National Library of Energy BETA

Sample records for ghz microwave radiometer

  1. ARM: G-band (183 GHz) Vapor Radiometer profiler: 15 microwave brightness temperatures from 170.0 to 183.3 GHz

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Maria Cadeddu

    2008-04-01

    G-band (183 GHz) Vapor Radiometer profiler: 15 microwave brightness temperatures from 170.0 to 183.3 GHz

  2. Empirical Evaluation of Four Microwave Radiative Forward Models Based on Ground-Based Radiometer Data Near 20 and 30 GHz

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Empirical Evaluation of Four Microwave Radiative Forward Models Based on Ground-Based Radiometer Data Near 20 and 30 GHz C. Cimini Centre of Excellence on Atmospheric Modeling and Remote Sensing University of L'Aquila L'Aquila, Italy and Science and Technology Corporation Hampton, Virginia E. R. Westwater Cooperative Institute for Research in Environmental Sciences University of Colorado National Oceanic and Atmospheric Administration Environmental Technology Laboratory Boulder, Colorado S. J.

  3. DRAFT Microwave Radiometer Profiler Handbook

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Microwave Radiometer Profiler Handbook Evaluation of a New Multi-Frequency Microwave Radiometer for Measuring the Vertical Distribution of Temperature, Water Vapor, and Cloud Liquid Water Prepared by James C. Liljegren Environmental Research Division Argonne National Laboratory December 4, 2002 For the DOE Atmospheric Radiation Measurement (ARM) Program 2 Table of Contents Abstract

  4. ARM - Field Campaign - Microwave Radiometer Profiler Evaluation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govCampaignsMicrowave Radiometer Profiler Evaluation ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Campaign : Microwave Radiometer Profiler Evaluation 2000.09.01 - 2001.03.31 Lead Scientist : James Liljegren For data sets, see below. Abstract The microwave radiometer profiler (MWRP) is a new 12-channel radiometer developed by Radiometrics Corporation for measuring vertical profiles of temperature, water vapor, and

  5. Microwave Radiometer-High Frequency (MWRHF) Handbook

    SciTech Connect (OSTI)

    Caddedu, MP

    2011-03-17

    The 90/150-GHz Vapor Radiometer provides time-series measurements of brightness temperatures from two channels centered at 90 and 150 GHz. These two channels are sensitive to the presence of liquid water and precipitable water vapor.

  6. Microwave Radiometer – 3 Channel (MWR3C) Handbook

    SciTech Connect (OSTI)

    Cadeddu, MP

    2012-05-04

    The microwave radiometer 3-channel (MWR3C) provides time-series measurements of brightness temperatures from three channels centered at 23.834, 30, and 89 GHz. These three channels are sensitive to the presence of liquid water and precipitable water vapor.

  7. Ground-Based Microwave Radiometer Measurements

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ground-Based Microwave Radiometer Measurements and Radiosonde Comparisons During the WVIOP2000 Field Experiment D. Cimini University of L'Aquila L'Aquil, Italy E. R. Westwater Cooperative Institute for Research in the Environmental Sciences University of Colorado National Oceanic and Atmospheric Administration Environmental Technology Laboratory Boulder, Colorado Y. Han Science System Applications National Aeronautics Space Administration Goddard Space Flight Center Greenbelt, Maryland S. Keihm

  8. ARM: Microwave Radiometer data (MWR Profiles - QME), water vapor, temp, cloud liquid water, precip water retrievals

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Maria Cadeddu

    2004-02-19

    Microwave Radiometer data (MWR Profiles - QME), water vapor, temp, cloud liquid water, precip water retrievals

  9. ARM: Microwave Radiometer data (MWR Profiles - QME), water vapor, temp, cloud liquid water, precip water retrievals

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Maria Cadeddu

    Microwave Radiometer data (MWR Profiles - QME), water vapor, temp, cloud liquid water, precip water retrievals

  10. MEASUREMENTS AND RETRIEVALS FROM A NEW 183-GHz WATER VAPOR RADIOMETER IN

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    THE ARCTIC MEASUREMENTS AND RETRIEVALS FROM A NEW 183-GHz WATER VAPOR RADIOMETER IN THE ARCTIC Cadeddu, Maria Argonne National Laboratory Category: Instruments A new G-band (183 GHz) vapor radiometer (GVR), developed and built by Prosensing Inc. (http://www.prosensing.com), was deployed in Barrow, Alaska, in April 2005. The radiometer was deployed as part of the ongoing Atmospheric Radiation Measurement (ARM) program's effort to improve water vapor retrievals in the cold, dry Arctic

  11. ARM - Field Campaign - Long-Term Microwave Radiometer Intercomparison

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govCampaignsLong-Term Microwave Radiometer Intercomparison ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Campaign : Long-Term Microwave Radiometer Intercomparison 2001.04.01 - 2001.09.30 Lead Scientist : Richard Cederwall For data sets, see below. Summary Make the spare MWR operational. Ingest data from the spare MWR. Input the output data of the spare MWR and ingest to VAP. Provide data to IOP participants.

  12. Improved Retrievals of Temperature and Water Vapor Profiles Using a Twelve-Channel Microwave Radiometer

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Retrievals of Temperature and Water Vapor Profiles Using a Twelve-Channel Microwave Radiometer J. C. Liljegren Environmental Research Division Argonne National Laboratory Argonne, Illinois Introduction Radiometrics Corporation has developed a twelve-channel microwave radiometer capable of providing continuous, real-time vertical profiles of temperature, water vapor, and limited-resolution cloud liquid water from the surface to 10 km in nearly all weather conditions (Solheim et al. 1998a). Since

  13. 140 GHz pulsed Fourier transform microwave spectrometer

    DOE Patents [OSTI]

    Kolbe, W.F.; Leskovar, B.

    1985-07-29

    A high frequency energy pulsing system suitable for use in a pulsed microwave spectrometer, including means for generating a high frequency carrier signal, and means for generating a low frequency modulating signal. The carrier signal is continuously fed to a modulator and the modulating signal is fed through a pulse switch to the modulator. When the pulse switch is on, the modulator will produce sideband signals above and below the carrier signal frequency. A frequency-responsive device is tuned to one of the sideband signals and sway from the carrier frequency so that the high frequency energization of the frequency-responsive device is controlled by the pulse switch.

  14. 140 GHz pulsed fourier transform microwave spectrometer

    DOE Patents [OSTI]

    Kolbe, William F.; Leskovar, Branko

    1987-01-01

    A high frequency energy pulsing system suitable for use in a pulsed microwave spectrometer (10), including means (11, 19) for generating a high frequency carrier signal, and means (12) for generating a low frequency modulating signal. The carrier signal is continuously fed to a modulator (20) and the modulating signal is fed through a pulse switch (23) to the modulator. When the pulse switch (23) is on, the modulator (20) will produce sideband signals above and below the carrier signal frequency. A frequency-responsive device (31) is tuned to one of the sideband signals and away from the carrier frequency so that the high frequency energization of the frequency-responsive device (31) is controlled by the pulse switch (23).

  15. 140 GHz pulsed Fourier transform microwave spectrometer

    DOE Patents [OSTI]

    Kolbe, W.F.; Leskovar, B.

    1987-10-27

    A high frequency energy pulsing system suitable for use in a pulsed microwave spectrometer, including means for generating a high frequency carrier signal, and means for generating a low frequency modulating signal is disclosed. The carrier signal is continuously fed to a modulator and the modulating signal is fed through a pulse switch to the modulator. When the pulse switch is on, the modulator will produce sideband signals above and below the carrier signal frequency. A frequency-responsive device is tuned to one of the sideband signals and away from the carrier frequency so that the high frequency energization of the frequency-responsive device is controlled by the pulse switch. 5 figs.

  16. Measurements of the cosmic microwave background temperature at 1.47 GHz

    SciTech Connect (OSTI)

    Bensadoun, M.J.

    1991-11-01

    A radiofrequency-gain total power radiometer measured the intensity of the cosmic microwave background (CMB) at a frequency of 1.47 GHz (20.4 cm wavelength) from White Mountain, California, in September 1988 and from the South Pole, Antarctica, in December 1989. The CMB thermodynamic temperature, TCMB, is 2.27 {plus_minus} 0.25 K (68% C.L.) measured from White Mountain and 2.26 {plus_minus} 0.21 K from the South Pole site. The combined result is 2.27 {plus_minus} 0.19 K. The correction for galactic emission has been derived from scaled low-frequency maps and constitutes the main source, of error. The atmospheric signal is found by extrapolation from zenith scan measurements at higher frequencies. The result is consistent with previous low-frequency measurements, including a measurement at 1.41 GHz (Levin et al. 1988) made with an earlier version of this instrument. The result is {approximately}2.5 {sigma} ({approximately}l% probability) from the 2.74 {plus_minus} 0.02,K global average CMB temperature.

  17. Measurements of the cosmic microwave background temperature at 1. 47 GHz

    SciTech Connect (OSTI)

    Bensadoun, M.J.

    1991-11-01

    A radiofrequency-gain total power radiometer measured the intensity of the cosmic microwave background (CMB) at a frequency of 1.47 GHz (20.4 cm wavelength) from White Mountain, California, in September 1988 and from the South Pole, Antarctica, in December 1989. The CMB thermodynamic temperature, TCMB, is 2.27 {plus minus} 0.25 K (68% C.L.) measured from White Mountain and 2.26 {plus minus} 0.21 K from the South Pole site. The combined result is 2.27 {plus minus} 0.19 K. The correction for galactic emission has been derived from scaled low-frequency maps and constitutes the main source, of error. The atmospheric signal is found by extrapolation from zenith scan measurements at higher frequencies. The result is consistent with previous low-frequency measurements, including a measurement at 1.41 GHz (Levin et al. 1988) made with an earlier version of this instrument. The result is {approximately}2.5 {sigma} ({approximately}l% probability) from the 2.74 {plus minus} 0.02,K global average CMB temperature.

  18. ARM - Midlatitude Continental Convective Clouds Microwave Radiometer Profiler (jensen-mwr)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Jensen, Mike

    2012-02-01

    A major component of the Mid-latitude Continental Convective Clouds Experiment (MC3E) field campaign was the deployment of an enhanced radiosonde array designed to capture the vertical profile of atmospheric state variables (pressure, temperature, humidity wind speed and wind direction) for the purpose of deriving the large-scale forcing for use in modeling studies. The radiosonde array included six sites (enhanced Central Facility [CF-1] plus five new sites) launching radiosondes at 3-6 hour sampling intervals. The network will cover an area of approximately (300)2 km2 with five outer sounding launch sites and one central launch location. The five outer sounding launch sites are: S01 Pratt, KS [ 37.7oN, 98.75oW]; S02 Chanute, KS [37.674, 95.488]; S03 Vici, Oklahoma [36.071, -99.204]; S04 Morris, Oklahoma [35.687, -95.856]; and S05 Purcell, Oklahoma [34.985, -97.522]. Soundings from the SGP Central Facility during MC3E can be retrieved from the regular ARM archive. During routine MC3E operations 4 radiosondes were launched from each of these sites (approx. 0130, 0730, 1330 and 1930 UTC). On days that were forecast to be convective up to four additional launches were launched at each site (approx. 0430, 1030, 1630, 2230 UTC). There were a total of approximately 14 of these high frequency launch days over the course of the experiment. These files contain brightness temperatures observed at Purcell during MC3E. The measurements were made with a 5 channel (22.235, 23.035, 23.835, 26.235, 30.000GHz) microwave radiometer at one minute intervals. The results have been separated into daily files and the day of observations is indicated in the file name. All observations were zenith pointing. Included in the files are the time variables base_time and time_offset. These follow the ARM time conventions. Base_time is the number seconds since January 1, 1970 at 00:00:00 for the first data point of the file and time_offset is the offset in seconds from base_time.

  19. Processing aersols and filaments in a TM sub 010 microwave cavity at 2. 45 GHz

    SciTech Connect (OSTI)

    Vogt, G.J.; Unruh, W.P.

    1992-01-01

    As part of the development of generic microwave processes for spray-drying of homogeneous complex metal oxide powders and for inorganic fiber processing, we have investigated the use of 2.45 GHz microwaves in a high-Q single-mode TM{sub 010} cavity coupled directly to aerosols and fibers. Aqueous and ethanol aerosols of ferric nitrate solutions have been successfully dried at 1.8 kW of cavity power for a loaded Q greater than 6000 in flowing nitrogen gas. Similarly, we have observed extremely rapid heating rates in the TM{sub 010} cavity for small-diameter confined cylinders of water and lossy inorganic fibers. These observations suggest using 2.45 GHz microwave power for drying, calcining, and sintering extruded ceramic filaments. Droplet modeling indicates that the large dielectric shielding for spherical droplets can significantly limit the coupling of 2.45 GHz microwave with spherical aerosols, but not with fibers. Experimental observations on the microwave interactions with ferric nitrate aerosols and with ceramic filaments in the TM{sub 010} cavity are described.

  20. Correlation function analysis of the COBE differential microwave radiometer sky maps

    SciTech Connect (OSTI)

    Lineweaver, C.H.

    1994-08-01

    The Differential Microwave Radiometer (DMR) aboard the COBE satellite has detected anisotropies in the cosmic microwave background (CMB) radiation. A two-point correlation function analysis which helped lead to this discovery is presented in detail. The results of a correlation function analysis of the two year DMR data set is presented. The first and second year data sets are compared and found to be reasonably consistent. The positive correlation for separation angles less than {approximately}20{degree} is robust to Galactic latitude cuts and is very stable from year to year. The Galactic latitude cut independence of the correlation function is strong evidence that the signal is not Galactic in origin. The statistical significance of the structure seen in the correlation function of the first, second and two year maps is respectively > 9{sigma}, > 10{sigma} and > 18{sigma} above the noise. The noise in the DMR sky maps is correlated at a low level. The structure of the pixel temperature covariance matrix is given. The noise covariance matrix of a DMR sky map is diagonal to an accuracy of better than 1%. For a given sky pixel, the dominant noise covariance occurs with the ring of pixels at an angular separation of 60{degree} due to the 60{degree} separation of the DMR horns. The mean covariance of 60{degree} is 0.45%{sub {minus}0.14}{sup +0.18} of the mean variance. The noise properties of the DMR maps are thus well approximated by the noise properties of maps made by a single-beam experiment. Previously published DMR results are not significantly affected by correlated noise.

  1. Monitoring of Precipitable Water Vapor and Cloud Liquid Path from Scanning Microwave Radiometers During the 2003 Cloudiness Inter-Comparison Experiment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Monitoring of Precipitable Water Vapor and Cloud Liquid Path from Scanning Microwave Radiometers During the 2003 Cloudiness Inter-Comparison Experiment V. Mattioli Department of Electronic and Information Engineering University of Perugia Perugia, Italy E. R. Westwater Cooperative Institute for Research in Environmental Sciences University of Colorado National Oceanic and Atmospheric Administration Environmental Technology Laboratory Boulder, Colorado V. Morris Pacific Northwest National

  2. Development of a simple 2.45 GHz microwave plasma with a repulsive double hexapole configuration

    SciTech Connect (OSTI)

    Arciaga, Marko; Ulano, April; Lee, Henry Jr.; Lledo, Rumar; Ramos, Henry; Tumlos, Roy

    2008-09-15

    A simple and inexpensive 2.45 GHz microwave plasma source with a repulsive double hexapole configuration is described and characterized. In this work, the operation of the source is shown to be flexible in terms of electron density, electron temperature, and plasma uniformity even at low-pressures (approximately millitorr). It allows for easy control of the electron temperature (2-3.8 eV) and density ({approx}10{sup 9}-10{sup 10} cm{sup -3}) by removing either of the two hexapoles or by varying the separation distance between the two hexapoles. Characterization was done via information gathered from the usual Langmuir probe measurements for electron temperature and density. The source makes a resonant surface with its repulsive double hexapole magnetic configuration providing an additional longitudinal confinement near the walls midway between the two hexapoles. Magnetic field maps are presented for varying double hexapole distances. Power delivery for various settings is also presented.

  3. Processing aersols and filaments in a TM{sub 010} microwave cavity at 2.45 GHz

    SciTech Connect (OSTI)

    Vogt, G.J.; Unruh, W.P.

    1992-05-01

    As part of the development of generic microwave processes for spray-drying of homogeneous complex metal oxide powders and for inorganic fiber processing, we have investigated the use of 2.45 GHz microwaves in a high-Q single-mode TM{sub 010} cavity coupled directly to aerosols and fibers. Aqueous and ethanol aerosols of ferric nitrate solutions have been successfully dried at 1.8 kW of cavity power for a loaded Q greater than 6000 in flowing nitrogen gas. Similarly, we have observed extremely rapid heating rates in the TM{sub 010} cavity for small-diameter confined cylinders of water and lossy inorganic fibers. These observations suggest using 2.45 GHz microwave power for drying, calcining, and sintering extruded ceramic filaments. Droplet modeling indicates that the large dielectric shielding for spherical droplets can significantly limit the coupling of 2.45 GHz microwave with spherical aerosols, but not with fibers. Experimental observations on the microwave interactions with ferric nitrate aerosols and with ceramic filaments in the TM{sub 010} cavity are described.

  4. G-Band Vapor Radiometer Profiler (GVRP) Handbook

    SciTech Connect (OSTI)

    Caddeau, MP

    2010-06-23

    The G-Band Vapor Radiometer Profiler (GVRP) provides time-series measurements of brightness temperatures from 15 channels between 170 and 183.310 GHz. Atmospheric emission in this spectral region is primarily due to water vapor, with some influence from liquid water. Channels between 170.0 and 176.0 GHz are particularly sensitive to the presence of liquid water. The sensitivity to water vapor of the 183.31-GHz line is approximately 30 times higher than at the frequencies of the two-channel microwave radiometer (MWR) for a precipitable water vapor (PWV) amount of less than 2.5 mm. Measurements from the GVRP instrument are therefore especially useful during low-humidity conditions (PWV < 5 mm). In addition to integrated water vapor and liquid water, the GVRP can provide low-resolution vertical profiles of water vapor in very dry conditions.

  5. On the relationship among cloud turbulence, droplet formation and drizzle as viewed by Doppler radar, microwave radiometer and lidar

    SciTech Connect (OSTI)

    Feingold, G.; Frisch, A.S.; Cotton, W.R.

    1999-09-01

    Cloud radar, microwave radiometer, and lidar remote sensing data acquired during the Atlantic Stratocumulus Transition Experiment (ASTEX) are analyzed to address the relationship between (1) drop number concentration and cloud turbulence as represented by vertical velocity and vertical velocity variance and (2) drizzle formation and cloud turbulence. Six cases, each of about 12 hours duration, are examined; three of these cases are characteristic of nondrizzling boundary layers and three of drizzling boundary layers. In all cases, microphysical retrievals are only performed when drizzle is negligible (radar reflectivity{lt}{minus}17dBZ). It is shown that for the cases examined, there is, in general, no correlation between drop concentration and cloud base updraft strength, although for two of the nondrizzling cases exhibiting more classical stratocumulus features, these two parameters are correlated. On drizzling days, drop concentration and cloud-base vertical velocity were either not correlated or negatively correlated. There is a significant positive correlation between drop concentration and mean in-cloud vertical velocity variance for both nondrizzling boundary layers (correlation coefficient r=0.45) and boundary layers that have experienced drizzle (r=0.38). In general, there is a high correlation (r{gt}0.5) between radar reflectivity and in-cloud vertical velocity variance, although one of the boundary layers that experienced drizzle exhibited a negative correlation between these parameters. However, in the subcloud region, all boundary layers that experienced drizzle exhibit a negative correlation between radar reflectivity and vertical velocity variance. {copyright} 1999 American Geophysical Union

  6. MWRRET Value-Added Product: The Retrieval of Liquid Water Path and Precipitable Water Vapor from Microwave Radiometer (MWR) Data Sets (Revision 2)

    SciTech Connect (OSTI)

    Gaustad, KL; Turner, DD; McFarlane, SA

    2011-07-25

    This report provides a short description of the Atmospheric Radiation Measurement (ARM) Climate Research Facility microwave radiometer (MWR) Retrieval (MWRRET) value-added product (VAP) algorithm. This algorithm utilizes a complementary physical retrieval method and applies brightness temperature offsets to reduce spurious liquid water path (LWP) bias in clear skies resulting in significantly improved precipitable water vapor (PWV) and LWP retrievals. We present a general overview of the technique, input parameters, output products, and describe data quality checks. A more complete discussion of the theory and results is given in Turner et al. (2007b).

  7. Use of a TM sub 010 microwave cavity at 2. 45 GHz for aerosol and filament drying

    SciTech Connect (OSTI)

    Christiansen, D.E.; Unruh, W.P.

    1991-01-01

    As part of the development of a generic spray-drying process for aerosol preparation of homogeneous powders of complex metal oxide systems, we have investigated the use of 2.45 GHz power in a high-Q single-mode TM{sub 010} cavity coupled directly to aerosols of aqueous solutions. Partial success was attained with a concentrated solution of ferric nitrate. Although all particulates showed drying, only a few percent of the particles were fully dried prior to collection. The cavity operated at a power level just below that sufficient to cause electric field breakdown in the carrier gas (dry nitrogen). The large inherent dielectric shielding of the spherical droplets makes it difficult to couple enough power into an aerosol at 2.45 GHz to overcome the heat loss from individual droplets to the surrounding gas and achieve full particulate drying. The calculated and measured dielectric shielding of a thin cylinder of water aligned with the cavity electric field is very much smaller. We have produced heating rates in water {approximately}600 times more rapid than could be achieved with aerosols. This suggests using 2.45 GHz microwave power for drying extruded filaments and then calcining those dried filaments to ceramic fiber. 3 refs., 4 figs.

  8. MWRRET (Microwave Radiometer Retrievals)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    - - 3:00 3:00 Vetting & Integration Vetting & Integration Best Estimate Best Estimate * * MWR cloud prop., Flux closure, Microphysics MWR cloud prop., Flux closure, Microphysics...

  9. A cloud detection algorithm using the downwelling infrared radiance measured by an infrared pyrometer of the ground-based microwave radiometer

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Ahn, M. H.; Han, D.; Won, H. Y.; Morris, Victor R.

    2015-02-03

    For better utilization of the ground-based microwave radiometer, it is important to detect the cloud presence in the measured data. Here, we introduce a simple and fast cloud detection algorithm by using the optical characteristics of the clouds in the infrared atmospheric window region. The new algorithm utilizes the brightness temperature (Tb) measured by an infrared radiometer installed on top of a microwave radiometer. The two-step algorithm consists of a spectral test followed by a temporal test. The measured Tb is first compared with a predicted clear-sky Tb obtained by an empirical formula as a function of surface air temperaturemore » and water vapor pressure. For the temporal test, the temporal variability of the measured Tb during one minute compares with a dynamic threshold value, representing the variability of clear-sky conditions. It is designated as cloud-free data only when both the spectral and temporal tests confirm cloud-free data. Overall, most of the thick and uniform clouds are successfully detected by the spectral test, while the broken and fast-varying clouds are detected by the temporal test. The algorithm is validated by comparison with the collocated ceilometer data for six months, from January to June 2013. The overall proportion of correctness is about 88.3% and the probability of detection is 90.8%, which are comparable with or better than those of previous similar approaches. Two thirds of discrepancies occur when the new algorithm detects clouds while the ceilometer does not, resulting in different values of the probability of detection with different cloud-base altitude, 93.8, 90.3, and 82.8% for low, mid, and high clouds, respectively. Finally, due to the characteristics of the spectral range, the new algorithm is found to be insensitive to the presence of inversion layers.« less

  10. A cloud detection algorithm using the downwelling infrared radiance measured by an infrared pyrometer of the ground-based microwave radiometer

    SciTech Connect (OSTI)

    Ahn, M. H.; Han, D.; Won, H. Y.; Morris, Victor R.

    2015-02-03

    For better utilization of the ground-based microwave radiometer, it is important to detect the cloud presence in the measured data. Here, we introduce a simple and fast cloud detection algorithm by using the optical characteristics of the clouds in the infrared atmospheric window region. The new algorithm utilizes the brightness temperature (Tb) measured by an infrared radiometer installed on top of a microwave radiometer. The two-step algorithm consists of a spectral test followed by a temporal test. The measured Tb is first compared with a predicted clear-sky Tb obtained by an empirical formula as a function of surface air temperature and water vapor pressure. For the temporal test, the temporal variability of the measured Tb during one minute compares with a dynamic threshold value, representing the variability of clear-sky conditions. It is designated as cloud-free data only when both the spectral and temporal tests confirm cloud-free data. Overall, most of the thick and uniform clouds are successfully detected by the spectral test, while the broken and fast-varying clouds are detected by the temporal test. The algorithm is validated by comparison with the collocated ceilometer data for six months, from January to June 2013. The overall proportion of correctness is about 88.3% and the probability of detection is 90.8%, which are comparable with or better than those of previous similar approaches. Two thirds of discrepancies occur when the new algorithm detects clouds while the ceilometer does not, resulting in different values of the probability of detection with different cloud-base altitude, 93.8, 90.3, and 82.8% for low, mid, and high clouds, respectively. Finally, due to the characteristics of the spectral range, the new algorithm is found to be insensitive to the presence of inversion layers.

  11. High-Power Plasma Switch for 11.4 GHz Microwave Pulse Compressor

    SciTech Connect (OSTI)

    Jay L. Hirshfield

    2010-03-04

    Results obtained in several experiments on active RF pulse compression at X-band using a magnicon as the high-power RF source are presented. In these experiments, microwave energy was stored in high-Q TE01 and TE02 modes of two parallel-fed resonators, and then discharged using switches activated with rapidly fired plasma discharge tubes. Designs and high-power tests of several versions of the compressor are described. In these experiments, coherent pulse superposition was demonstrated at a 59 MW level of incident power. The compressed pulses observed had powers of 5070 MW and durations of 4070 ns. Peak power gains were measured to be in the range of 7:111:1 with efficiency in the range of 5063%.

  12. Influence of microwave driver coupling design on plasma density at Testbench for Ion sources Plasma Studies, a 2.45 GHz Electron Cyclotron Resonance Plasma Reactor

    SciTech Connect (OSTI)

    Mega-Macas, A.; Vizcano-de-Julin, A.; Cortzar, O. D.

    2014-03-15

    A comparative study of two microwave driver systems (preliminary and optimized) for a 2.45 GHz hydrogen Electron Cyclotron Resonance plasma generator has been conducted. The influence on plasma behavior and parameters of stationary electric field distribution in vacuum, i.e., just before breakdown, along all the microwave excitation system is analyzed. 3D simulations of resonant stationary electric field distributions, 2D simulations of external magnetic field mapping, experimental measurements of incoming and reflected power, and electron temperature and density along the plasma chamber axis have been carried out. By using these tools, an optimized set of plasma chamber and microwave coupler has been designed paying special attention to the optimization of stationary electric field value in the center of the plasma chamber. This system shows a strong stability on plasma behavior allowing a wider range of operational parameters and even sustaining low density plasma formation without external magnetic field. In addition, the optimized system shows the capability to produce values of plasma density four times higher than the preliminary as a consequence of a deeper penetration of the magnetic resonance surface in relative high electric field zone by keeping plasma stability. The increment of the amount of resonance surface embedded in the plasma under high electric field is suggested as a key factor.

  13. Broadband radiometer

    DOE Patents [OSTI]

    Cannon, T.W.

    1994-07-26

    A broadband radiometer is disclosed including (a) an optical integrating sphere having generally spherical integrating chamber and an entry port for receiving light (e.g., having visible and ultraviolet fractions), (b) a first optical radiation detector for receiving light from the sphere and producing an electrical output signal corresponding to broadband radiation, (c) a second optical radiation detector for receiving light from the sphere and producing an electrical output signal corresponding to a predetermined wavelength fraction of the broadband radiation, and (d) an output for producing an electrical signal which is proportional to the difference between the two electrical output signals. The radiometer is very useful, for example, in measuring the absolute amount of ultraviolet light present in a given light sample. 8 figs.

  14. Radiometer Characterization System

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2 Radiometer Characterization System The new Radiometer Characterization System (RCS) installed on the Guest Instrument Facility mezzanine (Figure 1) at the SGP central facility will permit side-by-side evaluations of several new and modified broadband radiometers and comparisons with radiometers currently in use. If the new designs or modifications give substantially more accurate measurements, ARM scientists might elect to replace or modify the existing broadband radiometers. The RCS will also

  15. Radiometer Calibration and Characterization

    Energy Science and Technology Software Center (OSTI)

    1994-12-31

    The Radiometer Calibration and Characterization (RCC) software is a data acquisition and data archival system for performing Broadband Outdoor Radiometer Calibrations (BORCAL). RCC provides a unique method of calibrating solar radiometers using techniques that reduce measurement uncertainty and better characterize a radiometer’s response profile. The RCC software automatically monitors and controls many of the components that contribute to uncertainty in an instrument’s responsivity.

  16. CW/Pulsed H{sup ?} ion beam generation with PKU Cs-free 2.45 GHz microwave driven ion source

    SciTech Connect (OSTI)

    Peng, S. X. Ren, H. T.; Xu, Y.; Zhang, T.; Zhang, J. F.; Zhao, J.; Guo, Z. Y.; Zhang, A. L.; Chen, J. E.

    2015-04-08

    Circular accelerators used for positron emission tomography (PET, i.e. accelerator used for make radio isotopes) need several mA of CW H- ion beam for their routine operation. Other facilities, like Space Radio-Environment Simulate Assembly (SPRESA), require less than 10?mA pulsed mode H{sup ?} beam. Caesium free negative hydrogen ion source is a good choice for those facilities because of its compact structure, easy operation and low cost. Up to now, there is no H{sup ?} source able to produce very intense H{sup ?} beams with important variation of the duty factor{sup [1]}. Recently, a new version of 2.45?GHz microwave H{sup ?} ion source was designed at PKU, based on lessons learnt from the previous one. This non cesiated source is very compact thanks to its permanent magnet configuration. Special attention was paid on the design of the discharge chamber structure, electron dumping and extraction system. Source test to produce H{sup ?} ion beams in pulsed and CW mode was carried out on PKU ion source test bench. In CW mode, a 10.8?mA/30keV H{sup ?} beam with rms emittance about 0.16 ?mmmrad has been obtained with only 500?W rf power. The power efficiency reaches 21?mA/kW. In pulsed mode with duty factor of 10% (100Hz/1ms), this compact source can easily deliver 20?mA H{sup ?} ion beam at 35 keV with rms emittance about 0.2 ?mmmrad when RF power is set at 2.2 kW (peak power). Several hour successive running operation in both modes and totaling more than 200 hours proves its high quality. The outside dimension of this new H{sup ?} source body is ?116?mm 124?mm, and the entire H{sup ?} source infrastructure, including rf matching section, plasma chamber and extraction system, is ?310 180?mm. The high voltage region is limited with in a ?310?mm 230?mm diagram. Details are given in this paper.

  17. Radiometer Calibration Trends

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Radiometer Calibration Trends S. M. Wilcox, T. L. Stoffel, and D. R. Myers National Renewable Energy Laboratory Golden, Colorado Abstract Calibrations of Atmospheric Radiation Measurement (ARM) broadband radiometers occur on an annual schedule, made necessary by an expected drift of instrument sensitivity and the possibility of other physical or environmental factors affecting sensitivity. The Southern Great Plains (SGP), Tropical Western Pacific (TWP), and North Slope of Alaska (NSA) field

  18. ARM - Field Campaign - Microwave Radiometer Profiler Evaluation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    vapor, and low-resolution cloud liquid water. It was deployed at the Blackwell-Tonkawa airport, northeast of the ARM SGP central facility, from 25 February through 22 March 2000,...

  19. Microwave and Millimeter-Wave Radiometric Studies of Temperature, Water Vapor and Clouds

    SciTech Connect (OSTI)

    Westwater, Edgeworth

    2011-05-06

    The importance of accurate measurements of column amounts of water vapor and cloud liquid has been well documented by scientists within the Atmospheric Radiation Measurement (ARM) Program. At the North Slope of Alaska (NSA), both microwave radiometers (MWR) and the MWRProfiler (MWRP), been used operationally by ARM for passive retrievals of the quantities: Precipitable Water Vapor (PWV) and Liquid Water Path (LWP). However, it has been convincingly shown that these instruments are inadequate to measure low amounts of PWV and LWP. In the case of water vapor, this is especially important during the Arctic winter, when PWV is frequently less than 2 mm. For low amounts of LWP (< 50 g/m{sup 2}), the MWR and MWRP retrievals have an accuracy that is also not acceptable. To address some of these needs, in March-April 2004, NOAA and ARM conducted the NSA Arctic Winter Radiometric Experiment - Water Vapor Intensive Operational Period at the ARM NSA/Adjacent Arctic Ocean (NSA/AAO) site. After this experiment, the radiometer group at NOAA moved to the Center for Environmental Technology (CET) of the Department of Electrical and Computer Engineering of the University of Colorado at Boulder. During this 2004 experiment, a total of 220 radiosondes were launched, and radiometric data from 22.235 to 380 GHz were obtained. Primary instruments included the ARM MWR and MWRP, a Global Positioning System (GPS), as well as the CET Ground-based Scanning Radiometer (GSR). We have analyzed data from these instruments to answer several questions of importance to ARM, including: (a) techniques for improved water vapor measurements; (b) improved calibration techniques during cloudy conditions; (c) the spectral response of radiometers to a variety of conditions: clear, liquid, ice, and mixed phase clouds; and (d) forward modeling of microwave and millimeter wave brightness temperatures from 22 to 380 GHz. Many of these results have been published in the open literature. During the third year of this contract, we participated in another ARM-sponsored experiment at the NSA during February-March 2007. This experiment is called the Radiative Heating in Underexplored Bands Campaign (RHUBC) and the GSR was operated successfully for the duration of the campaign. One of the principal goals of the experiment was to provide retrievals of water vapor during PWV amounts less than 2 mm and to compare GSR data with ARM radiometers and radiosondes. A secondary goal was to compare the radiometric response of the microwave and millimeter wavelength radiometers to water and ice clouds. In this final report, we will include the separate progress reports for each of the three years of the project and follow with a section on major accomplishments of the project.

  20. Stable radiometal antibody immunoconjugates

    DOE Patents [OSTI]

    Mease, R.C.; Srivastava, S.C.; Gestin, J.F.

    1994-08-02

    The present invention relates to new rigid chelating structures, to methods for preparing these materials, and to their use in preparing radiometal labeled immunoconjugates. These new chelates include cyclohexyl EDTA monohydride, the trans forms of cyclohexyl DTPA and TTHA, and derivatives of these cyclohexyl polyaminocarboxylate materials. No Drawings

  1. Stable radiometal antibody immunoconjugates

    DOE Patents [OSTI]

    Mease, Ronnie C. (Coram, NY); Srivastava, Suresh C. (Setauket, NY); Gestin, Jean-Francois (Oudon, FR)

    1994-01-01

    The present invention relates to new rigid chelating structures, to methods for preparing these materials, and to their use in preparing radiometal labeled immunoconjugates. These new chelates include cyclohexyl EDTA monohydride, the trans forms of cyclohexyl DTPA and TTHA, and derivatives of these cyclohexyl polyaminocarboxylate materials.

  2. Characterization and calibration of 8-channel E-band heterodyne radiometer system for SST-1 tokamak

    SciTech Connect (OSTI)

    Siju, Varsha; Kumar, Dharmendra; Shukla, Praveena; Pathak, S. K. [Institute for Plasma Research, Bhat, Gandhinagar, Gujarat 382428 (India)] [Institute for Plasma Research, Bhat, Gandhinagar, Gujarat 382428 (India)

    2014-05-15

    An 8-channel E-band heterodyne radiometer system (7486 GHz) is designed, characterized, and calibrated to measure the radial electron temperature profile by measuring Electron Cyclotron Emission spectrum at SST-1 Tokamak. The developed radiometer has a noise equivalent temperature of 1 eV and sensitivity of 5 10{sup 9} V/W. In order to precisely measure the absolute value of electron temperature, a calibration measurement of the radiometer system is performed using hot-cold Dicke switch method, which confirms the system linearity.

  3. G-Band Vapor Radiometer Precipitable Water Vapor (GVRPWV) Value-Added Product

    SciTech Connect (OSTI)

    Koontz, A; Cadeddu, M

    2012-12-05

    The G-Band Vapor Radiometer Precipitable Water Vapor (GVRPWV) value-added product (VAP) computes precipitable water vapor using neural network techniques from data measured by the GVR. The GVR reports time-series measurements of brightness temperatures for four channels located at 183.3 ± 1, 3, 7, and 14 GHz.

  4. Broadband Outdoor Radiometer Callibration Process for the Atmospheric...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Broadband Outdoor Radiometer Calibration Process for the Atmospheric Radiation Measurement ... Broadband Outdoor Radiometer Calibration Process for the Atmospheric Radiation Measurement ...

  5. NREL: MIDC/ARM Radiometer Characterization System (36.606 N, 97.486 W, 320

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    m, GMT-6) ARM Radiometer Characterization System

  6. Microwave detector

    DOE Patents [OSTI]

    Meldner, H.W.; Cusson, R.Y.; Johnson, R.M.

    1985-02-08

    A microwave detector is provided for measuring the envelope shape of a microwave pulse comprised of high-frequency oscillations. A biased ferrite produces a magnetization field flux that links a B-dot loop. The magnetic field of the microwave pulse participates in the formation of the magnetization field flux. High-frequency insensitive means are provided for measuring electric voltage or current induced in the B-dot loop. The recorded output of the detector is proportional to the time derivative of the square of the envelope shape of the microwave pulse.

  7. Scientists Train Electrons with Microwaves

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Scientists Train Electrons with Microwaves

  8. Mobile system for microwave removal of concrete surfaces

    DOE Patents [OSTI]

    White, T.L.; Bigelow, T.S.; Schaich, C.R.; Foster, D. Jr.

    1997-06-03

    A method and apparatus are disclosed for the microwave removal of contaminated concrete surfaces. The apparatus comprises a housing adapted to pass over a support surface. The housing includes a waveguide for directing microwave energy to the surface at an angle maximizing absorption of microwave energy by the surface. The apparatus is further provided with a source of microwave energy operably associated with the waveguide, wherein the microwave energy has a frequency of between about 10.6 GHz and about 24 GHz and acts to remove the uppermost layer from the surface. The apparatus further includes a debris containment assembly comprising a vacuum assembly operably associated with the housing. The vacuum assembly is adapted to remove debris from the area adjacent the surface. 7 figs.

  9. Mobile system for microwave removal of concrete surfaces

    DOE Patents [OSTI]

    White, Terry L. (Oak Ridge, TN); Bigelow, Timothy S. (Knoxville, TN); Schaich, Charles R. (Lenoir City, TN); Foster, Jr., Don (Knoxville, TN)

    1997-01-01

    A method and apparatus for the microwave removal of contaminated concrete surfaces. The apparatus comprises a housing adapted to pass over a support surface. The housing includes a waveguide for directing microwave energy to the surface at an angle maximizing absorption of microwave energy by the surface. The apparatus is further provided with a source of microwave energy operably associated with the waveguide, wherein the microwave energy has a frequency of between about 10.6 GHz and about 24 GHz and acts to remove the uppermost layer from the surface. The apparatus further includes a debris containment assembly comprising a vacuum assembly operably associated with the housing. The vacuum assembly is adapted to remove debris from the area adjacent the surface.

  10. A 1-V series-array Josephson voltage standard operated at 35 GHz

    SciTech Connect (OSTI)

    Mueller, F.; Koehler, H.; Weber, P.; Bluethner, K.; Meyer, H. )

    1990-11-01

    Josephson voltage standards utilize microwave-induced constant voltage steps in the dc characteristic of Josephson tunnel junctions. This paper describes the design and operation of array circuits with 108 and 2000 junctions connected in series. In contrast with similar realizations, simple {ital Q}-band equipment is used for the microwave supply. The microwave attenuation of 1000 junctions was about 1 dB. The version with 2000 junctions generated Josephson voltages up to 1.2 V when operated at 35 GHz. The stability times of the quantized levels were, under normal laboratory conditions (unshielded room), better than 10 min.

  11. Microsoft PowerPoint - turner_mwr_150_ghz_continuum_adjustment.ppt [Kompatibilitätsmodus]

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Water Vapor Continuum in Modifications to the Water Vapor Continuum in the Microwave Suggested by Ground-based 150 GHz Observations 150 GHz Observations D T 1 M i C d dd 2 Dave Turner 1 , Maria Cadeddu 2 , Ulrich Löhnert 3 , Susanne Crewell 3 , Andy Vogelmann 4 Andy Vogelmann 1 Space Science and Engineering Center, University of Wisconsin - Madison 2 Argonne National Laboratory 2 Argonne National Laboratory 3 Institute for Geophysics and Meteorology, University of Cologne 4 Brookhaven National

  12. Cosmic Microwave Background

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Cosmic Microwave Background Cosmic Microwave Background CMB.jpg The Cosmic Microwave Background (CMB) is relic radiation from a very early stage in the universe -- essentially a...

  13. Microwave generator

    DOE Patents [OSTI]

    Kwan, T.J.T.; Snell, C.M.

    1987-03-31

    A microwave generator is provided for generating microwaves substantially from virtual cathode oscillation. Electrons are emitted from a cathode and accelerated to an anode which is spaced apart from the cathode. The anode has an annular slit there through effective to form the virtual cathode. The anode is at least one range thickness relative to electrons reflecting from the virtual cathode. A magnet is provided to produce an optimum magnetic field having the field strength effective to form an annular beam from the emitted electrons in substantial alignment with the annular anode slit. The magnetic field, however, does permit the reflected electrons to axially diverge from the annular beam. The reflected electrons are absorbed by the anode in returning to the real cathode, such that substantially no reflexing electrons occur. The resulting microwaves are produced with a single dominant mode and are substantially monochromatic relative to conventional virtual cathode microwave generators. 6 figs.

  14. A new radiometer for earth radiation budget studies

    SciTech Connect (OSTI)

    Weber, P.G.

    1992-05-01

    A critical need for the US Global Change Research Program is to provide continuous, well-calibrated radiometric data for radiation balance studies. This paper describes a new, compact, relatively light-weight, adaptable radiometer which will provide both spectrally integrated measurements and data in selected spectral bands. The radiometer design is suitable for use on (small) satellites, aircraft, or Unmanned Aerospace Vehicles (UAVs). Some considerations for the implementation of this radiometer on a small satellite are given. 17 refs.

  15. A new radiometer for earth radiation budget studies

    SciTech Connect (OSTI)

    Weber, P.G.

    1992-01-01

    A critical need for the US Global Change Research Program is to provide continuous, well-calibrated radiometric data for radiation balance studies. This paper describes a new, compact, relatively light-weight, adaptable radiometer which will provide both spectrally integrated measurements and data in selected spectral bands. The radiometer design is suitable for use on (small) satellites, aircraft, or Unmanned Aerospace Vehicles (UAVs). Some considerations for the implementation of this radiometer on a small satellite are given. 17 refs.

  16. Clamshell microwave cavities having a superconductive coating

    DOE Patents [OSTI]

    Cooke, D. Wayne (Los Alamos, NM); Arendt, Paul N. (Los Alamos, NM); Piel, Helmut (Wuppertal, DE)

    1994-01-01

    A microwave cavity including a pair of opposing clamshell halves, such halves comprised of a metal selected from the group consisting of silver, copper, or a silver-based alloy, wherein the cavity is further characterized as exhibiting a dominant TE.sub.011 mode is provided together with an embodiment wherein the interior concave surfaces of the clamshell halves are coated with a superconductive material. In the case of copper clamshell halves, the microwave cavity has a Q-value of about 1.2.times.10.sup.5 as measured at a temperature of 10K and a frequency of 10 GHz.

  17. Microwave furnace having microwave compatible dilatometer

    DOE Patents [OSTI]

    Kimrey, H.D. Jr.; Janney, M.A.; Ferber, M.K.

    1992-03-24

    An apparatus for measuring and monitoring a change in the dimension of a sample being heated by microwave energy is described. The apparatus comprises a microwave heating device for heating a sample by microwave energy, a microwave compatible dilatometer for measuring and monitoring a change in the dimension of the sample being heated by microwave energy without leaking microwaves out of the microwave heating device, and a temperature determination device for measuring and monitoring the temperature of the sample being heated by microwave energy. 2 figs.

  18. Microwave furnace having microwave compatible dilatometer

    DOE Patents [OSTI]

    Kimrey, Jr., Harold D. (Knoxville, TN); Janney, Mark A. (Knoxville, TN); Ferber, Mattison K. (Oak Ridge, TN)

    1992-01-01

    An apparatus for measuring and monitoring a change in the dimension of a sample being heated by microwave energy is described. The apparatus comprises a microwave heating device for heating a sample by microwave energy, a microwave compatible dilatometer for measuring and monitoring a change in the dimension of the sample being heated by microwave energy without leaking microwaves out of the microwave heating device, and a temperature determination device for measuring and monitoring the temperature of the sample being heated by microwave energy.

  19. Ground-based Microwave Cloud Tomography

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Microwave Cloud Tomography Experiment, SGP, May 15-June 15, 2009 Lead Scientist Dong Huang, BNL Co-Investigators Al Gasiewski, UC Boulder Maria Cadeddu, ANL Warren Wiscombe, BNL Radiation Processes Working Group March 30, 2009 multiple radiometers All good cloud radiation modelers should close their airplane window shades so as not to be corrupted by the spectacle of real 3D clouds. - Roger Davies In case you forget to do this, you see 3/30/2009 ARM RPWG 2 Effects of cloud structure on radiation

  20. Microfluidic Radiometal Labeling Systems for Biomolecules

    SciTech Connect (OSTI)

    Reichert, D E; Kenis, P J. A.

    2011-12-29

    In a typical labeling procedure with radiometals, such as Cu-64 and Ga-68; a very large (~ 100-fold) excess of the non-radioactive reactant (precursor) is used to promote rapid and efficient incorporation of the radioisotope into the PET imaging agent. In order to achieve high specific activities, careful control of reaction conditions and extensive chromatographic purifications are required in order to separate the labeled compounds from the cold precursors. Here we propose a microfluidic approach to overcome these problems, and achieve high specific activities in a more convenient, semi-automated fashion and faster time frame. Microfluidic reactors, consisting of a network of micron-sized channels (typical dimensions in the range 10 â?? 300 ?¼m), filters, separation columns, electrodes and reaction loops/chambers etched onto a solid substrate, are now emerging as an extremely useful technology for the intensification and miniaturization of chemical processes. The ability to manipulate, process and analyze reagent concentrations and reaction interfaces in both space and time within the channel network of a microreactor provides the fine level of reaction control that is desirable in PET radiochemistry practice. These factors can bring radiometal labeling, specifically the preparation of radio-labeled biomolecules such as antibodies, much closer to their theoretical maximum specific activities.

  1. Using indium tin oxide material to implement the imaging of microwave plasma ignition process

    SciTech Connect (OSTI)

    Wang, Qiang; Hou, Lingyun; Zhang, Guixin Zhang, Boya; Liu, Cheng; Wang, Zhi; Huang, Jian

    2014-02-17

    In this paper, a method is introduced to get global observation of microwave plasma ignition process at high pressure. A microwave resonator was designed with an indium tin oxide coated glass at bottom. Microwave plasma ignition was implemented in methane and air mixture at 10 bars by a 2?ms-3?kW-2.45?GHz microwave pulse, and the high speed images of the ignition process were obtained. The images visually proved that microwave plasma ignition could lead to a multi-point ignition. The system may also be applied to obtain Schlieren images, which is commonly used to observe the development of flame kernel in an ignition process.

  2. GVR (G-Band Vapor Radiometer) M.P. Cadeddu and J.C. Liljegren...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    MWR status M.P. Cadeddu New radiometers New radiometers ECO-00664 (MWR procurement) open Specifications have been written and submitted Draft of specifications sent to vendors last...

  3. Cloud Optical Properties from the Multifilter Shadowband Radiometer (MFRSRCLDOD): An ARM Value-Added Product

    SciTech Connect (OSTI)

    Turner, DD; McFarlane, SA; Riihimaki, L; Shi, Y; Lo, C; Min, Q

    2014-02-01

    The microphysical properties of clouds play an important role in studies of global climate change. Observations from satellites and surface-based systems have been used to infer cloud optical depth and effective radius. Min and Harrison (1996) developed an inversion method to infer the optical depth of liquid water clouds from narrow band spectral Multifilter Rotating Shadowband Radiometer (MFRSR) measurements (Harrison et al. 1994). Their retrieval also uses the total liquid water path (LWP) measured by a microwave radiometer (MWR) to obtain the effective radius of the warm cloud droplets. Their results were compared with Geostationary Operational Environmental Satellite (GOES) retrieved values at the Atmospheric Radiation Measurement (ARM) Southern Great Plains (SGP) site (Min and Harrison 1996). Min et al. (2003) also validated the retrieved cloud optical properties against in situ observations, showing that the retrieved cloud effective radius agreed well with the in situ forward scattering spectrometer probe observations. The retrieved cloud optical properties from Min et al. (2003) were used also as inputs to an atmospheric shortwave model, and the computed fluxes were compared with surface pyranometer observations.

  4. ARM: Broadband Radiometer Station (BRS) broadband shortwave and longwave 1-min radiation data with Dutton correction

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Laura Riihimaki

    1993-09-01

    Broadband Radiometer Station (BRS) broadband shortwave and longwave 1-min radiation data with Dutton correction

  5. ARM: Broadband Radiometer Station (BRS) broadband shortwave and longwave 1-min radiation data with Dutton correction

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Laura Riihimaki

    Broadband Radiometer Station (BRS) broadband shortwave and longwave 1-min radiation data with Dutton correction

  6. ARM - Field Campaign - Thin Cloud Rotating Shadowband Radiometer

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Thin Cloud Rotating Shadowband Radiometer 2008.01.08 - 2008.07.18 Lead Scientist : Mary Jane Bartholomew For data sets, see below. Abstract The Thin-Cloud Rotating Shadowband...

  7. Multifilter Rotating Shadowband Radiometer (MFRSR) Handbook

    SciTech Connect (OSTI)

    Hodges, GB; Michalsky, JJ

    2011-02-07

    The visible Multifilter Rotating Shadowband Radiometer (MFRSR) is a passive instrument that measures global and diffuse components of solar irradiance at six narrowband channels and one open, or broadband, channel (Harrison et al. 1994). Direct irradiance is not a primary measurement, but is calculated using the diffuse and global measurements. To collect one data record, the MFRSR takes measurements at four different shadowband positions. The first measurement is taken with the shadowband in the nadir (home) position. The next three measurements are, in order, the first side-band, sun-blocked, and second side-band. The side-band measurements are used to correct for the portion of the sky obscured by the shadowband. The nominal wavelengths of the narrowband channels are 415, 500, 615, 673, 870, and 940 nm. From such measurements, one may infer the atmosphere's aerosol optical depth at each wavelength. In turn, these optical depths may be used to derive information about the column abundances of ozone and water vapor (Michalsky et al. 1995), as well as aerosol (Harrison and Michalsky 1994) and other atmospheric constituents.

  8. A device for microwave sintering large ceramic articles

    DOE Patents [OSTI]

    Kimrey, H.D. Jr.

    1987-07-24

    A microwave sintering system is provided for uniform sintering of large and/or irregular shapes ceramic articles at microwave frequencies of at least 28 GHz in the hundreds of kilowatts power range in an untuned cavity. A 28 GHz, 200 kw gyrotron with variable power output is used as the microwave source connected to an untuned microwave cavity formed of an electrically conductive housing. The part to be sintered is placed in the cavity and supported on a removable high temperature table in a central location within the cavity. The part is surrounded by a microwave transparent bulk insulating material to reduce thermal heat loss at the part surfaces and maintain more uniform temperature. The cavity may be operated at a high vacuum to aid in preventing arcing. The system allows controlled increased heating rates of greater than 200/degree/C/min to provide rapid heating of a ceramic part to a selected sintering temperature where it is maintained by regulating the microwave power applied to the part. As a result of rapid heating, the extent on non-isothermal processes such as segregation of impurities to the grain boundaries are minimized and exaggerated grain growth is reduced, thereby strengthening the mechanical properties of the ceramic part being sintered. 1 fig.

  9. Microwave energy for post-calcination treatment of high-level nuclear wastes

    SciTech Connect (OSTI)

    Gombert, D.; Priebe, S.J.; Berreth, J.R.

