National Library of Energy BETA

Sample records for geysers area lambert

  1. Cuttings Analysis At Geysers Area (Lambert & Epstein, 1992) ...

    Open Energy Info (EERE)

    (Lambert & Epstein, 1992) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Cuttings Analysis At Geysers Area (Lambert & Epstein, 1992)...

  2. Core Analysis At Geysers Area (Lambert & Epstein, 1992) | Open...

    Open Energy Info (EERE)

    (Lambert & Epstein, 1992) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Core Analysis At Geysers Area (Lambert & Epstein, 1992) Exploration...

  3. The Geysers Geothermal Area | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The Geysers Geothermal Area The Geysers Geothermal Area The Geysers Geothermal area, north of San Francisco, California, is the world's largest dry-steam geothermal steam field. Power production at the Geysers reached peak production in 1987, at that time serving 1.8 million people. Photo of The Geysers power plant

  4. Geysers Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    Geysers Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geysers Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and...

  5. Geysers Hi-T Reservoir Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    Geysers Hi-T Reservoir Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geysers Hi-T Reservoir Geothermal Area Contents 1 Area Overview 2 History and...

  6. Micro-Earthquake At Geysers Area (Erten & Rial, 1999) | Open...

    Open Energy Info (EERE)

    Micro-Earthquake At Geysers Area (Erten & Rial, 1999) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Micro-Earthquake At Geysers Area (Erten &...

  7. Modeling-Computer Simulations At Geysers Area (Goff & Decker...

    Open Energy Info (EERE)

    navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Modeling-Computer Simulations At Geysers Area (Goff & Decker, 1983) Exploration Activity Details...

  8. Geothermal Literature Review At Geysers Area (Goff & Decker,...

    Open Energy Info (EERE)

    navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermal Literature Review At Geysers Area (Goff & Decker, 1983) Exploration Activity Details Location...

  9. Geothermal Literature Review At Geysers Geothermal Area (1984...

    Open Energy Info (EERE)

    navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermal Literature Review At Geysers Geothermal Area (1984) Exploration Activity Details Location...

  10. Geothermal Literature Review At Geysers Area (Ranalli & Rybach...

    Open Energy Info (EERE)

    Geothermal Literature Review At Geysers Area (Ranalli & Rybach, 2005) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermal Literature...

  11. Isotopic Analysis At Geysers Area (Lambert & Epstein, 1992) ...

    Open Energy Info (EERE)

    180160, 13C12C and DH ratio variations were made by the usual methods (McCrea, 1950; Taylor and Epstein, 1962; Epstein and Taylor, 1970) using mass spectrometers of the type...

  12. Compound and Elemental Analysis At Geysers Area (Lambert & Epstein...

    Open Energy Info (EERE)

    identifications were confirmed through examination of thin sections. X-ray powder diffraction was used to test the purity of some mineral separates. The chemical compositions of...

  13. Petrography Analysis At Geysers Area (Lambert & Epstein, 1992...

    Open Energy Info (EERE)

    identifications were confirmed through examination of thin sections. X-ray powder diffraction was used to test the purity of some mineral separates. The chemical compositions of...

  14. Fluid Inclusion Analysis At Geysers Area (Moore, Et Al., 2001...

    Open Energy Info (EERE)

    Area (Moore, Et Al., 2001) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Fluid Inclusion Analysis At Geysers Area (Moore, Et Al., 2001)...

  15. Fluid Inclusion Analysis At Geysers Geothermal Area (1990) |...

    Open Energy Info (EERE)

    Geothermal Area (1990) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Fluid Inclusion Analysis At Geysers Geothermal Area (1990) Exploration...

  16. Core Analysis At Geysers Area (Boitnott, 2003) | Open Energy...

    Open Energy Info (EERE)

    Exploration Activity Details Location Geysers Area Exploration Technique Core Analysis Activity Date Usefulness not indicated DOE-funding Unknown References Greg N. Boitnott...

  17. Isotopic Analysis At Newberry Caldera Area (Goles & Lambert,...

    Open Energy Info (EERE)

    Rock Activity Date Usefulness not indicated DOE-funding Unknown References Gordon G. Goles, Richard St J. Lambert (1990) A Strontium Isotopic Study Of Newberry Volcano,...

  18. Micro-Earthquake At Geysers Area (Laney, 2005) | Open Energy...

    Open Energy Info (EERE)

    at The Geysers and Coso Geothermal Reservoirs by Shear-wave Splitting, Rial, Elkibbi, Yang and Pereyra. The raw data for the project consists of seismographic recordings of...

  19. Evaluation of a superheater enhanced geothermal steam power plant in the Geysers area. Final report

    SciTech Connect (OSTI)

    Janes, J.

    1984-06-01

    This study was conducted to determine the attainable generation increase and to evaluate the economic merits of superheating the steam that could be used in future geothermal steam power plants in the Geyser-Calistoga Known Geothermal Resource Area (KGRA). It was determined that using a direct gas-fired superheater offers no economic advantages over the existing geothermal power plants. If the geothermal steam is heated to 900/sup 0/F by using the exhaust energy from a gas turbine of currently available performance, the net reference plant output would increase from 65 MW to 159 MW (net). Such hybrid plants are cost effective under certain conditions identified in this document. The power output from the residual Geyser area steam resource, now equivalent to 1437 MW, would be more than doubled by employing in the future gas turbine enhancement. The fossil fuel consumed in these plants would be used more efficiently than in any other fossil-fueled power plant in California. Due to an increase in evaporative losses in the cooling towers, the viability of the superheating concept is contingent on development of some of the water resources in the Geysers-Calistoga area to provide the necessary makeup water.

  20. Flora of the Mayacmas Mountains. [Listing of 679 species in the Geysers Geothermal Resource area

    SciTech Connect (OSTI)

    Neilson, J.A.

    1981-09-01

    This flora describes the plants that occur within the Mayacmas Mountain Range of northern California. It is the result of ten years of environmental assessment by the author in the Geysers Geothermal Resource area, located in the center of the Mayacmas Range. The flora includes notes on plant communities and ecology of the area, as well as habitat and collection data for most of the 679 species covered. Altogether 74 families, 299 genera and 679 species are included in the flora. The work is divided into eight subdivisions: trees; shrubs; ferns and fern allies; aquatic plants; tules, sedges, and rushes; lilies and related plants; dicot herbs; and grasses. Within each subdivision, family, genera and species are listed alphabetically. Keys are provided at the beginning of each subdivision. A unique combination of physical, environmental and geologic factors have resulted in a rich and diverse flora in the Mayacmas. Maps have been provided indicating known locations for species of rare or limited occurrence.

  1. Geology and slope stability in selected parts of The Geysers geothermal resources area: a guide to geologic features indicative of stable and unstable terrain in areas underlain by Franciscan and related rocks

    SciTech Connect (OSTI)

    Bedrossian, T.L.

    1980-01-01

    The results of a 4-month study of various geologic and topographic features related to the stability of Franciscan terrain in The Geysers GRA are presented. The study consisted of investigations of geologic and topographic features, throughout The Geysers GRA, and geologic mapping at a scale of 1:12,000 of approximately 1500 acres (600 hectares) of landslide terrain within the canyon of Big Sulphur Creek in the vicinity of the Buckeye mine (see plate 1). The area mapped during this study was selected because: (1) it is an area of potential future geothermal development, and (2) it illustrates that large areas mapped as landslides on regional scales (McLaughlin, 1974, 1975b; McNitt, 1968a) may contain zones of varying slope stability and, therefore, should be mapped in more detail prior to development of the land.

