Powered by Deep Web Technologies
Note: This page contains sample records for the topic "geysers high-temperature reservoir" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

The Northwest Geysers High-Temperature Reservoir- Evidence For Active  

Open Energy Info (EERE)

Geysers High-Temperature Reservoir- Evidence For Active Geysers High-Temperature Reservoir- Evidence For Active Magmatic Degassing And Implications For The Origin Of The Geysers Geothermal Field Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: The Northwest Geysers High-Temperature Reservoir- Evidence For Active Magmatic Degassing And Implications For The Origin Of The Geysers Geothermal Field Details Activities (2) Areas (1) Regions (0) Abstract: Noble gas isotope abundances in steam from the Coldwater Creek field of the Northwest Geysers, California, show mixing between a nearly pure mid-ocean ridge (MOR) type magmatic gas with high 3He/4He and low radiogenic 40*Ar (R/Ra > 8.3 and 40*Ar/4He < 0.07), and a magmatic gas diluted with crustal gas (R/Ra 0.25). The

2

Geysers reservoir studies  

DOE Green Energy (OSTI)

LBL is conducting several research projects related to issues of interest to The Geysers operators, including those that deal with understanding the nature of vapor-dominated systems, measuring or inferring reservoir processes and parameters, and studying the effects of liquid injection. All of these topics are directly or indirectly relevant to the development of reservoir strategies aimed at stabilizing or increasing production rates of non-corrosive steam, low in non-condensable gases. Only reservoir engineering studies will be described here, since microearthquake and geochemical projects carried out by LBL or its contractors are discussed in accompanying papers. Three reservoir engineering studies will be described in some detail, that is: (a) Modeling studies of heat transfer and phase distribution in two-phase geothermal reservoirs; (b) Numerical modeling studies of Geysers injection experiments; and (c) Development of a dual-porosity model to calculate mass flow between rock matrix blocks and neighboring fractures.

Bodvarsson, G.S.; Lippmann, M.J.; Pruess, K.

1993-04-01T23:59:59.000Z

3

High temperature water adsorption on The Geysers rocks  

DOE Green Energy (OSTI)

In order to measure water retention by geothermal reservoir rocks at the actual reservoir temperature, the ORNL high temperature isopiestic apparatus was adapted for adsorption measurements. The quality of water retained by rock samples taken from three different wells of The Geysers geothermal reservoir was measured at 150{sup degree}C, 200{sup degree}C, and 250{sup degree}C as a function of pressure in the range 0.00 {<=}p/p{sub degree} {<=} 0.98, where p{sub degree} is the saturated water vapor pressure. Both adsorption (increasing pressure) and desorption (decreasing pressure) runs were made in order to investigate the nature and the extent of the hysteresis. Additionally, low temperature gas adsorption analyses were performed on the same rock samples. Nitrogen or krypton adsorption and desorption isotherms at 77 K were used to obtain BET specific surface areas, pore volumes and their distributions with respect to pore sizes. Mercury intrusion porosimetry was also used to obtain similar information extending to very large pores (macropores). A correlation is sought between water adsorption, the surface properties, and the mineralogical and petrological characteristics of the solids.

Gruszkiewicz, M.S.; Horita, J.; Simonson, J.M.; Mesmer, R.E.

1997-08-01T23:59:59.000Z

4

Numerical investigations into the formation of a high temperature reservoir''  

DOE Green Energy (OSTI)

This paper summarizes an ongoing numerical modeling effort aimed at describing some of the thermodynamic conditions observed in vapor- dominated reservoirs, including the formation of a high temperature reservoir (HTR) beneath the typical'' reservoir. The modeled system begins as a hot water geothermal reservoir, and evolves through time into a vapor-dominated reservoir with a HTR at depth. This approach taken here to develop a vapor-dominated system is similar to that of Pruess (1985), and involves induced boiling through venting. The reservoir description is intentionally generic, but serves to describe a means of evolution of conditions observed (in particular) The Geysers.

Shook, M.

1993-01-01T23:59:59.000Z

5

Numerical investigations into the formation of a ``high temperature reservoir``  

DOE Green Energy (OSTI)

This paper summarizes an ongoing numerical modeling effort aimed at describing some of the thermodynamic conditions observed in vapor- dominated reservoirs, including the formation of a high temperature reservoir (HTR) beneath the ``typical`` reservoir. The modeled system begins as a hot water geothermal reservoir, and evolves through time into a vapor-dominated reservoir with a HTR at depth. This approach taken here to develop a vapor-dominated system is similar to that of Pruess (1985), and involves induced boiling through venting. The reservoir description is intentionally generic, but serves to describe a means of evolution of conditions observed (in particular) The Geysers.

Shook, M.

1993-04-01T23:59:59.000Z

6

Reservoir assessment of The Geysers Geothermal field  

DOE Green Energy (OSTI)

Big Sulphur Creek fault zone, in The Geysers Geothermal field, may be part of a deep-seated, wrench-style fault system. Hydrothermal fluid in the field reservoir may rise through conduits beneath the five main anomalies associated with the Big Sulphur Creek wrench trend. Some geophysical anomalies (electrical resistivity and audio-magnetotelluric) evidently are caused by the hot water geothermal field or zones of altered rocks; others (gravity, P-wave delays, and possibly electrical resistivity) probably respresent the underlying heat source, a possible magma chamber; and others (microearthquake activity) may be related to the steam reservoir. A large negative gravity anomaly and a few low-resistivity anomalies suggest areas generally favorable for the presence of steam zones, but these anomalies apparently do not directly indicate the known steam reservoir. At the current generating capacity of 930 MWe, the estimated life of The Geysers Geothermal field reservoir is 129 years. The estimated reservoir life is 60 years for the anticipated maximum generating capacity of 2000 MWe as of 1990. Wells at The Geysers are drilled with conventional drilling fluid (mud) until the top of the steam reservoir is reached; then, they are drilled with air. Usually, mud, temperature, caliper, dual induction, and cement bond logs are run on the wells.

Thomas, R.P.; Chapman, R.H.; Dykstra, H.

1981-01-01T23:59:59.000Z

7

HIGH TEMPERATURE GEOTHERMAL RESERVOIR ENGINEERING  

E-Print Network (OSTI)

on the Cerro P r i e t o Geothermal F i e l d , Mexicali,e C e r r o P r i e t o Geothermal F i e l d , Baja C a l i1979 HIGH TEMPERATURE GEOTHERMAL RESERVOIR ENGINEERING R.

Schroeder, R.C.

2009-01-01T23:59:59.000Z

8

Characterization Of Fracture Patterns In The Geysers Geothermal Reservoir  

Open Energy Info (EERE)

Patterns In The Geysers Geothermal Reservoir Patterns In The Geysers Geothermal Reservoir By Shear-Wave Splitting Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Report: Characterization Of Fracture Patterns In The Geysers Geothermal Reservoir By Shear-Wave Splitting Details Activities (1) Areas (1) Regions (0) Abstract: The authors have analyzed the splitting of shear waves from microearthquakes recorded by a 16-station three-component seismic network at the Northwest Geysers geothermal field, Geysers, California, to determine the preferred orientation of subsurface fractures and cracks. Average polarization crack directions with standard deviation were computed for each station. Also, graphical fracture characterizations in the form of equal-area projections and rose diagrams were created to depict the

9

Water adsorption at high temperature on core samples from The Geysers geothermal field  

DOE Green Energy (OSTI)

The quantity of water retained by rock samples taken from three wells located in The Geysers geothermal reservoir, California, was measured at 150, 200, and 250 C as a function of pressure in the range 0.00 {le} p/p{sub 0} {le} 0.98, where p{sub 0} is the saturated water vapor pressure. Both adsorption (increasing pressure) and desorption (decreasing pressure) runs were made in order to investigate the nature and the extent of the hysteresis. Additionally, low temperature gas adsorption analyses were performed on the same rock samples. Nitrogen or krypton adsorption and desorption isotherms at 77 K were used to obtain BET specific surface areas, pore volumes and their distributions with respect to pore sizes. Mercury intrusion porosimetry was also used to obtain similar information extending to very large pores (macropores). A qualitative correlation was found between the surface properties obtained from nitrogen adsorption and the mineralogical and petrological characteristics of the solids. However, there is in general no proportionality between BET specific surface areas and the capacity of the rocks for water adsorption at high temperatures. The results indicate that multilayer adsorption rather than capillary condensation is the dominant water storage mechanism at high temperatures.

Gruszkiewicz, M.S.; Horita, J.; Simonson, J.M.; Mesmer, R.E.

1998-06-01T23:59:59.000Z

10

Reservoir technology research at LBL addressing geysers issues  

DOE Green Energy (OSTI)

The Geothermal Technology Division of the Department of Energy is redirecting a significant part of its Reservoir Technology funding to study problems now being experienced at The Geysers. These include excessive pressure drawdown and associated decline in well flow rates, corrosion due to high chloride concentration in the produced steam and high concentration of noncondensible gases in some parts of the field. Lawrence Berkeley Laboratory (LBL) is addressing some of these problems through field, laboratory and theoretical studies. 11 refs., 6 figs.

Lippmann, M.J.; Bodvarsson, G.S.

1990-04-01T23:59:59.000Z

11

Reservoir response to injection in the Southeast Geysers  

DOE Green Energy (OSTI)

A 20 megawatt (MW) increase in steam flow potential resulted within five months of the start-up of new injection wells in the Southeast Geysers. Flow rate increases were observed in 25 wells offset to the injectors, C-11 and 956A-1. This increased flowrate was sustained during nine months of continuous injection with no measurable decrease in offset well temperature until C-11 was shut-in due to wellbore bridging. The responding steam wells are located in an area of reduced reservoir steam pressure known as the Low Pressure Area (LPA). The cause of the flowrate increases was twofold (1) an increase in static reservoir pressure and (2) a decrease in interwell communication. Thermodynamic and microseismic evidence suggests that most of the water is boiling near the injector and migrating to offset wells located ''down'' the static pressure gradient. However, wells showing the largest increase in steam flowrate are not located at the heart of the pressure sink. This indicates that localized fracture distribution controls the preferred path of fluid migration from the injection well. A decrease in non-condensible gas concentrations was also observed in certain wells producing injection derived steam within the LPA. The LPA project has proven that steam suppliers can work together and benefit economically from joint efforts with the goal of optimizing the use of heat from The Geysers reservoir. The sharing of costs and information led directly to the success of the project and introduces a new era of increased cooperation at The Geysers.

Enedy, Steve; Enedy, Kathy; Maney, John

1991-01-01T23:59:59.000Z

12

Geysers Hi-T Reservoir Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Geysers Hi-T Reservoir Geothermal Area Geysers Hi-T Reservoir Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Geysers Hi-T Reservoir Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (0) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.8,"lon":-122.8,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

13

Reservoir Fracturing in the Geysers Hydrothermal System: Fact or Fallacy?  

DOE Green Energy (OSTI)

Proper application of proven worldwide fracture determination analyses adequately aids in the detection and enhanced exploitation of reservoir fractures in The Geysers steam field. Obsolete, superficial ideas concerning fracturing in this resource have guided various malformed judgements of the actual elusive trends. Utilizing regional/local tectonics with theoretical rack mechanics and drilling statistics, offers the most favorable method of fracture comprehension. Exploitation philosophies should favor lateral drilling trends along local tensional components and under specific profound drainage/faulting manifestations to enhance high productivities. Drill core observations demonstrate various degrees of fracture filling, brecciation, strain responses, and rock fracture properties, giving the most favorable impression of subsurface reservoir conditions. Considerably more work utilizing current fracturing principles and geologic thought is required to adequately comprehend and economically exploit this huge complex resource.

Hebein, Jeffrey J.

1986-01-21T23:59:59.000Z

14

A Reservoir Assessment of the Geysers Geothermal Field  

SciTech Connect

Big Sulphur Creek fault zone, in The Geysers Geothermal field, may be part of a deep-seated, wrench-style fault system. Hydrothermal fluid reservoir may rise through conduits beneath the five main anomalies associated with the Big Sulphur Creek wrench trend. Upon moderately dipping, fracture network. Condensed steam at the steep reservoir flank drains back to the hot water table. These flanks are defined roughly by marginally-producing geothermal wells. Field extensions are expected to be on the southeast and northwest. Some geophysical anomalies (electrical resistivity and audio-magnetotelluric) evidently are caused by the hot water geothermal field or zones of altered rocks; others (gravity, P-wave delays, and possibly electrical resistivity) probably represent the underlying heat source, a possible magma chamber; and others (microearthquake activity) may be related to the steam reservoir. A large negative gravity anomaly and a few low-resitivity anomalies suggest areas generally favorable for the presence of steam zones, but these anomalies apparently do not directly indicate the known steam reservoir. Monitoring gravity and geodetic changes with time and mapping microearthquake activity are methods that show promise for determining reservoir size, possible recharge, production lifetime, and other characteristics of the known stream field. Seismic reflection data may contribute to the efficient exploitation of the field by identifying fracture zones that serve as conduits for the steam. (DJE-2005)

Thomas, Richard P.; Chapman, Rodger H.; Dykstra, Herman; Stockton, A.D.

1981-01-01T23:59:59.000Z

15

The Northwest Geysers High-Temperature Reservoir- Evidence For...  

Open Energy Info (EERE)

Login | Sign Up Wiki Browse Latinoamrica Buildings Clean Energy Economy Coordinated Low Emissions Assistance Network Geothermal Incentives and Policies International Clean Energy...

16

Water adsorption at high temperature on core samples from The Geysers geothermal field  

DOE Green Energy (OSTI)

The quantity of water retained by rock samples taken from three wells located in The Geysers geothermal field, California, was measured at 150, 200, and 250 C as a function of steam pressure in the range 0.00 {le} p/p{sub 0} {le} 0.98, where p{sub 0} is the saturated water vapor pressure. Both adsorption and desorption runs were made in order to investigate the extent of the hysteresis. Additionally, low temperature gas adsorption analyses were made on the same rock samples. Mercury intrusion porosimetry was also used to obtain similar information extending to very large pores (macropores). A qualitative correlation was found between the surface properties obtained from nitrogen adsorption and the mineralogical and petrological characteristics of the solids. However, there was no direct correlation between BET specific surface areas and the capacity of the rocks for water adsorption at high temperatures. The hysteresis decreased significantly at 250 C. The results indicate that multilayer adsorption, rather than capillary condensation, is the dominant water storage mechanism at high temperatures.

Gruszkiewicz, M.S.; Horita, J.; Simonson, J.M.; Mesmer, R.E.

1998-06-01T23:59:59.000Z

17

DISCUSSIONS ON A TYPE OF RESERVOIR CELL BOUNDARY IN THE GEYSERS STEAM FIELD  

DOE Green Energy (OSTI)

The boundaries of reservoir fluid convection cells are discreet and intricate zones, commonly sealed or reduced in permeabilities, which are often quite readily identifiable in many hydrothermal systems. Cell boundaries in the Geysers Steam Field are more vague; however, they are gradually being revealed by cumulative and extensive wellbore data. A profound example of a type of boundary has been revealed by drilling in one area of the steam field. A proposed model utilizes a sericitic alteration scheme to establish cell self-sealing. Mineralogical, permeability, and temperature properties all coincide so as to allow formation of a boundary model. This reinforces previously held views that the reservoir cell rock and hydrothermal system are greatly out of equilibrium. Such similar phenomena are suggested from drilling experiences in other parts of the steam field. Considerably, more work is required to better define and comprehend the nature and location of reservoir cell boundaries within the Geysers Steam Field.

Hebein, J.L.

1985-01-22T23:59:59.000Z

18

Geochemical studies of reservoir processes in the NCPA field of The Geysers, a preliminary report  

SciTech Connect

Methods of tracing reservoir processes will be discussed and applied to the NCPA Geysers steam field. The gas and isotope chemistry of produced steam is far from uniform even in a restricted volume of the reservoir. The composition is affected by many factors. Differences in permeability, local existence of gas pockets or perched liquid and the pattern of fracture connection can cause neighboring wells to produce steam of different compositions. This study attempts to separate local effects from general influences by viewing the data across the field and over a period of time. The fits of the trend lines to the data are far from perfect but present a reasonably consistent picture.

Truesdell, Alfred; Enedy, Steve; Smith, Bill

1993-01-28T23:59:59.000Z

19

Gas geochemistry of the Geysers geothermal field  

DOE Green Energy (OSTI)

Increases in gas concentrations in Central and Southeast Geysers steam are related to the decreases in pressure caused by heavy exploitation in the 1980s. When reservoir pressures in the central parts of the field decreased, high-gas steam from undrilled reservoir margins (and possibly from underlying high-temperature zones) flowed into exploited central areas. The Northwest Geysers reservoir probably lacks high-gas marginal steam and a decline in pressure may not cause a significant increase of gas concentrations in produced steam.

Truesdell, A.H.

1993-04-01T23:59:59.000Z

20

Characterization of Fracture Patterns in the Geysers Geothermal Reservoir by Shear-wave Splitting  

DOE Green Energy (OSTI)

The authors have analyzed the splitting of shear waves from microearthquakes recorded by a 16-station three-component seismic network at the Northwest Geysers geothermal field, Geysers, California, to determine the preferred orientation of subsurface fractures and cracks. Average polarization crack directions with standard deviation were computed for each station. Also, graphical fracture characterizations in the form of equal-area projections and rose diagrams were created to depict the results. The main crack orientations within the steam field are predominantly in the N10{degree}E to N50{degree}E direction, consistent with expected fracture directions in a pull-apart basin created by sub-parallel right-lateral strike-slip faults related to the San Andreas fault system. Time delays range from 15--60 ms, similar to the time delays from previous studies at geothermal reservoirs. They have detected a significant increase in time delays between 1988 and 1994, which they attribute to widening of the cracks or filling of the cracks with fluid. Increase in production activities during this time also could have influenced this widening.

D. Erten; J. A. Rial

1999-09-15T23:59:59.000Z

Note: This page contains sample records for the topic "geysers high-temperature reservoir" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Impact of injection on reservoir performance in the NCPA steam field at The Geysers  

SciTech Connect

A managed injection program implemented by the NCPA in The Southeast Geysers reservoir continues to positively impact reservoir performance. Injection effects are determined by the application of geochemical and geophysical techniques to track the movement of injectate. This information, when integrated with reservoir pressure, flowrate, and thermodynamic data, is used to quantify the overall performance and efficiency of the injection program. Data analysis indicates that injected water is boiling near the injection wells, without deeper migration, and is recovered as superheated steam from nearby production wells. Injection derived steam (IDS) currently accounts for 25 to 35 percent of total production in the NCPA steamfield. Most importantly, 80 to 100% of the injectate is flashing and being recovered as steam. The amount of IDS has increased since 1988 due to both a change in injection strategy and a drying out of the reservoir. However, significant areas of the reservoir still remain relatively unaffected by injection because of the limited amount of injectate presently available. That the reservoir has been positively impacted in the injection areas is evidenced by a decrease in the rate of pressure decline from 1989 through 1992. Correspondingly, there has been a reduction in the rate of steam flow decline in the areas' production wells. Conversely, little evidence of reservoir cooling or thermal breakthrough is shown even in areas where IDS accounts for 80 percent or more of production. Finally, since injection water is a relatively low-gas source of steam, noncondensible gas concentrations have been reduced in some steam wells located within the injection dominated areas.

Enedy, S.L.; Smith, J.L.; Yarter, R.E.; Jones, S.M.; Cavote, P.E.

1993-01-28T23:59:59.000Z

22

Determining the 3-D fracture structure in the Geysers geothermal reservoir  

DOE Green Energy (OSTI)

The bulk of the steam at the Geysers geothermal field is produced from fractures in a relatively impermeable graywacke massif which has been heated by an underlying felsite intrusion. The largest of these fractures are steeply dipping right lateral strike-slip faults which are subparallel to the NW striking Collayomi and Mercuryville faults which form the NE and SW boundaries of the known reservoir. Where the graywacke source rock outcrops at the surface it is highly sheared and fractured over a wide range of scale lengths. Boreholes drilled into the reservoir rock encounter distinct ''steam entries'' at which the well head pressure jumps from a few to more than one hundred psi. This observation that steam is produced from a relatively small number of major fractures has persuaded some analysts to use the Warren and Root (1963) dual porosity model for reservoir simulation purposes. The largest fractures in this model are arranged in a regular 3-D array which partitions the reservoir into cubic ''matrix'' blocks. The net storage and transport contribution of all the smaller fractures in the reservoir are lumped into average values for the porosity and permeability of these matrix blocks which then feed the large fractures. Recent improvements of this model largely focus on a more accurate representation of the transport from matrix to fractures (e.g. Pruess et al., 1983; Ziminerman et al., 1992), but the basic geometry is rarely questioned. However, it has long been recognized that steam entries often occur in clusters separated by large intervals of unproductive rock (Thomas et al., 1981). Such clustering of fixtures at all scale lengths is one characteristic of self-similar distributions in which the fracture distribution is scale-independent. Recent studies of the geometry of fracture networks both in the laboratory and in the field are finding that such patterns are self-similar and can be best described using fractal geometry. Theoretical simulations of fracture development in heterogeneous media also produce fractal patterns. However, a physical interpretation of the mechanics which produce the observed fractal geometry remains an active area of current research. Two hypotheses for the physical cause of self-similarity are the Laplacian growth of fractures in a self-organized critical stress field, and the evolution of percolation clusters in a random medium. Each predicts a different, fractal dimension. The more important questions from a reservoir engineering point of view are: (1) is the network of fractures in the Geysers reservoir fractal and if so over what range of fracture sizes is the self-similarity observed and what is its fractal dimension, and (2) do the conventional dual porosity numerical simulation schemes provide an adequate description of flow and heat mining at the Geysers? Other papers in this volume by Acuna, Ershaghi, and Yortsos (1992) and Mukhopodhyoy and Sahimi (1992) address the second question. The primary objective of this paper is to try to answer the first. Toward this goal we have mapped fracture patterns in surface exposures of the graywacke source rock at the outcrop scale (meters), at the road-cut scale (tens of meters) and at the regional scale (kilometers). We have also examined cores collected at depth from the graywacke reservoir rocks, and analyzed drilling logs making use of the pattern of steam entries as well as the fluctuations in drilling rate.

Sammis, Charles G.; Linji An; Iraj Ershaghi

1992-01-01T23:59:59.000Z

23

Chemical stimulation treatment, The Geysers: Ottoboni State 22. Geothermal-reservoir well-stimulation program  

DOE Green Energy (OSTI)

Experiment No. 6 of the Geothermal Reservoir Well Stimulation Program (GRWSP) was performed at The Geysers Field in Sonoma County, California. This well had low productivity (46,000 lb/hr), probably because it did not intersect the primary natural fracture system of the reservoir. Surrounding production wells are considered to be good wells with an average flow rate of about 100,000 lb/hr. The stimulation technique selected was an acid etching treatment (Halliburton Services' MY-T-ACID). A small water prepad was used to provide tubular cooling and fluid loss control. Following the water prepad were 500 to 750 bbl of high viscosity crosslinked gel fluid and 400 to 500 bbl of a hydrofluoric-hydrochloric (HF-HCl) acid solution. The frac fluids were expected to enter only a single or limited fracture zone within the open interval. Frac rates of 20 to 40 BPM and surface pressures of 3000 psig were estimated for this treatment. During the job, however, no significant surface pressure was recorded, and all fluids flowed easily into the interval. Subsequent evaluation of the well performance showed that no noticeable stimulation had been achieved even though the frac fluids were properly injected. Temperature and gamma ray surveys along with tracer studies indicated that the frac fluids entered natural fracture channels over a 650-foot zone of the open interval, which probably prevented the staged acid etching treatment from functioning as designed.

Not Available

1981-02-01T23:59:59.000Z

24

Exploration, Drilling and Development Operations in the Bottle Rock Area of the Geysers Steam Field, With New Geologic Insights and Models Defining Reservoir Parameters  

Science Conference Proceedings (OSTI)

MCR Geothermal Corporation pioneered successful exploratiory drilling the Bottle Rock area of the Geysers Steam Field in 1976. The wellfield is characterized by a deep reservoir with varied flowrates, temperatures, pressures, and stem chemistries being quite acceptable. More detailed reservoir engineering tests will follow as production commences.

Hebein, Jeffrey J.

1983-12-15T23:59:59.000Z

25

Analysis of Injection-Induced Micro-Earthquakes in a Geothermal Steam Reservoir, The Geysers Geothermal Field, California  

E-Print Network (OSTI)

Geothermal Field, Monograph on The Geysers GeothermalField, Geothermal Resources Council, Special Report no. 17,Subsidence at The Geysers geothermal field, N. California

Rutqvist, J.

2008-01-01T23:59:59.000Z

26

Application of magnetic method to assess the extent of high temperature geothermal reservoirs  

DOE Green Energy (OSTI)

The extent of thermally altered rocks in high temperature geothermal reservoirs hosted by young volcanic rocks can be assessed from magnetic surveys. Magnetic anomalies associated with many geothermal field in New Zealand and Indonesia can be interpreted in terms of thick (up to 1 km) demagnetized reservoir rocks. Demagnetization of these rocks has been confirmed by core studies and is caused by hydrothermal alteration produced from fluid/rock interactions. Models of the demagnetized Wairakei (NZ) and Kamojang (Indonesia) reservoirs are presented which include the productive areas. Magnetic surveys give fast and economical investigations of high temperature prospects if measurements are made from the air. The magnetic interpretation models can provide important constraints for reservoir models. Magnetic ground surveys can also be used to assess the extent of concealed near surface alteration which can be used in site selection of engineering structures.

Soengkono, S.; Hochstein, M.P.

1995-01-26T23:59:59.000Z

27

A comprehensive study of fracture patterns and densities in the Geysers geothermal reservoir using microearthquake shear-wave splitting tomography. Quarterly report for Sep-Dec 1998  

DOE Green Energy (OSTI)

We start organizing the computer programs needed for crack density inversion into an easy to follow scripts. These programs were collection of bits and pieces from many sources and we want to organize those separate programs into coherent product. We also gave a presentation (enclosed) in the Twenty-Fourth Workshop on Geothermal Reservoir Engineering in Stanford University on our Geyser and Mammoth results.

Malin, Peter E.; Shalev, Eylon

1999-03-31T23:59:59.000Z

28

Analysis of Injection-Induced Micro-Earthquakes in a Geothermal Steam Reservoir, The Geysers Geothermal Field, California  

E-Print Network (OSTI)

production wells, thermal- elastic cooling shrinkage is theinjection wells, both thermal-elastic cooling shrinkage andGeysers is cooling and associated thermal-elastic shrinkage

Rutqvist, J.

2008-01-01T23:59:59.000Z

29

Microearthquake monitoring and seismic imaging at The Geysers  

SciTech Connect

We are monitoring two high-frequency, high-resolution microearthquake networks at The Geysers. The first network consists of 16 stations and is located in the northwest portion of the Geysers. This array is in an area that is representative of a high-temperature, deep, reservoir environment. The second network consists of 13 stations located in the southeast Geysers around the location of the cooperative injection experiment. We are using the data from the networks to compute velocity and attenuation images and earthquake parameters such as precise location and rate and manner of energy release. Our goal is to evaluate the use of this information to manage steam release from geothermal reservoirs. We are supporting this effort with laboratory measurements of velocity and attenuation on Geysers core samples under varying degrees of saturation to help us better interpret our seismic images. To date we find that microearthquake activity follows injection activity, and the dry, low-pressure portions of the reservoir are characterized by low velocity and high attenuation.

Zucca, J.J.; Hutchings, L.; Bonner, B.; Kasameyer, P. [Lawrence Livermore National Lab., CA (United States); Majer, E.L.; Peterson, J.; Romero, A.; Kirkpatrick, A. [Lawrence Berkeley Lab., CA (United States)

1994-06-01T23:59:59.000Z

30

Enhanced Oil Recovery in High Salinity High Temperature Reservoir by Chemical Flooding  

E-Print Network (OSTI)

Studying chemical enhanced oil recovery (EOR) in a high-temperature/high-salinity (HT/HS) reservoir will help expand the application of chemical EOR to more challenging environments. Until recently, chemical EOR was not recommended at reservoirs that contain high concentrations of divalent cations without the need to recondition the reservoir by flooding it with less saline/ less hardness brines. This strategy was found ineffective in preparing the reservoir for chemical flooding. Surfactants used for chemical flooding operating in high temperatures tend to precipitate when exposed to high concentrations of divalent cations and will partition to the oil phase at high salinities. In this study amphoteric surfactant was used to replace the traditionally used anionic surfactants. Amphoteric surfactants show higher multivalent cations tolerance with better thermal stability. A modified amphoteric surfactant with lower adsorption properties was evaluated for oil recovery. Organic alkali was used to eliminate the water softening process when preparing the chemical solution and reduce potential scale problems caused by precipitation due to incompatibility between chemical slug containing alkali and formation brine. Using organic alkali helped in minimizing softening required when preparing an alkali-surfactant-polymer (ASP) solution using seawater. Solution prepared with organic alkali showed the least injectivity decline when compared to traditional alkalis (NaOH and Na2CO3) and sodium metaborate. Adding organic alkali helped further reduce IFT values when added to surfactant solution. Amphoteric surfactant was found to produce low IFT values at low concentrations and can operate at high salinity / high hardness conditions. When mixed with polymer it improved the viscosity of the surfactant-polymer (SP) solution when prepared in high salinity mixing water (6% NaCl). When prepared in seawater and tested in reservoir temperature (95°C) no reduction in viscosity was found. Unlike the anionic surfactant that causes reduction in viscosity of the SP solution at reservoir temperature. This will not require increasing the polymer concentration in the chemical slug. Unlike the case when anionic surfactant was used and more polymer need to be added to compensate the reduction in viscosity. Berea sandstone cores show lower recovery compared to dolomite cores. It was also found that Berea cores were more sensitive to polymer concentration and type and injectivity decline can be a serious issue during chemical and polymer injection. Dolomite did not show injectivity decline during chemical and polymer flooding and was not sensitive to the polymer concentration when a polymer with low molecular weight was used. CT scan was employed to study the displacement of oil during ASP, SP, polymer and surfactant flooding. The formation and propagation oil bank was observed during these core flood experiments. ASP and SP flooding showed the highest recovery, and formation and propagation of oil bank was clearer in these experiments compared to surfactant flooding. It was found that in Berea sandstone with a permeability range of 50 to 80 md that the recovery and fluid flow was through some dominating and some smaller channels. This explained the deviation from piston-like displacement, where a sharp change in saturation in part of the flood related to the dominated channels and tapered front with late arrival when oil is recovered from the smaller channels. It was concluded that the recovery in the case of sandstone was dominated by the fluid flow and chemical propagation in the porous media not by the effectiveness of the chemical slug to lower the IFT between the displacing fluid and oil.

Bataweel, Mohammed Abdullah

2011-12-01T23:59:59.000Z

31

Integrated High Resolution Microearthquake Analysis and Monitoring for Optimizing Steam Production at The Geysers Geothermal Field, California  

E-Print Network (OSTI)

induced seismicity at The Geysers steam reservoir, NorthernMonitoring for Optimizing Steam Production at The Geysersgas concentrations in steam produced from The Geysers,

Majer, Ernest; Peterson, John; Stark, Mitch; Smith, Bill; Rutqvist, Jonny; Kennedy, Mack

2004-01-01T23:59:59.000Z

32

Analysis of Injection-Induced Micro-Earthquakes in a Geothermal Steam Reservoir, The Geysers Geothermal Field, California  

E-Print Network (OSTI)

and P. Segall, P. 1997. Subsidence at The Geysers geothermalA.P. 2001. Seismicity, subsidence and strain at The Geysersrespectively, as well as subsidence of about 0.5 to 1 meter.

Rutqvist, J.

2008-01-01T23:59:59.000Z

33

Characterization Of Fracture Patterns In The Geysers Geothermal...  

Open Energy Info (EERE)

By Shear-Wave Splitting Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Report: Characterization Of Fracture Patterns In The Geysers Geothermal Reservoir By...

34

A Comprehensive Study of Fracture Patterns and Densities in The Geysers Geothermal Reservoir Using Microearthquake Shear-Wave Splitting Tomography  

DOE Green Energy (OSTI)

In this project we developed a method for using seismic S-wave data to map the patterns and densities of sub-surface fractures in the NW Geysers Geothermal Field/ (1) This project adds to both the general methods needed to characterize the geothermal production fractures that supply steam for power generation and to the specific knowledge of these in the Geysers area. (2)By locating zones of high fracture density it will be possible to reduce the cost of geothermal power development with the targeting of high production geothermal wells. (3) The results of the project having been transferred to both US based and international geothermal research and exploration agencies and concerns by several published papers and meeting presentations, and through the distribution of the data handling and other software codes we developed.

Peter E. Malin; Eylon Shalev; Min Lou; Silas M. Simiyu; Anastasia Stroujkova; Windy McCausland

2004-02-24T23:59:59.000Z

35

Analysis of Injection-Induced Micro-Earthquakes in a Geothermal Steam Reservoir, The Geysers Geothermal Field, California  

E-Print Network (OSTI)

Earthquakes in a Geothermal Steam Reservoir, The Geysersanalysis of the geothermal steam production and cold waterAs a result of high rate of steam withdrawal, the reservoir

Rutqvist, J.

2008-01-01T23:59:59.000Z

36

Characterizing Fractures in Geysers Geothermal Field by Micro-seismic Data,  

Open Energy Info (EERE)

Characterizing Fractures in Geysers Geothermal Field by Micro-seismic Data, Characterizing Fractures in Geysers Geothermal Field by Micro-seismic Data, Using Soft Computing, Fractals, and Shear Wave Anisotropy Geothermal Project Jump to: navigation, search Last modified on July 22, 2011. Project Title Characterizing Fractures in Geysers Geothermal Field by Micro-seismic Data, Using Soft Computing, Fractals, and Shear Wave Anisotropy Project Type / Topic 1 Recovery Act: Enhanced Geothermal Systems Component Research and Development/Analysis Project Type / Topic 2 Fracture Characterization Technologies Project Description The proposed program will focus on predicting characteristics of fractures and their orientation prior to drilling new wells. It will also focus on determining the location of the fractures, spacing and orientation during drilling, as well as characterizing open fractures after stimulation to help identify the location of fluid flow pathway within the EGS reservoir. These systems are created by passively injecting cold water, and stimulating the permeation of the injected water through existing fractures into hot wet and hot dry rocks by thermo-elastic cooling shrinkage. The stimulated, existing fractures thus enhance the permeability of the hot rock formations, hence enabling better circulation of water for the purpose of producing the geothermal resource. The main focus of the project will be on developing better understanding of the mechanisms for the stimulation of existing fractures, and to use the information for better exploitation of the high temperature geothermal resources located in the northwest portion of the Geysers field and similar fields.

37

Seismic Velocity And Attenuation Structure Of The Geysers Geothermal Field,  

Open Energy Info (EERE)

Velocity And Attenuation Structure Of The Geysers Geothermal Field, Velocity And Attenuation Structure Of The Geysers Geothermal Field, California Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Seismic Velocity And Attenuation Structure Of The Geysers Geothermal Field, California Details Activities (1) Areas (1) Regions (0) Abstract: The Geysers geothermal field is located in northern California and is one of the world's largest producers of electricity from geothermal energy. A key resource management issue at this field is the distribution of fluid in the matrix of the reservoir rock. In this paper, we interpret seismic compressional-wave velocity and quality quotient (Q) data at The Geysers in terms of the geologic structure and fluid saturation in the reservoir. Our data consist of waveforms from approximately 300

38

Compound and Elemental Analysis At Geysers Area (Kennedy & Truesdell...  

Open Energy Info (EERE)

system and its evolution. The high proportion of magmatic gas and high total NCG in HTR steam are inconsistent with an origin of the vapor-dominated Northwest Geysers reservoir...

39

Geysers | Open Energy Information  

Open Energy Info (EERE)

Page Page Edit History Facebook icon Twitter icon » Geysers Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Geysers Dictionary.png Geysers: A type of hot spring that intermittently erupts a column of hot water and steam into the air. Other definitions:Wikipedia Reegle Modern Geothermal Features Typical list of modern geothermal features Hot Springs Fumaroles Warm or Steaming Ground Mudpots, Mud Pools, or Mud Volcanoes Geysers Blind Geothermal System Beehive Geyser in Yellowstone National Park(reference: http://www.flickr.com/photos/alanenglish/2824228526/) Geysers occur where geothermally heated waters develop pressure near surface conduits. When the pressure passes a certain threshold the water erupts at the surface, often in tall bursts. Half of the world's geysers

40

The Geyser Bight Geothermal Area, Umnak Island, Alaska | Open Energy  

Open Energy Info (EERE)

Geyser Bight Geothermal Area, Umnak Island, Alaska Geyser Bight Geothermal Area, Umnak Island, Alaska Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: The Geyser Bight Geothermal Area, Umnak Island, Alaska Details Activities (2) Areas (1) Regions (0) Abstract: The Geyser Bight geothermal area contains one of the hottest and most extensive areas of thermal springs in Alaska, and is the only site in the state with geysers. Heat for the geothermal system is derived from crustal magma associated with Mt. Recheshnoi volcano. Successive injections of magma have probably heated the crust to near its minimum melting point and produced the only high-SiO2 rhyolites in the oceanic part of the Aleutian arc. At least two hydrothermal reservoirs are postulated to underlie the geothermal area and have temperatures of 165° and 200°C,

Note: This page contains sample records for the topic "geysers high-temperature reservoir" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Seismic monitoring at The Geysers  

DOE Green Energy (OSTI)

During the last several years Lawrence Berkeley Laboratory (LBL) and Lawrence Livermore National Laboratory (LLNL) have been working with industry partners at The Geysers geothermal field to evaluate and develop methods for applying the results of microearthquake (MEQ) monitoring. It is a well know fact that seismicity at The Geysers is a common occurrence, however, there have been many studies and papers written on the origin and significance of the seismicity. The attitude toward MEQ data ranges from being nothing more than an curious artifact of the production activities, to being a critical tool in evaluating the reservoir performance. The purpose of the work undertaken b y LBL and LLNL is to evaluate the utility, as well as the methods and procedures used in of MEQ monitoring, recommend the most cost effective implementation of the methods, and if possible link physical processes and parameters to the generation of MEQ activity. To address the objectives above the MEQ work can be categorized into two types of studies. The first type is the direct analysis of the spatial and temporal distribution of MEQ activity and studying the nature of the source function relative to the physical or chemical processes causing the seismicity. The second broad area of study is imaging the reservoir/geothermal areas with the energy created by the MEQ activity and inferring the physical and/or chemical properties within the zone of imaging. The two types of studies have obvious overlap, and for a complete evaluation and development require high quality data from arrays of multicomponent stations. Much of the effort to date at The Geysers by both DOE and the producers has concentrated establishing a high quality data base. It is only within the last several years that this data base is being fully evaluated for the proper and cost effective use of MEQ activity. Presented here are the results to date of DOE`s effort in the acquisition and analysis of the MEQ data.

Majer, E.L.; Romero, A.; Vasco, D.; Kirkpatrick, A.; Peterson, J.E. [Lawrence Berkeley Lab., CA (United States); Zucca, J.J.; Hutchings, L.J.; Kasameyer, P.W. [Lawrence Livermore National Lab., CA (United States)

1993-04-01T23:59:59.000Z

42

High temperature refrigerator  

SciTech Connect

A high temperature magnetic refrigerator which uses a Stirling-like cycle in which rotating magnetic working material is heated in zero field and adiabatically magnetized, cooled in high field, then adiabatically demagnetized. During this cycle said working material is in heat exchange with a pumped fluid which absorbs heat from a low temperature heat source and deposits heat in a high temperature reservoir. The magnetic refrigeration cycle operates at an efficiency 70% of Carnot.

Steyert, Jr., William A. (Los Alamos, NM)

1978-01-01T23:59:59.000Z

43

Southeast geysers effluent pipeline project. Final report  

DOE Green Energy (OSTI)

The project concept originated in 1990 with the convergence of two problems: (1) a need for augmented injection to mitigate declining reservoir productivity at the Geysers; and (2) a need for a new method of wastewater disposal for Lake County communities near the The Geysers. A public/private partnership of Geysers operators and the Lake County Sanitation District (LACOSAN) was formed in 1991 to conduct a series of engineering, environmental, and financing studies of transporting treated wastewater effluent from the communities to the southeast portion of The Geysers via a 29-mile pipeline. By 1994, these evaluations concluded that the concept was feasible and the stakeholders proceeded to formally develop the project, including pipeline and associated facilities design; preparation of an environmental impact statement; negotiation of construction and operating agreements; and assembly of $45 million in construction funding from the stakeholders, and from state and federal agencies with related program goals. The project development process culminated in the system`s dedication on October 16, 1997. As of this writing, all project components have been constructed or installed, successfully tested in compliance with design specifications, and are operating satisfactorily.

Dellinger, M.

1998-01-15T23:59:59.000Z

44

Compound and Elemental Analysis At Geysers Area (Kennedy & Truesdell, 1996)  

Open Energy Info (EERE)

Compound and Elemental Analysis At Geysers Area (Kennedy & Truesdell, 1996) Compound and Elemental Analysis At Geysers Area (Kennedy & Truesdell, 1996) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Compound and Elemental Analysis At Geysers Area (Kennedy & Truesdell, 1996) Exploration Activity Details Location Geysers Area Exploration Technique Compound and Elemental Analysis Activity Date Usefulness could be useful with more improvements DOE-funding Unknown Notes The evidence provided by the noble gases for a magmatic gas component in the Northwest Geysers adds new constraints to genetic models of the system and its evolution. The high proportion of magmatic gas and high total NCG in HTR steam are inconsistent with an origin of the vapor-dominated Northwest Geysers reservoir from deep boiling of a connate or metamorphic

45

Isotopic Analysis At Geysers Area (Kennedy & Truesdell, 1996) | Open Energy  

Open Energy Info (EERE)

Geysers Area (Kennedy & Truesdell, 1996) Geysers Area (Kennedy & Truesdell, 1996) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Isotopic Analysis- Fluid At Geysers Area (Kennedy & Truesdell, 1996) Exploration Activity Details Location Geysers Area Exploration Technique Isotopic Analysis- Fluid Activity Date Usefulness could be useful with more improvements DOE-funding Unknown Notes The evidence provided by the noble gases for a magmatic gas component in the Northwest Geysers adds new constraints to genetic models of the system and its evolution. The high proportion of magmatic gas and high total NCG in HTR steam are inconsistent with an origin of the vapor-dominated Northwest Geysers reservoir from deep boiling of a connate or metamorphic water. Instead, the strong magmatic component suggests that the HTR and the

46

A Comprehensive Study Of Fracture Patterns And Densities In The Geysers  

Open Energy Info (EERE)

Study Of Fracture Patterns And Densities In The Geysers Study Of Fracture Patterns And Densities In The Geysers Geothermal Reservoir Using Microearthquake Shear-Wave Splitting Tomography Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Report: A Comprehensive Study Of Fracture Patterns And Densities In The Geysers Geothermal Reservoir Using Microearthquake Shear-Wave Splitting Tomography Details Activities (1) Areas (1) Regions (0) Abstract: In this project we developed a method for using seismic S-wave data to map the patterns and densities of sub-surface fractures in the NW Geysers Geothermal Field/ (1) This project adds to both the general methods needed to characterize the geothermal production fractures that supply steam for power generation and to the specific knowledge of these in the Geysers area. (2)By locating zones of high fracture density it will be

47

Subsurface steam sampling in Geysers wells  

DOE Green Energy (OSTI)

A new downhole sampling tool has been built for use in steam wells at The Geysers geothermal reservoir. The tool condenses specimens into an initially evacuated vessel that is opened down hole at the direction of an on-board computer. The tool makes a temperature log of the well as it is deployed, and the pressure and temperature of collected specimens are monitored for diagnostic purposes. Initial tests were encouraging, and the Department of Energy has funded an expanded effort that includes data gathering needed to develop a three-dimensional model of The Geysers geochemical environment. Collected data will be useful for understanding the origins of hydrogen chloride and non-condensable gases in the steam, as well as tracking the effect of injection on the composition of produced steam. Interested parties are invited to observe the work and to join the program.

Lysne, P. [Lysne (Peter), Albuquerque, NM (United States); Koenig, B. [Unocal Geothermal and Power Operations Group, Santa Rose, CA (United States); Hirtz, P. [Thermochem, Inc., Santa Rosa, CA (United States); Normann, R.; Henfling, J. [Sandia National Labs., Albuquerque, NM (United States)

1997-01-01T23:59:59.000Z

48

Cuttings Analysis At Geysers Geothermal Area (1976) | Open Energy  

Open Energy Info (EERE)

1976) 1976) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Cuttings Analysis At Geysers Geothermal Area (1976) Exploration Activity Details Location Geysers Geothermal Area Exploration Technique Cuttings Analysis Activity Date 1976 Usefulness not indicated DOE-funding Unknown Exploration Basis Determine the geologic environment of the geothermal area Notes The geologic environment of the particular areas of interest are described, including rock types, geologic structure, and other important parameters that help describe the reservoir and overlying cap rock. References Pratt, H. R.; Simonson, E. R. (1 January 1976) Geotechnical studies of geothermal reservoirs Retrieved from "http://en.openei.org/w/index.php?title=Cuttings_Analysis_At_Geysers_Geothermal_Area_(1976)&oldid=473908

49

A database for The Geysers geothermal field  

DOE Green Energy (OSTI)

In Fiscal Year 1985-1986 the Earth Sciences Division of Lawrence Berkeley Laboratory (LBL) began a multi-year project for SLC to organize and analyze the field data from The Geysers. In the first year, most of the work concentrated on the development of a comprehensive database for The Geysers, and conventional reservoir engineering analysis of the data. Essentially, all non-proprietary data for wells at The Geysers have been incorporated into the database, as well as proprietary data from wells located on State leases. In following years, a more detailed analysis of The Geysers data has been carried out. This report is a summary of the non- proprietary work performed in FY 1985--1986. It describes various aspects of the database and also includes: review sections on Field Development, Geology, Geophysics, Geochemistry and Reservoir Engineering. It should be emphasized that these background chapters were written in 1986, and therefore only summarize the information available at that time. The appendices contain individual plots of wellhead pressures, degree of superheat, steam flow rates, cumulative mass flows, injection rates and cumulative injection through 1988 for approximately 250 wells. All of the data contained in this report are non-proprietary, from State and non-State leases. The production/injection and heat flow data from the wells were obtained from the California State Division of Oil and gas (DOG) (courtesy of Dick Thomas). Most of the other data were obtained from SLC files in Sacramento (courtesy of Charles Priddy), or DOG files in Santa Rosa (courtesy of Ken Stelling). 159 refs., 23 figs., 3 tabs.

