National Library of Energy BETA

Sample records for ghg mitigation potential

  1. National and Sectoral GHG Mitigation Potential: A Comparison...

    Open Energy Info (EERE)

    and Sectoral GHG Mitigation Potential: A Comparison Across Models Jump to: navigation, search Tool Summary LAUNCH TOOL Name: National and Sectoral GHG Mitigation Potential: A...

  2. GHG Mitigation Potential, Costs and Benefits in Global Forests: ADynamic Partial Equilibrium Approach

    SciTech Connect (OSTI)

    Sathaye, Jayant; Makundi, Willy; Dale, Larry; Chan, Peter; Andrasko, Kenneth

    2005-03-22

    This paper reports on the global potential for carbonsequestration in forest plantations, and the reduction of carbonemissions from deforestation, in response to six carbon price scenariosfrom 2000 to 2100. These carbon price scenarios cover a range typicallyseen in global integrated assessment models. The world forest sector wasdisaggregated into tenregions, four largely temperate, developedregions: the European Union, Oceania, Russia, and the United States; andsix developing, mostly tropical, regions: Africa, Central America, China,India, Rest of Asia, and South America. Three mitigation options -- long-and short-rotation forestry, and the reduction of deforestation -- wereanalyzed using a global dynamic partial equilibrium model (GCOMAP). Keyfindings of this work are that cumulative carbon gain ranges from 50.9 to113.2 Gt C by 2100, higher carbon prices early lead to earlier carbongain and vice versa, and avoided deforestation accounts for 51 to 78percent of modeled carbon gains by 2100. The estimated present value ofcumulative welfare change in the sector ranges from a decline of $158billion to a gain of $81 billion by 2100. The decline is associated witha decrease in deforestation.

  3. Buildings GHG Mitigation Estimator Worksheet, Version 1

    Broader source: Energy.gov [DOE]

    Xcel document describes Version 1 of the the Buildings GHG Mitigation Estimator tool. This tool assists federal agencies in estimating the greenhouse gas mitigation reduction from implementing energy efficiency measures across a portfolio of buildings. It is designed to be applied to groups of office buildings, for example, at a program level (regional or site) that can be summarized at the agency level. While the default savings and cost estimates apply to office buildings, users can define their own efficiency measures, costs, and savings estimates for inclusion in the portfolio assessment. More information on user-defined measures can be found in Step 2 of the buildings emission reduction guidance. The output of this tool is a prioritized set of activities that can help the agency to achieve its greenhouse gas reduction targets most cost-effectively.

  4. Estimating the potential of greenhouse gas mitigation in Kazakhstan

    SciTech Connect (OSTI)

    Monacrovich, E.; Pilifosova, O.; Danchuck, D.

    1996-09-01

    As part of the studies related to the obligations of the UN Framework Convention on Climate Change, the Republic of Kazakhstan started activities to inventory greenhouse gas (GHG) emissions and assess of GHG mitigation options, The objective of this paper is to present an estimate of the possibility of mitigating GHG emissions and determine the mitigation priorities. It presents a compilation of the possible options and their assessment in terms of major criteria and implementation feasibility. Taking into account the structure of GHG emissions in Kazakhstan in 1990, preliminary estimates of the potential for mitigation are presented for eight options for the energy sector and agriculture and forestry sector. The reference scenario prepared by expert assessments assumes a reduction of CO{sub 2} emissions in 1996-1998 by about 26% from the 1990 level due to general economic decline, but then emissions increase. It is estimated that the total potential for the mitigation of CO{sub 2} emissions for the year 2000 is 3% of the CO{sub 2} emissions in the reference scenario. The annual reduction in methane emissions due to the estimated options can amount to 5%-6% of the 1990 level. 10 refs., 1 fig., 4 tabs.

  5. Low Carbon Growth: a Potential Path for Mexico - GHG Abatement...

    Open Energy Info (EERE)

    "ESMAP Low Carbon Growth Country Studies Program" Retrieved from "http:en.openei.orgwindex.php?titleLowCarbonGrowth:aPotentialPathforMexico-GHGAbatementCostCurve&...

  6. Mitigating Potential Environmental Impacts of Energy Development |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Mitigating Potential Environmental Impacts of Energy Development Mitigating Potential Environmental Impacts of Energy Development April 15, 2013 - 12:00am Addthis Partnering with EERE, Normandeau Associates of Bedford, New Hampshire, developed a tool that characterizes the risk for bird and bat species that may be susceptible to collisions with wind turbines. This tool will be used in environmental decision-making for the planning, siting, and assessments of wind

  7. GBTL Workshop GHG Emissions | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    GHG Emissions GBTL Workshop GHG Emissions EERE Presentation of Greenhouse Gas EmissionsResource Potential gbtlworkshopghgemissions.pdf More Documents & Publications GBTL...

  8. GHG | Open Energy Information

    Open Energy Info (EERE)

    Jump to: navigation, search Name: GHG Place: Germany Sector: Services Product: General Financial & Legal Services ( Private family-controlled ) References: GHG1 This article...

  9. Forestry mitigation potential and costs in developing countries - Preface

    SciTech Connect (OSTI)

    Sathaye, Jayant A.; Makundi, Willy; Andrasko, Kenneth

    2001-01-01

    The forest sector in Tanzania offers ample opportunities to reduce greenhouse gas emissions (GHG) and sequestered carbon (C) in terrestrial ecosystems. More than 90% of the country's demand for primary energy is obtained from biomass mostly procured unsustainably from natural forests. This study examines the potential to sequester C through expansion of forest plantations aimed at reducing the dependence on natural forest for wood fuel production, as well as increase the country's output of industrial wood from plantations. These were compared ton conservation options in the tropical and miombo ecosystems. Three sequestration options were analyzed, involving the establishment of short rotation and long rotation plantations on about 1.7 x 106 hectares. The short rotation community forest option has a potential to sequester an equilibrium amount of 197.4 x 106 Mg C by 2024 at a net benefit of $79.5 x 106, while yielding a NPV of $0.46 Mg-1 C. The long rotation options for softwood and hardwood plantations will reach an equilibrium sequestration of 5.6 and 11.8 x 106 Mg C at a negative NPV of $0.60 Mg-1 C and $0.32 Mg-1 C. The three options provide cost competitive opportunities for sequestering about 7.5 x 106 Mg C yr -1 while providing desired forest products and easing the pressure on the natural forests in Tanzania. The endowment costs of the sequestration options were all found to be cheaper than the emission avoidance cost for conservation options which had an average cost of $1.27 Mg-1 C, rising to $7.5 Mg-1 C under some assumptions on vulnerability to encroachment. The estimates shown here may represent the upper bound, because the actual potential will be influenced by market prices for inputs and forest products, land use policy constraints and the structure of global C transactions.

  10. GHG Management Institute curriculum | Open Energy Information

    Open Energy Info (EERE)

    Inventories * 302 GHG Accounting for Forest Projects * 311 GHG Accounting for Landfill Methane Projects (forthcoming) * 312 GHG Accounting for Coalmine Methane Projects * 321 GHG...

  11. GHG Management Institute GHG MRV Curriculum | Open Energy Information

    Open Energy Info (EERE)

    measure and report their carbon footprints. Coursework will cover the basics of GHG accounting and reporting to The Registry as well as GHG verification for inventories,...

  12. National integrated mitigation planning in agriculture: A review...

    Open Energy Info (EERE)

    National integrated mitigation planning in agriculture: A review paper This review of national greenhouse gas (GHG) mitigation planning in the agriculture sector has two...

  13. IGES GHG Emissions Data | Open Energy Information

    Open Energy Info (EERE)

    GHG inventory Resource Type: Dataset Website: www.iges.or.jpencdmreportkyoto.html References: IGES GHG Emissions Data1 Summary "IGES GHG Emissions Data is aimed at...

  14. Mitigation potential and cost in tropical forestry - relative role for agroforestry

    SciTech Connect (OSTI)

    Makundi, Willy R.; Sathaye, Jayant A.

    2004-01-01

    This paper summarizes studies of carbon mitigation potential (MP) and costs of forestry options in seven developing countries with a focus on the role of agroforestry. A common methodological approach known as comprehensive mitigation assessment process (COMAP) was used in each study to estimate the potential and costs between 2000 and 2030. The approach requires the projection of baseline and mitigation land-use scenarios derived from the demand for forest products and forestland for other uses such as agriculture and pasture. By using data on estimated carbon sequestration, emission avoidance, costs and benefits, the model enables one to estimate cost effectiveness indicators based on monetary benefit per t C, as well as estimates of total mitigation costs and potential when the activities are implemented at equilibrium level. The results show that about half the MP of 6.9 Gt C (an average of 223 Mt C per year) between 2000 and 2030 in the seven countries could be achieved at a negative cost, and the other half at costs not exceeding $100 per t C. Negative cost indicates that non-carbon revenue is sufficient to offset direct costs of about half of the options. The agroforestry options analyzed bear a significant proportion of the potential at medium to low cost per t C when compared to other options. The role of agroforestry in these countries varied between 6% and 21% of the MP, though the options are much more cost effective than most due to the low wage or opportunity cost of rural labor. Agroforestry options are attractive due to the large number of people and potential area currently engaged in agriculture, but they pose unique challenges for carbon and cost accounting due to the dispersed nature of agricultural activities in the tropics, as well as specific difficulties arising from requirements for monitoring, verification, leakage assessment and the establishment of credible baselines.

  15. Monitoring and Assessment of Greenhouse Gas Emissions and Mitigation...

    Open Energy Info (EERE)

    the MAGHG project is to support developing countries assess and report their greenhouse gas (GHG) emissions from agriculture, including assessment of mitigation options for...

  16. GHG Management Institute | Open Energy Information

    Open Energy Info (EERE)

    GHG Management Institute Jump to: navigation, search Name: GHG Management Institute Address: Greenhouse Gas Management Institute 9215 View Avenue NW Seattle, WA USA 98117 Place:...

  17. Marine and Hydrokinetic Renewable Energy Devices, Potential Navigational Hazards and Mitigation Measures

    SciTech Connect (OSTI)

    Cool, Richard, M.; Hudon, Thomas, J.; Basco, David, R.; Rondorf, Neil, E.

    2009-12-01

    On April 15, 2008, the Department of Energy (DOE) issued a Funding Opportunity Announcement for Advanced Water Power Projects which included a Topic Area for Marine and Hydrokinetic Renewable Energy Market Acceleration Projects. Within this Topic Area, DOE identified potential navigational impacts of marine and hydrokinetic renewable energy technologies and measures to prevent adverse impacts on navigation as a sub-topic area. DOE defines marine and hydrokinetic technologies as those capable of utilizing one or more of the following resource categories for energy generation: ocean waves; tides or ocean currents; free flowing water in rivers or streams; and energy generation from the differentials in ocean temperature. PCCI was awarded Cooperative Agreement DE-FC36-08GO18177 from the DOE to identify the potential navigational impacts and mitigation measures for marine hydrokinetic technologies. A technical report addressing our findings is available on this Science and Technology Information site under the Product Title, "Marine and Hydrokinetic Renewable Energy Technologies: Potential Navigational Impacts and Mitigation Measures". This product is a brochure, primarily for project developers, that summarizes important issues in that more comprehensive report, identifies locations where that report can be downloaded, and identifies points of contact for more information.

  18. Marine and Hydrokinetic Renewable Energy Technologies: Potential Navigational Impacts and Mitigation Measures

    SciTech Connect (OSTI)

    Cool, Richard, M.; Hudon, Thomas, J.; Basco, David, R.; Rondorf, Neil, E.

    2009-12-10

    On April 15, 2008, the Department of Energy (DOE) issued a Funding Opportunity Announcement for Advanced Water Power Projects which included a Topic Area for Marine and Hydrokinetic Renewable Energy Market Acceleration Projects. Within this Topic Area, DOE identified potential navigational impacts of marine and hydrokinetic renewable energy technologies and measures to prevent adverse impacts on navigation as a sub-topic area. DOE defines marine and hydrokinetic technologies as those capable of utilizing one or more of the following resource categories for energy generation: ocean waves; tides or ocean currents; free flowing water in rivers or streams; and energy generation from the differentials in ocean temperature. PCCI was awarded Cooperative Agreement DE-FC36-08GO18177 from the DOE to identify the potential navigational impacts and mitigation measures for marine hydrokinetic technologies, as summarized herein. The contract also required cooperation with the U.S. Coast Guard (USCG) and two recipients of awards (Pacific Energy Ventures and reVision) in a sub-topic area to develop a protocol to identify streamlined, best-siting practices. Over the period of this contract, PCCI and our sub-consultants, David Basco, Ph.D., and Neil Rondorf of Science Applications International Corporation, met with USCG headquarters personnel, with U.S. Army Corps of Engineers headquarters and regional personnel, with U.S. Navy regional personnel and other ocean users in order to develop an understanding of existing practices for the identification of navigational impacts that might occur during construction, operation, maintenance, and decommissioning. At these same meetings, “standard” and potential mitigation measures were discussed so that guidance could be prepared for project developers. Concurrently, PCCI reviewed navigation guidance published by the USCG and international community. This report summarizes the results of this effort, provides guidance in the form of a checklist for assessing the navigational impacts of potential marine and hydrokinetic projects, and provides guidance for improving the existing navigational guidance promulgated by the USCG in Navigation Vessel Inspection Circular 02 07. At the request of the USCG, our checklist and mitigation guidance was written in a generic nature so that it could be equally applied to offshore wind projects. PCCI teleconferenced on a monthly basis with DOE, Pacific Energy Ventures and reVision in order to share information and review work products. Although the focus of our effort was on marine and hydrokinetic technologies, as defined above, this effort drew upon earlier work by the USCG on offshore wind renewable energy installations. The guidance provided herein can be applied equally to marine and hydrokinetic technologies and to offshore wind, which are collectively referred to by the USCG as Renewable Energy Installations.

  19. The potential of wetlands for mitigating adverse effects of agricultural drainage

    SciTech Connect (OSTI)

    Silverman, G.S.

    1995-12-01

    Agricultural runoff has been clearly identified as a major contributor to the failure of much of the surface water in the United States to meet designated use objectives. Control of agricultural drainage is very problematic. The agriculture industry strongly resists mandated controls, and warns of potential catastrophic consequences in food shortages should production methods be altered. Yet concern grows over the long and short term impact of a variety of contaminants - particularly sediments, nutrients, and pesticides - released to our waters as part of normal agricultural practices. For quite some time, wetlands have been explored for their potential in treating sewage (from both municipal and private systems) and acid mine drainage. Much less work has been done looking at the potential for wetlands to treat agricultural drainage. yet, wetlands may offer tremendous potential for mitigating problems of agricultural runoff while offering farmers desirable (or at least acceptable) uses of marginal land. This paper has two objectives. First, the opportunities for wetlands to be used as agricultural drainage treatment facilities are described. Processes are identified which trap or degrade pollutants, with particular attention given to long-term environmental fate. Second, an experimental wetlands system recently developed in Northwest Ohio is used as an example of system implementation. Emphasis will be given to how the system was developed to optimize pollutant removal within the physical constraints of the site. Preliminary performance data with respect to water quality changes will also be presented.

  20. Attachment C - Summary GHG Emissions Data FINAL | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    - Summary GHG Emissions Data FINAL Attachment C - Summary GHG Emissions Data FINAL File Attachment C - Summary GHG Emissions Data FINAL More Documents & Publications Attachment C

  1. Attachment C Summary GHG Emissions Data FINAL | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Summary GHG Emissions Data FINAL Attachment C Summary GHG Emissions Data FINAL File Attachment-C-Summary-GHG-Emissions-Data-FINAL.xlsx More Documents & Publications Attachment C -

  2. UNFCCC-GHG Inventory Review Training Program | Open Energy Information

    Open Energy Info (EERE)

    UNFCCC-GHG Inventory Review Training Program (Redirected from UNFCCC GHG Inventory Review Training Program) Jump to: navigation, search Tool Summary LAUNCH TOOL Name: UNFCCC GHG...

  3. Acting Globally: Potential Carbon Emissions Mitigation Impacts from an International Standards and Labelling Program

    SciTech Connect (OSTI)

    McNeil, Michael A; Letschert, Virginie E.; de la Rue du Can, Stephane; Egan, Christine

    2009-05-29

    This paper presents an analysis of the potential impacts of an international initiative designed to support and promote the development and implementation of appliances standards and labelling programs throughout the world. As part of previous research efforts, LBNL developed the Bottom Up Energy Analysis System (BUENAS), an analysis framework that estimates impact potentials of energy efficiency policies on a global scale. In this paper, we apply this framework to an initiative that would result in the successful implementation of programs focused on high priority regions and product types, thus evaluating the potential impacts of such an initiative in terms of electricity savings and carbon mitigation in 2030. In order to model the likely parameters of such a program, we limit impacts to a five year period starting in 2009, but assume that the first 5 years of a program will result in implementation of 'best practice' minimum efficiency performance standards by 2014. The 'high priority' regions considered are: Brazil, China, the European Union,India, Mexico and the United States. The products considered are: refrigerators, air conditioners, lighting (both fluorescent and incandescent), standby power (for consumer electronics) and televisions in the residential sector, and air conditioning and lighting in commercial buildings. In 2020, these regions and enduses account for about 37percent of global residential electricity and 29percent of electricity in commercial buildings. We find that 850Mt of CO2 could be saved in buildings by 2030 compared to the baseline forecast.

  4. Carbon mitigation potential and costs of forestry options in Brazil, China, India, Indonesia, Mexico, the Philippines and Tanzania

    SciTech Connect (OSTI)

    Sathaye, J.; Makundi, W.; Andrasko, K.; Boer, R.; Ravindranath, N.; Sudha, P.; Rao, S.; Lasco, R.; Pulhin, F.; Masera, O.; Ceron, A.; Ordonez, J.; Deying, X.; Zhang, X.; Zuomin, S.

    2001-01-01

    This paper summarizes studies of carbon (C) mitigation potential and costs of about 40 forestry options in seven developing countries. Each study uses the same methodological approach - Comprehensive Mitigation Assessment Process (COMAP) - to estimate the above parameters between 2000 and 2030. The approach requires the projection of baseline and mitigation land-use scenarios. Coupled with data on a per ha basis on C sequestration or avoidance, and costs and benefits, it allows the estimation of monetary benefit per Mg C, and the total costs and carbon potential. The results show that about half (3.0 Pg C) the cumulative mitigation potential of 6.2 Petagram (Pg) C between 2000 and 2030 in the seven countries (about 200 x 106 Mg C yr-1) could be achieved at a negative cost and the remainder at costs ranging up to $100 Mg C-1. About 5 Pg C could be achieved, at a cost less than $20 per Mg C. Negative cost potential indicates that non-carbon revenue is sufficient to offset direct costs of these options. The achievable potential is likely to be smaller, however, due to market, institutional, and sociocultural barriers that can delay or prevent the implementation of the analyzed options.

  5. Oregon Trust Agreement Planning Project : Potential Mitigations to the Impacts on Oregon Wildlife Resources Associated with Relevant Mainstem Columbia River and Willamette River Hydroelectric Projects.

    SciTech Connect (OSTI)

    United States. Bonneville Power Administration.

    1993-10-01

    A coalition of the Oregon wildlife agencies and tribes (the Oregon Wildlife Mitigation Coalition) have forged a cooperative effort to promote wildlife mitigation from losses to Oregon wildlife resources associated with the four mainstream Columbia River and the eight Willamette River Basin hydroelectric projects. This coalition formed a Joint Advisory Committee, made up of technical representatives from all of the tribes and agencies, to develop this report. The goal was to create a list of potential mitigation opportunities by priority, and to attempt to determine the costs of mitigating the wildlife losses. The information and analysis was completed for all projects in Oregon, but was gathered separately for the Lower Columbia and Willamette Basin projects. The coalition developed a procedure to gather information on potential mitigation projects and opportunities. All tribes, agencies and interested parties were contacted in an attempt to evaluate all proposed or potential mitigation. A database was developed and minimum criteria were established for opportunities to be considered. These criteria included the location of the mitigation site within a defined area, as well as other criteria established by the Northwest Power Planning Council. Costs were established for general habitats within the mitigation area, based on estimates from certified appraisers. An analysis of the cost effectiveness of various types of mitigation projects was completed. Estimates of operation and maintenance costs were also developed. The report outlines strategies for gathering mitigation potentials, evaluating them, determining their costs, and attempting to move towards their implementation.

  6. National Planning for GHG Mitigation in Agriculture: A Guidance...

    Open Energy Info (EERE)

    Ease of Use: Simple Website: www.fao.orgdocrep018i3324ei3324e.pdf Language: English A significant proportion of developing countries have expressed an interest in...

  7. National Mitigation Planning in Agriculture: Review and Guidelines...

    Open Energy Info (EERE)

    Simple Website: www.fao.orgdocrep017i3237ei3237e.pdf Language: English This review of national greenhouse gas (GHG) mitigation planning in the agriculture sector provides...

  8. Tunisia-Capacity Development for GHG inventories and MRV | Open...

    Open Energy Info (EERE)

    Tunisia-Capacity Development for GHG inventories and MRV Jump to: navigation, search Name Capacity Development for GHG inventories and MRV in Tunisia AgencyCompany Organization...

  9. Tunisia-Capacity Development for GHG inventories and MRV | Open...

    Open Energy Info (EERE)

    Development for GHG inventories and MRV in Tunisia) Jump to: navigation, search Name Capacity Development for GHG inventories and MRV in Tunisia AgencyCompany Organization...

  10. EPA-GHG Inventory Capacity Building | Open Energy Information

    Open Energy Info (EERE)

    EPA-GHG Inventory Capacity Building Jump to: navigation, search Tool Summary Name: US EPA GHG inventory Capacity Building AgencyCompany Organization: United States Environmental...

  11. UNFCCC Individual Reviews of GHG Inventories | Open Energy Information

    Open Energy Info (EERE)

    search Name UNFCCC Individual Reviews of GHG Inventories AgencyCompany Organization United Nations Framework Convention on Climate Change Sector Energy, Land Topics GHG...

  12. UNFCCC-GHG Inventory Review Training Program | Open Energy Information

    Open Energy Info (EERE)

    Logo: UNFCCC GHG inventory Review Training Program The Basic Course of the updated training programme covers technical aspects of the review of GHG inventories under the...

  13. Building Trust in GHG Inventories from the United States and...

    Open Energy Info (EERE)

    Trust in GHG Inventories from the United States and China Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Counting the Gigatones: Building Trust in GHG Inventories from...

  14. Trading places - an innovative SO{sub 2} trading program to mitigate potential adverse impacts on class I areas: part II. Mitigation plan

    SciTech Connect (OSTI)

    Louis Militana; Cindy Huber; Christopher Colbert; Chris Arrington; Don Shepherd

    2005-08-01

    This is the second of two articles describing a plan that was developed to mitigate the effects of acid deposition and visibility impairment in four Class I areas from the proposed Longview Power Project. Part I (published in July 2005) discussed the air quality impacts of the proposed coal-fired power plant. Part II discusses the mitigation plan. 2 refs., 1 fig., 3 tabs.

  15. China-GHG Monitoring | Open Energy Information

    Open Energy Info (EERE)

    The project aims to develop capacities for a GHG-Monitoring system and an Emissions Trading scheme at regional level. To this end experiences will be shared at an...

  16. Energy Saving Potentials and Air Quality Benefits of Urban HeatIslandMitigation

    SciTech Connect (OSTI)

    Akbari, Hashem

    2005-08-23

    Urban areas tend to have higher air temperatures than their rural surroundings as a result of gradual surface modifications that include replacing the natural vegetation with buildings and roads. The term ''Urban Heat Island'' describes this phenomenon. The surfaces of buildings and pavements absorb solar radiation and become extremely hot, which in turn warm the surrounding air. Cities that have been ''paved over'' do not receive the benefit of the natural cooling effect of vegetation. As the air temperature rises, so does the demand for air-conditioning (a/c). This leads to higher emissions from power plants, as well as increased smog formation as a result of warmer temperatures. In the United States, we have found that this increase in air temperature is responsible for 5-10% of urban peak electric demand for a/c use, and as much as 20% of population-weighted smog concentrations in urban areas. Simple ways to cool the cities are the use of reflective surfaces (rooftops and pavements) and planting of urban vegetation. On a large scale, the evapotranspiration from vegetation and increased reflection of incoming solar radiation by reflective surfaces will cool a community a few degrees in the summer. As an example, computer simulations for Los Angeles, CA show that resurfacing about two-third of the pavements and rooftops with reflective surfaces and planting three trees per house can cool down LA by an average of 2-3K. This reduction in air temperature will reduce urban smog exposure in the LA basin by roughly the same amount as removing the basin entire onroad vehicle exhaust. Heat island mitigation is an effective air pollution control strategy, more than paying for itself in cooling energy cost savings. We estimate that the cooling energy savings in U.S. from cool surfaces and shade trees, when fully implemented, is about $5 billion per year (about $100 per air-conditioned house).

  17. EPA-GHG Inventory Targeted Data Collection Strategies and Software...

    Open Energy Info (EERE)

    Protection Agency Sector: Energy, Land Topics: GHG inventory Resource Type: Dataset, Lessons learnedbest practices, Training materials, Softwaremodeling tools User...

  18. The potential for biomass to mitigate greenhouse gas emissions in the Northeastern US. Northeast Regional Biomass Program

    SciTech Connect (OSTI)

    Bernow, S.S.; Gurney, K.; Prince, G.; Cyr, M.

    1992-04-01

    This study, for the Northeast Regional Biomass Program (NRBP) of the Coalition of Northeast Governors (CONEG), evaluates the potential for local, state and regional biomass policies to contribute to an overall energy/biomass strategy for the reduction of greenhouse gas releases in the Northeastern United States. Biomass is a conditionally renewable resource that can play a dual role: by reducing emissions of greenhouse gases in meeting our energy needs; and by removing carbon from the atmosphere and sequestering it in standing biomass stocks and long-lived products. In this study we examine the contribution of biomass to the energy system in the Northeast and to the region`s net releases of carbon dioxide and methane, and project these releases over three decades, given a continuation of current trends and policies. We then compare this Reference Case with three alternative scenarios, assuming successively more aggressive efforts to reduce greenhouse gas emissions through strategic implementation of energy efficiency and biomass resources. Finally, we identify and examine policy options for expanding the role of biomass in the region`s energy and greenhouse gas mitigation strategies.

  19. Identifying and Mitigating Potential Nutrient and Sediment Hot Spots under a Future Scenario in the Missouri River Basin

    SciTech Connect (OSTI)

    Wu, May; Zhang, Zhonglong

    2015-09-01

    Using the Soil and Water Assessment Tool (SWAT) for large-scale watershed modeling could be useful for evaluating the quality of the water in regions that are dominated by nonpoint sources in order to identify potential “hot spots” for which mitigating strategies could be further developed. An analysis of water quality under future scenarios in which changes in land use would be made to accommodate increased biofuel production was developed for the Missouri River Basin (MoRB) based on a SWAT model application. The analysis covered major agricultural crops and biofuel feedstock in the MoRB, including pasture land, hay, corn, soybeans, wheat, and switchgrass. The analysis examined, at multiple temporal and spatial scales, how nitrate, organic nitrogen, and total nitrogen; phosphorus, organic phosphorus, inorganic phosphorus, and total phosphorus; suspended sediments; and water flow (water yield) would respond to the shifts in land use that would occur under proposed future scenarios. The analysis was conducted at three geospatial scales: (1) large tributary basin scale (two: Upper MoRB and Lower MoRB); (2) regional watershed scale (seven: Upper Missouri River, Middle Missouri River, Middle Lower Missouri River, Lower Missouri River, Yellowstone River, Platte River, and Kansas River); and (3) eight-digit hydrologic unit (HUC-8) subbasin scale (307 subbasins). Results showed that subbasin-level variations were substantial. Nitrogen loadings decreased across the entire Upper MoRB, and they increased in several subbasins in the Lower MoRB. Most nitrate reductions occurred in lateral flow. Also at the subbasin level, phosphorus in organic, sediment, and soluble forms was reduced by 35%, 45%, and 65%, respectively. Suspended sediments increased in 68% of the subbasins. The water yield decreased in 62% of the subbasins. In the Kansas River watershed, the water quality improved significantly with regard to every nitrogen and phosphorus compound. The improvement was clearly attributable to the conversion of a large amount of land to switchgrass. The Middle Lower Missouri River and Lower Missouri River were identified as hot regions. Further analysis identified four subbasins (10240002, 10230007, 10290402, and 10300200) as being the most vulnerable in terms of sediment, nitrogen, and phosphorus loadings. Overall, results suggest that increasing the amount of switchgrass acreage in the hot spots should be considered to mitigate the nutrient loads. The study provides an analytical method to support stakeholders in making informed decisions that balance biofuel production and water sustainability.

  20. Transportation Energy Futures: Combining Strategies for Deep Reductions in Energy Consumption and GHG Emissions (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2013-03-01

    This fact sheet summarizes actions in the areas of light-duty vehicle, non-light-duty vehicle, fuel, and transportation demand that show promise for deep reductions in energy use. Energy efficient transportation strategies have the potential to simultaneously reduce oil consumption and greenhouse gas (GHG) emissions. The Transportation Energy Futures (TEF) project examined how the combination of multiple strategies could achieve deep reductions in GHG emissions and petroleum use on the order of 80%. Led by NREL, in collaboration with Argonne National Laboratory, the project's primary goal was to help inform domestic decisions about transportation energy strategies, priorities, and investments, with an emphasis on underexplored opportunities. TEF findings reveal three strategies with the potential to displace most transportation-related petroleum use and GHG emissions: 1) Stabilizing energy use in the transportation sector through efficiency and demand-side approaches. 2) Using additional advanced biofuels. 3) Expanding electric drivetrain technologies.

  1. Reducing GHG emissions in the United States' transportation sector

    SciTech Connect (OSTI)

    Das, Sujit [ORNL; Andress, David A [ORNL; Nguyen, Tien [U.S. DOE

    2011-01-01

    Reducing GHG emissions in the U.S. transportation sector requires both the use of highly efficient propulsion systems and low carbon fuels. This study compares reduction potentials that might be achieved in 2060 for several advanced options including biofuels, hybrid electric vehicles (HEV), plug-in hybrid electric vehicles (PHEV), and fuel cell electric vehicles (FCEV), assuming that technical and cost reduction targets are met and necessary fueling infrastructures are built. The study quantifies the extent of the reductions that can be achieved through increasing engine efficiency and transitioning to low-carbon fuels separately. Decarbonizing the fuels is essential for achieving large reductions in GHG emissions, and the study quantifies the reductions that can be achieved over a range of fuel carbon intensities. Although renewables will play a vital role, some combination of coal gasification with carbon capture and sequestration, and/or nuclear energy will likely be needed to enable very large reductions in carbon intensities for hydrogen and electricity. Biomass supply constraints do not allow major carbon emission reductions from biofuels alone; the value of biomass is that it can be combined with other solutions to help achieve significant results. Compared with gasoline, natural gas provides 20% reduction in GHG emissions in internal combustion engines and up to 50% reduction when used as a feedstock for producing hydrogen or electricity, making it a good transition fuel for electric propulsion drive trains. The material in this paper can be useful information to many other countries, including developing countries because of a common factor: the difficulty of finding sustainable, low-carbon, cost-competitive substitutes for petroleum fuels.

  2. EA-1628: Mitigation Action Plan | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Lignocellulosic Biorefinery, Emmetsburg, Iowa This Mitigation Action Plan specifieis the methods for implementing mitigation measures that address the potential environmental...

  3. Japan's Long-term Energy Demand and Supply Scenario to 2050 - Estimation for the Potential of Massive CO2 Mitigation

    SciTech Connect (OSTI)

    Komiyama, Ryoichi; Marnay, Chris; Stadler, Michael; Lai, Judy; Borgeson, Sam; Coffey, Brian; Azevedo, Ines Lima

    2009-09-01

    In this analysis, the authors projected Japan's energy demand/supply and energy-related CO{sub 2} emissions to 2050. Their analysis of various scenarios indicated that Japan's CO{sub 2} emissions in 2050 could be potentially reduced by 26-58% from the current level (FY 2005). These results suggest that Japan could set a CO{sub 2} emission reduction target for 2050 at between 30% and 60%. In order to reduce CO{sub 2} emissions by 60% in 2050 from the present level, Japan will have to strongly promote energy conservation at the same pace as an annual rate of 1.9% after the oil crises (to cut primary energy demand per GDP (TPES/GDP) in 2050 by 60% from 2005) and expand the share of non-fossil energy sources in total primary energy supply in 2050 to 50% (to reduce CO{sub 2} emissions per primary energy demand (CO{sub 2}/TPES) in 2050 by 40% from 2005). Concerning power generation mix in 2050, nuclear power will account for 60%, solar and other renewable energy sources for 20%, hydro power for 10% and fossil-fired generation for 10%, indicating substantial shift away from fossil fuel in electric power supply. Among the mitigation measures in the case of reducing CO{sub 2} emissions by 60% in 2050, energy conservation will make the greatest contribution to the emission reduction, being followed by solar power, nuclear power and other renewable energy sources. In order to realize this massive CO{sub 2} abatement, however, Japan will have to overcome technological and economic challenges including the large-scale deployment of nuclear power and renewable technologies.

  4. EPA Climate Leaders Simplified GHG Emissions Calculator (SGEC...

    Open Energy Info (EERE)

    Simplified GHG Emissions Calculator (SGEC) AgencyCompany Organization: United States Environmental Protection Agency Sector: Energy, Climate Focus Area: Industry, Greenhouse...

  5. EPA-GHG Inventory Capacity Building | Open Energy Information

    Open Energy Info (EERE)

    Capacity Building) Jump to: navigation, search Tool Summary Name: US EPA GHG inventory Capacity Building AgencyCompany Organization: United States Environmental Protection...

  6. Selected GHG Emission Supply Curves | Open Energy Information

    Open Energy Info (EERE)

    Selected GHG Emission Supply Curves AgencyCompany Organization: Northwest Power and Conservation Council Sector: Energy Focus Area: Conventional Energy, Energy Efficiency,...

  7. UNFCCC-GHG Inventory Methodological Documents and Training Materials...

    Open Energy Info (EERE)

    Company Organization: United Nations Framework Convention on Climate Change Sector: Energy, Land Topics: GHG inventory Resource Type: Lessons learnedbest practices, Training...

  8. IGES GHG Calculator For Solid Waste | Open Energy Information

    Open Energy Info (EERE)

    Assessment to Protect the Environment (GRAPE) Electricity Markets Analysis (EMA) Model Gold Standard Program Model ... further results The GHG Calculator for Solid Waste is a...

  9. UNFCCC-GHG Inventory Data | Open Energy Information

    Open Energy Info (EERE)

    Data AgencyCompany Organization: United Nations Framework Convention on Climate Change Sector: Energy, Land Topics: GHG inventory, Background analysis Resource Type: Dataset...

  10. UNFCCC-GHG Inventory Data | Open Energy Information

    Open Energy Info (EERE)

    Background analysis Resource Type: Dataset Website: unfccc.intghgdataghgdataunfcccitems4146.php References: UNFCCC GHG Emission Data1 Data can be sorted by Party,...

  11. Estimate of Fuel Consumption and GHG Emission Impact on an Automated Mobility District: Preprint

    SciTech Connect (OSTI)

    Chen, Yuche; Young, Stanley; Gonder, Jeff; Qi, Xuewei

    2015-12-11

    This study estimates the range of fuel and emissions impact of an automated-vehicle (AV) based transit system that services campus-based developments, termed an automated mobility district (AMD). The study develops a framework to quantify the fuel consumption and greenhouse gas (GHG) emission impacts of a transit system comprised of AVs, taking into consideration average vehicle fleet composition, fuel consumption/GHG emission of vehicles within specific speed bins, and the average occupancy of passenger vehicles and transit vehicles. The framework is exercised using a previous mobility analysis of a personal rapid transit (PRT) system, a system which shares many attributes with envisioned AV-based transit systems. Total fuel consumption and GHG emissions with and without an AMD are estimated, providing a range of potential system impacts on sustainability. The results of a previous case study based of a proposed implementation of PRT on the Kansas State University (KSU) campus in Manhattan, Kansas, serves as the basis to estimate personal miles traveled supplanted by an AMD at varying levels of service. The results show that an AMD has the potential to reduce total system fuel consumption and GHG emissions, but the amount is largely dependent on operating and ridership assumptions. The study points to the need to better understand ride-sharing scenarios and calls for future research on sustainability benefits of an AMD system at both vehicle and system levels.

  12. Reducing GHG emissions by co-utilization of coal with natural gas or biomass

    SciTech Connect (OSTI)

    Smith, I.M.

    2004-07-01

    Energy reserves price and security of supply issues are discussed in the context of the prospects for coal and policies to reduce greenhouse gas (GHG) emissions. Coal is projected to remain a major source of energy, with most of the demand growth in developing countries. Currently available power-generating technologies, deploying coal with natural gas or biomass, are examined. Examples of successful, partial substitution of coal by other fuels in power stations are highlighted, including the GHG emissions reductions achieved as well as the costs where available. Among various options, hybrid gasification and parallel cofiring of coal with biomass and natural gas appear to have the greatest potential to reduce GHG emissions. Much may also be achieved by cofiring, reburning, and repowering with gas turbines. The best method differs between different power systems. Co-utilization of biomass with coal is a least-cost option to reduce GHG emissions where the fuel prices are comparable, usually due to subsidies or taxes. The role of biomass is likely to increase due to greater use of subsidies, carbon taxes, and emissions trading within the context of the Kyoto Protocol. This should provide opportunities for clean coal technology transfer and diffusion, including biomass co-utilization. 32 refs., 1 fig., 3 tabs.

  13. Drivers, Trends and Mitigation

    SciTech Connect (OSTI)

    Blanco, Arthur S.; Gerlagh, Reyer; Suh, Sangwon; Barrett, John A.; de Coninck, Heleen; Diaz Morejon, Cristobal Felix; Mathur, Ritu; Nakicenovic, Nebojsa; Ahenkorah, Alfred Ofosu; Pan, Jiahua; Pathak, Himanshu; Rice, Jake; Richels, Richard G.; Smith, Steven J.; Stern, David; Toth, Ferenc L.; Zhou, Peter

    2014-12-01

    Chapter 5 analyzes the anthropogenic greenhouse gas (GHG) emission trends until the present and the main drivers that explain those trends. The chapter uses different perspectives to analyze past GHG-emissions trends, including aggregate emissions flows and per capita emissions, cumulative emissions, sectoral emissions, and territory-based vs. consumption-based emissions. In all cases, global and regional trends are analyzed. Where appropriate, the emission trends are contextualized with long-term historic developments in GHG emissions extending back to 1750.

  14. Assess and improve the national GHG inventory and other economic...

    Open Energy Info (EERE)

    public and private sector capacity to support initiatives 2.4. Assess and improve the national GHG inventory and other economic and resource data as needed for LEDS development...

  15. Low Carbon Growth: a Potential Path for Mexico - GHG Abatement...

    Open Energy Info (EERE)

    McKinsey and Company Sector Energy, Land Focus Area Energy Efficiency, Renewable Energy Topics Resource assessment, Background analysis Website http:www.esmap.orgfilezpub...

  16. Eco-efficiency for greenhouse gas emissions mitigation of municipal solid waste management: A case study of Tianjin, China

    SciTech Connect (OSTI)

    Zhao Wei; Huppes, Gjalt; Voet, Ester van der

    2011-06-15

    The issue of municipal solid waste (MSW) management has been highlighted in China due to the continually increasing MSW volumes being generated and the limited capacity of waste treatment facilities. This article presents a quantitative eco-efficiency (E/E) analysis on MSW management in terms of greenhouse gas (GHG) mitigation. A methodology for E/E analysis has been proposed, with an emphasis on the consistent integration of life cycle assessment (LCA) and life cycle costing (LCC). The environmental and economic impacts derived from LCA and LCC have been normalized and defined as a quantitative E/E indicator. The proposed method was applied in a case study of Tianjin, China. The study assessed the current MSW management system, as well as a set of alternative scenarios, to investigate trade-offs between economy and GHG emissions mitigation. Additionally, contribution analysis was conducted on both LCA and LCC to identify key issues driving environmental and economic impacts. The results show that the current Tianjin's MSW management system emits the highest GHG and costs the least, whereas the situation reverses in the integrated scenario. The key issues identified by the contribution analysis show no linear relationship between the global warming impact and the cost impact in MSW management system. The landfill gas utilization scenario is indicated as a potential optimum scenario by the proposed E/E analysis, given the characteristics of MSW, technology levels, and chosen methodologies. The E/E analysis provides an attractive direction towards sustainable waste management, though some questions with respect to uncertainty need to be discussed further.

  17. Co-benefits of mitigating global greenhouse gas emissions for future air

    Office of Scientific and Technical Information (OSTI)

    quality and human health (Journal Article) | SciTech Connect Co-benefits of mitigating global greenhouse gas emissions for future air quality and human health Citation Details In-Document Search Title: Co-benefits of mitigating global greenhouse gas emissions for future air quality and human health Reducing greenhouse gas (GHG) emissions also influences air quality. We simulate the co-benefits of global GHG reductions on air quality and human health via two mechanisms: a) reducing co-emitted

  18. More wind generation means lower GHG emissions, right?

    SciTech Connect (OSTI)

    2010-11-15

    The answer to what will be the net effect of an x percent increase in wind generation on GHG emissions in a given system is not a simple y percent -- but is likely to depend on many variables, assumptions, modeling, and number crunching. But the result is important, and hence there has been a flurry of contradictory studies, confusing policymakers and the general public alike. While one can certainly find exceptions, under most circumstances, more renewable generation can be expected to result in lower GHG emissions.

  19. Africa - Technical Potential of Solar Energy to Address Energy...

    Open Energy Info (EERE)

    - Technical Potential of Solar Energy to Address Energy Poverty and Avoid GHG Emissions Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Technical Potential of Solar...

  20. Summary of Fast Pyrolysis and Upgrading GHG Analyses

    SciTech Connect (OSTI)

    Snowden-Swan, Lesley J.; Male, Jonathan L.

    2012-12-07

    The Energy Independence and Security Act (EISA) of 2007 established new renewable fuel categories and eligibility requirements (EPA 2010). A significant aspect of the National Renewable Fuel Standard 2 (RFS2) program is the requirement that the life cycle greenhouse gas (GHG) emissions of a qualifying renewable fuel be less than the life cycle GHG emissions of the 2005 baseline average gasoline or diesel fuel that it replaces. Four levels of reduction are required for the four renewable fuel standards. Table 1 lists these life cycle performance improvement thresholds. Table 1. Life Cycle GHG Thresholds Specified in EISA Fuel Type Percent Reduction from 2005 Baseline Renewable fuel 20% Advanced biofuel 50% Biomass-based diesel 50% Cellulosic biofuel 60% Notably, there is a specialized subset of advanced biofuels that are the cellulosic biofuels. The cellulosic biofuels are incentivized by the Cellulosic Biofuel Producer Tax Credit (26 USC 40) to stimulate market adoption of these fuels. EISA defines a cellulosic biofuel as follows (42 USC 7545(o)(1)(E)): The term “cellulosic biofuel” means renewable fuel derived from any cellulose, hemicellulose, or lignin that is derived from renewable biomass and that has lifecycle greenhouse gas emissions, as determined by the Administrator, that are at least 60 percent less than the baseline lifecycle greenhouse gas emissions. As indicated, the Environmental Protection Agency (EPA) has sole responsibility for conducting the life cycle analysis (LCA) and making the final determination of whether a given fuel qualifies under these biofuel definitions. However, there appears to be a need within the LCA community to discuss and eventually reach consensus on discerning a 50–59 % GHG reduction from a ≥ 60% GHG reduction for policy, market, and technology development. The level of specificity and agreement will require additional development of capabilities and time for the sustainability and analysis community, as illustrated by the rich dialogue and convergence around the energy content and GHG reduction of cellulosic ethanol (an example of these discussions can be found in Wang 2011). GHG analyses of fast pyrolysis technology routes are being developed and will require significant work to reach the levels of development and maturity of cellulosic ethanol models. This summary provides some of the first fast pyrolysis analyses and clarifies some of the reasons for differing results in an effort to begin the convergence on assumptions, discussion of quality of models, and harmonization.

  1. EIA: High Oil Prices, GHG Controls Would Help Clean Energy Grow...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    EIA: High Oil Prices, GHG Controls Would Help Clean Energy Grow EIA: High Oil Prices, GHG Controls Would Help Clean Energy Grow April 1, 2009 - 11:35am Addthis The growth of...

  2. A wedge-based approach to estimating health co-benefits of climate change mitigation activities in the United States

    SciTech Connect (OSTI)

    Balbus, John M.; Greenblatt, Jeffery B.; Chari, Ramya; Millstein, Dev; Ebi, Kristie L.

    2015-02-01

    While it has been recognized that actions reducing greenhouse gas (GHG) emissions can have significant positive and negative impacts on human health through reductions in ambient fine particulate matter (PM2.5) concentrations, these impacts are rarely taken into account when analyzing specific policies. This study presents a new framework for estimating the change in health outcomes resulting from implementation of specific carbon dioxide (CO2) reduction activities, allowing comparison of different sectors and options for climate mitigation activities. Our estimates suggest that in the year 2020, the reductions in adverse health outcomes from lessened exposure to PM2.5 would yield economic benefits in the range of $6 to $14 billion (in 2008 USD), depending on the specific activity. This equates to between $40 and $93 per metric ton of CO2 in health benefits. Specific climate interventions will vary in the health co-benefits they provide as well as in potential harms that may result from their implementation. Rigorous assessment of these health impacts is essential for guiding policy decisions as efforts to reduce GHG emissions increase in scope and intensity.

  3. Broadening the Appeal of Marginal Abatement Cost Curves: Capturing Both Carbon Mitigation and Development Benefits of Clean Energy Technologies; Preprint

    SciTech Connect (OSTI)

    Cowlin, S.; Cochran, J.; Cox, S.; Davison, C.; van der Gaast, Y.

    2012-08-01

    Low emission development strategies (LEDS) articulate policies and implementation plans that enable countries to advance sustainable, climate-resilient development and private sector growth while significantly reducing the greenhouse gas (GHG) emissions traditionally associated with economic growth. In creating a LEDS, policy makers often have access to information on abatement potential and costs for clean energy technologies, but there is a scarcity of economy-wide approaches for evaluating and presenting information on other dimensions of importance to development, such as human welfare, poverty alleviation, and energy security. To address this shortcoming, this paper proposes a new tool for communicating development benefits to policy makers as part of a LEDS process. The purpose of this tool is two-fold: 1. Communicate development benefits associated with each clean energy-related intervention; 2. Facilitate decision-making on which combination of interventions best contributes to development goals. To pilot this tool, the authors created a visual using data on developmental impacts identified through the Technology Needs Assessment (TNA) project in Montenegro. The visual will then be revised to reflect new data established through the TNA that provides information on cost, GHG mitigation, as well as the range and magnitude of developmental impacts.

  4. EIS-0350-S1: Mitigation Action Plan | Department of Energy

    Office of Environmental Management (EM)

    Mitigation Action Plan EIS-0350-S1: Mitigation Action Plan Nuclear Facility Portion of the Chemistry and Metallurgy Research Building Replacement Project at Los Alamos National Laboratory, Los Alamos, NM This Mitigation Action Plan (MAP) describes mitigation and monitoring commitments for constructing and operating the Modified CMRR-NF. The commitments made in this MAP are designed to mitigate potentially adverse environmental consequences associated with the CMRR-NF Project as the CMRR-NF is

  5. Mexico-NAMA on Reducing GHG Emissions in the Cement Sector |...

    Open Energy Info (EERE)

    similar analyses of the iron and steel, electric power, and aluminum industries in China, Brazil and Mexico." References "CCAP-Mexico-NAMA on Reducing GHG Emissions in...

  6. Quantitative Analysis of Biofuel Sustainability, Including Land Use Change GHG Emissions

    Broader source: Energy.gov [DOE]

    Plenary V: Biofuels and Sustainability: Acknowledging Challenges and Confronting MisconceptionsQuantitative Analysis of Biofuel Sustainability, Including Land Use Change GHG EmissionsJennifer B....

  7. CEQ Issues Revised Draft NEPA Guidance on GHG Emissions and Climate Change

    Energy Savers [EERE]

    | Department of Energy NEPA Guidance on GHG Emissions and Climate Change CEQ Issues Revised Draft NEPA Guidance on GHG Emissions and Climate Change March 3, 2015 - 10:37am Addthis CEQ Issues Revised Draft NEPA Guidance on GHG Emissions and Climate Change What are the key facts? CEQ issued revised draft guidance in December to "provide Federal agencies direction on when and how to consider the effects of greenhouse gas (GHG) emissions and climate change" in NEPA reviews. The revised

  8. Mitigating Wildland Fires

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Mitigating Wildland Fires Mitigating Wildland Fires Our interactive wildland fire map displays the locations of wildland fire mitigation activities. Contact Environmental Communication & Public Involvement P.O. Box 1663 MS M996 Los Alamos, NM 87545 (505) 667-0216 Email Open in Google Earth | View in Google Maps What we are doing to mitigate wildland fires Recent large wildfires in the area, including the La Mesa Fire (1977), the Dome Fire (1996), the Oso Fire (1998), the Cerro Grande Fire

  9. Mitigation Action Plan

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Mitigation Action Plan FutureGen 2.0 Project DOE/EIS-0460 U.S. Department of Energy National Energy Technology Laboratory March 2014 DOE/EIS-0460 FUTUREGEN 2.0 PROJECT MITIGATION ACTION PLAN INTENTIONALLY LEFT BLANK DOE/EIS-0460 FUTUREGEN 2.0 PROJECT MITIGATION ACTION PLAN TABLE OF CONTENTS Introduction ................................................................................................................................................... 1 Purpose

  10. Mitigation Action Plan

    Office of Environmental Management (EM)

    Mitigation Action Plan FutureGen 2.0 Project DOE/EIS-0460 U.S. Department of Energy National Energy Technology Laboratory March 2014 DOE/EIS-0460 FUTUREGEN 2.0 PROJECT MITIGATION ACTION PLAN INTENTIONALLY LEFT BLANK DOE/EIS-0460 FUTUREGEN 2.0 PROJECT MITIGATION ACTION PLAN TABLE OF CONTENTS Introduction ................................................................................................................................................... 1 Purpose

  11. Benefits of Leapfrogging to Superefficiency and Low Global Warming Potential Refrigerants in Room Air Conditioning

    SciTech Connect (OSTI)

    Shah, Nihar K.; Wei, Max; Letschert, Virginie; Phadke, Amol A.

