineering, University of Massachusetts, Lowell One University Ave., Lowell, MA 01854 (United States)

    2011-05-04

    A digital-analytical method for characterizing the bending behavior of NCFs (Non-Crimp Fabrics) is developed. The study is based on a hanging fabric loaded to a known displacement. The image of the deformed fabric is captured digitally, and then analyzed to describe the deformed shape of the beam using x-y coordinates. The bending stiffness of the fabric is then determined through an iterative method using a finite element method (ABAQUS). This effective bending stiffness is of importance in the formation of wave defects in NCFs during manufacturing processes such as thermoforming, vacuum assisted resin transfer molding, and compression molding.

  8. The importance of jet bending in gamma-ray AGNs—revisited

    SciTech Connect (OSTI)

    Graham, P. J.; Tingay, S. J.

    2014-04-01

    We investigate the hypothesis that ?-ray-quiet active galactic nuclei (AGNs) have a greater tendency for jet bending than ?-ray-loud AGNs, revisiting the analysis of Tingay et al. We perform a statistical analysis using a large sample of 351 radio-loud AGNs along with ?-ray identifications from the Fermi Large Area Telescope (LAT). Our results show no statistically significant differences in jet-bending properties between ?-ray-loud and ?-ray-quiet populations, indicating that jet bending is not a significant factor for ?-ray detection in AGNs.

  9. Energy losses in thermally cycled optical fibers constrained in small bend radii

    SciTech Connect (OSTI)

    Guild, Eric; Morelli, Gregg

    2012-09-23

    High energy laser pulses were fired into a 365?m diameter fiber optic cable constrained in small radii of curvature bends, resulting in a catastrophic failure. Q-switched laser pulses from a flashlamp pumped, Nd:YAG laser were injected into the cables, and the spatial intensity profile at the exit face of the fiber was observed using an infrared camera. The transmission of the radiation through the tight radii resulted in an asymmetric intensity profile with one half of the fiber core having a higher peak-to-average energy distribution. Prior to testing, the cables were thermally conditioned while constrained in the small radii of curvature bends. Single-bend, double-bend, and U-shaped eometries were tested to characterize various cable routing scenarios.

  10. Curvature of a cantilever beam subjected to an equi-biaxial bending moment

    SciTech Connect (OSTI)

    Krulevitch, P.; Johnson, G.C.

    1998-04-28

    Results from a finite element analysis of a cantilever beam subjected to an equi-biaxial bending moment demonstrate that the biaxial modulus E/(I-v) must be used even for narrow beams.

  11. Characterization of Optical Fiber Strength Under Applied Tensile Stress and Bending Stress

    SciTech Connect (OSTI)

    P.E. Klingsporn

    2011-08-01

    Various types of tensile testing and bend radius tests were conducted on silica core/silica cladding optical fiber of different diameters with different protective buffer coatings, fabricated by different fiber manufacturers. The tensile tests were conducted to determine not only the average fiber strengths at failure, but also the distribution in fracture strengths, as well as the influence of buffer coating on fracture strength. The times-to-failure of fiber subjected to constant applied bending stresses of various magnitudes were measured to provide a database from which failure times of 20 years or more, and the corresponding minimum bend radius, could be extrapolated in a statistically meaningful way. The overall study was done to provide an understanding of optical fiber strength in tensile loading and in applied bending stress as related to applications of optical fiber in various potential coizfgurations for weapons and enhanced surveillance campaigns.

  12. Comparison of ring compression testing to three point bend testing for

    Office of Scientific and Technical Information (OSTI)

    unirradiated ZIRLO cladding (Conference) | SciTech Connect Conference: Comparison of ring compression testing to three point bend testing for unirradiated ZIRLO cladding Citation Details In-Document Search Title: Comparison of ring compression testing to three point bend testing for unirradiated ZIRLO cladding Safe shipment and storage of nuclear reactor discharged fuel requires an understanding of how the fuel may perform under the various conditions that can be encountered. One specific

  13. EA-1880: Big Bend to Witten Transmission Line Project, South Dakota |

    Office of Environmental Management (EM)

    Department of Energy 880: Big Bend to Witten Transmission Line Project, South Dakota EA-1880: Big Bend to Witten Transmission Line Project, South Dakota Summary DOE's Western Area Power Administration (Western) is preparing this EA to evaluate the potential environmental impacts of a proposal by Basin Electric Power Cooperative to construct, own, and operate an approximately 70-mile long 230-kV single-circuit transmission line that would connect a new switchyard with the existing Witten

  14. EA-1987: Parker-Headgate Rock and Parker-Bouse Rebuild Project, Arizona and California

    Broader source: Energy.gov [DOE]

    DOE’s Western Area Power Administration is preparing an EA that will assess the potential environmental impacts of a proposal to rebuild the existing Parker Dam-Headgate Rock and Parker Dam-Bouse 161-kilovolt transmission lines along the Colorado River in western Arizona and eastern California.

  15. FIA-12-0020- In the Matter of California-Arizona-Nevada District Organization Contract Compliance

    Broader source: Energy.gov [DOE]

    The Office of Hearings and Appeals granted a Motion for Reconsideration of part of a Decision we issued on March 23, 2012, relating to appeals filed by California-Arizona-Nevada District Organization Contract Compliance (CANDO) under the Freedom of Information Act (FOIA).

  16. FIA-12-0004- In the Matter of California-Arizona-Nevada District Organization Contract Compliance

    Broader source: Energy.gov [DOE]

    The Office of Hearings and Appeals issued one Decision relating to two appeals filed by California-Arizona-Nevada District Organization Contract Compliance (CANDO) from two determination letters issued by the Loan Guarantee Program Office (LGPO) of the Department of Energy (DOE) under the Freedom of Information Act (FOIA).

  17. FIA-12-0005- In the Matter of California-Arizona-Nevada District Organization Contract Compliance

    Broader source: Energy.gov [DOE]

    The Office of Hearings and Appeals issued one Decision relating to two appeals filed by California-Arizona-Nevada District Organization Contract Compliance (CANDO) from two determination letters issued by the Loan Guarantee Program Office (LGPO) of the Department of Energy (DOE) under the Freedom of Information Act (FOIA).

  18. Numerical simulations of the bending of narrow-angle-tail radio jets by ram pressure or pressure gradients

    SciTech Connect (OSTI)

    Soker, N.; Sarazin, C.L.; O'Dea, C.P.

    1988-04-01

    Three-dimensional numerical hydrodynamic simulations are used to study the bending of radio jets. The simulations are compared with observations of jets in narrow-angle-tail radio sources. Two mechanisms for the observed bending are considered: direct bending of quasi-continuous jets by ram pressure from intergalactic gas and bending by pressure gradients in the interstellar gas of the host galaxy, the pressure gradients themselves being the result of ram pressure by intergalactic gas. It is shown that the pressure gradients are much less effective in bending jets, implying that the jets have roughly 30 times lower momentum fluxes if they are bent by this mechanism. Ram-pressure bending produces jets with kidney-shaped cross sections; when observed from the side, these jets appear to have diffuse extensions on the downstream side. On the other hand, pressure-gradient bending causes the jets to be densest near their upstream side. 31 references.

  19. GATEWAY Demonstrations: LED System Performance in a Trial Installation--One Year Later, Yuma Border Patrol, Yuma, Arizona

    SciTech Connect (OSTI)

    Wilkerson, A. M.; Davis, R. G.

    2015-04-01

    Along the Yuma Sector Border Patrol Area in Yuma, Arizona, the GATEWAY program conducted a trial demonstration in which the incumbent quartz metal halide area lighting was replaced with LED at three pole locations at the Yuma Sector Border Patrol Area in Yuma, Arizona. The retrofit was documented to better understand LED technology performance in high-temperature environments. This report follows the GATEWAY Yuma Phase 1.0 Report and reflects LED system results documented one year after the demonstration began.