  2. Geysering in boiling channels

    SciTech Connect (OSTI)

    Aritomi, Masanori; Takemoto, Takatoshi; Chiang, Jing-Hsien

    1995-09-01

    A concept of natural circulation BWRs such as the SBWR has been proposed and seems to be promising in that the primary cooling system can be simplified. The authors have been investigating thermo-hydraulic instabilities which may appear during the start-up in natural circulation BWRs. In our previous works, geysering was investigated in parallel boiling channels for both natural and forced circulations, and its driving mechanism and the effect of system pressure on geysering occurrence were made clear. In this paper, geysering is investigated in a vertical column and a U-shaped vertical column heated in the lower parts. It is clarified from the results that the occurrence mechanism of geysering and the dependence of system pressure on geysering occurrence coincide between parallel boiling channels in circulation systems and vertical columns in non-circulation systems.

  3. Big Geysers Geothermal Facility | Open Energy Information

    Open Energy Info (EERE)

    Geothermal Facility General Information Name Big Geysers Geothermal Facility Facility Big Geysers Sector Geothermal energy Location Information Location Clear Lake, California...

  4. The Geysers pipeline project

    SciTech Connect (OSTI)

    Dellinger, M.; Allen, E.

    1997-01-01

    A unique public/private partnership of local, state, federal and corporate stakeholders are constructing the world`s first wastewater-to-electricity system at The Geysers. A rare example of a genuinely {open_quotes}sustainable{close_quotes} energy system, three Lake County communities will recycle their treated wastewater effluent through the southeast portion of the The Geysers steamfield to produce approximately 625,000 MWh annually from six existing geothermal power plants. In effect, the communities` effluent will produce enough power to indefinitely sustain their electric needs, along with enough extra power for thousands of other California consumers. Because of the project`s unique sponsorship, function and environmental impacts, its implementation has required: (1) preparation of a consolidated state environmental impact report (EIR) and federal environmental impact statement (EIS), and seven related environmental agreements and management plans; (2) acquisition of 25 local, state, and federal permits; (3) negotiation of six federal and state financial assistance agreements; (4) negotiation of six participant agreements on construction, operation and financing of the project, and (5) acquisition of 163 easements from private land owners for pipeline construction access and ongoing maintenance. The project`s success in efficiently and economically completing these requirements is a model for geothermal innovation and partnering throughout the Pacific Rim and elsewhere internationally.

  5. The Geysers Geothermal Field Update1990/2010

    SciTech Connect (OSTI)

    Brophy, P.; Lippmann, M.; Dobson, P.F.; Poux, B.

    2010-10-01

    In this report, we have presented data in four sections: (1) THE GEYSERS HISTORICAL UPDATE 1990-2010 - A historical update of the primary developments at The Geysers between 1990 and 2010 which uses as its start point Section IIA of the Monograph - 'Historical Setting and History of Development' that included articles by James Koenig and Susan Hodgson. (2) THE GEYSERS COMPREHENSIVE REFERENCE LIST 1990-2010 - In this section we present a rather complete list of technical articles and technical related to The Geysers that were issued during the period 1990-2010. The list was compiled from many sources including, but not limited to scientific journals and conference proceedings. While the list was prepared with care and considerable assistance from many geothermal colleagues, it is very possible that some papers could have been missed and we apologize to their authors in advance. The list was subdivided according to the following topics: (1) Field characterization; (2) Drilling; (3) Field development and management; (4) Induced seismicity; (5) Enhanced Geothermal Systems; (6) Power production and related issues; (7) Environment-related issues; and (8) Other topics. (3) GRC 2010 ANNUAL MEETING GEYSERS PAPERS - Included in this section are the papers presented at the GRC 2010 Annual Meeting that relate to The Geysers. (4) ADDITIONAL GEYSERS PAPERS 1990-2010 - Eighteen additional technical papers were included in this publication in order to give a broad background to the development at The Geysers after 1990. The articles issued during the 1990-2010 period were selected by colleagues considered knowledgeable in their areas of expertise. We forwarded the list of references given in Section 2 to them asking to send us with their selections with a preference, because of limited time, to focus on those papers that would not require lengthy copyright approval. We then chose the articles presented in this section with the purpose of providing the broadest possible view across

  6. Geysers Geothermal Association GGA | Open Energy Information

    Open Energy Info (EERE)

    GGA Jump to: navigation, search Name: Geysers Geothermal Association (GGA) Place: Santa Rosa, California Zip: 95404 Sector: Geothermal energy Product: Trade association...

  7. Crump Geyser: High Precision Geophysics & Detailed Structural...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Exploration & Slim Well Drilling Crump Geyser: High Precision Geophysics & Detailed Structural Exploration & Slim Well Drilling DOE Geothermal Peer Review 2010 - Presentation. ...

  8. Challenges in determining b value in the Northwest Geysers

    SciTech Connect (OSTI)

    Saltiel, S.; Boyle, K.; Majer, E.

    2011-02-01

    Past analyses of the Gutenberg-Richter b-value in the Geysers and other geothermal settings have revealed a deviation from the assumed linear relationship in log space between magnitude and the number of earthquakes. In this study of the Northwest Geysers, we found a gently-sloping discontinuity in the b-value curve. This is especially apparent when comparing the least-squares fit (LSQ) of the curve to the fit obtained by the maximum likelihood estimation (MLE), a widely-respected method of analyzing magnitude-frequency relationships. This study will describe the assumptions made when using each of these two methods and will also explore how they can be used in conjunction to investigate the characteristics of the observed b-value curve. To understand whether slope-fit differences in the LSQR and MLE methods is due to physical properties of the system or due to artifacts from errors in sampling, it is extremely important to consider the catalog completeness, magnitude bin size, number of events, and differences in source mechanisms for the events comprising the study volume. This work will hopefully lead to informative interpretations of frequency-magnitude curves for the Northwest Geysers, a geothermal area of ongoing high-volume coldwater injection and steam production. Through this statistical investigation of the catalog contents, we hope to better understand the dominant source mechanisms and the role of injected fluids in the creation of seismic clustering around nearly 60 wells of varying depths and injection volumes.

  9. Demonstration of an Enhanced Geothermal System at the Northwest Geysers Geothermal Field, California

    Broader source: Energy.gov [DOE]

    Geothermal Technologies Program 2010 Peer Review Demonstration of an Enhanced Geothermal System at the Northwest Geysers Geothermal Field California by Mark Walters of Calpine and Patrick Dobson of Lawrence Berkeley National Laboratory for Engineered Geothermal Systems Demonstration Projects Track. Objective to create an Enhanced Geothermal System (EGS) by directly and systematically injecting low volumes of coldŽ water into NW Geysers high temperature zone (HTZ), similar to inadvertentlyŽ created EGS in the oldest Geysers production area to the southeast of the EGS demonstration area. Other objectives are to investigate how cold-water injection mechanically and chemically affects fractured high temperature rock systems; demonstrate the technology to monitor and validate stimulation and sustainability of such an EGS; and develop an EGS research field laboratory that can be used for testing EGS stimulation and monitoring technologies including new high temperature tools developed by others.