    1980-01-01

    High-level radioactive wastes generated from nuclear fuel reprocessing require treatment for effective long-term storage. Heating by microwave energy is explored in processing of two possible waste forms: (1) drying of a pelleted form of calcined waste; and (2) vitrification of calcined waste. It is shown that residence times for these processes can be greatly reduced when using microwave energy rather than conventional heating sources, without affecting product properties. Compounds in the waste and in the glass frit additives couple very well with the 2.45 GHz microwave field so that no special microwave absorbers are necessary.

  10. Active radiometer for self-calibrated furnace temperature measurements

    DOE Patents [OSTI]

    Woskov, Paul P.; Cohn, Daniel R.; Titus, Charles H.; Wittle, J. Kenneth; Surma, Jeffrey E.

    1996-01-01

    Radiometer with a probe beam superimposed on its field-of-view for furnace temperature measurements. The radiometer includes a heterodyne millimeter/submillimeter-wave receiver including a millimeter/submillimeter-wave source for probing. The receiver is adapted to receive radiation from a surface whose temperature is to be measured. The radiation includes a surface emission portion and a surface reflection portion which includes the probe beam energy reflected from the surface. The surface emission portion is related to the surface temperature and the surface reflection portion is related to the emissivity of the surface. The simultaneous measurement of surface emissivity serves as a real time calibration of the temperature measurement.

  11. Experimental characterization of edge force on the Crookes radiometer

    SciTech Connect (OSTI)

    Ventura, Austin L.; Ketsdever, Andrew D.; Gimelshein, Natalia E.; Gimelshein, Sergey F.

    2014-12-09

    The contribution of edge force on the Crookes radiometer is experimentally investigated with three vane geometries. This work examines increasing the force per unit weight of a radiometer vane for applications such as near-space propulsion by increasing the vanes perimeter while decreasing the total surface area of the vane by means of machined holes in the vanes. Experimental results are given for three vane geometries. These results indicate that although force to vane weight ratios can be improved, the maximum force is achieved by a vane geometry that contains no hole features.

  12. Improvement of microwave feeding on a large bore ECRIS with permanent magnets by using coaxial semi-dipole antenna

    SciTech Connect (OSTI)

    Kurisu, Yosuke; Sakamoto, Naoki; Kiriyama, Ryutaro; Takenaka, Tomoya; Nozaki, Dai; Yano, Keisuke; Sato, Fuminobu; Kato, Yushi; Iida, Toshiyuki

    2012-11-06

    We are constructing a tandem type electron cyclotron resonance (ECR) ion source (ECRIS). The first stage of this ECRIS has a large-bore with cylindrically comb-shaped permanent magnets. 2.45GHz and 11-13GHz microwaves can be supplied individually and simultaneously to the plasma chamber. For 2.45GHz, a coaxial semi-dipole antenna is used to feed the microwaves. In previous experiments, there were two problems encountered when running the 2.45GHz microwaves. High incident power was necessary to keep ECR discharge at low operating pressure because of high reflected microwave power. The surface of a support insulator between the inner and the outer electrodes of coaxial semi-dipole antenna was easily metalized by sputtering of the metal wall inside the chamber. The purpose of this study was to solve these problems. Performing several simulation experiments supports the hypothesis that the position of the support insulator is significant for microwave power efficiency. The end result was the ability to sustain ECR discharges at extremely low incident microwave power, several tens of watts, by optimized matching of the position and shape of the insulator.

  13. Status report on the 11.424{endash}GHz magnicon amplifier

    SciTech Connect (OSTI)

    Gold, S.H.; Fliflet, A.W. [Beam Physics Branch, Plasma Physics Division, Naval Research Laboratory, Washington, District of Columbia 20375-5346 (United States); Yakovlev, V.P.; Hirshfield, J.L. [Omega-P, Inc., 202008 Yale Station, New Haven, Connecticut 06520 (United States)] Kinkead, A.K. [Sachs/Freeman Associates, Inc., Landover, Maryland 20785 (United States)] Kozyrev, E.V. [Budker Institute of Nuclear Physics, Novosibirsk, (Russia) 630090; Hansen, R.J. [Litton Systems, Inc., Electron Devices Division, San Carlos, California 94070 (United States)

    1999-05-01

    Progress is reported on the development of an 11.424{endash}GHz magnicon amplifier. The magnicon electron gun has been characterized, a new set of microwave cavities designed and engineered, and simulations of magnicon operation carried out based on the predicted properties of the electron beam. The tube will be assembled for initial operation in December 1998, following the completion of a set of measurements of the electron beam. The predicted power is {approximately}60 MW at 60{percent} efficiency. {copyright} {ital 1999 American Institute of Physics.}

  14. Status report on the 11. 424[endash]GHz magnicon amplifier

    SciTech Connect (OSTI)

    Gold, S.H.; Fliflet, A.W. (Beam Physics Branch, Plasma Physics Division, Naval Research Laboratory, Washington, District of Columbia 20375-5346 (United States)); Yakovlev, V.P.; Hirshfield, J.L. (Omega-P, Inc., 202008 Yale Station, New Haven, Connecticut 06520 (United States)) Kinkead, A.K. (Sachs/Freeman Associates, Inc., Landover, Maryland 20785 (United States)) Kozyrev, E.V. (Budker Institute of Nuclear Physics, Novosibirsk, (Russia) 630090); Hansen, R.J. (Litton Systems, Inc., Electron Devices Division, San Carlos, California 94070 (United States))

    1999-05-01

    Progress is reported on the development of an 11.424[endash]GHz magnicon amplifier. The magnicon electron gun has been characterized, a new set of microwave cavities designed and engineered, and simulations of magnicon operation carried out based on the predicted properties of the electron beam. The tube will be assembled for initial operation in December 1998, following the completion of a set of measurements of the electron beam. The predicted power is [approximately]60 MW at 60[percent] efficiency. [copyright] [ital 1999 American Institute of Physics.

  15. High power pulsed magnicon at 34-GHz

    SciTech Connect (OSTI)

    Nezhevenko, O.A.; Yakovlev, V.P.; Ganguly, A.K.; Hirshfield, J.L. [Omega-P Inc., 202008 Yale Station, New Haven, Connecticut 06520 (United States)

    1999-05-01

    A high efficiency, high power magnicon amplifier at 34.272 GHz has been designed as a radiation source to drive multi-TeV electron-positron linear colliders. Simulations show peak output power of 45 MW in a 1.5 microsecond wide pulse with an efficiency of 45{percent} and gain of 55 dB. The repetition rate is 10 Hz. The amplifier is a frequency tripler, or third harmonic amplifier, in that the output frequency of 34.272 GHz is three times the input drive frequency of 11.424 GHz. Thus the rotating TM{sub 110} modes in the drive cavity, 3 gain cavities and double decoupled penultimate cavities are resonant near 11.424 GHz; and the rotating TM{sub 310} mode in the output cavity is resonant at 34.272 GHz. A 500 kV, 200 A high area compression electron gun will provide a low emittance electron beam with a diameter of about 0.8 mm. A superconducting solenoid magnet will provide a magnetic field of 13 kG in the deflection system and 22 kG in the output cavity. A collector for the spent beam has also been designed. Detailed simulation results for the operation of the entire magnicon amplifier (gun, magnetic system, rf system and collector) will be given. {copyright} {ital 1999 American Institute of Physics.}

  16. Measurement of Boundary-Layer Temperature Profiles by a Scanning 5-MM Radiometer During the 1999 Winter NSA/AAO Radiometer Exp

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Boundary-Layer Temperature Profiles by a Scanning 5-MM Radiometer During the 1999 Winter NSA/AAO Radiometer Experiment and WVIOP 2000 V. Y. Leuski and E. R. Westwater Cooperative Institute for Research in the Environmental Sciences National Oceanic and Atmospheric Administration Environmental Technology Laboratory University of Colorado Boulder, Colorado Introduction A scanning 5-mm-wavelength radiometer was deployed during two Intensive Operational Periods (IOPs) at the Atmospheric Radiation

  17. High brightness microwave lamp

    DOE Patents [OSTI]

    Kirkpatrick, Douglas A.; Dolan, James T.; MacLennan, Donald A.; Turner, Brian P.; Simpson, James E.

    2003-09-09

    An electrodeless microwave discharge lamp includes a source of microwave energy, a microwave cavity, a structure configured to transmit the microwave energy from the source to the microwave cavity, a bulb disposed within the microwave cavity, the bulb including a discharge forming fill which emits light when excited by the microwave energy, and a reflector disposed within the microwave cavity, wherein the reflector defines a reflective cavity which encompasses the bulb within its volume and has an inside surface area which is sufficiently less than an inside surface area of the microwave cavity. A portion of the reflector may define a light emitting aperture which extends from a position closely spaced to the bulb to a light transmissive end of the microwave cavity. Preferably, at least a portion of the reflector is spaced from a wall of the microwave cavity. The lamp may be substantially sealed from environmental contamination. The cavity may include a dielectric material is a sufficient amount to require a reduction in the size of the cavity to support the desired resonant mode.

  18. Evaluation of Radiometers Deployed at the National Renewable Energy Laboratory's Solar Radiation Research Laboratory

    SciTech Connect (OSTI)

    Habte, A.; Wilcox, S.; Stoffel, T.

    2014-02-01

    This study analyzes the performance of various commercially available radiometers used for measuring global horizontal irradiances and direct normal irradiances. These include pyranometers, pyrheliometers, rotating shadowband radiometers, and a pyranometer with fixed internal shading and are all deployed at the National Renewable Energy Laboratory's Solar Radiation Research Laboratory. Data from 32 global horizontal irradiance and 19 direct normal irradiance radiometers are presented. The radiometers in this study were deployed for one year (from April 1, 2011, through March 31, 2012) and compared to measurements from radiometers with the lowest values of estimated measurement uncertainties for producing reference global horizontal irradiances and direct normal irradiances.

  19. Microwave hemorrhagic stroke detector

    DOE Patents [OSTI]

    Haddad, Waleed S. (Dublin, CA); Trebes, James E. (Livermore, CA)

    2007-06-05

    The microwave hemorrhagic stroke detector includes a low power pulsed microwave transmitter with a broad-band antenna for producing a directional beam of microwaves, an index of refraction matching cap placed over the patients head, and an array of broad-band microwave receivers with collection antennae. The system of microwave transmitter and receivers are scanned around, and can also be positioned up and down the axis of the patients head. The microwave hemorrhagic stroke detector is a completely non-invasive device designed to detect and localize blood pooling and clots or to measure blood flow within the head or body. The device is based on low power pulsed microwave technology combined with specialized antennas and tomographic methods. The system can be used for rapid, non-invasive detection of blood pooling such as occurs with hemorrhagic stoke in human or animal patients as well as for the detection of hemorrhage within a patient's body.

  20. Microwave hemorrhagic stroke detector

    DOE Patents [OSTI]

    Haddad, Waleed S. (Dublin, CA); Trebes, James E. (Livermore, CA)

    2002-01-01

    The microwave hemorrhagic stroke detector includes a low power pulsed microwave transmitter with a broad-band antenna for producing a directional beam of microwaves, an index of refraction matching cap placed over the patients head, and an array of broad-band microwave receivers with collection antennae. The system of microwave transmitter and receivers are scanned around, and can also be positioned up and down the axis of the patients head. The microwave hemorrhagic stroke detector is a completely non-invasive device designed to detect and localize blood pooling and clots or to measure blood flow within the head or body. The device is based on low power pulsed microwave technology combined with specialized antennas and tomographic methods. The system can be used for rapid, non-invasive detection of blood pooling such as occurs with hemorrhagic stroke in human or animal patients as well as for the detection of hemorrhage within a patient's body.

  1. 17 GHz High Gradient Accelerator Research

    SciTech Connect (OSTI)

    Temkin, Richard J.; Shapiro, Michael A.

    2013-07-10

    This is a report on the MIT High Gradient Accelerator Research program which has included: Operation of the 17 GHz, 25 MeV MIT/Haimson Research Corp. electron accelerator at MIT, the highest frequency, stand-alone accelerator in the world; collaboration with members of the US High Gradient Collaboration, including the design and test of novel structures at SLAC at 11.4 GHz; the design, construction and testing of photonic bandgap structures, including metallic and dielectric structures; the investigation of the wakefields in novel structures; and the training of the next generation of graduate students and postdoctoral associates in accelerator physics.

  2. Stable microwave coaxial cavity plasma system at atmospheric pressure

    SciTech Connect (OSTI)

    Song, H. [Department of Electrical and Computer Engineering, University of Colorado, Colorado Springs, Colorado 80918 (United States); Hong, J. M.; Lee, K. H. [Plasma Systems and Materials (PSM) Inc., Sungnam-Si, Gyonggi-Do 190-1 (Korea, Republic of); Choi, J. J. [Department of Radio Science and Engineering, Kwangwoon University, Nowon-Gu, Seoul 447-1 (Korea, Republic of)

    2008-05-15

    We present a systematic study of the development of a novel atmospheric microwave plasma system for material processing in the pressure range up to 760 torr and the microwave input power up to 6 kW. Atmospheric microwave plasma was reliably produced and sustained by using a cylindrical resonator with the TM{sub 011} cavity mode. The applicator and the microwave cavity, which is a cylindrical resonator, are carefully designed and optimized with the time dependent finite element Maxwell equation solver. The azimuthal apertures are placed at the maximum magnetic field positions between the cavity and the applicator to maximize the coupling efficiency into the microwave plasma at a resonant frequency of 2.45 GHz. The system consists of a magnetron power supply, a circulator, a directional coupler, a three-stub tuner, a dummy load, a coaxial cavity, and a central cavity. Design and construction of the resonant structures and diagnostics of atmospheric plasma using optical experiments are discussed in various ranges of pressure and microwave input power for different types of gases.

  3. Active radiometer for self-calibrated furnace temperature measurements

    DOE Patents [OSTI]

    Woskov, P.P.; Cohn, D.R.; Titus, C.H.; Wittle, J.K.; Surma, J.E.

    1996-11-12

    A radiometer is described with a probe beam superimposed on its field-of-view for furnace temperature measurements. The radiometer includes a heterodyne millimeter/submillimeter-wave receiver including a millimeter/submillimeter-wave source for probing. The receiver is adapted to receive radiation from a surface whose temperature is to be measured. The radiation includes a surface emission portion and a surface reflection portion which includes the probe beam energy reflected from the surface. The surface emission portion is related to the surface temperature and the surface reflection portion is related to the emissivity of the surface. The simultaneous measurement of surface emissivity serves as a real time calibration of the temperature measurement. 5 figs.

  4. Quantitative Analysis of Spectral Impacts on Silicon Photodiode Radiometers

    SciTech Connect (OSTI)

    Myers, D. R.

    2011-01-01

    Inexpensive broadband pyranometers with silicon photodiode detectors have a non-uniform spectral response over the spectral range of 300-1100 nm. The response region includes only about 70% to 75% of the total energy in the terrestrial solar spectral distribution from 300 nm to 4000 nm. The solar spectrum constantly changes with solar position and atmospheric conditions. Relative spectral distributions of diffuse hemispherical irradiance sky radiation and total global hemispherical irradiance are drastically different. This analysis convolves a typical photodiode response with SMARTS 2.9.5 spectral model spectra for different sites and atmospheric conditions. Differences in solar component spectra lead to differences on the order of 2% in global hemispherical and 5% or more in diffuse hemispherical irradiances from silicon radiometers. The result is that errors of more than 7% can occur in the computation of direct normal irradiance from global hemispherical irradiance and diffuse hemispherical irradiance using these radiometers.

  5. Quantitative Analysis of Spectral Impacts on Silicon Photodiode Radiometers: Preprint

    SciTech Connect (OSTI)

    Myers, D. R.

    2011-04-01

    Inexpensive broadband pyranometers with silicon photodiode detectors have a non-uniform spectral response over the spectral range of 300-1100 nm. The response region includes only about 70% to 75% of the total energy in the terrestrial solar spectral distribution from 300 nm to 4000 nm. The solar spectrum constantly changes with solar position and atmospheric conditions. Relative spectral distributions of diffuse hemispherical irradiance sky radiation and total global hemispherical irradiance are drastically different. This analysis convolves a typical photodiode response with SMARTS 2.9.5 spectral model spectra for different sites and atmospheric conditions. Differences in solar component spectra lead to differences on the order of 2% in global hemispherical and 5% or more in diffuse hemispherical irradiances from silicon radiometers. The result is that errors of more than 7% can occur in the computation of direct normal irradiance from global hemispherical irradiance and diffuse hemispherical irradiance using these radiometers.

  6. ARM Multi-Filter Rotating Shadowband Radiometer (MFRSR): irradiances

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Hodges, Gary

    1993-07-04

    The multifilter rotating shadowband radiometer (MFRSR) takes spectral measurements of direct normal, diffuse horizontal and total horizontal solar irradiances. These measurements are at nominal wavelengths of 415, 500, 615, 673, 870, and 940 nm. The measurements are made at a user-specified time interval, usually about one minute or less. The sampling rate for the Atmospheric Radiation Measurement (ARM) Climate Research Facility MFRSRs is 20 seconds. From such measurements, one may infer the atmosphere's optical depth at the wavelengths mentioned above. In turn, these optical depths may be used to derive information about the column abundances of ozone and water vapor (Michalsky et al. 1995), as well as aerosol (Michalsky et al. 1994) and other atmospheric constituents. A silicon detector is also part of the MFRSR. This detector provides a measure of the broadband direct normal, diffuse horizontal and total horizontal solar irradiances. A MFRSR head that is mounted to look vertically downward can measure upwelling spectral irradiances. In the ARM system, this instrument is called a multifilter radiometer (MFR). At the Southern Great Plains (SGP) there are two MFRs; one mounted at the 10-m height and the other at 25 m. At the North Slope of Alaska (NSA) sites, the MFRs are mounted at 10 m. MFRSR heads are also used to measure normal incidence radiation by mounting on a solar tracking device. These are referred to as normal incidence multi-filter radiometers (NIMFRs) and are located at the SGP and NSA sites. Another specialized use for the MFRSR is the narrow field of view (NFOV) instrument located at SGP. The NFOV is a ground-based radiometer (MFRSR head) that looks straight up.

  7. Posters Radar/Radiometer Retrievals of Cloud Liquid Water and

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1 Posters Radar/Radiometer Retrievals of Cloud Liquid Water and Drizzle: Analysis Using Data from a Three-Dimensional Large Eddy Simulation of Marine Stratocumulus Clouds G. Feingold Cooperative Institute for Research in Environmental Sciences University of Colorado Boulder, Colorado A. S. Frisch National Oceanic and Atmospheric Administration Environmental Technology Laboratory Boulder, Colorado B. Stevens and W. R. Cotton Colorado State University Fort Collins, Colorado Introduction Marine

  8. ARM Multi-Filter Rotating Shadowband Radiometer (MFRSR): irradiances

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Hodges, Gary

    The multifilter rotating shadowband radiometer (MFRSR) takes spectral measurements of direct normal, diffuse horizontal and total horizontal solar irradiances. These measurements are at nominal wavelengths of 415, 500, 615, 673, 870, and 940 nm. The measurements are made at a user-specified time interval, usually about one minute or less. The sampling rate for the Atmospheric Radiation Measurement (ARM) Climate Research Facility MFRSRs is 20 seconds. From such measurements, one may infer the atmosphere's optical depth at the wavelengths mentioned above. In turn, these optical depths may be used to derive information about the column abundances of ozone and water vapor (Michalsky et al. 1995), as well as aerosol (Michalsky et al. 1994) and other atmospheric constituents. A silicon detector is also part of the MFRSR. This detector provides a measure of the broadband direct normal, diffuse horizontal and total horizontal solar irradiances. A MFRSR head that is mounted to look vertically downward can measure upwelling spectral irradiances. In the ARM system, this instrument is called a multifilter radiometer (MFR). At the Southern Great Plains (SGP) there are two MFRs; one mounted at the 10-m height and the other at 25 m. At the North Slope of Alaska (NSA) sites, the MFRs are mounted at 10 m. MFRSR heads are also used to measure normal incidence radiation by mounting on a solar tracking device. These are referred to as normal incidence multi-filter radiometers (NIMFRs) and are located at the SGP and NSA sites. Another specialized use for the MFRSR is the narrow field of view (NFOV) instrument located at SGP. The NFOV is a ground-based radiometer (MFRSR head) that looks straight up.

  9. A Comparison of Direct Heating During Radiofrequency and Microwave Ablation in Ex Vivo Liver

    SciTech Connect (OSTI)

    Andreano, Anita; Brace, Christopher L.

    2013-04-15

    This study was designed to determine the magnitude and spatial distribution of temperature elevations when using 480 kHz RF and 2.45 GHz microwave energy in ex vivo liver models. A total of 60 heating cycles (20 s at 90 W) were performed in normal, RF-ablated, and microwave-ablated liver tissues (n = 10 RF and n = 10 microwave in each tissue type). Heating cycles were performed using a 480-kHz generator and 3-cm cooled-tip electrode (RF) or a 2.45-GHz generator and 14-gauge monopole (microwave) and were designed to isolate direct heating from each energy type. Tissue temperatures were measured by using fiberoptic thermosensors 5, 10, and 15 mm radially from the ablation applicator at the depth of maximal heating. Power delivered, sensor location, heating rates, and maximal temperatures were compared using mixed effects regression models. No significant differences were noted in mean power delivered or thermosensor locations between RF and microwave heating groups (P > 0.05). Microwaves produced significantly more rapid heating than RF at 5, 10, and 15 mm in normal tissue (3.0 vs. 0.73, 0.85 vs. 0.21, and 0.17 vs. 0.09 Degree-Sign C/s; P < 0.05); and at 5 and 10 mm in ablated tissues (2.3 {+-} 1.4 vs. 0.7 {+-} 0.3, 0.5 {+-} 0.3 vs. 0.2 {+-} 0 Degree-Sign C/s, P < 0.05). The radial depth of heating was {approx}5 mm greater for microwaves than RF. Direct heating obtained with 2.45-GHz microwave energy using a single needle-like applicator is faster and covers a larger volume of tissue than 480-kHz RF energy.

  10. Experimental measurements and noise analysis of a cryogenic radiometer

    SciTech Connect (OSTI)

    Carr, S. M.; Woods, S. I.; Jung, T. M.; Carter, A. C.; Datla, R. U.

    2014-07-15

    A cryogenic radiometer device, intended for use as part of an electrical-substitution radiometer, was measured at low temperature. The device consists of a receiver cavity mechanically and thermally connected to a temperature-controlled stage through a thin-walled polyimide tube which serves as a weak thermal link. With the temperature difference between the receiver and the stage measured in millikelvin and the electrical power measured in picowatts, the measured responsivity was 4700 K/mW and the measured thermal time constant was 14 s at a stage temperature of 1.885 K. Noise analysis in terms of Noise Equivalent Power (NEP) was used to quantify the various fundamental and technical noise contributions, including phonon noise and Johnson-Nyquist noise. The noise analysis clarifies the path toward a cryogenic radiometer with a noise floor limited by fundamental phonon noise, where the magnitude of the phonon NEP is 6.5 fW/?(Hz) for the measured experimental parameters.

  11. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    New Microwave Radiometer Makes Water Vapor Measurements in the Arid Cold a Snap Bookmark and Share The 183 GHz radiometer, protected inside an insulated enclosure (inset), is installed on the roof of the primary instrument shelter at Barrow. To prevent snow from accumulating on the mylar window, a blower mounted beneath the radiometer directs air through a duct to a standard Y-shaped fitting mounted on top of the radiometer. Scientific research increasingly shows evidence of climate change first

  12. SEVENTH HARMONIC 20 GHz CO-GENERATOR

    SciTech Connect (OSTI)

    Hirshfield, Jay L

    2014-04-08

    To satisfy the need for multi-MW rf sources in frequency ranges where commercial sources do not exist, a study was undertaken on a class of devices based on gyro-harmonic frequency multiplication. This mechanism relies upon adding energy in gyrating motion to a linear electron beam that traverses a rotating-mode TE111-mode drive cavity in a dc magnetic field. The beam then drifts along the magnetic field into a second cavity, operating in the TEn11-mode tuned to the nth harmonic of the drive cavity. Studies of this configuration have been carried out for 2 < n < 7. Results are given for multi-MW, efficient operation of a 7th harmonic device operating at 20 GHz, and a 2nd harmonic device operating at 22.4 GHz.

  13. Ocean Aerosols: The Marine Fast-Rotating Shadow-Band Radiometer Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ocean Aerosols: The Marine Fast-Rotating Shadow-Band Radiometer Network M. A. Miller, R. M. Reynolds, and J. J. Bartholomew Brookhaven National Laboratory Upton, New York Introduction A network of ship-mounted marine fast-rotating shadow-band radiometers (FRSRs) and broadband radiometers have been deployed over the fast four years on several backbone ships, funded jointly by Atmospheric Radiation Measurement (ARM) and National Aeronautic and Space Administration's (NASA's) Sensor Intercomparison

  14. Variable frequency microwave heating apparatus

    DOE Patents [OSTI]

    Bible, Don W. (Clinton, TN); Lauf, Robert J. (Oak Ridge, TN); Johnson, Arvid C. (Lake in the Hills, IL); Thigpen, Larry T. (Angier, NC)

    1999-01-01

    A variable frequency microwave heating apparatus (10) designed to allow modulation of the frequency of the microwaves introduced into a multi-mode microwave cavity (34) for testing or other selected applications. The variable frequency microwave heating apparatus (10) includes a microwave signal generator (12) and a high-power microwave amplifier (20) or a high-power microwave oscillator (14). A power supply (22) is provided for operation of the high-power microwave oscillator (14) or microwave amplifier (20). A directional coupler (24) is provided for detecting the direction and amplitude of signals incident upon and reflected from the microwave cavity (34). A first power meter (30) is provided for measuring the power delivered to the microwave furnace (32). A second power meter (26) detects the magnitude of reflected power. Reflected power is dissipated in the reflected power load (28).

  15. Microwave ion source

    DOE Patents [OSTI]

    Leung, Ka-Ngo; Reijonen, Jani; Thomae, Rainer W.

    2005-07-26

    A compact microwave ion source has a permanent magnet dipole field, a microwave launcher, and an extractor parallel to the source axis. The dipole field is in the form of a ring. The microwaves are launched from the middle of the dipole ring using a coaxial waveguide. Electrons are heated using ECR in the magnetic field. The ions are extracted from the side of the source from the middle of the dipole perpendicular to the source axis. The plasma density can be increased by boosting the microwave ion source by the addition of an RF antenna. Higher charge states can be achieved by increasing the microwave frequency. A xenon source with a magnetic pinch can be used to produce intense EUV radiation.

  16. Two-gigawatt burst-mode operation of the intense microwave prototype (IMP) free-electron laser (FEL) for the microwave tokamak experiment (MTX)

    SciTech Connect (OSTI)

    Felker, B.; Allen, S.; Bell, H.

    1993-10-06

    The MTX explored the plasma heating effects of 140 GHz microwaves from both Gyrotrons and from the IMP FEL wiggler. The Gyrotron was long pulse length (0.5 seconds maximum) and the FEL produced short-pulse length, high-peak power, single and burst modes of 140 GHZ microwaves. Full-power operations of the IMP FEL wiggler were commenced in April of 1992 and continued into October of 1992. The Experimental Test Accelerator H (ETA-II) provided a 50-nanosecond, 6-MeV, 2--3 kAmp electron beam that was introduced co-linear into the IMP FEL with a 140 GHz Gyrotron master oscillator (MO). The FEL was able to amplify the MO signal from approximately 7 kW to peaks consistently in the range of 1--2 GW. This microwave pulse was transmitted into the MTX and allowed the exploration of the linear and non-linear effects of short pulse, intense power in the MTX plasma. Single pulses were used to explore and gain operating experience in the parameter space of the IMP FEL, and finally evaluate transmission and absorption in the MTX. Single-pulse operations were repeatable. After the MTX was shut down burst-mode operations were successful at 2 kHz. This paper will describe the IMP FEL, Microwave Transmission System to MTX, the diagnostics used for calorimetric measurements, and the operations of the entire Microwave system. A discussion of correlated and uncorrelated errors that affect FEL performance will be made Linear and non-linear absorption data of the microwaves in the MTX plasma will be presented.

  17. Compact microwave ion source for industrial applications

    SciTech Connect (OSTI)

    Cho, Yong-Sub; Kim, Dae-Il; Kim, Han-Sung; Seol, Kyung-Tae; Kwon, Hyeok-Jung; Hong, In-Seok

    2012-02-15

    A 2.45 GHz microwave ion source for ion implanters has many good properties for industrial application, such as easy maintenance and long lifetime, and it should be compact for budget and space. But, it has a dc current supply for the solenoid and a rf generator for plasma generation. Usually, they are located on high voltage platform because they are electrically connected with beam extraction power supply. Using permanent magnet solenoid and multi-layer dc break, high voltage deck and high voltage isolation transformer can be eliminated, and the dose rate on targets can be controlled by pulse duty control with semiconductor high voltage switch. Because the beam optics does not change, beam transfer components, such as focusing elements and beam shutter, can be eliminated. It has shown the good performances in budget and space for industrial applications of ion beams.

  18. Design of a differential radiometer for atmospheric radiative flux measurements

    SciTech Connect (OSTI)

    LaDelfe, P.C.; Weber, P.G.; Rodriguez, C.W.

    1994-11-01

    The Hemispherical Optimized NEt Radiometer (HONER) is an instrument under development at the Los Alamos National Laboratory for deployment on an unmanned aerospace vehicle as part of the Atmospheric Radiation Measurements (ARM/UAV) program. HONER is a differential radiometer which will measure the difference between the total upwelling and downwelling fluxes and is intended to provide a means of measuring the atmospheric radiative flux divergence. Unlike existing instruments which measure the upwelling and downwelling fluxes separately, HONER will achieve an optical difference by chopping the two fluxes alternately onto a common pyroelectric detector. HONER will provide data resolved into two spectral bands; one covering the solar dominated region from less than 0.4 micrometer to approximately 4.5 micrometers and the other covering the region from approximately 4.5 micrometers to greater than 50 micrometers, dominated by thermal radiation. The means of separating the spectral regions guarantees seamless summation to calculate the total flux. The fields-of-view are near-hemispherical, upward and downward. The instrument can be converted, in flight, from the differential mode to absolute mode, measuring the upwelling and downwelling fluxes separately and simultaneously. The instrument also features continuous calibration from on-board sources. We will describe the design and operation of the sensor head and the on-board reference sources as well as the means of deployment.

  19. Microwave coupler and method

    DOE Patents [OSTI]

    Holcombe, C.E.

    1984-11-29

    The present invention is directed to a microwave coupler for enhancing the heating or metallurgical treatment of materials within a cold-wall, rapidly heated cavity as provided by a microwave furnace. The coupling material of the present invention is an alpha-rhombohedral-boron-derivative-structure material such as boron carbide or boron silicide which can be appropriately positioned as a susceptor within the furnace to heat other material or be in powder particulate form so that composites and structures of boron carbide such as cutting tools, grinding wheels and the like can be rapidly and efficiently formed within microwave furnaces.

  20. Microwave thawing apparatus and method

    DOE Patents [OSTI]

    Fathi, Zakaryae; Lauf, Robert J.; McMillan, April D.

    2004-06-01

    An apparatus for thawing a frozen material includes: a microwave energy source; a microwave applicator which defines a cavity for applying microwave energy from the microwave source to a material to be thawed; and a shielded region which is shielded from the microwave source, the shielded region in fluid communication with the cavity so that thawed material may flow from the cavity into the shielded region.

  1. Satellite remote sensing of global rainfall using passive microwave radiometry

    SciTech Connect (OSTI)

    Ferriday, J.G.

    1994-12-31

    Global rainfall over land and ocean is estimated using measurements of upwelling microwaves by a satellite passive microwave radiometer. Radiative transfer calculations through a cloud model are used to parameterize an inversion technique for retrieving rain rates from brightness temperatures measured by the Special Sensor Microwave Imager (SSM/I). The rainfall retrieval technique is based on the interaction between multi-spectral microwave radiances and millimeter sized liquid and frozen hydrometeors distributed in the satellite`s field of view. The rain rate algorithm is sensitive to both hydrometeor emission and scattering while being relatively insensitive to extraneous atmospheric and surface effects. Separate formulations are used over ocean and land to account for different background microwave characteristics and the algorithm corrects for inhomogeneous distributions of rain rates within the satellite`s field of view. Estimates of instantaneous and climate scale rainfall are validated through comparisons with modeled clouds, surface radars, rain gauges and alternative satellite estimates. The accuracy of the rainfall estimates is determined from a combination of validation comparisons, theoretical sampling error calculations, and modeled sensitivity to variations in atmospheric and surface radiative properties. An error budget is constructed for both instantaneous rain rates and climate scale global estimates. At a one degree resolution, the root mean square errors in instantaneous rain rate estimates are 13% over ocean and 20% over land. The root mean square errors in global rainfall totals over a four month period are found to be 46% over ocean and 63% over land. Global rainfall totals are computed on a monthly scale for a three year period from 1987 to 1990. The time series is analyzed for climate scale rainfall distribution and variability.

  2. NO MICROWAVE FLARE OF SAGITTARIUS A* AROUND THE G2 PERIASTRON PASSING

    SciTech Connect (OSTI)

    Tsuboi, Masato; Asaki, Yoshiharu; Kameya, Osamu; Yonekura, Yoshinori; Miyamoto, Yusuke; Kaneko, Hiroyuki; Seta, Masumichi; Nakai, Naomasa; Takaba, Hiroshi; Wakamatsu, Ken-ichi; Miyoshi, Makoto; Fukuzaki, Yoshihiro; Uehara, Kenta; Sekido, Mamoru

    2015-01-01

    In order to explore any change caused by the G2 cloud approaching, we have monitored the flux density of Sgr A* at 22GHz from 2013 February to 2014 August with a sub-array of the Japanese Very Long Baseline Interferometry Network. The observation period included the expected periastron dates. The number of observation epochs was 283days. We have observed no significant microwave enhancement of Sgr A* in the whole observation period. The average flux density in the period is S {sub ?} = 1.23 0.33 Jy. The average is consistent with the usually observed flux density range of Sgr A* at 22GHz.

  3. Emitron: microwave diode

    DOE Patents [OSTI]

    Craig, G.D.; Pettibone, J.S.; Drobot, A.T.

    1982-05-06

    The invention comprises a new class of device, driven by electron or other charged particle flow, for producing coherent microwaves by utilizing the interaction of electromagnetic waves with electron flow in diodes not requiring an external magnetic field. Anode and cathode surfaces are electrically charged with respect to one another by electron flow, for example caused by a Marx bank voltage source or by other charged particle flow, for example by a high energy charged particle beam. This produces an electric field which stimulates an emitted electron beam to flow in the anode-cathode region. The emitted electrons are accelerated by the electric field and coherent microwaves are produced by the three dimensional spatial and temporal interaction of the accelerated electrons with geometrically allowed microwave modes which results in the bunching of the electrons and the pumping of at least one dominant microwave mode.

  4. High power microwave generator

    DOE Patents [OSTI]

    Ekdahl, Carl A. (Albuquerque, NM)

    1986-01-01

    A microwave generator efficiently converts the energy of an intense relativistic electron beam (REB) into a high-power microwave emission using the Smith-Purcell effect which is related to Cerenkov radiation. Feedback for efficient beam bunching and high gain is obtained by placing a cylindrical Smith-Purcell transmission grating on the axis of a toroidal resonator. High efficiency results from the use of a thin cold annular highly-magnetized REB that is closely coupled to the resonant structure.

  5. High power microwave generator

    DOE Patents [OSTI]

    Ekdahl, C.A.

    1983-12-29

    A microwave generator efficiently converts the energy of an intense relativistic electron beam (REB) into a high-power microwave emission using the Smith-Purcell effect which is related to Cerenkov radiation. Feedback for efficient beam bunching and high gain is obtained by placing a cylindrical Smith-Purcell transmission grating on the axis of a toroidal resonator. High efficiency results from the use of a thin cold annular highly-magnetized REB that is closely coupled to the resonant structure.

  6. Observations of the frequency tuning effect in the 14 GHz CAPRICE ion source

    SciTech Connect (OSTI)

    Celona, L.; Ciavola, G.; Consoli, F.; Gammino, S.; Maimone, F.; Mascali, D.; Spaedtke, P.; Tinschert, K.; Lang, R.; Maeder, J.; Rossbach, J.; Barbarino, S.; Catalano, R. S.

    2008-02-15

    A set of measurements with the CAPRICE ion source at the GSI test bench has been carried out to investigate its behavior in terms of intensity and shape of the extracted beam when the microwaves generating the plasma sweep in a narrow range of frequency ({+-}40 MHz) around the klystron center frequency (14.5 GHz). Remarkable variations have been observed depending on the source and the beamline operating parameters, confirming that a frequency dependent electromagnetic distribution is preserved even in the presence of plasma inside the source. Moreover, these observations confirm that the frequency tuning is a powerful method to optimize the electron cyclotron resonance ion source performances. A description of the experimental setup and of the obtained results is given in the following.

  7. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    15, 2007 Facility News Microwave Radiometers Put to the Test in Germany Bookmark and Share A 2-channel microwave radiometer (left) and a 12-channel microwave radiometer profiler...

  8. Ultra-low power microwave CHFET integrated circuit development

    SciTech Connect (OSTI)

    Baca, A.G.; Hietala, V.M.; Greenway, D.; Sloan, L.R.; Shul, R.J.; Muyshondt, G.P.; Dubbert, D.F.

    1998-04-01

    This report summarizes work on the development of ultra-low power microwave CHFET integrated circuit development. Power consumption of microwave circuits has been reduced by factors of 50--1,000 over commercially available circuits. Positive threshold field effect transistors (nJFETs and PHEMTs) have been used to design and fabricate microwave circuits with power levels of 1 milliwatt or less. 0.7 {micro}m gate nJFETs are suitable for both digital CHFET integrated circuits as well as low power microwave circuits. Both hybrid amplifiers and MMICs were demonstrated at the 1 mW level at 2.4 GHz. Advanced devices were also developed and characterized for even lower power levels. Amplifiers with 0.3 {micro}m JFETs were simulated with 8--10 dB gain down to power levels of 250 microwatts ({mu}W). However 0.25 {micro}m PHEMTs proved superior to the JFETs with amplifier gain of 8 dB at 217 MHz and 50 {mu}W power levels but they are not integrable with the digital CHFET technology.

  9. Microwave and Radio Frequency Workshop

    Broader source: Energy.gov [DOE]

    At the Microwave and Radio Frequency Workshop (held in Long Beach, CA, on July 25, 2012), academic and industry experts discussed the existing and emerging electrotechnologies such as microwave ...

  10. High power microwave generator

    DOE Patents [OSTI]

    Minich, Roger W. (Patterson, CA)

    1988-01-01

    A device (10) for producing high-powered and coherent microwaves is described. The device comprises an evacuated, cylindrical, and hollow real cathode (20) that is driven to inwardly field emit relativistic electrons. The electrons pass through an internally disposed cylindrical and substantially electron-transparent cylindrical anode (24), proceed toward a cylindrical electron collector electrode (26), and form a cylindrical virtual cathode (32). Microwaves are produced by spatial and temporal oscillations of the cylindrical virtual cathode (32), and by electrons that reflex back and forth between the cylindrical virtual cathode (32) and the cylindrical real cathode (20).

  11. Floating data acquisition system for microwave calorimeter measurements on MTX

    SciTech Connect (OSTI)

    Sewall, N.R.; Meassick, S. )

    1989-09-13

    A microwave calorimeter has been designed for making 140-GHz absorption measurements on the MTX. Measurement of the intensity and spatial distribution of the FEL-generated microwave beam on the inner wall will indicate the absorption characteristics of the plasma when heated with a 140 GHz FEL pulse. The calorimeter works by monitoring changes of temperature in silicon carbide tiles located on the inner wall of the tokamak. Thermistors are used to measure the temperature of each tile. The tiles are located inside the tokamak about 1 cm outside of the limiter radius at machine potential. The success of this measurement depends on our ability to float the data acquisition system near machine potential and isolate it from the rest of the vault ground system. Our data acquisition system has 48 channels of thermistor signal conditioning, a multiplexer and digitizer section, a serial data formatter, and a fiber-optic transmitter to send the data out. Additionally, we bring timing signals to the interface through optical fibers to tell it when to begin measurement, while maintaining isolation. The receiver is an HP 200 series computer with a serial data interface; the computer provides storage and local display for the shot temperature profile. Additionally, the computer provides temporary storage of the data until it can be passed to a shared resource management system for archiving. 2 refs., 6 figs.

  12. Evaluating Solar Resource Data Obtained from Multiple Radiometers Deployed at the National Renewable Energy Laboratory: Preprint

    SciTech Connect (OSTI)

    Habte, A.; Sengupta, M.; Andreas, A.; Wilcox, S.; Stoffel, T.

    2014-09-01

    Solar radiation resource measurements from radiometers are used to predict and evaluate the performance of photovoltaic and concentrating solar power systems, validate satellite-based models for estimating solar resources, and advance research in solar forecasting and climate change. This study analyzes the performance of various commercially available radiometers used for measuring global horizontal irradiances (GHI) and direct normal irradiances (DNI). These include pyranometers, pyrheliometers, rotating shadowband irradiometers, and a pyranometer with a shading ring deployed at the National Renewable Energy Laboratory's Solar Radiation Research Laboratory (SRRL). The radiometers in this study were deployed for one year (from April 1, 2011, through March 31, 2012) and compared to measurements from radiometers with the lowest values of estimated measurement uncertainties for producing reference GHI and DNI.

  13. DOE/SC-ARM/TR-122 G-Band Vapor Radiometer Precipitable Water

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    state or reflect those of the U.S. Government or any agency thereof. DOESC-ARMTR-122 G-Band Vapor Radiometer Precipitable Water Vapor (GVRPWV) Value-Added Product A...

  14. The 17 GHz active region number

    SciTech Connect (OSTI)

    Selhorst, C. L.; Pacini, A. A.; Costa, J. E. R.; Gimnez de Castro, C. G.; Valio, A.; Shibasaki, K.

    2014-08-01

    We report the statistics of the number of active regions (NAR) observed at 17 GHz with the Nobeyama Radioheliograph between 1992, near the maximum of cycle 22, and 2013, which also includes the maximum of cycle 24, and we compare with other activity indexes. We find that NAR minima are shorter than those of the sunspot number (SSN) and radio flux at 10.7 cm (F10.7). This shorter NAR minima could reflect the presence of active regions generated by faint magnetic fields or spotless regions, which were a considerable fraction of the counted active regions. The ratio between the solar radio indexes F10.7/NAR shows a similar reduction during the two minima analyzed, which contrasts with the increase of the ratio of both radio indexes in relation to the SSN during the minimum of cycle 23-24. These results indicate that the radio indexes are more sensitive to weaker magnetic fields than those necessary to form sunspots, of the order of 1500 G. The analysis of the monthly averages of the active region brightness temperatures shows that its long-term variation mimics the solar cycle; however, due to the gyro-resonance emission, a great number of intense spikes are observed in the maximum temperature study. The decrease in the number of these spikes is also evident during the current cycle 24, a consequence of the sunspot magnetic field weakening in the last few years.

  15. Variable frequency microwave furnace system

    DOE Patents [OSTI]

    Bible, Don W. (Clinton, TN); Lauf, Robert J. (Oak Ridge, TN)

    1994-01-01

    A variable frequency microwave furnace system (10) designed to allow modulation of the frequency of the microwaves introduced into a furnace cavity (34) for testing or other selected applications. The variable frequency microwave furnace system (10) includes a microwave signal generator (12) or microwave voltage-controlled oscillator (14) for generating a low-power microwave signal for input to the microwave furnace. A first amplifier (18) may be provided to amplify the magnitude of the signal output from the microwave signal generator (12) or the microwave voltage-controlled oscillator (14). A second amplifier (20) is provided for processing the signal output by the first amplifier (18). The second amplifier (20) outputs the microwave signal input to the furnace cavity (34). In the preferred embodiment, the second amplifier (20) is a traveling-wave tube (TWT). A power supply (22) is provided for operation of the second amplifier (20). A directional coupler (24) is provided for detecting the direction of a signal and further directing the signal depending on the detected direction. A first power meter (30) is provided for measuring the power delivered to the microwave furnace (32). A second power meter (26) detects the magnitude of reflected power. Reflected power is dissipated in the reflected power load (28).

  16. Variable frequency microwave furnace system

    DOE Patents [OSTI]

    Bible, D.W.; Lauf, R.J.

    1994-06-14

    A variable frequency microwave furnace system designed to allow modulation of the frequency of the microwaves introduced into a furnace cavity for testing or other selected applications. The variable frequency microwave furnace system includes a microwave signal generator or microwave voltage-controlled oscillator for generating a low-power microwave signal for input to the microwave furnace. A first amplifier may be provided to amplify the magnitude of the signal output from the microwave signal generator or the microwave voltage-controlled oscillator. A second amplifier is provided for processing the signal output by the first amplifier. The second amplifier outputs the microwave signal input to the furnace cavity. In the preferred embodiment, the second amplifier is a traveling-wave tube (TWT). A power supply is provided for operation of the second amplifier. A directional coupler is provided for detecting the direction of a signal and further directing the signal depending on the detected direction. A first power meter is provided for measuring the power delivered to the microwave furnace. A second power meter detects the magnitude of reflected power. Reflected power is dissipated in the reflected power load. 5 figs.

  17. Highly conducting SrMoO{sub 3} thin films for microwave applications

    SciTech Connect (OSTI)

    Radetinac, Aldin Mani, Arzhang; Ziegler, Jrgen; Alff, Lambert; Komissinskiy, Philipp; Melnyk, Sergiy; Nikfalazar, Mohammad; Zheng, Yuliang; Jakoby, Rolf

    2014-09-15

    We have measured the microwave resistance of highly conducting perovskite oxide SrMoO{sub 3} thin film coplanar waveguides. The epitaxial SrMoO{sub 3} thin films were grown by pulsed laser deposition and showed low mosaicity and smooth surfaces with a root mean square roughness below 0.3?nm. Layer-by-layer growth could be achieved for film thicknesses up to 400?nm as monitored by reflection high-energy electron diffraction and confirmed by X-ray diffraction. We obtained a constant microwave resistivity of 29???cm between 0.1 and 20?GHz by refining the frequency dependence of the transmission coefficients. Our result shows that SrMoO{sub 3} is a viable candidate as a highly conducting electrode material for all-oxide microwave electronic devices.

  18. Evaluation the microwave heating of spinel crystals in high-level waste glass

    SciTech Connect (OSTI)

    Christian, J. H.; Washington, A. L.

    2015-08-18

    In this report, the microwave heating of a crystal-free and a partially (24 wt%) trevorite-crystallized waste glass simulant were evaluated. The results show that a 500 mg piece of partially crystallized waste glass can be heated from room-temperature to above 1600 °C (as measured by infrared radiometry) within 2 minutes using a single mode, highly focused, 2.45 GHz microwave, operating at 300 W. X-ray diffraction measurements show that the partially crystallized glass experiences an 87 % reduction in trevorite following irradiation and thermal quenching. When a crystal-free analogue of the same waste glass simulant composition is exposed to the same microwave radiation it could not be heated above 450 °C regardless of the heating time.

  19. Innovative Microwave Technology - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Advanced Materials Advanced Materials Return to Search Innovative Microwave Technology Hybrid microwave technology capable of performing functions that traditional microwave systems could not achieve. Savannah River National Laboratory New Hybrid Microwave Technology New Hybrid Microwave Technology Success Story Details Partner Location Agreement Type Publication Date Hadron Technologies, Inc. Offices in Tennessee and Colorado License October 22, 2013 Summary Hadron Technologies, Inc. has signed

  20. Microwave solidification project overview

    SciTech Connect (OSTI)

    Sprenger, G.

    1993-01-01

    The Rocky Flats Plant Microwave Solidification Project has application potential to the Mixed Waste Treatment Project and the The Mixed Waste Integrated Program. The technical areas being addressed include (1) waste destruction and stabilization; (2) final waste form; and (3) front-end waste handling and feed preparation. This document covers need for such a program; technology description; significance; regulatory requirements; and accomplishments to date. A list of significant reports published under this project is included.

  1. High Energy Density Microwaves

    SciTech Connect (OSTI)

    Phillips, R.M. [Stanford Linear Accelerator Center, Stanford, CA 94309 (United States)

    1999-04-01

    These proceedings represent papers presented at the RF98 Workshop entitled `High Energy Density Microwaves` held in California in October, 1998. The topics discussed were predominantly accelerator{minus}related. The Workshop dealt, for the most part, with the generation and control of electron beams, the amplification of RF signals, the design of mode converters, and the effect of very high RF field gradients. This Workshop was designed to address the concerns of the microwave tube industry worldwide, the plasma physicists who deal with very high beam currents and gigawatts of RF power, and researchers in accelerator centers around the world. Papers were presented on multibeam klystrons, gyrotron development, plasmas in microwave tubes, RF breakdown, and alternatives to conventional linear coliders at 1 TeV and above. The Workshop was partially sponsored by the US Department of Energy. There were 46 papers presented at the conference,out of which 19 have been abstracted for the Energy,Science and Technology database.(AIP)

  2. STATISTICAL PROPERTIES OF 12.2 GHz METHANOL MASERS ASSOCIATED WITH A COMPLETE SAMPLE OF 6.7 GHz METHANOL MASERS

    SciTech Connect (OSTI)

    Breen, S. L.; Caswell, J. L.; Green, J. A.; Voronkov, M. A.; Ellingsen, S. P.; Fuller, G. A.; Quinn, L. J.; Avison, A.

    2011-06-01

    We present definitive detection statistics for 12.2 GHz methanol masers toward a complete sample of 6.7 GHz methanol masers detected in the Methanol Multibeam survey south of declination -20{sup 0}. In total, we detect 250 12.2 GHz methanol masers toward 580 6.7 GHz methanol masers. This equates to a detection rate of 43.1%, which is lower than that of previous significant searches of comparable sensitivity. Both the velocity ranges and the flux densities of the target 6.7 GHz sources surpass that of their 12.2 GHz companion in almost all cases. Eighty percent of the detected 12.2 GHz methanol maser peaks are coincident in velocity with the 6.7 GHz maser peak. Our data support an evolutionary scenario whereby the 12.2 GHz sources are associated with a somewhat later evolutionary stage than the 6.7 GHz sources devoid of this transition. Furthermore, we find that the 6.7 GHz and 12.2 GHz methanol sources increase in luminosity as they evolve. In addition to this, evidence for an increase in velocity range with evolution is presented. This implies that it is not only the luminosity but also the volume of gas conducive to the different maser transitions that increases as the sources evolve. Comparison with GLIMPSE mid-infrared sources has revealed a coincidence rate between the locations of the 6.7 GHz methanol masers and GLIMPSE point sources similar to that achieved in previous studies. Overall, the properties of the GLIMPSE sources with and without 12.2 GHz counterparts are similar. There is a higher 12.2 GHz detection rate toward those 6.7 GHz methanol masers that are coincident with extended green objects.

  3. Microwave sintering of multiple articles

    DOE Patents [OSTI]

    Blake, Rodger D. (Santa Fe, NM); Katz, Joel D. (Los Alamos, NM)

    1993-01-01

    Apparatus and method for producing articles of alumina and of alumina and silicon carbide in which the articles are sintered at high temperatures using microwave radiation. The articles are placed in a sintering container which is placed in a microwave cavity for heating. The rates at which heating and cooling take place is controlled.

