National Library of Energy BETA

Sample records for geysers geothermal field

  1. Characterizing Fractures in the Geysers Geothermal Field by Micro...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Shear Wave Anisotropy Characterizing Fractures in the Geysers Geothermal Field by Micro-seismic Data, Using Soft Computing, Fractals, and Shear Wave Anisotropy ...

  2. The Geysers and Salton Sea Geothermal Fields | Open Energy Information

    Open Energy Info (EERE)

    Sea Geothermal Fields Jump to: navigation, search OpenEI Reference LibraryAdd to library Case Study: The Geysers and Salton Sea Geothermal Fields Author Jeffrey W. Adams Published...

  3. A database for The Geysers geothermal field

    SciTech Connect (OSTI)

    Bodvarsson, G.S.; Cox, B.L.; Fuller, P.; Ripperda, M.; Tulinius, H.; Witherspoon, P.A.; Goldstein, N.; Flexser, S.; Pruess, K. ); Truesdell, A. )

    1989-09-01

    In Fiscal Year 1985-1986 the Earth Sciences Division of Lawrence Berkeley Laboratory (LBL) began a multi-year project for SLC to organize and analyze the field data from The Geysers. In the first year, most of the work concentrated on the development of a comprehensive database for The Geysers, and conventional reservoir engineering analysis of the data. Essentially, all non-proprietary data for wells at The Geysers have been incorporated into the database, as well as proprietary data from wells located on State leases. In following years, a more detailed analysis of The Geysers data has been carried out. This report is a summary of the non- proprietary work performed in FY 1985--1986. It describes various aspects of the database and also includes: review sections on Field Development, Geology, Geophysics, Geochemistry and Reservoir Engineering. It should be emphasized that these background chapters were written in 1986, and therefore only summarize the information available at that time. The appendices contain individual plots of wellhead pressures, degree of superheat, steam flow rates, cumulative mass flows, injection rates and cumulative injection through 1988 for approximately 250 wells. All of the data contained in this report are non-proprietary, from State and non-State leases. The production/injection and heat flow data from the wells were obtained from the California State Division of Oil and gas (DOG) (courtesy of Dick Thomas). Most of the other data were obtained from SLC files in Sacramento (courtesy of Charles Priddy), or DOG files in Santa Rosa (courtesy of Ken Stelling). 159 refs., 23 figs., 3 tabs.

  4. The Geysers Geothermal Area | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The Geysers Geothermal Area The Geysers Geothermal Area The Geysers Geothermal area, north of San Francisco, California, is the world's largest dry-steam geothermal steam field. Power production at the Geysers reached peak production in 1987, at that time serving 1.8 million people. Photo of The Geysers power plant

  5. The Geysers Geothermal Field Update1990/2010

    SciTech Connect (OSTI)

    Brophy, P.; Lippmann, M.; Dobson, P.F.; Poux, B.

    2010-10-01

    In this report, we have presented data in four sections: (1) THE GEYSERS HISTORICAL UPDATE 1990-2010 - A historical update of the primary developments at The Geysers between 1990 and 2010 which uses as its start point Section IIA of the Monograph - 'Historical Setting and History of Development' that included articles by James Koenig and Susan Hodgson. (2) THE GEYSERS COMPREHENSIVE REFERENCE LIST 1990-2010 - In this section we present a rather complete list of technical articles and technical related to The Geysers that were issued during the period 1990-2010. The list was compiled from many sources including, but not limited to scientific journals and conference proceedings. While the list was prepared with care and considerable assistance from many geothermal colleagues, it is very possible that some papers could have been missed and we apologize to their authors in advance. The list was subdivided according to the following topics: (1) Field characterization; (2) Drilling; (3) Field development and management; (4) Induced seismicity; (5) Enhanced Geothermal Systems; (6) Power production and related issues; (7) Environment-related issues; and (8) Other topics. (3) GRC 2010 ANNUAL MEETING GEYSERS PAPERS - Included in this section are the papers presented at the GRC 2010 Annual Meeting that relate to The Geysers. (4) ADDITIONAL GEYSERS PAPERS 1990-2010 - Eighteen additional technical papers were included in this publication in order to give a broad background to the development at The Geysers after 1990. The articles issued during the 1990-2010 period were selected by colleagues considered knowledgeable in their areas of expertise. We forwarded the list of references given in Section 2 to them asking to send us with their selections with a preference, because of limited time, to focus on those papers that would not require lengthy copyright approval. We then chose the articles presented in this section with the purpose of providing the broadest possible view across

  6. Characterizing Fractures in the Geysers Geothermal Field by Micro-seismic

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Data, Using Soft Computing, Fractals, and Shear Wave Anisotropy | Department of Energy Characterizing Fractures in the Geysers Geothermal Field by Micro-seismic Data, Using Soft Computing, Fractals, and Shear Wave Anisotropy Characterizing Fractures in the Geysers Geothermal Field by Micro-seismic Data, Using Soft Computing, Fractals, and Shear Wave Anisotropy Characterizing Fractures in the Geysers Geothermal Field by Micro-seismic Data, Using Soft Computing, Fractals, and Shear Wave

  7. Demonstration of an Enhanced Geothermal System at the Northwest Geysers Geothermal Field, California

    Broader source: Energy.gov [DOE]

    Geothermal Technologies Program 2010 Peer Review Demonstration of an Enhanced Geothermal System at the Northwest Geysers Geothermal Field California by Mark Walters of Calpine and Patrick Dobson of Lawrence Berkeley National Laboratory for Engineered Geothermal Systems Demonstration Projects Track. Objective to create an Enhanced Geothermal System (EGS) by directly and systematically injecting low volumes of coldŽ water into NW Geysers high temperature zone (HTZ), similar to inadvertentlyŽ created EGS in the oldest Geysers production area to the southeast of the EGS demonstration area. Other objectives are to investigate how cold-water injection mechanically and chemically affects fractured high temperature rock systems; demonstrate the technology to monitor and validate stimulation and sustainability of such an EGS; and develop an EGS research field laboratory that can be used for testing EGS stimulation and monitoring technologies including new high temperature tools developed by others.

  8. Fractal analysis of pressure transients in the Geysers Geothermal Field

    SciTech Connect (OSTI)

    Acuna, J.A.; Ershaghi, I.; Yortsos, Y.C.

    1992-01-01

    The conventionally accepted models for the interpretation of pressure transient tests in naturally fractured reservoirs usually involve simplistic assumptions regarding the geometry and transport properties of the fractured medium. Many single well tests in this type of reservoirs fail to show the predicted behavior for dual or triple porosity or permeability systems and cannot be explained by these models. This paper describes the application of a new model based on a fractal interpretation of the fractured medium. The approach, discussed elsewhere [2], [6], is applied to field data from The Geysers Geothermal Field. The objective is to present an alternative interpretation to well tests that characterizes the fractured medium in a manner more consistent with other field evidence. The novel insight gained from fractal geometry allows the identification of important characteristics of the fracture structure that feeds a particular well. Some simple models are also presented that match the field transient results.

  9. Characterizing Fractures in the Geysers Geothermal Field by Micro-seismic

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Data, Using Soft Computing, Fractals, and Shear Wave Anisotropy | Department of Energy Fractures in the Geysers Geothermal Field by Micro-seismic Data, Using Soft Computing, Fractals, and Shear Wave Anisotropy Characterizing Fractures in the Geysers Geothermal Field by Micro-seismic Data, Using Soft Computing, Fractals, and Shear Wave Anisotropy Determine if fracturing could be used to enhance permeability; and whether dilution of existing fluids with injected water would lower corrosivity

  10. Geysers Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    Geysers Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geysers Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and...

  11. Big Geysers Geothermal Facility | Open Energy Information

    Open Energy Info (EERE)

    Geothermal Facility General Information Name Big Geysers Geothermal Facility Facility Big Geysers Sector Geothermal energy Location Information Location Clear Lake, California...

  12. Geothermal Literature Review At Geysers Geothermal Area (1984...

    Open Energy Info (EERE)

    navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermal Literature Review At Geysers Geothermal Area (1984) Exploration Activity Details Location...

  13. Analysis of Injection-Induced Micro-Earthquakes in a Geothermal Steam Reservoir, The Geysers Geothermal Field, California

    SciTech Connect (OSTI)

    Rutqvist, Jonny; Rutqvist, J.; Oldenburg, C.M.

    2008-05-15

    In this study we analyze relative contributions to the cause and mechanism of injection-induced micro-earthquakes (MEQs) at The Geysers geothermal field, California. We estimated the potential for inducing seismicity by coupled thermal-hydrological-mechanical analysis of the geothermal steam production and cold water injection to calculate changes in stress (in time and space) and investigated if those changes could induce a rock mechanical failure and associated MEQs. An important aspect of the analysis is the concept of a rock mass that is critically stressed for shear failure. This means that shear stress in the region is near the rock-mass frictional strength, and therefore very small perturbations of the stress field can trigger an MEQ. Our analysis shows that the most important cause for injection-induced MEQs at The Geysers is cooling and associated thermal-elastic shrinkage of the rock around the injected fluid that changes the stress state in such a way that mechanical failure and seismicity can be induced. Specifically, the cooling shrinkage results in unloading and associated loss of shear strength in critically shear-stressed fractures, which are then reactivated. Thus, our analysis shows that cooling-induced shear slip along fractures is the dominant mechanism of injection-induced MEQs at The Geysers.

  14. Geysers Geothermal Association GGA | Open Energy Information

    Open Energy Info (EERE)

    GGA Jump to: navigation, search Name: Geysers Geothermal Association (GGA) Place: Santa Rosa, California Zip: 95404 Sector: Geothermal energy Product: Trade association...

  15. Geysers Hi-T Reservoir Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    Geysers Hi-T Reservoir Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geysers Hi-T Reservoir Geothermal Area Contents 1 Area Overview 2 History and...

  16. Demonstration of an Enhanced Geothermal System at the Northwest Geysers

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Geothermal Field, California; 2010 Geothermal Technology Program Peer Review Report | Department of Energy California; 2010 Geothermal Technology Program Peer Review Report Demonstration of an Enhanced Geothermal System at the Northwest Geysers Geothermal Field, California; 2010 Geothermal Technology Program Peer Review Report DOE 2010 Geothermal Technologies Program Peer Review egs_010_walters.pdf (182.53 KB) More Documents & Publications Concept Testing and Development at the Raft

  17. Geothermal Literature Review At Geysers Area (Ranalli & Rybach...

    Open Energy Info (EERE)

    Geothermal Literature Review At Geysers Area (Ranalli & Rybach, 2005) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermal Literature...

  18. Hydrogen chloride in superheated steam and chloride in deep brine at The Geysers geothermal field, California

    SciTech Connect (OSTI)

    Haizlip, J.R.; Truesdell, A.H.

    1988-01-01

    Chloride (Cl) concentrations of 10-120 ppm{sub w} have been measured in superheated steam produced by wells at The Geysers, a vapor-dominated geothermal field in northern California. Corrosion of the well casing and steam-gathering system has been recognized in some parts of The Geysers, and is apparently related to the presence of Cl. Cl in the steam is in a volatile form, generated with the steam at reservoir temperatures, and probably travels to the wellhead as HCl gas. Published experimental data for partial pressures of HCl in steam over aqueous HCl solutions and for dissociation constants of HCl were used to calculate distribution coefficients for HCl. Reservoir liquid Cl concentrations capable of generating steam with the observed Cl concentrations were then calculated as a function of pH and temperatures from 250 to 350 C. Equilibrium mineral/liquid reactions with the K-mica and K-feldspar assemblage found in the wells limit the reservoir liquid pH values at various Cl concentrations to about 5 to 6 (near neutral at 250 to 350 C). Within this pH range, liquid at 250 C could not produce steam containing the high Cl concentrations observed. However, liquid at higher temperatures (300 to 350 C) with chloride concentrations greater than 10,000 ppm{sub w} could generate steam with 10 to over 200 ppm{sub w} Cl. There is a positive correlation between pH and the chloride concentrations required to generate a given Cl concentration in steam. The concentration of Cl in superheated steam constrains not only the reservoir liquid composition, but the temperature at which the steam last equilibrated with liquid.

  19. Geothermal Literature Review At Geysers Area (Goff & Decker,...

    Open Energy Info (EERE)

    navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermal Literature Review At Geysers Area (Goff & Decker, 1983) Exploration Activity Details Location...

  20. Fluid Inclusion Analysis At Geysers Geothermal Area (1990) |...

    Open Energy Info (EERE)

    Geothermal Area (1990) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Fluid Inclusion Analysis At Geysers Geothermal Area (1990) Exploration...

  1. Characterizing Fractures in Geysers Geothermal Field by Micro-seismic Data, Using Soft Computing, Fractals, and Shear Wave Anisotropy

    SciTech Connect (OSTI)

    Aminzadeh, Fred; Sammis, Charles; Sahimi, Mohammad; Okaya, David

    2015-04-30

    The ultimate objective of the project was to develop new methodologies to characterize the northwestern part of The Geysers geothermal reservoir (Sonoma County, California). The goal is to gain a better knowledge of the reservoir porosity, permeability, fracture size, fracture spacing, reservoir discontinuities (leaky barriers) and impermeable boundaries.

  2. Analysis of cause and mechanism for injection-induced seismicityat the Geysers Geothermal Field, California

    SciTech Connect (OSTI)

    Rutqvist, Jonny; Oldenburg, Curtis

    2007-06-14

    We analyzed relative contributions to the cause andmechanism of injection-induced seismicity at The Geysers geothermalfield, California, using coupled thermal-hydrological-mechanicalmodeling. Our analysis shows that the most important cause forinjection-induced seismicity is injection-induced cooling and associatedthermal-elastic shrinkage that changes the stress state in such a waythat mechanical failure and seismicity can be induced. Specifically, thecooling shrinkage results in unloading and associated loss of shearstrength in critically shear-stressed fractures, which are thenreactivated. Thus, our analysis shows that cooling-induced shear slipalong fractures is the dominant mechanism of injection-induced seismicityat The Geysers.

  3. Helium isotopes in geothermal systems- Iceland, The Geysers,...

    Open Energy Info (EERE)

    isotopes in geothermal systems- Iceland, The Geysers, Raft River and Steamboat Springs Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: Helium...

  4. Resistivity During Boiling in the SB-15-D Core from the Geysers Geothermal Field: The Effects of Capillarity

    SciTech Connect (OSTI)

    Roberts, J.; Duba, A.; Bonner, B.; Kasameyer, P.

    1997-01-01

    In a laboratory study of cores from borehole SB-15-D in The Geysers geothermal area, we measured the electrical resistivity of metashale with and without pore-pressure control, with confining pressures up to 100 bars and temperatures between 20 and 150 C, to determine how the pore-size distribution and capillarity affected boiling. We observed a gradual increase in resistivity when the downstream pore pressure or confining pressure decreased below the phase boundary of free water. For the conditions of this experiment, boiling, as indicated by an increase in resistivity, is initiated at pore pressures of approximately 0.5 to 1 bar (0.05 to 0.1 MPa) below the free-water boiling curve, and it continues to increase gradually as pressure is lowered to atmospheric. A simple model of the effects of capillarity suggests that at 145 C, less than 15% of the pore water can boil in these rocks. If subsequent experiments bear out these preliminary observations, then boiling within a geothermal reservoir is controlled not just by pressure and temperature but also by pore-size distribution. Thus, it may be possible to determine reservoir characteristics by monitoring changes in electrical resistivity as reservoir conditions change.

  5. Geysers Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    Phase(s) Techniques DOE-EA-1733 EA Calpine 21 June 2010 United States Department of Energy GeothermalWell Field DOI-BLM-CA-C050-2009-0005-EA EA AltaRock Energy Inc 11...

  6. Public service impacts of geothermal development: cumulative impacts study of the Geysers KGRA. Final staff report

    SciTech Connect (OSTI)

    Matthews, K.M.

    1983-07-01

    The number of workers currently involved in the various aspects of geothermal development in the Geysers are identified. Using two different development scenarios, projections are made for the number of power plants needed to reach the electrical generation capacity of the steam resource in the Geysers. The report also projects the cumulative number of workers needed to develop the steam field and to construct, operate, and maintain these power plants. Although the number of construction workers fluctuates, most are not likely to become new, permanent residents of the KGRA counties. The administrative and public service costs of geothermal development to local jurisdications are examined, and these costs are compared to geothermal revenues accruing to the local governments. Revenues do not cover the immediate fiscal needs resulting from increases in local road maintenance and school enrollment attributable to geothermal development. Several mitigation options are discussed and a framework presented for calculating mitigation costs for school and road impacts.

  7. Cumulative impacts study of The Geysers KGRA: public-service impacts of geothermal development

    SciTech Connect (OSTI)

    Matthews, K.M.

    1982-05-01

    Geothermal development in The Geysers KGRA has affected local public services and fiscal resources in Sonoma, Lake, Mendocino, and Napa counties. Each of these counties underwent rapid population growth between 1970 and 1980, some of which can be attributed to geothermal development. The number of workers currently involved in the various aspects of geothermal development in The Geysers is identified. Using three different development scenarios, projections are made for the number of power plants needed to reach the electrical generation capacity of the steam resource in The Geysers. The report also projects the cumulative number of workers needed to develop the steam field and to construct, operate, and maintain these power plants. Although the number of construction workers fluctuates, most are not likely to become new, permanent residents of the KGRA counties. The administrative and public service costs of geothermal development to local jurisdictions are examined and compared to geothermal revenues accruing to the local governments. Revenues do not cover the immediate fiscal needs resulting from increases in local road maintenance and school enrollment attributable to geothermal development. Several mitigation options are discussed, and a framework is presented for calculating mitigation costs per unit of public service.

  8. Demonstration of an Enhanced Geothermal System at the Northwest...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Demonstration of an Enhanced Geothermal System at the Northwest Geysers Geothermal Field, ... of Research The Northwest Geysers EGS Demonstration Project has the goal of enhancing the ...

  9. Seismic Velocity And Attenuation Structure Of The Geysers Geothermal...

    Open Energy Info (EERE)

    of the world's largest producers of electricity from geothermal energy. A key resource management issue at this field is the distribution of fluid in the matrix of the reservoir...

  10. Demonstration of an Enhanced Geothermal System at the Northwest...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Demonstration of an Enhanced Geothermal System at the Northwest Geysers Geothermal Field, California Geothermal Technologies Program 2010 Peer Review Demonstration of an Enhanced ...

  11. Demonstration of an Enhanced Geothermal System at the Northwest...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    California; 2010 Geothermal Technology Program Peer Review Report Demonstration of an Enhanced Geothermal System at the Northwest Geysers Geothermal Field, California; 2010 ...

  12. 2D Seismic Reflection Survey Crump Geyser Geothermal Prospect...

    Open Energy Info (EERE)

    Additional Info Field Value Author Nevada Geothermal Power Company Maintainer Nicole Smith bureaucode 019:20 Catalog DOE harvestobjectid 80f3a9f1-e224-4a02-951b-229cd8e273fd...