  10. Geyser Bight Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    and Environmental Issues Click "Edit With Form" above to add content Exploration History First Discovery Well Completion Date: Well Name: Location: Depth: Initial Flow...

  11. Geysers Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    Phase(s) Techniques DOE-EA-1733 EA Calpine 21 June 2010 United States Department of Energy GeothermalWell Field DOI-BLM-CA-C050-2009-0005-EA EA AltaRock Energy Inc 11...

  12. Geyser Bight Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    182C455.15 K 359.6 F 819.27 R 1 USGS Estimated Reservoir Volume: 12 km 1 USGS Mean Capacity: 98 MW 1 Click "Edit With Form" above to add content History and...

  13. Analysis of reinjection strategies for The Geysers

    SciTech Connect (OSTI)

    Shook, M.; Faulder, D.D.

    1991-01-01

    The Geysers has undergone severe pressure decline in recent years, and reinjection of condensate is thought to be one key to sustaining current steam production. Other methods of pressure maintenance include load cycling, or reduction of steam production during off-peak hours. It is likely that a combination of these two will prove to be optimum in providing pressure and fluid maintenance. This paper presents preliminary results of a study of various injection schemes for The Geysers. A number of injection scenarios are investigated, and an optimum scheme (based on specific parameters) is identified for two different quantities of reinjection. 9 refs., 14 figs., 1 tab.

  14. Analysis of reinjectiion strategies for The Geysers

    SciTech Connect (OSTI)

    Shook, Mike; Faulder, D.D.

    1991-01-01

    The Geysers has undergone severe pressure decline in recent years, and reinjection of condensate is thought to be one key to sustaining current steam production. Other methods of pressure maintenance include load cycling, or reduction of steam production during off-peak hours. It is likely that a combination of these two will prove to be optimum in providing pressure and fluid maintenance. This paper presents preliminary results of a study of various injection schemes for The Geysers. A number of injection scenarios are investigated, and an optimum scheme (based on specific parameters) is identified for two different quantities of reinjection.

  15. Helium isotopes in geothermal systems- Iceland, The Geysers,...

    Open Energy Info (EERE)

    isotopes in geothermal systems- Iceland, The Geysers, Raft River and Steamboat Springs Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: Helium...

  16. Characterizing Fractures in the Geysers Geothermal Field by Micro...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Shear Wave Anisotropy Characterizing Fractures in the Geysers Geothermal Field by Micro-seismic Data, Using Soft Computing, Fractals, and Shear Wave Anisotropy ...

  17. A database for The Geysers geothermal field

    SciTech Connect (OSTI)

    Bodvarsson, G.S.; Cox, B.L.; Fuller, P.; Ripperda, M.; Tulinius, H.; Witherspoon, P.A.; Goldstein, N.; Flexser, S.; Pruess, K. ); Truesdell, A. )

    1989-09-01

    In Fiscal Year 1985-1986 the Earth Sciences Division of Lawrence Berkeley Laboratory (LBL) began a multi-year project for SLC to organize and analyze the field data from The Geysers. In the first year, most of the work concentrated on the development of a comprehensive database for The Geysers, and conventional reservoir engineering analysis of the data. Essentially, all non-proprietary data for wells at The Geysers have been incorporated into the database, as well as proprietary data from wells located on State leases. In following years, a more detailed analysis of The Geysers data has been carried out. This report is a summary of the non- proprietary work performed in FY 1985--1986. It describes various aspects of the database and also includes: review sections on Field Development, Geology, Geophysics, Geochemistry and Reservoir Engineering. It should be emphasized that these background chapters were written in 1986, and therefore only summarize the information available at that time. The appendices contain individual plots of wellhead pressures, degree of superheat, steam flow rates, cumulative mass flows, injection rates and cumulative injection through 1988 for approximately 250 wells. All of the data contained in this report are non-proprietary, from State and non-State leases. The production/injection and heat flow data from the wells were obtained from the California State Division of Oil and gas (DOG) (courtesy of Dick Thomas). Most of the other data were obtained from SLC files in Sacramento (courtesy of Charles Priddy), or DOG files in Santa Rosa (courtesy of Ken Stelling). 159 refs., 23 figs., 3 tabs.

  18. Caldwell Ranch Exploration and Confirmation Project, Northwest Geysers, CA

    SciTech Connect (OSTI)

    Walters, Mark A.

    2013-04-25

    The purpose of the Caldwell Ranch Exploration and Confirmation Project was to drill, test, and confirm the present economic viability of the undeveloped geothermal reservoir in the 870 acre Caldwell Ranch area of the Northwest Geysers that included the CCPA No.1 steam field. All of the drilling, logging, and sampling challenges were met. � Three abandoned wells, Prati 5, Prati 14 and Prati 38 were re-opened and recompleted to nominal depths of 10,000 feet in 2010. Two of the wells required sidetracking. � The flow tests indicated Prati 5 Sidetrack 1 (P-5 St1), Prati 14 (P-14) and Prati 38 Sidetrack 2 (P-38 St2) were collectively capable of initially producing an equivalent of 12 megawatts (MWe) of steam using a conversion rate of 19,000 pounds of steam/hour

  19. Final cost reduction study for the Geysers Recharge Alternative. Volume 1

    SciTech Connect (OSTI)

    1997-11-01

    The purpose of this study is to determine whether or not cost reduction opportunities exist for the Geysers Recharge Alternative as defined in the Santa Rosa Subregional Long-Term Wastewater Project EIR/EIS. The City of Santa Rosa has been directed to have a plan for reclaimed water disposal in place by 1999 which will meet future capacity needs under all weather conditions. A Draft EIR/EIS released in July 1996 and a Final EIR certified in June 1997 examine four primary alternatives plus the No Action Alternative. Two of the primary alternatives involve agricultural irrigation with reclaimed water, either in western or southern Sonoma County. Another involves increased discharge of reclaimed water into the Russian River. The fourth involves using reclaimed water to replenish the geothermal reservoir at the Geysers. The addition of this water source would enable the Geysers operators to produce more steam from the geothermal area and thereby prolong the life and economic production level of the steamfield and the geothermal power plants supplied by the steamfield. This study provides additional refined cost estimates for new scenarios which utilize an alternative pipeline alignment and a range of reclaimed water flows, which deliver less water to the Geysers than proposed in the EIR/EIS (by distributing flow to other project components). Also, electrical power rates were revised to reflect the recent changes in costs associated with deregulation of the power industry. In addition, this report provides information on sources of potential public and private funding available and future environmental documentation required if the cost reduction scenarios were to be selected by the City as part of their preferred alternative.

  20. The Geysers and Salton Sea Geothermal Fields | Open Energy Information

    Open Energy Info (EERE)

    Sea Geothermal Fields Jump to: navigation, search OpenEI Reference LibraryAdd to library Case Study: The Geysers and Salton Sea Geothermal Fields Author Jeffrey W. Adams Published...

  1. Measurements of water vapor adsorption on the Geysers rocks

    SciTech Connect (OSTI)

    Gruszkiewicz, Miroslaw S.; Horita, Juske; Simonson, John M.; Mesmer, Robert E.