  4. Second Season QUIET Observations: Measurements of the CMB Polarization Power Spectrum at 95 GHz

    SciTech Connect (OSTI)

    Araujo, D.; Bischoff, C.; Brizius, A.; Buder, I.; Chinone, Y.; Cleary, K.; Dumoulin, R.N.; Kusaka, A.; Monsalve, R.; ss, S.K.N\\ae; Newburgh, L.B.; /Columbia U., CBA /Princeton U. /Caltech

    2012-07-01

    The Q/U Imaging ExperimenT (QUIET) has observed the cosmic microwave background (CMB) at 43 and 95GHz. The 43-GHz results have been published in QUIET Collaboration et al. (2011), and here we report the measurement of CMB polarization power spectra using the 95-GHz data. This data set comprises 5337 hours of observations recorded by an array of 84 polarized coherent receivers with a total array sensitivity of 87 {mu}K{radical}s. Four low-foreground fields were observed, covering a total of {approx} 1000 square degrees with an effective angular resolution of 12'.8, allowing for constraints on primordial gravitational waves and high-signal-to-noise measurements of the E-modes across three acoustic peaks. The data reduction was performed using two independent analysis pipelines, one based on a pseudo-C{ell} (PCL) cross-correlation approach, and the other on a maximum-likelihood (ML) approach. All data selection criteria and filters were modified until a predefined set of null tests had been satisfied before inspecting any non-null power spectrum. The results derived by the two pipelines are in good agreement. We characterize the EE, EB and BB power spectra between {ell} = 25 and 975 and find that the EE spectrum is consistent with {Lambda}CDM, while the BB power spectrum is consistent with zero. Based on these measurements, we constrain the tensor-to-scalar ratio to r = 1.1{sup +0.9}{sub -0.8} (r < 2.8 at 95% C.L.) as derived by the ML pipeline, and r = {sup +0.9}{sub -0.8} (r < 2.7 at 95% C.L.) as derived by the PCL pipeline. In one of the fields, we find a correlation with the dust component of the Planck Sky Model, though the corresponding excess power is small compared to statistical errors. Finally, we derive limits on all known systematic errors, and demonstrate that these correspond to a tensor-to-scalar ratio smaller than r = 0.01, the lowest level yet reported in the literature.

  5. A Permanent-Magnet Microwave Ion Source for a Compact High-Yield Neutron Generator

    SciTech Connect (OSTI)

    Waldmann, Ole; Ludewigt, Bernhard

    2010-10-11

    We present recent work on the development of a microwave ion source that will be used in a high-yield compact neutron generator for active interrogation applications. The sealed tube generator will be capable of producing high neutron yields, 5x1011 n/s for D-T and ~;;1x1010 n/s for D-D reactions, while remaining transportable. We constructed a microwave ion source (2.45 GHz) with permanent magnets to provide the magnetic field strength of 87.5 mT necessary for satisfying the electron cyclotron resonance (ECR) condition. Microwave ion sources can produce high extracted beam currents at the low gas pressures required for sealed tube operation and at lower power levels than previously used RF-driven ion sources. A 100 mA deuterium/tritium beam will be extracted through a large slit (60x6 mm2) to spread the beam power over a larger target area. This paper describes the design of the permanent-magnet microwave ion source and discusses the impact of the magnetic field design on the source performance. The required equivalent proton beam current density of 40 mA/cm2 was extracted at a moderate microwave power of 400 W with an optimized magnetic field.

  6. Measurement of the dielectric properties of high-purity sapphire at 1.865 GHZ from 2-10 Kelvin

    SciTech Connect (OSTI)

    N. Pogue, P. McIntyre, Akhdiyor Sattarov, Charles Reece

    2012-06-01

    A dielectric test cavity was designed and tested to measure the microwave dielectric properties of ultrapure sapphire at cryogenic temperatures. Measurements were performed by placing a large cylindrical crystal of sapphire in a Nb superconducting cavity operating in the TE01 mode at 1.865 GHz. The dielectric constant, heat capacity, and loss tangent were all calculated using experimental data and RF modeling software. The motivation for these measurements was to determine if such a sapphire could be used as a dielectric lens to focus the magnetic field onto a sample wafer in a high field wafer test cavity. The measured properties have been used to finalize the design of the wafer test cavity.

  7. Microwave hematoma detector

    DOE Patents [OSTI]

    Haddad, Waleed S.; Trebes, James E.; Matthews, Dennis L.

    2001-01-01

    The Microwave Hematoma Detector is a non-invasive device designed to detect and localize blood pooling and clots near the outer surface of the body. While being geared towards finding sub-dural and epi-dural hematomas, the device can be used to detect blood pooling anywhere near the surface of the body. Modified versions of the device can also detect pneumothorax, organ hemorrhage, atherosclerotic plaque in the carotid arteries, evaluate perfusion (blood flow) at or near the body surface, body tissue damage at or near the surface (especially for burn assessment) and be used in a number of NDE applications. The device is based on low power pulsed microwave technology combined with a specialized antenna, signal processing/recognition algorithms and a disposable cap worn by the patient which will facilitate accurate mapping of the brain and proper function of the instrument. The invention may be used for rapid, non-invasive detection of sub-dural or epi-dural hematoma in human or animal patients, detection of hemorrhage within approximately 5 cm of the outer surface anywhere on a patient's body.

  8. Multichannel microwave interferometer for the levitated dipole experiment

    SciTech Connect (OSTI)

    Boxer, Alexander C.; Garnier, Darren T.; Mauel, Michael E.

    2009-04-15

    A four-channel microwave interferometer (center frequency: 60 GHz) has been constructed to measure plasma density profiles in the levitated dipole experiment (LDX). The LDX interferometer has a unique design owing to the unique geometry of LDX. The main design features of the interferometer are: (1) the transmitted beam traverses the plasma entirely in O-mode; (2) the interferometer is a heterodyne system employing two free-running oscillators; (3) four signals of data are received from just on transmitted beam; (4) phase shifts are detected in quadrature. Calibration tests demonstrate that the interferometer measures phase shifts with an uncertainty of approximately 5 deg. Plasma densities in LDX corresponding to phase shifts of up to 5{pi} are routinely and successfully measured.

  9. Power combination of two phase-locked high power microwave beams from a new coaxial microwave source based on dual beams

    SciTech Connect (OSTI)

    Li, Yangmei; Zhang, Xiaoping Zhang, Jiande; Dang, Fangchao; Yan, Xiaolu

    2014-10-15

    The new coaxial high power microwave source based on dual beams has demonstrated two phase-locked output microwave beams generated by its two sub-sources. In order to achieve a single higher output power, we present a three-port waveguide-based power combiner to combine the two microwave beams. Particle-in-cell simulation results show that when the diode voltage is 675?kV and the guiding magnetic field is 0.8?T, a combined microwave with an average power of about 4.0?GW and a frequency of 9.74 GHz is generated; the corresponding power conversion efficiency is 29%. The combination effect of the combiner is further validated in the diode voltage range from 675?kV to 755?kV as well as in the pulse regime. The simulations indicate that the maximum surface axial electric field strength of the electrodynamic structure is 720?kV/cm, which is relatively low corresponding to an output power of 4.0?GW. The stable combined output suggests the probability of long-pulse operation for the combined source.

  10. han-99.PDF

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Tip Cal Methods for Ground-Based Microwave Radiometric Sensing of Water Vapor and Clouds Y. Han and E. R. Westwater CIRES, University of Colorado National Oceanic and Atmospheric Administration Environmental Technology Laboratory Boulder, Colorado Introduction Ground-based Microwave Radiometers (MWRs) have been widely used to measure atmospheric water vapor and cloud liquid water. Frequencies on the 22.235-GHz water vapor absorption band and in the 31-GHz absorption window region are commonly

  11. Multi-Filter Rotating Shadowband Radiometers Mentor Report and Baseline Surface Radiation Network Submission Status

    SciTech Connect (OSTI)

    Hodges, G.

    2005-03-18

    There are currently twenty-four Multi-Filter Rotating Shadowband Radiometers (MFRSR) operating within Atmospheric Radiation Measurement (ARM). Eighteen are located within the Southern Great Plains (SGP) region, there is one at each of the North Slope of Alaska (NSA) and Tropical Western Pacific (TWP) sites, and one is part of the instrumentation of the ARM Mobile Facility. At this time there are four sites, all extended facilities within the SGP, that are equipped for a MFRSR but do not have one due to instrument failure and a lack of spare instruments. In addition to the MFRSRs, there are three other MFRSR derived instruments that ARM operates. They are the Multi-Filter Radiometer (MFR), the Normal Incidence Multi-Filter Radiometer (NIMFR) and the Narrow Field of View (NFOV) radiometer. All are essentially just the head of a MFRSR used in innovative ways. The MFR is mounted on a tower and pointed at the surface. At the SGP Central Facility there is one at ten meters and one at twenty-five meters. The NSA has a MFR at each station, both at the ten meter level. ARM operates three NIMFRs; one is at the SGP Central Facility and one at each of the NSA stations. There are two NFOVs, both at the SGP Central Facility. One is a single channel (870) and the other utilizes two channels (673 and 870).

  12. Gigatron microwave amplifier

    DOE Patents [OSTI]

    McIntyre, Peter M. (611 Montclair, College Station, TX 77840)

    1993-01-01

    An electron tube for achieving high power at high frequency with high efficiency, including an input coupler, a ribbon-shaped electron beam and a traveling wave output coupler. The input coupler is a lumped constant resonant circuit that modulates a field emitter array cathode at microwave frequency. A bunched ribbon electron beam is emitted from the cathode in periodic bursts at the desired frequency. The beam has a ribbon configuration to eliminate limitations inherent in round beam devices. The traveling wave coupler efficiently extracts energy from the electron beam, and includes a waveguide with a slot therethrough for receiving the electron beam. The ribbon beam is tilted at an angle with respect to the traveling wave coupler so that the electron beam couples in-phase with the traveling wave in the waveguide. The traveling wave coupler thus extracts energy from the electron beam over the entire width of the beam.

  13. Gigatron microwave amplifier

    DOE Patents [OSTI]

    McIntyre, P.M.

    1993-07-13

    An electron tube for achieving high power at high frequency with high efficiency is described, including an input coupler, a ribbon-shaped electron beam and a traveling wave output coupler. The input coupler is a lumped constant resonant circuit that modulates a field emitter array cathode at microwave frequency. A bunched ribbon electron beam is emitted from the cathode in periodic bursts at the desired frequency. The beam has a ribbon configuration to eliminate limitations inherent in round beam devices. The traveling wave coupler efficiently extracts energy from the electron beam, and includes a waveguide with a slot there through for receiving the electron beam. The ribbon beam is tilted at an angle with respect to the traveling wave coupler so that the electron beam couples in-phase with the traveling wave in the waveguide. The traveling wave coupler thus extracts energy from the electron beam over the entire width of the beam.

  14. Spectral shape deformation in inverse spin Hall voltage in Y{sub 3}Fe{sub 5}O{sub 12}|Pt bilayers at high microwave power levels

    SciTech Connect (OSTI)

    Lustikova, J. Shiomi, Y.; Handa, Y.; Saitoh, E.

    2015-02-21

    We report on the deformation of microwave absorption spectra and of the inverse spin Hall voltage signals in thin film bilayers of yttrium iron garnet (YIG) and platinum at high microwave power levels in a 9.45-GHz TE{sub 011} cavity. As the microwave power increases from 0.15 to 200 mW, the resonance field shifts to higher values, and the initially Lorentzian spectra of the microwave absorption intensity as well as the inverse spin Hall voltage signals become asymmetric. The contributions from opening of the magnetization precession cone and heating of YIG cannot well reproduce the data. Control measurements of inverse spin Hall voltages on thin-film YIG|Pt systems with a range of line widths underscore the role of spin-wave excitations in spectral deformation.

  15. Microwave Regenerated DPF for Auxiliary Power Units and Diesel...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Microwave Regenerated DPF for Auxiliary Power Units and Diesel Hybrid Vehicles Microwave Regenerated DPF for Auxiliary Power Units and Diesel Hybrid Vehicles Microwave regeneration ...

  16. Design of pulsed guiding magnetic field for high power microwave generators

    SciTech Connect (OSTI)

    Ju, J.-C. Zhang, H.; Zhang, J.; Shu, T.; Zhong, H.-H.

    2014-09-15

    In this paper, we present a comprehensive study on designing solenoid together with the corresponding power supply system to excite pulsed magnetic field required for high power microwave generators. Particularly, a solenoid is designed and the excited magnetic field is applied to a Ku-band overmoded Cerenkov generator. It is found in experiment that the electron beam is properly guided by the magnetic field and a 1.1 GW high power microwave is achieved at a central frequency of 13.76 GHz. Pulsed solenoid system has the advantages of compactness and low energy consumption, which are of great interest for repetitive operation. The reported studies and results can be generalized to other applications which require magnetic fields.

  17. Development of a Permanent-Magnet Microwave Ion Source for a Sealed-Tube Neutron Generator

    SciTech Connect (OSTI)

    Waldmann, Ole; Ludewigt, Bernhard

    2011-03-31

    A microwave ion source has been designed and constructed for use with a sealed-tube, high-yield neutron generator. When operated with a tritium-deuterium gas mixture the generator will be capable of producing 5*1011 n/s in non-proliferation applications. Microwave ion sources are well suited for such a device because they can produce high extracted beam currents with a high atomic fraction at low gas pressures of 0.2-0.3 Pa required for sealed tube operation. The magnetic field strength for achieving electron cyclotron resonance (ECR) condition, 87.5 mT at 2.45 GHz microwave frequency, was generated and shaped with permanent magnets surrounding the plasma chamber and a ferromagnetic plasma electrode. This approach resulted in a compact ion source that matches the neutron generator requirements. The needed proton-equivalent extracted beam current density of 40 mA/cm^2 was obtained at moderate microwave power levels of 400 W. Results on magnetic field design, pressure dependency and atomic fraction measured for different wall materials are presented.

  18. A 12 GHz RF Power Source for the CLIC Study

    SciTech Connect (OSTI)

    Schirm, Karl; Curt, Stephane; Dobert, Steffen; McMonagle, Gerard; Rossat, Ghislain; Syratchev, Igor; Timeo, Luca; Haase, Andrew Jensen, Aaron; Jongewaard, Erik; Nantista, Christopher; Sprehn, Daryl; Vlieks, Arnold; Hamdi, Abdallah; Peauger, Franck; Kuzikov, Sergey; Vikharev, Alexandr; /Nizhnii Novgorod, IAP

    2012-07-03

    The CLIC RF frequency has been changed in 2008 from the initial 30 GHz to the European X-band 11.9942 GHz permitting beam independent power production using klystrons for CLIC accelerating structure testing. A design and fabrication contract for five klystrons at that frequency has been signed by different parties with SLAC. France (IRFU, CEA Saclay) is contributing a solid state modulator purchased in industry and specific 12 GHz RF network components to the CLIC study. RF pulses over 120 MW peak at 230 ns length will be obtained by using a novel SLED-I type pulse compression scheme designed and fabricated by IAP, Nizhny Novgorod, Russia. The X-band power test stand is being installed in the CLIC Test Facility CTF3 for independent structure and component testing in a bunker, but allowing, in a later stage, for powering RF components in the CTF3 beam lines. The design of the facility, results from commissioning of the RF power source and the expected performance of the Test Facility are reported.

  19. Microwave heating apparatus and method

    DOE Patents [OSTI]

    Johnson, Andrew J. (Boulder, CO); Petersen, Robert D. (Thornton, CO); Swanson, Stephen D. (Brighton, CO)

    1990-01-01

    An apparatus is provided for heating and melting materials using microwave energy, and for permitting them to solidify. The apparatus includes a microwave energy source, a resonant cavity having an opening in its floor, a microwave energy choke encompassing the opening in the floor of the cavity, a metal container to hold the materials to be heated and melted, a turntable, and a lift-table. During operation, the combined action of the turntable and the lift-table position the metal container so that the top of the container is level with the floor of the cavity, is in substantial registration with the floor opening, and is encompassed by the microwave energy choke; thus, during operation, the interior of the container defines part of the resonant cavity. Additionally, a screw feeder, extending into the cavity and sheltered from microwave energy by a conveyor choke, may convey the materials to be heated to the container. Also, preferably, the floor of the resonant cavity may include perforatins, so that the offgases and dust generated in the apparatus may be removed from the resonant cavity by pulling outside air between the container choke and the exterior wall of the container into the resonant cavity and out from the cavity through the perforations.

  20. Using a cold radiometer to measure heat loads and survey heat leaks

    SciTech Connect (OSTI)

    DiPirro, M.; Tuttle, J.; Hait, T.; Shirron, P.

    2014-01-29

    We have developed an inexpensive cold radiometer for use in thermal/vacuum chambers to measure heat loads, characterize emissivity and specularity of surfaces and to survey areas to evaluate stray heat loads. We report here the results of two such tests for the James Webb Space Telescope to measure heat loads and effective emissivities of 2 major pieces of optical ground support equipment that will be used in upcoming thermal vacuum testing of the Telescope.

  1. Absolute intensity calibration of the 32-channel heterodyne radiometer on experimental advanced superconducting tokamak

    SciTech Connect (OSTI)

    Liu, X.; Zhao, H. L.; Liu, Y. Li, E. Z.; Han, X.; Ti, A.; Hu, L. Q.; Zhang, X. D.; Domier, C. W.; Luhmann, N. C.

    2014-09-15

    This paper presents the results of the in situ absolute intensity calibration for the 32-channel heterodyne radiometer on the experimental advanced superconducting tokamak. The hot/cold load method is adopted, and the coherent averaging technique is employed to improve the signal to noise ratio. Measured spectra and electron temperature profiles are compared with those from an independent calibrated Michelson interferometer, and there is a relatively good agreement between the results from the two different systems.

  2. ARM - Datastreams - gvrp

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Datastreamsgvrp Documentation Data Quality Plots Citation DOI: 10.5439/1025199 [ What is this? ] Generate Citation ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Datastream : GVRP G-band (183 GHz) Vapor Radiometer profiler: 15 microwave brightness temperatures from 170.0 to 183.3 GHz Active Dates 2008.04.01 - 2015.05.10 Measurement Categories Radiometric Originating Instrument G-band (183 GHz) Vapor Radiometer

  3. SLAC All Access: Vacuum Microwave Device Department

    ScienceCinema (OSTI)

    Haase, Andy

    2014-06-13

    The Vacuum Microwave Device Department (VMDD) builds the devices that make SLAC's particle accelerators go. These devices, called klystrons, generate intense waves of microwave energy that rocket subatomic particles up to nearly the speed of light.

  4. Microwavable thermal energy storage material

    DOE Patents [OSTI]

    Salyer, I.O.

    1998-09-08

    A microwavable thermal energy storage material is provided which includes a mixture of a phase change material and silica, and a carbon black additive in the form of a conformable dry powder of phase change material/silica/carbon black, or solid pellets, films, fibers, moldings or strands of phase change material/high density polyethylene/ethylene vinyl acetate/silica/carbon black which allows the phase change material to be rapidly heated in a microwave oven. The carbon black additive, which is preferably an electrically conductive carbon black, may be added in low concentrations of from 0.5 to 15% by weight, and may be used to tailor the heating times of the phase change material as desired. The microwavable thermal energy storage material can be used in food serving applications such as tableware items or pizza warmers, and in medical wraps and garments. 3 figs.

  5. Microwavable thermal energy storage material

    DOE Patents [OSTI]

    Salyer, Ival O. (Dayton, OH)

    1998-09-08

    A microwavable thermal energy storage material is provided which includes a mixture of a phase change material and silica, and a carbon black additive in the form of a conformable dry powder of phase change material/silica/carbon black, or solid pellets, films, fibers, moldings or strands of phase change material/high density polyethylene/ethylene-vinyl acetate/silica/carbon black which allows the phase change material to be rapidly heated in a microwave oven. The carbon black additive, which is preferably an electrically conductive carbon black, may be added in low concentrations of from 0.5 to 15% by weight, and may be used to tailor the heating times of the phase change material as desired. The microwavable thermal energy storage material can be used in food serving applications such as tableware items or pizza warmers, and in medical wraps and garments.

  6. Ignition methods and apparatus using microwave energy

    DOE Patents [OSTI]

    DeFreitas, Dennis Michael; Migliori, Albert

    1997-01-01

    An ignition apparatus for a combustor includes a microwave energy source that emits microwave energy into the combustor at a frequency within a resonant response of the combustor, the combustor functioning as a resonant cavity for the microwave energy so that a plasma is produced that ignites a combustible mixture therein. The plasma preferably is a non-contact plasma produced in free space within the resonant cavity spaced away from with the cavity wall structure and spaced from the microwave emitter.

  7. Microwave assisted centrifuge and related methods

    DOE Patents [OSTI]

    Meikrantz, David H. (Idaho Falls, ID) [Idaho Falls, ID

    2010-08-17

    Centrifuge samples may be exposed to microwave energy to heat the samples during centrifugation and to promote separation of the different components or constituents of the samples using a centrifuge device configured for generating microwave energy and directing the microwave energy at a sample located in the centrifuge.

  8. Microwave Melting | Y-12 National Security Complex

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Microwave Melting Microwave Melting The mp4 video format is not supported by this browser. Download video Captions: On Time: 2:90 min. Ed Ripley and Kenneth Evans explain some of the benefits of microwave heating technology, including how its uses save energy

  9. Microwave treatment of vulcanized rubber

    DOE Patents [OSTI]

    Wicks, George G. (Aiken, SC); Schulz, Rebecca L. (Aiken, SC); Clark, David E. (Gainesville, FL); Folz, Diane C. (Gainesville, FL)

    2002-07-16

    A process and resulting product is provided in which a vulcanized solid particulate, such as vulcanized crumb rubber, has select chemical bonds broken by microwave radiation. The direct application of microwaves in combination with uniform heating of the crumb rubber renders the treated crumb rubber more suitable for use in new rubber formulations. As a result, larger particle sizes and/or loading levels of the treated crumb rubber can be used in new rubber mixtures to produce recycled composite products with good properties.

  10. Adhesive bonding using variable frequency microwave energy

    DOE Patents [OSTI]

    Lauf, R.J.; McMillan, A.D.; Paulauskas, F.L.; Fathi, Z.; Wei, J.

    1998-09-08

    Methods of facilitating the adhesive bonding of various components with variable frequency microwave energy are disclosed. The time required to cure a polymeric adhesive is decreased by placing components to be bonded via the adhesive in a microwave heating apparatus having a multimode cavity and irradiated with microwaves of varying frequencies. Methods of uniformly heating various articles having conductive fibers disposed therein are provided. Microwave energy may be selectively oriented to enter an edge portion of an article having conductive fibers therein. An edge portion of an article having conductive fibers therein may be selectively shielded from microwave energy. 26 figs.

  11. Adhesive bonding using variable frequency microwave energy

    DOE Patents [OSTI]

    Lauf, R.J.; McMillan, A.D.; Paulauskas, F.L.; Fathi, Z.; Wei, J.

    1998-08-25

    Methods of facilitating the adhesive bonding of various components with variable frequency microwave energy are disclosed. The time required to cure a polymeric adhesive is decreased by placing components to be bonded via the adhesive in a microwave heating apparatus having a multimode cavity and irradiated with microwaves of varying frequencies. Methods of uniformly heating various articles having conductive fibers disposed therein are provided. Microwave energy may be selectively oriented to enter an edge portion of an article having conductive fibers therein. An edge portion of an article having conductive fibers therein may be selectively shielded from microwave energy. 26 figs.

  12. Scanning tip microwave near field microscope

    DOE Patents [OSTI]

    Xiang, X.D.; Schultz, P.G.; Wei, T.

    1998-10-13

    A microwave near field microscope has a novel microwave probe structure wherein the probing field of evanescent radiation is emitted from a sharpened metal tip instead of an aperture or gap. This sharpened tip, which is electrically and mechanically connected to a central electrode, extends through and beyond an aperture in an end wall of a microwave resonating device such as a microwave cavity resonator or a microwave stripline resonator. Since the field intensity at the tip increases as the tip sharpens, the total energy which is radiated from the tip and absorbed by the sample increases as the tip sharpens. The result is improved spatial resolution without sacrificing sensitivity. 17 figs.

  13. Scanning tip microwave near field microscope

    DOE Patents [OSTI]

    Xiang, Xiao-Dong (Alameda, CA); Schultz, Peter G. (Oakland, CA); Wei, Tao (Albany, CA)

    1998-01-01

    A microwave near field microscope has a novel microwave probe structure wherein the probing field of evanescent radiation is emitted from a sharpened metal tip instead of an aperture or gap. This sharpened tip, which is electrically and mechanically connected to a central electrode, extends through and beyond an aperture in an endwall of a microwave resonating device such as a microwave cavity resonator or a microwave stripline resonator. Since the field intensity at the tip increases as the tip sharpens, the total energy which is radiated from the tip and absorbed by the sample increases as the tip sharpens. The result is improved spatial resolution without sacrificing sensitivity.

  14. Adhesive bonding using variable frequency microwave energy

    DOE Patents [OSTI]

    Lauf, Robert J. (Oak Ridge, TN); McMillan, April D. (Knoxville, TN); Paulauskas, Felix L. (Oak Ridge, TN); Fathi, Zakaryae (Cary, NC); Wei, Jianghua (Raleigh, NC)

    1998-01-01

    Methods of facilitating the adhesive bonding of various components with variable frequency microwave energy are disclosed. The time required to cure a polymeric adhesive is decreased by placing components to be bonded via the adhesive in a microwave heating apparatus having a multimode cavity and irradiated with microwaves of varying frequencies. Methods of uniformly heating various articles having conductive fibers disposed therein are provided. Microwave energy may be selectively oriented to enter an edge portion of an article having conductive fibers therein. An edge portion of an article having conductive fibers therein may be selectively shielded from microwave energy.

  15. Controlled zone microwave plasma system

    DOE Patents [OSTI]

    Ripley, Edward B. (Knoxville, TN); Seals, Roland D. (Oak Ridge, TN); Morrell, Jonathan S. (Knoxville, TN)

    2009-10-20

    An apparatus and method for initiating a process gas plasma. A conductive plate having a plurality of conductive fingers is positioned in a microwave applicator. An arc forms between the conductive fingers to initiate the formation of a plasma. A transport mechanism may convey process materials through the plasma. A spray port may be provided to expel processed materials.

  16. Microwave sintering of boron carbide

    DOE Patents [OSTI]

    Blake, R.D.; Katz, J.D.; Petrovic, J.J.; Sheinberg, H.

    1988-06-10

    A method for forming boron carbide into a particular shape and densifying the green boron carbide shape. Boron carbide in powder form is pressed into a green shape and then sintered, using a microwave oven, to obtain a dense boron carbide body. Densities of greater than 95% of theoretical density have been obtained. 1 tab.

  17. Relative Accuracy of 1-Minute and Daily Total Solar Radiation Data for 12 Global and 4 Direct Beam Solar Radiometers: Preprint

    SciTech Connect (OSTI)

    Myers, D. R.; Wilcox, S. M.

    2009-03-01

    This report evaluates the relative performance of 12 global and four direct beam solar radiometers deployed at a single site over a 12-month period. Test radiometer irradiances were compared with a reference irradiance consisting of either an absolute cavity radiometer (during calibrations) or a low uncertainty thermopile pyrheliometer (during the evaluation period) for pyrheliometers; and for pyranometers a reference global irradiance computed from the reference pyrheliometer and diffuse irradiance from a shaded pyranometer.

  18. MONITORING POWER PLANT EFFICIENCY USING THE MICROWAVE-EXCITED PHOTOACOUSTIC EFFECT TO MEASURE UNBURNED CARBON

    SciTech Connect (OSTI)

    Robert C. Brown; Robert J. Weber; Andrew A. Suby

    2003-01-01

    Three test instruments are being evaluated to determine the feasibility of using photoacoustic technology for measuring unburned carbon in fly ash. The first test instrument is a single microwave frequency system previously constructed to measure photo-acoustic signals in an off-line configuration. This system was assembled and used to test parameters thought important to photo-acoustic signal output. A standard modulation frequency was chosen based upon signal to noise data gained from experimentation. Sample heterogeneity was tested and found not to be influential. Further testing showed that sample compression and photo-acoustic volume do affect photo-acoustic signal with photoacoustic volume being the most influential. Testing in the fifth quarter focused on microwave power stability. Simultaneously, a second instrument is being constructed based in part on lessons learned with the first instrument, but also expands the capabilities of the first instrument by allowing a spectrum of microwave frequencies to be tested up to 10 GHz. The power amplifiers for this second instrument were completed and tested. Improvements were made to the current leveling loop, which will stabilize the microwave power. This loop is currently in operation with the single frequency cell. Discriminatory measurements are continuing in an attempt to differentiate between magnetic contaminants such as iron and non-magnetic contaminants such as carbon. A short coaxial test fixture was fabricated and tested showing the promise of another microwave based test method for determining carbon content in fly ash. Preliminary design iterations for the third on-line instrument (based on the experiences of the first two instruments) have begun.

  19. Validation and analysis of microwave-derived rainfall over the tropics. Master's thesis

    SciTech Connect (OSTI)

    Fleishauer, R.P.

    1993-01-01

    A recently developed single channel microwave rain rate retrieval algorithm exists to measure global precipitation over the data-sparse tropical oceans. The objective of this study is to retrieve and validate rainfall using this algorithm, followed by an analysis of the derived rainfall fields. Retrieval consists of applying the algorithm technique to the extraction of four years worth of achieved data from the Electrically Scanning Microwave Radiometer (ESMR) instrument flown aboard the NIMBUS 5 satellite. The Pacific Atoll Raingage Data Set is chosen as a ground truth measure to validate the ESMR-Derived rainfall data against, comparing slope, intercept and correlation between 5 deg x 5 deg area average. Despite limitations imposed by the comparison of point measurements to area-averaged rainfall, results show a 0.80 correlation. Monthly and quarterly climatological mean rainfall estimates are produced, with a consequent analysis of prominent signals, especially in the Intertropical Convergence Zone (ITCZ), South Pacific Convergence Zone (SPCZ) and the Indian monsoon. Latent heat flux is computed, using the ESMR-derived rainfall, and plotted to show qualitatively where seasonal latent thermodynamic energy sources and sinks exist in the atmosphere. A comparison of the summer and winter quarterly composites of the above products with previously compiled climatologies and Outgoing Longwave Radiation (OLR) showed only minor discrepancies in location and intensity, which are discussed in some detail.

  20. Macrocyclic polyaminocarboxylates for stable radiometal antibody conjugates for therapy, spect and pet imaging

    DOE Patents [OSTI]

    Mease, Ronnie C. (Fairfax, VA); Mausner, Leonard F. (Stony Brook, NY); Srivastava, Suresh C. (Setauket, NY)

    1997-06-17

    A simple method for the synthesis of 1,4,7, 10-tetraazacyclododecane N,N'N",N'"-tetraacetic acid and 1,4,8,11-tetraazacyclotetradecane N,N',N",N'"-tetraacetic acid involves cyanomethylating 1,4,7, 10-tetraazacyclododecane or 1,4,8,11-tetraazacyclotetradecane to form a tetranitrile and hydrolyzing the tetranitrile. These macrocyclic compounds are functionalized through one of the carboxylates and then conjugated to various biological molecules including monoclonal antibodies. The resulting conjugated molecules are labeled with radiometals for SPECT and PET imaging and for radiotherapy.

  1. Macrocyclic polyaminocarboxylates for stable radiometal antibody conjugates for therapy, SPECT and PET imaging

    DOE Patents [OSTI]

    Mease, R.C.; Mausner, L.F.; Srivastava, S.C.

    1997-06-17

    A simple method for the synthesis of 1,4,7, 10-tetraazacyclododecane N,N{prime}N{double_prime},N{prime}{double_prime}-tetraacetic acid and 1,4,8,11-tetraazacyclotetradecane N,N{prime},N{double_prime},N{prime}{double_prime}-tetraacetic acid involves cyanomethylating 1,4,7,10-tetraazacyclododecane or 1,4,8,11-tetraazacyclotetradecane to form a tetranitrile and hydrolyzing the tetranitrile. These macrocyclic compounds are functionalized through one of the carboxylates and then conjugated to various biological molecules including monoclonal antibodies. The resulting conjugated molecules are labeled with radiometals for SPECT and PET imaging and for radiotherapy. 4 figs.

  2. Microwave assisted hard rock cutting

    DOE Patents [OSTI]

    Lindroth, David P. (Apple Valley, MN); Morrell, Roger J. (Bloomington, MN); Blair, James R. (Inver Grove Heights, MN)

    1991-01-01

    An apparatus for the sequential fracturing and cutting of subsurface volume of hard rock (102) in the strata (101) of a mining environment (100) by subjecting the volume of rock to a beam (25) of microwave energy to fracture the subsurface volume of rock by differential expansion; and , then bringing the cutting edge (52) of a piece of conventional mining machinery (50) into contact with the fractured rock (102).

  3. Microwave-enhanced chemical processes

    DOE Patents [OSTI]

    Varma, Ravi (Hinsdale, IL)

    1990-01-01

    A process for disposal of toxic wastes including chlorinated hydrocarbons, comprising, establishing a bed of non-metallic particulates having a high dielectric loss factor. Effecting intimate contact of the particulates and the toxic wastes at a temperature in excess of about 400.degree. C. in the presence of microwave radiation for a time sufficient to break the hydrocarbon chlorine bonds and provide detoxification values in excess of 80 and further detoxifying the bed followed by additional disposal of toxic wastes.

  4. Multi Spectral Pushbroom Imaging Radiometer (MPIR) for remote sensing cloud studies

    SciTech Connect (OSTI)

    Phipps, G.S.; Grotbeck, C.L.

    1995-10-01

    A Multi Spectral Pushbroom Imaging Radiometer (MPIR) has been developed as are relatively inexpensive ({approximately}$IM/copy), well-calibrated,imaging radiometer for aircraft studies of cloud properties. The instrument is designed to fly on an Unmanned Aerospace Vehicle (UAV) platform at altitudes from the surface up to 20 km. MPIR is being developed to support the Unmanned Aerospace Vehicle portion of the Department of Energy`s Atmospheric Radiation Measurements program (ARM/UAV). Radiation-cloud interactions are the dominant uncertainty in the current General Circulation Models used for atmospheric climate studies. Reduction of this uncertainty is a top scientific priority of the US Global Change Research Program and the ARM program. While the DOE`s ARM program measures a num-ber of parameters from the ground-based Clouds and Radiation Testbed sites, it was recognized from the outset that other key parameters are best measured by sustained airborne data taking. These measurements are critical in our understanding of global change issues as well as for improved atmospheric and near space weather forecasting applications.

  5. Microwave solidification development for Rocky Flats waste

    SciTech Connect (OSTI)

    Dixon, D.; Erle, R.; Eschen, V.

    1994-04-01

    The Microwave Engineering Team at the Rocky Flats Plant has developed a production-scale system for the treatment of hazardous, radioactive, and mixed wastes using microwave energy. The system produces a vitreous final form which meets the acceptance criteria for shipment and disposal. The technology also has potential for application on various other waste streams from the public and private sectors. Technology transfer opportunities are being identified and pursued for commercialization of the microwave solidification technology.

  6. Quasi-Optical 34-GHz Rf Pulse Compressor

    SciTech Connect (OSTI)

    Hirshfield, Jay L

    2007-06-19

    Designs have been carried out on non-high-vacuum, low-power versions of three- and four-mirror quasi-optical passive and active Ka-band pulse compressors, and prototypes built and tested based on these designs. The active element is a quasi-optical grating employing gas discharge tubes in the gratings. Power gains of about 3:1 were observed experimentally for the passive designs, and about 7:1 with the active designs. High-power, high-vacuum versions of the three-and four-mirror quasi-optical pulse compressors were built and tested at low power. These now await installation and testing using multi-MW power from the 34-GHz magnicon.

  7. Process for microwave sintering boron carbide

    DOE Patents [OSTI]

    Holcombe, Cressie E. (440 Sugarwood Dr., Knoxville, TN 37922); Morrow, Marvin S. (Rte. #3, Box 113, Kingston, TN 37763)

    1993-01-01

    A method of microwave sintering boron carbide comprises leaching boron carbide powder with an aqueous solution of nitric acid to form a leached boron carbide powder. The leached boron carbide powder is coated with a glassy carbon precursor to form a coated boron carbide powder. The coated boron carbide powder is consolidated in an enclosure of boron nitride particles coated with a layer of glassy carbon within a container for microwave heating to form an enclosed coated boron carbide powder. The enclosed coated boron carbide powder is sintered within the container for microwave heating with microwave energy.

  8. Process for microwave sintering boron carbide

    DOE Patents [OSTI]

    Holcombe, C.E.; Morrow, M.S.

    1993-10-12

    A method of microwave sintering boron carbide comprises leaching boron carbide powder with an aqueous solution of nitric acid to form a leached boron carbide powder. The leached boron carbide powder is coated with a glassy carbon precursor to form a coated boron carbide powder. The coated boron carbide powder is consolidated in an enclosure of boron nitride particles coated with a layer of glassy carbon within a container for microwave heating to form an enclosed coated boron carbide powder. The enclosed coated boron carbide powder is sintered within the container for microwave heating with microwave energy.

  9. Hybrid Microwave Energy - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    undesirable environmental consequences.Description The hybrid microwave system provides a simple processing method for the reduction of waste volume, immobilization of hazardous...

  10. 37 GHz METHANOL MASERS : HORSEMEN OF THE APOCALYPSE FOR THE CLASS II METHANOL MASER PHASE?

    SciTech Connect (OSTI)

    Ellingsen, S. P.; Breen, S. L.; Sobolev, A. M.; Voronkov, M. A.; Caswell, J. L.; Lo, N.

    2011-12-01

    We report the results of a search for class II methanol masers at 37.7, 38.3, and 38.5 GHz toward a sample of 70 high-mass star formation regions. We primarily searched toward regions known to show emission either from the 107 GHz class II methanol maser transition, or from the 6.035 GHz excited OH transition. We detected maser emission from 13 sources in the 37.7 GHz transition, eight of these being new detections. We detected maser emission from three sources in the 38 GHz transitions, one of which is a new detection. We find that 37.7 GHz methanol masers are only associated with the most luminous 6.7 and 12.2 GHz methanol maser sources, which in turn are hypothesized to be the oldest class II methanol sources. We suggest that the 37.7 GHz methanol masers are associated with a brief evolutionary phase (of 1000-4000 years) prior to the cessation of class II methanol maser activity in the associated high-mass star formation region.

  11. A Linear Theory of Microwave Instability in Electron Storage...

    Office of Scientific and Technical Information (OSTI)

    Journal Article: A Linear Theory of Microwave Instability in Electron Storage Rings Citation Details In-Document Search Title: A Linear Theory of Microwave Instability in Electron...

  12. Microwave (MW) and Radio Frequency (RF) as Enabling Technologies...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Microwave (MW) and Radio Frequency (RF) as Enabling Technologies for Advanced Manufacturing Microwave (MW) and Radio Frequency (RF) as Enabling Technologies for Advanced ...

  13. Product Standards for Microwaves (Japan) | Open Energy Information

    Open Energy Info (EERE)

    Microwaves (Japan) Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Product Standards for Microwaves (Japan) Focus Area: Appliances & Equipment Topics: Policy Impacts...

  14. Environmental assessment for the Satellite Power System (SPS): studies of honey bees exposed to 2. 45 GHz continuous-wave electromagnetic energy

    SciTech Connect (OSTI)

    Gary, N E; Westerdahl, B B

    1980-12-01

    A system for small animal exposure was developed for treating honey bees, Apis mellifera L., in brood and adult stages, with 2.45 GHz continuous wave microwaves at selected power densities and exposure times. Post-treatment brood development was normal and teratological effects were not detected at exposures of 3 to 50 mw/cm/sup 2/ for 30 minutes. Post-treatment survival, longevity, orientation, navigation, and memory of adult bees were also normal after exposures of 3 to 50 mw/cm/sup 2/ for 30 minutes. Post-treatment longevity of confined bees in the laboratory was normal after exposures of 3 to 50 mw/cm/sup 2/ for 24 hours. Thermoregulation of brood nest, foraging activity, brood rearing, and social interaction were not affected by chronic exposure to 1 mw/cm/sup 2/ during 28 days. In dynamic behavioral bioassays the frequency of entry and duration of activity of unrestrained, foraging adult bees was identical in microwave-exposed (5 to 40 mw/cm/sup 2/) areas versus control areas.

  15. Microwave-enhanced chemical processes

    DOE Patents [OSTI]

    Varma, R.

    1990-06-19

    A process is disclosed for the disposal of toxic wastes including chlorinated hydrocarbons, comprising, establishing a bed of non-metallic particulates having a high dielectric loss factor. Intimate contact of the particulates and the toxic wastes at a temperature in excess of about 400 C in the presence of microwave radiation for a time sufficient breaks the hydrocarbon chlorine bonds. Detoxification values in excess of 80 are provided and further detoxification of the bed is followed by additional disposal of toxic wastes. 1 figure.

  16. Microwave-triggered laser switch

    DOE Patents [OSTI]

    Piltch, Martin S. (Los Alamos, NM)

    1984-01-01

    A high-repetition rate switch for delivering short duration, high-power electrical pulses from a pulsed-charged dc power supply. The present invention utilizes a microwave-generating device such as a magnetron that is capable of producing high-power pulses at high-pulse repetition rates and fast-pulse risetimes for long periods with high reliability. The rail-gap electrodes provide a large surface area that reduces induction effects and minimizes electrode erosion. Additionally, breakdown is initiated in a continuous geometric fashion that also increases operating lifetime of the device.

  17. Microwave-triggered laser switch

    DOE Patents [OSTI]

    Piltch, M.S.

    1982-05-19

    A high-repetition rate switch is described for delivering short duration, high-powered electrical pulses from a pulsed-charged dc power supply. The present invention utilizes a microwave-generating device such as a magnetron that is capable of producing high-power pulses at high-pulse repetition rates and fast-pulse risetimes for long periods with high reliability. The rail-gap electrodes provide a large surface area that reduces induction effects and minimizes electrode erosion. Additionally, breakdown is initiated in a continuous geometric fashion that also increases operating lifetime of the device.

  18. Method of sintering materials with microwave radiation

    DOE Patents [OSTI]

    Kimrey, Jr., Harold D. (Knoxville, TN); Holcombe, Jr., Cressie E. (Farragut, TN); Dykes, Norman L. (Oak Ridge, TN)

    1994-01-01

    A method of sintering ceramic materials following: A compacted article comprising inorganic particles coated with carbon is provided, the carbon providing improved microwave coupling. The compacted article is then heated by microwave radiation to a temperature and for a period of time sufficient to sinter the compacted article.

  19. Method of sintering materials with microwave radiation

    DOE Patents [OSTI]

    Kimrey, H.D. Jr.; Holcombe, C.E. Jr.; Dykes, N.L.

    1994-06-14

    Disclosed is a method of sintering ceramic materials. A compacted article comprising inorganic particles coated with carbon is provided, the carbon providing improved microwave coupling. The compacted article is then heated by microwave radiation to a temperature and for a period of time sufficient to sinter the compacted article. No Drawings

  20. Relative Accuracy of 1-Minute and Daily Total Solar Radiation Data for 12 Global and 4 Direct Beam Solar Radiometers

    SciTech Connect (OSTI)

    Myers, D.; Wilcox, S. M.

    2009-01-01

    We evaluated the relative performance of 12 global and four direct beam solar radiometers deployed at a single site over a 12-month period. Test radiometer irradiances were compared with a reference irradiance consisting of either an absolute cavity radiometer (during calibrations) or a low uncertainty thermopile pyrheliometer (during the evaluation period) for pyrheliometers; and for pyranometers a reference global irradiance computed from the reference pyrheliometer and diffuse irradiance from a shaded pyranometer. One minute averages of 3-second data for 12 months from the test instrument measurements were compared with the computed reference data set. Combined uncertainty in the computed reference irradiance is 1.8% {+-} 0.5%. Total uncertainty in the pyranometer comparisons is {+-}2.5%. We show mean percent difference between reference global irradiance and test pyranometer 1 minute data as a function of zenith angle, and percent differences between daily totals for the reference and test irradiances as a function of day number. We offer no explicit conclusion about the performance of instrument models, as a general array of applications with a wide range of instrumentation and accuracy requirements could be addressed with any of the radiometers.

  1. Integration of Global Positioning System and Scanning Water Vapor Radiometers for Precipitable Water Vapor and Cloud Liquid Path Estimates

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Integration of Global Positioning System and Scanning Water Vapor Radiometers for Precipitable Water Vapor and Cloud Liquid Path Estimates V. Mattioli and P. Basili Department of Electronic and Information Engineering University of Perugia Perugia, Italy E. R. Westwater Cooperative Institute for Research in Environmental Sciences University of Colorado National Oceanic and Atmospheric Administration Environmental Technology Laboratory Boulder, Colorado Introduction In recent years the Global

  2. Solar Irradiances Measured using SPN1 Radiometers: Uncertainties and Clues for Development

    SciTech Connect (OSTI)

    Badosa, Jordi; Wood, John; Blanc, Philippe; Long, Charles N.; Vuilleumier, Laurent; Demengel, Dominique; Haeffelin, Martial

    2014-12-08

    The fast development of solar radiation and energy applications, such as photovoltaic and solar thermodynamic systems, has increased the need for solar radiation measurement and monitoring, not only for the global component but also the diffuse and direct. End users look for the best compromise between getting close to state-of-the-art measurements and keeping capital, maintenance and operating costs to a minimum. Among the existing commercial options, SPN1 is a relatively low cost solar radiometer that estimates global and diffuse solar irradiances from seven thermopile sensors under a shading mask and without moving parts. This work presents a comprehensive study of SPN1 accuracy and sources of uncertainty, which results from laboratory experiments, numerical modeling and comparison studies between measurements from this sensor and state-of-the art instruments for six diverse sites. Several clues are provided for improving the SPN1 accuracy and agreement with state-of-the-art measurements.

  3. Microwave drying of ferric oxide pellets

    SciTech Connect (OSTI)

    Pickles, C.A.; Xia, D.K.

    1997-12-31

    The application of microwave energy for the drying of ferric oxide pellets has been investigated and evaluated. It is shown that the microwave drying rates are much higher than those observed in the conventional process. Also there is some potential for improved quality of the product. As a stand-alone technology it is unlikely that microwave drying would be economical for pellets due to the low cost of conventional fuels. However, based on an understanding of the drying mechanisms in the conventional process and in the microwave process, it is shown that microwave-assisted drying offers considerable potential. In this hybrid process, the advantages of the two drying techniques are combined to provide an improved drying process.

  4. Tandem microwave waste remediation and decontamination system

    DOE Patents [OSTI]

    Wicks, George G.; Clark, David E.; Schulz, Rebecca L.

    1999-01-01

    The invention discloses a tandem microwave system consisting of a primary chamber in which microwave energy is used for the controlled combustion of materials. A second chamber is used to further treat the off-gases from the primary chamber by passage through a susceptor matrix subjected to additional microwave energy. The direct microwave radiation and elevated temperatures provide for significant reductions in the qualitative and quantitative emissions of the treated off gases. The tandem microwave system can be utilized for disinfecting wastes, sterilizing materials, and/or modifying the form of wastes to solidify organic or inorganic materials. The simple design allows on-site treatment of waste by small volume waste generators.

  5. Informal Preliminary Report on Comparisons of Prototype SPN-1 Radiometer to PARSL Measurements

    SciTech Connect (OSTI)

    Long, Charles N.

    2014-06-17

    The prototype SPN-1 has been taking measurements for several months collocated with our PNNL Atmospheric Remote Sensing Laboratory (PARSL) solar tracker mounted instruments at the Pacific Northwest National Laboratory (PNNL) located in Richland, Washington, USA. The PARSL radiometers used in the following comparisons consist of an Eppley Normal Incident Pyrheliometer (NIP) and a shaded Eppley model 8-48 “Black and White” pyrgeometer (B&W) to measure the direct and diffuse shortwave irradiance (SW), respectively. These instruments were calibrated in mid-September by comparison to an absolute cavity radiometer directly traceable to the world standard group in Davos, Switzerland. The NIP calibration was determined by direct comparison, while the B&W was calibrated using the shade/unshade technique. All PARSL data prior to mid-September have been reprocessed using the new calibration factors. The PARSL data are logged as 1-minute averages from 1-second samples. Data used in this report span the time period from June 22 through December 1, 2006. All data have been processed through the QCRad code (Long and Shi, 2006), which itself is a more elaborately developed methodology along the lines of that applied by the Baseline Surface Radiation Network (BSRN) Archive (Long and Dutton, 2004), for quality control. The SPN-1 data are the standard total and diffuse SW values obtained from the analog data port of the instrument. The comparisons use only times when both the PARSL and SPN-1 data passed all QC testing. The data were further processed and analyzed by application of the SW Flux Analysis methodology (Long and Ackerman, 2000; Long and Gaustad, 2004, Long et al., 2006) to detect periods of clear skies, calculate continuous estimates of clear-sky SW irradiance and the effect of clouds on the downwelling SW, and estimate fractional sky cover.

  6. Yb:(YLa){sub 2}O{sub 3} laser ceramics produced by microwave sintering

    SciTech Connect (OSTI)

    Balabanov, S S; Bykov, Yu V; Egorov, S V; Eremeev, A G; Gavrishchuk, E M; Khazanov, Efim A; Mukhin, I B; Palashov, O V; Permin, D A; Zelenogorskii, V V

    2013-04-30

    The possibility of using microwave heating for sintering of optical oxide ceramics and the advantages of this method are considered. Sintering of Yb{sub 0.1}:(YLa){sub 1.9}O{sub 3} ceramics by heating with 24-GHz radiation is studied. The compacts for sintering are prepared from nanosized powders obtained by high-temperature synthesis from acetate-nitrates of rare-earth metals. The effect of addition of lanthanum oxide and of the uniaxial pressing conditions on the microstructure and optical transmission of ceramics is studied. Lasing at a wavelength of 1030 nm with an efficiency of 7.5 % is achieved in ceramic samples of the (Yb{sub 0.05}Y{sub 0.1}La{sub 0.85}){sub 2}O{sub 3} composition under pumping by a laser diode at a wavelength of 940 nm. (extreme light fields and their applications)

  7. Microwaving of normally opaque and semi-opaque substances

    DOE Patents [OSTI]

    Sheinberg, H.; Meek, T.T.; Blake, R.D.

    1990-07-17

    Disclosed is a method of heating small particles using microwave radiation which are not normally capable of being heated by microwaves. The surfaces of the particles are coated with a material which is transparent to microwave radiation in order to cause microwave coupling to the particles and thus accomplish heating of the particles.

  8. The VLBA Imaging And Polarimetry Survey at 5 GHz (Journal Article) |

    Office of Scientific and Technical Information (OSTI)

    SciTech Connect Journal Article: The VLBA Imaging And Polarimetry Survey at 5 GHz Citation Details In-Document Search Title: The VLBA Imaging And Polarimetry Survey at 5 GHz We present the first results of the VLBA Imaging and Polarimetry Survey (VIPS), a 5 GHz VLBI survey of 1,127 sources with flat radio spectra. Through automated data reduction and imaging routines, we have produced publicly available I, Q, and U images and have detected polarized flux density from 37% of the sources. We

  9. Facilely preparation and microwave absorption properties of Fe{sub 3}O{sub 4} nanoparticles

    SciTech Connect (OSTI)

    Wang, Guiqin, E-mail: wanggq@dlut.edu.cn [School of Materials Science and Engineering, Dalian University of Technology, Dalian 116085 (China); Chang, Yongfeng; Wang, Lifang; Liu, Lidong; Liu, Chao [School of Materials Science and Engineering, Dalian University of Technology, Dalian 116085 (China)

    2013-03-15

    Highlights: ? A bran-new method is firstly used to fabricate Fe{sub 3}O{sub 4} nanoparticles. ? The detailed analysis of formation mechanism is discussed. ? The electromagnetic absorption properties are defined. ? The effect of nanometer-sized is considered for the excellent microwave absorption. - Abstract: The Fe{sub 3}O{sub 4} nanoparticles were prepared by a novel wet-chemical method which shows its highly synthesizing efficiency and controllability. A possible formation mechanism was also proposed to explain the synthesizing process. X-ray diffraction (XRD) and transmission electron microscope (TEM) were employed and yielded an examination of an average diameter of 77 nm of the as-synthesized Fe{sub 3}O{sub 4} nanoparticles with face-centered cubic structure. Vibrating sample magnetometer (VSM) and vector network analyzer were employed to measure the magnetic property and electromagnetic parameters of the nanoparticles, then reflection losses (RL (dB)) were calculated in the frequency range of 218 GHz. A large saturation magnetization (72.36 emu/g) and high coercivity (95 Oe) were determined and indicated that the Fe{sub 3}O{sub 4} nanoparticles own strong magnetic performance. Following simulation results showed that the lowest reflection loss of the sample was ?21.2 dB at 5.6 GHz with layer thickness of 6 mm. Effect of nanometer-sized further provided an explanation for the excellent microwave absorption behavior shown by the Fe{sub 3}O{sub 4} nanoparticles.