Bodvarsson, G.S.; Cox, B.L.; Fuller, P.; Ripperda, M.; Tulinius, H.; Witherspoon, P.A.; Goldstein, N.; Flexser, S.; Pruess, K. (Lawrence Berkeley Lab., CA (USA)); Truesdell, A. (Geological Survey, Menlo Park, CA (USA))

1989-09-01T23:59:59.000Z

50

Seismic monitoring at the Geysers Geothermal Field  

DOE Green Energy (OSTI)

This report summarizes the efforts of LBL to utilize MEQ data in reservoir definition as well as in evaluating its performance. Results of the study indicate that the velocity and attenuation variations correlate with the known geology of the field. At the NW Geysers, high velocity anomalies correspond to metagraywacke and greenstone units while low velocity anomalies seem to be associated with Franciscan melanges. Low Vp/Vs and high attenuation delineate the steam reservoir suggesting undersaturation of the reservoir rocks. Ongoing monitoring of Vp/Vs may be useful in tracking the expansion of the steam zone with time. Spatial and temporal patterns of seismicity exhibit compelling correlation with geothermal exploitation. Clusters of MEQs occur beneath active injection wells and appear to shift with changing injection activities. High resolution MEQ locations hold promise for inferring fluid flow paths, especially in tracking injectate. This study has demonstrated that continuous seismic monitoring may be useful as an active reservoir management tool.

Romero, A.E. Jr.; Kirkpatrick, A.; Majer, E.L.; Peterson, J.E. Jr.

1994-09-01T23:59:59.000Z

51

LBL research on The Geysers: Conceptual models, simulation and monitoring studies  

DOE Green Energy (OSTI)

As part of The Geysers research activities of DOE's Geothermal Reservoir Technology Program, LBL, in close co-operation with industry, is performing fundamental and applied studies of vapor- dominated geothermal systems. These studies include the development of new methods for evaluating cold water injection, monitoring of the seismic activity in The Geysers associated with injection and production, interpretation of pressure and geochemical changes measured during well tests and long-term production and injection operations, and improvement of existing models of the geothermal system. A review is given of the latest results of DOE-sponsored LBL reservoir engineering and seismic studies relevant to The Geysers.

Bodvarsson, G.S.; Lippmann, M.J.; Majer, E.L.; Pruess, K.

1992-03-01T23:59:59.000Z

52

LBL Research on the Geysers: Conceptual Models, Simulation and Monitoring Studies  

DOE Green Energy (OSTI)

As part of The Geysers research activities of DOE's Geothermal Reservoir Technology Program, LBL, in close cooperation with industry, is performing fundamental and applied studies of vapor-dominated geothermal systems. These studies include the development of new methods for evaluating cold water injection, monitoring of the seismic activity in The Geysers associated with injection and production, interpretation of pressure and geochemical changes measured during well tests and long-term production and injection operations, and improvement of existing models of the geothermal system. A review is given of the latest results of DOE-sponsored LBL reservoir engineering and seismic studies relevant to The Geysers.

Bodvarsson, G.S.; Lippmann, M.J.; Majer, E.L.; Pruess, K.

1992-03-24T23:59:59.000Z

53

LBL research on The Geysers: Conceptual models, simulation and monitoring studies  

DOE Green Energy (OSTI)

As part of The Geysers research activities of DOE`s Geothermal Reservoir Technology Program, LBL, in close co-operation with industry, is performing fundamental and applied studies of vapor- dominated geothermal systems. These studies include the development of new methods for evaluating cold water injection, monitoring of the seismic activity in The Geysers associated with injection and production, interpretation of pressure and geochemical changes measured during well tests and long-term production and injection operations, and improvement of existing models of the geothermal system. A review is given of the latest results of DOE-sponsored LBL reservoir engineering and seismic studies relevant to The Geysers.

Bodvarsson, G.S.; Lippmann, M.J.; Majer, E.L.; Pruess, K.

1982-03-01T23:59:59.000Z

54

Resource, technology, and environment at the geysers  

DOE Green Energy (OSTI)

A general review, description, and history of geothermal development at the Geysers is presented. Particular emphasis is placed on environmental impacts of development of the area. The discussion is presented under the following chapter titles: introduction; energy, enthalpy and the First Law; vapor-producing geothermal reservoirs--review and models; geothermal; entropy and the Second Law; power plants--basics; H/sub 2/S emissions; hydrogen sulfide--possible health effects and odor; other emissions; power plant hydrogen sulfide abatement; hot water based geothermal development; phytotoxicity of geothermal emissions; appendices; and bibliography. (JGB)

Weres, O.; Tsao, K.; Wood, B.

1977-06-01T23:59:59.000Z

55

Micro-Earthquake At Geysers Area (Laney, 2005) | Open Energy Information  

Open Energy Info (EERE)

Laney, 2005) Laney, 2005) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Micro-Earthquake At Geysers Area (Laney, 2005) Exploration Activity Details Location Geysers Area Exploration Technique Micro-Earthquake Activity Date Usefulness useful DOE-funding Unknown Notes Characterization of 3D Fracture Patterns at The Geysers and Coso Geothermal Reservoirs by Shear-wave Splitting, Rial, Elkibbi, Yang and Pereyra. The raw data for the project consists of seismographic recordings of microearthquakes (MEQ) detected over many years by arrays of sensors at both The Geysers and Coso. References Patrick Laney (2005) Federal Geothermal Research Program Update - Fiscal Year 2004 Retrieved from "http://en.openei.org/w/index.php?title=Micro-Earthquake_At_Geysers_Area_(Laney,_2005)&oldid=389456

56

Geysers injection modeling  

DOE Green Energy (OSTI)

Our research is concerned with mathematical modeling techniques for engineering design and optimization of water injection in vapor-dominated systems. The emphasis in the project has been on the understanding of physical processes and mechanisms during injection, applications to field problems, and on transfer of numerical simulation capabilities to the geothermal community. This overview summarizes recent work on modeling injection interference in the Southeast Geysers, and on improving the description of two-phase flow processes in heterogeneous media.

Pruess, K.

1994-04-01T23:59:59.000Z

57

Microearthquake source mechanism studies at the Geysers geothermal field  

DOE Green Energy (OSTI)

In this paper the authors discuss moment tensors obtained from inversion of MEQ waveform data recorded at the Southeast (SE) and Northwest (NW) Geysers geothermal areas by the high-resolution seismic networks operated by Lawrence Berkeley National Laboratory (Berkeley Lab) and the Coldwater Creek Geothermal Company (now CCPA). The network in the SE Geysers consists of 13 high-frequency (4.5 Hz), digital (480 samples), three-component, telemetered stations deployed on the surface in portions of the Calpine, Unocal-NEC-Thermal (U-N-T), and Northern California Power Agency (NCPA) leases. The network in the NW Geysers is a 16-station borehole array of three-component geophones (4.5 Hz), digital at 400 samples/sec, and telemetered to a central site. One of the main objectives of Berkeley Lab`s program at the Geysers is to assess the utility of MEQ monitoring as a reservoir management tool. Discrimination of the mechanisms of these events may aid in the interpretation of MEQ occurrence patterns and their significance to reservoir processes and conditions of interest to reservoir managers. Better understanding of the types of failure deduced from source mechanism studies, and their relations to production parameters, should also lead to a better understanding of the effects of injection and withdrawal.

Kirkpatrick, A.; Romero, A. Jr.; Peterson, J. Jr.; Johnson, L.; Majer, E. [Lawrence Berkeley National Lab., CA (United States). Earth Sciences Div.

1996-04-01T23:59:59.000Z

58

High Temperature | Open Energy Information  

Open Energy Info (EERE)

Temperature Temperature Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Sanyal Temperature Classification: High Temperature Dictionary.png High Temperature: No definition has been provided for this term. Add a Definition Sanyal Temp Classification This temperature scheme was developed by Sanyal in 2005 at the request of DOE and GEA, as reported in Classification of Geothermal Systems: A Possible Scheme. Extremely Low Temperature Very Low Temperature Low Temperature Moderate Temperature High Temperature Ultra High Temperature Steam Field Reservoir fluid between 230°C and 300°C is considered by Sanyal to be "high temperature." "Above a temperature level of 230°C, the reservoir would be expected to become two-phase at some point during exploitation. The next higher

59

Fracture patterns in graywacke outcrops at The Geysers geothermal field  

DOE Green Energy (OSTI)

The Geysers geothermal field covers an area of more than 35,000 acres and represents one of the most significant steam fields in the world. The heterogeneous nature of the reservoir, its fracture network and non-sedimentary rock distinguish it from ordinary sandstone reservoirs in terms of reservoir definition and evaluation (Stockton et al. 1984). Analysis of cuttings, record of steam entries, temperature and pressure surveys and spinner logs have contributed to an understanding of the subsurface geology and rock characteristics of the Geysers. Few conventional electrical log data are available for the main body of the reservoir. It is generally believed that while the fractures are the main conducts for fluid transport through the reservoirs, tight rocks between the major fractures contain the bulk of the fluid reserves. No independent measurement of liquid and vapor saturation can be made from the existing downhole tools. Pressure depletion in The Geysers geothermal field has become a major concern to the operators and utility companies in recent years. Plans for further development activities and future field management are contingent upon accurate computer modeling and definition of the field. The primary issues in reliable characterization of The Geysers field are the role of the rock matrix in holding liquid reserves and providing pressure support, the nature of fracture network, extent of liquid saturation in the reservoirs and injection pattern strategies to maximize heat recovery. Current modeling of The Geysers field is done through the use of general purpose geothermal reservoir simulators. Approaches employed include treating the reservoir as a single porosity equivalent or a dual porosity system. These simulators include formulation to represent transport of heat, steam and water. Heterogeneities are represented by spatial variations in formation or fracture permeability-thickness product, porosity or fluid saturations. Conceptual models based on dual porosity representations have been shown to duplicate the history. Prediction of future performance is, however, not reliable because of uncertainties in assumptions of the initial state of the reservoir, Specifically, several different initial state conditions have led to a fairly good match of the historical data. Selection of the exact initial conditions is a major dilemma. In dual porosity models, the complex nature of fracture network is formulated by a systematic, well-organized set of orthogonal fractures. Also, the exact nature of matrix-fracture interaction, and the role of adsorption and capillarity in pressure support are not well-defined.

Sammis, Charles G.; Lin Ji An; Ershaghi, I.

1991-01-01T23:59:59.000Z

60

The Geyser Bight geothermal area, Umnak Island, Alaska  

DOE Green Energy (OSTI)

The Geyser Bight geothermal area contains one of the hottest and most extensive areas of thermal springs in Alaska, and is the only site in the state with geysers. Heat for the geothermal system is derived from crustal magma associated with Mt. Recheshnoi volcano. Successive injections of magma have probably heated the crust to near its minimum melting point and produced the only high-SiO[sub 2] rhyolites in the oceanic part of the Aleutian arc. At least two hydrothermal reservoirs are postulated to underlie the geothermal area and have temperatures of 165 and 200 C, respectively, as estimated by geothermometry. Sulfate-water isotope geothermometers suggest a deeper reservoir with a temperature of 265 C. The thermal spring waters have relatively low concentrations of Cl (600 ppm) but are rich in B (60 ppm) and As (6 ppm). The As/Cl ratio is among the highest reported for geothermal waters. 41 refs., 12 figs., 8 tabs.

Motyka, R.J. (Alaska Div. of Geological and Geophysical Surveys, Juneau, AK (United States)); Nye, C.J. (Alaska Div. of Geological and Geophysical Surveys, Fairbanks, AK (United States) Univ. of Alaska, Fairbanks, AK (United States). Geophysical Inst.); Turner, D.L. (Univ. of Alaska, Fairbanks, AK (United States). Geophysical Inst.); Liss, S.A. (Alaska Div. of Geological and Geophysical Surveys, Fairbanks, AK (United States))

1993-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "geysers high-temperature reservoir" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Ultra High Temperature | Open Energy Information  

Open Energy Info (EERE)

Ultra High Temperature Ultra High Temperature Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Sanyal Temperature Classification: Ultra High Temperature Dictionary.png Ultra High Temperature: No definition has been provided for this term. Add a Definition Sanyal Temp Classification This temperature scheme was developed by Sanyal in 2005 at the request of DOE and GEA, as reported in Classification of Geothermal Systems: A Possible Scheme. Extremely Low Temperature Very Low Temperature Low Temperature Moderate Temperature High Temperature Ultra High Temperature Steam Field Reservoir fluid greater than 300°C is considered by Sanyal to be "ultra high temperature". "Such reservoirs are characterized by rapid development of steam saturation in the reservoir and steam fraction in the mobile fluid phase upon

62

Definition: Geysers | Open Energy Information  

Open Energy Info (EERE)

Geysers A type of hot spring that intermittently erupts a column of hot water and steam into the air. View on Wikipedia Wikipedia Definition Ret LikeLike UnlikeLike You like...

63

Numerical modeling of injection experiments at The Geysers  

DOE Green Energy (OSTI)

Data from injection experiments in the southeast Geysers are presented that show strong interference (both negative and positive) with a neighboring production well. Conceptual and numerical models are developed that explain the negative interference (decline of production rate) in terms of heat transfer limitations and water-vapor relative permeability effects. Recovery and over-recovery following injection shut-in are attributed to boiling of injected fluid, with heat of vaporization provided by the reservoir rocks.

Pruess, K. [Lawrence Berkeley Lab., CA (United States); Enedy, S. [Northern California Power Agency, Middletown, CA (United States)

1993-01-01T23:59:59.000Z

64

High Temperature Capacitor Development  

Science Conference Proceedings (OSTI)

The absence of high-temperature electronics is an obstacle to the development of untapped energy resources (deep oil, gas and geothermal). US natural gas consumption is projected to grow from 22 trillion cubic feet per year (tcf) in 1999 to 34 tcf in 2020. Cumulatively this is 607 tcf of consumption by 2020, while recoverable reserves using current technology are 177 tcf. A significant portion of this shortfall may be met by tapping deep gas reservoirs. Tapping these reservoirs represents a significant technical challenge. At these depths, temperatures and pressures are very high and may require penetrating very hard rock. Logistics of supporting 6.1 km (20,000 ft) drill strings and the drilling processes are complex and expensive. At these depths up to 50% of the total drilling cost may be in the last 10% of the well depth. Thus, as wells go deeper it is increasingly important that drillers are able to monitor conditions down-hole such as temperature, pressure, heading, etc. Commercial off-the-shelf electronics are not specified to meet these operating conditions. This is due to problems associated with all aspects of the electronics including the resistors and capacitors. With respect to capacitors, increasing temperature often significantly changes capacitance because of the strong temperature dependence of the dielectric constant. Higher temperatures also affect the equivalent series resistance (ESR). High-temperature capacitors usually have low capacitance values because of these dielectric effects and because packages are kept small to prevent mechanical breakage caused by thermal stresses. Electrolytic capacitors do not operate at temperatures above 150oC due to dielectric breakdown. The development of high-temperature capacitors to be used in a high-pressure high-temperature (HPHT) drilling environment was investigated. These capacitors were based on a previously developed high-voltage hybridized capacitor developed at Giner, Inc. in conjunction with a unique high-temperature electrolyte developed during the course of the program. During this program the feasibility of operating a high voltage hybridized capacitor at 230oC was demonstrated. Capacitor specifications were established in conjunction with potential capacitor users. A method to allow for capacitor operation at both ambient and elevated temperatures was demonstrated. The program was terminated prior to moving into Phase II due to a lack of cost-sharing funds.

John Kosek

2009-06-30T23:59:59.000Z

65

High Temperatures & Electricity Demand  

E-Print Network (OSTI)

High Temperatures & Electricity Demand An Assessment of Supply Adequacy in California Trends.......................................................................................................1 HIGH TEMPERATURES AND ELECTRICITY DEMAND.....................................................................................................................7 SECTION I: HIGH TEMPERATURES AND ELECTRICITY DEMAND ..........................9 BACKGROUND

66

Velocity and Attenuation Structure of the Geysers Geothermal Field, California  

DOE Green Energy (OSTI)

The Geysers geothermal field is located in northern California and is one of the world's largest producers of electricity from geothermal energy. The resource consists of primarily dry steam which is produced from a low, porosity fractured graywacke. Over the last several years steam pressure at the Geysers has been dropping. Concern over decline of the resource has prompted research to understand its fundamental nature. A key issue is the distribution of fluid in the matrix of the reservoir rock. In this paper we interpret seismic compressional-wave velocity and attenuation data at the Geysers in terms of the geologic structure and fluid saturation in the reservoir. Our data consist of approximately 300 earthquakes that are of magnitude 1.2 and are distributed in depth between sea level and 2.5 km. Using compressional-wave arrival times, we invert for earthquake location, origin time, and velocity along a three-dimensional grid. Using the initial pulse width of the compressional-wave, we invert for the initial pulse width associated with the source, and the one-dimensional Q structure. We find that the velocity structure correlates with known mapped geologic units, including a velocity high that is correlated with a felsite body at depth that is known from drilling. The dry steam reservoir, which is also known from drilling, is mostly correlated with low velocity. The Q increases with depth to the top of the dry steam reservoir and decreases with depth within the reservoir. The decrease of Q with depth probably indicates that the saturation of the matrix of the reservoir rock increases with depth.

Zucca, J. J.; Hutchings, L. J.; Kasameyer, P. W.

1993-01-01T23:59:59.000Z

67

Geysers Geothermal Association GGA | Open Energy Information  

Open Energy Info (EERE)

GGA GGA Jump to: navigation, search Name Geysers Geothermal Association (GGA) Place Santa Rosa, California Zip 95404 Sector Geothermal energy Product Trade association focused on addressing issues relating to the geothermal industry. References Geysers Geothermal Association (GGA)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Geysers Geothermal Association (GGA) is a company located in Santa Rosa, California . References ↑ "Geysers Geothermal Association (GGA)" Retrieved from "http://en.openei.org/w/index.php?title=Geysers_Geothermal_Association_GGA&oldid=345852" Categories: Clean Energy Organizations Companies Organizations Stubs What links here

68

Permeability-thickness determination from transient production response at the southeast geysers  

DOE Green Energy (OSTI)

The Fetkovich production decline curve analysis method was extended for application to vapor-dominated geothermal reservoirs for the purpose of estimating the permeability-thickness product (kh) from the transient production response. The analytic dimensionless terms for pressure, production rate, decline rate, and decline time were derived for saturated steam using the real gas potential and customary geothermal production units of pounds-mass per hour. The derived terms were numerically validating using ``Geysers-line`` reservoir properties at initial water saturation of 0 and at permeabilities of 1, 10, and 100 mD. The production data for 48 wells in the Southeast Geysers were analyzed and the permeability-thickness products determined from the transient production response using the Fetkovich production decline type curve. The kh results were in very good agreement with the published range at the Southeast Geysers and show regions of high permeability-thickness.

Faulder, D.D.

1996-08-01T23:59:59.000Z

69

PROCEEDINGS, Thirty-Sixth Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, January 31 -February 2, 2011  

E-Print Network (OSTI)

PROCEEDINGS, Thirty-Sixth Workshop on Geothermal Reservoir Engineering Stanford University Berkeley, California 94720 e-mail: Kboyle@lbl.gov ABSTRACT The Geysers Geothermal Reservoir experiences, and processing system. INTRODUCTION Geological Setting The Geysers geothermal reservoir is located just south

Stanford University

70

The Geysers Geothermal Field Update1990/2010  

E-Print Network (OSTI)

B. , 2010.  Geysers power plant H 2 S abatement  update.  operations at The Geysers power plant, Geothermal Resources Table 1:  Geothermal Power Plants Operating at The Geysers (

Brophy, P.

2012-01-01T23:59:59.000Z

71

Downhole Seismic Monitoring at the Geysers  

DOE Green Energy (OSTI)

A 500-ft length, 6-level, 3-component, vertical geophone array was permanently deployed within the upper 800 ft of Unocal's well GDCF 63-29 during a plug and abandonment operation on April 7, 1998. The downhole array remains operational after a period of 1 year, at a temperature of about 150 C. Continuous monitoring and analysis of shallow seismicity (<4000 ft deep) has been conducted over that same 1-year period. The downhole array was supplemented with 4 surface stations in late-1998 and early-1999 to help constrain locations of shallow seismicity. Locations occurring within about 1 km ({approximately}3000 ft) of the array have been determined for a subset of high-frequency events detected on the downhole and surface stations for the 10-week period January 6 to March 16, 1999. These events are distinct from surface-monitored seismicity at The Geysers in that they occur predominantly above the producing reservoir, at depths ranging from about 1200 to 4000 ft depth (1450 to -1350 ft elevation). The shallow seismicity shows a northeast striking trend, similar to seismicity trends mapped deeper within the reservoir and the strike of the predominant surface lineament observed over the productive field.

Rutledge, J.T.; Anderson, T.D.; Fairbanks, T.D.; Albright, J.N.

1999-10-17T23:59:59.000Z

72

Micro-Earthquake At Geysers Area (Erten & Rial, 1999) | Open...  

Open Energy Info (EERE)

to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Micro-Earthquake At Geysers Area (Erten & Rial, 1999) Exploration Activity Details Location Geysers...

73

Tenth workshop on geothermal reservoir engineering: proceedings  

DOE Green Energy (OSTI)

The workshop contains presentations in the following areas: (1) reservoir engineering research; (2) field development; (3) vapor-dominated systems; (4) the Geysers thermal area; (5) well test analysis; (6) production engineering; (7) reservoir evaluation; (8) geochemistry and injection; (9) numerical simulation; and (10) reservoir physics. (ACR)

Not Available

1985-01-22T23:59:59.000Z

74

A comprehensive study of fracture patterns and densities in the Geysers geothermal reservoir using microearthquake shear-wave splitting tomography. [Quarterly progress report 03/16/1998 - 06/15/1998  

DOE Green Energy (OSTI)

We completed the process of identifying shear-wave splitting in the Geyser area. A total of 2700 observations were recorded with about 1700 observations from the 1988 data and about 1000 observations from 1994. Fast polarization direction map in Figure 1 shows that most of the stations in the Geyser area display consistent direction throughout the main field, between 0{degree} azimuth to 40{degree} azimuth. Some exemptions to the consistent crack alignment (fast polarization direction) can be seen in stations 9 and station 3, and also in stations 13 and 14 outside the field. Since the stations are in boreholes it is possible that some of the station orientations, calculated using P-wave arrivals from located events, are erroneous. If we treat measurements of polarization direction as a statistical process, same as deep of layer measurement, we can say that in the small area of the station we have aligned cracks. Figures 2 and 3 show results of the crack density inversion assuming regional crack azimuth of 20{degree}. Almost 2400 raypaths were used to perform this tomographic inversion. There is weak dependency of the results on the regional crack direction, but the main areas of high and low crack density are the same. The changes are mainly in the size of the anomalies. Since the amplitudes of those anomalies depend mainly on the damping parameter we use in the inversion, exact regional crack direction is not a critical parameter of the inversion. The map in figure 2 and cross-sections in Figure 3 show two areas of high crack density at the top 1 km one at station 8 and the other between stations 6 and 5. At greater depth of 1 to 2 km those two area converge to one high crack density anomaly between stations 3, 4, 11, and 10.

Malin, P.E.; Shalev, E.

1999-03-17T23:59:59.000Z

75

Predicting the spatial extent of injection-induced zones of enhanced permeability at the Northwest Geysers EGS Demonstration Project  

SciTech Connect

We present the results of coupled thermal, hydraulic, and mechanical (THM) modeling of a proposed stimulation injection associated with an Enhanced Geothermal System (EGS) demonstration project at the northwest part of The Geysers geothermal field, California. The project aims at creating an EGS by directly and systematically injecting cool water at relatively low pressure into a known High Temperature (about 280 to 350 C) Zone (HTZ) located under the conventional (240 C) steam reservoir at depths below 3 km. Accurate micro-earthquake monitoring from the start of the injection will be used as a tool for tracking the development of the EGS. We first analyzed historic injection and micro-earthquake data from an injection well (Aidlin 11), located about 3 miles to the west of the new EGS demonstration area. Thereafter, we used the same modeling approach to predict the likely extent of the zone of enhanced permeability for a proposed initial injection in two wells (Prati State 31 and Prati 32) at the new EGS demonstration area. Our modeling indicates that the proposed injection scheme will provide additional steam production in the area by creating a zone of permeability enhancement extending about 0.5 km from each injection well which will connect to the overlying conventional steam reservoir.

Rutqvist, J.; Oldenburg, C.M.; Dobson, P.F.

2010-02-01T23:59:59.000Z

76

Aerometric measurement and modeling of the mass of CO2 emissions from Crystal Geyser, Utah  

DOE Green Energy (OSTI)

Crystal Geyser in eastern Utah is a rare, non-geothermal geyser that emits carbon dioxide gas in periodic eruptions. This geyser is the largest single source of CO{sub 2} originating from a deep reservoir. For this study, the amount of CO{sub 2} emitted from Crystal Geyser is estimated through measurements of downwind CO{sub 2} air concentration applied to an analytical model for atmospheric dispersion. Five eruptions occurred during the 48-hour field study, for a total of almost 3 hours of eruption. Pre-eruption emissions were also timed and sampled. Slow wind during three of the active eruptions conveyed the plume over a grid of samplers arranged in arcs from 25 to 100 m away from the geyser. An analytical, straight-line Gaussian model matched the pattern of concentration measurements. Plume width was determined from least-squares fit of the CO{sub 2} concentrations integrated over time. The CO{sub 2} emission rate was found to be between 2.6 and 5.8 kg/s during the eruption events, and about 0.17 kg/s during the active pre-eruptive events. Our limited field study can be extrapolated to an annual CO{sub 2} emission of 12 kilotonnes from this geyser. As this is the first application of Gaussian dispersion modeling and objective timing to CO{sub 2} emissions from a geyser of any type, the present study demonstrates the feasibility of applying this method more completely in the future.

Gouveia, F J; Johnson, M R; Leif, R N; Friedmann, S J

2005-02-07T23:59:59.000Z

77

Session: Reservoir Technology  

DOE Green Energy (OSTI)

This session at the Geothermal Energy Program Review X: Geothermal Energy and the Utility Market consisted of five papers: ''Reservoir Technology'' by Joel L. Renner; ''LBL Research on the Geysers: Conceptual Models, Simulation and Monitoring Studies'' by Gudmundur S. Bodvarsson; ''Geothermal Geophysical Research in Electrical Methods at UURI'' by Philip E. Wannamaker; ''Optimizing Reinjection Strategy at Palinpinon, Philippines Based on Chloride Data'' by Roland N. Horne; ''TETRAD Reservoir Simulation'' by G. Michael Shook

Renner, Joel L.; Bodvarsson, Gudmundur S.; Wannamaker, Philip E.; Horne, Roland N.; Shook, G. Michael

1992-01-01T23:59:59.000Z

78

Monitoring crustal deformation in The Geysers-Clear Lake geothermal area, California  

DOE Green Energy (OSTI)

Geodetic surveys since 1972-1973 reveal significant crustal deformation in The Geysers-Clear Lake region. Resurveys of precise control networks are measuring both vertical and horizontal ground movement, with most of the change continuing in the area of geothermal fluid withdrawal. Preliminary evidence suggests right-lateral horizontal movement on northwest-trending fault systems and vertical and horizontal compression of the deep geothermal reservoir system. A direct correlaton is suggested between ground-surface deformation and subsurface pressure changes in the reservoir system. Although surface changes appear too small to be of environmental concern in The Geysers-Clear Lake region, they indicate hydrodynamic changes in the reservoir of significant import.

Lofgren, B.E.

1978-01-01T23:59:59.000Z

79

Model study of historical injection in the Southeast Geysers  

DOE Green Energy (OSTI)

A three component model study of the historical injection of two wells in the Unit 13 area demonstrates that the recovery of injection derived steam is influenced by the geologic structure of the bottom of the reservoir and the relative location of injection wells. the migration of injectate from the first injection well, located up structure from the second, quenched the area around the second injector before it started operation. while both wells had similar cumulative mass injected, nearly five times more injection derived steam is recovered from the first injector than the second. Sensitivity runs were made to three cases of increasing matrix capillary pressure. The recovery of injection derived steam increases with higher values of capillarity. The interaction of structure at the bottom of the reservoir, injection well locations, and matrix capillarity all influence the recovery efficiency of injectate as steam. The model developed in this study will be used to evaluate injection strategies at The Geysers.

Faulder, D.D.

1992-01-01T23:59:59.000Z

80

Model study of historical injection in the southeast Geysers  

DOE Green Energy (OSTI)

A three component model study of the historical injection of two wells in the Unit 13 area demonstrates that the recovery of injection derived steam is influenced by the geologic structure of the bottom of the reservoir and the relative location of injection wells. The migration of injectate from the first injection well, located up structure from the second, quenched the area around the second injector before it started operation. While both wells had similar cumulative mass injected, nearly five times more injection derived steam is recovered from the first injector than the-second. Sensitivity runs were made to three cases of increasing matrix capillary pressure. The recovery of injection derived steam increases with higher values of capillarity. The interaction of structure at the bottom of the reservoir, injection well locations, and matrix capillarity all influence the recovery efficiency of injected as steam. The model developed in this study will be used to evaluate injection strategies at The Geysers.

Faulder, D.D.

1992-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "geysers high-temperature reservoir" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Model study of historical injection in the southeast Geysers  

DOE Green Energy (OSTI)

A three component model study of the historical injection of two wells in the Unit 13 area demonstrates that the recovery of injection derived steam is influenced by the geologic structure of the bottom of the reservoir and the relative location of injection wells. The migration of injectate from the first injection well, located up structure from the second, quenched the area around the second injector before it started operation. While both wells had similar cumulative mass injected, nearly five times more injection derived steam is recovered from the first injector than the-second. Sensitivity runs were made to three cases of increasing matrix capillary pressure. The recovery of injection derived steam increases with higher values of capillarity. The interaction of structure at the bottom of the reservoir, injection well locations, and matrix capillarity all influence the recovery efficiency of injected as steam. The model developed in this study will be used to evaluate injection strategies at The Geysers.

Faulder, D.D.

1992-01-01T23:59:59.000Z

82

High Temperature Corrosion  

Science Conference Proceedings (OSTI)

Oct 18, 2010 ... Protective Coatings for Corrosion Resistance at High Temperatures: Vilupanur Ravi1; Thuan Nguyen1; Alexander Ly1; Kameron Harmon1; ...

83

Electrolysis – High Temperature – Hydrogen  

INL has developed a high-temperature process the utilizes solid oxide fuel cells that are operated in the electrolytic mode. The first process includes combining a high-temperature heat source (e.g. nuclear reactor) with a hydrogen production facility ...

84

High temperature sensor  

DOE Patents (OSTI)

A high temperature sensor includes a pair of electrical conductors separated by a mass of electrical insulating material. The insulating material has a measurable resistivity within the sensor that changes in relation to the temperature of the insulating material within a high temperature range (1,000 to 2,000 K.). When required, the sensor can be encased within a ceramic protective coating.

Tokarz, Richard D. (West Richland, WA)

1982-01-01T23:59:59.000Z

85

SEISMOLOGICAL INVESTIGATIONS AT THE GEYSERS GEOTHERMAL FIELD  

E-Print Network (OSTI)

P. Muffler, 1972. The Geysers Geothermal Area, California.B. C. Hearn, 1977. ~n Geothermal Prospecting Geology, TheC. , 1968. of the Salton Sea Geothermal System. pp. 129-166.

Majer, E. L.

2011-01-01T23:59:59.000Z

86

Hydrothermal factors in porosity evolution and caprock formation at the Geysers steam field, California--insight from the Geysers Coring Project  

DOE Green Energy (OSTI)

The Department of Energy (DOE)/geothermal industry-sponsored Geysers Coring Project (GCP) has yielded 236.8 m of continuous core apparently spanning the transition between the uppermost Geysers steam reservoir and its caprock. Both zones in the corehole are developed in superficially similar, fractured, complexly veined and locally sericitized, Franciscan (late Mesozoic) graywacke-argillite sequences. However, whereas the reservoir rocks host two major fluid conduits (potential steam entries), the caprock is only sparingly permeable. This discrepancy appears to reflect principally vein texture and mineralogy. Two types of veins are common in the core--randomly-oriented, Franciscan metamorphic quartz-calcite veins; and high-angle, late Cenozoic veins deposited by The Geysers hydrothermal system. The older veins locally contain hydrothermal carbonate-dissolution vugs, which, although concentrated at the larger fluid conduit, are scattered throughout the core. The younger veins, commonly with intercrystalline vugs, consist dominantly of euhedral quartz, calcite, K-feldspar, wairakite, and pyrite--those in the reservoir rock also contain minor epidote and illite. The corresponding caprock veins are devoid of epidote but contain abundant, late-stage, mixed-layer illite/smecite (5-18% smectite interlayers) with minor chlorite/smectite (40-45% smectite interlayers). We suggest that clots of these two expandable clays in the caprock clog otherwise permeable veins and carbonate-dissolution networks at strategic sites to produce or enhance the seal on the underlying steam reservoir. Illite/smectite geothermometry indicates that the SB-15-D caprock clays were precipitated in the approximate temperature range 180-218 C, and those in the reservoir at about 218-238 C. These temperatures, along with occurrence of the clays on commonly etched calcite, K-feldspar, or wairakite, suggest that the clays were precipitated from mildly acidic steam condensate under conditions similar to those now prevailing.

Hulen, Jeffrey B.; Nielson, Dennis L.

1995-01-26T23:59:59.000Z

87

High-temperature sensor  

DOE Patents (OSTI)

A high temperature sensor is described which includes a pair of electrical conductors separated by a mass of electrical insulating material. The insulating material has a measurable resistivity within the sensor that changes in relation to the temperature of the insulating material within a high temperature range (1000 to 2000/sup 0/K). When required, the sensor can be encased within a ceramic protective coating.

Not Available

1981-01-29T23:59:59.000Z

88

High temperature furnace  

DOE Patents (OSTI)

A high temperature furnace for use above 2000.degree.C is provided that features fast initial heating and low power consumption at the operating temperature. The cathode is initially heated by joule heating followed by electron emission heating at the operating temperature. The cathode is designed for routine large temperature excursions without being subjected to high thermal stresses. A further characteristic of the device is the elimination of any ceramic components from the high temperature zone of the furnace.

Borkowski, Casimer J. (Oak Ridge, TN)

1976-08-03T23:59:59.000Z

89

Geothermal reservoir well stimulation program. First-year progress report  

DOE Green Energy (OSTI)

The Geothermal Reservoir Well Stimulation Program (GRWSP) group planned and executed two field experiments at the Raft River KGRA during 1979. Well RRGP-4 was stimulated using a dendritic (Kiel) hydraulic fracture technique and Well RRGP-5 was stimulated using a conventional massive hydraulic fracture technique. Both experiments were technically successful; however, the post-stimulation productivity of the wells was disappointing. Even though the artificially induced fractures probably successfully connected with the natural fracture system, reservoir performance data suggest that productivity remained low due to the fundamentally limited flow capacity of the natural fractures in the affected region of the reservoir. Other accomplishments during the first year of the program may be summarized as follows: An assessment was made of current well stimulation technology upon which to base geothermal applications. Numerous reservoirs were evaluated as potential candidates for field experiments. A recommended list of candidates was developed which includes Raft River, East Mesa, Westmorland, Baca, Brawley, The Geysers and Roosevelt Hot Springs. Stimulation materials (fracture fluids, proppants, RA tracer chemicals, etc.) were screened for high temperature properties, and promising materials selected for further laboratory testing. Numerical models were developed to aid in predicting and evaluating stimulation experiments. (MHR)

Not Available

1980-02-01T23:59:59.000Z

90

The Geysers Geothermal Field Update1990/2010  

E-Print Network (OSTI)

in  The  Geysers.   Geothermal Resources Council A  planned  Enhanced  Geothermal  System  demonstration project.   Geothermal  Resources  Council  Transactions 33, 

Brophy, P.

2012-01-01T23:59:59.000Z

91

Micro-Earthquake At Geysers Geothermal Area (2011) | Open Energy  

Open Energy Info (EERE)

Geothermal Area (2011) Geothermal Area (2011) Exploration Activity Details Location Geysers Geothermal Area Exploration Technique Micro-Earthquake Activity Date 2011 Usefulness not indicated DOE-funding Unknown Exploration Basis Determine seismicity before and after reservoir stimulation for EGS Notes The overall goal is to gather high resolution seismicity data before, during and after stimulation activities at the EGS projects. This will include both surface and borehole deployments (as necessary in available boreholes) to provide high quality seismic data for improved processing and interpretation methodologies. This will allow the development and testing of seismic methods for understanding the performance of the EGS systems, as well as aid in developing induced seismicity mitigation techniques that can

92

Caldwell Ranch Exploration and Confirmation Project, Northwest Geysers, CA  

SciTech Connect

The purpose of the Caldwell Ranch Exploration and Confirmation Project was to drill, test, and confirm the present economic viability of the undeveloped geothermal reservoir in the 870 acre Caldwell Ranch area of the Northwest Geysers that included the CCPA No.1 steam field. All of the drilling, logging, and sampling challenges were met. ? Three abandoned wells, Prati 5, Prati 14 and Prati 38 were re-opened and recompleted to nominal depths of 10,000 feet in 2010. Two of the wells required sidetracking. ? The flow tests indicated Prati 5 Sidetrack 1 (P-5 St1), Prati 14 (P-14) and Prati 38 Sidetrack 2 (P-38 St2) were collectively capable of initially producing an equivalent of 12 megawatts (MWe) of steam using a conversion rate of 19,000 pounds of steam/hour

Walters, Mark A.

2013-04-25T23:59:59.000Z

93

Integrated High Resolution Microearthquake Analysis and Monitoring for Optimizing Steam Production at The Geysers Geothermal Field, California  

DOE Green Energy (OSTI)

In December of 2003 a large amount of water from the Santa Rosa wastewater project began being pumped to The Geysers for injection. Millions of dollars are being spent on this injection project in the anticipation that the additional fluid will not only extend the life of The Geysers but also greatly increase the net amount of energy extracted. Optimal use of the injected water, however, will require that the water be injected at the right place, in the right amount and at the proper rate. It has been shown that Microearthquake (MEQ) generation is a direct indicator of the effect of fluid injection at The Geysers (Majer and McEvilly 1979; Eberhart-Phillips and Oppenheimer 1984; Enedy et al. 1992; Stark 1992; Kirkpatrick et al. 1999; Smith et al. 2000). It is one of the few, if not only methods, practical to monitor the volumetric effect of water injection at The Geysers. At the beginning of this project there was not a detailed MEQ response, Geysers-wide, to a large influx of water such as will be the case from the Santa Rosa injection project. New technology in MEQ acquisition and analysis, while used in parts of The Geysers for short periods of time had not been applied reservoir-wide to obtain an integrated analysis of the reservoir. Also needed was a detailed correlation with the production and injection data on a site wide basis. Last but not least, needed was an assurance to the community that the induced seismicity is documented and understood such that if necessary, mitigation actions can be undertaken in a timely manner. This project was necessary not only for optimizing the heat recovery from the resource, but for assuring the community that there is no hazard associated with the increased injection activities. Therefore, the primary purpose of this project was to develop and apply high-resolution micro earthquake methodology for the entire Geysers geothermal field such that at the end of this project a monitoring and process definition methodology will be available to: (1) Optimize the economic development of The Geysers (as well as other areas) by providing improved information on fluid flow and reservoir dynamics. (2) Aid in the mitigation of environmental impacts of increased fluid injection by improving the understanding between fluid injection and seismicity. (3) Provide a cost-effective blueprint such that the technology can be applied on a routine basis in the future.

Majer, Ernest; Peterson, John; Stark, Mitch; Smith, Bill; Rutqvist, Jonny; Kennedy, Mack

2004-04-26T23:59:59.000Z

94

The Northwest Geysers EGS Demonstration Project Phase 1: Pre-stimulation coupled geomechanical modeling to guide stimulation and monitoring plans  

DOE Green Energy (OSTI)

This paper presents activities and results associated with Phase 1 (pre-stimulation phase) of an Enhanced Geothermal System (EGS) demonstration project at the northwest part of The Geysers geothermal field, California. The paper presents development of a 3-D geological model, coupled thermal-hydraulic-mechanical (THM) modeling of proposed stimulation injection as well as current plans for stimulation and monitoring of the site. The project aims at creating an EGS by directly and systematically injecting cool water at relatively low pressure into a known High Temperature (about 280 to 350 C) Zone (HTZ) located under the conventional (240 C) steam reservoir at depths of {approx}3 km. Accurate micro-earthquake monitoring initiated before the start of the injection will be used as a tool for tracking the development of the EGS and monitoring changes in microseismicity. We first analyzed historic injection and micro-earthquake data from an injection well (Aidlin 11) located about 3 miles to the west of the new EGS demonstration area. Thereafter, we used the same modeling approach to predict the likely extent of the zone of enhanced permeability for a proposed initial injection in two wells (Prati State 31 and Prati 32) at the new EGS demonstration area. Our modeling indicates that the proposed injection scheme will provide additional steam production in the area by creating a zone of permeability enhancement extending about 0.5 km from each injection well which will connect to the overlying conventional steam reservoir, in agreement with the conclusions of Nielson and Moore (2000).

Rutqvist, J.; Dobson, P.F.; Oldenburg, C.M.; Garcia, J.; Walters, M.

2010-10-20T23:59:59.000Z

95

Geysers Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Geysers Geothermal Area Geysers Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Geysers Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Heat Source 8 Geofluid Geochemistry 9 NEPA-Related Analyses (2) 10 Exploration Activities (22) 11 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.8,"lon":-122.8,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

96

Crump Geyser Geothermal Project | Open Energy Information  

Open Energy Info (EERE)

Crump Geyser Geothermal Project Crump Geyser Geothermal Project Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Development Project: Crump Geyser Geothermal Project Project Location Information Coordinates 42.226388888889°, -119.88222222222° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.226388888889,"lon":-119.88222222222,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

97

Big Geysers Geothermal Facility | Open Energy Information  

Open Energy Info (EERE)

Facility Facility Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Big Geysers Geothermal Facility General Information Name Big Geysers Geothermal Facility Facility Big Geysers Sector Geothermal energy Location Information Location Clear Lake, California Coordinates 38.772688555979°, -122.72887229919° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.772688555979,"lon":-122.72887229919,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

98

Geyser Bight Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Geyser Bight Geothermal Area Geyser Bight Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Geyser Bight Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (2) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":53.21666667,"lon":-168.4666667,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

99

High Temperature ESP Monitoring  

SciTech Connect

The objective of the High Temperature ESP Monitoring project was to develop a downhole monitoring system to be used in wells with bottom hole well temperatures up to 300°C for measuring motor temperature, formation pressure, and formation temperature. These measurements are used to monitor the health of the ESP motor, to track the downhole operating conditions, and to optimize the pump operation. A 220 ºC based High Temperature ESP Monitoring system was commercially released for sale with Schlumberger ESP motors April of 2011 and a 250 ºC system with will be commercially released at the end of Q2 2011. The measurement system is now fully qualified, except for the sensor, at 300 °C.

Jack Booker; Brindesh Dhruva

2011-06-20T23:59:59.000Z

100

Geochemistry of Aluminum in High Temperature Brines  

DOE Green Energy (OSTI)

geothermal industry to predict the chemistry ofthe reservoirs; these calculations will be tested for reliability against our laboratory results and field observations. Moreover, based on the success of the experimental methods developed in this program, we intend to use our unique high temperature pH easurement capabilities to make kinetic and equilibrium studies of pH-dependent aluminosilicate transformation reactions and other pH-dependent heterogeneous reactions.

Benezeth, P.; Palmer, D.A.; Wesolowski, D.J.

1999-05-18T23:59:59.000Z

Note: This page contains sample records for the topic "geysers high-temperature reservoir" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Geysers Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Geysers Geothermal Area Geysers Geothermal Area (Redirected from Geysers Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Geysers Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Heat Source 8 Geofluid Geochemistry 9 NEPA-Related Analyses (2) 10 Exploration Activities (22) 11 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.8,"lon":-122.8,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

102

High temperature thermometric phosphors  

SciTech Connect

A high temperature phosphor consists essentially of a material having the general formula LuPO.sub.4 :Dy.sub.(x),Eu.sub.y) wherein: 0.1 wt %.ltoreq.x.ltoreq.20 wt % and 0.1 wt %.ltoreq.y.ltoreq.20 wt %. The high temperature phosphor is in contact with an article whose temperature is to be determined. The article having the phosphor in contact with it is placed in the environment for which the temperature of the article is to be determined. The phosphor is excited by a laser causing the phosphor to fluoresce. The emission from the phosphor is optically focused into a beam-splitting mirror which separates the emission into two separate emissions, the emission caused by the dysprosium dopant and the emission caused by the europium dopent. The separated emissions are optically filtered and the intensities of the emission are detected and measured. The ratio of the intensity of each emission is determined and the temperature of the article is calculated from the ratio of the intensities of the separate emissions.

Allison, Stephen W. (Knoxville, TN); Cates, Michael R. (Oak Ridge, TN); Boatner, Lynn A. (Oak Ridge, TN); Gillies, George T. (Earlysville, VA)

1999-03-23T23:59:59.000Z

103

Analysis of cause and mechanism for injection-induced seismicity at the Geysers Geothermal Field, California  

E-Print Network (OSTI)

rock from the Geysers Geothermal Field, California. Int. J.strain at The Geysers geothermal field. Ph.D. dissertation,Subsidence at The Geysers geothermal field, N. California

Rutqvist, Jonny; Oldenburg, Curtis

2007-01-01T23:59:59.000Z

104

Hydrologic characterization of four cores from the Geysers Coring Project  

DOE Green Energy (OSTI)

Results of hydrologic tests on 4 representative core plugs from Geysers Coring Project drill hole SB-15-D were related to mineralogy and texture. Permeability measurements were made on 3 plugs from caprock and one plug from the steam reservoir. Late-stage microfractures present in 2 of the plugs contributed to greater permeability, but the values for the 2 other plugs indicate a typical matrix permeability of 1 to 2 {times} 10{sup {minus}21}m{sup 2}. Klinkenberg slip factor b for these plugs is generally consistent with the inverse relation between slip factor and permeability observed by Jones (1972) for plugs of much more permeable material. The caprock and reservoir samples are nearly identical metagraywackes with slight mineralogical differences which appear to have little effect on hydrology. The late stage microfractures are suspected of being artifacts. The capillary pressure curves for 3 cores are fit by power-law relations which can be used to estimate relative permeability curves for the matrix rocks.

Persoff, P. [Lawrence Berkeley National Lab., CA (United States); Hulen, J.B. [Univ. of Utah, Salt Lake City, UT (United States). Earth Sciences and Resources Institute

1996-01-01T23:59:59.000Z

105

Fracturing fluid high-temperature breaker for improving well performance  

Science Conference Proceedings (OSTI)

Oxidative breakers are currently being used in fracturing treatments to reduce polymeric gel damage in high-temperature reservoirs. Dissolved high-temperature oxidative breakers are very reactive at high temperatures (275 to 350 F), typically requiring less than 0.25 lbm/1,000 gal of fluid. Recent introduction of a new nonpersulfate oxidative high-temperature encapsulated breaker (HTEB) provides controlled degradation of the fracturing fluid polymers. Laboratory tests show viscosity reduction and delayed release of active oxidizer breaker. HTEB conductivity data show a two-fold increase in retained permeability at 300 F in a borate-crosslinked fluid system.