    1996-01-24

    The ORNL high temperature isopiestic apparatus was adapted for adsorption measurements. The quantity of water retained by rock samples taken from three different wells of The Geysers was measured at 150 °C and at 200 °C as a function of pressure in the range 0.00 ≤ p/p0 ≤ 0.98, where p0 is the saturated water vapor pressure. The rocks were crushed and sieved into three fractions of different grain sizes (with different specific surface areas). Both adsorption (increasing pressure) and desorption (decreasing pressure) runs were made in order to investigate the nature and extent of the hysteresis. Additionally, BET surface area analyses were performed by Porous Materials Inc. on the same rock samples using nitrogen or krypton adsorption measurements at 77 K. Specific surface areas and pore volumes were determined. These parameters are important in estimating water retention capability of a porous material. The same laboratory also determined the densities of the samples by helium pycnometry. Their results were then compared with our own density values obtained by measuring the effect of buoyancy in compressed argon. One of the goals of this project is to determine the dependence of the water retention capacity of the rocks as a function of temperature. The results show a significant dependence of the adsorption and desorption isotherms on the grain size of the sample. The increase in the amount of water retained with temperature observed previously (Shang et al., 1994a, 1994b, 1995) between 90 and 130°C for various reservoir rocks from The Geysers may be due to the contribution of slow chemical adsorption and may be dependent on the time allowed for equilibration. In contrast with the results of Shang et al. (1994a, 1994b, 1995), some closed and nearly closed hysteresis loops on the water adsorption/desorption isotherms (with closing points at p/p0 ≈ 0.6) were obtained in this study. In these cases the effects of activated

  2. Data Acquisition-Manipulation At Geysers Geothermal Area (1982...

    Open Energy Info (EERE)

    portions of both the random and non-random components of the seismicity. The methodology employed compares the seismicity distributions with a generalized Poisson...

  3. Isotopic Analysis-Fluid At Geysers Geothermal Area (1982) | Open...

    Open Energy Info (EERE)

    and weathering release of crustal He, magma aging and tritiugenic addition of 3He). Raft River contains only crustal He indicating no active volcanic sources. References...

  4. Cuttings Analysis At Geysers Geothermal Area (1976) | Open Energy...

    Open Energy Info (EERE)

    and overlying cap rock. References Pratt, H. R.; Simonson, E. R. (1 January 1976) Geotechnical studies of geothermal reservoirs Additional References Retrieved from "http:...

  5. Teleseismic-Seismic Monitoring At Geysers Area (Zucca, Et Al...

    Open Energy Info (EERE)

    Monitoring Activity Date Usefulness useful DOE-funding Unknown References J. J. Zucca, L. J. Hutchings, P. W. Kasameyer (1994) Seismic Velocity And Attenuation...

  6. The Geyser Bight Geothermal Area, Umnak Island, Alaska | Open...

    Open Energy Info (EERE)

    ppm). The AsCl ratio is among the highest reported for geothermal waters. Authors Roman J. Motyka, Christopher J. Nye, Donald L. Turner and Shirley A. Liss Published Journal...

  7. Micro-Earthquake At Geysers Geothermal Area (2011) | Open Energy...

    Open Energy Info (EERE)

    Rock, D.; Peterson, J.; Jarpe, S. (1 January 2011) DOE REAL-TIME SEISMIC MONITORING AT ENHANCED GEOTHERMAL SYSTEM SITES Additional References Retrieved from "http:...

  8. Compound and Elemental Analysis At Geysers Area (Kennedy & Truesdell...

    Open Energy Info (EERE)

    adds new constraints to genetic models of the system and its evolution. The high proportion of magmatic gas and high total NCG in HTR steam are inconsistent with an origin of...

  9. Isotopic Analysis At Geysers Area (Kennedy & Truesdell, 1996...

    Open Energy Info (EERE)

    adds new constraints to genetic models of the system and its evolution. The high proportion of magmatic gas and high total NCG in HTR steam are inconsistent with an origin of...

  10. Characterizing Fractures in the Geysers Geothermal Field by Micro-seismic

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Data, Using Soft Computing, Fractals, and Shear Wave Anisotropy | Department of Energy Characterizing Fractures in the Geysers Geothermal Field by Micro-seismic Data, Using Soft Computing, Fractals, and Shear Wave Anisotropy Characterizing Fractures in the Geysers Geothermal Field by Micro-seismic Data, Using Soft Computing, Fractals, and Shear Wave Anisotropy Characterizing Fractures in the Geysers Geothermal Field by Micro-seismic Data, Using Soft Computing, Fractals, and Shear Wave

  11. Demonstration of an Enhanced Geothermal System at the Northwest Geysers

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Geothermal Field, California; 2010 Geothermal Technology Program Peer Review Report | Department of Energy California; 2010 Geothermal Technology Program Peer Review Report Demonstration of an Enhanced Geothermal System at the Northwest Geysers Geothermal Field, California; 2010 Geothermal Technology Program Peer Review Report DOE 2010 Geothermal Technologies Program Peer Review egs_010_walters.pdf (182.53 KB) More Documents & Publications Concept Testing and Development at the Raft

  12. Characterizing Fractures in the Geysers Geothermal Field by Micro-seismic

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Data, Using Soft Computing, Fractals, and Shear Wave Anisotropy | Department of Energy Fractures in the Geysers Geothermal Field by Micro-seismic Data, Using Soft Computing, Fractals, and Shear Wave Anisotropy Characterizing Fractures in the Geysers Geothermal Field by Micro-seismic Data, Using Soft Computing, Fractals, and Shear Wave Anisotropy Determine if fracturing could be used to enhance permeability; and whether dilution of existing fluids with injected water would lower corrosivity

  13. Measurements of water vapor adsorption on The Geysers rocks

    SciTech Connect (OSTI)

    Gruszkiewicz, M.S.; Horita, J.; Simonson, J.M.; Mesmer, R.E.

    1996-04-01

    One of the goals of this project is to determine the dependence of the water retention capacity of the rocks as a function of temperature. The results show a significant dependence of the adsorption and desorption isotherms on the grain size of the sample. The increase in the amount of water retained with temperature observed previously between 90 and 30{degrees}C for various reservoir rocks from The Geysers may be due to the contribution of slow chemical adsorption and may be dependent on the time allowed for equilibration. In contrast with the results of Shang, some closed and nearly closed hysteresis loops on the water adsorption/desorption isotherms were obtained in this study. In these cases the effects of activated processes were not present, and no increase in water adsorption with temperature was observed.

  14. Fractal analysis of pressure transients in the Geysers Geothermal Field

    SciTech Connect (OSTI)

    Acuna, J.A.; Ershaghi, I.; Yortsos, Y.C.

    1992-01-01

    The conventionally accepted models for the interpretation of pressure transient tests in naturally fractured reservoirs usually involve simplistic assumptions regarding the geometry and transport properties of the fractured medium. Many single well tests in this type of reservoirs fail to show the predicted behavior for dual or triple porosity or permeability systems and cannot be explained by these models. This paper describes the application of a new model based on a fractal interpretation of the fractured medium. The approach, discussed elsewhere [2], [6], is applied to field data from The Geysers Geothermal Field. The objective is to present an alternative interpretation to well tests that characterizes the fractured medium in a manner more consistent with other field evidence. The novel insight gained from fractal geometry allows the identification of important characteristics of the fracture structure that feeds a particular well. Some simple models are also presented that match the field transient results.