    2015-10-01

    Hydrofluorocarbons (HFCs) emitted from uses such as refrigerants and thermal insulating foam, are now the fastest growing greenhouse gases (GHGs), with global warming potentials (GWP) thousands of times higher than carbon dioxide (CO2). Because of the short lifetime of these molecules in the atmosphere,1 mitigating the amount of these short-lived climate pollutants (SLCPs) provides a faster path to climate change mitigation than control of CO2 alone. This has led to proposals from Africa, Europe, India, Island States, and North America to amend the Montreal Protocol on Substances that Deplete the Ozone Layer (Montreal Protocol) to phase-down high-GWP HFCs. Simultaneously, energy efficiency market transformation programs such as standards, labeling and incentive programs are endeavoring to improve the energy efficiency for refrigeration and air conditioning equipment to provide life cycle cost, energy, GHG, and peak load savings. In this paper we provide an estimate of the magnitude of such GHG and peak electric load savings potential, for room air conditioning, if the refrigerant transition and energy efficiency improvement policies are implemented either separately or in parallel.

  12. Logistics, Costs, and GHG Impacts of Utility-Scale Co-Firing with 20% Biomass

    SciTech Connect (OSTI)

    Nichol, Corrie Ian

    2013-06-01

    This study analyzes the possibility that biopower in the U.S. is a cost-competitive option to significantly reduce greenhouse gas emissions. In 2009, net greenhouse gas (GHG) emitted in the United States was equivalent to 5,618 million metric tons CO2, up 5.6% from 1990 (EPA 2011). Coal-fired power generation accounted for 1,748 million metric tons of this total. Intuitively, life-cycle CO2 emissions in the power sector could be reduced by substituting renewable biomass for coal. If just 20% of the coal combusted in 2009 had been replaced with biomass, CO2 emissions would have been reduced by 350 million metric tons, or about 6% of net annual GHG emission. This would have required approximately 225 million tons of dry biomass. Such an ambitious fuel substitution would require development of a biomass feedstock production and supply system tantamount to coal. This material would need to meet stringent specifications to ensure reliable conveyance to boiler burners, efficient combustion, and no adverse impact on heat transfer surfaces and flue gas cleanup operations. Therefore, this report addresses the potential cost/benefit tradeoffs of co-firing 20% specification-qualified biomass (on an energy content basis) in large U.S. coal-fired power plants. The dependence and sensitivity of feedstock cost on source of material, location, supply distance, and demand pressure was established. Subsequently, the dependence of levelized cost of electricity (LCOE) on feedstock costs, power plant feed system retrofit, and impact on boiler performance was determined. Overall life-cycle assessment (LCA) of greenhouse gas emissions saving were next evaluated and compared to wind and solar energy to benchmark the leading alternatives for meeting renewable portfolio standards (or RPS).

  13. Nationally Appropriate Mitigation Actions | Open Energy Information

    Open Energy Info (EERE)

    Topics: GHG inventory, Low emission development planning Resource Type: Publications, Lessons learnedbest practices, Case studiesexamples Website: unfccc.inthomeitems...

  14. EA-1440-S1: Mitigation Action Plan | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Mitigation Action Plan EA-1440-S1: Mitigation Action Plan National Renewable Energy Laboratory's South Table Mountain Complex, Golden, Colorado ThIs Mitigation Action Plan implements the mitigation measures associated with the potential environmental impact of a DOE proposal that consists of three site development projects at the National Renewable Energy Laboratory's (NREL) South Table Mountain (STM) site at Golden, Colorado: Construction of the Research Support Facilities (RSF), a new office

  15. EA-1704: Mitigation Action Plan | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    04: Mitigation Action Plan EA-1704: Mitigation Action Plan Construction and Operation of a Proposed Cellulosic Biorefinery, BlueFire Fulton Renewable Energy, LLC, Fulton, Mississippi This Mitigation Action Plan specifies the methods for implementing mitigation measures that address the potential environmental impacts associated with the construction and operation of a lignocellulosic ethanol refinery, BlueFire Fulton Renewable Energy, LLC in Fulton, Mississippi. PDF icon EA-1704-MAP-2010.pdf

  16. EA-1917: Mitigation Action Plan | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    7: Mitigation Action Plan EA-1917: Mitigation Action Plan Wave Energy Test Facility Project, Newport, OR Through the environmental review process, DOE determined, via consultations with the National Marine Fisheries Service (NMFS) that there may be potential environmental impacts from the Project that will require mitigation to assure that the impacts will not become significant. Therefore, DOE prepared this Mitigation Action Plan (MAP) to establish conditions for issuing the FONSI as required

  17. EA-1212: Mitigation Action Plan | Department of Energy

    Office of Environmental Management (EM)

    12: Mitigation Action Plan EA-1212: Mitigation Action Plan Lease of Land for the Development of a Research Park at Los Alamos National Laboratory, Los Alamos, NM This Mitigation Action Plan identifies commitments made in the Finding of No Significant Impact to mitigate potential effects from constructing and operating a proposed research park on land leased from Los Alamos National Laboratory and establishes an action plan to carry out each commitment. PDF icon EA-1212-MAP-1997.pdf More

  18. WREP Mitigation Action Plan

    Broader source: Energy.gov (indexed) [DOE]

    Electrical Interconnection of the Whistling Ridge Energy Project 1 Mitigation Action Plan June 2015 Mitigation Action Plan for the Whistling Ridge Energy Project Measure Implementation Timeline Implementation Responsibility Earth (geology, soils, topography, and geologic hazards) Prior to Project construction, confirm subsurface soil and rock types and strength properties through a detailed geotechnical investigation of the specific locations of all wind Project elements, including wind

  19. Mitigation Action Plan

    SciTech Connect (OSTI)

    Not Available

    1994-02-01

    This Mitigation Action Plan (MAP) focuses on mitigation commitments stated in the Supplemental Environmental Impact Statement (SEIS) and the Record of Decision (ROD) for the Naval Petroleum Reserve No. 1 (NPR-1). Specific commitments and mitigation implementation actions are listed in Appendix A-Mitigation Actions, and form the central focus of this MAP. They will be updated as needed to allow for organizational, regulatory, or policy changes. It is the intent of DOE to comply with all applicable federal, state, and local environmental, safety, and health laws and regulations. Eighty-six specific commitments were identified in the SEIS and associated ROD which pertain to continued operation of NPR-1 with petroleum production at the Maximum Efficient Rate (MER). The mitigation measures proposed are expected to reduce impacts as much as feasible, however, as experience is gained in actual implementation of these measures, some changes may be warranted.

  20. EA-1440: Mitigation Action Plan | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Colorado. Through the environmental review process, DOE determined that there are potential environmental impacts from these projects that require mitigation to assure that the...

  1. Monitoring and Assessment of Greenhouse Gas Emissions and Mitigation...

    Open Energy Info (EERE)

    Monitoring and Assessment of Greenhouse Gas Emissions and Mitigation Potential in Agriculture) Jump to: navigation, search Logo: Monitoring and Assessment of Greenhouse Gas...

  2. EIA: High Oil Prices, GHG Controls Would Help Clean Energy Grow

    Broader source: Energy.gov [DOE]

    The growth of renewable energy and renewable fuels in the United States will be significantly greater under scenarios involving high oil prices and stricter controls on greenhouse gas (GHG) emissions, according to DOE's Energy Information Administration (EIA).

  3. Systematic Review and Harmonization of Life Cycle GHG Emission Estimates for Electricity Generation Technologies (Presentation)

    SciTech Connect (OSTI)

    Heath, G.

    2012-06-01

    This powerpoint presentation to be presented at the World Renewable Energy Forum on May 14, 2012, in Denver, CO, discusses systematic review and harmonization of life cycle GHG emission estimates for electricity generation technologies.

  4. U.S. HDV GHG and Fuel Efficiency Final Rule | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    HDV GHG and Fuel Efficiency Final Rule U.S. HDV GHG and Fuel Efficiency Final Rule Reviews medium- and heavy-duty truck fuel efficiency and greenhouse gas emissions standards and reducing fuel consumption in a diverse segment of vehicles PDF icon deer11_bunker.pdf More Documents & Publications Roadmap and Technical White Papers for 21st Century Truck Partnership HD Applications of Significantly Downsized SI Engines Using Alcohol DI for Knock Avoidance The Next Regulatory Chapter for

  5. Overview of recent studies and modifications being made to RHIC to mitigate the effects of a potential failure to the helium distribution system

    SciTech Connect (OSTI)

    Tuozzolo, J.; Bruno, D.; DiLieto, A.; Heppner, G.; Karol, R.; Lessard,E.; Liaw, C-J; McIntyre, G; Mi, C.; Reich, J.; Sandberg, J.; Seberg, S.; Smart, L.; Tallerico, T.; Theisen, C.; Todd, R.; Zapasek R.

    2011-03-28

    In order to cool the superconducting magnets in RHIC, its helium refrigerator distributes 4.5 K helium throughout the tunnel along with helium distribution for the magnet line recoolers, the heat shield, and the associated return lines. The worse case for failure would be a release from the magnet distribution line which operates at 3.5 to 4.5 atmospheres and contains the energized magnet but with a potential energy of 70 MJoules should the insulation system fail or an electrical connection opens. Studies were done to determine release rate of the helium and the resultant reduction in O{sub 2} concentration in the RHIC tunnel and service buildings. Equipment and components were also reviewed for design and reliability and modifications were made to reduce the likelihood of failure and to reduce the volume of helium that could be released.

  6. GHG emission factors developed for the recycling and composting of municipal waste in South African municipalities

    SciTech Connect (OSTI)

    Friedrich, Elena Trois, Cristina

    2013-11-15

    Highlights: GHG emission factors for local recycling of municipal waste are presented. GHG emission factors for two composting technologies for garden waste are included. Local GHG emission factors were compared to international ones and discussed. Uncertainties and limitations are presented and areas for new research highlighted. - Abstract: GHG (greenhouse gas) emission factors for waste management are increasingly used, but such factors are very scarce for developing countries. This paper shows how such factors have been developed for the recycling of glass, metals (Al and Fe), plastics and paper from municipal solid waste, as well as for the composting of garden refuse in South Africa. The emission factors developed for the different recyclables in the country show savings varying from ?290 kg CO{sub 2} e (glass) to ?19 111 kg CO{sub 2} e (metals Al) per tonne of recyclable. They also show that there is variability, with energy intensive materials like metals having higher GHG savings in South Africa as compared to other countries. This underlines the interrelation of the waste management system of a country/region with other systems, in particular with energy generation, which in South Africa, is heavily reliant on coal. This study also shows that composting of garden waste is a net GHG emitter, releasing 172 and 186 kg CO{sub 2} e per tonne of wet garden waste for aerated dome composting and turned windrow composting, respectively. The paper concludes that these emission factors are facilitating GHG emissions modelling for waste management in South Africa and enabling local municipalities to identify best practice in this regard.

  7. TOP 10 VULNERABILITIES OF CONTROL SYSTEMS AND THEIR ASSOCIATED MITIGATIONS

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    | Department of Energy TOP 10 VULNERABILITIES OF CONTROL SYSTEMS AND THEIR ASSOCIATED MITIGATIONS TOP 10 VULNERABILITIES OF CONTROL SYSTEMS AND THEIR ASSOCIATED MITIGATIONS This document provides practices that can help mitigate the potential risks that can occur to some electricity sector organizations. Each organization decides for itself the risks it can accept and the practices it deems appropriate to manage those risks. PDF icon TOP 10 VULNERABILITIES OF CONTROL SYSTEMS AND THEIR

  8. Estimating Mitigation Potential of Agricultural Projects: an...

    Open Energy Info (EERE)

    of the EX-Ante Carbon-balance Tool (EX-ACT)1 Briefly about Ex-ACT A set of linked Microsoft Excel sheets (19) Based on land use and management practices Using IPCC* default...

  9. Urban Surfaces and Heat Island Mitigation Potentials

    SciTech Connect (OSTI)

    Akbari, Hashem; Akbari, Hashem; Shea Rose, Leanna

    2007-06-14

    Data on materials and surface types that comprise a city, i.e. urban fabric, are needed in order to estimate the effects of light-colored surfaces (roofs and pavements) and urban vegetation (trees, grass, shrubs) on the meteorology and air quality of a city. We discuss the results of a semi-automatic statistical approach used to develop data on surface-type distribution and urban-fabric makeup using aerial color orthophotography, for four metropolitan areas of Chicago, IL, Houston, TX, Sacramento, CA, and Salt Lake City, UT. The digital high resolution (0.3 to 0.5-m) aerial photographs for each of these metropolitan areas covers representative urban areas ranging from 30 km{sup 2} to 52 km{sup 2}. Major land-use types examined included: commercial, residential, industrial, educational, and transportation. On average, for the metropolitan areas studied, vegetation covers about 29-41% of the area, roofs 19-25%, and paved surfaces 29-39%. For the most part, trees shade streets, parking lots, grass, and sidewalks. At ground level, i.e., view from below the tree canopies, vegetation covers about 20-37% of the area, roofs 20-25%, and paved surfaces 29-36%.

  10. Mitigating Potential Environmental Impacts of Energy Development...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Associates of Bedford, New Hampshire, developed a tool that characterizes the risk for bird and bat species that may be susceptible to collisions with wind turbines. This tool...

  11. Comprehensive mitigation assessment process (COMAP) - Description and instruction manual

    SciTech Connect (OSTI)

    Makundi, Willy; Sathaye, Jayant

    2001-11-09

    In order to prepare policies and plans to reduce GHG emissions, national policy-makers need information on the costs and benefits of different mitigation options in addition to their carbon implications. Policy-makers must weigh the costs, benefits, and impacts of climate change mitigation and adaptation options, in the face of competition for limited resources. The policy goal for mitigation options in the land use sector is to identify which mix of options is likely to best achieve the desired forestry service and production objectives at the least cost, while attempting to maximize economic and social benefits, and minimize negative environmental and social impacts. Improved national-level cost estimates of response options in the land use sector can be generated by estimating the costs and benefits of different forest management practices appropriate for specific country conditions which can be undertaken within the constraint of land availability and its opportunity cost. These co st and land use estimates can be combined to develop cost curves, which would assist policy-makers in constructing policies and programs to implement forest responses.

  12. Idaho National Laboratory (INL) Site Greenhouse Gas (GHG) Monitoring Plan - 40 CFR 98

    SciTech Connect (OSTI)

    Deborah L. Layton; Kimberly Frerichs

    2011-12-01

    The purpose of this Greenhouse Gas (GHG) Monitoring Plan is to meet the monitoring plan requirements of Title 40 of the Code of Federal Regulations Part 98.3(g)(5). This GHG Monitoring Plan identifies procedures and methodologies used at the Idaho National Laboratory Site (INL Site) to collect data used for GHG emissions calculations and reporting requirements from stationary combustion and other regulated sources in accordance with 40 CFR 98, Subparts A and other applicable subparts. INL Site Contractors determined subpart applicability through the use of a checklist (Appendix A). Each facility/contractor reviews operations to determine which subparts are applicable and the results are compiled to determine which subparts are applicable to the INL Site. This plan is applicable to the 40 CFR 98-regulated activities managed by the INL Site contractors: Idaho National Laboratory (INL), Idaho Cleanup Project (ICP), Advanced Mixed Waste Treatment Project (AMWTP), and Naval Reactors Facilities (NRF).

  13. Idaho National Laboratory (INL) Site Greenhouse Gas (GHG) Monitoring Plan - 40 CFR 98

    SciTech Connect (OSTI)

    Deborah L. Layton; Kimberly Frerichs

    2010-07-01

    The purpose of this Greenhouse Gas (GHG) Monitoring Plan is to meet the monitoring plan requirements of Title 40 of the Code of Federal Regulations Part 98.3(g)(5). This GHG Monitoring Plan identifies procedures and methodologies used at the Idaho National Laboratory Site (INL Site) to collect data used for GHG emissions calculations and reporting requirements from stationary combustion and other regulated sources in accordance with 40 CFR 98, Subparts A and other applicable subparts. INL Site Contractors determined subpart applicability through the use of a checklist (Appendix A). Each facility/contractor reviews operations to determine which subparts are applicable and the results are compiled to determine which subparts are applicable to the INL Site. This plan is applicable to the 40 CFR 98-regulated activities managed by the INL Site contractors: Idaho National Laboratory (INL), Idaho Cleanup Project (ICP), Advanced Mixed Waste Treatment Project (AMWTP), and Naval Reactors Facilities (NRF).

  14. FEMP Assists White House in Setting GHG Reduction Target for Federal

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Government | Department of Energy Assists White House in Setting GHG Reduction Target for Federal Government FEMP Assists White House in Setting GHG Reduction Target for Federal Government July 21, 2015 - 12:02pm Addthis The photovoltaic array on top of the U.S. Department of Energy headquarters. (Photo Credit: U.S. Department of Energy) The photovoltaic array on top of the U.S. Department of Energy headquarters. (Photo Credit: U.S. Department of Energy) Earlier this year, EERE's Federal

  15. New Jersey: EERE-Supported Technology Lowers GHG Emissions 70%, Wins R&D

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    100 Award | Department of Energy EERE-Supported Technology Lowers GHG Emissions 70%, Wins R&D 100 Award New Jersey: EERE-Supported Technology Lowers GHG Emissions 70%, Wins R&D 100 Award August 21, 2013 - 12:52pm Addthis In partnership with Rutgers University and partially funded by EERE, Solidia Technologies®, a cement and concrete technology company, developed a strong and durable concrete that costs less and uses less time, energy, and water than standard concrete, using the same

  16. EERE Success Story-FEMP Assists White House in Setting GHG Reduction

    Office of Environmental Management (EM)

    Target for Federal Government | Department of Energy Assists White House in Setting GHG Reduction Target for Federal Government EERE Success Story-FEMP Assists White House in Setting GHG Reduction Target for Federal Government July 21, 2015 - 12:02pm Addthis The photovoltaic array on top of the U.S. Department of Energy headquarters. (Photo Credit: U.S. Department of Energy) The photovoltaic array on top of the U.S. Department of Energy headquarters. (Photo Credit: U.S. Department of Energy)

  17. EERE Success Story-New Jersey: EERE-Supported Technology Lowers GHG

    Office of Environmental Management (EM)

    Emissions 70%, Wins R&D 100 Award | Department of Energy EERE-Supported Technology Lowers GHG Emissions 70%, Wins R&D 100 Award EERE Success Story-New Jersey: EERE-Supported Technology Lowers GHG Emissions 70%, Wins R&D 100 Award August 21, 2013 - 12:52pm Addthis In partnership with Rutgers University and partially funded by EERE, Solidia Technologies®, a cement and concrete technology company, developed a strong and durable concrete that costs less and uses less time, energy,

  18. Potential

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Potential and Frictional Drag on a Floating Sphere in a Flowing Plasma I. H. Hutchinson Plasma Science and Fusion Center Massachusetts Institute of Technology, Cambridge, MA, USA...

  19. The monitoring, evaluation, reporting, and verification of climate change mitigation projects: Discussion of issues and methodologies and review of existing protocols and guidelines

    SciTech Connect (OSTI)

    Vine, E.; Sathaye, J.

    1997-12-01

    Because of concerns with the growing threat of global climate change from increasing emissions of greenhouse gases, the US and other countries are implementing, by themselves or in cooperation with one or more other nations (i.e., joint implementation), climate change mitigation projects. These projects will reduce greenhouse gas (GHG) emissions or sequester carbon, and will also result in non-GHG impacts (i.e., environmental, economic, and social impacts). Monitoring, evaluating, reporting, and verifying (MERV) guidelines are needed for these projects in order to accurately determine their net GHG, and other, benefits. Implementation of MERV guidelines is also intended to: (1) increase the reliability of data for estimating GHG benefits; (2) provide real-time data so that mid-course corrections can be made; (3) introduce consistency and transparency across project types and reporters; and (4) enhance the credibility of the projects with stakeholders. In this paper, the authors review the issues and methodologies involved in MERV activities. In addition, they review protocols and guidelines that have been developed for MERV of GHG emissions in the energy and non-energy sectors by governments, nongovernmental organizations, and international agencies. They comment on their relevance and completeness, and identify several topics that future protocols and guidelines need to address, such as (1) establishing a credible baseline; (2) accounting for impacts outside project boundaries through leakage; (3) net GHG reductions and other impacts; (4) precision of measurement; (5) MERV frequency; (6) persistence (sustainability) of savings, emissions reduction, and carbon sequestration; (7) reporting by multiple project participants; (8) verification of GHG reduction credits; (9) uncertainty and risk; (10) institutional capacity in conducting MERV; and (11) the cost of MERV.

  20. Siting and Barrier Mitigation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Siting and Barrier Mitigation - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs

  1. Technical Potential of Solar Energy to Address Energy Poverty and Avoid GHG Emissions in Africa (Poster)

    SciTech Connect (OSTI)

    Cowlin, S.; Heimiller, D.; Bilello, D.; Renne, D.

    2008-10-01

    Approximately 1.6 billion people worldwide do not have access to electricity, and roughly 2.4 billion people rely on traditional biomass fuels to meet their heating and cooking needs. Lack of access to and use of energy - or energy poverty - has been recognized as a barrier to reaching the Millennium Development Goals (MDGs) and other targeted efforts to improve health and quality of life. Reducing reliance on traditional biomass can substantially reduce indoor air pollution-related morbidity and mortality; increasing access to lighting and refrigeration can improve educational and economic opportunities. Though targeted electrification efforts have had success within Latin America and East Asia (reaching electrification rates above 85%), sub-Saharan Africa has maintained electrification rates below 25% (IEA 2004).

  2. Co-benefits of mitigating global greenhouse gas emissions for future air quality and human health

    SciTech Connect (OSTI)

    West, Jason; Smith, Steven J.; Silva, Raquel; Naik, Vaishali; Zhang, Yuqiang; Adelman, Zacariah; Fry, Meridith M.; Anenberg, Susan C.; Horowitz, L.; Lamarque, Jean-Francois

    2013-10-01

    Reducing greenhouse gas (GHG) emissions also influences air quality. We simulate the co-benefits of global GHG reductions on air quality and human health via two mechanisms: a) reducing co-emitted air pollutants, and b) slowing climate change and its effect on air quality. Relative to a reference scenario, global GHG mitigation in the RCP4.5 scenario avoids 0.50.2, 1.30.6, and 2.21.6 million premature deaths in 2030, 2050, and 2100, from changes in fine particulate matter and ozone. Global average marginal co-benefits of avoided mortality are $40-400 (ton CO2)-1, exceeding marginal abatement costs in 2030 and 2050, and within the low range of costs in 2100. East Asian co-benefits are 10-80 times the marginal cost in 2030. These results indicate that transitioning to a low-carbon future might be justified by air quality and health co-benefits.

  3. Final Report. SFAA No. DEFC02-98CH10961. Technical assistance for joint implementation and other supporting mechanisms and measures for greenhouse gas emissions mitigation

    SciTech Connect (OSTI)

    Knight, Denise

    2001-10-15

    IIEC, a division of CERF, has developed an extensive base of experience implementing activities that support climate action by developing USIJI projects in transitional countries within Asia, Latin America, Central and Eastern Europe, and southern Africa. IIEC has been able to provide a range of technical and policy assistance to governments and industry in support of sustainable energy use. IIEC continues to work in key countries with local partners to develop and implement energy efficiency policies and standards, develop site-specific projects, and assist governing bodies to establish national priorities and evaluation criteria for approving GHG-mitigation projects. As part of this project, IIEC focused on promoting a series of activities in Thailand and South Africa in order to identify GHG mitigation projects and work within the national approval process of those countries. The sections of this report outline the activities conducted in each country in order to achieve that goal.

  4. Voluntary Agreements for Energy Efficiency or GHG EmissionsReduction in Industry: An Assessment of Programs Around the World

    SciTech Connect (OSTI)

    Price, Lynn

    2005-06-01

    Voluntary agreements for energy efficiency improvement and reduction of energy-related greenhouse gas (GHG) emissions have been a popular policy instrument for the industrial sector in industrialized countries since the 1990s. A number of these national-level voluntary agreement programs are now being modified and strengthened, while additional countries--including some recently industrialized and developing countries--are adopting these type of agreements in an effort to increase the energy efficiency of their industrial sectors.Voluntary agreement programs can be roughly divided into three broad categories: (1) programs that are completely voluntary, (2) programs that use the threat of future regulations or energy/GHG emissions taxes as a motivation for participation, and (3) programs that are implemented in conjunction with an existing energy/GHG emissions tax policy or with strict regulations. A variety of government-provided incentives as well as penalties are associated with these programs. This paper reviews 23 energy efficiency or GHG emissions reduction voluntary agreement programs in 18 countries, including countries in Europe, the U.S., Canada, Australia, New Zealand, Japan, South Korea, and Chinese Taipei (Taiwan) and discusses preliminary lessons learned regarding program design and effectiveness. The paper notes that such agreement programs, in which companies inventory and manage their energy use and GHG emissions to meet specific reduction targets, are an essential first step towards GHG emissions trading programs.

  5. GREENHOUSE GAS REDUCTION POTENTIAL WITH COMBINED HEAT AND POWER WITH DISTRIBUTED GENERATION PRIME MOVERS - ASME 2012

    SciTech Connect (OSTI)

    Curran, Scott; Theiss, Timothy J; Bunce, Michael

    2012-01-01

    Pending or recently enacted greenhouse gas regulations and mandates are leading to the need for current and feasible GHG reduction solutions including combined heat and power (CHP). Distributed generation using advanced reciprocating engines, gas turbines, microturbines and fuel cells has been shown to reduce greenhouse gases (GHG) compared to the U.S. electrical generation mix due to the use of natural gas and high electrical generation efficiencies of these prime movers. Many of these prime movers are also well suited for use in CHP systems which recover heat generated during combustion or energy conversion. CHP increases the total efficiency of the prime mover by recovering waste heat for generating electricity, replacing process steam, hot water for buildings or even cooling via absorption chilling. The increased efficiency of CHP systems further reduces GHG emissions compared to systems which do not recover waste thermal energy. Current GHG mandates within the U.S Federal sector and looming GHG legislation for states puts an emphasis on understanding the GHG reduction potential of such systems. This study compares the GHG savings from various state-of-the- art prime movers. GHG reductions from commercially available prime movers in the 1-5 MW class including, various industrial fuel cells, large and small gas turbines, micro turbines and reciprocating gas engines with and without CHP are compared to centralized electricity generation including the U.S. mix and the best available technology with natural gas combined cycle power plants. The findings show significant GHG saving potential with the use of CHP. Also provided is an exploration of the accounting methodology for GHG reductions with CHP and the sensitivity of such analyses to electrical generation efficiency, emissions factors and most importantly recoverable heat and thermal recovery efficiency from the CHP system.

  6. Hellsgate Winter Range : Wildlife Mitigation Project. Preliminary Environmental Assessment.

    SciTech Connect (OSTI)

    United States. Bonneville Power Administration.

    1995-01-01

    The Bonneville Power Administration proposes funding the Hellsgate Winter Range Wildlife Mitigation Project in cooperation with the Colville Convederated Tribes and Bureau of Indian Affairs. This Preliminary Environmental Assessment examines the potential environmental effects of acquiring and managing property for wildlife and wildlife habitat within a large project area. The Propose action is intended to meet the need for mitigation of wildlife and wild life habitat that was adversely affected by the construction of Grand Coulee and Chief Joseph Dams and their reservoirs.

  7. Recent Developments in Field Response for Mitigation of Radiological

    Energy Savers [EERE]

    Incidents | Department of Energy Developments in Field Response for Mitigation of Radiological Incidents Recent Developments in Field Response for Mitigation of Radiological Incidents Carlos Corredor*, Department of Energy; Charley Yu, Argonne National Labs Abstract: Since September 11, 2001, there has been a large effort by the government to develop new methods to reduce the consequence of potential radiological incidents. This is evident in the enhancement of technologies and methods to

  8. Industrial Energy Efficiency and Climate Change Mitigation

    SciTech Connect (OSTI)

    Worrell, Ernst; Bernstein, Lenny; Roy, Joyashree; Price, Lynn; de la Rue du Can, Stephane; Harnisch, Jochen

    2009-02-02

    Industry contributes directly and indirectly (through consumed electricity) about 37% of the global greenhouse gas emissions, of which over 80% is from energy use. Total energy-related emissions, which were 9.9 GtCO2 in 2004, have grown by 65% since 1971. Even so, industry has almost continuously improved its energy efficiency over the past decades. In the near future, energy efficiency is potentially the most important and cost-effective means for mitigating greenhouse gas emissions from industry. This paper discusses the potential contribution of industrial energy efficiency technologies and policies to reduce energy use and greenhouse gas emissions to 2030.

  9. Technologies for Climate Change Mitigation: Transport Sector...

    Open Energy Info (EERE)

    Technologies for Climate Change Mitigation: Transport Sector Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Technologies for Climate Change Mitigation: Transport Sector...

  10. A multi-objective programming model for assessment the GHG emissions in MSW management

    SciTech Connect (OSTI)

    Mavrotas, George; Skoulaxinou, Sotiria; Gakis, Nikos; Katsouros, Vassilis; Georgopoulou, Elena

    2013-09-15

    Highlights: The multi-objective multi-period optimization model. The solution approach for the generation of the Pareto front with mathematical programming. The very detailed description of the model (decision variables, parameters, equations). The use of IPCC 2006 guidelines for landfill emissions (first order decay model) in the mathematical programming formulation. - Abstract: In this study a multi-objective mathematical programming model is developed for taking into account GHG emissions for Municipal Solid Waste (MSW) management. Mathematical programming models are often used for structure, design and operational optimization of various systems (energy, supply chain, processes, etc.). The last twenty years they are used all the more often in Municipal Solid Waste (MSW) management in order to provide optimal solutions with the cost objective being the usual driver of the optimization. In our work we consider the GHG emissions as an additional criterion, aiming at a multi-objective approach. The Pareto front (Cost vs. GHG emissions) of the system is generated using an appropriate multi-objective method. This information is essential to the decision maker because he can explore the trade-offs in the Pareto curve and select his most preferred among the Pareto optimal solutions. In the present work a detailed multi-objective, multi-period mathematical programming model is developed in order to describe the waste management problem. Apart from the bi-objective approach, the major innovations of the model are (1) the detailed modeling considering 34 materials and 42 technologies, (2) the detailed calculation of the energy content of the various streams based on the detailed material balances, and (3) the incorporation of the IPCC guidelines for the CH{sub 4} generated in the landfills (first order decay model). The equations of the model are described in full detail. Finally, the whole approach is illustrated with a case study referring to the application of the model in a Greek region.

  11. Carbon flows and economic evaluation of mitigation options in Tanzani's forest sector

    SciTech Connect (OSTI)

    Makundi, W.R.; Okinting'Ati, Aku

    1995-02-02

    This paper presents estimates of the rate of forest use, deforestation and forest degradation, as well as the corresponding carbon flows, in the Tanzanian forest sector. It is estimated that the country lost 525,000 ha of forests in 1990, with associated committed emissions of 31.5 Mt. Carbon (MtC), and 7.05 MtC of committed carbon sequestration. The paper then describes the possible response options in the forest sector to mitigate GHG emissions, and evaluates the most stable subset of these-i.e. forest conservation, woodfuel plantations and agroforestry. The conservation options were found to cost an average of U.S. $1.27 per tonne of carbon (tC) conserved. Five options for fuelwood plantations and agroforestry, with two different ownership regimes were evaluated. Each one of the options gives a positive net present value at low rates of discount, ranging from U.S. $1.06 to 3.4/1C of avoided emissions at 0 percent discount rate. At 10 percent discount, the eucalyptus and maize option has a highest PNV of U.S. $1.73 tC, and the government plantation gives a negative PNV (loss) of U.S. $0.13 tC sequestered. The options with a private/community type of ownership scheme fared better than government run options. This conclusion also held true when ranking the options by the BRAC indicator, with the government fuelwood plantation ranked the lowest, and the private agroforestry option of eucalyptus and corn performing best. The mitigation options evaluated here show that the forest sector in Tanzania has one of the most cost-effective GHG mitigation opportunities in the world, and they are within the developmental aspirations of the country.

  12. Life Cycle GHG Emissions from Conventional Natural Gas Power Generation: Systematic Review and Harmonization (Presentation)

    SciTech Connect (OSTI)

    Heath, G.; O'Donoughue, P.; Whitaker, M.

    2012-12-01

    This research provides a systematic review and harmonization of the life cycle assessment (LCA) literature of electricity generated from conventionally produced natural gas. We focus on estimates of greenhouse gases (GHGs) emitted in the life cycle of electricity generation from conventionally produced natural gas in combustion turbines (NGCT) and combined-cycle (NGCC) systems. A process we term "harmonization" was employed to align several common system performance parameters and assumptions to better allow for cross-study comparisons, with the goal of clarifying central tendency and reducing variability in estimates of life cycle GHG emissions. This presentation summarizes preliminary results.

  13. Implications of simultaneously mitigating and adapting to climate change: Initial experiments using GCAM

    SciTech Connect (OSTI)

    Calvin, Katherine V.; Wise, Marshall A.; Clarke, Leon E.; Edmonds, James A.; Kyle, G. Page; Luckow, Patrick W.; Thomson, Allison M.

    2013-04-01

    Historically climate impacts research and climate mitigation research have been two separate and independent domains of inquiry. Climate mitigation research has investigated greenhouse gas emissions assuming that climate is unchanging. At the same time climate mitigation research has investigated the implications of climate change on the assumption that climate mitigation will proceed without affecting the degree of climate impacts or the ability of human and natural systems to adapt. The Global Change Assessment Model (GCAM) has largely been employed to study climate mitigation. Here we explore the development of capabilities to assess climate change impacts and adaptation within the GCAM model. These capabilities are being developed so as to be able to simultaneously reconcile the joint implications of climate change mitigation, impacts and adaptive potential. This is an important step forward in that it enables direct comparison between climate mitigation activities and climate impacts and the opportunity to understand interactions between the two.

  14. GHG emission factors developed for the collection, transport and landfilling of municipal waste in South African municipalities

    SciTech Connect (OSTI)

    Friedrich, Elena; Trois, Cristina

    2013-04-15

    Highlights: ? An average GHG emission factor for the collection and transport of municipal solid waste in South Africa is calculated. ? A range of GHG emission factors for different types of landfills (including dumps) in South Africa are calculated. ? These factors are compared internationally and their implications for South Africa and developing countries are discussed . ? Areas for new research are highlighted. - Abstract: Greenhouse gas (GHG) emission factors are used with increased frequency for the accounting and reporting of GHG from waste management. However, these factors have been calculated for developed countries of the Northern Hemisphere and are lacking for developing countries. This paper shows how such factors have been developed for the collection, transport and landfilling of municipal waste in South Africa. As such it presents a model on how international results and methodology can be adapted and used to calculate country-specific GHG emission factors from waste. For the collection and transport of municipal waste in South Africa, the average diesel consumption is around 5 dm{sup 3} (litres) per tonne of wet waste and the associated GHG emissions are about 15 kg CO{sub 2} equivalents (CO{sub 2} e). Depending on the type of landfill, the GHG emissions from the landfilling of waste have been calculated to range from ?145 to 1016 kg CO{sub 2} e per tonne of wet waste, when taking into account carbon storage, and from 441 to 2532 kg CO{sub 2} e per tonne of wet waste, when carbon storage is left out. The highest emission factor per unit of wet waste is for landfill sites without landfill gas collection and these are the dominant waste disposal facilities in South Africa. However, cash strapped municipalities in Africa and the developing world will not be able to significantly upgrade these sites and reduce their GHG burdens if there is no equivalent replacement of the Clean Development Mechanism (CDM) resulting from the Kyoto agreement. Other low cost avenues need to be investigated to suit local conditions, in particular landfill covers which enhance methane oxidation.

  15. Peaking of world oil production: Impacts, mitigation, & risk management

    SciTech Connect (OSTI)

    Hirsch, R.L.; Bezdek, Roger; Wendling, Robert

    2005-02-01

    The peaking of world oil production presents the U.S. and the world with an unprecedented risk management problem. As peaking is approached, liquid fuel prices and price volatility will increase dramatically, and, without timely mitigation, the economic, social, and political costs will be unprecedented. Viable mitigation options exist on both the supply and demand sides, but to have substantial impact, they must be initiated more than a decade in advance of peaking.... The purpose of this analysis was to identify the critical issues surrounding the occurrence and mitigation of world oil production peaking. We simplified many of the complexities in an effort to provide a transparent analysis. Nevertheless, our study is neither simple nor brief. We recognize that when oil prices escalate dramatically, there will be demand and economic impacts that will alter our simplified assumptions. Consideration of those feedbacks will be a daunting task but one that should be undertaken. Our aim in this study is to-- Summarize the difficulties of oil production forecasting; Identify the fundamentals that show why world oil production peaking is such a unique challenge; Show why mitigation will take a decade or more of intense effort; Examine the potential economic effects of oil peaking; Describe what might be accomplished under three example mitigation scenarios. Stimulate serious discussion of the problem, suggest more definitive studies, and engender interest in timely action to mitigate its impacts.

  16. A Nuclear Renaissance: The Role of Nuclear Power in Mitigating Climate Change

    SciTech Connect (OSTI)

    Winslow, Anne

    2011-06-28

    The U. N. Framework Convention on Climate Change calls for the stabilization of greenhouse gas (GHG) emissions at double the preindustrial atmospheric carbon dioxide concentration to avoid dangerous anthropogenic interference with the climate system. To achieve this goal, carbon emissions in 2050 must not exceed their current level, despite predictions of a dramatic increase in global electricity demand. The need to reduce GHG emissions and simultaneously provide for additional electricity demand has led to a renewed interest in the expansion of alternatives to fossil fuels--particularly renewable energy and nuclear power. As renewable energy sources are often constrained by the intermittency of natural energy forms, scale-ability concerns, cost and environmental barriers, many governments and even prominent environmentalist turn to nuclear energy as a source of clean, reliable base-load electricity. Described by some as a ''nuclear renaissance'', this trend of embracing nuclear power as a tool to mitigate climate change will dramatically influence the feasibility of emerging nuclear programs around the world.

  17. Addendum to 2010 NREL Environmental Performance Report … Traffic Mitigation Action Plan Update

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Addendum to the National Renewable Energy Laboratory Environmental Performance Report for 2010 (Annual Site Environmental Report per the U.S. Department of Energy Order 231.1-1A Chg 2) Traffic Mitigation Action Plan Update November 2011 Page 1 of 4 Traffic Mitigation Action Plan 2010 Update Traffic Management A Mitigation Action Plan (MAP), finalized in May 2008, was developed to address potential environmental impacts from changes in traffic at NREL and to support a Finding of No Significant

  18. Transportation Energy Futures- Combining Strategies for Deep Reductions in Energy Consumption and GHG Emissions

    Broader source: Energy.gov [DOE]

    Transportation currently accounts for 71% of total U.S. petroleum use and 33% of the nation's total carbon emissions. The TEF project explores how combining multiple strategies could reduce GHG emissions and petroleum use by 80%. Researchers examined four key areas – lightduty vehicles, non-light-duty vehicles, fuels, and transportation demand – in the context of the marketplace, consumer behavior, industry capabilities, technology and the energy and transportation infrastructure. The TEF reports support DOE long-term planning. The reports provide analysis to inform decisions about transportation energy research investments, as well as the role of advanced transportation energy technologies and systems in the development of new physical, strategic, and policy alternatives.

  19. Mitigation Options in Forestry, Land-Use, Change and Biomass Burning in Africa

    SciTech Connect (OSTI)

    Makundi, Willy R.

    1998-06-01

    Mitigation options to reduce greenhouse gas emissions and sequester carbon in land use sectors are describe in some detail. The paper highlights those options in the forestry sector, which are more relevant to different parts of Africa. It briefly outlines a bottom-up methodological framework for comprehensively assessing mitigation options in land use sectors. This method emphasizes the application of end-use demand projections to construct a baseline and mitigation scenarios and explicitly addresses the carbon storage potential on land and in wood products, as well as use of wood to substitute for fossil fuels. Cost-effectiveness indicators for ranking mitigation options are proposed, including those, which account for non-carbon monetary benefits such as those derived from forest products, as well as opportunity cost of pursuing specific mitigation option. The paper finally surveys the likely policies, barriers and incentives to implement such mitigation options in African countries .

  20. Generalized Comprehensive Mitigation Assessment Process (GCOMAP...

    Open Energy Info (EERE)

    Generalized Comprehensive Mitigation Assessment Process (GCOMAP) (Redirected from GCOMAP) Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Generalized Comprehensive...

  1. Generalized Comprehensive Mitigation Assessment Process (GCOMAP...

    Open Energy Info (EERE)

    search Tool Summary LAUNCH TOOL Name: Generalized Comprehensive Mitigation Assessment Process (GCOMAP) AgencyCompany Organization: Lawrence Berkeley National Laboratory...

  2. Implantation, Activation, Characterization and Prevention/Mitigation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Activation, Characterization and PreventionMitigation of Internal Short Circuits in Lithium-Ion Cells Implantation, Activation, Characterization and Prevention...

  3. EIS-0397: Mitigation Action Plan | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Mitigation Action Plan EIS-0397: Mitigation Action Plan Lyle Falls Fish Passage Project This Mitigation Action Plan identifies measures that are intended to avoid, reduce, or...

  4. EIS-0026: 2009 Annual Mitigation Report | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Annual Mitigation Report (AMR) addresses those WIPP-related mitigation activities undertaken from the time of submittal of the 1994 Annual Mitigation Report in July 1994 through...

  5. EIS-0026: Annual Mitigation Report | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Annual Mitigation Report addresses those WIPP Project-related mitigation activities undertaken from the time of submittal of the 1994 Annual Mitigation Report in July 1994 through...

  6. EIS-0422: Mitigation Action Plan | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Mitigation measures and estimated time of implementation within the Mitigation Action Plan for the Central Ferry-Lower Monumental 500-kilovolt Transmission Line Project. Mitigation...

  7. Appropriate Use of Mitigation and Monitoring and Clarifying the...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Appropriate Use of Mitigation and Monitoring and Clarifying the Appropriate Use of Mitigated Findings of No Significant Impact Appropriate Use of Mitigation and Monitoring and ...

  8. Status of research toward the ITER disruption mitigation system

    SciTech Connect (OSTI)

    Hollmann, E. M.; Izzo, V. A.; Aleynikov, P. B.; Lehnen, M.; Snipes, J. A.; Flp, T.; Humphreys, D. A.; Lukash, V. E.; Papp, G.; Pautasso, G.; Saint-Laurent, F.

    2015-02-15

    An overview of the present status of research toward the final design of the ITER disruption mitigation system (DMS) is given. The ITER DMS is based on massive injection of impurities, in order to radiate the plasma stored energy and mitigate the potentially damaging effects of disruptions. The design of this system will be extremely challenging due to many physics and engineering constraints such as limitations on port access and the amount and species of injected impurities. Additionally, many physics questions relevant to the design of the ITER disruption mitigation system remain unsolved such as the mechanisms for mixing and assimilation of injected impurities during the rapid shutdown and the mechanisms for the subsequent formation and dissipation of runaway electron current.

  9. Bonneville Power Administration Wildlife Mitigation Program : Draft Environmental Impact Statement.

    SciTech Connect (OSTI)

    United States. Bonneville Power Administration.

    1996-08-01

    Bonneville Power Administration (BPA) is responsible for mitigating the loss of wildlife habitat caused by the development of the Federal Columbia River Power System. BPA accomplishes this mitigation by funding projects consistent with those recommended by the Northwest Power Planning Council (Council). The projects are submitted to the Council from Indian Tribes, state agencies, property owners, private conservation groups, and other Federal agencies. Future wildlife mitigation actions with potential environmental impacts are expected to include land acquisition and management, water rights acquisition and management, habitat restoration and enhancement, installation of watering devices, riparian fencing, and similar wildlife conservation actions. BPA needs to ensure that individual wildlife mitigation projects are planned and managed with appropriate consistency across projects, jurisdictions, and ecosystems, as well as across time. BPA proposes to standardize the planning and implementation of individual wildlife mitigation projects funded by BPA. Alternative 1 is the No Action alternative. Five standardizing alternatives are identified to represent the range of possible strategies, goals, and procedural requirements reasonably applicable to BPA-funded projects under a standardized approach to project planning and implementation. All action alternatives are based on a single project planning process designed to resolve site-specific issues in an ecosystem context and to adapt to changing conditions and information.

  10. Mitigation of Syngas Cooler Plugging and Fouling

    SciTech Connect (OSTI)

    Bockelie, Michael J.

    2015-06-29

    This Final Report summarizes research performed to develop a technology to mitigate the plugging and fouling that occurs in the syngas cooler used in many Integrated Gasification Combined Cycle (IGCC) plants. The syngas cooler is a firetube heat exchanger located downstream of the gasifier. It offers high thermal efficiency, but its’ reliability has generally been lower than other process equipment in the gasification island. The buildup of ash deposits that form on the fireside surfaces in the syngas cooler (i.e., fouling) lead to reduced equipment life and increased maintenance costs. Our approach to address this problem is that fouling of the syngas cooler cannot be eliminated, but it can be better managed. The research program was funded by DOE using two budget periods: Budget Period 1 (BP1) and Budget Period 2 (BP2). The project used a combination of laboratory scale experiments, analysis of syngas cooler deposits, modeling and guidance from industry to develop a better understanding of fouling mechanisms and to develop and evaluate strategies to mitigate syngas cooler fouling and thereby improve syngas cooler performance. The work effort in BP 1 and BP 2 focused on developing a better understanding of the mechanisms that lead to syngas cooler plugging and fouling and investigating promising concepts to mitigate syngas cooler plugging and fouling. The work effort focused on the following: • analysis of syngas cooler deposits and fuels provided by an IGCC plant collaborating with this project; • performing Jet cleaning tests in the University of Utah Laminar Entrained Flow Reactor to determine the bond strength between an ash deposit to a metal plate, as well as implementing planned equipment modifications to the University of Utah Laminar Entrained Flow Reactor and the one ton per day, pressurized Pilot Scale Gasifier; • performing Computational Fluid Dynamic modeling of industrially relevant syngas cooler configurations to develop a better understanding of deposit formation mechanisms; • performing Techno-Economic-Analysis for a representative IGCC plant to investigate the impact on plant economics, in particular the impacts on the Cost of Electricity (COE), due to plant shutdowns caused by syngas cooler plugging and fouling and potential benefits to plant economics of developing strategies to mitigate syngas cooler fouling; and • performing modeling and pilot scale tests to investigate the potential benefits of using a sorbent (fuel additive) to capture the vaporized metals that result in syngas cooler fouling. All project milestones for BP 1 and BP 2 were achieved. DOE was provided a briefing on our accomplishments in BP1 and BP2 and our proposed plans for Budget Period 3 (BP 3). Based on our research the mitigation technology selected to investigate in BP 3 was the use of a sorbent that can be injected into the gasifier with the fuel slurry to capture vaporized metals that lead to the deposit formation in the syngas cooler. The work effort proposed for BP 3 would have focused on addressing concerns raised by gasification industry personnel for the impacts on gasifier performance of sorbent injection, so that at the end of BP 3 the use of sorbent injection would be at “pre-commercial” stage and ready for use in a Field Demonstration that could be funded by industry or DOE. A Budget Continuation Application (BCA) was submitted to obtain funding for BP3 DOE but DOE chose to not fund the proposed BP3 effort.

  11. EA-1508: Mitigation Action Plan | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    and dewatering, landscape engineering, borrow pits and recommended procedures for Raptors and powerline construction. Mitigation Action Plan to Implement Mitigation...

  12. Strategies for Mitigating the Reduction in Economic Value of Variable Generation with Increasing Penetration Levels

    SciTech Connect (OSTI)

    Mills, Andrew; Wiser, Ryan

    2014-03-03

    In this report, we evaluate individual options that have the potential to stem the decline in the marginal value of variable generation (VG) with increasing penetration levels. We focus only on the effectiveness of mitigation measures for wind and PV.

  13. Global Renewable Resource Potential | Open Energy Information

    Open Energy Info (EERE)

    Quality of Renewable Energy Potential 3 Representation of Challenges 4 Generation of New Climate Change Mitigation Scenarios 5 References Introduction A wind farm located in...