  20. Price of Arizona Natural Gas Exports (Dollars per Thousand Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Arizona Natural Gas Exports (Dollars per Thousand Cubic Feet) Price of Arizona Natural Gas Exports (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 3.21 1990's 2.42 2.22 1.42 1.08 1.73 1.53 1.92 2.38 1.92 2.63 2000's 4.28 3.61 3.19 5.53 5.49 7.24 6.30 6.94 8.09 3.79 2010's 4.57 4.28 3.07 4.17 5.15 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release

  1. EIS-0301: NRG Energy Services, Inc., Arizona-Baja California 500 kV Transmission Line

    Broader source: Energy.gov [DOE]

    This EIS analyzes DOE's decision to approve NRG Energy, Inc. (NRG) for a Presidential permit to construct a 500,000-volt transmission line originating at the switchyard of the Palo Verde Nuclear Generating Station near Phoenix, Arizona, and extending approximately 177 miles to the southwest, where it would cross the United States (U.S.) border with Mexico in the vicinity of Calexico, California.

  2. Phoenix Convention Center * Phoenix, Arizona Playing the Entire Value Chain for Energy Storage

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Phoenix, Arizona Playing the Entire Value Chain for Energy Storage Session 6: Innovation Energy Storage for Federal Installations Scott Sklar The Stella Group, LTD August 12, 2015 Energy Exchange: Federal Sustainability for the Next Decade The Stella Group, LTD 2 The Stella Group, Ltd.. is a strategic technology optimization and policy firm for clean distributed energy users and companies which include advanced batteries and controls, energy efficiency, fuel cells, geoexchange, heat engines,

  3. Economic Benefits, Carbon Dioxide (CO2) Emissions Reductions, and Water Conservation Benefits from 1000 Megawatts (MW) of New Wind Power in Arizona

    SciTech Connect (OSTI)

    2008-10-01

    Analysis of the expected impacts of 1000 MW of wind power in Arizona, including economic benefits, CO2 emissions reductions, and water conservation.

  4. Guided wave radiation from a point source in the proximity of a pipe bend

    SciTech Connect (OSTI)

    Brath, A. J.; Nagy, P. B.; Simonetti, F.; Instanes, G.

    2014-02-18

    Throughout the oil and gas industry corrosion and erosion damage monitoring play a central role in managing asset integrity. Recently, the use of guided wave technology in conjunction with tomography techniques has provided the possibility of obtaining point-by-point maps of wall thickness loss over the entire volume of a pipeline section between two ring arrays of ultrasonic transducers. However, current research has focused on straight pipes while little work has been done on pipe bends which are also the most susceptible to developing damage. Tomography of the bend is challenging due to the complexity and computational cost of the 3-D elastic model required to accurately describe guided wave propagation. To overcome this limitation, we introduce a 2-D anisotropic inhomogeneous acoustic model which represents a generalization of the conventional unwrapping used for straight pipes. The shortest-path ray-tracing method is then applied to the 2-D model to compute ray paths and predict the arrival times of the fundamental flexural mode, A0, excited by a point source on the straight section of pipe entering the bend and detected on the opposite side. Good agreement is found between predictions and experiments performed on an 8” diameter (D) pipe with 1.5 D bend radius. The 2-D model also reveals the existence of an acoustic lensing effect which leads to a focusing phenomenon also confirmed by the experiments. The computational efficiency of the 2-D model makes it ideally suited for tomography algorithms.

  5. EIS-0296: South Oregon Coast Reinforcement Project, Coos Bay/North Bend, Oregon

    Broader source: Energy.gov [DOE]

    Bonneville Power Administration proposes to build a 500- kilovolt (kV) transmission line and new substation to reinforce electrical service to the southern coast of the state of Oregon. Nucor Steel, a division of Nucor Corporation, may build a new steel mill in the Coos Bay/North Bend, Oregon, area.

  6. EIS-0296: South Oregon Coast Reinforcement Project, Coos Bay/North Bend, Oregon

    Broader source: Energy.gov [DOE]

    This EIS analyzes BPA's proposed action to build a 500- kilovolt (kV) transmission line and new substation to reinforce electrical service to the southern coast of the state of Oregon. Nucor Steel, a division of Nucor Corporation, may build a new steel mill in the Coos Bay/North Bend, Oregon, area.

  7. Design, Manufacture and Testing of A Bend-Twist D-Spar

    SciTech Connect (OSTI)

    Ong, Cheng-Huat; Tsai, Stephen W.

    1999-06-01

    Studies have indicated that an adaptive wind turbine blade design can significantly enhance the performance of the wind turbine blade on energy capture and load mitigation. In order to realize the potential benefits of aeroelastic tailoring, a bend-twist D-spar, which is the backbone of a blade, was designed and fabricated to achieve the objectives of having maximum bend-twist coupling and fulfilling desirable structural properties (031 & GJ). Two bend-twist D-spars, a hybrid of glass and carbon fibers and an all-carbon D-spar, were fabricated using a bladder process. One of the D-spars, the hybrid D-spar, was subjected to a cantilever static test and modal testing. Various parameters such as materials, laminate schedule, thickness and internal rib were examined in designing a bend-twist D-spar. The fabrication tooling, the lay-up process and the joint design for two symmetric clamshells are described in this report. Finally, comparisons between the experimental test results and numerical results are presented. The comparisons indicate that the numerical analysis (static and modal analysis) agrees well with test results.

  8. Long-term surveillance plan for the Tuba City, Arizona disposal site

    SciTech Connect (OSTI)

    1996-02-01

    This long-term surveillance plan (LTSP) for the Uranium Mill Tailings Remedial Action (UMTRA) Project disposal site at Tuba City, Arizona, describes the site surveillance activities. The U.S. Department of Energy (DOE) will carry out these activities to ensure the disposal cell continues to function as designed. This final LTSP was prepared as a requirement for acceptance under the U.S. Nuclear Regulatory Commission (NRC) general license for custody and long-term care of residual radioactive materials (RRM) (10 CFR {section}40.27).

  9. Weatherization assistance program. Final monitoring report for Arizona, California, the Navajo Nation, and Nevada

    SciTech Connect (OSTI)

    Not Available

    1986-08-01

    Stroud, Inc., was awarded a contract by the Department of Energy San Francisco Operations Office (DOE-SAN) to evaluate the weatherization programs for selected grantees and subgrantees in Arizona, California, the Navajo Nation, and Nevada. This final report summarizes both the findings and the recommendations that emerged from the forty (40) visits to grantees and subgrantees. The remarks are not intended to be detailed and exhaustive. Specific problems, achievements, and recommendations are to be found in the narrative reports. But some findings and traits are sufficiently general that they warrant being included in this final report. The recommendations reflect those general characteristics.

  10. Remedial action plan for stabilization of the inactive uranium mill tailings site at Monument Valley, Arizona

    SciTech Connect (OSTI)

    1986-02-01

    This Remedial Action Plan (RAP) has been developed to serve a two-fold purpose. It presents the series of activities which are proposed by the U.S. Department of Energy (DOE) to accomplish long-term stabilization and control of radioactive materials at the inactive uranium processing site located near Monument Valley, Arizona It also serves to document the concurrence of both the Navajo Nation and the U.S. Nuclear Regulatory Commission (NRC) in the remedial action. This agreement, upon execution by DOE and the Navajo Nation and concurrence by NRC, becomes Appendix B of the Cooperative Agreement.

  11. WM2015 Conference, March, 15-19, 2015, Phoenix, Arizona, USA

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    March, 15-19, 2015, Phoenix, Arizona, USA † Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. This research is funded by WIPP programs administered by the Office of Environmental Management (EM) of the U.S Department of Energy. Impacts of an Additional Exhaust Shaft on WIPP

  12. Arizona Natural Gas Lease and Plant Fuel Consumption (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    and Plant Fuel Consumption (Million Cubic Feet) Arizona Natural Gas Lease and Plant Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 33 20 34 1970's 50 50 44 39 0 0 0 0 0 0 1980's 0 222 7 7 7 6 5 6 5 35 1990's 71 45 41 49 61 57 58 51 46 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date: 3/31/2016 Referring

  13. Arizona Natural Gas Number of Gas and Gas Condensate Wells (Number of

    U.S. Energy Information Administration (EIA) Indexed Site

    Elements) Gas and Gas Condensate Wells (Number of Elements) Arizona Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 3 1990's 5 6 6 6 6 7 7 8 8 8 2000's 9 8 7 9 6 6 7 7 6 6 2010's 5 5 5 5 5 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date: 3/31/2016 Referring Pages:

  14. ,"Arizona Heat Content of Natural Gas Consumed"