  13. Isotopic evidence for a magmatic contribution to fluids of the geothermal systems of Larderello, Italy, and the Geysers, California

    SciTech Connect (OSTI)

    D'Amore, F.; Bolognesi, L. . Italian National Research Council)

    1994-02-01

    The isotopic composition of steam from the Larderello, Italy, and The Geysers, California, geothermal fields is used to determine the source(s) of the fluid in these two vapor-dominated systems. Previous interpretations suggested the isotopic composition of the two systems was mainly the result of reactions at high temperature between deeply circulating meteoric water and largely sedimentary host rocks. The authors interpret the data for the Larderello and The Geysers fluids as indicating that meteoric water, exchanged with host rocks, mixes with local magnetic water. The isotopic composition of end-member magmatic water at The Geysers is typical of convergent plate boundaries ([delta][sup 18]O = +5 to +11 per mil; [delta]D = [minus]10 to [minus]35 per mil); a local isotopic composition of +11 to +15 per mil [delta][sup 18]O and [minus]15 to [minus]35 per mil [delta]D is suggested for the Larderello magmatic water. The magmatic water derived from the crystallization of underlying magma. Metamorphic waters, derived from dehydration reactions of OH-bearing minerals, may also make a minor contribution to the geothermal fluids.

  14. Geothermal energy and the land resource: conflicts and constraints in The Geysers-Calistoga KGRA

    SciTech Connect (OSTI)

    O'Banion, K.; Hall, C.

    1980-07-14

    This study of potential land-related impacts of geothermal power development in The Geysers region focuses on Lake County because it has most of the undeveloped resource and the least regulatory capability. First, the land resource is characterized in terms of its ecological, hydrological, agricultural, and recreational value; intrinsic natural hazards; and the adequacy of roads and utility systems. Based on those factors, the potential land-use conflicts and constraints that geothermal development may encounter in the region are identified and the availability and relative suitability of land for such development is determined. A brief review of laws and powers germane to geothermal land-use regulation is included.

  15. Geothermal/Well Field | Open Energy Information

    Open Energy Info (EERE)

    Reservoirs General Techniques Tree Techniques Table Regulations & Permitting NEPA (47) Geothermal energy plant at The Geysers near Santa Rosa in Northern California, the world's...

  16. Evaluation of a superheater enhanced geothermal steam power plant in the Geysers area. Final report

    SciTech Connect (OSTI)

    Janes, J.

    1984-06-01

    This study was conducted to determine the attainable generation increase and to evaluate the economic merits of superheating the steam that could be used in future geothermal steam power plants in the Geyser-Calistoga Known Geothermal Resource Area (KGRA). It was determined that using a direct gas-fired superheater offers no economic advantages over the existing geothermal power plants. If the geothermal steam is heated to 900/sup 0/F by using the exhaust energy from a gas turbine of currently available performance, the net reference plant output would increase from 65 MW to 159 MW (net). Such hybrid plants are cost effective under certain conditions identified in this document. The power output from the residual Geyser area steam resource, now equivalent to 1437 MW, would be more than doubled by employing in the future gas turbine enhancement. The fossil fuel consumed in these plants would be used more efficiently than in any other fossil-fueled power plant in California. Due to an increase in evaporative losses in the cooling towers, the viability of the superheating concept is contingent on development of some of the water resources in the Geysers-Calistoga area to provide the necessary makeup water.

  17. Concept Testing and Development at the Raft River Geothermal Field, Idaho |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy DOE 2010 Geothermal Technologies Program Peer Review egs_007_moore.pdf (181.39 KB) More Documents & Publications Demonstration of an Enhanced Geothermal System at the Northwest Geysers Geothermal Field, California; 2010 Geothermal Technology Program Peer Review Report Feasibility of EGS Development at Bradys Hot Springs, Nevada Creation of an Enhanced Geothermal System through Hydraulic and Thermal Stimulation; 2010 Geothermal Technology Program Peer Review Repo

  18. Cuttings Analysis At Geysers Geothermal Area (1976) | Open Energy...

    Open Energy Info (EERE)

    and overlying cap rock. References Pratt, H. R.; Simonson, E. R. (1 January 1976) Geotechnical studies of geothermal reservoirs Additional References Retrieved from "http:...

  19. Micro-Earthquake At Geysers Geothermal Area (2011) | Open Energy...

    Open Energy Info (EERE)

    Rock, D.; Peterson, J.; Jarpe, S. (1 January 2011) DOE REAL-TIME SEISMIC MONITORING AT ENHANCED GEOTHERMAL SYSTEM SITES Additional References Retrieved from "http:...

  20. The Geyser Bight Geothermal Area, Umnak Island, Alaska | Open...

    Open Energy Info (EERE)

    ppm). The AsCl ratio is among the highest reported for geothermal waters. Authors Roman J. Motyka, Christopher J. Nye, Donald L. Turner and Shirley A. Liss Published Journal...

  1. Turning community wastes into sustainable geothermal energy: The S.E. Geysers effluent pipeline project

    SciTech Connect (OSTI)

    Dellinger, M.; Allen, E.

    1996-12-31

    A unique public/private partnership of local, state, federal, and corporate stakeholders are constructing the world`s first wastewater-to-electricity system at The Geysers. A rare example of a genuinely {open_quotes}sustainable{close_quote} energy system, three Lake County communities will recycle their treated wastewater effluent through the southeast portion of The Geysers steamfield to produce approximately 625,000 MWh annually from six existing geothermal power plants. In effect, the communities` effluent will produce enough power to indefinitely sustain their electric needs, along with enough extra power for thousands of other California consumers. Because of the project`s unique sponsorship, function, and environmental impacts, its implementation has required: (1) preparation of a consolidated state environmental impact report (EIR) and federal environmental impact statement (EIS), and seven related environmental agreements and management plans; (2) acquisition of 25 local, state, and federal permits; (3) negotiation of six federal and state financial assistance agreements; (4) negotiation of six participant agreements on construction, operation, and financing of the project; and (5) acquisition of 163 easements from private land owners for pipeline construction access and ongoing maintenance. The project`s success in efficiently and economically completing these requirements is a model for geothermal innovation and partnering throughout the Pacific Rim and elsewhere internationally.

  2. Local population impacts of geothermal energy development in the Geysers: Calistoga region

    SciTech Connect (OSTI)

    Haven, K.F.; Berg, V.; Ladson, Y.W.

    1980-09-01

    The country-level population increase implications of two long-term geothermal development scenarios for the Geysers region in California are addressed. This region is defined to include the counties of Lake, Sonoma, Mendocino and Napa, all four in northern California. The development scenarios include two components: development for electrical energy production and direct use applications. Electrical production scenarios are derived by incorporating current development patterns into previous development scenarios by both industry and research organizations. The scenarios are made county-specific, specific to the type of geothermal system constructed, and are projected through the year 2000. Separate high growth rate and low growth rate scenarios are developed, based on a set of specified assumptions. Direct use scenarios are estimated from the nature of the available resource, existing local economic and demographic patterns, and available experience with various separate direct use options. From the composite development scenarios, required numbers of direct and indirect employees and the resultant in-migration patterns are estimated. In-migration patterns are compared to current county level population and ongoing trends in the county population change for each of the four counties. From this comparison, conclusions are drawn concerning the contributions of geothermal resource development to future population levels and the significance of geothermally induced population increase from a county planning perspective.

  3. Flora of the Mayacmas Mountains. [Listing of 679 species in the Geysers Geothermal Resource area

    SciTech Connect (OSTI)

    Neilson, J.A.

    1981-09-01

    This flora describes the plants that occur within the Mayacmas Mountain Range of northern California. It is the result of ten years of environmental assessment by the author in the Geysers Geothermal Resource area, located in the center of the Mayacmas Range. The flora includes notes on plant communities and ecology of the area, as well as habitat and collection data for most of the 679 species covered. Altogether 74 families, 299 genera and 679 species are included in the flora. The work is divided into eight subdivisions: trees; shrubs; ferns and fern allies; aquatic plants; tules, sedges, and rushes; lilies and related plants; dicot herbs; and grasses. Within each subdivision, family, genera and species are listed alphabetically. Keys are provided at the beginning of each subdivision. A unique combination of physical, environmental and geologic factors have resulted in a rich and diverse flora in the Mayacmas. Maps have been provided indicating known locations for species of rare or limited occurrence.

  4. Micro-Earthquake At Geysers Area (Erten & Rial, 1999) | Open...

    Open Energy Info (EERE)

    Micro-Earthquake At Geysers Area (Erten & Rial, 1999) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Micro-Earthquake At Geysers Area (Erten &...

  5. Fifteenth workshop on geothermal reservoir engineering: Proceedings

    SciTech Connect (OSTI)

    Not Available

    1990-01-01

    The Fifteenth Workshop on Geothermal Reservoir Engineering was held at Stanford University on January 23--25, 1990. Major topics included: DOE's geothermal research and development program, well testing, field studies, geosciences, geysers, reinjection, tracers, geochemistry, and modeling.

  6. The Impact of Injection on Seismicity at The Geyses, CaliforniaGeothermal Field

    SciTech Connect (OSTI)

    Majer, Ernest L.; Peterson, John E.

    2006-09-25

    Water injection into geothermal systems has often become arequired strategy to extended and sustain production of geothermalresources. To reduce a trend of declining pressures and increasingnon-condensable gas concentrations in steam produced from The Geysers,operators have been injecting steam condensate, local rain and streamwaters, and most recently treated wastewater piped to the field fromneighboring communities. If geothermal energy is to provide a significantincrease in energy in the United States (US Department of Energy (DOE)goal is 40,000 megawatts by 2040), injection must play a larger role inthe overall strategy, i.e., enhanced geothermal systems, (EGS). Presentedin this paper are the results of monitoring microseismicity during anincrease in injection at The Geysers field in California using data froma high-density digital microearthquake array. Although seismicity hasincreased due to increased injection it has been found to be somewhatpredicable, thus implying that intelligent injection control may be ableto control large increases in seismicity.

  7. Cuttings Analysis At Geysers Area (Lambert & Epstein, 1992) ...

    Open Energy Info (EERE)

    (Lambert & Epstein, 1992) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Cuttings Analysis At Geysers Area (Lambert & Epstein, 1992)...

  8. Modeling-Computer Simulations At Geysers Area (Goff & Decker...

    Open Energy Info (EERE)

    navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Modeling-Computer Simulations At Geysers Area (Goff & Decker, 1983) Exploration Activity Details...

  9. Geothermal/Well Field | Open Energy Information

    Open Energy Info (EERE)

    Well Field < Geothermal Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Land Use Planning Leasing Exploration Well Field Power Plant Grid Connection Environment Water...

  10. Crump Geyser: High Precision Geophysics & Detailed Structural...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Exploration & Slim Well Drilling Crump Geyser: High Precision Geophysics & Detailed Structural Exploration & Slim Well Drilling DOE Geothermal Peer Review 2010 - Presentation. ...

  11. Heat Flow, Heat Transfer And Lithosphere Rheology In Geothermal...

    Open Energy Info (EERE)

    Research. () . Related Geothermal Exploration Activities Activities (5) Geothermal Literature Review At Geysers Area (Ranalli & Rybach, 2005) Geothermal Literature Review At...

  12. Characterizing Fractures in the Geysers Geothermal Field by Micro...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Using Soft Computing, Fractals, and Shear Wave Anisotropy Determine if fracturing could ... enough to allow economic production of power. seismicityaminzadehmicroseismicdata.pd...

  13. Characterizing Fractures in Geysers Geothermal Field by Micro...

    Open Energy Info (EERE)

    cooling shrinkage. The stimulated, existing fractures thus enhance the permeability of the hot rock formations, hence enabling better circulation of water for the...

  14. Characterizing Fractures in the Geysers Geothermal Field by Micro...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    for fuzzy segmentation and hybrid Neuro-fuzzy autopicking Improved ... Implemented a noise based segmentation approach to validate the requirement for Neuro-fuzz...

  15. Geothermal

    Office of Scientific and Technical Information (OSTI)

    Geothermal Geothermal Legacy Collection Search the Geothermal Legacy Collection Search For Terms: Find + Advanced Search Advanced Search All Fields: Title: Full Text: ...

  16. Symposium in the field of geothermal energy

    SciTech Connect (OSTI)

    Ramirez, Miguel; Mock, John E.

    1989-04-01

    Mexico and the US are nations with abundant sources of geothermal energy, and both countries have progressed rapidly in developing their more accessible resources. For example, Mexico has developed over 600 MWe at Cerro Prieto, while US developers have brought in over 2000 MWe at the Geysers. These successes, however, are only a prologue to an exciting future. All forms of energy face technical and economic barriers that must be overcome if the resources are to play a significant role in satisfying national energy needs. Geothermal energy--except for the very highest grade resources--face a number of barriers, which must be surmounted through research and development. Sharing a common interest in solving the problems that impede the rapid utilization of geothermal energy, Mexico and the US agreed to exchange information and participate in joint research. An excellent example of this close and continuing collaboration is the geothermal research program conducted under the auspices of the 3-year agreement signed on April 7, 1986 by the US DOE and the Mexican Comision Federal de Electricidad (CFE). The major objectives of this bilateral agreement are: (1) to achieve a thorough understanding of the nature of geothermal reservoirs in sedimentary and fractured igneous rocks; (2) to investigate how the geothermal resources of both nations can best be explored and utilized; and (3) to exchange information on geothermal topics of mutual interest.

  17. Geochemical studies of reservoir processes in the NCPA field of The Geysers, a preliminary report

    SciTech Connect (OSTI)

    Truesdell, Alfred; Enedy, Steve; Smith, Bill

    1993-01-28

    Methods of tracing reservoir processes will be discussed and applied to the NCPA Geysers steam field. The gas and isotope chemistry of produced steam is far from uniform even in a restricted volume of the reservoir. The composition is affected by many factors. Differences in permeability, local existence of gas pockets or perched liquid and the pattern of fracture connection can cause neighboring wells to produce steam of different compositions. This study attempts to separate local effects from general influences by viewing the data across the field and over a period of time. The fits of the trend lines to the data are far from perfect but present a reasonably consistent picture.

  18. Ridgeline Geothermal Facility | Open Energy Information

    Open Energy Info (EERE)

    Information Name Ridgeline Geothermal Facility Facility Ridgeline Sector Geothermal energy Location Information Location The Geysers, California Coordinates 38.814833644874,...

  19. Calistoga Geothermal Facility | Open Energy Information

    Open Energy Info (EERE)

    Information Name Calistoga Geothermal Facility Facility Calistoga Sector Geothermal energy Location Information Location The Geysers, California Coordinates 38.789549581861,...

  20. Aidlin Geothermal Facility | Open Energy Information

    Open Energy Info (EERE)

    General Information Name Aidlin Geothermal Facility Facility Aidlin Sector Geothermal energy Location Information Location Geysers Area Coordinates 38.833874378195,...

  1. Socrates Geothermal Facility | Open Energy Information

    Open Energy Info (EERE)

    Information Name Socrates Geothermal Facility Facility Socrates Sector Geothermal energy Location Information Location The Geysers, California Coordinates 38.768706898655,...

  2. Field Mapping At Mccoy Geothermal Area (DOE GTP) | Open Energy...

    Open Energy Info (EERE)

    Mccoy Geothermal Area (DOE GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Field Mapping At Mccoy Geothermal Area (DOE GTP) Exploration...

  3. Field Mapping At Coso Geothermal Area (1999) | Open Energy Information

    Open Energy Info (EERE)

    to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Field Mapping At Coso Geothermal Area (1999) Exploration Activity Details Location Coso Geothermal...

  4. Geothermal | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Geothermal energy plant at The Geysers near Santa Rosa in Northern California, the world's largest electricity-generating geothermal development. | Photo courtesy of the National...

  5. Field Mapping At Raft River Geothermal Area (1977) | Open Energy...

    Open Energy Info (EERE)

    search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Field Mapping At Raft River Geothermal Area (1977) Exploration Activity Details Location Raft River...

  6. Field Mapping At Raft River Geothermal Area (1980) | Open Energy...

    Open Energy Info (EERE)

    search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Field Mapping At Raft River Geothermal Area (1980) Exploration Activity Details Location Raft River...

  7. Field Mapping At Raft River Geothermal Area (1990) | Open Energy...

    Open Energy Info (EERE)

    search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Field Mapping At Raft River Geothermal Area (1990) Exploration Activity Details Location Raft River...

  8. Enhanced Geothermal System (EGS) Fact Sheet | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Overview of Enhanced Geothermal Systems. egs_calpine_peer2013.pdf (3.1 MB) More Documents & Publications Demonstration of an Enhanced Geothermal System at the Northwest Geysers Geothermal Field, California EA-1733: Final Environmental Assessment Fracture Evolution Following a Hydraulic Stimulation within an EGS Reservoir

  9. Core Analysis At Geysers Area (Lambert & Epstein, 1992) | Open...

    Open Energy Info (EERE)

    (Lambert & Epstein, 1992) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Core Analysis At Geysers Area (Lambert & Epstein, 1992) Exploration...

  10. Fluid Inclusion Analysis At Geysers Area (Moore, Et Al., 2001...

    Open Energy Info (EERE)

    Area (Moore, Et Al., 2001) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Fluid Inclusion Analysis At Geysers Area (Moore, Et Al., 2001)...

  11. Micro-Earthquake At Geysers Area (Laney, 2005) | Open Energy...

    Open Energy Info (EERE)

    at The Geysers and Coso Geothermal Reservoirs by Shear-wave Splitting, Rial, Elkibbi, Yang and Pereyra. The raw data for the project consists of seismographic recordings of...

  12. Power Plays: Geothermal Energy in Oil and Gas Fields | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Power Plays: Geothermal Energy in Oil and Gas Fields Power Plays: Geothermal Energy in Oil and Gas Fields Power Plays: Geothermal Energy in Oil and Gas Fields April 25, 2016 9:00AM ...

  13. Field Mapping At Valles Caldera - Redondo Geothermal Area (Goff...

    Open Energy Info (EERE)

    Goff, Et Al., 2011) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Field Mapping At Valles Caldera - Redondo Geothermal Area (Goff, Et Al.,...

  14. Field Mapping At Valles Caldera - Sulphur Springs Geothermal...

    Open Energy Info (EERE)

    Goff, Et Al., 2011) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Field Mapping At Valles Caldera - Sulphur Springs Geothermal Area (Goff, Et...

  15. Field Mapping At Neal Hot Springs Geothermal Area (Edwards &...

    Open Energy Info (EERE)

    Edwards & Faulds, 2012) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Field Mapping At Neal Hot Springs Geothermal Area (Edwards & Faulds,...

  16. Field Mapping At Blue Mountain Geothermal Area (Fairbank Engineering...

    Open Energy Info (EERE)

    Blue Mountain Geothermal Area (Fairbank Engineering Ltd, 2003) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Field Mapping At Blue Mountain...

  17. Field Mapping At Dixie Valley Geothermal Area (Smith, Et Al....

    Open Energy Info (EERE)

    Smith, Et Al., 2001) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Field Mapping At Dixie Valley Geothermal Area (Smith, Et Al., 2001)...