  15. Santa Rosa Geysers Recharge Project: GEO-98-001. Final Report

    SciTech Connect (OSTI)

    Brauner, Edwin Jr.; Carlson, Daniel C.

    2002-10-01

    The Geysers steamfields in northern Sonoma County have produced reliable ''green'' power for many years. An impediment to long-term continued production has been the ability to provide a reliable source of injection water to replace water extracted and lost in the form of steam. The steamfield operators have historcially used cooling towers to recycle a small portion of the steam and have collected water during the winter months using stream extraction. These two sources, however, could not by themselves sustain the steamfield in the long term. The Lake County Reclaimed Water Project (SEGEP) was inititated in 1997 and provides another source of steamfield replenishment water. The Santa Rosa Geysers Recharge Project provides another significant step in replenishing the steamfield. In addition, the Santa Rosa Geysers Recharge Project has been built with capacity to potentially meet virtually all injection water requirements, when combined with these other sources. Figure 2.1 graphically depicts the combination of injection sources.

  16. Analysis of cause and mechanism for injection-induced seismicityat the Geysers Geothermal Field, California

    SciTech Connect (OSTI)

    Rutqvist, Jonny; Oldenburg, Curtis

    2007-06-14

    We analyzed relative contributions to the cause andmechanism of injection-induced seismicity at The Geysers geothermalfield, California, using coupled thermal-hydrological-mechanicalmodeling. Our analysis shows that the most important cause forinjection-induced seismicity is injection-induced cooling and associatedthermal-elastic shrinkage that changes the stress state in such a waythat mechanical failure and seismicity can be induced. Specifically, thecooling shrinkage results in unloading and associated loss of shearstrength in critically shear-stressed fractures, which are thenreactivated. Thus, our analysis shows that cooling-induced shear slipalong fractures is the dominant mechanism of injection-induced seismicityat The Geysers.

  17. Predicting the spatial extent of injection-induced zones of enhanced permeability at the Northwest Geysers EGS Demonstration Project

    SciTech Connect (OSTI)

    Rutqvist, J.; Oldenburg, C.M.; Dobson, P.F.

    2010-02-01

    We present the results of coupled thermal, hydraulic, and mechanical (THM) modeling of a proposed stimulation injection associated with an Enhanced Geothermal System (EGS) demonstration project at the northwest part of The Geysers geothermal field, California. The project aims at creating an EGS by directly and systematically injecting cool water at relatively low pressure into a known High Temperature (about 280 to 350 C) Zone (HTZ) located under the conventional (240 C) steam reservoir at depths below 3 km. Accurate micro-earthquake monitoring from the start of the injection will be used as a tool for tracking the development of the EGS. We first analyzed historic injection and micro-earthquake data from an injection well (Aidlin 11), located about 3 miles to the west of the new EGS demonstration area. Thereafter, we used the same modeling approach to predict the likely extent of the zone of enhanced permeability for a proposed initial injection in two wells (Prati State 31 and Prati 32) at the new EGS demonstration area. Our modeling indicates that the proposed injection scheme will provide additional steam production in the area by creating a zone of permeability enhancement extending about 0.5 km from each injection well which will connect to the overlying conventional steam reservoir.

  18. Public service impacts of geothermal development: cumulative impacts study of the Geysers KGRA. Final staff report

    SciTech Connect (OSTI)

    Matthews, K.M.

    1983-07-01

    The number of workers currently involved in the various aspects of geothermal development in the Geysers are identified. Using two different development scenarios, projections are made for the number of power plants needed to reach the electrical generation capacity of the steam resource in the Geysers. The report also projects the cumulative number of workers needed to develop the steam field and to construct, operate, and maintain these power plants. Although the number of construction workers fluctuates, most are not likely to become new, permanent residents of the KGRA counties. The administrative and public service costs of geothermal development to local jurisdications are examined, and these costs are compared to geothermal revenues accruing to the local governments. Revenues do not cover the immediate fiscal needs resulting from increases in local road maintenance and school enrollment attributable to geothermal development. Several mitigation options are discussed and a framework presented for calculating mitigation costs for school and road impacts.

  19. Cumulative impacts study of The Geysers KGRA: public-service impacts of geothermal development

    SciTech Connect (OSTI)

    Matthews, K.M.

    1982-05-01

    Geothermal development in The Geysers KGRA has affected local public services and fiscal resources in Sonoma, Lake, Mendocino, and Napa counties. Each of these counties underwent rapid population growth between 1970 and 1980, some of which can be attributed to geothermal development. The number of workers currently involved in the various aspects of geothermal development in The Geysers is identified. Using three different development scenarios, projections are made for the number of power plants needed to reach the electrical generation capacity of the steam resource in The Geysers. The report also projects the cumulative number of workers needed to develop the steam field and to construct, operate, and maintain these power plants. Although the number of construction workers fluctuates, most are not likely to become new, permanent residents of the KGRA counties. The administrative and public service costs of geothermal development to local jurisdictions are examined and compared to geothermal revenues accruing to the local governments. Revenues do not cover the immediate fiscal needs resulting from increases in local road maintenance and school enrollment attributable to geothermal development. Several mitigation options are discussed, and a framework is presented for calculating mitigation costs per unit of public service.

  20. Resistivity During Boiling in the SB-15-D Core from the Geysers Geothermal Field: The Effects of Capillarity

    SciTech Connect (OSTI)

    Roberts, J.; Duba, A.; Bonner, B.; Kasameyer, P.

    1997-01-01

    In a laboratory study of cores from borehole SB-15-D in The Geysers geothermal area, we measured the electrical resistivity of metashale with and without pore-pressure control, with confining pressures up to 100 bars and temperatures between 20 and 150 C, to determine how the pore-size distribution and capillarity affected boiling. We observed a gradual increase in resistivity when the downstream pore pressure or confining pressure decreased below the phase boundary of free water. For the conditions of this experiment, boiling, as indicated by an increase in resistivity, is initiated at pore pressures of approximately 0.5 to 1 bar (0.05 to 0.1 MPa) below the free-water boiling curve, and it continues to increase gradually as pressure is lowered to atmospheric. A simple model of the effects of capillarity suggests that at 145 C, less than 15% of the pore water can boil in these rocks. If subsequent experiments bear out these preliminary observations, then boiling within a geothermal reservoir is controlled not just by pressure and temperature but also by pore-size distribution. Thus, it may be possible to determine reservoir characteristics by monitoring changes in electrical resistivity as reservoir conditions change.

  1. Characterization Of Fracture Patterns In The Geysers Geothermal...

    Open Energy Info (EERE)

    Also, graphical fracture characterizations in the form of equal-area projections and rose diagrams were created to depict the results. The main crack orientations within the...

  2. Geothermal energy and the land resource: conflicts and constraints in The Geysers-Calistoga KGRA

    SciTech Connect (OSTI)

    O'Banion, K.; Hall, C.