    U.S. Energy Information Administration (EIA) Indexed Site

    Consumed" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Arizona Heat Content of Natural Gas Consumed",1,"Monthly","12/2015","01/15/2013" ,"Release Date:","02/29/2016" ,"Next Release Date:","03/31/2016" ,"Excel File

  15. ,"Arizona Natural Gas Consumption by End Use"

    U.S. Energy Information Administration (EIA) Indexed Site

    Consumption by End Use" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Arizona Natural Gas Consumption by End Use",6,"Monthly","12/2015","1/15/1989" ,"Release Date:","2/29/2016" ,"Next Release Date:","3/31/2016" ,"Excel File

  16. ,"Arizona Natural Gas Vehicle Fuel Consumption (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Vehicle Fuel Consumption (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Arizona Natural Gas Vehicle Fuel Consumption (MMcf)",1,"Monthly","12/2015" ,"Release Date:","2/29/2016" ,"Next Release Date:","3/31/2016" ,"Excel File

  17. ,"Arizona Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Wellhead Price (Dollars per Thousand Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Arizona Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)",1,"Annual",2010 ,"Release Date:","2/29/2016" ,"Next Release Date:","3/31/2016" ,"Excel File

  18. Vegetation Cover Analysis of Hazardous Waste Sites in Utah and Arizona Using Hyperspectral Remote Sensing

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Remote Sens. 2012, 4, 327-353; doi:10.3390/rs4020327 Remote Sensing ISSN 2072-4292 www.mdpi.com/journal/remotesensing Article Vegetation Cover Analysis of Hazardous Waste Sites in Utah and Arizona Using Hyperspectral Remote Sensing Jungho Im 1, *, John R. Jensen 2 , Ryan R. Jensen 3 , John Gladden 4 , Jody Waugh 5 and Mike Serrato 4 1 Department of Environmental Resources Engineering, College of Environmental Science and Forestry, State University of New York, Syracuse, NY 13210, USA 2

  19. Curvature-Induced Bunch Self-Interaction for an Energy-Chirped Bunch in Magnetic Bends

    SciTech Connect (OSTI)

    Rui Li

    2006-01-04

    The curvature-induced bunch collective interaction in magnetic bends can be studied using effective forces in the canonical formulation of the coherent synchrotron radiation (CSR) effect. In this paper, for an electron distribution moving ultrarelativistically in a bending system, the dynamics of a particle in the electron distribution is derived from the Hamiltonian of the particle in terms of the bunch internal coordinates. The consequent Vlasov equation manifests explicitly how the phase space distribution is perturbed by the effective CSR forces. In particular, we study the impact of an initial linear energy chirp of the bunch on the behavior of the effective longitudinal CSR force, which arises due to the modification of the retardation relation as a result of the energy-chirping-induced longitudinal-horizontal correlation of the bunch distribution (bunch tilt) in dispersive regions.

  20. Light bending in the galactic halo by Rindler-Ishak method

    SciTech Connect (OSTI)

    Bhattacharya, Amrita; Nandi, Kamal K.; Isaev, Ruslan; Scalia, Massimo; Cattani, Carlo E-mail: subfear@gmail.com E-mail: ccattani@unisa.it

    2010-09-01

    After the work of Rindler and Ishak, it is now well established that the bending of light is influenced by the cosmological constant ? appearing in the Schwarzschild-de Sitter spacetime. We show that their method, when applied to the exact Mannheim-Kazanas-de Sitter solution of the Weyl conformal gravity, nicely yields the expected answer together with several other physically interesting new terms. Apart from ?, the solution is parametrized by a conformal parameter ?, which is known to play a dominant role in the galactic halo gravity. The application of the method yields exactly the same ?? correction to Schwarzschild bending as obtained by standard methods. Different cases are analyzed, which include some corrections to the special cases considered in the original paper by Rindler and Ishak.

  1. A new hydrocarbon empirical potential in angle bending calculation for the molecular dynamics simulation

    SciTech Connect (OSTI)

    Ping, Tan Ai; Hoe, Yeak Su

    2014-07-10

    Typically, short range potential only depends on neighbouring atoms and its parameters function can be categorized into bond stretching, angle bending and bond rotation potential. In this paper, we present our work called Angle Bending (AB) potential, whereas AB potential is the extension of our previous work namely Bond Stretching (BS) potential. Basically, potential will tend to zero after truncated region, potential in specific region can be represented by different piecewise polynomial. We proposed the AB piecewise potential which is possible to solve a system involving three atoms. AB potential able to handle the potential of covalent bonds for three atoms as well as two atoms cases due to its degeneracy properties. Continuity for the piecewise polynomial has been enforced by coupling with penalty methods. There are still plenty of improvement spaces for this AB potential. The improvement for three atoms AB potential will be studied and further modified into torsional potential which are the ongoing current research.

  2. Final audit report of remedial action construction at the UMTRA Project Mexican Hat, Utah -- Monument Valley, Arizona, sites

    SciTech Connect (OSTI)

    1995-10-01

    The final audit report for remedial action at the Mexican Hat, Utah, Monument Valley, Arizona, Uranium Mill Tailings Remedial Action (UMTRA) Project sites consists of a summary of the radiological surveillances/audits, quality assurance (QA) in-process surveillances, and QA remedial action close-out inspections performed by the US Department of Energy (DOE) and the Technical Assistance Contractor (TAC); on-site construction reviews (OSCR) performed by the US Nuclear Regulatory Commission (NRC); and a surveillance performed by the Navajo Nation. This report refers to remedial action activities performed at the Mexican Hat, Utah--Monument Valley, Arizona, Uranium Mill Tailings Remedial Action (UMTRA) Project sites.

  3. Methods and apparatus for twist bend coupled (TCB) wind turbine blades

    DOE Patents [OSTI]

    Moroz, Emilian Mieczyslaw; LeMieux, David Lawrence; Pierce, Kirk Gee

    2006-10-10

    A method for controlling a wind turbine having twist bend coupled rotor blades on a rotor mechanically coupled to a generator includes determining a speed of a rotor blade tip of the wind turbine, measuring a current twist distribution and current blade loading, and adjusting a torque of a generator to change the speed of the rotor blade tip to thereby increase an energy capture power coefficient of the wind turbine.

  4. Heteromorphism and crystallization paths of katungites, Navajo volcanic field, Arizona, USA

    SciTech Connect (OSTI)

    Laughlin, A.W.; Charles, R.W.; Aldrich, M.J. Jr.

    1986-01-01

    A swarm of thin, isochemical but heteromorphic dikes crops out in the valley of Hasbidito Creek in NE Arizona. The swarm is part of the dominantly potassic, mid-Tertiary Navajo volcanic field of the Colorado Plateau. Whole-rock chemical analyses of five samples from four of the dikes indicate that they are chemically identical to the katungites of Uganda. These dikes show the characteristic seriate-porphyritic texture of lamprophyres. Samples of an olivine-melilitite dike from the same swarm lack this texture and the chemical analysis, while similar to those of the other dikes, shows effects from the incorporation of xenocrystic olivine. Over 20 mineral phases have been identified in the Arizona samples and as many as 18 phases may occur in a single sample. The major phases are phlogopite, olivine, perovskite, opaque oxides, +- melilite and +- clinopyroxene. Based upon the modal mineralogies and textures of ten dike samples, we recognize five general non-equilibrium assemblages. Comparison of these assemblages with recent experimental results shows that they represent various combinations of complete and incomplete reactions. Reaction relations were determined by entering melt and phase compositions into the computer program GENMIX to obtain balanced reactions. By combining petrographic observations with mineral chemical data, balanced reactions from GENMIX, and the recently determined phase diagrams we are able to trace crystallization paths for the katungite magma.

  5. Fossil vertebrate footprints in the Coconino Sandstone (Permian) of northern Arizona: Evidence for underwater origin

    SciTech Connect (OSTI)

    Brand, L.R.; Thu Tang (Loma Linda Univ., CA (United States))

    1991-12-01

    Numerous fossil vertebrate trackways in the Coconino Sandstone of northern Arizona exhibit several features that imply that these trackways were not made in subaerial conditions. Some trackways begin or end abruptly on undisturbed bedding planes, and in other trackways the individual prints are oriented in a different direction from that of the trackway. These features indicate buoyancy of the animals in water. The animals were swimming in the water part of the time and at other times walking on the substrate, and they were sometimes orienting upslope on the surface of the underwater dunes, while being drifted sideways by lateral currents. Observations on salamander locomotion in a sedimentation tank with flowing water support this model.