  18. A Soil Gas Survey Over Rotorua Geothermal Field, Rotorua, New...

    Open Energy Info (EERE)

    Rotorua Geothermal Field, Rotorua, New Zealand Abstract Soil gases have been used as an exploration tool for minerals, oil and gas, and geothermal energy, through the detection...

  19. Field Mapping At Chena Geothermal Area (Waring, Et Al., 1917...

    Open Energy Info (EERE)

    Waring, Et Al., 1917) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Field Mapping At Chena Geothermal Area (Waring, Et Al., 1917) Exploration...

  20. An investigation of the Dixie Valley geothermal field, Nevada...

    Open Energy Info (EERE)

    geothermal field, Nevada, using temporal moment analysis of tracer tests Author Marshall J. Reed Conference Proceedings, 32nd Workshop on Geothermal Reservoir Engineering;...

  1. Field Mapping At Coso Geothermal Area (1978) | Open Energy Information

    Open Energy Info (EERE)

    8) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Field Mapping At Coso Geothermal Area (1978) Exploration Activity Details Location Coso...

  2. Geothermal Literature Review At San Francisco Volcanic Field...

    Open Energy Info (EERE)

    navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermal Literature Review At San Francisco Volcanic Field Area (Morgan, Et Al., 2003) Exploration...

  3. EERE Success Story-California: Next-Generation Geothermal Demonstration

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Launched | Department of Energy Next-Generation Geothermal Demonstration Launched EERE Success Story-California: Next-Generation Geothermal Demonstration Launched August 21, 2013 - 12:00am Addthis At the outer edges of the largest operating geothermal field in the world, the Energy Department and project partner Calpine Corporation achieved the nation's first sustained enhanced geothermal system (EGS) demonstration success in 2012. The Geysers EGS Demonstration project successfully created a

  4. Sonoma Geothermal Facility | Open Energy Information

    Open Energy Info (EERE)

    General Information Name Sonoma Geothermal Facility Facility Sonoma Sector Geothermal energy Location Information Location The Geysers, California Coordinates 38.790252038086,...

  5. Grant Geothermal Facility | Open Energy Information

    Open Energy Info (EERE)

    General Information Name Grant Geothermal Facility Facility Grant Sector Geothermal energy Location Information Location The Geysers, California Coordinates 38.779095546344,...

  6. The Geysers pipeline project

    SciTech Connect (OSTI)

    Dellinger, M.; Allen, E.

    1997-01-01

    A unique public/private partnership of local, state, federal and corporate stakeholders are constructing the world`s first wastewater-to-electricity system at The Geysers. A rare example of a genuinely {open_quotes}sustainable{close_quotes} energy system, three Lake County communities will recycle their treated wastewater effluent through the southeast portion of the The Geysers steamfield to produce approximately 625,000 MWh annually from six existing geothermal power plants. In effect, the communities` effluent will produce enough power to indefinitely sustain their electric needs, along with enough extra power for thousands of other California consumers. Because of the project`s unique sponsorship, function and environmental impacts, its implementation has required: (1) preparation of a consolidated state environmental impact report (EIR) and federal environmental impact statement (EIS), and seven related environmental agreements and management plans; (2) acquisition of 25 local, state, and federal permits; (3) negotiation of six federal and state financial assistance agreements; (4) negotiation of six participant agreements on construction, operation and financing of the project, and (5) acquisition of 163 easements from private land owners for pipeline construction access and ongoing maintenance. The project`s success in efficiently and economically completing these requirements is a model for geothermal innovation and partnering throughout the Pacific Rim and elsewhere internationally.

  7. Geology and slope stability in selected parts of The Geysers geothermal resources area: a guide to geologic features indicative of stable and unstable terrain in areas underlain by Franciscan and related rocks

    SciTech Connect (OSTI)

    Bedrossian, T.L.

    1980-01-01

    The results of a 4-month study of various geologic and topographic features related to the stability of Franciscan terrain in The Geysers GRA are presented. The study consisted of investigations of geologic and topographic features, throughout The Geysers GRA, and geologic mapping at a scale of 1:12,000 of approximately 1500 acres (600 hectares) of landslide terrain within the canyon of Big Sulphur Creek in the vicinity of the Buckeye mine (see plate 1). The area mapped during this study was selected because: (1) it is an area of potential future geothermal development, and (2) it illustrates that large areas mapped as landslides on regional scales (McLaughlin, 1974, 1975b; McNitt, 1968a) may contain zones of varying slope stability and, therefore, should be mapped in more detail prior to development of the land.

  8. Validation of Geothermal Tracer Methods in Highly Constrained Field

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Experiments | Department of Energy Geothermal Tracer Methods in Highly Constrained Field Experiments Validation of Geothermal Tracer Methods in Highly Constrained Field Experiments DOE Geothermal Peer Review 2010 - Project Summary. This project will test smartdiffusive tracers for measuring heat exchange. tracers_becker_verification_methods.pdf (1.81 MB) More Documents & Publications track 3: enhanced geothermal systems (EGS) | geothermal 2015 peer review Advancing reactive tracer

  9. Klamath Falls geothermal field, Oregon

    SciTech Connect (OSTI)

    Lienau, P.J.; Culver, G.; Lund, J.W.

    1989-09-01

    Klamath Falls, Oregon, is located in a Known Geothermal Resource Area which has been used by residents, principally to obtain geothermal fluids for space heating, at least since the turn of the century. Over 500 shallow-depth wells ranging from 90 to 2,000 ft (27 to 610 m) in depth are used to heat (35 MWt) over 600 structures. This utilization includes the heating of homes, apartments, schools, commercial buildings, hospital, county jail, YMCA, and swimming pools by individual wells and three district heating systems. Geothermal well temperatures range from 100 to 230{degree}F (38 to 110{degree}C) and the most common practice is to use downhole heat exchangers with city water as the circulating fluid. Larger facilities and district heating systems use lineshaft vertical turbine pumps and plate heat exchangers. Well water chemistry indicates approximately 800 ppM dissolved solids, with sodium sulfate having the highest concentration. Some scaling and corrosion does occur on the downhole heat exchangers (black iron pipe) and on heating systems where the geo-fluid is used directly. 73 refs., 49 figs., 6 tabs.

  10. A Survey Of Seismic Activity Near Wairakei Geothermal Field,...

    Open Energy Info (EERE)

    Geothermal Field, New Zealand Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: A Survey Of Seismic Activity Near Wairakei Geothermal Field, New...

  11. Enhanced Geothermal System (EGS) Fact Sheet | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Calpine Staff Run Tests at The Geysers Geothermal Power Plant in California Calpine Staff Run Tests at The Geysers Geothermal Power Plant in California The EGS fact sheet provides...

  12. Cerro Prieto geothermal field: exploration during exploitation

    SciTech Connect (OSTI)

    Not Available

    1982-07-01

    Geological investigations at Momotombo included photogeology, field mapping, binocular microscope examination of cuttings, and drillhole correlations. Among the geophysical techniques used to investigate the field sub-structure were: Schlumberger and electromagnetic soundings, dipole mapping and audio-magnetotelluric surveys, gravity and magnetic measurements, frequency domain soundings, self-potential surveys, and subsurface temperature determinations. The geochemical program analyzed the thermal fluids of the surface and in the wells. The description and results of exploration methods used during the investigative stages of the Momotombo Geothermal Field are presented. A conceptual model of the geothermal field was drawn from the information available at each exploration phase. The exploration methods have been evaluated with respect to their contributions to the understanding of the field and their utilization in planning further development.

  13. RAPID/Geothermal/Well Field/Texas | Open Energy Information

    Open Energy Info (EERE)

    wells. A geothermal well is a well drilled within the established limits of a designated geothermal field. 16 TAC 3.79. If the proposed well is located in a Texas Groundwater...

  14. RAPID/Geothermal/Well Field/Nevada | Open Energy Information

    Open Energy Info (EERE)

    RAPIDGeothermalWell FieldNevada < RAPID | Geothermal | Well Field Jump to: navigation, search RAPID Regulatory and Permitting Information Desktop Toolkit BETA About Bulk...

  15. McCabe Geothermal Facility | Open Energy Information

    Open Energy Info (EERE)

    General Information Name McCabe Geothermal Facility Facility McCabe Sector Geothermal energy Location Information Location The Geysers, California Coordinates 38.80548694467,...

  16. Calpine Geothermal Operations Recognized by State of California...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    behalf of Calpine from Hal Bopp, the State Oil and Gas Supervisor for the California Department of Oil, Gas and Geothermal Resources at a Geysers Geothermal Association luncheon. ...

  17. A History or Geothermal Energy Research and Development in the...

    Broader source: Energy.gov (indexed) [DOE]

    Energy Conversion 1976 - 2006 A History of Geothermal Energy Research and Development in the United States Cover Photo Credits The Geysers Geothermal Power Plant, Sonoma County, ...

  18. Geothermal Testing Facilities in an Oil Field - Rocky Mountain Oil Field

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Testing Center; 2010 Geothermal Technology Program Peer Review Report | Department of Energy Field - Rocky Mountain Oil Field Testing Center; 2010 Geothermal Technology Program Peer Review Report Geothermal Testing Facilities in an Oil Field - Rocky Mountain Oil Field Testing Center; 2010 Geothermal Technology Program Peer Review Report DOE 2010 Geothermal Technologies Program Peer Review lowtemp_014_johnson.pdf (258.37 KB) More Documents & Publications Electrical Power Generation Using

  19. Field Studies of Geothermal Reservoirs: Rio Grande Rift, New...

    Open Energy Info (EERE)

    Abstract The Rio Grande rift provides an excellent field laboratory to study the nature of geothermal systems in an extensional environment. Much of the geologic complexity...

  20. An Updated Conceptual Model Of The Travale Geothermal Field Based...

    Open Energy Info (EERE)

    with geophysical data and made it possible to assess with a fair degree of reliability the lateral extent of the "useful" geothermal field, limited in the Mesozoic...

  1. 3D MAGNETOTELLURIC CHARACTERIZATION OF THE COSO GEOTHERMAL FIELD...

    Open Energy Info (EERE)

    3D MAGNETOTELLURIC CHARACTERIZATION OF THE COSO GEOTHERMAL FIELD Abstract Knowledge of the subsurface electrical resistivityconductivity can contribute to a better...

  2. Current Status of the high enthalpy conventional geothermal fields...

    Open Energy Info (EERE)

    Current Status of the high enthalpy conventional geothermal fields in Europe and the potential perspectives for their exploitation in terms of EGS Jump to: navigation, search...

  3. A Magnetotelluric Survey Of The Nissyros Geothermal Field (Greece...

    Open Energy Info (EERE)

    (Greece) Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: A Magnetotelluric Survey Of The Nissyros Geothermal Field (Greece) Abstract A...

  4. RAPID/Geothermal/Well Field | Open Energy Information

    Open Energy Info (EERE)

    well, the developer must submit a Sundry Notice to the Nevada Division of Minerals Geothermal Well Field in New Mexico New Mexico Energy, Minerals and Natural Resources...

  5. IN SEARCH FOR THERMAL ANOMALIES IN THE COSO GEOTHERMAL FIELD...

    Open Energy Info (EERE)

    AND FIELD DATA Abstract We attempt to identify thermal anomalies using thermal infrared (TIR) data collected over the Coso Geothermal Power Project with the spaceborne ASTER...

  6. RAPID/Geothermal/Well Field/California | Open Energy Information

    Open Energy Info (EERE)

    necessary drilling fees to DOGGR. Following review, DOGGR will issue a Permit to Conduct Geothermal Operations to the developer. Local Well Field Process not available Policies &...

  7. RAPID/Geothermal/Well Field/Idaho | Open Energy Information

    Open Energy Info (EERE)

    DWR, and file drilling records upon completion. Local Well Field Process not available Policies & Regulations IDAPA 37.03.04.045 - Abandonment of Geothermal Resource Wells IDWS...

  8. Hydrogeological And Isotopic Survey Of Geothermal Fields In The...

    Open Energy Info (EERE)

    Hydrogeological And Isotopic Survey Of Geothermal Fields In The Buyuk Menderes Graben, Turkey Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article:...

  9. Geothermal Program Review XI: proceedings. Geothermal Energy - The Environmental Responsible Energy Technology for the Nineties

    SciTech Connect (OSTI)

    Not Available

    1993-10-01

    These proceedings contain papers pertaining to current research and development of geothermal energy in the USA. The seven sections of the document are: Overview, The Geysers, Exploration and Reservoir Characterization, Drilling, Energy Conversion, Advanced Systems, and Potpourri. The Overview presents current DOE energy policy and industry perspectives. Reservoir studies, injection, and seismic monitoring are reported for the geysers geothermal field. Aspects of geology, geochemistry and models of geothermal exploration are described. The Drilling section contains information on lost circulation, memory logging tools, and slim-hole drilling. Topics considered in energy conversion are efforts at NREL, condensation on turbines and geothermal materials. Advanced Systems include hot dry rock studies and Fenton Hill flow testing. The Potpourri section concludes the proceedings with reports on low-temperature resources, market analysis, brines, waste treatment biotechnology, and Bonneville Power Administration activities. Selected papers have been indexed separately for inclusion in the Energy Science and Technology Database.

  10. Ulubelu Geothermal Field | Open Energy Information

    Open Energy Info (EERE)

    Stanford, California: Stanford University. Benjamin Matek. Geo-energy Internet. Geothermal Energy Association. updated 20150428;cited 20150428. Available from:...

  11. Structural investigations of Great Basin geothermal fields: Applications and implications

    SciTech Connect (OSTI)

    Faulds, James E; Hinz, Nicholas H.; Coolbaugh, Mark F

    2010-11-01

    Because fractures and faults are commonly the primary pathway for deeply circulating hydrothermal fluids, structural studies are critical to assessing geothermal systems and selecting drilling targets for geothermal wells. Important tools for structural analysis include detailed geologic mapping, kinematic analysis of faults, and estimations of stress orientations. Structural assessments are especially useful for evaluating geothermal fields in the Great Basin of the western USA, where regional extension and transtension combine with high heat flow to generate abundant geothermal activity in regions having little recent volcanic activity. The northwestern Great Basin is one of the most geothermally active areas in the USA. The prolific geothermal activity is probably due to enhanced dilation on N- to NNE-striking normal faults induced by a transfer of NW-directed dextral shear from the Walker Lane to NW-directed extension. Analysis of several geothermal fields suggests that most systems occupy discrete steps in normal fault zones or lie in belts of intersecting, overlapping, and/or terminating faults. Most fields are associated with steeply dipping faults and, in many cases, with Quaternary faults. The structural settings favoring geothermal activity are characterized by subvertical conduits of highly fractured rock along fault zones oriented approximately perpendicular to the WNW-trending least principal stress. Features indicative of these settings that may be helpful in guiding exploration for geothermal resources include major steps in normal faults, interbasinal highs, groups of relatively low discontinuous ridges, and lateral jogs or terminations of mountain ranges.

  12. development Not Available 15 GEOTHERMAL ENERGY; TONGONAN GEOTHERMAL...

    Office of Scientific and Technical Information (OSTI)

    field Leyte, Philippines. Report on exploration and development Not Available 15 GEOTHERMAL ENERGY; TONGONAN GEOTHERMAL FIELD; GEOTHERMAL EXPLORATION; GEOTHERMAL POWER...

  13. Oguni Geothermal Field | Open Energy Information

    Open Energy Info (EERE)

    Engineering. Report No.: SGP- TR-145. Benjamin Matek. Geo-energy Internet. Geothermal Energy Association. updated 20150428;cited 20150428. Available from:...

  14. Akita Geothermal Field | Open Energy Information

    Open Energy Info (EERE)

    Owners : Mitsubishi Materials Co Mitsubishi Materials CoTohoku Electric Power Akita Geothermal Energy CoTohoku Electric Power Power Purchasers : Other Uses: Click "Edit With...

  15. Geothermal Permeability Enhancement - Final Report

    SciTech Connect (OSTI)

    Joe Beall; Mark Walters

    2009-06-30

    The overall objective is to apply known permeability enhancement techniques to reduce the number of wells needed and demonstrate the applicability of the techniques to other undeveloped or under-developed fields. The Enhanced Geothermal System (EGS) concept presented in this project enhances energy extraction from reduced permeability zones in the super-heated, vapor-dominated Aidlin Field of the The Geysers geothermal reservoir. Numerous geothermal reservoirs worldwide, over a wide temperature range, contain zones of low permeability which limit the development potential and the efficient recovery of heat from these reservoirs. Low permeability results from poorly connected fractures or the lack of fractures. The Enhanced Geothermal System concept presented here expands these technologies by applying and evaluating them in a systematic, integrated program.

  16. Field Mapping At Coso Geothermal Area (1968-1971) | Open Energy...

    Open Energy Info (EERE)

    68-1971) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Field Mapping At Coso Geothermal Area (1968-1971) Exploration Activity Details Location...

  17. Field Mapping At Coso Geothermal Area (1977-1978) | Open Energy...

    Open Energy Info (EERE)

    ENERGYGeothermal Home Exploration Activity: Field Mapping At Coso Geothermal Area (1977-1978) Exploration Activity Details Location Coso Geothermal Area Exploration Technique...

  18. Total field aeromagnetic map of the Raft River known Geothermal...

    Open Energy Info (EERE)

    field aeromagnetic map of the Raft River known Geothermal Resource Area, Idaho by the US Geological Survey Jump to: navigation, search OpenEI Reference LibraryAdd to library...

  19. FLUID GEOCHEMISTRY AT THE RAFT RIVER GEOTHERMAL FIELD, IDAHO...

    Open Energy Info (EERE)

    the fluid geochemistry in the field is spatially variable and complex, with two distinct deep geothermal fluid types (high vs. low K, Na, Cl, Ca, Li, F concentrations) and two...

  20. STRESS AND FAULTING IN THE COSO GEOTHERMAL FIELD: UPDATE AND...

    Open Energy Info (EERE)

    STRESS AND FAULTING IN THE COSO GEOTHERMAL FIELD: UPDATE AND RECENT RESULTS FROM THE EAST FLANK AND COSO WASH Jump to: navigation, search OpenEI Reference LibraryAdd to library...

  1. A Fluid-Inclusion Investigation Of The Tongonan Geothermal Field...

    Open Energy Info (EERE)

    Fluid-Inclusion Investigation Of The Tongonan Geothermal Field, Philippines Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: A Fluid-Inclusion...

  2. RAPID/Geothermal/Well Field/Hawaii | Open Energy Information

    Open Energy Info (EERE)

    process for the proposed drilling activities. Local Well Field Process not available Policies & Regulations H.A.R. 13-185 - Rules of Practice and Procedure for Geothermal and...

  3. RAPID/Geothermal/Well Field/Colorado | Open Energy Information

    Open Energy Info (EERE)

    standards set forth in 2 CCR 402-10:8 and 10:9). Local Well Field Process not available Policies & Regulations 2 CCR 402-10 - Rules and Regulations for Geothermal Well Permitting...