McConnell, B.

1994-05-01T23:59:59.000Z

106

High temperature interfacial superconductivity  

DOE Patents (OSTI)

High-temperature superconductivity confined to nanometer-scale interfaces has been a long standing goal because of potential applications in electronic devices. The spontaneous formation of a superconducting interface in bilayers consisting of an insulator (La.sub.2CuO.sub.4) and a metal (La.sub.1-xSr.sub.xCuO.sub.4), neither of which is superconducting per se, is described. Depending upon the layering sequence of the bilayers, T.sub.c may be either .about.15 K or .about.30 K. This highly robust phenomenon is confined to within 2-3 nm around the interface. After exposing the bilayer to ozone, T.sub.c exceeds 50 K and this enhanced superconductivity is also shown to originate from a 1 to 2 unit cell thick interfacial layer. The results demonstrate that engineering artificial heterostructures provides a novel, unconventional way to fabricate stable, quasi two-dimensional high T.sub.c phases and to significantly enhance superconducting properties in other superconductors. The superconducting interface may be implemented, for example, in SIS tunnel junctions or a SuFET.

Bozovic, Ivan (Mount Sinai, NY); Logvenov, Gennady (Port Jefferson Station, NY); Gozar, Adrian Mihai (Port Jefferson, NY)

2012-06-19T23:59:59.000Z

107

Final cost reduction study for the Geysers Recharge Alternative. Volume 1  

DOE Green Energy (OSTI)

The purpose of this study is to determine whether or not cost reduction opportunities exist for the Geysers Recharge Alternative as defined in the Santa Rosa Subregional Long-Term Wastewater Project EIR/EIS. The City of Santa Rosa has been directed to have a plan for reclaimed water disposal in place by 1999 which will meet future capacity needs under all weather conditions. A Draft EIR/EIS released in July 1996 and a Final EIR certified in June 1997 examine four primary alternatives plus the No Action Alternative. Two of the primary alternatives involve agricultural irrigation with reclaimed water, either in western or southern Sonoma County. Another involves increased discharge of reclaimed water into the Russian River. The fourth involves using reclaimed water to replenish the geothermal reservoir at the Geysers. The addition of this water source would enable the Geysers operators to produce more steam from the geothermal area and thereby prolong the life and economic production level of the steamfield and the geothermal power plants supplied by the steamfield. This study provides additional refined cost estimates for new scenarios which utilize an alternative pipeline alignment and a range of reclaimed water flows, which deliver less water to the Geysers than proposed in the EIR/EIS (by distributing flow to other project components). Also, electrical power rates were revised to reflect the recent changes in costs associated with deregulation of the power industry. In addition, this report provides information on sources of potential public and private funding available and future environmental documentation required if the cost reduction scenarios were to be selected by the City as part of their preferred alternative.

NONE

1997-11-01T23:59:59.000Z

108

High Temperature Superconductivity Partners | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

High Temperature Superconductivity Partners High Temperature Superconductivity Partners Map showing DOE's partnersstakeholders in the High Temperature Superconductivity Program...

109

Seismic velocity structure and microearthquake source properties at The Geysers, California, geothermal area  

DOE Green Energy (OSTI)

The method of progressive hypocenter-velocity inversion has been extended to incorporate S-wave arrival time data and to estimate S-wave velocities in addition to P-wave velocities. S-wave data to progressive inversion does not completely eliminate hypocenter-velocity tradeoffs, but they are substantially reduced. Results of a P and S-wave progressive hypocenter-velocity inversion at The Geysers show that the top of the steam reservoir is clearly defined by a large decrease of V/sub p//V/sub s/ at the condensation zone-production zone contact. The depth interval of maximum steam production coincides with minimum observed V/sub p//V/sub s/, and V/sub p//V/sub s/ increses below the shallow primary production zone suggesting that reservoir rock becomes more fluid saturated. The moment tensor inversion method was applied to three microearthquakes at The Geysers. Estimated principal stress orientations were comparable to those estimated using P-wave firstmotions as constraints. Well constrained principal stress orientations were obtained for one event for which the 17 P-first motions could not distinguish between normal-slip and strike-slip mechanisms. The moment tensor estimates of principal stress orientations were obtained using far fewer stations than required for first-motion focal mechanism solutions. The three focal mechanisms obtained here support the hypothesis that focal mechanisms are a function of depth at The Geysers. Progressive inversion as developed here and the moment tensor inversion method provide a complete approach for determining earthquake locations, P and S-wave velocity structure, and earthquake source mechanisms.

O'Connell, D.R.

1986-12-01T23:59:59.000Z

110

High Temperature and Electrical Properties  

Science Conference Proceedings (OSTI)

Mar 5, 2013... and Nanomaterials: High Temperature and Electrical Properties ... thermomechanical (or in cyclic power) loading of electronic devices is an ...

111

Ultra High Temperature Ceramic Composites  

Science Conference Proceedings (OSTI)

Oct 9, 2012 ... These ceramics, often combined with 20-30% SiC, have been studied extensively in monolithic form, demonstrating excellent high-temperature ...

112

Geotechnical studies of geothermal reservoirs  

DOE Green Energy (OSTI)

It is proposed to delineate the important factors in the geothermal environment that will affect drilling. The geologic environment of the particular areas of interest are described, including rock types, geologic structure, and other important parameters that help describe the reservoir and overlying cap rock. The geologic environment and reservoir characteristics of several geothermal areas were studied, and drill bits were obtained from most of the areas. The geothermal areas studied are: (1) Geysers, California, (2) Imperial Valley, California, (3) Roosevelt Hot Springs, Utah, (4) Bacca Ranch, Valle Grande, New Mexico, (5) Jemez Caldera, New Mexico, (6) Raft River, Idaho, and (7) Marysville, Montona. (MHR)

Pratt, H.R.; Simonson, E.R.

1976-01-01T23:59:59.000Z

113

Downhole measurements and fluid chemistry of a Castle Rock steam well, The Geysers, Lake County, California  

SciTech Connect

Certain wells within The Geysers steam field have standing water columns either when first drilled or when produced at low flow rates. These water columns have been attributed by Lipman et al. (1978) to accumulation of water condensing in the well bore. Alternative explanations are that perched water bodies exist within the reservoir or that a deep water body underlying the steam reservoir has been tapped. A well in the Castle Rock field of The Geysers drilled by Signal Oil and Gas Company (now Aminoil, U.S.A.) with such a water column was sampled in 1976 for water, gas, and isotope chemistry in hopes of distinguishing between these possible origins; the results along with the well history and downhole pressure and temperature measurements are reported here. The well is located in Lake County, California, in the central part of the Castle Rock field, 4.8 km west-northwest of the town of Anderson Springs. Drilling was started in mid 1970 on a ridge at an elevation of 700 m above sea level. Steam entries were encountered at depths (below land surface) of 1,899, 1,902, 2,176, 2,248 2,288, and 2,295 m; the total depth drilled was 2,498 m. Large volume water entries above 685 m were cased off to 762 m.

Truesdell, Alfred H.; Frye, George A.; Nathenson, Manuel

1978-01-01T23:59:59.000Z

114

Water injection as a means for reducing non-condensible and corrosive gases in steam produced from vapor-dominated reservoirs  

E-Print Network (OSTI)

Chloride in Superheated Steam and Chloride in Deep Brine atGas and Chloride in Steam at The Geysers, Trans. , Geoth.Decline Trends in Geothermal Steam Reservoirs, Proceedings,

Pruess, Karsten; Spycher, Nicolas; Kneafsey, Timothy J.

2008-01-01T23:59:59.000Z

115

Hydrogen chloride in superheated steam and chloride in deep brine at The Geysers geothermal field, California  

SciTech Connect

Chloride (Cl) concentrations of 10-120 ppm{sub w} have been measured in superheated steam produced by wells at The Geysers, a vapor-dominated geothermal field in northern California. Corrosion of the well casing and steam-gathering system has been recognized in some parts of The Geysers, and is apparently related to the presence of Cl. Cl in the steam is in a volatile form, generated with the steam at reservoir temperatures, and probably travels to the wellhead as HCl gas. Published experimental data for partial pressures of HCl in steam over aqueous HCl solutions and for dissociation constants of HCl were used to calculate distribution coefficients for HCl. Reservoir liquid Cl concentrations capable of generating steam with the observed Cl concentrations were then calculated as a function of pH and temperatures from 250 to 350º C. Equilibrium mineral/liquid reactions with the K-mica and K-feldspar assemblage found in the wells limit the reservoir liquid pH values at various Cl concentrations to about 5 to 6 (near neutral at 250 to 350º C). Within this pH range, liquid at 250º C could not produce steam containing the high Cl concentrations observed. However, liquid at higher temperatures (300 to 350º C) with chloride concentrations greater than 10,000 ppm{sub w} could generate steam with 10 to over 200 ppm{sub w} Cl. There is a positive correlation between pH and the chloride concentrations required to generate a given Cl concentration in steam. The concentration of Cl in superheated steam constrains not only the reservoir liquid composition, but the temperature at which the steam last equilibrated with liquid.

Haizlip, J.R.; Truesdell, A.H.

1988-01-01T23:59:59.000Z

116

High-temperature ceramic receivers  

DOE Green Energy (OSTI)

An advanced ceramic dome cavity receiver is discussed which heats pressurized gas to temperatures above 1800/sup 0/F (1000/sup 0/C) for use in solar Brayton power systems of the dispersed receiver/dish or central receiver type. Optical, heat transfer, structural, and ceramic material design aspects of the receiver are reported and the development and experimental demonstration of a high-temperature seal between the pressurized gas and the high-temperature silicon carbide dome material is described.

Jarvinen, P. O.

1980-01-01T23:59:59.000Z

117

Geotechnical studies of geothermal reservoirs | Open Energy Information  

Open Energy Info (EERE)

Geotechnical studies of geothermal reservoirs Geotechnical studies of geothermal reservoirs Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Report: Geotechnical studies of geothermal reservoirs Details Activities (7) Areas (7) Regions (0) Abstract: It is proposed to delineate the important factors in the geothermal environment that will affect drilling. The geologic environment of the particular areas of interest are described, including rock types, geologic structure, and other important parameters that help describe the reservoir and overlying cap rock. The geologic environment and reservoir characteristics of several geothermal areas were studied, and drill bits were obtained from most of the areas. The geothermal areas studied are: (1) Geysers, California, (2) Imperial Valley, California, (3) Roosevelt Hot

118

Adsorption of water vapor on reservoir rocks  

DOE Green Energy (OSTI)

Progress is reported on: adsorption of water vapor on reservoir rocks; theoretical investigation of adsorption; estimation of adsorption parameters from transient experiments; transient adsorption experiment -- salinity and noncondensible gas effects; the physics of injection of water into, transport and storage of fluids within, and production of vapor from geothermal reservoirs; injection optimization at the Geysers Geothermal Field; a model to test multiwell data interpretation for heterogeneous reservoirs; earth tide effects on downhole pressure measurements; and a finite-difference model for free surface gravity drainage well test analysis.

Not Available

1993-07-01T23:59:59.000Z

119

Petrography Analysis At Geysers Area (Lambert & Epstein, 1992) | Open  

Open Energy Info (EERE)

Geysers Area (Lambert & Epstein, 1992) Geysers Area (Lambert & Epstein, 1992) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Petrography Analysis At Geysers Area (Lambert & Epstein, 1992) Exploration Activity Details Location Geysers Area Exploration Technique Petrography Analysis Activity Date Usefulness useful DOE-funding Unknown Notes Rocks and minerals were visually identified in cuttings, and identifications were confirmed through examination of thin sections. X-ray powder diffraction was used to test the purity of some mineral separates. The chemical compositions of some metamorphic minerals were determined by electron microprobe. References Steven J. Lambert, Samuel Epstein (1992) Stable-Isotope Studies Of Rocks And Secondary Minerals In A Vapor-Dominated Hydrothermal System At

120

Seismic monitoring at The Geysers Geothermal Field, California  

DOE Green Energy (OSTI)

Two distinct clusters of microearthquakes have been identified at The Geysers, possibly relating to two independent pressure sinks resulting from steam production described by Lipman, and others (1977). Unlike earthquakes in the Maacama-Rodgers Creek fault zone to the south and west, earthquakes at The Geysers are confined to depths of less than 5 km. The present level of seismicity at The Geysers appears to be higher than the preproduction level and is higher and more continuous than the seismicity in the surrounding region. Earthquakes in the steam production zone at The Geysers resemble earthquakes in the surrounding region with regard to focal plane solutions, source characteristics and magnitude distribution (b slope). Subtle differences in earthquake characteristics may be resolved by analysis of more extensive data now being gathered in the region.

Marks, S.M.; Ludwin, R.S.; Louie, K.B.; Bufe, C.G.

1983-05-23T23:59:59.000Z

Note: This page contains sample records for the topic "geysers high-temperature reservoir" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Fluid Inclusion Analysis At Geysers Geothermal Area (1990) | Open Energy  

Open Energy Info (EERE)

Fluid Inclusion Analysis At Geysers Geothermal Area (1990) Fluid Inclusion Analysis At Geysers Geothermal Area (1990) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Fluid Inclusion Analysis At Geysers Geothermal Area (1990) Exploration Activity Details Location Geysers Geothermal Area Exploration Technique Fluid Inclusion Analysis Activity Date 1990 Usefulness not indicated DOE-funding Unknown Notes A system for analysis of inclusion gas contents based upon quadrupole mass spectrometry has been designed, assembled and tested during the first 7 months of funding. The system is currently being tested and calibrated using inclusions with known gas contents from active geothermal systems. References Mckibben, M. A. (25 April 1990) Volatiles in hydrothermal fluids- A mass spectrometric study of fluid inclusions from active

122

Geysers Project Geothermal Project | Open Energy Information  

Open Energy Info (EERE)

Geothermal Project Geothermal Project Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Development Project: Geysers Project Geothermal Project Project Location Information Coordinates 38.790555555556°, -122.75583333333° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.790555555556,"lon":-122.75583333333,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

123

Chemical ecology investigations at the Geysers, California  

DOE Green Energy (OSTI)

A chemical aquatic ecology program currently in progress at the Geysers geothermal field in Northern California is described. The ultimate objective of the program is to assess the long-term ecosystem effects of development-related effluents to the aquatic environment. The first phase was designed to: (1) identify partitioning and transport in water and sediment of a wide range of elemental constituents, and (2) to determine the degree of impact of geothermal development in an area where a natural background of thermal tributaries and abandoned mercury mine tailings exist. Selected constituents such as ammonia, boron, sulfate and potassium are shown to be enriched in both natural geothermal waters and in cooling tower waters and emissions. Analyses implicate geothermal units as significant contributors of aquatic input. The most probable transport process is cooling tower drift.

Ireland, R.R.; Carter, J.L.

1980-06-01T23:59:59.000Z

124

Integrated High Resolution Microearthquake Analysis and Monitoring for Optimizing Steam Production at The Geysers Geothermal Field, California  

E-Print Network (OSTI)

and after SEGEP injection. Geothermal Resources Council,tectonics at the Geysers Geothermal Area, California, J.seismicity in The Geysers Geothermal Area, California, J.

Majer, Ernest; Peterson, John; Stark, Mitch; Smith, Bill; Rutqvist, Jonny; Kennedy, Mack

2004-01-01T23:59:59.000Z

125

High Temperature Optical Gas Sensing  

NLE Websites -- All DOE Office Websites (Extended Search)

Optical Gas Sensing Optical Gas Sensing Opportunity Research is active on optical sensors integrated with advanced sensing materials for high temperature embedded gas sensing applications. Patent applications have been filed for two inventions in this area and several other methods are currently under development. These technologies are available for licensing and/or further collaborative research from the U.S. Department of Energy's National Energy Technology Laboratory (NETL). Organizations or individuals with capabilities in optical sensor packaging for harsh environment and high temperature applications are encouraged to contact NETL to explore potential collaborative opportunities. Overview Contact NETL Technology Transfer Group techtransfer@netl.doe.gov

126

High temperature superconductor current leads  

DOE Patents (OSTI)

An electrical lead having one end for connection to an apparatus in a cryogenic environment and the other end for connection to an apparatus outside the cryogenic environment. The electrical lead includes a high temperature superconductor wire and an electrically conductive material distributed therein, where the conductive material is present at the one end of the lead at a concentration in the range of from 0 to about 3% by volume, and at the other end of the lead at a concentration of less than about 20% by volume. Various embodiments are shown for groups of high temperature superconductor wires and sheaths.

Hull, John R. (Hinsdale, IL); Poeppel, Roger B. (Glen Ellyn, IL)

1995-01-01T23:59:59.000Z

127

Temporal changes in noble gas compositions within the Aidlinsector ofThe Geysers geothermal system  

Science Conference Proceedings (OSTI)

The use of nonreactive isotopic tracers coupled to a full thermal-hydrological reservoir simulation allows for an improved method of investigating how reservoir fluids contained within matrix and fractures contribute over time to fluids produced from geothermal systems. A combined field and modeling study has been initiated to evaluate the effects of injection, production, and fracture-matrix interaction on produced noble gas contents and isotopic ratios. Gas samples collected periodically from the Aidlin steam field at The Geysers, California, between 1997 and 2006 have been analyzed for their noble gas compositions, and reveal systematic shifts in abundance and isotopic ratios over time. Because of the low concentrations of helium dissolved in the injection waters, the injectate itself has little impact on the helium isotopic composition of the reservoir fluids over time. However, the injection process may lead to fracturing of reservoir rocks and an increase in diffusion-controlled variations in noble gas compositions, related to gases derived from fluids within the rock matrix.

Dobson, Patrick; Sonnenthal, Eric; Kennedy, Mack; van Soest,Thijs; Lewicki, Jennifer

2006-05-03T23:59:59.000Z

128

High-temperature plasma physics  

SciTech Connect

Both magnetic and inertial confinement research are entering the plasma parameter range of fusion reactor interest. This paper reviews the individual and common technical problems of these two approaches to the generation of thermonuclear plasmas, and describes some related applications of high-temperature plasma physics.

Furth, H.P.

1988-03-01T23:59:59.000Z

129

High temperature lightweight foamed cements  

DOE Patents (OSTI)

Cement slurries are disclosed which are suitable for use in geothermal wells since they can withstand high temperatures and high pressures. The formulation consists of cement, silica flour, water, a retarder, a foaming agent, a foam stabilizer, and a reinforcing agent. A process for producing these cements is also disclosed. 3 figs.

Sugama, Toshifumi.

1989-10-03T23:59:59.000Z

130

High temperature lightweight foamed cements  

DOE Patents (OSTI)

Cement slurries are disclosed which are suitable for use in geothermal wells since they can withstand high temperatures and high pressures. The formulation consists of cement, silica flour, water, a retarder, a foaming agent, a foam stabilizer, and a reinforcing agent. A process for producing these cements is also disclosed.

Sugama, Toshifumi (Mastic Beach, NY)

1989-01-01T23:59:59.000Z

131

High temperature turbine engine structure  

DOE Patents (OSTI)

A high temperature turbine engine includes a rotor portion having axially stacked adjacent ceramic rotor parts. A ceramic/ceramic joint structure transmits torque between the rotor parts while maintaining coaxial alignment and axially spaced mutually parallel relation thereof despite thermal and centrifugal cycling.

Boyd, Gary L. (Tempe, AZ)

1991-01-01T23:59:59.000Z

132

Geothermal high temperature instrumentation applications  

DOE Green Energy (OSTI)

A quick look at the geothermal industry shows a small industry producing about $1 billion in electric sales annually. The industry is becoming older and in need of new innovative solutions to instrumentation problems. A quick look at problem areas is given along with basic instrumentation requirements. The focus of instrumentation is on high temperature electronics.

Normann, R.A. [Sandia National Labs., Albuquerque, NM (United States); Livesay, B.J. [Livesay Consultants (United States)

1998-06-11T23:59:59.000Z

133

High temperature electronic gain device  

SciTech Connect

An integrated thermionic device suitable for use in high temperature, high radiation environments. Cathode and control electrodes are deposited on a first substrate facing an anode on a second substrate. The substrates are sealed to a refractory wall and evacuated to form an integrated triode vacuum tube.

McCormick, J. Byron (Los Alamos, NM); Depp, Steven W. (Los Alamos, NM); Hamilton, Douglas J. (Tucson, AZ); Kerwin, William J. (Tucson, AZ)

1979-01-01T23:59:59.000Z

134

High temperature mineral fiber binder  

SciTech Connect

A modified phenol formaldehyde condensate is reacted with boric acid and cured in the presence of a polyfunctional nitrogeneous compound to provide a binder for mineral wool fibers which is particularly suited for thermal insulation products intended for high temperature service.

Miedaner, P.M.

1980-11-25T23:59:59.000Z

135

High temperature turbine engine structure  

DOE Patents (OSTI)

A high temperature turbine engine includes a hybrid ceramic/metallic rotor member having ceramic/metal joint structure. The disclosed joint is able to endure higher temperatures than previously possible, and aids in controlling heat transfer in the rotor member.

Boyd, Gary L. (Tempe, AZ)

1990-01-01T23:59:59.000Z

136

Pacific Gas and Electric Company preliminary staff review, Geysers Unit 16  

DOE Green Energy (OSTI)

The existing documentation on the Geysers Unit 16 and Geysers to Lakeville transmission line projects is reviewed and data deficiencies and areas requiring clarification for filing a Notice of Intention on these projects are identified. (MHR)

Not Available

1978-01-01T23:59:59.000Z

137

Pressure testing of a high temperature naturally fractured reservoir  

DOE Green Energy (OSTI)

Los Alamos National Laboratory has conducted a number of pumping and flow-through tests at the Hot Dry Rock (HDR) test site at Fenton Hill, New Mexico. These tests consisted of injecting fresh water at controlled rates up to 12 BPM (32 l/s) and surface pressures up to 7000 psi (48 MPa) into the HDR formation at depths from 10,000 to 13,180 feet (3050 to 4000 m). The formation is a naturally fractured granite at temperatures of about 250/sup 0/C. The matrix porosity is <1% and permeability is on the order of 1 nD. Hence most of the injected fluid is believed to move through fractures. There has been no evidence of fracture breakdown phenomena, and hence it is believed that preexisting joints in the formation are opened by fluid injection. Water losses during pumping are significant, most likely resulting from flow into secondary fractures intersecting the main fluid conducting paths. The pressure-time response observed in these tests can be interpreted in terms of non-isothermal, fracture-dominated flow. As the fluid pressure increases from small values to those comparable to fracturing pressures, the formation response changes from linear fracture flow to the highly nonlinear situation where fracture lift-off occurs. A numerical heat and mass flow model was used to match the observed pressure response. Good matches were obtained for pressure buildup and shut-in data by assigning pressure dependent fracture and leak-off permeabilities. 12 refs., 5 figs., 2 tabs.

Kelkar, S.M.; Zyvoloski, G.A.; Dash, Z.V.

1986-01-01T23:59:59.000Z

138

Numerical simulation of water injection into vapor-dominated reservoirs  

DOE Green Energy (OSTI)

Water injection into vapor-dominated reservoirs is a means of condensate disposal, as well as a reservoir management tool for enhancing energy recovery and reservoir life. We review different approaches to modeling the complex fluid and heat flow processes during injection into vapor-dominated systems. Vapor pressure lowering, grid orientation effects, and physical dispersion of injection plumes from reservoir heterogeneity are important considerations for a realistic modeling of injection effects. An example of detailed three-dimensional modeling of injection experiments at The Geysers is given.

Pruess, K.

1995-01-01T23:59:59.000Z

139

The Geysers Geothermal Field Update1990/2010  

Science Conference Proceedings (OSTI)

In this report, we have presented data in four sections: (1) THE GEYSERS HISTORICAL UPDATE 1990-2010 - A historical update of the primary developments at The Geysers between 1990 and 2010 which uses as its start point Section IIA of the Monograph - 'Historical Setting and History of Development' that included articles by James Koenig and Susan Hodgson. (2) THE GEYSERS COMPREHENSIVE REFERENCE LIST 1990-2010 - In this section we present a rather complete list of technical articles and technical related to The Geysers that were issued during the period 1990-2010. The list was compiled from many sources including, but not limited to scientific journals and conference proceedings. While the list was prepared with care and considerable assistance from many geothermal colleagues, it is very possible that some papers could have been missed and we apologize to their authors in advance. The list was subdivided according to the following topics: (1) Field characterization; (2) Drilling; (3) Field development and management; (4) Induced seismicity; (5) Enhanced Geothermal Systems; (6) Power production and related issues; (7) Environment-related issues; and (8) Other topics. (3) GRC 2010 ANNUAL MEETING GEYSERS PAPERS - Included in this section are the papers presented at the GRC 2010 Annual Meeting that relate to The Geysers. (4) ADDITIONAL GEYSERS PAPERS 1990-2010 - Eighteen additional technical papers were included in this publication in order to give a broad background to the development at The Geysers after 1990. The articles issued during the 1990-2010 period were selected by colleagues considered knowledgeable in their areas of expertise. We forwarded the list of references given in Section 2 to them asking to send us with their selections with a preference, because of limited time, to focus on those papers that would not require lengthy copyright approval. We then chose the articles presented in this section with the purpose of providing the broadest possible view across all technical fields, as related to The Geysers steam-dominated geothermal system. The Geysers has seen many fundamental changes between 1990-2010 and yet the geothermal resource seems still to be robust to the extent that, long after its anticipated life span, we are seeing new geothermal projects being developed on the north and west peripheries of the field. It is hoped that this report provides a focused data source particularly for those just starting their geothermal careers, as well as those who have been involved in the interesting and challenging field of geothermal energy for many years. Despite many hurdles The Geysers has continued to generate electrical power for 50 years and its sustainability has exceeded many early researchers expectations. It also seems probable that, with the new projects described above, generation will continue for many years to come. The success of The Geysers is due to the technical skills and the financial acumen of many people, not only over the period covered by this report (1990-2010), but since the first kilowatt of power was generated in 1960. This Special Report celebrates those 50 years of geothermal development at The Geysers and attempts to document the activities that have brought success to the project so that a permanent record can be maintained. It is strongly hoped and believed that a publication similar to this one will be necessary in another 20 years to document further activities in the field.

Brophy, P.; Lippmann, M.; Dobson, P.F.; Poux, B.

2010-10-01T23:59:59.000Z

140

High temperature structural insulating material  

DOE Patents (OSTI)

A high temperature structural insulating material useful as a liner for cylinders of high temperature engines through the favorable combination of high service temperature (above about 800/sup 0/C), low thermal conductivity (below about 0.2 W/m/sup 0/C), and high compressive strength (above about 250 psi). The insulating material is produced by selecting hollow ceramic beads with a softening temperature above about 800/sup 0/C, a diameter within the range of 20-200 ..mu..m, and a wall thickness in the range of about 2 to 4 ..mu..m; compacting the beads and a compatible silicate binder composition under pressure and sintering conditions to provide the desired structural form with the structure having a closed-cell, compact array of bonded beads.

Chen, W.Y.

1984-07-27T23:59:59.000Z

Note: This page contains sample records for the topic "geysers high-temperature reservoir" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

High Temperature Heat Exchanger Project  

Science Conference Proceedings (OSTI)

The UNLV Research Foundation assembled a research consortium for high temperature heat exchanger design and materials compatibility and performance comprised of university and private industry partners under the auspices of the US DOE-NE Nuclear Hydrogen Initiative in October 2003. The objectives of the consortium were to conduct investigations of candidate materials for high temperature heat exchanger componets in hydrogen production processes and design and perform prototypical testing of heat exchangers. The initial research of the consortium focused on the intermediate heat exchanger (located between the nuclear reactor and hydrogen production plan) and the components for the hydrogen iodine decomposition process and sulfuric acid decomposition process. These heat exchanger components were deemed the most challenging from a materials performance and compatibility perspective

Anthony E. Hechanova, Ph.D.

2008-09-30T23:59:59.000Z

142

High-temperature geothermal cableheads  

DOE Green Energy (OSTI)

Two high-temperature, corrosion-resistant logging cableheads which use metal seals and a stable fluid to achieve proper electrical terminations and cable-sonde interfacings are described. A tensile bar provides a calibrated yield point, and a cone assembly anchors the cable armor to the head. Electrical problems of the sort generally ascribable to the cable-sonde interface were absent during demonstration hostile-environment loggings in which these cableheads were used.

Coquat, J.A.; Eifert, R.W.

1981-11-01T23:59:59.000Z

143

HIGH TEMPERATURE MICROSCOPE AND FURNACE  

DOE Patents (OSTI)

A high-temperature microscope is offered. It has a reflecting optic situated above a molten specimen in a furnace and reflecting the image of the same downward through an inert optic member in the floor of the furnace, a plurality of spaced reflecting plane mirrors defining a reflecting path around the furnace, a standard microscope supported in the path of and forming the end terminus of the light path.

Olson, D.M.

1961-01-31T23:59:59.000Z

144

High temperature turbine engine structure  

DOE Patents (OSTI)

A high temperature ceramic/metallic turbine engine includes a metallic housing which journals a rotor member of the turbine engine. A ceramic disk-like shroud portion of the engine is supported on the metallic housing portion and maintains a close running clearance with the rotor member. A ceramic spacer assembly maintains the close running clearance of the shroud portion and rotor member despite differential thermal movements between the shroud portion and metallic housing portion.

Carruthers, William D. (Mesa, AZ); Boyd, Gary L. (Tempe, AZ)

1992-01-01T23:59:59.000Z

145

High temperature turbine engine structure  

DOE Patents (OSTI)

A high temperature ceramic/metallic turbine engine includes a metallic housing which journals a rotor member of the turbine engine. A ceramic disk-like shroud portion of the engine is supported on the metallic housing portion and maintains a close running clearance with the rotor member. A ceramic spacer assembly maintains the close running clearance of the shroud portion and rotor member despite differential thermal movements between the shroud portion and metallic housing portion.

Carruthers, William D. (Mesa, AZ); Boyd, Gary L. (Tempe, AZ)

1993-01-01T23:59:59.000Z

146

High temperature turbine engine structure  

DOE Patents (OSTI)

A high temperature ceramic/metallic turbine engine includes a metallic housing which journals a rotor member of the turbine engine. A ceramic disk-like shroud portion of the engine is supported on the metallic housing portion and maintains a close running clearance with the rotor member. A ceramic spacer assembly maintains the close running clearance of the shroud portion and rotor member despite differential thermal movements between the shroud portion and metallic housing portion.

Carruthers, William D. (Mesa, AZ); Boyd, Gary L. (Tempe, AZ)

1994-01-01T23:59:59.000Z

147

High temperature size selective membranes  

DOE Green Energy (OSTI)

The objective of this research is to develop a high temperature size selective membrane capable of separating gas mixture components from each other based on molecular size, using a molecular sieving mechanism. The authors are evaluating two concepts: a composite of a carbon molecular sieve (CMS) with a tightly defined pore size distribution between 3 and 4 {angstrom}, and a microporous supporting matrix which provides mechanical strength and resistance to thermal degradation, and a sandwich of a CMS film between the porous supports. The high temperature membranes the authors are developing can be used to replace the current low-temperature unit operations for separating gaseous mixtures, especially hydrogen, from the products of the water gas shift reaction at high temperatures. Membranes that have a high selectivity and have both thermal and chemical stability would improve substantially the economics of the coal gasification process. These membranes can also improve other industrial processes such as the ammonia production and oil reform processes where hydrogen separation is crucial. Results of tests on a supported membrane and an unsupported carbon film are presented.

Yates, S.F.; Zhou, S.J.; Anderson, D.J.; Til, A.E. van

1994-10-01T23:59:59.000Z

148

High-Temperature Superconductivity Cable Demonstration Projects...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

High-Temperature Superconductivity Cable Demonstration Projects High-Temperature Superconductivity Cable Demonstration Projects A National Effort to Introduce New Technology into...

149

High-temperature hydrothermal systems in West Yunnan Province, China  

SciTech Connect

There are more than 660 thermal springs in West Yunnan Province, 30 of which are high-temperature hydrothermal systems with reservoir temperatures above 150/sup 0/C. All thermal springs in West Yunnan are under the control of tectonics, most of them distributed at anticlinoria of metamorphic rocks and granites. This paper discusses the relationship between thermal areas and tectonics, the correlation between thermal springs in West Yunnan and North Thailand, and the geothermal prospects in West Yunnan.

Laio, Z.; Tong, W.; Liu, S.; Zhao, F.

1986-01-01T23:59:59.000Z

150

Geothermal Literature Review At Geysers Geothermal Area (1984) | Open  

Open Energy Info (EERE)

4) 4) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermal Literature Review At Geysers Geothermal Area (1984) Exploration Activity Details Location Geysers Geothermal Area Exploration Technique Geothermal Literature Review Activity Date 1984 Usefulness not indicated DOE-funding Unknown Notes The melt zones of volcanic clusters was analyzed with recent geological and geophysical data for five magma-hydrothermal systems were studied for the purpose of developing estimates for the depth, volume and location of magma beneath each area. References Goldstein, N. E.; Flexser, S. (1 December 1984) Melt zones beneath five volcanic complexes in California: an assessment of shallow magma occurrences Retrieved from "http://en.openei.org/w/index.php?title=Geothermal_Literature_Review_At_Geysers_Geothermal_Area_(1984)&oldid=510811

151

Potential uses for a high-temperature borehole gravimeter  

DOE Green Energy (OSTI)

It is possible to design a canister to cool a borehole gravimeter for use in geothermal and high-temperature (up to 350/sup 0/C) gas wells. Repeat surveys with such a gravimeter could (1) help estimate the extent of reservoir plugging in geothermal injection well after one year of operation and (2) detect compaction of a geothermal aquifer if the change in thickness of the aquifer exceeds 1 m. The instrument could be used together with conventional logging tools to evaluate radial dependence of density around a well, or to estimate gas-filled porosity around wells drilled with mud. A high-temperature borehole gravimeter could also be used to evaluate structure and stratigraphy around geothermal and high-temperature gas wells.

Hearst, J.R.; Kasameyer, P.W.; Owen, L.B.

1978-03-08T23:59:59.000Z

152

X-ray evidence for capillary pressure driven flow in preserved core from The Geysers  

DOE Green Energy (OSTI)

Improved understanding of fluid storage and transport mechanisms relevant to The Geysers reservoir is fundamental to efficient and economic long term production of steam. X-ray computed tomographs of core from research borehole SB-15D made within 72 hours of drilling show characteristic x-ray attenuation profiles that can only be explained by imbibition of drilling fluid at reservoir conditions. The shape of the profile is highly diagnostic. Early time scans, when interpreted taking into account independent measurements of pore size distribution, permeabilities and capillary pressures for the rock matrix sampled by SB-15D, are consistent with strong capillary suctions for the recovered rocks. This indirect indication of imbibition under reservoir conditions, along with detailed analysis of x-ray attenuation in recovered core, suggests that water content was low in much of the preserved core. These measurements are part of a series of laboratory experiments monitored by x-ray methods intended to evaluate movement of various fluids to determine the relative importance capillarity, Darcy flow and vapor phase diffusion.

Bonner, B.P.; Roberts, J.J.; Schneberk, D.J.

1997-03-01T23:59:59.000Z

153

CONFINEMENT OF HIGH TEMPERATURE PLASMA  

DOE Patents (OSTI)

The confinement of a high temperature plasma in a stellarator in which the magnetic confinement has tended to shift the plasma from the center of the curved, U-shaped end loops is described. Magnetic means are provided for counteracting this tendency of the plasma to be shifted away from the center of the end loops, and in one embodiment this magnetic means is a longitudinally extending magnetic field such as is provided by two sets of parallel conductors bent to follow the U-shaped curvature of the end loops and energized oppositely on the inside and outside of this curvature. (AEC)

Koenig, H.R.

1963-05-01T23:59:59.000Z

154

Data Acquisition-Manipulation At Geysers Geothermal Area (1982) | Open  

Open Energy Info (EERE)

2) 2) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Data Acquisition-Manipulation At Geysers Geothermal Area (1982) Exploration Activity Details Location Geysers Geothermal Area Exploration Technique Data Acquisition-Manipulation Activity Date 1982 Usefulness useful DOE-funding Unknown Exploration Basis Develop parameters to identify geothermal region Notes Statistical methods are outlined to separate spatially, temporally, and magnitude-dependent portions of both the random and non-random components of the seismicity. The methodology employed compares the seismicity distributions with a generalized Poisson distribution. Temporally related events are identified by the distribution of the interoccurrence times. from the temporal characteristics of the seismicity associated with these

155

HIGH TEMPERATURE SUPERCONDUCTORS-SYNTHESIS ... - TMS  

Science Conference Proceedings (OSTI)

... Anaheim, California. HIGH TEMPERATURE SUPERCONDUCTORS- SYNTHESIS, PROCESSING, AND LARGE SCALE APPLICATIONS VII: Characterization ...

156

HIGH TEMPERATURE SUPERCONDUCTORS: III: YBCO Conductor ...  

Science Conference Proceedings (OSTI)

HIGH TEMPERATURE SUPERCONDUCTORS: Session III: YBCO Conductor Development. Sponsored by: Jt: EMPMD/SMD Superconducting Materials ...

157

High temperature nuclear gas turbine  

SciTech Connect

Significance of gas turbine cycle, process of the development of gas turbines, cycle and efficiency of high-temperature gas turbines, history of gas turbine plants and application of nuclear gas turbines are described. The gas turbines are directly operated by the heat from nuclear plants. The gas turbines are classified into two types, namely open cycle and closed cycle types from the point of thermal cycle, and into two types of internal combustion and external combustion from the point of heating method. The hightemperature gas turbines are tbe type of internal combustion closed cycle. Principle of the gas turbines of closed cycle and open cycle types is based on Brayton, Sirling, and Ericsson cycles. Etficiency of the turbines is decided only by pressure ratio, and is independent of gas temperature. An example of the turbine cycle for the nuclear plant Gestacht II is explained. The thermal efficiency of that plant attains 37%. Over the gas temperature of about 750 deg C, the thermal efficiency of the gas turbine cycle is better than that of steam turbine cycle. As the nuclear fuel, coated particle fuel is used, and this can attain higher temperature of core outlet gas. Direct coupling of the nuclear power plants and the high temperature gas turbines has possibility of the higher thermal efficiency. (JA)

Kurosawa, A.

1973-01-01T23:59:59.000Z

158

High temperature catalytic membrane reactors  

DOE Green Energy (OSTI)

Current state-of-the-art inorganic oxide membranes offer the potential of being modified to yield catalytic properties. The resulting modules may be configured to simultaneously induce catalytic reactions with product concentration and separation in a single processing step. Processes utilizing such catalytically active membrane reactors have the potential for dramatically increasing yield reactions which are currently limited by either thermodynamic equilibria, product inhibition, or kinetic selectivity. Examples of commercial interest include hydrogenation, dehydrogenation, partial and selective oxidation, hydrations, hydrocarbon cracking, olefin metathesis, hydroformylation, and olefin polymerization. A large portion of the most significant reactions fall into the category of high temperature, gas phase chemical and petrochemical processes. Microporous oxide membranes are well suited for these applications. A program is proposed to investigate selected model reactions of commercial interest (i.e. dehydrogenation of ethylbenzene to styrene and dehydrogenation of butane to butadiene) using a high temperature catalytic membrane reactor. Membranes will be developed, reaction dynamics characterized, and production processes developed, culminating in laboratory-scale demonstration of technical and economic feasibility. As a result, the anticipated increased yield per reactor pass economic incentives are envisioned. First, a large decrease in the temperature required to obtain high yield should be possible because of the reduced driving force requirement. Significantly higher conversion per pass implies a reduced recycle ratio, as well as reduced reactor size. Both factors result in reduced capital costs, as well as savings in cost of reactants and energy.

Not Available

1990-03-01T23:59:59.000Z

159

Joint Institute for High Temperatures  

National Nuclear Security Administration (NNSA)

Joint Institute for High Temperatures of Russian Academy of Sciences Moscow Institute of Physics and Technology Extended title Extended title Excited state of warm dense matter or Exotic state of warm dense matter or Novel form of warm dense matter or New form of plasma Three sources of generation similarity: solid state density, two temperatures: electron temperature about tens eV, cold ions keep original crystallographic positions, but electron band structure and phonon dispersion are changed, transient but steady (quasi-stationary for a short time) state of non-equilibrium, uniform plasmas (no reference to non-ideality, both strongly and weakly coupled plasmas can be formed) spectral line spectra are emitted by ion cores embedded in plasma environment which influences the spectra strongly,

160

High Temperature Superconducting Underground Cable  

SciTech Connect

The purpose of this Project was to design, build, install and demonstrate the technical feasibility of an underground high temperature superconducting (HTS) power cable installed between two utility substations. In the first phase two HTS cables, 320 m and 30 m in length, were constructed using 1st generation BSCCO wire. The two 34.5 kV, 800 Arms, 48 MVA sections were connected together using a superconducting joint in an underground vault. In the second phase the 30 m BSCCO cable was replaced by one constructed with 2nd generation YBCO wire. 2nd generation wire is needed for commercialization because of inherent cost and performance benefits. Primary objectives of the Project were to build and operate an HTS cable system which demonstrates significant progress towards commercial progress and addresses real world utility concerns such as installation, maintenance, reliability and compatibility with the existing grid. Four key technical areas addressed were the HTS cable and terminations (where the cable connects to the grid), cryogenic refrigeration system, underground cable-to-cable joint (needed for replacement of cable sections) and cost-effective 2nd generation HTS wire. This was the world’s first installation and operation of an HTS cable underground, between two utility substations as well as the first to demonstrate a cable-to-cable joint, remote monitoring system and 2nd generation HTS.

Farrell, Roger, A.

2010-02-28T23:59:59.000Z

Note: This page contains sample records for the topic "geysers high-temperature reservoir" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Recent Developments in High Temperature Superconductivity  

E-Print Network (OSTI)

New material systems and the experimental progress of high temperature superconductivity are briefly reviewed. We examine both oxides and non-oxides which exhibit stable and/or unstable superconductivity at high temperatures.

Hor, P. H.

1988-09-01T23:59:59.000Z

162

High-temperature thermocouples and related methods  

DOE Patents (OSTI)

A high-temperature thermocouple and methods for fabricating a thermocouple capable of long-term operation in high-temperature, hostile environments without significant signal degradation or shortened thermocouple lifetime due to heat induced brittleness.

Rempe, Joy L. (Idaho Falls, ID); Knudson, Darrell L. (Firth, ID); Condie, Keith G. (Idaho Falls, ID); Wilkins, S. Curt (Idaho Falls, ID)

2011-01-18T23:59:59.000Z

163

Compact High-Temperature Superconducting Cable Wins ' ...  

Science Conference Proceedings (OSTI)

Compact High-Temperature Superconducting Cable Wins 'R&D 100' Award. From NIST Tech Beat: June 22, 2011. ...

2011-07-06T23:59:59.000Z

164

High temperature electronics application in well logging  

DOE Green Energy (OSTI)

Some limitations, problems, and needs are briefly reviewed for neutron logging tools used in high-temperature geothermal environments. (ACR)

Traeger, R.K.; Lysne, P.C.

1987-01-01T23:59:59.000Z

165

High Temperature Strain Gages for SOFC Application  

DOE Green Energy (OSTI)

This presentation discusses the investigation/extension of high temperature strain gage applications sensors to SOFC applications.

Pineault, R.L.; Johnson, C.; Gemmen, R.S.; Gregory, O.; You, T.

2005-01-27T23:59:59.000Z

166

HIGH TEMPERATURE SUPERCONDUCTORS: IV: BSCCO and ...  

Science Conference Proceedings (OSTI)

HIGH TEMPERATURE SUPERCONDUCTORS: Session IV: BSCCO and TBCCO Conductor Development. Sponsored by: Jt. EMPMD/SMD Superconducting ...

167

Isotopic Analysis At Geyser Bight Area (Motyka, Et Al., 1993) | Open Energy  

Open Energy Info (EERE)

Geyser Bight Area (Motyka, Et Al., 1993) Geyser Bight Area (Motyka, Et Al., 1993) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Isotopic Analysis- Fluid At Geyser Bight Area (Motyka, Et Al., 1993) Exploration Activity Details Location Geyser Bight Area Exploration Technique Isotopic Analysis- Fluid Activity Date Usefulness useful DOE-funding Unknown References Roman J. Motyka, Christopher J. Nye, Donald L. Turner, Shirley A. Liss (1993) The Geyser Bight Geothermal Area, Umnak Island, Alaska Retrieved from "http://en.openei.org/w/index.php?title=Isotopic_Analysis_At_Geyser_Bight_Area_(Motyka,_Et_Al.,_1993)&oldid=687446" Categories: Exploration Activities DOE Funded Activities What links here Related changes Special pages Printable version Permanent link

168

Temporal changes in noble gas compositions within the Aidlin sector ofThe Geysers geothermal system  

E-Print Network (OSTI)

felsite unit), Geysers geothermal field, California: a 40California – A summary. ” Geothermal Resources Councilsystematics of a continental geothermal system: results from

Dobson, Patrick; Sonnenthal, Eric; Kennedy, Mack; van Soest, Thijs; Lewicki, Jennifer

2006-01-01T23:59:59.000Z

169

Heat-flow mapping at the Geysers Geothermal Field  

SciTech Connect

Pertinent data were compiled for 187 temperature-gradient holes in the vicinity of The Geysers Geothermal field. Terrain-correction techniques were applied to most of the temperature-gradient data, and a temperature-gradient map was constructed. Cutting samples from 16, deep, production wells were analyzed for thermal conductivity. From these samples, the mean thermal conductivities were determined for serpentinized ultramafic rock, greenstone, and graywacke. Then, a heat flow map was made. The temperature-gradient and heat-flow maps show that The Geysers Geothermal field is part of a very large, northwesterly-trending, thermal anomaly; the commercially productive portion of the field may be 100 km/sup 2/ in area. The rate that heat energy flows through the surface by thermal conduction is estimated at 1.79 x 10/sup 9/MJ per year. The net heat energy loss from commercial production for 1983 is estimated at 180.14 x 10/sup 9/MJ.

Thomas, R.P.

1986-10-31T23:59:59.000Z

170

Deep Trek High Temperature Electronics Project  

Science Conference Proceedings (OSTI)

This report summarizes technical progress achieved during the cooperative research agreement between Honeywell and U.S. Department of Energy to develop high-temperature electronics. Objects of this development included Silicon-on-Insulator (SOI) wafer process development for high temperature, supporting design tools and libraries, and high temperature integrated circuit component development including FPGA, EEPROM, high-resolution A-to-D converter, and a precision amplifier.