  14. Environmental Mitigation Technology (Innovative System Testing...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    the Alden Hydropower Fish-Friendly Turbine Environmental Mitigation Technology (Innovative System Testing)-Deployment and Testing of the Alden Hydropower Fish-Friendly Turbine ...

  15. Mitigation Action Implementation Network (MAIN) | Open Energy...

    Open Energy Info (EERE)

    of Nationally Appropriate Mitigation Actions (NAMAs) and Low-Carbon Development (LCD) strategies in developing countries through regionally based dialogues, web-based...

  16. Progress Continues on Mitigation of Radiological Contamination

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    August 13, 2015 Progress Continues on Mitigation of Radiological Contamination This week, WIPP personnel will complete the installation of the brattice cloth and salt barrier on a...

  17. Ocean Fertilization and Other Climate Change Mitigation Strategies: An Overview

    SciTech Connect (OSTI)

    Huesemann, Michael H.

    2008-07-29

    In order to evaluate ocean fertilization in the larger context of other proposed strategies for reducing the threat of the global warming, a wide range of different climate change mitigation approaches are compared in terms of their long-term potential, stage of development, relative costs and potential risks, as well as public acceptance. This broad comparative analysis is carried out for the following climate change mitigation strategies: supply-side and end-use efficiency improvements, terrestrial and geological carbon sequestration, CO2 ocean disposal and iron fertilization, nuclear power, and renewable energy generation from biomass, passive solar, solar thermal, photovoltaics, hydroelectric and wind. In addition, because of the inherent problems of conducting an objective comparative cost-benefit analysis, two non-technological solutions to global warming are also discussed: curbing population growth and transitioning to a steady-state economy.

  18. Sensitivity of climate mitigation strategies to natural disturbances

    SciTech Connect (OSTI)

    Le Page, Yannick LB; Hurtt, George; Thomson, Allison M.; Bond-Lamberty, Benjamin; Patel, Pralit L.; Wise, Marshall A.; Calvin, Katherine V.; Kyle, G. Page; Clarke, Leon E.; Edmonds, James A.; Janetos, Anthony C.

    2013-02-19

    The present and future concentration of atmospheric carbon dioxide depends on both anthropogenic and natural sources and sinks of carbon. Most proposed climate mitigation strategies rely on a progressive transition to carbon12 efficient technologies to reduce industrial emissions, substantially supported by policies to maintain or enhance the terrestrial carbon stock in forests and other ecosystems. This strategy may be challenged if terrestrial sequestration capacity is affected by future climate feedbacks, but how and to what extent is little understood. Here, we show that climate mitigation strategies are highly sensitive to future natural disturbance rates (e.g. fires, hurricanes, droughts), because of potential effect of disturbances on the terrestrial carbon balance. Generally, altered disturbance rates affect the pace of societal and technological transitions required to achieve the mitigation target, with substantial consequences on the energy sector and on the global economy. Understanding the future dynamics and consequences of natural disturbances on terrestrial carbon balance is thus essential for developing robust climate mitigation strategies and policies

  19. Blue Creek Winter Range : Wildlife Mitigation Project : Preliminary Environmental Assessment.

    SciTech Connect (OSTI)

    United States. Bonneville Power Administration; United States. Bureau of Indian Affairs; Spokane Tribe of the Spokane Reservation, Washington

    1994-11-01

    This preliminary Environmental Assessment examines the potential environmental effects of securing land and conducting wildlife habitat enhancement and long term management activities within the boundaries of the Spokane Indian Reservation. Four proposed activities are analyzed: Habitat protection; Habitat enhancement; Operation and maintenance; and Monitoring and evaluation. The proposed action is intended to meet the need for mitigation of wildlife and wildlife habitat adversely affected by the construction of Grand Coulee Dam and its reservoir.

  20. Benefits of Greenhouse Gas Mitigation on the Supply, Management, and Use of Water Resources in the United States

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Strzepek, K.; Neumann, Jim; Smith, Joel; Martinich, Jeremy; Boehlert, Brent; Hejazi, Mohamad I.; Henderson, Jim; Wobus, Cameron; Jones, Russ; Calvin, Katherine V.; et al

    2014-11-29

    Climate change impacts on water resources in the U.S. are likely to be far-reaching and substantial, because the water sector spans many parts of the economy, from supply and demand for agriculture, industry, energy production, transportation and municipal use to damages from natural hazards. This paper provides impact and damage estimates from five water resource-related models in the CIRA frame work, addressing drought risk, flooding damages, water supply and demand, and global water scarcity. The four models differ in the water system assessed, their spatial scale, and the units of assessment, but together they provide a quantitative and descriptive richnessmore » in characterizing water resource sector effects of climate change that no single model can capture. The results also address the sensitivity of these estimates to greenhouse gas emission scenarios, climate sensitivity alternatives, and global climate model selection. While calculating the net impact of climate change on the water sector as a whole may be impractical, because each of the models applied here uses a consistent set of climate scenarios, broad conclusions can be drawn regarding the patterns of change and the benefits of GHG mitigation policies for the water sector. Two key findings emerge: 1) climate mitigation policy substantially reduces the impact of climate change on the water sector across multiple dimensions; and 2) the more managed the water resources system, the more tempered the climate change impacts and the resulting reduction of impacts from climate mitigation policies.« less

  1. Benefits of Greenhouse Gas Mitigation on the Supply, Management, and Use of Water Resources in the United States

    SciTech Connect (OSTI)

    Strzepek, K.; Neumann, Jim; Smith, Joel; Martinich, Jeremy; Boehlert, Brent; Hejazi, Mohamad I.; Henderson, Jim; Wobus, Cameron; Jones, Russ; Calvin, Katherine V.; Johnson, D.; Monier, Erwan; Strzepek, J.; Yoon, Jin-Ho

    2014-11-29

    Climate change impacts on water resources in the U.S. are likely to be far-reaching and substantial, because the water sector spans many parts of the economy, from supply and demand for agriculture, industry, energy production, transportation and municipal use to damages from natural hazards. This paper provides impact and damage estimates from five water resource-related models in the CIRA frame work, addressing drought risk, flooding damages, water supply and demand, and global water scarcity. The four models differ in the water system assessed, their spatial scale, and the units of assessment, but together they provide a quantitative and descriptive richness in characterizing water resource sector effects of climate change that no single model can capture. The results also address the sensitivity of these estimates to greenhouse gas emission scenarios, climate sensitivity alternatives, and global climate model selection. While calculating the net impact of climate change on the water sector as a whole may be impractical, because each of the models applied here uses a consistent set of climate scenarios, broad conclusions can be drawn regarding the patterns of change and the benefits of GHG mitigation policies for the water sector. Two key findings emerge: 1) climate mitigation policy substantially reduces the impact of climate change on the water sector across multiple dimensions; and 2) the more managed the water resources system, the more tempered the climate change impacts and the resulting reduction of impacts from climate mitigation policies.

  2. Mitigation options for methane emissions from rice fields in the Philippines

    SciTech Connect (OSTI)

    Lantin, R.S.; Buendia, L.V.; Wassmann, R.

    1996-12-31

    The contribution of Philippine rice production to global methane emission and breakthroughs in methane emission studies conducted in the country are presented in this paper. A significant impact in the reduction of GHG emissions from agriculture can be achieved if methane emissions from ricefields can be abated. This study presents the contribution of Philippine rice cultivation to global methane emission and breakthroughs in methane emission studies in the country which address the issue of mitigation. Using the derived emission factors from local measurements, rice cultivation contributes 566.6 Gg of methane emission in the Philippines. This value is 62% of the total methane emitted from the agriculture sector. The emission factors employed which are 78% of the IPCC value for irrigated rice and 95% for rainfed rice were derived from measurements with an automatic system taken during the growth duration in the respective ecosystems. Plots drained for 2 weeks at midtillering and before harvest gave a significant reduction in methane emission as opposed to continuously flooded plots and plots drained before harvest. The cultivar Magat reduced methane emission by 50% as compared to the check variety IR72. The application of ammonium sulfate instead of urea reduced methane emission by 10% to 34%. Addition of 6 t ha{sup {minus}1} phosphogypsum in combination with urea reduced emission by 74% as opposed to plots applied with urea alone. It is also from the results of such measurements that abatement strategies are based as regards to modifying treatments such as water management, fertilization, and choice of rice variety. It is not easy to identify and recommend mitigation strategies that will fit a particular cropping system. However, the identified mitigation options provide focus for the abatement of methane emission from ricefields.

  3. Philippines-Standard Assessment of Mitigation Potential and Livelihood...

    Open Energy Info (EERE)

    the European Union, International Fund for Agricultural Development (IFAD) Partner International Livestock Research Institute (ILRI), International Council for Research in...

  4. LCA (Life Cycle Assessment) of Parabolic Trough CSP: Materials Inventory and Embodied GHG Emissions from Two-Tank Indirect and Thermocline Thermal Storage (Presentation)

    SciTech Connect (OSTI)

    Heath, G.; Burkhardt, J.; Turchi, C.; Decker, T.; Kutscher, C.

    2009-07-20

    In the United States, concentrating solar power (CSP) is one of the most promising renewable energy (RE) technologies for reduction of electric sector greenhouse gas (GHG) emissions and for rapid capacity expansion. It is also one of the most price-competitive RE technologies, thanks in large measure to decades of field experience and consistent improvements in design. One of the key design features that makes CSP more attractive than many other RE technologies, like solar photovoltaics and wind, is the potential for including relatively low-cost and efficient thermal energy storage (TES), which can smooth the daily fluctuation of electricity production and extend its duration into the evening peak hours or longer. Because operational environmental burdens are typically small for RE technologies, life cycle assessment (LCA) is recognized as the most appropriate analytical approach for determining their environmental impacts of these technologies, including CSP. An LCA accounts for impacts from all stages in the development, operation, and decommissioning of a CSP plant, including such upstream stages as the extraction of raw materials used in system components, manufacturing of those components, and construction of the plant. The National Renewable Energy Laboratory (NREL) is undertaking an LCA of modern CSP plants, starting with those of parabolic trough design.

  5. Hungry Horse Mitigation; Flathead Lake, 2003-2004 Annual Report.

    SciTech Connect (OSTI)

    Hansen, Barry; Evarts, Les

    2005-06-01

    The Confederated Salish and Kootenai Tribes (CSKT) and Montana Fish Wildlife and Parks (MFWP) wrote the ''Fisheries Mitigation Plan for Losses Attributable to the Construction and Operation of Hungry Horse Dam'' in March 1991 to define the fisheries losses, mitigation alternatives and recommendations to protect, mitigate and enhance resident fish and aquatic habitat affected by Hungry Horse Dam. On November 12, 1991, the Northwest Power Planning Council (NPPC) approved the mitigation plan with minor modifications, called for a detailed implementation plan, and amended measures 903(h)(1) through (7). A long-term mitigation plan was submitted in August 1992, was approved by the Council in 1993, and the first contract for this project was signed on November 11, 1993. The problem this project addresses is the loss of habitat, both in quality and quantity, in the Flathead Lake and River basin resulting from the construction and operation of Hungry Horse Dam. The purpose of the project is to both implement mitigation measures and monitor the biological responses to those measures including those implemented by Project Numbers 9101903 and 9101904. Goals and objectives of the 1994 Fish and Wildlife Program (Section 10.1) addressed by this project are the rebuilding to sustainable levels weak, but recoverable, native populations injured by the hydropower system. The project mitigates the blockage of spawning runs by Hungry Horse Dam by restoring and even creating spawning habitats within direct drainages to Flathead Lake. The project also addresses the altered habitat within Flathead Lake resulting from species shifts and consequent dominance of new species that restricts the potential success of mitigation measures. Specific goals of this project are to create and restore habitat and quantitatively monitor changes in fish populations to verify the efficacy of our mitigation measures. The project consists of three components: monitoring, restoration and research. Monitoring, for example, includes a spring gillnetting series conducted annually in Flathead Lake and builds on an existing data set initiated in 1981. Monitoring of the experimental kokanee reintroduction was a primary activity of this project between 1992 and 1997. Lake trout, whose high densities have precluded successful mitigation of losses of other species in Flathead Lake, have been monitored since 1996 to measure several biological parameters. Results of this work have utility in determining the population status of this key predator in Flathead Lake. The project has also defined the baseline condition of the Flathead Lake fishery in 1992-1993 and has conducted annual lakewide surveys since 1998. The restoration component of the project has addressed several stream channel, riparian, and fish passage problems, and suppression of non-native fish. The research component of the project began in FY 2000 and measured trophic linkages between M. relicta and other species to assist in predicting the results of our efforts to suppress lake trout. Only Objective 1 in the workplan is funded entirely by Hungry Horse Mitigation funds. Additional funds are drawn from other sources to assist in completion of Objectives 2-8.

  6. Mitigation Measures for Distributed PV Interconnection

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Mitigation Measures for Distributed Interconnection" Michael Coddington with National Renewable Energy Laboratory and Robert Broderick with Sandia National Laboratories July 9, 2014 2 Speakers Michael Coddington Principal Investigator Distributed Grid Integration NREL Robert Broderick Technical Lead Distributed Grid Integration Programs Sandia National Laboratories Kristen Ardani Solar Analyst, (today's moderator) NREL 3 INTERCONNECTION, SCREENING & MITIGATION PRACTICES OF 21 UTILITIES

  7. EIS-0026: Annual Mitigation Report | Department of Energy

    Office of Environmental Management (EM)

    8 Annual Mitigation Report (AMR) addresses those WIPP-related mitigation activities undertaken from the time of submittal of the 1994 Annual Mitigation Report in July 1994 through June 2008. PDF icon 2008 Annual Mitigation Report for the Waste Isolation Pilot Plant, DOE/CBFO-08-3322 (July 2008) More Documents & Publications EIS-0026: 2010 Annual Mitigation Report EIS-0026:

  8. EIS-0026: Annual Mitigation Report | Department of Energy

    Office of Environmental Management (EM)

    7 Annual Mitigation Report (2007 AMR) addresses those WIPP- related mitigation activities undertaken from the time of submittal of the 1994 Annual Mitigation Report in July 1994 through June 2007. PDF icon Department of Energy 2007 Annual Mitigation Report for the Waste Isolation Pilot Plant (July 2007) More Documents & Publications EIS-0026: Annual Mitigation Report EIS-0026: 2010

  9. Greenhouse gas mitigation options for Washington State

    SciTech Connect (OSTI)

    Garcia, N.

    1996-04-01

    President Clinton, in 1993, established a goal for the United States to return emissions of greenhouse gases to 1990 levels by the year 2000. One effort established to help meet this goal was a three part Environmental Protection Agency state grant program. Washington State completed part one of this program with the release of the 1990 greenhouse gas emissions inventory and 2010 projected inventory. This document completes part two by detailing alternative greenhouse gas mitigation options. In part three of the program EPA, working in partnership with the States, may help fund innovative greenhouse gas reduction strategies. The greenhouse gas control options analyzed in this report have a wide range of greenhouse gas reductions, costs, and implementation requirements. In order to select and implement a prudent mix of control strategies, policy makers need to have some notion of the potential change in climate, the consequences of that change and the uncertainties contained therein. By understanding the risks of climate change, policy makers can better balance the use of scarce public resources for concerns that are immediate and present against those that affect future generations. Therefore, prior to analyzing alternative greenhouse gas control measures, this report briefly describes the phenomenon and uncertainties of global climate change, and then projects the likely consequences for Washington state.

  10. 2009 River Corridor Closure Contractor Revegetation and Mitigation Monitoring Report

    SciTech Connect (OSTI)

    C. T. Lindsey; K. A. Gano; R. D. Teel

    2009-09-30

    This document details the results of revegetation and mitigation monitoring conducted in 2009, including 25 revegetation/restoration projects, one revegetation/mitigation project, and three bat mitigation projects.

  11. EIS-0473: Mitigation Action Plan | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Mitigation Action Plan EIS-0473: Mitigation Action Plan W.A. Parish Post-Combustion CO2 Capture and Sequestration Project, Fort Bend County, Texas This Mitigation Action Plan (MAP)...

  12. EIS-0419: Mitigation Action Plan | Department of Energy

    Energy Savers [EERE]

    Mitigation Action Plan EIS-0419: Mitigation Action Plan Whistling Ridge Energy Project; Skamania County, Washington Bonneville Power Administration (BPA) adopted all the mitigation measures described in the Whistling Ridge Energy Project EIS and prepared a mitigation action plan. The applicant will be responsible for executing the mitigation measures for the wind project, and BPA will be responsible for executing the mitigation measures for the BPA interconnection facilities. For more

  13. Appropriate Use of Mitigation and Monitoring and Clarifying the Appropriate

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Use of Mitigated Findings of No Significant Impact | Department of Energy Appropriate Use of Mitigation and Monitoring and Clarifying the Appropriate Use of Mitigated Findings of No Significant Impact Appropriate Use of Mitigation and Monitoring and Clarifying the Appropriate Use of Mitigated Findings of No Significant Impact The Council on Environmental Quality is issuing this guidance for Federal departments and agencies on establishing, implementing, and monitoring mitigation commitments

  14. EIS-0026: Mitigation Action Plan | Department of Energy

    Office of Environmental Management (EM)

    Mitigation Action Plan EIS-0026: Mitigation Action Plan Waste Isolation Pilot Plant This MAP focuses on mitigation commitments stated in the RODs to the 1980 Final Environmental Impact Statement (FEIS) and the 1990 Final Supplement Environmental Impact Statement (SEIS). Specific commitments and mitigation implementation actions are listed in Table 1 of the Mitigation Action Plan. The comprehensive listing, presented in Table 1 of the Mitigation Action Plan, is the central focus of this MAP and

  15. EIS-0380: Mitigation Action Plan | Department of Energy

    Office of Environmental Management (EM)

    : Mitigation Action Plan EIS-0380: Mitigation Action Plan Continued Operation of Los Alamos National Laboratory, Los Alamos, New Mexico PDF icon Site-Wide Environmental Impact Statement for the Continued Operation of Los Alamos National Laboratory (DOE/EIS-0380) Mitigation Action Plan (December 2008) More Documents & Publications EIS-0380: Annual Mitigation Action Plan Annual Report EIS-0380: Mitigation Action Plan Annual Report EIS-0380: Mitigation Action Plan

  16. Mitigation Action Plans and Scenarios (MAPS) | Open Energy Information

    Open Energy Info (EERE)

    Mitigation Action Plans and Scenarios (MAPS) (Redirected from CIFF-Chile-Mitigation Action Plans and Scenarios (MAPS)) Jump to: navigation, search Retrieved from "http:...

  17. Procedures for Interagency Consultation to Avoid or Mitigate...

    Office of Environmental Management (EM)

    Procedures for Interagency Consultation to Avoid or Mitigate Adverse Effects on Rivers in the Nationwide Inventory Procedures for Interagency Consultation to Avoid or Mitigate...

  18. Oregon Fish and Wildlife Mitigation Policy | Open Energy Information

    Open Energy Info (EERE)

    Fish and Wildlife Mitigation Policy Jump to: navigation, search OpenEI Reference LibraryAdd to library Reference: Oregon Fish and Wildlife Mitigation Policy Published Publisher Not...

  19. Angola-Nationally Appropriate Mitigation Actions (NAMAs) in the...

    Open Energy Info (EERE)

    Angola-Nationally Appropriate Mitigation Actions (NAMAs) in the Congo Basin Jump to: navigation, search Name Angola-Nationally Appropriate Mitigation Actions (NAMAs) in the Congo...

  20. EA-1923: Mitigation Action Plan | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Mitigation Action Plan EA-1923: Mitigation Action Plan Green Energy School Wind Turbine Project on Saipan, Commonwealth of the Northern Mariana Islands This Mitgation Action Plan ...

  1. EA-1923: Mitigated Finding of No Significant Impact | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Mitigated Finding of No Significant Impact EA-1923: Mitigated Finding of No Significant Impact Green Energy School Wind Turbine Project on Saipan, Commonwealth of the Northern ...

  2. Property:Environmental Monitoring and Mitigation Efforts | Open...

    Open Energy Info (EERE)

    Environmental Monitoring and Mitigation Efforts Jump to: navigation, search Property Name Environmental Monitoring and Mitigation Efforts Property Type String Retrieved from...

  3. Korea's Green Growth Strategy: Mitigating Climate Change and...

    Open Energy Info (EERE)

    Korea's Green Growth Strategy: Mitigating Climate Change and Developing New Growth Engines Jump to: navigation, search Name Korea's Green Growth Strategy: Mitigating Climate Change...

  4. Financing Global Climate Change Mitigation | Open Energy Information

    Open Energy Info (EERE)

    Global Climate Change Mitigation Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Financing Global Climate Change Mitigation AgencyCompany Organization: United Nations...

  5. Mitigating Breakdown in High Energy Density Perovskite Polymer...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Mitigating Breakdown in High Energy Density Perovskite Polymer Nanocomposite Capacitors Mitigating Breakdown in High Energy Density Perovskite Polymer Nanocomposite Capacitors 2012 ...

  6. EIS-0380: Fiscal Year 2011 Mitigation Action Plan Annual Report...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fiscal Year 2011 Mitigation Action Plan Annual Report for the 2008 Los Alamos Site-Wide Environmental Impact Statement EIS-0380: Fiscal Year 2011 Mitigation Action Plan Annual...

  7. EA-1706: Mitigation Action Plan | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Mitigation Action Plan EA-1706: Mitigation Action Plan West Tennessee Solar Farm Project Haywood County, Tennessee Based on the analyses in the Environmental Assessment, DOE...

  8. Improving Department of Energy Capabilities for Mitigating Beyond...

    Energy Savers [EERE]

    Improving Department of Energy Capabilities for Mitigating Beyond Design Basis Events Improving Department of Energy Capabilities for Mitigating Beyond Design Basis Events April...

  9. Development of Micro-structural Mitigation Strategies for PEM...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Micro-structural Mitigation Strategies for PEM Fuel Cells: Morphological Simulation and Experimental Approaches Development of Micro-structural Mitigation Strategies for PEM Fuel ...

  10. EIS-0218: Mitigation Action Plan | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Mitigation Action Plan EIS-0218: Mitigation Action Plan Implementation of a Nuclear Weapons Nonproliferation Policy Concerning Foreign Research Reactor Spent Nuclear Fuel The ...

  11. A greenhouse-gas information system monitoring and validating emissions reporting and mitigation

    SciTech Connect (OSTI)

    Jonietz, Karl K; Dimotakis, Paul E; Walker, Bruce C

    2011-09-26

    Current GHG-mitigating regimes, whether internationally agreed or self-imposed, rely on the aggregation of self-reported data, with limited checks for consistency and accuracy, for monitoring. As nations commit to more stringent GHG emissions-mitigation actions and as economic rewards or penalties are attached to emission levels, self-reported data will require independent confirmation that they are accurate and reliable, if they are to provide the basis for critical choices and actions that may be required. Supporting emissions-mitigation efforts and agreements, as well as monitoring energy- and fossil-fuel intensive national and global activities would be best achieved by a process of: (1) monitoring of emissions and emission-mitigation actions, based, in part, on, (2) (self-) reporting of pertinent bottom-up inventory data, (3) verification that reported data derive from and are consistent with agreed-upon processes and procedures, and (4) validation that reported emissions and emissions-mitigation action data are correct, based on independent measurements (top-down) derived from a suite of sensors in space, air, land, and, possibly, sea, used to deduce and attribute anthropogenic emissions. These data would be assessed and used to deduce and attribute measured GHG concentrations to anthropogenic emissions, attributed geographically and, to the extent possible, by economic sector. The validation element is needed to provide independent assurance that emissions are in accord with reported values, and should be considered as an important addition to the accepted MRV process, leading to a MRV&V process. This study and report focus on attributes of a greenhouse-gas information system (GHGIS) needed to support MRV&V needs. These needs set the function of such a system apart from scientific/research monitoring of GHGs and carbon-cycle systems, and include (not exclusively): the need for a GHGIS that is operational, as required for decision-support; the need for a system that meets specifications derived from imposed requirements; the need for rigorous calibration, verification, and validation (CV&V) standards, processes, and records for all measurement and modeling/data-inversion data; the need to develop and adopt an uncertainty-quantification (UQ) regimen for all measurement and modeling data; and the requirement that GHGIS products can be subjected to third-party questioning and scientific scrutiny. This report examines and assesses presently available capabilities that could contribute to a future GHGIS. These capabilities include sensors and measurement technologies; data analysis and data uncertainty quantification (UQ) practices and methods; and model-based data-inversion practices, methods, and their associated UQ. The report further examines the need for traceable calibration, verification, and validation processes and attached metadata; differences between present science-/research-oriented needs and those that would be required for an operational GHGIS; the development, operation, and maintenance of a GHGIS missions-operations center (GMOC); and the complex systems engineering and integration that would be required to develop, operate, and evolve a future GHGIS. Present monitoring systems would be heavily relied on in any GHGIS implementation at the outset and would likely continue to provide valuable future contributions to GHGIS. However, present monitoring systems were developed to serve science/research purposes. This study concludes that no component or capability presently available is at the level of technological maturity and readiness required for implementation in an operational GHGIS today. However, purpose-designed and -built components could be developed and implemented in support of a future GHGIS. The study concludes that it is possible to develop and provide a capability-driven prototype GHGIS, as part of a Phase-1 effort, within three years from project-funding start, that would make use of and integrate existing sensing and system capabilities. As part of a Phase-2 effort, a requirements-driven, operational GHGIS could be developed, within ten years from project funding start. That schedule is driven by the development and long lead-times for some system components. The two efforts would be focused on different deliverables but could commence concurrently, to save time, if that was deemed desirable. We note that, developing and supporting an operational GHGIS will require a new approach and management, sustained funding and other support, as well as technical advances and development of purpose-built components that meet the requisite specifications. A functioning GHGIS will provide the basis for reasoned choices on how best to respond to rising GHG levels, especially when proposed U.S. actions are compared with or conditioned on the actions of other nations.

  12. Information Needs for Energy Mitigation and Siting

    Broader source: Energy.gov (indexed) [DOE]

    esources University o f W yoming QUADRENNIAL ENERGY REVIEW - Aug. 21,2014 1. A shared language 2. Solid baseline data to guide planning and siting 3. Mitigation best practices -...

  13. Can land management and biomass utilization help mitigate global warming?

    SciTech Connect (OSTI)

    Schlamadinger, B.; Lauer, M.

    1996-12-31

    With rising concern about the increase of the CO{sub 2} concentration in the earth`s atmosphere there is considerable interest in various land-use based mitigation options, like afforestation of surplus agricultural land with or without subsequent harvest; improved forest management; strategies that rely on wood plantations managed in short rotation or agricultural crops with high yields to produce bioenergy, timber and other biomass products. In the first step of this study, the net carbon benefits of such strategies will be calculated per unit of land, i.e., per hectare, because it is assumed that land is the limiting resource for such strategies in the future, and thus, the benefits per unit land need to be optimized. For these calculations a computer model has been developed. The results take into account the time dependence of carbon storage in the biosphere and are shown graphically both for land and for plantation systems with constant output of biomass over time. In the second step, these results will be combined with data on available land for Austria. The potential contribution of each of the above strategies towards mitigating the Austrian CO{sub 2} emissions will be demonstrated. A comparison to other renewable mitigation options, like solar thermal or photovoltaics, will be drawn in terms of available land resources and overall CO{sub 2} reductions.

  14. Composite Materials for Hazard Mitigation of Reactive Metal Hydrides.

    SciTech Connect (OSTI)

    Pratt, Joseph William; Cordaro, Joseph Gabriel; Sartor, George B.; Dedrick, Daniel E.; Reeder, Craig L.

    2012-02-01

    In an attempt to mitigate the hazards associated with storing large quantities of reactive metal hydrides, polymer composite materials were synthesized and tested under simulated usage and accident conditions. The composites were made by polymerizing vinyl monomers using free-radical polymerization chemistry, in the presence of the metal hydride. Composites with vinyl-containing siloxane oligomers were also polymerized with and without added styrene and divinyl benzene. Hydrogen capacity measurements revealed that addition of the polymer to the metal hydride reduced the inherent hydrogen storage capacity of the material. The composites were found to be initially effective at reducing the amount of heat released during oxidation. However, upon cycling the composites, the mitigating behavior was lost. While the polymer composites we investigated have mitigating potential and are physically robust, they undergo a chemical change upon cycling that makes them subsequently ineffective at mitigating heat release upon oxidation of the metal hydride. Acknowledgements The authors would like to thank the following people who participated in this project: Ned Stetson (U.S. Department of Energy) for sponsorship and support of the project. Ken Stewart (Sandia) for building the flow-through calorimeter and cycling test stations. Isidro Ruvalcaba, Jr. (Sandia) for qualitative experiments on the interaction of sodium alanate with water. Terry Johnson (Sandia) for sharing his expertise and knowledge of metal hydrides, and sodium alanate in particular. Marcina Moreno (Sandia) for programmatic assistance. John Khalil (United Technologies Research Corp) for insight into the hazards of reactive metal hydrides and real-world accident scenario experiments. Summary In an attempt to mitigate and/or manage hazards associated with storing bulk quantities of reactive metal hydrides, polymer composite materials (a mixture of a mitigating polymer and a metal hydride) were synthesized and tested under simulated usage and accident conditions. Mitigating the hazards associated with reactive metal hydrides during an accident while finding a way to keep the original capability of the active material intact during normal use has been the focus of this work. These composites were made by polymerizing vinyl monomers using free-radical polymerization chemistry, in the presence of the metal hydride, in this case a prepared sodium alanate (chosen as a representative reactive metal hydride). It was found that the polymerization of styrene and divinyl benzene could be initiated using AIBN in toluene at 70 degC. The resulting composite materials can be either hard or brittle solids depending on the cross-linking density. Thermal decomposition of these styrene-based composite materials is lower than neat polystyrene indicating that the chemical nature of the polymer is affected by the formation of the composite. The char-forming nature of cross-linked polystyrene is low and therefore, not an ideal polymer for hazard mitigation. To obtain composite materials containing a polymer with higher char-forming potential, siloxane-based monomers were investigated. Four vinyl-containing siloxane oligomers were polymerized with and without added styrene and divinyl benzene. Like the styrene materials, these composite materials exhibited thermal decomposition behavior significantly different than the neat polymers. Specifically, the thermal decomposition temperature was shifted approximately 100 degC lower than the neat polymer signifying a major chemical change to the polymer network. Thermal analysis of the cycled samples was performed on the siloxane-based composite materials. It was found that after 30 cycles the siloxane-containing polymer composite material has similar TGA/DSC-MS traces as the virgin composite material indicating that the polymer is physically intact upon cycling. Hydrogen capacity measurements revealed that addition of the polymer to the metal hydride in the form of a composite material reduced the inherent hydrogen storage capacity of the material. This

  15. Supplement Analysis for the Wildlife Mitigation Program EIS (DOE/EIS-0246/SA-39)

    SciTech Connect (OSTI)

    N /A

    2004-02-02

    BPA funds the Albeni Falls Wildlife Mitigation Program, which is tasked with the acquisition and restoration of key habitats within the Pend Oreille Watershed. This mitigation program purchases private land to be owned and managed by program participants for the protection, mitigation, and enhancement of wildlife affected by the construction and operation of the Federal hydroelectric facilities on the Columbia River. BPA is currently working with the Kalispel Tribe of Indians to acquire and manage three parcels that total approximately 890 acres of land within Pend Oreille County, Washington. The properties proposed for acquisition contain habitats or potential habitats that will provide BPA with credits for partial mitigation of wildlife habitat losses due to the construction of Albeni Falls Dam. The current proposal includes only the fee title acquisition of these parcels; habitat enhancement activities will likely be carried out by the Kalispel Tribe of Indians in the future following the development of a management plan(s) for the lands.

  16. Microsoft PowerPoint - FNC NEPA GHG Climate Slides -- 16Jan2015...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... tools and input data when deciding ... the analysis of potential effects that would best inform the decision-making process and the ... document, or Excel file containing ...

  17. GREENHOUSE GAS REDUCTION POTENTIAL WITH COMBINED HEAT AND POWER WITH

    Office of Scientific and Technical Information (OSTI)

    DISTRIBUTED GENERATION PRIME MOVERS - ASME 2012 (Conference) | SciTech Connect GREENHOUSE GAS REDUCTION POTENTIAL WITH COMBINED HEAT AND POWER WITH DISTRIBUTED GENERATION PRIME MOVERS - ASME 2012 Citation Details In-Document Search Title: GREENHOUSE GAS REDUCTION POTENTIAL WITH COMBINED HEAT AND POWER WITH DISTRIBUTED GENERATION PRIME MOVERS - ASME 2012 Pending or recently enacted greenhouse gas regulations and mandates are leading to the need for current and feasible GHG reduction solutions

  18. Distributed Energy Resources for Carbon Emissions Mitigation

    SciTech Connect (OSTI)

    Firestone, Ryan; Marnay, Chris

    2007-05-01

    The era of publicly mandated GHG emissions restrictions inthe United States has begun with recent legislation in California andseven northeastern states. Commercial and industrial buildings canimprove the carbon-efficiency of end-use energy consumption by installingtechnologies such as on-site cogeneration of electricity and useful heatin combined heat and power systems, thermally-activated cooling, solarelectric and thermal equipment, and energy storage -- collectively termeddistributed energy resources (DER). This research examines a collectionof buildings in California, the Northeast, and the southern United Statesto demonstrate the effects of regional characteristics such as the carbonintensity of central electricity grid, the climate-driven demand forspace heating and cooling, and the availability of solar insolation. Theresults illustrate that the magnitude of a realistic carbon tax ($100/tC)is too small to incent significant carbon-reducing effects oneconomically optimal DER adoption. In large part, this is because costreduction and carbon reduction objectives are roughly aligned, even inthe absence of a carbon tax.

  19. Advanced Mitigating Measures for the Cell Internal Short Risk (Presentation)

    SciTech Connect (OSTI)

    Darcy, E.; Smith, K.

    2010-04-01

    This presentation describes mitigation measures for internal short circuits in lithium-ion battery cells.

  20. Tritium Formation and Mitigation in High-Temperature Reactor Systems

    SciTech Connect (OSTI)

    Piyush Sabharwall; Carl Stoots; Hans A. Schmutz

    2013-03-01

    Tritium is a radiologically active isotope of hydrogen. It is formed in nuclear reactors by neutron absorption and ternary fission events and can subsequently escape into the environment. To prevent the tritium contamination of proposed reactor buildings and surrounding sites, this study examines the root causes and potential mitigation strategies for permeation of tritium (such as: materials selection, inert gas sparging, etc...). A model is presented that can be used to predict permeation rates of hydrogen through metallic alloys at temperatures from 450750 degrees C. Results of the diffusion model are presented for a steady production of tritium

  1. Tritium Formation and Mitigation in High-Temperature Reactors

    SciTech Connect (OSTI)

    Piyush Sabharwall; Carl Stoots

    2012-10-01

    Tritium is a radiologically active isotope of hydrogen. It is formed in nuclear reactors by neutron absorption and ternary fission events and can subsequently escape into the environment. To prevent the tritium contamination of proposed reactor buildings and surrounding sites, this study examines the root causes and potential mitigation strategies for permeation of tritium (such as: materials selection, inert gas sparging, etc...). A model is presented that can be used to predict permeation rates of hydrogen through metallic alloys at temperatures from 450750 degrees C. Results of the diffusion model are presented for a steady production of tritium

  2. Disruption mitigation using high pressure gas jets

    SciTech Connect (OSTI)

    Dennis G. Whyte

    2007-10-11

    The goal of this research is to establish credible disruption mitigation scenarios based on the technique of massive gas injection. Disruption mitigation seeks to minimize or eliminate damage to internal components that can occur due to the rapid dissipation of thermal and magnetic energy during a tokamak disruption. In particular, the focus of present research is extrapolating mitigation techniques to burning plasma experiments such as ITER, where disruption-caused damage poses a serious threat to the lifetime of internal vessel components. A majority of effort has focused on national and international collaborative research with large tokamaks: DIII-D, Alcator C-Mod, JET, and ASDEX Upgrade. The research was oriented towards empirical trials of gas-jet mitigation on several tokamaks, with the goal of developing and applying cohesive models to the data across devices. Disruption mitigation using gas jet injection has proven to be a viable candidate for avoiding or minimizing damage to internal components in burning plasma experiments like ITER. The physics understanding is progress towards a technological design for the required gas injection system in ITER.

  3. Platelet composite coatings for tin whisker mitigation

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Rohwer, Lauren E. S.; Martin, James E.

    2015-09-14

    In this study, reliable methods for tin whisker mitigation are needed for applications that utilize tin-plated commercial components. Tin can grow whiskers that can lead to electrical shorting, possibly causing critical systems to fail catastrophically. The mechanisms of tin whisker growth are unclear and this makes prediction of the lifetimes of critical components uncertain. The development of robust methods for tin whisker mitigation is currently the best approach to eliminating the risk of shorting. Current mitigation methods are based on unfilled polymer coatings that are not impenetrable to tin whiskers. In this paper we report tin whisker mitigation results formore » several filled polymer coatings. The whisker-penetration resistance of the coatings was evaluated at elevated temperature and high humidity and under temperature cycling conditions. The composite coatings comprised Ni and MgF2-coated Al/Ni/Al platelets in epoxy resin or silicone rubber. In addition to improved whisker mitigation, these platelet composites have enhanced thermal conductivity and dielectric constant compared with unfilled polymers.« less

  4. EIS-0472: Mitigation Action Plan | Department of Energy

    Energy Savers [EERE]

    Mitigation Action Plan EIS-0472: Mitigation Action Plan Uranium Leasing Program Mitigation Action Plan for the Final Uranium Leasing Program Programmatic Environmental Impact Statement DOE LM issued the Final Uranium Leasing Program Programmatic Environmental Impact Statement (DOE/EIS-0472) in March 2014 and issued the associated Record of Decision (ROD) on May 6, 2014; the ROD was published in the Federal Register on May 12, 2014. This Mitigation Action Plan addresses the mitigation commitments

  5. EA-1562-SA-1: Mitigation Action Plan | Department of Energy

    Energy Savers [EERE]

    Mitigation Action Plan EA-1562-SA-1: Mitigation Action Plan Construction and Operation of a Physical Sciences Facility at the Pacific Northwest National Laboratory, Richland, Washington (Mitigation Action Plan for Phase II Build Out, North Federal Campus, PNNL Site) This mitigation plan describes the compensatory mitigation and monitoring commitments under DOE resource management guidelines for the clearing and grading, and subsequent loss of mature shrub-steppe habitat associated with Phase II

  6. EA-1739: Mitigation Action Plan | Department of Energy

    Energy Savers [EERE]

    9: Mitigation Action Plan EA-1739: Mitigation Action Plan Bandon-Rogue Transmission Line Rebuild Project BPA has prepared a Mitigation Action Plan (MAP) that lists all of the mitigation measures that BPA is committed to implementing. The measures in the MAP reflect the measures identified in the Final EA. PDF icon EA-1739-MAP-2011.pdf More Documents & Publications EA-1951: Finding of No Significant Impact and Mitigation Action Plan CX-005419: Categorical Exclusion Determination CX-001048:

  7. EA-1901: Mitigation Action Plan | Department of Energy

    Energy Savers [EERE]

    1: Mitigation Action Plan EA-1901: Mitigation Action Plan Kootenai River White Sturgeon and Burbot Hatcheries Project, Bonners Ferry, Boundary County, Idaho This Mitigation Action Plan (MAP) is referenced in the Finding of No Significant Impact for the Kootenai River White Sturgeon and Burbot Hatcheries Project (Department of Energy Environmental Assessment-1901). This MAP includes all of the mitigation measures recommended in the Final Environmental Assessment to mitigate adverse environmental

  8. EIS-0026: Annual Mitigation Report | Department of Energy

    Office of Environmental Management (EM)

    The Waste Isolation Pilot Plant (WIPP) Mitigation Action Plan was prepared to address commitments made in the RODs for the WIPP FEIS, and the WIPP Final SEIS. This 2012 Annual Mitigation Report addresses those WIPP Project-related mitigation activities undertaken from the time of submittal of the 1994 Annual Mitigation Report in July 1994 through June 2012. PDF icon WIPPAnnualMitigationActionReport2012

  9. Mitigating PQ Problems in Legacy Data Centers

    SciTech Connect (OSTI)

    Ilinets, Boris; /SLAC

    2011-06-01

    The conclusions of this presentation are: (1) Problems with PQ in legacy data centers still exist and need to be mitigated; (2) Harmonics generated by non-linear IT load can be lowered by passive, active and hybrid cancellation methods; (3) Harmonic study is necessary to find the best way to treat PQ problems; (4) AHF's and harmonic cancellation transformers proved to be very efficient in mitigating PQ problems; and (5) It is important that IT leaders partner with electrical engineering to appropriate ROI statements, justifying many of these expenditures.

  10. Gas powered fluid gun with recoil mitigation

    DOE Patents [OSTI]

    Grubelich, Mark C.; Yonas, Gerold

    2016-03-01

    A gas powered fluid gun for propelling a stream or slug of a fluid at high velocity toward a target. Recoil mitigation is provided that reduces or eliminates the associated recoil forces, with minimal or no backwash. By launching a quantity of water in the opposite direction, net momentum forces are reduced or eliminated. Examples of recoil mitigation devices include a cone for making a conical fluid sheet, a device forming multiple impinging streams of fluid, a cavitating venturi, one or more spinning vanes, or an annular tangential entry/exit.

  11. Gas powered fluid gun with recoil mitigation

    DOE Patents [OSTI]

    Grubelich, Mark C; Yonas, Gerold

    2013-11-12

    A gas powered fluid gun for propelling a stream or slug of a fluid at high velocity toward a target. Recoil mitigation is provided that reduces or eliminates the associated recoil forces, with minimal or no backwash. By launching a quantity of water in the opposite direction, net momentum forces are reduced or eliminated. Examples of recoil mitigation devices include a cone for making a conical fluid sheet, a device forming multiple impinging streams of fluid, a cavitating venturi, one or more spinning vanes, or an annular tangential entry/exit.

  12. Calculating CO2 Emissions from Mobile Sources | Open Energy Informatio...

    Open Energy Info (EERE)

    AgencyCompany Organization: GHG Protocol Initiative Sector: Energy Focus Area: GHG Inventory Development, Industry, Transportation Topics: GHG inventory, Potentials &...

  13. Highly concentrated foam formulation for blast mitigation

    DOE Patents [OSTI]

    Tucker, Mark D.; Gao, Huizhen

    2010-12-14

    A highly concentrated foam formulation for blast suppression and dispersion mitigation for use in responding to a terrorism incident involving a radiological dispersion device. The foam formulation is more concentrated and more stable than the current blast suppression foam (AFC-380), which reduces the logistics burden on the user.

  14. Mitigating Greenhouse Gas Emissions: Voluntary Reporting 1996

    Reports and Publications (EIA)

    1997-01-01

    Presents information on voluntary actions to reduce greenhouse gases or remove such gases from the atmosphere in 1995. It provides an overview of participation in the Voluntary Reporting Program, a perspective on the composition of activities reported, and a review of some key issues in interpreting and evaluating achievements associated with reported emissions mitigation initiatives.

  15. EIS-0026: Annual Mitigation Report | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Project-related mitigation activities undertaken from the time of submittal of the 1994 Annual Mitigation Report in July 1994 through June 2014. EIS-0026-MAP-2014.pdf More...

  16. Market-Based Wildlife Mitigation in Wyoming | Open Energy Information

    Open Energy Info (EERE)

    in Wyoming Jump to: navigation, search OpenEI Reference LibraryAdd to library Report: Market-Based Wildlife Mitigation in Wyoming Abstract Covers the basics of mitigation...

  17. Life-cycle energy and GHG emissions of forest biomass harvest and transport for biofuel production in Michigan

    SciTech Connect (OSTI)

    Zhang, Fengli; Johnson, Dana M.; Wang, Jinjiang

    2015-04-01

    High dependence on imported oil has increased U.S. strategic vulnerability and prompted more research in the area of renewable energy production. Ethanol production from renewable woody biomass, which could be a substitute for gasoline, has seen increased interest. This study analysed energy use and greenhouse gas emission impacts on the forest biomass supply chain activities within the State of Michigan. A life-cycle assessment of harvesting and transportation stages was completed utilizing peer-reviewed literature. Results for forest-delivered ethanol were compared with those for petroleum gasoline using data specific to the U.S. The analysis from a woody biomass feedstock supply perspective uncovered that ethanol production is more environmentally friendly (about 62% less greenhouse gas emissions) compared with petroleum based fossil fuel production. Sensitivity analysis was conducted with key inputs associated with harvesting and transportation operations. The results showed that research focused on improving biomass recovery efficiency and truck fuel economy further reduced GHG emissions and energy consumption.

  18. Life-cycle energy and GHG emissions of forest biomass harvest and transport for biofuel production in Michigan

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Zhang, Fengli; Johnson, Dana M.; Wang, Jinjiang

    2015-04-01

    High dependence on imported oil has increased U.S. strategic vulnerability and prompted more research in the area of renewable energy production. Ethanol production from renewable woody biomass, which could be a substitute for gasoline, has seen increased interest. This study analysed energy use and greenhouse gas emission impacts on the forest biomass supply chain activities within the State of Michigan. A life-cycle assessment of harvesting and transportation stages was completed utilizing peer-reviewed literature. Results for forest-delivered ethanol were compared with those for petroleum gasoline using data specific to the U.S. The analysis from a woody biomass feedstock supply perspective uncoveredmore » that ethanol production is more environmentally friendly (about 62% less greenhouse gas emissions) compared with petroleum based fossil fuel production. Sensitivity analysis was conducted with key inputs associated with harvesting and transportation operations. The results showed that research focused on improving biomass recovery efficiency and truck fuel economy further reduced GHG emissions and energy consumption.« less

  19. 2008 River Corridor Closure Contractor Revegetation and Mitigation Monitoring Report

    SciTech Connect (OSTI)

    C. T. Lindsey; K. A. Gano

    2008-09-30

    The purpose of this report is to document the status of revegetation projects and natural resources mitigation efforts that have been conducted for remediated waste sites and other activities associated with the Comprehensive Environmental Response, Compensation, and Liability Act cleanup of National Priorities List waste sites at Hanford. This report documents the results of revegetation and mitigation monitoring conducted in 2008 and includes 22 revegetation/restoration projects, one revegetation/mitigation project, and two bat habitat mitigation projects.

  20. 2007 River Corridor Closure Contractor Revegetation and Mitigation Monitoring Report

    SciTech Connect (OSTI)

    K. A. Gano; C. T. Lindsey

    2007-09-27

    The purpose of this report is to document the status of revegetation projects and natural resources mitigation efforts that have been conducted for remediated waste sites and other activities associated with the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) cleanup of National Priorities List waste sites at Hanford. This report documents the results of revegetation and mitigation monitoring conducted in 2007 and includes 11 revegetation/restoration projects, one revegetation/mitigation project, and 3 bat habitat mitigation projects.

  1. EIS-0380: Mitigation Action Plan | Department of Energy

    Energy Savers [EERE]

    Plan EIS-0380: Mitigation Action Plan 2008 Site-Wide Environmental Impact Statement for the Continued Operation of Los Alamos National Laboratory The Site-Wide Environmental Impact Statement for the Continued Operation of Los Alamos National Laboratory (SWEIS) Mitigation Action Plan (MAP) describes the mitigation measures that will be implemented from the 2008 SWEIS and explains how the mitigation measures will be planned and implemented for those actions selected in the two Records of Decision

  2. EIS-0460: Mitigation Action Plan | Department of Energy

    Energy Savers [EERE]

    Mitigation Action Plan EIS-0460: Mitigation Action Plan FutureGen 2.0 Project, Morgan County, Illinois This Mitigation Action Plan (MAP) briefly describes those required mitigation actions and the monitoring and reporting requirements the Alliance must implement during the design, construction, and operation of the FutureGen 2.0 Project. DOE prepared this MAP in accordance with 10 Code of Federal Regulations (CFR) §1021.331. PDF icon EIS-0460-MAP-2014.pdf More Documents & Publications

  3. EIS-0464: Mitigation Action Plan | Department of Energy

    Energy Savers [EERE]

    Mitigation Action Plan EIS-0464: Mitigation Action Plan Lake Charles Carbon Capture and Sequestration Project, Lake Charles, Louisiana and Brazoria County, Texas This Mitigation Action Plan (MAP) briefly describes the mitigation actions and monitoring and reporting requirements the recipient must implement during the design, construction, and demonstration of the Lake Charles Carbon Capture and Sequestration Project. DOE prepared this MAP in accordance with 10 CFR 1021.331. PDF icon

  4. Recommendation 195: Mitigation of Contamination in Bear Creek Burial Grounds

    Broader source: Energy.gov [DOE]

    The ORSSAB requests DOE provide possible remedial actions to mitigate releases of contamination from Bear Creek Burial Grounds.

  5. Mitigation Action Plans (MAP) and Related Documents | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Mitigation Action Plans (MAP) and Related Documents Mitigation Action Plans (MAP) and Related Documents Mitigation Action Plans are documents DOE prepares in accordance with DOE NEPA regulations (10 CFR 1021.331) that describes the plan for implementing commitments made in a DOE environmental impact statement and its associated record of decision, or, when appropriate, an EA or FONSI, to mitigate adverse environmental impacts associated with an action. If you have any trouble finding a specific

  6. Peru-GEF Nationally Appropriate Mitigation Actions in the Energy...

    Open Energy Info (EERE)

    (Redirected from UNDP-Peru GEF Nationally Appropriate Mitigation Actions in the Energy Generation and End-Use Sectors)...