  4. Geysering in boiling channels

    SciTech Connect (OSTI)

    Aritomi, Masanori; Takemoto, Takatoshi; Chiang, Jing-Hsien

    1995-09-01

    A concept of natural circulation BWRs such as the SBWR has been proposed and seems to be promising in that the primary cooling system can be simplified. The authors have been investigating thermo-hydraulic instabilities which may appear during the start-up in natural circulation BWRs. In our previous works, geysering was investigated in parallel boiling channels for both natural and forced circulations, and its driving mechanism and the effect of system pressure on geysering occurrence were made clear. In this paper, geysering is investigated in a vertical column and a U-shaped vertical column heated in the lower parts. It is clarified from the results that the occurrence mechanism of geysering and the dependence of system pressure on geysering occurrence coincide between parallel boiling channels in circulation systems and vertical columns in non-circulation systems.

  5. Geothermal Testing Facilities in an Oil Field

    Broader source: Energy.gov [DOE]

    Engineered Geothermal Systems, Low Temp, Exploration Demonstration. The proposed project is to develop a long term testing facility and test geothermal power units for the evaluation of electrical power generation from low-temperature and co-produced fluids. The facility will provide the ability to conduct both long and short term testing of different power generation configurations to determine reliability, efficiency and to provide economic evaluation data.

  6. Concept Testing and Development at the Raft River Geothermal Field, Idaho |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Concept Testing and Development at the Raft River Geothermal Field, Idaho Concept Testing and Development at the Raft River Geothermal Field, Idaho Concept Testing and Development at the Raft River Geothermal Field, Idaho presentation at the April 2013 peer review meeting held in Denver, Colorado. raft_river_peer2013.pdf (3.68 MB) More Documents & Publications Concept Testing and Development at the Raft River Geothermal Field, Idaho track 4: enhanced geothermal

  7. Power Plays: Geothermal Energy In Oil and Gas Fields

    Office of Energy Efficiency and Renewable Energy (EERE)

    The SMU Geothermal Lab is hosting their 7th international energy conference and workshop Power Plays: Geothermal Energy in Oil and Gas Fields May 18-20, 2015 on the SMU Campus in Dallas, Texas. The two-day conference brings together leaders from the geothermal, oil and gas communities along with experts in finance, law, technology, and government agencies to discuss generating electricity from oil and gas well fluids, using the flare gas for waste heat applications, and desalinization of the water for project development in Europe, China, Indonesia, Mexico, Peru and the US. Other relevant topics include seismicity, thermal maturation, and improved drilling operations.

  8. Caldwell Ranch Exploration and Confirmation Project, Northwest Geysers, CA

    SciTech Connect (OSTI)

    Walters, Mark A.

    2013-04-25

    The purpose of the Caldwell Ranch Exploration and Confirmation Project was to drill, test, and confirm the present economic viability of the undeveloped geothermal reservoir in the 870 acre Caldwell Ranch area of the Northwest Geysers that included the CCPA No.1 steam field. All of the drilling, logging, and sampling challenges were met. � Three abandoned wells, Prati 5, Prati 14 and Prati 38 were re-opened and recompleted to nominal depths of 10,000 feet in 2010. Two of the wells required sidetracking. � The flow tests indicated Prati 5 Sidetrack 1 (P-5 St1), Prati 14 (P-14) and Prati 38 Sidetrack 2 (P-38 St2) were collectively capable of initially producing an equivalent of 12 megawatts (MWe) of steam using a conversion rate of 19,000 pounds of steam/hour

  9. Micro-Earthquake At Coso Geothermal Area (2005) | Open Energy...

    Open Energy Info (EERE)

    at The Geysers and Coso Geothermal Reservoirs by Shear-wave Splitting, Rial, Elkibbi, Yang and Pereyra. The raw data for the project consists of seismographic recordings of...

  10. A Model For The Sulphur Springs Geothermal Field St Lucia | Open...

    Open Energy Info (EERE)

    The Sulphur Springs Geothermal Field St Lucia Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: A Model For The Sulphur Springs Geothermal Field...

  11. Literature survey on cements for remediation of deformed casing in geothermal wells

    SciTech Connect (OSTI)

    Allan, M.L.; Philippacopoulos, A.J.

    1998-12-31

    Brookhaven National Laboratory was requested to conduct a literature survey for the best available cement to use in the proposed casing patch as part of the Geothermal Drilling Organization (GDO) project on remediation of deformed casings. A total of 50 wells have been identified with deformed production casing in Unocal`s portion of The Geysers geothermal field. A procedure to address the casing deformation and avoid abandonment of these wells has been developed as described in the Geysers Deformed Casing Remediation Proposal. The proposed remediation procedure involves isolation of the zone of interest with an inflatable packer, milling the deformed casing and cementing a 7 inch diameter liner to extend approximately 100 ft above and 100 ft below the milled zone. During the milling operation it is possible that the original cement and surrounding formation may slough away. In order to specify a suitable cement formulation for the casing patch it is first necessary to identify and understand the deformation mechanism/s operating in The Geysers field. Subsequently, the required cement mechanical properties to withstand further deformation of the repaired system must be defined. From this information it can be determined whether available cement formulations meet these requirements. In addition to The Geysers, other geothermal fields are at possible risk of casing deformation due to subsidence, seismic activity, lateral and vertical formation movement or other processes. Therefore, the proposed remediation procedure may have applications in other fields.

  12. Geysers | Open Energy Information

    Open Energy Info (EERE)

    a column of hot water and steam into the air. Other definitions:Wikipedia Reegle Modern Geothermal Features Typical list of modern geothermal features Hot Springs Fumaroles...

  13. Geothermal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Stationary Power/Energy Conversion Efficiency/Geothermal Geothermal Tara Camacho-Lopez 2016-03-16T19:31:15+00:00 geothermal_leamstest Sandia's work in drilling technology is aimed at reducing the cost and risk associated with drilling in harsh, subterranean environments. The historical focus of the drilling research has been directed at significantly expanding the nation's utilization of geothermal energy. This focus in geothermal related drilling research is the search for practical solutions

  14. Enhanced Geothermal System (EGS) Infographic | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Enhanced Geothermal System (EGS) Infographic Enhanced Geothermal System (EGS) Infographic Calpine Staff Run Tests at The Geysers Geothermal Power Plant in California Calpine Staff Run Tests at The Geysers Geothermal Power Plant in California The EGS infographic provides an overview of this burgeoning technology that could access an enormous, domestic, clean energy resource predicted at more than 100 GW in the United States alone, according to an MIT study. To take advantage of this vast

  15. RAPID/Geothermal/Well Field/New Mexico | Open Energy Information

    Open Energy Info (EERE)

    RAPIDGeothermalWell FieldNew Mexico < RAPID | Geothermal | Well Field Jump to: navigation, search RAPID Regulatory and Permitting Information Desktop Toolkit BETA About...

  16. Field Mapping At Coso Geothermal Area (2001-2003) | Open Energy...

    Open Energy Info (EERE)

    Coso field primarily occurs in the hanging walls of the listric faults. References Unruh, J. (1 January 2001) NEW SEISMIC IMAGING OF THE COSO GEOTHERMAL FIELD, EASTERN CALIFORNIA...

  17. Ulumbu Geothermal Field | Open Energy Information

    Open Energy Info (EERE)

    Use the "Edit with Form" button at the top of the page to add a Well Field Description Geology of the Area Geologic Setting Tectonic Setting: Controlling Structure: Topographic...

  18. What lies beneath the Cerro Prieto geothermal field?

    SciTech Connect (OSTI)

    Elders, W.A.; Williams, A.E.; Biehler, S.

    1997-12-31

    Although the Cerro Prieto geothermal reservoir is one of the world`s largest geothermal developments, conflicting ideas persist about the basement beneath it. The current plan to drill a 6 km deep exploratory well in the eastern part of the field has brought this controversy into sharper focus. This paper discusses criteria which any model of what lies beneath the reservoir must meet, in terms of regional tectonics and geophysics, of the metamorphic and igneous rocks thus far encountered in drilling, and of models of possible heat sources and coupling between the hydrothermal and magmatic systems. Our analysis confirms the interpretation that the crystalline basement beneath the sediments, rather than being granitic, is oceanic in character, resembling an ophiolite complex. The heat source is most likely a cooling gabbroic intrusion, several kilometers in diameter, overlain by a sheeted dike swarm. A 6 km deep bore-hole centered over such an intrusion would not only be one of the world`s deepest geothermal wells but could also be one of the hottest.

  19. Field testing advanced geothermal turbodrill (AGT). Phase 1 final report

    SciTech Connect (OSTI)

    Maurer, W.C.; Cohen, J.H.

    1999-06-01

    Maurer Engineering developed special high-temperature geothermal turbodrills for LANL in the 1970s to overcome motor temperature limitations. These turbodrills were used to drill the directional portions of LANL`s Hot Dry Rock Geothermal Wells at Fenton Hill, New Mexico. The Hot Dry Rock concept is to drill parallel inclined wells (35-degree inclination), hydraulically fracture between these wells, and then circulate cold water down one well and through the fractures and produce hot water out of the second well. At the time LANL drilled the Fenton Hill wells, the LANL turbodrill was the only motor in the world that would drill at the high temperatures encountered in these wells. It was difficult to operate the turbodrills continuously at low speed due to the low torque output of the LANL turbodrills. The turbodrills would stall frequently and could only be restarted by lifting the bit off bottom. This allowed the bit to rotate at very high speeds, and as a result, there was excessive wear in the bearings and on the gauge of insert roller bits due to these high rotary speeds. In 1998, Maurer Engineering developed an Advanced Geothermal Turbodrill (AGT) for the National Advanced Drilling and Excavation Technology (NADET) at MIT by adding a planetary speed reducer to the LANL turbodrill to increase its torque and reduce its rotary speed. Drilling tests were conducted with the AGT using 12 1/2-inch insert roller bits in Texas Pink Granite. The drilling tests were very successful, with the AGT drilling 94 ft/hr in Texas Pink Granite compared to 45 ft/hr with the LANL turbodrill and 42 ft/hr with a rotary drill. Field tests are currently being planned in Mexico and in geothermal wells in California to demonstrate the ability of the AGT to increase drilling rates and reduce drilling costs.

  20. Locating an active fault zone in Coso geothermal field by analyzing...

    Open Energy Info (EERE)

    waves from microearthquake data Abstract Active fault systems usually provide high-permeability channels for hydrothermal outflow in geothermal fields. Locating such fault systems...

  1. Calpine Geothermal Operations Recognized by State of California |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Calpine Geothermal Operations Recognized by State of California Calpine Geothermal Operations Recognized by State of California July 30, 2008 - 3:19pm Addthis Calpine Corporation (NYSE:CPN) was recently recognized by the state of California for its ongoing commitment to safety and the environment and its excellence in lease maintenance at its geothermal facilities at The Geysers in Northern California. The California Department of Conservation presented Calpine's Geysers

  2. Power Plays- Geothermal Energy in Oil & Gas Fields

    Office of Energy Efficiency and Renewable Energy (EERE)

    Register today for the SMU Power Plays Workshop and Conference at Southern Methodist University, May 18-20, 2015. The Energy Department accelerates geothermal energy development by investing in transformative technologies that accelerate geothermal development.

  3. Geothermal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Geothermal Louise Vickery, General Manager, Renewable Futures at the Australian Renewable Energy Agency (ARENA). Permalink Gallery Australian Renewable-Energy Official Visits Sandia Concentrating Solar Power, EC, Energy, Geothermal, News, News & Events, Photovoltaic, Renewable Energy, Solar, Water Power, Wind Energy Australian Renewable-Energy Official Visits Sandia Louise Vickery, General Manager, Renewable Futures at the Australian Renewable Energy Agency (ARENA). At the end of June,

  4. Development history of the Tiwi geothermal field, Philippines

    SciTech Connect (OSTI)

    Gambill, D.T.; Beraquit, D.B.

    1993-10-01

    Commercial production of electricity from the Tiwi geothermal system began in 1979. In 1982, Tiwi became the world`s first water-dominated system to produce more than 160 MWe. Today the field supplies about 11% of Luzon`s electricity. Initially, the reservoir was single-phase liquid with a small, shallow steam zone on the east side. Temperature reversals in the first wells showed the east to be an outflow zone. As production began, reservoir pressure declined, two-phase conditions developed, and groundwater entered the reservoir from the east. As many productions wells cooled, brine production increased and generation decreased from about 280 MWe in 1983 to about 190 MWe in 1986. Improvements to surface facilities and new wells drilled farther west raised generation to about 280 MWe by mid-1993. Separated brine was first injected into the reservoir, but this lowered steam production; injection is now outside the field.

  5. Geothermal injection treatment: process chemistry, field experiences, and design options

    SciTech Connect (OSTI)

    Kindle, C.H.; Mercer, B.W.; Elmore, R.P.; Blair, S.C.; Myers, D.A.

    1984-09-01

    The successful development of geothermal reservoirs to generate electric power will require the injection disposal of approximately 700,000 gal/h (2.6 x 10/sup 6/ 1/h) of heat-depleted brine for every 50,000 kW of generating capacity. To maintain injectability, the spent brine must be compatible with the receiving formation. The factors that influence this brine/formation compatibility and tests to quantify them are discussed in this report. Some form of treatment will be necessary prior to injection for most situations; the process chemistry involved to avoid and/or accelerate the formation of precipitate particles is also discussed. The treatment processes, either avoidance or controlled precipitation approaches, are described in terms of their principles and demonstrated applications in the geothermal field and, when such experience is limited, in other industrial use. Monitoring techniques for tracking particulate growth, the effect of process parameters on corrosion and well injectability are presented. Examples of brine injection, preinjection treatment, and recovery from injectivity loss are examined and related to the aspects listed above.

  6. Concept Testing and Development at the Raft River Geothermal Field, Idaho |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Geothermal Technologies Program 2010 Peer Review Concept Testing and Development at the Raft River Geothermal Field, Idaho, for the Engineered Geothermal Systems Demonstration Projects and Low Temperature Exploration and Demonstrations Project Track. Objective to Develop and demonstrate the techniques required to form and sustain EGS reservoirs including combined thermal and hydraulic stimulation and numerical modeling and Improve the performance and output of the Raft

  7. Challenges in determining b value in the Northwest Geysers

    SciTech Connect (OSTI)

    Saltiel, S.; Boyle, K.; Majer, E.

    2011-02-01

    Past analyses of the Gutenberg-Richter b-value in the Geysers and other geothermal settings have revealed a deviation from the assumed linear relationship in log space between magnitude and the number of earthquakes. In this study of the Northwest Geysers, we found a gently-sloping discontinuity in the b-value curve. This is especially apparent when comparing the least-squares fit (LSQ) of the curve to the fit obtained by the maximum likelihood estimation (MLE), a widely-respected method of analyzing magnitude-frequency relationships. This study will describe the assumptions made when using each of these two methods and will also explore how they can be used in conjunction to investigate the characteristics of the observed b-value curve. To understand whether slope-fit differences in the LSQR and MLE methods is due to physical properties of the system or due to artifacts from errors in sampling, it is extremely important to consider the catalog completeness, magnitude bin size, number of events, and differences in source mechanisms for the events comprising the study volume. This work will hopefully lead to informative interpretations of frequency-magnitude curves for the Northwest Geysers, a geothermal area of ongoing high-volume coldwater injection and steam production. Through this statistical investigation of the catalog contents, we hope to better understand the dominant source mechanisms and the role of injected fluids in the creation of seismic clustering around nearly 60 wells of varying depths and injection volumes.

  8. Geyser Bight Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    and Environmental Issues Click "Edit With Form" above to add content Exploration History First Discovery Well Completion Date: Well Name: Location: Depth: Initial Flow...

  9. Geyser Bight Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    182C455.15 K 359.6 F 819.27 R 1 USGS Estimated Reservoir Volume: 12 km 1 USGS Mean Capacity: 98 MW 1 Click "Edit With Form" above to add content History and...

  10. Crump Geyser Geothermal Project | Open Energy Information

    Open Energy Info (EERE)

    ectangles":,"copycoords":false,"static":false,"wmsoverlay":"","layers":,"controls":"pan","zoom","type","scale","streetview","zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoi...

  11. Geysers Project Geothermal Project | Open Energy Information

    Open Energy Info (EERE)

    ectangles":,"copycoords":false,"static":false,"wmsoverlay":"","layers":,"controls":"pan","zoom","type","scale","streetview","zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoi...

  12. Microearthquake Studies at the Salton Sea Geothermal Field

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Templeton, Dennise

    The objective of this project is to detect and locate microearthquakes to aid in the characterization of reservoir fracture networks. Accurate identification and mapping of the large numbers of microearthquakes induced in EGS is one technique that provides diagnostic information when determining the location, orientation and length of underground crack systems for use in reservoir development and management applications. Conventional earthquake location techniques often are employed to locate microearthquakes. However, these techniques require labor-intensive picking of individual seismic phase onsets across a network of sensors. For this project we adapt the Matched Field Processing (MFP) technique to the elastic propagation problem in geothermal reservoirs to identify more and smaller events than traditional methods alone.

  13. Microearthquake Studies at the Salton Sea Geothermal Field

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Templeton, Dennise

    2013-10-01

    The objective of this project is to detect and locate microearthquakes to aid in the characterization of reservoir fracture networks. Accurate identification and mapping of the large numbers of microearthquakes induced in EGS is one technique that provides diagnostic information when determining the location, orientation and length of underground crack systems for use in reservoir development and management applications. Conventional earthquake location techniques often are employed to locate microearthquakes. However, these techniques require labor-intensive picking of individual seismic phase onsets across a network of sensors. For this project we adapt the Matched Field Processing (MFP) technique to the elastic propagation problem in geothermal reservoirs to identify more and smaller events than traditional methods alone.

  14. A reservoir engineering assessment of the San Jacinto-Tizate geothermal field, Nicaragua

    SciTech Connect (OSTI)

    Ostapenko, S.; Spektor, S.; Davila, H.; Porras, E.; Perez, M.

    1996-12-31

    More than twenty years have passed since geothermal research and drilling took place at the geothermal fields in Nicaragua. The well known Momotombo Geothermal Field (70 MWe) has been generating electricity since 1983, and now a new geothermal field is under exploration, the San Jacinto-Tizate. Two reservoirs hydraulic connected were found. The shallow reservoir (270{degrees}C) at the depth of 550 - 1200 meters, and the deep one at > 1600 meters. Both of them are water dominated reservoirs although a two phase condition exist in the upper part of the shallow one. Different transient tests and a multi-well interference test have been carried out, very high transmissivity value were estimated around the well SJ-4 and average values for the others. A preliminary conceptual model of the geothermal system is given in this paper, as the result of the geology, geophysics, hydrology studies, drilling and reservoir evaluation.

  15. A reservoir engineering assessment of the San Jacinto-Tizate Geothermal Field, Nicaragua

    SciTech Connect (OSTI)

    Ostapenko, S.; Spektor, S.; Davila, H.; Porras, E.; Perez, M.

    1996-01-24

    More than twenty yews have passed since geothermal research and drilling took place at the geothermal fields in Nicaragua- Tbe well horn Momotombo Geothermal Field (70 We) has been generating electricity since 1983, and now a new geothermal field is under exploration. the San Jacinto-Tizate. Two reservoirs hydraulic connected were found. The shallow reservoir (270°C) at the depth of 550 - 1200 meters, and the deep one at > 1600 meters. Both of theme are water dominated reservoirs, although a two phase condition exist in the upper part of the shallow one. Different transient tests and a multi-well interference test have been carried out, very high transmissivity value were estimated around the well SJ-4 and average values for the others. A preliminar conceptual model of the geothermal system is given in this paper, as the result of the geology, geophysics, hydrology studies, drilling and reservoir evaluation.