  6. Arizona Natural Gas Delivered to Commercial Consumers for the Account of

    Gasoline and Diesel Fuel Update (EIA)

    Others (Million Cubic Feet) Delivered to Commercial Consumers for the Account of Others (Million Cubic Feet) Arizona Natural Gas Delivered to Commercial Consumers for the Account of Others (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 1,094 1,311 1,796 1990's 1,219 1,876 2,021 2,336 2,709 3,282 4,309 4,662 4,777 5,485 2000's 5,254 2,297 2,295 3,003 2,153 2,140 2,261 2,172 2,258 3,866 2010's 3,605 3,988 4,213 4,772 4,743 - = No Data

  7. SALINITY AND SODICITY INTERACTIONS OF WEATHERED MINESOILS IN NORTHWESTERN NEW MEXICO AND NORTH EASTERN ARIZONA

    SciTech Connect (OSTI)

    Brent Musslewhite; Song Jin

    2006-05-01

    Weathering characteristics of minesoils and rooting patterns of key shrub and grass species were evaluated at sites reclaimed for 6 to 14 years from three surface coal mine operations in northwestern New Mexico and northeastern Arizona. Non-weathered minesoils were grouped into 11 classifications based on electrical conductivity (EC) and sodium adsorption ratio (SAR). Comparisons of saturated paste extracts, from non-weathered and weathered minesoils show significant (p < 0.05) reductions in SAR levels and increased EC. Weathering increased the apparent stability of saline and sodic minesoils thereby reducing concerns of aggregate slaking and clay particle dispersion. Root density of four-wing saltbush (Atriplex canascens), alkali sacaton (Sporobolus airoides), and Russian wildrye (Psathyrostachys junceus) were nominally affected by increasing EC and SAR levels in minesoil. Results suggest that saline and sodic minesoils can be successfully reclaimed when covered with topsoil and seeded with salt tolerant plant species.

  8. Summary of the engineering assessment of inactive uranium mill tailings, Tuba City site, Tuba City, Arizona

    SciTech Connect (OSTI)

    1981-09-01

    Ford, Bacon and Davis Utah Inc. has reevaluated the Tuba City site in order to revise the March 1977 engineering assessment of the problems resulting from the existence of radioactive uranium mill tailings at Tuba City, Arizona. This engineering assessment has included the preparation of topographic maps, the performance of core drillings and radiometric measurements sufficient to determine areas and volumes of tailings and radiation exposures of individuals and nearby populations, the investigations of site hydrology and meteorology, and the evaluation and costing of alternative corrective actions. Radon gas released from the 0.8 million tons of tailings at the Tuba City site constitutes the most significant environmental impact, although windblown tailings and external gamma radiation also are factors.

  9. Engineering assessment of inactive uranium mill tailings, Tuba City site, Tuba City, Arizona

    SciTech Connect (OSTI)

    Not Available

    1981-09-01

    Ford, Bacon and Davis Utah Inc. has reevaluated the Tuba City site in order to revise the March 1977 engineering assessment of the problems resulting from the existence of radioactive uranium mill tailings at Tuba City, Arizona. This engineering assessment has included the preparation of topographic maps, the performance of core drillings and radiometric measurements sufficient to determine areas and volumes of tailings and radiation exposures of individuals and nearby populations, the investigations of site hydrology and meteorology, and the evaluation and costing of alternative corrective actions. Radon gas released from the 0.8 million tons of tailings at the Tuba City site constitutes the most significant environmental impact, although windblown tailings and external gamma radiation also are factors.

  10. Weatherization assistance program: Final monitoring report for Arizona; California; the Navajo Nation; Nevada

    SciTech Connect (OSTI)

    Not Available

    1987-07-01

    Stroud, Inc., was awarded a contract by the Department of Energy San Francisco Operations Office (DOE-SAN) to evaluate the weatherization program for selected grantees and subgrantees in Arizona, California, the Navajo Nation, and Nevada. The provisions of the contract specified an initial year and renewable optional periods of two (2) additional years. This report covers the monitoring of grantees and subgrantees for the first option year, or what is the second year of the contract. The first two (2) weeks of the second year's activities were devoted to scheduling the agencies to be monitored. The actual field monitoring began on October 14, 1986, and was completed on May 22, 1987. During this seven-month period, thirty-five (35) agencies were visited and evaluated under this contract.

  11. Arizona Natural Gas Vehicle Fuel Price (Dollars per Thousand Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Vehicle Fuel Price (Dollars per Thousand Cubic Feet) Arizona Natural Gas Vehicle Fuel Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 3.82 3.63 3.57 3.93 3.76 3.45 3.49 4.46 5.28 2000's 5.83 6.76 7.04 5.65 6.57 7.91 9.81 9.40 11.00 14.96 2010's 12.35 7.73 13.19 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release

  12. Control of Springback in Sheet Metal U-bending Through Design Experiment

    SciTech Connect (OSTI)

    Chirita, Bogdan; Brabie, Gheorghe

    2007-05-17

    For the U-bending of sheet metals, springback represents the most important failure mode that is affecting the parts. The purpose of this study was to develop a method for the reduction or the elimination of springback from the designing stage of the forming process. This paper describes a numerical procedure that combines simulation of springback by finite element method with a fractional factorial design and proposes the optimization of the forming parameters and tools geometry for the reduction of springback intensity. At the end of the study we were able to obtain an important improvement of part precision using the parameters predicted by the factorial design.

  13. Bond-bending isomerism of Au2I3-: Competition between covalent bonding and aurophilicity

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Li, Wan -Lu; Liu, Hong -Tao; Jian, Tian; Lopez, Gary V.; Piazza, Zachary A.; Huang, Dao -Ling; Chen, Teng -Teng; Su, Jing; Yang, Ping; Chen, Xin; et al

    2015-10-13

    We report a joint photoelectron spectroscopy and theoretical investigation of the gaseous Au2I3– cluster, which is found to exhibit two types of isomers due to competition between Au–I covalent bonding and Au–Au aurophilic interactions. The covalent bonding favors a bent IAuIAuI– structure with an obtuse Au–I–Au angle (100.7°), while aurophilic interactions pull the two Au atoms much closer, leading to an acutely bent structure (72.0°) with an Au–Au distance of 3.08 Å. The two isomers are separated by a small barrier and are nearly degenerate with the obtuse isomer being slightly more stable. At low temperature, only the obtuse isomermore » is observed; distinct experimental evidence is observed for the co-existence of a combination of isomers with both acute and obtuse bending angles at room temperature. As a result, the two bond-bending isomers of Au2I3– reveal a unique example of one molecule being able to oscillate between different structures as a result of two competing chemical forces.« less

  14. The shape of the DNA minor groove directs binding by the DNA-bending protein Fis

    SciTech Connect (OSTI)

    Stella, Stefano; Cascio, Duilio; Johnson, Reid C.

    2010-06-21

    The bacterial nucleoid-associated protein Fis regulates diverse reactions by bending DNA and through DNA-dependent interactions with other control proteins and enzymes. In addition to dynamic nonspecific binding to DNA, Fis forms stable complexes with DNA segments that share little sequence conservation. Here we report the first crystal structures of Fis bound to high- and low-affinity 27-base-pair DNA sites. These 11 structures reveal that Fis selects targets primarily through indirect recognition mechanisms involving the shape of the minor groove and sequence-dependent induced fits over adjacent major groove interfaces. The DNA shows an overall curvature of {approx}65{sup o}, and the unprecedented close spacing between helix-turn-helix motifs present in the apodimer is accommodated by severe compression of the central minor groove. In silico DNA structure models show that only the roll, twist, and slide parameters are sufficient to reproduce the changes in minor groove widths and recreate the curved Fis-bound DNA structure. Models based on naked DNA structures suggest that Fis initially selects DNA targets with intrinsically narrow minor grooves using the separation between helix-turn-helix motifs in the Fis dimer as a ruler. Then Fis further compresses the minor groove and bends the DNA to generate the bound structure.