  10. A microwave resonator for limiting depth sensitivity for electron paramagnetic resonance spectroscopy of surfaces

    SciTech Connect (OSTI)

    Sidabras, Jason W.; Varanasi, Shiv K.; Hyde, James S.; Mett, Richard R.; Swarts, Steven G.; Swartz, Harold M.

    2014-10-15

    A microwave Surface Resonator Array (SRA) structure is described for use in Electron Paramagnetic Resonance (EPR) spectroscopy. The SRA has a series of anti-parallel transmission line modes that provides a region of sensitivity equal to the cross-sectional area times its depth sensitivity, which is approximately half the distance between the transmission line centers. It is shown that the quarter-wave twin-lead transmission line can be a useful element for design of microwave resonators at frequencies as high as 10 GHz. The SRA geometry is presented as a novel resonator for use in surface spectroscopy where the region of interest is either surrounded by lossy material, or the spectroscopist wishes to minimize signal from surrounding materials. One such application is in vivo spectroscopy of human finger-nails at X-band (9.5 GHz) to measure ionizing radiation dosages. In order to reduce losses associated with tissues beneath the nail that yield no EPR signal, the SRA structure is designed to limit depth sensitivity to the thickness of the fingernail. Another application, due to the resonator geometry and limited depth penetration, is surface spectroscopy in coating or material science. To test this application, a spectrum of 1.44 ?M of Mg{sup 2+} doped polystyrene 1.1 mm thick on an aluminum surface is obtained. Modeling, design, and simulations were performed using Wolfram Mathematica (Champaign, IL; v. 9.0) and Ansys High Frequency Structure Simulator (HFSS; Canonsburg, PA; v. 15.0). A micro-strip coupling circuit is designed to suppress unwanted modes and provide a balanced impedance transformation to a 50 ? coaxial input. Agreement between simulated and experimental results is shown.

  11. Microwave meta-atom enhanced spintronic rectification

    SciTech Connect (OSTI)

    Gou, Peng; Xi, Fuchun; Qian, Qinbai; Xu, Jie; Gui, Y. S.; Hu, C.-M.; An, Zhenghua

    2015-04-06

    An artificial meta-atom (MA), or alternatively, a plasmonic antenna, has been demonstrated to significantly enhance the microwave spin rectifying photovoltage by more than two orders in magnitude (∼280) in the ferromagnetic resonance regime. The large enhancement is attributed to the unique structure of the MA which magnifies both microwave electric (∼5) and magnetic (∼56) fields in the same near-field spatial region. Our work develops the interdisciplinary direction with artificial and natural magnetism and may find promising applications in high-frequency or opto-spintronic devices and wireless microwave energy harvesting.

  12. Microwave Excitation In ECRIS plasmas

    SciTech Connect (OSTI)

    Ciavola, G.; Celona, L.; Consoli, F.; Gammino, S.; Maimone, F.; Barbarino, S.; Catalano, R. S.; Mascali, D.; Tumino, L.

    2007-09-28

    A number of phenomena related to the electron cyclotron resonance ion sources (ECRIS) has been better understood recently by means of the improvement of comprehension of the coupling mechanism between microwave generators and ECR plasma. In particular, the two frequency heating and the frequency tuning effect, that permit a remarkable increase of the current for the highest charge states ions, can be explained in terms of modes excitation in the cylindrical cavity of the plasma chamber. Calculations based on this theoretical approach have been performed, and the major results will be presented. It will be shown that the electric field pattern completely changes for a few MHz frequency variations and the changes in ECRIS performances can be correlated to the efficiency of the power transfer between electromagnetic field and plasma.

  13. Planar slot coupled microwave hybrid

    DOE Patents [OSTI]

    Petter, Jeffrey K. (Williston, VT)

    1991-01-01

    A symmetrical 180.degree. microwave hybrid is constructed by opening a slot line in a ground plane below a conducting strip disposed on a dielectric substrate, creating a slot coupled conductor. Difference signals propagating on the slot coupled conductor are isolated on the slot line leaving sum signals to propagate on the microstrip. The difference signal is coupled from the slot line onto a second microstrip line for transmission to a desired location. The microstrip branches in a symmetrical fashion to provide the input/output ports of the 180.degree. hybrid. The symmetry of the device provides for balance and isolation between sum and difference signals, and provides an advantageous balance between the power handling capabilities and the bandwidth of the device.

  14. ARM - Instrument - mwr3c

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govInstrumentsmwr3c Documentation MWR3C : Handbook ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Instrument : Microwave Radiometer, 3 Channel (MWR3C) Instrument Categories Cloud Properties, Radiometric General Overview The microwave radiometer 3-channel (MWR3C) provides time-series measurements of brightness temperatures from three channels centered at 23.834, 30, and 89 GHz. These three channels are sensitive to

  15. Demonstration of two-beam acceleration and 30 GHz power production in the CLIC Test Facility

    SciTech Connect (OSTI)

    Bossart, R.; Braun, H. H.; Carron, G.; Chanudet, M.; Chautard, F.; Delahaye, J. P.; Godot, J. C.; Hutchins, S.; Martinez, C.; Suberlucq, G.; Tenenbaum, P.; Thorndahl, L.; Trautner, H.; Valentini, M.; Wilson, I.; Wuensch, W. [CERN, 1211 Geneva 23 (Switzerland)

    1999-05-07

    The Compact Linear Collider (CLIC) Test Facility (CTF II) at CERN has recently demonstrated Two-Beam power production and acceleration at 30 GHz. With 41 MW of 30 GHz power produced in 14 ns pulses at a repetition rate of 5 Hz, the main beam has been accelerated by 28 MeV. The 30 GHz RF power is extracted in low impedance decelerating structures from a low-energy, high-current 'drive beam' which runs parallel to the main beam. The average current in the drive-beam train is 25 A, while the peak current exceeds 2 kA. Crosschecks between measured drive-beam charge, 30 GHz power and main-beam energy gain are in good agreement. In this paper, some relevant experimental and technical issues on drive-beam generation, two-beam power production and acceleration are presented.

  16. Continuous, real time microwave plasma element sensor

    DOE Patents [OSTI]

    Woskov, P.P.; Smatlak, D.L.; Cohn, D.R.; Wittle, J.K.; Titus, C.H.; Surma, J.E.

    1995-12-26

    Microwave-induced plasma is described for continuous, real time trace element monitoring under harsh and variable conditions. The sensor includes a source of high power microwave energy and a shorted waveguide made of a microwave conductive, refractory material communicating with the source of the microwave energy to generate a plasma. The high power waveguide is constructed to be robust in a hot, hostile environment. It includes an aperture for the passage of gases to be analyzed and a spectrometer is connected to receive light from the plasma. Provision is made for real time in situ calibration. The spectrometer disperses the light, which is then analyzed by a computer. The sensor is capable of making continuous, real time quantitative measurements of desired elements, such as the heavy metals lead and mercury. 3 figs.

  17. Chemical vapor infiltration using microwave energy

    DOE Patents [OSTI]

    Devlin, David J. (Los Alamos, NM); Currier, Robert P. (Los Alamos, NM); Laia, Jr., Joseph R. (Los Alamos, NM); Barbero, Robert S. (Santa Cruz, NM)

    1993-01-01

    A method for producing reinforced ceramic composite articles by means of chemical vapor infiltration and deposition in which an inverted temperature gradient is utilized. Microwave energy is the source of heat for the process.

  18. Modulated microwave microscopy and probes used therewith

    DOE Patents [OSTI]

    Lai, Keji; Kelly, Michael; Shen, Zhi-Xun

    2012-09-11

    A microwave microscope including a probe tip electrode vertically positionable over a sample and projecting downwardly from the end of a cantilever. A transmission line connecting the tip electrode to the electronic control system extends along the cantilever and is separated from a ground plane at the bottom of the cantilever by a dielectric layer. The probe tip may be vertically tapped near or at the sample surface at a low frequency and the microwave signal reflected from the tip/sample interaction is demodulated at the low frequency. Alternatively, a low-frequency electrical signal is also a non-linear electrical element associated with the probe tip to non-linearly interact with the applied microwave signal and the reflected non-linear microwave signal is detected at the low frequency. The non-linear element may be semiconductor junction formed near the apex of the probe tip or be an FET formed at the base of a semiconducting tip.

  19. Container evaluation for microwave solidification project

    SciTech Connect (OSTI)

    Smith, J.A.

    1994-08-01

    This document discusses the development and testing of a suitable waste container and packaging arrangement to be used with the Microwave Solidification System (MSS) and Bagless Posting System (BPS). The project involves the Rocky Flats Plant.

  20. Continuous, real time microwave plasma element sensor

    DOE Patents [OSTI]

    Woskov, Paul P. (4 Ledgewood Dr., Bedford, MA 01730); Smatlak, Donna L. (10 Village Hill Rd., Belmont, MA 02178); Cohn, Daniel R. (26 Walnut Hill Rd., Chestnut Hill, MA 02167); Wittle, J. Kenneth (1740 Conestoga Rd., Chester Springs, PA 19425); Titus, Charles H. (323 Echo Valley La., Newton Square, PA 19072); Surma, Jeffrey E. (806 Brian La., Kennewick, WA 99337)

    1995-01-01

    Microwave-induced plasma for continuous, real time trace element monitoring under harsh and variable conditions. The sensor includes a source of high power microwave energy and a shorted waveguide made of a microwave conductive, refractory material communicating with the source of the microwave energy to generate a plasma. The high power waveguide is constructed to be robust in a hot, hostile environment. It includes an aperture for the passage of gases to be analyzed and a spectrometer is connected to receive light from the plasma. Provision is made for real time in situ calibration. The spectrometer disperses the light, which is then analyzed by a computer. The sensor is capable of making continuous, real time quantitative measurements of desired elements, such as the heavy metals lead and mercury.

  1. ARM - Measurement - Microwave narrowband brightness temperature

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govMeasurementsMicrowave narrowband brightness temperature ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Microwave narrowband brightness temperature A descriptive measure of radiation in terms of the temperature of a hypothetical black body emitting an identical amount of radiation in the same narrow bands of wavelengths. Categories Radiometric Instruments The above measurement is considered

  2. Continuous microwave regeneration apparatus for absorption media

    DOE Patents [OSTI]

    Smith, Douglas D. (Knoxville, TN)

    1999-01-01

    A method and apparatus for continuously drying and regenerating ceramic beads for use in process gas moisture drying operations such as glove boxes. A microwave energy source is coupled to a process chamber to internally heat the ceramic beads and vaporize moisture contained therein. In a preferred embodiment, the moisture laden ceramic beads are conveyed toward the microwave source by a screw mechanism. The regenerated beads flow down outside of the screw mechanism and are available to absorb additional moisture.

  3. Detection of contraband using microwave radiation

    DOE Patents [OSTI]

    Toth, Richard P.; Loubriel, Guillermo M.; Bacon, Larry D.; Watson, Robert D.

    2002-01-01

    The present invention relates to a method and system for using microwave radiation to detect contraband hidden inside of a non-metallic container, such as a pneumatic vehicle tire. The method relies on the attenuation, retardation, time delay, or phase shift of microwave radiation as it passes through the container plus the contraband. The method is non-invasive, non-destructive, low power, and does not require physical contact with the container.

  4. Nonlinear dielectric thin films for active and electrically tunable microwave devices

    SciTech Connect (OSTI)

    Findikoglu, A.T.; Jia, Q.X.; Reagor, D.W.; Wu, X.D.

    1996-11-01

    The authors have prepared electrically tunable and active microwave devices incorporating (superconducting YBa{sub 2}Cu{sub 3}O{sub 7{minus}x})/(nonlinear dielectric SrTiO{sub 3}) or (normal metal Au)/(nonlinear dielectric Sr{sub 0.5}Ba{sub 0.5}TiO{sub 3}) bilayers. The dielectric layer thickness for these samples varied between 0.5 {micro}m and 2 {micro}m. The top electrode layer for each sample was patterned into a coplanar waveguide device structure. The authors have configures these devices as voltage-tunable resonators, voltage-tunable phase shifters, voltage-tunable mixers, and voltage-tunable filters. Under dc voltage bias, these prototype devices have exhibited up to 30% resonant frequency modulation, about 1{degree}/mm-GHz phase shift, more than 40 dB change in mixed microwave power, and fine-tunable symmetric filter profile with less than 2% bandwidth and more than 15% adaptive range.

  5. Comparison of Historical Satellite-Based Estimates of Solar Radiation Resources with Recent Rotating Shadowband Radiometer Measurements: Preprint

    SciTech Connect (OSTI)

    Myers, D. R.

    2009-03-01

    The availability of rotating shadow band radiometer measurement data at several new stations provides an opportunity to compare historical satellite-based estimates of solar resources with measurements. We compare mean monthly daily total (MMDT) solar radiation data from eight years of NSRDB and 22 years of NASA hourly global horizontal and direct beam solar estimates with measured data from three stations, collected after the end of the available resource estimates.

  6. A reactionless, bearingless linear shutter mechanism for the multispectral pushbroom imaging radiometer

    SciTech Connect (OSTI)

    Krumel, L.J.

    1996-12-31

    The Atmospheric Radiation Measurement Program is a multi-laboratory, interagency program as part of DOE`s principal entry into the US Global Change Research Program. Two issues addressed are the radiation budget and its spectral dependence, and radiative and other properties of clouds. Measures of solar flux divergence and energy exchanges between clouds, the earth, its oceans, and the atmosphere through various altitudes are sought. Additionally, the program seeks to provide measurements to calibrate satellite radiance products and validate their associated flux retrieval algorithms. Unmanned Aerospace Vehicles fly long, extended missions. MPIR is one of the primary instruments on the ARM-UAV campaigns. A shutter mechanism has been developed and flown as part of an airborne imaging radiometer having application to spacecraft or other applications requiring low vibration, high reliability, and long life. The device could be employed in other cases where a reciprocating platform is needed. Typical shutters and choppers utilize a spinning disc, or in very small instruments, a vibrating vane to continually interrupt incident light or radiation that enters the system. A spinning disk requires some sort of bearings that usually have limited life, and at a minimum introduce issues of reliability. Friction, lubrication and contamination always remain critical areas of concern, as well as the need for power to operate. Dual vibrating vanes may be dynamically well balanced as a set and are frictionless. However, these are limited by size in a practical sense. In addition, multiples of these devices are difficult to synchronize.

  7. Method to Calculate Uncertainty Estimate of Measuring Shortwave Solar Irradiance using Thermopile and Semiconductor Solar Radiometers

    SciTech Connect (OSTI)

    Reda, I.

    2011-07-01

    The uncertainty of measuring solar irradiance is fundamentally important for solar energy and atmospheric science applications. Without an uncertainty statement, the quality of a result, model, or testing method cannot be quantified, the chain of traceability is broken, and confidence cannot be maintained in the measurement. Measurement results are incomplete and meaningless without a statement of the estimated uncertainty with traceability to the International System of Units (SI) or to another internationally recognized standard. This report explains how to use International Guidelines of Uncertainty in Measurement (GUM) to calculate such uncertainty. The report also shows that without appropriate corrections to solar measuring instruments (solar radiometers), the uncertainty of measuring shortwave solar irradiance can exceed 4% using present state-of-the-art pyranometers and 2.7% using present state-of-the-art pyrheliometers. Finally, the report demonstrates that by applying the appropriate corrections, uncertainties may be reduced by at least 50%. The uncertainties, with or without the appropriate corrections might not be compatible with the needs of solar energy and atmospheric science applications; yet, this report may shed some light on the sources of uncertainties and the means to reduce overall uncertainty in measuring solar irradiance.

  8. Narrowband filter radiometer for ground-based measurements of global ultraviolet solar irradiance and total ozone

    SciTech Connect (OSTI)

    Petkov, Boyan; Vitale, Vito; Tomasi, Claudio; Bonafe, Ubaldo; Scaglione, Salvatore; Flori, Daniele; Santaguida, Riccardo; Gausa, Michael; Hansen, Georg; Colombo, Tiziano

    2006-06-20

    The ultraviolet narrowband filter radiometer (UV-RAD) designed by the authors to take ground-based measurements of UV solar irradiance, total ozone, and biological dose rate is described, together with the main characteristics of the seven blocked filters mounted on it, all of which have full widths at half maxima that range 0.67 to 0.98 nm. We have analyzed the causes of cosine response and calibration errors carefully to define the corresponding correction terms, paying particular attention to those that are due to the spectral displacements of the filter transmittance peaks from the integer wavelength values. The influence of the ozone profile on the retrieved ozone at large solar zenith angles has also been examined by means of field measurements. The opportunity of carrying out nearly monochromatic irradiance measurements offered by the UV-RAD allowed us to improve the procedure usually followed to reconstruct the solar spectrum at the surface by fitting the computed results, using radiative transfer models with field measurements of irradiance. Two long-term comparison campaigns took place, showing that a mean discrepancy of+0.3% exists between the UV-RAD total ozone values and those given by the Brewer no. 63 spectroradiometer and that mean differences of+0.3% and-0.9% exist between the erythemal dose rates determined with the UV-RAD and those obtained with the Brewer no. 63 and the Brewer no. 104 spectroradiometers, respectively.

  9. Broadband Outdoor Radiometer Calibration Process for the Atmospheric Radiation Measurement Program

    SciTech Connect (OSTI)

    Dooraghi, Michael

    2015-09-01

    The Atmospheric Radiation Measurement program (ARM) maintains a fleet of monitoring stations to aid in the improved scientific understanding of the basic physics related to radiative feedback processes in the atmosphere, particularly the interactions among clouds and aerosols. ARM obtains continuous measurements and conducts field campaigns to provide data products that aid in the improvement and further development of climate models. All of the measurement campaigns include a suite of solar measurements. The Solar Radiation Research Laboratory at the National Renewable Energy Laboratory supports ARM's full suite of stations in a number of ways, including troubleshooting issues that arise as part of the data-quality reviews; managing engineering changes to the standard setup; and providing calibration services and assistance to the full fleet of solar-related instruments, including pyranometers, pyrgeometers, pyrheliometers, as well as the temperature/relative humidity probes, multimeters, and data acquisition systems that are used in the calibrations performed at the Southern Great Plains Radiometer Calibration Facility. This paper discusses all aspects related to the support provided to the calibration of the instruments in the solar monitoring fleet.

  10. Large-Volume Resonant Microwave Discharge for Plasma Cleaning...

    Office of Scientific and Technical Information (OSTI)

    Large-Volume Resonant Microwave Discharge for Plasma Cleaning of a CEBAF 5-Cell SRF Cavity Citation Details In-Document Search Title: Large-Volume Resonant Microwave Discharge for...

  11. Microwave accelerator E-beam pumped laser

    DOE Patents [OSTI]

    Brau, Charles A.; Stein, William E.; Rockwood, Stephen D.

    1980-01-01

    A device and method for pumping gaseous lasers by means of a microwave accelerator. The microwave accelerator produces a relativistic electron beam which is applied along the longitudinal axis of the laser through an electron beam window. The incident points of the electron beam on the electron beam window are varied by deflection coils to enhance the cooling characteristics of the foil. A thyratron is used to reliably modulate the microwave accelerator to produce electron beam pulses which excite the laser medium to produce laser pulse repetition frequencies not previously obtainable. An aerodynamic window is also disclosed which eliminates foil heating problems, as well as a magnetic bottle for reducing laser cavity length and pressures while maintaining efficient energy deposition.

  12. Microwave off-gas treatment apparatus and process

    DOE Patents [OSTI]

    Schulz, Rebecca L.; Clark, David E.; Wicks, George G.

    2003-01-01

    The invention discloses a microwave off-gas system in which microwave energy is used to treat gaseous waste. A treatment chamber is used to remediate off-gases from an emission source by passing the off-gases through a susceptor matrix, the matrix being exposed to microwave radiation. The microwave radiation and elevated temperatures within the combustion chamber provide for significant reductions in the qualitative and quantitative emissions of the gas waste stream.

  13. Development of a Multi-Point Microwave Interferometry (MPMI) Method

    Office of Scientific and Technical Information (OSTI)

    (Technical Report) | SciTech Connect Technical Report: Development of a Multi-Point Microwave Interferometry (MPMI) Method Citation Details In-Document Search Title: Development of a Multi-Point Microwave Interferometry (MPMI) Method A multi-point microwave interferometer (MPMI) concept was developed for non-invasively tracking a shock, reaction, or detonation front in energetic media. Initially, a single-point, heterodyne microwave interferometry capability was established. The design,

  14. Microwave and Radio Frequency Workshop | Department of Energy

    Office of Environmental Management (EM)

    Workshops » Microwave and Radio Frequency Workshop Microwave and Radio Frequency Workshop July 25, 2012 At the Microwave and Radio Frequency Workshop (held in Long Beach, CA, on July 25, 2012), academic and industry experts discussed the existing and emerging electrotechnologies - such as microwave (MW) and radio frequency (RF) energy - and their potential to impact advanced manufacturing. Exploiting the material interactions of MW and RF energy is a route to developing energy-saving process

  15. DISCOVERY OF 6.035 GHz HYDROXYL MASER FLARES IN IRAS 18566+0408

    SciTech Connect (OSTI)

    Al-Marzouk, A. A.; Araya, E. D.; Hofner, P.; Kurtz, S.; Linz, H.; Olmi, L.

    2012-05-10

    We report the discovery of 6.035 GHz hydroxyl (OH) maser flares toward the massive star-forming region IRAS 18566+0408 (G37.55+0.20), which is the only region known to show periodic formaldehyde (4.8 GHz H{sub 2}CO) and methanol (6.7 GHz CH{sub 3}OH) maser flares. The observations were conducted between 2008 October and 2010 January with the 305 m Arecibo Telescope in Puerto Rico. We detected two flare events, one in 2009 March and one in 2009 September to November. The OH maser flares are not simultaneous with the H{sub 2}CO flares, but may be correlated with CH{sub 3}OH flares from a component at corresponding velocities. A possible correlated variability of OH and CH{sub 3}OH masers in IRAS 18566+0408 is consistent with a common excitation mechanism (IR pumping) as predicted by theory.

  16. Apparatus for microwave heat treatment of manufactured components

    DOE Patents [OSTI]

    Ripley, Edward B. (Knoxville, TN)

    2008-04-15

    An apparatus for heat treating manufactured components using microwave energy and microwave susceptor material. Heat treating medium such as eutectic salts may be employed. A fluidized bed introduces process gases which may include carburizing or nitriding gases. The process may be operated in a batch mode or continuous process mode. A microwave heating probe may be used to restart a frozen eutectic salt bath.

  17. Methods for microwave heat treatment of manufactured components

    DOE Patents [OSTI]

    Ripley, Edward B. (Knoxville, TN)

    2010-08-03

    An apparatus for heat treating manufactured components using microwave energy and microwave susceptor material. Heat treating medium such as eutectic salts may be employed. A fluidized bed introduces process gases which may include carburizing or nitriding gases. The process may be operated in a batch mode or continuous process mode. A microwave heating probe may be used to restart a frozen eutectic salt bath.

  18. Microwave (MW) and Radio Frequency (RF) as Enabling Technologies for

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Advanced Manufacturing | Department of Energy Microwave (MW) and Radio Frequency (RF) as Enabling Technologies for Advanced Manufacturing Microwave (MW) and Radio Frequency (RF) as Enabling Technologies for Advanced Manufacturing PDF icon mw_rf_workshop_background_july2012.pdf More Documents & Publications Microwave and Radio Frequency Workshop Advanced Manufacturing Office Overview Manufacturing Demonstration Facility Workshop

  19. Synthesis of ultrafine powders by microwave heating

    DOE Patents [OSTI]

    Meek, Thomas T. (Knoxville, TN); Sheinberg, Haskell (Los Alamos, NM); Blake, Rodger D. (Santa Fe, NM)

    1988-01-01

    A method of synthesizing ultrafine powders using microwaves is described. A water soluble material is dissolved in water and the resulting aqueous solution is exposed to microwaves until the water has been removed. The resulting material is an ultrafine powder. This method can be used to make Al.sub.2 O.sub.3, NiO+Al.sub.2 O.sub.3 and NiO as well as a number of other materials including GaBa.sub.2 Cu.sub.3 O.sub.x.

  20. Synthesis of ultrafine powders by microwave heating

    DOE Patents [OSTI]

    Meek, T.T.; Sheinberg, H.; Blake, R.D.

    1987-04-24

    A method of synthesizing ultrafine powders using microwaves is described. A water soluble material is dissolved in water and the resulting aqueous solution is exposed to microwaves until the water has dissolved. The resulting material is an ultrafine powder. This method can be used to make Al/sub 2/O/sub 3/, NiO /plus/ Al/sub 2/O/sub 3/ and NiO as well as a number of other materials including GaBa/sub 2/Cu/sub 3/O/sub x/. 1 tab.

  1. The VLBA Imaging And Polarimetry Survey at 5 GHz (Journal Article) |

    Office of Scientific and Technical Information (OSTI)

    SciTech Connect The VLBA Imaging And Polarimetry Survey at 5 GHz Citation Details In-Document Search Title: The VLBA Imaging And Polarimetry Survey at 5 GHz × You are accessing a document from the Department of Energy's (DOE) SciTech Connect. This site is a product of DOE's Office of Scientific and Technical Information (OSTI) and is provided as a public service. Visit OSTI to utilize additional information resources in energy science and technology. A paper copy of this document is also

  2. Improved Rotating Shadowband Radiometer Measurement Performance: Cooperative Research and Development Final Report, CRADA Number CRD-08-294

    SciTech Connect (OSTI)

    Andreas, A. M.

    2015-02-01

    Under this Agreement, NREL will work with Participant to improve rotating shadowband radiometer (RSR) performance characterizations. This work includes, but is not limited to, research and development for making the RSR a more accurate and fully characterized instrument for solar power technology development and commercial solar power project site assessment. Cooperative R&D is proposed in three areas: instrument calibration, instrument field configuration and operation, and measurement extrapolation and interpolation using satellite images. This work will be conducted at NREL and Participant facilities.

  3. Results of First Outdoor Comparison Between Absolute Cavity Pyrgeometer (ACP) and Infrared Integrating Sphere (IRIS) Radiometer at PMOD (Presentation)

    SciTech Connect (OSTI)

    Reda, I.; Grobner, J.; Wacker, S.; Stoffel, T.

    2013-03-01

    The ACP and IRIS are developed to establish a world reference for calibrating pyrgeometers with traceability to SI units. The two radiometers are unwindowed with negligible spectral dependence, and traceable to SI units through the temperature scale (ITS-90). The first outdoor comparison between the two designs was held from January 28 to February 8, 2013 at the Physikalisch-Metorologisches Observatorium Davos (PMOD). The difference between the irradiance measured by ACP and that of IRIS was within 1 W/m2. A difference of 5 W/m2 was observed between the irradiance measured by ACP&IRIS and that of the interim World Infrared Standard Group (WISG).

  4. Synthesis of macrocyclic polyaminocarboxylates and their use for preparing stable radiometal antibody immunoconjugates for therapy, spect and pet imaging

    DOE Patents [OSTI]

    Mease, Ronnie C. (Fairfax, VA); Mausner, Leonard F. (Stony Brook, NY); Srivastava, Suresh C. (Setauket, NY)

    1995-06-27

    A simple method for the synthesis of 1,4,7,10-tetraazacyclododecane N,N'N",N'"-tetraacetic acid and 1,4,8,11-tetraazacyclotetradecane N,N',N",N'"-tetraacetic acid involves cyanomethylating 1,4,7,10-tetraazacyclododecane or 1,4,8,11-tetraazacyclotetradecane to form a tetranitrile and hydrolyzing the tetranitrile. These macrocyclic compounds are functionalized through one of the carboxylates and then conjugated to various biological molecules including monoclonal antibodies. The resulting conjugated molecules are labeled with radiometals for SPECT and PET imaging and for radiotherapy.

  5. Synthesis of macrocyclic polyaminocarboxylates and their use for preparing stable radiometal antibody immunoconjugates for therapy, SPECT and PET imaging

    DOE Patents [OSTI]

    Mease, R.C.; Mausner, L.F.; Srivastava, S.C.

    1995-06-27

    A simple method for the synthesis of 1,4,7,10-tetraazacyclododecane N,N{prime}N{double_prime},N{prime}{double_prime}-tetraacetic acid and 1,4,8,11-tetraazacyclotetradecane N,N{prime},N{double_prime},N{prime}{double_prime}-tetraacetic acid involves cyanomethylating 1,4,7,10-tetraazacyclododecane or 1,4,8,11-tetraazacyclotetradecane to form a tetranitrile and hydrolyzing the tetranitrile. These macrocyclic compounds are functionalized through one of the carboxylates and then conjugated to various biological molecules including monoclonal antibodies. The resulting conjugated molecules are labeled with radiometals for SPECT and PET imaging and for radiotherapy. 4 figs.

  6. Piezoelectric-tuned microwave cavity for absorption spectrometry

    DOE Patents [OSTI]

    Leskovar, Branko; Buscher, Harold T.; Kolbe, William F.

    1978-01-01

    Gas samples are analyzed for pollutants in a microwave cavity that is provided with two highly polished walls. One wall of the cavity is mechanically driven with a piezoelectric transducer at a low frequency to tune the cavity over a band of microwave frequencies in synchronism with frequency modulated microwave energy applied to the cavity. Absorption of microwave energy over the tuned frequencies is detected, and energy absorption at a particular microwave frequency is an indication of a particular pollutant in the gas sample.

  7. Optimized ECR plasma apparatus with varied microwave window thickness

    DOE Patents [OSTI]

    Berry, Lee A. (Oak Ridge, TN)

    1995-01-01

    The present invention describes a technique to control the radial profile of microwave power in an ECR plasma discharge. In order to provide for a uniform plasma density to a specimen, uniform energy absorption by the plasma is desired. By controlling the radial profile of the microwave power transmitted through the microwave window of a reactor, the profile of the transmitted energy to the plasma can be controlled in order to have uniform energy absorption by the plasma. An advantage of controlling the profile using the window transmission characteristics is that variations to the radial profile of microwave power can be made without changing the microwave coupler or reactor design.

  8. Optimized ECR plasma apparatus with varied microwave window thickness

    DOE Patents [OSTI]

    Berry, L.A.

    1995-11-14

    The present invention describes a technique to control the radial profile of microwave power in an ECR plasma discharge. In order to provide for a uniform plasma density to a specimen, uniform energy absorption by the plasma is desired. By controlling the radial profile of the microwave power transmitted through the microwave window of a reactor, the profile of the transmitted energy to the plasma can be controlled in order to have uniform energy absorption by the plasma. An advantage of controlling the profile using the window transmission characteristics is that variations to the radial profile of microwave power can be made without changing the microwave coupler or reactor design. 9 figs.

  9. Failure and Redemption of Multifilter Rotating Shadowband Radiometer (MFRSR)/Normal Incidence Multifilter Radiometer (NIMFR) Cloud Screening: Contrasting Algorithm Performance at Atmospheric Radiation Measurement (ARM) North Slope of Alaska (NSA) and Southern Great Plains (SGP) Sites

    SciTech Connect (OSTI)

    Kassianov, Evgueni I.; Flynn, Connor J.; Koontz, Annette S.; Sivaraman, Chitra; Barnard, James C.

    2013-09-11

    Well-known cloud-screening algorithms, which are designed to remove cloud-contaminated aerosol optical depths (AOD) from AOD measurements, have shown great performance at many middle-to-low latitude sites around the world. However, they may occasionally fail under challenging observational conditions, such as when the sun is low (near the horizon) or when optically thin clouds with small spatial inhomogeneity occur. Such conditions have been observed quite frequently at the high-latitude Atmospheric Radiation Measurement (ARM) North Slope of Alaska (NSA) sites. A slightly modified cloud-screening version of the standard algorithm is proposed here with a focus on the ARM-supported Multifilter Rotating Shadowband Radiometer (MFRSR) and Normal Incidence Multifilter Radiometer (NIMFR) data. The modified version uses approximately the same techniques as the standard algorithm, but it additionally examines the magnitude of the slant-path line of sight transmittance and eliminates points when the observed magnitude is below a specified threshold. Substantial improvement of the multi-year (1999-2012) aerosol product (AOD and its Angstrom exponent) is shown for the NSA sites when the modified version is applied. Moreover, this version reproduces the AOD product at the ARM Southern Great Plains (SGP) site, which was originally generated by the standard cloud-screening algorithms. The proposed minor modification is easy to implement and its application to existing and future cloud-screening algorithms can be particularly beneficial for challenging observational conditions.

  10. Planar controlled zone microwave plasma system

    DOE Patents [OSTI]

    Ripley, Edward B. (Knoxville, TN); Seals, Roland D. (Oak Ridge, TN); Morrell, Jonathan S. (Knoxvlle, TN)

    2011-10-04

    An apparatus and method for initiating a process gas plasma. A conductive plate having a plurality of conductive fingers is positioned in a microwave applicator. An arc forms between the conductive fingers to initiate the formation of a plasma. A transport mechanism may convey process materials through the plasma. A spray port may be provided to expel processed materials.

  11. Environmental assessment: South microwave communication facilities

    SciTech Connect (OSTI)

    Not Available

    1989-06-01

    Western Area Power Administration (Western) is proposing to construct, operate, and maintain eight microwave repeater stations in southwestern Colorado, southeastern Utah, and northern Arizona, in order to meet the minimum fade criteria established by the Western Systems Coordinating Council (WSCC) for the operation and protection of electric power systems. The proposed microwave facilities would increase the reliability of communication. This environmental assessment (EA) describes the existing environmental conditions and the impacts from construction of the eight microwave communication facilities. The EA was prepared in compliance with the National Environmental Policy Act of 1969, the Council on Environmental Quality Regulations (40 CFR 1500-1508), and the Department of Energy Guidelines (52 FR 47662, December 15, 1987). The proposed project would consist of constructing eight microwave facilities, each of which would include a self-supported lattice tower, an equipment building, a propane tank, distribution lines to provide electric power to the sites, and access roads to the sites. The facilities would be constructed in San Miguel and Montezuma Counties in Colorado, San Juan County, Utah, and Navajo, Apache, Coconino, and Yavapai Counties in Arizona. 20 refs., 2 figs., 2 tabs.

  12. Results of Second Outdoor Comparison Between Absolute Cavity Pyrgeometer (ACP) and Infrared Integrating Sphere (IRIS) Radiometer at PMOD (Presentation)

    SciTech Connect (OSTI)

    Reda, I.; Grobner, J.; Wacker, S.

    2014-01-01

    The Absolute Cavity Pyrgeometer (ACP) and InfraRed Integrating Sphere radiometer (IRIS) are developed to establish a world reference for calibrating pyrgeometers with traceability to SI units. The two radiometers are un-windowed with negligible spectral dependence, and traceable to SI units through the temperature scale (ITS-90). The second outdoor comparison between the two designs was held from September 30 to October 11, 2013 at the Physikalisch-Metorologisches Observatorium Davos (PMOD). The difference between the irradiance measured by ACP and that of the IRIS was within 1 W/m2 (3 IRISs: PMOD + Australia + Germany). From the first and second comparisons, a difference of 4-6 W/m2 was observed between the irradiance measured by ACP&IRIS and that of the interim World Infrared Standard Group (WISG). This presentation includes results from the first and second comparison in an effort to establish the world reference for pyrgeometer calibrations, a key deliverable for the World Meteorological Organization (WMO), and the DOE-ASR.

  13. Distinctive plume formation in atmospheric Ar and He plasmas in microwave frequency band and suitability for biomedical applications

    SciTech Connect (OSTI)

    Lee, H. Wk.; Kang, S. K.; Won, I. H.; Kim, H. Y.; Kwon, H. C.; Sim, J. Y.; Lee, J. K.

    2013-12-15

    Distinctive discharge formation in atmospheric Ar and He plasmas was observed in the microwave frequency band using coaxial transmission line resonators. Ar plasmas formed a plasma plume whereas He formed only confined plasmas. As the frequency increased from 0.9 GHz to 2.45 GHz, the Ar plasma exhibited contraction and filamentation, and the He plasmas were constricted. Various powers and gas flow rates were applied to identify the effect of the electric field and gas flow rate on plasma plume formation. The He plasmas were more strongly affected by the electric field than the Ar plasmas. The breakdown and sustain powers yielded opposite results from those for low-frequency plasmas (?kHz). The phenomena could be explained by a change in the dominant ionization process with increasing frequency. Penning ionization and the contribution of secondary electrons in sheath region reduced as the frequency increased, leading to less efficient ionization of He because its ionization and excitation energies are higher than those of Ar. The emission spectra showed an increase in the NO and N{sub 2} second positive band in both the Ar and He plasmas with increasing frequency whereas the hydroxyl radical and atomic O peaks did not increase with increasing frequency but were highest at particular frequencies. Further, the frequency effect of properties such as the plasma impedance, electron density, and device efficiency were presented. The study is expected to be helpful for determining the optimal conditions of plasma systems for biomedical applications.

  14. A low phase noise microwave frequency synthesis for a high-performance cesium vapor cell atomic clock

    SciTech Connect (OSTI)

    Franois, B.; Boudot, R.; Calosso, C. E.; Danet, J. M.

    2014-09-15

    We report the development, absolute phase noise, and residual phase noise characterization of a 9.192?GHz microwave frequency synthesis chain devoted to be used as a local oscillator in a high-performance cesium vapor cell atomic clock based on coherent population trapping (CPT). It is based on frequency multiplication of an ultra-low phase noise 100 MHz oven-controlled quartz crystal oscillator using a nonlinear transmission line-based chain. Absolute phase noise performances of the 9.192?GHz output signal are measured to be ?42, ?100, ?117 dB?rad{sup 2}/Hz and ?129 dB?rad{sup 2}/Hz at 1 Hz, 100 Hz, 1 kHz, and 10 kHz offset frequencies, respectively. Compared to current results obtained in a state-of-the-art CPT-based frequency standard developed at LNE-SYRTE, this represents an improvement of 8 dB and 10 dB at f = 166 Hz and f = 10 kHz, respectively. With such performances, the expected Dick effect contribution to the atomic clock short term frequency stability is reported at a level of 6.2 10{sup ?14} at 1 s integration time, that is a factor 3 higher than the atomic clock shot noise limit. Main limitations are pointed out.

  15. Measurements of deuterium quadrupole coupling in propiolic acid and fluorobenzenes using pulsed-beam Fourier transform microwave spectrometers

    SciTech Connect (OSTI)

    Sun, Ming; Sargus, Bryan A.; Carey, Spencer J.; Kukolich, Stephen G.

    2015-04-21

    The pure rotational spectra of deuterated propiolic acids (HCCCOOD and DCCCOOH), 1-fluorobenzene (4-d{sub 1}), and 1,2-difluorobenzene (4-d{sub 1}) in their ground states have been measured using two Fourier transform microwave (FTMW) spectrometers at the University of Arizona. For 1-fluorobenzene (4-d{sub 1}), nine hyperfine lines of three different ?J = 0 and 1 transitions were measured to check the synthesis method and resolution. For 1,2-difluorobenzene (4-d{sub 1}), we obtained 44 hyperfine transitions from 1 to 12 GHz, including 14 different ?J = 0, 1 transitions. Deuterium quadrupole coupling constants along the three principal inertia axes were well determined. For deuterated propiolic acids, 37 hyperfine lines of Pro-OD and 59 hyperfine lines of Pro-CD, covering 11 and 12 different ?J = ? 1, 0, 1 transitions, respectively, were obtained from 5 to 16 GHz. Deuterium quadrupole coupling constants along the three inertia axes were well resolved for Pro-OD. For Pro-CD, only eQq{sub aa} was determined due to the near coincidence of the CD bond and the least principal inertia axis. Some measurements were made using a newer FTMW spectrometer employing multiple free induction decays as well as background subtraction. For 1-fluorobenzene (4-d{sub 1}) and 1,2-difluorobenzene (4-d{sub 1}), a very large-cavity (1.2 m mirror dia.) spectrometer yielded very high resolution (2 kHz) spectra.

  16. Apparatus and method for microwave processing of materials

    DOE Patents [OSTI]

    Johnson, A.C.; Lauf, R.J.; Bible, D.W.; Markunas, R.J.

    1996-05-28

    Disclosed is a variable frequency microwave heating apparatus designed to allow modulation of the frequency of the microwaves introduced into a furnace cavity for testing or other selected applications. The variable frequency heating apparatus is used in the method of the present invention to monitor the resonant processing frequency within the furnace cavity depending upon the material, including the state thereof, from which the workpiece is fabricated. The variable frequency microwave heating apparatus includes a microwave signal generator and a high-power microwave amplifier or a microwave voltage-controlled oscillator. A power supply is provided for operation of the high-power microwave oscillator or microwave amplifier. A directional coupler is provided for detecting the direction and amplitude of signals incident upon and reflected from the microwave cavity. A first power meter is provided for measuring the power delivered to the microwave furnace. A second power meter detects the magnitude of reflected power. Reflected power is dissipated in the reflected power load. 10 figs.

  17. Apparatus and method for microwave processing of materials

    DOE Patents [OSTI]

    Johnson, Arvid C. (Lake in the Hills, IL); Lauf, Robert J. (Oak Ridge, TN); Bible, Don W. (Clinton, TN); Markunas, Robert J. (Chapel Hill, NC)

    1996-01-01

    A variable frequency microwave heating apparatus (10) designed to allow modulation of the frequency of the microwaves introduced into a furnace cavity (34) for testing or other selected applications. The variable frequency heating apparatus (10) is used in the method of the present invention to monitor the resonant processing frequency within the furnace cavity (34) depending upon the material, including the state thereof, from which the workpiece (36) is fabricated. The variable frequency microwave heating apparatus (10) includes a microwave signal generator (12) and a high-power microwave amplifier (20) or a microwave voltage-controlled oscillator (14). A power supply (22) is provided for operation of the high-power microwave oscillator (14) or microwave amplifier (20). A directional coupler (24) is provided for detecting the direction and amplitude of signals incident upon and reflected from the microwave cavity (34). A first power meter (30) is provided for measuring the power delivered to the microwave furnace (32). A second power meter (26) detects the magnitude of reflected power. Reflected power is dissipated in the reflected power load (28).

  18. Power-dependent microwave properties of superconducting YBa{sub 2}Cu{sub 3}O{sub 7{minus}x} films on buffered polycrystalline substrates

    SciTech Connect (OSTI)

    Findikoglu, A.T.; Arendt, P.N.; Foltyn, S.R.; Groves, J.R.; Jia, Q.X.; Peterson, E.J.; Bulaevskii, L.; Maley, M.P.; Reagor, D.W.

    1997-06-01

    We have studied the microwave properties of 0.4 {mu}m thick YBa{sub 2}Cu{sub 3}O{sub 7{minus}x} (YBCO) films on polycrystalline substrates with ion-beam-assisted-deposited yttria-stabilized zirconia buffer layers using a parallel-plate resonator technique at 10 GHz. The YBCO films with similar in-plane texture grown on both forsterite and Ni-based alloy substrates show similar microwave properties. We measure low-power surface resistance R{sub s} values of about 0.5 m{Omega} at 76 K and 0.15 m{Omega} at 4 K for films with an in-plane mosaic spread of about 7{degree}. Single-tone power-dependence measurements show that the surface resistance and the surface reactance increase linearly and by the same amount with increasing microwave field level. At intermediate power levels, the intermodulation measurements show odd-order intermodulation products that increase quadratically with two-tone input power. These results indicate a hysteretic vortex penetration mechanism in the weak links as the most plausible source of the observed nonlinearities in these films. {copyright} {ital 1997 American Institute of Physics.}

  19. Joining of thermoplastic substrates by microwaves

    DOE Patents [OSTI]

    Paulauskas, Felix L. (Oak Ridge, TN); Meek, Thomas T. (Knoxville, TN)

    1997-01-01

    A method for joining two or more items having surfaces of thermoplastic material includes the steps of depositing an electrically-conductive material upon the thermoplastic surface of at least one of the items, and then placing the other of the two items adjacent the one item so that the deposited material is in intimate contact with the surfaces of both the one and the other items. The deposited material and the thermoplastic surfaces contacted thereby are then exposed to microwave radiation so that the thermoplastic surfaces in contact with the deposited material melt, and then pressure is applied to the two items so that the melted thermoplastic surfaces fuse to one another. Upon discontinuance of the exposure to the microwave energy, and after permitting the thermoplastic surfaces to cool from the melted condition, the two items are joined together by the fused thermoplastic surfaces. The deposited material has a thickness which is preferably no greater than a skin depth, .delta..sub.s, which is related to the frequency of the microwave radiation and characteristics of the deposited material in accordance with an equation.

  20. A container for heat treating materials in microwave ovens

    DOE Patents [OSTI]

    Holcombe, C.E.; Dykes, N.L.; Kimrey, H.D. Jr.; Mills, J.E.

    1988-01-26

    The efficiency of a microwave oven of a conventional two-source configuration and energy level is increased by providing the oven with a container for housing a refractory material to be treated. The container is formed to top and bottom walls transparent to microwaves while the sidewalls, in a circular configuration, are formed of a nonmetallic material opaque to microwave radiation for reflecting the radiation penetrating the top and bottom walls radially inwardly into the center of the container wherein a casket of heat-insulating material is provided for housing the material to be heat treated. The reflection of the microwave radiation from the sidewalls increases the concentration of the microwaves upon the material being heat treated while the concentration of the microwaves upon the material being heat treated while the casket retains the heat to permit the heating of the material to a substantially higher temperature than achievable in the oven without the container.

  1. High-Power Microwave Transmission and Mode Conversion Program

    SciTech Connect (OSTI)

    Vernon, Ronald J.

    2015-08-14

    This is a final technical report for a long term project to develop improved designs and design tools for the microwave hardware and components associated with the DOE Plasma Fusion Program. We have developed basic theory, software, fabrication techniques, and low-power measurement techniques for the design of microwave hardware associated gyrotrons, microwave mode converters and high-power microwave transmission lines. Specifically, in this report we discuss our work on designing quasi-optical mode converters for single and multiple frequencies, a new method for the analysis of perturbed-wall waveguide mode converters, perturbed-wall launcher design for TE0n mode gyrotrons, quasi-optical traveling-wave resonator design for high-power testing of microwave components, and possible improvements to the HSX microwave transmission line.

  2. Preliminary performance of the MKII 17 GHz traveling wave relativistic klystron

    SciTech Connect (OSTI)

    Haimson, J.; Mecklenburg, B.; Stowell, G.; Kreischer, K. E.; Mastovsky, I. [Haimson Research Corporation, 3350 Scott Blvd., Building 60, Santa Clara, California 95054-3104 (United States); Plasma Science and Fusion Center, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139-4294 (United States)

    1999-05-07

    Initial test results are presented of an upgraded RF source developed for high peak power 17 GHz linear accelerator applications. The objectives of this upgrade program were (a) to increase the output capability of the existing vacuum demountable prototype tube so that RF power could also be supplied to a future 2 MeV photoinjector system without appreciable loss of input power to the 17 GHz linac and (b) to investigate the performance of a new design traveling wave output circuit incorporating a racetrack shaped dual output coupler with 5% bandwidth high peak power ceramic RF windows. These recently installed devices are presently being conditioned and tested at the MIT Plasma Science and Fusion Center.

  3. Preliminary performance of the MKII 17 GHz traveling wave relativistic klystron

    SciTech Connect (OSTI)

    Haimson, J.; Mecklenburg, B.; Stowell, G. [Haimson Research Corporation, 3350 Scott Blvd., Building 60, Santa Clara, California 95054-3104 (United States); Kreischer, K.E.; Mastovsky, I. [Plasma Science and Fusion Center, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139-4294 (United States)

    1999-05-01

    Initial test results are presented of an upgraded RF source developed for high peak power 17 GHz linear accelerator applications. The objectives of this upgrade program were (a) to increase the output capability of the existing vacuum demountable prototype tube so that RF power could also be supplied to a future 2 MeV photoinjector system without appreciable loss of input power to the 17 GHz linac and (b) to investigate the performance of a new design traveling wave output circuit incorporating a racetrack shaped dual output coupler with 5{percent} bandwidth high peak power ceramic RF windows. These recently installed devices are presently being conditioned and tested at the MIT Plasma Science and Fusion Center. {copyright} {ital 1999 American Institute of Physics.}

  4. PHYSICAL CONDITIONS AROUND 6.7 GHz METHANOL MASERS. I. AMMONIA

    SciTech Connect (OSTI)

    Pandian, J. D.; Wyrowski, F.; Menten, K. M.

    2012-07-01

    Methanol masers at 6.7 GHz are known to be tracers of high-mass star formation in our Galaxy. In this paper, we study the large-scale physical conditions in the star-forming clumps/cores associated with 6.7 GHz methanol masers using observations of the (1, 1), (2, 2), and (3, 3) inversion transitions of ammonia with the Effelsberg telescope. The gas kinetic temperature is found to be higher than in infrared dark clouds, highlighting the relatively evolved nature of the maser sources. Other than a weak correlation between maser luminosity and the ammonia line width, we do not find any differences between low- and high-luminosity methanol masers.

  5. A MEASUREMENT OF SECONDARY COSMIC MICROWAVE BACKGROUND ANISOTROPIES FROM

    Office of Scientific and Technical Information (OSTI)

    THE 2500 SQUARE-DEGREE SPT-SZ SURVEY (Journal Article) | SciTech Connect MEASUREMENT OF SECONDARY COSMIC MICROWAVE BACKGROUND ANISOTROPIES FROM THE 2500 SQUARE-DEGREE SPT-SZ SURVEY Citation Details In-Document Search Title: A MEASUREMENT OF SECONDARY COSMIC MICROWAVE BACKGROUND ANISOTROPIES FROM THE 2500 SQUARE-DEGREE SPT-SZ SURVEY We present measurements of secondary cosmic microwave background (CMB) anisotropies and cosmic infrared background (CIB) fluctuations using data from the South

  6. Development of a Multi-Point Microwave Interferometry (MPMI)...

    Office of Scientific and Technical Information (OSTI)

    A multi-point microwave interferometer (MPMI) concept was developed for non-invasively tracking a shock, reaction, or detonation front in energetic media. Initially, a ...

  7. Microwave Plasma Monitoring System For Real-Time Elemental Analysis

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Analysis The invention apparatus can also be used to monitor for the presence of halogens, sulfur and silicon. Available for Feynman Center (505) 665-9090 Email Microwave...

  8. Microwave vs. Electric Kettle: Which Appliance Is in Hot Water...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Tell Us Addthis Microwave or electric kettle, which appliance should win the honor of heating your water? | Graphic by Stacy Buchanan, National Renewable Energy Laboratory ...

  9. Method and apparatus for thickness measurement using microwaves

    DOE Patents [OSTI]

    Woskov, Paul (Bedford, MA) [Bedford, MA; Lamar, David A. (West Richland, WA) [West Richland, WA

    2001-01-01

    The method for measuring the thickness of a material which transmits a detectable amount of microwave radiation includes irradiating the material with coherent microwave radiation tuned over a frequency range. Reflected microwave radiation is detected, the reflected radiation having maxima and minima over the frequency range as a result of coherent interference of microwaves reflected from reflecting surfaces of the material. The thickness of the material is determined from the period of the maxima and minima along with knowledge of the index of refraction of the material.

  10. DETECTION OF 36GHz CLASS I METHANOL MASER EMISSION TOWARD NGC253

    SciTech Connect (OSTI)

    Ellingsen, Simon P.; Chen, Xi; Qiao, Hai-Hua; Baan, Willem; An, Tao; Li, Juan; Breen, Shari L.

    2014-08-01

    We have used the Australia Telescope Compact Array to search for emission from the 4{sub 1} ? 3{sub 0} E transition of methanol (36.2GHz) toward the center of the nearby starburst galaxy NGC253. Two regions of emission were detected, offset from the nucleus along the same position angle as the inner spiral arms. The emission is largely unresolved on a scale of 5'', has a FWHM line width of <30 km s{sup 1}, and an isotropic luminosity orders of a magnitude larger than that observed in any Galactic star formation region. These characteristics suggest that the 36.2GHz methanol emission is most likely a maser, although observations with higher angular and spectral resolution are required to confirm this. If it is a maser, this represents the first detection of a class I methanol maser outside the Milky Way. The 36.2GHz methanol emission in NGC253 has more than an order of magnitude higher isotropic luminosity than the widespread emission recently detected toward the center of the Milky Way. If emission from this transition scales with the nuclear star formation rate, then it may be detectable in the central regions of many starburst galaxies. Detection of methanol emission in ultra-luminous infrared galaxies would open up a new tool for testing for variations in fundamental constants (particularly the proton-to-electron mass ratio) on cosmological scales.