Bruce Ohme

2007-07-31T23:59:59.000Z

171

Research on Very High Temperature Gas Reactors  

Science Conference Proceedings (OSTI)

Very high temperature gas reactors are helium-cooled, graphite-moderated advanced reactors that show potential for generating low-cost electricity via gas turbines or cogeneration with process-heat applications. This investigation addresses the development status of advanced coatings for nuclear-fuel particles and high-temperature structural materials and evaluates whether these developments are likely to lead to economically competitive applications of the very high temperature gas reactor concept.

1991-08-08T23:59:59.000Z

172

The origin of high-temperature zones in vapor-dominated geothermal systems  

DOE Green Energy (OSTI)

Vapor-dominated geothermal systems are proposed to originate by downward extension (by the ''heat pipe'' mechanism) into hot dry fractured rock above a large cooling igneous intrusion. High temperature zones found by drilling are shallow parts of the original hot dry rock where the penetration of the vapor reservoir was limited, and hot dry rock may extend under much of these reservoirs. An earlier hot water geothermal system may have formed during an early phase of the heating episode.

Truesdell, Alfred H.

1991-01-01T23:59:59.000Z

173

Improved Martensitic Steel for High Temperature Applications  

NETL has developed a stainless steel composition and heat treatment process for a high-temperature, titanium alloyed 9 Cr-1 molybdenum alloy ...

174

Experiment Hazard Class 3 - High Temperatures  

NLE Websites -- All DOE Office Websites (Extended Search)

* RF and Microwave * UV Light Hydrogen * Hydrogen Electronics * Electrical Equipment * High Voltage Other * Other Class 3 - High Temperatures Applicability The hazard controls...

175

High-temperature brazed ceramic joints  

DOE Patents (OSTI)

High-temperature joints formed from metallized ceramics are disclosed wherein the metal coatings on the ceramics are vacuum sputtered thereon.

Jarvinen, Philip O. (Amherst, NH)

1986-01-01T23:59:59.000Z

176

Development of Inorganic High Temperature Proton Exchange ...  

Science Conference Proceedings (OSTI)

For fuel cell systems directly coupled to a reformer, the primary advantage of high temperatures is the elimination of CO poisoning. Direct methanol fuel cells ...

177

Recent Developments in High Temperature Superconductivity  

Science Conference Proceedings (OSTI)

Scope, Recently, significant progress has been made world-wide in both fabrication and fundamental understanding of high-temperature superconductors (HTS) ...

178

Thermodynamic and Kinetic Properties of High Temperature ...  

Science Conference Proceedings (OSTI)

Perspectives on Phonons and Electron-Phonon Scattering in High-Temperature Superconductors · Prediction and Design of Materials from Crystal Structures to ...

179

HALLIBURTON SPERRY-SUN DOE HIGH TEMPERATURE LWD PROJECT  

SciTech Connect

The objective of this project was to build a high temperature, cost-effective, logging while drilling (HT-LWD) system with the ability to operate at 175 C with more than 100 hours mean time between failures (MTBF). Such a commercial real-time formation evaluation (FE) system would help operators to drill and produce hydrocarbon resources from moderately deep, hot reservoirs which otherwise might be uneconomic to drill. The project plan was to combine the existing Sperry-Sun high temperature directional and gamma logging system with lower temperature FE sensors which were upgraded to higher temperature operation as part of the project. The project was to be completed in two phases. Phase I included the development of the HT system, building two complete systems, demonstrating operational capability at 175 C and survivability at 200 C in the laboratory, and successfully testing the system in two low temperature field tests. Phase II was to test the system in a well with a bottom hole temperature of 175 C. The high temperature FE sensors developed as part of this project include gamma ray (DGR), resistivity (EWR-Phase 4), neutron (CTN), and density (SLD). The existing high temperature pulser and telemetry system was upgraded to accommodate the data and bandwidth requirements of the additional sensors. Environmental and lifetime testing of system components and modules indicates that system life and reliability goals will be substantially exceeded. The system has performed well in domestic and international high temperature wells (to 175 C). In addition to the sensor modules specified in the project contract, Sperry has now upgraded other system components to higher temperature as well. These include a LWD sonic sensor (BAT), pressure while drilling sensor (PWD), and a more powerful central system controller (CIM).

Ronald L. Spross

2005-03-15T23:59:59.000Z

180

High temperature superconducting fault current limiter  

DOE Patents (OSTI)

A fault current limiter for an electrical circuit is disclosed. The fault current limiter includes a high temperature superconductor in the electrical circuit. The high temperature superconductor is cooled below its critical temperature to maintain the superconducting electrical properties during operation as the fault current limiter. 15 figs.

Hull, J.R.

1997-02-04T23:59:59.000Z

Note: This page contains sample records for the topic "geysers high-temperature reservoir" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

High-temperature electronics: an overview  

DOE Green Energy (OSTI)

A summary is presented providing an overview of contemporary high-temperature electronics and identifying the major areas where developments are needed and the laboratories where research is being conducted. The geothermal program, high-temperature oil and gas well logging, jet engine monitors, and circuits for operation in the sodium coolant loop of the Clinch River Breeder reactor have stimulated research. (FS)

Heckman, R.C.

1979-01-01T23:59:59.000Z

182

High Temperature Electrochemistry Center - HiTEC  

DOE Green Energy (OSTI)

This presentation discusses the High Temperature Electrochemistry Center (HiTEC). The mission of HiTEC is to advance the solid oxide technology, such as solid oxide, high temperature electrolysers, reversible fuel cells, energy storage devices, proton conductors, etc., for use in DG and FutureGen applications, and to conduct fundamental research that aids the general development of all solid oxide technology.

McVay, G.; Williams, M.

2005-01-27T23:59:59.000Z

183

Compound and Elemental Analysis At Geysers Area (Lambert & Epstein, 1992) |  

Open Energy Info (EERE)

Compound and Elemental Analysis At Geysers Area Compound and Elemental Analysis At Geysers Area (Lambert & Epstein, 1992) Exploration Activity Details Location Geysers Area Exploration Technique Compound and Elemental Analysis Activity Date Usefulness useful DOE-funding Unknown Notes Rocks and minerals were visually identified in cuttings, and identifications were confirmed through examination of thin sections. X-ray powder diffraction was used to test the purity of some mineral separates. The chemical compositions of some metamorphic minerals were determined by electron microprobe. References Steven J. Lambert, Samuel Epstein (1992) Stable-Isotope Studies Of Rocks And Secondary Minerals In A Vapor-Dominated Hydrothermal System At The Geysers, Sonoma County, California Retrieved from "http://en.openei.org/w/index.php?title=Compound_and_Elemental_Analysis_At_Geysers_Area_(Lambert_%26_Epstein,_1992)&oldid=510406"

184

Resistivity During Boiling in the SB-15-D Core from the Geysers Geothermal Field: The Effects of Capillarity  

DOE Green Energy (OSTI)

In a laboratory study of cores from borehole SB-15-D in The Geysers geothermal area, we measured the electrical resistivity of metashale with and without pore-pressure control, with confining pressures up to 100 bars and temperatures between 20 and 150 C, to determine how the pore-size distribution and capillarity affected boiling. We observed a gradual increase in resistivity when the downstream pore pressure or confining pressure decreased below the phase boundary of free water. For the conditions of this experiment, boiling, as indicated by an increase in resistivity, is initiated at pore pressures of approximately 0.5 to 1 bar (0.05 to 0.1 MPa) below the free-water boiling curve, and it continues to increase gradually as pressure is lowered to atmospheric. A simple model of the effects of capillarity suggests that at 145 C, less than 15% of the pore water can boil in these rocks. If subsequent experiments bear out these preliminary observations, then boiling within a geothermal reservoir is controlled not just by pressure and temperature but also by pore-size distribution. Thus, it may be possible to determine reservoir characteristics by monitoring changes in electrical resistivity as reservoir conditions change.

Roberts, J.; Duba, A.; Bonner, B.; Kasameyer, P.

1997-01-01T23:59:59.000Z

185

Symposium on high temperature and materials chemistry  

SciTech Connect

This volume contains the written proceedings of the Symposium on High Temperature and Materials Chemistry held in Berkeley, California on October 24--25, 1989. The Symposium was sponsored by the Materials and Chemical Sciences Division of Lawrence Berkeley Laboratory and by the College of Chemistry of the University of California at Berkeley to discuss directions, trends, and accomplishments in the field of high temperature and materials chemistry. Its purpose was to provide a snapshot of high temperature and materials chemistry and, in so doing, to define status and directions.

1989-10-01T23:59:59.000Z

186

X-ray tomography of preserved samples from The Geysers scientific corehole  

DOE Green Energy (OSTI)

Approximately 800 ft. of continuous core was recovered from borehole SB-15 D (on unit 15, near the site of the abandoned Geysers Resort) during a recently completed drilling operation funded by the USDOE. Sections of this core were collected at 50 ft intervals for subsequent examination as drilling proceeded. Five foot sections were not removed at the drill site, but were sealed in the innermost sleeve of a triple tube coring system to minimize drying and disturbance of the core. All cores remained sealed and were radiographed within 72 hours of drilling: the five foot core from near 1400 ft. was scanned within 18 hours of drilling. A third generation x-ray scanner, which uses high energy radiation to penetrate the aluminum sleeve and 3.5 inch cores, was used to make preliminary radiographs and to collect multiple views of the sample as the core is rotated in front of the beam. True three dimensional tomographs are then reconstructed from the data. At present, the images have a spatial resolution of approximately 140 micrometers and can resolve contrast differences of 0.2%. The tomographs clearly show differences in lithology with depth in the reservoir. Partially filled fractures, vein selvage and vuggy porosity are all evident in parts of the core. A principle goal of the imaging effort is to help determine the fluid content of the reservoir. Important questions to investigate include water loss during core recovery, infiltration of drilling fluid, and the heterogeneous distribution of pore fluid. Images show that radial gradients in x-ray attenuation commonly occur in jacketed cores. Regions of excess attenuation extend about halfway into the 3.5 in. core, and are probably caused by mud invasion induced by capillarity of the small scale porosity of the graywacke matrix. X-ray measurements will be coordinated with other independent measurements of fluid content underway in separate studies, particularly NMR spectroscopy of frozen ''pressure core'', and compressional velocity and electrical resistivity measurements.

Bonner, B.P.; Roberts, J.J.; Schneberk, D.J.; Marsh, A.; Ruddle, C.; Updike, E.

1995-01-26T23:59:59.000Z

187

Designs of an HDR reservoir at Clearlake, California  

SciTech Connect

The Clearlake area of California lies within the Geysers/Clearlake geothermal anomaly, a region of some 270 square miles in Sonoma and Lake Counties exhibiting elevated heat flow. The bulk of the electric power generated from geothermal resources in the United States is produced from this geothermal anomaly. However, the quantity of the Hot Dry Rock (HDR) resource within the Geysers/Clearlake geothermal anomaly is vastly larger than that of the hydrothermal resource, and could provide the basis for significant further electric power production. Of most interest from the standpoint of demonstrating the Hot Dry Rock (HDR) resource in this region is the extremely high heat flow that surrounds the City of Clearlake, as attested to by the very high temperatures measured in numerous dry (i.e., hydrothermally nonproductive) holes drilled there over the past 20 years.

Brown, D.W.; Burns, K.L.

1994-08-01T23:59:59.000Z

188

Live Work on High Temperature Conductors  

Science Conference Proceedings (OSTI)

Feedback from field personnel working with high-temperature conductors indicates that when a dead-end compression yoke assembly (DCYA) is installed on the conductor according to normal utility procedures, the soft aluminum strands are deformed and "birdcage." This is of course a concern to the field crews and the utility operating the line. This report presents results of research and tests performed on selected conductors operating at high temperature (approximately 250-260°C) with selected live wor...

2011-12-13T23:59:59.000Z

189

Investigations into High Temperature Components and Packaging  

SciTech Connect

The purpose of this report is to document the work that was performed at the Oak Ridge National Laboratory (ORNL) in support of the development of high temperature power electronics and components with monies remaining from the Semikron High Temperature Inverter Project managed by the National Energy Technology Laboratory (NETL). High temperature electronic components are needed to allow inverters to operate in more extreme operating conditions as required in advanced traction drive applications. The trend to try to eliminate secondary cooling loops and utilize the internal combustion (IC) cooling system, which operates with approximately 105 C water/ethylene glycol coolant at the output of the radiator, is necessary to further reduce vehicle costs and weight. The activity documented in this report includes development and testing of high temperature components, activities in support of high temperature testing, an assessment of several component packaging methods, and how elevated operating temperatures would impact their reliability. This report is organized with testing of new high temperature capacitors in Section 2 and testing of new 150 C junction temperature trench insulated gate bipolar transistor (IGBTs) in Section 3. Section 4 addresses some operational OPAL-GT information, which was necessary for developing module level tests. Section 5 summarizes calibration of equipment needed for the high temperature testing. Section 6 details some additional work that was funded on silicon carbide (SiC) device testing for high temperature use, and Section 7 is the complete text of a report funded from this effort summarizing packaging methods and their reliability issues for use in high temperature power electronics. Components were tested to evaluate the performance characteristics of the component at different operating temperatures. The temperature of the component is determined by the ambient temperature (i.e., temperature surrounding the device) plus the temperature increase inside the device due the internal heat that is generated due to conduction and switching losses. Capacitors and high current switches that are reliable and meet performance specifications over an increased temperature range are necessary to realize electronics needed for hybrid-electric vehicles (HEVs), fuel cell (FC) and plug-in HEVs (PHEVs). In addition to individual component level testing, it is necessary to evaluate and perform long term module level testing to ascertain the effects of high temperature operation on power electronics.

Marlino, L.D.; Seiber, L.E.; Scudiere, M.B.; M.S. Chinthavali, M.S.; McCluskey, F.P.

2007-12-31T23:59:59.000Z

190

Adsorption of water vapor on reservoir rocks. First quarterly report, January--March 1993  

DOE Green Energy (OSTI)

Progress is reported on: adsorption of water vapor on reservoir rocks; theoretical investigation of adsorption; estimation of adsorption parameters from transient experiments; transient adsorption experiment -- salinity and noncondensible gas effects; the physics of injection of water into, transport and storage of fluids within, and production of vapor from geothermal reservoirs; injection optimization at the Geysers Geothermal Field; a model to test multiwell data interpretation for heterogeneous reservoirs; earth tide effects on downhole pressure measurements; and a finite-difference model for free surface gravity drainage well test analysis.

Not Available

1993-07-01T23:59:59.000Z

191

High Temperature Cements | Open Energy Information  

Open Energy Info (EERE)

High Temperature Cements High Temperature Cements Jump to: navigation, search Geothermal ARRA Funded Projects for High Temperature Cements Loading map... {"format":"googlemaps3","type":"ROADMAP","types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"limit":200,"offset":0,"link":"all","sort":[""],"order":[],"headers":"show","mainlabel":"","intro":"","outro":"","searchlabel":"\u2026 further results","default":"","geoservice":"google","zoom":false,"width":"600px","height":"350px","centre":false,"layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","icon":"","visitedicon":"","forceshow":true,"showtitle":true,"hidenamespace":false,"template":false,"title":"","label":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"locations":[{"text":"

192

High Temperature Membrane & Advanced Cathode Catalyst Development  

DOE Green Energy (OSTI)

Current project consisted of three main phases and eighteen milestones. Short description of each phase is given below. Table 1 lists program milestones. Phase 1--High Temperature Membrane and Advanced Catalyst Development. New polymers and advanced cathode catalysts were synthesized. The membranes and the catalysts were characterized and compared against specifications that are based on DOE program requirements. The best-in-class membranes and catalysts were downselected for phase 2. Phase 2--Catalyst Coated Membrane (CCM) Fabrication and Testing. Laboratory scale catalyst coated membranes (CCMs) were fabricated and tested using the down-selected membranes and catalysts. The catalysts and high temperature membrane CCMs were tested and optimized. Phase 3--Multi-cell stack fabrication. Full-size CCMs with the down-selected and optimized high temperature membrane and catalyst were fabricated. The catalyst membrane assemblies were tested in full size cells and multi-cell stack.

Protsailo, Lesia

2006-04-20T23:59:59.000Z

193

Initial stages of high temperature metal oxidation  

Science Conference Proceedings (OSTI)

The application of XPS and UPS to the study of the initial stages of high temperature (> 350/sup 0/C) electrochemical oxidation of iron and nickel is discussed. In the high temperature experiments, iron and nickel electrodes were electrochemically oxidized in contact with a solid oxide electrolyte in the uhv system. The great advantages of this technique are that the oxygen activity at the interface may be precisely controlled and the ability to run the reactions in uhv allows the simultaneous observation of the reactions by XPS.

Yang, C.Y.; O'Grady, W.E.

1981-01-01T23:59:59.000Z

194

High temperature crystalline superconductors from crystallized glasses  

DOE Patents (OSTI)

A method of preparing a high temperature superconductor from an amorphous phase. The method involves preparing a starting material of a composition of Bi.sub.2 Sr.sub.2 Ca.sub.3 Cu.sub.4 Ox or Bi.sub.2 Sr.sub.2 Ca.sub.4 Cu.sub.5 Ox, forming an amorphous phase of the composition and heat treating the amorphous phase for particular time and temperature ranges to achieve a single phase high temperature superconductor.

Shi, Donglu (Downers Grove, IL)

1992-01-01T23:59:59.000Z

195

Fusion blanket high-temperature heat transfer  

DOE Green Energy (OSTI)

Deep penetration of 14 MeV neutrons makes two-temperature region blankets feasible. A relatively low-temperature (approx. 300/sup 0/C) metallic structure is the vacuum/coolant pressure boundary, while the interior of the blanket, which is a simple packed bed of nonstructural material, operates at very high temperatures (>1000/sup 0/C). The water-cooled shell structure is thermally insulated from the steam-cooled interior. High-temperature steam can dramatically increase the efficiency of electric power generation, as well as produce hydrogen and oxygen-based synthetic fuels at high-efficiency.

Fillo, J.A.

1983-01-01T23:59:59.000Z

196

Core Analysis At Geysers Area (Lambert & Epstein, 1992) | Open Energy  

Open Energy Info (EERE)

Core Analysis At Geysers Area (Lambert & Epstein, Core Analysis At Geysers Area (Lambert & Epstein, 1992) Exploration Activity Details Location Geysers Area Exploration Technique Core Analysis Activity Date Usefulness useful DOE-funding Unknown Notes Aside from two core fragments from Thermal well No. 7 and one each from Lakoma Fame wells Nos. 8 and 9, all rock and mineral samples were available as cuttings. Cuttings samples were taken during drilling typically at 12-m intervals by the Union Oil Company of California (now UNOCAL), each sample covering a 6-m depth interval. The grains in cuttings fractions were millimeter- to centimetersized. References Steven J. Lambert, Samuel Epstein (1992) Stable-Isotope Studies Of Rocks And Secondary Minerals In A Vapor-Dominated Hydrothermal System At The Geysers, Sonoma County, California

197

Cuttings Analysis At Geysers Area (Lambert & Epstein, 1992) | Open Energy  

Open Energy Info (EERE)

Cuttings Analysis At Geysers Area (Lambert & Epstein, Cuttings Analysis At Geysers Area (Lambert & Epstein, 1992) Exploration Activity Details Location Geysers Area Exploration Technique Cuttings Analysis Activity Date Usefulness useful DOE-funding Unknown Notes Aside from two core fragments from Thermal well No. 7 and one each from Lakoma Fame wells Nos. 8 and 9, all rock and mineral samples were available as cuttings. Cuttings samples were taken during drilling typically at 12-m intervals by the Union Oil Company of California (now UNOCAL), each sample covering a 6-m depth interval. The grains in cuttings fractions were millimeter- to centimetersized. References Steven J. Lambert, Samuel Epstein (1992) Stable-Isotope Studies Of Rocks And Secondary Minerals In A Vapor-Dominated Hydrothermal System At The Geysers, Sonoma County, California

198

Helium isotopes in geothermal systems- Iceland, The Geysers, Raft River and  

Open Energy Info (EERE)

Helium isotopes in geothermal systems- Iceland, The Geysers, Raft River and Helium isotopes in geothermal systems- Iceland, The Geysers, Raft River and Steamboat Springs Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Helium isotopes in geothermal systems- Iceland, The Geysers, Raft River and Steamboat Springs Details Activities (3) Areas (3) Regions (0) Abstract: Helium isotope ratios have been measured in geothermal fluids from Iceland, The Geysers, Raft River, Steamboat Springs and Hawaii. These ratios have been interpreted in terms of the processes which supply He in distinct isotopic ratios (i.e. magmatic He, ~10 Ra; atmospheric He, R,sub>a; and crustal He, ~0.1 Ra) and in terms of the processes which can alter the isotopic ratio (hydrologic mixing, U-Th series alpha production and weathering release of crustal He, magma aging and

199

Observations of Nighttime Winds Using Pilot Balloons in Anderson Creek Valley, Geysers, California  

Science Conference Proceedings (OSTI)

Nighttime drainage or downslope winds along the east-facing slope of Anderson Creek Valley located in the Geysers area of northern California are examined using pilot balloons as air parcel tracers. Observations made over four nights show a ...

Carmen J. Nappo; Howell F. Snodgrass

1981-06-01T23:59:59.000Z

200

Seismic monitoring at the Geysers Geothermal Field, California, Menlo Park, 1978  

DOE Green Energy (OSTI)

Two distinct clusters of microearthquakes have been identified at The Geysers, possibly relating to two independent pressure sinks resulting from steam production described by Lipman, and others (1977). Unlike earthquakes in the Maacama--Rodgers Creek fault zone to the south and west, earthquakes at The Geysers are confined to depths of less than 5 km. The present level of seismicity at The Geysers appears to be higher than the preproduction level and is higher and more continuous than the seismicity in the surrounding reigon. Earthquakes in the steam production zone at The Geysers resemmble earthquakes in the surrounding region with regard to focal plane solutions, source characteristics and magnitude distribution (b slope). Subtle differences in earthquake characteristics may be resolved by analysis of more extensive data now being gathered in the region.

Not Available

1979-02-01T23:59:59.000Z

Note: This page contains sample records for the topic "geysers high-temperature reservoir" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Analysis of cause and mechanism for injection-induced seismicity at the Geysers Geothermal Field, California  

E-Print Network (OSTI)

A.P. 2001. Seismicity, subsidence and strain at The Geysersand Segall, P. , 1997. Subsidence at The Geysers geothermalrespectively, as well as subsidence of about 0.5 to 1 meter.

Rutqvist, Jonny; Oldenburg, Curtis

2007-01-01T23:59:59.000Z

202

Environmental analysis for geothermal energy development in the Geysers Region: executive summary  

DOE Green Energy (OSTI)

The following are summarized for the Geysers--Calistoga KGRA: geothermal resource development, highlights of the master environmental assessment, control technology for hydrogen sulfide emissions, meteorological/climatological data base for hydrogen sulfide predictions, and future research needs. (MHR)

Dorset, P.F.

1978-05-01T23:59:59.000Z

203

Development of an Enhanced Two-Phase Production System at the Geysers Geothermal Field  

DOE Green Energy (OSTI)

A method was developed to enhance geothermal steam production from two-phase wells at THE Geysers Geothermal Field. The beneficial result was increased geothermal production that was easily and economically delivered to the power plant.

Steven Enedy

2001-12-14T23:59:59.000Z

204

Public Workshop, Staff Technical Meeting with Applicant on Geysers Unit 17  

DOE Green Energy (OSTI)

The overall purpose of this meeting is to discuss the report that was sent to PG and E on February 1st discussing Geysers 17. The Commission has reviewed all of the existing data, the majority of the existing data that have gone through both Lake County and through the CPUC regarding 17, looked at the existing data to see what, if any, additional would be required to file and expeditiously process a Notice of Intention on Geysers Unit 17.

Schiller, Wendy E.

1978-02-21T23:59:59.000Z

205

Safety Issues for High Temperature Gas Reactors  

E-Print Network (OSTI)

Safety Issues for High Temperature Gas Reactors Andrew C. Kadak Professor of the Practice #12;Major regulation) 50mSv/a (Could be exceeded for rear recovery events) 50 mSv/a 20 mSv/a (average 5 y) (5 m performance of safety systems - natural circulation - heat conduction and convection. #12;Issues · Fuel

206

Thermal disconnect for high-temperature batteries  

DOE Patents (OSTI)

A new type of high temperature thermal disconnect has been developed to protect electrical and mechanical equipment from damage caused by operation at extreme temperatures. These thermal disconnects allow continuous operation at temperatures ranging from 250.degree. C. to 450.degree. C., while rapidly terminating operation at temperatures 50.degree. C. to 150.degree. C. higher than the continuous operating temperature.

Jungst, Rudolph George (Albuquerque, NM); Armijo, James Rudolph (Albuquerque, NM); Frear, Darrel Richard (Austin, TX)

2000-01-01T23:59:59.000Z

207

High temperature spectral gamma well logging  

Science Conference Proceedings (OSTI)

A high temperature spectral gamma tool has been designed and built for use in small-diameter geothermal exploration wells. Several engineering judgments are discussed regarding operating parameters, well model selection, and signal processing. An actual well log at elevated temperatures is given with spectral gamma reading showing repeatability.

Normann, R.A.; Henfling, J.A.

1997-01-01T23:59:59.000Z

208

High temperature ceramic/metal joint structure  

DOE Patents (OSTI)

A high temperature turbine engine includes a hybrid ceramic/metallic rotor member having ceramic/metal joint structure. The disclosed joint is able to endure higher temperatures than previously possible, and aids in controlling heat transfer in the rotor member.

Boyd, Gary L. (Tempe, AZ)

1991-01-01T23:59:59.000Z

209

Live Work with High Temperature Conductors  

Science Conference Proceedings (OSTI)

This report examines issues that may arise when live work is undertaken on conductors that operate at high temperatures (HT conductors) and provides the results from selected tests on the temperature levels reached by tools in contact with hot conductors. It also discusses possible concerns that may arise during de-energized work on lines that use HT conductors.

2009-12-15T23:59:59.000Z

210

High Temperature Materials Interim Data Qualification Report  

SciTech Connect

ABSTRACT Projects for the very high temperature reactor (VHTR) Technology Development Office provide data in support of Nuclear Regulatory Commission licensing of the VHTR. Fuel and materials to be used in the reactor are tested and characterized to quantify performance in high temperature and high fluence environments. The VHTR program has established the NGNP Data Management and Analysis System (NDMAS) to ensure that VHTR data are qualified for use, stored in a readily accessible electronic form, and analyzed to extract useful results. This document focuses on the first NDMAS objective. It describes the High Temperature Materials characterization data stream, the processing of these data within NDMAS, and reports the interim FY2010 qualification status of the data. Data qualification activities within NDMAS for specific types of data are determined by the data qualification category assigned by the data generator. The High Temperature Materials data are being collected under NQA-1 guidelines, and will be qualified data. For NQA-1 qualified data, the qualification activities include: (1) capture testing, to confirm that the data stored within NDMAS are identical to the raw data supplied, (2) accuracy testing to confirm that the data are an accurate representation of the system or object being measured, and (3) documenting that the data were collected under an NQA-1 or equivalent Quality Assurance program. Currently, data from two test series within the High Temperature Materials data stream have been entered into the NDMAS vault: 1. Tensile Tests for Sm (i.e., Allowable Stress) Confirmatory Testing – 1,403,994 records have been inserted into the NDMAS database. Capture testing is in process. 2. Creep-Fatigue Testing to Support Determination of Creep-Fatigue Interaction Diagram – 918,854 records have been processed and inserted into the NDMAS database. Capture testing is in process.

Nancy Lybeck

2010-08-01T23:59:59.000Z

211

Property:SanyalTempReservoir | Open Energy Information  

Open Energy Info (EERE)

SanyalTempReservoir SanyalTempReservoir Jump to: navigation, search Property Name SanyalTempReservoir Property Type Page Description see Sanyal_Temperature_Classification Allows Values Extremely Low Temperature;Very Low Temperature;Low Temperature;Moderate Temperature;High Temperature;Ultra High Temperature;Steam Field Pages using the property "SanyalTempReservoir" Showing 16 pages using this property. A Amedee Geothermal Area + Very Low Temperature + B Beowawe Hot Springs Geothermal Area + Moderate Temperature + Blue Mountain Geothermal Area + High Temperature + C Chena Geothermal Area + Very Low Temperature + D Desert Peak Geothermal Area + Moderate Temperature + K Kilauea East Rift Geothermal Area + High Temperature + L Lightning Dock Geothermal Area + High Temperature +

212

Integrated modeling and field study of potential mechanisms for induced seismicity at The Geysers Goethermal Field, California  

E-Print Network (OSTI)

and P. Segall, 1997. Subsidence at The Geysers geothermalF. Rocca, 2000. Nonlinear subsidence rate estimation usingrespectively, as well as subsidence of about 1 meter that

Rutqvist, Jonny; Majer, Ernie; Oldenburg, Curt; Peterson, John; Vasco, Don

2006-01-01T23:59:59.000Z

213

Improved Martensitic Steel for High Temperature Applications  

NLE Websites -- All DOE Office Websites (Extended Search)

Improved Martensitic Steel Improved Martensitic Steel for High Temperature Applications Opportunity Research is active on the patented technology, titled "Heat-Treated 9 Cr-1 Mo Steel for High Temperature Application." This technology is available for licensing and/or further collaborative research from the U.S. Department of Energy's National Energy Technology Laboratory (NETL). Overview The operating efficiency of coal-fired power plants is directly related to combustion system temperature and pressure. Incorporation of ultra- supercritical (USC) steam conditions into new or existing power plants can achieve increased efficiency and reduce coal consumption, while reducing carbon dioxide emissions as well as other pollutants. Traditionally used materials do not possess the optimal characteristics for operation

214

High-temperature helium-loop facility  

Science Conference Proceedings (OSTI)

The high-temperature helium loop is a facility for materials testing in ultrapure helium gas at high temperatures. The closed loop system is capable of recirculating high-purity helium or helium with controlled impurities. The gas loop maximum operating conditions are as follows: 300 psi pressure, 500 lb/h flow rate, and 2100/sup 0/F temperature. The two test sections can accept samples up to 3.5 in. diameter and 5 ft long. The gas loop is fully instrumented to continuously monitor all parameters of loop operation as well as helium impurities. The loop is fully automated to operate continuously and requires only a daily servicing by a qualified operator to replenish recorder charts and helium makeup gas. Because of its versatility and high degree of parameter control, the helium loop is applicable to many types of materials research. This report describes the test apparatus, operating parameters, peripheral systems, and instrumentation system.

Tokarz, R.D.

1981-09-01T23:59:59.000Z

215

Manufacturing Barriers to High Temperature PEM Commercialization  

NLE Websites -- All DOE Office Websites (Extended Search)

9/2011 9/2011 1 BASF Fuel Cell, Inc. Manufacturing Barriers to high temperature PEM commercialization 39 Veronica Ave Somerset , NJ 08873 Tel : (732) 545-5100 9/9/2011 2 Background on BASF Fuel Cell  BASF Fuel Cell was established in 2007, formerly PEMEAS Fuel Cells (including E-TEK)  Product line is high temperature MEAs (Celtec ® P made from PBI-phosphoric acid)  Dedicated a new advanced pilot manufacturing facility in Somerset NJ May 2009. Ribbon-cutting hosted by Dr. Kreimeyer (BASF BoD, right) and attended by various US pubic officials including former NJ Governor Jon Corzine (left) 9/9/2011 3 Multi-layer product of membrane (polybenzimidazole and phosphoric acid), gas diffusion material and catalysts Unique characteristics:  High operating temperature

216

Establishment of Harrop, High-Temperature Viscometer  

Science Conference Proceedings (OSTI)

This report explains how the Harrop, High-Temperature Viscometer was installed, calibrated, and operated. This report includes assembly and alignment of the furnace, viscometer, and spindle, and explains the operation of the Brookfield Viscometer, the Harrop furnace, and the UDC furnace controller. Calibration data and the development of the spindle constant from NIST standard reference glasses is presented. A simple operational procedure is included.

Schumacher, R.F.

1999-11-05T23:59:59.000Z

217

Thermal fuse for high-temperature batteries  

SciTech Connect

A thermal fuse, preferably for a high-temperature battery, comprising leads and a body therebetween having a melting point between approximately 400.degree. C. and 500.degree. C. The body is preferably an alloy of Ag--Mg, Ag--Sb, Al--Ge, Au--In, Bi--Te, Cd--Sb, Cu--Mg, In--Sb, Mg--Pb, Pb--Pd, Sb--Zn, Sn--Te, or Mg--Al.

Jungst, Rudolph G. (Albuquerque, NM); Armijo, James R. (Albuquerque, NM); Frear, Darrel R. (Austin, TX)

2000-01-01T23:59:59.000Z

218

High temperature simulation of petroleum formation  

Science Conference Proceedings (OSTI)

Petroleum formation has been simulated in the laboratory with emphasis on the effects of temperature, mineral catalysis, and starting material structure on the yield and composition of the liquid and gaseous hydrocarbon products. In an attempt to prove the hypothesis that petroleum formation can be simulated using high temperatures, Green River Shale from Colorado, USA, was subjected to pyrolysis for 16 hours at temperatures ranging from 300 to 500/sup 0/C. The sequence of products formed over this temperature range was used as the basis for defining five different zones of maturation reaction: 1) a heterobond cracking zone; 2) a labile carbon bond cracking zone; 3) a free radical synthesis zone; 4) a wet gas formation zone; and 5) an aromatization zone. The role of some typical inorganic components of sedimentary rocks in the origin and maturation of petroleum has been investigated using this high temperature model. The importance of the structure of organic matter in petroelum formation has also been investigated using this high temperature model. Lignin and cellulose are poor sources of liquid hydrocarbons, but cellulose in the presence of carbonate gives a high yield of gaseous hydrocarbons. Protein pyrolysis gives a high oil yield with an alkane distribution similar to petroleum. The lipids produced the highest oil yield of the substances tested but the n-alkanes show an odd carbon length predominance unlike the distribution found in petroleum.

Evans, R.J.

1982-01-01T23:59:59.000Z

219

Vehicle Technologies Office: ORNL's High Temperature Materials Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

ORNL's High Temperature ORNL's High Temperature Materials Laboratory Assists NASCAR Teams to someone by E-mail Share Vehicle Technologies Office: ORNL's High Temperature Materials Laboratory Assists NASCAR Teams on Facebook Tweet about Vehicle Technologies Office: ORNL's High Temperature Materials Laboratory Assists NASCAR Teams on Twitter Bookmark Vehicle Technologies Office: ORNL's High Temperature Materials Laboratory Assists NASCAR Teams on Google Bookmark Vehicle Technologies Office: ORNL's High Temperature Materials Laboratory Assists NASCAR Teams on Delicious Rank Vehicle Technologies Office: ORNL's High Temperature Materials Laboratory Assists NASCAR Teams on Digg Find More places to share Vehicle Technologies Office: ORNL's High Temperature Materials Laboratory Assists NASCAR Teams on AddThis.com...

220

High-Dielectric Constant, High-Temperature Ceramic Capacitors for ...  

Science Conference Proceedings (OSTI)

Growth of Thick, On-Axis SiC Epitaxial Layers by High Temperature Halide CVD for High Voltage Power Devices · High-Dielectric Constant, High-Temperature ...

Note: This page contains sample records for the topic "geysers high-temperature reservoir" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Statistical study of seismicity associated with geothermal reservoirs in  

Open Energy Info (EERE)

study of seismicity associated with geothermal reservoirs in study of seismicity associated with geothermal reservoirs in California Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Report: Statistical study of seismicity associated with geothermal reservoirs in California Details Activities (5) Areas (5) Regions (0) Abstract: Statistical methods are outlined to separate spatially, temporally, and magnitude-dependent portions of both the random and non-random components of the seismicity. The methodology employed compares the seismicity distributions with a generalized Poisson distribution. Temporally related events are identified by the distribution of the interoccurrence times. The regions studied to date include the Imperial Valley, Coso, The Geysers, Lassen, and the San Jacinto fault. The spatial characteristics of the random and clustered components of the seismicity

222

Live Working Tools for High Temperature Conductors  

Science Conference Proceedings (OSTI)

In long-duration (several days) tests, strain link sticks used for live work were removed from service and exposed to conductors operating at high temperature of about 250-260C. Only strain link sticks were tested to date. Results obtained do not indicate damage or deterioration of the tested sticks. The research is a joint effort between project 35.010 Live Working Research for Overhead Transmission Equipment, Techniques, Procedures and Protective Grounding and project 35.015 Advanced Conductors to inve...

2010-12-17T23:59:59.000Z

223

High-temperature directional drilling turbodrill  

DOE Green Energy (OSTI)

The development of a high-temperature turbodrill for directional drilling of geothermal wells in hard formations is summarized. The turbodrill may be used for straight-hole drilling but was especially designed for directional drilling. The turbodrill was tested on a dynamometer stand, evaluated in laboratory drilling into ambient temperature granite blocks, and used in the field to directionally drill a 12-1/4-in.-diam geothermal well in hot 200/sup 0/C (400/sup 0/F) granite at depths to 10,5000 ft.

Neudecker, J.W.; Rowley, J.C.

1982-02-01T23:59:59.000Z

224

New Waste Calciner High Temperature Operation  

SciTech Connect

A new Calciner flowsheet has been developed to process the sodium-bearing waste (SBW) in the INTEC Tank Farm. The new flowsheet increases the normal Calciner operating temperature from 500 C to 600 C. At the elevated temperature, sodium in the waste forms stable aluminates, instead of nitrates that melt at calcining temperatures. From March through May 2000, the new high-temperature flowsheet was tested in the New Waste Calcining Facility (NWCF) Calciner. Specific test criteria for various Calciner systems (feed, fuel, quench, off-gas, etc.) were established to evaluate the long-term operability of the high-temperature flowsheet. This report compares in detail the Calciner process data with the test criteria. The Calciner systems met or exceeded all test criteria. The new flowsheet is a visible, long-term method of calcining SBW. Implementation of the flowsheet will significantly increase the calcining rate of SBW and reduce the amount of calcine produced by reducing the amount of chemical additives to the Calciner. This will help meet the future waste processing milestones and regulatory needs such as emptying the Tank Farm.

Swenson, M.C.

2000-09-01T23:59:59.000Z

225

PG and E Geysers Retrofit Project: Milestone Report No. 1  

DOE Green Energy (OSTI)

Rogers Engineering was contracted to determine the technical feasibility and cost/benefit ratios for Pacific Gas and Electric Company to replace the iron-catalyst/peroxide/ caustic systems with surface condensers and Stretford H{sub 2}S abatement systems for Units 1 through 12 at the Geysers. This Milestone No.1 Report is a 6 week progress report and will not have the cost benefit analyses which is planned for in the Final Report. This report will focus only on Units 1 and-3, which are thought of as typical to Units 2 and 4 in our contract. The work performed analyzes the cooling water cycle for both units and determines the turbine operating back pressure as a function of cold water from the existing cooling towers to the new surface condensers. Any power penalty is noted and assessed to the respective turbine-generator with necessary definition for the reason in heat rate deterioration. The direction of Rogers Engineering Co.'s efforts was the conceptual system analysis for Units 1 and 3. But cooling tower performance differences between Units 1 and 2 influenced the similarity of, the cycle thermodynamics and power output at the generator for these two units. We therefore are reporting on Units One and Two. Units Three and Four are identical with some minor location and piping.

None

1979-06-04T23:59:59.000Z

226

Cumulative biological impacts of The Geysers geothermal development  

DOE Green Energy (OSTI)

The cumulative nature of current and potential future biological impacts from full geothermal development in the steam-dominated portion of The Geysers-Calistoga KGRA are identified by the California Energy Commission staff. Vegetation, wildlife, and aquatic resources information have been reviewed and evaluated. Impacts and their significance are discussed and staff recommendations presented. Development of 3000 MW of electrical energy will result in direct vegetation losses of 2790 acres, based on an estimate of 11.5% loss per lease-hold of 0.93 acres/MW. If unmitigated, losses will be greater. Indirect vegetation losses and damage occur from steam emissions which contain elements (particularly boron) toxic to vegetation. Other potential impacts include chronic low-level boron exposure, acid rain, local climate modification, and mechanical damage. A potential exists for significant reduction and changes in wildlife from direct habitat loss and development influences. Highly erosive soils create the potential for significant reduction of aquatic resources, particularly game fish. Toxic spills have caused some temporary losses of aquatic species. Staff recommends monitoring and implementation of mitigation measures at all geothermal development stages.

Brownell, J.A.

1981-10-01T23:59:59.000Z

227

Mitigation of hydrogen sulfide emissions in The Geysers KGRA  

DOE Green Energy (OSTI)

Violations of the ambient air quality standard (AAQS) for hydrogen sulfide (H/sub 2/S) are currently being experienced in The Geysers KGRA and could significantly increase in the future. Attainment and maintenance of the H/sub 2/S AAQS is a potential constraint to optimum development of this resource. The availability of reliable H/sub 2/S controls and the development of a validated air dispersion model are critical to alleviating this constraint. The purpose of this report is to assess the performance capabilities for state-of-the-art controls, to identify potential cost-effective alternative controls, and to identify the California Energy Commission (CEC) staff's efforts to develop a validated air dispersion model. Currently available controls (Stretford, Hydrogen Peroxide, and EIC) are capable of abating H/sub 2/S emissions from a proposed facility to five lbs/hr. Alternative controls, such as condensate stripping and condensate pH control, appear to be promising, cost-effective control options.

Buell, R.

1981-07-01T23:59:59.000Z

228

Seismic Velocity And Attenuation Structure Of The Geysers Geothermal...  

Open Energy Info (EERE)

electricity from geothermal energy. A key resource management issue at this field is the distribution of fluid in the matrix of the reservoir rock. In this paper, we interpret...

229

Isotopic Analysis At Geysers Area (Lambert & Epstein, 1992) | Open Energy  

Open Energy Info (EERE)

Isotopic Analysis- Rock At Geysers Area (Lambert & Isotopic Analysis- Rock At Geysers Area (Lambert & Epstein, 1992) Exploration Activity Details Location Geysers Area Exploration Technique Isotopic Analysis- Rock Activity Date Usefulness useful DOE-funding Unknown Notes Measurements of 180/160, 13C/12C and D/H ratio variations were made by the usual methods (McCrea, 1950; Taylor and Epstein, 1962; Epstein and Taylor, 1970) using mass spectrometers of the type described by Nier (1947) with modifications by McKinney et al. (1950). Results are reported in 8-notation with respect to the SMOW (Craig, 1961 ) and PDB (Urey et al., 1951 ) standards. Analytical precisions for multiple analyses of any single sample were _+ 0.2%0 for oxygen and carbon and _ 1%o for hydrogen. Inhomogeneities of cuttings fractions gave rise to variations within single cuttings

230

Modeling-Computer Simulations At Geysers Area (Goff & Decker, 1983) | Open  

Open Energy Info (EERE)

Decker, 1983) Decker, 1983) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Modeling-Computer Simulations At Geysers Area (Goff & Decker, 1983) Exploration Activity Details Location Geysers Area Exploration Technique Modeling-Computer Simulations Activity Date Usefulness useful DOE-funding Unknown Notes Review and identification of 24 potential sites for EGS development across the U.S., as well as modeling of the representative geologic systems in which promising EGS sites occur. References Fraser Goff, Edward R. Decker (1983) Candidate Sites For Future Hot Dry Rock Development In The United States Retrieved from "http://en.openei.org/w/index.php?title=Modeling-Computer_Simulations_At_Geysers_Area_(Goff_%26_Decker,_1983)&oldid=38676

231

Geothermal Literature Review At Geysers Area (Goff & Decker, 1983) | Open  

Open Energy Info (EERE)

Goff & Decker, 1983) Goff & Decker, 1983) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermal Literature Review At Geysers Area (Goff & Decker, 1983) Exploration Activity Details Location Geysers Area Exploration Technique Geothermal Literature Review Activity Date Usefulness useful DOE-funding Unknown Notes Review and identification of 24 potential sites for EGS development across the U.S., as well as modeling of the representative geologic systems in which promising EGS sites occur. References Fraser Goff, Edward R. Decker (1983) Candidate Sites For Future Hot Dry Rock Development In The United States Retrieved from "http://en.openei.org/w/index.php?title=Geothermal_Literature_Review_At_Geysers_Area_(Goff_%26_Decker,_1983)&oldid=510809

232

Current techniques in acid-chloride corrosion control and monitoring at The Geysers  

DOE Green Energy (OSTI)

Acid chloride corrosion of geothermal well casings, production piping and power plant equipment has resulted in costly corrosion damage, frequent curtailments of power plants and the permanent shut-in of wells in certain areas of The Geysers. Techniques have been developed to mitigate these corrosion problems, allowing continued production of steam from high chloride wells with minimal impact on production and power generation facilities.The optimization of water and caustic steam scrubbing, steam/liquid separation and process fluid chemistry has led to effective and reliable corrosion mitigation systems currently in routine use at The Geysers. When properly operated, these systems can yield steam purities equal to or greater than those encountered in areas of The Geysers where chloride corrosion is not a problem. Developments in corrosion monitoring techniques, steam sampling and analytical methodologies for trace impurities, and computer modeling of the fluid chemistry has been instrumental in the success of this technology.

Hirtz, Paul; Buck, Cliff; Kunzman, Russell

1991-01-01T23:59:59.000Z

233

Santa Rosa Geysers Recharge Project: GEO-98-001. Final Report  

DOE Green Energy (OSTI)

The Geysers steamfields in northern Sonoma County have produced reliable ''green'' power for many years. An impediment to long-term continued production has been the ability to provide a reliable source of injection water to replace water extracted and lost in the form of steam. The steamfield operators have historcially used cooling towers to recycle a small portion of the steam and have collected water during the winter months using stream extraction. These two sources, however, could not by themselves sustain the steamfield in the long term. The Lake County Reclaimed Water Project (SEGEP) was inititated in 1997 and provides another source of steamfield replenishment water. The Santa Rosa Geysers Recharge Project provides another significant step in replenishing the steamfield. In addition, the Santa Rosa Geysers Recharge Project has been built with capacity to potentially meet virtually all injection water requirements, when combined with these other sources. Figure 2.1 graphically depicts the combination of injection sources.

Brauner, Edwin Jr.; Carlson, Daniel C.

2002-10-01T23:59:59.000Z

234

Superconductivity Program Overview High-Temperature Superconductivity  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

SuperconducTiviTy program haS Three FocuS areaS: SuperconducTiviTy program haS Three FocuS areaS: SuperconducTiviTy applicaTionS Developing HTS-based electric power equipment such as transmission and distribution cables and fault current limiters Second-generaTion Wire developmenT Developing high-performance, low-cost, second- generation HTS wire at long lengths STraTegic reSearch Supporting fundamental research activities to better understand relationships between the microstructure of HTS materials and their ability to carry large electric currents over long lengths Superconductivity Program Overview High-Temperature Superconductivity for Electric Systems Office of Electricity Delivery and Energy Reliability www.oe.energy.gov Office of Electricity Delivery and Energy Reliability, OE-1 U.S. Department of Energy - 1000 Independence Avenue, SW - Washington, DC 20585

235

High Temperature Battery for Drilling Applications  

SciTech Connect

In this project rechargeable cells based on the high temperature electrochemical system Na/beta''-alumina/S(IV) in AlCl3/NaCl were developed for application as an autonomous power source in oil/gas deep drilling wells. The cells operate in the temperature range from 150 C to 250 C. A prototype DD size cell was designed and built based on the results of finite element analysis and vibration testing. The cell consisted of stainless steel case serving as anode compartment with cathode compartment installed in it and a seal closing the cell. Critical element in cell design and fabrication was hermetically sealing the cell. The seal had to be leak tight, thermally and vibration stable and compatible with electrode materials. Cathode compartment was built of beta''-alumina tube which served as an electrolyte, separator and cathode compartment.