  7. EIS-0026: 2010 Annual Mitigation Report | Department of Energy

    Office of Environmental Management (EM)

    2010 Annual Mitigation Report EIS-0026: 2010 Annual Mitigation Report Waste Isolation Pilot Plant Guidance for the development of a Mitigation Action Plan (MAP) is contained in Department of Energy (DOE) Order 451.1B, National Environmental Policy Act Compliance Program, and 10 CFR 1021, National Environmental Policy Act Implementing Procedures. These documents specify that a MAP be prepared to mitigate environmental impacts resulting from the implementation of commitments made in the Record of

  8. Hellsgate Winter Range : Wildlife Mitigation Project. Final Environmental Assessment.

    SciTech Connect (OSTI)

    United States. Bonneville Power Administration.

    1995-03-01

    Bonneville Power Administration (BPA) proposes to fund the Hellsgate Winter Range Wildlife Mitigation Project (Project) in a cooperative effort with the Colville Confederated Tribes and the Bureau of Indian Affairs (BIA). The proposed action would allow the sponsors to secure property and conduct wildlife management activities within the boundaries of the Colville Indian Reservation. This Final Environmental Assessment (EA) examines the potential environmental effects of acquiring and managing property for wildlife and wildlife habitat within a large project area. This area consists of several separated land parcels, of which 2,000 hectares (4,943 acres) have been purchased by BPA and an additional 4,640 hectares (11,466 acres) have been identified by the Colville Confederated Tribes for inclusion in the Project. Four proposed activities (habitat protection, habitat enhancement, operation and maintenance, and monitoring and evaluation) are analyzed. The proposed action is intended to meet the need for mitigation of wildlife and wildlife habitat that was adversely affected by the construction of Grand Coulee and Chief Joseph Dams and their reservoirs.

  9. Blue Creek Winter Range : Wildlife Mitigation Project : Final Environmental Assessment.

    SciTech Connect (OSTI)

    United States. Bonneville Power Administration; United States. Bureau of Indian Affairs; Spokane Tribe of the Spokane Reservation, Washington

    1994-11-01

    Bonneville Power Administration (BPA) proposes to fund that portion of the Washington Wildlife Agreement pertaining to the Blue Creek Winter Range Wildlife Mitigation Project (Project) in a cooperative effort with the Spokane Tribe, Upper Columbia United Tribes, and the Bureau of Indian Affairs (BIA). If fully implemented, the proposed action would allow the sponsors to protect and enhance 2,631 habitat units of big game winter range and riparian shrub habitat on 2,185 hectares (5,400 acres) of Spokane Tribal trust lands, and to conduct long term wildlife management activities within the Spokane Indian Reservation project area. This Final Environmental Assessment (EA) examines the potential environmental effects of securing land and conducting wildlife habitat enhancement and long term management activities within the boundaries of the Spokane Indian Reservation. Four proposed activities (habitat protection, habitat enhancement, operation and maintenance, and monitoring and evaluation) are analyzed. The proposed action is intended to meet the need for mitigation of wildlife and wildlife habitat adversely affected by the construction of Grand Coulee Dam and its reservoir.

  10. Explosive parcel containment and blast mitigation container

    DOE Patents [OSTI]

    Sparks, Michael H. (Frederick County, MD)

    2001-06-12

    The present invention relates to a containment structure for containing and mitigating explosions. The containment structure is installed in the wall of the building and has interior and exterior doors for placing suspicious packages into the containment structure and retrieving them from the exterior of the building. The containment structure has a blast deflection chute and a blowout panel to direct over pressure from explosions away from the building, surrounding structures and people.

  11. Mitigation Measures for Distributed PV Interconnection

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Mitigation Measures for Distributed PV Interconnection Page 1 of 17 Kristen Ardani, Michael Coddington, Robert Broderick Page 1 of 17 [Speaker: Kristen Ardani] Cover Slide: Thank you everyone for joining us today for the DG Interconnection Collaborative (DGIC) informational webinar. We're fortunate today to have speakers Michael Coddington of the National Renewable Energy Laboratory (NREL) and Robert Broderick of Sandia who will present recent research findings related to distributed PV

  12. Wildlife Protection, Mitigation and Enhancement Planning for Grand Coulee Dam, Final Report.

    SciTech Connect (OSTI)

    Creveling, Jennifer

    1986-08-01

    The development and operation of Grand Coulee Dam inundated approximately 70,000 acres of wildlife habitat under the jurisdictions of the Colville Confederated Tribes, the Spokane Tribe, and the State of Washington. Under the provisions of the Pacific Northwest Electric Power Planning and Conservation Act of 1980, this study reviews losses to wildlife and habitat, and proposes mitigation for those losses. Wildlife loss estimates were developed from information available in the literature. Habitat losses and potential habitat gains through mitigation were estimated by a modified Habitat Evaluation Procedure. The mitigation plan proposes (1) acquisition of sufficient land or management rights to land to protect Habitat Units equivalent to those lost (approximately 73,000 acres of land would be required), (2) improvement and management of those lands to obtain and perpetuate target Habitat Units, and (3) protection and enhancement of suitable habitat for bald eagles. Mitigation is presented as four actions to be implemented over a 10-year period. A monitoring program is proposed to monitor mitigation success in terms of Habitat Units and wildlife population trends.

  13. ENHANCED PRACTICAL PHOTOSYNTHETIC CO2 MITIGATION

    SciTech Connect (OSTI)

    Dr. Gregory Kremer; Dr. David J. Bayless; Dr. Morgan Vis; Dr. Michael Prudich; Dr. Keith Cooksey; Dr. Jeff Muhs

    2002-01-15

    This quarterly report documents significant achievements in the Enhanced Practical Photosynthetic CO{sub 2} Mitigation project during the period from 10/3/2001 through 1/02/2002. Most of the achievements are milestones in our efforts to complete the tasks and subtasks that constitute the project objectives. Our research team has made significant progress towards completion of our Phase I objectives, and our current efforts remain focused on fulfilling these research objectives in accordance with the project timeline. Overall, we believe that we are on schedule to complete Phase I activities by 10/2002, which is the milestone date from the original project timeline. Specific results and accomplishments for the fourth quarter of 2001 include: (1) New procedures and protocols have been developed to increase the chances of successful implementation in the bioreactor of organisms that perform well in the lab. The new procedures include pre-screening of organisms for adhesion characteristics and a focus on identifying the organisms with maximum growth rate potential. (2) Preliminary results show an increase in adhesion to glass and a decrease in overall growth rates when using growth media prepared with tap water rather than distilled water. (3) Several of the organisms collected from Yellowstone National Park using the new procedures are currently being cultured in preparation for bioreactor tests. (4) One important result from a test of growth surface temperature distribution as a function of gas stream and drip-fluid temperatures showed a high dependence of membrane temperature on fluid temperature, with gas stream temperature having minimal effect. This result indicates that bioreactor growth surface temperatures can be controlled using fluid delivery temperature. The possible implications for implementation of the bioreactor concept are encouraging, since it may be possible to use the bioreactor with very high gas stream temperatures by controlling the temperature of the organisms with the fluid temperature. (5) Investigation of growth surface materials continues, with Omnisil and Scotch Brite emerging as the leading candidates. More investigation of these and other material types is still needed to determine the best material for particular combinations of organisms and harvesting methods. (6) Tests of harvesting methods and harvesting system designs have shown that desirable levels of ''percentage algae removal'' can be achieved for particular organisms and growth surface materials, for example Cyanidium on polyester felt. Additional testing continues to better characterize sensitivity of the ''percentage removal'' to various system design parameters, but these tests have been delayed due to the lack of suitable organisms for the tests. (7) The solar collectors and the pilot-scale bioreactor light distribution panels for the deep-penetration hybrid solar lighting system have been designed. One solar lighting system (solar collector tracking unit, fiber optic light transmission cables, light distribution panels) is almost completely prepared for installation during the next quarter in the pilot scale bioreactor system. (8) Pressure drop results from tests on the enhanced mass transfer CO{sub 2} absorption technique (the translating slug flow reactor) are encouraging, with reasonable values of 2.5 psi maximum over an 11.48 meter distance between pressure taps for test conditions of 0.6 m/sec slug velocity and approximately 10 m/sec gas velocity. Preparations are under way for CO{sub 2} scrubbing tests.

  14. Environmental Responses to Carbon Mitigation through Geological Storage

    SciTech Connect (OSTI)

    Cunningham, Alfred; Bromenshenk, Jerry

    2013-08-30

    In summary, this DOE EPSCoR project is contributing to the study of carbon mitigation through geological storage. Both deep and shallow subsurface research needs are being addressed through research directed at improved understanding of environmental responses associated with large scale injection of CO{sub 2} into geologic formations. The research plan has two interrelated research objectives. ? Objective 1: Determine the influence of CO{sub 2}-related injection of fluids on pore structure, material properties, and microbial activity in rock cores from potential geological carbon sequestration sites. ? Objective 2: Determine the Effects of CO{sub 2} leakage on shallow subsurface ecosystems (microbial and plant) using field experiments from an outdoor field testing facility.

  15. Status of national CO{sub 2}-mitigation projects and initiatives in the Philippine energy sector

    SciTech Connect (OSTI)

    Tupas, C.T.

    1996-12-31

    The Philippines has a huge energy requirement for the next 30 years in order to achieve its economic growth target. Based on an expected annual GDP growth rate of 6.9 percent, the Philippines total energy requirement is estimated to increase at an average of 6.6 percent annually from 1996 to 2025. Gross energy demand shall increase from 219.0 million barrels of fuel oil equivalent (MMBFOE) in 1996 to 552.4 MMBFOE in 2010 and 1,392.6 MMBFOE by 2025. These energy demand levels shall be driven primarily by the substantial increase in fuel requirements for power generation whose share of total energy requirement is 28.3 percent in 1996, 48.0 percent in 2010 and 55.0 percent in 2025. With the expected increase in energy demand, there will necessarily be adverse impacts on the environment. Energy projects and their supporting systems - from fuel extraction and storage to distribution - can and will be major contributors not only to local but also to regional and global environmental pollution and degradation. International experiences and trends in greenhouse gas (GHG) emissions inventory have shown that the energy sector has always been the dominant source of carbon dioxide (CO{sub 2}) - the principal contributor to global climate change. The energy sector`s CO{sub 2} emissions come primarily from fossil fuels combustion. Since energy use is the dominant source of CO{sub 2} emissions, efforts should therefore be concentrated on designing a mitigation strategy in this sector.

  16. Understanding the contribution of non-carbon dioxide gases in deep mitigation scenarios

    SciTech Connect (OSTI)

    Gernaat, David; Calvin, Katherine V.; Lucas, Paul; Luderer, Gunnar; Otto, Sander; Rao, Shilpa; Strefler, Jessica; Van Vuuren, Detlef

    2015-07-01

    The combined 2010 emissions of methane (CH4), nitrous oxide (N2O) and the fluorinated gasses (F-gas) account for about 20-30% of total emissions and about 30% of radiative forcing. At the moment, most studies looking at reaching ambitious climate targets project the emission of carbon dioxide (CO2) to be reduced to zero (or less) by the end of the century. As for non-CO2 gases, the mitigation potential seem to be more constrained, we find that by the end of the century in the current deep mitigation scenarios non-CO2 emissions could form the lions share of remaining greenhouse gas emissions. In order to support effective climate policy strategies, in this paper we provide a more in-depth look at the role of non-CO2 emission sources (CH4, N2O and F-gases) in achieving deep mitigation targets (radiative forcing target of 2.8 W/m2 in 2100). Specifically, we look at the sectorial mitigation potential and the remaining non-CO2 emissions. By including a set of different models, we provide some insights into the associated uncertainty. Most of the remaining methane emissions in 2100 in the climate mitigation scenario come from the livestock sector. Strong reductions are seen in the energy supply sector across all models. For N2O, less reduction potential is seen compared to methane and the sectoral differences are larger between the models. The paper shows that the assumptions on remaining non-CO2 emissions are critical for the feasibility of reaching ambitious climate targets and the associated costs.

  17. ARM - Campaign Instrument - ghg

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govInstrumentsghg

  18. GBTL Workshop GHG Emissions

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... 94 89 83 60 70 80 90 100 110 120 without electricity credit, without CCS with electricity credit, without CCS Diesel without electricity credit, with CCS with electricity credit, ...

  19. ARM - Instrument - ghg

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ken Reichl Lawrence Berkeley National Laboratory 805-813-1488 KReichl@lbl.gov Annette Koontz Pacific Northwest National Laboratory Developer (509) 375-3609 annette.koontz@pnnl.gov...

  20. Global climate change and the mitigation challenge

    SciTech Connect (OSTI)

    Frank Princiotta

    2009-10-15

    Anthropogenic emissions of greenhouse gases, especially carbon dioxide (CO{sub 2}), have led to increasing atmospheric concentrations, very likely the primary cause of the 0.8{sup o}C warming the Earth has experienced since the Industrial Revolution. With industrial activity and population expected to increase for the rest of the century, large increases in greenhouse gas emissions are projected, with substantial global additional warming predicted. This paper examines forces driving CO{sub 2} emissions, a concise sector-by-sector summary of mitigation options, and research and development (R&D) priorities. To constrain warming to below approximately 2.5{sup o}C in 2100, the recent annual 3% CO{sub 2} emission growth rate needs to transform rapidly to an annual decrease rate of from 1 to 3% for decades. Furthermore, the current generation of energy generation and end-use technologies are capable of achieving less than half of the emission reduction needed for such a major mitigation program. New technologies will have to be developed and deployed at a rapid rate, especially for the key power generation and transportation sectors. Current energy technology research, development, demonstration, and deployment (RDD&D) programs fall far short of what is required. 20 refs., 18 figs., 4 tabs.

  1. Capital investment requirements for greenhouse gas emissions mitigation in power generation on near term to century time scales and global to regional spatial scales

    SciTech Connect (OSTI)

    Chaturvedi, Vaibhav; Clarke, Leon E.; Edmonds, James A.; Calvin, Katherine V.; Kyle, G. Page

    2014-11-01

    Electrification plays a crucial role in cost-effective greenhouse gas emissions mitigation strategies. Such strategies in turn carry implications for financial capital markets. This paper explores the implication of climate mitigation policy for capital investment demands by the electric power sector on decade to century time scales. We go further to explore the implications of technology performance and the stringency of climate policy for capital investment demands by the power sector. Finally, we discuss the regional distribution of investment demands. We find that stabilizing GHG emissions will require additional investment in the electricity generation sector over and above investments that would be need in the absence of climate policy, in the range of 16 to 29 Trillion US$ (60-110%) depending on the stringency of climate policy during the period 2015 to 2095 under default technology assumptions. This increase reflects the higher capital intensity of power systems that control emissions. Limits on the penetration of nuclear and carbon capture and storage technology could increase costs substantially. Energy efficiency improvements can reduce the investment requirement by 8 to21 Trillion US$ (default technology assumptions), depending on climate policy scenario with higher savings being obtained under the most stringent climate policy. The heaviest investments in power generation were observed in the China, India, SE Asia and Africa regions with the latter three regions dominating in the second half of the 21st century.

  2. Potential Cost-Effective Opportunities for Methane Emission Abatement

    SciTech Connect (OSTI)

    Warner, Ethan; Steinberg, Daniel; Hodson, Elke; Heath, Garvin

    2015-08-01

    The energy sector was responsible for approximately 84% of carbon dioxide equivalent (CO2e) greenhouse gas (GHG) emissions in the U.S. in 2012 (EPA 2014a). Methane is the second most important GHG, contributing 9% of total U.S. CO2e emissions. A large portion of those methane emissions result from energy production and use; the natural gas, coal, and oil industries produce approximately 39% of anthropogenic methane emissions in the U.S. As a result, fossil-fuel systems have been consistently identified as high priority sectors to contribute to U.S. GHG reduction goals (White House 2015). Only two studies have recently attempted to quantify the abatement potential and cost associated with the breadth of opportunities to reduce GHG emissions within natural gas, oil, and coal supply chains in the United States, namely the U.S. Environmental Protection Agency (EPA) (2013a) and ICF (2014). EPA, in its 2013 analysis, estimated the marginal cost of abatement for non-CO2 GHG emissions from the natural gas, oil, and coal supply chains for multiple regions globally, including the United States. Building on this work, ICF International (ICF) (2014) provided an update and re-analysis of the potential opportunities in U.S. natural gas and oil systems. In this report we synthesize these previously published estimates as well as incorporate additional data provided by ICF to provide a comprehensive national analysis of methane abatement opportunities and their associated costs across the natural gas, oil, and coal supply chains. Results are presented as a suite of marginal abatement cost curves (MACCs), which depict the total potential and cost of reducing emissions through different abatement measures. We report results by sector (natural gas, oil, and coal) and by supply chain segment - production, gathering and boosting, processing, transmission and storage, or distribution - to facilitate identification of which sectors and supply chain segments provide the greatest opportunities for low cost abatement.

  3. EIS-0380: Mitigation Action Plan Annual Report | Department of Energy

    Energy Savers [EERE]

    Plan Annual Report EIS-0380: Mitigation Action Plan Annual Report Los Alamos National Laboratory Site-Wide Environmental Impact Statement Fiscal Year 2012 Mitigation Action Plan Annual Report In Fiscal Year (FY) 2012, the Los Alamos National Laboratory (LANL) Site-Wide Environmental Impact Statement (SWEIS) Project Office focused on tracking and managing mitigation action commitments and reporting. Highlights for FY 2012 include the following: completion and distribution of the FY 2011 SWEIS

  4. EA-1941: Mitigation Action Plan (MAP) | Department of Energy

    Energy Savers [EERE]

    41: Mitigation Action Plan (MAP) EA-1941: Mitigation Action Plan (MAP) BPA issued a Mitigation Action Plan for avoiding or reducing the impacts of proposed improvements to 13 miles of access roads for its existing 115-kV Boyer-Tillamook No. 1 Transmission Line. PDF icon EA-1941-MAP-2014.pdf More Documents & Publications EA-1941: Finding of No Significant Impact (FONSI) EA-1941: Final Environmental Assessment EA-1941

  5. EIS-0380: Annual Mitigation Action Plan Annual Report | Department of

    Energy Savers [EERE]

    Energy Annual Mitigation Action Plan Annual Report EIS-0380: Annual Mitigation Action Plan Annual Report Los Alamos National Laboratory Site-Wide Environmental Impact Statement Fiscal Year 2013 Mitigation Action Plan Annual Report In Fiscal Year (FY) 2013, the United States Department of Energy/National Nuclear Security Administration Los Alamos Field Office and Los Alamos National Security, LLC Site-Wide Environmental Impact Statement (SWEIS) project office focused on tracking and managing

  6. Federal Interagency Wind Turbine Radar Interference Mitigation Strategy |

    Office of Environmental Management (EM)

    Department of Energy Federal Interagency Wind Turbine Radar Interference Mitigation Strategy Federal Interagency Wind Turbine Radar Interference Mitigation Strategy Cover of the Federal Interagency Wind Turbine Radar Interference Mitigation Strategy report Wind development located within the line of sight of radar systems can cause clutter and interference, which at some radars has resulted in significant performance degradation. As wind turbines continue to be installed, and as advances in

  7. Improving Department of Energy Capabilities for Mitigating Beyond Design

    Office of Environmental Management (EM)

    Basis Events | Department of Energy Improving Department of Energy Capabilities for Mitigating Beyond Design Basis Events Improving Department of Energy Capabilities for Mitigating Beyond Design Basis Events April 2013 OE-1: 2013-01 Improving Department of Energy Capabilities for Mitigating Beyond Design Basis Events The purpose of this Operating Experience (OE) document is to: provide results from U.S. Department of Energy (DOE), including the National Nuclear Security Administration,

  8. International perspectives on mitigating laboratory biorisks.

    SciTech Connect (OSTI)

    Pinard, William J.; Salazar, Carlos A.

    2010-11-01

    The International Perspectives on Mitigating Laboratory Biorisks workshop, held at the Renaissance Polat Istanbul Hotel in Istanbul, Republic of Turkey, from October 25 to 27, 2010, sought to promote discussion between experts and stakeholders from around the world on issues related to the management of biological risk in laboratories. The event was organized by Sandia National Laboratories International Biological Threat Reduction program, on behalf of the US Department of State Biosecurity Engagement Program and the US Department of Defense Cooperative Biological Engagement Program. The workshop came about as a response to US Under Secretary of State Ellen O. Tauscher's statements in Geneva on December 9, 2009, during the Annual Meeting of the States Parties to the Biological Weapons Convention (BWC). Pursuant to those remarks, the workshop was intended to provide a forum for interested countries to share information on biorisk management training, standards, and needs. Over the course of the meeting's three days, participants discussed diverse topics such as the role of risk assessment in laboratory biorisk management, strategies for mitigating risk, measurement of performance and upkeep, international standards, training and building workforce competence, and the important role of government and regulation. The meeting concluded with affirmations of the utility of international cooperation in this sphere and recognition of positive prospects for the future. The workshop was organized as a series of short presentations by international experts on the field of biorisk management, followed by breakout sessions in which participants were divided into four groups and urged to discuss a particular topic with the aid of a facilitator and a set of guiding questions. Rapporteurs were present during the plenary session as well as breakout sessions and in particular were tasked with taking notes during discussions and reporting back to the assembled participants a brief summary of points discussed. The presentations and breakout sessions were divided into five topic areas: 'Challenges in Biorisk Management,' 'Risk Assessment and Mitigation Measures,' 'Biorisk Management System Performance,' 'Training,' and 'National Oversight and Regulations.' The topics and questions were chosen by the organizers through consultation with US Government sponsors. The Chattham House Rule on non-attribution was in effect during question and answer periods and breakout session discussions.

  9. EA-1858: Mitigation Action Plan | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    boiler and a 20-megawatt steam turbine at its existing paper mill in Port Angeles, Washington. PDF icon Mitigation Action Plan for the Environmental Assessment for the...

  10. Mitigation Action Plans (MAP) and Related Documents | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    EIS-0218: Mitigation Action Plan Implementation of a Nuclear Weapons Nonproliferation Policy Concerning Foreign Research Reactor Spent Nuclear Fuel May 1, 1994 EIS-0186:...

  11. EIS-0389: Mitigation Action Plan | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Action Plan EIS-0389: Mitigation Action Plan Trinity Public Utilities District Direct Interconnection Project Western Area Power Administration (Western) proposes to...

  12. Wind Turbine Radar Interference Mitigation Working Group Releases...

    Energy Savers [EERE]

    Turbine Radar Interference Mitigation Working Group Releases New Report Wind Turbine Radar ... wind development to present challenges to radar missions is also likely to increase. ...

  13. Oregon Willamette River Basin Mitigation Agreement | Open Energy...

    Open Energy Info (EERE)

    River Basin Mitigation Agreement Author State of Oregon Recipient Bonneville Power Administration Published Publisher Not Provided, 10222010 DOI Not Provided Check for DOI...

  14. Mitigation Action Plans (MAP) and Related Documents | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Project, Grant and Okanogon Counties, Washington November 1, 2011 EIS-0350-S1: Mitigation Action Plan Nuclear Facility Portion of the Chemistry and Metallurgy Research Building...

  15. Microsoft PowerPoint - Financial Plan Risk Mitigation Master...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    within acceptable bounds BPA Financial Plan Workshop 5 Financial Plan Risk Metrics Agenda Origin of the Risk Metrics Issue History of risk mitigation measures and origin of...

  16. RAPID/Best Practices/Landscape-Scale Mitigation | Open Energy...

    Open Energy Info (EERE)

    features that minimize impacts (for example, the best types of materials and structure types for visual mitigation or avian-safe structure design) would have been identified...

  17. Chile-Climate Change Mitigation and Agriculture in Latin America...

    Open Energy Info (EERE)

    Agriculture in Latin America and the Caribbean Jump to: navigation, search Logo: Chile-Climate Change Mitigation and Agriculture in Latin America and the Caribbean Name...

  18. Climate Change Mitigation in the Energy and Forestry Sectors...

    Open Energy Info (EERE)

    of Developing Countries Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Climate Change Mitigation in the Energy and Forestry Sectors of Developing Countries...

  19. Development based climate change adaptation and mitigation-conceptual...

    Open Energy Info (EERE)

    based climate change adaptation and mitigation-conceptual issues and lessons learned in studies in developing countries Jump to: navigation, search Tool Summary LAUNCH TOOL Name:...

  20. Agricultural Technologies for Climate Change Mitigation and Adaptation...

    Open Energy Info (EERE)

    Technologies for Climate Change Mitigation and Adaptation in Developing Countries: Policy Options for Innovations and Technology Diffusion Jump to: navigation, search Tool Summary...

  1. EA-1934: Mitigation Action Plan | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    impacts resulting from implementation of the proposed action. PDF icon EA-1934-FEA-MAP-2013.pdf More Documents & Publications EA-1934: 2014 Annual Report for Mitigation...

  2. Climate Change Adaptation and Mitigation in the Tourism Sector...

    Open Energy Info (EERE)

    their decision making processes and operations. It presents an overview of the current science and policy of climate change, followed by self-guidance material on mitigation and...

  3. Mitigation Action Plans (MAP) and Related Documents | Department...

    Broader source: Energy.gov (indexed) [DOE]

    EA-1704: Mitigation Action Plan Construction and Operation of a Proposed Cellulosic Biorefinery, BlueFire Fulton Renewable Energy, LLC, Fulton, Mississippi March 10, 2010...

  4. MCA 22-3-430 - Montana Antiquities Avoidance and Mitigation ...

    Open Energy Info (EERE)

    MCA 22-3-430 - Montana Antiquities Avoidance and MitigationLegal Abstract Sets forth a principle of preferred avoidance of heritage properties or paleontological remains,...

  5. Characterizing Uncertainty for Regional Climate Change Mitigation and Adaptation Decisions

    SciTech Connect (OSTI)

    Unwin, Stephen D.; Moss, Richard H.; Rice, Jennie S.; Scott, Michael J.

    2011-09-30

    This white paper describes the results of new research to develop an uncertainty characterization process to help address the challenges of regional climate change mitigation and adaptation decisions.

  6. Property:NEPA Resource Imposed Mitigation | Open Energy Information

    Open Energy Info (EERE)

    Protection) for applicable mitigation measures. Antelope Valley NesetNEPAImpactwithAirQuality + See http:ww2.wapa.govsiteswesternbusinesssellingDocuments...

  7. EIS-0332: Mitigation Action Plan | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    transmission line between Bonneville Power Administration's existing McNary and John Day substations. PDF icon Mitigation Action Plan for the McNary-John Day Transmission...

  8. EA-1855: Mitigation Action Plan | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Lincoln and Spokane Counties, Washington (aka DOEEA-4406) This Mitigation Action Plan (MAP) is part of the Finding of No Significant Impact for the Creston-Bell...

  9. EA-1591: Mitigation Action Plan | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Plan Palisades-Goshen Transmission Line Reconstruction Project This Mitigation Action Plan (MAP) is part of the Finding of No Significant Impact (FONSI) for the...

  10. EA-1731: Mitigation Acton Plan | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Plan Walla Walla-Tucannon River Transmission Line Rebuild Project This Mitigation Action Plan (MAP) is part of the Finding of No Significant Impact (FONSI) for the Walla...

  11. Democratic Republic of Congo-Nationally Appropriate Mitigation...

    Open Energy Info (EERE)

    Appropriate Mitigation Actions (NAMAs) in the Congo Basin AgencyCompany Organization Environment Canada, International Institute for Sustainable Development (IISD) Sector...

  12. Central African Republic-Nationally Appropriate Mitigation Actions...

    Open Energy Info (EERE)

    Appropriate Mitigation Actions (NAMAs) in the Congo Basin AgencyCompany Organization Environment Canada, International Institute for Sustainable Development (IISD) Sector...

  13. Burundi-Nationally Appropriate Mitigation Actions (NAMAs) in...

    Open Energy Info (EERE)

    Appropriate Mitigation Actions (NAMAs) in the Congo Basin AgencyCompany Organization Environment Canada, International Institute for Sustainable Development (IISD) Sector...

  14. Rwanda-Nationally Appropriate Mitigation Actions (NAMAs) in the...

    Open Energy Info (EERE)

    Appropriate Mitigation Actions (NAMAs) in the Congo Basin AgencyCompany Organization Environment Canada, International Institute for Sustainable Development (IISD) Sector...

  15. Cameroon-Nationally Appropriate Mitigation Actions (NAMAs) in...

    Open Energy Info (EERE)

    Appropriate Mitigation Actions (NAMAs) in the Congo Basin AgencyCompany Organization Environment Canada, International Institute for Sustainable Development (IISD) Sector...

  16. Greenhouse Gas Training Program for Inventory and Mitigation...

    Open Energy Info (EERE)

    divisionsfuture-perfect Country: South Korea Eastern Asia Language: English References: Greenhouse Gas Training Program for Inventory and Mitigation Modeling1...

  17. International Partnership on Mitigation and MRV | Open Energy...

    Open Energy Info (EERE)

    climate experts from a variety of countries, the Partnership seeks to: foster mutual learning between peers identify best practices establish a shared mitigation-related knowledge...

  18. EIS-0323: Mitigation Action Plan | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Mitigation Action Plan for the Sacramento Area Voltage Support Project which is prepared to accompany the Sacramento Area Voltage Support Project Supplement Environmental Impact...

  19. EIS-0323: Mitigation Action Plan | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    approval is implemented. PDF icon Mitigation Action Plan for the Sacramento Area Voltage Support Project Prepared to Accompany The Sacramento Area Voltage Support Project...

  20. UNEP-Ethiopia-Facilitating Implementation and Readiness for Mitigation...

    Open Energy Info (EERE)

    UNEP-Ethiopia-Facilitating Implementation and Readiness for Mitigation (FIRM) Redirect page Jump to: navigation, search REDIRECT Facilitating Implementation and Readiness for...

  1. Mitigation of radiation induced surface contamination

    DOE Patents [OSTI]

    Klebanoff, Leonard E. (Dublin, CA); Stulen, Richard H. (Livermore, CA)

    2003-01-01

    A process for mitigating or eliminating contamination and/or degradation of surfaces having common, adventitious atmospheric contaminants adsorbed thereon and exposed to radiation. A gas or a mixture of gases is introduced into the environment of a surface(s) to be protected. The choice of the gaseous species to be introduced (typically a hydrocarbon gas, water vapor, or oxygen or mixtures thereof) is dependent upon the contaminant as well as the ability of the gaseous species to bind to the surface to be protected. When the surface and associated bound species are exposed to radiation reactive species are formed that react with surface contaminants such as carbon or oxide films to form volatile products (e.g., CO, CO.sub.2) which desorb from the surface.

  2. The contribution of future agricultural trends in the US Midwest to global climate change mitigation

    SciTech Connect (OSTI)

    Thomson, Allison M.; Kyle, G. Page; Zhang, Xuesong; Bandaru, Varaprasad; West, Tristram O.; Wise, Marshall A.; Izaurralde, Roberto C.; Calvin, Katherine V.

    2014-01-19

    Land use change is a complex response to changing environmental and socioeconomic systems. Historical drivers of land use change include changes in the natural resource availability of a region, changes in economic conditions for production of certain products and changing policies. Most recently, introduction of policy incentives for biofuel production have influenced land use change in the US Midwest, leading to concerns that bioenergy production systems may compete with food production and land conservation. Here we explore how land use may be impacted by future climate mitigation measures by nesting a high resolution agricultural model (EPIC Environmental Policy Indicator Climate) for the US Midwest within a global integrated assessment model (GCAM Global Change Assessment Model). This approach is designed to provide greater spatial resolution and detailed agricultural practice information by focusing on the climate mitigation potential of agriculture and land use in a specific region, while retaining the global economic context necessary to understand the far ranging effects of climate mitigation targets. We find that until the simulated carbon prices are very high, the US Midwest has a comparative advantage in producing traditional food and feed crops over bioenergy crops. Overall, the model responds to multiple pressures by adopting a mix of future responses. We also find that the GCAM model is capable of simulations at multiple spatial scales and agricultural technology resolution, which provides the capability to examine regional response to global policy and economic conditions in the context of climate mitigation.

  3. Libby Mitigation Program, 2007 Annual Progress Report: Mitigation for the Construction and Operation of Libby Dam.

    SciTech Connect (OSTI)

    Dunnigan, James; DeShazer, J.; Garrow, L.

    2009-05-26

    Libby Reservoir was created under an International Columbia River Treaty between the United States and Canada for cooperative water development of the Columbia River Basin (Columbia River Treaty 1964). Libby Reservoir inundated 109 stream miles of the mainstem Kootenai River in the United States and Canada, and 40 miles of tributary streams in the U.S. that provided habitat for spawning, juvenile rearing, and migratory passage (Figure 1). The authorized purpose of the dam is to provide power (91.5%), flood control (8.3%), and navigation and other benefits (0.2%; Storm et al. 1982). The Pacific Northwest Power Act of 1980 recognized possible conflicts stemming from hydroelectric projects in the northwest and directed Bonneville Power Administration to 'protect, mitigate, and enhance fish and wildlife to the extent affected by the development and operation of any hydroelectric project of the Columbia River and its tributaries' (4(h)(10)(A)). Under the Act, the Northwest Power Planning Council was created and recommendations for a comprehensive fish and wildlife program were solicited from the region's federal, state, and tribal fish and wildlife agencies. Among Montana's recommendations was the proposal that research be initiated to quantify acceptable seasonal minimum pool elevations to maintain or enhance the existing fisheries (Graham et al. 1982). Research to determine how operations of Libby Dam affect the reservoir and river fishery and to suggest ways to lessen these effects began in May 1983. The framework for the Libby Reservoir Model (LRMOD) was completed in 1989. Development of Integrated Rule Curves (IRCs) for Libby Dam operation was completed in 1996 (Marotz et al. 1996). The Libby Reservoir Model and the IRCs continue to be refined (Marotz et al 1999). Initiation of mitigation projects such as lake rehabilitation and stream restoration began in 1996. The primary focus of the Libby Mitigation project now is to restore the fisheries and fish habitat in basin streams and lakes. 'Mitigation for the Construction and Operation of Libby Dam' is part of the Northwest Power and Conservation Council's (NPCC) resident fish and wildlife program. The program was mandated by the Northwest Planning Act of 1980, and is responsible for mitigating damages to fish and wildlife caused by hydroelectric development in the Columbia River Basin. The objective of Phase I of the project (1983 through 1987) was to maintain or enhance the Libby Reservoir fishery by quantifying seasonal water levels and developing ecologically sound operational guidelines. The objective of Phase II of the project (1988 through 1996) was to determine the biological effects of reservoir operations combined with biotic changes associated with an aging reservoir. The objectives of Phase III of the project (1996 through present) are to implement habitat enhancement measures to mitigate for dam effects, to provide data for implementation of operational strategies that benefit resident fish, monitor reservoir and river conditions, and monitor mitigation projects for effectiveness. This project completes urgent and high priority mitigation actions as directed by the Kootenai Subbasin Plan.

  4. Recent Diesel Engine Emission Mitigation Activities of the Maritime

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Administration Energy Technologies Program | Department of Energy Diesel Engine Emission Mitigation Activities of the Maritime Administration Energy Technologies Program Recent Diesel Engine Emission Mitigation Activities of the Maritime Administration Energy Technologies Program 2003 DEER Conference Presentation: Maritime Administration PDF icon 2003_deer_gore.pdf More Documents & Publications The Maritime Administration's Energy and Emissions Program - Part 2 Reduction of Emissions

  5. NEPA mitigation and monitoring activities on Army installations

    SciTech Connect (OSTI)

    Reinke, D.C.; Robitaille, P.

    1995-12-01

    The Army National Environmental Policy Act (NEPA) implementation regulation AR 200-2 (Army Regulation) requires only mitigation measures that can reasonably be accompanied as part of a proposed alternative be identified in the NEPA document. Failure of the identified mitigation actions to be executed or to perform as expected leads to a required reevaluation of the project and the significance of its impacts. The USAEC has undertaken a study of mitigation and monitoring actions listed in Army NEPA documents. As part of the USAEC NEPA program the study has outlined three major tasks (1) collection of a significant sample of Army NEPA documents, (2) review environmental documentation management and retention, and (3) review in detail a subsample of documents and follow-up with site visits. Some 242 Army NEPA documents, Environmental Assessments (EA) and Environmental Impact Statements (EIS) were collected and evaluated for mitigation requirements. Ninety seven of the 242 NEPA documents committed to one or more mitigation actions. While a wide array of mitigating activities have been identified in these documents, the four most common are (1) management plans and practices, (2) training actions, (3) revegetation actions, and (4) construction practices. Site visits to selected Army installations showed that mitigation practices were for the most part being done, but were poorly documented. No installation visited had a mitigation monitoring plan in place as required by AR 200-2.

  6. Mitigation of Severe Accident Consequences Using Inherent Safety Principles

    SciTech Connect (OSTI)

    R. A. Wigeland; J. E. Cahalan

    2009-12-01

    Sodium-cooled fast reactors are designed to have a high level of safety. Events of high probability of occurrence are typically handled without consequence through reliable engineering systems and good design practices. For accidents of lower probability, the initiating events are characterized by larger and more numerous challenges to the reactor system, such as failure of one or more major engineered systems and can also include a failure to scram the reactor in response. As the initiating conditions become more severe, they have the potential for creating serious consequences of potential safety significance, including fuel melting, fuel pin disruption and recriticality. If the progression of such accidents is not mitigated by design features of the reactor, energetic events and dispersal of radioactive materials may result. For severe accidents, there are several approaches that can be used to mitigate the consequences of such severe accident initiators, which typically include fuel pin failures and core disruption. One approach is to increase the reliability of the reactor protection system so that the probability of an ATWS event is reduced to less than 1 x 10-6 per reactor year, where larger accident consequences are allowed, meeting the U.S. NRC goal of relegating such accident consequences as core disruption to these extremely low probabilities. The main difficulty with this approach is to convincingly test and guarantee such increased reliability. Another approach is to increase the redundancy of the reactor scram system, which can also reduce the probability of an ATWS event to a frequency of less than 1 x 10-6 per reactor year or lower. The issues with this approach are more related to reactor core design, with the need for a greater number of control rod positions in the reactor core and the associated increase in complexity of the reactor protection system. A third approach is to use the inherent reactivity feedback that occurs in a fast reactor to automatically respond to the change in reactor conditions and to result in a benign response to these events. This approach has the advantage of being relatively simple to implement, and does not face the issue of reliability since only fundamental physical phenomena are used in a passive manner, not active engineered systems. However, the challenge is to present a convincing case that such passive means can be implemented and used. The purpose of this paper is to describe this third approach in detail, the technical basis and experimental validation for the approach, and the resulting reactor performance that can be achieved for ATWS events.

  7. Hungry Horse Dam Fisheries Mitigation, 1992-1993 Progress Report.

    SciTech Connect (OSTI)

    DosSantos, Joe; Vashro, Jim; Lockard, Larry

    1994-06-01

    In February of 1900, over forty agency representatives and interested citizens began development of the 1991 Mitigation Plan. This effort culminated in the 1993 Implementation Plan for mitigation of fish losses attributable to the construction and operation of Hungry Horse Dam. The primary purpose of this biennial report is to inform the public of the status of ongoing mitigation activities resulting from those planning efforts. A habitat improvement project is underway to benefit bull trout in Big Creek in the North Fork drainage of the Flathead River and work is planned in Hay Creek, another North Fork tributary. Bull trout redd counts have been expanded and experimental programs involving genetic evaluation, outmigrant monitoring, and hatchery studies have been initiated, Cutthroat mitigation efforts have focused on habitat improvements in Elliott Creek and Taylor`s Outflow and improvements have been followed by imprint plants of hatchery fish and/or eyed eggs in those streams. Rogers Lake west of Kalispell and Lion Lake, near Hungry Horse, were chemically rehabilitated. Cool and warm water fish habitat has been improved in Halfmoon Lake and Echo Lake. Public education and public interest is important to the future success of mitigation activities. As part of the mitigation team`s public awareness responsibility we have worked with numerous volunteer groups, public agencies, and private landowners to stimulate interest and awareness of mitigation activities and the aquatic ecosystem. The purpose of this biennial report is to foster public awareness of, and support for, mitigation activities as we move forward in implementing the Hungry Horse Dam Fisheries Mitigation Implementation Plan.

  8. Further RAGE modeling of asteroid mitigation: surface and subsurface explosions in porous objects

    SciTech Connect (OSTI)

    Weaver, Robert P; Plesko, Catherine S; Dearholt, William R

    2011-01-03

    Disruption or mitigation of a potentially hazardous object (PHO) by a high-energy subsurface burst is considered. This is just one possible method of impact-hazard mitigation. We present RAGE hydrocode models of the shock-generated disruption of PHOs by subsurface nuclear bursts using scenario-specific models from realistic RADAR shape models. We will show 2D and 3D models for the disruption by a large energy source at the center of such PHO models ({approx}100 kt-10 Mt) specifically for the shape of the asteroid 25143 Itokawa. We study the effects of non-uniform composition (rubble pile), shallow buried bursts for the optimal depth of burial and porosity.

  9. EA-1891: Mitigation Action Plan | Department of Energy

    Energy Savers [EERE]

    891: Mitigation Action Plan EA-1891: Mitigation Action Plan Alvey-Fairview Transmission Line Rebuild Project, Oregon This Mitigation Action Plan (MAP) is part of the Finding of No Significant Impact for the Alvey-Fairview Transmission Line Rebuild Project. The project would rebuild the aging 97.5-mile-long 230- kilovolt (kV) Alvey-Fairview transmission line in Lane, Douglas, and Coos counties, Oregon. This MAP is for the Proposed Action and includes all of the integral elements and commitments

  10. Mitigating Wind-Radar Interference | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Mitigating Wind-Radar Interference Mitigating Wind-Radar Interference April 1, 2013 - 12:54pm Addthis This is an excerpt from the First Quarter 2013 edition of the Wind Program R&D Newsletter. The U.S. Department of Energy (DOE) and federal agency partners recently completed the final operational field test in a 2-year initiative to accelerate the deployment of the most promising new technologies for mitigating radar interference caused by the physical and electromagnetic effects of wind

  11. EA-1595: Mitigation Action Plan | Department of Energy

    Office of Environmental Management (EM)

    Mitigation Action Plan EA-1595: Mitigation Action Plan Davis-Mead 230-kV Transmission Line Reconductor Project Western Area Power Administration proposes to reconductor approximately 61 miles of 230-kV transmission line from the Davis Substation at Davis Dam near Bullhead City, Arizona, to the Mead Substation near Boulder City in southern Nevada. PDF icon Mitigation Action Plan for the Davis-Mead 230-kV Transmission Line Reconductor Project, DOE/EA-1595 (November 2007) More Documents &

  12. Insider Threat - Material Control and Accountability Mitigation

    SciTech Connect (OSTI)

    Powell, Danny H; Elwood Jr, Robert H; Roche, Charles T

    2011-01-01

    The technical objectives of nuclear safeguards are (1) the timely detection of diversion of significant quantities of nuclear material from peaceful uses to the manufacture of nuclear weapons or other nuclear explosive devices or for purposes unknown and (2) the deterrence of such diversion by the risk of early detection. The safeguards and security program must address both outsider threats and insider threats. Outsider threats are primarily addressed by the physical protection system. Insider threats can be any level of personnel at the site including passive or active insiders that could attempt protracted or abrupt diversion. This could occur by an individual acting alone or by collusion between an individual with material control and accountability (MC&A) responsibilities and another individual who has responsibility or control within both the physical protection and the MC&A systems. The insider threat is one that must be understood and incorporated into the safeguards posture. There have been more than 18 documented cases of theft or loss of plutonium or highly enriched uranium. The insider has access, authority, and knowledge, as well as a set of attributes, that make him/her difficult to detect. An integrated safeguards program is designed as a defense-in-depth system that seeks to prevent the unauthorized removal of nuclear material, to provide early detection of any unauthorized attempt to remove nuclear material, and to rapidly respond to any attempted removal of nuclear material. The program is also designed to support protection against sabotage, espionage, unauthorized access, compromise, and other hostile acts that may cause unacceptable adverse impacts on national security, program continuity, the health and safety of employees, the public, or the environment. Nuclear MC&A play an essential role in the capabilities of an integrated safeguards system to deter and detect theft or diversion of nuclear material. An integrated safeguards system with compensating mitigation can decrease the risk of an insider performing a malicious act without detection.

  13. Stream Classification Tool User Manual: For Use in Applications in Hydropower-Related Evironmental Mitigation

    SciTech Connect (OSTI)

    McManamay, Ryan A.; Troia, Matthew J.; DeRolph, Christopher R.; Samu, Nicole M.

    2016-01-01

    Stream classifications are an inventory of different types of streams. Classifications help us explore similarities and differences among different types of streams, make inferences regarding stream ecosystem behavior, and communicate the complexities of ecosystems. We developed a nested, layered, and spatially contiguous stream classification to characterize the biophysical settings of stream reaches within the Eastern United States (~ 900,000 reaches). The classification is composed of five natural characteristics (hydrology, temperature, size, confinement, and substrate) along with several disturbance regime layers, and each was selected because of their relevance to hydropower mitigation. We developed the classification at the stream reach level using the National Hydrography Dataset Plus Version 1 (1:100k scale). The stream classification is useful to environmental mitigation for hydropower dams in multiple ways. First, it creates efficiency in the regulatory process by creating an objective and data-rich means to address meaningful mitigation actions. Secondly, the SCT addresses data gaps as it quickly provides an inventory of hydrology, temperature, morphology, and ecological communities for the immediate project area, but also surrounding streams. This includes identifying potential reference streams as those that are proximate to the hydropower facility and fall within the same class. These streams can potentially be used to identify ideal environmental conditions or identify desired ecological communities. In doing so, the stream provides some context for how streams may function, respond to dam regulation, and an overview of specific mitigation needs. Herein, we describe the methodology in developing each stream classification layer and provide a tutorial to guide applications of the classification (and associated data) in regulatory settings, such as hydropower (re)licensing.

  14. Wildlife and Wildlife Habitat Mitigation Plan for Libby Hydroelectric Project, Final Report.

    SciTech Connect (OSTI)

    Mundinger, John

    1985-01-01

    This report describes the proposed mitigation plan for wildlife losses attributable to the construction of the Libby hydroelectric project. Mitigation objectives and alternatives, the recommended mitigation projects, and the crediting system for each project are described by each target species. The report describes mitigation that has already taken place and 8 recommended mitigation projects designed to complete total wildlife mitigation. 8 refs., 2 figs., 12 tabs.

  15. Burlington Bottoms Wildlife Mitigation Project. Final Environmental Assessment/Management Plan and Finding of No Significant Impact.

    SciTech Connect (OSTI)

    Not Available

    1994-12-01

    Bonneville Power Administration (BPA) proposes to fund wildlife management and enhancement activities for the Burlington bottoms wetlands mitigation site. Acquired by BPA in 1991, wildlife habitat at Burlington bottoms would contribute toward the goal of mitigation for wildlife losses and inundation of wildlife habitat due to the construction of Federal dams in the lower Columbia and Willamette River Basins. Target wildlife species identified for mitigation purposes are yellow warbler, great blue heron, black-capped chickadee, red-tailed hawk, valley quail, spotted sandpiper, wood duck, and beaver. The Draft Management Plan/Environmental Assessment (EA) describes alternatives for managing the Burlington Bottoms area, and evaluates the potential environmental impacts of the alternatives. Included in the Draft Management Plan/EA is an implementation schedule, and a monitoring and evaluation program, both of which are subject to further review pending determination of final ownership of the Burlington Bottoms property.

  16. Gearbox Typical Failure Modes, Detection, and Mitigation Methods (Presentation)

    SciTech Connect (OSTI)

    Sheng, S.

    2014-01-01

    This presentation was given at the AWEA Operations & Maintenance and Safety Seminar and focused on what the typical gearbox failure modes are, how to detect them using detection techniques, and strategies that help mitigate these failures.

  17. EA-1934: 2014 Annual Report for Mitigation Action Plan | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hanford Site, Richland, Washington This annual report provides a summary of DOEEA-1934 Mitigation Action Plan implementation in calendar year 2014. PDF icon EA-1934-FEA-MAP-2014...

  18. EIS-0332: Mitigation Action Plan | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    kV transmission line between Bonneville Power Administration's existing McNary and John Day substations. PDF icon DOEEIS-0332: Mitigation Action Plan for the McNary-John Day...

  19. EA-1096: Washington Wildlife Mitigation Projects (Programmatic), Washington

    Broader source: Energy.gov [DOE]

    This EA evaluates the environmental impacts of the proposal for the U.S. Department of Energy Bonneville Power Administration to fund the portion of the Washington Wildlife Mitigation Agreement...

  20. EA-1915: Mitigation Action Plan | Department of Energy

    Energy Savers [EERE]

    of Land at the Hanford Site, Richland, Washington DOE prepared a Mitigation Action Plan (MAP) as an integral part of the Finding of No Significant Impact for DOE's EA. For...

  1. EA-1636: Mitigation Action Plan | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Burnt Woods and Santiam-Toledo Pole Replacement Project This Mitigation Action Plan (MAP) is part of the Finding of No Significant Impact (FONSI) for the Albany-Burnt Woods and...