  16. The Ahuachapan geothermal field, El Salvador: Reservoir analysis

    SciTech Connect (OSTI)

    Aunzo, Z.; Bodvarsson, G.S.; Laky, C.; Lippmann, M.J.; Steingrimsson, B.; Truesdell, A.H.; Witherspoon, P.A.; Icelandic National Energy Authority, Reykjavik; Geological Survey, Menlo Park, CA; Lawrence Berkeley Lab., CA )

    1989-08-01

    The Earth Sciences Division of Lawrence Berkeley Laboratory (LBL) is conducting a reservoir evaluation study of the Ahuachapan geothermal field in El Salvador. This work is being performed in cooperation with the Comision Ejecutiva Hidroelectrica del Rio Lempa (CEL) and the Los Alamos National Laboratory (LANL). This report describes the work done during the first year of the study (FY 1988--89), and includes the (1) development of geological and conceptual models of the field, (2) evaluation of the initial thermodynamic and chemical conditions and their changes during exploitation, (3) evaluation of interference test data and the observed reservoir pressure decline, and (4) the development of a natural state model for the field. The geological model of the field indicates that there are seven (7) major and five (5) minor faults that control the fluid movement in the Ahuachapan area. Some of the faults act as a barrier to flow as indicated by large temperature declines towards the north and west. Other faults act as preferential pathways to flow. The Ahuachapan Andesites provide good horizontal permeability to flow and provide most of the fluids to the wells. The underlying Older Agglomerates also contribute to well production, but considerably less than the Andesites. 84 refs.

  17. Temporal Velocity Variations beneath the Coso Geothermal Field...

    Open Energy Info (EERE)

    Double Difference Tomography of Compressional and Shear Wave Arrival Times Abstract Microseismic imaging can be an important tool for characterizing geothermal reservoirs....

  18. An Audiomagnetotelluric Survey Over The Chaves Geothermal Field...

    Open Energy Info (EERE)

    Archie law. Authors Fernando Acacio Monteiro Santos, Andre Dupis, Antonio Roque Andrade Afonso and Luis Alberto Mendes-Victor Published Journal Geothermics, 1996 DOI Not...

  19. Structural Analysis of the Desert Peak-Brady Geothermal Fields...

    Open Energy Info (EERE)

    Structures and Geothermal Reservoirs in the Humboldt Structural Zone Citation James E. Faulds,Larry J. Garside,Gary L. Oppliger. 2003. Structural Analysis of the Desert...

  20. Structural interpretation of the Coso geothermal field. Summary...

    Open Energy Info (EERE)

    example of a structurally controlled geothermal resource. Authors Austin, C.F.; Moore and J.L. Published Publisher Not Provided, 911987 DOI Not Provided Check for DOI...

  1. Active Faulting in the Coso Geothermal Field, Eastern California...

    Open Energy Info (EERE)

    and seismogenic deformation above the shallow BDT may contribute to development of permeability in the geothermal reservoir, and provide pathways for upward circulation of...

  2. Field Mapping At Coso Geothermal Area (2006) | Open Energy Information

    Open Energy Info (EERE)

    Basis Determine impact of brittle faulting and seismogenic deformation on permeability in geothermal reservoir Notes New mapping documents a series of late Quaternary...

  3. Active Faulting in the Coso Geothermal Field- Eastern California...

    Open Energy Info (EERE)

    and seismogenic deformation above the shallow BDT may contribute to development of permeability in the geothermal reservoir, and provide pathways for upward circulation of...

  4. Reservoir analysis of the Palinpinon geothermal field, Negros Oriental, Philippines

    SciTech Connect (OSTI)

    Amistoso, A.E.; Aquino, B.G.; Aunzo, Z.P.; Jordan, O.T.; Ana, F.X.M.S.; Bodvarsson, G.S.; Doughty, C.

    1993-10-01

    The Philippine National Oil Company and Lawrence Berkeley Laboratory have conducted an informal cooperative project on the reservoir evaluation of the Palinpinon geothermal field in the Philippines. The work involved the development of various numerical models of the field in order to understand the observed data. A three-dimensional porous medium model of the reservoir has been developed that matches well the observed pressure declines and enthalpy transients of the wells. Submodels representing the reservoir as a fractured porous medium were developed for the analysis of chemical transport of chlorides within the reservoir and the movement of the cold water front away from injection wells. These models indicate that the effective porosity of the reservoir varies between 1 and 7% and the effective permeability between 1 and 45 millidarcies. The numerical models were used to predict the future performance of the Palinpinon reservoir using various possible exploitation scenarios. A limited number of make-up wells were allocated to each sector of the field. When all the make-up wells had been put on line, power production gradually began to decline. The model indicates that under the assumed conditions it will not be possible to maintain the planned power production of 112.5 MWe at Palinpinon I and 80 MWe at Palinpinon II for the next 30 years, but the decline in power output will be within acceptable normal operating capacities of the plants.

  5. Stress and Fluid-Flow Interaction for the Coso Geothermal Field...

    Open Energy Info (EERE)

    Fluid-Flow Interaction for the Coso Geothermal Field Derived from 3D Numerical Models Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Proceedings:...

  6. Rock-Water Interactions In Hot Dry Rock Geothermal Systems- Field...

    Open Energy Info (EERE)

    Rock-Water Interactions In Hot Dry Rock Geothermal Systems- Field Investigations Of In Situ Geochemical Behavior Jump to: navigation, search OpenEI Reference LibraryAdd to library...

  7. Assessing the Rye Patch Geothermal Field, a Classic Basin-and...

    Open Energy Info (EERE)

    the Rye Patch Geothermal Field, a Classic Basin-and-Range Resource Authors S.K Sanyal, J.R McNitt, S. J. Butler, C. W. Klein and and R.E. Elliss Published Journal GRC...

  8. Hot Dry Rock Geothermal Energy In The Jemez Volcanic Field, New...

    Open Energy Info (EERE)

    navigation, search OpenEI Reference LibraryAdd to library Journal Article: Hot Dry Rock Geothermal Energy In The Jemez Volcanic Field, New Mexico Abstract Large, young calderas...

  9. A Test Of The Transiel Method On The Travale Geothermal Field...

    Open Energy Info (EERE)

    Test Of The Transiel Method On The Travale Geothermal Field Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: A Test Of The Transiel Method On The...

  10. Development of a Geothermal Well Database for Estimating In-Field EGS

    Office of Scientific and Technical Information (OSTI)

    Potential in the State of Nevada (Conference) | SciTech Connect Development of a Geothermal Well Database for Estimating In-Field EGS Potential in the State of Nevada Citation Details In-Document Search Title: Development of a Geothermal Well Database for Estimating In-Field EGS Potential in the State of Nevada Authors: Hanson, Hillary ; Wood, Rachel ; Augustine, Chad ; Mines, Greg ; Lopez, Anthony ; Hettinger, Dylan Publication Date: 2014-10-01 OSTI Identifier: 1214999 Report Number(s):

  11. Results of investigations at the Ahuachapan geothermal field, El Salvador

    SciTech Connect (OSTI)

    Dennis, B.; Goff, F.; Van Eeckhout, E.; Hanold, B.

    1990-04-01

    Well logging operations were performed in eight of the geothermal wells at Ahuachapan. High-temperature downhole instruments, including a temperature/rabbit, caliper, fluid velocity spinner/temperature/pressure (STP), and fluid sampler, were deployed in each well. The caliper tool was used primarily to determine if chemical deposits were present in well casings or liners and to investigate a suspected break in the casing in one well. STP logs were obtained from six of the eight wells at various flow rates ranging from 30 to 80 kg/s. A static STP log was also run with the wells shut-in to provide data to be used in the thermodynamic analysis of several production wells. The geochemical data obtained show a system configuration like that proposed by C. Laky and associates in 1989. Our data indicate recharge to the system from the volcanic highlands south of the field. Additionally, our data indicate encroachment of dilute fluids into deeper production zones because of overproduction. 17 refs., 50 figs., 10 tabs.

  12. Calpine: America's largest geothermal energy producer | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Calpine: America's largest geothermal energy producer Calpine: America's largest geothermal energy producer October 6, 2010 - 12:37pm Addthis Calpine operates 15 plants at The Geysers in northwest California, which generate enough clean energy daily to power a city the size of San Francisco.| Photo Courtesy of Calpine Calpine operates 15 plants at The Geysers in northwest California, which generate enough clean energy daily to power a city the size of San Francisco.| Photo Courtesy of

  13. Pyramid Lake Paiute Tribe - Pyramid Lake Energy Project - Geothermal Assessment

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Tribe Pyramid Lake Paiute Tribe Pyramid Lake Energy Project Pyramid Lake Energy Project Geothermal Assessment Geothermal Assessment Pyramid Lake Paiute Reservation 40 miles north of Reno 475,000 acres Pyramid Lake 125,000 surface acres Northern Reservation Needles Area Needles Geyser Needles Geyser Exploration conducted Exploration conducted in 1968 in 1968 Hot water was found Hot water was found at 160 degrees f at 160 degrees f Was not considered Was not considered feasible feasible PLEP

  14. Field Mapping At Coso Geothermal Area (2010) | Open Energy Information

    Open Energy Info (EERE)

    of the South Ranges to see if a geothermal resource might exist. A TGH drilling campaign may be initiated in the South Ranges in 2011. References Andrew Sabin, S. Bjornstad,...

  15. GEOLOGIC FRAMEWORK OF THE EAST FLANK, COSO GEOTHERMAL FIELD:...

    Open Energy Info (EERE)

    relationships imply the system is currently being reheated... Authors Kovac, K.M.; Moore, J.N.; Lutz and S.J. Published PROCEEDINGS, Thirtieth Workshop on Geothermal Reservoir...

  16. Hawaii Energy Resource Overviews. Volume 1. Potential noise issues with geothermal development in Hawaii

    SciTech Connect (OSTI)

    Burgess, J.C.

    1980-06-01

    This report concerns primarily the environmental noise expected to arise from construction and operation at HGP-A. A brief discussion of expected noise effects if the geothermal field is developed is included. Some of this discussion is applicable to noise problems that may arise if other geothermal fields are found and developed, but site-specific discussion of other fields can be formulated only when exact locations are identified. There is information concerning noise at other geothermal fields, especially the Geysers. This report includes only second-hand references to such information. No measurements of ambient sound levels near the HGP-A are available, no reliable and carefully checked sound level measurements from the HGP-A well operation are available.

  17. Enhanced Geothermal System (EGS) Fact Sheet

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... The resulting circulation loop allows water to flow through ... Step 3: Operate the Power Plant and Maintain the Reservoir * ... The Geysers field in northern California contains optimal ...

  18. Geothermal policy development program: expediting the local geothermal permitting process

    SciTech Connect (OSTI)

    Not Available

    1981-07-01

    For a number of years, concerns have been raised about the length of time and the complexity involved in obtaining required permits in order to develop the geothermal resource at the Geysers. Perhaps the most important factor is jurisdiction. At the Geysers, all three levels of government - local, state, and federal - exercise significant authority over various aspects of geothermal development. In addition, several agencies within each governmental level play an active role in the permitting process. The present study is concerned primarily with the local permitting process, and the ways in which this process could be expedited. This report begins by looking at the local role in the overall permitting process, and then reviews the findings and conclusions that have been reached in other studies of the problem. This is followed by a case study evaluation of recent permitting experience in the four Geysers-Calistoga KGRA counties, and the report concludes by outlining several approaches to expediting the local permitting process.

  19. Impact of geothermal development on stockraising homestead landowners

    SciTech Connect (OSTI)

    Not Available

    1981-04-16

    Surface use and compensation conflicts have developed at the Geysers in California between owners of surface lands acquired under the Stockraising Homestead Act of 1916 and geothermal lessees with the right to develop the mineral interests reserved to the Federal Government. Several recommendations are made to the Secretary of the Interior concerning the problems identified. The following are discussed: conditions at the Geysers concerning geothermal development on stockraising lands that could be considered in regard to compensation, existence or potential for similar conflicts on this land outside the Geysers, protection and compensation provided surface owners in existence of legislation and the need for amendments, and alternative methods for paying compensation.

  20. The Northwest Geysers EGS Demonstration Project, California. Pre-stimulation Modeling and Interpretation of the Stimulation

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Rutqvist, Jonny; Dobson, Patrick F.; Garcia, Julio; Hartline, Craig; Jeanne, Pierre; Oldenburg, Curtis M.; Vasco, Donald W.; Walters, Mark

    2013-10-17

    The Northwest Geysers Enhanced Geothermal System (EGS) demonstration project aims to create an EGS by directly and systematically injecting cool water at relatively low pressure into a known High Temperature (280–400 °C) Zone (HTZ) located under the conventional (240 °C) geothermal steam reservoir at The Geysers geothermal field in California. Here we report that , the results of coupled thermal, hydraulic, and mechanical (THM) analyses made using a model developed as part of the pre-stimulation phase of the EGS demonstration project is presented. The model simulations were conducted in order to investigate injection strategies and the resulting effects of cold-watermore » injection upon the EGS system; in particular to predict the extent of the stimulation zone for a given injection schedule. The actual injection began on October 6, 2011, and in this paper a comparison of pre-stimulation model predictions with micro-earthquake (MEQ) monitoring data over the first few months of a one-year injection program is presented. The results show that, by using a calibrated THM model based on historic injection and MEQ data at a nearby well, the predicted extent of the stimulation zone (defined as a zone of high MEQ density around the injection well) compares well with observed seismicity. The modeling indicates that the MEQ events are related to shear reactivation of preexisting fractures, which is triggered by the combined effects of injection-induced cooling around the injection well and small changes in steam pressure as far as half a kilometer away from the injection well. Pressure-monitoring data at adjacent wells and satellite-based ground-surface deformation data were also used to validate and further calibrate reservoir-scale hydraulic and mechanical model properties. The pressure signature monitored from the start of the injection was particularly useful for a precise back-calculation of reservoir porosity. Ultimately, the first few months of reservoir

  1. Concept Testing and Development at the Raft River Geothermal Field, Idaho

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2013 Peer Review Concept Testing and Development at the Raft River Geothermal Field, Idaho Principal Investigators: J. Moore and J. McLennan Organization: University of Utah Track Name: EGS Demonstration Projects Project Officer: W. Vandermeer Total Project Funding: $10,214,987 April 22, 2013 This presentation does not contain any proprietary confidential, or otherwise restricted information. 2 | US DOE Geothermal Office eere.energy.gov Relevance/Impact of Research 1. Develop and demonstrate

  2. Geothermal Progress Monitor, report No. 13

    SciTech Connect (OSTI)

    Not Available

    1992-02-01

    Geothermal Progress Monitor (GPM) Issue No. 13 documents that most related factors favor the growth and geographic expansion of the US geothermal industry and that the industry is being technologically prepared to meet those challenges into the next century. It is the function of GPM to identify trends in the use of this resource and to provide a historical record of its development pathway. The information assembled for this issue of GPM indicates that trends in the use of geothermal energy in this country and abroad continue to be very positive. Favorable sentiments as well as pertinent actions on the part of both government and industry are documented in almost every section. The FEDERAL BEAT points up that the National Energy Strategy (NES) developed at the highest levels of the US government recognizes the environmental and energy security advantages of renewable energy, including geothermal, and makes a commitment to substantial diversification'' of US sources of energy. With the announcement of the construction of several new plants and plant expansions, the INDUSTRY SCENE illustrates industry's continued expectation tha the use of geothermal energy will prove profitable to investors. In DEVELOPMENT STATUS, spokesmen for both an investor-owned utility and a major geothermal developer express strong support for geothermal power, particularly emphasizing its environmental advantages. DEVELOPMENT STATUS also reports that early successes have been achieved by joint DOE/industry R D at The Geysers which will have important impacts on the future management of this mature field. Also there is increasing interest in hot dry rock. Analyses conducted in support of the NES indicate that if all the postulated technology developments occur in this field, the price of energy derived from hot dry rock in the US could drop.

  3. The Momotombo Geothermal Field, Nicaragua: Exploration and development case history study

    SciTech Connect (OSTI)

    1982-07-01

    This case history discusses the exploration methods used at the Momotombo Geothermal Field in western Nicaragua, and evaluates their contributions to the development of the geothermal field models. Subsequent reservoir engineering has not been synthesized or evaluated. A geothermal exploration program was started in Nicaragua in 1966 to discover and delineate potential geothermal reservoirs in western Nicaragua. Exploration began at the Momotombo field in 1970 using geological, geochemical, and geophysical methods. A regional study of thermal manifestations was undertaken and the area on the southern flank of Volcan Momotombo was chosen for more detailed investigation. Subsequent exploration by various consultants produced a number of geotechnical reports on the geology, geophysics, and geochemistry of the field as well as describing production well drilling. Geological investigations at Momotombo included photogeology, field mapping, binocular microscope examination of cuttings, and drillhole correlations. Among the geophysical techniques used to investigate the field sub-structure were: Schlumberger and electromagnetic soundings, dipole mapping and audio-magnetotelluric surveys, gravity and magnetic measurements, frequency domain soundings, self-potential surveys, and subsurface temperature determinations. The geochemical program analyzed the thermal fluids of the surface and in the wells. This report presents the description and results of exploration methods used during the investigative stages of the Momotombo Geothermal Field. A conceptual model of the geothermal field was drawn from the information available at each exploration phase. The exploration methods have been evaluated with respect to their contributions to the understanding of the field and their utilization in planning further development. Our principal finding is that data developed at each stage were not sufficiently integrated to guide further work at the field, causing inefficient use of

  4. Reservoir engineering applications for development and exploitation of geothermal fields in the Philippines

    SciTech Connect (OSTI)

    Vasquez, N.C.; Sarmiento, Z.F.

    1986-07-01

    After a geothermal well is completed, several tests and downhole measurements are conducted to help evaluate the subsurface fluid and reservoir properties intersected. From these tests, a conceptual model of the well can be developed by integrating data from the various parts of the field. This paper presents the completion techniques applied in geothermal wells, as well as the role of reservoir engineering science in delineating a field for development. Monitoring techniques and other reservoir engineering aspects of a field under exploitation are also discussed, with examples from the Philippines.

  5. Beowawe geothermal-resource assessment. Final report. Shallow-hole temperature survey geophysics and deep test hole Collins 76-17

    SciTech Connect (OSTI)

    Jones, N.O.

    1983-03-01

    Geothermal resource investigation field efforts in the Beowawe Geysers Area, Eureka County, Nevada are described. The objectives included acquisition of geotechnical data for understanding the nature and extent of the geothermal resource boundaries south of the known resource area. Fourteen shallow (<500 feet) temperature-gradient holes plus geophysics were used to select the site for a deep exploratory well, the Collins 76-17, which was completed to a total depth of 9005 feet. Maximum downhole recorded temperature was 311/sup 0/F, but no flow could be induced.