Josip Caja

2009-12-31T23:59:59.000Z

236

Compliant high temperature seals for dissimilar materials  

DOE Patents (OSTI)

A high temperature, gas-tight seal is formed by utilizing one or more compliant metallic toroidal ring sealing elements, where the applied pressure serves to activate the seal, thus improving the quality of the seal. The compliant nature of the sealing element compensates for differences in thermal expansion between the materials to be sealed, and is particularly useful in sealing a metallic member and a ceramic tube art elevated temperatures. The performance of the seal may be improved by coating the sealing element with a soft or flowable coating such as silver or gold and/or by backing the sealing element with a bed of fine powder. The material of the sealing element is chosen such that the element responds to stress elastically, even at elevated temperatures, permitting the seal to operate through multiple thermal cycles.

Rynders, Steven Walton (Fogelsville, PA); Minford, Eric (Laurys Station, PA); Tressler, Richard Ernest (Boalsburg, PA); Taylor, Dale M. (Salt Lake City, UT)

2001-01-01T23:59:59.000Z

237

High Temperature Materials Laboratory (HTML) - PSD Directorate  

NLE Websites -- All DOE Office Websites (Extended Search)

filler A National Resource for Collaborative Materials Research The High Temperature Materials Laboratory (HTML) User Program is on hiatus due to federal budget reductions. However, research projects at the HTML still may be conducted on a cost-recovery basis through the Work for Others (WFO) Program or under a Cooperative R&D Agreement (CRADA). Dr. Edgar Lara-Curzio, HTML Director Tel: 865.574.1749 Fax: 865.574.4913 laracurzioe@ornl.gov Christine Goudy, Administrative Specialist Tel: 865.574.8295 Fax: 865.574.4913 goudyc@ornl.gov Oak Ridge National Laboratory [MST Home] [ORNL Home] [Site Index] [Search][Disclaimer] [Webmaster] Oak Ridge National Laboratory is a national multi-program research and development facility managed by UT-Battelle, LLC for the U.S. Department of Energy

238

Multilayer ultra-high-temperature ceramic coatings  

SciTech Connect

A coated carbon-carbon composite material with multiple ceramic layers to provide oxidation protection from ultra-high-temperatures, where if the carbon-carbon composite material is uninhibited with B.sub.4C particles, then the first layer on the composite material is selected from ZrB.sub.2 and HfB.sub.2, onto which is coated a layer of SiC coated and if the carbon-carbon composite material is inhibited with B.sub.4C particles, then protection can be achieved with a layer of SiC and a layer of either ZrB.sub.2 and HfB.sub.2 in any order.

Loehman, Ronald E. (Albuquerque, NM); Corral, Erica L. (Tucson, AZ)

2012-03-20T23:59:59.000Z

239

Precision control of high temperature furnaces  

DOE Patents (OSTI)

It is an object of the present invention to provide precision control of high temperature furnaces. It is another object of the present invention to combine the power of two power supplies of greatly differing output capacities in a single furnace. This invention combines two power supplies to control a furnace. A main power supply heats the furnace in the traditional manner, while the power from the auxiliary supply is introduced as a current flow through charged particles existing due to ionized gas or thermionic emission. The main power supply provides the bulk heating power and the auxiliary supply provides a precise and fast power source such that the precision of the total power delivered to the furnace is improved. Further, this invention comprises a means for high speed measurement of temperature of the process by the method of measuring the amount of current flow in a deliberately induced charged particle current.

Pollock, G.G.

1994-12-31T23:59:59.000Z

240

Turbine vane with high temperature capable skins  

Science Conference Proceedings (OSTI)

A turbine vane assembly includes an airfoil extending between an inner shroud and an outer shroud. The airfoil can include a substructure having an outer peripheral surface. At least a portion of the outer peripheral surface is covered by an external skin. The external skin can be made of a high temperature capable material, such as oxide dispersion strengthened alloys, intermetallic alloys, ceramic matrix composites or refractory alloys. The external skin can be formed, and the airfoil can be subsequently bi-cast around or onto the skin. The skin and the substructure can be attached by a plurality of attachment members extending between the skin and the substructure. The skin can be spaced from the outer peripheral surface of the substructure such that a cavity is formed therebetween. Coolant can be supplied to the cavity. Skins can also be applied to the gas path faces of the inner and outer shrouds.

Morrison, Jay A. (Oviedo, FL)

2012-07-10T23:59:59.000Z

Note: This page contains sample records for the topic "geysers high-temperature reservoir" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Pressure sensor for high-temperature liquids  

DOE Patents (OSTI)

A pressure sensor for use in measuring pressures in liquid at high temperatures, especially such as liquid sodium or liquid potassium, comprises a soft diaphragm in contact with the liquid. The soft diaphragm is coupled mechanically to a stiff diaphragm. Pressure is measured by measuring the displacment of both diaphragms, typically by measuring the capacitance between the stiff diaphragm and a fixed plate when the stiff diaphragm is deflected in response to the measured pressure through mechanical coupling from the soft diaphragm. Absolute calibration is achieved by admitting gas under pressure to the region between diaphragms and to the region between the stiff diaphragm and the fixed plate, breaking the coupling between the soft and stiff diaphragms. The apparatus can be calibrated rapidly and absolutely.

Forster, George A. (Westmont, IL)

1978-01-01T23:59:59.000Z

242

High-temperature superconducting current leads  

Science Conference Proceedings (OSTI)

Use of high-temperature superconductors (HTSs) for current leads to deliver power to devices at liquid helium temperature can reduce refrigeration requirements to values significantly below those achievable with conventional leads. HTS leads are now near commercial realization. Argonne National Laboratory (ANL) has developed a sinter-forge process to fabricate current leads from bismuth-based superconductors. The current-carrying capacity of these leads is five times better than that of HTS leads made by a conventional fabrication process. ANL along with Superconductivity, Inc., has developed a 1500 ampere current lead for an existing superconducting magnetic energy storage (SMES) device. With Babcock & Wilcox Company, Argonne is creating 16-kiloampere leads for use in a 0.5 MWh SMES. In a third project Argonne performed characterization testing of a existing, proprietary conduction-cooled lead being developed by Zer Res Corp.

Niemann, R.C.

1995-03-01T23:59:59.000Z

243

Downhole pressure, temperature and flowrate measurements in steam wells at the Geysers field  

SciTech Connect

Recently developed pressure-temperature-spinner (PTS) tools are used to collect reliable downhole measurements in geothermal systems, such as at The Geysers. PTS surveys in several flowing Geysers steam wells were used to quantify steam entry location and magnitude, wellbore heat loss, pressure drop due to friction, thermodynamic properties of the steam, and maximum rock temperature. Interwell cross flow/interference was identified in one well. Finally, a single-phase saturated steam wellbore model used to compare calculated to measured downhole values, was found to adequately predict the flowing pressure versus depth curves in vapor filled holes.

Enedy, Kathleen L.

1988-01-01T23:59:59.000Z

244

High Temperature Integrated Thermoelectric Ststem and Materials  

DOE Green Energy (OSTI)

The final goal of this project is to produce, by the end of Phase II, an all ceramic high temperature thermoelectric module. Such a module design integrates oxide ceramic n-type, oxide ceramic p-type materials as thermoelectric legs and oxide ceramic conductive material as metalizing connection between n-type and p-type legs. The benefits of this all ceramic module are that it can function at higher temperatures (> 700 C), it is mechanically and functionally more reliable and it can be scaled up to production at lower cost. With this all ceramic module, millions of dollars in savings or in new opportunities recovering waste heat from high temperature processes could be made available. A very attractive application will be to convert exhaust heat from a vehicle to reusable electric energy by a thermoelectric generator (TEG). Phase I activities were focused on evaluating potential n-type and p-type oxide compositions as the thermoelectric legs. More than 40 oxide ceramic powder compositions were made and studied in the laboratory. The compositions were divided into 6 groups representing different material systems. Basic ceramic properties and thermoelectric properties of discs sintered from these powders were measured. Powders with different particles sizes were made to evaluate the effects of particle size reduction on thermoelectric properties. Several powders were submitted to a leading thermoelectric company for complete thermoelectric evaluation. Initial evaluation showed that when samples were sintered by conventional method, they had reasonable values of Seebeck coefficient but very low values of electrical conductivity. Therefore, their power factors (PF) and figure of merits (ZT) were too low to be useful for high temperature thermoelectric applications. An unconventional sintering method, Spark Plasma Sintering (SPS) was determined to produce better thermoelectric properties. Particle size reduction of powders also was found to have some positive benefits. Two composition systems, specifically 1.0 SrO - 0.8 x 1.03 TiO2 - 0.2 x 1.03 NbO2.5 and 0.97 TiO2 - 0.03 NbO2.5, have been identified as good base line compositions for n-type thermoelectric compositions in future module design. Tests of these materials at an outside company were promising using that company's processing and material expertise. There was no unique p-type thermoelectric compositions identified in phase I work other than several current cobaltite materials. Ca3Co4O9 will be the primary p-type material for the future module design until alternative materials are developed. BaTiO3 and rare earth titanate based dielectric compositions show both p-type and n-type behavior even though their electrical conductivities were very low. Further research and development of these materials for thermoelectric applications is planned in the future. A preliminary modeling and optimization of a thermoelectric generator (TEG) that uses the n-type 1.0 SrO - 1.03 x 0.8 TiO2 - 1.03 x 0.2 NbO2.5 was performed. Future work will combine development of ceramic powders and manufacturing expertise at TAM, development of SPS at TAM or a partner organization, and thermoelectric material/module testing, modeling, optimization, production at several partner organizations.

Mike S. H. Chu

2011-06-06T23:59:59.000Z

245

High Temperature Interactions of Antimony with Nickel  

SciTech Connect

In this chapter, the surface and bulk interactions of antimony with the Ni-based anodes in solid oxide fuel cells (SOFC) will be discussed. High fuel flexibility is a significant advantage of SOFCs, allowing the direct use of fossil and bio fuels without a hydrogen separation unit. Synthesis gas derived from coal and biomass consists of a mixture of hydrogen, carbon monoxide, carbon dioxide, and steam, but finite amounts of tars and trace impurities such as S, Se, P, As, Sb, Cd, Pb, Cl, etc, are also always present. While synthesis gas is commonly treated with a series of chemical processes and scrubbers to remove the impurities, complete purification is not economical. Antimony is widely distributed in coals. During coal gasification antimony is volatilized, such that contact with the SOFC anodes and other SOFC parts, e.g., interconnect, current collecting wires, fuel gas supplying tubing, is most likely. This chapter addresses the following topics: high temperature Ni - Sb interactions; alteration phase, Ni3Sb, Ni5Sb2, NiSb, formation; thermochemical modeling; impact of Sb on the electrocatalytic activity of Ni toward the fuel oxidation and the presence of other impurities (sulfur, in particular); converted anode structural instability during long-term SOFC operation; comparison with nickel heterogeneous catalysts.

Marina, Olga A.; Pederson, Larry R.

2012-07-01T23:59:59.000Z

246

High Temperature Borehole Televiewer software user manual  

DOE Green Energy (OSTI)

The High Temperature Borehole Televiewer is a downhole instrument which provides acoustic pictures of the borehole walls that are suitable for casing inspection and fracture detection in geothermal wells. The Geothermal Drilling Organization has funded the development of a commercial tool survivable to temperatures of 275{degree}C and pressures of 5000 psi. A real-time display on an IBM-compatible PC was included as part of the development effort. This report contains a User Manual which describes the operation of this software. The software is designed in a menu format allowing the user to change many of the parameters which control both the acquisition and the display of the Televiewer data. An internal data acquisition card digitizes the waveform from the tool at a rate of 100,000 samples per second. The data from the tool, both the range or arrival time and the amplitude of the return signal, are displayed in color on the CRT screen of the computer during the logging operation. This data may be stored on the hard disk for later display and analysis. The software incorporates many features which aid in the setup of the tool for proper operation. These features include displaying and storing the captured waveform data to check the voltage and time windows selected by the user. 17 refs., 28 figs., 15 tabs.

Duda, L.E.

1989-11-01T23:59:59.000Z

247

Urania vapor composition at very high temperatures  

SciTech Connect

Due to the chemically unstable nature of uranium dioxide its vapor composition at very high temperatures is, presently, not sufficiently studied though more experimental knowledge is needed for risk assessment of nuclear reactors. We used laser vaporization coupled to mass spectrometry of the produced vapor to study urania vapor composition at temperatures in the vicinity of its melting point and higher. The very good agreement between measured melting and freezing temperatures and between partial pressures measured on the temperature increase and decrease indicated that the change in stoichiometry during laser heating was very limited. The evolutions with temperature (in the range 2800-3400 K) of the partial pressures of the main vapor species (UO{sub 2}, UO{sub 3}, and UO{sub 2}{sup +}) were compared with theoretically predicted evolutions for equilibrium noncongruent gas-liquid and gas-solid phase coexistences and showed very good agreement. The measured main relative partial pressure ratios around 3300 K all agree with calculated values for total equilibrium between condensed and vapor phases. It is the first time the three main partial pressure ratios above stoichiometric liquid urania have been measured at the same temperature under conditions close to equilibrium noncongruent gas-liquid phase coexistence.

Pflieger, Rachel [Institute for Transuranium Elements, Joint Research Centre, European Commission, P.O. Box 2340, 76125 Karlsruhe (Germany); Marcoule Institute for Separation Chemistry (ICSM), UMR 5257, CEA-CNRS-UMII-ENSCM, Bagnols sur Ceze Cedex (France); Colle, Jean-Yves [Institute for Transuranium Elements, Joint Research Centre, European Commission, P.O. Box 2340, 76125 Karlsruhe (Germany); Iosilevskiy, Igor [Joint Institute for High Temperature, Russian Academy of Science, 125412 Moscow (Russian Federation); Moscow Institute of Physics and Technology, State University, 141700 Moscow (Russian Federation); Extreme Matter Institute (EMMI), 64291 Darmstadt (Germany); Sheindlin, Michael [Institute for Transuranium Elements, Joint Research Centre, European Commission, P.O. Box 2340, 76125 Karlsruhe (Germany); Joint Institute for High Temperature, Russian Academy of Science, 125412 Moscow (Russian Federation)

2011-02-01T23:59:59.000Z

248

Fuel Cell Technologies Office: 2009 High Temperature Membrane Working Group  

NLE Websites -- All DOE Office Websites (Extended Search)

9 High Temperature 9 High Temperature Membrane Working Group Meeting Archives to someone by E-mail Share Fuel Cell Technologies Office: 2009 High Temperature Membrane Working Group Meeting Archives on Facebook Tweet about Fuel Cell Technologies Office: 2009 High Temperature Membrane Working Group Meeting Archives on Twitter Bookmark Fuel Cell Technologies Office: 2009 High Temperature Membrane Working Group Meeting Archives on Google Bookmark Fuel Cell Technologies Office: 2009 High Temperature Membrane Working Group Meeting Archives on Delicious Rank Fuel Cell Technologies Office: 2009 High Temperature Membrane Working Group Meeting Archives on Digg Find More places to share Fuel Cell Technologies Office: 2009 High Temperature Membrane Working Group Meeting Archives on AddThis.com...

249

The Impact of Injection on Seismicity at The Geyses, California Geothermal Field  

E-Print Network (OSTI)

The Geysers, California, geothermal area, U.S. Geol. Surv.seismicity at The Geysers geothermal reservoir, Californiaseismic image of a geothermal reservoir: The Geysers,

Majer, Ernest L.; Peterson, John E.

2008-01-01T23:59:59.000Z

250

Effect of Environment and Microstructure on the High Temperature ...  

Science Conference Proceedings (OSTI)

EFFECT OF ENVIRONMENT AND MICROSTRUCTURE ON THE HIGH. TEMPERATURE BEHAVIOR OF ALLOY 718. E. Andrieu",. R. Cozar** and A. Pineau".

251

High Temperature Fatigue Life of Coated and Uncoated Valve ...  

Science Conference Proceedings (OSTI)

Symposium, Properties, Processing, and Performance of Steels and Ni-Based Alloys for Advanced Steam Conditions. Presentation Title, High Temperature ...

252

Improved Growth of High-Temperature Superconductors with ...  

Visual Patent Search; Success Stories; News; Events; Electricity Transmission Improved Growth of High-Temperature Superconductors with HF Pressure ...

253

WEB RESOURCE: High Temperature Materials 21 Project (Phase 2)  

Science Conference Proceedings (OSTI)

Feb 10, 2007... thermal efficiency of power generation systems and advanced aeroengines. ... SOURCE: Harada, H. "High Temperature Materials 21 Project ...

254

A Possible Pressure-Induced High-Temperature-Superconducting  

Science Conference Proceedings (OSTI)

... Materials Forensics, Three-dimensional Modeling and Fractal Characterization · Vortex Physics in Oxide and Pnictide High Temperature Superconductors.

255

Hydrogen Production from Nuclear Energy via High Temperature Electrolysis  

DOE Green Energy (OSTI)

This paper presents the technical case for high-temperature nuclear hydrogen production. A general thermodynamic analysis of hydrogen production based on high-temperature thermal water splitting processes is presented. Specific details of hydrogen production based on high-temperature electrolysis are also provided, including results of recent experiments performed at the Idaho National Laboratory. Based on these results, high-temperature electrolysis appears to be a promising technology for efficient large-scale hydrogen production.

James E. O'Brien; Carl M. Stoots; J. Stephen Herring; Grant L. Hawkes

2006-04-01T23:59:59.000Z

256

Geology and geochemistry of the Geyser Bight Geothermal Area, Umnak Island, Aleutian Islands, Alaska  

DOE Green Energy (OSTI)

The Geyser Bight geothermal area is located on Umnak Island in the central Aleutian Islands. It contains one of the hottest and most extensive areas of thermal springs and fumaroles in Alaska, and is only documented site in Alaska with geysers. The zone of hot springs and fumaroles lies at the head of Geyser Creek, 5 km up a broad, flat, alluvial valley from Geyser Bight. At present central Umnak is remote and undeveloped. This report describes results of a combined program of geologic mapping, K-Ar dating, detailed description of hot springs, petrology and geochemistry of volcanic and plutonic rock units, and chemistry of geothermal fluids. Our mapping documents the presence of plutonic rock much closer to the area of hotsprings and fumaroles than previously known, thus increasing the probability that plutonic rock may host the geothermal system. K-Ar dating of 23 samples provides a time framework for the eruptive history of volcanic rocks as well as a plutonic cooling age.

Nye, C.J. (Alaska Univ., Fairbanks, AK (USA). Geophysical Inst. Alaska Dept. of Natural Resources, Fairbanks, AK (USA). Div. of Geological and Geophysical Surveys); Motyka, R.J. (Alaska Dept. of Natural Resources, Juneau, AK (USA). Div. of Geological and Geophysical Surveys); Turner, D.L. (Alaska Univ., Fairbanks, AK (USA). Geophysical Inst.); Liss, S.A. (Alaska Dept. of Natural Resources, Fairba

1990-10-01T23:59:59.000Z

257

Temporal changes in noble gas compositions within the Aidlin sector ofThe Geysers geothermal system  

E-Print Network (OSTI)

Steam production at Aidlin began in 1989 and has been accompanied by varying amounts of injection, using condensate,condensate water at The Geysers has increased ammonia concentrations and D/H ratios of the produced fluids, with injection-derived steam

Dobson, Patrick; Sonnenthal, Eric; Kennedy, Mack; van Soest, Thijs; Lewicki, Jennifer

2006-01-01T23:59:59.000Z

258

Preliminary geologic map of the geysers steam field and vicinity, Sonoma County, California  

DOE Green Energy (OSTI)

The map symbols include: contact; axis of syncline; axis of anticline; fault; thrust fault; scarp line; landslide deposit; sag pond; hot spring; spring; and zone of hydrothermally altered rock. The attitude of planar surfaces is also indicated. Stratigraphic units are indicated. A generalized geologic map showing major faults and structural units of the Geysers area is included. (JGB)

McLaughlin, R.J.

1974-01-01T23:59:59.000Z

259

Numerical modeling of water injection into vapor-dominatedgeothermal reservoirs  

SciTech Connect

Water injection has been recognized as a powerful techniquefor enhancing energy recovery from vapor-dominated geothermal systemssuch as The Geysers. In addition to increasing reservoir pressures,production well flow rates, and long-term sustainability of steamproduction, injection has also been shown to reduce concentrations ofnon-condensible gases (NCGs) in produced steam. The latter effectimproves energy conversion efficiency and reduces corrosion problems inwellbores and surface lines.This report reviews thermodynamic andhydrogeologic conditions and mechanisms that play an important role inreservoir response to water injection. An existing general-purposereservoir simulator has been enhanced to allow modeling of injectioneffects in heterogeneous fractured reservoirs in three dimensions,including effects of non-condensible gases of different solubility.Illustrative applications demonstrate fluid flow and heat transfermechanisms that are considered crucial for developing approaches to insitu abatement of NCGs.

Pruess, Karsten

2006-11-06T23:59:59.000Z

260

Geothermal reservoir engineering, second workshop summaries, December 1-3, 1976  

DOE Green Energy (OSTI)

Workshop proceedings included the following: (1) During the Overview Session some papers, among others, discussed 'Geothermal Reservoir Engineering Research' and 'Geothermal Reservoir Engineering in Industry'; (2) Session I, Reservoir Physics, included papers on 'Steam Zone Temperature Gradients at the Geysers' and 'Water Influx in a Steam Producing Well'; (3) Session II, Well Testing, included papers on 'Borehole Geophysics in Geothermal Wells--Problems and Progress' and 'Herber-Pressure Interference Study'; (4) Session III, Field Development, included papers on 'A Reservoir Engineering Study of the East Mesa KGRA' and 'Determining the Optimal Rate of Geothermal Energy Extraction'; (5) Session IV, Well Stimulation, included papers on 'Fluid Flow Through a Large Vertical Crack in the Earth's Crust' and 'Explosive Stimulation of Geothermal Wells'; and (6) Session V, Modeling, included papers on 'Steam Transport in Porous Media' and 'Large-Scale Geothermal Field Parameters and Convection Theory.'

Kruger, P.; Ramey, H.J. Jr.

1976-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "geysers high-temperature reservoir" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Fusion reactors-high temperature electrolysis (HTE)  

DOE Green Energy (OSTI)

Results of a study to identify and develop a reference design for synfuel production based on fusion reactors are given. The most promising option for hydrogen production was high-temperature electrolysis (HTE). The main findings of this study are: 1. HTE has the highest potential efficiency for production of synfuels from fusion; a fusion to hydrogen energy efficiency of about 70% appears possible with 1800/sup 0/C HTE units and 60% power cycle efficiency; an efficiency of about 50% possible with 1400/sup 0/C HTE units and 40% power cycle efficiency. 2. Relative to thermochemical or direct decomposition methods HTE technology is in a more advanced state of development, 3. Thermochemical or direct decomposition methods must have lower unit process or capital costs if they are to be more attractive than HTE. 4. While design efforts are required, HTE units offer the potential to be quickly run in reverse as fuel cells to produce electricity for restart of Tokamaks and/or provide spinning reserve for a grid system. 5. Because of the short timescale of the study, no detailed economic evaluation could be carried out.A comparison of costs could be made by employing certain assumptions. For example, if the fusion reactor-electrolyzer capital installation is $400/(KW(T) ($1000/KW(E) equivalent), the H/sub 2/ energy production cost for a high efficiency (about 70 %) fusion-HTE system is on the same order of magnitude as a coal based SNG plant based on 1976 dollars. 6. The present reference design indicates that a 2000 MW(th) fusion reactor could produce as much at 364 x 10/sup 6/ scf/day of hydrogen which is equivalent in heating value to 20,000 barrels/day of gasoline. This would fuel about 500,000 autos based on average driving patterns. 7. A factor of three reduction in coal feed (tons/day) could be achieved for syngas production if hydrogen from a fusion-HTE system were used to gasify coal, as compared to a conventional syngas plant using coal-derived hydrogen.

Fillo, J.A. (ed.)

1978-01-01T23:59:59.000Z

262

Gas Viscosity at High Pressure and High Temperature  

E-Print Network (OSTI)

Gas viscosity is one of the gas properties that is vital to petroleum engineering. Its role in the oil and gas production and transportation is indicated by its contribution in the resistance to the flow of a fluid both in porous media and pipes. Although viscosity of some pure components such as methane, ethane, propane, butane, nitrogen, carbon dioxide and binary mixtures of these components at low-intermediate pressure and temperature had been studied intensively and been understood thoroughly, very few investigations were performed on viscosity of naturally occurring gases, especially gas condensates at low-intermediate pressure and temperature, even fewer lab data were published. No gas viscosity data at high pressures and high temperatures (HPHT) is available. Therefore this gap in the oil industry still needs to be filled. Gas viscosity at HPHT becomes crucial to modern oil industry as exploration and production move to deep formation or deep water where HPHT is not uncommon. Therefore, any hydrocarbon encountered there is more gas than oil due to the chemical reaction causing oil to transfer to gas as temperature increases. We need gas viscosity to optimize production rate for production system, estimate reserves, model gas injection, design drilling fluid, and monitor gas movement in well control. Current gas viscosity correlations are derived using measured data at low-moderate pressures and temperatures, and then extrapolated to HPHT. No measured gas viscosities at HPHT are available so far. The validities of these correlations for gas viscosity at HPHT are doubted due to lack of experimental data. In this study, four types of viscometers are evaluated and their advantages and disadvantages are listed. The falling body viscometer is used to measure gas viscosity at a pressure range of 3000 to 25000 psi and a temperature range of 100 to 415 oF. Nitrogen viscosity is measured to take into account of the fact that the concentration of nonhydrocarbons increase drastically in HPHT reservoir. More nitrogen is found as we move to HPHT reservoirs. High concentration nitrogen in natural gas affects not only the heat value of natural gas, but also gas viscosity which is critical to petroleum engineering. Nitrogen is also one of common inject gases in gas injection projects, thus an accurate estimation of its viscosity is vital to analyze reservoir performance. Then methane viscosity is measured to honor that hydrocarbon in HPHT which is almost pure methane. From our experiments, we found that while the Lee-Gonzalez-Eakin correlation estimates gas viscosity at a low-moderate pressure and temperature accurately, it cannot give good match of gas viscosity at HPHT. Apparently, current correlations need to be modified to predict gas viscosity at HPHT. New correlations constructed for HPHT conditions based on our experiment data give more confidence on gas viscosity.

Ling, Kegang

2010-12-01T23:59:59.000Z

263

Reservoir related research at Idaho National Engineering Laboratory, Lawrence Livermore National Laboratory, and Oak Ridge National Laboratory  

DOE Green Energy (OSTI)

Idaho National Engineering Laboratory (INEL), Lawrence Livermore National Laboratory (LLNL), and Oak Ridge National Laboratory (ORNL) conduct research in reservoir engineering, geophysics, and geochemistry, respectively, in support of the DOE Reservoir Technology Research Program. INEL's research has centered on the development of a reservoir simulation code to predict heat and solute transfer in fractured, porous media. In support of the initiatives for research at the The Geysers, INEL will initiate in cooperation with Lawrence Berkeley Laboratory, studies of injection and related interference effects at The Geysers. Work at LLNL is centered on analysis of the seismicity associated with production and injection at geothermal systems and effects of geothermal systems on seismic signals. LLNL is continuing studies of seismic attenuation related to the presence of steam at The Geysers. ORNL conducts research to obtain the thermodynamic and kinetic data needed as input into geochemical models such as those being developed by John Weare of the University of California, San Diego that predict the phase behavior and corrosion characteristics of geothermal brines. The current program at ORNL addresses the ion interaction parameters of bisulfate ion (HSO{sup {minus}}) with H{sup +} and Na{sup +}, the dissociation constant of HSO{sub 4}{sup {minus}}, OH{sup {minus}}, and the solubility and specification of aluminum in the system H{sup +}-Na{sup +}-K{sup +}-Cl{sup {minus}}-OH{sup {minus}}. ORNL is initiating studies of the distribution of HCl in steam in support of the expanded research program at The Geysers. 3 refs.

Renner, J.L. (EG and G Idaho, Inc., Idaho Falls, ID (USA)); Kasameyer, P.W. (Lawrence Livermore National Lab., CA (USA)); Mesmer, R.E. (Oak Ridge National Lab., TN (USA))

1990-01-01T23:59:59.000Z

264

Analytic Models of High-Temperature Hohlraums  

SciTech Connect

A unified set of high-temperature-hohlraum models has been developed. For a simple hohlraum, P{sub s} = [A{sub s}+(1{minus}{alpha}{sub W})A{sub W}+A{sub H}]{sigma}T{sub R}{sup 4} + (4V{sigma}/c)(dT{sub R}{sup r}/dt) where P{sub S} is the total power radiated by the source, A{sub s} is the source area, A{sub W} is the area of the cavity wall excluding the source and holes in the wall, A{sub H} is the area of the holes, {sigma} is the Stefan-Boltzmann constant, T{sub R} is the radiation brightness temperature, V is the hohlraum volume, and c is the speed of light. The wall albedo {alpha}{sub W} {triple_bond} (T{sub W}/T{sub R}){sup 4} where T{sub W} is the brightness temperature of area A{sub W}. The net power radiated by the source P{sub N} = P{sub S}-A{sub S}{sigma}T{sub R}{sup 4}, which suggests that for laser-driven hohlraums the conversion efficiency {eta}{sub CE} be defined as P{sub N}/P{sub LASER}. The characteristic time required to change T{sub R}{sup 4} in response to a change in P{sub N} is 4V/C[(l{minus}{alpha}{sub W})A{sub W}+A{sub H}]. Using this model, T{sub R}, {alpha}{sub W}, and {eta}{sub CE} can be expressed in terms of quantities directly measurable in a hohlraum experiment. For a steady-state hohlraum that encloses a convex capsule, P{sub N} = {l_brace}(1{minus}{alpha}{sub W})A{sub W}+A{sub H}+[(1{minus}{alpha}{sub C})(A{sub S}+A{sub W}{alpha}{sub W})A{sub C}/A{sub T}]{r_brace}{sigma}T{sub RC}{sup 4} where {alpha}{sub C} is the capsule albedo, A{sub C} is the capsule area, A{sub T} {triple_bond} (A{sub S}+A{sub W}+A{sub H}), and T{sub RC} is the brightness temperature of the radiation that drives the capsule. According to this relation, the capsule-coupling efficiency of the baseline National-Ignition-Facility (NIF) hohlraum is 15% higher than predicted by previous analytic expressions. A model of a hohlraum that encloses a z pinch is also presented.

Stygar, W.A.; Olson, R.E.; Spielman, R.B.; Leeper, R.J.

2000-11-29T23:59:59.000Z

265

High pressure-high temperature effect on the HTSC ceramics structure and properties  

Science Conference Proceedings (OSTI)

Keywords: high pressures-high temperatures, high temperature superconductors, mechanical properties, structure, superconductive

T. A. Prikhna

1995-12-01T23:59:59.000Z

266

Scaling Studies for High Temperature Test Facility and Modular High Temperature Gas-Cooled Reactor  

SciTech Connect

The Oregon State University (OSU) High Temperature Test Facility (HTTF) is an integral experimental facility that will be constructed on the OSU campus in Corvallis, Oregon. The HTTF project was initiated, by the U.S. Nuclear Regulatory Commission (NRC), on September 5, 2008 as Task 4 of the 5-year High Temperature Gas Reactor Cooperative Agreement via NRC Contract 04-08-138. Until August, 2010, when a DOE contract was initiated to fund additional capabilities for the HTTF project, all of the funding support for the HTTF was provided by the NRC via their cooperative agreement. The U.S. Department of Energy (DOE) began their involvement with the HTTF project in late 2009 via the Next Generation Nuclear Plant (NGNP) project. Because the NRC's interests in HTTF experiments were only centered on the depressurized conduction cooldown (DCC) scenario, NGNP involvement focused on expanding the experimental envelope of the HTTF to include steady-state operations and also the pressurized conduction cooldown (PCC).

Richard R. Schult; Paul D. Bayless; Richard W. Johnson; James R. Wolf; Brian Woods

2012-02-01T23:59:59.000Z

267

Fuel Cell Technologies Office: 2005 High Temperature Membrane Working Group  

NLE Websites -- All DOE Office Websites (Extended Search)

About About Printable Version Share this resource Send a link to Fuel Cell Technologies Office: 2005 High Temperature Membrane Working Group Meeting Archives to someone by E-mail Share Fuel Cell Technologies Office: 2005 High Temperature Membrane Working Group Meeting Archives on Facebook Tweet about Fuel Cell Technologies Office: 2005 High Temperature Membrane Working Group Meeting Archives on Twitter Bookmark Fuel Cell Technologies Office: 2005 High Temperature Membrane Working Group Meeting Archives on Google Bookmark Fuel Cell Technologies Office: 2005 High Temperature Membrane Working Group Meeting Archives on Delicious Rank Fuel Cell Technologies Office: 2005 High Temperature Membrane Working Group Meeting Archives on Digg Find More places to share Fuel Cell Technologies Office: 2005 High

268

Fuel Cell Technologies Office: 2004 High Temperature Membrane Working Group  

NLE Websites -- All DOE Office Websites (Extended Search)

About About Printable Version Share this resource Send a link to Fuel Cell Technologies Office: 2004 High Temperature Membrane Working Group Meeting Archives to someone by E-mail Share Fuel Cell Technologies Office: 2004 High Temperature Membrane Working Group Meeting Archives on Facebook Tweet about Fuel Cell Technologies Office: 2004 High Temperature Membrane Working Group Meeting Archives on Twitter Bookmark Fuel Cell Technologies Office: 2004 High Temperature Membrane Working Group Meeting Archives on Google Bookmark Fuel Cell Technologies Office: 2004 High Temperature Membrane Working Group Meeting Archives on Delicious Rank Fuel Cell Technologies Office: 2004 High Temperature Membrane Working Group Meeting Archives on Digg Find More places to share Fuel Cell Technologies Office: 2004 High

269

Fuel Cell Technologies Office: 2010 High Temperature Membrane Working Group  

NLE Websites -- All DOE Office Websites (Extended Search)

About About Printable Version Share this resource Send a link to Fuel Cell Technologies Office: 2010 High Temperature Membrane Working Group Meeting Archives to someone by E-mail Share Fuel Cell Technologies Office: 2010 High Temperature Membrane Working Group Meeting Archives on Facebook Tweet about Fuel Cell Technologies Office: 2010 High Temperature Membrane Working Group Meeting Archives on Twitter Bookmark Fuel Cell Technologies Office: 2010 High Temperature Membrane Working Group Meeting Archives on Google Bookmark Fuel Cell Technologies Office: 2010 High Temperature Membrane Working Group Meeting Archives on Delicious Rank Fuel Cell Technologies Office: 2010 High Temperature Membrane Working Group Meeting Archives on Digg Find More places to share Fuel Cell Technologies Office: 2010 High

270

Fuel Cell Technologies Office: 2007 High Temperature Membrane Working Group  

NLE Websites -- All DOE Office Websites (Extended Search)

About About Printable Version Share this resource Send a link to Fuel Cell Technologies Office: 2007 High Temperature Membrane Working Group Meeting Archives to someone by E-mail Share Fuel Cell Technologies Office: 2007 High Temperature Membrane Working Group Meeting Archives on Facebook Tweet about Fuel Cell Technologies Office: 2007 High Temperature Membrane Working Group Meeting Archives on Twitter Bookmark Fuel Cell Technologies Office: 2007 High Temperature Membrane Working Group Meeting Archives on Google Bookmark Fuel Cell Technologies Office: 2007 High Temperature Membrane Working Group Meeting Archives on Delicious Rank Fuel Cell Technologies Office: 2007 High Temperature Membrane Working Group Meeting Archives on Digg Find More places to share Fuel Cell Technologies Office: 2007 High

271

Hydrogen production from fusion reactors coupled with high temperature electrolysis  

SciTech Connect

An initial study was conducted on a fusion reactor and high temperature electrolyzer system for the production of synthetic fuel. The design temperatures in the fusion reactor blanket were above 1380/sup 0/C. Electrolytic hydrogen production at the high temperatures consumes a high ratio of thermal to electric energy and increases the efficiency of the plant and an overall efficiency of approximately 50% appeared possible. The concepts of the system and the design considerations of the high temperature electrolyzer will be presented.

Isaacs, H.S.; Fillo, J.A.; Dang, V.; Powell, J.R.; Steinberg, M.; Salzano, F.; Benenati, R.

1978-01-01T23:59:59.000Z

272

First high-temperature electronics products survey 2005.  

Science Conference Proceedings (OSTI)

On April 4-5, 2005, a High-Temperature Electronics Products Workshop was held. This workshop engaged a number of governmental and private industry organizations sharing a common interest in the development of commercially available, high-temperature electronics. One of the outcomes of this meeting was an agreement to conduct an industry survey of high-temperature applications. This report covers the basic results of this survey.

Normann, Randy Allen

2006-04-01T23:59:59.000Z

273

2nd International Symposium on High-Temperature Metallurgical ...  

Science Conference Proceedings (OSTI)

Aug 2, 2010... with reduced energy consumption and reduced emission of pollutants. ... A Breakthrough Application of Electricity at High Temperature for ...

274

Ionic Solid Oxides for High Temperature Optical Gas Sensing in ...  

Science Conference Proceedings (OSTI)

Presentation Title, Ionic Solid Oxides for High Temperature Optical Gas Sensing in Fossil Fuel Based Power Plants. Author(s), Junhang Dong, Xiling Tang, Kurtis  ...

275

High Temperature Modules and Materials for Thermoelectric Power ...  

Science Conference Proceedings (OSTI)

We fabricated oxide-based thermoelectric modules for high temperature electrical-power generation. Potentials for a development of a thermoelectric generation ...

276

Environmental Degradation and Protection of High Temperature Alloys  

Science Conference Proceedings (OSTI)

Scope, Nickel-base superalloys and other high temperature alloys have been successfully used in turbine engine propulsion, power generation and many other ...

277

Evaluation of High-Temperature Alloys for Helium Gas Turbines  

Science Conference Proceedings (OSTI)

C. 1. Mechanical Property / Status of Metallic Materials Development for Application in Advanced High-Temperature Gas-Cooled Reactor / Material

Wolfgang Jakobeit; Jörn-Peter Pfeifer; Georg Ullrich

278

Corrosion of Candidate Alloys in High Temperature Supercritical  

Science Conference Proceedings (OSTI)

Materials corrosion in high temperature supercritical CO2 will be an important consideration for this application. The results of corrosion evaluations of a wide ...

279

Fuel Cell Technologies Office: 2006 High Temperature Membrane...  

NLE Websites -- All DOE Office Websites (Extended Search)

Systems for High Temperature, Low Relative Humidity Polymer-Type Membranes, Andrew Herring, Colorado School of Mines (PDF 213 KB) Design and Development of High-Performance...

280

High-temperature Erosion Behavior of Aluminide-coated Turbine ...  

Science Conference Proceedings (OSTI)

The high-temperature erosion behavior of an aluminide-coated turbine blade ... The Tensile Property Of A Gas Turbine Engine Fan Blade And Casing Material.

Note: This page contains sample records for the topic "geysers high-temperature reservoir" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Available Technologies: High Temperature Strain Cell for X-ray ...  

High Temperature Strain Cell for X-ray ... Six hexapole infrared lamps focus inside the sample chamber onto a ceramic material sample with a spherical ...

282

Advanced High Temperature Corrosion and Wear Resistant Internal ...  

Science Conference Proceedings (OSTI)

Presentation Title, Advanced High Temperature Corrosion and Wear Resistant Internal Coating for Oil Industry applications. Author(s), William Boardman, Rahul  ...

283

Processing of High-temperature Structural Materials I  

Science Conference Proceedings (OSTI)

Subsurface Alloy Microstructural Changes During High Temperature Reaction of Fe-Cr Alloys in CO2: David Young1; Thuan Nguyen1; Jianqiang Zhang1; ...

284

Creep Behavior of High Temperature Alloys for Generation IV ...  

Science Conference Proceedings (OSTI)

Presentation Title, Creep Behavior of High Temperature Alloys for Generation IV Nuclear Power Plant Applications. Author(s), Xingshuo Wen, Laura J. Carroll, ...

285

High-Temperature Reactor for Diffuse Reflectance Infrared ...  

High-Temperature Reactor for Diffuse Reflectance Infrared Fourier-Transform Spectroscopy Note: The technology described above is an early stage ...

286

High Temperature Fatigue Behavior of Laser Shock Peened ...  

Science Conference Proceedings (OSTI)

Presentation Title, High Temperature Fatigue Behavior of Laser Shock Peened IN718Plus Superalloy. Author(s), Vibhor Chaswal, S R Mannava, Dong Qian, ...

287

Direct Fired Reciprocating Engine and Bottoming High Temperature...  

NLE Websites -- All DOE Office Websites (Extended Search)

exhaust is split between fuel feeds and air feeds to the high temperature fuel cell. NOX reduction can be achieved using an autothermal reformer. By hybridizing the production...

288

High-temperature Material Systems for Energy Conversion and ...  

Science Conference Proceedings (OSTI)

Ionic Solid Oxides for High Temperature Optical Gas Sensing in Fossil Fuel Based Power Plants · Mitigation of Chromium Poisoning in Solid Oxide Fuel Cell

289

High-Temperature Lead-Free Solder Alternatives: Possibilities and ...  

Science Conference Proceedings (OSTI)

The development of high-temperature lead-free solders has become an important issue for both the electronics and automobile industries because of the health ...

290

High Temperature Stainless Steel Alloy with Low Cost Manganese  

High Temperature Stainless Steel Alloy with Low Cost Manganese ... ••Power industry components such as boiler tubing and piping, pressure vessels, chemical

291

Creep Behavior of High Temperature Alloys for Intermediate Heat ...  

Science Conference Proceedings (OSTI)

Presentation Title, Creep Behavior of High Temperature Alloys for Intermediate Heat Exchanger in Next Generation Nuclear Plant. Author(s), Xingshuo Wen, ...

292

SLAC National Accelerator Laboratory - High-temperature Superconductor...  

NLE Websites -- All DOE Office Websites (Extended Search)

evidence yet that a puzzling gap in the electronic structures of some high-temperature superconductors could indicate a new phase of matter. Understanding this "pseudogap" has...

293

High Temperature Universal Silicon on Insulator (SOI) Gate Drive  

higher current drive, on-chip regulation capacitors, and more space efficient and robust on-chip layout. ... •Development of high temperature galvanic isolation

294

High-temperature Foam-reinforced Thermal Insulation  

Science Conference Proceedings (OSTI)

Symposium, Advanced Materials for Harsh Environments. Presentation Title, High-temperature Foam-reinforced Thermal Insulation. Author(s), Jacob J. Stiglich, ...

295

ANALYSIS OF A HIGH TEMPERATURE GAS-COOLED REACTOR POWERED HIGH TEMPERATURE ELECTROLYSIS HYDROGEN PLANT  

DOE Green Energy (OSTI)

An updated reference design for a commercial-scale high-temperature electrolysis (HTE) plant for hydrogen production has been developed. The HTE plant is powered by a high-temperature gas-cooled reactor (HTGR) whose configuration and operating conditions are based on the latest design parameters planned for the Next Generation Nuclear Plant (NGNP). The current HTGR reference design specifies a reactor power of 600 MWt, with a primary system pressure of 7.0 MPa, and reactor inlet and outlet fluid temperatures of 322°C and 750°C, respectively. The reactor heat is used to produce heat and electric power to the HTE plant. A Rankine steam cycle with a power conversion efficiency of 44.4% was used to provide the electric power. The electrolysis unit used to produce hydrogen includes 1.1 million cells with a per-cell active area of 225 cm2. The reference hydrogen production plant operates at a system pressure of 5.0 MPa, and utilizes a steam-sweep system to remove the excess oxygen that is evolved on the anode (oxygen) side of the electrolyzer. The overall system thermal-to-hydrogen production efficiency (based on the higher heating value of the produced hydrogen) is 42.8% at a hydrogen production rate of 1.85 kg/s (66 million SCFD) and an oxygen production rate of 14.6 kg/s (33 million SCFD). An economic analysis of this plant was performed with realistic financial and cost estimating The results of the economic analysis demonstrated that the HTE hydrogen production plant driven by a high-temperature helium-cooled nuclear power plant can deliver hydrogen at a competitive cost. A cost of $3.03/kg of hydrogen was calculated assuming an internal rate of return of 10% and a debt to equity ratio of 80%/20% for a reactor cost of $2000/kWt and $2.41/kg of hydrogen for a reactor cost of $1400/kWt.

M. G. McKellar; E. A. Harvego; A. M. Gandrik

2010-11-01T23:59:59.000Z

296

Evaluation of C-14 as a natural tracer for injected fluids at the Aidlin sector of The Geysers geothermal system through modeling of mineral-water-gas Reactions  

E-Print Network (OSTI)

breakthrough observed in geothermal systems (e.g. , Shook,recharge project, Geysers geothermal field, California, USA,media: Applications to geothermal injectivity and CO 2

Dobson, Patrick; Sonnenthal, Eric; Lewicki, Jennifer; Kennedy, Mack

2006-01-01T23:59:59.000Z

297

Isotopic Analysis-Fluid At Geysers Geothermal Area (1982) | Open Energy  

Open Energy Info (EERE)

82) 82) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Isotopic Analysis-Fluid At Geysers Geothermal Area (1982) Exploration Activity Details Location Geysers Geothermal Area Exploration Technique Isotopic Analysis-Fluid Activity Date 1982 Usefulness not indicated DOE-funding Unknown Notes Helium isotope ratios have been measured in geothermal fluids. These ratios have been interpreted in terms of the processes which supply He in distinct isotopic ratios (i.e. magmatic He, ~10 Ra; atmospheric He, Ra; and crustal He, ~0.1 Ra) and in terms of the processes which can alter the isotopic ratio (hydrologic mixing, U-Th series alpha production and weathering release of crustal He, magma aging and tritiugenic addition of 3He). Raft

298

Environmental overview of geothermal development: the Geysers-Calistoga KGRA. Volume 3. Noise  

DOE Green Energy (OSTI)

Noise from geothermal resource development at The Geysers-Calistoga Known Geothermal Resource Area (KGRA) will cause community annoyance unless noise-level standards are set and adhered to. Venting of steam is the loudest source of noise and can reach 100 to 125 dBA at 20 to 100 ft; most of the other noise sources fall below 100 dBA and are those usually associated with construction and industrial projects. Enough data exist for assessment and decision making, but it is scattered and must be compiled. In addition, communities must decide on their criteria for noise levels. Residential areas in the Geysers-Calistoga KGRA will require more stringent controls on noise than will the open space of which KGRA is primarily composed. Existing tecnnology can reduce noise levels somewhat, but more effective silencing devices are needed, particularly on steam venting systems.