  11. Microwave heating device for internal heating convection experiments, applied to Earth's mantle dynamics

    SciTech Connect (OSTI)

    Surducan, E.; Surducan, V.; Neamtu, C.; Limare, A.; Di Giuseppe, E.

    2014-12-15

    We report the design, construction, and performances of a microwave (MW) heating device for laboratory experiments with non-contact, homogeneous internal heating. The device generates MW radiation at 2.47 GHz from a commercial magnetron supplied by a pulsed current inverter using proprietary, feedback based command and control hardware and software. Specially designed MW launchers direct the MW radiation into the sample through a MW homogenizer, devised to even the MW power distribution into the sample's volume. An adjustable MW circuit adapts the MW generator to the load (i.e., the sample) placed in the experiment chamber. Dedicated heatsinks maintain the MW circuits at constant temperature throughout the experiment. Openings for laser scanning for image acquisition with a CCD camera and for the cooling circuits are protected by special MW filters. The performances of the device are analyzed in terms of heating uniformity, long term output power stability, and load matching. The device is used for small scale experiments simulating Earth's mantle convection. The 30 30 5 cm{sup 3} convection tank is filled with a water?based viscous fluid. A uniform and constant temperature is maintained at the upper boundary by an aluminum heat exchanger and adiabatic conditions apply at the tank base. We characterize the geometry of the convective regime as well as its bulk thermal evolution by measuring the velocity field by Particle Image Velocimetry and the temperature field by using Thermochromic Liquid Crystals.

  12. Gas breakdown driven by L band short-pulse high-power microwave

    SciTech Connect (OSTI)

    Yang Yiming; Yuan Chengwei; Qian Baoliang

    2012-12-15

    High power microwave (HPM) driven gas breakdown is a major factor in limiting the radiation and transmission of HPM. A method that HPM driven gas breakdown could be obtained by changing the aperture of horn antenna is studied in this paper. Changing the effective aperture of horn antenna can adjust the electric field in near field zone, leading to gas breakdown. With this method, measurements of air and SF{sub 6} breakdowns are carried out on a magnetically insulated transmission-line oscillators, which is capable of generating HPM with pulse duration of 30 ns, and frequency of 1.74 GHz. The typical breakdown waveforms of air and SF{sub 6} are presented. Besides, the breakdown field strengths of the two gases are derived at different pressures. It is found that the effects of air and SF{sub 6} breakdown on the transmission of HPM are different: air breakdown mainly shortens the pulse width of HPM while SF{sub 6} breakdown mainly reduces the peak output power of HPM. The electric field threshold of SF{sub 6} is about 2.4 times larger than that of air. These differences suggest that gas properties have a great effect on the transmission characteristic of HPM in gases.

  13. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    An Assessment of MWR Retrievals of Liquid Water Path Using Clear-sky Data Marchand, R.T. and Ackerman, T.P., Pacific Northwest National Laboratory Twelfth Atmospheric Radiation Measurement (ARM) Science Team Meeting The ARM radiometers make measurements at two frequencies. These two measurements are used to infer two quantities, the total column vapor and liquid water. Both microwave emission frequencies respond to both the liquid and vapor, but one channel is more sensitive to vapor (23.8 GHz)

  14. ARM - VAP Process - mwrret

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Productsmwrret Documentation & Plots Technical Report Data Management Facility Plots (Quick Looks) ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send VAP : MWR Retrievals (MWRRET) Instrument Categories Atmospheric Profiling, Cloud Properties, Derived Quantities and Models, Radiometric Image - sample data plot There are 2-channel (23.8 and 31.4GHz) microwave radiometers (MWRs) deployed at each ARM Climate Research

  15. Microsoft Word - cimini-d.doc

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Microwave Radiative Models Study Based on Ground-Based Multichannel Radiometer Observations in the 20-60 GHz Band C. Cimini, F. S. Marzano, and P. Ciotti Center of Excellence CETEMPS Universita' dell'Aquila L'Aquila, Italy D. Cimini Science and Technology Corporation Hampton, Virginia E. R. Westwater Cooperative Institute for Research in Environmental Sciences University of Colorado National Oceanic and Atmospheric Administration Environmental Technology Laboratory Boulder, Colorado Y. Han

  16. Final Report on "Development and Testing of Advanced Accelerator Structures and Technologies at 11.424 GHz"

    SciTech Connect (OSTI)

    Gold, Steven H.

    2013-10-13

    This is the final report on the research program ?Development and Testing of Advanced Accelerator Structures and Technologies at 11.424 GHz,? which was carried out by the Naval Research Laboratory (NRL) under Interagency Agreement DE?AI02?01ER41170 with the Department of Energy. The period covered by this report is 15 July 2010 ? 14 July 2013. The program included two principal tasks. Task 1 involved a study of the key physics issues related to the use of high gradient dielectric-loaded accelerating (DLA) structures in rf linear accelerators and was carried out in collaboration with Argonne National Laboratory (ANL) and Euclid Techlabs LLC. Task 2 involved a study of high power active microwave pulse compressors and was carried out in collaboration with Omega-P, Inc. and the Institute of Applied Physics of the Russian Academy of Sciences in Nizhny Novgorod. The studies under Task 1 were focused on rf-induced multipactor and breakdown in externally driven DLA structures at the 200-ns timescale. Suppression of multipactor and breakdown are essential to the practical application of dielectric structures in rf linear accelerators. The structures that were studied were developed by ANL and Euclid Techlabs and their performance was evaluated at high power in the X-band Magnicon Laboratory at NRL. Three structures were designed, fabricated, and tested, and the results analyzed in the first two years of the program: a clamped quartz traveling-wave (TW) structure, a externally copper-coated TW structure, and an externally copper-coated dielectric standing-wave (SW) structure. These structures showed that rf breakdown could be largely eliminated by eliminating dielectric joints in the structures, but that the multipactor loading was omnipresent. In the third year of the program, the focus of the program was on multipactor suppression using a strong applied axial magnetic field, as proposed by Chang et al. [C. Chang et al., J. Appl. Phys. 110, 063304 (2011).], and a successful experiment was carried out that demonstrated suppression of multipactor in the uniform-field region of a TW DLA structure. However, in accordance with theory, the multipactor was enhanced in regions of the structure with lower values of axial magnetic field. Under Task 2, there were two two-month experimental runs at NRL that were used to characterize the performance of high power two-channel dual-mode active microwave pulse compressor configurations that used electron-beam triggered switch cavities. The pulse compressors were designed and fabricated by Omega-P, Inc. and the Russian Institute of Applied Physics and tested in the Magnicon Laboratory at NRL. These pulse compressors made use of an electron beam discharge from a cylindrical knife-edged Mo cathode coated with a CVD diamond film that was driven by a ?100 kV, 100 ns high voltage pulse. The electron beam was used to change the resonant frequency of the switch cavities in order to create the output microwave pulse. The compressor channels included a TE01 input and output section and a TE02 energy storage cavity, followed by a switch assembly that controlled the coupling between the TE01 and TE02 modes. In the initial state, the switch cavity was in resonance, the reflection from the cavity was out of phase, and the mode conversion was only ~2-3%, allowing the energy storage cavity to fill. When the electron beam was discharged into the switch cavity, the cavity was shifted out of resonance, causing the phase of the reflection to change by ~?. As a result of the change in the reflection phase, the mode coupling in the conical taper was greatly increased, and could approach ~100%, permitting the energy storage cavity to empty in one cavity round trip time of the TE02 mode to produce a high power output pulse. The second experiment runs demonstrated a 190 MW, ~20 ns compressed pulse at 25.7 gain and ~50% efficiency, using a 7.4 MW, 1 ?s drive pulse from the magnicon. The success of this experiment suggests a path to future high gain active versions of the SLED 2 pulse compressor at SLAC.

  17. Electric Kettle Takes Down Microwave in Final Round of #EnergyFaceoff...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Three Microwave or electric kettle, which appliance should win the honor of heating your water? | Graphic by Stacy Buchanan, National Renewable Energy Laboratory Microwave vs. ...

  18. Microwave Synthesis of Au?Rh Core?Shell Nanoparticles and Implications...

    Office of Scientific and Technical Information (OSTI)

    Microwave Synthesis of Au?Rh Core?Shell Nanoparticles and Implications of the Shell Thickness in Hydrogenation Catalysis Citation Details In-Document Search Title: Microwave ...

  19. A MEASUREMENT OF SECONDARY COSMIC MICROWAVE BACKGROUND ANISOTROPIES...

    Office of Scientific and Technical Information (OSTI)

    Data in the three SPT-SZ frequency bands centered at 95, 150, and 220 GHz, are used to produce six angular power spectra (three single-frequency auto-spectra and three ...

  20. GVR (G-Band Vapor Radiometer) M.P. Cadeddu and J.C. Liljegren Argonne Natl. Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ARM 90/150 GHz data at COPS M.P. Cadeddu, A. Vogelmann, D.D. Turner, S. Crewell, U. Lönhert MWRHF (90/150) data Data available at archives from 06/22 to 12/31 Challenges associated with instrument: New instrument - new technology We still need to learn about calibration Spectral region (WV continuum) still uncertain in models Data available at archives from 06/22 to 12/31 Challenges associated with instrument: New instrument - new technology We still need to learn about calibration Spectral

  1. INEXPENSIVE, OFF THE SHELF HYBRID MICROWAVE SYSTEM

    SciTech Connect (OSTI)

    Walters, T; Paul Burket, P; John Scogin, J

    2007-06-21

    A hybrid-heating microwave oven provides the energy to heat small 10-gram samples of spent metal tritide storage bed material to release tenaciously held decay product {sup 3}He. Complete mass balance procedures require direct measurement of added or produced gases on a tritide bed, and over 1100 C is necessary to release deep trapped {sup 3}He. The decomposition of non-radioactive CaCO{sub 3} and the quantitative measurement of CO{sub 2} within 3% of stoichiometry demonstrate the capabilities of the apparatus to capture generated (released) gases.

  2. Microwave characterization of high-temperature superconductors

    SciTech Connect (OSTI)

    Cooke, D.W.; Gray, E.R.; Arendt, P.N.; Beery, J.G.; Bennett, B.L.; Brown, D.R.; Houlton, R.J.; Jahan, M.S.; Klapetzky, A.J.; Maez, M.A.; Raistrick, I.D.; Reeves, G.A.; Rusnak, B.

    1989-01-01

    Thick (10-15 {mu}m) Tl-Ba-Ca-Cu-O films have been deposited onto yttria-stabilized zirconia and Ag substrates by d.c. magnetron sputtering techniques. Direct deposition onto 1'' diameter yttria-stabilized zirconia yields films with typical 22 GHz surface resistance (R{sub s}) values of 5.2 {plus minus} 2 m{Omega} and 52 {plus minus} 2 m{Omega} at 10 K and 77 K, respectively. For comparison, R{sub s} of Cu at this same frequency is 10 m{Omega} at 4 K and 22 m{Omega} at 77 K. Tl-Ba-Ca-Cu-O films have also been deposited onto 1'' diameter Ag substrates using Au/Cu, Cu, and BaF{sub 2} buffer layers. The lowest R{sub s} values were obtained on films with a BaF{sub 2} buffer layer, typical values being 7.8 {plus minus} 2 m{Omega} and 30.6 {plus minus} 2 m{Omega} (measured at 22 GHz) at 10 K and 77 K, respectively. Larger films (1.5'' diameter) with similar R{sub s} values were prepared using this same technique, demonstrating that the fabrication process can be scaled to larger surface areas. These films are promising for radiofrequency cavity applications because they are thick (50-75 times the London penetration depth), have relatively large surface areas, are fabricated on metallic substrates, and have R{sub s} values that are competitive with Cu at 77 K and are lower than Cu at 4 K. Because they are polycrystalline and unoriented, it is anticipated that their R{sub s} values can be lowered by improving the processing technique. High-quality films of YBa{sub 2}Cu{sub 3}O{sub 7} have been electron-beam deposited onto 1'' LaGaO{sub 3} and 1.5'' LaAlO{sub 3} substrates. The 1'' sample is characterized by R{sub s} values of 0.2 {plus minus} 0.1 m{Omega} at 4 K and 18.6 {plus minus} 2 m{Omega} at 77 K. The 4-K value is only 2-4 times higher than Nb. The 1.5'' sample has R{sub s} values (measured at 18 GHz) of 0.93 {plus minus} 2 m{Omega} and 71 {plus minus} 3 m{Omega} at 10 K and 77 K, respectively. 18 refs., 8 figs.

  3. Microwave sintering of sol-gel derived abrasive grain

    DOE Patents [OSTI]

    Plovnick, Ross (St. Louis Park, MN); Celikkaya, Ahmet (Woodbury, MN); Blake, Rodger D. (Tuscon, AZ)

    1997-01-01

    A method is provided for making microwave-sintered, free flowing alpha alumina-based ceramic abrasive grain, under conditions effective to couple microwaves with calcined alpha alumina-based abrasive gain precursor and sinter it at a temperature of at least about 1150.degree. C.

  4. Microwave sintering of single plate-shaped articles

    DOE Patents [OSTI]

    Katz, J.D.; Blake, R.D.

    1995-07-11

    Apparatus and method are disclosed for high temperature sintering of plate-shaped articles of alumina, magnesia, silica, yttria, zirconia, and mixtures thereof using microwave radiation. An article is placed within a sintering structure located within a sintering container which is placed in a microwave cavity for heating. The rates at which heating and cooling take place is controlled. 2 figs.

  5. Microwave sintering of single plate-shaped articles

    DOE Patents [OSTI]

    Katz, Joel D. (Los Alamos, NM); Blake, Rodger D. (Tucson, AZ)

    1995-01-01

    Apparatus and method for high temperature sintering of plate-shaped articles of alumina, magnesia, silica, yttria, zirconia, and mixtures thereof using microwave radiation. An article is placed within a sintering structure located within a sintering container which is placed in a microwave cavity for heating. The rates at which heating and cooling take place is controlled.

  6. Container for heat treating materials in microwave ovens

    DOE Patents [OSTI]

    Holcombe, Cressie E. (Farragut, TN); Dykes, Norman L. (Oak Ridge, TN); Kimrey, Jr., Harold D. (Knoxville, TN); Mills, James E. (Knoxville, TN)

    1989-01-01

    The efficiency of a microwave oven of a conventional two-source configuration and energy level is increased by providing the oven with a container for housing a refractory material to be treated. The container is formed of top and bottom walls transparent to microwaves while the sidewalls, in a circular configuration, are formed of a nonmetallic material opaque to microwave radiation reflecting the radiation penetrating the top and bottom walls radially inwardly into the center of the container wherein a casket of heat-insulating material is provided for housing the material to be heat treated. The reflection of the microwave radiation from the sidewalls increases the concentration of the microwaves upon the material being heat treated while the casket retains the heat to permit the heating of the material to a substantially higher temperature than achieveable in the oven without the container.

  7. A SEARCH FOR 95 GHz CLASS I METHANOL MASERS IN MOLECULAR OUTFLOWS

    SciTech Connect (OSTI)

    Gan, Cong-Gui; Chen, Xi; Shen, Zhi-Qiang; Xu, Ye; Ju, Bing-Gang

    2013-01-20

    We have observed a sample of 288 molecular outflow sources including 123 high-mass and 165 low-mass sources in order to search for class I methanol masers at the 95 GHz transition and to investigate the relationship between outflow characteristics and class I methanol maser emission with the Purple Mountain Observatory 13.7 m radio telescope. Our survey detected 62 sources with 95 GHz methanol masers above a 3{sigma} detection limit, which includes 47 high-mass sources and 15 low-mass sources. Therefore, the detection rate is 38% for high-mass outflow sources and 9% for low-mass outflow sources, suggesting that class I methanol masers are relatively easily excited in high-mass sources. There are 37 newly detected 95 GHz methanol masers (including 27 high-mass and 10 low-mass sources), 19 of which are newly identified (i.e., first identification) class I methanol masers (including 13 high-mass and 6 low-mass sources). A statistical analysis of the distributions of maser detections with the outflow parameters reveals that the maser detection efficiency increases with the outflow properties (e.g., mass, momentum, kinetic energy, mechanical luminosity of outflows, etc.). Systematic investigations of the relationships between the intrinsic luminosity of methanol masers and the outflow properties (including mass, momentum, kinetic energy, bolometric luminosity, and mass-loss rate of the central stellar sources) indicate a positive correlation. This further supports the theory that class I methanol masers are collisionally pumped and associated with shocks when outflows interact with the surrounding ambient medium.

  8. S. Crewell

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Extinction lidar-Ratio Temperature Humditiy profiling Apparatus (BERTHA) " WiLi (2.2 m Doppler Wind Lidar) Microwave Radiometer " MWRLOS (standard ARM 2-ch radiometer) " MWRP...

  9. Radio Frequency Surface Impedance Characterization System for Superconducting Samples at 7.5 GHz

    SciTech Connect (OSTI)

    Binping Xiao, Charles Reece, Michael Kelley, Larry Phillips, Rongli Geng, Haipeng Wang, Frank Marhauser

    2011-05-01

    A radio frequency (RF) surface impedance characterization (SIC) system that uses a sapphire-loaded Nb cavity operating at 7.5 GHz has been fabricated to measure the RF surface impedance of flat superconducting samples. Currently, the SIC system can make direct calorimetric surface impedance measurements in the central 0.8 cm2 area of 5 cm diameter disk samples in a temperature range from 2 to 20 K, exposed to a magnetic flux density of up to 14 mT. As an application, we present the measurement results for a bulk Nb sample.

  10. Design considerations for a 100 kW c-w, 140 GHz gyrotron oscillator

    SciTech Connect (OSTI)

    Felch, K.; Bier, R.; Fox, L.; Huey, H.; Ives, L.; Jory, H.; Spang, S.

    1984-01-01

    A gyrotron oscillator capable of generating 100 kW of c-w power is currently under development at Varian. The tube is being designed for operation in the TE/sup 0//sub 031/ cavity mode with the electron beam located at the second radial electric field maximum in the cavity. The electron beam will be produced by a magnetron injection gun and the 56 kG magnetic field required for 140 GHz operation will be provided by a superconducting magnet. Initial design calculations for the important elements of the tube are reported and the various technology issues of the tube design are discussed.

  11. ARM - VAP Process - mwravg

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Productsmwravg Documentation & Plots Data Management Facility Plots (Quick Looks) ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send VAP : Microwave Radiometer Averages in 1- and 5-Minute Increments (MWRAVG) Instrument Categories Derived Quantities and Models This VAP averages the principal fields from the MWR ( 23.8 GHz sky brightness temperature, 31.4 GHz sky brightness temperature, Total water vapor along LOS

  12. THE 5 GHz ARECIBO SEARCH FOR RADIO FLARES FROM ULTRACOOL DWARFS

    SciTech Connect (OSTI)

    Route, Matthew; Wolszczan, Alexander E-mail: alex@astro.psu.edu

    2013-08-10

    We present the results of a 4.75 GHz survey of 33 brown dwarfs and one young exoplanetary system for flaring radio emission, conducted with the 305 m Arecibo radio telescope. The goal of this program was to detect and characterize the magnetic fields of objects cooler than spectral type L3.5, the coolest brown dwarf detected prior to our survey. We have also attempted to detect flaring radio emission from the HR 8799 planetary system, guided by theoretical work indicating that hot, massive exoplanets may have strong magnetic fields capable of generating radio emission at GHz frequencies. We have detected and confirmed radio flares from the T6.5 dwarf 2MASS J10475385+2124234. This detection dramatically extends the temperature range over which brown dwarfs appear to be at least sporadic radio-emitters, from 1900 K (L3.5) down to 900 K (T6.5). It also demonstrates that the utility of radio detection as a unique tool to study the magnetic fields of substellar objects extends to the coolest dwarfs, and, plausibly to hot, massive exoplanets. We have also identified a single, 3.6{sigma} flare from the L1 dwarf, 2MASS J1439284+192915. This detection is tentative and requires confirmation by additional monitoring observations.

  13. Portable microwave instrument for non-destructive evaluation of structural characteristics

    DOE Patents [OSTI]

    Bible, D.W.; Crutcher, R.I.; Sohns, C.W.; Maddox, S.R.

    1995-01-24

    A portable microwave instrument for evaluating characteristics of a structural member includes a source of microwave energy, a transmitter coupled to the source of microwave energy for transmitting a microwave signal at the structural member, and a receiver positioned on the same side of the structural member as the transmitter and being disposed to receive a microwave signal reflected by the structural member. A phase angle difference is determined between the transmitted microwave signal and the received microwave signal using a signal splitter and a balanced mixer. The difference in phase angle varies in accordance with differences in size, shape and locations of constituent materials within the structural member. 6 figures.

  14. Portable microwave instrument for non-destructive evaluation of structural characteristics

    DOE Patents [OSTI]

    Bible, Don W. (Clinton, TN); Crutcher, Richard I. (Knoxville, TN); Sohns, Carl W. (Oak Ridge, TN); Maddox, Stephen R. (Loudon, TN)

    1995-01-01

    A portable microwave instrument for evaluating characteristics of a structural member includes a source of microwave energy, a transmitter coupled to the source of microwave energy for transmitting a microwave signal at the structural member, and a receiver positioned on the same side of the structural member as the transmitter and being disposed to receive a microwave signal reflected by the structural member. A phase angle difference is determined between the transmitted microwave signal and the received microwave signal using a signal splitter and a balanced mixer. The difference in phase angle varies in accordance with differences in size, shape and locations of constituent materials within the structural member.

  15. Method and apparatus for component separation using microwave energy

    DOE Patents [OSTI]

    Morrow, Marvin S. (Kingston, TN); Schechter, Donald E. (Ten Mile, TN); Calhoun, Jr., Clyde L. (Knoxville, TN)

    2001-04-03

    A method for separating and recovering components includes the steps of providing at least a first component bonded to a second component by a microwave absorbent adhesive bonding material at a bonding area to form an assembly, the bonding material disposed between the components. Microwave energy is directly and selectively applied to the assembly so that substantially only the bonding material absorbs the microwave energy until the bonding material is at a debonding state. A separation force is applied while the bonding material is at the debonding state to permit disengaging and recovering the components. In addition, an apparatus for practicing the method includes holders for the components.

  16. Constraints on cosmology from the cosmic microwave background power

    Office of Scientific and Technical Information (OSTI)

    spectrum of the 2500 deg{sup 2} SPT-SZ survey (Journal Article) | SciTech Connect Constraints on cosmology from the cosmic microwave background power spectrum of the 2500 deg{sup 2} SPT-SZ survey Citation Details In-Document Search Title: Constraints on cosmology from the cosmic microwave background power spectrum of the 2500 deg{sup 2} SPT-SZ survey We explore extensions to the ΛCDM cosmology using measurements of the cosmic microwave background (CMB) from the recent SPT-SZ survey, along

  17. Microwave Processing of Simulated Advanced Nuclear Fuel Pellets

    SciTech Connect (OSTI)

    D.E. Clark; D.C. Folz

    2010-08-29

    Throughout the three-year project funded by the Department of Energy (DOE) and lead by Virginia Tech (VT), project tasks were modified by consensus to fit the changing needs of the DOE with respect to developing new inert matrix fuel processing techniques. The focus throughout the project was on the use of microwave energy to sinter fully stabilized zirconia pellets using microwave energy and to evaluate the effectiveness of techniques that were developed. Additionally, the research team was to propose fundamental concepts as to processing radioactive fuels based on the effectiveness of the microwave process in sintering the simulated matrix material.

  18. TM01-mode microwave propagation property analysis for plasmas with

    Office of Scientific and Technical Information (OSTI)

    disk-plate windows by a finite-difference time-domain method (Journal Article) | SciTech Connect TM01-mode microwave propagation property analysis for plasmas with disk-plate windows by a finite-difference time-domain method Citation Details In-Document Search Title: TM01-mode microwave propagation property analysis for plasmas with disk-plate windows by a finite-difference time-domain method Numerical studies of microwave propagation properties in a conical horn and an adjustable

  19. Electron beam collector for a microwave power tube

    DOE Patents [OSTI]

    Dandl, Raphael A. (Oak Ridge, TN)

    1980-01-01

    This invention relates to a cylindrical, electron beam collector that efficiently couples the microwave energy out of a high power microwave source while stopping the attendant electron beam. The interior end walls of the collector are a pair of facing parabolic mirrors and the microwave energy from an input horn is radiated between the two mirrors and reassembled at the entrance to the output waveguide where the transmitted mode is reconstructed. The mode transmission through the collector of the present invention has an efficiency of at least 94%.

  20. Energy Efficiency Standards for Microwave Ovens Saves Consumers Energy and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Updates the Social Cost of Carbon | Department of Energy Efficiency Standards for Microwave Ovens Saves Consumers Energy and Updates the Social Cost of Carbon Energy Efficiency Standards for Microwave Ovens Saves Consumers Energy and Updates the Social Cost of Carbon August 21, 2013 - 9:18am Addthis A typical microwave is used to heat food for about 70 hours each year, but continues to use electricity for the remaining 8,690 hours of the year to power the electronic controls and display. On

  1. 2D microwave imaging reflectometer electronics

    SciTech Connect (OSTI)

    Spear, A. G.; Domier, C. W. Hu, X.; Muscatello, C. M.; Ren, X.; Luhmann, N. C.; Tobias, B. J.

    2014-11-15

    A 2D microwave imaging reflectometer system has been developed to visualize electron density fluctuations on the DIII-D tokamak. Simultaneously illuminated at four probe frequencies, large aperture optics image reflections from four density-dependent cutoff surfaces in the plasma over an extended region of the DIII-D plasma. Localized density fluctuations in the vicinity of the plasma cutoff surfaces modulate the plasma reflections, yielding a 2D image of electron density fluctuations. Details are presented of the receiver down conversion electronics that generate the in-phase (I) and quadrature (Q) reflectometer signals from which 2D density fluctuation data are obtained. Also presented are details on the control system and backplane used to manage the electronics as well as an introduction to the computer based control program.

  2. Virtual cathode microwave generator having annular anode slit

    DOE Patents [OSTI]

    Kwan, Thomas J. T.; Snell, Charles M.

    1988-01-01

    A microwave generator is provided for generating microwaves substantially from virtual cathode oscillation. Electrons are emitted from a cathode and accelerated to an anode which is spaced apart from the cathode. The anode has an annular slit therethrough effective to form the virtual cathode. The anode is at least one range thickness relative to electrons reflecting from the virtual cathode. A magnet is provided to produce an optimum magnetic field having the field strength effective to form an annular beam from the emitted electrons in substantial alignment with the annular anode slit. The magnetic field, however, does permit the reflected electrons to axially diverge from the annular beam. The reflected electrons are absorbed by the anode in returning to the real cathode, such that substantially no reflexing electrons occur. The resulting microwaves are produced with a single dominant mode and are substantially monochromatic relative to conventional virtual cathode microwave generators.

  3. EERE Success Story-Energy Efficiency Standards for Microwave...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy and Updates the Social Cost of Carbon EERE Success Story-Energy Efficiency Standards for Microwave Ovens Saves Consumers Energy and Updates the Social Cost of Carbon August ...

  4. Method for curing polymers using variable-frequency microwave heating

    DOE Patents [OSTI]

    Lauf, R.J.; Bible, D.W.; Paulauskas, F.L.

    1998-02-24

    A method for curing polymers incorporating a variable frequency microwave furnace system designed to allow modulation of the frequency of the microwaves introduced into a furnace cavity is disclosed. By varying the frequency of the microwave signal, non-uniformities within the cavity are minimized, thereby achieving a more uniform cure throughout the workpiece. A directional coupler is provided for detecting the direction of a signal and further directing the signal depending on the detected direction. A first power meter is provided for measuring the power delivered to the microwave furnace. A second power meter detects the magnitude of reflected power. The furnace cavity may be adapted to be used to cure materials defining a continuous sheet or which require compressive forces during curing. 15 figs.

  5. A measurement of the cosmic microwave background damping tail...

    Office of Scientific and Technical Information (OSTI)

    We present a measurement of the cosmic microwave background (CMB) temperature power spectrum using data from the recently completed South Pole Telescope Sunyaev-Zel'dovich (SPT-SZ) ...

  6. TM01-mode microwave propagation property analysis for plasmas...

    Office of Scientific and Technical Information (OSTI)

    ... This comes from a reason that a larger electron density in the surface-wave plasma absorbs a larger quantity of the microwave power. From the above comparisons between results ...

  7. Constraints on Cosmology from the Cosmic Microwave Background...

    Office of Scientific and Technical Information (OSTI)

    from the Cosmic Microwave Background Power Spectrum of the 2500-square degree SPT-SZ Survey Citation Details In-Document Search Title: Constraints on Cosmology from the Cosmic...

  8. Analytical scanning evanescent microwave microscope and control stage

    DOE Patents [OSTI]

    Xiang, Xiao-Dong; Gao, Chen; Duewer, Fred; Yang, Hai Tao; Lu, Yalin

    2009-06-23

    A scanning evanescent microwave microscope (SEMM) that uses near-field evanescent electromagnetic waves to probe sample properties is disclosed. The SEMM is capable of high resolution imaging and quantitative measurements of the electrical properties of the sample. The SEMM has the ability to map dielectric constant, loss tangent, conductivity, electrical impedance, and other electrical parameters of materials. Such properties are then used to provide distance control over a wide range, from to microns to nanometers, over dielectric and conductive samples for a scanned evanescent microwave probe, which enable quantitative non-contact and submicron spatial resolution topographic and electrical impedance profiling of dielectric, nonlinear dielectric and conductive materials. The invention also allows quantitative estimation of microwave impedance using signals obtained by the scanned evanescent microwave probe and quasistatic approximation modeling. The SEMM can be used to measure electrical properties of both dielectric and electrically conducting materials.

  9. Analytical scanning evanescent microwave microscope and control stage

    DOE Patents [OSTI]

    Xiang, Xiao-Dong; Gao, Chen; Duewer, Fred; Yang, Hai Tao; Lu, Yalin

    2013-01-22

    A scanning evanescent microwave microscope (SEMM) that uses near-field evanescent electromagnetic waves to probe sample properties is disclosed. The SEMM is capable of high resolution imaging and quantitative measurements of the electrical properties of the sample. The SEMM has the ability to map dielectric constant, loss tangent, conductivity, electrical impedance, and other electrical parameters of materials. Such properties are then used to provide distance control over a wide range, from to microns to nanometers, over dielectric and conductive samples for a scanned evanescent microwave probe, which enable quantitative non-contact and submicron spatial resolution topographic and electrical impedance profiling of dielectric, nonlinear dielectric and conductive materials. The invention also allows quantitative estimation of microwave impedance using signals obtained by the scanned evanescent microwave probe and quasistatic approximation modeling. The SEMM can be used to measure electrical properties of both dielectric and electrically conducting materials.

  10. Development of a Multi-Point Microwave Interferometry (MPMI)...

    Office of Scientific and Technical Information (OSTI)

    impart a time-varying phase lag onto a laser at the microwave frequency. Polarization optics converts this phase lag into an amplitude modulation, which is analyzed in a...

  11. A Linear Theory of Microwave Instability in Electron Storage...

    Office of Scientific and Technical Information (OSTI)

    Title: A Linear Theory of Microwave Instability in Electron Storage Rings The well-known ... in an analysis of this stability that are associated with the potential-well distortion. ...

  12. Method for curing polymers using variable-frequency microwave heating

    DOE Patents [OSTI]

    Lauf, Robert J. (Oak Ridge, TN); Bible, Don W. (Clinton, TN); Paulauskas, Felix L. (Oak Ridge, TN)

    1998-01-01

    A method for curing polymers (11) incorporating a variable frequency microwave furnace system (10) designed to allow modulation of the frequency of the microwaves introduced into a furnace cavity (34). By varying the frequency of the microwave signal, non-uniformities within the cavity (34) are minimized, thereby achieving a more uniform cure throughout the workpiece (36). A directional coupler (24) is provided for detecting the direction of a signal and further directing the signal depending on the detected direction. A first power meter (30) is provided for measuring the power delivered to the microwave furnace (32). A second power meter (26) detects the magnitude of reflected power. The furnace cavity (34) may be adapted to be used to cure materials defining a continuous sheet or which require compressive forces during curing.

  13. Parity Violation Constraints Using Cosmic Microwave Background Polarization

    Office of Scientific and Technical Information (OSTI)

    Spectra from 2006 and 2007 Observations by the QUaD Polarimeter (Journal Article) | SciTech Connect Parity Violation Constraints Using Cosmic Microwave Background Polarization Spectra from 2006 and 2007 Observations by the QUaD Polarimeter Citation Details In-Document Search Title: Parity Violation Constraints Using Cosmic Microwave Background Polarization Spectra from 2006 and 2007 Observations by the QUaD Polarimeter Authors: Wu, E.Y.S. ; /KIPAC, Menlo Park /Harvard U. /Stanford U., Phys.

  14. Linear theory of microwave instability in electron storage rings (Journal

    Office of Scientific and Technical Information (OSTI)

    Article) | SciTech Connect Linear theory of microwave instability in electron storage rings Citation Details In-Document Search Title: Linear theory of microwave instability in electron storage rings Authors: Cai, Yunhai Publication Date: 2011-06-14 OSTI Identifier: 1099585 Type: Published Article Journal Name: Physical Review Special Topics - Accelerators and Beams Additional Journal Information: Journal Volume: 14; Journal Issue: 6; Journal ID: ISSN 1098-4402 Publisher: American Physical

  15. George Smoot, Blackbody, and Anisotropy of the Cosmic Microwave Background

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Radiation George Smoot, Blackbody, and Anisotropy of the Cosmic Microwave Background Radiation Resources with Additional Information * Videos 'George Smoot, ... has been awarded the 2006 Nobel Prize for physics. He shares the award with John C. Mather of NASA Goddard Space Flight Center. The citation reads "for their discovery of the blackbody form and anisotropy of the cosmic microwave background radiation." '1 Smoot previously won the Ernest Orlando Lawrence Award. 'Smoot has

  16. Microwave mode shifting antenna system for regenerating particulate filters

    DOE Patents [OSTI]

    Gonze, Eugene V [Pinckney, MI; Kirby, Kevin W [Calabasas Hills, CA; Phelps, Amanda [Malibu, CA; Gregoire, Daniel J [Thousand Oaks, CA

    2011-04-26

    A regeneration system comprises a particulate matter (PM) filter including a microwave energy absorbing surface, and an antenna system comprising N antennas and an antenna driver module that sequentially drives the antenna system in a plurality of transverse modes of the antenna system to heat selected portions of the microwave absorbing surface to regenerate the PM filter, where N is an integer greater than one. The transverse modes may include transverse electric (TE) and/or transverse magnetic (TM) modes.

  17. Expanded Capacity Microwave-Cleaned Diesel Particulate Filter | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Expanded Capacity Microwave-Cleaned Diesel Particulate Filter Expanded Capacity Microwave-Cleaned Diesel Particulate Filter 2002 DEER Conference Presentation: Industrial Ceramic Solutions, LLC PDF icon 2002_deer_nixdorf.pdf More Documents & Publications Ultra-Lite Diesel Particulate Filter Cartridge for Reduced Regeneration Time and Fuel Consumption Pleated Ceramic Fiber Diesel Particulate Filter Versatile Diesel Particulate Filter Cartridge Any Size, Any Shape

  18. Direct correlation and strong reduction of native point defects and microwave dielectric loss in air-annealed (Ba,Sr)TiO{sub 3}

    SciTech Connect (OSTI)

    Zeng, Z. Q.; Podpirka, A.; Kirchoefer, S. W.; Asel, T. J.; Brillson, L. J.

    2015-05-04

    We report on the native defect and microwave properties of 1 ?m thick Ba{sub 0.50}Sr{sub 0.50}TiO{sub 3} (BST) films grown on MgO (100) substrates by molecular beam epitaxy (MBE). Depth-resolved cathodoluminescence spectroscopy (DRCLS) showed high densities of native point defects in as-deposited BST films, causing strong subgap emission between 2.0?eV and 3.0?eV due to mixed cation V{sub C} and oxygen Vo vacancies. Post growth air anneals reduce these defects with 2.2, 2.65, and 3.0?eV V{sub O} and 2.4?eV V{sub C} intensities decreasing with increasing anneal temperature and by nearly two orders of magnitude after 950?C annealing. These low-defect annealed BST films exhibited high quality microwave properties, including room temperature interdigitated capacitor tunability of 13% under an electric bias of 40?V and tan?? of 0.002 at 10?GHz and 40?V bias. The results provide a feasible route to grow high quality BST films by MBE through post-air annealing guided by DRCLS.

  19. Uniform bulk material processing using multimode microwave radiation

    DOE Patents [OSTI]

    Varma, Ravi (Los Alamos, NM); Vaughn, Worth E. (Madison, WI)

    2000-01-01

    An apparatus for generating uniform heating in material contained in a cylindrical vessel is described. TE.sub.10 -mode microwave radiation is coupled into a cylindrical microwave transition such that microwave radiation having TE.sub.11 -, TE.sub.01 - and TM.sub.01 -cylindrical modes is excited therein. By adjusting the intensities of these modes, substantially uniform heating of materials contained in a cylindrical drum which is coupled to the microwave transition through a rotatable choke can be achieved. The use of a poor microwave absorbing insulating cylindrical insert, such as aluminum oxide, for separating the material in the container from the container walls and for providing a volume through which air is circulated is expected to maintain the container walls at room temperature. The use of layer of highly microwave absorbing material, such as SiC, inside of the insulating insert and facing the material to be heated is calculated to improve the heating pattern of the present apparatus.

  20. Development of a 10 kW, 2.815 GHz Klystron

    SciTech Connect (OSTI)

    Ives, Robert Lawrence; Read, Michael; Patrick, Ferguson

    2015-05-15

    Development of a Periodic Permanent Magnet (PPM) focused klystron is described. The klystron was designed to produce 10 kW CW at 2.815 GHz. The program developed an innovative PPM circuit that provided extremely uniform magnetic fields at the electron beam location while providing unprecedented access to the RF circuit for tuners and water cooling. Simulations indicated the klystron would produce more than 11 kW with an efficiency exceeding 65%. Problems with the mechanical design prevented successful testing of the initial prototype; however, a new design was successfully developed and implemented in a 6 MW klystron developed in a follow-on program. Funding is being pursued to rebuild the 10 kW RF circuit and complete the klystron development.

  1. Mechanical 144?GHz beam steering with all-metallic epsilon-near-zero lens antenna

    SciTech Connect (OSTI)

    Pacheco-Pea, V. Torres, V. Orazbayev, B. Beruete, M. Sorolla, M.; Navarro-Ca, M.; Engheta, N.

    2014-12-15

    An all-metallic steerable beam antenna composed of an ?-near-zero (ENZ) metamaterial lens is experimentally demonstrated at 144?GHz (?{sub 0}?=?2.083?mm). The ENZ lens is realized by an array of narrow hollow rectangular waveguides working just near and above the cut-off of the TE{sub 10} mode. The lens focal arc on the xz-plane is initially estimated analytically as well as numerically and compared with experimental results demonstrating good agreement. Next, a flange-ended WR-6.5 waveguide is placed along the lens focal arc to evaluate the ENZ-lens antenna steerability. A gain scan loss below 3?dB is achieved for angles up to 15.

  2. Formation of a laminar electron flow for 300 GHz high-power pulsed gyrotron

    SciTech Connect (OSTI)

    Yamaguchi, Yuusuke; Tatematsu, Yoshinori; Saito, Teruo; Ikeda, Ryosuke; Mudiganti, Jagadish C.; Ogawa, Isamu; Idehara, Toshitaka [Research Center for Development of Far-Infrared Region, University of Fukui, 3-9-1 Bunkyo, Fukui-shi 910-8507 (Japan)

    2012-11-15

    This paper describes the design of a triode magnetron injection gun for use in a 200 kW, 300 GHz gyrotron. As power and frequency increase, the performance of the gyrotron becomes quite sensitive to the quality of the electron beam. Formation of a laminar electron flow is essential for the realization of a high quality beam with a small velocity spread. In this study, a new method is developed for a quantitative evaluation of the laminarity and is applied to optimize the electrode design. The laminarity depends not only on conventional design parameters such as the cathode slant angle but also on the spatial distribution of the electric field along the beam trajectory. In the optimized design, the velocity pitch factors, {alpha}, larger than 1.2 are obtained at 65 kV, 10 A with spreads, {Delta}{alpha}, less than 5%.

  3. A 95 GHz CLASS I METHANOL MASER SURVEY TOWARD GLIMPSE EXTENDED GREEN OBJECTS (EGOs)

    SciTech Connect (OSTI)

    Chen Xi; Shen Zhiqiang; Gan Conggui; Ellingsen, Simon P.; Titmarsh, Anita

    2011-09-01

    We report the results of a systematic survey for 95 GHz class I methanol masers toward a new sample of 192 massive young stellar object candidates associated with ongoing outflows (known as extended green objects or EGOs) identified from the Spitzer Galactic Legacy Infrared Mid-Plane Survey Extraordinaire (GLIMPSE) survey. The observations were made with the Australia Telescope National Facility (ATNF) Mopra 22 m radio telescope and resulted in the detection of 105 new 95 GHz class I methanol masers. For 92 of the sources our observations provide the first identification of a class I maser transition associated with these objects (i.e., they are new class I methanol maser sources). Our survey proves that there is indeed a high detection rate (55%) of class I methanol masers toward EGOs. Comparison of the GLIMPSE point sources associated with EGOs with and without class I methanol maser detections shows that they have similar mid-IR colors, with the majority meeting the color selection criteria -0.6 < [5.8]-[8.0] < 1.4 and 0.5 < [3.6]-[4.5] < 4.0. Investigations of the Infrared Array Camera and Multiband Imaging Photometer for Spitzer 24 {mu}m colors and the associated millimeter dust clump properties (mass and density) of the EGOs for the sub-samples based on the class of methanol masers they are associated with suggest that the stellar mass range associated with class I methanol masers extends to lower masses than for class II methanol masers, or alternatively class I methanol masers may be associated with more than one evolutionary phase during the formation of a high-mass star.

  4. A measurement of the cosmic microwave background B-mode polarization power spectrum at sub-degree scales with POLARBEAR

    SciTech Connect (OSTI)

    Ade, P. A. R.; Akiba, Y.; Hasegawa, M.; Anthony, A. E.; Halverson, N. W.; Arnold, K.; Atlas, M.; Barron, D.; Boettger, D.; Elleflot, T.; Feng, C.; Borrill, J.; Errard, J.; Chapman, S.; Chinone, Y.; Flanigan, D.; Dobbs, M.; Gilbert, A.; Fabbian, G.; Collaboration: Polarbear Collaboration; and others

    2014-10-20

    We report a measurement of the B-mode polarization power spectrum in the cosmic microwave background (CMB) using the POLARBEAR experiment in Chile. The faint B-mode polarization signature carries information about the universe's entire history of gravitational structure formation, and the cosmic inflation that may have occurred in the very early universe. Our measurement covers the angular multipole range 500 < ? < 2100 and is based on observations of an effective sky area of 25 deg{sup 2} with 3.'5 resolution at 150 GHz. On these angular scales, gravitational lensing of the CMB by intervening structure in the universe is expected to be the dominant source of B-mode polarization. Including both systematic and statistical uncertainties, the hypothesis of no B-mode polarization power from gravitational lensing is rejected at 97.2% confidence. The band powers are consistent with the standard cosmological model. Fitting a single lensing amplitude parameter A{sub BB} to the measured band powers, A{sub BB}=1.120.61(stat){sub ?0.12}{sup +0.04}(sys)0.07(multi), where A{sub BB} = 1 is the fiducial WMAP-9 ?CDM value. In this expression, 'stat' refers to the statistical uncertainty, 'sys' to the systematic uncertainty associated with possible biases from the instrument and astrophysical foregrounds, and 'multi' to the calibration uncertainties that have a multiplicative effect on the measured amplitude A{sub BB}.

  5. Using Radar, Lidar, and Radiometer measurements to Classify Cloud Type and Study Middle-Level Cloud Properties

    SciTech Connect (OSTI)

    Wang, Zhien

    2010-06-29

    The project is mainly focused on the characterization of cloud macrophysical and microphysical properties, especially for mixed-phased clouds and middle level ice clouds by combining radar, lidar, and radiometer measurements available from the ACRF sites. First, an advanced mixed-phase cloud retrieval algorithm will be developed to cover all mixed-phase clouds observed at the ACRF NSA site. The algorithm will be applied to the ACRF NSA observations to generate a long-term arctic mixed-phase cloud product for model validations and arctic mixed-phase cloud processes studies. To improve the representation of arctic mixed-phase clouds in GCMs, an advanced understanding of mixed-phase cloud processes is needed. By combining retrieved mixed-phase cloud microphysical properties with in situ data and large-scale meteorological data, the project aim to better understand the generations of ice crystals in supercooled water clouds, the maintenance mechanisms of the arctic mixed-phase clouds, and their connections with large-scale dynamics. The project will try to develop a new retrieval algorithm to study more complex mixed-phase clouds observed at the ACRF SGP site. Compared with optically thin ice clouds, optically thick middle level ice clouds are less studied because of limited available tools. The project will develop a new two wavelength radar technique for optically thick ice cloud study at SGP site by combining the MMCR with the W-band radar measurements. With this new algorithm, the SGP site will have a better capability to study all ice clouds. Another area of the proposal is to generate long-term cloud type classification product for the multiple ACRF sites. The cloud type classification product will not only facilitates the generation of the integrated cloud product by applying different retrieval algorithms to different types of clouds operationally, but will also support other research to better understand cloud properties and to validate model simulations. The ultimate goal is to improve our cloud classification algorithm into a VAP.

  6. Characterization and recent modification of a compact 10 GHz ECRIS for atomic physics experiments and spectroscopic investigations

    SciTech Connect (OSTI)

    Schlapp, M.; Trassl, R.; Salzborn, E.; McCullough, R.W.; Greenwood, J.B.

    1997-09-01

    A compact 10 ECR ion source (200 mm long, 170 mm diameter) has been developed and tested. The complete magnetic structure made from permanent magnet material is comprised of four ring magnets producing an asymmetric axial magnetic field and a hexapole magnet with a maximum radial field of 0.94 T inside the plasma chamber. The coupling of the microwave to the plasma shows efficient ECR plasma heating at microwave power levels around 10 watts. Charge state distributions for various elements with intensities up to 320 e{mu}A and their dependence on operation parameters will be presented as well as VUV spectra in the wavelength region down to 15 nm.

  7. Microwave guiding in air along single femtosecond laser filament

    SciTech Connect (OSTI)

    Ren Yu; Alshershby, Mostafa; Qin Jiang; Hao Zuoqiang; Lin Jingquan

    2013-03-07

    Microwave guiding along single plasma filament generated through the propagation of femtosecond (fs) laser pulses in air has been demonstrated over a distance of about 6.5 cm, corresponding to a microwave signal intensity enhancement of more than 3-fold over free space propagation. The current propagation distance along the fs laser filament is in agreement with the calculations and limited by the relatively high resistance of the single plasma filament. Using a single fs laser filament to channel microwave radiation considerably alleviate requirements to the power of fs laser pulses compared to the case of the circular filaments waveguide. In addition, it can be used as a simple and non-intrusive method to obtain the basic parameters of laser-generated plasma filament.

  8. One piece microwave container screens for electrodeless lamps

    DOE Patents [OSTI]

    Turner, Brian; Ury, Michael

    1998-01-01

    A microwave powered electrodeless lamp includes an improved screen unit having mesh and solid sections with an internal reflector to reflect light into a light-transmitting chamber defined in the lamp microwave cavity by the reflector and the mesh section. A discharge envelope of a bulb is disposed in the light-transmitting chamber. Light emitted from the envelope is prevented by the reflector from entering the cavity portion bounded by the solid section of the screen. Replacing mesh material by solid metal material as part of the screen unit significantly reduces leakage of microwave energy from the lamp. The solid section has multiple compliant fingers defined therein for engaging the periphery of a flange on the waveguide unit so that a hose clamp can easily secure the screen to the assembly. Screen units of this type having different mesh section configurations can be interchanged in the lamp assembly to produce different respective illumination patterns.

  9. A prototype silicon double quantum dot with dispersive microwave readout

    SciTech Connect (OSTI)

    Schmidt, A. R. Henry, E.; Namaan, O.; Siddiqi, I.; Lo, C. C.; Wang, Y.-T.; Bokor, J.; Yablonovitch, E.; Li, H.; Greenman, L.; Whaley, K. B.; Schenkel, T.

    2014-07-28

    We present a unique design and fabrication process for a lateral, gate-confined double quantum dot in an accumulation mode metal-oxide-semiconductor (MOS) structure coupled to an integrated microwave resonator. All electrostatic gates for the double quantum dot are contained in a single metal layer, and use of the MOS structure allows for control of the location of the two-dimensional electron gas via the location of the accumulation gates. Numerical simulations of the electrostatic confinement potential are performed along with an estimate of the coupling of the double quantum dot to the microwave resonator. Prototype devices are fabricated and characterized by transport measurements of electron confinement and reflectometry measurements of the microwave resonator.

  10. Physics Analysis of Microwave Imaging Data from DIII-D & KSTAR. Final Technical Report

    SciTech Connect (OSTI)

    Munsat, Tobin

    2015-12-31

    Final Technical Report of the award entitled Physics Analysis of Microwave Imaging Data from DIII-D & KSTAR

  11. A Microwave Thruster for Spacecraft Propulsion (Technical Report) | SciTech

    Office of Scientific and Technical Information (OSTI)

    Connect Technical Report: A Microwave Thruster for Spacecraft Propulsion Citation Details In-Document Search Title: A Microwave Thruster for Spacecraft Propulsion This presentation describes how a microwave thruster can be used for spacecraft propulsion. A microwave thruster is part of a larger class of electric propulsion devices that have higher specific impulse and lower thrust than conventional chemical rocket engines. Examples of electric propulsion devices are given in this

  12. A Microwave Thruster for Spacecraft Propulsion (Technical Report) | SciTech

    Office of Scientific and Technical Information (OSTI)

    Connect Technical Report: A Microwave Thruster for Spacecraft Propulsion Citation Details In-Document Search Title: A Microwave Thruster for Spacecraft Propulsion This presentation describes how a microwave thruster can be used for spacecraft propulsion. A microwave thruster is part of a larger class of electric propulsion devices that have higher specific impulse and lower thrust than conventional chemical rocket engines. Examples of electric propulsion devices are given in this

  13. Temperature distribution in a flowing fluid heated in a microwave resonant cavity

    SciTech Connect (OSTI)

    Thomas, J.R. Jr. [Virginia Polytechnic Inst. and State Univ., Blacksburg, VA (United States); Nelson, E.M.; Kares, R.J.; Stringfield, R.M. [Los Alamos National Lab., NM (United States)

    1996-04-01

    This paper presents results of an analytical study of microwave heating of a fluid flowing through a tube situated along the axis of a cylindrical microwave applicator. The interaction of the microwave field pattern and the fluid velocity profiles is illustrated for both laminar and turbulent flow. Resulting temperature profiles are compared with those generated by conventional heating through a surface heat flux. It is found that microwave heating offers several advantages over conventional heating.

  14. Design of 95 GHz gyrotron based on continuous operation copper solenoid with water cooling

    SciTech Connect (OSTI)

    Borodin, Dmitri; Ben-Moshe, Roey; Einat, Moshe

    2014-07-15

    The design work for 2nd harmonic 95 GHz, 50 kW gyrotron based on continuous operation copper solenoid is presented. Thermionic magnetron injection gun specifications were calculated according to the linear trade off equation, and simulated with CST program. Numerical code is used for cavity design using the non-uniform string equation as well as particle motion in the cold cavity field. The mode TE02 with low Ohmic losses in the cavity walls was chosen as the operating mode. The Solenoid is designed to induce magnetic field of 1.8 T over a length of 40 mm in the interaction region with homogeneity of 0.34%. The solenoid has six concentric cylindrical segments (and two correction segments) of copper foil windings separated by water channels for cooling. The predicted temperature in continuous operation is below 93?C. The parameters of the design together with simulation results of the electromagnetic cavity field, magnetic field, electron trajectories, and thermal analyses are presented.