  6. Effects of adsorption and capillarity on injection in vapor-dominated geothermal reservoirs

    SciTech Connect (OSTI)

    Sta. Maria, R.B.; Horne, R.N.

    1996-04-10

    One major motivation for the study of the effects of adsorption in geothermal reservoirs is the phenomenon known as {open_quotes}The Geysers Paradox{close_quotes}. Data from The Geysers field suggest that some water must be stored in the reservoir in a condensed phase even though the prevailing reservoir pressure and temperature dictate superheated conditions. Physical adsorption of steam onto rocks and the thermodynamics of curved interfaces prevailing in the pore spaces of the rock matrix can explain the apparent paradox. These mechanisms make it possible for water and steam to coexist in conditions we normally refer to as {open_quotes}superheated{close_quotes} based on our concept of flat interface thermodynamics (e.g., the Steam Table).

  7. Seventeenth workshop on geothermal reservoir engineering: Proceedings

    SciTech Connect (OSTI)

    Ramey, H.J. Jr.; Kruger, P.; Miller, F.G.; Horne, R.N.; Brigham, W.E.; Cook, J.W.

    1992-01-31

    PREFACE The Seventeenth Workshop on Geothermal Reservoir Engineering was held at Stanford University on January 29-31, 1992. There were one hundred sixteen registered participants which equaled the attendance last year. Participants were from seven foreign countries: Italy, Japan, United Kingdom, France, Belgium, Mexico and New Zealand. Performance of many geothermal fields outside the United States was described in the papers. The Workshop Banquet Speaker was Dr. Raffaele Cataldi. Dr. Cataldi gave a talk on the highlights of his geothermal career. The Stanford Geothermal Program Reservoir Engineering Award for Excellence in Development of Geothermal Energy was awarded to Dr. Cataldi. Dr. Frank Miller presented the award at the banquet. Thirty-eight papers were presented at the Workshop with two papers submitted for publication only. Dr. Roland Horne opened the meeting and the key note speaker was J.E. ''Ted'' Mock who discussed the DOE Geothermal R. & D. Program. The talk focused on aiding long-term, cost effective private resource development. Technical papers were organized in twelve sessions concerning: geochemistry, hot dry rock, injection, geysers, modeling, and reservoir mechanics. Session chairmen were major contributors to the program and we thank: Sabodh Garg., Jim Lovekin, Jim Combs, Ben Barker, Marcel Lippmann, Glenn Horton, Steve Enedy, and John Counsil. The Workshop was organized by the Stanford Geothermal Program faculty, staff, and graduate students. We wish to thank Pat Ota, Ted Sumida, and Terri A. Ramey who also produces the Proceedings Volumes for publication. We owe a great deal of thanks to our students who operate audiovisual equipment and to Francois Groff who coordinated the meeting arrangements for the Workshop. Henry J. Ramey, Jr. Roland N. Horne Frank G. Miller Paul Kruger William E. Brigham Jean W. Cook -vii

  8. Geothermally Coupled Well-Based Compressed Air Energy Storage

    SciTech Connect (OSTI)

    Davidson, Casie L.; Bearden, Mark D.; Horner, Jacob A.; Cabe, James E.; Appriou, Delphine; McGrail, B. Peter

    2015-12-20

    . This project assessed the technical and economic feasibility of implementing geothermally coupled well-based CAES for grid-scale energy storage. Based on an evaluation of design specifications for a range of casing grades common in U.S. oil and gas fields, a 5-MW CAES project could be supported by twenty to twenty-five 5,000-foot, 7-inch wells using lower-grade casing, and as few as eight such wells for higher-end casing grades. Using this information, along with data on geothermal resources, well density, and potential future markets for energy storage systems, The Geysers geothermal field was selected to parameterize a case study to evaluate the potential match between the proven geothermal resource present at The Geysers and the field’s existing well infrastructure. Based on calculated wellbore compressed air mass, the study shows that a single average geothermal production well could provide enough geothermal energy to support a 15.4-MW (gross) power generation facility using 34 to 35 geothermal wells repurposed for compressed air storage, resulting in a simplified levelized cost of electricity (sLCOE) estimated at 11.2 ¢/kWh (Table S.1). Accounting for the power loss to the geothermal power project associated with diverting geothermal resources for air heating results in a net 2-MW decrease in generation capacity, increasing the CAES project’s sLCOE by 1.8 ¢/kWh.

  9. Geothermally Coupled Well-Based Compressed Air Energy Storage

    SciTech Connect (OSTI)

    Davidson, C L; Bearden, Mark D; Horner, Jacob A; Appriou, Delphine; McGrail, B Peter

    2015-12-01

    . This project assessed the technical and economic feasibility of implementing geothermally coupled well-based CAES for grid-scale energy storage. Based on an evaluation of design specifications for a range of casing grades common in U.S. oil and gas fields, a 5-MW CAES project could be supported by twenty to twenty-five 5,000-foot, 7-inch wells using lower-grade casing, and as few as eight such wells for higher-end casing grades. Using this information, along with data on geothermal resources, well density, and potential future markets for energy storage systems, The Geysers geothermal field was selected to parameterize a case study to evaluate the potential match between the proven geothermal resource present at The Geysers and the field’s existing well infrastructure. Based on calculated wellbore compressed air mass, the study shows that a single average geothermal production well could provide enough geothermal energy to support a 15.4-MW (gross) power generation facility using 34 to 35 geothermal wells repurposed for compressed air storage, resulting in a simplified levelized cost of electricity (sLCOE) estimated at 11.2 ¢/kWh (Table S.1). Accounting for the power loss to the geothermal power project associated with diverting geothermal resources for air heating results in a net 2-MW decrease in generation capacity, increasing the CAES project’s sLCOE by 1.8 ¢/kWh.

  10. Compilation of Rare Earth Element Analyses from US Geothermal Fields and Mid Ocean Ridge Hydrothermal Vents

    SciTech Connect (OSTI)

    Andrew Fowler

    2015-10-01

    Compilation of rare earth element and associated major and minor dissolved constituent analytical data for USA geothermal fields and global seafloor hydrothermal vents. Data is in original units. Reference to and use of this data should be attributed to the original authors and publications according to the provisions outlined therein.

  11. LITERATURE SURVEY ON CEMENTS FOR REMEDIATION OF DEFORMED CASING IN GEOTHERMAL WELLS

    SciTech Connect (OSTI)

    ALLAN,M.L.; PHILIPPACOPOULOS,A.J.

    1998-11-01

    Brookhaven National Laboratory was requested to conduct a literature survey for the best available cement to use in the proposed casing patch as part of the Geothermal Drilling Organization (GDO) project on remediation of deformed casings. A total of 50 wells has been identified with deformed production casing in Unocal's portion of The Geysers geothermal field. Reduced internal diameter and casing doglegs result in lost production and the possible need for abandonment. The cause of the deformations is believed to be formation movement along fault planes and/or along weaker layers or interfaces between high impedance contrast media. Apparently, it is unclear whether shear or axial compression is the dominant failure mechanism. A procedure to address the casing deformation and avoid abandonment of these wells has been developed as described in the Geysers Deformed Casing Remediation Proposal. The proposed remediation procedure involves isolation of the zone of interest with an inflatable packer, milling the deformed casing and cementing a 7 inch diameter liner to extend approximately 100 ft above and 100 ft below the milled zone. During the milling operation it is possible that the original cement and surrounding formation may slough away. In order to specify a suitable cement formulation for the casing patch it is first necessary to identify and understand the deformation mechanism/s operating in The Geysers field. Subsequently, the required cement mechanical properties to withstand further deformation of the repaired system must be defined. From this information it can be determined whether available cement formulations meet these requirements. In addition to The Geysers, other geothermal fields are at possible risk of casing deformation due to subsidence, seismic activity, lateral and vertical formation movement or other processes. Therefore, the proposed remediation procedure may have applications in other fields. The literature survey focused on published

  12. Final cost reduction study for the Geysers Recharge Alternative. Volume 1

    SciTech Connect (OSTI)

    1997-11-01

    The purpose of this study is to determine whether or not cost reduction opportunities exist for the Geysers Recharge Alternative as defined in the Santa Rosa Subregional Long-Term Wastewater Project EIR/EIS. The City of Santa Rosa has been directed to have a plan for reclaimed water disposal in place by 1999 which will meet future capacity needs under all weather conditions. A Draft EIR/EIS released in July 1996 and a Final EIR certified in June 1997 examine four primary alternatives plus the No Action Alternative. Two of the primary alternatives involve agricultural irrigation with reclaimed water, either in western or southern Sonoma County. Another involves increased discharge of reclaimed water into the Russian River. The fourth involves using reclaimed water to replenish the geothermal reservoir at the Geysers. The addition of this water source would enable the Geysers operators to produce more steam from the geothermal area and thereby prolong the life and economic production level of the steamfield and the geothermal power plants supplied by the steamfield. This study provides additional refined cost estimates for new scenarios which utilize an alternative pipeline alignment and a range of reclaimed water flows, which deliver less water to the Geysers than proposed in the EIR/EIS (by distributing flow to other project components). Also, electrical power rates were revised to reflect the recent changes in costs associated with deregulation of the power industry. In addition, this report provides information on sources of potential public and private funding available and future environmental documentation required if the cost reduction scenarios were to be selected by the City as part of their preferred alternative.

  13. 36Cl/Cl ratios in geothermal systems: preliminary measurements from the Coso Field

    SciTech Connect (OSTI)

    Nimz, G.J.; Moore, J.N.; Kasameyer, P.W.

    1997-07-01

    The {sub 36}Cl/Cl isotopic composition of chlorine in geothermal systems can be a useful diagnostic tool in characterizing hydrologic structure, in determining the origins and age of waters within the systems, and in differentiating the sources of chlorine (and other solutes) in the thermal waters. The {sub 36}Cl/Cl values for several geothermal water samples and reservoir host rock samples from the Coso, California geothermal field have been measured for these purposes. The results indicate that most of the chlorine is not derived from the dominant granitoid that host the geothermal system. If the chlorine was originally input into the Coso subsurface through meteoric recharge, that input occurred at least 1-1.25 million years ago. The results suggest that the thermal waters could be connate waters derived from sedimentary formations, presumably underlying and adjacent top the granitic rocks, which have recently migrated into the host rocks. Alternatively, most of the chlorine but not the water, may have recently input into the system from magmatic sources. In either case, the results indicate that most of the chlorine in the thermal waters has existed within the granitoid host rocks for no more than about 100,00-200,00 years. this residence time for the chlorine is similar to residence times suggested by other researchers for chlorine in deep groundwaters of the Mono Basin north of the Coso field.

  14. Predicting the spatial extent of injection-induced zones of enhanced permeability at the Northwest Geysers EGS Demonstration Project

    SciTech Connect (OSTI)

    Rutqvist, J.; Oldenburg, C.M.; Dobson, P.F.

    2010-02-01

    We present the results of coupled thermal, hydraulic, and mechanical (THM) modeling of a proposed stimulation injection associated with an Enhanced Geothermal System (EGS) demonstration project at the northwest part of The Geysers geothermal field, California. The project aims at creating an EGS by directly and systematically injecting cool water at relatively low pressure into a known High Temperature (about 280 to 350 C) Zone (HTZ) located under the conventional (240 C) steam reservoir at depths below 3 km. Accurate micro-earthquake monitoring from the start of the injection will be used as a tool for tracking the development of the EGS. We first analyzed historic injection and micro-earthquake data from an injection well (Aidlin 11), located about 3 miles to the west of the new EGS demonstration area. Thereafter, we used the same modeling approach to predict the likely extent of the zone of enhanced permeability for a proposed initial injection in two wells (Prati State 31 and Prati 32) at the new EGS demonstration area. Our modeling indicates that the proposed injection scheme will provide additional steam production in the area by creating a zone of permeability enhancement extending about 0.5 km from each injection well which will connect to the overlying conventional steam reservoir.

  15. Eighteenth workshop on geothermal reservoir engineering: Proceedings

    SciTech Connect (OSTI)

    Ramey, H.J. Jr.; Horne, R.J.; Kruger, P.; Miller, F.G.; Brigham, W.E.; Cook, J.W.

    1993-01-28

    PREFACE The Eighteenth Workshop on Geothermal Reservoir Engineering was held at Stanford University on January 26-28, 1993. There were one hundred and seventeen registered participants which was greater than the attendance last year. Participants were from eight foreign countries: Italy, Japan, United Kingdom, Mexico, New Zealand, the Philippines, Guatemala, and Iceland. Performance of many geothermal fields outside the United States was described in several of the papers. Dean Gary Ernst opened the meeting and welcomed the visitors to the campus. The key note speaker was J.E. ''Ted'' Mock who gave a brief overview of the Department of Energy's current plan. The Stanford Geothermal Program Reservoir Engineering Award for Excellence in Development of Geothermal Energy was awarded to Dr. Mock who also spoke at the banquet. Thirty-nine papers were presented at the Workshop with two papers submitted for publication only. Technical papers were organized in twelve sessions concerning: field operations, The Geysers, geoscience, hot-dry-rock, injection, modeling, slim hole wells, geochemistry, well test and wellbore. Session chairmen were major contributors to the program and we thank: John Counsil, Kathleen Enedy, Harry Olson, Eduardo Iglesias, Marcelo Lippmann, Paul Atkinson, Jim Lovekin, Marshall Reed, Antonio Correa, and David Faulder. The Workshop was organized by the Stanford Geothermal Program faculty, staff, and graduate students. We wish to thank Pat Ota, Ted Sumida, and Terri A. Ramey who also produces the Proceedings Volumes for publication. We owe a great deal of thanks to our students who operate audiovisual equipment and to John Hornbrook who coordinated the meeting arrangements for the Workshop. Henry J. Ramey, Jr. Roland N. Horne Frank G. Miller Paul Kruger William E. Brigham Jean W. Cook

  16. Sixteenth workshop on geothermal reservoir engineering: Proceedings

    SciTech Connect (OSTI)

    Ramey, H.J. Jr.; Kruger, P.; Miller, F.G.; Horne, R.N.; Brigham, W.E.; Cook, J.W.

    1991-01-25

    The Sixteenth Workshop on Geothermal Reservoir Engineering was held at Stanford University on January 23-25, 1991. The Workshop Banquet Speaker was Dr. Mohinder Gulati of UNOCAL Geothermal. Dr. Gulati gave an inspiring talk on the impact of numerical simulation on development of geothermal energy both in The Geysers and the Philippines. Dr. Gulati was the first recipient of The Stanford Geothermal Program Reservoir Engineering Award for Excellence in Development of Geothermal Energy. Dr. Frank Miller presented the award. The registered attendance figure of one hundred fifteen participants was up slightly from last year. There were seven foreign countries represented: Iceland, Italy, Philippines, Kenya, the United Kingdom, Mexico, and Japan. As last year, papers on about a dozen geothermal fields outside the United States were presented. There were thirty-six papers presented at the Workshop, and two papers were submitted for publication only. Attendees were welcomed by Dr. Khalid Aziz, Chairman of the Petroleum Engineering Department at Stanford. Opening remarks were presented by Dr. Roland Horne, followed by a discussion of the California Energy Commission's Geothermal Activities by Barbara Crowley, Vice Chairman; and J.E. ''Ted'' Mock's presentation of the DOE Geothermal Program: New Emphasis on Industrial Participation. Technical papers were organized in twelve sessions concerning: hot dry rock, geochemistry, tracer injection, field performance, modeling, and chemistry/gas. As in previous workshops, session chairpersons made major contributions to the program. Special thanks are due to Joel Renner, Jeff Tester, Jim Combs, Kathy Enedy, Elwood Baldwin, Sabodh Garg, Marcel0 Lippman, John Counsil, and Eduardo Iglesias. The Workshop was organized by the Stanford Geothermal Program faculty, staff, and graduate students. We wish to thank Pat Ota, Angharad Jones, Rosalee Benelli, Jeanne Mankinen, Ted Sumida, and Terri A. Ramey who also produces the Proceedings Volumes

  17. RAPID/Geothermal/Well Field/Alaska | Open Energy Information

    Open Energy Info (EERE)

    At a Glance Jurisdiction: Alaska Drilling & Well Field Permit Agency: Alaska Division of Oil and Gas Drilling & Well Field Permit All wells drilled in support or in search of the...

  18. Field Mapping At Neal Hot Springs Geothermal Area (Colwell, Et...

    Open Energy Info (EERE)

    of Neal Hot Springs and the surrounding areas. This study was conducted by a geophysics field camp from the Colorado School of Mines. Notes Geologic field mapping was done...

  19. Geothermal/Leasing | Open Energy Information

    Open Energy Info (EERE)

    GeothermalLeasing < Geothermal(Redirected from Leasing) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Land Use Planning Leasing Exploration Well Field Power Plant...

  20. Geothermal/Grid Connection | Open Energy Information

    Open Energy Info (EERE)

    GeothermalGrid Connection < Geothermal Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Land Use Planning Leasing Exploration Well Field Power Plant Grid Connection...

  1. Geothermal/Environment | Open Energy Information

    Open Energy Info (EERE)

    GeothermalEnvironment < Geothermal(Redirected from Environment) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Land Use Planning Leasing Exploration Well Field Power...

  2. Newberry Caldera Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    Energy 1 July 1992 USFS BLM GeothermalExploration GeothermalWell Field GeothermalPower Plant Exploration Drilling Exploratory Boreholes Production Wells Thermal Gradient Holes...

  3. Preliminary reservoir engineering studies of the Miravalles geothermal field, Costa Rica

    SciTech Connect (OSTI)

    Haukwa, C.; Bodvarsson, G.S.; Lippmann, M.J.; Mainieri, A.

    1992-01-01

    The Earth Sciences Division of Lawrence Berkeley Laboratory in cooperation with the Instituto Costarricense de Electricidad is conducting a reservoir engineering study of the Miravalles geothermal field, Costa Rica. Using data from eight exploration wells, a two-dimensional areal, natural-state model of Miravalles has been developed. The model was calibrated by fitting the observed temperature and pressure distributions and requires a geothermal upflow zone in the northern part of the field, associated with the Miravalles volcano and an outflow towards the south. The total hot (about 260 C) water recharge is 130 kg/s, corresponding to a thermal input of about 150 MWt. On the basis of the natural-state model a two-dimensional exploitation model was developed. The field has a production area of about 10 km{sup 2}, with temperatures exceeding 220 C. The model indicated that power generation of 55 MWe can be maintained for 30 years, with or without injection of the separated geothermal brine. Generation of 110 MWe could be problematic. Until more information becomes available on the areal extent of the field and the properties of the reservoir rocks, especially their relative permeability characteristics, it is difficult to ascertain if 110 MWe can be sustained during a 30-year period.

  4. Fracture mapping in geothermal fields with long-offset induction logging

    SciTech Connect (OSTI)

    Wilt, M.; Takasugi, Shinji; Uchida, Toshihiro; Kasameyer, P.; Lee, Ki Ha; Lippmann, M.