Leitner, P.

1978-08-16T23:59:59.000Z

299

Public service impacts of geothermal development: cumulative impacts study of the Geysers KGRA. Final staff report  

DOE Green Energy (OSTI)

The number of workers currently involved in the various aspects of geothermal development in the Geysers are identified. Using two different development scenarios, projections are made for the number of power plants needed to reach the electrical generation capacity of the steam resource in the Geysers. The report also projects the cumulative number of workers needed to develop the steam field and to construct, operate, and maintain these power plants. Although the number of construction workers fluctuates, most are not likely to become new, permanent residents of the KGRA counties. The administrative and public service costs of geothermal development to local jurisdications are examined, and these costs are compared to geothermal revenues accruing to the local governments. Revenues do not cover the immediate fiscal needs resulting from increases in local road maintenance and school enrollment attributable to geothermal development. Several mitigation options are discussed and a framework presented for calculating mitigation costs for school and road impacts.

Matthews, K.M.

1983-07-01T23:59:59.000Z

300

Workshop on environmental control technology for The Geysers-Calistoga KGRA  

DOE Green Energy (OSTI)

The proceedings of six work groups that discussed techniques to prevent and abate noise, hydrogen sulfide emissions, and accidental spills of chemicals and geothermal wastes at The Geysers-Calistoga KGRA are reported. Problems associated with well completion and production, and with systems, components, and materials, and their effects on emissions were also discussed. The comments and recommendations of the work groups are included in the proceedings. (MHR)

Hill, J.H.; Phelps, P.L.

1980-01-28T23:59:59.000Z

Note: This page contains sample records for the topic "geysers high-temperature reservoir" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Tectonic controls on magmatism in The Geysers--Clear Lake region: Evidence from new geophysical models  

DOE Green Energy (OSTI)

In order to study magmatism and geothermal systems in the Geysers-Clear Lake region, the authors developed a detailed three-dimensional tomographic velocity model based on local earthquakes. This high-resolution model resolves the velocity structure of the crust in the region to depths of approximately 12 km. The most significant velocity contrasts in The Geysers-Clear Lake region occur in the steam production area, where high velocities are associated with a Quaternary granite pluton, and in the Mount Hannah region, where low velocities occur in a 5-km-thick section of Mesozoic argillites. In addition, a more regional tomographic model was developed using traveltimes from earthquakes covering most of northern California. This regional model sampled the whole crust, but at a lower resolution than the local model. No large silicic magma chamber is noted in either the local or regional tomographic models. A three-dimensional gravity model also has ben developed in the area of the tomographic imaging. The gravity model demonstrates that all density contrasts can be accounted for in the upper 5--7 km of the crust. Two-dimensional magnetotelluric models of data from a regional east-west profile indicate high resistivities associated with the granitic pluton in The Geysers production area and low resistivities in the low-velocity section of Mesozoic argillites near Mount Hannah. No indication of midcrustal magma bodies is present in the magnetotelluric data. The geophysical models, seismicity patterns, distribution of volcanic vents, heat flow, and other data indicate that small, young intrusive bodies that were injected along a northeast trend from The Geysers to Clear Lake probably control the thermal regime.

Stanley, W.D.; Benz, H.M.; Villasenor, A.; Rodriguez, B.D. [Geological Survey, Denver, CO (United States). Denver Federal Center] [Geological Survey, Denver, CO (United States). Denver Federal Center; Walters, M.A. [CalEnergy Corp., Ridgecrest, CA (United States)] [CalEnergy Corp., Ridgecrest, CA (United States)

1998-09-01T23:59:59.000Z

302

Decision on the Pacific Gas and Electric Company's application for certification for Geysers Unit 17  

DOE Green Energy (OSTI)

The decision in favor of Geysers Unit 17 is presented. Included in the decisions are the findings, conclusions, and conditions on the following: need, socioeconomics, cultural resources, noise, hydrology and water resources, water quality, soils, biological resources, civil engineering, safety, transmission lines, geotechnical considerations, air quality, public health, and structural engineering and reliability. Provisions for monitoring compliance with applicable laws, regulations, and conditions are incorporated. (MHR)

Not Available

1979-09-01T23:59:59.000Z

303

High Temperature, Buried Permanent Magnet, Brushless DC Motor  

E-Print Network (OSTI)

A high temperature magnetic bearing system using high temperature permanent magnets from Electron Energy Corporation (EEC) is under development. The system consists of two radial bearings, one thrust bearing, two radial catcher bearings and one motor. The purpose of this research is to develop one of the critical components of the system, namely, the High Temperature Permanent Magnet motor. A novel High Temperature Permanent Magnet (HTPM) Brushless DC(BLDC) motor capable of operating at 1000 degrees F (538 degrees C) is designed. HTPMs developed at Electron Energy Corporation are buried into the rotor. The high temperature motor is designed to produce 5.1kw of power at a top running speed of 20000 rpm. The numerical values of the motor voltage, power and torque output are predicted from calculations of the nonlinear finite element model of the motor. The motor stator is wound, potted, cured and high potential tested at 1000 degrees F. A servo amplifier from Advanced Motion Control is used to drive the high temperature motor. High temperature displacement sensors are set up for sensing the rotor position to form a closed loop motion control. However, the noise problem of the high temperature sensors causes a failure of this approach. An open loop approach is then developed and this approach succeeds in spinning the rotor with the capability of self-starting. The status of the full system assembling is introduced. Some other components of the system are briefly presented.

Zhang, Zhengxin

2010-08-01T23:59:59.000Z

304

Hydrogen production from high temperature electrolysis and fusion reactor  

SciTech Connect

Production of hydrogen from high temperature electrolysis of steam coupled with a fusion reactor is studied. The process includes three major components: the fusion reactor, the high temperature electrolyzer and the power conversion cycle each of which is discussed in the paper. Detailed process design and analysis of the system is examined. A parametric study on the effect of process efficiency is presented.

Dang, V.D.; Steinberg, J.F.; Issacs, H.S.; Lazareth, O.; Powell, J.R.; Salzano, F.J.

1978-01-01T23:59:59.000Z

305

Evaluation of a superheater enhanced geothermal steam power plant in the Geysers area. Final report  

DOE Green Energy (OSTI)

This study was conducted to determine the attainable generation increase and to evaluate the economic merits of superheating the steam that could be used in future geothermal steam power plants in the Geyser-Calistoga Known Geothermal Resource Area (KGRA). It was determined that using a direct gas-fired superheater offers no economic advantages over the existing geothermal power plants. If the geothermal steam is heated to 900/sup 0/F by using the exhaust energy from a gas turbine of currently available performance, the net reference plant output would increase from 65 MW to 159 MW (net). Such hybrid plants are cost effective under certain conditions identified in this document. The power output from the residual Geyser area steam resource, now equivalent to 1437 MW, would be more than doubled by employing in the future gas turbine enhancement. The fossil fuel consumed in these plants would be used more efficiently than in any other fossil-fueled power plant in California. Due to an increase in evaporative losses in the cooling towers, the viability of the superheating concept is contingent on development of some of the water resources in the Geysers-Calistoga area to provide the necessary makeup water.

Janes, J.

1984-06-01T23:59:59.000Z

306

Cumulative impacts study of The Geysers KGRA: public-service impacts of geothermal development  

DOE Green Energy (OSTI)

Geothermal development in The Geysers KGRA has affected local public services and fiscal resources in Sonoma, Lake, Mendocino, and Napa counties. Each of these counties underwent rapid population growth between 1970 and 1980, some of which can be attributed to geothermal development. The number of workers currently involved in the various aspects of geothermal development in The Geysers is identified. Using three different development scenarios, projections are made for the number of power plants needed to reach the electrical generation capacity of the steam resource in The Geysers. The report also projects the cumulative number of workers needed to develop the steam field and to construct, operate, and maintain these power plants. Although the number of construction workers fluctuates, most are not likely to become new, permanent residents of the KGRA counties. The administrative and public service costs of geothermal development to local jurisdictions are examined and compared to geothermal revenues accruing to the local governments. Revenues do not cover the immediate fiscal needs resulting from increases in local road maintenance and school enrollment attributable to geothermal development. Several mitigation options are discussed, and a framework is presented for calculating mitigation costs per unit of public service.

Matthews, K.M.

1982-05-01T23:59:59.000Z

307

Method for Synthesizing Extremeley High Temperature Melting Materials  

DOE Patents (OSTI)

The invention relates to a method of synthesizing high-temperature melting materials. More specifically the invention relates to a containerless method of synthesizing very high temperature melting materials such as borides, carbides and transition-metal, lanthanide and actinide oxides, using an Aerodynamic Levitator and a laser. The object of the invention is to provide a method for synthesizing extremely high-temperature melting materials that are otherwise difficult to produce, without the use of containers, allowing the manipulation of the phase (amorphous/crystalline/metastable) and permitting changes of the environment such as different gaseous compositions.

Saboungi, Marie-Louise and Glorieux, Benoit

2005-11-22T23:59:59.000Z

308

Advancing the technology base for high-temperature membranes  

DOE Green Energy (OSTI)

This is the final report of a two-year, Laboratory Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). This project addresses the major issues confronting the implementation of high-temperature membranes for separations and catalysis. We are pursuing high-temperature membrane systems that can have a large impact for DOE and be industrially relevant. A major obstacle for increased use of membranes is that most applications require the membrane material to withstand temperatures above those acceptable for polymer-based systems. Advances made by this project have helped industry and DOE move toward high-temperature membrane applications to improve overall energy efficiency.

Dye, R.C.; Birdsell, S.A.; Snow, R.C. [and others

1997-10-01T23:59:59.000Z

309

Second workshop geothermal reservoir engineering: Proceedings  

DOE Green Energy (OSTI)

The Arab oil embargo of 1973 focused national attention on energy problems. A national focus on development of energy sources alternative to consumption of hydrocarbons led to the initiation of research studies of reservoir engineering of geothermal systems, funded by the National Science Foundation. At that time it appeared that only two significant reservoir engineering studies of geothermal reservoirs had been completed. Many meetings concerning development of geothermal resources were held from 1973 through the date of the first Stanford Geothermal Reservoir Engineering workshop December 15-17, 1975. These meetings were similar in that many reports dealt with the objectives of planned research projects rather than with results. The first reservoir engineering workshop held under the Stanford Geothermal Program was singular in that for the first time most participants were reporting on progress inactive research programs rather than on work planned. This was true for both laboratory experimental studies and for field experiments in producing geothermal systems. The Proceedings of the December 1975 workshop (SGP-TR-12) is a remarkable document in that results of both field operations and laboratory studies were freely presented and exchanged by all participants. With this in mind the second reservoir engineering workshop was planned for December 1976. The objectives were again two-fold. First, the workshop was designed as a forum to bring together researchers active in various physical and mathematical branches of the developing field of geothermal reservoir engineering, to give participants a current and updated view of progress being made in the field. The second purpose was to prepare this Proceedings of Summaries documenting the state of the art as of December 1976. The proceedings will be distributed to all interested members of the geothermal community involved in the development and utilization of the geothermal resources in the world. Many notable occurrences took place between the first workshop in December 1975 and this present workshop in December 1976. For one thing, the newly formed Energy Research and Development Administration (ERDA) has assumed the lead role in geothermal reservoir engineering research. The second workshop under the Stanford Geothermal Program was supported by a grant from ERDA. In addition, two significant meetings on geothermal energy were held in Rotarua, New Zealand and Taupo, New Zealand. These meetings concerned geothermal reservoir engineering, and the reinjection of cooled geothermal fluids back into a geothermal system. It was clear to attendees of both the New Zealand and the December workshop meetings that a great deal of new information had been developed between August and December 1976. Another exciting report made at the meeting was a successful completion of a new geothermal well on the big island of Hawaii which produces a geothermal fluid that is mainly steam at a temperature in excess of 600 degrees F. Although the total developed electrical power generating capacity due to all geothermal field developments in 1976 is on the order of 1200 megawatts, it was reported that rapid development in geothermal field expansion is taking place in many parts of the world. Approximately 400 megawatts of geothermal power were being developed in the Philippine Islands, and planning for expansion in production in Cerro Prieto, Mexico was also announced. The Geysers in the United States continued the planned expansion toward the level of more than 1000 megawatts. The Second Workshop on Geothermal Reservoir Engineering convened at Stanford December 1976 with 93 attendees from 4 nations, and resulted in the presentation of 44 technical papers, summaries of which are included in these Proceedings. The major areas included in the program consisted of reservoir physics, well testing, field development, well stimulation, and mathematical modeling of geothermal reservoirs. The planning forth is year's workshop and the preparation of the proceedings was carried out mainly by my associate Paul

Kruger, P.; Ramey, H.J. Jr. (eds.)

1976-12-03T23:59:59.000Z

310

Seventeenth workshop on geothermal reservoir engineering: Proceedings  

DOE Green Energy (OSTI)

PREFACE The Seventeenth Workshop on Geothermal Reservoir Engineering was held at Stanford University on January 29-31, 1992. There were one hundred sixteen registered participants which equaled the attendance last year. Participants were from seven foreign countries: Italy, Japan, United Kingdom, France, Belgium, Mexico and New Zealand. Performance of many geothermal fields outside the United States was described in the papers. The Workshop Banquet Speaker was Dr. Raffaele Cataldi. Dr. Cataldi gave a talk on the highlights of his geothermal career. The Stanford Geothermal Program Reservoir Engineering Award for Excellence in Development of Geothermal Energy was awarded to Dr. Cataldi. Dr. Frank Miller presented the award at the banquet. Thirty-eight papers were presented at the Workshop with two papers submitted for publication only. Dr. Roland Horne opened the meeting and the key note speaker was J.E. ''Ted'' Mock who discussed the DOE Geothermal R. & D. Program. The talk focused on aiding long-term, cost effective private resource development. Technical papers were organized in twelve sessions concerning: geochemistry, hot dry rock, injection, geysers, modeling, and reservoir mechanics. Session chairmen were major contributors to the program and we thank: Sabodh Garg., Jim Lovekin, Jim Combs, Ben Barker, Marcel Lippmann, Glenn Horton, Steve Enedy, and John Counsil. The Workshop was organized by the Stanford Geothermal Program faculty, staff, and graduate students. We wish to thank Pat Ota, Ted Sumida, and Terri A. Ramey who also produces the Proceedings Volumes for publication. We owe a great deal of thanks to our students who operate audiovisual equipment and to Francois Groff who coordinated the meeting arrangements for the Workshop. Henry J. Ramey, Jr. Roland N. Horne Frank G. Miller Paul Kruger William E. Brigham Jean W. Cook -vii

Ramey, H.J. Jr.; Kruger, P.; Miller, F.G.; Horne, R.N.; Brigham, W.E.; Cook, J.W. (Stanford Geothermal Program) [Stanford Geothermal Program

1992-01-31T23:59:59.000Z

311

DOE Hydrogen Analysis Repository: High Temperature Electrolysis (HTE)  

NLE Websites -- All DOE Office Websites (Extended Search)

High Temperature Electrolysis (HTE) High Temperature Electrolysis (HTE) Project Summary Full Title: High Temperature Electrolysis (HTE) Project ID: 159 Principal Investigator: Steve Herring Brief Description: A three-dimensional computational fluid dynamics (CFD) model was created to model high-temperature steam electrolysis in a planar solid oxide electrolysis cell (SOEC). A solid-oxide fuel cell model adds the electrochemical reactions and loss mechanisms and computation of the electric field throughout the cell. Keywords: Solid oxide fuel cell; solid oxide elctrolysis cell; nuclear; model Purpose Assess the performance of solid-oxide cells operating in the steam electrolysis mode for hydrogen production over a temperature range of 800 to 900ºC. Performer Principal Investigator: Steve Herring

312

Fuel Cell Technologies Office: High Temperature Membrane Working Group  

NLE Websites -- All DOE Office Websites (Extended Search)

High Temperature Membrane Working Group High Temperature Membrane Working Group The High Temperature Membrane Working Group consists of government, industry, and university researchers interested in developing high temperature membranes for fuel cells. Description Technical Targets Meetings Contacts Description Polymer electrolyte membrane (PEM) fuel cells typically operate at temperatures no higher than 60°C-80°C due to structural limitations of the membrane. Operating PEM fuel cell stacks at higher temperatures (120°C for transportation and 150°C for stationary applications), however, would yield significant energy benefits. For example, heat rejection is easier at higher temperatures, which would allow use of smaller heat exchangers in fuel cell power systems. In addition, for reformate fuel cell systems, carbon monoxide (CO) tolerance of the stack is less problematic at higher temperatures, which would reduce the size requirements or possibly eliminate the need for some CO clean-up beds in the fuel processor.

313

High Temperature Corrosion Test Facilities and High Pressure Test  

NLE Websites -- All DOE Office Websites (Extended Search)

High Temperature High Temperature Corrosion Test Facilities and High Pressure Test Facilities for Metal Dusting Test Facilities for Metal Dusting Overview Other Facilities Work with Argonne Contact us For Employees Site Map Help Join us on Facebook Follow us on Twitter NE on Flickr High Temperature Corrosion Test Facilities and High Pressure Test Facilities for Metal Dusting Six corrosion test facilities and two thermogravimetric systems for conducting corrosion tests in complex mixed gas environments, in steam and in the presence of deposits, and five facilities for metal dusting degradation Bookmark and Share The High Temperature Corrosion Test Facilities and High Pressure Test Facilities for Metal Dusting include: High Pressure Test Facility for Metal Dusting Resistance:

314

30vol%SiC at Ultra-high Temperatures  

Science Conference Proceedings (OSTI)

Presentation Title, SiC-depletion in ZrB2-30vol%SiC at Ultra-high Temperatures. Author(s), K N Shugart, E. J. Opila. On-Site Speaker (Planned), K N Shugart.

315

High temperature solid electrolyte fuel cell configurations and interconnections  

DOE Patents (OSTI)

High temperature fuel cell configurations and interconnections are made including annular cells having a solid electrolyte sandwiched between thin film electrodes. The cells are electrically interconnected along an elongated axial outer surface.

Isenberg, Arnold O. (Forest Hills, PA)

1984-01-01T23:59:59.000Z

316

Enabling high-temperature nanophotonics for energy applications  

E-Print Network (OSTI)

The nascent field of high-temperature nanophotonics could potentially enable many important solid-state energy conversion applications, such as thermophotovoltaic energy generation, selective solar absorption, and selective ...

Yeng, YiXiang

317

Mold, flow, and economic considerations in high temperature precision casting  

E-Print Network (OSTI)

Casting high temperature alloys that solidify through a noticeable two phase region, specifically platinum-ruthenium alloys, is a particularly challenging task due to their high melting temperature and this necessitates ...

Humbert, Matthew S

2013-01-01T23:59:59.000Z

318

Cryogenic deformation of high temperature superconductive composite structures  

DOE Patents (OSTI)

An improvement in a process of preparing a composite high temperature oxide superconductive wire is provided and involves conducting at least one cross-sectional reduction step in the processing preparation of the wire at sub-ambient temperatures.

Roberts, Peter R. (Groton, MA); Michels, William (Brookline, MA); Bingert, John F. (Jemez Springs, NM)

2001-01-01T23:59:59.000Z

319

Thermodynamics and Transport Phenomena in High Temperature Steam Electrolysis Cells  

DOE Green Energy (OSTI)

Hydrogen can be produced from water splitting with relatively high efficiency using high temperature electrolysis. This technology makes use of solid-oxide cells, running in the electrolysis mode to produce hydrogen from steam, while consuming electricity and high temperature process heat. The overall thermal-to-hydrogen efficiency for high temperature electrolysis can be as high as 50%, which is about double the overall efficiency of conventional low-temperature electrolysis. Current large-scale hydrogen production is based almost exclusively on steam reforming of methane, a method that consumes a precious fossil fuel while emitting carbon dioxide to the atmosphere. An overview of high temperature electrolysis technology will be presented, including basic thermodynamics, experimental methods, heat and mass transfer phenomena, and computational fluid dynamics modeling.

James E. O'Brien

2012-03-01T23:59:59.000Z

320

DEVELOPMENT OF HIGH TEMPERATURE ULTRASONIC TRANSDUCER FOR STRUCTURAL HEALTH MONITORING  

Science Conference Proceedings (OSTI)

Structural health monitoring (SHM) techniques are needed to maintain the reliability of aging power plants for long term operation. The high temperature transducers are necessary to realize SHM (monitor wall thickness of the pipings

A. Baba; C. T. Searfass; B. R. Tittmann

2011-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "geysers high-temperature reservoir" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Ir-based alloys for ultra-high temperature applications ...  

Site Map; Printable Version; Share this resource. Send a link to Ir-based alloys for ultra-high temperature applications - Energy Innovation Portalto someone by E-mail

322

Electronic properties of doped Mott insulators and high temperature superconductors  

E-Print Network (OSTI)

High-temperature superconducting cuprates, which are the quintessential example of a strongly correlated system and the most extensively studied materials after semiconductors, spurred the development in the fields of ...

Ribeiro, Tiago Castro

2005-01-01T23:59:59.000Z

323

Comparative Assessment of Direct Drive High Temperature Superconductin...  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy, LLC. Contract No. DE-AC36-08GO28308 Comparative Assessment of Direct Drive High Temperature Superconducting Generators in Multi-Megawatt Class Wind Turbines B....

324

Stability and quench protection of high-temperature superconductors  

E-Print Network (OSTI)

In the design and operation of a superconducting magnet, stability and protection are two key issues that determine the magnet's reliability and safe operation. Although the high-temperature superconductor (HTS) is considered ...

Ang, Ing Chea

2006-01-01T23:59:59.000Z

325

Toward material-specific simulations of high temperature superconductivity  

Science Conference Proceedings (OSTI)

High temperature superconductors could potentially revolutionize the use and transmission of electric power. This along with intriguing scientific questions have motivated an enormous research effort over the past twenty years, since the discovery of ...

Thomas C. Schulthess

2006-11-01T23:59:59.000Z

326

Dual-phase membrane for High temperature CO2 separation  

NLE Websites -- All DOE Office Websites (Extended Search)

2 CO 2 High temp. membrane for CO 2 removal High Temperature CO 2 Selective Membranes Syngas gas CO 2 enriched gas CO 2 High pressure H 2 0 100 200 300 400 500 600 700 1 10 100...

327

HYFIRE: a tokamak/high-temperature electrolysis system  

DOE Green Energy (OSTI)

The HYFIRE studies to date have investigated a number of technical approaches for using the thermal energy produced in a high-temperature Tokamak blanket to provide the electrical and thermal energy required to drive a high-temperature (> 1000/sup 0/C) water electrolysis process. Current emphasis is on two design points, one consistent with electrolyzer peak inlet temperatures of 1400/sup 0/C, which is an extrapolation of present experience, and one consistent with a peak electrolyzer temperature of 1100/sup 0/C. This latter condition is based on current laboratory experience with high-temperature solid electrolyte fuel cells. Our major conclusion to date is that the technical integration of fusion and high-temperature electrolysis appears to be feasible and that overall hydrogen production efficiencies of 50 to 55% seem possible.

Fillo, J.A.; Powell, J.P.; Benenati, R.; Varljen, T.C.; Chi, J.W.H.; Karbowski, J.S.

1981-01-01T23:59:59.000Z

328

Computational and Experimental Development of Novel High-Temperature Alloys  

NLE Websites -- All DOE Office Websites (Extended Search)

Development of Novel High-Temperature Alloys Background The need for fossil-fueled power plants to run cleaner and more efficiently leads toward ever-higher operating temperatures and pressures. Gas turbines, which can be fueled by natural gas, synthetic gas (syngas), or a high-hydrogen stream derived from coal, are critical components in this development. High-temperature operation of turbines is generally achieved by using nickel-chrome superalloys with coatings

329

Description of a high temperature downhole fluid sampler  

DOE Green Energy (OSTI)

Downhole fluid samplers have been used for years with limited success in high temperature geothermal wells. This paper discusses the development and operating principles of a high temperature downhole fluid sampler, reliable at obtaining samples at temperatures of up to 350/sup 0/C. The sampler was used successfully for recovering a brine sample from a depth of 10,200 ft in the Salton Sea Scientific Drilling Project well.

Solbau, R.; Weres, O.; Hansen, L.; Dudak, B.

1986-05-01T23:59:59.000Z

330

Statistical study of seismicity associated with geothermal reservoirs in California  

DOE Green Energy (OSTI)

Statistical methods are outlined to separate spatially, temporally, and magnitude-dependent portions of both the random and non-random components of the seismicity. The methodology employed compares the seismicity distributions with a generalized Poisson distribution. Temporally related events are identified by the distribution of the interoccurrence times. The regions studied to date include the Imperial Valley, Coso, The Geysers, Lassen, and the San Jacinto fault. The spatial characteristics of the random and clustered components of the seismicity are diffuse and appear unsuitable for defining the areal extent of the reservoir. However, from the temporal characteristics of the seismicity associated with these regions a general discriminant was constructed that combines several physical parameters for identifying the presence of a geothermal system.

Hadley, D.M.; Cavit, D.S.

1982-01-01T23:59:59.000Z

331

Engineering geology of the Geysers Geothermal Resource Area, Lake, Mendocino, and Sonoma Counties, California. Special report 122  

DOE Green Energy (OSTI)

Guidelines for the engineering geology assessment of The Geysers Geothermal Resource Area (GRA) are presented. Approximately 50 percent of the geothermal wells and some of the power plants are presently located on landslide areas. Several geothermal wells have failed, causing additional land instability, loss of energy resource, and unnecessary expense. Hazardous geologic conditions in the area are identified, and measures for mitigating those hazardous conditions are recommended. Such measures or other equally adequate measures should be considered for any proposed development activity in The Geysers area.

Bacon, C.F.; Amimoto, P.Y.; Sherburne, R.W.; Slosson, J.E.

1976-01-01T23:59:59.000Z

332

Microearthquake monitoring at the Southeast Geysers using a high-resolution digital array  

DOE Green Energy (OSTI)

Microearthquake activity at the Southeast Geysers, California, geothermal field is monitored with a high-resolution digital seismic network. Hypocenters are spatially clustered in both injection and production areas, but also occur in more diffuse patterns, mostly at depths from 1 to 2.8 km. Hypocenters near the injection well DV-11 exhibit a striking correlation with movement of injectate and injectate-derived steam. Preliminary moment tensor results show promise to provide information on the differing source mechanisms resulting from fluid injection and steam extraction.

Kirkpatrick, A.; Peterson, J.E. Jr.; Majer, E.L.

1995-01-01T23:59:59.000Z

333

Microearthquake monitoring at the Southeast Geysers using a high-resolution digital array  

DOE Green Energy (OSTI)

Microearthquake activity at the Southeast Geysers, California, geothermal field is monitored with a high-resolution digital seismic network. Hypocenters are spatially clustered in both injection and production areas, but also occur in more diffuse patterns, mostly at depths from 1 to 2.8 km. Hypocenters near the injection well DV-11 exhibit a striking correlation with movement of injectate and injectate-derived steam. Preliminary moment tensor results show promise to provide information on the differing source mechanisms resulting from fluid injection and steam extraction.

Kirkpatrick, Ann; Peterson, John E., Jr.; Majer, Ernie L.

1995-01-26T23:59:59.000Z

334

Geothermal energy and the land resource: conflicts and constraints in The Geysers-Calistoga KGRA  

DOE Green Energy (OSTI)

This study of potential land-related impacts of geothermal power development in The Geysers region focuses on Lake County because it has most of the undeveloped resource and the least regulatory capability. First, the land resource is characterized in terms of its ecological, hydrological, agricultural, and recreational value; intrinsic natural hazards; and the adequacy of roads and utility systems. Based on those factors, the potential land-use conflicts and constraints that geothermal development may encounter in the region are identified and the availability and relative suitability of land for such development is determined. A brief review of laws and powers germane to geothermal land-use regulation is included.

O'Banion, K.; Hall, C.

1980-07-14T23:59:59.000Z

335

Land-use conflicts in The Geysers-Calistoga KGRA: a preliminary study  

DOE Green Energy (OSTI)

This preliminary study of potential land use conflicts of geothermal development in The Geysers region, one component of the LLL/LBL socioeconomic program, focuses on Lake County because it has most of the undeveloped resource and the least regulatory capability. The land resource is characterized in terms of its ecological, hydrological, agricultural, and recreational value; intrinsic natural hazards; and the adequacy of roads and utility systems and each factor is depicted on a map. Then those factors are analyzed for potential conflicts with both geothermal and urban development and the conflicts displayed on respective maps. A brief review of laws and methods germane to geothermal land-use regulation is included.

O'Banion, K.; Hall, C.; Haven, K.

1979-12-01T23:59:59.000Z

336

Statistical analysis of summer winds in Geysers area prior to ASCOT 1979 experiment  

DOE Green Energy (OSTI)

Statistical analytical techniques were tested on 73 days and 16 stations of hourly data for the summer of 1977. These stations were located in the region surrounding the Geysers geothermal area. Principal components analysis (PCA) was used to define typical wind patterns in the region and to determine typical days for each station. Power spectral analysis was used to quantify the temporal variation of winds at Anderson Ridge and Anderson Springs (two stations included in the ASCOT 1979 study in the local region of Anderson Creek with very different terrain exposures). These results will help determine year to year difference in the wind fields in the ASCOT study region of complex terrain.

Porch, W.M.; Walton, J.J.

1980-02-01T23:59:59.000Z

337

Fabrication and Characterization of Uranium-based High Temperature Reactor  

NLE Websites -- All DOE Office Websites (Extended Search)

Fabrication and Characterization of Uranium-based High Temperature Reactor Fabrication and Characterization of Uranium-based High Temperature Reactor Fuel June 01, 2013 The Uranium Fuel Development Laboratory is a modern R&D scale lab for the fabrication and characterization of uranium-based high temperature reactor fuel. A laboratory-scale coater manufactures tri-isotropic (TRISO) coated fuel particles (CFPs), state-of-the-art materials property characterization is performed, and the CFPs are then pressed into fuel compacts for irradiation testing, all under a NQA-1 compliant Quality Assurance Program. After fuel kernel size and shape are measured by optical shadow imaging, the TRISO coatings are deposited via fluidized bed chemical vapor deposition in a 50-mm diameter conical chamber within the coating furnace. Computer control of temperature and gas composition ensures reproducibility

338

High-Temperature Downhole Tools | Open Energy Information  

Open Energy Info (EERE)

Tools Tools Jump to: navigation, search Contents 1 Geothermal Lab Call Projects for High-Temperature Downhole Tools 2 Geothermal ARRA Funded Projects for High-Temperature Downhole Tools Geothermal Lab Call Projects for High-Temperature Downhole Tools Loading map... {"format":"googlemaps3","type":"ROADMAP","types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"limit":200,"offset":0,"link":"all","sort":[""],"order":[],"headers":"show","mainlabel":"","intro":"","outro":"","searchlabel":"\u2026 further results","default":"","geoservice":"google","zoom":false,"width":"600px","height":"350px","centre":false,"layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","icon":"","visitedicon":"","forceshow":true,"showtitle":true,"hidenamespace":false,"template":false,"title":"","label":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"locations":[{"text":"

339

DOE Science Showcase - Understanding High-Temperature Superconductors |  

Office of Scientific and Technical Information (OSTI)

Understanding High-Temperature Superconductors Understanding High-Temperature Superconductors Credit: DOE Scientists have long worked to understand one of the great mysteries of modern physics - the origin and behavior of high-temperature superconductors (HTS) that are uniquely capable of transmitting electricity with zero loss when chilled to subzero temperatures. For decades there have been competing theories and misunderstandings of how HTS materials actually work and they have remained fundamentally puzzling to physicists. Solving this mystery has the potential to revolutionize the planet's energy infrastructure from generation to transmission and grid-scale storage. Recent technical breakthroughs in this quest are being discovered by DOE scientists and their collaborators. Read about HTS technology, basic

340

High-Temperature Circuit Boards for use in Geothermal Well Monitoring  

Open Energy Info (EERE)

Temperature Circuit Boards for use in Geothermal Well Monitoring Temperature Circuit Boards for use in Geothermal Well Monitoring Applications Geothermal Project Jump to: navigation, search Last modified on July 22, 2011. Project Title High-Temperature Circuit Boards for use in Geothermal Well Monitoring Applications Project Type / Topic 1 Recovery Act: Enhanced Geothermal Systems Component Research and Development/Analysis Project Type / Topic 2 High-Temperature Downhole Tools Project Description Geothermal energy offers an abundant, renewable source of power that could be used to ensure the long-term energy independence of our nation. Currently, geothermal power in the United States is produced from relatively shallow wells that also contain naturally occurring water sources. These current geothermal power plants with near-ideal conditions for geothermal power production exist primarily in the western U.S. In order to expand the use of geothermal energy, new technologies are needed that will enable the utilization of the hot, dry rock located at depths up to 10 km. The introduction of water into these deep wells to create geothermal reservoirs is referred to as Enhanced Geothermal System (EGS).

Note: This page contains sample records for the topic "geysers high-temperature reservoir" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

High-Temperature-High-Volume Lifting | Open Energy Information  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » High-Temperature-High-Volume Lifting Jump to: navigation, search Geothermal ARRA Funded Projects for High-Temperature-High-Volume Lifting Loading map... {"format":"googlemaps3","type":"ROADMAP","types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"limit":200,"offset":0,"link":"all","sort":[""],"order":[],"headers":"show","mainlabel":"","intro":"","outro":"","searchlabel":"\u2026

342

Vibration Combined High Temperature Cycle Tests for Capacitive MEMS Accelerometers  

E-Print Network (OSTI)

In this paper vibration combined high temperature cycle tests for packaged capacitive SOI-MEMS accelerometers are presented. The aim of these tests is to provide useful Design for Reliability information for MEMS designers. A high temperature test chamber and a chopper-stabilized read-out circuitry were designed and realized at BME - DED. Twenty thermal cycles of combined Temperature Cycle Test and Fatigue Vibration Test has been carried out on 5 samples. Statistical evaluation of the test results showed that degradation has started in 3 out of the 5 samples.

Szucs, Z; Hodossy, S; Rencz, M; Poppe, A

2008-01-01T23:59:59.000Z

343

Vibration Combined High Temperature Cycle Tests for Capacitive MEMS Accelerometers  

E-Print Network (OSTI)

In this paper vibration combined high temperature cycle tests for packaged capacitive SOI-MEMS accelerometers are presented. The aim of these tests is to provide useful Design for Reliability information for MEMS designers. A high temperature test chamber and a chopper-stabilized read-out circuitry were designed and realized at BME - DED. Twenty thermal cycles of combined Temperature Cycle Test and Fatigue Vibration Test has been carried out on 5 samples. Statistical evaluation of the test results showed that degradation has started in 3 out of the 5 samples.

Z. Szucs; G. Nagy; S. Hodossy; M. Rencz; A. Poppe

2008-01-07T23:59:59.000Z

344

Method for high temperature mercury capture from gas streams  

DOE Patents (OSTI)

A process to facilitate mercury extraction from high temperature flue/fuel gas via the use of metal sorbents which capture mercury at ambient and high temperatures. The spent sorbents can be regenerated after exposure to mercury. The metal sorbents can be used as pure metals (or combinations of metals) or dispersed on an inert support to increase surface area per gram of metal sorbent. Iridium and ruthenium are effective for mercury removal from flue and smelter gases. Palladium and platinum are effective for mercury removal from fuel gas (syngas). An iridium-platinum alloy is suitable for metal capture in many industrial effluent gas streams including highly corrosive gas streams.

Granite, E.J.; Pennline, H.W.

2006-04-25T23:59:59.000Z

345

Eighteenth workshop on geothermal reservoir engineering: Proceedings  

DOE Green Energy (OSTI)

PREFACE The Eighteenth Workshop on Geothermal Reservoir Engineering was held at Stanford University on January 26-28, 1993. There were one hundred and seventeen registered participants which was greater than the attendance last year. Participants were from eight foreign countries: Italy, Japan, United Kingdom, Mexico, New Zealand, the Philippines, Guatemala, and Iceland. Performance of many geothermal fields outside the United States was described in several of the papers. Dean Gary Ernst opened the meeting and welcomed the visitors to the campus. The key note speaker was J.E. ''Ted'' Mock who gave a brief overview of the Department of Energy's current plan. The Stanford Geothermal Program Reservoir Engineering Award for Excellence in Development of Geothermal Energy was awarded to Dr. Mock who also spoke at the banquet. Thirty-nine papers were presented at the Workshop with two papers submitted for publication only. Technical papers were organized in twelve sessions concerning: field operations, The Geysers, geoscience, hot-dry-rock, injection, modeling, slim hole wells, geochemistry, well test and wellbore. Session chairmen were major contributors to the program and we thank: John Counsil, Kathleen Enedy, Harry Olson, Eduardo Iglesias, Marcelo Lippmann, Paul Atkinson, Jim Lovekin, Marshall Reed, Antonio Correa, and David Faulder. The Workshop was organized by the Stanford Geothermal Program faculty, staff, and graduate students. We wish to thank Pat Ota, Ted Sumida, and Terri A. Ramey who also produces the Proceedings Volumes for publication. We owe a great deal of thanks to our students who operate audiovisual equipment and to John Hornbrook who coordinated the meeting arrangements for the Workshop. Henry J. Ramey, Jr. Roland N. Horne Frank G. Miller Paul Kruger William E. Brigham Jean W. Cook

Ramey, H.J. Jr.; Horne, R.J.; Kruger, P.; Miller, F.G.; Brigham, W.E.; Cook, J.W. (Stanford Geothermal Program) [Stanford Geothermal Program

1993-01-28T23:59:59.000Z

346

Final Report: Natural State Models of The Geysers Geothermal System, Sonoma County, California  

DOE Green Energy (OSTI)

Final project report of natural state modeling effort for The Geysers geothermal field, California. Initial models examined the liquid-dominated state of the system, based on geologic constraints and calibrated to match observed whole rock delta-O18 isotope alteration. These models demonstrated that the early system was of generally low permeability (around 10{sup -12} m{sup 2}), with good hydraulic connectivity at depth (along the intrusive contact) and an intact caprock. Later effort in the project was directed at development of a two-phase, supercritical flow simulation package (EOS1sc) to accompany the Tough2 flow simulator. Geysers models made using this package show that ''simmering'', or the transient migration of vapor bubbles through the hydrothermal system, is the dominant transition state as the system progresses to vapor-dominated. Such a system is highly variable in space and time, making the rock record more difficult to interpret, since pressure-temperature indicators likely reflect only local, short duration conditions.

T. H. Brikowski; D. L. Norton; D. D. Blackwell

2001-12-31T23:59:59.000Z

347

PGandE Geysers Retrofit Project, Units 1-12 Condensed Final Report  

DOE Green Energy (OSTI)

Geysers Power Plant Units 1-12 conceptual study of two H{sub 2}S abatement systems. The study is to provide a cost benefit and technical analysis of the existing (iron/caustic/peroxide) abatement system compared to retrofitting Units 1-12 with surface condensers and vent gases processing with the Stretford process. The study is based on the understanding that both H{sub 2}S abatement system compared meet the Air Pollution Board's requirements for H{sub 2}S emissions. The summary of this paper is that it is economical to convert from the existing abatement (iron/caustic/peroxide) to the alternative (surface condenser/Stretford) by a substantial amount. There is also a most economical timing sequence to accomplish the conversion to the surface condenser/Stretford abatement. The project if started immediately would be finished and operating by 1984. It is felt that the surface condenser/Stretford abatement system will ultimately meet the Air Pollution Board's requirements and improve the capacity factor of the Geysers power plant Units 1-12.

None

1979-08-24T23:59:59.000Z

348

Assessment of non-destructive testing of well casing,, cement and cement bond in high temperature wells  

DOE Green Energy (OSTI)

Because of the difficulty in bringing geothermal well blowouts under control, any indication of a casing/cement problem should be expeditiously evaluated and solved. There are currently no high temperature cement bond and casing integrity logging systems for geothermal wells with maximum temperatures in excess of 500/sup 0/F. The market is currently insufficient to warrannt the private investment necessary to develop tools and cables capable of withstanding high temperatures. It is concluded that a DOE-funded development program is required to assure that diagnostic tools are available in the interim until geothermal resource development activities are of sufficient magnitude to support developmental work on high temperature casing/cement logging capabilities by industry. This program should be similar to and complement the current DOE program for development of reservoir evaluation logging capabilities for hot wells. The appendices contain annotated bibliographies on the following: high temperature logging in general, cement integrity testing, cosing integrity testing, casing and cement failures, and special and protective treatment techniques. Also included are composite listing of references in alphabetical order by senior author.

Knutson,, C.K.; Boardman, C.R.

349

Geyser-1: a MIPS R3000 CPU core with fine-grained run-time power gating  

Science Conference Proceedings (OSTI)

Geyser-1 is a MIPS CPU which provides a fine-grained run-time power gating (PG) controlled by instructions. Unlike traditional PGs, it uses special standard cells in which the virtual ground (VGND) is separated from the real ground, and a certain number ...

D. Ikebuchi; N. Seki; Y. Kojima; M. Kamata; L. Zhao; H. Amano; T. Shirai; S. Koyama; T. Hashida; Y. Umahashi; H. Masuda; K. Usami; S. Takeda; H. Nakamura; M. Namiki; M. Kondo

2010-01-01T23:59:59.000Z

350

Optical Fiber High Temperature Sensor Instrumentation for Energy Intensive Industries  

SciTech Connect

This report summarizes technical progress during the program “Optical Fiber High Temperature Sensor Instrumentation for Energy Intensive Industries”, performed by the Center for Photonics Technology of the Bradley Department of Electrical and Computer Engineering at Virginia Tech. The objective of this program was to use technology recently invented at Virginia Tech to develop and demonstrate the application of self-calibrating optical fiber temperature and pressure sensors to several key energy-intensive industries where conventional, commercially available sensors exhibit greatly abbreviated lifetimes due primarily to environmental degradation. A number of significant technologies were developed under this program, including • a laser bonded silica high temperature fiber sensor with a high temperature capability up to 700°C and a frequency response up to 150 kHz, • the world’s smallest fiber Fabry-Perot high temperature pressure sensor (125 x 20 ?m) with 700°C capability, • UV-induced intrinsic Fabry-Perot interferometric sensors for distributed measurement, • a single crystal sapphire fiber-based sensor with a temperature capability up to 1600°C. These technologies have been well demonstrated and laboratory tested. Our work plan included conducting major field tests of these technologies at EPRI, Corning, Pratt & Whitney, and Global Energy; field validation of the technology is critical to ensuring its usefulness to U.S. industries. Unfortunately, due to budget cuts, DOE was unable to follow through with its funding commitment to support Energy Efficiency Science Initiative projects and this final phase was eliminated.

Cooper, Kristie L.; Wang, Anbo; Pickrell, Gary R.

2006-11-14T23:59:59.000Z

351

High Temperature coatings based on {beta}-NiAI  

Science Conference Proceedings (OSTI)

High temperature alloys are reviewed, focusing on current superalloys and their coatings. The synthesis, characerization, and oxidation performance of a NiAl–TiB{sub 2} composite are explained. A novel coating process for Mo–Ni–Al alloys for improved oxidation performance is examined. The cyclic oxidation performance of coated and uncoated Mo–Ni–Al alloys is discussed.

Severs, Kevin

2012-07-10T23:59:59.000Z

352

Preparation of high temperature gas-cooled reactor fuel element  

DOE Patents (OSTI)

This invention relates to a method for the preparation of high temperature gas-cooled reactor (HTGR) fuel elements wherein uncarbonized fuel rods are inserted in appropriate channels of an HTGR fuel element block and the entire block is inserted in an autoclave for in situ carbonization under high pressure. The method is particularly applicable to remote handling techniques.

Bradley, Ronnie A. (Oak Ridge, TN); Sease, John D. (Knoxville, TN)

1976-01-01T23:59:59.000Z

353

Free energy of Lorentz-violating QED at high temperature  

E-Print Network (OSTI)

In this paper we study the one- and two-loop contribution to the free energy in QED with the Lorentz symmetry breaking introduced via constant CPT-even Lorentz-breaking parameters at the high temperature limit. We find the impact of the Lorentz-violating term for the free energy and carry out a numerical estimation for the Lorentz-breaking parameter.

M. Gomes; T. Mariz; J. R. Nascimento; A. Yu. Petrov; A. F. Santos; A. J. da Silva

2009-10-23T23:59:59.000Z

354

AC Losses in the New High-Temperature Superconductors  

Science Conference Proceedings (OSTI)

This report addresses the properties of high-temperature ceramic oxide superconductors in low magnetic fields. It discusses ac losses in the superconducting and normal states, the influence of anisotropy, and a database for monitoring advances in superconductivity. The ac losses of the oxide superconductors were found to be excessive.

1989-03-17T23:59:59.000Z

355

Electronically conductive ceramics for high temperature oxidizing environments  

DOE Patents (OSTI)

This invention pertains to a high temperature, ceramic composition having electronic conductivity as measured by resistivity below about 500 ohm-cm, chemical stability particularly with respect to cathode conditions in a molten carbonate fuel cell, and composed of an alkali metal, transition metal oxide containing a dopant metal in the crystalline structure to replace a portion of the alkali metal or transition metal.

Kucera, G.H.; Smith, J.L.; Sim, J.W.

1983-11-10T23:59:59.000Z

356

High-temperature seal development for the share receiver  

DOE Green Energy (OSTI)

The development and experimental demonstration of a high-temperature seal for the SHARE ceramic dome cavity receiver is reported. The mechanical contact seal which was tested on one-foot diameter silicon carbide ceramic dome hardware at pressure differentials to four atmospheres and dome temperatures to 2200/sup 0/F (1200/sup 0/C) showed negligible leakage at expected receiver operating conditions.

Jarvinen, P. O.