    1980-07-14

    This study of potential land-related impacts of geothermal power development in The Geysers region focuses on Lake County because it has most of the undeveloped resource and the least regulatory capability. First, the land resource is characterized in terms of its ecological, hydrological, agricultural, and recreational value; intrinsic natural hazards; and the adequacy of roads and utility systems. Based on those factors, the potential land-use conflicts and constraints that geothermal development may encounter in the region are identified and the availability and relative suitability of land for such development is determined. A brief review of laws and powers germane to geothermal land-use regulation is included.

  3. Geochemical studies of reservoir processes in the NCPA field of The Geysers, a preliminary report

    SciTech Connect (OSTI)

    Truesdell, Alfred; Enedy, Steve; Smith, Bill

    1993-01-28

    Methods of tracing reservoir processes will be discussed and applied to the NCPA Geysers steam field. The gas and isotope chemistry of produced steam is far from uniform even in a restricted volume of the reservoir. The composition is affected by many factors. Differences in permeability, local existence of gas pockets or perched liquid and the pattern of fracture connection can cause neighboring wells to produce steam of different compositions. This study attempts to separate local effects from general influences by viewing the data across the field and over a period of time. The fits of the trend lines to the data are far from perfect but present a reasonably consistent picture.

  4. Micro-Earthquake At Geysers Area (Malin, Et Al., 2004) | Open...

    Open Energy Info (EERE)

    Peter E. Malin, Eylon Shalev, Min Lou, Silas M. Simiyu, Anastasia Stroujkova, Windy McCausland (2004) A Comprehensive Study Of Fracture Patterns And Densities In The...

  5. Turning community wastes into sustainable geothermal energy: The S.E. Geysers effluent pipeline project

    SciTech Connect (OSTI)

    Dellinger, M.; Allen, E.

    1996-12-31

    A unique public/private partnership of local, state, federal, and corporate stakeholders are constructing the world`s first wastewater-to-electricity system at The Geysers. A rare example of a genuinely {open_quotes}sustainable{close_quote} energy system, three Lake County communities will recycle their treated wastewater effluent through the southeast portion of The Geysers steamfield to produce approximately 625,000 MWh annually from six existing geothermal power plants. In effect, the communities` effluent will produce enough power to indefinitely sustain their electric needs, along with enough extra power for thousands of other California consumers. Because of the project`s unique sponsorship, function, and environmental impacts, its implementation has required: (1) preparation of a consolidated state environmental impact report (EIR) and federal environmental impact statement (EIS), and seven related environmental agreements and management plans; (2) acquisition of 25 local, state, and federal permits; (3) negotiation of six federal and state financial assistance agreements; (4) negotiation of six participant agreements on construction, operation, and financing of the project; and (5) acquisition of 163 easements from private land owners for pipeline construction access and ongoing maintenance. The project`s success in efficiently and economically completing these requirements is a model for geothermal innovation and partnering throughout the Pacific Rim and elsewhere internationally.

  6. Characterizing Fractures in Geysers Geothermal Field by Micro-seismic Data, Using Soft Computing, Fractals, and Shear Wave Anisotropy

    SciTech Connect (OSTI)

    Aminzadeh, Fred; Sammis, Charles; Sahimi, Mohammad; Okaya, David

    2015-04-30

    The ultimate objective of the project was to develop new methodologies to characterize the northwestern part of The Geysers geothermal reservoir (Sonoma County, California). The goal is to gain a better knowledge of the reservoir porosity, permeability, fracture size, fracture spacing, reservoir discontinuities (leaky barriers) and impermeable boundaries.

  7. Hydrogen chloride in superheated steam and chloride in deep brine at The Geysers geothermal field, California

    SciTech Connect (OSTI)

    Haizlip, J.R.; Truesdell, A.H.

    1988-01-01

    Chloride (Cl) concentrations of 10-120 ppm{sub w} have been measured in superheated steam produced by wells at The Geysers, a vapor-dominated geothermal field in northern California. Corrosion of the well casing and steam-gathering system has been recognized in some parts of The Geysers, and is apparently related to the presence of Cl. Cl in the steam is in a volatile form, generated with the steam at reservoir temperatures, and probably travels to the wellhead as HCl gas. Published experimental data for partial pressures of HCl in steam over aqueous HCl solutions and for dissociation constants of HCl were used to calculate distribution coefficients for HCl. Reservoir liquid Cl concentrations capable of generating steam with the observed Cl concentrations were then calculated as a function of pH and temperatures from 250 to 350 C. Equilibrium mineral/liquid reactions with the K-mica and K-feldspar assemblage found in the wells limit the reservoir liquid pH values at various Cl concentrations to about 5 to 6 (near neutral at 250 to 350 C). Within this pH range, liquid at 250 C could not produce steam containing the high Cl concentrations observed. However, liquid at higher temperatures (300 to 350 C) with chloride concentrations greater than 10,000 ppm{sub w} could generate steam with 10 to over 200 ppm{sub w} Cl. There is a positive correlation between pH and the chloride concentrations required to generate a given Cl concentration in steam. The concentration of Cl in superheated steam constrains not only the reservoir liquid composition, but the temperature at which the steam last equilibrated with liquid.

  8. Analysis of Injection-Induced Micro-Earthquakes in a Geothermal Steam Reservoir, The Geysers Geothermal Field, California

    SciTech Connect (OSTI)

    Rutqvist, Jonny; Rutqvist, J.; Oldenburg, C.M.

    2008-05-15

    In this study we analyze relative contributions to the cause and mechanism of injection-induced micro-earthquakes (MEQs) at The Geysers geothermal field, California. We estimated the potential for inducing seismicity by coupled thermal-hydrological-mechanical analysis of the geothermal steam production and cold water injection to calculate changes in stress (in time and space) and investigated if those changes could induce a rock mechanical failure and associated MEQs. An important aspect of the analysis is the concept of a rock mass that is critically stressed for shear failure. This means that shear stress in the region is near the rock-mass frictional strength, and therefore very small perturbations of the stress field can trigger an MEQ. Our analysis shows that the most important cause for injection-induced MEQs at The Geysers is cooling and associated thermal-elastic shrinkage of the rock around the injected fluid that changes the stress state in such a way that mechanical failure and seismicity can be induced. Specifically, the cooling shrinkage results in unloading and associated loss of shear strength in critically shear-stressed fractures, which are then reactivated. Thus, our analysis shows that cooling-induced shear slip along fractures is the dominant mechanism of injection-induced MEQs at The Geysers.

  9. Isotopic evidence for a magmatic contribution to fluids of the geothermal systems of Larderello, Italy, and the Geysers, California

    SciTech Connect (OSTI)

    D'Amore, F.; Bolognesi, L. . Italian National Research Council)

    1994-02-01

    The isotopic composition of steam from the Larderello, Italy, and The Geysers, California, geothermal fields is used to determine the source(s) of the fluid in these two vapor-dominated systems. Previous interpretations suggested the isotopic composition of the two systems was mainly the result of reactions at high temperature between deeply circulating meteoric water and largely sedimentary host rocks. The authors interpret the data for the Larderello and The Geysers fluids as indicating that meteoric water, exchanged with host rocks, mixes with local magnetic water. The isotopic composition of end-member magmatic water at The Geysers is typical of convergent plate boundaries ([delta][sup 18]O = +5 to +11 per mil; [delta]D = [minus]10 to [minus]35 per mil); a local isotopic composition of +11 to +15 per mil [delta][sup 18]O and [minus]15 to [minus]35 per mil [delta]D is suggested for the Larderello magmatic water. The magmatic water derived from the crystallization of underlying magma. Metamorphic waters, derived from dehydration reactions of OH-bearing minerals, may also make a minor contribution to the geothermal fluids.