  15. Recent development of RIKEN 28 GHz superconducting electron cyclotron resonance ion source

    SciTech Connect (OSTI)

    Higurashi, Y. Ohnishi, J.; Ozeki, K.; Kidera, M.; Nakagawa, T.

    2014-02-15

    Over the past two years, we have tried to improve the performance of the RIKEN superconducting electron cyclotron resonance ion source using several methods. For the production of U vapor, we chose the sputtering method because it is possible to install a large amount of material inside the plasma chamber and thus achieve long-term operation without a break, although it is assumed that the beam intensity is weaker than in the oven technique. We also used an aluminum chamber instead of a stainless steel one. Using these methods, we successfully produced ?180 e?A of U{sup 35+} and ?230 e?A of U{sup 33+} at the injected radio frequency (RF) power of ?4 kW (28 GHz). Very recently, to further increase the beam intensity of U{sup 35+}, we have started to develop a high temperature oven and have successfully produced a highly charged U ion beam. In this contribution, we report on the beam intensity of highly charged U ions as a function of various parameters (RF power and sputtering voltage) and discuss the effects of these parameters on the beam stability in detail.

  16. Beam-wave interaction behavior of a 35?GHz metal PBG cavity gyrotron

    SciTech Connect (OSTI)

    Singh, Ashutosh; Jain, P. K.

    2014-09-15

    The RF behavior of a 35?GHz photonic band gap (PBG) cavity gyrotron operating in TE{sub 041}-like mode has been presented to demonstrate its single mode operation capability. In this PBG cavity gyrotron, the conventional tapered cylindrical cavity is replaced by a metal PBG cavity as its RF interaction structure. The beam-wave interaction behavior has been explored using time dependent multimode nonlinear analysis as well as through 3D PIC simulation. Metal PBG cavity is treated here similar to that of a conventional cylindrical cavity for the desired mode confinement. The applied DC magnetic field profile has been considered uniform along the PBG cavity length both in analysis as well as in simulation. Electrons energy and phase along the interaction length of the PBG cavity facilitates bunching mechanism as well as energy transfer phenomena from the electron beam to the RF field. The RF output power for the TE{sub 041}-like design mode as well as nearby competing modes have been estimated and found above to 100?kW in TE{sub 041}-like mode with ?15% efficiency. Results obtained from the analysis and the PIC simulation are found in agreement within 8% variation, and also it supports the single mode operation, as the PBG cavity does not switch into other parasitic modes in considerably large range of varying DC magnetic field, contrary to the conventional cylindrical cavity interaction structure.

  17. Apparatus with moderating material for microwave heat treatment of manufactured components

    DOE Patents [OSTI]

    Ripley, Edward B. (Knoxville, TN)

    2011-05-10

    An apparatus for heat treating manufactured components using microwave energy and microwave susceptor material. Heat treating medium such as eutectic salts may be employed. A fluidized bed introduces process gases which may include carburizing or nitriding gases The process may be operated in a batch mode or continuous process mode. A microwave heating probe may be used to restart a frozen eutectic salt bath.

  18. Microwave-assisted sample preparation of coal and coal fly ash for subsequent metal determination

    SciTech Connect (OSTI)

    Srogi, K.

    2007-01-15

    The aim of this paper is to review microwave-assisted digestion of coal and coal fly ash. A brief description of microwave heating principles is presented. Microwave-assisted digestion appears currently to be the most popular preparation technique, possibly due to the comparatively rapid sample preparation and the reduction of contamination, compared to the conventional hot-plate digestion methods.

  19. FINGERPRINTS OF GALACTIC LOOP I ON THE COSMIC MICROWAVE BACKGROUND

    SciTech Connect (OSTI)

    Liu, Hao; Mertsch, Philipp

    2014-07-10

    We investigate possible imprints of galactic foreground structures such as the ''radio loops'' in the derived maps of the cosmic microwave background. Surprisingly, there is evidence for these not only at radio frequencies through their synchrotron radiation, but also at microwave frequencies where emission by dust dominates. This suggests the mechanism is magnetic dipole radiation from dust grains enriched by metallic iron or ferrimagnetic molecules. This new foreground we have identified is present at high galactic latitudes, and potentially dominates over the expected B-mode polarization signal due to primordial gravitational waves from inflation.

  20. Ultra high vacuum broad band high power microwave window

    DOE Patents [OSTI]

    Nguyen-Tuong, Viet (Seaford, VA); Dylla, III, Henry Frederick (Yorktown, VA)

    1997-01-01

    An improved high vacuum microwave window has been developed that utilizes high density polyethylene coated on two sides with SiOx, SiNx, or a combination of the two. The resultant low dielectric and low loss tangent window creates a low outgassing, low permeation seal through which broad band, high power microwave energy may be passed. No matching device is necessary and the sealing technique is simple. The features of the window are broad band transmission, ultra-high vacuum compatibility with a simple sealing technique, low voltage standing wave ratio, high power transmission and low cost.

  1. Constraints on Cosmology from the Cosmic Microwave Background Power

    Office of Scientific and Technical Information (OSTI)

    Spectrum of the 2500-square degree SPT-SZ Survey (Journal Article) | SciTech Connect Constraints on Cosmology from the Cosmic Microwave Background Power Spectrum of the 2500-square degree SPT-SZ Survey Citation Details In-Document Search Title: Constraints on Cosmology from the Cosmic Microwave Background Power Spectrum of the 2500-square degree SPT-SZ Survey Authors: Hou, Z. ; et al. Publication Date: 2012-12-01 OSTI Identifier: 1156457 Report Number(s): FERMILAB-PUB-13-072-A arXiv eprint

  2. Diatomic molecules in optical and microwave dipole traps

    SciTech Connect (OSTI)

    Lysebo, Marius; Veseth, Leif

    2011-03-15

    The dipole forces on rotating diatomic molecules are worked out in detail for optical as well as microwave radiation fields. The objective is in particular to investigate how the dipole forces and potentials depend on the subtle internal structure of the molecule, with special emphasis on hyperfine and Zeeman states. Dipole potentials are obtained from computations of the real part of the complex molecular polarizability, whereas the imaginary part yields the scattering force. Numerical examples are presented for {sup 23}Na{sub 2} and OH for optical (laser) fields related to strong electronic transitions and for microwave fields for the {Lambda} doubling in the OH ground state.

  3. Ceramic-glass-metal seal by microwave heating

    DOE Patents [OSTI]

    Meek, Thomas T. (Los Alamos, NM); Blake, Rodger D. (Santa Fe, NM)

    1985-01-01

    A method for producing a ceramic-glass-metal seal by microwaving mixes a slurry of glass sealing material and coupling agent and applies same to ceramic and metal workpieces. The slurry and workpieces are then insulated and microwaved at a power, time and frequency sufficient to cause a liquid phase reaction in the slurry. The reaction of the glass sealing material forms a chemically different seal than that which would be formed by conventional heating because it is formed by diffusion rather than by wetting of the reactants.

  4. Ceramic-glass-metal seal by microwave heating

    DOE Patents [OSTI]

    Meek, T.T.; Blake, R.D.

    1983-10-04

    A method for producing a ceramic-glass-metal seal by microwaving, mixes a slurry of glass sealing material and coupling agent and applies same to ceramic and metal workpieces. The slurry and workpieces are then insulated and microwaved at a power, time and frequency sufficient to cause a liquid-phase reaction in the slurry. The reaction of the glass sealing material forms a chemically different seal than that which would be formed by conventional heating because it is formed by diffusion rather than by wetting of the reactants.

  5. Ceramic-glass-ceramic seal by microwave heating

    DOE Patents [OSTI]

    Meek, Thomas T. (Los Alamos, NM); Blake, Rodger D. (Santa Fe, NM)

    1985-01-01

    A method for producing a ceramic-glass-ceramic seal by microwaving, mixes a slurry of glass sealing material and coupling agent and applies same to ceramic workpieces. The slurry and workpieces are placed together, insulated and then microwaved at a power, time and frequency sufficient to cause a liquid phase reaction in the slurry. The reaction of the glass sealing material forms a chemically different seal than that which would be formed by conventional heating because it is formed by a diffusion rather than by wetting of the reactants.

  6. Ceramic-glass-ceramic seal by microwave heating

    DOE Patents [OSTI]

    Meek, T.T.; Blake, R.D.

    1983-10-04

    A method for producing a ceramic-glass-ceramic seal by microwaving, mixes a slurry of glass sealing material and coupling agent and applies same to ceramic workpieces. The slurry and workpieces are placed together, insulated and then microwaved at a power, time and frequency sufficient to cause a liquid phase reaction in the slurry. The reaction of the glass sealing material forms a chemically different seal than that which would be formed by conventional heating because it is formed by a diffusion rather than by wetting of the reactants.

  7. Ultra high vacuum broad band high power microwave window

    DOE Patents [OSTI]

    Nguyen-Tuong, V.; Dylla, H.F. III

    1997-11-04

    An improved high vacuum microwave window has been developed that utilizes high density polyethylene coated on two sides with SiOx, SiNx, or a combination of the two. The resultant low dielectric and low loss tangent window creates a low outgassing, low permeation seal through which broad band, high power microwave energy may be passed. No matching device is necessary and the sealing technique is simple. The features of the window are broad band transmission, ultra-high vacuum compatibility with a simple sealing technique, low voltage standing wave ratio, high power transmission and low cost. 5 figs.

  8. Slide 1

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    in 2006 * Passive microwave remote sensing * Long experience with airborne, ship-borne, ground based microwave radiometers University of Illinois, Champaign, IL October 14-16,...

  9. GHz laser-free time-resolved transmission electron microscopy: A stroboscopic high-duty-cycle method

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Qiu, Jiaqi; Zhu, Yimei; Ha, Gwanghui; Jing, Chunguang; Baryshev, Sergey V.; Reed, Bryan W.; Lau, June W.

    2015-11-10

    In this study, a device and a method for producing ultrashort electron pulses with GHz repetition rates via pulsing an input direct current (dc) electron beam are provided. The device and the method are based on an electromagnetic-mechanical pulser (EMMP) that consists of a series of transverse deflecting cavities and magnetic quadrupoles. The EMMP modulates and chops the incoming dc electron beam and converts it into pico- and sub-pico-second electron pulse sequences (pulse trains) at >1 GHz repetition rates, as well as controllably manipulates the resulting pulses. Ultimately, it leads to negligible electron pulse phase-space degradation compared to the incomingmore » dc beam parameters. The temporal pulse length and repetition rate for the EMMP can be continuously tunable over wide ranges.« less

  10. GHz laser-free time-resolved transmission electron microscopy: A stroboscopic high-duty-cycle method

    SciTech Connect (OSTI)

    Qiu, Jiaqi; Zhu, Yimei; Ha, Gwanghui; Jing, Chunguang; Baryshev, Sergey V.; Reed, Bryan W.; Lau, June W.

    2015-11-10

    In this study, a device and a method for producing ultrashort electron pulses with GHz repetition rates via pulsing an input direct current (dc) electron beam are provided. The device and the method are based on an electromagnetic-mechanical pulser (EMMP) that consists of a series of transverse deflecting cavities and magnetic quadrupoles. The EMMP modulates and chops the incoming dc electron beam and converts it into pico- and sub-pico-second electron pulse sequences (pulse trains) at >1 GHz repetition rates, as well as controllably manipulates the resulting pulses. Ultimately, it leads to negligible electron pulse phase-space degradation compared to the incoming dc beam parameters. The temporal pulse length and repetition rate for the EMMP can be continuously tunable over wide ranges.

  11. STRUCTURE OF THE INNER JET OF OJ287 FROM VLBA DATA AT 15 GHz IN SUPER-RESOLUTION MODE

    SciTech Connect (OSTI)

    Tateyama, Claudio E.

    2013-04-01

    In this work we show the results obtained from the Very Long Baseline Array data at 15 GHz of OJ287 in super-resolution mode. The data showed a jet configuration in the form of a 'fork' where superluminal components emerge via stationary components at the northwest and the southeast close to the core to form parallel trajectories along the southwest direction in the plane of sky. This agrees with a source structure of an extended, broad morphology of OJ287.

  12. Multi-MW 22.8 GHz Harmonic Multiplier - RF Power Source for High-Gradient Accelerator R&D

    SciTech Connect (OSTI)

    Jay L. Hirshfield

    2012-07-26

    Electrodynamic and particle simulation studies have been carried out to optimize design of a two-cavity harmonic frequency multiplier, in which a linear electron beam is energized by rotating fields near cyclotron resonance in a TE111 cavity in a uniform magnetic field, and in which the beam then radiates coherently at the nth harmonic into a TEn11 output cavity. Examples are worked out in detail for 7th and 2nd harmonic converters, showing RF-to-RF conversion efficiencies of 45% and 88%, respectively at 19.992 GHz (K-band) and 5.712 GHz (C-band), for a drive frequency of 2.856 GHz. Details are shown of RF infrastructure (S-band klystron, modulator) and harmonic converter components (drive cavity, output cavities, electron beam source and modulator, beam collector) for the two harmonic converters to be tested. Details are also given for the two-frequency (S- and C-band) coherent multi-MW test stand for RF breakdown and RF gun studies.

  13. The afterglow of GRB 130427A from 1 to 10{sup 16} GHz

    SciTech Connect (OSTI)

    Perley, D. A.; Cenko, S. B.; Corsi, A.; Tanvir, N. R.; Wiersema, K.; Levan, A. J.; Kann, D. A.; Greiner, J.; Sonbas, E.; Zheng, W.; Clubb, K. I.; Zhao, X.-H.; Bai, J.-M.; Chang, L.; Bremer, M.; Castro-Tirado, A. J.; Fruchter, A.; G??, E.; Gver, T.; and others

    2014-01-20

    We present multiwavelength observations of the afterglow of GRB 130427A, the brightest (in total fluence) gamma-ray burst (GRB) of the past 29 yr. Optical spectroscopy from Gemini-North reveals the redshift of the GRB to be z = 0.340, indicating that its unprecedented brightness is primarily the result of its relatively close proximity to Earth; the intrinsic luminosities of both the GRB and its afterglow are not extreme in comparison to other bright GRBs. We present a large suite of multiwavelength observations spanning from 300 s to 130 days after the burst and demonstrate that the afterglow shows relatively simple, smooth evolution at all frequencies, with no significant late-time flaring or rebrightening activity. The entire data set from 1 GHz to 10 GeV can be modeled as synchrotron emission from a combination of reverse and forward shocks in good agreement with the standard afterglow model, providing strong support to the applicability of the underlying theory and clarifying the nature of the GeV emission observed to last for minutes to hours following other very bright GRBs. A tenuous, wind-stratified circumburst density profile is required by the observations, suggesting a massive-star progenitor with a low mass-loss rate, perhaps due to low metallicity. GRBs similar in nature to GRB 130427A, inhabiting low-density media and exhibiting strong reverse shocks, are probably not uncommon but may have been difficult to recognize in the past owing to their relatively faint late-time radio emission; more such events should be found in abundance by the new generation of sensitive radio and millimeter instruments.

  14. Microwave-assisted synthesis of transition metal phosphide

    DOE Patents [OSTI]

    Viswanathan, Tito

    2014-12-30

    A method of synthesizing transition metal phosphide. In one embodiment, the method has the steps of preparing a transition metal lignosulfonate, mixing the transition metal lignosulfonate with phosphoric acid to form a mixture, and subjecting the mixture to a microwave radiation for a duration of time effective to obtain a transition metal phosphide.

  15. Microwave-emitting rotor, separator apparatus including same, methods of operation and design thereof

    DOE Patents [OSTI]

    Meikrantz, David H.

    2006-12-19

    An apparatus for use in separating, at least in part, a mixture, including at least one chamber and at least one microwave generation device configured for communicating microwave energy into the at least one chamber is disclosed. The rotor assembly may comprise an electric generator for generating electricity for operating the microwave generation device. At least one microwave generation device may be positioned within a tubular interior shaft extending within the rotor assembly. At least a portion of the tubular interior shaft may be substantially transparent to microwave energy. Microwave energy may be emitted in an outward radial direction or toward an anticipated boundary surface defined between a mixture and a separated constituent thereof. A method including flowing a mixture through at least one chamber and communicating microwave energy into the at least one chamber while rotating same is disclosed. Methods of operating a centrifugal separator and design thereof are disclosed.

  16. System to continuously produce carbon fiber via microwave assisted plasma processing

    DOE Patents [OSTI]

    White, Terry L; Paulauskas, Felix L; Bigelow, Timothy S

    2014-03-25

    A method for continuously processing carbon fiber including establishing a microwave plasma in a selected atmosphere contained in an elongated chamber having a microwave power gradient along its length defined by a lower microwave power at one end and a higher microwave power at the opposite end of the elongated chamber. The elongated chamber having an opening in each of the ends of the chamber that are adapted to allow the passage of the fiber tow while limiting incidental gas flow into or out of said chamber. A continuous fiber tow is introduced into the end of the chamber having the lower microwave power. The fiber tow is withdrawn from the opposite end of the chamber having the higher microwave power. The fiber to is subjected to progressively higher microwave energy as the fiber is being traversed through the elongated chamber.

  17. Microwave heating of aqueous samples on a micro-optical-electro-mechanical system

    DOE Patents [OSTI]

    Beer, Neil Reginald

    2015-03-03

    Apparatus for heating a sample includes a microchip; a microchannel flow channel in the microchip, the microchannel flow channel containing the sample; a microwave source that directs microwaves onto the sample for heating the sample; a wall section of the microchannel flow channel that receives the microwaves and enables the microwaves to pass through wall section of the microchannel flow channel, the wall section the microchannel flow channel being made of a material that is not appreciably heated by the microwaves; a carrier fluid within the microchannel flow channel for moving the sample in the microchannel flow channel, the carrier fluid being made of a material that is not appreciably heated by the microwaves; wherein the microwaves pass through wall section of the microchannel flow channel and heat the sample.

  18. Structure and microwave dielectric characteristics of lithium-excess Ca{sub 0.6}Nd{sub 0.8/3}TiO{sub 3}/(Li{sub 0.5}Nd{sub 0.5})TiO{sub 3} ceramics

    SciTech Connect (OSTI)

    Zhou, Changrong; Chen, Guohua; Cen, Zhenyong; Yuan, Changlai; Yang, Yun; Li, Weizhou

    2013-11-15

    Graphical abstract: - Highlights: Dense ceramics were fabricated by the conventional solid-state route. Excess-Li addition lowers sintering temperature. Excess-Li addition improves the relative density and microwave dielectric properties. - Abstract: Compositions based on (1?x)Ca{sub 0.6}Nd{sub 8/3}TiO{sub 3}?x(Li{sub 1/2}Nd{sub 1/2})TiO{sub 3} + yLi (CNLNTx + yLi, x = 0.300.60, y = 00.05), suitable for microwave applications have been developed by systematically adding excess lithium in order to tune the microwave dielectric properties and lower sintering temperature. Addition of 0.03 excess-Li simultaneously reduced the sintering temperature and improved the relative density of sintered CNLNTx ceramics. The excess Li addition can compensate the evaporation of Li during sintering process and decrease the secondary phase content. The CNLNTx (x = 0.45) ceramics with 0.03 Li excess sintered at 1190 C have single phase orthorhombic perovskite structure, together with the optimum combination of microwave dielectric properties of ?{sub r} = 129, Q f = 3600 GHz, ?{sub f} = 38 ppm/C. Obviously, excess-Li addition can efficiently decrease the sintering temperature and improve the microwave dielectric properties. The high permittivity and relatively low sintering temperatures of lithium-excess Ca{sub 0.6}Nd{sub 0.8/3}TiO{sub 3}/(Li{sub 0.5}Nd{sub 0.5})TiO{sub 3} ceramics are ideal for the development of low cost ultra-small dielectric loaded antenna.

  19. The development of a one microsecond pulse length, repetitively pulsed, high power modulator and a long-pulse electron beam diode for the production of intense microwaves

    SciTech Connect (OSTI)

    Stringfield, R.M.; Faehl, R.J.; Fazio, M.V.; Hoeberling, R.F.; Kwan, T.J.T.; Rickel, D.G.; VanHaaften, F.; Wasierski, R.F.; Erickson, A.; Rust, K.

    1992-07-01

    This paper discusses the pulse power and explosive emission electron beam diode development effort we have undertaken to power a relativistic klystron amplifier (RKA) microwave source. The pulsed power and electron beam must enable the RKA to Produce one kilojoule of 13 GHz radiation per pulse at a 5 Hz repetition frequency. These efforts include tests and improvements of a 1 {mu}s pulse length thyratron switched modulator, and the computational and experimental design of a 1-{mu}s-pulse-length explosive emission electron gun. The one microsecond pulse length is almost an order of magnitude beyond what has been achieved heretofore with an RKA. Achieving a peak power approaching 1 GW for 1 {mu}s requires a well behaved electron beam on that time scale. An electron beam diode has been developed that delivers a peak current of 4 to 5 kA for a pulse duration exceeding 1 {mu}s, at a beam kinetic energy above 600 keV. BANSHEE is the high voltage modulator designed for use as an electron beam driver for high power microwave tube development. The BANSHEE output pulse design parameters are 1 MV and 10 kA, with a 1 {mu}s pulse width at a repetition rate of 3--5 Hz, driving a load of impedance of 100 ohms. BANSHEE is a thyratron-switched line-type modular with a pulse transformer output stage. The modulator design is pushing the state of the art in thyratron technology and capacitor lifetime. The results of the BANSHEE modulator testing are described.

  20. Efficient Schottky-like junction GaAs nanowire photodetector with 9?GHz modulation bandwidth with large active area

    SciTech Connect (OSTI)

    Seyedi, M. A. Yao, M.; O'Brien, J.; Wang, S. Y.; Dapkus, P. D.

    2014-07-28

    Efficient, low capacitance density GaAs/Indium-Tin-Oxide Schottky-like junction photodetectors with a 50??m square active are fabricated for operation in the gigahertz range. Modulation bandwidth is experimentally measured up to 10?GHz at various applied reverse biases and optical intensities to explore the effects of photo-generated carrier screening on modulation bandwidth. Last, the bandwidth dependence on applied reverse bias and optical intensity is simulated as a means to quantify average carrier velocities in nanowire material systems.

  1. Kinetics of the carbon monoxide oxidation reaction under microwave heating

    SciTech Connect (OSTI)

    Perry, W.L.; Katz, J.D.; Rees, D.; Paffett, M.T. [Los Alamos National Lab., NM (United States); Datye, A. [Univ. of New Mexico, Albuquerque, NM (United States)

    1996-06-01

    915 MHz microwave heating has been used to drive the CO oxidation reaction over Pd/Al{sub 2}O{sub 3} with out significantly affecting the reaction kinetics. As compared to an identical conventionally heated system, the activation energy, pre-exponential factor, and reaction order with respect to CO were unchanged. Temperature was measured using a thermocouple extrapolation technique. Microwave-induced thermal gradients were found to play a significant role in kinetic observations. The authors chose the CO oxidation reaction over a supported metal catalyst because the reaction kinetics are well known, and because of the diverse dielectric properties of the various elements in the system: CO is a polar molecule, O{sub 2} and CO{sub 2} are non-polar, Al{sub 2}O{sub 3} is a dielectric, and Pt and Pd are conductors.

  2. Microwave measurement of the mass of frozen hydrogen pellets

    DOE Patents [OSTI]

    Talanker, Vera (Golden, CO); Greenwald, Martin (Belmont, MA)

    1990-01-01

    A nondestructive apparatus and method for measuring the mass of a moving object, based on the perturbation of the dielectric character of a resonant microwave cavity caused by the object passing through the cavity. An oscillator circuit is formed with a resonant cavity in a positive feedback loop of a microwave power amplifier. The moving object perturbs the resonant characteristics of the cavity causing a shift in the operating frequency of the oscillator proportional to the ratio of the pellet volume to the volume of the cavity. Signals from the cavity oscillation are mixed with a local oscillator. Then the IF frequency from the mixer is measured thereby providing a direct measurement of pellet mass based upon known physical properties and relationships. This apparatus and method is particularly adapted for the measurement of frozen hydrogen pellets.

  3. Dynamic characteristic of intense short microwave propagation in an atmosphere

    SciTech Connect (OSTI)

    Yee, J.H.; Alvarez, R.A.; Mayhall, D.J.; Madsen, N.K.; Cabayan, H.S.

    1983-07-01

    The dynamic behavior of an intense microwave pulse which propagates through the atmosphere will be presented. Our theoretical results are obtained by solving Maxwell's equations, together with the electron fluid equations. Our calculations show that although large portions of the initial energy are absorbed by the electrons that are created through the avalanche process, a significant amount of energy is still able to reach the earth's surface. The amount of energy that reaches the earth's surface as a function of initial energy and wave shape after having propagated through 100 km in the atmosphere are investigated. Results for the air breakdown threshold intensity as a function of the pressure for different pulse widths and different frequencies will also be presented. In addition, we will present a comparison between the theoretical and the experimental results for the pulse shape of a short microwave pulse after it has traveled through a rectangular wave guide which contains a section of air. 23 references, 9 figures.

  4. Critical operating parameters for microwave solidification of hydroxide sludge

    SciTech Connect (OSTI)

    Sprenger, G.S.; Eschen, V.G.

    1993-08-01

    Engineers at the Rocky Flats Plant (RFP) have developed an innovative technology for the treatment of homogeneous wet or dry solids which are contaminated with hazardous and/or radioactive materials. The process uses microwave energy to heat and melt the waste into a vitreous final form that is suitable for land disposal. The advantages include a high density, leach resistant, robust waste form; volume and toxicity reduction; favorable economics; in-container treatment; favorable public acceptance; isolated equipment; and instantaneous energy control. Regulatory certification of the final form is accomplished by meeting the limitation specified in EPA`s Toxicity Characteristic Leach Procedure (TCLP). This paper presents the results from a series of TCLP tests performed on a surrogate hydroxide coprecipitation sludge spiked with heavy metals at elevated concentrations. The results are very encouraging and support RFP`s commitment to the use of microwave technology for treatment of various mixed waste streams.

  5. Controlled synthesis of novel octapod platinum nanocrystals under microwave irradiation

    SciTech Connect (OSTI)

    Dai, Lei; Chi, Quan; Zhao, Yanxi; Liu, Hanfan; Zhou, Zhongqiang; Li, Jinlin; Huang, Tao

    2014-01-01

    Graphical abstract: Under microwave irradiation, novel octapod Pt nanocrystals were synthesized by reducing H{sub 2}PtCl{sub 6} in TEG with PVP as a stabilizer. The as-prepared Pt nanocrystals displayed a unique octapod nanostructure with five little mastoids in each concave center. The use of KI was crucial to the formation of novel Pt octapods. Novel Octapod Platinum Nanocrystals. - Highlights: A novel octapod Pt nanocrystals different from the common octapod were obtained. The use of KI was crucial to the formation of the novel Pt octapods. Microwave was readily employed in controlled synthesis of the novel Pt octapods. - Abstract: Microwave was employed in the shape-controlled synthesis of Pt nanoparticles. Novel octapod Pt nanocrystals enclosed with (1 1 1) facets were readily synthesized with H{sub 2}PtCl{sub 6} as a precursor, tetraethylene glycol (TEG) as both a solvent and a reducing agent, polyvinylpyrrolidone (PVP) as a stabilizer in the presence of an appropriate amount of KI under microwave irradiation for 140 s. The as-prepared Pt nanocrystals displayed a unique octapod nanostructure with five little mastoids in each concave center and exhibited higher electrocatalytic activity than commercial Pt black in the electro-oxidations of methanol and formic acid. The results demonstrated that the use of KI was crucial to the formation of Pt octapods. KI determined the formation of the novel octapod Pt nanocrystals by tuning up the reduction kinetics and adsorbing on the surfaces of growing Pt nanoparticles. The optimum molar ratio of H{sub 2}PtCl{sub 6}/KI/PVP was 1/30/45.

  6. Effect of microwave radiation on Jayadhar cotton fibers: WAXS studies

    SciTech Connect (OSTI)

    Niranjana, A. R. Mahesh, S. S. Divakara, S. Somashekar, R.

    2014-04-24

    Thermal effect in the form of micro wave energy on Jayadhar cotton fiber has been investigated. Microstructural parameters have been estimated using wide angle x-ray scattering (WAXS) data and line profile analysis program developed by us. Physical properties like tensile strength are correlated with X-ray results. We observe that the microwave radiation do affect significantly many parameters and we have suggested a multivariate analysis of these parameters to arrive at a significant result.

  7. Microwave plasma CVD of NANO structured tin/carbon composites

    DOE Patents [OSTI]

    Marcinek, Marek (Warszawa, PL); Kostecki, Robert (Lafayette, CA)

    2012-07-17

    A method for forming a graphitic tin-carbon composite at low temperatures is described. The method involves using microwave radiation to produce a neutral gas plasma in a reactor cell. At least one organo tin precursor material in the reactor cell forms a tin-carbon film on a supporting substrate disposed in the cell under influence of the plasma. The three dimensional carbon matrix material with embedded tin nanoparticles can be used as an electrode in lithium-ion batteries.

  8. Method for heat treating and sintering metal oxides with microwave radiation

    DOE Patents [OSTI]

    Holcombe, Cressie E. (Farragut, TN); Dykes, Norman L. (Oak Ridge, TN); Meek, Thomas T. (Knoxville, TN)

    1989-01-01

    A method for microwave sintering materials, primarily metal oxides, is described. Metal oxides do not normally absorb microwave radiation at temperatures ranging from about room temperature to several hundred degrees centrigrade are sintered with microwave radiation without the use of the heretofore required sintering aids. This sintering is achieved by enclosing a compact of the oxide material in a housing or capsule formed of a oxide which has microwave coupling properties at room temprature up to at least the microwave coupling temperature of the oxide material forming the compact. The heating of the housing effects the initial heating of the oxide material forming the compact by heat transference and then functions as a thermal insulator for the encased oxide material after the oxide material reaches a sufficient temperature to adequately absorb or couple with microwave radiation for heating thereof to sintering temperature.

  9. High power microwave generation from rotating e-layers in magnetron-type

    Office of Scientific and Technical Information (OSTI)

    conducting boundary systems (Journal Article) | SciTech Connect Journal Article: High power microwave generation from rotating e-layers in magnetron-type conducting boundary systems Citation Details In-Document Search Title: High power microwave generation from rotating e-layers in magnetron-type conducting boundary systems Studies of the production of microwave and millimeter wave radiation at high harmonics of the relativistic electron cyclotron frequency by the interaction of a rotating

  10. HIGH POWER TEST OF A 3.9 GHZ 5-CELL DEFLECTING-MODE CAVITY IN A CRYOGENIC OPERATION

    SciTech Connect (OSTI)

    Shin, Young-Min; Church, Michael

    2013-11-24

    A 3.9 GHz deflecting mode (S, TM110) cavity has been long used for six-dimensional phase-space beam manipulation tests [1-5] at the A0 Photo-Injector Lab (16 MeV) in Fermilab and their extended applications with vacuum cryomodules are currently planned at the Advanced Superconducting Test Accelerator (ASTA) user facility (> 50 MeV). Despite the successful test results, the cavity, however, demonstrated limited RF performance during liquid nitrogen (LN2) ambient operation that was inferior to theoretical prediction. We have been performing full analysis of the designed cavity by analytic calculation and comprehensive system simulation analysis to solve complex thermodynamics and mechanical stresses. The re-assembled cryomodule is currently under the test with a 50 kW klystron at the Fermilab A0 beamline, which will benchmark the modeling analysis. The test result will be used to design vacuum cryomodules for the 3.9 GHz deflecting mode cavity that will be employed at the ASTA facility for beam diagnostics and phase-space control.

  11. Production of large resonant plasma volumes in microwave electron cyclotron resonance ion sources

    DOE Patents [OSTI]

    Alton, Gerald D. (Kingston, TN)

    1998-01-01

    Microwave injection methods for enhancing the performance of existing electron cyclotron resonance (ECR) ion sources. The methods are based on the use of high-power diverse frequency microwaves, including variable-frequency, multiple-discrete-frequency, and broadband microwaves. The methods effect large resonant "volume" ECR regions in the ion sources. The creation of these large ECR plasma volumes permits coupling of more microwave power into the plasma, resulting in the heating of a much larger electron population to higher energies, the effect of which is to produce higher charge state distributions and much higher intensities within a particular charge state than possible in present ECR ion sources.

  12. Production of large resonant plasma volumes in microwave electron cyclotron resonance ion sources

    DOE Patents [OSTI]

    Alton, G.D.

    1998-11-24

    Microwave injection methods are disclosed for enhancing the performance of existing electron cyclotron resonance (ECR) ion sources. The methods are based on the use of high-power diverse frequency microwaves, including variable-frequency, multiple-discrete-frequency, and broadband microwaves. The methods effect large resonant ``volume`` ECR regions in the ion sources. The creation of these large ECR plasma volumes permits coupling of more microwave power into the plasma, resulting in the heating of a much larger electron population to higher energies, the effect of which is to produce higher charge state distributions and much higher intensities within a particular charge state than possible in present ECR ion sources. 5 figs.

  13. Geometry for web microwave heating or drying to a desired profile in a waveguide

    DOE Patents [OSTI]

    Habeger, Jr., Charles C.; Patterson, Timothy F.; Ahrens, Frederick W.

    2005-11-15

    A microwave heater and/or dryer has a nonlinear or curvilinear relative slot profile geometry. In one embodiment, the microwave dryer has at least one adjustable field modifier making it possible to change the geometry of the heater or dryer when drying different webs. In another embodiment, the microwave dryer provides more uniform drying of a web when the field modifier is adjusted in response to a sensed condition of the web. Finally, a method of microwave heating and/or drying a web achieves a uniform heating and/or drying profile.

  14. Microwave Regenerated DPF for Auxiliary Power Units and Diesel Hybrid Vehicles

    Broader source: Energy.gov [DOE]

    Microwave regeneration of the DPF can be done without diesel fuel or a catalyst in less than 5 minutes with the engine off.

  15. Microwave vs. Electric Kettle: Which Appliance Is in Hot Water in

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    #EnergyFaceoff Round 4? | Department of Energy Microwave vs. Electric Kettle: Which Appliance Is in Hot Water in #EnergyFaceoff Round 4? Microwave vs. Electric Kettle: Which Appliance Is in Hot Water in #EnergyFaceoff Round 4? November 24, 2014 - 9:38am Q&A Which appliance do you think is more efficient? Tell Us Addthis Microwave or electric kettle, which appliance should win the honor of heating your water? | Graphic by Stacy Buchanan, National Renewable Energy Laboratory Microwave or

  16. Linewidth of the harmonics in a microwave frequency comb generated by focusing a mode-locked ultrafast laser on a tunneling junction

    SciTech Connect (OSTI)

    Hagmann, Mark J.; Stenger, Frank S.; Yarotski, Dmitry A.

    2013-12-14

    Previous analyses suggest that microwave frequency combs (MFCs) with harmonics having extremely narrow linewidths could be produced by photodetection with a mode-locked ultrafast laser. In the MFC generated by focusing a passively mode-locked ultrafast laser on a tunneling junction, 200 harmonics from 74.254 MHz to 14.85 GHz have reproducible measured linewidths approximating the 1 Hz resolution bandwidth (RBW) of the spectrum analyzer. However, in new measurements at a RBW of 0.1 Hz, the linewidths are distributed from 0.12 to 1.17 Hz. Measurements and analysis suggest that, because the laser is not stabilized, the stochastic drift in the pulse repetition rate is the cause for the distribution in measured linewidths. It appears that there are three cases in which the RBW is (1) greater than, (2) less than, or (3) comparable with the intrinsic linewidth. The measured spectra in the third class are stochastic and may show two or more peaks at a single harmonic.

  17. Study of the recombination process at crystallite boundaries in CuIn{sub 1-x}Ga{sub x}Se{sub 2} (CIGS) films by microwave photoconductivity

    SciTech Connect (OSTI)

    Bocharov, K. V.; Novikov, G. F.; Hsieh, T. Y.; Gapanovich, M. V.; Jeng, M. J.

    2013-03-15

    The loss kinetics of photogenerated charge carriers in thin polycrystalline chalcopyrite CuIn{sub 1-x}Ga{sub x}Se{sub 2} (CIGS) films has been studied by microwave photoconductivity (at 36 GHz). The films were synthesized using the ampoule method and three variants of physical vapor deposition with subsequent selenization: magnetron sputtering, thermal deposition, and modified thermal deposition with intermetallic precursors. The photoconductivity was excited by 8-ns nitrogen laser pulses with maximum intensity of 4 Multiplication-Sign 10{sup 14} photons/cm per pulse. Measurements were performed in the temperature range 148-293 K. The photoresponse amplitude is found to depend linearly on the sizes of coherent-scattering regions in the film grains, which were calculated from X-ray diffraction data. The photoresponse decay obeys hyperbolic law. The photoresponse half-decay time increases with a decrease in both temperature and light intensity. It is shown that the recombination of free holes with trapped electrons is very efficient near the crystallite boundaries.

  18. Large-amplitude, narrow-linewidth microwave emission in a dual free-layer MgO spin-torque oscillator

    SciTech Connect (OSTI)

    Nagasawa, Tazumi Kudo, Kiwamu; Suto, Hirofumi; Mizushima, Koichi; Sato, Rie

    2014-11-03

    Synchronized magnetization motion among the several magnetic layers composing a spin-torque oscillator (STO) is considered an effective way to improve spectral purity. To utilize this scheme in a MgO-based STO, we have fabricated a dual free-layer STO composed of a CoFeB free layer (FL), a MgO barrier layer, and a CoFe/Ru/CoFeB synthetic ferrimagnet free layer (SyF). Unlike conventional MgO-based STOs, this structure does not have an antiferromagnetic layer that pins the SyF, leading to a large-amplitude oscillation of magnetization in the SyF. The dual free-layer STO exhibits coherent microwave emissions with power spectrum density beyond 800 nW/GHz and narrow spectral linewidth below 5 MHz (Q-factor ≈ 2000). Macrospin simulations confirm that the stable oscillations originate from the synchronized magnetization motion of the FL and the SyF through dynamical dipolar coupling.

  19. ARM - Field Campaign - SGP99 IOP

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govCampaignsSGP99 IOP Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Campaign : SGP99 IOP 1999.07.07 - 1999.07.22 Lead Scientist : Richard Cederwall Summary The Southern Great Plains 1997 Hydrology Experiment (SGP97) successfully demonstrated the ability to map and monitor soil moisture using low frequency microwave radiometers (L band, 1.4 GHz). Soil moisture retrieval algorithms developed using higher resolution data were proven to be

  20. Combination biological and microwave treatments of used rubber products

    DOE Patents [OSTI]

    Fliermans, Carl B. (Augusta, GA); Wicks, George G. (Aiken, SC)

    2002-01-01

    A process and resulting product is provided in which a vulcanized solid particulate, such as vulcanized crumb rubber, has select chemical bonds altered by biotreatment with thermophillic microorganisms selected from natural isolates from hot sulfur springs. Following the biotreatment, microwave radiation is used to further treat the surface and to treat the bulk interior of the crumb rubber. The resulting combined treatments render the treated crumb rubber more suitable for use in new rubber formulations. As a result, larger loading levels and sizes of the treated crumb rubber can be used in new rubber mixtures and good properties obtained from the new recycled products.

  1. Wide band cryogenic ultra-high vacuum microwave absorber

    DOE Patents [OSTI]

    Campisi, I.E.

    1992-05-12

    An absorber waveguide assembly for absorbing higher order modes of microwave energy under cryogenic ultra-high vacuum conditions, that absorbs wide-band multi-mode energy. The absorber is of a special triangular shape, made from flat tiles of silicon carbide and aluminum nitride. The leading sharp end of the absorber is located in a corner of the waveguide and tapers to a larger cross-sectional area whose center is located approximately in the center of the wave guide. The absorber is relatively short, being of less height than the maximum width of the waveguide. 11 figs.

  2. Microwave diagnostics of femtosecond laser-generated plasma filaments

    SciTech Connect (OSTI)

    Papeer, J.; Ehrlich, Y.; Zigler, A.; Mitchell, C.; Penano, J.; Sprangle, P.

    2011-10-03

    We present a simple non-intrusive experimental method allowing a complete single shot temporal measurement of laser produced plasma filament conductivity. The method is based on filament interaction with low intensity microwave radiation in a rectangular waveguide. The suggested diagnostics allow a complete single shot temporal analysis of filament plasma decay with resolution better than 0.3 ns and high spatial resolution along the filament. The experimental results are compared to numerical simulations, and an initial electron density of 7 x 10{sup 16 }cm{sup -3} and decay time of 3 ns are obtained.

  3. Microwave lamp with multi-purpose rotary motor

    DOE Patents [OSTI]

    Ury, M.G.; Turner, B.; Wooten, R.D.

    1999-02-02

    In a microwave powered electrodeless lamp, a single rotary motor is used to (a) rotate the bulb and (b) provide rotary motion to a blower or pump means for providing cooling fluid to the magnetron and/or to a forced gas cooler for providing cooling gas to the bulb. The blower may consist of only of an impeller without the usual blower housing. The motor, bulb stem and bulb, or motor, bulb stem, bulb and blower may be formed as an integral unit so as to facilitate replacement. 8 figs.

  4. Microwave lamp with multi-purpose rotary motor

    DOE Patents [OSTI]

    Ury, Michael G.; Turner, Brian; Wooten, Robert D.

    1999-01-01

    In a microwave powered electrodeless lamp, a single rotary motor is used to a) rotate the bulb and b) provide rotary motion to a blower or pump means for providing cooling fluid to the magnetron and/or to a forced gas cooling for providing cooler gas to the bulb. The blower may consist of only of an impeller without the usual blower housing. The motor, bulb stem and bulb, or motor, bulb stem, bulb and blower may be formed as an integral unit so as to facilitate replacement.

  5. Microwave sintering of nanophase ceramics without concomitant grain growth

    DOE Patents [OSTI]

    Eastman, Jeffrey A. (Woodbridge, IL); Sickafus, Kurt E. (Santa Cruz, NM); Katz, Joel D. (Los Alamos, NM)

    1993-01-01

    A method of sintering nanocrystalline material is disclosed wherein the nanocrystalline material is microwaved to heat the material to a temperature less than about 70% of the melting point of the nanocrystalline material expressed in degrees K. This method produces sintered nanocrystalline material having a density greater than about 95% of theoretical and an average grain size not more than about 3 times the average grain size of the nanocrystalline material before sintering. Rutile TiO.sub.2 as well as various other ceramics have been prepared. Grain growth of as little as 1.67 times has resulted with densities of about 90% of theoretical.

  6. Wide band cryogenic ultra-high vacuum microwave absorber

    DOE Patents [OSTI]

    Campisi, Isidoro E. (Newport News, VA)

    1992-01-01

    An absorber wave guide assembly for absorbing higher order modes of microwave energy under cryogenic ultra-high vacuum conditions, that absorbs wide-band multi-mode energy. The absorber is of a special triangular shape, made from flat tiles of silicon carbide and aluminum nitride. The leading sharp end of the absorber is located in a corner of the wave guide and tapers to a larger cross-sectional area whose center is located approximately in the center of the wave guide. The absorber is relatively short, being of less height than the maximum width of the wave guide.

  7. Method and apparatus for measuring butterfat and protein content using microwave absorption techniques

    DOE Patents [OSTI]

    Fryer, Michael O.; Hills, Andrea J.; Morrison, John L.

    2000-01-01

    A self calibrating method and apparatus for measuring butterfat and protein content based on measuring the microwave absorption of a sample of milk at several microwave frequencies. A microwave energy source injects microwave energy into the resonant cavity for absorption and reflection by the sample undergoing evaluation. A sample tube is centrally located in the resonant cavity passing therethrough and exposing the sample to the microwave energy. A portion of the energy is absorbed by the sample while another portion of the microwave energy is reflected back to an evaluation device such as a network analyzer. The frequency at which the reflected radiation is at a minimum within the cavity is combined with the scatter coefficient S.sub.11 as well as a phase change to calculate the butterfat content in the sample. The protein located within the sample may also be calculated in a likewise manner using the frequency, S.sub.11 and phase variables. A differential technique using a second resonant cavity containing a reference standard as a sample will normalize the measurements from the unknown sample and thus be self-calibrating. A shuttered mechanism will switch the microwave excitation between the unknown and the reference cavities. An integrated apparatus for measuring the butterfat content in milk using microwave absorption techniques is also presented.

  8. Microwave applicator for in-drum processing of radioactive waste slurry

    DOE Patents [OSTI]

    White, Terry L. (Oak Ridge, TN)

    1994-01-01

    A microwave applicator for processing of radioactive waste slurry uses a waveguide network which splits an input microwave of TE.sub.10 rectangular mode to TE.sub.01 circular mode. A cylindrical body has four openings, each receiving 1/4 of the power input. The waveguide network includes a plurality of splitters to effect the 1/4 divisions of power.

  9. Design of a superconducting 28 GHz ion source magnet for FRIB using a shell-based support structure

    SciTech Connect (OSTI)

    Felice, H. [Lawrence Berkeley National Lab., CA (United States); Rochepault, E. [Lawrence Berkeley National Lab., CA (United States); Hafalia, R. [Lawrence Berkeley National Lab., CA (United States); Caspi, S. [Lawrence Berkeley National Lab., CA (United States); Dietderich, D. R. [Lawrence Berkeley National Lab., CA (United States); Prestemon, S. O. [Lawrence Berkeley National Lab., CA (United States); Machicoane, G. [Michigan State Univ., East Lansing, MI (United States). Facility for Rare Isotope Beams.; Pozdeyev, E. [Michigan State Univ., East Lansing, MI (United States). Facility for Rare Isotope Beams.; Bultman, N. [Michigan State Univ., East Lansing, MI (United States). Facility for Rare Isotope Beams.; Rao, X. [Michigan State Univ., East Lansing, MI (United States). Facility for Rare Isotope Beams.

    2014-12-05

    The Superconducting Magnet Program at the Lawrence Berkeley National Laboratory (LBNL) is completing the design of a 28 GHz NbTi ion source magnet for the Facility for Rare Isotope Beams (FRIB). The design parameters are based on the parameters of the ECR ion source VENUS in operation at LBNL since 2002 featuring a sextupole-in-solenoids configuration. Whereas most of the magnet components (such as conductor, magnetic design, protection scheme) remain very similar to the VENUS magnet components, the support structure of the FRIB ion source uses a different concept. A shell-based support structure using bladders and keys is implemented in the design allowing fine tuning of the sextupole preload and reversibility of the magnet assembly process. As part of the design work, conductor insulation scheme, coil fabrication processes and assembly procedures are also explored to optimize performance. We present the main features of the design emphasizing the integrated design approach used at LBNL to achieve this result.

  10. Passive Active Multi-Junction 3, 7 GHZ launcher for Tore-Supra Long Pulse Experiments. Manufacturing Process and Tests

    SciTech Connect (OSTI)

    Guilhem, D.; Achard, J.; Bertrand, B.; Bej, Z.; Bibet, Ph.; Brun, C.; Chantant, M.; Delmas, E.; Delpech, L.; Doceul, Y.; Ekedahl, A.; Goletto, C.; Goniche, M.; Hatchressian, J. C.; Hillairet, J.; Houry, M.; Joubert, P.; Lipa, M.; Madeleine, S.; Martinez, A.

    2009-11-26

    The design and the fabrication of a new Lower Hybrid (LH) actively cooled antenna based on the passive active concept is a part of the CIMES project (Components for the Injection of Mater and Energy in Steady-state). The major objectives of Tore-Supra program is to achieve 1000 s pulses with this LH launcher, by coupling routinely >3 MW of LH wave at 3.7 GHz to the plasma with a parallel index n{sub ||} = 1.7 {sup {+-}}{sup 0.2}. The launcher is on its way to achieve its validation tests--low power Radio Frequency (RF) measurements, vacuum and hydraulic leak tests--and will be installed and commissioned on plasma during the fall of 2009.

  11. Method of nitriding, carburizing, or oxidizing refractory metal articles using microwaves

    DOE Patents [OSTI]

    Holcombe, Cressie E. (Knoxville, TN); Dykes, Norman L. (Oak Ridge, TN); Tiegs, Terry N. (Lenoir City, TN)

    1992-01-01

    A method of nitriding an article of refractory-nitride-forming metal or metalloids. A consolidated metal or metalloid article is placed inside a microwave oven and nitrogen containing gas is introduced into the microwave oven. The metal or metalloid article is heated to a temperature sufficient to react the metal or metalloid with the nitrogen by applying a microwave energy within the microwave oven. The metal or metalloid article is maintained at that temperature for a period of time sufficient to convert the article of metal or metalloid to an article of refractory nitride. in addition, a method of applying a coating, such as a coating of an oxide, a carbide, or a carbo-nitride, to an article of metal or metalloid by microwave heating.

  12. Method of nitriding, carburizing, or oxidizing refractory metal articles using microwaves

    DOE Patents [OSTI]

    Holcombe, C.E.; Dykes, N.L.; Tiegs, T.N.

    1992-10-13

    A method of nitriding an article of refractory-nitride-forming metal or metalloids. A consolidated metal or metalloid article is placed inside a microwave oven and nitrogen containing gas is introduced into the microwave oven. The metal or metalloid article is heated to a temperature sufficient to react the metal or metalloid with the nitrogen by applying a microwave energy within the microwave oven. The metal or metalloid article is maintained at that temperature for a period of time sufficient to convert the article of metal or metalloid to an article of refractory nitride. in addition, a method of applying a coating, such as a coating of an oxide, a carbide, or a carbo-nitride, to an article of metal or metalloid by microwave heating.

  13. Pyrolysis of Municipal Solid Waste for Syngas Production by Microwave Irradiation

    SciTech Connect (OSTI)

    Gedam, Vidyadhar V.; Regupathi, Iyyaswami

    2012-03-15

    In the present study, we discuss the application of microwave-irradiated pyrolysis of municipal solid waste (MSW) for total recovery of useful gases and energy. The MSW pyrolysis under microwave irradiation highly depends on the process parameters, like microwave power, microwave absorbers, and time of irradiation. The thoroughness of pyrolysis and product recovery were studied by changing the abovesaid variables. Pyrolysis of MSW occurs in the power rating range of 450-850 W-outside this power rating range, pyrolysis is not possible. Experiments were carried out using various microwave absorbers (i.e., graphite, charcoal, and iron) to enhance the pyrolysis even at lower power rating. The results show that the pyrolysis of MSW was possible even at low power ratings. The major composition of the pyrolysis gaseous product were analyzed with GC-MS which includes CO{sub 2}, CO, CH{sub 4}, etc.

  14. Microwave-assisted synthesis of palladium nanocubes and nanobars

    SciTech Connect (OSTI)

    Yu, Yanchun; Zhao, Yanxi; Huang, Tao; Liu, Hanfan; Institute of Chemistry, Chinese Academy of Science, Beijing 100080

    2010-02-15

    Microwave was employed in the shape-controlled synthesis of palladium nanoparticles. Palladium nanocubes and nanobars with a mean size of about 23.8 nm were readily synthesized with H{sub 2}PdCl{sub 4} as a precursor, tetraethylene glycol (TEG) as both a solvent and a reducing agent in the presence of PVP and CTAB in 80 s under microwave irradiation. The structures of the as-prepared palladium nanoparticles were characterized by transmission electron microscopy (TEM), X-ray powder diffraction (XRD) and ultraviolet-visible (UV-vis) absorption spectroscopy. The formation of PdBr{sub 4}{sup 2-}due to the coordination replacement of the ligand Cl{sup -} ions in PdCl{sub 4}{sup 2-} ions by Br{sup -} ions in the presence of bromide was responsible for the synthesis of Pd nanocubes and nanobars. In addition, a milder reducing power, a higher viscosity and a stronger affinity of TEG were beneficial to the larger sizes of Pd nanocubes and nanobars.