1979-01-01T23:59:59.000Z

357

NUCLEAR RESONANT SCATTERING AT HIGH PRESSURE AND HIGH TEMPERATURE  

E-Print Network (OSTI)

NUCLEAR RESONANT SCATTERING AT HIGH PRESSURE AND HIGH TEMPERATURE JIYONG ZHAOa,Ã? , WOLFGANG, The University of Chicago, Chicago, IL 60637, USA We introduce the combination of nuclear resonant inelastic X the thermal radiation spectra fitted to the Planck radiation function up to 1700 K. Nuclear resonant

Shen, Guoyin

358

Integrated Seismic Studies At The Rye Patch Geothermal Reservoir, Nevada |  

Open Energy Info (EERE)

Seismic Studies At The Rye Patch Geothermal Reservoir, Nevada Seismic Studies At The Rye Patch Geothermal Reservoir, Nevada Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Book: Integrated Seismic Studies At The Rye Patch Geothermal Reservoir, Nevada Details Activities (2) Areas (1) Regions (0) Abstract: A 3-D surface seismic reflection survey, covering an area of over 3 square miles, was conducted at the Rye Patch geothermal reservoir (Nevada) to explore the structural features that may control geothermal production in the area. In addition to the surface sources and receivers, a high-temperature three-component seismometer was deployed in a borehole at a depth of 3900 ft within the basement below the reservoir, which recorded the waves generated by all surface sources. A total of 1959 first-arrival travel times were determined out of 2134 possible traces. Two-dimensional

359

Lithology and alteration mineralogy of reservoir rocks at Coso Geothermal  

Open Energy Info (EERE)

Lithology and alteration mineralogy of reservoir rocks at Coso Geothermal Lithology and alteration mineralogy of reservoir rocks at Coso Geothermal Area, California Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Lithology and alteration mineralogy of reservoir rocks at Coso Geothermal Area, California Details Activities (1) Areas (1) Regions (0) Abstract: Coso is one of several high-temperature geothermal systems associated with recent volcanic activity in the Basin and Range province. Chemical and fluid inclusion data demonstrate that production is from a narrow, asymmetric plume of thermal water that originates from a deep reservoir to the south and then flows laterally to the north. Geologic controls on the geometry of the upwelling plume were investigated using petrographic and analytical analyses of reservoir rock and vein material.

360

High Temperature Superconductivity -- A Joint Feasibility Study for a Power Application with High-Temperature Superconducting Cable by Peco Energy  

Science Conference Proceedings (OSTI)

Practical realization of high temperature superconductivity (HTS) technology is within the electric power industry's reach. This report documents a feasibility study co-sponsored by PECO Energy Company (PECO) to assess a real-world underground transmission application of this technology.

1998-11-17T23:59:59.000Z

Note: This page contains sample records for the topic "geysers high-temperature reservoir" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

High Temperature Superconductivity -- A Joint Feasibility Study for a Power Application with High-Temperature Superconducting Cable by South Carolina  

Science Conference Proceedings (OSTI)

Practical realization of high temperature superconductivity (HTS) technology is within the reach of the electric power industry. This report documents a feasibility study co-sponsored by South Carolina Electric and Gas Company (SCE&G) to assess a real-world underground transmission application of this technology.

1998-11-17T23:59:59.000Z

362

Status of Norris Reservoir  

DOE Green Energy (OSTI)

This is one in a series of reports prepared by the Tennessee Valley Authority (TVA) for those interested in the conditions of TVA reservoirs. This overview of Norris Reservoir summarizes reservoir and watershed characteristics, reservoir uses, conditions that impair reservoir uses, water quality and aquatic biological conditions, and activities of reservoir management agencies. This information was extracted from the most up-to-date publications and data available, and from interviews with water resource professionals in various federal, state, and local agencies, and in public and private water supply and wastewater treatment facilities. 14 refs., 3 figs.

Not Available

1990-09-01T23:59:59.000Z

363

Safeguards Guidance for Prismatic Fueled High Temperature Gas Reactors (HTGR)  

National Nuclear Security Administration (NNSA)

5) 5) August 2012 Guidance for High Temperature Gas Reactors (HTGRs) with Prismatic Fuel INL/CON-12-26130 Revision 0 Safeguards-by-Design: Guidance for High Temperature Gas Reactors (HTGRs) With Prismatic Fuel Philip Casey Durst (INL Consultant) August 2012 DISCLAIMER This information was prepared as an account of work sponsored by an agency of the U.S. Government. Neither the U.S. Government nor any agency thereof, nor any of their employees, makes any warranty, expressed or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness, of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. References herein to any specific commercial product,

364

Two Phase Transitions Make a High-Temperature Superconductor  

NLE Websites -- All DOE Office Websites (Extended Search)

Two Phase Transitions Make a High-Temperature Superconductor Print Two Phase Transitions Make a High-Temperature Superconductor Print Superconductivity-conceptually remarkable and practically revolutionary-is a quantum phenomenon in which bound electron pairs flow through a material in perfect synchrony, without friction. Conventional superconducting materials reach this state via a single thermal phase transition at a critical temperature (Tc). It was generally believed that such a picture also applied to the copper oxide (cuprate) superconductors-first discovered 25 years ago and the current record holders for highest Tc. However, three groups of researchers who performed measurements on the same cuprate material recently joined forces to prove that this view is inaccurate. Their work showed that another phase transition actually exists at a higher temperature in the cuprate phase diagram, below which electrons, instead of pairing up, organize themselves in a drastically different way.

365

Two Phase Transitions Make a High-Temperature Superconductor  

NLE Websites -- All DOE Office Websites (Extended Search)

Two Phase Transitions Make a High-Temperature Superconductor Print Two Phase Transitions Make a High-Temperature Superconductor Print Superconductivity-conceptually remarkable and practically revolutionary-is a quantum phenomenon in which bound electron pairs flow through a material in perfect synchrony, without friction. Conventional superconducting materials reach this state via a single thermal phase transition at a critical temperature (Tc). It was generally believed that such a picture also applied to the copper oxide (cuprate) superconductors-first discovered 25 years ago and the current record holders for highest Tc. However, three groups of researchers who performed measurements on the same cuprate material recently joined forces to prove that this view is inaccurate. Their work showed that another phase transition actually exists at a higher temperature in the cuprate phase diagram, below which electrons, instead of pairing up, organize themselves in a drastically different way.

366

Two Phase Transitions Make a High-Temperature Superconductor  

NLE Websites -- All DOE Office Websites (Extended Search)

Two Phase Transitions Make a High-Temperature Superconductor Print Two Phase Transitions Make a High-Temperature Superconductor Print Superconductivity-conceptually remarkable and practically revolutionary-is a quantum phenomenon in which bound electron pairs flow through a material in perfect synchrony, without friction. Conventional superconducting materials reach this state via a single thermal phase transition at a critical temperature (Tc). It was generally believed that such a picture also applied to the copper oxide (cuprate) superconductors-first discovered 25 years ago and the current record holders for highest Tc. However, three groups of researchers who performed measurements on the same cuprate material recently joined forces to prove that this view is inaccurate. Their work showed that another phase transition actually exists at a higher temperature in the cuprate phase diagram, below which electrons, instead of pairing up, organize themselves in a drastically different way.

367

Two Phase Transitions Make a High-Temperature Superconductor  

NLE Websites -- All DOE Office Websites (Extended Search)

Two Phase Transitions Make a High-Temperature Superconductor Print Two Phase Transitions Make a High-Temperature Superconductor Print Superconductivity-conceptually remarkable and practically revolutionary-is a quantum phenomenon in which bound electron pairs flow through a material in perfect synchrony, without friction. Conventional superconducting materials reach this state via a single thermal phase transition at a critical temperature (Tc). It was generally believed that such a picture also applied to the copper oxide (cuprate) superconductors-first discovered 25 years ago and the current record holders for highest Tc. However, three groups of researchers who performed measurements on the same cuprate material recently joined forces to prove that this view is inaccurate. Their work showed that another phase transition actually exists at a higher temperature in the cuprate phase diagram, below which electrons, instead of pairing up, organize themselves in a drastically different way.

368

High temperature solar thermal technology: The North Africa Market  

DOE Green Energy (OSTI)

High temperature solar thermal (HTST) technology offers an attractive option for both industrialized and non-industrialized countries to generate electricity and industrial process steam. The purpose of this report is to assess the potential market for solar thermal applications in the North African countries of Algeria, Egypt, Morocco and Tunisia. North Africa was selected because of its outstanding solar resource base and the variety of applications to be found there. Diminishing oil and gas resources, coupled with expanding energy needs, opens a large potential market for the US industry. The US high temperature solar trough industry has little competition globally and could build a large market in these areas. The US is already familiar with certain solar markets in North Africa due to the supplying of substantial quantities of US-manufactured flat plate collectors to this region.

Not Available

1990-12-01T23:59:59.000Z

369

Goa, India Permeability of Charnokite Rock at High Temperatures  

E-Print Network (OSTI)

ABSTRACT: Permeability at high temperature is a very important parameter to be considered for designing underground high level nuclear waste repository (HLW) in rock mass. The surrounding rock mass is exposed to heat radiated by HLW when it is buried underground and development or extension of micro-cracks takes place in the host rock due to rise in temperature. Keeping this in view, the permeability study was conducted for Charnokite rock at high temperatures in the range from room temperature, 30 to 200 o C. The cylindrical rock samples of 36mm diameter and 150mm in length were used as per the required size for the equipment permeameter, TEMCO, USA. Total thirty rock samples were tested at various temperatures using nitrogen gas as fluid. The permeability tests were conducted at confining pressure of around 4MPa in order to simulate the horizontal in situ stress conditions in Charnokite rock at the depth of 400m for construction of HLW repository. 1

R. D. Dwivedi; R. K. Goel; A. Swarup; V. V. R. Prasad; R. K. Bajpai; P. K. Narayan; V. Arumugam

2008-01-01T23:59:59.000Z

370

Materials Degradation Studies for High Temperature Steam Electrolysis Systems  

DOE Green Energy (OSTI)

Experiments are currently in progress to assess the high temperature degradation behavior of materials in solid oxide electrolysis systems. This research includes the investigation of various electrolysis cell components and balance of plant materials under both anodic and cathodic gas atmospheres at temperatures up to 850°C. Current results include corrosion data for a high temperature nickel alloy used for the air-side flow field in electrolysis cells and a commercial ferritic stainless steel used as the metallic interconnect. Three different corrosion inhibiting coatings were also tested on the steel material. The samples were tested at 850ºC for 500 h in both air and H2O/H2 atmospheres. The results of this research will be used to identify degradation mechanisms and demonstrate the suitability of candidate materials for long-term operation in electrolysis cells.

Paul Demkowicz; Pavel Medvedev; Kevin DeWall; Paul Lessing

2007-06-01T23:59:59.000Z

371

Hydrogen production from fusion reactors coupled with high temperature electrolysis  

DOE Green Energy (OSTI)

The decreasing availability of fossil fuels emphasizes the need to develop systems which will produce synthetic fuel to substitute for and complement the natural supply. An important first step in the synthesis of liquid and gaseous fuels is the production of hydrogen. Thermonuclear fusion offers an inexhaustible source of energy for the production of hydrogen from water. Processes which may be considered for this purpose include electrolysis, thermochemical decomposition or thermochemical-electrochemical hybrid cycles. Preliminary studies at Brookhaven indicate that high temperature electrolysis has the highest potential efficiency for production of hydrogen from fusion. Depending on design electric generation efficiencies of approximately 40 to 60 percent and hydrogen production efficiencies of approximately 50 to 70 percent are projected for fusion reactors using high temperature blankets.

Fillo, J A; Powell, J R; Steinberg, M

372

Operating high temperature (1000/sup 0/C) electrolysis demonstration unit  

SciTech Connect

Phase I of the BNL Fusion Synfuel Demonstration Program has been the successful construction and demonstration of a 100-W electrically-heated, high-temperature electrolysis unit operating at a temperature of 1000/sup 0/C. The high-temperature electrolyzer demonstration unit consists of 34 yttria-stabilized zirconia tubes contained in a 15-cm (od), 30-cm long INCONEL pressure vessel. The tubes are 25-cm long (active length), 0.64-cm (od), and coated on the inside with platinum to form the oxygen electrode and coated on the outside with nickel to form the hydrogen electrode. The 1000/sup 0/C steam is raised by electrically heating water. The system is designed to produce approx. 6 cc/s of hydrogen.

Horn, F.L.; Powell, J.R.; Fillo, J.A.

1981-01-01T23:59:59.000Z

373

Liquid Fuel Production from Biomass via High Temperature Steam Electrolysis  

DOE Green Energy (OSTI)

A process model of syngas production using high temperature electrolysis and biomass gasification is presented. Process heat from the biomass gasifier is used to heat steam for the hydrogen production via the high temperature steam electrolysis process. Hydrogen from electrolysis allows a high utilization of the biomass carbon for syngas production. Oxygen produced form the electrolysis process is used to control the oxidation rate in the oxygen-fed biomass gasifier. Based on the gasifier temperature, 94% to 95% of the carbon in the biomass becomes carbon monoxide in the syngas (carbon monoxide and hydrogen). Assuming the thermal efficiency of the power cycle for electricity generation is 50%, (as expected from GEN IV nuclear reactors), the syngas production efficiency ranges from 70% to 73% as the gasifier temperature decreases from 1900 K to 1500 K. Parametric studies of system pressure, biomass moisture content and low temperature alkaline electrolysis are also presented.

Grant L. Hawkes; Michael G. McKellar

2009-11-01T23:59:59.000Z

374

NETL: Mercury Emissions Control Technologies - Enhanced High Temperature  

NLE Websites -- All DOE Office Websites (Extended Search)

Enhanced High Temperature Mercury Oxidation and Enhanced High Temperature Mercury Oxidation and In-Situ Active Carbon Generation for Low Cost Mercury Capture Mercury oxidation phenomenon and the studies of this phenomenon have generally focused on lower temperatures, typically below 650°F. This has been based on the mercury vapor equilibrium speciation curve. The baseline extents of mercury oxidation as reported in the ICR dataset and observed during subsequent tests has shown a tremendous amount of scatter. The objective of this project is to examine, establish and demonstrate the effect of higher temperature kinetics on mercury oxidation rates. Further, it is the objective of this project to demonstrate how the inherent mercury oxidation kinetics can be influenced to dramatically increase the mercury oxidation.

375

Adaptable Sensor Packaging for High Temperature Fossil Fuel Energy System  

NLE Websites -- All DOE Office Websites (Extended Search)

Adaptable Sensor Packaging for High Adaptable Sensor Packaging for High Temperature Fossil Fuel Energy Systems Background The Advanced Research Sensors and Controls Program is leading the effort to develop sensing and control technologies and methods to achieve automated and optimized intelligent power systems. The program is led by the U.S. Department of Energy (DOE) Office of Fossil Energy National Energy Technology Laboratory (NETL) and is implemented through research and development agreements with other

376

Amorphous Alloy Membranes for High Temperature Hydrogen Separations  

NLE Websites -- All DOE Office Websites (Extended Search)

for High for High Temperature Hydrogen Separations Background Coal and biomass are readily available in the United States and can be mixed for thermal processing to produce hydrogen and power. The produced hydrogen can be sent directly to a fuel cell for highly efficient and environmentally clean power generation. For coal and biomass to become economically viable sources of hydrogen, more efficient production processes need to be developed. To meet this

377

High Temperature Syngas Cleanup Technology Scale-up  

NLE Websites -- All DOE Office Websites (Extended Search)

RECOVERY ACT: Scale-Up of RECOVERY ACT: Scale-Up of High-Temperature Syngas Cleanup Technology Background Coal gasification generates a synthesis gas (syngas)-predominantly a mixture of carbon monoxide (CO) and hydrogen (H 2 )-that can be used for chemical production of hydrogen, methanol, substitute natural gas (SNG), and many other industrial chemicals, or for electric power generation. Conventional integrated gasification combined cycle (IGCC) power plants use this syngas as a fuel for a combustion

378

Sealed glass coating of high temperature ceramic superconductors  

DOE Patents (OSTI)

A method and article of manufacture of a lead oxide based glass coating on a high temperature superconductor. The method includes preparing a dispersion of glass powders in a solution, applying the dispersion to the superconductor, drying the dispersion before applying another coating and heating the glass powder dispersion at temperatures below oxygen diffusion onset and above the glass melting point to form a continuous glass coating on the superconductor to establish compressive stresses which enhance the fracture strength of the superconductor.

Wu, Weite (Tainan, TW); Chu, Cha Y. (Garnerville, NY); Goretta, Kenneth C. (Downers Grove, IL); Routbort, Jules L. (Darien, IL)

1995-01-01T23:59:59.000Z

379

Anode for a secondary, high-temperature electrochemical cell  

DOE Patents (OSTI)

A high-temperature, secondary electrochemical cell includes an anode containing lithium, an electrolyte containing lithium ions and a cathode containing a chalcogen material such as sulfur or a metallic sulfide. The anode includes a porous substrate formed of, for instance, a compacted mass of entangled metallic fibers providing interstitial crevices for receiving molten lithium metal. The surfaces of the interstitial crevices are provided with a coating of cobalt metal to enhance the retention of the molten lithium metal within the substrate.

Vissers, Donald R. (Naperville, IL); Tani, Benjamin S. (Chicago, IL)

1976-01-01T23:59:59.000Z

380

High-Temperature Thermodynamic Data for Species in Aqueous Solution  

Science Conference Proceedings (OSTI)

This report summarizes the results of experimental and theoretical research on the high-temperature thermodynamic properties of aqueous species important to nuclear reactor water chemistry. Methods of predicting thermodynamic functions are presented for electrolytes up to 300 degrees Celsius for use in supplementing experimental data. The report includes tables (up to 300 degrees Celsius) of (1) important equilibrium constants for 78 reactions encountered in corrosion and precipitation in nuclear reactor...

1982-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "geysers high-temperature reservoir" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

High temperature superconductivity in metallic region near Mott transition  

E-Print Network (OSTI)

The spin-singlet superconductivity without phonons is examined in consideration of correlations on an extended Hubbard model. It is shown that the superconductivity requires not only the total correlation should be strong enough but also the density of state around Fermi energy should be large enough, which shows that the high temperature superconductivity could only be found in the metallic region near the Mott metal insulator transition (MIT). Other properties of superconductors are also discussed on these conclusions.

Tian De Cao

2009-06-11T23:59:59.000Z

382

High temperature sodium testing of the CRBR prototype primary pump  

Science Conference Proceedings (OSTI)

Qualification testing in sodium of the CRBR primary pump was conducted through 1982. This paper presents an overview of the test program, a description of the Sodium Pump Test Facility (largest of its kind in the world), a brief description of the test article and summary overview of results. Of special interest were the high temperature gas convection tests and the extensive flow/speed control (dynamic) tests. Special innovative test methods were employed to investigate these phenomena.

Tessier, M.J.; Grimaldi, J.L.

1983-01-01T23:59:59.000Z

383

Guide for High Temperature Operation of Overhead Lines: 2012 Updates  

Science Conference Proceedings (OSTI)

This Guide assists users in raising the capacities of overhead transmission lines by increasing the conductor temperature. It is based on a wealth of knowledge accumulated from extensive research conducted internally at the Electric Power Research Institute (EPRI), information from manufacturers, and results from research conducted outside of EPRI. The Guide has evolved from a collection of numerous EPRI reports published in the past, including Effect of High-Temperature Cycling on Conductor ...

2012-12-12T23:59:59.000Z

384

Accelerated Aging Test of High-Temperature Conductor and Connectors  

Science Conference Proceedings (OSTI)

As part of the research on high-temperature low-sag (HTLS) advanced conductors, this project investigates the long-term performance of commercially available advanced conductors to complement the field demonstration project, which provided information on handling and stringing of these conductors. The report provides preliminary results from the accelerated aging tests conducted on various types of HTLS conductors and their connectors. The objective of the accelerated aging tests is to determine the ...

2012-12-12T23:59:59.000Z

385

HTC (High-Temperature Conductor) Matrix: Version 4.1  

Science Conference Proceedings (OSTI)

EPRI’s HTC Matrix software is a Windows application designed to provide the user with quick and directed access to all of the information developed under several EPRI projects investigating the effects of high temperature operation of conductors. The research results have been published in several technical reports.  Benefits & ValueThe user can determine whether a certain type of connectors can be used at a specific ...

2012-11-05T23:59:59.000Z

386

Guide for Selection and Application of High-Temperature Conductors  

Science Conference Proceedings (OSTI)

Extensive research has been conducted by the Electric Power Research Institute (EPRI) on high-temperature low-sag (HTLS) conductors. Much knowledge has been gained on this type of conductor since EPRI initiated its first HTLS conductor research project in 2004. The projects on HTLS conductors completed to date include field demonstration, material study, and short-term to long-term performance evaluations. These projects were conducted under different funding arrangements and were sometimes ...

2012-12-31T23:59:59.000Z

387

Thermal Models of Overhead Transmission Lines Operating at High Temperatures  

Science Conference Proceedings (OSTI)

Bare stranded overhead transmission line conductorsreferred to as aluminum conductor steel reinforced ACSRtypically consist of at least two layers of aluminum strands, helically stranded around a core consisting of steel wires. The current that flows through such conductors is located predominantly in the aluminum layers while the steel core provides mechanical strength and limits sag at high temperature. The lack of new line construction combined with the decoupling of transmission from power generatio...

2010-12-23T23:59:59.000Z

388

Effect of High Temperature Cycling on Conductor Systems  

Science Conference Proceedings (OSTI)

One of the alternatives for increasing power flow on an existing transmission line is to raise the operating temperature of its conductor. The effects of high operating temperature on the conductor, however, include loss in conductor strength and reduction in conductor clearance to ground. The high temperature also affects the short- and long-term performance of the conductor connections and conductor accessories. All of these effects must be assessed for an overhead line to operate safely and reliably a...

2007-12-18T23:59:59.000Z

389

Secret high-temperature reactor concept for inertial fusion  

DOE Green Energy (OSTI)

The goal of our SCEPTRE project was to create an advanced second-generation inertial fusion reactor that offers the potential for either of the following: (1) generating electricity at 50% efficiency, (2) providing high temperature heat (850/sup 0/C) for hydrogen production, or (3) producing fissile fuel for light-water reactors. We have found that these applications are conceptually feasible with a reactor that is intrinsically free of the hazards of catastrophic fire or tritium release.

Monsler, M.J.; Meier, W.R.

1983-01-01T23:59:59.000Z

390

Guide for Operating Overhead Lines at High Temperatures  

Science Conference Proceedings (OSTI)

This Guide assists users in raising the capacities of overhead transmission lines by increasing the conductor temperature. It is based on a wealth of knowledge accumulated from extensive research conducted internally at the Electric Power Research Institute (EPRI), information from manufacturers, and results from research conducted outside of EPRI. The Guide evolved from a collection of numerous EPRI reports published in the past, for example, Effect of High-Temperature Cycling on Conductor Systems (EPRI...

2010-12-13T23:59:59.000Z

391

Expansion Joint Concepts for High Temperature Insulation Systems  

E-Print Network (OSTI)

As high temperature steam and process piping expands with heat, joints begin to open between the insulation sections, resulting in increased energy loss and possible unsafe surface temperatures. Many different expansion joint designs are presently in use for both single and double layer insulation construction. However, due to the installation cost reduction associated with single layer systems and increased thickness capabilities of insulation manufacturers, much attention is being given to utilizing single layer construction as much as possible.

Harrison, M. R.

1980-01-01T23:59:59.000Z

392

Ultra high temperature instrumentation amplifier components final report  

DOE Green Energy (OSTI)

In order to develop a downhole instrumentation amplifier to support geothermal well logging without thermal protection, all the components required were tested over the temperature range of 25 to 500/sup 0/C. The components tested were ceramic vacuum tubes, resistors, capacitors, insulated hook-up wire, circuit boards, terminals, connectors, feedthroughs, thermal switch, magnet wire, and high temperature coatings and cements. Details of the tests are presented for all components. (MHR)

Kelly, R.D.; Morse, C.P.; Cannon, W.L.

1977-09-01T23:59:59.000Z

393

Sourcebook on high-temperature electronics and instrumentation  

DOE Green Energy (OSTI)

This sourcebook summarizes the high-temperature characteristics of a number of commercially available electronic components and materials required in geothermal well-logging instruments that must operate to 275/sup 0/C. The sourcebook is written to provide a starting place for instrument designers, who need to know the high-temperature electronic products that are available and the design and performance limitations of these products. The electronic component information given includes the standard repertoire of passive devices such as resistors, capacitors, and magnetics; the active devices and integrated circuits sections emphasize silicon semiconductor JFETs and CMOS circuits; and, to complete the electronics, interconnections and packaging of hybrid microelectronics are described. Thermal insulation and refrigeration alternatives are also presented in the sourcebook. Finally, instrument housing materials and high-temperature cables and cablehead connectors are listed. This information was compiled as part of the Geothermal Logging Instrumentation Development Program that Sandia National Laboratories conducted for the US Department of Energy's Divison of Geothermal Energy from 1976 to 1981.

Veneruso, A.F. (ed.)

1981-10-01T23:59:59.000Z

394

High Temperature, High Pressure Devices for Zonal Isolation in Geothermal  

Open Energy Info (EERE)

Temperature, High Pressure Devices for Zonal Isolation in Geothermal Temperature, High Pressure Devices for Zonal Isolation in Geothermal Wells Geothermal Project Jump to: navigation, search Last modified on July 22, 2011. Project Title High Temperature, High Pressure Devices for Zonal Isolation in Geothermal Wells Project Type / Topic 1 Recovery Act: Enhanced Geothermal Systems Component Research and Development/Analysis Project Type / Topic 2 Zonal Isolation Project Description For Enhanced Geothermal Systems (EGS), high-temperature high-pressure zonal isolation tools capable of withstanding the downhole environment are needed. In these wells the packers must withstand differential pressures of 5,000 psi at more than 300°C, as well as pressures up to 20,000 psi at 200°C to 250°C. Furthermore, when deployed these packers and zonal isolation tools must form a reliable seal that eliminates fluid loss and mitigates short circuiting of flow from injectors to producers. At this time, general purpose open-hole packers do not exist for use in geothermal environments, with the primary technical limitation being the poor stability of existing elastomeric seals at high temperatures.

395

Particle-hole symmetry broken pseudogap in high temperature superconductors  

NLE Websites -- All DOE Office Websites (Extended Search)

Particle-hole symmetry broken pseudogap in Particle-hole symmetry broken pseudogap in high temperature superconductors High-temperature (Tc) superconductivity is one of the most important topics in condensed matter physics. Despite extensive studies over more than two decades, the microscopic mechanism of high temperature superconductivity still remains elusive due to many unconventional properties that are not well understood. Among them, the most mysterious behavior of high-Tc superconductor is the nature of so called "pseudogap", which has been a focus of the field for many years. In conventional superconductors, a gap exists in the energy absorption spectrum only below Tc, corresponding to the energy price to pay for breaking a Cooper pair of electrons. In high-Tc cuprate superconductors, an energy gap called the pseudogap exists above Tc but below T*, and is controversially attributed either to pre-formed superconducting pairs or to competing phases. Recently, by carefully studying the "symmetry" of the gap, researchers Makoto Hashimoto and Rui-Hua He, along with their co-workers in Prof. Zhi-Xun Shen's group at Stanford University, have found crucial evidence suggesting that the particle-hole symmetry required by superconductivity is broken in the pseudogap state.

396

High-Temperature-High-Volume Lifting For Enhanced Geothermal Systems  

Open Energy Info (EERE)

Temperature-High-Volume Lifting For Enhanced Geothermal Systems Temperature-High-Volume Lifting For Enhanced Geothermal Systems Geothermal Project Jump to: navigation, search Last modified on July 22, 2011. Project Title High-Temperature-High-Volume Lifting For Enhanced Geothermal Systems Project Type / Topic 1 Recovery Act: Enhanced Geothermal Systems Component Research and Development/Analysis Project Type / Topic 2 High-Temperature-High-Volume Lifting Project Description The proposed scope of work is divided into three Phases. Overall system requirements will be established in Phase 1, along with an evaluation of existing lifting system capability, identification of technology limitations, and a conceptual design of an overall lifting system. In developing the system components in Phase 2, component-level tests will be conducted using GE facilities. Areas of development will include high-temperature drive system materials, journal and thrust bearings, and corrosion and erosion-resistant lifting pump components. Finally, in Phase 3, the overall lab-scale lifting system will be demonstrated in a flow loop that will be constructed at GE Global Research.

397

Pseudogap and Superconducting Gap in High-Temperature Superconductors  

NLE Websites -- All DOE Office Websites (Extended Search)

Pseudogap and Superconducting Gap in Pseudogap and Superconducting Gap in High-Temperature Superconductors Two decades after the discovery of first high temperature superconductors, the microscopic mechanism of high-Tc superconductivity remains elusive. In conventional superconductors, it has been well established that electrons form so-called "Cooper pairs" to give rise to superconductivity. The pair binding manifests itself as an energy gap in many spectroscopic measurements. This energy gap, known as superconducting gap, appears at the superconducting transition temperature Tc where the resistance also vanishes. For high temperature superconductors, the story is more complicated. Over a wide region of compositions and temperatures, there exists an energy gap well above Tc. This energy gap is called pseudogap [1], because there is no direct correlation to the superconducting transition. The origin of this pseudogap and its relation to the superconducting gap are believed to hold the key for understanding the mechanism of high-Tc superconductivity - one of the outstanding problems in condensed matter physics. In this regard, researchers Kiyohisa Tanaka and Wei-Sheng Lee, along with their co-workers in Prof. Zhi-Xun Shen's group at Stanford University, have recently made an important discovery about the coexistence of two distinct energy gaps that have opposite doping dependence. Their observation not only provides a natural explanation for the contradictory results about the superconducting gap deduced from different experimental techniques, but also has profound implications on the mechanism of high-Tc superconductivity.

398

Sourcebook on high-temperature electronics and instrumentation  

SciTech Connect

This sourcebook summarizes the high-temperature characteristics of a number of commercially available electronic components and materials required in geothermal well-logging instruments that must operate to 275/sup 0/C. The sourcebook is written to provide a starting place for instrument designers, who need to know the high-temperature electronic products that are available and the design and performance limitations of these products. The electronic component information given includes the standard repertoire of passive devices such as resistors, capacitors, and magnetics; the active devices and integrated circuits sections emphasize silicon semiconductor JFETs and CMOS circuits; and, to complete the electronics, interconnections and packaging of hybrid microelectronics are described. Thermal insulation and refrigeration alternatives are also presented in the sourcebook. Finally, instrument housing materials and high-temperature cables and cablehead connectors are listed. This information was compiled as part of the Geothermal Logging Instrumentation Development Program that Sandia National Laboratories conducted for the US Department of Energy's Divison of Geothermal Energy from 1976 to 1981.

Veneruso, A.F. (ed.)

1981-10-01T23:59:59.000Z

399

High power densities from high-temperature material interactions  

DOE Green Energy (OSTI)

Thermionic energy conversion (TEC) and metallic-fluid heat pipes (MFHPs) offer important and unique advantages in terrestrial and space energy processing. And they are well suited to serve together synergistically. TEC and MFHPs operate through working-fluid vaporization, condensation cycles that accept great thermal power densities at high temperatures. TEC and MFHPs have apparently simple, isolated performance mechanisms that are somewhat similar. And they also have obviously difficult, complected material problems that again are somewhat similar. Intensive investigation reveals that aspects of their operating cycles and material problems tend to merge: high-temperature material effects determine the level and lifetime of performance. Simplified equations verify the preceding statement for TEC and MFHPs. Material properties and interactions exert primary influences on operational effectiveness. And thermophysicochemical stabilities dictate operating temperatures which regulate the thermoemissive currents of TEC and the vaporization flow rates of MFHPs. Major high-temperature material problems of TEC and MFHPs have been solved. These solutions lead to productive, cost-effective applications of current TEC and MFHPs - and point to significant improvements with anticipated technological gains.

Morris, J.F.

1981-01-01T23:59:59.000Z

400

Current Status of the Advanced High Temperature Reactor  

SciTech Connect

The Advanced High Temperature Reactor (AHTR) is a design concept for a central station type [1500 MW(e)] Fluoride salt-cooled High-temperature Reactor (FHR) that is currently under development by Oak Ridge National Laboratory for the U. S. Department of Energy, Office of Nuclear Energy's Advanced Reactor Concepts program. FHRs, by definition, feature low-pressure liquid fluoride salt cooling, coated-particle fuel, a high-temperature power cycle, and fully passive decay heat rejection. The overall goal of the AHTR development program is to demonstrate the technical feasibility of FHRs as low-cost, large-size power producers while maintaining full passive safety. The AHTR design option exploration is a multidisciplinary design effort that combines core neutronic and fuel configuration evaluation with structural, thermal, and hydraulic analysis to produce a reactor and vessel concept and place it within a power generation station. The AHTR design remains at the notional level of maturity, as key technologies require further development and a logically complete integrated design has not been finalized. The present design space exploration, however, indicates that reasonable options exist for the AHTR core, primary heat transport path, and fuel cycle provided that materials and systems technologies develop as anticipated.

Holcomb, David Eugene [ORNL; Ilas, Dan [ORNL; Qualls, A L [ORNL; Peretz, Fred J [ORNL; Varma, Venugopal Koikal [ORNL; Bradley, Eric Craig [ORNL; Cisneros, Anselmo T. [University of California, Berkeley

2012-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "geysers high-temperature reservoir" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

High temperature gas-cooled reactor: gas turbine application study  

SciTech Connect

The high-temperature capability of the High-Temperature Gas-Cooled Reactor (HTGR) is a distinguishing characteristic which has long been recognized as significant both within the US and within foreign nuclear energy programs. This high-temperature capability of the HTGR concept leads to increased efficiency in conventional applications and, in addition, makes possible a number of unique applications in both electrical generation and industrial process heat. In particular, coupling the HTGR nuclear heat source to the Brayton (gas turbine) Cycle offers significant potential benefits to operating utilities. This HTGR-GT Application Study documents the effort to evaluate the appropriateness of the HTGR-GT as an HTGR Lead Project. The scope of this effort included evaluation of the HTGR-GT technology, evaluation of potential HTGR-GT markets, assessment of the economics of commercial HTGR-GT plants, and evaluation of the program and expenditures necessary to establish HTGR-GT technology through the completion of the Lead Project.

Not Available

1980-12-01T23:59:59.000Z

402

Development of High Temperature Capacitor Technology and Manufacturing Capability  

SciTech Connect

The goal of the Development of High Temperature Capacitor Technology and Manufacturing Capability program was to mature a production-ready supply chain for reliable 250°C FPE (fluorinated polyester) film capacitors by 2011. These high-temperature film capacitors enable both the down hole drilling and aerospace industries by enabling a variety of benefits including: ? Deeper oil exploration in higher temperature and pressure environments ? Enabling power electronic and control equipment to operate in higher temperature environments ? Enabling reduced cooling requirements of electronics ? Increasing reliability and life of capacitors operating below rated temperature ? Enabling capacitors to handle higher electrical losses without overheating. The key challenges to bringing the FPE film capacitors to market have been manufacturing challenges including: ? FPE Film is difficult to handle and wind, resulting in poor yields ? Voltage breakdown strength decreases when the film is wound into capacitors (~70% decrease) ? Encapsulation technologies must be improved to enable higher temperature operation ? Manufacturing and test cycle time is very long As a direct result of this program most of the manufacturing challenges have been met. The FPE film production metalization and winding yield has increased to over 82% from 70%, and the voltage breakdown strength of the wound capacitors has increased 270% to 189 V/?m. The high temperature packaging concepts are showing significant progress including promising results for lead attachments and hermetic packages at 200°C and non-hermetic packages at 250°C. Manufacturing and test cycle time will decrease as the market for FPE capacitors develops.

None

2011-05-15T23:59:59.000Z

403

GaAs ohmic contacts for high temperature devices  

DOE Green Energy (OSTI)

Instrumentation requirements for geothermal wells, jet engines, and nuclear reactors have exceeded the high temperature capability of silicon devices. As one part of a program to develop high temperature compound semiconductor devices, four basic ohmic contact systems for n-type GaAs have been evaluated for contact resistance as a function of temperature (24 to 350/sup 0/C) and time (at 300/sup 0/C): Ni/AuGe; Ag/Si and Ag/Ni/Si; Al/Ge and Al/AlGe; and Au/Nb/Si and Pt/Nb/Si. Optimization of processing parameters produced viable high temperature contacts with all but the Al/Ge systems. Aging at 300/sup 0/C changed the contact resistivity in only the Ag/Ni/Si contacts. Film adhesion was excellent for the Al/Ge, Ni/AuGe, and Ag/Si systems as measured with ultrasonic Al wire bond pull strengths. Lower adhesion was noticed with Nb/Si systems measured with gold wire bond pull strengths.

Coquat, J.A.; Palmer, D.W.

1980-01-01T23:59:59.000Z

404

High temperature thermal properties for metals used in LWR vessels  

Science Conference Proceedings (OSTI)

Because of the impact that melt relocation and vessel failure has on subsequent progression and associated consequences of an Light Water Reactor (LWR) accident, it is important to accurately predict the heatup and relocation of materials within the reactor vessel and heat transfer to and from the reactor vessel. Accurate predictions of such heat transfer phenomena require high temperature thermal properties. However, a review of vessel and structural steel material properties in severe accident analysis codes reveals that the required high temperature material properties are extrapolated, with little if any, data above 700 ºC. To reduce uncertainties in predictions relying upon this extrapolated high temperature data, INL obtained data using laser-flash thermal diffusivity techniques for two metals used in LWR vessels: SA533B1 carbon steel, which is used to fabricate most US LWR reactor vessels; and SS304, which is used in LWR vessel piping, penetration tubes, and internal structures. This paper summarizes the new data, compares it to existing data in the literature, and provides recommended correlations for thermal properties based on this data.

Joy L. Rempe

2008-01-01T23:59:59.000Z

405

RAPHAEL: The European Union's (Very) High Temperature Reactor Technology Project  

SciTech Connect

Since the late 1990, the European Union (EU) was conducting work on High Temperature Reactors (HTR) confirming their high potential in terms of safety (inherent safety features), environmental impact (robust fuel with no significant radioactive release), sustainability (high efficiency, potential suitability for various fuel cycles), and economics (simplifications arising from safety features). In April 2005, the EU Commission has started a new 4-year Integrated Project on Very High Temperature Reactors (RAPHAEL: Reactor for Process Heat And Electricity) as part of its 6{sup th} Framework Programme. The European Commission and the 33 partners from industry, R and D organizations and academia finance the project together. After the successful performance of earlier HTR-related EU projects which included the recovery of some earlier German experience and the re-establishment of strategically important R and D capabilities in Europe, RAPHAEL focuses now on key technologies required for an industrial VHTR deployment, both specific to very high temperature and generic to all types of modular HTR with emphasis on combined process heat and electricity generation. Advanced technologies are explored in order to meet the performance challenges required for a VHTR (900-1000 deg C, up to 200 GWd/tHM). To facilitate the planned sharing of significant parts of RAPHAEL results with the signatories of the Generation IV International Forum (GIF) VHTR projects, RAPHAEL is structured in a similar way as the corresponding GIF VHTR projects. (authors)

Fuetterer, Michael A. [European Commission, Joint Research Centre, Institute for Energy, P.O. Box 2, NL-1755 ZG Petten (Netherlands); Besson, D.; Bogusch, E.; Carluec, B.; Hittner, D.; Verrier, D. [AREVA Framatome-ANP (France); Billot, Ph.; Phelip, M. [Commissariat a l'Energie Atomique (France); Buckthorpe, D. [NNC Ltd, Knutsford (United Kingdom); Casalta, S. [European Commission, DG RTD, Brussels (Belgium); Chauvet, V. [STEP, Paris (France); Van Heek, A. [Nuclear Research and Consultancy Group, Petten (Netherlands); Von Lensa, W. [Forschungszentrum Juelich (Germany); Pirson, J. [Tractebel Engineering, Brussels (Belgium); Scheuermann, W. [Institut fuer Kernenergetik, University of Stuttgart (Germany)

2006-07-01T23:59:59.000Z

406

Growth of Thick, On-Axis SiC Epitaxial Layers by High Temperature ...  

Science Conference Proceedings (OSTI)

... Layers by High Temperature Halide CVD for High Voltage Power Devices ... rate, high temperature process ideally suited for thick epitaxial requirements.

407

HIGH TEMPERATURE CONDUCTIVITY PROBE FOR MONITORING CONTAMINATION LEVELS IN POWER PLANT BOILER WATER.  

E-Print Network (OSTI)

??A high temperature/high pressure flow through probe was designed to measure high temperature electrical conductivity of aqueous (aq) dilute electrolyte solutions, an application which can… (more)

Hipple, Sarah

2008-01-01T23:59:59.000Z

408

EA-0510: High-Temperature Solid Oxide Fuel Cell (Sofc) Generator...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

510: High-Temperature Solid Oxide Fuel Cell (Sofc) Generator Development Project (METC), Churchill, Pennsylvania EA-0510: High-Temperature Solid Oxide Fuel Cell (Sofc) Generator...

409

Study of Catcher Bearings for High Temperature Magnetic Bearing Application  

E-Print Network (OSTI)

The Electron Energy Corporation (EEC) along with National Aeronautics and Space Administration (NASA) in collaboration with Vibration Control and Electro mechanics Lab (VCEL), Texas A & M University, College Station, TX are researching on high temperature permanent magnet based magnetic bearings. The magnetic bearings are made of high temperature resistant permanent magnets (up to 1000 degrees F). A test rig has been developed to test these magnetic bearings. The test rig mainly consists of two radial bearings, one axial thrust bearing and two catcher bearings. The test rig that the catcher bearing is inserted in is the first ultra-high temperature rig with permanent magnet biased magnetic bearings and motor. The magnetic bearings are permanent magnet based which is a novel concept. The Graphalloy bearings represent a new approach for ultra-high temperature backup bearing applications. One of the main objectives of this research is to insure the mechanical and electrical integrity for all components of the test rig. Some assemblies and accessories required for the whole assembly need to be designed. The assembly methods need to be designed. The preliminary tests for coefficient of friction, Young's modulus and thermal expansion characteristics for catcher bearing material need to be done. A dynamic model needs to be designed for studying and simulating the rotor drop of the shaft onto the catcher bearing using a finite element approach in MATLAB. The assembly of the test rig was completed successfully by developing assembly fixtures and assembly methods. The components of the test rig were tested before assembly. Other necessary systems like Sensor holder system, Graphalloy press fit system were designed, fabricated and tested. The catcher bearing material (Graphalloy) was tested for coefficient of friction and Young's modulus at room and high temperatures. The rotor drop was simulated by deriving a dynamic model, to study the effect of system parameters like clearance, coefficient of friction, negative stiffness, initial spin speed on system behavior. Increasing the friction increases the backward whirl and decreases the rotor stoppage time. Increasing the clearance reduces the stoppage time and increases the peak bearing force. Increasing the initial spin speed increases the rotor stoppage time. The maximum stress encountered for as built conditions is more than allowable limits.

Narayanaswamy, Ashwanth

2011-05-01T23:59:59.000Z

410

Characteristics of Microseismicity in the DV11 Injection Area, Southeast Geysers, California  

DOE Green Energy (OSTI)

Microearthquake (MEQ) occurrence surrounding the injection well DV11 in Unit 18 of the Southeast (SE) Geysers is investigated. Seismicity rates are compared to the injection rate, and to flow rates in nearby steam extraction wells, which were monitored during the Unit 18 Cooperative Injection Test in 1994 and 1995. The seismicity rate is seen to mirror both injection and production rates, although a time lag sometimes occurs. Waveform cross-correlation is performed for the MEQs in the DV11 area, and the events grouped into clusters based on waveform similarity. Relative location techniques applied to the events in two of these clusters show 7 events grouped into a volume of about 25 m in diameter, at an elevation of about -0.65 km msl and 5 events grouped into a vertically-oriented linear feature about 100 m in length, at about -1.8 km msl.

Kirkpatrick, Ann; Peterson Jr., John E.; Majer, Ernest L.; Nadeau, Robe rt

1998-11-01T23:59:59.000Z

411

Environmental geology workshop for the Geysers--Calistoga known geothermal resources area  

DOE Green Energy (OSTI)

Lawrence Livermore Laboratory (LLL) is studying ways in which the environmental quality of The Geysers-Calistoga known geothermal resources area may be protected from any significant harmful consequences of future geothermal development. The LLL study includes the effects of development on air and water quality, geology, the ecosystem, socioeconomics, and noise. The Geothermal Resource Impact Projection Study (GRIPS) has grants to undertake similar work. On 28 and 29 November 1977, LLL and GRIPS jointly sponsored a workshop at Sonoma State College at which knowledgeable earth scientists presented their views on the potential geological hazards of geothermal development. The workshop produced recommendations for studies in geological mapping, slope stability, subsidence, seismicity, and groundwater hydrology. These recommendations will be evaluated along with other considerations and in conjunction with the other subjects of the LLL study. The results of the study will be contained in a preplanning report of final recommendations to the Department of Energy.

Ledbetter, G.; Crow, N.B.

1978-02-08T23:59:59.000Z

412

Flora of the Mayacmas Mountains. [Listing of 679 species in the Geysers Geothermal Resource area  

DOE Green Energy (OSTI)

This flora describes the plants that occur within the Mayacmas Mountain Range of northern California. It is the result of ten years of environmental assessment by the author in the Geysers Geothermal Resource area, located in the center of the Mayacmas Range. The flora includes notes on plant communities and ecology of the area, as well as habitat and collection data for most of the 679 species covered. Altogether 74 families, 299 genera and 679 species are included in the flora. The work is divided into eight subdivisions: trees; shrubs; ferns and fern allies; aquatic plants; tules, sedges, and rushes; lilies and related plants; dicot herbs; and grasses. Within each subdivision, family, genera and species are listed alphabetically. Keys are provided at the beginning of each subdivision. A unique combination of physical, environmental and geologic factors have resulted in a rich and diverse flora in the Mayacmas. Maps have been provided indicating known locations for species of rare or limited occurrence.

Neilson, J.A.

1981-09-01T23:59:59.000Z

413

Geothermal reservoir well stimulation program. Final program summary report  

DOE Green Energy (OSTI)

Eight field experiments and the associated theoretical and laboratory work performed to develop the stimulation technology are described. A discussion of the pre-stimulation and post-stimulation data and their evaluation is provided for each experiment. Overall results have shown that stimulation is viable where adequate reservoirs are penetrated by wells encountering formation damage or locally tight formation zones. Seven of the eight stimulation experiments were at least technically successful in stimulating the wells. The two fracture treatments in East Mesa 58-30 more than doubled the producing rate of the previously marginal producer. The two fracture treatments at Raft River and the two at Baca were all successful in obtaining significant production from previously nonproductive intervals. However, these treatments failed to establish commercial production due to deficiencies in either fluid temperature or reservoir transmissivity. The Beowawe chemical stimulation treatment appears to have significantly improved the well's injectivity, but production data were not obtained because of well mechanical problems. The acid etching treatment in the well at the Geysers did not have any material effect on producing rate. Evaluations of the field experiments to date have suggested improvements in treatment design and treatment interval selection which offer substantial encouragement for future stimulation work.

Not Available

1984-01-01T23:59:59.000Z

414

CALPINE GEYSERS  

NLE Websites -- All DOE Office Websites (Extended Search)

upstream vertical bridge supports with installed hand operated winch located under the bridge . Sandbags or local soil may be used as necessary to seal the wooden dam to establish...