  15. Reduction of Beam Emittance of Pep-X Using Quadruple Bend Achromat Cell

    SciTech Connect (OSTI)

    Wang, Min-Huey; Cai, Yunhai; Hettel, Robert; Nosochkov, Yuri; /SLAC

    2009-05-26

    SLAC National Accelerator Laboratory is studying an option of building a high brightness synchrotron light source machine, PEP-X, in the existing PEP-II tunnel [1, 2]. By replacing 6 arcs of FODO cells of PEPII High Energy Ring (HER) with two arcs of DBA and four arcs of TME and installation of 89.3 m long damping wiggler an ultra low beam emittance of 0.14 nm-rad (including intra-beam scattering) at 4.5 GeV is achieved. In this paper we study the possibility to further reduce the beam emittance by releasing the constraint of the dispersion free in the DBA straight. The QBA (Quadruple Bend Achromat) cell is used to replace the DBA. The ratio of outer and inner bending angle is optimized. The dispersion function in the non-dispersion straight is controlled to compromise with lower emittance and beam size at the dispersion straight. An undulator of period length 23 mm, maximum magnetic field of 1.053 T, and total periods of 150 is used to put in the 30 straights to simulate the effects of these IDs on the beam emittance and energy spread. The brightness including all the ID effects is calculated and compared to the original PEP-X design.

  16. Ultrafast dynamics of liquid water: Energy relaxation and transfer processes of the OH stretch and the HOH bend

    SciTech Connect (OSTI)

    Imoto, Sho; Xantheas, Sotiris S.; Saito, Shinji

    2015-08-27

    The vibrational energy relaxation and transfer processes of the OH stretching and the HOH bending vibrations in liquid water are investigated via the theoretical calculation of the pump-probe spectra obtained from non-equilibrium molecular dynamics simulations with the TTM3-F interaction potential. The excitation of the OH stretch induces an instantaneous response of the high frequency librational motions in the 600-1000 cm-1 range. In addition, the excess energy of the OH stretch of a water molecule quickly transfers to the OH stretches of molecules in its first hydration shell with a time constant of ~50 fs, followed by relaxation to the HOH bends of the surrounding molecules with a time constant of 230 fs. The excitation of the HOH bend also results in the ultrafast excitation of the high frequency librational motions. The energy of the excited HOH bend of a water molecule decays, with a time constant of 200 fs, mainly to the relaxation of the HOH bends of its surrounding molecules. The energies of the HOH bends were found to transfer quickly to the intermolecular motions via the coupling with the high frequency librational motions. The excess energy of the OH stretch or the HOH bend relaxes to the high frequency intermolecular librational motions and eventually to the hot ground state with a time scale of ~1 ps via the coupling with the librational and translational motions. The energy relaxation and transfer processes were found to depend on the local hydrogen bonding network; the relaxations of the excess energy of the OH stretch and the HOH bend of four- and five-coordinated molecules are faster than those of a three-coordinated molecule due to the delocalization of the vibrational motions of the former (four- and five-coordinated molecules) compared to those of the later (three-coordinated molecules). The present results highlight the importance of the high frequency intermolecular librational modes in facilitating the ultrafast energy relaxation process in liquid water via their strong nonlinear couplings with the intramolecular OH stretching and HOH bending vibrations. S.S.X. acknowledges the support of the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences. Pacific Northwest National Laboratory (PNNL) is a multiprogram national laboratory operated for DOE by Battelle. The calculation was carried out using the computing resources at the Research Center for Computational Science in Okazaki, Japan.

  17. SiC-CMC-Zircaloy-4 Nuclear Fuel Cladding Performance during 4-Point Tubular Bend Testing

    SciTech Connect (OSTI)

    IJ van Rooyen; WR Lloyd; TL Trowbridge; SR Novascone; KM Wendt; SM Bragg-Sitton

    2013-09-01

    The U.S. Department of Energy Office of Nuclear Energy (DOE NE) established the Light Water Reactor Sustainability (LWRS) program to develop technologies and other solutions to improve the reliability, sustain the safety, and extend the life of current reactors. The Advanced LWR Nuclear Fuel Development Pathway in the LWRS program encompasses strategic research focused on improving reactor core economics and safety margins through the development of an advanced fuel cladding system. Recent investigations of potential options for “accident tolerant” nuclear fuel systems point to the potential benefits of silicon carbide (SiC) cladding. One of the proposed SiC-based fuel cladding designs being investigated incorporates a SiC ceramic matrix composite (CMC) as a structural material supplementing an internal Zircaloy-4 (Zr-4) liner tube, referred to as the hybrid clad design. Characterization of the advanced cladding designs will include a number of out-of-pile (nonnuclear) tests, followed by in-pile irradiation testing of the most promising designs. One of the out-of-pile characterization tests provides measurement of the mechanical properties of the cladding tube using four point bend testing. Although the material properties of the different subsystems (materials) will be determined separately, in this paper we present results of 4-point bending tests performed on fully assembled hybrid cladding tube mock-ups, an assembled Zr-4 cladding tube mock-up as a standard and initial testing results on bare SiC-CMC sleeves to assist in defining design parameters. The hybrid mock-up samples incorporated SiC-CMC sleeves fabricated with 7 polymer impregnation and pyrolysis (PIP) cycles. To provide comparative information; both 1- and 2-ply braided SiC-CMC sleeves were used in this development study. Preliminary stress simulations were performed using the BISON nuclear fuel performance code to show the stress distribution differences for varying lengths between loading points and clad configurations. The 2-ply sleeve samples show a higher bend momentum compared to those of the 1-ply sleeve samples. This is applicable to both the hybrid mock-up and bare SiC-CMC sleeve samples. Comparatively both the 1- and 2-ply hybrid mock-up samples showed a higher bend stiffness and strength compared with the standard Zr-4 mock-up sample. The characterization of the hybrid mock-up samples showed signs of distress and preliminary signs of fraying at the protective Zr-4 sleeve areas for the 1-ply SiC-CMC sleeve. In addition, the microstructure of the SiC matrix near the cracks at the region of highest compressive bending strain shows significant cracking and flaking. The 2-ply SiC-CMC sleeve samples showed a more bonded, cohesive SiC matrix structure. This cracking and fraying causes concern for increased fretting during the actual use of the design. Tomography was proven as a successful tool to identify open porosity during pre-test characterization. Although there is currently insufficient data to make conclusive statements regarding the overall merit of the hybrid cladding design, preliminary characterization of this novel design has been demonstrated.

  18. EA-1878: U.S. Department of Energy Loan Guarantee to Southwestern Solar Power, LLC for the Southwestern Solar Power Project in Palmdale, California, and near Tucson, Arizona

    Broader source: Energy.gov [DOE]

    This EA evaluates the environmental impacts of a proposal to provide a DOE loan guarantee to Solar Power, LLC, for the Southwestern Solar Power Project in Palmdale, California, and near Tucson, Arizona. NOTE: EA has been cancelled.

  19. Molecular origin of the difference in the HOH bend of the IR spectra between liquid water and ice

    SciTech Connect (OSTI)

    Imoto, Sho; Xantheas, Sotiris S.; Saito, Shinji

    2013-02-07

    The intensity of the HOH bend in the IR spectrum of ice is significantly smaller than the corresponding one in liquid water. This difference in the IR intensities of the HOH bend in the two systems is investigated using MD simulations with the flexible, polarizable, ab-initio based TTM3-F model for water, a potential that correctly reproduces the experimentally observed increase of the HOH bend in liquid water and ice from the water monomer value. We have identified two factors that are responsible for the difference in the intensity of the HOH bend in liquid water and ice: (i) the decrease of the intensity of the HOH bend in ice caused by the strong anti-correlation between the permanent dipole moment of a molecule and the induced dipole moment of a neighboring hydrogen bond acceptor molecule and (ii) the weakening of this anti-correlation by the disordered hydrogen bond network in liquid water. The presence of the anti-correlation in ice is further confirmed by ab initio electronic structure calculations of water pentamer clusters extracted from the trajectories of the MD simulations for ice and liquid water.

  20. Combined Effects of Gravity, Bending Moment, Bearing Clearance, and Input Torque on Wind Turbine Planetary Gear Load Sharing: Preprint

    SciTech Connect (OSTI)

    Guo, Y.; Keller, J.; LaCava, W.