  15. Using Radar, Lidar and Radiometer Data from NSA and SHEBA to Quantify Cloud Property Effects on the Surface Heat Budget in the Arctic

    SciTech Connect (OSTI)

    Janet Intrieri; Mathhew Shupe

    2005-01-01

    Cloud and radiation data from two distinctly different Arctic areas are analyzed to study the differences between coastal Alaskan and open Arctic Ocean region clouds and their respective influence on the surface radiation budget. The cloud and radiation datasets were obtained from (1) the DOE North Slope of Alaska (NSA) facility in the coastal town of Barrow, Alaska, and (2) the SHEBA field program, which was conducted from an icebreaker frozen in, and drifting with, the sea-ice for one year in the Western Arctic Ocean. Radar, lidar, radiometer, and sounding measurements from both locations were used to produce annual cycles of cloud occurrence and height, atmospheric temperature and humidity, surface longwave and shortwave broadband fluxes, surface albedo, and cloud radiative forcing. In general, both regions revealed a similar annual trend of cloud occurrence fraction with minimum values in winter (60-75%) and maximum values during spring, summer and fall (80-90%). However, the annual average cloud occurrence fraction for SHEBA (76%) was lower than the 6-year average cloud occurrence at NSA (92%). Both Arctic areas also showed similar annual cycle trends of cloud forcing with clouds warming the surface through most of the year and a period of surface cooling during the summer, when cloud shading effects overwhelm cloud greenhouse effects. The greatest difference between the two regions was observed in the magnitude of the cloud cooling effect (i.e., shortwave cloud forcing), which was significantly stronger at NSA and lasted for a longer period of time than at SHEBA. This is predominantly due to the longer and stronger melt season at NSA (i.e., albedo values that are much lower coupled with Sun angles that are somewhat higher) than the melt season observed over the ice pack at SHEBA. Longwave cloud forcing values were comparable between the two sites indicating a general similarity in cloudiness and atmospheric temperature and humidity structure between the two regions.

  16. ISSUANCE 2016-02-09: Energy Conservation Program: Energy Conservation Standards for Standby Mode and Off Mode for Microwave Ovens; Correction

    Broader source: Energy.gov [DOE]

    Energy Conservation Program: Energy Conservation Standards for Standby Mode and Off Mode for Microwave Ovens; Correction

  17. austin-99.PDF

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    depths retrieved from the Multifilter Rotating Shadowband Radiometer (MFRSR) (Min and Harrison 1996). This algorithm is being developed in anticipation of the 94-GHz radar and...

  18. Electric field measurement in microwave discharge ion thruster with electro-optic probe

    SciTech Connect (OSTI)

    Ise, Toshiyuki; Tsukizaki, Ryudo; Koizumi, Hiroyuki; Togo, Hiroyoshi; Kuninaka, Hitoshi

    2012-12-15

    In order to understand the internal phenomena in a microwave discharge ion thruster, it is important to measure the distribution of the microwave electric field inside the discharge chamber, which is directly related to the plasma production. In this study, we proposed a novel method of measuring a microwave electric field with an electro-optic (EO) probe based on the Pockels effect. The probe, including a cooling system, contains no metal and can be accessed in the discharge chamber with less disruption to the microwave distribution. This method enables measurement of the electric field profile under ion beam acceleration. We first verified the measurement with the EO probe by a comparison with a finite-difference time domain numerical simulation of the microwave electric field in atmosphere. Second, we showed that the deviations of the reflected microwave power and the beam current were less than 8% due to inserting the EO probe into the ion thruster under ion beam acceleration. Finally, we successfully demonstrated the measurement of the electric-field profile in the ion thruster under ion beam acceleration. These measurements show that the electric field distribution in the thruster dramatically changes in the ion thruster under ion beam acceleration as the propellant mass flow rate increases. These results indicate that this new method using an EO probe can provide a useful guide for improving the propulsion of microwave discharge ion thrusters.

  19. A measurement of the cosmic microwave background damping tail from the

    Office of Scientific and Technical Information (OSTI)

    2500-square-degree SPT-SZ survey (Journal Article) | SciTech Connect A measurement of the cosmic microwave background damping tail from the 2500-square-degree SPT-SZ survey Citation Details In-Document Search Title: A measurement of the cosmic microwave background damping tail from the 2500-square-degree SPT-SZ survey We present a measurement of the cosmic microwave background (CMB) temperature power spectrum using data from the recently completed South Pole Telescope Sunyaev-Zel'dovich

  20. Diagnosis of femtosecond plasma filament by channeling microwaves along the filament

    SciTech Connect (OSTI)

    Alshershby, Mostafa; Ren, Yu; Qin, Jiang; Hao, Zuoqiang; Lin, Jingquan

    2013-05-20

    We introduce a simple, fast, and non-intrusive experimental method to obtain the basic parameters of femtosecond laser-generated plasma filament. The method is based on the channeling of microwaves along both a plasma filament and a well-defined conducting wire. By comparing the detected microwaves that propagate along the plasma filament and a copper wire with known conductivity and spatial dimension, the basic parameters of the plasma filament can be easily obtained. As a result of the possibility of channeling microwave radiation along the plasma filament, we were then able to obtain the plasma density distribution along the filament length.

  1. Microwave (MW) and Radio Frequency (RF) as Enabling Technologies for Advanced Manufacturing

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Workshop: Microwave (MW) and Radio Frequency (RF) as Enabling Technologies for Advanced Manufacturing Workshop Date: July 25, 2012, 2:00 - 5:30 PM Venue: The 2 nd World Congress on Microwave Energy Applications July 23-27, 2012, Hilton Long Beach, Long Beach, CA http://www.mrs.org/2gcmea-2012/ PURPOSE The purpose of this workshop is to provide input that can help DOE strategically assess the potential for electrotechnologies such as microwave (MW) and radio frequency (RF) energy to impact

  2. [A variable frequency microwave furnace]. CRADA final report for CRADA Number ORNL91-0055

    SciTech Connect (OSTI)

    Lauf, R.J.

    1994-12-08

    The goals of this CRADA were to: (1) development and demonstrate a highly frequency-agile microwave furnace; (2) explore applications of the furnace for materials processing; and (3) develop control systems and packaging that are robust, user-friendly, and suitable for sale as a turnkey system. Microwave Laboratories, Inc. (MLI) designed, built, and successfully brought to market a benchtop Variable Frequency Microwave Furnace (VFMF). The concept has demonstrated advantages in polymer curing, waste remediation, and diamond (CVD). Through experimentation and modeling, the VFMF approach has gained credibility within the technical community.

  3. Development of horn antenna mixer array with internal local oscillator module for microwave imaging diagnostics

    SciTech Connect (OSTI)

    Kuwahara, D.; Ito, N.; Nagayama, Y.; Yoshinaga, T.; Yamaguchi, S.; Yoshikawa, M.; Kohagura, J.; Sugito, S.; Kogi, Y.; Mase, A.

    2014-11-15

    A new antenna array is proposed in order to improve the sensitivity and complexity of microwave imaging diagnostics systems such as a microwave imaging reflectometry, a microwave imaging interferometer, and an electron cyclotron emission imaging. The antenna array consists of five elements: a horn antenna, a waveguide-to-microstrip line transition, a mixer, a local oscillation (LO) module, and an intermediate frequency amplifier. By using an LO module, the LO optics can be removed, and the supplied LO power to each element can be equalized. We report details of the antenna array and characteristics of a prototype antenna array.

  4. EERE Success Story-Energy Efficiency Standards for Microwave Ovens Saves

    Office of Environmental Management (EM)

    Consumers Energy and Updates the Social Cost of Carbon | Department of Energy Efficiency Standards for Microwave Ovens Saves Consumers Energy and Updates the Social Cost of Carbon EERE Success Story-Energy Efficiency Standards for Microwave Ovens Saves Consumers Energy and Updates the Social Cost of Carbon August 21, 2013 - 9:18am Addthis A typical microwave is used to heat food for about 70 hours each year, but continues to use electricity for the remaining 8,690 hours of the year to power

  5. Microwave impregnation of porous materials with thermal energy storage materials

    DOE Patents [OSTI]

    Benson, David K. (Golden, CO); Burrows, Richard W. (Conifer, CO)

    1993-01-01

    A method for impregnating a porous, non-metallic construction material with a solid phase-change material is described. The phase-change material in finely divided form is spread onto the surface of the porous material, after which the porous material is exposed to microwave energy for a time sufficient to melt the phase-change material. The melted material is spontaneously absorbed into the pores of the porous material. A sealing chemical may also be included with the phase-change material (or applied subsequent to the phase-change material) to seal the surface of the porous material. Fire retardant chemicals may also be included with the phase-change materials. The treated construction materials are better able to absorb thermal energy and exhibit increased heat storage capacity.

  6. Microwave impregnation of porous materials with thermal energy storage materials

    DOE Patents [OSTI]

    Benson, D.K.; Burrows, R.W.

    1993-04-13

    A method for impregnating a porous, non-metallic construction material with a solid phase-change material is described. The phase-change material in finely divided form is spread onto the surface of the porous material, after which the porous material is exposed to microwave energy for a time sufficient to melt the phase-change material. The melted material is spontaneously absorbed into the pores of the porous material. A sealing chemical may also be included with the phase-change material (or applied subsequent to the phase-change material) to seal the surface of the porous material. Fire retardant chemicals may also be included with the phase-change materials. The treated construction materials are better able to absorb thermal energy and exhibit increased heat storage capacity.

  7. Microwave impregnation of porous materials with thermal energy storage materials

    SciTech Connect (OSTI)

    Benson, D.K.; Burrows, R.W.

    1992-12-31

    A method for impregnating a porous, non-metallic construction material with a solid phase-change material is described. The phase-change material in finely divided form is spread onto the surface of the porous material, after which the porous material is exposed to microwave energy for a time sufficient to melt the phase-change material. The melted material is spontaneously absorbed into the pores of the porous material. A sealing chemical may also be included with the phase-change material (or applied subsequent to the phase-change material) to seal the surface of the porous material. Fire retardant chemicals may also be included with the phase-change materials. The treated construction materials are better able to absorb thermal energy and exhibit increased heat storage capacity.

  8. The complete, temperature resolved experimental spectrum of methanol (CH{sub 3}OH) between 560 and 654 GHz

    SciTech Connect (OSTI)

    Fortman, Sarah M.; Neese, Christopher F.; De Lucia, Frank C.

    2014-02-20

    The complete spectrum of methanol (CH{sub 3}OH) has been characterized over a range of astrophysically significant temperatures in the 560.4-654.0 GHz spectral region. Absolute intensity calibration and analysis of 166 experimental spectra recorded over a slow 248-398 K temperature ramp provide a means for the simulation of the complete spectrum of methanol as a function of temperature. These results include contributions from v{sub t} = 3 and other higher states that are difficult to model via quantum mechanical (QM) techniques. They also contain contributions from the {sup 13}C isotopologue in terrestrial abundance. In contrast to our earlier work on semi-rigid species, such as ethyl cyanide and vinyl cyanide, significant intensity differences between these experimental values and those calculated by QM methods were found for many of the lines. Analysis of these differences shows the difficulty of the calculation of dipole matrix elements in the context of the internal rotation of the methanol molecule. These results are used to both provide catalogs in the usual line frequency, linestrength, and lower state energy format, as well as in a frequency point-by-point catalog that is particularly well suited for the characterization of blended lines.

  9. Limb-brightened jet of 3C 84 revealed by the 43 GHz very-long-baseline-array observation

    SciTech Connect (OSTI)

    Nagai, H.; Hada, K.; Haga, T.; Giovannini, G.; Orienti, M.; D'Ammando, F.; Giroletti, M.; Doi, A.; Kino, M.; Nakamura, M.; Asada, K.

    2014-04-10

    We present a study of the sub-parsec scale radio structure of the radio galaxy 3C 84/NGC 1275 based on the Very Long Baseline Array data at 43 GHz. We discover a limb brightening in the 'restarted' jet that is associated with the 2005 radio outburst. In the 1990s, the jet structure was ridge brightening rather than limb brightening, despite the observations being done with similar angular resolutions. This indicates that the transverse jet structure has recently changed. This change in the morphology reveals an interesting agreement with the ?-ray flux increase, i.e., the ?-ray flux in the 1990s was at least seven times lower than the current one. One plausible explanation for the limb brightening is that the velocity structure of the jet is in the context of the stratified jet, which is a successful scenario that explains the ?-ray emission in some active galactic nuclei. If this is the case, then the change in apparent transverse structure might be caused by the change in the transverse velocity structure. We argue that the transition from ridge brightening to limb brightening is related to the ?-ray time variability on the timescale of decades. We also discuss the collimation profile of the jet.

  10. Design of a superconducting 28 GHz ion source magnet for FRIB using a shell-based support structure

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Felice, H.; Rochepault, E.; Hafalia, R.; Caspi, S.; Dietderich, D. R.; Prestemon, S. O.; Machicoane, G.; Pozdeyev, E.; Bultman, N.; Rao, X.

    2014-12-05

    The Superconducting Magnet Program at the Lawrence Berkeley National Laboratory (LBNL) is completing the design of a 28 GHz NbTi ion source magnet for the Facility for Rare Isotope Beams (FRIB). The design parameters are based on the parameters of the ECR ion source VENUS in operation at LBNL since 2002 featuring a sextupole-in-solenoids configuration. Whereas most of the magnet components (such as conductor, magnetic design, protection scheme) remain very similar to the VENUS magnet components, the support structure of the FRIB ion source uses a different concept. A shell-based support structure using bladders and keys is implemented in themore » design allowing fine tuning of the sextupole preload and reversibility of the magnet assembly process. As part of the design work, conductor insulation scheme, coil fabrication processes and assembly procedures are also explored to optimize performance. We present the main features of the design emphasizing the integrated design approach used at LBNL to achieve this result.« less

  11. Sep08.doc

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    measurements, three scanning, compact microwave radiometers were deployed, each 10 kilometers (6.2 miles) apart, to form a triangle. One of the radiometers was based at the SGP...

  12. Section 47

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Technology Laboratory (ETL) operated two Doppler radars (K - and X-band), a narrow-band IR a radiometer (10-11.4m), and a three-channel microwave radiometer. These instruments...

  13. Microwave determination of location and speed of an object inside a pipe

    DOE Patents [OSTI]

    Sinha, Dipen N. (Los Alamos, NM)

    2010-12-14

    Apparatus and method are described for measuring the location and speed of an object, such as instrumentation on a movable platform, disposed within a pipe, using continuous-wave, amplitude-modulated microwave radiation.

  14. Microwave and Beam Activation of Nanostructured Catalysts for Environmentally Friendly, Energy Efficient Heavy Crude Oil Processing

    SciTech Connect (OSTI)

    2009-03-01

    This factsheet describes a study whose goal is initial evaluation and development of energy efficient processes which take advantage of the benefits offered by nanostructured catalysts which can be activated by microwave, RF, or radiation beams.

  15. Coupled microwave ECR and radio-frequency plasma source for plasma processing

    DOE Patents [OSTI]

    Tsai, C.C.; Haselton, H.H.

    1994-03-08

    In a dual plasma device, the first plasma is a microwave discharge having its own means of plasma initiation and control. The microwave discharge operates at electron cyclotron resonance (ECR), and generates a uniform plasma over a large area of about 1000 cm[sup 2] at low pressures below 0.1 mtorr. The ECR microwave plasma initiates the second plasma, a radio frequency (RF) plasma maintained between parallel plates. The ECR microwave plasma acts as a source of charged particles, supplying copious amounts of a desired charged excited species in uniform manner to the RF plasma. The parallel plate portion of the apparatus includes a magnetic filter with static magnetic field structure that aids the formation of ECR zones in the two plasma regions, and also assists in the RF plasma also operating at electron cyclotron resonance. 4 figures.

  16. Microwave assisted growth of copper germanide thin films at very low temperatures

    SciTech Connect (OSTI)

    Das, Sayantan; Alford, T. L.

    2013-08-26

    Herein the synthesis of Cu{sub 3}Ge films by exposing Cu-Ge alloy films to microwave radiation is reported. It is shown that microwave radiation led to the formation of copper germanide at temperatures ca. 80 C. The electrical properties of the Cu{sub 3}Ge films are presented and compared for various annealing times. X-ray diffraction shows that the Cu{sub 3}Ge films formed after microwave annealing is crystalline in the orthorhombic phase. Rutherford backscattering and X-ray photoelectron spectroscopy confirms the formation of copper oxide encapsulation layer. Despite the slight oxidation of Cu during the microwave anneal the lowest resistivity of Cu{sub 3}Ge films obtained is 14 ??-cm.

  17. Novel Direct Steelmaking by Combining Microwave, Electric Arc, and Exothermal Heating Technologies

    Broader source: Energy.gov [DOE]

    This factsheet describes a project to develop direct steelmaking through the combination of microwave, electric arc, and exothermal heating, a process which is meant to eliminate traditional, intermediate steelmaking steps.

  18. New Energy Efficiency Standards for Microwave Ovens to Save Consumers on Energy Bills

    Broader source: Energy.gov [DOE]

    U.S. Energy Secretary Ernest Moniz announced today that the Energy Department has finalized new energy efficiency standards for microwave ovens that will save consumers nearly $3 billion on their energy bills through 2030.

  19. EXPERIMENTAL RESULTS FROM A MICROWAVE CAVITY BEAM POSITION MONITOR.

    SciTech Connect (OSTI)

    BALAKIN,V.; BAZHAN,A.; LUNEV,P.; SOLYAK,N.; VOGEL,V.; ZHOGOLEV,P.; LISITSYN,A.; YAKIMENKO,V.

    1999-03-29

    Future Linear Colliders have hard requirements for the beam transverse position stability in the accelerator. A beam Position Monitor (BPM) with the resolution better than 0.1 micron in the single bunch regime is needed to control the stability of the beam position along the linac. Proposed BPM is based on the measurement of the asymmetrical mode excited by single bunch in the cavity. Four stages of signal processing (space-, time-, frequency- and phase-filtering providing the required signal-to-noise ratio) are used to obtain extremely high resolution. The measurement set-up was designed by BINP and installed at ATF/BNL to test experimentally this concept. The set-up includes three two-coordinates BPM's at the frequency of 13.566 GHz, and reference intensity/phase cavity. BPM's were mounted on support table. The two-coordinates movers allow to move and align BPM's along the straight line, using the signals from the beam. The position of each monitor is controlled by the sensors with the accuracy 0.03 micron. The information from three monitors allows to exclude angle and position jitter of the beam and measure BPM resolution. In the experiments the resolution of about 0.15 micron for 0.25 nC beam intensity was obtained, that is close to the value required.

  20. Microwave applicator for in-drum processing of radioactive waste slurry

    DOE Patents [OSTI]

    White, T.L.

    1994-06-28

    A microwave applicator for processing of radioactive waste slurry uses a waveguide network which splits an input microwave of TE[sub 10] rectangular mode to TE[sub 01] circular mode. A cylindrical body has four openings, each receiving 1/4 of the power input. The waveguide network includes a plurality of splitters to effect the 1/4 divisions of power. 4 figures.

  1. Application of microwave energy for in-drum solidification of simulated precipitation sludge

    SciTech Connect (OSTI)

    Petersen, R.D.; Johnson, A.J.; Swanson, S.D.; Thomas, R.L.

    1987-08-17

    The application of microwave energy for in-container solidification of simulated transuranic contaminated precipitation sludges has been tested. Results indicate volume reductions to 83% are achievable by the continuous feeding of pre-dried sludge into a waste container while applying microwave energy. An economic evaluation was completed showing achievable volume and weight reductions to 87% compared with a current immobilization process for wet sludge. 7 refs., 15 figs., 16 tabs.

  2. A Microwave Thruster for Spacecraft Propulsion (Technical Report) | SciTech

    Office of Scientific and Technical Information (OSTI)

    Connect Technical Report: A Microwave Thruster for Spacecraft Propulsion Citation Details In-Document Search Title: A Microwave Thruster for Spacecraft Propulsion × You are accessing a document from the Department of Energy's (DOE) SciTech Connect. This site is a product of DOE's Office of Scientific and Technical Information (OSTI) and is provided as a public service. Visit OSTI to utilize additional information resources in energy science and technology. A paper copy of this document is

  3. PROBING THE EPOCH OF PRE-REIONIZATION BY CROSS-CORRELATING COSMIC MICROWAVE

    Office of Scientific and Technical Information (OSTI)

    AND INFRARED BACKGROUND ANISOTROPIES (Journal Article) | SciTech Connect PROBING THE EPOCH OF PRE-REIONIZATION BY CROSS-CORRELATING COSMIC MICROWAVE AND INFRARED BACKGROUND ANISOTROPIES Citation Details In-Document Search Title: PROBING THE EPOCH OF PRE-REIONIZATION BY CROSS-CORRELATING COSMIC MICROWAVE AND INFRARED BACKGROUND ANISOTROPIES The epoch of first star formation and the state of the intergalactic medium (IGM) at that time are not directly observable with current telescopes. The

  4. A Linear Theory of Microwave Instability in Electron Storage Rings (Journal

    Office of Scientific and Technical Information (OSTI)

    Article) | SciTech Connect Journal Article: A Linear Theory of Microwave Instability in Electron Storage Rings Citation Details In-Document Search Title: A Linear Theory of Microwave Instability in Electron Storage Rings The well-known Haissinski distribution provides a stable equilibrium of longitudinal beam distribution in electron storage rings below a threshold current. Yet, how to accurately determine this threshold, above which the Haissinski distribution becomes unstable, is not

  5. Phonon-deficit effect in superconductors in a strong microwave field

    SciTech Connect (OSTI)

    Gulyan, A.M.; Zharkov, G.F.

    1981-08-20

    The phonon flux from a thin superconducting film irradiated by a microwave field is derived. It is shown that in intense microwave fields, as in the case of weak fields, studied previously )A. M. Gulian (Gulyan) and G. F. Zharkov, Phys. Lett. 80A, 79 (1980); Zh. Eksp. Teor. Fiz. 80, 303 (1981) (Sov. Phys. JETP 53, 154 (1981))), phonons are not emitted in a narrow spectral interval of phonon frequencies and are instead absorbed from the heat reservoir by the film.

  6. Electric Kettle Takes Down Microwave in Final Round of #EnergyFaceoff |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Electric Kettle Takes Down Microwave in Final Round of #EnergyFaceoff Electric Kettle Takes Down Microwave in Final Round of #EnergyFaceoff November 24, 2014 - 12:13pm Addthis The electric kettle wins the final round of #EnergyFaceoff. | Graphic by Stacy Buchanan, National Renewable Energy Laboratory The electric kettle wins the final round of #EnergyFaceoff. | Graphic by Stacy Buchanan, National Renewable Energy Laboratory Allison Casey Senior Communicator, NREL How can

  7. Microwave pulse compression from a storage cavity with laser-induced switching

    DOE Patents [OSTI]

    Bolton, Paul R. (Menlo Park, CA)

    1992-01-01

    A laser-induced switch and a multiple cavity configuration are disclosed for producing high power microwave pulses. The microwave pulses are well controlled in wavelength and timing, with a quick rise time and a variable shape and power of the pulse. In addition, a method of reducing pre-pulse leakage to a low level is disclosed. Microwave energy is directed coherently to one or more cavities that stores the energy in a single mode, represented as a standing wave pattern. In order to switch the stored microwave energy out of the main cavity and into the branch waveguide, a laser-actuated switch is provided for the cavity. The switch includes a laser, associated optics for delivering the beam into the main cavity, and a switching gas positioned at an antinode in the main cavity. When actuated, the switching gas ionizes, creating a plasma, which becomes reflective to the microwave energy, changing the resonance of the cavity, and as a result the stored microwave energy is abruptly switched out of the cavity. The laser may directly pre-ionize the switching gas, or it may pump an impurity in the switching gas to an energy level which switches when a pre-selected cavity field is attained. Timing of switching the cavities is controlled by varying the pathlength of the actuating laser beam. For example, the pathlengths may be adjusted to output a single pulse of high power, or a series of quick lower power pulses.

  8. THE FIRST VERY LONG BASELINE INTERFEROMETRY IMAGE OF A 44GHz METHANOL MASER WITH THE KVN AND VERA ARRAY (KaVA)

    SciTech Connect (OSTI)

    Matsumoto, Naoko; Hirota, Tomoya; Honma, Mareki; Kameya, Osamu; Sunada, Kazuyoshi; Sugiyama, Koichiro; Motogi, Kazuhito; Kim, Kee-Tae; Kim, Mikyoung; Byun, Do-Young; Jung, Taehyun; Kim, Jongsoo; Lyo, A-Ran; Oh, Chungsik; Bae, Jaehan; Chung, Hyunsoo; Chung, Moon-Hee; Cho, Se-Hyung; Chibueze, James O.; Shino, Nagisa; and others

    2014-07-01

    We have carried out the first very long baseline interferometry (VLBI) imaging of a 44GHz class I methanol maser (7{sub 0}-6{sub 1} A {sup +}) associated with a millimeter core MM2 in a massive star-forming region IRAS181511208 with KaVA (KVN and VERA Array), which is a newly combined array of KVN (Korean VLBI Network) and VERA (VLBI Exploration of Radio Astrometry). We have succeeded in imaging compact maser features with a synthesized beam size of 2.7milliarcsecondsנ1.5milliarcseconds (mas). These features are detected at a limited number of baselines within the length of shorter than ?650km corresponding to 100M? in the uv-coverage. The central velocity and the velocity width of the 44GHz methanol maser are consistent with those of the quiescent gas rather than the outflow traced by the SiO thermal line. The minimum component size among the maser features is ?5masנ2mas, which corresponds to the linear size of ?15AUנ6AU assuming a distance of 3kpc. The brightness temperatures of these features range from ?3.5 10{sup 8} to 1.0 10{sup 10}K, which are higher than the estimated lower limit from a previous Very Large Array observation with the highest spatial resolution of ?50mas. The 44GHz class I methanol maser in IRAS181511208 is found to be associated with the MM2 core, which is thought to be less evolved than another millimeter core MM1 associated with the 6.7GHz class II methanol maser.

  9. Infrared spectroscopic and modeling studies of H{sub 2}/CH{sub 4} microwave plasma gas phase from low to high pressure and power

    SciTech Connect (OSTI)

    Rond, C. Lombardi, G.; Gicquel, A.; Hamann, S.; Rpcke, J.; Wartel, M.

    2014-09-07

    InfraRed Tunable Diode Laser Absorption Spectroscopy technique has been implemented in a H{sub 2}/CH{sub 4} Micro-Wave (MW frequency f?=?2.45 GHz) plasma reactor dedicated to diamond deposition under high pressure and high power conditions. Parametric studies such as a function of MW power, pressure, and admixtures of methane have been carried out on a wide range of experimental conditions: the pressure up to 270 mbar and the MW power up to 4?kW. These conditions allow high purity Chemical Vapor Deposition diamond deposition at high growth rates. Line integrated absorption measurements have been performed in order to monitor hydrocarbon species, i.e., CH{sub 3}, CH{sub 4}, C{sub 2}H{sub 2}, C{sub 2}H{sub 4}, and C{sub 2}H{sub 6}. The densities of the stable detected species were found to vary in the range of 10{sup 12}10{sup 17} molecules cm{sup ?3}, while the methyl radical CH{sub 3} (precursor of diamond growth under these conditions) measured into the plasma bulk was found up to 10{sup 14} molecules cm{sup ?3}. The experimental densities have been compared to those provided by 1D-radial thermochemical model for low power and low pressure conditions (up to 100 mbar/2?kW). These densities have been axially integrated. Experimental measurements under high pressure and power conditions confirm a strong increase of the degree of dissociation of the precursor, CH{sub 4}, associated to an increase of the C{sub 2}H{sub 2} density, the most abundant reaction product in the plasma.

  10. Cloud and aerosol characterization for the ARM central facility: Multiple remote sensor techniques development. Technical progress report

    SciTech Connect (OSTI)

    Sassen, K.

    1992-04-30

    This research project designed to investigate how atmospheric remote sensing technology can best be applied to the characterization of the cloudy atmosphere. Our research program addresses basic atmospheric remote sensing questions, but at the same time is clearly directed toward providing information crucial to the ARM (Atmospheric Remote Sensing) program and for application to the Clouds and Radiation Testbed (CART). The instrumentation that is being brought into play includes a variety of art-of-the-art sensors. Available at NOAA WPL are polarization Doppler K{sub a}-band (0.86 mm) and X-band (3.2 cm) radars, a C0{sub 2}(10.6 {mu}m) Doppler lidar with sequential ` polarization measurement capabilities, a three-channel (20.6, 31.65 and 90 GHz) microwave radiometer, and variety of visible and infrared radiometers. Instrumentation at the University of Utah Facility for Atmospheric Remote Sensing (FARS) includes a polarization ruby (0.643 {mu}m) lidar, a narrow-beam (0.14{degree}) mid-infrared (9.5--11.5 {mu}m) radiometer coaligned with the lidar, several other radiometers in the visible and infrared spectral regions, and an advanced two-color (1.06 and 0.532 {mu}m), four-channel Polarization Diversity Lidar (PDL) and all-sky video imaging system that have only recently been developed under the ARM IDP.

  11. Cloud and aerosol characterization for the ARM central facility: Multiple remote sensor techniques development

    SciTech Connect (OSTI)

    Sassen, K.

    1992-04-30

    This research project designed to investigate how atmospheric remote sensing technology can best be applied to the characterization of the cloudy atmosphere. Our research program addresses basic atmospheric remote sensing questions, but at the same time is clearly directed toward providing information crucial to the ARM (Atmospheric Remote Sensing) program and for application to the Clouds and Radiation Testbed (CART). The instrumentation that is being brought into play includes a variety of art-of-the-art sensors. Available at NOAA WPL are polarization Doppler K{sub a}-band (0.86 mm) and X-band (3.2 cm) radars, a C0{sub 2}(10.6 {mu}m) Doppler lidar with sequential ' polarization measurement capabilities, a three-channel (20.6, 31.65 and 90 GHz) microwave radiometer, and variety of visible and infrared radiometers. Instrumentation at the University of Utah Facility for Atmospheric Remote Sensing (FARS) includes a polarization ruby (0.643 {mu}m) lidar, a narrow-beam (0.14{degree}) mid-infrared (9.5--11.5 {mu}m) radiometer coaligned with the lidar, several other radiometers in the visible and infrared spectral regions, and an advanced two-color (1.06 and 0.532 {mu}m), four-channel Polarization Diversity Lidar (PDL) and all-sky video imaging system that have only recently been developed under the ARM IDP.

  12. X-Ray Emitting GHz-Peaked Spectrum Galaxies: Testing a Dynamical-Radiative Model with Broad-Band Spectra

    SciTech Connect (OSTI)

    Ostorero, L.; Moderski, R.; Stawarz, L.; Diaferio, A.; Kowalska, I.; Cheung, C.C.; Kataoka, J.; Begelman, M.C.; Wagner, S.J.; ,

    2010-06-07

    In a dynamical-radiative model we recently developed to describe the physics of compact, GHz-Peaked-Spectrum (GPS) sources, the relativistic jets propagate across the inner, kpc-sized region of the host galaxy, while the electron population of the expanding lobes evolves and emits synchrotron and inverse-Compton (IC) radiation. Interstellar-medium gas clouds engulfed by the expanding lobes, and photoionized by the active nucleus, are responsible for the radio spectral turnover through free-free absorption (FFA) of the synchrotron photons. The model provides a description of the evolution of the GPS spectral energy distribution (SED) with the source expansion, predicting significant and complex high-energy emission, from the X-ray to the {gamma}-ray frequency domain. Here, we test this model with the broad-band SEDs of a sample of eleven X-ray emitting GPS galaxies with Compact-Symmetric-Object (CSO) morphology, and show that: (i) the shape of the radio continuum at frequencies lower than the spectral turnover is indeed well accounted for by the FFA mechanism; (ii) the observed X-ray spectra can be interpreted as non-thermal radiation produced via IC scattering of the local radiation fields off the lobe particles, providing a viable alternative to the thermal, accretion-disk dominated scenario. We also show that the relation between the hydrogen column densities derived from the X-ray (N{sub H}) and radio (N{sub HI}) data of the sources is suggestive of a positive correlation, which, if confirmed by future observations, would provide further support to our scenario of high-energy emitting lobes.

  13. Method and apparatus for stabilizing pulsed microwave amplifiers

    DOE Patents [OSTI]

    Hopkins, Donald B. (Sacramento, CA)

    1993-01-01

    Phase and amplitude variations at the output of a high power pulsed microwave amplifier arising from instabilities of the driving electron beam are suppressed with a feed-forward system that can stabilize pulses which are too brief for regulation by conventional feedback techniques. Such variations tend to be similar during successive pulses. The variations are detected during each pulse by comparing the amplifier output with the low power input signal to obtain phase and amplitude error signals. This enables storage of phase and amplitude correction signals which are used to make compensating changes in the low power input signal during the following amplifier output pulse which suppress the variations. In the preferred form of the invention, successive increments of the correction signals for each pulse are stored in separate channels of a multi-channel storage. Sequential readout of the increments during the next pulse provides variable control voltages to a voltage controlled phase shifter and voltage controlled amplitude modulator in the amplifier input signal path.

  14. Method and apparatus for stabilizing pulsed microwave amplifiers

    DOE Patents [OSTI]

    Hopkins, D.B.

    1993-01-26

    Phase and amplitude variations at the output of a high power pulsed microwave amplifier arising from instabilities of the driving electron beam are suppressed with a feed-forward system that can stabilize pulses which are too brief for regulation by conventional feedback techniques. Such variations tend to be similar during successive pulses. The variations are detected during each pulse by comparing the amplifier output with the low power input signal to obtain phase and amplitude error signals. This enables storage of phase and amplitude correction signals which are used to make compensating changes in the low power input signal during the following amplifier output pulse which suppress the variations. In the preferred form of the invention, successive increments of the correction signals for each pulse are stored in separate channels of a multi-channel storage. Sequential readout of the increments during the next pulse provides variable control voltages to a voltage controlled phase shifter and voltage controlled amplitude modulator in the amplifier input signal path.

  15. A fuel pellet injector for the Microwave Tokamak Experiment (MTX)

    SciTech Connect (OSTI)

    Hibbs, S.M.; Allen, S.L.; Petersen, D.E.; Sewall, N.R.

    1990-09-01

    Unlike other fueling systems for magnetically confined fusion plasmas, a pellet injector can deliver many fuel gas particles to the core of the plasma, enhancing plasma confinement. We installed a new pellet injector on the MTX (formerly Alcator-O) to provide a plasma with a high core density for experiments both with and without ultrahigh-power microwave heating. Its four-barrel pellet generator is the first to be designed and built at LLNL. Based on pipe-gun'' technology originated at Oak Ridge National Laboratory (ORNL), it incorporates our structural and thermal engineering innovations and a unique control system. The pellet transport, differential vacuum-pumping stages, and fast-opening propellant valves are reused parts of the Impurity Study EXperiment (ISX) pellet injector built by ORNL. We tailored designs of all other systems and components to the MTX. Our injector launches pellets of frozen hydrogen or deuterium into the MTX, either singly or in timed bursts of up to four pellets at velocities of up to 1000 m/s. Pellet diameters range from 1.02 to 2.08 mm. A diagnostic stage measures pellet velocities and allows us to photograph the pellets in flight. We are striving to improve the injector's performance, but its operations is already very consistent and reliable.

  16. Final Technical Report Microwave Assisted Electrolyte Cell for Primary Aluminum Production

    SciTech Connect (OSTI)

    Xiaodi Huang; J.Y. Hwang

    2007-04-18

    This research addresses the high priority research need for developing inert anode and wetted cathode technology, as defined in the Aluminum Industry Technology Roadmap and Inert Anode Roadmap, with the performance targets: a) significantly reducing the energy intensity of aluminum production, b) ultimately eliminating anode-related CO2 emissions, and c) reducing aluminum production costs. This research intended to develop a new electrometallurgical extraction technology by introducing microwave irradiation into the current electrolytic cells for primary aluminum production. This technology aimed at accelerating the alumina electrolysis reduction rate and lowering the aluminum production temperature, coupled with the uses of nickel based superalloy inert anode, nickel based superalloy wetted cathode, and modified salt electrolyte. Michigan Technological University, collaborating with Cober Electronic and Century Aluminum, conducted bench-scale research for evaluation of this technology. This research included three sub-topics: a) fluoride microwave absorption; b) microwave assisted electrolytic cell design and fabrication; and c) aluminum electrowinning tests using the microwave assisted electrolytic cell. This research concludes that the typically used fluoride compound for aluminum electrowinning is not a good microwave absorbing material at room temperature. However, it becomes an excellent microwave absorbing material above 550C. The electrowinning tests did not show benefit to introduce microwave irradiation into the electrolytic cell. The experiments revealed that the nickel-based superalloy is not suitable for use as a cathode material; although it wets with molten aluminum, it causes severe reaction with molten aluminum. In the anode experiments, the chosen superalloy did not meet corrosion resistance requirements. A nicked based alloy without iron content could be further investigated.

  17. Microwave surface resistance of YBa{sub 2}Cu{sub 3}Cu{sub 3}O{sub 7{minus}{ital x}} films on polycrystalline ceramic substrates with textured buffer layers

    SciTech Connect (OSTI)

    Findikoglu, A.T.; Foltyn, S.R.; Arendt, P.N.; Groves, J.R.; Jia, Q.X.; Peterson, E.J.; Wu, X.D.; Reagor, D.W.

    1996-09-01

    We have used a parallel-plate resonator technique to measure the microwave surface resist- ance {ital R}{sub {ital s}} of YBa{sub 2}Cu{sub 3}O{sub 7{minus}{ital x}} (YBCO) films on buffered ceramic substrates at around 10 GHz, and studied the correlation between their {ital R}{sub {ital s}} and materials properties. A 0.4-{mu}m-thick YBCO film (with an in-plane mosaic spread of 7{degree}) grown on a polycrystalline alumina substrate with an ion-beam-assisted-deposited yttria-stabilized zirconia buffer layer showed an {ital R}{sub {ital s}} of 1.89 m{Omega} at 76 K and 0.21 m{Omega} at 4 K. We have observed a strong correlation between the {ital R}{sub {ital s}} of the samples and the in-plane mosaic spread of the YBCO films. This correlation can be explained qualitatively in terms of a simple model in which the weak links between the grains of the YBCO film form an electrical network of Josephson junctions.

  18. ARM - Instrument - mwrp

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govInstrumentsmwrp Documentation MWRP : Handbook ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Instrument : Microwave Radiometer Profiler (MWRP) Instrument Categories Atmospheric Profiling, Cloud Properties, Radiometric Picture of the microwave radiometer profiler (MWRP) General Overview The microwave radiometer profiler (MWRP) provides vertical profiles of temperature, humidity, and cloud liquid water content as

  19. ARM - Campaign Instrument - mwrp

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govInstrumentsmwrp Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Campaign Instrument : Microwave Radiometer Profiler (MWRP) Instrument Categories Atmospheric Profiling, Cloud Properties, Radiometric Campaigns ARM-FIRE Water Vapor Experiment [ Download Data ] Southern Great Plains, 2000.11.01 - 2000.12.31 Long-Term Microwave Radiometer Intercomparison [ Download Data ] Southern Great Plains, 2001.04.01 - 2001.09.30 Microwave Radiometer Profiler

  20. A 95 GHz CLASS I METHANOL MASER SURVEY TOWARD A SAMPLE OF GLIMPSE POINT SOURCES ASSOCIATED WITH BGPS CLUMPS

    SciTech Connect (OSTI)

    Chen Xi; Gan Conggui; Shen Zhiqiang; An Tao; Ellingsen, Simon P.; He Jinhua

    2012-05-01

    We report a survey with the Purple Mountain Observatory 13.7 m radio telescope for class I methanol masers from the 95 GHz (8{sub 0}-7{sub 1} A{sup +}) transition. Two hundred and fourteen target sources were selected by combining information from both the Spitzer GLIMPSE and 1.1 mm Bolocam Galactic Plane Survey (BGPS) catalogs. The observed sources satisfy the GLIMPSE mid-IR criteria of [3.6]-[4.5] > 1.3, [3.6]-[5.8] > 2.5, [3.6]-[8.0] > 2.5 and 8.0 {mu}m mag less than 10; they also have an associated 1.1 mm BGPS source. Class I methanol maser emission was detected in 63 sources, corresponding to a detection rate of 29% for this survey. For the majority of detections (43), this is the first identification of class I methanol masers associated with these sources. We show that the intensity of the class I methanol maser emission is not closely related to mid-IR intensity or the colors of the GLIMPSE point sources; however, it is closely correlated with properties (mass and beam-averaged column density) of the BGPS sources. Comparison of measures of star formation activity for the BGPS sources with and without class I methanol masers indicates that the sources with class I methanol masers usually have higher column density and larger flux density than those without them. Our results predict that the criteria log (S{sub int}) {<=} -38.0 + 1.72log (N{sup beam}{sub H{sub 2}}) and log (N{sub H{sub 2}{sup beam}}){>=}22.1, which utilizes both the integrated flux density (S{sub int}) and beam-averaged column density (N{sub H{sub 2}{sup beam}}) of the BGPS sources, are very efficient for selecting sources likely to have an associated class I methanol maser. Our expectation is that searches using these criteria will detect 90% of the predicted number of class I methanol masers from the full BGPS catalog ({approx}1000), and that they will do so with a high detection efficiency ({approx}75%).

  1. Stepped-frequency continuous-wave microwave-induced thermoacoustic imaging

    SciTech Connect (OSTI)

    Nan, Hao Arbabian, Amin

    2014-06-02

    Microwave-induced thermoacoustic (TA) imaging combines the dielectric contrast of microwave imaging with the resolution of ultrasound imaging. Prior studies have only focused on time-domain techniques with short but powerful microwave pulses that require a peak output power in excess of several kilowatts to achieve sufficient signal-to-noise ratio (SNR). This poses safety concerns as well as to render the imager expensive and bulky with requiring a large vacuum radio frequency source. Here, we propose and demonstrate a coherent stepped-frequency continuous-wave (SFCW) technique for TA imaging which enables substantial improvements in SNR and consequently a reduction in peak power requirements for the imager. Constructive and destructive interferences between TA signals are observed and explained. Full coherency across microwave and acoustic domains, in the thermo-elastic response, is experimentally verified and this enables demonstration of coherent SFCW microwave-induced TA imaging. Compared to the pulsed technique, an improvement of 17?dB in SNR is demonstrated.

  2. Analysis of Femtosecond Timing Noise and Stability in Microwave Components

    SciTech Connect (OSTI)

    Whalen, Michael R.; /Stevens Tech. /SLAC

    2011-06-22

    To probe chemical dynamics, X-ray pump-probe experiments trigger a change in a sample with an optical laser pulse, followed by an X-ray probe. At the Linac Coherent Light Source, LCLS, timing differences between the optical pulse and x-ray probe have been observed with an accuracy as low as 50 femtoseconds. This sets a lower bound on the number of frames one can arrange over a time scale to recreate a 'movie' of the chemical reaction. The timing system is based on phase measurements from signals corresponding to the two laser pulses; these measurements are done by using a double-balanced mixer for detection. To increase the accuracy of the system, this paper studies parameters affecting phase detection systems based on mixers, such as signal input power, noise levels, temperature drift, and the effect these parameters have on components such as the mixers, splitters, amplifiers, and phase shifters. Noise data taken with a spectrum analyzer show that splitters based on ferrite cores perform with less noise than strip-line splitters. The data also shows that noise in specific mixers does not correspond with the changes in sensitivity per input power level. Temperature drift is seen to exist on a scale between 1 and 27 fs/{sup o}C for all of the components tested. Results show that any components using more metallic conductor tend to exhibit more noise as well as more temperature drift. The scale of these effects is large enough that specific care should be given when choosing components and designing the housing of high precision microwave mixing systems for use in detection systems such as the LCLS. With these improvements, the timing accuracy can be improved to lower than currently possible.

  3. alberta-98.pdf

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    modifies the Core soundings below 2 km with temperature and humidity retrievals from a Fourier Transform Spectrometer; 4) a fourth sounding "microwave radiometer (MWR)" uses...

  4. Slide 1

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    On the relationship among cloud turbulence, droplet formation and drizzle as viewed by Doppler radar, microwave radiometer and lidar. J. Geophys. Res., 104, 22195-22203 Golaz,...

  5. ARM - Blog Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    facility is the centerpiece of the team's involvement within PECAN and will carry a Doppler wind lidar, atmospheric emitted radiance interferometer, and microwave radiometer....

  6. Slide 1

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    King Air A part of NSF low atmospheric facility * Remote sensors - Cloud radar - Cloud lidar - Microwave radiometer * In situ sensors - Aerosol - Cloud Provide extended cloud...

  7. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    input of ground-based measurements, and cloud liquid water path (LWP) is retrieved from ground-based microwave radiometer measured brightness temperature. All surface data are...

  8. ARM - Publications: Science Team Meeting Documents: A Climatology...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and lidar pair, and rawinsonde sounding; cloud liquid water path (LWP) is retrieved from ground-based microwave radiometer measured brightness temperature; and cloud-droplet...

  9. Validation of Satellite-Derived Liquid Water Paths Using ARM...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    LWP more completely, this paper compares it with LWP retrievals based on ARM's ground-based microwave radiometers (MWR) at the SGP central and boundary facilities. The...

  10. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    input of ground-based measurements, and cloud liquid water path (LWP) is retrieved from ground-based microwave radiometer measured brightness temperature. The satellite results,...

  11. ARM - Data Announcements Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the CMBE-CLDRAD datastream has the most recent release of integrated liquid water and water vapor data from the microwave radiometer (MWRRET) data set, which was reprocessed...

  12. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Arctic Winter Water Vapor IOP Starts; Microwave Radiometer Profiler Deployed Bookmark and Share Some of the instruments collecting data during the Arctic Winter Water Vapor IOP...

  13. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    developed, which combines downwelling radiative fluxes at 415 nm, measured by a multi-filter rotating shadowband radiometer and liquid water path retrievals from a microwave...

  14. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Science Team Meeting The Atmospheric Radiation Measurement (ARM) Program has deployed dual-frequency microwave water radiometers (MWRs) at its Cloud and Radiation Testbed (CART)...

  15. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    properties using the ground- based measurements of cloud radar, laser ceilometer, and microwave and solar radiometers. A relationship between effective radius and radar...

  16. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    model in conjunction with ground-based measurements of cloud radar, laser ceilometer, microwave and solar radiometers. The satellite results are retrieved from GOES visible and...

  17. PowerPoint Presentation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    microwave radiometer on same grid - Classify targets, correct radar attenuation, add errors... Level 2a IWC (observational grid) - Ice water content reported with errors on...

  18. ARM - Black Forest News

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    News Campaign Images Black Forest News ARM Mobile Facility Completes Field Campaign in Germany January 15, 2008 Microwave Radiometers Put to the Test in Germany September 15, 2007...

  19. ARM - Data Announcements Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Bookmark and Share An example plot from the MWRRET VAP for 1192007 at Black Forest, Germany: (top) Brightness temperatures measured by the microwave radiometer (MWR). Orange and...

  20. The spectral variability of the GHZ-Peaked spectrum radio source PKS 1718-649 and a comparison of absorption models

    SciTech Connect (OSTI)

    Tingay, S. J.; Macquart, J.-P.; Wayth, R. B.; Trott, C. M.; Emrich, D.; Collier, J. D.; Wong, G. F.; Rees, G.; Stevens, J.; Carretti, E.; Callingham, J. R.; Gaensler, B. M.; McKinley, B.; Briggs, F.; Bernardi, G.; Bowman, J. D.; Cappallo, R. J.; Corey, B. E.; Deshpande, A. A.; Goeke, R.; and others

    2015-02-01

    Using the new wideband capabilities of the ATCA, we obtain spectra for PKS 1718-649, a well-known gigahertz-peaked spectrum radio source. The observations, between approximately 1 and 10 GHz over 3 epochs spanning approximately 21 months, reveal variability both above the spectral peak at ∼3 GHz and below the peak. The combination of the low- and high-frequency variability cannot be easily explained using a single absorption mechanism, such as free–free absorption or synchrotron self-absorption. We find that the PKS 1718-649 spectrum and its variability are best explained by variations in the free–free optical depth on our line of sight to the radio source at low frequencies (below the spectral peak) and the adiabatic expansion of the radio source itself at high frequencies (above the spectral peak). The optical depth variations are found to be plausible when X-ray continuum absorption variability seen in samples of active galactic nuclei is considered. We find that the cause of the peaked spectrum in PKS 1718-649 is most likely due to free–free absorption. In agreement with previous studies, we find that the spectrum at each epoch of observation is best fit by a free–free absorption model characterized by a power-law distribution of free–free absorbing clouds. This agreement is extended to frequencies below the 1 GHz lower limit of the ATCA by considering new observations with Parkes at 725 MHz and 199 MHz observations with the newly operational Murchison Widefield Array. These lower frequency observations argue against families of absorption models (both free–free and synchrotron self-absorption) that are based on simple homogenous structures.

  1. Computational studies for plasma filamentation by magnetic field in atmospheric microwave discharge

    SciTech Connect (OSTI)

    Takahashi, Masayuki; Ohnishi, Naofumi

    2014-12-01

    Plasma filamentation is induced by an external magnetic field in an atmospheric discharge using intense microwaves. A discrete structure is obtained at low ambient pressure if a strong magnetic field of more than 1 T is applied, due to the suppression of electron diffusion, whereas a diffusive pattern is generated with no external field. Applying a magnetic field can slow the discharge front propagation due to magnetic confinement of the electron transport. If the resonance conditions are satisfied for electron cyclotron resonance and its higher harmonics, the propagation speed increases because the heated electrons easily ionize neutral particles. The streamer velocity and the pattern of the microwave plasma are positively controlled by adjusting two parameters—the electron diffusion coefficient and the ionization frequency—through the resonance process and magnetic confinement, and hot, dense filamentary plasma can be concentrated in a compact volume to reduce energy loss in a plasma device like a microwave rocket.

  2. Microwave vitrification of Rocky Flats hydroxide precipitation sludge, Building 774. Progress report

    SciTech Connect (OSTI)

    Eschen, V.G.; Sprenger, G.S.; Fenner, G.S.; Corbin, I.E.

    1995-04-01

    This report describes the first set of experiments performed on transuranic (TRU) precipitation sludge produced in Building 774, to determine the operating parameters for the microwave vitrification process. Toxicity Characteristic Leach Procedure (TCLP) results of the raw sludge showed concentrations of lead, silver and cadmium which were in excess of land disposal restrictions (LDR). Crushed, borosilicate glass was used as a frit source to produce a highly desirable, vitrified, product that required less energy to produce. TCLP testing, of microwaved samples, showed favorable results for 40 and 50% waste loading. The results of this study are encouraging and support the development of microwave vitrification technology for the treatment of various mixed waste streams at Rocky Flats Environmental Technology Site. However, additional experiments are required to fully define the operating parameters for a production-scale system.

  3. System to continuously produce carbon fiber via microwave assisted plasma processing

    DOE Patents [OSTI]

    White, Terry L. [Knoxville, TN; Paulauskas, Felix L. [Knoxville, TN; Bigelow, Timothy S. [Knoxville, TN

    2010-11-02

    A system to continuously produce fully carbonized or graphitized carbon fibers using microwave-assisted plasma (MAP) processing comprises an elongated chamber in which a microwave plasma is excited in a selected gas atmosphere. Fiber is drawn continuously through the chamber, entering and exiting through openings designed to minimize in-leakage of air. There is a gradient of microwave power within the chamber with generally higher power near where the fiber exits and lower power near where the fiber enters. Polyacrylonitrile (PAN), pitch, or any other suitable organic/polymeric precursor fibers can be used as a feedstock for the inventive system. Oxidized or partially oxidized PAN or pitch or other polymeric fiber precursors are run continuously through a MAP reactor in an inert, non-oxidizing atmosphere to heat the fibers, drive off the unwanted elements such as oxygen, nitrogen, and hydrogen, and produce carbon or graphite fibers faster than conventionally produced carbon fibers.

  4. Influence of ponderomotive force on the microwave and plasma interaction in an elliptical waveguide

    SciTech Connect (OSTI)

    Abdoli-Arani, A., E-mail: abdoliabbas@kashanu.ac.ir [Department of Photonics, Faculty of Physics, University of Kashan, Kashan, Islamic Republic of Iran (Iran, Islamic Republic of)

    2014-02-15

    The interaction effect of a high-power microwave with the plasma in an elliptical waveguide taking into account the ponderomotive force is presented. Here, we assume the fundamental mode that propagates in an evacuated elliptical waveguide and encounters a plasma, which is filled in another elliptical waveguide of the same size. Here, we consider a balance between the effects of ponderomotive force and the electron pressure and consider the plasma effect through its dielectric permittivity because the electron density distribution of the plasma is modified. The propagation of the mode is described by two nonlinear coupled differential equations obtained using the Maxwell's equations. These equations are solved numerically using fourth order Runge-Kutta method for the field amplitude of the microwave in the waveguide considering the waveguide to be made up of a perfect conductor and filled with homogeneous plasma density distribution. The effects of the electron temperature, the microwave filed, and the frequency on the perturbed density profile are studied.