  2. Market-based Wildlife Mitigation in Wyoming: A Primer | Open...

    Open Energy Info (EERE)

    A Primer Jump to: navigation, search OpenEI Reference LibraryAdd to library Report: Market-based Wildlife Mitigation in Wyoming: A Primer Abstract Covers the basics of...

  3. Introduction to Administrative Programs that Mitigate the Insider Threat

    SciTech Connect (OSTI)

    Gerke, Gretchen K.; Rogers, Erin; Landers, John; DeCastro, Kara

    2012-09-01

    This presentation begins with the reality of the insider threat, then elaborates on these tools to mitigate the insider threat: Human Reliability Program (HRP); Nuclear Security Culture (NSC) Program; Employee Assistance Program (EAP).

  4. 2011 River Corridor Closure Contractor Revegetation and Mitigation Monitoring Report

    SciTech Connect (OSTI)

    West, W. J.; Lucas, J. G.; Gano, K. A.

    2011-11-14

    This report documents the status of revegetation projects and natural resources mitigation efforts conducted for remediated waste sites and other activities associated with the Comprehensive Environmental Response, Compensation, and Liability Act of 1980 cleanup of National Priorities List waste sites at Hanford. This report contains the vegetation monitoring data that was collected in the spring and summer of 2011 from the River Corridor Closure Contractors revegetation and mitigation areas on the Hanford Site.

  5. 2010 River Corridor Closure Contractor Revegetation and Mitigation Monitoring Report

    SciTech Connect (OSTI)

    C. T. Lindsey, A. L. Johnson

    2010-09-30

    This report documents eh status of revegetation projects and natural resources mitigation efforts conducted for remediated waste sites and other activities associated with CERLA cleanup of National Priorities List waste sites at Hanford. This report contains vegetation monitoring data that were collected in the spring and summer of 2010 from the River Corridor Closure Contracts revegetation and mitigation areas on the Hanford Site.

  6. Passive injection: A strategy for mitigating reservoir pressurization,

    Office of Scientific and Technical Information (OSTI)

    induced seismicity and brine migration in geologic CO2 storage (Journal Article) | SciTech Connect Journal Article: Passive injection: A strategy for mitigating reservoir pressurization, induced seismicity and brine migration in geologic CO2 storage Citation Details In-Document Search Title: Passive injection: A strategy for mitigating reservoir pressurization, induced seismicity and brine migration in geologic CO2 storage Authors: Dempsey, David ; Kelkar, Sharad ; Pawar, Rajesh Publication

  7. Implantation, Activation, Characterization and Prevention/Mitigation of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Internal Short Circuits in Lithium-Ion Cells | Department of Energy Implantation, Activation, Characterization and Prevention/Mitigation of Internal Short Circuits in Lithium-Ion Cells Implantation, Activation, Characterization and Prevention/Mitigation of Internal Short Circuits in Lithium-Ion Cells 2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting PDF icon es142_sriramulu_2012_p.pdf More Documents & Publications

  8. Mitigations for Security Vulnerabilities Found in Control System Networks |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Mitigations for Security Vulnerabilities Found in Control System Networks Mitigations for Security Vulnerabilities Found in Control System Networks Industry is aware of the need for Control System (CS) security, but in on-site assessments, Idaho National Laboratory (INL) has observed that security procedures and devices are not consistently and effectively implemented. The Department of Homeland Security (DHS), National Cyber Security Division (NCSD), established the

  9. Mitigating Breakdown in High Energy Density Perovskite Polymer

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Nanocomposite Capacitors | Department of Energy Mitigating Breakdown in High Energy Density Perovskite Polymer Nanocomposite Capacitors Mitigating Breakdown in High Energy Density Perovskite Polymer Nanocomposite Capacitors 2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting PDF icon es160_brutchey_2012_p.pdf More Documents & Publications High Temperature Polymer Capacitor Dielectric Films High Temperature Polymer

  10. Mitigation options for accidental releases of hazardous gases (Conference)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    | SciTech Connect Mitigation options for accidental releases of hazardous gases Citation Details In-Document Search Title: Mitigation options for accidental releases of hazardous gases × You are accessing a document from the Department of Energy's (DOE) SciTech Connect. This site is a product of DOE's Office of Scientific and Technical Information (OSTI) and is provided as a public service. Visit OSTI to utilize additional information resources in energy science and technology. A paper copy

  11. Mitigation of Natural Disasters at Los Alamos National Laboratory

    Office of Environmental Management (EM)

    Mitigation of Natural Disasters at Los Alamos National Laboratory OAS-M-13-04 June 2013 Department of Energy Washington, DC 20585 June 24, 2013 MEMORANDUM FOR THE DEPUTY ASSOCIATE ADMINISTRATOR FOR INFRASTRUCTURE AND OPERATIONS, NATIONAL NUCLEAR SECURITY ADMINISTRATION MANAGER, LOS ALAMOS FIELD OFFICE FROM: George W. Collard Assistant Inspector General for Audits Office of Inspector General SUBJECT: INFORMATION: Audit Report on "Mitigation of Natural Disasters at Los Alamos National

  12. EIS-0026: Annual Mitigation Report | Department of Energy

    Office of Environmental Management (EM)

    These documents specify that a MAP be prepared to mitigate environmental impacts resulting from the implementation of commitments made in the Record of Decision (ROD) for an Environmental Impact Statement (EIS). The Order further requires that an annual report be prepared to demonstrate the progress made in implementing the commitments and effectiveness of any mitigation activity until the activity has been completed. The Waste Isolation Pilot Plant (WIPP) MAP was prepared to address commitments

  13. A statistical approach to designing mitigation for induced ac voltages

    SciTech Connect (OSTI)

    Dabkowski, J. [Electro Sciences, Inc., Crystal Lake, IL (United States)

    1996-08-01

    Induced voltage levels on buried pipelines collocated with overhead electric power transmission lines are usually mitigated by means of grounding the pipeline. Maximum effectiveness is obtained when grounds are placed at discrete locations along the pipeline where the peak induced voltages occur. The degree of mitigation achieved is dependent upon the local soil resistivity at these locations. On occasion it may be necessary to employ an extensive distributed grounding system, for example, a parallel buried wire connected to the pipe at periodic intervals. In this situation the a priori calculation of mitigated voltage levels is sometimes made assuming an average value for the soil resistivity. Over long distances, however, the soil resistivity generally varies as a log-normally distributed random variable. The effect of this variability upon the predicted mitigated voltage levels is examined. It is found that the predicted levels exhibit a statistical variability which precludes a precise determination of the mitigated voltage levels. Thus, post commissioning testing of the emplaced mitigation system is advisable.

  14. Washington Wildlife Mitigation Projects : Final Programmatic Environmental Assessment and Finding of No Significant Impact.

    SciTech Connect (OSTI)

    United States. Bonneville Power Administration; Washington . Dept. of Fish and Wildlife.

    1996-08-01

    Bonneville Power Administration (BPA) proposes to fund the portion of the Washington Wildlife Mitigation Agreement (Agreement) pertaining to wildlife habitat mitigation projects to be undertaken in a cooperative effort with the Washington Department of Fish and Wildlife (WDFW). This Agreement serves to establish a monetary budget funded by BPA for projects proposed by Washington Wildlife Coalition members and approved by BPA to protect, mitigate, and improve wildlife and/or wildlife habitat within the State of Washington that has been affected by the construction of Federal dams along the Columbia River. This Environmental Assessment examines the potential environmental effects of acquiring and/or improving wildlife habitat within five different project areas. These project areas are located throughout Grant County and in parts of Okanogan, Douglas, Adams, Franklin, Kittias, Yakima, and Benton Counties. The multiple projects would involve varying combinations of five proposed site-specific activities (habitat improvement, operation and maintenance, monitoring and evaluation, access and recreation management, and cultural resource management). All required Federal, State, and tribal coordination, permits and/or approvals would be obtained prior to ground-disturbing activities.

  15. Strategies, Protections and Mitigations for Electric Grid Affets from Electro-Magnetic Pulse

    SciTech Connect (OSTI)

    Foster, Rita Ann; Frickey, Steven Jay

    2016-01-01

    The mission of DOE’s Office of Electricity Delivery and Energy Reliability (OE) is to lead national efforts to modernize the electricity delivery system, enhance the security and reliability of America’s energy infrastructure and facilitate recovery from disruptions to the energy supply. One of the threats OE is concerned about is a high-altitude electro-magnetic pulse (HEMP) from a nuclear explosion and eletro-magnetic pulse (EMP) or E1 pulse can be generated by EMP weapons. DOE-OE provides federal leadership and technical guidance in addressing electric grid issues. The Idaho National Laboratory (INL) was chosen to conduct the EMP study for DOE-OE due to its capabilities and experience in setting up EMP experiments on the electric grid and conducting vulnerability assessments and developing innovative technology to increase infrastructure resiliency. This report identifies known impacts to EMP threats, known mitigations and effectiveness of mitigations, potential cost of mitigation, areas for government and private partnerships in protecting the electric grid to EMP, and identifying gaps in our knowledge and protection strategies.

  16. Fossil fuel decarbonization technology for mitigating global warming

    SciTech Connect (OSTI)

    Steinberg, M.

    1998-04-01

    It has been understood that production of hydrogen from fossil and carbonaceous fuels with reduced CO{sub 2} emission to the atmosphere is key to the production of hydrogen-rich fuels for mitigating the CO{sub 2} greenhouse gas climate change problem. The conventional methods of hydrogen production from fossil fuels (coal, oil, gas and biomass) include steam reforming process, mainly of natural gas (SRM). In order to suppress CO{sub 2} emission from the steam reforming process, CO{sub 2} must be concentrated and sequestered either in or under the ocean or in or underground (in aquifers, or depleted oil or gas wells). Up to about 40% of the energy is lost in this process. An alternative process is the pyrolysis or the thermal decomposition of methane, natural gas (TDM) to hydrogen and carbon. The carbon can either be sequestered or sold on the market as a materials commodity or used as a fuel at a later date under less severe CO{sub 2} restraints. The energy sequestered in the carbon amounts to about 42% of the energy in the natural gas resource which is stored and not destroyed. A comparison is made between the well developed conventional SRM and the less developed TDM process including technological status, efficiency, carbon management and cost. The TDM process appears to have advantages over the well developed SRM process. It is much easier to sequester carbon as a stable solid than CO{sub 2} as a reactive gas or low temperature liquid. It is also possible to reduce cost by marketing the carbon as a filler or construction material. The potential benefits of the TDM process justifies its further efficient development. The hydrogen can be used as a transportation fuel or converted to methanol by reaction with CO{sub 2} from fossil fuel fired power plant stack gases, thus allowing reuse of the carbon in conventional IC automobile engines or in advanced fuel cell vehicles.

  17. Fossil fuel decarbonization technology for mitigating global warming

    SciTech Connect (OSTI)

    Steinberg, M.

    1998-07-01

    It has been understood that production of hydrogen from fossil and carbonaceous fuels with reduced CO{sub 2} emission to the atmosphere is key to the production of hydrogen-rich fuels for mitigating the CO{sub 2} greenhouse gas climate change problem. The conventional methods of hydrogen production from fossil fuels (coal, oil, gas and biomass) include steam reforming and water gas shift mainly of natural gas (SRM). In order to suppress CO{sub 2} emission from the steam reforming process, CO{sub 2} must be concentrated and sequestered either in or under the ocean or in or underground (in aquifers, or depleted oil or gas wells). Up to about 40% of the energy is lost in this process. An alternative process is the pyrolysis or the thermal decomposition of methane, natural gas (TDM) to hydrogen and carbon. The carbon can either be sequestered or sold on the market as a materials commodity or used as a fuel at a later date under less severe CO{sub 2} restraints. The energy sequestered in the carbon amounts to about 42% of the energy in the natural gas resource which is stored and not destroyed. A comparison is made between the well developed conventional SRB and the less developed TDM process including technological status, efficiency, carbon management and cost. The TDM process appears to have advantages over the well developed SRM process. It is much easier to sequester carbon as a stable solid than CO{sub 2} as a reactive gas or low temperature liquid. It is also possible to reduce cost by marketing the carbon as a filler or construction material. The potential benefits of the TDM process justifies its further efficient development. The hydrogen can be used as a transportation fuel or converted to methanol by reaction with CO{sub 2} from fossil fuel fired power plant stack gases, thus allowing reuse of the carbon in conventional IC automobile engines or in advanced fuel cell vehicles.

  18. Fossil fuel decarbonization technology for mitigating global warming

    SciTech Connect (OSTI)

    Steinberg, M.

    1998-09-01

    It has been understood that production of hydrogen from fossil and carbonaceous fuels with reduced CO{sub 2} emission to the atmosphere is key to the production of hydrogen-rich fuels for mitigating the CO{sub 2} greenhouse gas climate change problem. The conventional methods of hydrogen production from fossil fuels (coal, oil, gas and biomass) include steam reforming and water gas shift mainly of natural gas (SRM). In order to suppress CO{sub 2} emission from the steam reforming process, CO{sub 2} must be concentrated and sequestered either in or under the ocean or underground (in aquifers, or depleted oil or gas wells). Up to about 40% of the energy is lost in this process. An alternative process is the pyrolysis or the thermal decomposition of methane, natural gas (TDM) to hydrogen and carbon. The carbon can either be sequestered or sold on the market as a materials commodity or used as a fuel at a later date under less severe CO{sub 2} restraints. The energy sequestered in the carbon amounts to about 42% of the energy in the natural gas resource which is stored and not destroyed. A comparison is made between the well developed conventional SRM and the less developed TDM process including technological status, efficiency, carbon management and cost. The TDM process appears to have advantages over the well developed SRM process. It is much easier to sequester carbon as a stable solid than CO{sub 2} as a reactive gas or low temperature liquid. It is also possible to reduce cost by marketing the carbon as a filler or construction material. The potential benefits of the TDM process justifies its further efficient development. The hydrogen can be used as a transportation fuel or converted to methanol by reaction with CO{sub 2} from fossil fuel fired power plant stack gases, thus allowing reuse of the carbon in conventional IC automobile engines or in advanced fuel cell vehicles.

  19. Hellsgate Big Game Winter Range Wildlife Mitigation Site Specific Management Plan for the Hellsgate Project.

    SciTech Connect (OSTI)

    Berger, Matthew T.; Judd, Steven L.

    1999-01-01

    This report contains a detailed site-specific management plan for the Hellsgate Winter Range Wildlife Mitigation Project. The report provides background information about the mitigation process, the review process, mitigation acquisitions, Habitat Evaluation Procedures (HEP) and mitigation crediting, current habitat conditions, desired future habitat conditions, restoration/enhancements efforts and maps.

  20. Supplement Analysis for the Wildlife Mitigation Program EIS (DOE/EIS-0246/SA-40)

    SciTech Connect (OSTI)

    N /A

    2004-07-16

    BPA proposes to fund the acquisition of two parcels in Benewah County, Idaho with the Coeur d'Alene Tribe. These parcels encompass approximately 475 acres of riparian and potential riparian habitat along Hangman Creek on the Coeur d'Alene Indian Reservation. The goal of this project is to protect, mitigate, and enhance wildlife affected by the construction and operation of the Federal hydroelectric facilities on the Columbia River. The current proposal includes only the fee title acquisition of these parcels; habitat enhancement activities will likely be carried out by the Coeur d'Alene Tribe in the future following the development of a management plan(s) for the lands.

  1. Using fly ash to mitigate explosions

    SciTech Connect (OSTI)

    Taulbee, D.

    2008-07-01

    In 2005 the University of Kentucky's Center for Applied Energy Research was given funding to evaluate the use of coal combustion by-products (CCBs) to reduce the explosive potential of ammonium nitrate (AN) fertilizers. Fly ash C (FAC), fly ash F (FAF) and flue gas desulfurization by-product (FGD) were evaluated. It was found that applying a CCB coating to the AN particles at concentrations of 5 wt% or greater prevented the AN explosion from propagating. The article reports on results so far and outlines further work to be done. 6 figs.

  2. Fuel Flexibility: Landfill Gas Contaminant Mitigation for Power Generation

    SciTech Connect (OSTI)

    Storey, John Morse; Theiss, Timothy J; Kass, Michael D; FINNEY, Charles E A; Lewis, Samuel; Kaul, Brian C; Besmann, Theodore M; Thomas, John F; Rogers, Hiram; Sepaniak, Michael

    2014-04-01

    This research project focused on the mitigation of silica damage to engine-based renewable landfill gas energy systems. Characterization of the landfill gas siloxane contamination, combined with characterization of the silica deposits in engines, led to development of two new mitigation strategies. The first involved a novel method for removing the siloxanes and other heavy contaminants from the landfill gas prior to use by the engines. The second strategy sought to interrupt the formation of hard silica deposits in the engine itself, based on inspection of failed landfill gas engine parts. In addition to mitigation, the project had a third task to develop a robust sensor for siloxanes that could be used to control existing and/or future removal processes.

  3. Method to prevent/mitigate steam explosions in casting pits

    DOE Patents [OSTI]

    Taleyarkhan, R.P.

    1996-12-24

    Steam explosions can be prevented or mitigated during a metal casting process by the placement of a perforated flooring system in the casting pit. An upward flow of compressed gas through this perforated flooring system is introduced during the casting process to produce a buffer layer between any spilled molten metal and the cooling water in the reservoir. This buffer layer provides a hydrodynamic layer which acts to prevent or mitigate steam explosions resulting from hot, molten metal being spilled into or onto the cooling water. 3 figs.

  4. EIS-0246: Wildlife Mitigation Program, Idaho, Montana, Nevada, Washington, Oregon

    Broader source: Energy.gov [DOE]

    BPA has decided to adopt the set of prescriptions (goals, strategies, and procedural requirements) identified in the final EIS as Alternative 6, Balanced Action (BPAs Preferred Alternative). This decision will standardize the planning and implementation process, while achieving balance among all decision factors: (1) meeting the biological objectives of wildlife mitigation projects, (2) achievement of cost and administrative efficiency, (3) compliance with all applicable laws and regulations, and (4) protection and improvement of other environmental resources when such actions would support wildlife mitigation.

  5. Toroidally resolved radiation dynamics during a gas jet mitigated

    Office of Scientific and Technical Information (OSTI)

    disruption on Alcator C-Mod (Journal Article) | SciTech Connect Toroidally resolved radiation dynamics during a gas jet mitigated disruption on Alcator C-Mod Citation Details In-Document Search Title: Toroidally resolved radiation dynamics during a gas jet mitigated disruption on Alcator C-Mod Measurements of the radiation dynamics during an Alcator C-Mod disruption induced by a high pressure He/Ar gas jet are presented. Data are analysed from four 22-channel Absolute eXtreme UltraViolet

  6. Method to prevent/mitigate steam explosions in casting pits

    DOE Patents [OSTI]

    Taleyarkhan, Rusi P. (Knoxville, TN)

    1996-01-01

    Steam explosions can be prevented or mitigated during a metal casting process by the placement of a perforated flooring system in the casting pit. An upward flow of compressed gas through this perforated flooring system is introduced during the casting process to produce a buffer layer between any spilled molten metal and the cooling water in the reservoir. This buffer layer provides a hydrodynamic layer which acts to prevent or mitigate steam explosions resulting from hot, molten metal being spilled into or onto the cooling water.

  7. Making the Most of Mitigation | Department of Energy

    Office of Environmental Management (EM)

    Making the Most of Mitigation Making the Most of Mitigation September 2, 2014 - 1:41pm Addthis The current site-wide approach for long-term protection of LANL’s threatened and endangered species originated from the 1995 discovery of a nesting pair of Mexican spotted owls near a proposed explosives testing facility. (See LLQR, June 1999, page 1.) (Photo: Chuck Hathcock, Wildlife Biologist, LANL Environmental Protection Division) The current site-wide approach for long-term protection of

  8. Albeni Falls Wildlife Mitigation Project, 2008 Annual Report.

    SciTech Connect (OSTI)

    Soults, Scott

    2009-08-05

    The Albeni Falls Interagency Work Group (AFIWG) was actively involved in implementing wildlife mitigation activities in late 2007, but due to internal conflicts, the AFIWG members has fractionated into a smaller group. Implementation of the monitoring and evaluation program continued across protected lands. As of 2008, The Albeni Falls Interagency Work Group (Work Group) is a coalition comprised of wildlife managers from three tribal entities (Kalispel Tribe, Kootenai Tribe, Coeur d Alene Tribe) and the US Army Corps of Engineers. The Work Group directs where wildlife mitigation implementation occurs in the Kootenai, Pend Oreille and Coeur d Alene subbasins. The Work Group is unique in the Columbia Basin. The Columbia Basin Fish and Wildlife Authority (CBFWA) wildlife managers in 1995, approved what was one of the first two project proposals to implement mitigation on a programmatic basis. The maintenance of this kind of approach through time has allowed the Work Group to implement an effective and responsive habitat protection program by reducing administrative costs associated with site-specific project proposals. The core mitigation entities maintain approximately 9,335 acres of wetland/riparian habitats in 2008.

  9. Wildlife mitigation and monitoring report Gunnison, Colorado, site

    SciTech Connect (OSTI)

    1997-04-01

    The Uranium Mill Tailings Remedial Action (UMTRA) Project is administered by the U.S. Department of Energy (DOE); its purpose is to cleanup uranium mill tailings and other contaminated material at 24 UMTRA Project sites in 10 states. This report summarizes the wildlife mitigation and monitoring program under way at the Gunnison UMTRA Project, Gunnison, Colorado. Remedial action at the Gunnison site was completed in December 1995 and is described in detail in the Gunnison completion report. The impacts of this activity were analyzed in the Gunnison environmental assessment (EA). These impacts included two important game species: the pronghorn antelope (Antilocapra americans) and sage grouse (Wentrocerus urophasianus). Haul truck traffic was predicted to limit antelope access to water sources north of the Tenderfoot Mountain haul road and that truck traffic along this and other haul roads could result in antelope road kills. Clearing land at the disposal cell, haul road and borrow site activities, and the associated human activities also were predicted to negatively impact (directly and indirectly) sage grouse breeding, nesting, loafing, and wintering habitat. As a result, an extensive mitigation and monitoring plan began in 1992. Most of the monitoring studies are complete and the results of these studies, written by different authors, appear in numerous reports. This report will: (1) Analyze existing impacts and compare them to predicted impacts. (2) Summarize mitigation measures. (3) Summarize all existing monitoring data in one report. (4) Analyze the effectiveness of the mitigation measures.

  10. Planning Tools For Seismic Risk Mitigation. Rules And Applications

    SciTech Connect (OSTI)

    De Paoli, Rosa Grazia

    2008-07-08

    Recently, Italian urban planning research in the field of seismic risk mitigation are renewing. In particular, it promotes strategies that integrate urban rehabilitation and aseismic objectives, and also politicizes that are directed to revitalizes urban systems, coupling physical renewal and socio-economic development.In Italy the first law concerning planning for seismic mitigation dates back 1974, the law n. 64 'Regulation for buildings with particular rules for the seismic areas' where the rules for buildings in seismic areas concerning also the local hazard. This law, in fact, forced the municipalities to acquire, during the formation of the plans, a preventive opinion of compatibility between planning conditions and geomorphology conditions of the territory. From this date the conviction that the seismic risk must be considered inside the territorial planning especially in terms of strategies of mitigation has been strengthened.The town planners have started to take an interest in seismic risk in the [80]s when the Irpinia's earthquake took place. The researches developed after this earthquake have established that the principal cause of the collapse of buildings are due to from the wrong location of urban settlements (on slopes or crowns) After Irpinia's earthquake the first researches on seismic risk mitigation, in particular on the aspects related to the hazards and to the urban vulnerability were made.

  11. Exploring Complex Systems Aspects of Blackout Risk and Mitigation

    SciTech Connect (OSTI)

    Newman, David E [University of Alaska; Carreras, Benjamin A [ORNL; Lynch, Vickie E [ORNL; Dobson, Ian [University of Wisconsin, Madison

    2011-01-01

    Electric power transmission systems are a key infrastructure, and blackouts of these systems have major consequences for the economy and national security. Analyses of blackout data suggest that blackout size distributions have a power law form over much of their range. This result is an indication that blackouts behave as a complex dynamical system. We use a simulation of an upgrading power transmission system to investigate how these complex system dynamics impact the assessment and mitigation of blackout risk. The mitigation of failures in complex systems needs to be approached with care. The mitigation efforts can move the system to a new dynamic equilibrium while remaining near criticality and preserving the power law region. Thus, while the absolute frequency of blackouts of all sizes may be reduced, the underlying forces can still cause the relative frequency of large blackouts to small blackouts to remain the same. Moreover, in some cases, efforts to mitigate small blackouts can even increase the frequency of large blackouts. This result occurs because the large and small blackouts are not mutually independent, but are strongly coupled by the complex dynamics.

  12. Advanced Technology Development and Mitigation | National Nuclear Security

    National Nuclear Security Administration (NNSA)

    Administration Technology Development and Mitigation | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Countering Nuclear Terrorism About Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Library Bios Congressional Testimony Fact Sheets Newsletters Press Releases Photo Gallery Jobs Apply

  13. DISRUPTION MITIGATION WITH HIGH-PRESSURE NOBLE GAS INJECTION

    SciTech Connect (OSTI)

    WHYTE, DG; JERNIGAN, TC; HUMPHREYS, DA; HYATT, AW; LASNIER, CJ; PARKS, PB; EVANS, TE; TAYLOR, PL; KELLMAN, AG; GRAY, DS; HOLLMANN, EM

    2002-10-01

    OAK A271 DISRUPTION MITIGATION WITH HIGH-PRESSURE NOBLE GAS INJECTION. High-pressure gas jets of neon and argon are used to mitigate the three principal damaging effects of tokamak disruptions: thermal loading of the divertor surfaces, vessel stress from poloidal halo currents and the buildup and loss of relativistic electrons to the wall. The gas jet penetrates as a neutral species through to the central plasma at its sonic velocity. The injected gas atoms increase up to 500 times the total electron inventory in the plasma volume, resulting in a relatively benign radiative dissipation of >95% of the plasma stored energy. The rapid cooling and the slow movement of the plasma to the wall reduce poloidal halo currents during the current decay. The thermally collapsed plasma is very cold ({approx} 1-2 eV) and the impurity charge distribution can include > 50% fraction neutral species. If a sufficient quantity of gas is injected, the neutrals inhibit runaway electrons. A physical model of radiative cooling is developed and validated against DIII-D experiments. The model shows that gas jet mitigation, including runaway suppression, extrapolates favorably to burning plasmas where disruption damage will be more severe. Initial results of real-time disruption detection triggering gas jet injection for mitigation are shown.

  14. Unconventional Nuclear Warfare Defense (UNWD) containment and mitigation subtask.

    SciTech Connect (OSTI)

    Wente, William Baker

    2005-06-01

    The objective of this subtask of the Unconventional Nuclear Warfare Design project was to demonstrate mitigation technologies for radiological material dispersal and to assist planners with incorporation of the technologies into a concept of operations. The High Consequence Assessment and Technology department at Sandia National Laboratories (SNL) has studied aqueous foam's ability to mitigate the effects of an explosively disseminated radiological dispersal device (RDD). These benefits include particle capture of respirable radiological particles, attenuation of blast overpressure, and reduction of plume buoyancy. To better convey the aqueous foam attributes, SNL conducted a study using the Explosive Release Atmospheric Dispersion model, comparing the effects of a mitigated and unmitigated explosive RDD release. Results from this study compared health effects and land contamination between the two scenarios in terms of distances of effect, population exposure, and remediation costs. Incorporating aqueous foam technology, SNL created a conceptual design for a stationary containment area to be located at a facility entrance with equipment that could minimize the effects from the detonation of a vehicle transported RDD. The containment design was evaluated against several criteria, including mitigation ability (both respirable and large fragment particle capture as well as blast overpressure suppression), speed of implementation, cost, simplicity, and required space. A mock-up of the conceptual idea was constructed at SNL's 9920 explosive test site to demonstrate the containment design.

  15. Webinar: Micro-Structural Mitigation Strategies for PEM Fuel Cells |

    Broader source: Energy.gov (indexed) [DOE]

    Department of Energy Above is the webinar recording for the Fuel Cell Technologies Office webinar, "Micro-Structural Mitigation Strategies for PEM Fuel Cells," originally presented on November 19, 2013. In addition to this recording, you can access the presentation slides. A text version of this recording will be available soon

  16. 2009 EVALUATION OF TRITIUM REMOVAL AND MITIGATION TECHNOLOGIES FOR WASTEWATER TREATMENT

    SciTech Connect (OSTI)

    LUECK KJ; GENESSE DJ; STEGEN GE

    2009-02-26

    Since 1995, a state-approved land disposal site (SALDS) has received tritium contaminated effluents from the Hanford Site Effluent Treatment Facility (ETF). Tritium in this effluent is mitigated by storage in slow moving groundwater to allow extended time for decay before the water reaches the site boundary. By this method, tritium in the SALDS is isolated from the general environment and human contact until it has decayed to acceptable levels. This report contains the 2009 update evaluation of alternative tritium mitigation techniques to control tritium in liquid effluents and groundwater at the Hanford site. A thorough literature review was completed and updated information is provided on state-of-the-art technologies for control of tritium in wastewaters. This report was prepared to satisfy the Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement) Milestone M-026-07B (Ecology, EPA, and DOE 2007). Tritium separation and isolation technologies are evaluated periodically to determine their feasibility for implementation to control Hanford site liquid effluents and groundwaters to meet the Us. Code of Federal Regulations (CFR), Title 40 CFR 141.16, drinking water maximum contaminant level (MCL) for tritium of 20,000 pOll and/or DOE Order 5400.5 as low as reasonably achievable (ALARA) policy. Since the 2004 evaluation, there have been a number of developments related to tritium separation and control with potential application in mitigating tritium contaminated wastewater. These are primarily focused in the areas of: (1) tritium recycling at a commercial facility in Cardiff, UK using integrated tritium separation technologies (water distillation, palladium membrane reactor, liquid phase catalytic exchange, thermal diffusion), (2) development and demonstration of Combined Electrolysis Catalytic Exchange (CECE) using hydrogen/water exchange to separate tritium from water, (3) evaporation of tritium contaminated water for dispersion in the atmosphere, and (4) use of barriers to minimize the transport of tritium in groundwater. Continuing development efforts for tritium separations processes are primarily to support the International Thermonuclear Experimental Reactor (ITER) program, the nuclear power industry, and the production of radiochemicals. While these applications are significantly different than the Hanford application, the technology could potentially be adapted for Hanford wastewater treatment. Separations based processes to reduce tritium levels below the drinking water MCL have not been demonstrated for the scale and conditions required for treating Hanford wastewater. In addition, available cost information indicates treatment costs for such processes will be substantially higher than for discharge to SALDS or other typical pump and treat projects at Hanford. Actual mitigation projects for groundwater with very low tritium contamination similar to that found at Hanford have focused mainly on controlling migration and on evaporation for dispersion in the atmosphere.

  17. Final environmental impact statement for the Nevada Test Site and off-site locations in the state of Nevada: Mitigation action plan

    SciTech Connect (OSTI)

    1997-02-01

    The DOE Notice of Availability for this environmental impact statement was published in the Federal Register on Friday, October 18, 1996 (61 FR 54437). The final environmental impact statement identifies potential adverse effects resulting from the four use alternatives evaluated and discusses measures that DOE considered for the mitigation of these potential adverse effects. The Secretary of Energy signed the Record of Decision on the management and operation of the Nevada Test Site and other DOE sites in the state of Nevada on December 9, 1996. These decisions will result in the continuation of the multipurpose, multi-program use of the Nevada Test Site, under which DOE will pursue a further diversification of interagency, private industry, and public-education uses while meeting its Defense Program, Waste Management, and Environmental Restoration mission requirements at the Nevada Test Site and other Nevada sites, including the Tonopah Test Range, the Project Shoal Site, the Central Nevada Test Area, and on the Nellis Air Force Range Complex. The Record of Decision also identifies specific mitigation actions beyond the routine day-to-day physical and administrative controls needed for implementation of the decisions. These specific mitigation actions are focused on the transportation of waste and on groundwater availability. This Mitigation Action Plan elaborates on these mitigation commitments.

  18. EERE Success Story—Mitigating Potential Environmental Impacts of Energy Development

    Broader source: Energy.gov [DOE]

    Normandeau Associates is developing a tool to check the risk of wind turbine collisions for bird and bat species.

  19. Habitat Evaluation Procedures (HEP) Report : Grand Coulee Dam Mitigation, 1996-1999 Technical Report.

    SciTech Connect (OSTI)

    Kieffer, B.; Singer, Kelly; Abrahamson, Twa-le

    1999-07-01

    The purpose of this Habitat Evaluation Procedures (HEP) study was to determine baseline habitat units and to estimate future habitat units for Bonneville Power Administration (BPA) mitigation projects on the Spokane Indian Reservation. The mitigation between BPA and the Spokane Tribe of Indians (STOI) is for wildlife habitat losses on account of the construction of Grand Coulee Dam. Analysis of the HEP survey data will assist in mitigation crediting and appropriate management of the mitigation lands.

  20. EA-1934: 2015 Annual Report for Mitigation Action Plan | Department of

    Energy Savers [EERE]

    Energy 2015 Annual Report for Mitigation Action Plan EA-1934: 2015 Annual Report for Mitigation Action Plan Expansion of Active Borrow Areas, Hanford Site, Richland, Washington This annual report provides a summary of DOE/EA-1934 Mitigation Action Plan implementation in calendar year 2015. For more information, see http://energy.gov/node/381343. PDF icon EA-1934_FEA_MAP_2015 More Documents & Publications EA-1934: 2014 Annual Report for Mitigation Action Plan EA-1934: Final Environmental

  1. Micro-Structural Mitigation Strategies for PEM Fuel Cells | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Micro-Structural Mitigation Strategies for PEM Fuel Cells Micro-Structural Mitigation Strategies for PEM Fuel Cells Download presentation slides from the DOE Fuel Cell Technologies Office webinar "Micro-Structural Mitigation Strategies for PEM Fuel Cells" held on November 19, 2013. PDF icon Micro-Structural Mitigation Strategies for PEM Fuel Cells Webinar Slides More Documents & Publications 2012 Fuel Cell Technologies Market Report 2011 Fuel Cell Technologies Market

  2. Mitigation and Remediation of Mercury Contamination at the Y-12 Plant Oak

    Energy Savers [EERE]

    Ridge | Department of Energy Mitigation and Remediation of Mercury Contamination at the Y-12 Plant Oak Ridge Mitigation and Remediation of Mercury Contamination at the Y-12 Plant Oak Ridge Full Document and Summary Versions are available for download PDF icon Mitigation and Remediation of Mercury Contamination at the Y-12 Plant Oak Ridge PDF icon Summary - Mitigation and Remediation of Mercury Contamination at the Y-12 Plant, Oak Ridge, TN More Documents & Publications Remediation of

  3. Boyer-Tillamook Access Road Improvement Project 1 Mitigation Action Plan for Final Environmental Assessment

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Boyer-Tillamook Access Road Improvement Project 1 Mitigation Action Plan for Final Environmental Assessment Boyer-Tillamook Access Road Improvement Project Mitigation Action Plan MITIGATION ACTION PLAN This Mitigation Action Plan (MAP) is part of the Finding of No Significant Impact (FONSI) for the Boyer- Tillamook Access Road Improvement Project. The project would improve about 13.5 miles of access roads at specific sites along an 18-mile portion of the existing 115-kilovolt (kV)

  4. EA-1440-S-I: Mitigation Action Plan Completion Report

    Broader source: Energy.gov [DOE]

    This report presents the U.S. Department of Energy’s completion of the May 2008 Mitigation Action Plan (MAP) for the Supplement to the Final Site-Wide Environmental Assessment of the National Renewable Energy Laboratory’s South Table Mountain Complex (DOE/EA-1440-S-I) . Since May 2008, DOE and the National Renewable Energy Laboratory (NREL) have implemented various traffic mitigation measures and routinely monitored traffic at the NREL South Table Mountain (STM) campus in Golden, Colorado in accordance with the MAP. With the completion and occupancy of the new Research Support Facility (RSF) and Energy Systems Integration Facility (ESIF) and with offsite traffic impacts maintained below threshold levels, implementation of the MAP is hereby complete. NREL and DOE will continue to implement current traffic control measures and conduct informal traffic monitoring as part of standard operations and sustainability initiatives.

  5. The lifetime of carbon capture and storage as a climate-change mitigation technology

    SciTech Connect (OSTI)

    Juanes, Ruben

    2013-12-30

    In carbon capture and storage (CCS), CO2 is captured at power plants and then injected underground into reservoirs like deep saline aquifers for long-term storage. While CCS may be critical for the continued use of fossil fuels in a carbon-constrained world, the deployment of CCS has been hindered by uncertainty in geologic storage capacities and sustainable injection rates, which has contributed to the absence of concerted government policy. Here, we clarify the potential of CCS to mitigate emissions in the United States by developing a storage-capacity supply curve that, unlike current large-scale capacity estimates, is derived from the fluid mechanics of CO2 injection and trapping and incorporates injection-rate constraints. We show that storage supply is a dynamic quantity that grows with the duration of CCS, and we interpret the lifetime of CCS as the time for which the storage supply curve exceeds the storage demand curve from CO2 production. We show that in the United States, if CO2 production from power generation continues to rise at recent rates, then CCS can store enough CO2 to stabilize emissions at current levels for at least 100 years. This result suggests that the large-scale implementation of CCS is a geologically viable climate-change mitigation option in the United States over the next century.

  6. Development Of Regional Climate Mitigation Baseline For A DominantAgro-Ecological Zone Of Karnataka, India

    SciTech Connect (OSTI)

    Sudha, P.; Shubhashree, D.; Khan, H.; Hedge, G.T.; Murthy, I.K.; Shreedhara, V.; Ravindranath, N.H.

    2007-06-01

    Setting a baseline for carbon stock changes in forest andland use sector mitigation projects is an essential step for assessingadditionality of the project. There are two approaches for settingbaselines namely, project-specific and regional baseline. This paperpresents the methodology adopted for estimating the land available formitigation, for developing a regional baseline, transaction cost involvedand a comparison of project-specific and regional baseline. The studyshowed that it is possible to estimate the potential land and itssuitability for afforestation and reforestation mitigation projects,using existing maps and data, in the dry zone of Karnataka, southernIndia. The study adopted a three-step approach for developing a regionalbaseline, namely: i) identification of likely baseline options for landuse, ii) estimation of baseline rates of land-use change, and iii)quantification of baseline carbon profile over time. The analysis showedthat carbon stock estimates made for wastelands and fallow lands forproject-specific as well as the regional baseline are comparable. Theratio of wasteland Carbon stocks of a project to regional baseline is1.02, and that of fallow lands in the project to regional baseline is0.97. The cost of conducting field studies for determination of regionalbaseline is about a quarter of the cost of developing a project-specificbaseline on a per hectare basis. The study has shown the reliability,feasibility and cost-effectiveness of adopting regional baseline forforestry sectormitigation projects.

  7. Experts assemble at PPPL to discuss mitigation of tokamak disruptions |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Princeton Plasma Physics Lab Experts assemble at PPPL to discuss mitigation of tokamak disruptions By John Greenwald July 15, 2014 Tweet Widget Google Plus One Share on Facebook Amitava Bhattacharjee, left, and John Mandrekas, a program manager in the U.S. Department of Energy's office of Fusion Energy Sciences. (Photo by Elle Starkman/Princeton Office of Communications ) Amitava Bhattacharjee, left, and John Mandrekas, a program manager in the U.S. Department of Energy's office of Fusion

  8. Experts assemble at PPPL to discuss mitigation of tokamak disruptions |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Princeton Plasma Physics Lab Experts assemble at PPPL to discuss mitigation of tokamak disruptions By John Greenwald July 15, 2014 Tweet Widget Google Plus One Share on Facebook Amitava Bhattacharjee, left, and John Mandrekas, a program manager in the U.S. Department of Energy's office of Fusion Energy Sciences. (Photo by Elle Starkman/Princeton Office of Communications ) Amitava Bhattacharjee, left, and John Mandrekas, a program manager in the U.S. Department of Energy's office of Fusion

  9. Multifunctional Platelet Composites for Tin Whisker Mitigation - Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Innovation Portal Advanced Materials Advanced Materials Find More Like This Return to Search Multifunctional Platelet Composites for Tin Whisker Mitigation Sandia National Laboratories Contact SNL About This Technology Publications: PDF Document Publication Market Sheet (555 KB) <br type="_moz" /> SEM image showing in-plane orientation of platelets in Sandia&#39;s multifunctional platelet composite SEM image showing in-plane orientation of platelets in Sandia's

  10. Microsoft Word - Final Mitigated Action Plan - CNMI.docx

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    | P a g e MITIGATION ACTION PLAN FOR THE FINAL ENVIRONMENTAL ASSESSMENT FOR THE GREEN ENERGY SCHOOL WIND PROJECT SAIPAN, COMMONWEALTH OF THE NORTHERN MARIANA ISLANDS U.S. Department of Energy Golden Service Center Office of Energy Efficiency and Renewable Energy DOE/EA-1923 2 | P a g e ACRONYMS AND ABBREVIATIONS AMC Adaptive Management Committee CFR Code of Federal Regulations DOE U.S. Department of Energy EA environmental assessment ESA Endangered Species Act FONSI finding of no significant

  11. Microsoft Word - MitigationsForVulnerabilitiesInCSNetworks.doc

    Office of Environmental Management (EM)

    6 by ISA - The Instrumentation, Systems and Automation Society. Presented at 16th Annual Joint ISA POWID/EPRI Controls and Instrumentation Conference; http://www.isa.org Mitigations for Security Vulnerabilities Found in Control System Networks May Permann John Hammer Computer Security Researcher Computer Security Researcher Communications & Cyber Security Communications & Cyber Security Idaho National Laboratory Idaho National Laboratory Idaho Falls, ID 83415 Idaho Falls, ID 83415 Kathy

  12. Implementing mitigative actions on the Superconducting Super Collider project

    SciTech Connect (OSTI)

    Sands, T.L. )

    1993-01-01

    The Super Collider is the first project for which a Mitigation Action Plan (MAP) was prepared under a DOE Order that became effective in 1990. The policy requires a MAP for any project where environmental findings were predicated on taking mitigative actions. The MAP must be approved prior to the start of preliminary design and thus cannot be site or facility-specific because the requisite level of detail would not be available. This gap is filled by a series of environmental compliance plans (ECP) that are prepared by the architect-engineer/constructions manager under the direction of the DOE Management and Operations Contractor for the Super Collider. A given ECP identifies the environmental protection measures applicable to the respective contract package. The designated design team uses the ECP as one of its requirements documents and the environmental staff uses it during design reviews to verify compliance with the MAP. Site audits and monitoring data are used to document compliance and verify the effectiveness of mitigative actions, or identify required corrective actions. The applicability of this process to other projects falling within the scope of the National Environmental Policy Act is discussed.

  13. Assess technical potential for energy technologies | Open Energy...

    Open Energy Info (EERE)

    Farm Tool Cool Roofs and Heat Islands ECN GHG Marginal Abatement Cost curves (NAMAC) Eco-efficiency Indicators: Measuring Resource-use Efficiency and the Impact of Economic...

  14. Mexico - Greenhouse Gas Emissions Baselines and Reduction Potentials...

    Open Energy Info (EERE)

    from Buildings AgencyCompany Organization United Nations Environment Programme Sector Energy Focus Area Buildings Topics Baseline projection, GHG inventory, Pathways analysis,...

  15. GREENHOUSE GAS REDUCTION POTENTIAL WITH COMBINED HEAT AND POWER...

    Office of Scientific and Technical Information (OSTI)

    is an exploration of the accounting methodology for GHG reductions with CHP and the ... Research Org: Oak Ridge National Laboratory (ORNL); National Transportation Research ...

  16. PPPL successfully tests system for mitigating instabilities called

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    "ELMs" | Princeton Plasma Physics Lab PPPL successfully tests system for mitigating instabilities called "ELMs" By John Greenwald September 29, 2014 Tweet Widget Google Plus One Share on Facebook Close-up view of the high-speed propellor inside the injector. (Photo by Elle Starkman/Princeton Office of Communications ) Close-up view of the high-speed propellor inside the injector. PPPL has successfully tested a Laboratory-designed device to be used to diminish the size of

  17. PPPL successfully tests system for mitigating instabilities called

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    "ELMs" | Princeton Plasma Physics Lab PPPL successfully tests system for mitigating instabilities called "ELMs" By John Greenwald September 29, 2014 Tweet Widget Google Plus One Share on Facebook Close-up view of the high-speed propellor inside the injector. (Photo by Elle Starkman/Princeton Office of Communications ) Close-up view of the high-speed propellor inside the injector. PPPL has successfully tested a Laboratory-designed device to be used to diminish the size of

  18. Climate Mitigation Policy Implications for Global Irrigation Water Demand

    SciTech Connect (OSTI)

    Chaturvedi, Vaibhav; Hejazi, Mohamad I.; Edmonds, James A.; Clarke, Leon E.; Kyle, G. Page; Davies, Evan; Wise, Marshall A.

    2013-08-22

    Energy, water and land are scarce resources, critical to humans. Developments in each affect the availability and cost of the others, and consequently human prosperity. Measures to limit greenhouse gas concentrations will inevitably exact dramatic changes on energy and land systems and in turn alter the character, magnitude and geographic distribution of human claims on water resources. We employ the Global Change Assessment Model (GCAM), an integrated assessment model to explore the interactions of energy, land and water systems in the context of alternative policies to limit climate change to three alternative levels: 2.5 Wm-2 (445 ppm CO2-e), 3.5 Wm-2 (535 ppm CO2-e) and 4.5 Wm-2 (645 ppm CO2-e). We explore the effects of alternative land-use emissions mitigation policy optionsone which values terrestrial carbon emissions equally with fossil fuel and industrial emissions, and an alternative which places no penalty on land-use change emissions. We find that increasing populations and economic growth could be anticipated to lead to increased demand for water for agricultural systems (+200%), even in the absence of climate change. In general policies to mitigate climate change will increase agricultural demands for water, regardless of whether or not terrestrial carbon is valued or not. Burgeoning demands for water are driven by the demand for bioenergy in response to emissions mitigation policies. We also find that the policy matters. Increases in the demand for water when terrestrial carbon emissions go un-prices are vastly larger than when terrestrial system carbon emissions are prices at the same rate as fossil fuel and industrial emissions. Our estimates for increased water demands when terrestrial carbon systems go un-priced are larger than earlier studies. We find that the deployment of improved irrigation delivery systems could mitigate some of the increase in water demands, but cannot reverse the increases in water demands when terrestrial carbon emissions go un-priced. Finally we estimates that the geospatial pattern of water demands could stress some parts of the world, e.g. China, India and other countries in south and east Asia, earlier and more intensely than in other parts of the world, e.g. North America.

  19. Analysis of potential for reducing emissions of greenhouse gases in municipal solid waste in Brazil, in the state and city of Rio de Janeiro

    SciTech Connect (OSTI)

    Loureiro, S.M.; Rovere, E.L.L.; Mahler, C.F.

    2013-05-15

    Highlights: ? We constructed future scenarios of emissions of greenhouse gases in waste. ? Was used the IPCC methodology for calculating emission inventories. ? We calculated the costs of abatement for emissions reduction in landfill waste. ? The results were compared to Brazil, state and city of Rio de Janeiro. ? The higher the environmental passive, the greater the possibility of use of biogas. - Abstract: This paper examines potential changes in solid waste policies for the reduction in GHG for the country of Brazil and one of its major states and cities, Rio de Janeiro, from 2005 to 2030. To examine these policy options, trends in solid waste quantities and associated GHG emissions are derived. Three alternative policy scenarios are evaluated in terms of effectiveness, technology, and economics and conclusions posited regarding optimal strategies for Brazil to implement. These scenarios are been building on the guidelines for national inventories of GHG emissions (IPCC, 2006) and adapted to Brazilian states and municipalities boundaries. Based on the results, it is possible to say that the potential revenue from products of solid waste management is more than sufficient to transform the current scenario in this country into one of financial and environmental gains, where the negative impacts of climate change have created a huge opportunity to expand infrastructure for waste management.

  20. Microsoft PowerPoint - Sale at SWPA workshop June-09 v3mjs.ppt

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    impacts and mitigation Examples: *Improved fish passage * Water use optimization * GHG reservoir emissions 2. Asset management Examples: *Resourceindustry assessments * Asset...

  1. Greenhouse gases mitigation options and strategies for Tanzania

    SciTech Connect (OSTI)

    Mwandosya, M.J.; Meena, H.E.

    1996-12-31

    Tanzania became a party to the United Nations Framework on Climate Change (UN FCCC) when she ratified the Convention in March, 1996. Now that Tanzania and other developing countries are Parties to the UN FCCC, compliance with its provisions is mandatory. The legal requirements therefore provide a basis for their participation in climate change studies and policy formulation. All parties to the Convention are required by Article 4.1 of the United Nations Convention on Climate Change (UN FCCC) to develop, periodically update, publish, and make available national inventories of anthropogenic emissions and removal of greenhouse gases that are not controlled by the Montreal Protocol. This study on possible options for the mitigation of greenhouse gases in Tanzania is a preliminary effort towards the fulfilment of the obligation. In order to fulfil their obligations under the UN FCCC and have a meaningful mitigation assessment, identification and quantification of anthropogenic sources of atmospheric emissions of greenhouse gases in the country was undertaken. In this respect, the study of anthropogenic emissions by source and removals by sink of GHGs in Tanzania was done with the main objective of increasing the quantity and quality of base-line data available in order to further scientific understanding of the relationship of greenhouse gas emissions to climate change. Furthermore, the study facilitated identification of national policy and technological options that could reduce the level of emissions in the country.