  10. Crump Geyser Exploration and Drilling Project. High Precision Geophysics and Detailed Structural Exploration and Slim Well Drilling

    SciTech Connect (OSTI)

    Fairbank, Brian D.; Smith, Nicole

    2015-06-10

    The Crump Geyser Exploration and Drilling Project – High Precision Geophysics and Detailed Structural Exploration and Slim Well Drilling ran from January 29, 2010 to September 30, 2013. During Phase 1 of the project, collection of all geophysical surveys was completed as outlined in the Statement of Project Objectives. In addition, a 5000-foot full sized exploration well was drilled by Ormat, and preexisting drilling data was discovered for multiple temperature gradient wells within the project area. Three dimensional modeling and interpretation of results from the geophysical surveys and drilling data gave confidence to move to the project into Phase 2 drilling. Geological and geophysical survey interpretations combined with existing downhole temperature data provided an ideal target for the first slim-hole drilled as the first task in Phase 2. Slim-hole 35-34 was drilled in September 2011 and tested temperature, lithology, and permeability along the primary range-bounding fault zone near its intersection with buried northwest-trending faults that have been identified using geophysical methods. Following analysis of the results of the first slim-hole 35-34, the second slim hole was not drilled and subsequent project tasks, including flowing differential self-potential (FDSP) surveys that were designed to detail the affect of production and injection on water flow in the shallow aquifer, were not completed. NGP sold the Crump project to Ormat in August 2014, afterwards, there was insufficient time and interest from Ormat available to complete the project objectives. NGP was unable to continue managing the award for a project they did not own due to liability issues and Novation of the award was not a viable option due to federal award timelines. NGP submitted a request to mutually terminate the award on February 18, 2015. The results of all of the technical surveys and drilling are included in this report. Fault interpretations from surface geology, aeromag

  11. The Northwest Geysers EGS Demonstration Project, California. Pre-stimulation Modeling and Interpretation of the Stimulation

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Rutqvist, Jonny; Dobson, Patrick F.; Garcia, Julio; Hartline, Craig; Jeanne, Pierre; Oldenburg, Curtis M.; Vasco, Donald W.; Walters, Mark

    2013-10-17

    The Northwest Geysers Enhanced Geothermal System (EGS) demonstration project aims to create an EGS by directly and systematically injecting cool water at relatively low pressure into a known High Temperature (280–400 °C) Zone (HTZ) located under the conventional (240 °C) geothermal steam reservoir at The Geysers geothermal field in California. Here we report that , the results of coupled thermal, hydraulic, and mechanical (THM) analyses made using a model developed as part of the pre-stimulation phase of the EGS demonstration project is presented. The model simulations were conducted in order to investigate injection strategies and the resulting effects of cold-watermore » injection upon the EGS system; in particular to predict the extent of the stimulation zone for a given injection schedule. The actual injection began on October 6, 2011, and in this paper a comparison of pre-stimulation model predictions with micro-earthquake (MEQ) monitoring data over the first few months of a one-year injection program is presented. The results show that, by using a calibrated THM model based on historic injection and MEQ data at a nearby well, the predicted extent of the stimulation zone (defined as a zone of high MEQ density around the injection well) compares well with observed seismicity. The modeling indicates that the MEQ events are related to shear reactivation of preexisting fractures, which is triggered by the combined effects of injection-induced cooling around the injection well and small changes in steam pressure as far as half a kilometer away from the injection well. Pressure-monitoring data at adjacent wells and satellite-based ground-surface deformation data were also used to validate and further calibrate reservoir-scale hydraulic and mechanical model properties. The pressure signature monitored from the start of the injection was particularly useful for a precise back-calculation of reservoir porosity. Ultimately, the first few months of reservoir

  12. Local population impacts of geothermal energy development in the Geysers: Calistoga region

    SciTech Connect (OSTI)

    Haven, K.F.; Berg, V.; Ladson, Y.W.

    1980-09-01

    The country-level population increase implications of two long-term geothermal development scenarios for the Geysers region in California are addressed. This region is defined to include the counties of Lake, Sonoma, Mendocino and Napa, all four in northern California. The development scenarios include two components: development for electrical energy production and direct use applications. Electrical production scenarios are derived by incorporating current development patterns into previous development scenarios by both industry and research organizations. The scenarios are made county-specific, specific to the type of geothermal system constructed, and are projected through the year 2000. Separate high growth rate and low growth rate scenarios are developed, based on a set of specified assumptions. Direct use scenarios are estimated from the nature of the available resource, existing local economic and demographic patterns, and available experience with various separate direct use options. From the composite development scenarios, required numbers of direct and indirect employees and the resultant in-migration patterns are estimated. In-migration patterns are compared to current county level population and ongoing trends in the county population change for each of the four counties. From this comparison, conclusions are drawn concerning the contributions of geothermal resource development to future population levels and the significance of geothermally induced population increase from a county planning perspective.

  13. Biogenicity of silica precipitation around geysers and hot-spring vents, North Island, New Zealand

    SciTech Connect (OSTI)

    Jones, B.; Renaut, R.W.; Rosen, M.R.

    1997-01-01

    Before anthropogenic modifications, Ohaaki Pool (Broadlands-Ohaaki) and Dragon`s Mouth Geyser (Wairakei) emitted waters at temperatures of 93--98 C. The siliceous sinter that precipitated around their vents has the characteristics of geyserite, a dense laminated deposit of presumed abiogenic origin, that was precipitated from waters too hot (>73C) to support microbes other than thermophilic bacteria. Petrographic and SEM examinations of the sinters show that they incorporate columnar stromatolites and silicified, laminated stromatolitic mats that contain well-preserved filamentous microbes. At both localities the microbes lack evidence of desiccation or shrinkage, which implies that they were silicified rapidly at or shortly after their death. Although boiling and very hot (>90 C) waters were discharged, temperatures at many sites surrounding the vents remained sufficiently low and moist to support a microbial community that included thermophilic bacteria and cyanobacteria. In these cooler niches, the microbes and their biofilms served as highly favorable templates for the nucleation and growth of amorphous silica, and collectively provided a microbial framework for the laminated accretionary sinter. Some columnar, spicular, and stratiform geyserites are probably not abiotic precipitates, but are true silica stromatolites.

  14. Evolution of the Geysers (US) - Data From Fluid-Inclusion Microthermometry and Gas Geochemistry

    SciTech Connect (OSTI)

    Moore, J.N.; Hulen, J.B.; Norman, D.I.