    2012-09-01

    This computational work investigates planetary gear load sharing of three-mount suspension wind turbine gearboxes. A three dimensional multibody dynamic model is established, including gravity, bending moments, fluctuating mesh stiffness, nonlinear tooth contact, and bearing clearance. A flexible main shaft, planetary carrier, housing, and gear shafts are modeled using reduced degrees-of-freedom through modal compensation. This drivetrain model is validated against the experimental data of Gearbox Reliability Collaborative for gearbox internal loads. Planet load sharing is a combined effect of gravity, bending moment, bearing clearance, and input torque. Influences of each of these parameters and their combined effects on the resulting planet load sharing are investigated. Bending moments and gravity induce fundamental excitations in the rotating carrier frame, which can increase gearbox internal loads and disturb load sharing. Clearance in carrier bearings reduces the bearing load carrying capacity and thus the bending moment from the rotor can be transmitted into gear meshes. With bearing clearance, the bending moment can cause tooth micropitting and can induce planet bearing fatigue, leading to reduced gearbox life. Planet bearings are susceptible to skidding at low input torque.

  1. Device and method for measuring multi-phase fluid flow in a conduit having an abrupt gradual bend

    DOE Patents [OSTI]

    Ortiz, Marcos German (Idaho Falls, ID)

    1998-01-01

    A system for measuring fluid flow in a conduit having an abrupt bend. The system includes pressure transducers, one disposed in the conduit at the inside of the bend and one or more disposed in the conduit at the outside of the bend but spaced a distance therefrom. The pressure transducers measure the pressure of fluid in the conduit at the locations of the pressure transducers and this information is used by a computational device to calculate fluid flow rate in the conduit. For multi-phase fluid, the density of the fluid is measured by another pair of pressure transducers, one of which is located in the conduit elevationally above the other. The computation device then uses the density measurement along with the fluid pressure measurements, to calculate fluid flow.

  2. Device and method for measuring multi-phase fluid flow in a conduit having an abrupt gradual bend

    DOE Patents [OSTI]

    Ortiz, M.G.

    1998-02-10

    A system is described for measuring fluid flow in a conduit having an abrupt bend. The system includes pressure transducers, one disposed in the conduit at the inside of the bend and one or more disposed in the conduit at the outside of the bend but spaced a distance therefrom. The pressure transducers measure the pressure of fluid in the conduit at the locations of the pressure transducers and this information is used by a computational device to calculate fluid flow rate in the conduit. For multi-phase fluid, the density of the fluid is measured by another pair of pressure transducers, one of which is located in the conduit elevationally above the other. The computation device then uses the density measurement along with the fluid pressure measurements, to calculate fluid flow. 1 fig.

  3. Gila Hot Springs Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid...

  4. Device and method for measuring fluid flow in a conduit having a gradual bend

    DOE Patents [OSTI]

    Ortiz, M.G.; Boucher, T.J.

    1998-11-10

    A system is described for measuring fluid flow in a conduit having a gradual bend or arc, and a straight section. The system includes pressure transducers, one or more disposed in the conduit on the outside of the arc, and one disposed in the conduit in a straight section thereof. The pressure transducers measure the pressure of fluid in the conduit at the locations of the pressure transducers and this information is used by a computational device to calculate fluid flow rate in the conduit. For multi-phase fluid, the density of the fluid is measured by another pair of pressure transducers, one of which is located in the conduit elevationally above the other. The computation device then uses the density measurement along with the fluid pressure measurements, to calculate fluid flow. 1 fig.

  5. Transmission spectra of a double-clad fibre structure under bending

    SciTech Connect (OSTI)

    Zlodeev, I V; Ivanov, Oleg V

    2013-06-30

    We have studied a fibre-optic structure whose operation relies on conversion of core and cladding modes that are coupled across the interface between two fibres differing in refractive index profile. The structure contains a section of an SM630 double-clad, small-core, single-mode fibre inserted between two SMF-28 standard fibres. We have measured the transmission spectrum of the structure when the SM630 fibre was bent and analysed the mode structure of the double-clad fibre and the origin of dips in its transmission spectrum. The resonance dips have been found to shift to longer wavelengths with increasing fibre curvature. We have evaluated the shift as a function of the length of the inserted fibre, its bend direction and the nature of the input fibre. (fiber optics)

  6. Device and method for measuring fluid flow in a conduit having a gradual bend

    DOE Patents [OSTI]

    Ortiz, Marcos German (Idaho Falls, ID); Boucher, Timothy J (Helena, MT)

    1998-01-01

    A system for measuring fluid flow in a conduit having a gradual bend or arc, and a straight section. The system includes pressure transducers, one or more disposed in the conduit on the outside of the arc, and one disposed in the conduit in a straight section thereof. The pressure transducers measure the pressure of fluid in the conduit at the locations of the pressure transducers and this information is used by a computational device to calculate fluid flow rate in the conduit. For multi-phase fluid, the density of the fluid is measured by another pair of pressure transducers, one of which is located in the conduit elevationally above the other. The computation device then uses the density measurement along with the fluid pressure measurements, to calculate fluid flow.

  7. Some new schemes for producing high-accuracy elliptical X-ray mirrors by elastic bending

    SciTech Connect (OSTI)

    Padmore, H.A.; Howells, M.R.; Irick, S.; Renner, T.; Sandler, R.; Koo, Y.-M.

    1996-08-01

    Although x-ray micro-foci can be produced by a variety of diffractive methods, grazing incidence mirrors are the only route to an achromatic focus. In this paper we describe our efforts to produce elliptically shaped mirrors with the very high figure accuracy necessary for producing a micro-focus. The motivation for this work is provided by the need to produce achromatic foci for a range of applications ranging from tunable micro-focus x-ray photoelectron spectroscopy ({mu}-XPS) at soft x-ray energies to micro-focus white beam x-ray diffraction ({mu}-XRD) at hard x-ray energies. We describe the methodology of beam bending, a practical example of a system we have produced for {mu}-XRD, and results demonstrating the production of a surface with micro-radian figure accuracy.

  8. High-Penetration PV Deployment in the Arizona Public Service System, Phase 1 Update: Preprint

    SciTech Connect (OSTI)

    Hambrick, J.; Narang, D.

    2012-06-01

    In an effort to better understand the impacts of high penetrations of photovoltaic generators on distribution systems, Arizona Public Service and its partners have begun work on a multi-year project to develop the tools and knowledge base needed to safely and reliably integrate high penetrations of utility- and residential-scale photovoltaics (PV). Building upon the APS Community Power Project -- Flagstaff Pilot, this project will analyze the impact of PV on a representative feeder in northeast Flagstaff. To quantify and catalog the effects of the estimated 1.3 MW of PV that will be installed on the feeder (both smaller units at homes as well as large, centrally located systems), high-speed weather and electrical data acquisition systems and digital 'smart' meters are being designed and installed to facilitate monitoring and to build and validate comprehensive, high-resolution models of the distribution system. These models will be used to analyze the impacts of the PV on distribution circuit protection systems (including anti-islanding), predict voltage regulation and phase balance issues, and develop volt/var control schemes. This paper continues from a paper presented at the 2011 IEEE PVSC conference that introduces the project and describes some of the preliminary consideration, as well as project plans and early results. This paper gives a status update of the project and presents selected results from Phase 2 of the project. It discusses baseline feeder modeling, load allocation, data acquisition, utility-scale PV integration, preliminary model validation, and plans for future phases.

  9. Engineering assessment of inactive uranium mill tailings: Monument Valley Site, Monument Valley, Arizona

    SciTech Connect (OSTI)

    Not Available

    1981-10-01

    Ford, Bacon and Davis Utah Inc. has reevalated the Monument Valley site in order to revise the March 1977 engineering assessment of the problems resulting from the existence of radioactive uranium mill tailings at Monument Valley, Arizona. This engineering assessment has included the preparation of topographic maps, the performance of core drillings and radiometric measurements sufficient to determine areas and volumes of tailings and radiation exposure of individuals and nearby populations, the investigations of site hydrology and meteorology, and the evaluation and costing of alternative corrective actions. Radon gas released from the 1.1 million tons of tailings at the Monument Valley site constitutes the most significant environmental impact, although windblown tailings and external gamma radiation also are factors. The four alternative actions presented in this engineering assessment range from millsite decontamination with the addition of 3 m of stabilization cover material (Option I), to removal of the tailings to remote disposal sites and decontamination of the tailings site (Options II through IV). Cost estimates for the four options range from about $6,600,000 for stabilization in-place, to about $15,900,000 for disposal at a distance of about 15 mi. Three principal alternatives for reprocessing the Monument Valley tailings were examined: heap leaching; Treatment at an existing mill; and reprocessing at a new conventional mill constructed for tailings reprocessing. The cost of the uranium recovery is economically unattractive.