  2. Modelling and mitigating dose to firefighters from inhalation of radionuclides in wildland fire smoke

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Viner, Brian J.; Jannik, Tim; Stone, Daniel; Hepworth, Allan; Naeher, Luke; Adetona, Olorunfemi; Blake, John; Eddy, Teresa

    2015-06-12

    Firefighters responding to wildland fires where surface litter and vegetation contain radiological contamination will receive a radiological dose by inhaling resuspended radioactive material in the smoke. This may increase their lifetime risk of contracting certain types of cancer. Using published data, we modelled hypothetical radionuclide emissions, dispersion and dose for 70th and 97th percentile environmental conditions and for average and high fuel loads at the Savannah River Site. We predicted downwind concentration and potential dose to firefighters for radionuclides of interest (137Cs, 238Pu, 90Sr and 210Po). Predicted concentrations exceeded dose guidelines in the base case scenario emissions of 1.0 ×more » 107 Bq ha–1 for 238Pu at 70th percentile environmental conditions and average fuel load levels for both 4- and 14-h shifts. Under 97th percentile environmental conditions and high fuel loads, dose guidelines were exceeded for several reported cases for 90Sr, 238Pu and 210Po. Potential for exceeding dose guidelines was mitigated by including plume rise (>2 m s–1) or moving a small distance from the fire owing to large concentration gradients near the edge of the fire. As a result, our approach can quickly estimate potential dose from airborne radionuclides in wildland fire and assist decision-making to reduce firefighter exposure.« less

  3. Modelling and mitigating dose to firefighters from inhalation of radionuclides in wildland fire smoke.

    SciTech Connect (OSTI)

    Viner, Brian J.

    2015-06-12

    Firefighters responding to wildland fires where surface litter and vegetation contain radiological contamination will receive a radiological dose by inhaling resuspended radioactive material in the smoke. This may increase their lifetime risk of contracting certain types of cancer. Using published data, we modelled hypothetical radionuclide emissions, dispersion and dose for 70th and 97th percentile environmental conditions and for average and high fuel loads at the Savannah River Site. We predicted downwind concentration and potential dose to firefighters for radionuclides of interest (137Cs, 238Pu, 90Sr and 210Po). Predicted concentrations exceeded dose guidelines in the base case scenario emissions of 1.0 x 107Bq ha-1 for 238Pu at 70th percentile environmental conditions and average fuel load levels for both 4- and 14-h shifts. Under 97th percentile environmental conditions and high fuel loads, dose guidelines were exceeded for several reported cases for 90Sr, 238Pu and 210Po. The potential for exceeding dose guidelines was mitigated by including plume rise (>2ms-1) or moving a small distance from the fire owing to large concentration gradients near the edge of the fire. This approach can quickly estimate potential dose from airborne radionuclides in wildland fire and assist decision-making to reduce firefighter exposure.

  4. Modelling and mitigating dose to firefighters from inhalation of radionuclides in wildland fire smoke

    SciTech Connect (OSTI)

    Viner, Brian J.; Jannik, Tim; Stone, Daniel; Hepworth, Allan; Naeher, Luke; Adetona, Olorunfemi; Blake, John; Eddy, Teresa

    2015-06-12

    Firefighters responding to wildland fires where surface litter and vegetation contain radiological contamination will receive a radiological dose by inhaling resuspended radioactive material in the smoke. This may increase their lifetime risk of contracting certain types of cancer. Using published data, we modelled hypothetical radionuclide emissions, dispersion and dose for 70th and 97th percentile environmental conditions and for average and high fuel loads at the Savannah River Site. We predicted downwind concentration and potential dose to firefighters for radionuclides of interest (137Cs, 238Pu, 90Sr and 210Po). Predicted concentrations exceeded dose guidelines in the base case scenario emissions of 1.0 107 Bq ha1 for 238Pu at 70th percentile environmental conditions and average fuel load levels for both 4- and 14-h shifts. Under 97th percentile environmental conditions and high fuel loads, dose guidelines were exceeded for several reported cases for 90Sr, 238Pu and 210Po. Potential for exceeding dose guidelines was mitigated by including plume rise (>2 m s1) or moving a small distance from the fire owing to large concentration gradients near the edge of the fire. As a result, our approach can quickly estimate potential dose from airborne radionuclides in wildland fire and assist decision-making to reduce firefighter exposure.

  5. Vernacular design based on sustainable disasters mitigation communication and education strategy

    SciTech Connect (OSTI)

    Mansoor, Alvanov Zpalanzani E-mail: alvanov@fsrd.itb.ac.id

    2015-04-24

    Indonesia is located between three active tectonic plates, which are prone to natural disasters such as earthquake, volcanic eruption, and also giant tidal wave-tsunami. Adequate infrastructure plays an important role in disaster mitigation, yet without good public awareness, the mitigation process wont be succeeded. The absence of awareness can lead to infrastructure mistreatment. Several reports on lack of understanding or misinterpretation of disaster mitigation especially from rural and coastal communities need to be solved, especially from communication aspects. This is an interdisciplinary study on disaster mitigation communication design and education strategy from visual communication design studies paradigm. This paper depicts research results which applying vernacular design base to elaborate sustainable mitigation communication and education strategy on various visual media and social campaigns. This paper also describes several design approaches which may becomes way to elaborate sustainable awareness and understanding on disaster mitigation among rural and coastal communities in Indonesia.

  6. Hungry Horse Dam Fisheries Mitigation Implementation Plan, 1990-2003 Progress (Annual) Report.

    SciTech Connect (OSTI)

    Montana Department of Fish, Wildlife and Parks; Confederated Salish and Kootenai Tribes

    1993-03-10

    In this document the authors present mitigation implementation activities to protect and enhance resident fish and aquatic habitat affected by the construction and operation of Hungry Horse Dam. This plan only addresses non-operational actions (mitigation measures that do not affect dam operation) described in the 'Fisheries Mitigation Plan for Losses Attributable to the Construction and Operation of Hungry Horse Dam' (Mitigation Plan) submitted to the Northwest Power Planning Council (Council) in March 1991 and in accordance with subsequent Council action on that Mitigation Plan. Operational mitigation was deferred for consideration under the Columbia Basin System Operation Review (SOR) process. This document represents an implementation plan considered and conditionally approved by the Council in March of 1993.

  7. Experimental Validation of Stratified Flow Phenomena, Graphite Oxidation, and Mitigation Strategies of Air Ingress Accidents

    SciTech Connect (OSTI)

    Chang Ho Oh; Eung Soo Kim; Hee Cheon No; Nam Zin Cho

    2008-12-01

    The US Department of Energy is performing research and development (R&D) that focuses on key phenomena that are important during challenging scenarios that may occur in the Next Generation Nuclear Plant (NGNP) Program / GEN-IV Very High Temperature Reactor (VHTR). Phenomena identification and ranking studies (PIRT) to date have identified the air ingress event, following on the heels of a VHTR depressurization, as very important (Schultz et al., 2006). Consequently, the development of advanced air ingress-related models and verification and validation (V&V) are very high priority for the NGNP program. Following a loss of coolant and system depressurization, air will enter the core through the break. Air ingress leads to oxidation of the in-core graphite structure and fuel. The oxidation will accelerate heat-up of the bottom reflector and the reactor core and will cause the release of fission products eventually. The potential collapse of the bottom reflector because of burn-off and the release of CO lead to serious safety problems. For estimation of the proper safety margin we need experimental data and tools, including accurate multi-dimensional thermal-hydraulic and reactor physics models, a burn-off model, and a fracture model. We also need to develop effective strategies to mitigate the effects of oxidation. The results from this research will provide crucial inputs to the INL NGNP/VHTR Methods R&D project. This project is focused on (a) analytical and experimental study of air ingress caused by density-driven, stratified, countercurrent flow, (b) advanced graphite oxidation experiments, (c) experimental study of burn-off in the bottom reflector, (d) structural tests of the burnt-off bottom reflector, (e) implementation of advanced models developed during the previous tasks into the GAMMA code, (f) full air ingress and oxidation mitigation analyses, (g) development of core neutronic models, (h) coupling of the core neutronic and thermal hydraulic models, and (i) verification and validation of the coupled models.

  8. Enduse Global Emissions Mitigation Scenarios (EGEMS): A New Generation of Energy Efficiency Policy Planning Models

    SciTech Connect (OSTI)

    McNeil, Michael A.; de la Rue du Can, Stephane; McMahon, James E.

    2009-05-29

    This paper presents efforts to date and prospective goals towards development of a modelling and analysis framework which is comprehensive enough to address the global climate crisis, and detailed enough to provide policymakers with concrete targets and achievable outcomes. In terms of energy efficiency policy, this requires coverage of the entire world, with emphasis on countries and regions with large and/or rapidly growing energy-related emissions, and analysis at the 'technology' level-building end use, transport mode or industrial process. These elements have not been fully addressed by existing modelling efforts, which usually take either a top-down approach, or concentrate on a few fully industrialized countries where energy demand is well-understood. Inclusion of details such as appliance ownership rates, use patterns and efficiency levels throughout the world allows for a deeper understanding of the demand for energy today and, more importantly, over the coming decades. This is a necessary next step for energy analysts and policy makers in assessment of mitigation potentials. The modelling system developed at LBNL over the past 3 years takes advantage of experience in end use demand and in forecasting markets for energy-consuming equipment, in combination with known technology-based efficiency opportunities and policy types. A particular emphasis has been placed on modelling energy growth in developing countries. Experiences to date include analyses covering individual countries (China and India), end uses (refrigerators and air conditioners) and policy types (standards and labelling). Each of these studies required a particular effort in data collection and model refinement--they share, however, a consistent approach and framework which allows comparison, and forms the foundation of a comprehensive analysis system leading to a roadmap to address the greenhouse gas mitigation targetslikely to be set in the coming years.

  9. Recruiting a Local and Diverse Workforce and Mitigating Barriers to Entry |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Recruiting a Local and Diverse Workforce and Mitigating Barriers to Entry Recruiting a Local and Diverse Workforce and Mitigating Barriers to Entry Better Buildings Neighborhood Program Workforce Peer Exchange Call: Recruiting a Local and Diverse Workforce and Mitigating Barriers to Entry, Call Slides and Discussion Summary, August 25, 2011. PDF icon Call Slides and Discussion Summary More Documents & Publications Better Buildings Workforce Peer Exchange Call:

  10. EIS-0506: Record of Decision and Mitigation Action Plan | Department of

    Energy Savers [EERE]

    Energy Record of Decision and Mitigation Action Plan EIS-0506: Record of Decision and Mitigation Action Plan Crooked River Valley Rehabilitation Project; Idaho County, Idaho Bonneville Power Administration (BPA) adopted the Crooked River Valley Rehabilitation Project EIS, prepared by the U.S. Forest Service with BPA as a cooperating agency, and issued a record of decision and mitigation action plan. BPA decided to provide funding for implementing the project to improve tributary fish habitat

  11. EA-1931: Finding of No Significant Impact and Mitigation Action Plan |

    Energy Savers [EERE]

    Department of Energy 1: Finding of No Significant Impact and Mitigation Action Plan EA-1931: Finding of No Significant Impact and Mitigation Action Plan Keeler to Tillamook Transmission Line Rebuild Project, Washington and Tillamook Counties, Oregon Bonneville Power Administration issued a finding of no significant impact and a mitigation action plan for the proposed rebuild of the Keeler-Forest Grove and Forest Grove-Tillamook 115-kilovolt (kV) transmission lines between the cities of

  12. EA-1946: Finding of No Significant Impact and Mitigation Action Plan |

    Energy Savers [EERE]

    Department of Energy 6: Finding of No Significant Impact and Mitigation Action Plan EA-1946: Finding of No Significant Impact and Mitigation Action Plan Salem-Albany Transmission Line Rebuild Project; Polk, Benton, Marion, and Linn Counties, Oregon Bonneville Power Administration issued a finding of no significant impact and mitigation action plan for the proposed rebuild of the 24-mile Salem-Albany No. 1 and 28-mile Salem-Albany No. 2 transmission lines between Salem and Albany, Oregon. PDF

  13. EA-1950: Finding of No Significant Impact and Mitigation Action Plan |

    Energy Savers [EERE]

    Department of Energy 0: Finding of No Significant Impact and Mitigation Action Plan EA-1950: Finding of No Significant Impact and Mitigation Action Plan Grand Coulee-Creston Transmission Line Rebuild; Grant and Lincoln Counties, Washington Bonneville Power Administration issued a finding of no significant impact and a mitigation action plan for rebuilding approximately 28 miles of the Grand Coulee-Creston No. 1 115-kilovolt (kV) transmission line between Coulee Dam in Grant County and

  14. EA-1973: Finding of No Significant Impact and Mitigation Action Plan |

    Energy Savers [EERE]

    Department of Energy 3: Finding of No Significant Impact and Mitigation Action Plan EA-1973: Finding of No Significant Impact and Mitigation Action Plan Kootenai River Restoration at Bonners Ferry, Boundary County, Idaho Bonneville Power Administration issued a Finding of No Significant Impact and Mitigation Action Plan for funding the Kootenai Tribe of Idaho to restore portions of the Kootenai River near the town of Bonners Ferry, Idaho. The project involves installing structures on the

  15. EIS-0380: Fiscal Year 2011 Mitigation Action Plan Annual Report for the

    Energy Savers [EERE]

    2008 Los Alamos Site-Wide Environmental Impact Statement | Department of Energy Fiscal Year 2011 Mitigation Action Plan Annual Report for the 2008 Los Alamos Site-Wide Environmental Impact Statement EIS-0380: Fiscal Year 2011 Mitigation Action Plan Annual Report for the 2008 Los Alamos Site-Wide Environmental Impact Statement Fiscal Year 2011 Mitigation Action Plan Annual Report for the 2008 Los Alamos Site-Wide Environmental Impact Statement This Annual Report summarizes the activities that

  16. DOE/EA-1915 MITIGATION ACTION PLAN PROPOSED CONVEYANCE OF LAND AT THE HANFORD SITE,

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    EA for Conveyance of Land at the Hanford Site, Richland, WA Page 1 of 6 September 2015 DOE/EA-1915 MITIGATION ACTION PLAN PROPOSED CONVEYANCE OF LAND AT THE HANFORD SITE, RICHLAND, WASHINGTON AGENCY: U.S. Department of Energy Richland Operations Office ACTION: Mitigation Action Plan SUMMARY: This Mitigation Action Plan (MAP) is an integral part of the Finding of No Significant Impact (FONSI) for the United States Department of Energy's (DOE) Environmental Assessment for Proposed Conveyance of

  17. Bonneville’s “Balanced Scorecard” Approach to Mitigation, Monitoring, and Adaptive Management

    Broader source: Energy.gov [DOE]

    This year Bonneville Power Administration (BPA), DOE’s power marketing organization in the Pacific Northwest, will spend more than $300 million on mitigation projects to meet its mandate under the 1980 Northwest Power Act to “protect, mitigate and enhance” fish and wildlife affected by construction and operation of the Federal Columbia River Power System. How is BPA meeting its responsibility to ratepayers to ensure that these mitigation funds are spent effectively?

  18. EA-1951: Finding of No Significant Impact and Mitigation Action Plan |

    Energy Savers [EERE]

    Department of Energy 1951: Finding of No Significant Impact and Mitigation Action Plan EA-1951: Finding of No Significant Impact and Mitigation Action Plan Midway-Moxee Rebuild and Midway-Grandview Upgrade Transmission Line Project; Benton and Yakima Counties, Washington Bonneville Power Administration issued a Finding of No Significant Impact and Mitigation Action Plan for the proposed rebuilding of the 34-mile Midway-Moxee transmission line and the proposed rebuilding and upgrading of the

  19. Natural Gas Infrastructure R&D and Methane Emissions Mitigation Workshop

    Office of Environmental Management (EM)

    Gas Infrastructure R&D and Methane Emissions Mitigation Workshop November 12-13, 2014 Advanced Materials Manufacturing and Innovative Technologies for Natural Gas Pipeline Systems and Components Panel > November 12, 2014 > Pittsburgh, PA > By Daniel Ersoy, GTI Nat. Gas Infrastructure R&D /Methane Emissions Mitigation Workshop, Nov. 2014, Pittsburgh, PA 2 Nat. Gas Infrastructure R&D /Methane Emissions Mitigation Workshop, Nov. 2014, Pittsburgh, PA 2 GTI Company Overview

  20. Natural Gas Infrastructure R&D and Methane Mitigation Woekshop Nov. 12-13, 2014

    Office of Environmental Management (EM)

    Natural Gas Infrastructure R&D and Methane Mitigation Workshop - Nov. 12-13, 2014 Improving Compressor System Operational Efficiency Natural Gas Infrastructure R&D and Methane Mitigation Workshop Nov. 12-13, 2014 Improving Compressor System Operational Efficiency W. Norm Shade, PE Sr. Consultant & Pres.-Emeritus ACI Services Inc. Cambridge, OH 1 Natural Gas Infrastructure R&D and Methane Mitigation Workshop - Nov. 12-13, 2014 Improving Compressor System Operational Efficiency

  1. DOE/EA-1915 MITIGATION ACTION PLAN PROPOSED CONVEYANCE OF LAND AT THE HANFORD SITE,

    Office of Environmental Management (EM)

    EA for Conveyance of Land at the Hanford Site, Richland, WA Page 1 of 6 September 2015 DOE/EA-1915 MITIGATION ACTION PLAN PROPOSED CONVEYANCE OF LAND AT THE HANFORD SITE, RICHLAND, WASHINGTON AGENCY: U.S. Department of Energy Richland Operations Office ACTION: Mitigation Action Plan SUMMARY: This Mitigation Action Plan (MAP) is an integral part of the Finding of No Significant Impact (FONSI) for the United States Department of Energy's (DOE) Environmental Assessment for Proposed Conveyance of

  2. EIS-0425: Record of Decision and Mitigation Action Plan | Department of

    Office of Environmental Management (EM)

    Energy 5: Record of Decision and Mitigation Action Plan EIS-0425: Record of Decision and Mitigation Action Plan Bonneville Power Administration Record of Decision and Mitigation Action Plan for the Mid-Columbia Restoration Project BPA decided to implement the Proposed Action of the Mid-Columbia Coho Restoration Program as described in the Mid-Columbia Coho Restoration Program Final Environmental Impact Statement (EIS) (DOE/EIS-0425, March 2012). BPA will fund the construction, operation, and

  3. Malheur River Wildlife Mitigation Project, Annual Report 2003.

    SciTech Connect (OSTI)

    Ashley, Paul

    2004-01-01

    Hydropower development within the Columbia and Snake River Basins has significantly affected riparian, riverine, and adjacent upland habitats and the fish and wildlife species dependent upon them. Hydroelectric dams played a major role in the extinction or major loss of both anadromous and resident salmonid populations and altered instream and adjacent upland habitats, water quality, and riparian/riverine function. Hydroelectric facility construction and inundation directly affected fish and wildlife species and habitats. Secondary and tertiary impacts including road construction, urban development, irrigation, and conversion of native habitats to agriculture, due in part to the availability of irrigation water, continue to affect wildlife and fish populations throughout the Columbia and Snake River Basins. Fluctuating water levels resulting from facility operations have created exposed sand, cobble, and/or rock zones. These zones are generally devoid of vegetation with little opportunity to re-establish riparian plant communities. To address the habitat and wildlife losses, the United States Congress in 1980 passed the Pacific Northwest Electric Power Planning and Conservation Act (Act) (P.L. 96-501), which authorized the states of Idaho, Montana, Oregon, and Washington to create the Northwest Power Planning Council (Council). The Act directed the Council to prepare a program in conjunction with federal, state, and tribal wildlife resource authorities to protect, mitigate, and enhance fish and wildlife species affected by the construction, inundation and operation of hydroelectric dams in the Columbia River Basin (NPPC 2000). Under the Columbia Basin Fish and Wildlife Program (Program), the region's fish and wildlife agencies, tribes, non-government organizations (NGOs), and the public propose fish and wildlife projects that address wildlife and fish losses resulting from dam construction and subsequent inundation. As directed by the Council, project proposals are subjected to a rigorous review process prior to receiving final approval. An eleven-member panel of scientists referred to as the Independent Scientific Review Panel (ISRP) examines project proposals. The ISRP recommends project approval based on scientific merit. The Bonneville Power Administration (BPA), the Columbia Basin Fish and Wildlife Authority (CBFWA), Council staff, the U.S. Fish and Wildlife Service (USFWS), the National Oceanic and Atmospheric Administration (NOAA), and subbasin groups also review project proposals to ensure each project meets regional and subbasin goals and objectives. The Program also includes a public involvement component that gives the public an opportunity to provide meaningful input on management proposals. After a thorough review, the Burns Paiute Tribe (BPT) acquired the Malheur River Mitigation Project (Project) with BPA funds to compensate, in part, for the loss of fish and wildlife resources in the Columbia and Snake River Basins and to address a portion of the mitigation goals identified in the Council's Program (NPPC 2000).

  4. Peru-Bringing a Range of Supported Mitigation Activities in Selected...

    Open Energy Info (EERE)

    ECN and Ecofys on supported mitigation activities such as NAMAs, low carbon development (LCD) strategies and technology innovation centers to bring a portfolio of projects from the...

  5. Upcoming Webinar November 19: Micro-Structural Mitigation Strategies for PEM Fuel Cells

    Broader source: Energy.gov [DOE]

    On November 19, the Energy Department will present a webinar on micro-structural mitigation strategies for PEM fuel cells focusing on morphological simulations and experimental approaches.

  6. South Africa-Integrating Sub-national Actors into National Mitigation...

    Open Energy Info (EERE)

    Actors into National Mitigation Strategies Through Vertically Integrated NAMAs (V-NAMAs) Jump to: navigation, search Name South Africa-Integrating Sub-national Actors...

  7. Thailand-National Energy Efficiency Plan and Evidence-based Mitigation...

    Open Energy Info (EERE)

    National Energy Efficiency Plan and Evidence-based Mitigation Strategy Jump to: navigation, search Name GIZ-Thailand-National energy efficiency plan as a core element for an...

  8. Divertor Heat Flux Mitigation in High-Performance H-mode Plasmas...

    Office of Scientific and Technical Information (OSTI)

    Conference: Divertor Heat Flux Mitigation in High-Performance H-mode Plasmas in the National Spherical Torus Experiment. Citation Details In-Document Search Title: Divertor Heat...

  9. Climate Change Mitigation Through Land-Use Measures in the Agriculture...

    Open Energy Info (EERE)

    and Forestry Sectors Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Climate Change Mitigation Through Land-Use Measures in the Agriculture and Forestry...

  10. JICA's Assistance for Mitigation to Climate Change - The Co-Benefits...

    Open Energy Info (EERE)

    JICA's Assistance for Mitigation to Climate Change - The Co-Benefits Approach to Climate Change Jump to: navigation, search Tool Summary LAUNCH TOOL Name: JICA's Assistance for...

  11. Mitigation of substrate defects in reticles using multilayer buffer layers

    DOE Patents [OSTI]

    Mirkarimi, Paul B. (Sunol, CA); Bajt, Sasa (Livermore, CA); Stearns, Daniel G. (Los Altos, CA)

    2001-01-01

    A multilayer film is used as a buffer layer to minimize the size of defects on a reticle substrate prior to deposition of a reflective coating on the substrate. The multilayer buffer layer deposited intermediate the reticle substrate and the reflective coating produces a smoothing of small particles and other defects on the reticle substrate. The reduction in defect size is controlled by surface relaxation during the buffer layer growth process and by the degree of intermixing and volume contraction of the materials at the multilayer interfaces. The buffer layers are deposited at near-normal incidence via a low particulate ion beam sputtering process. The growth surface of the buffer layer may also be heated by a secondary ion source to increase the degree of intermixing and improve the mitigation of defects.

  12. Near-Term Climate Mitigation by Short-Lived Forcers

    SciTech Connect (OSTI)

    Smith, Steven J.; Mizrahi, Andrew H.

    2013-08-12

    Emissions reductions focused on anthropogenic climate forcing agents with relatively short atmospheric lifetimes such as methane (CH4) and black carbon (BC) have been suggested as a strategy to reduce the rate of climate change over the next several decades. We find that reductions of methane and BC would likely have only a modest impact on near-term climate warming. Even with maximally feasible reductions phased in from 2015 to 2035, global mean temperatures in 2050 are reduced by 0.16 C, with an uncertainty range of 0.04-0.36C, with the high end of this range only possible if total historical aerosol forcing is small. More realistic mitigation scenarios would likely provide a smaller climate benefit. The climate benefits from targeted reductions in short-lived forcing agents are smaller than previously estimated and are not substantially different in magnitude from the benefits due to a comprehensive climate policy.

  13. Pressurized water nuclear reactor system with hot leg vortex mitigator

    DOE Patents [OSTI]

    Lau, Louis K. S. (Monroeville, PA)

    1990-01-01

    A pressurized water nuclear reactor system includes a vortex mitigator in the form of a cylindrical conduit between the hot leg conduit and a first section of residual heat removal conduit, which conduit leads to a pump and a second section of residual heat removal conduit leading back to the reactor pressure vessel. The cylindrical conduit is of such a size that where the hot leg has an inner diameter D.sub.1, the first section has an inner diameter D.sub.2, and the cylindrical conduit or step nozzle has a length L and an inner diameter of D.sub.3 ; D.sub.3 /D.sub.1 is at least 0.55, D.sub.2 is at least 1.9, and L/D.sub.3 is at least 1.44, whereby cavitation of the pump by a vortex formed in the hot leg is prevented.

  14. Characterizing and Mitigating Work Time Inflation in Task Parallel Programs

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Olivier, Stephen L.; de Supinski, Bronis R.; Schulz, Martin; Prins, Jan F.

    2013-01-01

    Task parallelism raises the level of abstraction in shared memory parallel programming to simplify the development of complex applications. However, task parallel applications can exhibit poor performance due to thread idleness, scheduling overheads, and work time inflation – additional time spent by threads in a multithreaded computation beyond the time required to perform the same work in a sequential computation. We identify the contributions of each factor to lost efficiency in various task parallel OpenMP applications and diagnose the causes of work time inflation in those applications. Increased data access latency can cause significant work time inflation in NUMAmore » systems. Our locality framework for task parallel OpenMP programs mitigates this cause of work time inflation. Our extensions to the Qthreads library demonstrate that locality-aware scheduling can improve performance up to 3X compared to the Intel OpenMP task scheduler.« less

  15. Imaging an event horizon: mitigation of scattering toward Sagittarius A*

    SciTech Connect (OSTI)

    Fish, Vincent L.; Lu, Ru-Sen; Doeleman, Sheperd S.; Pankratius, Victor; Johnson, Michael D.; Narayan, Ramesh; Vertatschitsch, Laura E.; Bouman, Katherine L.; Zoran, Daniel; Freeman, William T.; Psaltis, Dimitrios; Broderick, Avery E.; Gwinn, Carl R.

    2014-11-10

    The image of the emission surrounding the black hole in the center of the Milky Way is predicted to exhibit the imprint of general relativistic (GR) effects, including the existence of a shadow feature and a photon ring of diameter ?50 ?as. Structure on these scales can be resolved by millimeter-wavelength very long baseline interferometry. However, strong-field GR features of interest will be blurred at ? ? 1.3 mm due to scattering by interstellar electrons. The scattering properties are well understood over most of the relevant range of baseline lengths, suggesting that the scattering may be (mostly) invertible. We simulate observations of a model image of Sgr A* and demonstrate that the effects of scattering can indeed be mitigated by correcting the visibilities before reconstructing the image. This technique is also applicable to Sgr A* at longer wavelengths.

  16. Electrodes mitigating effects of defects in organic electronic devices

    DOE Patents [OSTI]

    Heller, Christian Maria Anton (Albany, NY)

    2008-05-06

    A compound electrode for organic electronic devices comprises a thin first layer of a first electrically conducting material and a second electrically conducting material disposed on the first layer. In one embodiment, the second electrically conducting material is formed into a plurality of elongated members. In another embodiment, the second material is formed into a second layer. The elongated members or the second layer has a thickness greater than that of the first layer. The second layer is separated from the first layer by a conducting material having conductivity less than at least the material of the first layer. The compound electrode is capable of mitigating adverse effects of defects, such as short circuits, in the construction of the organic electronic devices, and can be included in light-emitting or photovoltaic devices.

  17. Malheur River Wildlife Mitigation Project : 2008 Annual Report.

    SciTech Connect (OSTI)

    Kesling, Jason; Abel, Chad; Schwabe, Laurence

    2009-01-01

    In 1998, the Burns Paiute Tribe (BPT) submitted a proposal to Bonneville Power Administration (BPA) for the acquisition of the Malheur River Wildlife Mitigation Project (Project). The proposed mitigation site was for the Denny Jones Ranch and included Bureau of Land Management (BLM) and Oregon Division of State Lands (DSL) leases and grazing allotments. The Project approval process and acquisition negotiations continued for several years until the BPT and BPA entered into a Memorandum of Agreement, which allowed for purchase of the Project in November 2000. The 31,781 acre Project is located seven miles east of Juntura, Oregon and is adjacent to the Malheur River (Figure 1). Six thousand three hundred eighty-five acres are deeded to BPT, 4,154 acres are leased from DSL, and 21,242 acres are leased from BLM (Figure 2). In total 11 grazing allotments are leased between the two agencies. Deeded land stretches for seven miles along the Malheur River. It is the largest private landholding on the river between Riverside and Harper, Oregon. Approximately 938 acres of senior water rights are included with the Ranch. The Project is comprised of meadow, wetland, riparian and shrub-steppe habitats. The BLM grazing allotment, located south of the ranch, is largely shrub-steppe habitat punctuated by springs and seeps. Hunter Creek, a perennial stream, flows through both private and BLM lands. Similarly, the DSL grazing allotment, which lies north of the Ranch, is predominantly shrub/juniper steppe habitat with springs and seeps dispersed throughout the upper end of draws (Figure 2).

  18. Hungry Horse Mitigation Plan; Fisheries Mitigation Plan for Losses Attributable to the Construction and Operation of Hungry Horse Dam, 1990-2003 Technical Report.

    SciTech Connect (OSTI)

    Fraley, John J.; Marotz, Brian L.; DosSantos, Joseph M.

    2003-04-01

    In this document we present fisheries losses, mitigation alternatives, and recommendations to protect, mitigate, and enhance resident fish and aquatic habitat affected by the construction and operation of Hungry Horse Dam. This plan addresses six separate program measures in the 1987 Columbia Basin Fish and Wildlife Program. We designed the plan to be closely coordinated in terms of dam operations, funding, and activities with the Kerr Mitigation Plan presently before the Federal Energy Regulatory Commission. This document represents a mitigation plan for consideration by the Northwest Power Planning Council process; it is not an implementation plan. Flathead Lake is one of the cleanest lakes of its size in the world. The exceptional water quality and unique native fisheries make the Flathead Lake/River system extremely valuable to the economy and quality of life in the basin. The recreational fishery in Flathead Lake has an estimated value of nearly eight million dollars annually. This mitigation process represents our best opportunity to reduce the impacts of hydropower in this valuable aquatic system and increase angling opportunity. We based loss estimates and mitigation alternatives on an extensive data base, agency reports, nationally and internationally peer-reviewed scientific articles, and an innovative biological model for Hungry Horse Reservoir and the Flathead River. We conducted an extensive, 14-month scoping and consultation process with agency representatives, representatives of citizen groups, and the general public. This consultation process helped identify issues, areas of agreement, areas of conflict, and advantages and disadvantages of mitigation alternatives. The results of the scoping and consultation process helped shape our mitigation plan. Our recommended plan is based firmly on principles of adaptive management and recognition of biological uncertainty. After we receive direction from the NPPC, we will add more detailed hypotheses and other features necessary for a long-term implementation plan.

  19. Wildlife Protection, Mitigation, and Enhancement Planning Phase II, Dworshak Reservoir, Final Report.

    SciTech Connect (OSTI)

    Hansen, H. Jerome; Martin, Robert C.

    1989-11-01

    The Pacific Northwest Electric Power Planning and Conservation Act of 1980 directed that measures be implemented to protect, mitigate, and enhance fish and wildlife to the extent affected by development and operation of hydropower projects on the Columbia River System. This Act created the Northwest Power Planning Council, which in turn developed the Columbia River Basin Fish and Wildlife Program. This program established a four-part process: wildlife mitigation status reports; wildlife impact assessments; wildlife protection, mitigation, and enhancement plans; and implementation of protection, mitigation, and enhancement projects. This mitigation plan for the Dworshak Reservoir Hydroelectric Facility was developed to fulfill requirements of Sections 1003(b)(2) and (3) of the Columbia River Basin Fish and Wildlife Program. Specific objectives of wildlife protection, mitigation, and enhancement planning for Dworshak Reservoir included: quantify net impacts to target wildlife species affected by hydroelectric development and operation of Dworshak Dam and Reservoir; develop protection, mitigation, and enhancement goals and objectives for the target wildlife species; recommend protection, mitigation, and enhancement actions for the target wildlife species; and coordination of project activities. 46 refs., 4 figs., 31 tabs.

  20. Flight path-driven mitigation of wavefront curvature effects in SAR images

    DOE Patents [OSTI]

    Doerry, Armin W. (Albuquerque, NM)

    2009-06-23

    A wavefront curvature effect associated with a complex image produced by a synthetic aperture radar (SAR) can be mitigated based on which of a plurality of possible flight paths is taken by the SAR when capturing the image. The mitigation can be performed differently for different ones of the flight paths.

  1. CO{sub 2}-mitigation measures through reduction of fossil fuel burning in power utilities. Which road to go?

    SciTech Connect (OSTI)

    Kaupp, A.

    1996-12-31

    Five conditions, at minimum, should be examined in the comparative analysis of CO{sub 2}-mitigation options for the power sector. Under the continuing constraint of scarce financial resources for any private or public investment in the power sector, the following combination of requirements characterise a successful CO{sub 2}-mitigation project: (1) Financial attractiveness for private or public investors. (2) Low, or even negative, long range marginal costs per ton of `CO{sub 2} saved`. (3) High impact on CO{sub 2}-mitigation, which indicates a large market potential for the measure. (4) The number of individual investments required to achieve the impact is relatively small. In other words, logistical difficulties in project implementation are minimised. (5) The projects are `socially fair` and have minimal negative impact on any segment of the society. This paper deals with options to reduce carbonaceous fuel burning in the power sector. Part I explains how projects should be selected and classified. Part II describes the technical options. Since reduction of carbonaceous fuel burning may be achieved through Demand Side Management (DSM) and Supply Side Management (SSM) both are treated. Within the context of this paper SSM does not mean to expand power supply as demand grows. It means to economically generate and distribute power as efficiently as possible. In too many instances DSM has degenerated into efficient lighting programs and utility managed incentives and rebate programs. To what extent this is a desirable situation for utilities in Developing Countries that face totally different problems as their counterparts in highly industrialised countries remains to be seen. Which road to go is the topic of this paper.

  2. System level latchup mitigation for single event and transient radiation effects on electronics

    DOE Patents [OSTI]

    Kimbrough, J.R.; Colella, N.J.

    1997-09-30

    A ``blink`` technique, analogous to a person blinking at a flash of bright light, is provided for mitigating the effects of single event current latchup and prompt pulse destructive radiation on a micro-electronic circuit. The system includes event detection circuitry, power dump logic circuitry, and energy limiting measures with autonomous recovery. The event detection circuitry includes ionizing radiation pulse detection means for detecting a pulse of ionizing radiation and for providing at an output terminal thereof a detection signal indicative of the detection of a pulse of ionizing radiation. The current sensing circuitry is coupled to the power bus for determining an occurrence of excess current through the power bus caused by ionizing radiation or by ion-induced destructive latchup of a semiconductor device. The power dump circuitry includes power dump logic circuitry having a first input terminal connected to the output terminal of the ionizing radiation pulse detection circuitry and having a second input terminal connected to the output terminal of the current sensing circuitry. The power dump logic circuitry provides an output signal to the input terminal of the circuitry for opening the power bus and the circuitry for shorting the power bus to a ground potential to remove power from the power bus. The energy limiting circuitry with autonomous recovery includes circuitry for opening the power bus and circuitry for shorting the power bus to a ground potential. The circuitry for opening the power bus and circuitry for shorting the power bus to a ground potential includes a series FET and a shunt FET. The invention provides for self-contained sensing for latchup, first removal of power to protect latched components, and autonomous recovery to enable transparent operation of other system elements. 18 figs.

  3. System level latchup mitigation for single event and transient radiation effects on electronics

    DOE Patents [OSTI]

    Kimbrough, Joseph Robert (Pleasanton, CA); Colella, Nicholas John (Livermore, CA)

    1997-01-01

    A "blink" technique, analogous to a person blinking at a flash of bright light, is provided for mitigating the effects of single event current latchup and prompt pulse destructive radiation on a micro-electronic circuit. The system includes event detection circuitry, power dump logic circuitry, and energy limiting measures with autonomous recovery. The event detection circuitry includes ionizing radiation pulse detection means for detecting a pulse of ionizing radiation and for providing at an output terminal thereof a detection signal indicative of the detection of a pulse of ionizing radiation. The current sensing circuitry is coupled to the power bus for determining an occurrence of excess current through the power bus caused by ionizing radiation or by ion-induced destructive latchup of a semiconductor device. The power dump circuitry includes power dump logic circuitry having a first input terminal connected to the output terminal of the ionizing radiation pulse detection circuitry and having a second input terminal connected to the output terminal of the current sensing circuitry. The power dump logic circuitry provides an output signal to the input terminal of the circuitry for opening the power bus and the circuitry for shorting the power bus to a ground potential to remove power from the power bus. The energy limiting circuitry with autonomous recovery includes circuitry for opening the power bus and circuitry for shorting the power bus to a ground potential. The circuitry for opening the power bus and circuitry for shorting the power bus to a ground potential includes a series FET and a shunt FET. The invention provides for self-contained sensing for latchup, first removal of power to protect latched components, and autonomous recovery to enable transparent operation of other system elements.

  4. Willow Creek Wildlife Mitigation Project. Final Environmental Assessment.

    SciTech Connect (OSTI)

    1995-04-01

    Today`s notice announces BPA`s proposal to fund land acquisition or acquisition of a conservation easement and a wildlife management plan to protect and enhance wildlife habitat at the Willow Creek Natural Area in Eugene, Oregon. This action would provide partial mitigation for wildlife and wildlife habitat lost by the development of Federal hydroelectric projects in the Willamette River Basin. The project is consistent with BPA`s obligations under provisions of the Pacific Northwest Electric Power Planning and Conservation Act of 1980 as outlined by the Northwest Power Planning Council`s 1994 Columbia River Basin Fish and Wildlife Program. BPA has prepared an environmental assessment (DOE/EA-1023) evaluating the proposed project. Based on the analysis in the EA, BPA has determined that the proposed action is not a major Federal action significantly affecting the quality of the human environment, within the meaning of the National Environmental Policy Act (NEPA) of 1969. Therefore, the preparation of an environmental impact statement (EIS) is not required and BPA is issuing this FONSI.

  5. Security Informatics Research Challenges for Mitigating Cyber Friendly Fire

    SciTech Connect (OSTI)

    Carroll, Thomas E.; Greitzer, Frank L.; Roberts, Adam D.

    2014-09-30

    This paper addresses cognitive implications and research needs surrounding the problem of cyber friendly re (FF). We dene cyber FF as intentional o*ensive or defensive cyber/electronic actions intended to protect cyber systems against enemy forces or to attack enemy cyber systems, which unintentionally harms the mission e*ectiveness of friendly or neutral forces. We describe examples of cyber FF and discuss how it ts within a general conceptual framework for cyber security failures. Because it involves human failure, cyber FF may be considered to belong to a sub-class of cyber security failures characterized as unintentional insider threats. Cyber FF is closely related to combat friendly re in that maintaining situation awareness (SA) is paramount to avoiding unintended consequences. Cyber SA concerns knowledge of a system's topology (connectedness and relationships of the nodes in a system), and critical knowledge elements such as the characteristics and vulnerabilities of the components that comprise the system and its nodes, the nature of the activities or work performed, and the available defensive and o*ensive countermeasures that may be applied to thwart network attacks. We describe a test bed designed to support empirical research on factors a*ecting cyber FF. Finally, we discuss mitigation strategies to combat cyber FF, including both training concepts and suggestions for decision aids and visualization approaches.

  6. Electron cloud experiments at Fermilab: Formation and mitigation

    SciTech Connect (OSTI)

    Zwaska, R.; /Fermilab

    2011-06-01

    We have performed a series of experiments at Fermilab to explore the electron cloud phenomenon. The Main Injector will have its beam intensity increased four-fold in the Project X upgrade, and would be subject to instabilities from the electron cloud. We present measurements of the cloud formation in the Main Injector and experiments with materials for the mitigation of the Cloud. An experimental installation of Titanium-Nitride (TiN) coated beam pipes has been under study in the Main Injector since 2009; this material was directly compared to an adjacent stainless chamber through electron cloud measurement with Retarding Field Analyzers (RFAs). Over the long period of running we were able to observe the secondary electron yield (SEY) change and correlate it with electron fluence, establishing a conditioning history. Additionally, the installation has allowed measurement of the electron energy spectrum, comparison of instrumentation techniques, and energydependent behavior of the electron cloud. Finally, a new installation, developed in conjunction with Cornell and SLAC, will allow direct SEY measurement of material samples irradiated in the accelerator.

  7. Mitigation of wind tunnel wall interactions in subsonic cavity flows

    SciTech Connect (OSTI)

    Wagner, Justin L.; Casper, Katya Marie; Beresh, Steven J.; Henfling, John F.; Spillers, Russell Wayne; Pruett, Brian Owen Matthew

    2015-03-06

    In this study, the flow over an open aircraft bay is often represented in a wind tunnel with a cavity. In flight, this flow is unconfined, though in experiments, the cavity is surrounded by wind tunnel walls. If untreated, wind tunnel wall effects can lead to significant distortions of cavity acoustics in subsonic flows. To understand and mitigate these cavitytunnel interactions, a parametric approach was taken for flow over an L/D = 7 cavity at Mach numbers 0.60.8. With solid tunnel walls, a dominant cavity tone was observed, likely due to an interaction with a tunnel duct mode. Furthermore, an acoustic liner opposite the cavity decreased the amplitude of the dominant mode and its harmonics, a result observed by previous researchers. Acoustic dampeners were also placed in the tunnel sidewalls, which further decreased the dominant mode amplitudes and peak amplitudes associated with nonlinear interactions between cavity modes. This then indicates that cavity resonance can be altered by tunnel sidewalls and that spanwise coupling should be addressed when conducting subsonic cavity experiments. Though mechanisms for dominant modes and nonlinear interactions likely exist in unconfined cavity flows, these effects can be amplified by the wind tunnel walls.

  8. ENVIRONMENTAL BENIGN MITIGATION OF MICROBIOLOGICALLY INFLUENCED CORROSION (MIC)

    SciTech Connect (OSTI)

    J.R. Paterek; G. Husmillo; V. Trbovic

    2003-01-01

    The overall program objective is to develop and evaluate environmental benign agents or products that are effective in the prevention, inhibition, and mitigation of microbially influenced corrosion (MIC) in the internal surfaces of metallic natural gas pipelines. The goal is one or more environmental benign, a.k.a. ''green'' products that can be applied to maintain the structure and dependability of the natural gas infrastructure. The technical approach for this quarter were isolation and cultivation of MIC-causing microorganisms from corroded pipeline samples, optimizing parameters in the laboratory-scale corrosion test loop system and testing the effective concentrations of Capsicum sp. extracts to verify the extent of corrosion on metal coupons by batch culture method. A total of 22 strains from the group of heterotrophic, acid producing, denitrifying and sulfate reducing bacteria were isolated from the gas pipeline samples obtained from Northern Indiana Public Service Company in Trenton, Indiana. They were purified and will be sent out for identification. Bacterial strains of interest were used in antimicrobial screenings and test loop experiments. Parameters for the laboratory-scale test loop system such as gas and culture medium flow rate; temperature; inoculation period; and length of incubation were established. Batch culture corrosion study against Desulfovibrio vulgaris showed that one (S{sub 1}M) out of the four Capsicum sp. extracts tested was effective in controlling the corrosion rate in metal coupons by 33.33% when compared to the untreated group.

  9. Mitigation of wind tunnel wall interactions in subsonic cavity flows

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Wagner, Justin L.; Casper, Katya Marie; Beresh, Steven J.; Henfling, John F.; Spillers, Russell Wayne; Pruett, Brian Owen Matthew

    2015-03-06

    In this study, the flow over an open aircraft bay is often represented in a wind tunnel with a cavity. In flight, this flow is unconfined, though in experiments, the cavity is surrounded by wind tunnel walls. If untreated, wind tunnel wall effects can lead to significant distortions of cavity acoustics in subsonic flows. To understand and mitigate these cavity–tunnel interactions, a parametric approach was taken for flow over an L/D = 7 cavity at Mach numbers 0.6–0.8. With solid tunnel walls, a dominant cavity tone was observed, likely due to an interaction with a tunnel duct mode. Furthermore, anmore » acoustic liner opposite the cavity decreased the amplitude of the dominant mode and its harmonics, a result observed by previous researchers. Acoustic dampeners were also placed in the tunnel sidewalls, which further decreased the dominant mode amplitudes and peak amplitudes associated with nonlinear interactions between cavity modes. This then indicates that cavity resonance can be altered by tunnel sidewalls and that spanwise coupling should be addressed when conducting subsonic cavity experiments. Though mechanisms for dominant modes and nonlinear interactions likely exist in unconfined cavity flows, these effects can be amplified by the wind tunnel walls.« less

  10. Annual Adaptive Management Report for Compensatory Mitigation at Keyport Lagoon: Mitigation of Pier B Development at the Bremerton Naval Facilities - Compensatory Mitigation at Keyport Lagoon - Naval Underwater Warfare Center Division - Keyport, Washington

    SciTech Connect (OSTI)

    Vavrinec, John; Borde, Amy B.; Woodruff, Dana L.; Brandenberger, Jill M.; Thom, Ronald M.; Wright, Cynthia L.; Cullinan, Valerie I.

    2012-06-01

    Unites States Navy capital improvement projects are designed to modernize and improve mission capacity. Such capital improvement projects often result in unavoidable environmental impacts by increasing over-water structures, which results in a loss of subtidal habitat within industrial areas of Navy bases. In the Pacific Northwest, compensatory mitigation often targets alleviating impacts to Endangered Species Act-listed salmon species. The complexity of restoring large systems requires limited resources to target successful and more coordinated mitigation efforts to address habitat loss and improvements in water quality that will clearly contribute to an improvement at the site scale and can then be linked to a cumulative net ecosystem improvement.

  11. Siting: Wind Turbine/Radar Interference Mitigation (TSPEAR &...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Lab Photovoltaic Systems Evaluation Laboratory PV Regional ... Facility Geomechanics and Drilling Labs National ... focused on evaluating the potential for an offshore test.

  12. Environmental Mitigation Technology (Innovative System Testing)-Deployment and Testing of the Alden Hydropower Fish-Friendly Turbine

    Broader source: Energy.gov [DOE]

    Environmental Mitigation Technology (Innovative System Testing)-Deployment and Testing of the Alden Hydropower Fish-Friendly Turbine

  13. Effects of hazardous wastes on housing and urban development and mitigation of impacts

    SciTech Connect (OSTI)

    Boyer, K.R.; Conrad, E.T.; Kane, P.F.; McLaughlin, M.W.; Morgan, J.T.

    1980-10-10

    This report determines the nature and scope of the hazardous waste problem affecting HUD programs and community development and redevelopment activities. It defines the problem and develops categories of hazardous wastes most applicable to HUD. The report identifies sources of hazardous waste and gives examples of their impacts. The role of HUD and other agencies in controlling hazardous waste is reviewed, and recommendations are made for mitigating known and potential impacts. Three case studies -- in Dover Township and Elizabeth, N.J., and in Richmond, Va., illustrate the wide range of impacts made possible because of improper handling of or lack of appreciation for hazardous substances. The report suggests that a Hazard Identification Guidebook be developed, similar to others addressing housing safety and noise assessment, that would require HUD personnel to carry out a number of investigations on and around a site. This process is briefly described here and could serve as a basis for a guidebook. Flow charts illustrate this process. Tables and 23 references are supplied.

  14. Land-use transition for bioenergy and climate stabilization: model comparison of drivers, impacts and interactions with other land use based mitigation options

    SciTech Connect (OSTI)

    Popp, Alexander; Rose, Steven K.; Calvin, Katherine V.; Van Vuuren, Detlef; Dietrich, Jan P.; Wise, Marshall A.; Stehfest, Eike; Humpenoder, Florian; Kyle, G. Page; Van Vliet, Jasper; Bauer, Nico; Lotze-Campen, Hermann; Klein, David; Kriegler, Elmar

    2014-04-01

    This study is a model comparison assessing the drivers and impacts of bioenergy production on the global land system and the interaction with other land use based mitigation options in the context of the EMF 27 project. We compare and evaluate results from three integrated assessment models (GCAM, IMAGE, and ReMIND/MAgPIE). All three models project that dedicated bioenergy crops and biomass residues are a potentially important and cost-effective component of the energy system. But bioenergy deployment levels and feedstock composition vary notably across models as do the implications for land-use and greenhouse gas emissions and the interaction with other land use based mitigation measures. Despite numerous model differences, we identify a few that are likely contributing to differences in land-use and emissions attributable to energy crop deployment.