    1997-01-01

    The mapping of producing fractures in a geothermal field is an important technical objective in field development. Locating, orientating, and assessing producing fractures can guide drilling programs and optimize the placement of production and injection wells. A long-offset multicomponent borehole induction resistivity tool capable of surviving the high temperatures encountered in geothermal wells has recently been developed and tested in a high temperature environment. Several characteristics of this device make it ideal for detecting producing fractures. Whereas commercial induction logging devices have strong source-receiver separations of 1 m, this device has multiple sensors with separation of 8 m, allowing for deeper penetrations and the ability to straddle fracture-induced washout zones in boreholes. The three-component measurements also make it possible to map the strike and inclination of nearby fractures and other three-dimensional structures. This in turn allows for accurate projection of these structures into the space between wells.

  5. 3-D seismic velocity and attenuation structures in the geothermal field

    SciTech Connect (OSTI)

    Nugraha, Andri Dian [Global Geophysics Research Group, Faculty of Mining and Petroleum Engineering, Institute of Technology Bandung, Jalan Ganesha No. 10 Bandung, 40132 (Indonesia)] [Global Geophysics Research Group, Faculty of Mining and Petroleum Engineering, Institute of Technology Bandung, Jalan Ganesha No. 10 Bandung, 40132 (Indonesia); Syahputra, Ahmad [Geophyisical Engineering, Faculty of Mining and Petroleum Engineering, Institute of Technology Bandung, Jalan Ganesha No. 10 Bandung, 40132 (Indonesia)] [Geophyisical Engineering, Faculty of Mining and Petroleum Engineering, Institute of Technology Bandung, Jalan Ganesha No. 10 Bandung, 40132 (Indonesia); Fatkhan,; Sule, Rachmat [Applied Geophysics Research Group, Faculty of Mining and Petroleum Engineering, Institute of Technology Bandung, Jalan Ganesha No. 10 Bandung, 40132 (Indonesia)] [Applied Geophysics Research Group, Faculty of Mining and Petroleum Engineering, Institute of Technology Bandung, Jalan Ganesha No. 10 Bandung, 40132 (Indonesia)

    2013-09-09

    We conducted delay time tomography to determine 3-D seismic velocity structures (Vp, Vs, and Vp/Vs ratio) using micro-seismic events in the geothermal field. The P-and S-wave arrival times of these micro-seismic events have been used as input for the tomographic inversion. Our preliminary seismic velocity results show that the subsurface condition of geothermal field can be fairly delineated the characteristic of reservoir. We then extended our understanding of the subsurface physical properties through determining of attenuation structures (Qp, Qs, and Qs/Qp ratio) using micro-seismic waveform. We combined seismic velocities and attenuation structures to get much better interpretation of the reservoir characteristic. Our preliminary attanuation structures results show reservoir characterization can be more clearly by using the 3-D attenuation model of Qp, Qs, and Qs/Qp ratio combined with 3-D seismic velocity model of Vp, Vs, and Vp/Vs ratio.

  6. Field trip guide to the Valles Caldera and its geothermal systems

    SciTech Connect (OSTI)

    Goff, F.E.; Bolivar, S.L.

    1983-12-01

    This field trip guide has been compiled from extensive field trips led at Los Alamos National Laboratory during the past six years. The original version of this guide was designed to augment a workshop on the Valles Caldera for the Continental Scientific Drilling Program (CSDP). This workshop was held at Los Alamos, New Mexico, 5-7 October 1982. More stops were added to this guide to display the volcanic and geothermal features at the Valles Caldera. The trip covers about 90 miles (one way) and takes two days to complete; however, those who wish to compress the trip into one day are advised to use the designated stops listed in the Introduction. Valles Caldera and vicinity comprise both one of the most exciting geothermal areas in the United States and one of the best preserved Quaternary caldera complexes in the world.

  7. Hyperspectral Imaging At Dixie Valley Geothermal Field Area ...

    Open Energy Info (EERE)

    Field Area Exploration Technique Hyperspectral Imaging Activity Date Spectral Imaging Sensor AVIRIS Usefulness useful DOE-funding Unknown Notes Geology and Geophysics of...

  8. RAPID/Geothermal/Well Field/Oregon | Open Energy Information

    Open Energy Info (EERE)

    pipe, well pad, access road construction, etc). Local Well Field Process not available Policies & Regulations ORS 517 - Mining and Mining Claims ORS 522.135 Permit Time Limit...

  9. RAPID/Geothermal/Well Field/Montana | Open Energy Information

    Open Energy Info (EERE)

    construction will require the MEPA review. Local Well Field Process not available Policies & Regulations MCA 37-43-100 Water Well Contractors References Print PDF...

  10. Klamath and Lake Counties Agricultural Industrial Park; 2010 Geothermal

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technology Program Peer Review Report | Department of Energy Park; 2010 Geothermal Technology Program Peer Review Report Klamath and Lake Counties Agricultural Industrial Park; 2010 Geothermal Technology Program Peer Review Report DOE 2010 Geothermal Technologies Program Peer Review lowtemp_013_riley.pdf (222.49 KB) More Documents & Publications Microseismic Study with LBNL - Monitoring the Effect of Injection of Fluids from the Lake County Pipeline on Seismicity at The Geysers,

  11. Development of a geothermal resource in a fractured volcanic formation: Case study of the Sumikawa Geothermal Field, Japan. Final report, May 1, 1995--November 30, 1997

    SciTech Connect (OSTI)

    Garg, S.K.; Combs, J.; Pritchett, J.W.

    1997-07-01

    The principal purpose of this case study of the Sumikawa Geothermal Field is to document and to evaluate the use of drilling logs, surface and downhole geophysical measurements, chemical analyses and pressure transient data for the assessment of a high temperature volcanic geothermal field. This comprehensive report describes the work accomplished during FY 1993-1996. A brief review of the geological and geophysical surveys at the Sumikawa Geothermal Field is presented (Section 2). Chemical data, consisting of analyses of steam and water from Sumikawa wells, are described and interpreted to indicate compositions and temperatures of reservoir fluids (Section 3). The drilling information and downhole pressure, temperature and spinner surveys are used to determine feedzone locations, pressures and temperatures (Section 4). Available injection and production data from both slim holes and large-diameter wells are analyzed to evaluate injectivity/productivity indices and to investigate the variation of discharge rate with borehole diameter (Section 5). New interpretations of pressure transient data from several wells are discussed (Section 6). The available data have been synthesized to formulate a conceptual model for the Sumikawa Geothermal Field (Section 7).

  12. Microearthquake Study of the Salton Sea Geothermal Field, California: Evidence of Stress Triggering - Masters Thesis

    SciTech Connect (OSTI)

    Holland, Austin Adams

    2002-02-01

    A digital network of 24 seismograph stations was operated from September 15, 1987 to September 30, 1988, by Lawrence Livermore National Laboratory and Unocal as part of the Salton Sea Scientific Drilling Project to study seismicity related to tectonics and geothermal activity near the drilling site. More than 2001 microearthquakes were relocated in this study in order to image any pervasive structures that may exist within the Salton Sea geothermal field. First, detailed velocity models were obtained through standard 1-D inversion techniques. These velocity models were then used to relocate events using both single event methods and Double-Differencing, a joint hypocenter location method. An anisotropic velocity model was built from anisotropy estimates obtained from well logs within the study area. During the study period, the Superstition wills sequence occurred with two moderate earthquakes of MS 6.2 and MS 6.6. These moderate earthquakes caused a rotation of the stress field as observed from the inversion of first motion data from microearthquakes at the Salton Sea geothermal field. Coulomb failure analysis also indicates that microearthquakes occurring after the Superstition Hills sequence are located within a region of stress increase suggesting stress triggering caused by the moderate earthquakes.

  13. A Geothermal Field Model Based On Geophysical And Thermal Prospectings...

    Open Energy Info (EERE)

    Field Model Based On Geophysical And Thermal Prospectings In Nea Kessani (Ne Greece) Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: A...

  14. RAPID/Geothermal/Well Field/Utah | Open Energy Information

    Open Energy Info (EERE)

    an operating unit and have like characteristics. Local Well Field Process not available Policies & Regulations UAC Rule R655-1 Wells Used for the Discovery and Production of...

  15. National Geothermal Student Competition; 2010 Geothermal Technology Program

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Peer Review Report | Department of Energy Competition; 2010 Geothermal Technology Program Peer Review Report National Geothermal Student Competition; 2010 Geothermal Technology Program Peer Review Report DOE 2010 Geothermal Technologies Program Peer Review adse_002_visser.pdf (242 KB) More Documents & Publications Geothermal Power Generation Plant; 2010 Geothermal Technology Program Peer Review Report Concept Testing and Development at the Raft River Geothermal Field, Idaho Feasibility

  16. Variations in dissolved gas compositions of reservoir fluids from the Coso geothermal field

    SciTech Connect (OSTI)

    Williams, Alan E.; Copp, John F.

    1991-01-01

    Gas concentrations and ratios in 110 analyses of geothermal fluids from 47 wells in the Coso geothermal system illustrate the complexity of this two-phase reservoir in its natural state. Two geographically distinct regions of single-phase (liquid) reservoir are present and possess distinctive gas and liquid compositions. Relationships in soluble and insoluble gases preclude derivation of these waters from a common parent by boiling or condensation alone. These two regions may represent two limbs of fluid migration away from an area of two-phase upwelling. During migration, the upwelling fluids mix with chemically evolved waters of moderately dissimilar composition. CO{sub 2} rich fluids found in the limb in the southeastern portion of the Coso field are chemically distinct from liquids in the northern limb of the field. Steam-rich portions of the reservoir also indicate distinctive gas compositions. Steam sampled from wells in the central and southwestern Coso reservoir is unusually enriched in both H{sub 2}S and H{sub 2}. Such a large enrichment in both a soluble and insoluble gas cannot be produced by boiling of any liquid yet observed in single-phase portions of the field. In accord with an upflow-lateral mixing model for the Coso field, at least three end-member thermal fluids having distinct gas and liquid compositions appear to have interacted (through mixing, boiling and steam migration) to produce the observed natural state of the reservoir.

  17. Analysis of reinjection strategies for The Geysers

    SciTech Connect (OSTI)

    Shook, M.; Faulder, D.D.

    1991-01-01

    The Geysers has undergone severe pressure decline in recent years, and reinjection of condensate is thought to be one key to sustaining current steam production. Other methods of pressure maintenance include load cycling, or reduction of steam production during off-peak hours. It is likely that a combination of these two will prove to be optimum in providing pressure and fluid maintenance. This paper presents preliminary results of a study of various injection schemes for The Geysers. A number of injection scenarios are investigated, and an optimum scheme (based on specific parameters) is identified for two different quantities of reinjection. 9 refs., 14 figs., 1 tab.

  18. Analysis of reinjectiion strategies for The Geysers

    SciTech Connect (OSTI)

    Shook, Mike; Faulder, D.D.

    1991-01-01

    The Geysers has undergone severe pressure decline in recent years, and reinjection of condensate is thought to be one key to sustaining current steam production. Other methods of pressure maintenance include load cycling, or reduction of steam production during off-peak hours. It is likely that a combination of these two will prove to be optimum in providing pressure and fluid maintenance. This paper presents preliminary results of a study of various injection schemes for The Geysers. A number of injection scenarios are investigated, and an optimum scheme (based on specific parameters) is identified for two different quantities of reinjection.

  19. Hydrology of the Greater Tongonan Geothermal system, Philippines and its implications to field exploitation

    SciTech Connect (OSTI)

    Seastres, J.S. Jr.; Salonga, N.D.; Saw, V.S.

    1996-12-31

    The Greater Tongonan Geothermal Field will be operating a total of 694 MWe by July 1997. The field has produced steam for the 112.5 MWe Tongonan I power plant since June 1983. With massive fluid withdrawal starting July 1996, a pre-commissioning hydrology was constructed to assess its implications to field exploitation. Pressure drawdown centered at well 106 in Mahiao was induced by fluid withdrawal at Tongonan-I production field. This drawdown will be accelerated by major steam withdrawal (734 kg/s) upon commissioning of power plants at Mahiao, Sambaloran and Malitbog sectors. To resolve this concern, fluid injection will be conducted at the periphery of Mahiao to provide recharge of reheated reinjection fluids in the reservoir. At Mahanagdong, the acidic fluid breakthrough will unlikely occur since the acidic zone north of this sector is not hydrologically well-connected to the main neutral-pH reservoir as indicated by pressure profiles.

  20. Method and apparatus for determining vertical heat flux of geothermal field

    DOE Patents [OSTI]

    Poppendiek, Heinz F.

    1982-01-01

    A method and apparatus for determining vertical heat flux of a geothermal field, and mapping the entire field, is based upon an elongated heat-flux transducer (10) comprised of a length of tubing (12) of relatively low thermal conductivity with a thermopile (20) inside for measuring the thermal gradient between the ends of the transducer after it has been positioned in a borehole for a period sufficient for the tube to reach thermal equilibrium. The transducer is thermally coupled to the surrounding earth by a fluid annulus, preferably water or mud. A second transducer comprised of a length of tubing of relatively high thermal conductivity is used for a second thermal gradient measurement. The ratio of the first measurement to the second is then used to determine the earth's thermal conductivity, k.sub..infin., from a precalculated graph, and using the value of thermal conductivity thus determined, then determining the vertical earth temperature gradient, b, from predetermined steady state heat balance equations which relate the undisturbed vertical earth temperature distributions at some distance from the borehole and earth thermal conductivity to the temperature gradients in the transducers and their thermal conductivity. The product of the earth's thermal conductivity, k.sub..infin., and the earth's undisturbed vertical temperature gradient, b, then determines the earth's vertical heat flux. The process can be repeated many times for boreholes of a geothermal field to map vertical heat flux.

  1. Continuous on-line steam quality monitoring system of the Bacman Geothermal Production Field, Philippines

    SciTech Connect (OSTI)

    Solis, R.P.; Chavez, F.C.; Garcia, S.E.

    1997-12-31

    In any operating geothermal power plant, steam quality is one of the most important parameters being monitored. In the Bacon-Manito Geothermal Production Field (BGPF), an online steam quality monitoring system have been installed in two operating power plants which provides an accurate, efficient and continuous real-time data which is more responsive to the various requirements of the field operation. The system utilizes sodium as an indicator of steam purity. Sodium concentration is read by the flame photometer located at the interface after aspirating a sample of the condensed steam through a continuous condensate sampler. The condensate has been degassed through a condensate-NCG separator. The flame photometer analog signal is then converted by a voltage-to-current converter/transmitter and relayed to the processor which is located at the control center through electrical cable to give a digital sodium concentration read-out at the control panel. The system features a high and high-high sodium level alarm, a continuous strip-chart recorder and a central computer for data capture, retrieval, and processing for further interpretation. Safety devices, such as the flame-off indicator at the control center and the automatic fuel cut-off device along the fuel line, are incorporated in the system.

  2. Geothermal Progress Monitor 12

    SciTech Connect (OSTI)

    1990-12-01

    Some of the more interesting articles in this GPM are: DOE supporting research on problems at The Geysers; Long-term flow test of Hot Dry Rock system (at Fenton Hill, NM) to begin in Fiscal Year 1992; Significant milestones reached in prediction of behavior of injected fluids; Geopressured power generation experiment yields good results. A number of industry-oriented events and successes are reported, and in that regard it is noteworthy that this report comes near the end of the most active decade of geothermal power development in the U.S. There is a table of all operating U.S. geothermal power projects. The bibliography of research reports at the end of this GPM is useful. (DJE 2005)

  3. Towards the Understanding of Induced Seismicity in Enhanced Geothermal Systems

    SciTech Connect (OSTI)

    Gritto, Roland; Dreger, Douglas; Heidbach, Oliver

    2014-08-29

    This DOE funded project was a collaborative effort between Array Information Technology (AIT), the University of California at Berkeley (UCB), the Helmholtz Centre Potsdam - German Research Center for Geosciences (GFZ) and the Lawrence Berkeley National Laboratory (LBNL). It was also part of the European research project “GEISER”, an international collaboration with 11 European partners from six countries including universities, research centers and industry, with the goal to address and mitigate the problems associated with induced seismicity in Enhanced Geothermal Systems (EGS). The goal of the current project was to develop a combination of techniques, which evaluate the relationship between enhanced geothermal operations and the induced stress changes and associated earthquakes throughout the reservoir and the surrounding country rock. The project addressed the following questions: how enhanced geothermal activity changes the local and regional stress field; whether these activities can induce medium sized seismicity M > 3; (if so) how these events are correlated to geothermal activity in space and time; what is the largest possible event and strongest ground motion, and hence the potential hazard associated with these activities. The development of appropriate technology to thoroughly investigate and address these questions required a number of datasets to provide the different physical measurements distributed in space and time. Because such a dataset did not yet exist for an EGS system in the United State, we used current and past data from The Geysers geothermal field in northern California, which has been in operation since the 1960s. The research addressed the need to understand the causal mechanisms of induced seismicity, and demonstrated the advantage of imaging the physical properties and temporal changes of the reservoir. The work helped to model the relationship between injection and production and medium sized magnitude events that have

  4. SMU Geothermal Conference 2011 - Geothermal Technologies Program...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    SMU Geothermal Conference 2011 - Geothermal Technologies Program SMU Geothermal Conference 2011 - Geothermal Technologies Program DOE Geothermal Technologies Program presentation ...

  5. The Bulalo geothermal field, Philippines: Reservoir characteristics and response to production

    SciTech Connect (OSTI)

    Clemente, W.C.; Villadolid-Abrigo, F.L.

    1993-10-01

    The Bulalo geothermal field has been operating since 1979, and currently has 330 MWe of installed capacity. The field is associated with a 0.5 Ma dacite dome on the southeastern flank of the Late Pliocene to Quaternary Mt. Makiling stratovolcano. The reservoir occurs within pre-Makiling andesite flows and pyroclastic rocks capped by the volcanic products of Mt. Makiling. Initially, the reservoir was liquid-dominated with a two-phase zone overlying the neutral-pH liquid. Exploitation has resulted in an enlargement of the two-phase zone, return to the reservoir of separated waste liquid that has been injected, scaling in the wellbores and rock formation, and influx of cooler groundwaters. Return of injected waters to the reservoir and scaling have been the major reservoir management concerns. These have been mitigated effectively by relocating injection wells farther away from the production area and by dissolving scale from wells with an acid treatment.

  6. Energy geothermal; San Emidio Geothermal Area; 3D Model geothermal...

    Office of Scientific and Technical Information (OSTI)

    description: Trainor-Guitton, Hoversten,Nordquist, Intani, Value of information analysis using geothermal field data: accounting for multiple interpretations & determining...

  7. NEPA Process for Geothermal Power Plants in the Deschutes National...

    Open Energy Info (EERE)

    Oregon Project Phase GeothermalExploration, GeothermalWell Field, GeothermalPower Plant Techniques Exploration Drilling, Exploratory Boreholes, Production Wells, Thermal...

  8. Geothermal/Land Use Planning | Open Energy Information

    Open Energy Info (EERE)

    Land Use Planning < Geothermal(Redirected from GeothermalLand Use) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Land Use Planning Leasing Exploration Well Field...