415

Dual Phase Membrane for High Temperature CO2 Separation  

SciTech Connect

Dual-phase membranes consisting of stainless steel supports infiltrated with molten carbonate have been shown to be selective to CO{sub 2} at high temperatures (400-650 C). However, over time at high temperatures, the formation of iron oxides on the surface of the stainless steel supports render the membranes ineffective. This report details synthesis and characteristics of dual-phase carbonate membrane with an oxidation resistant perovskite type ceramic (lanthanum-strontium-cobaltite-iron; LSCF) support. Porous LSCF supports were prepared from its powder synthesized by the citrate method. Both steady state permeation and mercury porosimetry confirmed that the LSCF membrane sintered at 900 C has pores large enough to absorb molten carbonate, yet small enough to retain the molten carbonate under high pressure conditions. Results of XRD analysis have shown that LSCF and the molten carbonate mixture do not react with each other at temperatures below 700 C. Four-point method conductivity tests indicate that the support material has sufficiently high electronic conductivity for this application. Li-Na-K carbonate was coated to the porous LSCF support by a liquid infiltration method. Helium permeance of the support before and after infiltration of molten carbonate are on the order of 10{sup -6} and 10{sup -10} moles/m{sup 2} {center_dot} Pa {center_dot} s respectively, indicating that the molten carbonate is able to sufficiently infiltrate the membrane. Preliminary high temperature permeation experiments indicate that the membrane does separate CO{sub 2} in the presence of O{sub 2}, with a maximum flux of 0.623 ml/cm{sup 2} {center_dot} min obtained at 850 C.

Jerry Y.S. Lin; Matthew Anderson

2006-09-29T23:59:59.000Z

416

Thermal Hydraulics of the Very High Temperature Gas Cooled Reactor  

DOE Green Energy (OSTI)

The U.S Department of Energy (DOE) is conducting research on the Very High Temperature Reactor (VHTR) design concept for the Next Generation Nuclear Plant (NGNP) Project. The reactor design will be a graphite moderated, thermal neutron spectrum reactor that will produce electricity and hydrogen in a highly efficient manner. The NGNP reactor core will be either a prismatic graphite block type core or a pebble bed core. The NGNP will use very high-burnup, low-enriched uranium, TRISO-coated fuel, and have a projected plant design service life of 60 years. The VHTR concept is considered to be the nearest-term reactor design that has the capability to efficiently produce hydrogen. The plant size, reactor thermal power, and core configuration will ensure passive decay heat removal without fuel damage or radioactive material releases during reactor core-accidents. The objectives of the NGNP Project are to: Demonstrate a full-scale prototype VHTR that is commercially licensed by the U.S. Nuclear Regulatory Commission, and Demonstrate safe and economical nuclear-assisted production of hydrogen and electricity. The DOE laboratories, led by the INL, perform research and development (R&D) that will be critical to the success of the NGNP, primarily in the areas of: • High temperature gas reactor fuels behavior • High temperature materials qualification • Design methods development and validation • Hydrogen production technologies • Energy conversion. This paper presents current R&D work that addresses fundamental thermal hydraulics issues that are relevant to a variety of possible NGNP designs.

Chang Oh; Eung Kim; Richard Schultz; Mike Patterson; Davie Petti

2009-10-01T23:59:59.000Z

417

PROCEEDINGS, Thirty-Sixth Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, January 31 -February 2, 2011  

E-Print Network (OSTI)

PROCEEDINGS, Thirty-Sixth Workshop on Geothermal Reservoir Engineering Stanford University CASING IN A HIGH TEMPERATURE GEOTHERMAL WELL Gunnar Skúlason Kaldal1 *, Magnús �. Jónsson1 , Halldór@hi.is ABSTRACT The production casing of a high temperature geothermal well is subjected to multiple thermo

Stanford University

418

Heat exchangers for high-temperature thermodynamic cycles  

SciTech Connect

The special requirements of heat exchangers for high temperature thermodynamic cycles are outlined and discussed with particular emphasis on cost and thermal stress problems. Typical approaches that have been taken to a comprehensive solution intended to meet all of the many boundary conditions are then considered by examining seven typical designs including liquid-to-liquid heat exchangers for nuclear plants, a heater for a closed cycle gas turbine coupled to a fluidized bed coal combustion chamber, steam generators for nuclear plants, a fossil fuel-fired potassium boiler, and a potassium condenser-steam generator. (auth)

Fraas, A.P.

1975-01-01T23:59:59.000Z

419

High-temperature alloys for high-power thermionic systems  

DOE Green Energy (OSTI)

The need for structural materials with useful strength above 1600 k has stimulated interest in refractory-metal alloys. Tungsten possesses an extreme high modulus of elasticity as well as the highest melting temperature among metals, and hence is being considered as one of the most promising candidate materials for high temperature structural applications such as space nuclear power systems. This report is divided into three chapters covering the following: (1) the processing of tungsten base alloys; (2) the tensile properties of tungsten base alloys; and (3) creep behavior of tungsten base alloys. Separate abstracts were prepared for each chapter. (SC)

Shin, Kwang S.; Jacobson, D.L.; D'cruz, L.; Luo, Anhua; Chen, Bor-Ling.

1990-08-01T23:59:59.000Z

420

Conductor requirements for high-temperature superconducting utility power transformers  

Science Conference Proceedings (OSTI)

High-temperature superconducting (HTS) coated conductors in utility power transformers must satisfy a set of operating requirements that are driven by two major considerations-HTS transformers must be economically competitive with conventional units, and the conductor must be robust enough to be used in a commercial manufacturing environment. The transformer design and manufacturing process will be described in order to highlight the various requirements that it imposes on the HTS conductor. Spreadsheet estimates of HTS transformer costs allow estimates of the conductor cost required for an HTS transformer to be competitive with a similarly performing conventional unit.

Pleva, E. F. [Waukesha Electric Systems, Waukesha, WI; Mehrotra, V. [Waukesha Electric Systems, Waukesha, WI; Schwenterly, S W [ORNL

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "geysers high-temperature reservoir" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

High Temperature Measurements Of Martensitic transformations Using Digital Holography  

SciTech Connect

During thermal cycling of nickel-aluminum-platinum (NiAlPt) and single crystal Fe-15Cr-15Ni alloys, the structural changes associated with the martensite to austenite phase transformation were measured using dual-wavelength digital holography. Real-time in-situ measurements reveal the formation of striations within the NiPtAl alloy at 70 C and the FeCrNi alloy at 520 C. The results demonstrate that digital holography is an effective technique for acquiring non-contact, high precision information of the surface evolution of alloys at high temperatures.

Thiesing, Benjamin [Northern Arizona University; Mann, Christopher J [Northern Arizona University; Dryepondt, Sebastien N [ORNL

2013-01-01T23:59:59.000Z

422

Sealed glass coating of high temperature ceramic superconductors  

DOE Patents (OSTI)

A method and article of manufacture of a lead oxide based glass coating on a high temperature superconductor is disclosed. The method includes preparing a dispersion of glass powders in a solution, applying the dispersion to the superconductor, drying the dispersion before applying another coating and heating the glass powder dispersion at temperatures below oxygen diffusion onset and above the glass melting point to form a continuous glass coating on the superconductor to establish compressive stresses which enhance the fracture strength of the superconductor. 8 figs.

Wu, W.; Chu, C.Y.; Goretta, K.C.; Routbort, J.L.

1995-05-02T23:59:59.000Z

423

High-temperature waste-heat-stream selection and characterization  

Science Conference Proceedings (OSTI)

Four types of industrial high-temperature, corrosive waste heat streams are selected that could yield significant energy savings if improved heat recovery systems were available. These waste heat streams are the flue gases from steel soaking pits, steel reheat furnaces, aluminum remelt furnaces, and glass melting furnaces. Available information on the temperature, pressure, flow, and composition of these flue gases is given. Also reviewed are analyses of corrosion products and fouling deposits resulting from the interaction of these flue gases with materials in flues and heat recovery systems.

Wikoff, P.M.; Wiggins, D.J.; Tallman, R.L.; Forkel, C.E.

1983-08-01T23:59:59.000Z

424

Oxygen Handling and Cooling Options in High Temperature Electrolysis Plants  

DOE Green Energy (OSTI)

Idaho National Laboratory is working on a project to generate hydrogen by high temperature electrolysis (HTE). In such an HTE system, safety precautions need to be taken to handle high temperature oxygen at ~830°C. This report is aimed at addressing oxygen handling in a HTE plant.. Though oxygen itself is not flammable, most engineering material, including many gases and liquids, will burn in the presence of oxygen under some favorable physicochemical conditions. At present, an absolute set of rules does not exist that can cover all aspects of oxygen system design, material selection, and operating practices to avoid subtle hazards related to oxygen. Because most materials, including metals, will burn in an oxygen-enriched environment, hazards are always present when using oxygen. Most materials will ignite in an oxygen-enriched environment at a temperature lower than that in air, and once ignited, combustion rates are greater in the oxygen-enriched environment. Even many metals, if ignited, burn violently in an oxygen-enriched environment. However, these hazards do not preclude the operations and systems involving oxygen. Oxygen can be safely handled and used if all the materials in a system are not flammable in the end-use environment or if ignition sources are identified and controlled. In fact, the incidence of oxygen system fires is reported to be low with a probability of about one in a million. This report is a practical guideline and tutorial for the safe operation and handling of gaseous oxygen in high temperature electrolysis system. The intent is to provide safe, practical guidance that permits the accomplishment of experimental operations at INL, while being restrictive enough to prevent personnel endangerment and to provide reasonable facility protection. Adequate guidelines are provided to govern various aspects of oxygen handling associated with high temperature electrolysis system to generate hydrogen. The intent here is to present acceptable oxygen standards and practices for minimum safety requirements. A summary of operational hazards, along with oxygen safety and emergency procedures, are provided.

Manohar S. Sohal; J. Stephen Herring

2008-07-01T23:59:59.000Z

425

Bolometer for measurements on high-temperature plasmas  

SciTech Connect

A bolometer has been developed, based on a thin, die-cut platinum grid. It can survive high temperatures and the neutron and gamma radiation expected in the Toroidal Fusion Test Factor (TFTR). The platinum resistance is measured with a square-wave carrier system to minimize sensitivity to ambient electromagnetic interference. Electrical power fed back to the sensor holds its temperature constant and provides an output directly proportional to absorbed radiation power. With a bandwidth of 50 Hz the noise is equivalent to 100 ..mu..W/cm/sup 2/. Methods are described for dealing with the background effects expected to contribute to bolometer heating.

Schivell, J.; Renda, G.; Lowrance, J.; Hsuan, H.

1982-06-01T23:59:59.000Z

426

Testing Methods Used for Materials at High Temperatures  

Science Conference Proceedings (OSTI)

Table 11   Typical commercial high-temperature/high-pressure service conditions...350â??650 662â??1202 â?¤10 â?¤100 Compressed natural gas storage Methane with trace H 2 S 0â??100 32â??212 â?¤8 â?¤80 Thermodynamic power generation NH 3 , H 2 O 100â??650 212â??1202 â?¤1.5â??15 â?¤15â??150 Geothermal power Brine, steam, H 2 S â?¤370 â?¤698 â?¤17 â?¤170 Steam boiler Water, steam â?¤300 â?¤572 â?¤9 â?¤90 Source: Ref 140...

427

Narrowband high temperature superconducting receiver for low frequency radio waves  

DOE Patents (OSTI)

An underground communicating device has a low-noise SQUID using high temperature superconductor components connected to detect a modulated external magnetic flux for outputting a voltage signal spectrum that is related to the varying magnetic flux. A narrow bandwidth filter may be used to select a portion of the voltage signal spectrum that is relatively free of power line noise to output a relatively low noise output signal when operating in a portion of the electromagnetic spectra where such power line noise exists. A demodulator outputs a communication signal, which may be an FM signal, indicative of a modulation on the modulated external magnetic flux.

Reagor, David W. (Los Alamos, NM)

2001-01-01T23:59:59.000Z

428

Status of Wheeler Reservoir  

DOE Green Energy (OSTI)

This is one in a series of status reports prepared by the Tennessee Valley Authority (TVA) for those interested in the conditions of TVA reservoirs. This overview of Wheeler Reservoir summarizes reservoir purposes and operation, reservoir and watershed characteristics, reservoir uses and use impairments, and water quality and aquatic biological conditions. The information presented here is from the most recent reports, publications, and original data available. If no recent data were available, historical data were summarized. If data were completely lacking, environmental professionals with special knowledge of the resource were interviewed. 12 refs., 2 figs.

Not Available

1990-09-01T23:59:59.000Z

429

Status of Cherokee Reservoir  

DOE Green Energy (OSTI)

This is the first in a series of reports prepared by Tennessee Valley Authority (TVA) for those interested in the conditions of TVA reservoirs. This overviews of Cherokee Reservoir summarizes reservoir and watershed characteristics, reservoir uses and use impairments, water quality and aquatic biological conditions, and activities of reservoir management agencies. This information was extracted from the most current reports, publications, and data available, and interviews with water resource professionals in various Federal, state, and local agencies and in public and private water supply and wastewater treatment facilities. 11 refs., 4 figs., 1 tab.

Not Available

1990-08-01T23:59:59.000Z

430

High temperature thermometric phosphors for use in a temperature sensor  

SciTech Connect

A high temperature phosphor consists essentially of a material having the general formula LuPO.sub.4 :Dy.sub.(x),Eu.sub.(y), wherein: 0.1 wt %.ltoreq.x.ltoreq.20 wt % and 0.1 wt %.ltoreq.y.ltoreq.20 wt %. The high temperature phosphor is in contact with an article whose temperature is to be determined. The article having the phosphor in contact with it is placed in the environment for which the temperature of the article is to be determined. The phosphor is excited by a laser causing the phosphor to fluoresce. The emission from the phosphor is optically focused into a beam-splitting mirror which separates the emission into two separate emissions, the emission caused by the dysprosium dopant and the emission caused by the europium dopent. The separated emissions are optically filtered and the intensities of the emission are detected and measured. The ratio of the intensity of each emission is determined and the temperature of the article is calculated from the ratio of the intensities of the separate emissions.

Allison, Stephen W. (Knoxville, TN); Cates, Michael R. (Oak Ridge, TN); Boatner, Lynn A. (Oak Ridge, TN); Gillies, George T. (Earlysville, VA)

1998-01-01T23:59:59.000Z

431

SCALING OF THE SUPERFLUID DENSITY IN HIGH-TEMPERATURE SUPERCONDUCTORS.  

Science Conference Proceedings (OSTI)

A scaling relation N{sub c} {approx} 4.4{sigma}{sub dc}T{sub c} has been observed parallel and perpendicular to the copper-oxygen planes in the high-temperature superconductors; N{sub c} is the spectral weight and {sigma}{sub dc} is the dc conductivity just above the critical temperature T{sub c}. In addition, Nb and Pb also fall close to the this scaling line. The application of the Ferrell-Glover-Tinkham sum rule to the BCS optical properties of Nb above and below T{sub c} yields N{sub c} {approx} 8.1{sigma}{sub dc}T{sub c} when the normal-state scattering rate is much greater than the superconducting energy gap (1/{tau} > 2{Delta}, the ''dirty'' limit). This result implies that the high-temperature superconductors may be in the dirty limit. The superconductivity perpendicular to the planes is explained by the Josephson effect, which again yields N{sub c} {approx} 8.1{sigma}{sub dc}T{sub c} in the BCS formalism. The similar forms for the scaling relation in these two directions suggests that in some regime the dirty limit and the Josephson effect may be viewed as equivalent.

HOMES, C.C.

2005-10-24T23:59:59.000Z

432

Electronic phase diagram of high temperature copper oxide superconductors.  

SciTech Connect

In order to understand the origin of high-temperature superconductivity in copper oxides, we must understand the normal state from which it emerges. Here, we examine the evolution of the normal state electronic excitations with temperature and carrier concentration in Bi{sub 2}Sr{sub 2}CaCu{sub 2}O{sub 8+{delta}} using angle-resolved photoemission. In contrast to conventional superconductors, where there is a single temperature scale T{sub c} separating the normal from the superconducting state, the high-temperature superconductors exhibit two additional temperature scales. One is the pseudogap scale T*, below which electronic excitations exhibit an energy gap. The second is the coherence scale T{sub coh}, below which sharp spectral features appear due to increased lifetime of the excitations. We find that T* and T{sub coh} are strongly doping dependent and cross each other near optimal doping. Thus the highest superconducting T{sub c} emerges from an unusual normal state that is characterized by coherent excitations with an energy gap.

Chatterjee, U.; Ai, D.; Zhao, J.; Rosenkranz, S.; Kaminski, A.; Raffy, H.; Li, Z. Z.; Kadowaki, K.; Randeria, M.; Norman, M. R.; Campuzano, J. C. (Materials Science Division); (Univ. of Illinois at Chicago); (Iowa State Univ.); (Univ. Paris-Sud); (Univ. of Tsukuba); (Ohio State Univ.)

2011-06-07T23:59:59.000Z

433

The Framatome ANP Indirect-Cycle Very High Temperature Reactor  

SciTech Connect

Framatome ANP is developing a Very High Temperature Reactor (VHTR) design, relying on its previous experience with high temperature reactor designs, from its participation in the MODUL and the GT-MHR designs. The Framatome ANP VHTR design is based on an indirect cycle coupled to an 'off-the-shelf' combined cycle gas turbine. Although direct cycle HTR's are being promoted for their high efficiency, preliminary evaluations show that the Framatome ANP design efficiency is on par with a direct cycle while avoiding PGS (Power Generation System) developments and keeping the PGS contamination free. This concept was independently evaluated with sensitivity analysis by EDF. Moreover, the nuclear heat source of the indirect cycle could also be used to qualify the direct cycle components without risk of contamination behind the IHX, thus assisting in the preparation for the later introduction of that technology. Relying to the maximum extent on available technology, the Framatome ANP VHTR plant can demonstrate high-efficiency electricity generation and carbon-free hydrogen production. (authors)

Copsey, Bernie [Framatome ANP, Inc., 3315 Old Forest Road Lynchburg, VA (United States); Lecomte, Michel [Framatome ANP, SAS, Tour AREVA Paris, La Defense (France); Brinkmann, Gerd [Framatome ANP, GmbH, 49 (9131) 18-96630, Erlangen (Germany); Capitaine, Alain; Deberne, Nicolas [EDF/SEPTEN, Villeurbanne (France)

2004-07-01T23:59:59.000Z

434

Microstructure, Processing, Performance Relationships for High Temperature Coatings  

SciTech Connect

This work evaluates the suitability of iron aluminide coatings for use in high temperature fossil fuel combustion environments, such as boiler applications. The coatings are applied using High Velocity Oxy-Fuel (HVOF) thermal spray techniques. Iron aluminide coatings, with the nominal composition of Fe3Al, were applied to various high temperature structural materials (316 Stainless Steel, 9Cr-1Mo steel and Inconel 600) that typically lack inherent resistance to environmental degradation found in fossil fuel combustion atmospheres. Coating/substrate combinations were subjected to thermal cycling to evaluate the effect of HVOF parameters, coating thickness, substrate material and substrate surface roughness on the resistance to coating delamination and cracking. It was found that substrate surface roughness had a profound influence on the performance of a given substrate/coating system and that surface preparation techniques will need to be tailored to the specific substrate material. Also, higher particle velocity during HVOF thermal spray deposition of the iron aluminide coatings tended to result in better-performing coating/substrate systems with less delamination at the coating/substrate interface. Some combinations of HVOF parameters, coating thickness and substrate materials were found to perform extremely well even at temperatures up to 900oC. However, in some cases, substantial reactions at the interface were observed.

Thomas M. Lillo

2011-04-01T23:59:59.000Z

435

Development and Testing of High-Temperature Solar Selective Coatings  

DOE Green Energy (OSTI)

The Solar Energy Technologies Program is working to reduce the cost of parabolic trough solar power technology. System studies show that increasing the operating temperature of the solar field from 390 to >450 C will result in improved performance and cost reductions. This requires the development of new more-efficient selective coatings that have both high solar absorptance (>0.96) and low thermal emittance (<0.07) and are thermally stable above 450 C, ideally in air. Potential selective coatings were modeled, identified for laboratory prototyping, and manufactured at NREL. Optimization of the samples and high-temperature durability testing will be performed. Development of spectrally selective materials depends on reliable characterization of their optical properties. Protocols for testing the thermal/optical properties of selective coatings were developed and a round-robin experiment was conducted to verify and document the reflectance and high-temperature emittance measurements. The development, performance, and durability of these materials and future work will be described.

Kennedy, C.; Price, H.

2005-01-01T23:59:59.000Z

436

Thermal History of the Felsite Unit, Geysers Geothermal Field, From Thermal Modeling of 40Ar/39Ar Incremental Heating Data  

DOE Green Energy (OSTI)

An Ar-40/Ar-39 and U-Pb study was performed of the Geysers plutonic complex of the Geysers Geothermal Field in California. Sixty-nine ion microprobe spot analyses of zircons from four granite samples from the plutonic complex that underlies the Geysers geothermal field yielded Pb-207/Pb-206 vs. U-238/Pb-206 concordia ages ranging from 1.13 {+-} 0.04 Ma to 1.25 {+-} 0.04 Ma. The U-Pb ages coincide closely with Ar-40/Ar-39 age spectrum plateau and ''terminal'' ages from coexisting K-feldspars and with the eruption ages of overlying volcanic rocks. The data indicate that the granite crystallized at 1.18 Ma and had cooled below 350 C by {approximately}0.9-1.0 Ma. Interpretation of the feldspar Ar-40/Ar-39 age data using multi-diffusion domain theory indicates that post-emplacement rapid cooling was succeeded either by slower cooling from 350-300 C between 1.0 and 0.4 Ma or transitory reheating to 300-350 C at about 0.4-0.6 Ma. Heat flow calculations constrained with K-feldspar thermal histories and the pre sent elevated regional heal flow anomaly demonstrate that appreciable heat input from sources external to the known Geysers plutonic complex is required to maintain the geothermal system. This requirement is satisfied by either a large, underlying, convecting magma chamber (now solidified) emplaced at 1.2 Ma or episodic intrusion of smaller bodies from 1.2-0.6 Ma.

T. M. Harrison (U of California); G. B. Dalrymple (Oregon State U); J. B. Hulen (U of Utah); M. A. Lanphere; M. Grove; O. M. Lovera

1999-08-19T23:59:59.000Z

437

Advanced High Temperature Reactor Systems and Economic Analysis  

SciTech Connect

The Advanced High Temperature Reactor (AHTR) is a design concept for a large-output [3400 MW(t)] fluoride-salt-cooled high-temperature reactor (FHR). FHRs, by definition, feature low-pressure liquid fluoride salt cooling, coated-particle fuel, a high-temperature power cycle, and fully passive decay heat rejection. The AHTR's large thermal output enables direct comparison of its performance and requirements with other high output reactor concepts. As high-temperature plants, FHRs can support either high-efficiency electricity generation or industrial process heat production. The AHTR analysis presented in this report is limited to the electricity generation mission. FHRs, in principle, have the potential to be low-cost electricity producers while maintaining full passive safety. However, no FHR has been built, and no FHR design has reached the stage of maturity where realistic economic analysis can be performed. The system design effort described in this report represents early steps along the design path toward being able to predict the cost and performance characteristics of the AHTR as well as toward being able to identify the technology developments necessary to build an FHR power plant. While FHRs represent a distinct reactor class, they inherit desirable attributes from other thermal power plants whose characteristics can be studied to provide general guidance on plant configuration, anticipated performance, and costs. Molten salt reactors provide experience on the materials, procedures, and components necessary to use liquid fluoride salts. Liquid metal reactors provide design experience on using low-pressure liquid coolants, passive decay heat removal, and hot refueling. High temperature gas-cooled reactors provide experience with coated particle fuel and graphite components. Light water reactors (LWRs) show the potentials of transparent, high-heat capacity coolants with low chemical reactivity. Modern coal-fired power plants provide design experience with advanced supercritical-water power cycles. The current design activities build upon a series of small-scale efforts over the past decade to evaluate and describe the features and technology variants of FHRs. Key prior concept evaluation reports include the SmAHTR preconceptual design report,1 the PB-AHTR preconceptual design, and the series of early phase AHTR evaluations performed from 2004 to 2006. This report provides a power plant-focused description of the current state of the AHTR. The report includes descriptions and sizes of the major heat transport and power generation components. Component configuration and sizing are based upon early phase AHTR plant thermal hydraulic models. The report also provides a top-down AHTR comparative economic analysis. A commercially available advanced supercritical water-based power cycle was selected as the baseline AHTR power generation cycle both due to its superior performance and to enable more realistic economic analysis. The AHTR system design, however, has several remaining gaps, and the plant cost estimates consequently have substantial remaining uncertainty. For example, the enriched lithium required for the primary coolant cannot currently be produced on the required scale at reasonable cost, and the necessary core structural ceramics do not currently exist in a nuclear power qualified form. The report begins with an overview of the current, early phase, design of the AHTR plant. Only a limited amount of information is included about the core and vessel as the core design and refueling options are the subject of a companion report. The general layout of an AHTR system and site showing the relationship of the major facilities is then provided. Next is a comparative evaluation of the AHTR anticipated performance and costs. Finally, the major system design efforts necessary to bring the AHTR design to a pre-conceptual level are then presented.

Holcomb, David Eugene [ORNL; Peretz, Fred J [ORNL; Qualls, A L [ORNL

2011-09-01T23:59:59.000Z

438

Hydrothermal Reservoirs | Open Energy Information  

Open Energy Info (EERE)

Hydrothermal Reservoirs Hydrothermal Reservoirs Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Hydrothermal Reservoirs Dictionary.png Hydrothermal Reservoir: Hydrothermal Reservoirs are underground zones of porous rock containing hot water and steam, and can be naturally occurring or human-made. Other definitions:Wikipedia Reegle Natural, shallow hydrothermal reservoirs naturally occurring hot water reservoirs, typically found at depths of less than 5 km below the Earth's surface where there is heat, water and a permeable material (permeability in rock formations results from fractures, joints, pores, etc.). Often, hydrothermal reservoirs have an overlying layer that bounds the reservoir and also serves as a thermal insulator, allowing greater heat retention. If hydrothermal reservoirs

439

Geothermal Reservoir Well Stimulation Program: technology transfer  

DOE Green Energy (OSTI)

A literature search on reservoir and/or well stimulation techniques suitable for application in geothermal fields is presented. The literature on stimulation techniques in oil and gas field applications was also searched and evaluated as to its relevancy to geothermal operations. The equivalent low-temperature work documented in the open literature is cited, and an attempt is made to evaluate the relevance of this information as far as high-temperature stimulation work is concerned. Clays play an important role in any stimulation work. Therefore, special emphasis has been placed on clay behavior anticipated in geothermal operations. (MHR)

Not Available

1980-05-01T23:59:59.000Z

440

Hot dry rock Phase II reservoir engineering  

DOE Green Energy (OSTI)

Early attempts to hydraulically fracture and connect two wells drilled at the Hot Dry Rock site at Fenton Hill in New Mexico failed. Microearthquakes triggered by hydraulic fracturing indicated that the fracture zones grew in unexpected directions. Consequently one of the wells was sidetracked at a depth of 2.9 km; was redrilled into the zones of most intense microseismic activity; and a flow connection was achieved. Hydraulic communication was improved by supplemental fracturing using recently developed high temperature and high pressure open hole packers. Preliminary testing indicates a reservoir with stimulated joint volume which already surpasses that attained in the earlier phase I reservoir after several years of development. 12 refs., 6 figs.

Murphy, H.D.

1985-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "geysers high-temperature reservoir" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Eleventh workshop on geothermal reservoir engineering: Proceedings  

SciTech Connect

The Eleventh Workshop on Geothermal Reservoir Engineering was held at Stanford University on January 21-23, 1986. The attendance was up compared to previous years, with 144 registered participants. Ten foreign countries were represented: Canada, England, France, Iceland, Indonesia, Italy, Japan, Mexico, New Zealand and Turkey. There were 38 technical presentations at the Workshop which are published as papers in this Proceedings volume. Six technical papers not presented at the Workshop are also published and one presentation is not published. In addition to these 45 technical presentations or papers, the introductory address was given by J. E. Mock from the Department of Energy. The Workshop Banquet speaker was Jim Combs of Geothermal Resources International, Inc. We thank him for his presentation on GEO geothermal developments at The Geysers. The chairmen of the technical sessions made an important contribution to the Workshop. Other than Stanford faculty members they included: M. Gulati, E. Iglesias, A. Moench, S. Prestwich, and K. Pruess. The Workshop was organized by the Stanford Geothermal Program faculty, staff, and students. We would like to thank J.W. Cook, J.R. Hartford, M.C. King, A.E. Osugi, P. Pettit, J. Arroyo, J. Thorne, and T.A. Ramey for their valued help with the meeting arrangements and preparing the Proceedings. We also owe great thanks to our students who arranged and operated the audio-visual equipment. The Eleventh Workshop was supported by the Geothermal Technology Division of the U.S. Department of Energy through Contract DE-AS03-80SF11459. We deeply appreciate this continued support. January 1986 H.J. Ramey, Jr. P. Kruger R.N. Horne W.E. Brigham F.G. Miller J.R. Counsil

Ramey, H.J. Jr.; Kruger, P.; Miller, F.G.; Horne, R.N.; Brigham, W.E.; Counsil, J.R. (Stanford Geothermal Program)

1986-01-23T23:59:59.000Z

442

Geothermal reservoir categorization and stimulation study  

DOE Green Energy (OSTI)

Analyses of the fraction of geothermal wells that are dry (dry-hole fraction) indicate that geothermal reservoirs can be fitted into four basic categories: (i) Quaternary to late Tertiary sediments (almost no dry holes); (ii) Quaternary to late Tertiary extrusives (approximately 20 percent dry holes); (iii) Mesozoic or older metamorphic rocks (approximately 25-30 percent dry holes); and (iv) Precambrian or younger rocks (data limited to Roosevelt Springs where 33 percent of the wells were dry). Failure of geothermal wells to flow economically is due mainly to low-permeability formations in unfractured regions. Generally the permeability correlates inversely with the temperature-age product and directly with the original rock porosity and pore size. However, this correlation fails whenever high-stress fields provide vertical fracturing or faulting, and it is the high-stress/low-permeability category that is most amenable to artificial stimulation by hydraulic fracturing, propellant fracturing, or chemical explosive fracturing. Category (i) geothermal fields (e.g., Cerro Prieto, Mexico; Niland, CA; East Mesa, CA) are not recommended for artificial stimulation because these younger sediments almost always produce warm or hot water. Most geothermal fields fit into category (ii) (e.g., Wairakei, New Zealand; Matsukawa, Japan; Ahuachapan, El Salvador) and in the case of Mt. Home, ID, and Chandler, AZ, possess some potential for stimulation. The Geysers is a category (iii) field, and its highly stressed brittle rocks should make this site amenable to stimulation by explosive fracturing techniques. Roosevelt Springs, UT, well 9-1 is in category (iv) and is a flow failure. It represents a prime candidate for stimulation by hydraulic fracturing because it has a measured temperature of 227/sup 0/C, is cased and available for experimentation, and is within 900 m of an excellent geothermal producing well.

Overton, H.L.; Hanold, R.J.

1977-07-01T23:59:59.000Z

443

Enhanced High Temperature Performance of NOx Reduction Catalyst Materials  

Science Conference Proceedings (OSTI)

Two primary NOx after-treatment technologies have been recognized as the most promising approaches for meeting stringent NOx emission standards for diesel vehicles within the Environmental Protection Agency’s (EPA’s) 2007/2010 mandated limits, NOx Storage Reduction (NSR) and NH3 selective catalytic reduction (SCR); both are, in fact being commercialized for this application. However, in looking forward to 2015 and beyond with expected more stringent regulations, the continued viability of the NSR technology for controlling NOx emissions from lean-burn engines such as diesels will require at least two specific, significant and inter-related improvements. First, it is important to reduce system costs by, for example, minimizing the precious metal content while maintaining, even improving, performance and long-term stability. A second critical need for future NSR systems, as well as for NH3 SCR, will be significantly improved higher and lower temperature performance and stability. Furthermore, these critically needed improvements will contribute significantly to minimizing the impacts to fuel economy of incorporating these after-treatment technologies on lean-burn vehicles. To meet these objectives will require, at a minimum an improved scientific understanding of the following things: i) the various roles for the precious and coinage metals used in these catalysts; ii) the mechanisms for these various roles; iii) the effects of high temperatures on the active metal performance in their various roles; iv) mechanisms for higher temperature NOx storage performance for modified and/or alternative storage materials; v) the interactions between the precious metals and the storage materials in both optimum NOx storage performance and long term stability; vi) the sulfur adsorption and regeneration mechanisms for NOx reduction materials; vii) materials degradation mechanisms in CHA-based NH3 SCR catalysts. The objective of this CRADA project between PNNL and Cummins, Inc. is to develop a fundamental understanding of the above-listed issues. Model catalysts that are based on literature formulations are the focus of the work being carried out at PNNL. In addition, the performance and stability of more realistic high temperature NSR catalysts, supplied by JM, are being studied in order to provide baseline data for the model catalysts that are, again, based on formulations described in the open literature. For this short summary, we will primarily highlight representative results from our recent studies of the stability of candidate high temperature NSR materials.

Gao, Feng; Kim, Do Heui; Luo, Jinyong; Muntean, George G.; Peden, Charles HF; Howden, Ken; Currier, Neal; Kamasamudram, Krishna; Kumar, Ashok; Li, Junhui; Stafford, Randy; Yezerets, Aleksey; Castagnola, Mario; Chen, Hai Ying; Hess, Howard ..

2012-12-31T23:59:59.000Z

444

Bio-Fuel Production Assisted with High Temperature Steam Electrolysis  

SciTech Connect

Two hybrid energy processes that enable production of synthetic liquid fuels that are compatible with the existing conventional liquid transportation fuels infrastructure are presented. Using biomass as a renewable carbon source, and supplemental hydrogen from high-temperature steam electrolysis (HTSE), these two hybrid energy processes have the potential to provide a significant alternative petroleum source that could reduce dependence on imported oil. The first process discusses a hydropyrolysis unit with hydrogen addition from HTSE. Non-food biomass is pyrolyzed and converted to pyrolysis oil. The pyrolysis oil is upgraded with hydrogen addition from HTSE. This addition of hydrogen deoxygenates the pyrolysis oil and increases the pH to a tolerable level for transportation. The final product is synthetic crude that could then be transported to a refinery and input into the already used transportation fuel infrastructure. The second process discusses a process named Bio-Syntrolysis. The Bio-Syntrolysis process combines hydrogen from HTSE with CO from an oxygen-blown biomass gasifier that yields syngas to be used as a feedstock for synthesis of liquid synthetic crude. Conversion of syngas to liquid synthetic crude, using a biomass-based carbon source, expands the application of renewable energy beyond the grid to include transportation fuels. It can also contribute to grid stability associated with non-dispatchable power generation. The use of supplemental hydrogen from HTSE enables greater than 90% utilization of the biomass carbon content which is about 2.5 times higher than carbon utilization associated with traditional cellulosic ethanol production. If the electrical power source needed for HTSE is based on nuclear or renewable energy, the process is carbon neutral. INL has demonstrated improved biomass processing prior to gasification. Recyclable biomass in the form of crop residue or energy crops would serve as the feedstock for this process. A process model of syngas production using high temperature electrolysis and biomass gasification is presented. Process heat from the biomass gasifier is used to heat steam for the hydrogen production via the high temperature steam electrolysis process. Oxygen produced form the electrolysis process is used to control the oxidation rate in the oxygen-blown biomass gasifier.

Grant Hawkes; James O'Brien; Michael McKellar

2012-06-01T23:59:59.000Z

445

Geothermal field case studies that document the usefulness of models in predicting reservoir and well behavior  

SciTech Connect

The geothermal industry has shown significant interest in case histories that document field production histories and demonstrate the techniques which work best in the characterization and evaluation of geothermal systems. In response to this interest, LBL has devoted a significant art of its geothermal program to the compilation and analysis of data from US and foreign fields (e.g., East Mesa, The Geysers, Susanville, and Long Valley in California; Klamath Falls in Oregon; Valles Caldera, New Mexico; Cerro Prieto and Los Azufres in Mexico; Krafla and Nesjavellir in Iceland; Larderello in Italy; Olkaria in Kenya). In each of these case studies we have been able to test and validate in the field, or against field data, the methodology and instrumentation developed under the Reservoir Technology Task of the DOE Geothermal Program, and to add to the understanding of the characteristics and processes occurring in geothermal reservoirs. Case study results of the producing Cerro Prieto and Olkaria geothermal fields are discussed in this paper. These examples were chosen because they illustrate the value of conceptual and numerical models to predict changes in reservoir conditions, reservoir processes, and well performance that accompany field exploitation, as well as to reduce the costs associated with the development and exploitation of geothermal resources. 14 refs., 6 figs.

Lippmann, M.J.

1989-03-01T23:59:59.000Z

446

Geothermal Field Case Studies that Document the Usefulness of Models in Predicting Reservoir and Well Behavior  

SciTech Connect

The geothermal industry has shown significant interest in case histories that document field production histories and demonstrate the techniques which work best in the characterization and evaluation of geothermal systems. In response to this interest, LBL has devoted a significant part of its geothermal program to the compilation and analysis of data from US and foreign fields (e.g., East Mesa, The Geysers, Susanville, and Long Valley in California; Klamath Fall in Oregon; Valles Caldera, New Mexico; Cerro Prieto and Los Azufres in Mexico; Krafla and Nesjavellir in Iceland; Larderello in Italy; Olkaria in Kenya). In each of these case studies we have been able to test and validate in the field, or against field data, the methodology and instrumentation developed under the Reservoir Technology Task of the DOE Geothermal Program, and to add to the understanding of the characteristics and processes occurring in geothermal reservoirs. Case study results of the producing Cerro Prieto and Olkaria geothermal fields are discussed in this paper. These examples were chosen because they illustrate the value of conceptual and numerical models to predict changes in reservoir conditions, reservoir processes, and well performance that accompany field exploitation, as well as to reduce the costs associated with the development and exploitation of geothermal resources.

Lippmann, Marcelo J.

1989-03-21T23:59:59.000Z

447

Apparatus and method for high temperature viscosity and temperature measurements  

DOE Patents (OSTI)

A probe for measuring the viscosity and/or temperature of high temperature liquids, such as molten metals, glass and similar materials comprises a rod which is an acoustical waveguide through which a transducer emits an ultrasonic signal through one end of the probe, and which is reflected from (a) a notch or slit or an interface between two materials of the probe and (b) from the other end of the probe which is in contact with the hot liquid or hot melt, and is detected by the same transducer at the signal emission end. To avoid the harmful effects of introducing a thermally conductive heat sink into the melt, the probe is made of relatively thermally insulative (non-heat-conductive) refractory material. The time between signal emission and reflection, and the amplitude of reflections, are compared against calibration curves to obtain temperature and viscosity values.

Balasubramaniam, Krishnan (Mississippi State, MS); Shah, Vimal (Houston, TX); Costley, R. Daniel (Mississippi State, MS); Singh, Jagdish P. (Mississippi State, MS)

2001-01-01T23:59:59.000Z

448

9 Cr-- 1 Mo steel material for high temperature application  

DOE Patents (OSTI)

One or more embodiments relates to a high-temperature, titanium alloyed, 9 Cr-1 Mo steel exhibiting improved creep strength and oxidation resistance at service temperatures up to 650.degree. C. The 9 Cr-1 Mo steel has a tempered martensite microstructure and is comprised of both large (0.5-3 .mu.m) primary titanium carbides and small (5-50 nm) secondary titanium carbides in a ratio of. from about 1:1.5 to about 1.5:1. The 9 Cr-1 Mo steel may be fabricated using exemplary austenizing, rapid cooling, and tempering steps without subsequent hot working requirements. The 9 Cr-1 Mo steel exhibits improvements in total mass gain, yield strength, and time-to-rupture over ASTM P91 and ASTM P92 at the temperature and time conditions examined.

Jablonski, Paul D; Alman, David; Dogan, Omer; Holcomb, Gordon; Cowen, Christopher

2012-11-27T23:59:59.000Z

449

Seeing Stripes: Competition and Complexity in High-Temperature Superconductors  

SciTech Connect

Superconductivity in layered copper-oxide compounds is remarkable not only because it survives to relatively high temperatures, but especially because it appears when mobile charge carriers are doped into a parent antiferromagnetic insulator. The tendency of the carriers to reduce their kinetic energy by delocalizing competes with the magnetic superexchange between spins on copper ions. One possible consequence of this competition is the segregation of carriers into charge stripes that separate antiferromagnetic domains. An ordered stripe phase has been observed by diffraction experiments in a few special cuprate compounds, and stripe order is found to compete with superconductivity. It has been proposed that quantum-disordered stripes might underlie the superconducting phase. Such a concept clashes with the conventional picture of electronic structure in solids. Some of the challenges of experimentally 'seeing' both static and fluctuating stripes will be discussed.

Tranquada, John [BNL

2004-12-01T23:59:59.000Z

450

NETL: Gasification - Recovery Act: High Temperature Syngas Cleanup  

NLE Websites -- All DOE Office Websites (Extended Search)

Syngas Processing Systems Syngas Processing Systems Recovery Act: High Temperature Syngas Cleanup Technology Scale-Up and Demonstration Project Research Triangle Institute Project Number: FE0000489 Project Description Research Triangle Institute (RTI) is designing, building, and testing the Warm Temperature Desulfurization Process (WDP) at pre-commercial scale (50 megawatt electric equivalent [MWe]) to remove more than 99.9 percent of the sulfur from coal-derived synthesis gas (syngas). RTI is integrating this WDP technology with an activated methyl diethanolamine (aMDEA) solvent technology to separate 90% of the carbon dioxide (CO2) from shifted syngas. The Polk Power Station, an integrated gasification combined cycle (IGCC) power plant, will supply approximately 20% of its coal-derived syngas as a slipstream to feed into the pre-commercial scale technologies being scaled-up.

451

Microsoft PowerPoint - High Temperature Thermoelectric_Ohuchi  

NLE Websites -- All DOE Office Websites (Extended Search)

Thermoelectric Oxides Engineered Thermoelectric Oxides Engineered at Multiple Length Scales for Energy Harvesting Program Manager: Patricia Rawls Fumio S. Ohuchi (PI) and Rajendra K. Bordia(Co-PI) Department of Materials Science and Engineering University of Washington Box 352120 Seattle, WA 98195 Grant No. DE-FE0007272 (June 1, 2012-May 31, 2013) Graduate Students: Christopher Dandeneau and YiHsun Yang June 10, 2013 The UCR Contractors Review Conference Introduction/Motivation for Research * Thermoelectric (TE) oxides for waste heat recovery  Good high-temperature stability  Stable in hostile environments  Low cost/toxicity * Oxides with complex structure:  Low thermal conductivity,   Tailor stoichiometry to maximize S

452

High temperature heat pipe experiments in low earth orbit  

SciTech Connect

Although high temperature, liquid metal heat pipe radiators have become a standard component on most high power space power system designs, there is no experimental data on the operation of these heat pipes in a zero gravity or micro-gravity environment. Experiments to benchmark the transient and steady state performance of prototypical heat pipe space radiator elements are in preparation for testing in low earth orbit. It is anticipated that these heat pipes will be tested aborad the Space Shuttle in 1995. Three heat pipes will be tested in a cargo bay Get Away Special (GAS) canister. The heat pipes are SST/potassium, each with a different wick structure; homogeneous, arterial, and annular gap, the heat pipes have been designed, fabricated, and ground tested. In this paper, the heat pipe designs are specified, and transient and steady-state ground test data are presented.

Woloshun, K.; Merrigan, M.A.; Sena, J.T. (Los Alamos National Lab., NM (United States)); Critchley, E. (Phillips Lab., Kirtland AFB, NM (United States))

1993-01-01T23:59:59.000Z

453

High temperature heat pipe experiments in low earth orbit  

SciTech Connect

Although high temperature, liquid metal heat pipe radiators have become a standard component on most high power space power system designs, there is no experimental data on the operation of these heat pipes in a zero gravity or micro-gravity environment. Experiments to benchmark the transient and steady state performance of prototypical heat pipe space radiator elements are in preparation for testing in low earth orbit. It is anticipated that these heat pipes will be tested aborad the Space Shuttle in 1995. Three heat pipes will be tested in a cargo bay Get Away Special (GAS) canister. The heat pipes are SST/potassium, each with a different wick structure; homogeneous, arterial, and annular gap, the heat pipes have been designed, fabricated, and ground tested. In this paper, the heat pipe designs are specified, and transient and steady-state ground test data are presented.

Woloshun, K.; Merrigan, M.A.; Sena, J.T. [Los Alamos National Lab., NM (United States); Critchley, E. [Phillips Lab., Kirtland AFB, NM (United States)

1993-02-01T23:59:59.000Z

454

High temperature combustion: Approaching equilibrium using nuclear networks  

E-Print Network (OSTI)

A method for integrating the chemical equations associated with nuclear combustion at high temperature is presented and extensively checked. Following the idea of E. M\\"uller, the feedback between nuclear rates and temperature was taken into account by simultaneously computing molar fraction changes and temperature response in the same matrix. The resulting algorithm is very stable and efficient at calculating nuclear combustion in explosive scenarios, especially in those situations where the reacting material manages to climb to the nuclear statistical equilibrium regime. The numerical scheme may be useful not only for those who carry out hydrodynamical simulations of explosive events, but also as a tool to investigate the properties of a nuclear system approaching equilibrium through a variety of thermodynamical trajectories.

Ruben M. Cabezon Gomez; Domingo Garcia-Senz; Eduardo Bravo

2004-01-07T23:59:59.000Z

455

Design of High Field Solenoids made of High Temperature Superconductors  

Science Conference Proceedings (OSTI)

This thesis starts from the analytical mechanical analysis of a superconducting solenoid, loaded by self generated Lorentz forces. Also, a finite element model is proposed and verified with the analytical results. To study the anisotropic behavior of a coil made by layers of superconductor and insulation, a finite element meso-mechanic model is proposed and designed. The resulting material properties are then used in the main solenoid analysis. In parallel, design work is performed as well: an existing Insert Test Facility (ITF) is adapted and structurally verified to support a coil made of YBa{sub 2}Cu{sub 3}O{sub 7}, a High Temperature Superconductor (HTS). Finally, a technological winding process was proposed and the required tooling is designed.

Bartalesi, Antonio; /Pisa U.

2010-12-01T23:59:59.000Z

456

Remote high-temperature insulatorless heat-flux gauge  

DOE Patents (OSTI)

A remote optical heat-flux gauge for use in extremely high temperature environments is described. This application is possible because of the use of thermographic phosphors as the sensing media, and the omission of the need for an intervening layer of insulator between phosphor layers. The gauge has no electrical leads, but is interrogated with ultraviolet or laser light. The luminescence emitted by the two phosphor layers, which is indicative of the temperature of the layers, is collected and analyzed in order to determine the heat flux