  15. Mitigation options for fish and wildlife resources affected by port and other water-dependent developments in Tampa Bay, Florida

    SciTech Connect (OSTI)

    Dial, R.S.; Deis, D.R.

    1986-06-01

    Ten past restoration projects in Tampa Bay were evaluated. Habitats included Spartina marsh, mangrove forests, Juncus marsh, and subtidal habitat. Success was difficult to determine because goals for each project had not been defined. In-kind losses of habitat occurred in all but one project. Permanent losses occurred in at least three projects. Restoration of Spartina and Juncus marshes was recommended. Mangroves will recruit into Spartina marshes, provided a seed source is available; planting of mangroves alone is not recommended. Seagrass restoration is not recommended at this time. Twelve sites, most less than 50 ha, were identified as potential restoration sites to give 344 ha of subtidal habitat to be made shallower and 176 ha of uplands to be scraped down. The current management program's legal and policy needs for improving environmental management, the role of mitigation, and the information needed to develop mitigation plans are discussed. This report will be useful to decisionmakers concerned with wetland habitat loss and restoration in Tampa Bay, Florida, and other areas with similar habitats.

  16. Mitigation of Electromagnetic Pulse (EMP) Effects from Short-Pulse Lasers and Fusion Neutrons

    SciTech Connect (OSTI)

    Eder, D C; Throop, A; Brown, Jr., C G; Kimbrough, J; Stowell, M L; White, D A; Song, P; Back, N; MacPhee, A; Chen, H; DeHope, W; Ping, Y; Maddox, B; Lister, J; Pratt, G; Ma, T; Tsui, Y; Perkins, M; O'Brien, D; Patel, P

    2009-03-06

    Our research focused on obtaining a fundamental understanding of the source and properties of EMP at the Titan PW(petawatt)-class laser facility. The project was motivated by data loss and damage to components due to EMP, which can limit diagnostic techniques that can be used reliably at short-pulse PW-class laser facilities. Our measurements of the electromagnetic fields, using a variety of probes, provide information on the strength, time duration, and frequency dependence of the EMP. We measure electric field strengths in the 100's of kV/m range, durations up to 100 ns, and very broad frequency response extending out to 5 GHz and possibly beyond. This information is being used to design shielding to mitigate the effects of EMP on components at various laser facilities. We showed the need for well-shielded cables and oscilloscopes to obtain high quality data. Significant work was invested in data analysis techniques to process this data. This work is now being transferred to data analysis procedures for the EMP diagnostics being fielded on the National Ignition Facility (NIF). In addition to electromagnetic field measurements, we measured the spatial and energy distribution of electrons escaping from targets. This information is used as input into the 3D electromagnetic code, EMSolve, which calculates time dependent electromagnetic fields. The simulation results compare reasonably well with data for both the strength and broad frequency bandwidth of the EMP. This modeling work required significant improvements in EMSolve to model the fields in the Titan chamber generated by electrons escaping the target. During dedicated Titan shots, we studied the effects of varying laser energy, target size, and pulse duration on EMP properties. We also studied the effect of surrounding the target with a thick conducting sphere and cube as a potential mitigation approach. System generated EMP (SGEMP) in coaxial cables does not appear to be a significant at Titan. Our results are directly relevant to planned short-pulse ARC (advanced radiographic capability) operation on NIF.

  17. Kootenai River Floodplain Ecosystem Operational Loss Assessment, Protection, Mitigation and Rehabilitation, 2007-2008 Annual Report.

    SciTech Connect (OSTI)

    Merz, Norm

    2009-02-18

    The overarching goals of the 'Kootenai River Floodplain Ecosystem Operational Loss Assessment, Protection, Mitigation and Rehabilitation' Project (BPA Project No.2002-011-00) are to: (1) assess abiotic and biotic factors (i.e., geomorphologic, hydrological, aquatic and riparian/floodplain communities) in determining a definitive composition of ecological integrity, (2) develop strategies to assess and mitigate losses of ecosystem functions, and (3) produce a regional operational loss assessment framework. To produce a scientifically defensible, repeatable, and complete assessment tool, KTOI assembled a team of top scientists in the fields of hydrology, hydraulics, ornithology, entomology, statistics, and river ecology, among other expertise. This advisory team is known as the Research Design and Review Team (RDRT). The RDRT scientists drive the review, selection, and adaptive management of the research designs to evaluate the ecologic functions lost due to the operation of federal hydropower facilities. The unique nature of this project (scientific team, newest/best science, adaptive management, assessment of ecological functions, etc.) has been to work in a dynamic RDRT process. In addition to being multidisciplinary, this model KTOI project provides a stark contrast to the sometimes inflexible process (review, re-review, budgets, etc.) of the Columbia River Basin Fish and Wildlife Program. The project RDRT is assembled annually, with subgroups meeting as needed throughout the year to address project issues, analyses, review, and interpretation. Activities of RDRT coordinated and directed the selection of research and assessment methodologies appropriate for the Kootenai River Watershed and potential for regional application in the Columbia River Basin. The entire RDRT continues to meet annually to update and discuss project progress. RDRT Subcontractors work in smaller groups throughout the year to meet project objectives. Determining the extent to which ecological systems are experiencing anthropogenic disturbance and change in structure and function is critical for long term conservation of biotic diversity in the face of changing landscapes and land use. KTOI and the RDRT propose a concept based on incorporating hydrologic, aquatic, and terrestrial components into an operations-based assessment framework to assess ecological losses as shown in Figure E-1.

  18. Albeni Falls Wildlife Mitigation Project; Idaho Department of Fish and Game 2007 Final Annual Report.

    SciTech Connect (OSTI)

    Cousins, Katherine

    2009-04-03

    The Idaho Department of Fish and Game maintained a total of about 2,743 acres of wildlife mitigation habitat in 2007, and protected another 921 acres. The total wildlife habitat mitigation debt has been reduced by approximately two percent (598.22 HU) through the Department's mitigation activities in 2007. Implementation of the vegetative monitoring and evaluation program continued across protected lands. For the next funding cycle, the IDFG is considering a package of restoration projects and habitat improvements, conservation easements, and land acquisitions in the project area.

  19. Game-Changing Process Mitigates CO2 Emissions Using Renewable Energy |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Game-Changing Process Mitigates CO2 Emissions Using Renewable Energy Game-Changing Process Mitigates CO2 Emissions Using Renewable Energy October 21, 2015 - 7:58am Addthis Game-Changing Process Mitigates CO2 Emissions Using Renewable Energy Gold nanoparticles are at the heart of a new process conceived and developed by researchers at the U.S. Department of Energy's National Energy Technology Laboratory (NETL) that can efficiently convert carbon dioxide (CO2) into usable

  20. Modeling the dynamic crush of impact mitigating materials

    SciTech Connect (OSTI)

    Logan, R.W.; McMichael, L.D.

    1995-05-12

    Crushable materials are commonly utilized in the design of structural components to absorb energy and mitigate shock during the dynamic impact of a complex structure, such as an automobile chassis or drum-type shipping container. The development and application of several finite-element material models which have been developed at various times at LLNL for DYNA3D will be discussed. Between the models, they are able to account for several of the predominant mechanisms which typically influence the dynamic mechanical behavior of crushable materials. One issue we addressed was that no single existing model would account for the entire gambit of constitutive features which are important for crushable materials. Thus, we describe the implementation and use of an additional material model which attempts to provide a more comprehensive model of the mechanics of crushable material behavior. This model combines features of the pre-existing DYNA models and incorporates some new features as well in an invariant large-strain formulation. In addition to examining the behavior of a unit cell in uniaxial compression, two cases were chosen to evaluate the capabilities and accuracy of the various material models in DYNA. In the first case, a model for foam filled box beams was developed and compared to test data from a 4-point bend test. The model was subsequently used to study its effectiveness in energy absorption in an aluminum extrusion, spaceframe, vehicle chassis. The second case examined the response of the AT-400A shipping container and the performance of the overpack material during accident environments selected from 10CFR71 and IAEA regulations.

  1. Degradation of Thermal Barrier Coatings from Deposits and Its Mitigation

    SciTech Connect (OSTI)

    Nitin Padture

    2011-12-31

    Ceramic thermal barrier coatings (TBCs) used in gas-turbine engines afford higher operating temperatures, resulting in enhanced efficiencies and performance. However, in the case of syngas-fired engines, fly ash particulate impurities that may be present in syngas can melt on the hotter TBC surfaces and form glassy deposits. These deposits can penetrate the TBCs leading to their failure. In experiments using lignite fly ash to simulate these conditions we show that conventional TBCs of composition 93wt% ZrO{sub 2} + 7wt% Y{sub 2}O{sub 3} (7YSZ) fabricated using the air plasma spray (APS) process are completely destroyed by the molten fly ash. The molten fly ash is found to penetrate the full thickness of the TBC. The mechanisms by which this occurs appear to be similar to those observed in degradation of 7YSZ TBCs by molten calcium-magnesium-aluminosilicate (CMAS) sand and by molten volcanic ash in aircraft engines. In contrast, APS TBCs of Gd{sub 2Zr{sub 2}O{sub 7} composition are highly resistant to attack by molten lignite fly ash under identical conditions, where the molten ash penetrates ~25% of TBC thickness. This damage mitigation appears to be due to the formation of an impervious, stable crystalline layer at the fly ash/Gd{sub 2}Zr{sub 2}O{sub 7} TBC interface arresting the penetrating moltenfly- ash front. Additionally, these TBCs were tested using a rig with thermal gradient and simultaneous accumulation of ash. Modeling using an established mechanics model has been performed to illustrate the modes of delamination, as well as further opportunities to optimize coating microstructure. Transfer of the technology was developed in this program to all interested parties.

  2. Colville Confederated Tribes' Performance Project Wildlife Mitigation Acquisitions, Annual Report 2006.

    SciTech Connect (OSTI)

    Whitney, Richard; Berger, Matthew; Tonasket, Patrick

    2006-12-01

    The Colville Confederated Tribes Wildlife Mitigation Project is protecting lands as partial mitigation for hydropower's share of the wildlife losses resulting from Chief Joseph and Grand Coulee Dams. The Mitigation Project protects and manages 54,606 acres for the biological requirements of managed wildlife species that are important to the Colville Tribes. With the inclusion of 2006 acquisitions, the Colville Tribes have acquired approximately 32,018 habitat units (HUs) towards a total 35,819 HUs lost from original inundation due to hydropower development. This annual report for 2006 briefly describes that four priority land acquisitions that were considered for enrollment into the Colville Tribes Mitigation Project during the 2006 contract period.

  3. Aligned composite structures for mitigation of impact damage and resistance to wear in dynamic environments

    DOE Patents [OSTI]

    Mulligan, Anthony C.; Rigali, Mark J.; Sutaria, Manish P.; Popovich, Dragan; Halloran, Joseph P.; Fulcher, Michael L.; Cook, Randy C.

    2005-12-13

    Fibrous monolith composites having architectures that provide increased flaw insensitivity, improved hardness, wear resistance and damage tolerance and methods of manufacture thereof are provided for use in dynamic environments to mitigate impact damage and increase wear resistance.

  4. Aligned composite structures for mitigation of impact damage and resistance to wear in dynamic environments

    DOE Patents [OSTI]

    Rigali, Mark J.; Sutaria, Manish P.; Mulligan, Anthony C.; Popovich, Dragan

    2004-03-23

    Fibrous monolith composites having architectures that provide increased flaw insensitivity, improved hardness, wear resistance and damage tolerance and methods of manufacture thereof are provided for use in dynamic environments to mitigate impact damage and increase wear resistance.

  5. Evaluating the implementation of environmental review mitigation in local planning and development processes

    SciTech Connect (OSTI)

    Slotterback, Carissa Schively

    2008-11-15

    The implementation of mitigation strategies and outcomes of environmental review remains a challenge for planners and regulators. While the process and content of environmental review is clearly defined, there is often little attention to what happens after the review is completed. This paper presents the results of an evaluation of the implementation of the outcomes of environmental review, specifically mitigation measures designed to respond to environmental impacts identified in the environmental impact analysis. Drawing on previous evaluations of environmental review outcomes and plan implementation, the research provides a methodology for evaluating the implementation of mitigation efforts, points to the challenges associated with implementing the mitigation outcomes of local environmental review in planning and development processes, and identifies opportunities to integrate planning and environmental review processes.

  6. Aligned composite structures for mitigation of impact damage and resistance to wear in dynamic environments

    DOE Patents [OSTI]

    Mulligan, Anthony C. (Tucson, AZ); Rigali, Mark J. (Tucson, AZ); Sutaria, Manish P. (Malden, MA); Popovich, Dragan (Redmond, WA); Halloran, Joseph P. (Tucson, AZ); Fulcher, Michael L. (Tucson, AZ); Cook, Randy C. (Tucson, AZ)

    2009-04-14

    Fibrous monolith composites having architectures that provide increased flaw insensitivity, improved hardness, wear resistance and damage tolerance and methods of manufacture thereof are provided for use in dynamic environments to mitigate impact damage and increase wear resistance.

  7. OAR 635-415 - Fish and Wildlife Habitat Mitigation Policy | Open...

    Open Energy Info (EERE)

    OAR 635-415 - Fish and Wildlife Habitat Mitigation Policy Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- RegulationRegulation: OAR 635-415 -...

  8. Ramping Effect on Forecast Use: Integrated Ramping as a Mitigation Strategy; NREL (National Renewable Energy Laboratory)

    SciTech Connect (OSTI)

    Diakov, Victor; Barrows, Clayton; Brinkman, Gregory; Bloom, Aaron; Denholm, Paul

    2015-06-23

    Power generation ramping between forecasted (net) load set-points shift the generation (MWh) from its scheduled values. The Integrated Ramping is described as a method that mitigates this problem.

  9. Mitigation for the Construction and Operation of Libby Dam, 2000 Annual Report.

    SciTech Connect (OSTI)

    Hoffman, Greg; Marotz, Brian L.; Dunnigan, James

    2002-09-01

    ''Mitigation for the Construction and Operation of Libby Dam'' is part of the Northwest Power Planning Council's resident fish and wildlife program. The program was mandated by the Northwest Planning Act of 1980, and is responsible for mitigating for damages to fish and wildlife caused by hydroelectric development in the Columbia River Basin. The objective of Phase I of the project (1983 through 1987) was to maintain or enhance the Libby Reservoir fishery by quantifying seasonal water levels and developing ecologically sound operational guidelines. The objective of Phase II of the project (1988 through 1996) was to determine the biological effects of reservoir operations combined with biotic changes associated with an aging reservoir. The objectives of Phase III of the project (1996 through present) are to implement habitat enhancement measures to mitigate for dam effects, to provide data for implementation of operational strategies that benefit resident fish, monitor reservoir and river conditions, and monitor mitigation projects for effectiveness.

  10. Fiscal Year 2013 Trails Management Program Mitigation Action Plan Annual Report, October 2013

    SciTech Connect (OSTI)

    Pava, Daniel S.

    2015-03-25

    This Trails Management Program Mitigation Action Plan Annual Report (Trails MAPAR) has been prepared for the Department of Energy (DOE)/National Nuclear Security Administration (NNSA) as part of implementing the 2003 Final Environmental Assessment for the Proposed Los Alamos National Laboratory Trails Management Program (DOE 2003). The Trails Mitigation Action Plan (MAP) is now a part of the Site-Wide Environmental Impact Statement for the Continued Operation of Los Alamos National Laboratory (DOE/EIS 0380) Mitigation Action Plan (2008 SWEIS MAP) (DOE 2008). The MAP provides guidance for the continued implementation of the Trails Management Program at Los Alamos National Laboratory (LANL) and integration of future mitigation actions into the 2008 SWEIS MAP to decrease impacts associated with recreational trails use at LANL. This eighth MAPAR includes a summary of Trails Management Program activities and actions during Fiscal Year (FY) 2013, from October 2012 through September 2013.

  11. The Role of Asia in Mitigating Climate Change: Results from the Asia Modeling Exercise

    SciTech Connect (OSTI)

    Calvin, Katherine V.; Clarke, Leon E.; Krey, Volker; Blanford, Geoffrey J.; Jiang, Kejun; Kainuma, M.; Kriegler, Elmar; Luderer, Gunnar; Shukla, Priyadarshi R.

    2012-12-01

    In 2010, Asia accounted for 60% of global population, 39% of Gross World Product, 44% of global energy consumption and nearly half of the worlds energy system CO2 emissions. Thus, Asia is an important region to consider in any discussion of climate change or climate change mitigation. This paper explores the role of Asia in mitigating climate change, by comparing the results of 23 energy-economy and integrated assessment models. We focus our analysis on seven key areas: base year data, future energy use and emissions absent climate policy, the effect of urban and rural development on future energy use and emissions, the role of technology in emissions mitigation, regional emissions mitigation, and national climate policies

  12. Monitoring and Mitigation Alternatives for Protection of North Atlantic Right Whales during Offshore Wind Farm Installation

    SciTech Connect (OSTI)

    Carlson, Thomas J.; Halvorsen, Michele B.; Matzner, Shari; Copping, Andrea E.; Stavole, Jessica

    2012-09-01

    Progress report on defining and determining monitoring and mitigation measures for protecting North Atlantic Right Whales from the effects of pile driving and other activities associated with installation of offshore wind farms.

  13. Industrial fouling: problem characterization, economic assessment, and review of prevention, mitigation, and accommodation techniques

    SciTech Connect (OSTI)

    Garrett-Price, B.A.; Smith, S.A.; Watts, R.L.

    1984-02-01

    A comprehensive overview of heat exchanger fouling in the manufacturing industries is provided. Specifically, this overview addresses: the characteristics of industrial fouling problems; the mitigation and accommodation techniques currently used by industry; and the types and magnitude of costs associated with industrial fouling. A detailed review of the fouling problems, costs and mitigation techniques is provided for the food, textile, pulp and paper, chemical, petroleum, cement, glass and primary metals industries.

  14. Mitigation of Vehicle Fast Charge Grid Impacts with Renewables and Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Storage | Department of Energy Vehicle Fast Charge Grid Impacts with Renewables and Energy Storage Mitigation of Vehicle Fast Charge Grid Impacts with Renewables and Energy Storage 2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting PDF icon vss076_markel_2012_o.pdf More Documents & Publications Mitigation of Vehicle Fast Charge Grid Impacts with Renewables and Energy Storage AVTA: Bidirectional Fast Charging Report

  15. Sources and Mitigation of CO and UHC Emissions in Low-temperature Diesel

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Combustion Regimes: Insights Obtained via Homogeneous Reactor Modeling | Department of Energy and Mitigation of CO and UHC Emissions in Low-temperature Diesel Combustion Regimes: Insights Obtained via Homogeneous Reactor Modeling Sources and Mitigation of CO and UHC Emissions in Low-temperature Diesel Combustion Regimes: Insights Obtained via Homogeneous Reactor Modeling Presentation given at 2007 Diesel Engine-Efficiency & Emissions Research Conference (DEER 2007). 13-16 August, 2007,

  16. A statistical approach to designing mitigation for induced AC voltages on pipelines

    SciTech Connect (OSTI)

    Dabkowski, J. [Electro Sciences Inc., Crystal Lake, IL (United States)

    1996-08-01

    Induced voltage levels on buried pipelines co-located with overhead electric power transmission lines are usually mitigated by grounding the pipeline. Maximum effectiveness is obtained when grounds are placed where the peak induced voltages occur. Mitigation depends on the local soil resistivity. It may be necessary to employ an extensive distributed grounding system. Over long distances, however, the soil resistivity generally varies as a log-normally distributed random variable. The effect of this variability is examined.

  17. Development of Micro-structural Mitigation Strategies for PEM Fuel Cells:

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Morphological Simulation and Experimental Approaches | Department of Energy Micro-structural Mitigation Strategies for PEM Fuel Cells: Morphological Simulation and Experimental Approaches Development of Micro-structural Mitigation Strategies for PEM Fuel Cells: Morphological Simulation and Experimental Approaches Presented at the Department of Energy Fuel Cell Projects Kickoff Meeting, September 1 - October 1, 2009 PDF icon wessel_ballard_kickoff.pdf More Documents & Publications

  18. NOx, SOx & CO{sub 2} mitigation using blended coals

    SciTech Connect (OSTI)

    Labbe, D.

    2009-11-15

    Estimates of potential CO{sub 2} reduction achievable through the use of a mixture of bituminous and subbituminous (PRB) coals, whilst attaining NOx and SOx compliance are presented. The optimization considerations to provide satisfactory furnace, boiler and unit performance with blended coal supplies to make such operation feasible are discussed. 6 refs., 7 figs., 1 tab.

  19. A Graph Analytic Metric for Mitigating Advanced Persistent Threat

    SciTech Connect (OSTI)

    Johnson, John R.; Hogan, Emilie A.

    2013-06-04

    This paper introduces a novel graph analytic metric that can be used to measure the potential vulnerability of a cyber network to specific types of attacks that use lateral movement and privilege escalation such as the well known Pass The Hash, (PTH). The metric is computed from an oriented subgraph of the underlying cyber network induced by selecting only those edges for which a given property holds between the two vertices of the edge. The metric with respect to a select node on the subgraph is defined as the likelihood that the select node is reachable from another arbitrary node in the graph. This metric can be calculated dynamically from the authorization and auditing layers during the network security authorization phase and will potentially enable predictive deterrence against attacks such as PTH.

  20. Characterization of the Potential Hazards Associated with Potential RCRA Treatment Noncompliances

    SciTech Connect (OSTI)

    Clark, David Lewis

    2015-08-20

    The purpose of this document is to provide a hazard evaluation of the noncompliances and whether any new actions are required to mitigate potential risk to the worker or the public. In short, we have reviewed the noncompliances and have concluded that the possibility of exothermic reactions leading to radioactive release is not credible, and in one case, inconceivable, stemming from the fact that the majority fraction of the waste is compatible with organic absorbents and neutralizers. It is not expected that the noncompliances would generate or produce uncontrolled flammable fumes, gases, extreme heat, pressure, fire, explosions, or violent reactions.

  1. U.S. Postal Service radon assessment and mitigation program. Progress report, September 1993--November 1994

    SciTech Connect (OSTI)

    Velazquez, L.E.; Petty, J.L. Jr.

    1994-12-31

    In 1992, the US Postal Service (USPS) entered into an Interagency Agreement with the Department of Energy (DOE) whereby DOE would provide technical assistance in support of the USPS Radon Assessment and Mitigation Program. To aid in this effort, DOE tasked the Hazardous Waste Remedial Actions Program (HAZWRAP), which is managed by Martin Marietta Energy Systems, Inc., for DOE under contract AC05-84OR21400. Since that time, HAZWRAP has developed and finalized the sampling protocol, mitigation diagnostic protocol, and the quality assurance and quality control procedures. These procedures were validated during the Protocol Validation (1992-1993) and Pilot Study (1993-1994) phases of the program. To date, HAZWRAP has performed approximately 16,000 radon measurements in 250 USPS buildings. Mitigation diagnostics have been performed in 27 buildings. Thus far, 13% of the measurements have been above the Environmental Protection Agency action level of 4 pCi/L. This report summarizes the pilot program radon testing data and mitigation diagnostic data for 22 sites and contains recommendations for mitigation diagnostics.

  2. Mitigation for the Construction and Operation of Libby Dam, 2004-2005 Annual Report.

    SciTech Connect (OSTI)

    Dunnigan, James; DeShazer, Jay; Garrow, Larry (Montana Department of Fish, Wildlife and Parks, Libby, MT)

    2005-06-01

    ''Mitigation for the Construction and Operation of Libby Dam'' is part of the Northwest Power and Conservation Council's (NPCC) resident fish and wildlife program. The program was mandated by the Northwest Planning Act of 1980, and is responsible for mitigating damages to fish and wildlife caused by hydroelectric development in the Columbia River Basin. The objective of Phase I of the project (1983 through 1987) was to maintain or enhance the Libby Reservoir fishery by quantifying seasonal water levels and developing ecologically sound operational guidelines. The objective of Phase II of the project (1988 through 1996) was to determine the biological effects of reservoir operations combined with biotic changes associated with an aging reservoir. The objectives of Phase III of the project (1996 through present) are to implement habitat enhancement measures to mitigate for dam effects, to provide data for implementation of operational strategies that benefit resident fish, monitor reservoir and river conditions, and monitor mitigation projects for effectiveness. This project completes urgent and high priority mitigation actions as directed by the Kootenai Subbasin Plan. Montana Fish, Wildlife & Parks (MFWP) uses a combination of techniques to collect physical and biological data within the Kootenai River Basin. These data serve several purposes including: the development and refinement of models used in management of water resources and operation of Libby Dam; investigations into the limiting factors of native fish populations, gathering basic life history information, tracking trends in endangered and threatened species, and the assessment of restoration or management activities designed to restore native fishes and their habitats.

  3. Transportation Energy Futures Series: Potential for Energy Efficiency Improvement Beyond the Light-Duty-Vehicle Sector

    SciTech Connect (OSTI)

    Vyas, A. D.; Patel, D. M.; Bertram, K. M.

    2013-03-01

    Considerable research has focused on energy efficiency and fuel substitution options for light-duty vehicles, while much less attention has been given to medium- and heavy-duty trucks, buses, aircraft, marine vessels, trains, pipeline, and off-road equipment. This report brings together the salient findings from an extensive review of literature on future energy efficiency options for these non-light-duty modes. Projected activity increases to 2050 are combined with forecasts of overall fuel efficiency improvement potential to estimate the future total petroleum and greenhouse gas (GHG) emissions relative to current levels. This is one of a series of reports produced as a result of the Transportation Energy Futures (TEF) project, a Department of Energy-sponsored multi-agency project initiated to pinpoint underexplored strategies for abating GHGs and reducing petroleum dependence related to transportation.

  4. Transportation Energy Futures Series. Potential for Energy Efficiency Improvement Beyond the Light-Duty-Vehicle Sector

    SciTech Connect (OSTI)

    Vyas, A. D.; Patel, D. M.; Bertram, K. M.

    2013-02-01

    Considerable research has focused on energy efficiency and fuel substitution options for light-duty vehicles, while much less attention has been given to medium- and heavy-duty trucks, buses, aircraft, marine vessels, trains, pipeline, and off-road equipment. This report brings together the salient findings from an extensive review of literature on future energy efficiency options for these non-light-duty modes. Projected activity increases to 2050 are combined with forecasts of overall fuel efficiency improvement potential to estimate the future total petroleum and greenhouse gas (GHG) emissions relative to current levels. This is one of a series of reports produced as a result of the Transportation Energy Futures (TEF) project, a Department of Energy-sponsored multi-agency project initiated to pinpoint underexplored strategies for abating GHGs and reducing petroleum dependence related to transportation.

  5. Tritium Formation and Mitigation in High Temperature Reactors

    SciTech Connect (OSTI)

    Piyush Sabharwall; Carl Stoots

    2012-08-01

    Tritium is a radiologically active isotope of hydrogen. It is formed in nuclear reactors by neutron absorption and ternary fission events and can subsequently escape into the environment. In order to prevent the tritium contamination of proposed reactor buildings and surrounding sites, this paper examines the root causes and potential solutions for the production of this radionuclide, including materials selection and inert gas sparging. A model is presented that can be used to predict permeation rates of hydrogen through metallic alloys at temperatures from 450750C. Results of the diffusion model are presented for one steadystate value of tritium production in the reactor.

  6. Wetland mitigation banking for the oil and gas industry: Assessment, conclusions, and recommendations

    SciTech Connect (OSTI)

    Wilkey, P.L.; Sundell, R.C.; Bailey, K.A.; Hayes, D.C.

    1994-01-01

    Wetland mitigation banks are already in existence in the United States, and the number is increasing. To date, most of these banks have been created and operated for mitigation of impacts arising from highway or commercial development and have not been associated with the oil and gas industry. Argonne National Laboratory evaluated the positive and negative aspects of wetland mitigation banking for the oil and gas industry by examining banks already created for other uses by federal, state, and private entities. Specific issues addressed in this study include (1) the economic, ecological, and technical effectiveness of existing banks; (2) the changing nature of local, state, and federal jurisdiction; and (3) the unique regulatory and jurisdictional problems affecting bank developments associated with the oil and gas industry.

  7. A study of shock mitigating materials in a split Hopkinson bar configuration

    SciTech Connect (OSTI)

    Bateman, V.I.; Bell, R.G. III; Brown, F.A.; Hansen, N.R.

    1996-12-31

    Sandia National Laboratories (SNL) designs mechanical systems with electronics that must survive high shock environments. These mechanical systems include penetrators that must survive soil, rock, and ice penetration, nuclear transportation casks that must survive transportation environments, and laydown weapons that must survive delivery impact of 125-fps. These mechanical systems contain electronics that may operate during and after the high shock environment and that must be protected from the high shock environments. A study has been started to improve the packaging techniques for the advanced electronics utilized in these mechanical systems because current packaging techniques are inadequate for these more sensitive electronics. In many cases, it has been found that the packaging techniques currently used not only do not mitigate the shock environment but actually amplify the shock environment. An ambitious goal for this packaging study is to avoid amplification and possibly attenuate the shock environment before it reaches the electronics contained in the various mechanical system. As part of the investigation of packaging techniques, a two part study of shock mitigating materials is being conducted. This paper reports the first part of the shock mitigating materials study. A study to compare three thicknesses (0.125, 0.250, and 0.500 in.) of seventeen, unconfined materials for their shock mitigating characteristics has been completed with a split Hopkinson bar configuration. The nominal input as measured by strain gages on the incident Hopkinson bar is 50 fps {at} 100 {micro}s for these tests. It is hypothesized that a shock mitigating material has four purposes: to lengthen the shock pulse, to attenuate the shock pulse, to mitigate high frequency content in the shock pulse, and to absorb energy. Both time domain and frequency domain analyses of the split Hopkinson bar data have been performed to compare the materials` achievement of these purposes.

  8. Wildlife Mitigation and Restoration for Grand Coulee Dam: Blue Creek Project, Phase 1.

    SciTech Connect (OSTI)

    Merker, Christopher

    1993-04-01

    This report is a recommendation from the Spokane Tribe to the Northwest Power Planning Council (NPPC) for partial mitigation for the extensive wildlife and wildlife habitat losses on the Spokane Indian Reservation caused by the construction of Grand Coulee Dam. NPPC`s interim wildlife goal over the next 7 years for the Columbia hydropower system, is to protect, mitigate and enhance approximately 35% basin wide of the lost habitat units. Grand Coulee Dam had the greatest habitat losses of any Dams of the Wildlife Rule.

  9. Summary - Mitigation and Remediation of Mercury Contamination at the Y-12 Plant, Oak Ridge, TN

    Office of Environmental Management (EM)

    Oak Ridge, TN EM Project: Mitigation/Remediation of Hg ETR Report Date: April 2008 ETR-13 United States Department of Energy Office of Environmental Management (DOE-EM) External Technical Review of the Mitigation and Remediation of Mercury Contamination at the Y-12 Plant, Oak Ridge, TN Why DOE-EM Did This Review From 1953 to 1983, ~240,000 pounds of mercury (Hg) were released to the East Fork Popular Creek during the operation of the Y-12 Plant. In 1963, direct systematic releases of mercury

  10. Advanced CO2 Leakage Mitigation using Engineered Biomineralization Sealing Technologies

    SciTech Connect (OSTI)

    Spangler, Lee; Cunningham, Alfred; Phillips, Adrienne

    2015-03-31

    This research project addresses one of the goals of the DOE Carbon Sequestration Program (CSP). The CSP core R&D effort is driven by technology and is accomplished through laboratory and pilot scale research aimed at new technologies for greenhouse gas mitigation. Accordingly, this project was directed at developing novel technologies for mitigating unwanted upward leakage of carbon dioxide (CO2) injected into the subsurface as part of carbon capture and storage (CCS) activities. The technology developed by way of this research project is referred to as microbially induced calcite precipitation (MICP).

  11. Natural Gas Infrastructure R&D and Methane Emissions Mitigation Workshop |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Natural Gas Infrastructure R&D and Methane Emissions Mitigation Workshop Natural Gas Infrastructure R&D and Methane Emissions Mitigation Workshop The Advanced Manufacturing Office (AMO) at the U.S. Department of Energy (DOE)'s Office of Energy Efficiency and Renewable Energy and the Office of Fossil Energy (FE) hosted a workshop, November 12-13, 2014, in Coraopolis, Pennsylvania, as a follow-up to the President's Climate Action Plan and the DOE meeting series on

  12. Level maintenance for Tank 101-SY mitigation-by-mixing test

    SciTech Connect (OSTI)

    Sobocinski, R.G.

    1994-11-16

    This document provides the procedure to be followed to implement the requirements of the Mixer Pump Long-Term Operations Plan for Tank 241-SY-101 Mitigation, WHC-SD-WM-PLN-081. The test is divided into 2 distinct sequences, named Single Position Pump Run and Tank Sweep. Instructions for all sequences are defined within the procedure. All safety requirements as defined in LA-UR-92-3196, A Safety Assessment for Proposed Mixing Operations to Mitigate Episodic Gas Releases in Tank 241-101-SY have been implemented into this procedure.

  13. Identification and Mitigation of Droop Mechanism in GaN-Based LEDs |

    Energy Savers [EERE]

    Department of Energy Identification and Mitigation of Droop Mechanism in GaN-Based LEDs Identification and Mitigation of Droop Mechanism in GaN-Based LEDs Lead Performer: University of California - Santa Barbara - Santa Barbara, CA DOE Total Funding: $1,000,001 Cost Share: $250,000 Project Term: 7/1/15 - 6/30/17 Funding Opportunity: SSL R&D Funding Opportunity Announcement (FOA) (DE-FOA-0001171) Project Objective This project will focus on identifying the fundamental causes of current

  14. Cooperative measures to mitigate Asia-Pacific maritime conflicts.

    SciTech Connect (OSTI)

    Chai, Wen-Chung

    2003-05-01

    The economies of East Asia are predominantly export based and, therefore, place special emphasis on the security of the sea lines of communication (SLOCs). Due to economic globalization, the United States shares these concerns. Cooperative measures by the concerned parties could reduce the potential for disruption by maritime conflicts. Primary threats against the SLOCs are disputes over the resources under the seas, disputes over some small island groups, disputes between particular parties (China-Taiwan and North-South Korea), or illegal activities like smuggling, piracy, or terrorism. This paper provides an overview on these threats, issue by issue, to identify common elements and needed cooperation. Cooperation on other topics such as search and rescue, fisheries protection, and oil spill response may help support improved relations to prevent maritime conflicts. Many technologies can help support maritime cooperation, including improved communications links, tracking and emergency beacon devices, and satellite imaging. Appropriate technical and political means are suggested for each threat to the SLOCs.

  15. New DOE-Sponsored Study Helps Advance Scientific Understanding of Potential CO2 Storage Impacts

    Broader source: Energy.gov [DOE]

    In another step forward toward improved scientific understanding of potential geologic carbon dioxide storage impacts, a new U.S. Department of Energy sponsored study has confirmed earlier research showing that proper site selection and monitoring is essential for helping anticipate and mitigate possible risks.

  16. Risk mitigation methodology for solid waste landfills. Doctoral thesis

    SciTech Connect (OSTI)

    Nixon, W.B.

    1995-05-01

    Several recent models have attempted to simulate or assess the probability and consequences of the leakage of aqueous contaminant leakage from solid waste landfills. These models incorporate common factors, including climatological and geological characteristics. Each model, however, employs a unique approach to the problem, assigns different relative weights to factors, and relies upon extrapolated small-scale experimental data and/or subjective judgment in predicting the full-scale landfill failure mechanisms leading to contaminant migration. As a result, no two models are likely to equally assess a given landfill, and no one model has been validated as a predictor of long-term performance. The United States Air Force maintains a database for characterization of potential hazardous waste sites. Records include more than 500 landfills, providing such information as waste, soil, aquifer, monitoring location data, and the results of sample testing. Through analysis of this information, nearly 300 landfills were assessed to have sufficiently, partially, or inadequately contained hazardous constituents of the wastes placed within them.

  17. Grand Coulee Dam Wildlife Mitigation Program : Pygmy Rabbit Programmatic Management Plan, Douglas County, Washington.

    SciTech Connect (OSTI)

    Ashley, Paul

    1992-06-01

    The Northwest Power Planning Council and the Bonneville Power Administration approved the pygmy rabbit project as partial mitigation for impacts caused by the construction of Grand Coulee Dam. The focus of this project is the protection and enhancement of shrub-steppe/pygmy rabbit habitat in northeastern Washington.

  18. Hellsgate Big Game Winter Range Wildlife Mitigation Project : Annual Report 2008.

    SciTech Connect (OSTI)

    Whitney, Richard P.; Berger, Matthew T.; Rushing, Samuel; Peone, Cory

    2009-01-01

    The Hellsgate Big Game Winter Range Wildlife Mitigation Project (Hellsgate Project) was proposed by the Confederated Tribes of the Colville Reservation (CTCR) as partial mitigation for hydropower's share of the wildlife losses resulting from Chief Joseph and Grand Coulee Dams. At present, the Hellsgate Project protects and manages 57,418 acres (approximately 90 miles2) for the biological requirements of managed wildlife species; most are located on or near the Columbia River (Lake Rufus Woods and Lake Roosevelt) and surrounded by Tribal land. To date we have acquired about 34,597 habitat units (HUs) towards a total 35,819 HUs lost from original inundation due to hydropower development. In addition to the remaining 1,237 HUs left unmitigated, 600 HUs from the Washington Department of Fish and Wildlife that were traded to the Colville Tribes and 10 secure nesting islands are also yet to be mitigated. This annual report for 2008 describes the management activities of the Hellsgate Big Game Winter Range Wildlife Mitigation Project (Hellsgate Project) during the past year.

  19. DOE, States Seek Closer Collaboration on Oil and Gas Supply and Delivery, Climate Change Mitigation

    Broader source: Energy.gov [DOE]

    An agreement aimed at improving cooperation and collaboration in the areas of oil and natural gas supply, delivery, and climate change mitigation, has been signed by the U.S. Department of Energy and the Interstate Oil and Gas Compact Commission (IOGCC).

  20. Characterization of heat loads from mitigated and unmitigated vertical displacement events in DIII-D

    SciTech Connect (OSTI)

    Hollmann, E. M.; Moyer, R. A.; Commaux, N.; Jernigan, T. J.; Eidietis, N. W.; Humphreys, D. A.; Strait, E. J.; Wesley, J. C.; Lasnier, C. J.; Pitts, R. A.; Sugihara, M.; Watkins, J.

    2013-06-15

    Experiments have been conducted on the DIII-D tokamak to study the distribution and repeatability of heat loads and vessel currents resulting from vertical displacement events (VDEs). For unmitigated VDEs, the radiated power fraction appears to be of order 50%, with the remaining power dominantly conducted to the vessel walls. Shot-to-shot scatter in heat loads measured at one toroidal location is not large (<50%), suggesting that toroidal asymmetries in conducted heat loads are not large. Conducted heat loads are clearly observed during the current quench (CQ) of both mitigated and unmitigated disruptions. Significant poloidal asymmetries in heat loads and radiated power are often observed in the experiments but are not yet understood. Energy dissipated resistively in the conducting walls during the CQ appears to be small (<5%). The mitigating effect of neon massive gas injection (MGI) as a function of MGI trigger delay has also been studied. Improved mitigation is observed as the MGI trigger delay is decreased. For sufficiently early MGI mitigation, close to 100% radiated energy and a reduction of roughly a factor 2 in vessel forces is achieved.

  1. Status Review of Wildlife Mitigation, Columbia Basin Hydroelectric Projects, Columbia River Mainstem Facilities, 1984 Final Report.

    SciTech Connect (OSTI)

    Howerton, Jack; Hwang, Diana

    1984-11-01

    This report reviews the status of past, present, and proposed future wildlife planning and mitigation programs at existing hydroelectric projects in the Columbia River Basin. The project evaluations will form the basis for determining any needed remedial measures or additional project analysis. Each hydropower facility report is abstracted separately for inclusion in the Energy Data Base.

  2. Mixer pump long term operations plan for Tank 241-SY-101 mitigation

    SciTech Connect (OSTI)

    Irwin, J.J.

    1994-09-07

    This document provides the general Operations Plan for performance of the mixer pump long term operations for Tank 241-SY-101 mitigation of gas retention and periodic release in Tank 101-SY. This operations plan will utilize a 112 kW (150 hp) mixing pump to agitate/suspend the particulates in the tank.

  3. TGF-{beta} antagonists as mitigators of radiation-induced tissue damage

    DOE Patents [OSTI]

    Barcellos-Hoff, M.H.

    1997-04-01

    A method for treating tissue damage caused by radiation is described by use of a TGF-{beta} antagonist, such as an anti-TGF-{beta} antibody or a TGF-{beta} latency associated protein. It is administered not more than a week after exposure, and is particularly useful in mitigating the side effects of breast cancer therapy.

  4. Status Review of Wildlife Mitigation at Columbia Basin Hydroelectric Projects, Oregon Facilities, Final Report.

    SciTech Connect (OSTI)

    Bedrossian, Karen L.

    1984-08-01

    The report presents a review and documentation of existing information on wildlife resources at Columbia River Basin hydroelectric facilities within Oregon. Effects of hydroelectric development and operation; existing agreements; and past, current and proposed wildlife mitigation, enhancement, and protection activities were considered. (ACR)

  5. TGF-.beta. antagonists as mitigators of radiation-induced tissue damage

    DOE Patents [OSTI]

    Barcellos-Hoff, Mary H.

    1997-01-01

    A method for treating tissue damage caused by radiation is described by use of a TGF-.beta. antagonist, such as an anti-TGF-.beta. antibody or a TGF-.beta. latency associated protein. It is administered not more than a week after exposure, and is particularly useful in mitigating the side effects of breast cancer therapy.

  6. Guide for the Mitigation of Natural Phenomena Hazards for DOE Nuclear Facilities and NonNuclear Facilities

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2000-03-28

    This document provides guidance in implementing the Natural Phenomena Hazard (NPH) mitigation requirements of DOE O 420.1, Facility Safety, Section 4.4, "Natural Phenomena Hazards Mitigation." This Guide does not establish or invoke any new requirements. Any apparent conflicts arising from the NPH guidance would defer to the requirements in DOE O 420.1. No cancellation.

  7. Mitigation for the Construction and Operation of Libby Dam, 2003-2004 Annual Report.

    SciTech Connect (OSTI)

    Dunnigan, James; DeShazer, Jay; Garrow, Larry

    2004-06-01

    ''Mitigation for the Construction and Operation of Libby Dam'' is part of the Northwest Power and Conservation Council's (NPCC) resident fish and wildlife program. The program was mandated by the Northwest Planning Act of 1980, and is responsible for mitigating for damages to fish and wildlife caused by hydroelectric development in the Columbia River Basin. The objective of Phase I of the project (1983 through 1987) was to maintain or enhance the Libby Reservoir fishery by quantifying seasonal water levels and developing ecologically sound operational guidelines. The objective of Phase II of the project (1988 through 1996) was to determine the biological effects of reservoir operations combined with biotic changes associated with an aging reservoir. The objectives of Phase III of the project (1996 through present) are to implement habitat enhancement measures to mitigate for dam effects, to provide data for implementation of operational strategies that benefit resident fish, monitor reservoir and river conditions, and monitor mitigation projects for effectiveness. This project completes urgent and high priority mitigation actions as directed by the Kootenai Subbasin Plan. Montana FWP uses a combination of diverse techniques to collect a variety of physical and biological data within the Kootenai River Basin. These data serve several purposes including: the development and refinement of models used in management of water resources and operation of Libby Dam; investigations into the limiting factors of native fish populations, gathering basic life history information, tracking trends in endangered, threatened species, and the assessment of restoration or management activities intended to restore native fishes and their habitats.

  8. FY-09 Report: Experimental Validation of Stratified Flow Phenomena, Graphite Oxidation, and Mitigation Strategies of Air Ingress Accidents

    SciTech Connect (OSTI)

    Chang H. Oh; Eung S. Kim

    2009-12-01

    The Idaho National Laboratory (INL), under the auspices of the U.S. Department of Energy, is performing research and development that focuses on key phenomena important during potential scenarios that may occur in the Next Generation Nuclear Plant (NGNP)/Gen-IV very high temperature reactor (VHTR). Phenomena Identification and Ranking Studies to date have identified that an air ingress event following on the heels of a VHTR depressurization is a very important incident. Consequently, the development of advanced air ingress-related models and verification and validation data are a very high priority for the NGNP Project. Following a loss of coolant and system depressurization incident, air will enter the core through the break, leading to oxidation of the in-core graphite structure and fuel. If this accident occurs, the oxidation will accelerate heat-up of the bottom reflector and the reactor core and will eventually cause the release of fission products. The potential collapse of the core bottom structures causing the release of CO and fission products is one of the concerns. Therefore, experimental validation with the analytical model and computational fluid dynamic (CFD) model developed in this study is very important. Estimating the proper safety margin will require experimental data and tools, including accurate multidimensional thermal-hydraulic and reactor physics models, a burn-off model, and a fracture model. It will also require effective strategies to mitigate the effects of oxidation. The results from this research will provide crucial inputs to the INL NGNP/VHTR Methods Research and Development project. The second year of this three-year project (FY-08 to FY-10) was focused on (a) the analytical, CFD, and experimental study of air ingress caused by density-driven, stratified, countercurrent flow; (b) advanced graphite oxidation experiments and modeling; (c) experimental study of burn-off in the core bottom structures, (d) implementation of advanced graphite oxidation models into the GAMMA code, and (f) air ingress and oxidation mitigation analyses of the whole air-ingress scenario.

  9. China-GHG Monitoring | Open Energy Information

    Open Energy Info (EERE)

    Partner on behalf of the Federal Ministry for the Environment, Nature Conservation and Nuclear Safety (BMU) Sector Energy Focus Area Energy Efficiency Topics Low emission...

  10. Greenhouse Gas Mitigation Options in ISEEM Global Energy Model: 2010-2050 Scenario Analysis for Least-Cost Carbon Reduction in Iron and Steel Sector

    SciTech Connect (OSTI)

    Karali, Nihan; Xu, Tengfang; Sathaye, Jayant

    2013-12-01

    The goal of the modeling work carried out in this project was to quantify long-term scenarios for the future emission reduction potentials in the iron and steel sector. The main focus of the project is to examine the impacts of carbon reduction options in the U.S. iron and steel sector under a set of selected scenarios. In order to advance the understanding of carbon emission reduction potential on the national and global scales, and to evaluate the regional impacts of potential U.S. mitigation strategies (e.g., commodity and carbon trading), we also included and examined the carbon reduction scenarios in Chinas and Indias iron and steel sectors in this project. For this purpose, a new bottom-up energy modeling framework, the Industrial Sector Energy Efficiency Modeling (ISEEM), (Karali et al. 2012) was used to provide detailed annual projections starting from 2010 through 2050. We used the ISEEM modeling framework to carry out detailed analysis, on a country-by-country basis, for the U.S., Chinas, and Indias iron and steel sectors. The ISEEM model applicable to iron and steel section, called ISEEM-IS, is developed to estimate and evaluate carbon emissions scenarios under several alternative mitigation options - including policies (e.g., carbon caps), commodity trading, and carbon trading. The projections will help us to better understand emission reduction potentials with technological and economic implications. The database for input of ISEEM-IS model consists of data and information compiled from various resources such as World Steel Association (WSA), the U.S. Geological Survey (USGS), China Steel Year Books, India Bureau of Mines (IBM), Energy Information Administration (EIA), and recent LBNL studies on bottom-up techno-economic analysis of energy efficiency measures in the iron and steel sector of the U.S., China, and India, including long-term steel production in China. In the ISEEM-IS model, production technology and manufacturing details are represented, in addition to the extensive data compiled from recent studies on bottom-up representation of efficiency measures for the sector. We also defined various mitigation scenarios including long-term production trends to project country-specific production, energy use, trading, carbon emissions, and costs of mitigation. Such analyses can provide useful information to assist policy-makers when considering and shaping future emissions mitigation strategies and policies. The technical objective is to analyze the costs of production and CO{sub 2} emission reduction in the U.S, China, and Indias iron and steel sectors under different emission reduction scenarios, using the ISEEM-IS as a cost optimization model. The scenarios included in this project correspond to various CO{sub 2} emission reduction targets for the iron and steel sector under different strategies such as simple CO{sub 2} emission caps (e.g., specific reduction goals), emission reduction via commodity trading, and emission reduction via carbon trading.

  11. The Energy Efficiency Potential of Global Transport to 2050 | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy The Energy Efficiency Potential of Global Transport to 2050 The Energy Efficiency Potential of Global Transport to 2050 Broad view of sustainability of global transportation PDF icon deer11_greene.pdf More Documents & Publications Alternative Transportation Technologies: Hydrogen, Biofuels, Advanced Efficiency, and Plug-in Hybrid Electric Vehicles There is no Silver Bullet: Regionalization and Market Fragmentation in Greenhouse Gas Mitigation Strategies Support for Government

  12. Utility Potential Calculator

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    for Potential Studies in the Northwest V1.0 Utility Potential Calculator V1.0 for Excel 2007 Utility Potential Calculator V1.0 for Excel 2003 Note: BPA developed the Utility...