  9. Geothermal/Land Use Planning | Open Energy Information

    Open Energy Info (EERE)

    GeothermalLand Use Planning < Geothermal Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Land Use Planning Leasing Exploration Well Field Power Plant Grid Connection...

  10. Geology and Geothermal Potential of the Roosevelt Hot Springs...

    Open Energy Info (EERE)

    Field Mapping At Roosevelt Hot Springs Geothermal Area (Petersen, 1975) Geothermal Literature Review At Roosevelt Hot Springs Geothermal Area (Petersen, 1975) Geothermometry At...

  11. The hydrological model of the Mahanagdong sector, Greater Tongonan Geothermal Field, Philippines

    SciTech Connect (OSTI)

    Herras, E.B.; Licup, A.C. Jr.; Vicedo, R.O.

    1996-12-31

    The Mahanagdong sector of the Greater Tongonan Geothermal Field is committed to supply 180 MWe of steam by mid-1997. An updated hydrological model was constructed based on available geoscientific and reservoir engineering data from a total of 34 wells drilled in the area. The Mahanagdong; resource is derived from a fracture-controlled and volcano hosted geothermal system characterized by neutral to slightly alkali-chloride fluids with reservoir temperatures exceeding 295{degrees}C. A major upflow region was identified in the vicinity of MG-3D, MG-14D and MG-5D. Isochemical contours indicate outflowing fluids with temperatures of 270-275{degrees}C to the south and west. Its southwesterly flow is restricted by the intersection of the impermeable Mahanagdong Claystone near MG-10D, which delimits the southern part of the resource. Low temperature (<200{degrees}C), shallow inflows are evident at the west near MG-4D and MG-17D wells which act as a cold recharge in this sector.

  12. Data Acquisition-Manipulation At Geysers Geothermal Area (1982...

    Open Energy Info (EERE)

    portions of both the random and non-random components of the seismicity. The methodology employed compares the seismicity distributions with a generalized Poisson...

  13. Isotopic Analysis-Fluid At Geysers Geothermal Area (1982) | Open...

    Open Energy Info (EERE)

    and weathering release of crustal He, magma aging and tritiugenic addition of 3He). Raft River contains only crustal He indicating no active volcanic sources. References...

  14. Characterization Of Fracture Patterns In The Geysers Geothermal...

    Open Energy Info (EERE)

    Also, graphical fracture characterizations in the form of equal-area projections and rose diagrams were created to depict the results. The main crack orientations within the...

  15. CNCC Craig Campus Geothermal Project: 82-well closed loop GHP well field to provide geothermal energy as a common utilitiy for a new community college campus

    SciTech Connect (OSTI)

    Chevron Energy Solutions; Matt Rush; Scott Shulda

    2011-01-03

    Colorado Northwestern Community College (CNCC) is working collaboratively with recipient vendor Chevron Energy Solutions, an energy services company (ESCO), to develop an innovative GHP project at the new CNCC Campus constructed in 2010/2011 in Craig, Colorado. The purpose of the CNCC Craig Campus Geothermal Program scope was to utilize an energy performance contracting approach to develop a geothermal system with a shared closed-loop field providing geothermal energy to each building's GHP mechanical system. Additional benefits to the project include promoting good jobs and clean energy while reducing operating costs for the college. The project has demonstrated that GHP technology is viable for new construction using the energy performance contracting model. The project also enabled the project team to evaluate several options to give the College a best value proposition for not only the initial design and construction costs but build high performance facilities that will save the College for many years to come. The design involved comparing the economic feasibility of GHP by comparing its cost to that of traditional HVAC systems via energy model, financial life cycle cost analysis of energy savings and capital cost, and finally by evaluating the compatibility of the mechanical design for GHP compared to traditional HVAC design. The project shows that GHP system design can be incorporated into the design of new commercial buildings if the design teams, architect, contractor, and owner coordinate carefully during the early phases of design. The public also benefits because the new CNCC campus is a center of education for the much of Northwestern Colorado, and students in K-12 programs (Science Spree 2010) through the CNCC two-year degree programs are already integrating geothermal and GHP technology. One of the greatest challenges met during this program was coordination of multiple engineering and development stakeholders. The leadership of Principle Investigator

  16. Detachment Faulting & Geothermal Resources - Pearl Hot Spring, NV |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Detachment Faulting & Geothermal Resources - Pearl Hot Spring, NV presentation at the April 2013 peer review meeting held in Denver, Colorado. pearl_hot_springs_peer2013.pdf (1.5 MB) More Documents & Publications Detachment Faulting & Geothermal Resources - Pearl Hot Spring, NV Conducting a 3D Converted Shear Wave Project to Reduce Exploration Risk at Wister, CA Crump Geyser: High Precision Geophysics & Detailed Structural Exploration & Slim Well

  17. Addendum to material selection guidelines for geothermal energy-utilization systems. Part I. Extension of the field experience data base. Part II. Proceedings of the geothermal engineering and materials (GEM) program conference (San Diego, CA, 6-8 October 1982)

    SciTech Connect (OSTI)

    Smith, C.S.; Ellis, P.F. II

    1983-05-01

    The extension of the field experience data base includes the following: key corrosive species, updated field experiences, corrosion of secondary loop components or geothermal binary power plants, and suitability of conventional water-source heat pump evaporator materials for geothermal heat pump service. Twenty-four conference papers are included. Three were abstracted previously for EDB. Separate abstracts were prepared for twenty-one. (MHR)

  18. Core Analysis At Geysers Area (Boitnott, 2003) | Open Energy...

    Open Energy Info (EERE)

    Exploration Activity Details Location Geysers Area Exploration Technique Core Analysis Activity Date Usefulness not indicated DOE-funding Unknown References Greg N. Boitnott...

  19. Guidebook to Geothermal Finance

    SciTech Connect (OSTI)

    Salmon, J. P.; Meurice, J.; Wobus, N.; Stern, F.; Duaime, M.

    2011-03-01

    This guidebook is intended to facilitate further investment in conventional geothermal projects in the United States. It includes a brief primer on geothermal technology and the most relevant policies related to geothermal project development. The trends in geothermal project finance are the focus of this tool, relying heavily on interviews with leaders in the field of geothermal project finance. Using the information provided, developers and investors may innovate in new ways, developing partnerships that match investors' risk tolerance with the capital requirements of geothermal projects in this dynamic and evolving marketplace.

  20. Reservoir-scale fracture permeability in the Dixie Valley, Nevada, geothermal field

    SciTech Connect (OSTI)

    Barton, C.A.; Zoback, M.D.; Hickman, S.; Morin, R.; Benoit, D.

    1998-08-01

    Wellbore image data recorded in six wells penetrating a geothermal reservoir associated with an active normal fault at Dixie Valley, Nevada, were used in conjunction with hydrologic tests and in situ stress measurements to investigate the relationship between reservoir productivity and the contemporary in situ stress field. The analysis of data from wells drilled into productive and non-productive segments of the Stillwater fault zone indicates that fractures must be both optimally oriented and critically stressed to have high measured permeabilities. Fracture permeability in all wells is dominated by a relatively small number of fractures oriented parallel to the local trend of the Stillwater Fault. Fracture geometry may also play a significant role in reservoir productivity. The well-developed populations of low angle fractures present in wells drilled into the producing segment of the fault are not present in the zone where production is not commercially viable.

  1. Geochemical Enhancement Of Enhanced Geothermal System Reservoirs: An Integrated Field And Geochemical Approach

    SciTech Connect (OSTI)

    Joseph N. Moore

    2007-12-31

    The geochemical effects of injecting fluids into geothermal reservoirs are poorly understood and may be significantly underestimated. Decreased performance of injection wells has been observed in several geothermal fields after only a few years of service, but the reasons for these declines has not been established. This study had three primary objectives: 1) determine the cause(s) of the loss of injectivity; 2) utilize these observations to constrain numerical models of water-rock interactions; and 3) develop injection strategies for mitigating and reversing the potential effects of these interactions. In this study rock samples from original and redrilled injection wells at Coso and the Salton Sea geothermal fields, CA, were used to characterize the mineral and geochemical changes that occurred as a result of injection. The study documented the presence of mineral scales and at both fields in the reservoir rocks adjacent to the injection wells. At the Salton Sea, the scales consist of alternating layers of fluorite and barite, accompanied by minor anhydrite, amorphous silica and copper arsenic sulfides. Amorphous silica and traces of calcite were deposited at Coso. The formation of silica scale at Coso provides an example of the effects of untreated (unacidified) injectate on the reservoir rocks. Scanning electron microscopy and X-ray diffractometry were used to characterize the scale deposits. The silica scale in the reservoir rocks at Coso was initially deposited as spheres of opal-A 1-2 micrometers in diameter. As the deposits matured, the spheres coalesced to form larger spheres up to 10 micrometer in diameter. Further maturation and infilling of the spaces between spheres resulted in the formation of plates and sheets that substantially reduce the original porosity and permeability of the fractures. Peripheral to the silica deposits, fluid inclusions with high water/gas ratios provide a subtle record of interactions between the injectate and reservoir rocks

  2. Carbonyl sulphide (COS) in geothermal fluids; An example from the Larderello field (Italy)

    SciTech Connect (OSTI)

    Chiodini, G. ); Cioni, R.; Raco, B. ); Scandiffio, G. )

    1991-01-01

    This paper reports that the carbonyl sulphide (COS) content in the fluids of 12 wells in the Larderello geothermal field ranges from 0.005 to 0.1 {mu}m mol/mol. Measured data are comparable with the theoretical concentrations, considering a homogeneous gas phase at the temperature and pressure conditions of the reservoir. However, the low temperature dependence of equilibrium constants of reactions involving COS prevents us from using them as geothermometers. On the contrary, P{sub CO{sub 2}} estimates in the gas equilibration zone can be inferred from the H{sub 2}S/COS ratio. The calculated CO{sub 2} partial pressures are comparable with those estimated by means of the H{sub 2}/CO ratio.

  3. Application of seismic tomographic techniques in the investigation of geothermal systems

    SciTech Connect (OSTI)

    Romero, A.E. Jr.

    1995-05-01

    The utility of microearthquake data for characterizing the Northwest Geysers geothermal field and the Long Valley Caldera (LVC) was investigated. Three-dimensional (3-D) P- and S-wave seismic velocity models were estimated for the Coldwater Creek Steam Field (CCSF) in the Northwest Geysers region. Hypocenters relocated using these 3-D models appear to be associated with the steam producing zone, with a deeper cluster of hypocenters beneath an active injection well. Spatial and temporal patterns of seismicity exhibit strong correlation with geothermal exploitation. A 3-D differential attenuation model was also developed for the CCSF from spectral ratios corrected for strong site effects. High-velocity anomalies and low attenuation in the near surface correspond to Franciscan metagraywacke and greenstone units. Microearthquakes recorded at seismographic stations located near the metagraywacke unit exhibit high corner frequencies. Low-velocity anomalies and higher attenuation in the near surface are associated with sections of Franciscan melange. Near-surface high attenuation and high Vp/Vs are interpreted to indicate liquid-saturated regions affected by meteoric recharge. High attenuation and low Vp/Vs marks the steam producing zone, suggesting undersaturation of the reservoir rocks. The extent of the high attenuation and low Vp/Vs anomalies suggest that the CCSF steam reservoir may extend northwestward beyond the known producing zone. This study concludes that microearthquake monitoring may be useful as an active reservoir management tool. Seismic velocity and attenuation structures as well as the distribution of microearthquake activity can be used to identify and delineate the geothermal reservoir, while temporal variations in these quantities would be useful in tracking changes during exploitation.

  4. A Resource Assessment Of Geothermal Energy Resources For Converting Deep Gas Wells In Carbonate Strata Into Geothermal Extraction Wells: A Permian Basin Evaluation

    SciTech Connect (OSTI)

    Erdlac, Richard J., Jr.

    2006-10-12

    Previously conducted preliminary investigations within the deep Delaware and Val Verde sub-basins of the Permian Basin complex documented bottom hole temperatures from oil and gas wells that reach the 120-180C temperature range, and occasionally beyond. With large abundances of subsurface brine water, and known porosity and permeability, the deep carbonate strata of the region possess a good potential for future geothermal power development. This work was designed as a 3-year project to investigate a new, undeveloped geographic region for establishing geothermal energy production focused on electric power generation. Identifying optimum geologic and geographic sites for converting depleted deep gas wells and fields within a carbonate environment into geothermal energy extraction wells was part of the project goals. The importance of this work was to affect the three factors limiting the expansion of geothermal development: distribution, field size and accompanying resource availability, and cost. Historically, power production from geothermal energy has been relegated to shallow heat plumes near active volcanic or geyser activity, or in areas where volcanic rocks still retain heat from their formation. Thus geothermal development is spatially variable and site specific. Additionally, existing geothermal fields are only a few 10’s of square km in size, controlled by the extent of the heat plume and the availability of water for heat movement. This plume radiates heat both vertically as well as laterally into the enclosing country rock. Heat withdrawal at too rapid a rate eventually results in a decrease in electrical power generation as the thermal energy is “mined”. The depletion rate of subsurface heat directly controls the lifetime of geothermal energy production. Finally, the cost of developing deep (greater than 4 km) reservoirs of geothermal energy is perceived as being too costly to justify corporate investment. Thus further development opportunities

  5. Niland development project geothermal loan guaranty: 49-MW (net) power plant and geothermal well field development, Imperial County, California: Environmental assessment

    SciTech Connect (OSTI)

    Not Available

    1984-10-01

    The proposed federal action addressed by this environmental assessment is the authorization of disbursements under a loan guaranteed by the US Department of Energy for the Niland Geothermal Energy Program. The disbursements will partially finance the development of a geothermal well field in the Imperial Valley of California to supply a 25-MW(e) (net) power plant. Phase I of the project is the production of 25 MW(e) (net) of power; the full rate of 49 MW (net) would be achieved during Phase II. The project is located on approximately 1600 acres (648 ha) near the city of Niland in Imperial County, California. Well field development includes the initial drilling of 8 production wells for Phase I, 8 production wells for Phase II, and the possible need for as many as 16 replacement wells over the anticipated 30-year life of the facility. Activities associated with the power plant in addition to operation are excavation and construction of the facility and associated systems (such as cooling towers). Significant environmental impacts, as defined in Council on Environmental Quality regulation 40 CFR Part 1508.27, are not expected to occur as a result of this project. Minor impacts could include the following: local degradation of ambient air quality due to particulate and/or hydrogen sulfide emissions, temporarily increased ambient noise levels due to drilling and construction activities, and increased traffic. Impacts could be significant in the event of a major spill of geothermal fluid, which could contaminate groundwater and surface waters and alter or eliminate nearby habitat. Careful land use planning and engineering design, implementation of mitigation measures for pollution control, and design and implementation of an environmental monitoring program that can provide an early indication of potential problems should ensure that impacts, except for certain accidents, will be minimized.

  6. A U-Th Calcite Isochron Age From An Active Geothermal Field In...

    Open Energy Info (EERE)

    more detailed studies of the evolution of the New Zealand geothermal systems. Authors Stephen Grimes, David Rickard, Chris Hawkesworth, Peter van Calsteren and Patrick Browne...

  7. 40AR/39AR THERMAL HISTORY OF THE COSO GEOTHERMAL FIELD | Open...

    Open Energy Info (EERE)

    of these preliminary results. Authors Kurilovitch, L.; Norman, D.; Heizler, M.; Moore, J.; McCulloch and J. Published PROCEEDINGS, Twenty-Eighth Workshop on Geothermal...

  8. An Integrated Model For The Geothermal Field Of Milos From Geophysical...

    Open Energy Info (EERE)

    that other similar geothermal reservoirs may be found in the island. Authors M. Fytikas, J. D. Garnish, V. R. S. Hutton, E. Staroste and J. Wohlenberg Published Journal...

  9. Fracture permeability in the Matalibong-25 corehole, Tiwi geothermal field, Philippines

    SciTech Connect (OSTI)

    Nielson, Dennis L.; Clemente, Wilson C.; Moore, Joseph N.; Powell, Thomas S.

    1996-01-24

    The Tiwi geothermal field is located in southern Luzon on the northeast flank of Mt. Malinao, an andesitic volcano that was active 0.5 to 0.06 Ma. Matalibong-25 (Mat-25) was drilled through the Tiwi reservoir to investigate lithologic and fracture controls on reservoir permeability and to monitor reservoir pressure. Continuous core was collected from 2586.5 to 8000 feet (789 to 2439 meters) with greater than 95% recovery. The reservoir rocks observed in Mat-25 consist mainly of andesitic and basaltic lavas and volcaniclastic rocks above 6600 feet depth (2012 meters) and andesitic sediments below, with a transition from subaerial to subaqueous (marine) deposition at 5250 feet (1601 meters). The rocks in the reservoir interval are strongly altered and veined. Common secondary minerals include chlorite, illite, quartz, calcite, pyrite, epidote, anhydrite, adularia and wairakite. An 39Ar/40Ar age obtained on adularia from a quartz-adularia-cemented breccia at a depth of 6066 feet (2012 meters) indicates that the hydrothermal system has been active for at least 320,000 years. Fractures observed in the core were classified as either veins (sealed) or open fractures, with the latter assumed to represent fluid entries in the geothermal system. Since the core was not oriented, only fracture frequency and dip angle with respect to the core axis could be determined. The veins and open fractures are predominantly steeply dipping and have a measured density of up to 0.79 per foot in the vertical well. Below 6500 feet (1982 meters) there is a decrease in fracture intensity and in fluid inclusion temperatures.

  10. Fracture permeability in the Matalibong-25 corehole, Tiwi geothermal field, Philippines

    SciTech Connect (OSTI)

    Nielson, D.L.; Moore, J.N.; Clemente, W.C.

    1996-12-31

    The Tiwi geothermal field is located in southern Luzon on the northeast flank of Mt. Malinao, an andesitic volcano that was active 0.5 to 0.06 Ma. Matalibong-25 (Mat-25) was drilled through the Tiwi reservoir to investigate lithologic and fracture controls on reservoir permeability and to monitor reservoir pressure. Continuous core was collected from 2586.5 to 8000 feet (789 to 2439 meters) with greater than 95% recovery. The reservoir rocks observed in Mat-25 consist mainly of andesitic and basaltic lavas and volcaniclastic rocks above 6600 feet depth (2012 meters) and andesitic sediments below, with a transition from subaerial to subaqueous (marine) deposition at 5250 feet (1601 meters). The rocks in the reservoir interval are strongly altered and veined. Common secondary minerals include chlorite, illite, quartz, calcite rite, epidote, anhydrite, adularia and wairakite. An {sup 39}Ar/{sup 40}Ar age obtained on adularia from a quartz-adularia-cemented breccia at a depth of 6066 feet (2012 meters) indicates that the hydrothermal system has been active for at least 320,000 years. Fractures observed in the core were classified as either veins (sealed) or open fractures, with the latter assumed to represent fluid entries in the geothermal system. Since the core was not oriented, only fracture frequency and dip angle with respect to the core axis could be determined. The veins and open fractures are predominantly steeply dipping and have a measured density of up to 0.79 per foot in the vertical well. Below 6500 feet (1982 meters) there is a decrease in fracture intensity and in fluid inclusion temperatures.