  5. Current-driven domain wall motion enhanced by the microwave field

    SciTech Connect (OSTI)

    Wang, Xi-guang; Guo, Guang-hua Nie, Yao-zhuang; Wang, Dao-wei; Li, Zhi-xiong; Tang, Wei; Zeng, Zhong-ming

    2014-07-14

    The magnetic domain wall (DW) motion driven by a spin-polarized current opens a new concept for memory and logic devices. However, the critical current density required to overcome the intrinsic and/or extrinsic pinning of DW remains too large for practical applications. Here, we show, by using micromagnetic simulations and analytical approaches, that the application of a microwave field offers an effective solution to this problem. When a transverse microwave field is applied, the adiabatic spin-transfer torque (STT) alone can sustain a steady-state DW motion without the sign of Walker breakdown, meaning that the intrinsic pinning disappears. The extrinsic pinning can also be effectively reduced. Moreover, the DW velocity is increased greatly for the microwave-assisted DW motion. This provides a new way to manipulate the DW motion at low current densities.

  6. Relativistic effects on the Weibel instability of circularly polarized microwave produced plasmas

    SciTech Connect (OSTI)

    Shokri, B.; Ghorbanalilu, M.

    2004-12-01

    Analyzing the production of a weakly relativistic plasma produced by microwave fields with circular polarization in the adiabatic approximation, the electron distribution function is obtained, which is nonequilibrium and anisotropic. Furthermore, it is shown that the produced plasma is accelerated in the direction of propagating microwave electric fields. The electron velocity in this direction strongly depends on electron origination phase, electric field phase, and amplitude of the microwave electric field. Making use of the dielectric tensor obtained for this plasma, it is shown that the Weibel instability develops due to the anisotropic property of the distribution function. It is shown that the growth rate in the relativistic case is higher than that obtained for the nonrelativistic case by a factor depending on the electric field strength and plasma frequency.

  7. Method of preparing thermal insulation for high temperature microwave sintering operations

    DOE Patents [OSTI]

    Holcombe, Cressie E. (Knoxville, TN); Dykes, Norman L. (Oak Ridge, TN); Morrow, Marvin S. (Kingston, TN)

    1996-01-01

    Superior microwave transparent thermal insulations for high temperature microwave sintering operations were prepared. One embodiment of the thermal insulation comprises granules of boron nitride coated with a very thin layer of glassy carbon made by preparing a glassy carbon precursor and blending it with boron nitride powder to form a mixture. The blended mixture is granulated to form a grit which is dried and heated to form the granules of boron nitride coated with a glassy carbon. Alternatively, grains of glassy carbon are coated with boron nitride by blending a mixture of a slurry comprising boron nitride, boric acid binder, and methyl alcohol with glassy carbon grains to form a blended mixture. The blended mixture is dried to form grains of glassy carbon coated with boron nitride. In addition, a physical mixture of boron nitride powder and glassy carbon grains has also been shown to be an excellent thermal insulation material for microwave processing and sintering.

  8. Thermal insulation for high temperature microwave sintering operations and method thereof

    DOE Patents [OSTI]

    Holcombe, Cressie E. (Knoxville, TN); Dykes, Norman L. (Oak Ridge, TN); Morrow, Marvin S. (Kingston, TN)

    1995-01-01

    Superior microwave transparent thermal insulations for high temperature microwave sintering operations were prepared. One embodiment of the thermal insulation comprises granules of boron nitride coated with a very thin layer of glassy carbon made by preparing a glassy carbon precursor and blending it with boron nitride powder to form a mixture. The blended mixture is granulated to form a grit which is dried and heated to form the granules of boron nitride coated with a glassy carbon. Alternatively, grains of glassy carbon are coated with boron nitride by blending a mixture of a slurry comprising boron nitride, boric acid binder, and methyl alcohol with glassy carbon grains to form a blended mixture. The blended mixture is dried to form grains of glassy carbon coated with boron nitride. In addition, a physical mixture of boron nitride powder and glassy carbon grains has also been shown to be an excellent thermal insulation material for microwave processing and sintering.

  9. Printed circuit board impedance matching step for microwave (millimeter wave) devices

    DOE Patents [OSTI]

    Pao, Hsueh-Yuan; Aguirre, Jerardo; Sargis, Paul

    2013-10-01

    An impedance matching ground plane step, in conjunction with a quarter wave transformer section, in a printed circuit board provides a broadband microwave matching transition from board connectors or other elements that require thin substrates to thick substrate (>quarter wavelength) broadband microwave (millimeter wave) devices. A method of constructing microwave and other high frequency electrical circuits on a substrate of uniform thickness, where the circuit is formed of a plurality of interconnected elements of different impedances that individually require substrates of different thicknesses, by providing a substrate of uniform thickness that is a composite or multilayered substrate; and forming a pattern of intermediate ground planes or impedance matching steps interconnected by vias located under various parts of the circuit where components of different impedances are located so that each part of the circuit has a ground plane substrate thickness that is optimum while the entire circuit is formed on a substrate of uniform thickness.

  10. Method of preparing thermal insulation for high temperature microwave sintering operations

    DOE Patents [OSTI]

    Holcombe, C.E.; Dykes, N.L.; Morrow, M.S.

    1996-07-16

    Superior microwave transparent thermal insulations for high temperature microwave sintering operations were prepared. One embodiment of the thermal insulation comprises granules of boron nitride coated with a very thin layer of glassy carbon made by preparing a glassy carbon precursor and blending it with boron nitride powder to form a mixture. The blended mixture is granulated to form a grit which is dried and heated to form the granules of boron nitride coated with a glassy carbon. Alternatively, grains of glassy carbon are coated with boron nitride by blending a mixture of a slurry comprising boron nitride, boric acid binder, and methyl alcohol with glassy carbon grains to form a blended mixture. The blended mixture is dried to form grains of glassy carbon coated with boron nitride. In addition, a physical mixture of boron nitride powder and glassy carbon grains has also been shown to be an excellent thermal insulation material for microwave processing and sintering. 1 fig.

  11. Thermal insulation for high temperature microwave sintering operations and method thereof

    DOE Patents [OSTI]

    Holcombe, C.E.; Dykes, N.L.; Morrow, M.S.

    1995-09-12

    Superior microwave transparent thermal insulations for high temperature microwave sintering operations were prepared. One embodiment of the thermal insulation comprises granules of boron nitride coated with a very thin layer of glassy carbon made by preparing a glassy carbon precursor and blending it with boron nitride powder to form a mixture. The blended mixture is granulated to form a grit which is dried and heated to form the granules of boron nitride coated with a glassy carbon. Alternatively, grains of glassy carbon are coated with boron nitride by blending a mixture of a slurry comprising boron nitride, boric acid binder, and methyl alcohol with glassy carbon grains to form a blended mixture. The blended mixture is dried to form grains of glassy carbon coated with boron nitride. In addition, a physical mixture of boron nitride powder and glassy carbon grains has also been shown to be an excellent thermal insulation material for microwave processing and sintering. 1 fig.

  12. ARM - VAP Product - gvr

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    count sky3 ( time ) 183.3 +- 7 GHz sky signal count sky7 ( time ) 183.3 +- 14 GHz sky signal count sky14 ( time ) Microwave narrowband brightness temperature 183.3 +- 1 GHz...

  13. Note: Effect of hot liner in producing {sup 40,48}Ca beam from RIKEN 18-GHz electron cyclotron resonance ion source

    SciTech Connect (OSTI)

    Ozeki, K. Higurashi, Y.; Kidera, M.; Nakagawa, T.

    2015-01-15

    In order to produce a high-intensity and stable {sup 48}Ca beam from the RIKEN 18-GHz electron cyclotron resonance ion source, we have begun testing the production of a calcium beam using a micro-oven. To minimize the consumption rate of the material ({sup 48}Ca), we introduced the hot liner method and investigated the effect of the liner on the material consumption rate. The micro-oven was first used to produce the {sup 48}Ca beam for experiments in the RIKEN radioisotope beam factory, and a stable beam could be supplied for a long time with low consumption rate.

  14. Microwave-induced thermoacoustic effect in dielectrics and its coupling to external medium-A thermodynamical formulation

    SciTech Connect (OSTI)

    Guo, T.C.; Guo, W.W.; Larsen, L.E.

    1984-08-01

    A thorough formulation of electromagnetic wave interaction with biological systems is presented. The thermodynamic process of the microwave-induced thermoacoustic generation is clearly defined. Couplings of the acoustic and thermal energies to the surrounding medium are included through consideration of discontinuities of thermodynamical variables and microwave exposure. Contrary to prior analyses, it is shown that acoustic waves may be generated by pulsed microwaves, even in the absence of inhomogeneity of microwave absorption, owing to discontinuities of thermodynamical variables and microwave exposure conditions across the interface. General equations for the thermoacoustic waves are derived, and the validity of the first-order linear approximation is estimated in terms of its percentage error. For a system with water as the absorbing dielectric interfacing with air of 1 atmosphere pressure, the first-order approximation becomes invalid for a peak specific absorption rate greater than 13 kW/gm.

  15. Electron heating due to microwave photoexcitation in the high mobility GaAs/AlGaAs two dimensional electron system

    SciTech Connect (OSTI)

    Ramanayaka, A. N.; Mani, R. G.; Wegscheider, W.

    2013-12-04

    We extract the electron temperature in the microwave photo-excited high mobility GaAs/AlGaAs two dimensional electron system (2DES) by studying the influence of microwave radiation on the amplitude of Shubnikov-de Haas oscillations (SdHOs) in a regime where the cyclotron frequency, ?{sub c}, and the microwave angular frequency, ?, satisfy 2? ? ?{sub c} ? 3.5? The results indicate that increasing the incident microwave power has a weak effect on the amplitude of the SdHOs and therefore the electron temperature, in comparison to the influence of modest temperature changes on the dark-specimen SdH effect. The results indicate negligible electron heating under modest microwave photo-excitation, in good agreement with theoretical predictions.

  16. Field emission from bias-grown diamond thin films in a microwave plasma

    DOE Patents [OSTI]

    Gruen, Dieter M. (Downers Grove, IL); Krauss, Alan R. (Naperville, IL); Ding, Ming Q. (Beijing, CN); Auciello, Orlando (Bolinbrook, IL)

    2002-01-01

    A method of producing diamond or diamond like films in which a negative bias is established on a substrate with an electrically conductive surface in a microwave plasma chemical vapor deposition system. The atmosphere that is subjected to microwave energy includes a source of carbon, nitrogen and hydrogen. The negative bias is maintained on the substrate through both the nucleation and growth phase of the film until the film is continuous. Biases between -100V and -200 are preferred. Carbon sources may be one or more of CH.sub.4, C.sub.2 H.sub.2 other hydrocarbons and fullerenes.

  17. Microwave properties of RF- sputtered ZnFe{sub 2}O{sub 4} thin films

    SciTech Connect (OSTI)

    Garg, T. Kulkarni, A. R.; Venkataramani, N.; Sahu, B. N.; Prasad, Shiva

    2014-04-24

    In this work, RF- magnetron sputtering technique has been employed to deposit nanocrystalline ZnFe{sub 2}O{sub 4} thin films at room temperature. The as grown films were ex-situ annealed in air for 2 h at temperatures from 150C to 650C. X-ray diffraction, vibrating sample magnetometer and ferromagnetic resonance were used to analyze the phase formation, magnetic properties and microwave properties respectively. From the hysteresis loops and ferromagnetic resonance spectra taken at room temperature, a systematic study on the effect of O{sub 2} plasma on microwave properties with respect to processing temperature has been carried out.

  18. Addressing a single spin in diamond with a macroscopic dielectric microwave cavity

    SciTech Connect (OSTI)

    Le Floch, J.-M.; Tobar, M. E.; Bradac, C.; Nand, N.; Volz, T.; Castelletto, S.

    2014-09-29

    We present a technique for addressing single nitrogen-vacancy (NV) center spins in diamond over macroscopic distances using a tunable dielectric microwave cavity. We demonstrate optically detected magnetic resonance (ODMR) for a single negatively charged NV center (NV{sup }) in a nanodiamond (ND) located directly under the macroscopic microwave cavity. By moving the cavity relative to the ND, we record the ODMR signal as a function of position, mapping out the distribution of the cavity magnetic field along one axis. In addition, we argue that our system could be used to determine the orientation of the NV{sup } major axis in a straightforward manner.

  19. Pulsed microwave discharge in a capillary filled with atmospheric-pressure gas

    SciTech Connect (OSTI)

    Gritsinin, S. I.; Gushchin, P. A.; Davydov, A. M.; Ivanov, E. V.; Kossyi, I. A.

    2013-08-15

    A pulsed microwave coaxial capillary plasma source generating a thin plasma filament along the capillary axis in an atmospheric-pressure argon flow is described. The dynamics of filament formation is studied, and the parameters of the gas and plasma in the contraction region are determined. A physical model of discharge formation and propagation is proposed. The model is based on the assumption that, under the conditions in which the electric fields is substantially below the threshold value, the discharge operates in a specific form known as a self-sustained-non-self-sustained (SNS) microwave discharge.

  20. Mixture for producing fracture-resistant, fiber-reinforced ceramic material by microwave heating

    DOE Patents [OSTI]

    Meek, Thomas T. (Los Alamos, NM); Blake, Rodger D. (Santa Fe, NM)

    1987-01-01

    A fracture-resistant, fiber-reinforced ceramic substrate is produced by a method which involves preparing a ceramic precursor mixture comprising glass material, a coupling agent, and resilient fibers, and then exposing the mixture to microwave energy. The microwave field orients the fibers in the resulting ceramic material in a desired pattern wherein heat later generated in or on the substrate can be dissipated in a desired geometric pattern parallel to the fiber pattern. Additionally, the shunt capacitance of the fracture-resistant, fiber-reinforced ceramic substrate is lower which provides for a quicker transit time for electronic pulses in any conducting pathway etched into the ceramic substrate.

  1. Mixture for producing fracture-resistant, fiber-reinforced ceramic material by microwave heating

    DOE Patents [OSTI]

    Meek, T.T.; Blake, R.D.

    1987-09-22

    A fracture-resistant, fiber-reinforced ceramic substrate is produced by a method which involves preparing a ceramic precursor mixture comprising glass material, a coupling agent, and resilient fibers, and then exposing the mixture to microwave energy. The microwave field orients the fibers in the resulting ceramic material in a desired pattern wherein heat later generated in or on the substrate can be dissipated in a desired geometric pattern parallel to the fiber pattern. Additionally, the shunt capacitance of the fracture-resistant, fiber-reinforced ceramic substrate is lower which provides for a quicker transit time for electronic pulses in any conducting pathway etched into the ceramic substrate. 2 figs.

  2. Mixture for producing fracture-resistant, fiber-reinforced ceramic material by microwave heating

    DOE Patents [OSTI]

    Meek, T.T.; Blake, R.D.

    1985-04-03

    A fracture-resistant, fiber-reinforced ceramic substrate is produced by a method which involves preparing a ceramic precursor mixture comprising glass material, a coupling agent, and resilient fibers, and then exposing the mixture to microwave energy. The microwave field orients the fibers in the resulting ceramic material in a desired pattern wherein heat later generated in or on the substrate can be dissipated in a desired geometric pattern parallel to the fiber pattern. Additionally, the shunt capacitance of the fracture-resistant, fiber-reinforced ceramic substrate is lower which provides for a quicker transit time for electronic pulses in any conducting pathway etched into the ceramic substrate.

  3. Large-Volume Resonant Microwave Discharge for Plasma Cleaning of a CEBAF

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    5-Cell SRF Cavity (Conference) | SciTech Connect Large-Volume Resonant Microwave Discharge for Plasma Cleaning of a CEBAF 5-Cell SRF Cavity Citation Details In-Document Search Title: Large-Volume Resonant Microwave Discharge for Plasma Cleaning of a CEBAF 5-Cell SRF Cavity We report the preliminary results on plasma generation in a 5-cell CEBAF superconducting radio-frequency (SRF) cavity for the application of cavity interior surface cleaning. CEBAF currently has {approx}300 of these five

  4. Scanning Near-Field Microwave Microscopy of VO2 and CVD Graphene (Journal

    Office of Scientific and Technical Information (OSTI)

    Article) | SciTech Connect Scanning Near-Field Microwave Microscopy of VO2 and CVD Graphene Citation Details In-Document Search Title: Scanning Near-Field Microwave Microscopy of VO2 and CVD Graphene Authors: Tselev, Alexander [1] ; Lavrik, Nickolay V [1] ; Kolmakov, Andrei [2] ; Kalinin, Sergei V [1] + Show Author Affiliations ORNL Southern Illinois University Publication Date: 2013-01-01 OSTI Identifier: 1079849 DOE Contract Number: DE-AC05-00OR22725 Resource Type: Journal Article Resource

  5. The complete, temperature resolved experimental spectrum of methanol (CH{sub 3}OH) between 214.6 and 265.4 GHz

    SciTech Connect (OSTI)

    McMillan, James P.; Fortman, Sarah M.; Neese, Christopher F.; De Lucia, Frank C.

    2014-11-01

    The spectrum of methanol (CH{sub 3}OH) has been characterized between 214.6 and 265.4 GHz for astrophysically significant temperatures. Four hundred and eighty-six spectra with absolute intensity calibration recorded between 240 and 389 K provided a means for the calculation of the complete experimental spectrum (CES) of methanol as a function of temperature. The CES includes contributions from v{sub t} = 3 and other higher states that are difficult to model quantum mechanically (QM). It also includes the spectrum of the {sup 13}C isotopologue in terrestrial abundance. In general the QM models provide frequencies that are within 1 MHz of their experimental values, but there are several outliers that differ by tens of MHz. As in our recent work on methanol in the 560-654 GHz region, significant intensity differences between our experimental intensities and cataloged values were found. In this work these differences are explored in the context of several QM analyses. The experimental results presented here are analyzed to provide a frequency point-by-point catalog that is well suited for the simulation of crowded and overlapped spectra. Additionally, a catalog in the usual line frequency, line strength, and lower state energy format is provided.

  6. Microwave and plasma-assisted modification of composite fiber surface topography

    DOE Patents [OSTI]

    Paulauskas, Felix L. (Knoxville, TN); White, Terry L. (Knoxville, TN); Bigelow, Timothy S. (Knoxville, TN)

    2003-02-04

    The present invention introduces a novel method for producing an undulated surface on composite fibers using plasma technology and microwave radiation. The undulated surface improves the mechanical interlocking of the fibers to composite resins and enhances the mechanical strength and interfacial sheer strength of the composites in which they are introduced.

  7. Microwave plasma monitoring system for the elemental composition analysis of high temperature process streams

    DOE Patents [OSTI]

    Woskov, Paul P. (Bedford, MA); Cohn, Daniel R. (Chestnuthill, MA); Titus, Charles H. (Newtown Square, PA); Surma, Jeffrey E. (Kennewick, WA)

    1997-01-01

    Microwave-induced plasma for continuous, real time trace element monitoring under harsh and variable conditions. The sensor includes a source of high power microwave energy and a shorted waveguide made of a microwave conductive, high temperature capability refractory material communicating with the source of the microwave energy to generate a plasma. The high power waveguide is constructed to be robust in a hot, hostile environment. It includes an aperture for the passage of gases to be analyzed and a spectrometer is connected to receive light from the plasma. Provision is made for real time in situ calibration. The spectrometer disperses the light, which is then analyzed by a computer. The sensor is capable of making continuous, real time quantitative measurements of desired elements, such as the heavy metals lead and mercury. The invention may be incorporated into a high temperature process device and implemented in situ for example, such as with a DC graphite electrode plasma arc furnace. The invention further provides a system for the elemental analysis of process streams by removing particulate and/or droplet samples therefrom and entraining such samples in the gas flow which passes through the plasma flame. Introduction of and entraining samples in the gas flow may be facilitated by a suction pump, regulating gas flow, gravity or combinations thereof.

  8. Compact microwave lamp having a tuning block and a dielectric located in a lamp cavity

    DOE Patents [OSTI]

    Simpson, James E.

    2000-01-01

    A microwave lamp having a compact structure utilizing a coupling slot which has a dielectric member extending therethrough and a tuning block adjoining the coupling slot. A non-conventional waveguide is used which has about the width of a WR-284 waveguide and about the length of a WR-340 waveguide.

  9. Balanced optical-microwave phase detector for sub-femtosecond optical-RF synchronization

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Peng, Michael Y.; Kalaydzhyan, Aram; Krtner, Franz X.

    2014-10-23

    We demonstrate that balanced optical-microwave phase detectors (BOMPD) are capable of optical-RF synchronization with sub-femtosecond residual timing jitter for large-scale timing distribution systems. RF-to-optical synchronization is achieved with a long-term stability of moresuppression ratio with potential improvement via DC offset adjustment.less

  10. Microwave plasma assisted supersonic gas jet deposition of thin film materials

    DOE Patents [OSTI]

    Schmitt, III, Jerome J. (New Haven, CT); Halpern, Bret L. (Bethany, CT)

    1993-01-01

    An apparatus for fabricating thin film materials utilizing high speed gas dynamics relies on supersonic free jets of carrier gas to transport depositing vapor species generated in a microwave discharge to the surface of a prepared substrate where the vapor deposits to form a thin film. The present invention generates high rates of deposition and thin films of unforeseen high quality at low temperatures.

  11. Sodium nitrate containing mixture for producing ceramic-glass-ceramic seal by microwave heating

    DOE Patents [OSTI]

    Blake, R.D.; Meek, T.T.

    1984-10-10

    A mixture for, and method of using such a mixture, for producing a ceramic-glass-ceramic seal by the use of microwave energy are disclosed, wherein the mixture comprises a glass sealing material, a coupling agent, and an oxidizer. The seal produced exhibits greater strength due to its different microstructure. Sodium nitrate is the most preferred oxidizer.

  12. Method for producing ceramic-glass-ceramic seals by microwave heating

    DOE Patents [OSTI]

    Blake, Rodger D. (Santa Fe, NM); Meek, Thomas T. (Los Alamos, NM)

    1986-01-01

    Method for producing a ceramic-glass-ceramic seal by the use of microwave energy, and a sealing mixture which comprises a glass sealing material, a coupling agent, and an oxidizer. The seal produced exhibits greater strength due to its different microstructure. Sodium nitrate is the most preferred oxidizer.

  13. Microwave Enhanced Direct Cracking of Hydrocarbon Feedstock for Energy Efficient Production of Ethylene and Propylene.

    SciTech Connect (OSTI)

    Shulman, Holly; Fall, Morgana; Wagner, Eric; Bowlin, Ricardo

    2012-02-13

    This project demonstrated microwave cracking of ethane with good product conversion and ethylene selectivity, with a short residence time ({approx}0.001 sec). The laboratory scale equipment was designed and built, along with concept designs for larger scale implementation. The system was operated below atmospheric pressures, in the range of 15-55 torr, with argon as a carrier gas. The measured products included hydrogen, methane, acetylene, and ethylene. The results followed similar trends to those predicted by the modeling software SPYRO{reg_sign}, with the exception that the microwave appeared to produce slightly lower amounts of ethylene and methane, although enhanced analytical analysis should reduce the difference. Continued testing will be required to verify these results and quantify the energy consumption of microwave vs. conventional. The microwave cracking process is an attractive option due to the possibility of selectively heating the reaction volume rather than the reactor walls, which may allow novel reactor designs that result in more efficient production of ethylene. Supplemental studies are needed to continue the laboratory testing and refine processing parameters.

  14. Collector surface for a microwave tube comprising a carbon-bonded carbon-fiber composite

    DOE Patents [OSTI]

    Lauf, R.J.; McMillan, A.D.; Johnson, A.C.; Moorhead, A.J.

    1998-07-28

    In a microwave tube, an improved collector surface coating comprises a porous carbon composite material, preferably a carbon-bonded carbon fiber composite having a bulk density less than about 2 g/cc. Installation of the coating is readily adaptable as part of the tube manufacturing process. 4 figs.

  15. Collector surface for a microwave tube comprising a carbon-bonded carbon-fiber composite

    DOE Patents [OSTI]

    Lauf, Robert J. (Oak Ridge, TN); McMillan, April D. (Knoxville, TN); Johnson, Arvid C. (Lake in the Hills, IL); Moorhead, Arthur J. (Knoxville, TN)

    1998-01-01

    In a microwave tube, an improved collector surface coating comprises a porous carbon composite material, preferably a carbon-bonded carbon fiber composite having a bulk density less than about 2 g/cc. Installation of the coating is readily adaptable as part of the tube manufacturing process.

  16. Energy Efficient Microwave Hybrid Processing of Lime for Cement, Steel, and Glass Industries

    SciTech Connect (OSTI)

    Fall, Morgana L; Yakovlev, Vadim; Sahi, Catherine; Baranova, Inessa; Bowers, Johnney G; Esquenazi , Gibran L

    2012-02-10

    In this study, the microwave materials interactions were studied through dielectric property measurements, process modeling, and lab scale microwave hybrid calcination tests. Characterization and analysis were performed to evaluate material reactions and energy usage. Processing parameters for laboratory scale and larger scale calcining experiments were developed for MAT limestone calcination. Early stage equipment design concepts were developed, with a focus on microwave post heating treatment. The retrofitting of existing rotary calcine equipment in the lime industry was assessed and found to be feasible. Ceralink sought to address some of the major barriers to the uptake of MAT identified as the need for (1) team approach with end users, technology partners, and equipment manufacturers, (2) modeling that incorporates kiln materials and variations to the design of industrial microwave equipment. This project has furthered the commercialization effort of MAT by working closely with an industrial lime manufacturer to educate them regarding MAT, identifying equipment manufacturer to supply microwave equipment, and developing a sophisticated MAT modeling with WPI, the university partner. MAT was shown to enhance calcining through lower energy consumption and faster reaction rates compared to conventional processing. Laboratory testing concluded that a 23% reduction in energy was possible for calcining small batches (5kg). Scale-up testing indicated that the energy savings increased as a function of load size and 36% energy savings was demonstrated (22 kg). A sophisticated model was developed which combines simultaneous microwave and conventional heating. Continued development of this modeling software could be used for larger scale calcining simulations, which would be a beneficial low-cost tool for exploring equipment design prior to actual building. Based on these findings, estimates for production scale MAT calcining benefits were calculated, assuming uptake of MAT in the US lime industry. This estimate showed that 7.3 TBTU/year could be saved, with reduction of 270 MMlbs of CO2 emissions, and $29 MM/year in economic savings. Taking into account estimates for MAT implementation in the US cement industry, an additional 39 TBTU/year, 3 Blbs of CO2 and $155 MM/year could be saved. One of the main remaining barriers to commercialization of MAT for the lime and cement industries is the sheer size of production. Through this project, it was realized that a production size MAT rotary calciner was not feasible, and a different approach was adapted. The concept of a microwave post heat section located in the upper portion of the cooler was devised and appears to be a more realistic approach for MAT implementation. Commercialization of this technology will require (1) continued pilot scale calcining demonstrations, (2) involvement of lime kiln companies, and (3) involvement of an industrial microwave equipment provider. An initial design concept for a MAT post-heat treatment section was conceived as a retrofit into the cooler sections of existing lime rotary calciners with a 1.4 year payback. Retrofitting will help spur implementation of this technology, as the capital investment will be minimal for enhancing the efficiency of current rotary lime kilns. Retrofits would likely be attractive to lime manufacturers, as the purchase of a new lime kiln is on the order of a $30 million dollar investment, where as a MAT retrofit is estimated on the order of $1 million. The path for commercialization lies in partnering with existing lime kiln companies, who will be able to implement the microwave post heat sections in existing and new build kilns. A microwave equipment provider has been identified, who would make up part of the continued development and commercialization team.

  17. Comparative study of microwave radiation-induced magnetoresistive oscillations induced by circularly- and linearly- polarized photo-excitation

    SciTech Connect (OSTI)

    Ye, Tianyu; Liu, Han -Chun; Wang, Zhuo; Wegscheider, W.; Mani, Ramesh G.

    2015-10-09

    A comparative study of the radiation-induced magnetoresistance oscillations in the high mobility GaAs/AlGaAs heterostructure two dimensional electron system (2DES) under linearly- and circularly- polarized microwave excitation indicates a profound difference in the response observed upon rotating the microwave launcher for the two cases, although circularly polarized microwave radiation induced magnetoresistance oscillations observed at low magnetic fields are similar to the oscillations observed with linearly polarized radiation. For the linearly polarized radiation, the magnetoresistive response is a strong sinusoidal function of the launcher rotation (or linear polarization) angle, θ. As a result, for circularly polarized radiation, the oscillatory magnetoresistive response is hardly sensitive to θ.

  18. Channeling of microwave radiation in a double line containing a plasma filament produced by intense femtosecond laser pulses in air

    SciTech Connect (OSTI)

    Bogatov, N A; Kuznetsov, A I; Smirnov, A I; Stepanov, A N

    2009-10-31

    The channeling of microwave radiation is demonstrated experimentally in a double line in which a plasma filament produced in air by intense femtosecond laser pulses serves as one of the conductors. It is shown that during the propagation of microwave radiation in this line, ultrashort pulses are formed, their duration monotonically decreasing with increasing the propagation length (down to the value comparable with the microwave field period). These effects can be used for diagnostics of plasma in a filament. (laser applications and other topics in quantum electronics)

  19. COMPARISON OF TWO EPOCHS OF THE ZEEMAN EFFECT IN THE 44 GHz CLASS I METHANOL (CH{sub 3}OH) MASER LINE IN OMC-2

    SciTech Connect (OSTI)

    Momjian, E.; Sarma, A. P. E-mail: asarma@depaul.edu

    2012-12-01

    We present a second epoch of observations of the 44 GHz Class I methanol maser line toward the star-forming region Orion Molecular Cloud 2. The observations were carried out with the Very Large Array, and constitute one of the first successful Zeeman effect detections with the new Wide-band Digital Architecture correlator. Comparing to the result of our earlier epoch of data for this region, we find that the intensity of the maser increased by 50%, but the magnetic field value has stayed the same, within the errors. This suggests that the methanol maser may be tracing the large-scale magnetic field that is not affected by the bulk gas motions or turbulence on smaller scales that is causing the change in maser intensity.

  20. Environmental assessment for the satellite power system-concept development and evaluation program-microwave health and ecological effects

    SciTech Connect (OSTI)

    Not Available

    1980-11-01

    This report is concerned with the potential health and ecological effects of the microwave beam from the microwave power transmission system (MPTS) of the satellite power system (SPS). The report is written in the form of a detailed critical review of selected scientific articles from the published literature on the biological effects of nonionizing electromagnetic radiation, followed by an assessment of the possible effects of the SPS, based on exposure values for the reference system (US DOE and NASA, 1978).

  1. Extending lean operating limit and reducing emissions of methane spark-ignited engines using a microwave-assisted spark plug

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Rapp, Vi H.; DeFilippo, Anthony; Saxena, Samveg; Chen, Jyh-Yuan; Dibble, Robert W.; Nishiyama, Atsushi; Moon, Ahsa; Ikeda, Yuji

    2012-01-01

    Amore » microwave-assisted spark plug was used to extend the lean operating limit (lean limit) and reduce emissions of an engine burning methane-air. In-cylinder pressure data were collected at normalized air-fuel ratios of λ = 1.46, λ = 1.51, λ = 1.57, λ = 1.68, and λ = 1.75. For each λ, microwave energy (power supplied to the magnetron per engine cycle) was varied from 0 mJ (spark discharge alone) to 1600 mJ. At lean conditions, the results showed adding microwave energy to a standard spark plug discharge increased the number of complete combustion cycles, improving engine stability as compared to spark-only operation. Addition of microwave energy also increased the indicated thermal efficiency by 4% at λ = 1.68. At λ = 1.75, the spark discharge alone was unable to consistently ignite the air-fuel mixture, resulting in frequent misfires. Although microwave energy produced more consistent ignition than spark discharge alone at λ = 1.75, 59% of the cycles only partially burned. Overall, the microwave-assisted spark plug increased engine performance under lean operating conditions (λ = 1.68) but did not affect operation at conditions closer to stoichiometric.« less

  2. Optimization of microwave heating in an existing cubicle cavity by incorporating additional wave guide and control components

    SciTech Connect (OSTI)

    Erle, R.R.; Eschen, V.G.; Sprenger, G.S.

    1995-04-01

    The use of microwave energy to thermally treat Low Level (LLW), Transuranic (TRU), and mixed waste has been under development at the Rocky Flats Environmental Technology Site (Site) since 1986. During that time, the technology has progressed from bench-scale tests, through pilot-scale tests, and finally to a full-scale demonstration unit. Experimental operations have been conducted on a variety of non-radioactive surrogates and actual radioactive waste forms. Through these studies and development efforts, the Microwave Vitrification Engineering Team (MVET) at Rocky Flats has successfully proven the application of microwave energy for waste treatment operations. In the microwave solidification process, microwave energy is used to heat a mixture of waste and glass frit to produce a vitrified product that meets all the current acceptance criteria at the final disposal sites. All of the development to date has utilized a multi-mode microwave system to provide the energy to treat the materials. Currently, evaluations are underway on modifications to the full-scale demonstration system that provide a single-mode operation as a possible method to optimize the system. This poster presentation describes the modifications made to allow the single-mode operation.

  3. DEVELOPMENT OF ADVANCED DRILL COMPONENTS FOR BHA USING MICROWAVE TECHNOLOGY INCORPORATING CARBIDE, DIAMOND COMPOSITES AND FUNCTIONALLY GRADED MATERIALS

    SciTech Connect (OSTI)

    Dinesh Agrawal; Rustum Roy

    2003-01-01

    The microwave processing of materials is a new emerging technology with many attractive advantages over the conventional methods. The advantages of microwave technology for various ceramic systems has already been demonstrated and proven. The recent developments at Penn State have succeeded in applying the microwave technology for the commercialization of WC/Co and diamond based cutting and drilling tools, effectively sintering of metallic materials, and fabrication of transparent ceramics for advanced applications. In recent years, the Microwave Processing and Engineering Center at Penn State University in collaboration with our industrial partner, Dennis Tool Co. has succeeded in commercializing the developed microwave technology partially funded by DOE for WC/Co and diamond based cutting and drilling tools for gas and oil exploration operations. In this program we have further developed this technology to make diamond-carbide composites and metal-carbide-diamond functionally graded materials. Several actual product of diamond-carbide composites have been processed in microwave with better performance than the conventional product. The functionally graded composites with diamond as one of the components has been for the first time successfully developed. These are the highlights of the project.

  4. Iron hydroxyl phosphate microspheres: Microwave-solvothermal ionic liquid synthesis, morphology control, and photoluminescent properties

    SciTech Connect (OSTI)

    Cao Shaowen; Zhu Yingjie; Cui Jingbiao

    2010-07-15

    A variety of iron hydroxyl phosphate (NH{sub 4}Fe{sub 2}(PO{sub 4}){sub 2}OH.2H{sub 2}O) nanostructures such as solid microspheres, microspheres with the core in the hollow shell, and double-shelled hollow microspheres were synthesized by a simple one-step microwave-solvothermal ionic liquid method. The effects of the experimental parameters on the morphology and crystal phase of the resultant materials were investigated. Structural dependent photoluminescence was observed from the double-shelled hollow microspheres and the underlying mechanisms were discussed. - Graphical abstract: A variety of iron hydroxyl phosphate (NH{sub 4}Fe{sub 2}(PO{sub 4}){sub 2}OH.2H{sub 2}O) nanostructures were synthesized by a simple one-step microwave-solvothermal ionic liquid method. Structural dependent photoluminescence was observed from the double-shelled hollow microspheres.

  5. Non-Linear Transmission Line (NLTL) Microwave Source Lecture Notes the United States Particle Accelerator School

    SciTech Connect (OSTI)

    Russell, Steven J.; Carlsten, Bruce E.

    2012-06-26

    We will quickly go through the history of the non-linear transmission lines (NLTLs). We will describe how they work, how they are modeled and how they are designed. Note that the field of high power, NLTL microwave sources is still under development, so this is just a snap shot of their current state. Topics discussed are: (1) Introduction to solitons and the KdV equation; (2) The lumped element non-linear transmission line; (3) Solution of the KdV equation; (4) Non-linear transmission lines at microwave frequencies; (5) Numerical methods for NLTL analysis; (6) Unipolar versus bipolar input; (7) High power NLTL pioneers; (8) Resistive versus reactive load; (9) Non-lineaer dielectrics; and (10) Effect of losses.

  6. Energy density dependence of hydrogen combustion efficiency in atmospheric pressure microwave plasma

    SciTech Connect (OSTI)

    Yoshida, T.; Ezumi, N.; Sawada, K.; Tanaka, Y.; Tanaka, M.; Nishimura, K.

    2015-03-15

    The recovery of tritium in nuclear fusion plants is a key issue for safety. So far, the oxidation procedure using an atmospheric pressure plasma is expected to be part of the recovery method. In this study, in order to clarify the mechanism of hydrogen oxidation by plasma chemistry, we have investigated the dependence of hydrogen combustion efficiency on gas flow rate and input power in the atmospheric pressure microwave plasma. It has been found that the combustion efficiency depends on energy density of absorbed microwave power. Hence, the energy density is considered as a key parameter for combustion processes. Also neutral gas temperatures inside and outside the plasma were measured by an optical emission spectroscopy method and thermocouple. The result shows that the neutral gas temperature in the plasma is much higher than the outside temperature of plasma. The high neutral gas temperature may affect the combustion reaction. (authors)

  7. Dipole-dipole broadening of Rb ns-np microwave transitions

    SciTech Connect (OSTI)

    Park, Hyunwook; Tanner, P. J.; Claessens, B. J.; Shuman, E. S.; Gallagher, T. F.

    2011-08-15

    The dipole-dipole broadening of ns-np microwave transitions of cold Rb Rydberg atoms in a magneto-optical trap has been recorded for 28{<=}n{<=}51. Since the electric dipole transition matrix elements scale as n{sup 2}, a broadening rate scaling as n{sup 4} is expected and a broadening rate of 8.2x10{sup -15}n{sup 4} MHz cm{sup 3} is observed. The observed broadening is smaller than expected from a classical picture due to the spin-orbit interaction in the np atoms. The broadened resonances are asymmetric and cusp shaped, and their line shapes can be reproduced by a diatomic model which takes into account the dipole-dipole interaction, including the spin-orbit interaction, the strengths of the allowed microwave transitions, and the distribution of the atomic spacings in the trap.

  8. Method for digesting spent ion exchange resins and recovering actinides therefrom using microwave radiation

    DOE Patents [OSTI]

    Maxwell, III, Sherrod L. (Aiken, SC); Nichols, Sheldon T. (Augusta, GA)

    1999-01-01

    The present invention relates to methods for digesting diphosphonic acid substituted cation exchange resins that have become loaded with actinides, rare earth metals, or heavy metals, in a way that allows for downstream chromatographic analysis of the adsorbed species without damage to or inadequate elution from the downstream chromatographic resins. The methods of the present invention involve contacting the loaded diphosphonic acid resin with concentrated oxidizing acid in a closed vessel, and irradiating this mixture with microwave radiation. This efficiently increases the temperature of the mixture to a level suitable for digestion of the resin without the use of dehydrating acids that can damage downstream analytical resins. In order to ensure more complete digestion, the irradiated mixture can be mixed with hydrogen peroxide or other oxidant, and reirradiated with microwave radiation.

  9. Microwave plasma assisted supersonic gas jet deposition of thin film materials

    DOE Patents [OSTI]

    Schmitt, J.J. III; Halpern, B.L.

    1993-10-26

    An apparatus for fabricating thin film materials utilizing high speed gas dynamics relies on supersonic free jets of carrier gas to transport depositing vapor species generated in a microwave discharge to the surface of a prepared substrate where the vapor deposits to form a thin film. The present invention generates high rates of deposition and thin films of unforeseen high quality at low temperatures. 5 figures.

  10. Impacts of microwave pretreatments on the semi-continuous anaerobic digestion of dairy waste activated sludge

    SciTech Connect (OSTI)

    Uma Rani, R.; Adish Kumar, S.; Kaliappan, S.; Yeom, IckTae; Rajesh Banu, J.

    2013-05-15

    Highlights: ? Microwave pretreatment of dairy WAS was studied. ? MW pretreatment at 70% intensity for 12 min, COD solubilization was 18.6%. ? Biogas production and SS reduction was 35% and 14% higher than control. ? In digester at 15 days SRT with medium OLR, SS and VS reduction was 67% and 64%. ? Biogas and methane production was 57% and 49% higher than control, in digesters. - Abstract: Microwave (MW) irradiation is one of the new and possible methods used for pretreating the sludge. Following its use in different fields, this MW irradiation method has proved to be more appropriate in the field of environmental research. In this paper, we focused on the effects of MW irradiation at different intensities on solubilization, biodegradation and anaerobic digestion of sludge from the dairy sludge. The changes in the soluble fractions of the organic matter, the biogas yield, the methane content in the biogas were used as control parameters for evaluating the efficiency of the MW pretreatment. Additionally, the energetic efficiency was also examined. In terms of an energetic aspect, the most economical pretreatment of sludge was at 70% intensity for 12 min irradiation time. At this, COD solubilization, SS reduction and biogas production were found to be 18.6%, 14% and 35% higher than the control, respectively. Not only the increase in biogas production was investigated, excluding protein and carbohydrate hydrolysis was also performed successfully by this microwave pretreatment even at low irradiation energy input. Also, experiments were carried out in semi continuous anaerobic digesters, with 3.5 L working volume. Combining microwave pretreatment with anaerobic digestion led to 67%, 64% and 57% of SS reduction, VS reduction and biogas production higher than the control, respectively.

  11. Detecting Drizzle in Marine Warm Clouds Using Visible, Infrared, and Microwave Satellite Data

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Drizzle in Marine Warm Clouds Using Visible, Infrared, and Microwave Satellite Data H. Shao and G. Liu Florida State University Tallahassee, Florida Introduction Determining the radiative effects of aerosols is one of the most important areas in climate research. There are observational evidences showing that aerosols can affect the radiative balance of the earth indirectly - as the number of aerosols increases, water in the cloud spreads over many more particles. Large concentrations of small

  12. Determining Cloud Ice Water Path from High-Frequency Microwave Measurements

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Determining Cloud Ice Water Path from High-Frequency Microwave Measurements G. Liu Department of Meteorology Florida State University Tallahassee, Florida Introduction A better understanding of cloud water content and its large-scale distribution is important to climate research for improving our ability to parameterize and validate cloud/precipitation processes in global climate models. The goal of this study is to determine the distribution and large-scale advection of cloud ice/liquid water

  13. Electromagnetic model for near-field microwave microscope with atomic resolution: Determination of tunnel junction impedance

    SciTech Connect (OSTI)

    Reznik, Alexander N.

    2014-08-25

    An electrodynamic model is proposed for the tunneling microwave microscope with subnanometer space resolution as developed by Lee et al. [Appl. Phys. Lett. 97, 183111 (2010)]. Tip-sample impedance Z{sub a} was introduced and studied in the tunneling and non-tunneling regimes. At tunneling breakdown, the microwave current between probe and sample flows along two parallel channels characterized by impedances Z{sub p} and Z{sub t} that add up to form overall impedance Z{sub a}. Quantity Z{sub p} is the capacitive impedance determined by the near field of the probe and Z{sub t} is the impedance of the tunnel junction. By taking into account the distance dependences of effective tip radius r{sub 0}(z) and tunnel resistance R{sub t}(z)?=?Re[Z{sub t}(z)], we were able to explain the experimentally observed dependences of resonance frequency f{sub r}(z) and quality factor Q{sub L}(z) of the microscope. The obtained microwave resistance R{sub t}(z) and direct current tunnel resistance R{sub t}{sup dc}(z) exhibit qualitatively similar behavior, although being largely different in both magnitude and the characteristic scale of height dependence. Interpretation of the microwave images of the atomic structure of test samples proved possible by taking into account the inductive component of tunnel impedance ImZ{sub t}?=??L{sub t}. Relation ?L{sub t}/R{sub t}???0.235 was obtained.

  14. Synthesis and characterization of zinc borophosphates with ANA-zeotype framework by the microwave method

    SciTech Connect (OSTI)

    Song, Yu, E-mail: songyu@dlpu.edu.cn [Dalian Polytechnic University, Dalian 116034 (China); Ding, Ling; An, Qingda; Zhai, Shangru [Dalian Polytechnic University, Dalian 116034 (China); Song, Xiaowei [State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012 (China)

    2013-06-15

    Zinc borophosphate (NH{sub 4}){sub 16}[Zn{sub 16}B{sub 8}P{sub 24}O{sub 96}] (denoted as ZnBP-ANA) with ANA-zeotype structure has been synthesized by employing microwave-assisted solvothermal synthesis in the reaction system ZnCl{sub 2}?6H{sub 2}O-(NH{sub 4}){sub 2}HPO{sub 4}H{sub 3}BO{sub 3} using ethylene glycol as a co-solvent. The influences of various experimental parameters, such as reaction temperature, solvent ratio, zinc precursors and reactive power, have been systematically investigated. The products were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and thermogravimetric analysis (TGA), and so on. Small and homogeneous ZnBP-ANA single crystal with regular cube morphology are crystallized by using microwave solvothermal synthesis method within a shorter time, and its grain size decreases with power. - Graphical abstract: Tailor-made ANA zeolites with varied size can be prepared by simply changing the reaction power. - Highlights: Zinc borophosphate zeolites with ANA-zeotype structures were prepared by microwave technique. The size of crystals could be controlled by tuning power. Synthesis period can be significantly reduced by raising reaction temperature.

  15. MONITORING POWER PLANT EFFICIENCY USING THE MICROWAVE-EXCITED PHOTOACOUSTIC EFFECT TO MEASURE UNBURNED CARBON

    SciTech Connect (OSTI)

    Robert C. Brown; Robert J. Weber; Andrew A. Suby

    2002-05-13

    Three test instruments are being evaluated to determine the feasibility of using photo-acoustic technology for measuring unburned carbon in fly ash. The first test instrument is a single microwave frequency system previously constructed to measure photo-acoustic signals in an off-line configuration. This system was assembled and used to begin testing parameters thought to be influential in the resulting photo-acoustic signal output. A standard modulation frequency was chosen based upon signal to noise data gained from experimentation. Sample heterogeneity was tested and found not to be influential. Many other tests were performed during the second quarter. Preliminary results show that compression and photo-acoustic volume have an impact on photo-acoustic signal. Conclusions regarding the data for sample bulk density, temperature, humidity, moisture content, and linearity are pending further review. Conclusions for ambient temperature and humidity are pending further review as well. Simultaneously, a second instrument is to be constructed based in part on lessons learned with the first instrument, and to expand the capabilities of the first instrument. Improvements include a control loop to allow more constant microwave power output and an ability to operate over a range of microwave frequencies. To date, the design of the second instrument has been completed and most of the components received. The third instrument will be designed based on the experiences of the first two instruments and will operate in an on-line carbon-in-ash monitoring system for coal-fired power plants.

  16. Controlling output pulse and prepulse in a resonant microwave pulse compressor

    SciTech Connect (OSTI)

    Shlapakovski, A.; Artemenko, S.; Chumerin, P.; Yushkov, Yu.

    2013-02-07

    A resonant microwave pulse compressor with a waveguide H-plane-tee-based energy extraction unit was studied in terms of its capability to produce output pulses that comprise a low-power long-duration (prepulse) and a high-power short-duration part. The application of such combined pulses with widely variable prepulse and high-power pulse power and energy ratios is of interest in the research area of electronic hardware vulnerability. The characteristics of output radiation pulses are controlled by the variation of the H-plane tee transition attenuation at the stage of microwave energy storage in the compressor cavity. Results of theoretical estimations of the parameters tuning range and experimental investigations of the prototype S-band compressor (1.5 MW, 12 ns output pulse; {approx}13.2 dB gain) are presented. The achievable maximum in the prepulse power is found to be about half the power of the primary microwave source. It has been shown that the energy of the prepulse becomes comparable with that of the short-duration (nanosecond) pulse, while the power of the latter decreases insignificantly. The possible range of variation of the prepulse power and energy can be as wide as 40 dB. In the experiments, the prepulse level control within the range of {approx}10 dB was demonstrated.

  17. Desilication of ZSM-5 zeolites for mesoporosity development using microwave irradiation

    SciTech Connect (OSTI)

    Hasan, Zubair; Jun, Jong Won; Kim, Chul-Ung; Jeong, Kwang-Eun; Jeong, Soon-Yong; Jhung, Sung Hwa

    2015-01-15

    Highlights: Microwaves have beneficial effects on desilication of zeolites. Produced mesopores with microwaves have narrow pore-size distribution. Advantages and disadvantages of various desilicating agents were also reported. - Abstract: Mesoporous ZSM-5 zeolite was obtained by desilication in alkaline solutions with microwave (MW) and conventional electric (CE) heating under hydrothermal conditions. Both methods were effective in the production of mesoporous zeolites; however, MW was more efficient than CE as it led to well-defined mesopores with relatively small sizes and a narrow size distribution within a short treatment time. Moreover, the mesoporous ZSM-5 obtained through this method was effective in producing less bulky products from an acid-catalyzed reaction, specifically the butylation of phenol. Finally, various bases were found to have advantages and disadvantages in desilication. NaOH was the most reactive; however, macroporosity could develop easily under a severe condition. Ammonia water was weakly reactive; however, it could be used to precisely control the pore architecture, and no ion exchange is needed for acid catalysis. Organic amines such as ethylenediamine can also be used in desilication.

  18. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    31, 2009 [Facility News] Scanning Radiometers Probe Inside of Clouds Bookmark and Share For one month, three of these microwave radiometers at the SGP site, along with two more from the University of Colorado, will be arranged in series to continuously scan clouds passing overhead. For one month, three of these microwave radiometers at the SGP site, along with two more from the University of Colorado, will be arranged in series to continuously scan clouds passing overhead. A key contributor

  19. liljegren(1)-99.PDF

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Automatic Self-Calibration of ARM Microwave Radiometers J. C. Liljegren Ames Laboratory Ames, Iowa Introduction The Atmospheric Radiation Measurement (ARM) Program has deployed continuously operating Microwave Radiometers in remote locations including rural Oklahoma, islands in the tropical Pacific Ocean, and in northern Alaska. In order to assure that their calibrations are properly maintained, algorithms that permit the radiometer calibrations to be automatically and continuously updated have

  20. Rapid Microwave Preparation of Highly Efficient Ce[superscript 3+]-Substituted Garnet Phosphors for Solid State White Lighting

    SciTech Connect (OSTI)

    Birkel, Alexander; Denault, Kristin A.; George, Nathan C.; Doll, Courtney E.; Hry, Bathylle; Mikhailovsky, Alexander A.; Birkel, Christina S.; Hong, Byung-Chul; Seshadri, Ram (UCSB); (Mitsubishi)

    2012-04-30

    Ce{sup 3+}-substituted aluminum garnet compounds of yttrium (Y{sub 3}Al{sub 5}O{sub 12}) and lutetium (Lu{sub 3}Al{sub 5}O{sub 12}) - both important compounds in the generation of (In,Ga)N-based solid state white lighting - have been prepared using a simple microwave heating technique involving the use of a microwave susceptor to provide the initial heat source. Carbon used as the susceptor additionally creates a reducing atmosphere around the sample that helps stabilize the desired luminescent compound. High quality, phase-pure materials are prepared within a fraction of the time and using a fraction of the energy required in a conventional ceramic preparation; the microwave technique allows for a reduction of about 95% in preparation time, making it possible to obtain phase pure, Ce{sup 3+}-substituted garnet compounds in under 20 min of reaction time. It is estimated that the overall reduction in energy compared with ceramic routes as practiced in the lab is close to 99%. Conventionally prepared material is compared with material prepared using microwave heating in terms of structure, morphology, and optical properties, including quantum yield and thermal quenching of luminescence. Finally, the microwave-prepared compounds have been incorporated into light-emitting diode 'caps' to test their performance characteristics in a real device, in terms of their photon efficiency and color coordinates.