  13. The CO2 Reduction Potential of Combined Heat and Power in California's Commercial Buildings

    SciTech Connect (OSTI)

    Stadler, Michael; Marnay, Chris; Cardoso, Goncalo; Lipman, Tim; Megel, Olivier; Ganguly, Srirupa; Siddiqui, Afzal; Lai, Judy

    2009-11-16

    The Ernest Orlando Lawrence Berkeley National Laboratory (LBNL) is working with the California Energy Commission (CEC) to determine the potential role of commercial sector distributed generation (DG) with combined heat and power (CHP) capability deployment in greenhouse gas emissions (GHG) reductions. CHP applications at large industrial sites are well known, and a large share of their potential has already been harvested. In contrast, relatively little attention has been paid to the potential of medium-sized commercial buildings, i.e., ones with peak electric loads ranging from 100 kW to 5 MW. We examine how this sector might implement DG with CHP in cost minimizing microgrids that are able to adopt and operate various energy technologies, such as solar photovoltaics (PV), on-site thermal generation, heat exchangers, solar thermal collectors, absorption chillers, and storage systems. We apply a mixed-integer linear program (MILP) that minimizes a site's annual energy costs as its objective. Using 138 representative mid-sized commercial sites in California (CA), existing tariffs of three major electricity distribution ultilities plus a natural gas company, and performance data of available technology in 2020, we find the GHG reduction potential for this CA commercial sector segment, which represents about 35percent of total statewide commercial sector sales. Under the assumptions made, in a reference case, this segment is estimated to be capable of economically installing 1.4 GW of CHP, 35percent of the California Air Resources Board (CARB) statewide 4 GW goal for total incremental CHP deployment by 2020. However, because CARB's assumed utilization is far higherthan is found by the MILP, the adopted CHP only contributes 19percent of the CO2 target. Several sensitivity runs were completed. One applies a simple feed-in tariff similar to net metering, and another includes a generous self-generation incentive program (SGIP) subsidy for fuel cells. The feed-in tariff proves ineffective at stimulating CHP deployment, while the SGIP buy down is more powerful. The attractiveness of CHP varies widely by climate zone and service territory, but in general, hotter inland areas and San Diego are the more attractive regions because high cooling loads achieve higher equipment utilization. Additionally, large office buildings are surprisingly good hosts for CHP, so large office buildings in San Diego and hotter urban centers emerge as promising target hosts. Overall the effect on CO2 emissions is limited, never exceeding 27percent of the CARB target. Nonetheless, results suggest that the CO2 emissions abatement potential of CHP in mid-sized CA buildings is significant, and much more promising than is typically assumed.

  14. Business Case for Energy Efficiency in Support of Climate Change Mitigation, Economic and Societal Benefits in the United States

    SciTech Connect (OSTI)

    Bojda, Nicholas; Ke, Jing; de la Rue du Can, Stephane; E. Letschert, Virginie; E. McMahon, James; McNeil, Michael A.

    2011-06-01

    This study seeks to provide policymakers and other stakeholders with actionable information towards a road map for reducing energy consumption in the most cost-effective way. A major difference between the current study and some others is that we focus on individual equipment types that might be the subject of policies - such as labels, energy performance standards, and incentives - to affect market transformation in the short term, and on high-efficiency technology options that are available today. The approach of the study is to assess the impact of short-term actions on long-term impacts. Short term market transformation is assumed to occur by 2015, while long-term energy demand reduction impacts are assessed in 2030. In the intervening years, most but not all of the equipment studied will turn over completely. The 15-year time frame is significant for many products however, indicating that delay of implementation postpones impacts such as net economic savings and mitigation of emissions of carbon dioxide. Such delays would result in putting in place energy-wasting technologies, postponing improvement until the end of their service life, or potentially resulting in expensive investment either in additional energy supplies or in early replacement to achieve future energy or emissions reduction targets.

  15. Thermal Energy Storage for Electricity Peak-demand Mitigation: A Solution in Developing and Developed World Alike

    SciTech Connect (OSTI)

    DeForest, Nicholas; Mendes, Goncalo; Stadler, Michael; Feng, Wei; Lai, Judy; Marnay, Chris

    2013-06-02

    In much of the developed world, air-conditioning in buildings is the dominant driver of summer peak electricity demand. In the developing world a steadily increasing utilization of air-conditioning places additional strain on already-congested grids. This common thread represents a large and growing threat to the reliable delivery of electricity around the world, requiring capital-intensive expansion of capacity and draining available investment resources. Thermal energy storage (TES), in the form of ice or chilled water, may be one of the few technologies currently capable of mitigating this problem cost effectively and at scale. The installation of TES capacity allows a building to meet its on-peak air conditioning load without interruption using electricity purchased off-peak and operating with improved thermodynamic efficiency. In this way, TES has the potential to fundamentally alter consumption dynamics and reduce impacts of air conditioning. This investigation presents a simulation study of a large office building in four distinct geographical contexts: Miami, Lisbon, Shanghai, and Mumbai. The optimization tool DER-CAM (Distributed Energy Resources Customer Adoption Model) is applied to optimally size TES systems for each location. Summer load profiles are investigated to assess the effectiveness and consistency in reducing peak electricity demand. Additionally, annual energy requirements are used to determine system cost feasibility, payback periods and customer savings under local utility tariffs.

  16. Failure Scenarios and Mitigations and for the BaBar Superconducting Solenoid

    SciTech Connect (OSTI)

    Thompson, EunJoo; Candia, A.; Craddock, W.W.; Racine, M.; Weisend, J.G., II; /SLAC

    2005-12-13

    The cryogenic department at the Stanford Linear Accelerator Center is responsible for the operation, troubleshooting, and upgrade of the 1.5 Tesla superconducting solenoid detector for the BABAR B-factory experiment. Events that disable the detector are rare but significantly impact the availability of the detector for physics research. As a result, a number of systems and procedures have been developed over time to minimize the downtime of the detector, for example improved control systems, improved and automatic backup systems, and spares for all major components. Together they can prevent or mitigate many of the failures experienced by the utilities, mechanical systems, controls and instrumentation. In this paper we describe various failure scenarios, their effect on the detector, and the modifications made to mitigate the effects of the failure. As a result of these modifications the reliability of the detector has increased significantly with only 3 shutdowns of the detector due to cryogenics systems over the last 2 years.

  17. Preliminary Failure Modes and Effects Analysis of the US Massive Gas Injection Disruption Mitigation System Design

    SciTech Connect (OSTI)

    Lee C. Cadwallader

    2013-10-01

    This report presents the results of a preliminary failure modes and effects analysis (FMEA) of a candidate design for the ITER Disruption Mitigation System. This candidate is the Massive Gas Injection System that provides machine protection in a plasma disruption event. The FMEA was quantified with generic component failure rate data as well as some data calculated from operating facilities, and the failure events were ranked for their criticality to system operation.

  18. Mitigation of the Impact of Pt Contamination on Cu-Zeolite SCR Catalyst

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Performance | Department of Energy the Impact of Pt Contamination on Cu-Zeolite SCR Catalyst Performance Mitigation of the Impact of Pt Contamination on Cu-Zeolite SCR Catalyst Performance Investigates operating conditions under which PGM elements get volatilized and transferred onto the downstream SCR catalyst, resulting in loss of NOx reduction performance PDF icon deer12_chen.pdf More Documents & Publications The Effects of Hydrothermal Agingon a Commercial Cu SCR Catalyst Function

  19. Supplement Analysis for the Wildlife Mitigation Program EIS (DOE/EIS-0246/SA-37)

    SciTech Connect (OSTI)

    N /A

    2004-01-16

    BPA proposes to fund the purchase of four parcels of land within the boundaries of the Spokane Indian Reservation, totaling approximately 860 acres. Title to the land will pass to the Spokane Tribe of Indians. The goal of the property acquisition is to dedicate the land to the protection, mitigation, and enhancement of fish and wildlife affected by the construction and operation of portions of the Federal Columbia River Power System.

  20. OLNG and WEP DEIS Appendix J - WEP Mitigation and Monitoring Plans

    Energy Savers [EERE]

    J WEP MITIGATION AND MONITORING PLANS Appendix J1: Washington Expansion Project Erosion Control and Revegetation Plan Appendix J2: Draft Unanticipated Discovery of Contamination Plan Appendix J3: Washington Expansion Project Water Quality Monitoring Plan Appendix J4: Horizontal Directional Drilling Monitoring and Contingency Plan APPENDIX J1: WASHINGTON EXPANSION PROJECT EROSION CONTROL AND REVEGETATION PLAN Washington Expansion Project Erosion Control and Revegetation Plan May 2014 Prepared by

  1. Natural Gas Infrastructure R&D and Methane Emissions Mitigation Workshop

    Office of Environmental Management (EM)

    Natural Gas Infrastructure R&D and Methane Emissions Mitigation Workshop November 12-13, 2014, Sheraton Pittsburgh Airport Hotel, Coraopolis, PA 15108 FINAL AGENDA Day 1 (Wednesday, November 12) 12:00-1:00 pm REGISTRATION 1:00-1:30 pm Welcome and Overviews Mark Johnson, Director, Advanced Manufacturing Office (AMO), DOE Office of Energy Efficiency and Renewable Energy Christopher J. Freitas, Senior Program Manager, Natural Gas Infrastructure, Office of Oil and Natural Gas, DOE Office of

  2. DOE/AMO NG Infrastructure R & D & Methane emissions Mitigation workshop

    Office of Environmental Management (EM)

    Proprietary and Confidential to NYSEARCH/NGA DOE/AMO NG INFRASTRUCTURE R & D & METHANE EMISSIONS MITIGATION WORKSHOP November 2014 David Merte & Daphne D'Zurko, NYSEARCH/NGA dmerte@northeastgas.org ddzurko@northeastgas.org NYSEARCH 2 NYSEARCH Program Research Areas * Improved Installation, Maintenance & Repair * Pipeline Integrity/Direct & Remote Assessment * Pipe Location * Leak Detection * Real-time Sensing and Inspection for Distribution * Environment/Reducing Greenhouse

  3. Mitigation of Hydrogen Gas Generation from the Reaction of Water with Uranium Metal in K Basins Sludge

    SciTech Connect (OSTI)

    Sinkov, Sergey I.; Delegard, Calvin H.; Schmidt, Andrew J.

    2010-01-29

    Means to decrease the rate of hydrogen gas generation from the chemical reaction of uranium metal with water were identified by surveying the technical literature. The underlying chemistry and potential side reactions were explored by conducting 61 principal experiments. Several methods achieved significant hydrogen gas generation rate mitigation. Gas-generating side reactions from interactions of organics or sludge constituents with mitigating agents were observed. Further testing is recommended to develop deeper knowledge of the underlying chemistry and to advance the technology aturation level. Uranium metal reacts with water in K Basin sludge to form uranium hydride (UH3), uranium dioxide or uraninite (UO2), and diatomic hydrogen (H2). Mechanistic studies show that hydrogen radicals (H·) and UH3 serve as intermediates in the reaction of uranium metal with water to produce H2 and UO2. Because H2 is flammable, its release into the gas phase above K Basin sludge during sludge storage, processing, immobilization, shipment, and disposal is a concern to the safety of those operations. Findings from the technical literature and from experimental investigations with simple chemical systems (including uranium metal in water), in the presence of individual sludge simulant components, with complete sludge simulants, and with actual K Basin sludge are presented in this report. Based on the literature review and intermediate lab test results, sodium nitrate, sodium nitrite, Nochar Acid Bond N960, disodium hydrogen phosphate, and hexavalent uranium [U(VI)] were tested for their effects in decreasing the rate of hydrogen generation from the reaction of uranium metal with water. Nitrate and nitrite each were effective, decreasing hydrogen generation rates in actual sludge by factors of about 100 to 1000 when used at 0.5 molar (M) concentrations. Higher attenuation factors were achieved in tests with aqueous solutions alone. Nochar N960, a water sorbent, decreased hydrogen generation by no more than a factor of three while disodium phosphate increased the corrosion and hydrogen generation rates slightly. U(VI) showed some promise in attenuating hydrogen but only initial testing was completed. Uranium metal corrosion rates also were measured. Under many conditions showing high hydrogen gas attenuation, uranium metal continued to corrode at rates approaching those observed without additives. This combination of high hydrogen attenuation with relatively unabated uranium metal corrosion is significant as it provides a means to eliminate uranium metal by its corrosion in water without the accompanying hazards otherwise presented by hydrogen generation.

  4. Geologic carbon sequestration as a global strategy to mitigate CO2 emissions: Sustainability and environmental risk

    SciTech Connect (OSTI)

    Oldenburg, C.M.

    2011-04-01

    Fossil fuels are abundant, inexpensive to produce, and are easily converted to usable energy by combustion as demonstrated by mankind's dependence on fossil fuels for over 80% of its primary energy supply (13). This reliance on fossil fuels comes with the cost of carbon dioxide (CO{sub 2}) emissions that exceed the rate at which CO{sub 2} can be absorbed by terrestrial and oceanic systems worldwide resulting in increases in atmospheric CO{sub 2} concentration as recorded by direct measurements over more than five decades (14). Carbon dioxide is the main greenhouse gas linked to global warming and associated climate change, the impacts of which are currently being observed around the world, and projections of which include alarming consequences such as water and food shortages, sea level rise, and social disruptions associated with resource scarcity (15). The current situation of a world that derives the bulk of its energy from fossil fuel in a manner that directly causes climate change equates to an energy-climate crisis. Although governments around the world have only recently begun to consider policies to avoid the direst projections of climate change and its impacts, sustainable approaches to addressing the crisis are available. The common thread of feasible strategies to the energy climate crisis is the simultaneous use of multiple approaches based on available technologies (e.g., 16). Efficiency improvements (e.g., in building energy use), increased use of natural gas relative to coal, and increased development of renewables such as solar, wind, and geothermal, along with nuclear energy, are all available options that will reduce net CO{sub 2} emissions. While improvements in efficiency can be made rapidly and will pay for themselves, the slower pace of change and greater monetary costs associated with increased use of renewables and nuclear energy suggests an additional approach is needed to help bridge the time period between the present and a future when low-carbon energy is considered cheap enough to replace fossil fuels. Carbon dioxide capture and storage (CCS) is one such bridging technology (1). CCS has been the focus of an increasing amount of research over the last 15-20 years and is the subject of a comprehensive IPCC report that thoroughly covers the subject (1). CCS is currently being carried out in several countries around the world in conjunction with natural gas extraction (e.g., 2, 3) and enhanced oil recovery (17). Despite this progress, widespread deployment of CCS remains the subject of research and future plans rather than present action on the scale needed to mitigate emissions from the perspective of climate change. The reasons for delay in deploying CCS more widely are concerns about cost (18), regulatory and legal uncertainty (19), and potential environmental impacts (21). This chapter discusses the long-term (decadal) sustainability and environmental hazards associated with the geologic CO{sub 2} storage (GCS) component of large-scale CCS (e.g., 20). Discussion here barely touches on capture and transport of CO{sub 2} which will occur above ground and which are similar to existing engineering, chemical processing, and pipeline transport activities and are therefore easier to evaluate with respect to risk assessment and feasibility. The focus of this chapter is on the more uncertain part of CCS, namely geologic storage. The primary concern for sustainability of GCS is whether there is sufficient capacity in sedimentary basins worldwide to contain the large of amounts of CO{sub 2} needed to address climate change. But there is also a link between sustainability and environmental impacts. Specifically, if GCS is found to cause unacceptable impacts that are considered worse than its climate-change mitigation benefits, the approach will not be widely adopted. Hence, GCS has elements of sustainability insofar as capacity of the subsurface for CO{sub 2} is concerned, and also in terms of whether the associated environmental risks are acceptable or not to the public.

  5. Global Climate Change and the Transportation Sector: An Update on Issues and Mitigation Options

    SciTech Connect (OSTI)

    Geffen, CA; Dooley, JJ; Kim, SH

    2003-08-24

    It is clear from numerous energy/economic modeling exercises that addressing the challenges posed by global climate change will eventually require the active participation of all industrial sectors and all consumers on the planet. Yet, these and similar modeling exercises indicate that large stationary CO2 point sources (e.g., refineries and fossil-fired electric power plants) are often the first targets considered for serious CO2 emissions mitigation. Without participation of all sectors of the global economy, however, the challenges of climate change mitigation will not be met. Because of its operating characteristics, price structure, dependence on virtually one energy source (oil), enormous installed infrastructure, and limited technology alternatives, at least in the near-term, the transportation sector will likely represent a particularly difficult challenge for CO2 emissions mitigation. Our research shows that climate change induced price signals (i.e., putting a price on carbon that is emitted to the atmosphere) are in the near term insufficient to drive fundamental shifts in demand for energy services or to transform the way these services are provided in the transportation sector. We believe that a technological revolution will be necessary to accomplish the significant reduction of greenhouse gas emissions from the transportation sector. This paper presents an update of ongoing research into a variety of technological options that exist for decarbonizing the transportation sector and the various tradeoffs among them.

  6. Return to 1990: The cost of mitigating United States carbon emissions in the post-2000 period

    SciTech Connect (OSTI)

    Edmonds, J.A.; Kim, S.H.; MacCracken, C.N.; Sands, R.D.; Wise, M.A.

    1997-10-01

    The Second Generation Model (SGM) is employed to examine four hypothetical agreements to reduce emissions in Annex 1 nations (OECD nations plus most of the nations of Eastern Europe and the former Soviet Union) to levels in the neighborhood of those which existed in 1990, with obligations taking effect in the year 2010. The authors estimate the cost to the US of complying with such agreements under three distinct conditions: no trading of emissions rights, trading of emissions rights only among Annex 1 nations, and a fully global trading regime. The authors find that the marginal cost of returning to 1990 emissions levels in the US in the absence of trading opportunities is approximately $108 per metric ton carbon in 2010. The total cost in that year is approximately 0.2% of GDP. International trade in emissions permits lowers the cost of achieving any mitigation objective by equalizing the marginal cost of carbon mitigation among countries. For the four mitigation scenarios in this study, economic costs to the US remain below 1% of GDP through at least the year 2020.

  7. A hot-cracking mitigation technique for welding high-strength aluminum alloy

    SciTech Connect (OSTI)

    Yang, Y.P.; Dong, P.; Zhang, J.; Tian, X.

    2000-01-01

    A hot-cracking mitigation technique for gas tungsten arc welding (GTAW) of high-strength aluminum alloy 2024 is presented. The proposed welding technique incorporates a trailing heat sink (an intense cooling source) with respect to the welding torch. The development of the mitigation technique was based on both detailed welding process simulation using advanced finite element techniques and systematic laboratory experiments. The finite element methods were used to investigate the detailed thermomechanical behavior of the weld metal that undergoes the brittle temperature range (BTR) during welding. As expected, a tensile deformation zone within the material BTR region was identified behind the weld pool under conventional GTA welding process conventional GTA welding process conditions for the aluminum alloy studied. To mitigate hot cracking, the tensile zone behind the weld pool must be eliminated or reduce to a satisfactory level if the weld metal hot ductility cannot be further improved. With detailed computational modeling, it was found that by the introduction of a trailing heat sink at some distance behind the welding arc, the tensile strain rate with respect to temperature in the zone encompassing the BTR region can be significantly reduced. A series of parametric studies were also conducted to derive optimal process parameters for the trailing heat sink. The experimental results confirmed the effectiveness of the trailing heat sink technique. With a proper implementation of the trailing heat sink method, hot cracking can be completely eliminated in welding aluminum alloy 2024 (AA 2024).

  8. Mitigation Plans for the Microbunching-Instability-Related COTR at ASTA/FNAL

    SciTech Connect (OSTI)

    Lumpkin, A. H.; Johnson, A. M.

    2013-05-01

    At the Advanced Superconducting Test Accelerator (ASTA) now under construction at Fermilab, we anticipate the appearance of the microbunching instability related to the longitudinal space charge (LSC) impedances. With a photoinjector source and up to two chicane compressors planned, the conditions should result in the shift of some microbunched features into the visible light regime. The presence of longitudinal microstructures (microbunching) in the electron beam or the leading edge spikes can result in strong, spatially localized coherent enhancements of optical transition radiation (COTR) that mask the actual beam profile. Several efforts on mitigation of the effects in the diagnostics task have been identified. At ASTA we have designed the beam profiling stations to have mitigation features based on spectral filtering, scintillator choice, and the timing of the trigger to the digital camera's CCD chip. Since the COTR is more intense in the NIR than UV we have selectable bandpass filters centered at 420 nm which also overlap the spectral emissions of the LYSO:Ce scintillators. By delaying the CCD trigger timing of the integration window by 40-50 ns, we can reject the prompt OTR signal and integrate on the delayed scintillator light predominately. This combination of options should allow mitigation of COTR enhancements of order 100-1000 in the distribution.

  9. Redpoint Ventures | Open Energy Information

    Open Energy Info (EERE)

    cost-effective scale-up. The specific sectors are in energy generation, storage, novel fuels, energy efficiency, GHG mitigation, fossil fuel beneficiation, and foundation...

  10. Assessing Development Impacts Associated with Low Emission Development...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... As opposed to programs strictly focused on GHG emission mitigation, LEDS actions are aligned with the development goals of the country, such as poverty alleviation, economic ...

  11. Neutralize & Mitigate

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the following: Airframe modeling Blast event shaping Detonation physics and chemistry Disruptive technologies Electromagnetic Energy (EME) coupling High-performance,...

  12. Potential Release Sites

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    PRS Potential Release Sites Legacy sites where hazardous materials are found to be above acceptable levels are collectively called potential release sites. Contact Environmental Communication & Public Involvement P.O. Box 1663 MS M996 Los Alamos, NM 87545 (505) 667-0216 Email Less than 10 percent of the total number of potential release sites need to go through the full corrective action process. What are potential release sites? Potential release sites are areas around the Laboratory and

  13. Status Review of Wildlife Mitigation at 14 of 27 Major Hydroelectric Projects in Idaho, 1983-1984 Final Report.

    SciTech Connect (OSTI)

    Martin, Robert C.; Mehrhoff, L.A.

    1985-01-01

    The Pacific Northwest Electric Power Planning and Conservation Act and wildlife and their habitats in the Columbia River Basin and to compliance with the Program, the wildlife mitigation status reports coordination with resource agencies and Indian Tribes. developed the Columbia River Basin Fish and Wildlife Program development, operation, and maintenance of hydroelectric projects on existing agreements; and past, current, and proposed wildlife factual review and documentation of existing information on wildlife meet the requirements of Measure 1004(b)(l) of the Program. The mitigation, enhancement, and protection activities were considered. In mitigate for the losses to those resources resulting from the purpose of these wildlife mitigation status reports is to provide a resources at some of the Columbia River Basin hydroelectric projects the river and its tributaries. To accomplish this goal, the Council were written with the cooperation of project operators, and in within Idaho.

  14. Best Practices in Grid Integration of Variable Wind Power: Summary of Recent US Case Study Results and Mitigation Measures

    SciTech Connect (OSTI)

    Smith, J. Charles (UWIG); Parsons, B.; (NREL), Acker, T.; (NAU), Milligan, M.; (NREL), Zavadil, R.

    2010-01-22

    This paper will summarize results from a number of utility wind integration case studies conducted recently in the US, and outline a number of mitigation measures based on insights from those studies.

  15. Dynamic characterization of frequency response of shock mitigation of a polymethylene diisocyanate (PMDI) based rigid polyurethane foam

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Song, Bo; Nelson, Kevin

    2015-09-01

    Kolsky compression bar experiments were conducted to characterize the shock mitigation response of a polymethylene diisocyanate (PMDI) based rigid polyurethane foam, abbreviated as PMDI foam in this study. The Kolsky bar experimental data was analyzed in the frequency domain with respect to impact energy dissipation and acceleration attenuation to perform a shock mitigation assessment on the foam material. The PMDI foam material exhibits excellent performance in both energy dissipation and acceleration attenuation, particularly for the impact frequency content over 1.5 kHz. This frequency (1.5 kHz) was observed to be independent of specimen thickness and impact speed, which may represent themore » characteristic shock mitigation frequency of the PMDI foam material under investigation. The shock mitigation characteristics of the PMDI foam material were insignificantly influenced by the specimen thickness. As a result, impact speed did have some effect.« less

  16. System and method for the mitigation of paraffin wax deposition from crude oil by using ultrasonic waves

    DOE Patents [OSTI]

    Towler, Brian F. (Laramie, WY)

    2007-09-04

    A method for mitigating the deposition of wax on production tubing walls. The method comprises positioning at least one ultrasonic frequency generating device adjacent the production tubing walls and producing at least one ultrasonic frequency thereby disintegrating the wax and inhibiting the wax from attaching to the production tubing walls. A system for mitigating the deposition of wax on production tubing walls is also provided.

  17. The role of the U.S. Clean Coal Technology Program in implementing the objectives of the joint Canada-U.S. acid rain mitigation initiative

    SciTech Connect (OSTI)

    Baldwin, A.L.; Smith, D.N.; Mann, A.W.; McIlvried, H.G.; Russell, D.L. Sr.

    1997-12-31

    The Clean Coal Technology (CCT) Program was initiated by the US Department of Energy (DOE) in part as a response to the 1986 Joint Report of the US and Canadian Special Envoys on Acid Rain, with a particular focus on coal-burning electric power plants. The fist three solicitations of the CCT Program were aimed primarily at mitigating the potential impacts of acid rain. Subsequently, the Clean Air Act Amendments of 1990 established emission reduction targets for SO{sub 2} and No{sub x}, which influenced the goals of the last two CCT Program. This paper provides an overview of the CCT Program and reports the significant results, with emphasis on emissions reduction as well as their impact on ozone formation.

  18. Renewable Energy Economic Potential

    Broader source: Energy.gov [DOE]

    The report describes a geospatial analysis method to estimate the economic potential of several renewable resources available for electricity generation in the United States. Economic potential, one measure of renewable generation potential, is defined in this report as the subset of the available resource technical potential where the cost required to generate the electricity (which determines the minimum revenue requirements for development of the resource) is below the revenue available in terms of displaced energy and displaced capacity.

  19. Mitigation for the Construction and Operation of Libby Dam, 2001-2002 Annual Report.

    SciTech Connect (OSTI)

    Dunnigan, James L.; Marotz, Brian L.; DeShazer, Jay

    2003-06-01

    Libby Reservoir was created under an International Columbia River Treaty between the United States and Canada for cooperative water development of the Columbia River Basin (Columbia River Treaty 1964). Libby Reservoir inundated 109 stream miles of the mainstem Kootenai River in the United States and Canada, and 40 miles of tributary streams in the U.S. that provided habitat for spawning, juvenile rearing, and migratory passage (Figure 1). The authorized purpose of the dam is to provide power (91.5%), flood control (8.3%), and navigation and other benefits (0.2%; Storm et al. 1982). The Pacific Northwest Power Act of 1980 recognized possible conflicts stemming from hydroelectric projects in the northwest and directed Bonneville Power Administration to ''protect, mitigate, and enhance fish and wildlife to the extent affected by the development and operation of any hydroelectric project of the Columbia River and its tributaries...'' (4(h)(10)(A)). Under the Act, the Northwest Power Planning Council was created and recommendations for a comprehensive fish and wildlife program were solicited from the region's federal, state, and tribal fish and wildlife agencies. Among Montana's recommendations was the proposal that research be initiated to quantify acceptable seasonal minimum pool elevations to maintain or enhance the existing fisheries (Graham et al. 1982). Research to determine how operations of Libby Dam affect the reservoir and river fishery and to suggest ways to lessen these effects began in May, 1983. The framework for the Libby Reservoir Model (LRMOD) was completed in 1989. Development of Integrated Rule Curves (IRCs) for Libby Dam operation was completed in 1996 (Marotz et al. 1996). The Libby Reservoir Model and the IRCs continue to be refined (Marotz et al 1999). Initiation of mitigation projects such as lake rehabilitation and stream restoration began in 1996. The primary focus of the Libby Mitigation project now is to redevelop fisheries and fisheries habitat in basin streams and lakes.

  20. Testing Controls to Mitigate Fatigue Loads in the Controls Advanced Research Turbine

    SciTech Connect (OSTI)

    Wright, A. D.; Fingersh, L. J.; Stol, K. A.

    2009-01-01

    Wind turbines are complex, nonlinear, dynamic systems forced by aerodynamic, gravitational, centrifugal, and gyroscopic loads. The aerodynamics of wind turbines is nonlinear, unsteady, and complex. Turbine rotors are subjected to a complicated three-dimensional (3D) turbulent wind inflow field with imbedded coherent vortices that drive fatigue loads and reduce lifetime. Design of control algorithms for wind turbines must account for multiple control objectives. Future large multi-megawatt turbines must be designed with lighter weight structures, using active controls to mitigate fatigue loads, maximize energy capture, and add active damping to maintain stability for these dynamically active structures operating in a complex environment. Researchers at the National Renewable Energy Laboratory are designing, implementing, and testing advanced controls to maximize energy extraction and reduce structural dynamic loads. These control designs are based on a linear model of the turbine that is generated by specialized modeling software. This paper describes testing of a control algorithm to mitigate blade, tower, and drivetrain loads using advanced state-space control methods. The controller uses independent blade pitch to regulate the turbine's speed in Region 3, mitigate the effects of shear across the rotor disk, and add active damping to the tower's first fore-aft bending mode. Additionally, a separate generator torque control loop is designed to add active damping to the tower's first side-side mode and the first drivetraintorsion mode. This paper discusses preliminary implementation and field tests of this controller in the Controls Advanced Research Turbine at the National Renewable Energy Laboratory. Also included are preliminary comparisons of the performance of this controller to results from a typical baseline Proportional-Integral-Derivative controller designed with just Region 3 speed regulation as the goal.

  1. Method and apparatus for debris mitigation for an electrical discharge source

    DOE Patents [OSTI]

    Klebanoff, Leonard E. (San Clemente, CA); Rader, Daniel J. (Albuquerque, NM); Silfvast, William T. (Helena, CA)

    2006-01-24

    Method and apparatus for mitigating the transport of debris generated and dispersed from electric discharge sources by thermophoretic and electrostatic deposition. A member is positioned adjacent the front electrode of an electric discharge source and used to establish a temperature difference between it and the front electrode. By flowing a gas between the member and the front electrode a temperature gradient is established that can be used for thermophoretic deposition of particulate debris on either the member or front electrode depending upon the direction of the thermal gradient. Establishing an electric field between the member and front electrode can aid in particle deposition by electrostatic deposition.

  2. Mitigation and Remediation of Mercury Contamination at the Y-12 Plant Oak Ridge

    Office of Environmental Management (EM)

    ETR-13 United States Department of Energy Office of Environmental Management (DOE-EM) External Technical Review of the Mitigation and Remediation of Mercury Contamination at the Y-12 Plant, Oak Ridge, TN Why DOE-EM Did This Review From 1953 to 1983, ~240,000 pounds of mercury (Hg) were released to the East Fork Popular Creek during the operation of the Y-12 Plant. In 1963, direct systematic releases of mercury stopped; however, mercury continues to be released into the creek from various

  3. Mitigating illumination gradients in a SAR image based on the image data and antenna beam pattern

    DOE Patents [OSTI]

    Doerry, Armin W.

    2013-04-30

    Illumination gradients in a synthetic aperture radar (SAR) image of a target can be mitigated by determining a correction for pixel values associated with the SAR image. This correction is determined based on information indicative of a beam pattern used by a SAR antenna apparatus to illuminate the target, and also based on the pixel values associated with the SAR image. The correction is applied to the pixel values associated with the SAR image to produce corrected pixel values that define a corrected SAR image.

  4. Methodology for prioritizing cyber-vulnerable critical infrastructure equipment and mitigation strategies.

    SciTech Connect (OSTI)

    Dawson, Lon Andrew; Stinebaugh, Jennifer A.

    2010-04-01

    The Department of Homeland Security (DHS), National Cyber Security Division (NSCD), Control Systems Security Program (CSSP), contracted Sandia National Laboratories to develop a generic methodology for prioritizing cyber-vulnerable, critical infrastructure assets and the development of mitigation strategies for their loss or compromise. The initial project has been divided into three discrete deliverables: (1) A generic methodology report suitable to all Critical Infrastructure and Key Resource (CIKR) Sectors (this report); (2) a sector-specific report for Electrical Power Distribution; and (3) a sector-specific report for the water sector, including generation, water treatment, and wastewater systems. Specific reports for the water and electric sectors are available from Sandia National Laboratories.

  5. NPH Risk Assessment and Mitigation of a SRS Facility for the Safe Storage of Tritium

    SciTech Connect (OSTI)

    Joshi, J.R.; Griffin, M.J.; Bjorkman, G.S.

    1995-10-18

    Because of the reduction in the nation`s stockpile of weapon systems a large amount of tritium is being returned to the Savannah River Site in Aiken, SC. Due to the increased quantity of tritium returning to SRS, the SRS Tritium Facility was tasked to determine the most cost effective means to safely store the tritium gas in a short period of time. This paper presents results of the risk assessment developed to evaluate the safe storage of tritium at SRS, and highlights the structural design of the HIVES used as the cost-effective short term NPH mitigation solution.

  6. Coherent beam-beam effects observation and mitigation at the RHIC collider

    SciTech Connect (OSTI)

    White S.; Fischer, W.; Luo, Y.

    2012-05-20

    In polarized proton operation in RHIC coherent beam-beam modes are routinely observed with beam transfer function measurements in the vertical plane. With the existence of coherent modes a larger space is required in the tune diagram than without them and stable conditions can be compromised for operation with high intensity beams as foreseen for future luminosity upgrades. We report on experiments and simulations carried out to understand the existence of coherent modes in the vertical plane and their absence in the horizontal plane, and investigate possible mitigation strategies.

  7. Combination pipe-rupture mitigator and in-vessel core catcher. [LMFBR

    DOE Patents [OSTI]

    Tilbrook, R.W.; Markowski, F.J.

    1982-03-09

    A device is described which mitigates against the effects of a failed coolant loop in a nuclear reactor by restricting the outflow of coolant from the reactor through the failed loop and by retaining any particulated debris from a molten core which may result from coolant loss or other cause. The device reduces the reverse pressure drop through the failed loop by limiting the access of coolant in the reactor to the inlet of the failed loop. The device also spreads any particulated core debris over a large area to promote cooling.

  8. Simvastatin mitigates increases in risk factors for and the occurrence of cardiac disease following 10Gy total body irradiation

    SciTech Connect (OSTI)

    Lenarczyk, Marek; Su, Jidong; Haworth, Steven T.; Komorowski, Richard; Fish, Brian L.; Migrino, Raymond Q.; Harmann, Leanne; Hopewell, John W.; Kronenberg, Amy; Patel, Shailendra; Moulder, John E.; Baker, John E.

    2015-06-01

    The ability of simvastatin to mitigate the increases in risk factors for and the occurrence of cardiac disease after 10 Gy total body irradiation (TBI) was determined. This radiation dose is relevant to conditioning for stem cell transplantation and threats from radiological terrorism. Male rats received single dose TBI of 10 Gy. Age-matched, sham-irradiated rats served as controls. Lipid profile, heart and liver morphology and cardiac mechanical function were determined for up to 120 days after irradiation. TBI resulted in a sustained increase in total- and LDL-cholesterol (low-density lipoprotein-cholesterol), and triglycerides. Simvastatin (10 mg/kg body weight/day) administered continuously from 9 days after irradiation mitigated TBI-induced increases in total- and LDL-cholesterol and triglycerides, as well as liver injury. TBI resulted in cellular peri-arterial fibrosis, whereas control hearts had less collagen and fibrosis. Simvastatin mitigated these morphological injuries. TBI resulted in cardiac mechanical dysfunction. Simvastatin mitigated cardiac mechanical dysfunction 20120 days following TBI. To determine whether simvastatin affects the ability of the heart to withstand stress after TBI, injury from myocardial ischemia/reperfusion was determined in vitro. TBI increased the severity of an induced myocardial infarction at 20 and 80 days after irradiation. Simvastatin mitigated the severity of this myocardial infarction at 20 and 80 days following TBI. It is concluded simvastatin mitigated the increases in risk factors for cardiac disease and the extent of cardiac disease following TBI. This statin may be developed as a medical countermeasure for the mitigation of radiation-induced cardiac disease.

  9. Hellsgate Winter Range Mitigation Project; Long-term Management Plan, Project Report 1993, Final Draft.

    SciTech Connect (OSTI)

    Berger, Matthew T.

    1994-01-01

    A study was conducted on the Hellsgate Winter Range Mitigation Project area, a 4,943 acre ranch purchased for mitigating some habitat losses associated with the original construction of Grand Coulee Dam and innundation of habitat by Lake Roosevelt. A Habitat Evaluation Procedure (HEP) study was used to determine habitat quality and quantity baseline data and future projections. Target species used in the study were sharp-tailed grouse (Tympanuchus phasianellus), mule deer (Odocoileus hemoinus), mink (Mustela vison), spotted sandpiper (Actiius colchicus), bobcat (Felis reufs), blue grouse (Dendragapus obscurus), and mourning dove (Zenaida macroura). From field data collected, limiting life values or HSI's (Habitat Suitability Index's) for each indicator species was determined for existing habitats on project lands. From this data a long term management plan was developed. This report is designed to provide guidance for the management of project lands in relation to the habitat cover types discussed and the indicator species used to evaluate these cover types. In addition, the plan discusses management actions, habitat enhancements, and tools that will be used to enhance, protect and restore habitats to desired conditions. Through planned management actions biodiversity and vegetative structure can be optimized over time to reduce or eliminate, limiting HSI values for selected wildlife on project lands.

  10. Global climate change mitigation and sustainable forest management--The challenge of monitoring and verification

    SciTech Connect (OSTI)

    Makundi, Willy R.

    1997-12-31

    In this paper, sustainable forest management is discussed within the historical and theoretical framework of the sustainable development debate. The various criteria and indicators for sustainable forest management put forth by different institutions are critically explored. Specific types of climate change mitigation policies/projects in the forest sector are identified and examined in the light of the general criteria for sustainable forest management. Areas of compatibility and contradiction between the climate mitigation objectives and the minimum criteria for sustainable forest management are identified and discussed. Emphasis is put on the problems of monitoring and verifying carbon benefits associated with such projects given their impacts on pre-existing policy objectives on sustainable forest management. The implications of such policy interactions on assignment of carbon credits from forest projects under Joint Implementation/Activities Implemented Jointly initiatives are discussed. The paper concludes that a comprehensive monitoring and verification regime must include an impact assessment on the criteria covered under other agreements such as the Biodiversity and/or Desertification Conventions. The actual carbon credit assigned to a specific project should at least take into account the negative impacts on the criteria for sustainable forest management. The value of the impacts and/or the procedure to evaluate them need to be established by interested parties such as the Councils of the respective Conventions.

  11. Energy Resource Potential

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Resource Potential of Methane Hydrate Energy Resource Potential An introduction to the science and energy potential of a unique resource Disclaimer Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. Neither the United States Government nor any agency thereof, nor any of their

  12. Field matric potential sensor

    DOE Patents [OSTI]

    Hubbell, Joel M. (Idaho Falls, ID); Sisson, James B. (Idaho Falls, ID)

    2001-01-01

    A method of determining matric potential of a sample, the method comprising placing the sample in a container, the container having an opening; and contacting the sample with a tensiometer via the opening. An apparatus for determining matric potential of a sample, the apparatus comprising a housing configured to receive a sample; a portable matric potential sensing device extending into the housing and having a porous member; and a wall closing the housing to insulate the sample and at least a portion of the matric potential sensing device including the porous member.

  13. Mitigation Action Plan: Lease of Parcel ED-1 of the Oak Ridge Reservation by the East Tennessee Economic Council

    SciTech Connect (OSTI)

    1996-04-01

    In April 1996, the U.S. Department of Energy (DOE) completed an environmental assessment (EA) (DOE/EA-1113) for the proposed lease of 957-16 acres (Parcel ED-1) of the Oak Ridge (Tennessee) Reservation (ORR) by the East Tennessee Economic Council (ETEC) for industrial development. DOE plans to issue a Finding of No Significant Impact (FONSI) for the proposed action, conditional upon the implementation of mitigation and monitoring to protect environmental resources. According to DOE`s National Environmental Policy Act (NEPA) regulations (10 CFR 1021.322), a FONSI shall include {open_quotes}any commitments to mitigations that are essential to render the impacts of the proposed action not significant, beyond those mitigations that are integral elements of the proposed action, and a reference to the Mitigation Action Plan prepared under 10 CTR 1021.331{close_quotes}. Terms of the lease offer DOE the option of terminating the lease with ETEC should the lessee and/or sublessees fail to implement the mitigation defined in the FONSI.

  14. System design description for SY-101 hydrogen mitigation test project data acquisition and control system (DACS-1)

    SciTech Connect (OSTI)

    Truitt, R.W.; Pounds, T.S.; Smith, S.O.

    1994-08-24

    This document describes the hardware subsystems of the data acquisition and control system (DACS) used in mitigation tests conducted on waste tank SY-101 at the Hanford Nuclear Reservation. The system was designed and implemented by Los Alamos National Laboratory (LANL) and supplied to Westinghouse Hanford Company (WHC). The mitigation testing uses a pump immersed in the waste tank, directed at certain angles and operated at different speeds and time durations. The SY-101 tank has experienced recurrent periodic gas releases of hydrogen, nitrous oxide, ammonia, and (recently discovered) methane. The hydrogen gas represents a danger, as some of the releases are in amounts above the lower flammability limit (LFL). These large gas releases must be mitigated. Several instruments have been added to the tank to monitor the gas compositions, the tank level, the tank temperature, and other parameters. A mixer pump has been developed to stir the tank waste to cause the gases to be released at a slow rate. It is the function of the DACS to monitor those instruments and to control the mixer pump in a safe manner. During FY93 and FY94 the mixer pump was installed with associated testing operations support equipment and a mitigation test project plan was implemented. These activities successfully demonstrated the mixer pump`s ability to mitigate the SY-101 tank hydrogen gas hazard.

  15. Review of comparative LCAs of food waste management systems - Current status and potential improvements

    SciTech Connect (OSTI)

    Bernstad, A.; Cour Jansen, J. la

    2012-12-15

    Highlights: Black-Right-Pointing-Pointer GHG-emissions from different treatment alternatives vary largely in 25 reviewed comparative LCAs of bio-waste management. Black-Right-Pointing-Pointer System-boundary settings often vary largely in reviewed studies. Black-Right-Pointing-Pointer Existing LCA guidelines give varying recommendations in relation to several key issues. - Abstract: Twenty-five comparative cycle assessments (LCAs) addressing food waste treatment were reviewed, including the treatment alternatives landfill, thermal treatment, compost (small and large scale) and anaerobic digestion. The global warming potential related to these treatment alternatives varies largely amongst the studies. Large differences in relation to setting of system boundaries, methodological choices and variations in used input data were seen between the studies. Also, a number of internal contradictions were identified, many times resulting in biased comparisons between alternatives. Thus, noticed differences in global warming potential are not found to be a result of actual differences in the environmental impacts from studied systems, but rather to differences in the performance of the study. A number of key issues with high impact on the overall global warming potential from different treatment alternatives for food waste were identified through the use of one-way sensitivity analyses in relation to a previously performed LCA of food waste management. Assumptions related to characteristics in treated waste, losses and emissions of carbon, nutrients and other compounds during the collection, storage and pretreatment, potential energy recovery through combustion, emissions from composting, emissions from storage and land use of bio-fertilizers and chemical fertilizers and eco-profiles of substituted goods were all identified as highly relevant for the outcomes of this type of comparisons. As the use of LCA in this area is likely to increase in coming years, it is highly relevant to establish more detailed guidelines within this field in order to increase both the general quality in assessments as well as the potentials for cross-study comparisons.

  16. UNDERSTANDING METHANE EMISSIONS SOURCES AND VIABLE MITIGATION MEASURES IN THE NATURAL GAS TRANSMISSION SYSTEMS: RUSSIAN AND U.S. EXPERIENCE

    SciTech Connect (OSTI)

    Ishkov, A.; Akopova, Gretta; Evans, Meredydd; Yulkin, Grigory; Roshchanka, Volha; Waltzer, Suzie; Romanov, K.; Picard, David; Stepanenko, O.; Neretin, D.

    2011-10-01

    This article will compare the natural gas transmission systems in the U.S. and Russia and review experience with methane mitigation technologies in the two countries. Russia and the United States (U.S.) are the world's largest consumers and producers of natural gas, and consequently, have some of the largest natural gas infrastructure. This paper compares the natural gas transmission systems in Russia and the U.S., their methane emissions and experiences in implementing methane mitigation technologies. Given the scale of the two systems, many international oil and natural gas companies have expressed interest in better understanding the methane emission volumes and trends as well as the methane mitigation options. This paper compares the two transmission systems and documents experiences in Russia and the U.S. in implementing technologies and programs for methane mitigation. The systems are inherently different. For instance, while the U.S. natural gas transmission system is represented by many companies, which operate pipelines with various characteristics, in Russia predominately one company, Gazprom, operates the gas transmission system. However, companies in both countries found that reducing methane emissions can be feasible and profitable. Examples of technologies in use include replacing wet seals with dry seals, implementing Directed Inspection and Maintenance (DI&M) programs, performing pipeline pump-down, applying composite wrap for non-leaking pipeline defects and installing low-bleed pneumatics. The research methodology for this paper involved a review of information on methane emissions trends and mitigation measures, analytical and statistical data collection; accumulation and analysis of operational data on compressor seals and other emission sources; and analysis of technologies used in both countries to mitigate methane emissions in the transmission sector. Operators of natural gas transmission systems have many options to reduce natural gas losses. Depending on the value of gas, simple, low-cost measures, such as adjusting leaking equipment components, or larger-scale measures, such as installing dry seals on compressors, can be applied.

  17. WINDExchange: Potential Wind Capacity

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Potential Wind Capacity Potential wind capacity maps are provided for a 2014 industry standard wind turbine installed on a 110-m tower, which represents plausible current technology options, and a wind turbine on a 140-m tower, which represents near-future technology options. Enlarge image This map shows the wind potential at a 110-m height for the United States. Download a printable map. Click on a state to view the wind map for that state. * Grid Granularity = 400 sq km* 35% Gross Capacity

  18. Z-Pinch Power Plant Shock Mitigation Experiments, Modeling, and Code Assessment

    SciTech Connect (OSTI)

    Rodriguez, Sal B.; Dandini, Vincent J.; Vigil, Virginia L.; Turgeon, Matt; Louie, Dave

    2005-04-15

    We are investigating attenuation techniques to mitigate the powerful shock that occurs inside the Z-Pinch Power Plant. For this purpose, we conducted a series of experiments at the University of Wisconsin. These experiments consisted of shock waves traveling at greater than Ma 1 that impacted aluminum foam under various configurations. In turn, ABAQUS, ALEGRA, CTH, and DYNA3D were used to simulate one of the experiments in order to validate the codes. Although the behavior of foamed solid and liquid metal is fundamentally different, we considered foamed metal because some disposable components of the ZP-3 (i.e. the RTL) may be designed with metal foam. In addition, the relatively simple experiments should help us determine which codes can better simulate shock waves. In the near future, we will conduct shock experiments using foamed materials such as water, oils, and other metals.

  19. Construction and measurements of a vacuum-swing-adsorption radon-mitigation system

    SciTech Connect (OSTI)

    Schnee, R. W.; Bunker, R.; Ghulam, G.; Jardin, D.; Kos, M.; Tenney, A. S. [Department of Physics, Syracuse University, Syracuse, NY 13244 (United States)] [Department of Physics, Syracuse University, Syracuse, NY 13244 (United States)

    2013-08-08

    Long-lived alpha and beta emitters in the {sup 222}Rn decay chain on (and near) detector surfaces may be the limiting background in many experiments attempting to detect dark matter or neutrinoless double beta decay, and in screening detectors. In order to reduce backgrounds from radon-daughter plate-out onto the wires of the Beta Cage during its assembly, an ultra-low-radon cleanroom is being commissioned at Syracuse University using a vacuum-swing-adsorption radon-mitigation system. The radon filter shows ?20 reduction at its output, from 7.470.56 to 0.370.12 Bq/m{sup 3}, and the cleanroom radon activity meets project requirements, with a lowest achieved value consistent with that of the filter, and levels consistently < 2 Bq/m{sup 3}.

  20. Meeting the Demand for Biofuels: Impact on Land Use and Carbon Mitigation

    SciTech Connect (OSTI)

    Khanna, Madhu; Jain, Atul; Onal, Hayri; Scheffran, Jurgen; Chen, Xiaoguang; Erickson, Matt; Huang, Haixiao; Kang, Seungmo.

    2011-08-14

    The purpose of this research was to develop an integrated, interdisciplinary framework to investigate the implications of large scale production of biofuels for land use, crop production, farm income and greenhouse gases. In particular, we examine the mix of feedstocks that would be viable for biofuel production and the spatial allocation of land required for producing these feedstocks at various gasoline and carbon emission prices as well as biofuel subsidy levels. The implication of interactions between energy policy that seeks energy independence from foreign oil and climate policy that seeks to mitigate greenhouse gas emissions for the optimal mix of biofuels and land use will also be investigated. This project contributes to the ELSI research goals of sustainable biofuel production while balancing competing demands for land and developing policy approaches needed to support biofuel production in a cost-effective and environmentally friendly manner.