  10. Site observational work plan for the UMTRA Project site at Monument Valley, Arizona

    SciTech Connect (OSTI)

    1995-09-01

    The site observational work plan (SOWP) for the Monument Valley, Arizona, US Department of Energy (DOE) Uranium Mill Tailings Remedial Action (UMTRA) Project site is one of the first site-specific documents developed to achieve ground water compliance at the site. This SOWP applies information about the Monument Valley site to a regulatory compliance framework that identifies strategies that could be used to meet ground water compliance. The compliance framework was developed in the UMTRA Ground Water programmatic environmental impact statement (DOE, 1995). The DOE`s goal is to implement a cost-effective site strategy that complies with the US Environmental Protection Agency (EPA) ground water standards and protects human health and the environment. The compliance strategy that emerges in the final version of the SOWP will assess potential environmental impacts and provide stakeholder a forum for review and comment. When the compliance strategy is acceptable, it will be detailed in a remedial action plan that will be subject to review by the state and/or tribe and concurrence by the US Nuclear Regulatory Commission (NRC). Information available for the preparation of this SOWP indicates active remediation is the most likely compliance strategy for the Monument Valley site. Additional data are needed to determine the most effective remediation technology.

  11. In-situ scanning electron microscopy study of fracture events during back-end-of-line microbeam bending tests

    SciTech Connect (OSTI)

    Vanstreels, K. Zahedmanesh, H.; Bender, H.; Gonzalez, M.; De Wolf, I.; Lefebvre, J.; Bhowmick, S.

    2014-11-24

    This paper demonstrates the direct observation of crack initiation, crack propagation, and interfacial delamination events during in-situ microbeam bending tests of FIB milled BEOL structures. The elastic modulus and the critical force of fracture of the BEOL beam samples were compared for beams of different length and width.

  12. Reversible Bending Fatigue Test System for Investigating Vibration Integrity of Spent Nuclear Fuel during Transportation

    SciTech Connect (OSTI)

    Wang, Jy-An John; Wang, Hong; Bevard, Bruce Balkcom; Howard, Rob L; Flanagan, Michelle

    2013-01-01

    Transportation packages for spent nuclear fuel (SNF) must meet safety requirements under normal and accident conditions as specified by federal regulations. During transportation, SNF experiences unique conditions and challenges to cladding integrity due to the vibrational and impact loading during road or rail shipment. Oak Ridge National Laboratory (ORNL) has been developing testing capabilities that can be used to improve the understanding of the impacts on SNF integrity due to vibration loading, especially for high burn-up SNF in normal transportation operation conditions. This information can be used to meet the nuclear industry and U.S. Nuclear Regulatory Commission needs in the area of safety and security of spent nuclear fuel storage and transport operations. The ORNL developed test system can perform reversible-bending fatigue testing to evaluate both the static and dynamic mechanical response of SNF rods under simulated loads. The testing apparatus is also designed to meet the challenges of hot-cell operation, including remote installation and detachment of the SNF test specimen, in-situ test specimen deformation measurement, and implementation of a driving system suitable for use in a hot cell. The system contains a U-frame set-up equipped with uniquely designed grip rigs, to protect SNF rod and to ensure valid test results, and use of 3 specially designed LVDTs to obtain the in-situ curvature measurement. A variety of surrogate test rods have been used to develop and calibrate the test system as well as in performing a series of systematic cyclic fatigue tests. The surrogate rods include stainless steel (SS) cladding, SS cladding with cast epoxy, and SS cladding with alumina pellets inserts simulating fuel pellets. Testing to date has shown that the interface bonding between the SS cladding and the alumina pellets has a significant impact on the bending response of the test rods as well as their fatigue strength. The failure behaviors observed from tested surrogate rods provides a fundamental understanding of the underlying failure mechanisms of the SNF surrogate rod under vibration which has not been achieved previously. The newly developed device is scheduled to be installed in the hot-cell in summer 2013 to test high burnup SNF.

  13. VEGETATION COVER ANALYSIS OF HAZARDOUS WASTE SITES IN UTAH AND ARIZONA USING HYPERSPECTRAL REMOTE SENSING

    SciTech Connect (OSTI)

    Serrato, M.; Jungho, I.; Jensen, J.; Jensen, R.; Gladden, J.; Waugh, J.

    2012-01-17

    Remote sensing technology can provide a cost-effective tool for monitoring hazardous waste sites. This study investigated the usability of HyMap airborne hyperspectral remote sensing data (126 bands at 2.3 x 2.3 m spatial resolution) to characterize the vegetation at U.S. Department of Energy uranium processing sites near Monticello, Utah and Monument Valley, Arizona. Grass and shrub species were mixed on an engineered disposal cell cover at the Monticello site while shrub species were dominant in the phytoremediation plantings at the Monument Valley site. The specific objectives of this study were to: (1) estimate leaf-area-index (LAI) of the vegetation using three different methods (i.e., vegetation indices, red-edge positioning (REP), and machine learning regression trees), and (2) map the vegetation cover using machine learning decision trees based on either the scaled reflectance data or mixture tuned matched filtering (MTMF)-derived metrics and vegetation indices. Regression trees resulted in the best calibration performance of LAI estimation (R{sup 2} > 0.80). The use of REPs failed to accurately predict LAI (R{sup 2} < 0.2). The use of the MTMF-derived metrics (matched filter scores and infeasibility) and a range of vegetation indices in decision trees improved the vegetation mapping when compared to the decision tree classification using just the scaled reflectance. Results suggest that hyperspectral imagery are useful for characterizing biophysical characteristics (LAI) and vegetation cover on capped hazardous waste sites. However, it is believed that the vegetation mapping would benefit from the use of 1 higher spatial resolution hyperspectral data due to the small size of many of the vegetation patches (< 1m) found on the sites.

  14. Site observational work plan for the UMTRA Project Site at Tuba City, Arizona

    SciTech Connect (OSTI)

    1994-09-01

    The requirements for ground water compliance for Uranium Mill Tailings Remedial Action (UMTRA) Project sites, including the Tuba City, Arizona, site, are found in the Uranium Mill Tailings Radiation Control Act; Subparts B and C of the U.S. Environmental Protection Agency`s Health and Environmental Protection Standards for Uranium and Thorium Mill Tailings (40 CFR 192 (1994)), and the associated proposed 1987 standards (52 FR 36000). During the surface remedial action, an estimated 1,400,000 cubic yards (yd{sup 3}) (1,100,000 cubic meters [m{sup 3}]) of uranium mill tailings and other contaminated materials were consolidated and stabilized in place in an unlined disposal cell covering 50 acres (20 hectares). The surface remedial action was completed in April 1990. Ground water beneath the Tuba City site was contaminated by subsurface migration of water from uranium ore processing activities. The main source of contaminants was water from the tailings piles that began in 1956 when the mill opened and ended in 1966 when the mill closed. A total of 800,000 tons (725,000 tonnes) of uranium ore were processed onsite over a 10-year period. Two processes were used to refine the ore: an acid leach process and a sodium carbonate alkaline process. Water from these tailings then seeped into the ground and migrated downward to the ground water. The Tuba City site is currently in a post-stabilization, prelicensing status. The preliminary ground water compliance strategy at the Tuba City site is active remediation. The specific technology to be evaluated is in situ bioremediation. This selection was made because of the potential ability of bioremediation to reduce concentrations to lower levels than a conventional extraction system and to minimize disturbance of the water resource.

  15. Site observational work plan for the UMTRA Project site at Tuba City, Arizona

    SciTech Connect (OSTI)

    Not Available

    1994-09-01

    The requirements for ground water compliance for Uranium Mill Tailings Remedial Action (UMTRA) Project sites, including the Tuba City, Arizona, site, are found in the Uranium Mill Tailings Radiation Control Act; Subparts B and C of the U.S. Environmental Protection Agency`s Health and Environmental Protection Standards for Uranium and Thorium Mill Tailings (40 CFR 192 (1994)), and the associated proposed 1987 standards (52 FR 36000). During the surface remedial action, an estimated 1,400,000 cubic yards (yd{sup 3}) (1,100,000 cubic meters [m{sup 3}]) of uranium mill tailings and other contaminated materials were consolidated and stabilized in place in an unlined disposal cell covering 50 acres (20 hectares). The surface remedial action was completed in April 1990. Ground water beneath the Tuba City site was contaminated by subsurface migration of water from uranium ore processing activities. The main source of contaminants was water from the tailings piles that began in 1956 when the mill opened and ended in 1966 when the mill closed. 800,000 tons (725,000 tonnes) of uranium ore were processed onsite over a 10-year period. The wet tailings remaining after processing were placed as a slurry in three piles at the site. Water from these tailings then seeped into the ground and migrated downward to the ground water. The Tuba City site is currently in a post-stabilization, prelicensing status. The site is expected to remain in this status until licensed by the U.S. Nuclear Regulatory Commission (NRC) for long-term surveillance and maintenance. The preliminary ground water compliance strategy at the Tuba City site is active remediation-specific technology to be evaluated is in situ bioremediation. This selection was made because of the potential ability of bioremediation to reduce concentrations to lower levels than a conventional extraction system and to minimize disturbance of the water resource.

  16. Piezoresistive characterization of bottom-up, n-type silicon microwires undergoing bend deformation

    SciTech Connect (OSTI)

    McClarty, Megan M.; Oliver, Derek R. E-mail: Derek.Oliver@umanitoba.ca; Bruce, Jared P.; Freund, Michael S. E-mail: Derek.Oliver@umanitoba.ca

    2015-01-12

    The piezoresistance of silicon has been studied over the past few decades in order to characterize the material's unique electromechanical properties and investigate their wider applicability. While bulk and top-down (etched) micro- and nano-wires have been studied extensively, less work exists regarding bottom-up grown microwires. A facile method is presented for characterizing the piezoresistance of released, phosphorus-doped silicon microwires that have been grown, bottom-up, via a chemical vapour deposition, vapour-liquid-solid process. The method uses conductive tungsten probes to simultaneously make electrical measurements via direct ohmic contact and apply mechanical strain via bend deformation. These microwires display piezoresistive coefficients within an order of magnitude of those expected for bulk n-type silicon; however, they show an anomalous response at degenerate doping concentrations (?10{sup 20?}cm{sup ?3}) when compared to lower doping concentrations (?10{sup 17?}cm{sup ?3}), with a stronger piezoresistive coefficient exhibited for the more highly doped wires. This response is postulated to be due to the different growth mechanism of bottom-up microwires as compared to top-down.

  17. Goos-Hänchen effect and bending of spin wave beams in thin magnetic films

    SciTech Connect (OSTI)

    Gruszecki, P. Krawczyk, M.; Romero-Vivas, J.; Dadoenkova, Yu. S.; Dadoenkova, N. N.; Lyubchanskii, I. L.

    2014-12-15

    For magnon spintronic applications, the detailed knowledge of spin wave (SW) beam dispersion, transmission (reflection) of SWs passing through (reflected from) interfaces, or borders or the scattering of SWs by inhomogeneities is crucial. These wave properties are decisive factors on the usefulness of a particular device. Here, we demonstrate, using micromagnetic simulations supported by an analytical model, that the Goos-Hänchen (GH) shift exists for SW reflecting from thin film edge and that with the effect becomes observable. We show that this effect will exist for a broad range of frequencies in the dipole-exchange range, with the magnetization degree of pinning at the film edge as the crucial parameter, whatever its nature. Moreover, we have also found that the GH effect can be accompanied or even dominating by a bending of the SW beam due to the inhomogeneity of the internal magnetic field. This inhomogeneity, created by demagnetizing field taking place at the film edge, causes gradual change of SWs refractive index. The refraction of the SW beams by the non-uniformity of the magnetic field enables the exploration of graded index magnonics and metamaterial properties for the transmission and processing of information at nanoscale.

  18. Finite element modeling of concentrating solar collectors for evauation of gravity loads, bending, and optical characterization.

    SciTech Connect (OSTI)

    Christian, Joshua M.; Ho, Clifford Kuofei

    2010-04-01

    Understanding the effects of gravity and wind loads on concentrating solar power (CSP) collectors is critical for performance calculations and developing more accurate alignment procedures and techniques. This paper presents a rigorous finite-element model of a parabolic trough collector that is used to determine the impact of gravity loads on bending and displacements of the mirror facets and support structure. The geometry of the LUZ LS-2 parabolic trough collector was modeled using SolidWorks, and gravity-induced loading and displacements were simulated in SolidWorks Simulation. The model of the trough collector was evaluated in two positions: the 90{sup o} position (mirrors facing upward) and the 0{sup o} position (mirrors facing horizontally). The slope errors of the mirror facet reflective surfaces were found by evaluating simulated angular displacements of node-connected segments along the mirror surface. The ideal (undeformed) shape of the mirror was compared to the shape of the deformed mirror after gravity loading. Also, slope errors were obtained by comparing the deformed shapes between the 90{sup o} and 0{sup o} positions. The slope errors resulting from comparison between the deformed vs. undeformed shape were as high as {approx}2 mrad, depending on the location of the mirror facet on the collector. The slope errors resulting from a change in orientation of the trough from the 90{sup o} position to the 0{sup o} position with gravity loading were as high as {approx}3 mrad, depending on the location of the facet.

  19. Fracture behavior of ceramic laminates in bending-I. Modeling of crack propagation

    SciTech Connect (OSTI)

    Phillipps, A.J.; Clegg, W.J.; Clyne, T.W. . Dept. of Materials Science and Metallurgy)

    1993-03-01

    This paper concerns the fracture behavior of specimens made up of ceramic sheets, separated by thin interlayers, which act to deflect cracks and thus to prevent catastrophic failure of the specimen. The treatment is divided into two parts. In this paper, the behavior of this type of material during bending is quantitatively modeled. The model is based on through-thickness cracks propagating when a critical stress is reached and interfacial cracks then advancing a distance dictated by the available energy. The variation in laminae strengths is modeled using a Monte Carlo method to determine the strength of successive laminae for a given Weibull modulus. The model is used to predict load/displacement plots and to explore the effects of changes in loading geometry and specimen variables, including Young's modulus, lamina strength, loading span, interfacial toughness, as well as lamina and sample thickness. A distinction is drawn between the energy actually absorbed in causing complete failure of the specimen as measured from the area under the load/displacement curve, and the amount of energy necessary to cause the crack propagation which occurred. These differ if the energy available to drive the interfacial cracks is more than sufficient for them to reach the ends of the specimen or if energy is dissipated elsewhere in the system. A criterion is derived by which specimens can be designed so as to minimize the difference between these two quantities. The significance of this concept in optimizing the toughness of these laminated materials is briefly discussed.

  20. Bending response of 3-D woven and braided preform composite materials

    SciTech Connect (OSTI)

    Pochiraju, K.; Parvizi-Majidi, A.; Chou, T.W.; Shah, B.

    1994-12-31

    Three dimensional textile carbon-epoxy composites exhibit general anisotropy. Further, these materials may possess different modulus in uniaxial tension than that in compression. In an earlier material characterization effort, the tension, compression, and shear properties of these composites were determined. In this paper, theoretical modeling of flexure of the textile composites and experimental correlation are presented. Four point bending tests were conducted according to STM D709 standards to determine the load to mid-span deflection relationships for typical textile composites. The results of experimental analysis are compared with classical beam theory, theory of elasticity solutions considering material orthotropy and shear deflection, and finite element analysis considering material orthotropy and finite deformation/rotations. The derivation of a harmonic function, required for the theory of elasticity solution, is described in the paper. Homogeneous orthotropic elastic properties are assumed for the 3-D textile composites, which is a reasonable approximation for specimens considerably larger than the repeated geometric unit of the fiber preform. The so called ``flex modulus`` is determined from the experimental data.