    1995-01-01

    The Geysers, California, is the site of an active hydrothermal system that initially developed between about 1.5 and 2 Ma in response to intrusion of a hypabyssal granitic pluton. Mineralogic and fluid-inclusion data demonstrate that the present vapor-dominated regime evolved from an earlier and more extensive, liquid-dominated hydrothermal system. Circulation of these early fluids produced veins characterized by tourmaline and/or biotite {+-} actinolite {+-} clinopyroxene within the pluton and adjacent biotite-rich hornfels, actinolite {+-} ferroaxinite {+-} epidote, and epidote {+-} chlorite {+-} wairakite within the intermediate parts of the thermal system, and calcite in the outer parts. Potassium feldspar and quartz are present in all assemblages. Maximum pressure-corrected homogenization temperatures and apparent salinities of fluid-inclusions in these veins range from 440 C and 44 weight percent NaCl equivalent within the hornfels (<600 m from the pluton) to 325 C and 5 weight percent NaCl equivalent at approximately 1500 m from the intrusion. We suggest that the shallow, moderate-salinity fluids are crustal waters modified by water-rock interactions and that the high-salinity fluids are magmatic brines. The formation of vapor-dominated conditions is reflected in the abrupt appearance of low salinity (0.0 to 0.4 weight percent NaCl equivalent) fluid inclusions with homogenization temperatures near 265 C. These inclusion fluids are thought to represent steam condensate formed as the liquid-dominated system boiled off.

  15. Bagger-Lambert-Gustavsson-motivated Lagrangian formulation for the chiral two-form gauge field in D=6 and M5-branes

    SciTech Connect (OSTI)

    Pasti, Paolo; Tonin, Mario; Samsonov, Igor; Sorokin, Dmitri

    2009-10-15

    We reveal nonmanifest gauge and SO(1,5) Lorentz symmetries in the Lagrangian description of a six-dimensional free chiral field derived from the Bagger-Lambert-Gustavsson model in [P.-M. Ho and Y. Matsuo, J. High Energy Phys. 06 (2008) 105.] and make this formulation covariant with the use of a triplet of auxiliary scalar fields. We consider the coupling of this self-dual construction to gravity and its supersymmetrization. In the case of the nonlinear model of [P.-M. Ho, Y. Imamura, Y. Matsuo, and S. Shiba, J. High Energy Phys. 08 (2008) 014.] we solve the equations of motion of the gauge field, prove that its nonlinear field strength is self-dual and find a gauge-covariant form of the nonlinear action. Issues of the relation of this model to the known formulations of the M5-brane worldvolume theory are discussed.

  16. Micro-Earthquake At Coso Geothermal Area (2005) | Open Energy...

    Open Energy Info (EERE)

    at The Geysers and Coso Geothermal Reservoirs by Shear-wave Splitting, Rial, Elkibbi, Yang and Pereyra. The raw data for the project consists of seismographic recordings of...

  17. Geysers | Open Energy Information

    Open Energy Info (EERE)

    a column of hot water and steam into the air. Other definitions:Wikipedia Reegle Modern Geothermal Features Typical list of modern geothermal features Hot Springs Fumaroles...

  18. Compound and Elemental Analysis At Newberry Caldera Area (Goles...

    Open Energy Info (EERE)

    Analysis Activity Date Usefulness not indicated DOE-funding Unknown References Gordon G. Goles, Richard St J. Lambert (1990) A Strontium Isotopic Study Of Newberry Volcano,...

  19. Delineation of an electrical resistivity anomaly, Malpais area, Beowawe KGRA, Eureka and Lander Counties, Nevada

    SciTech Connect (OSTI)

    Smith, C.

    1980-07-01

    A simple numerical model of previously released bipole-dipole resistivity data shows the margin of the graben to be anomalously conductive below the Malpais. The conductive area has been delineated with data from a dipole-dipole resistivity survey run in April 1980 for this study. Detailed numerical models of these data define a 1250 m wide body with resistivities less than 20 ohm-m that appear to connect The Geysers and the graben boundary. The minimum depth to the conductor is interpreted to be 375 m; its depth extent is undetermined. The electrical data do not resolve whether the anomaly below the Malpais may be the product of a defunct hydrothermal system or the signature of an active system. If thermal gradient data detect an enhanced heat flow anomaly in the same area, the Malpais may be a viable geothermal exploration target within the Beowawe KGRA.

  20. Teleseismic-Seismic Monitoring At Clear Lake Area (Skokan, 1993...

    Open Energy Info (EERE)

    4 illustrates seismicity from January of 1969 to June of 1977 (Rapolla and Keller, 1984). During this span, most of the seismicity occurred in the region of the Geysers...

  1. Research Areas

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research Areas Our Vision National User Facilities Research Areas In Focus Global Solutions ⇒ Navigate Section Our Vision National User Facilities Research Areas In Focus Global Solutions Biosciences The Biosciences Area forges multidisciplinary teams to solve national challenges in energy, environment and health issues; and to advance the engineering of biological systems for sustainable manufacturing. Biosciences Area research is coordinated through three divisions and is enabled by Berkeley

  2. Bay Area

    National Nuclear Security Administration (NNSA)

    8%2A en NNSA to Conduct Aerial Radiological Surveys Over San Francisco, Pacifica, Berkeley, And Oakland, CA Areas http:nnsa.energy.govmediaroompressreleasesamsca

  3. Research Areas

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    in diverse research areas such as cell biology, lithography, infrared microscopy, radiology, and x-ray tomography. Time-Resolved These techniques exploit the pulsed nature of...

  4. Modeling of local steam condensation on walls in presence of non-condensable gases. Application to a loca calculation in reactor containment using the multidimensional geyser/tonus code

    SciTech Connect (OSTI)

    Benet, L.V.; Caroli, C.; Cornet, P.

    1995-09-01

    This paper reports part of a study of possible severe pressurized water reactor (PWR) accidents. The need for containment modeling, and in particular for a hydrogen risk study, was reinforced in France after 1990, with the requirement that severe accidents must be taken into account in the design of future plants. This new need of assessing the transient local hydrogen concentration led to the development, in the Mechanical Engineering and Technology Department of the French Atomic Energy Commission (CEA/DMT), of the multidimensional code GEYSER/TONUS for containment analysis. A detailed example of the use of this code is presented. The mixture consisted of noncondensable gases (air or air plus hydrogen) and water vapor and liquid water. This is described by a compressible homogeneous two-phase flow model and wall condensation is based on the Chilton-Colburn formula and the analogy between heat and mass transfer. Results are given for a transient two-dimensional axially-symmetric computation for the first hour of a simplified accident sequence. In this there was an initial injection of a large amount of water vapor followed by a smaller amount and by hydrogen injection.

  5. Aidlin Geothermal Facility | Open Energy Information

    Open Energy Info (EERE)

    General Information Name Aidlin Geothermal Facility Facility Aidlin Sector Geothermal energy Location Information Location Geysers Area Coordinates 38.833874378195,...

  6. Melt zones beneath five volcanic complexes in California: an...

    Open Energy Info (EERE)

    Bridge. Related Geothermal Exploration Activities Activities (4) Geothermal Literature Review At Coso Geothermal Area (1984) Geothermal Literature Review At Geysers...

  7. Heat Flow, Heat Transfer And Lithosphere Rheology In Geothermal...

    Open Energy Info (EERE)

    Research. () . Related Geothermal Exploration Activities Activities (5) Geothermal Literature Review At Geysers Area (Ranalli & Rybach, 2005) Geothermal Literature Review At...

  8. Geysers Power Co LLC | Open Energy Information

    Open Energy Info (EERE)

    Laboratory to deepen wells into a high temperature zone and thermally stimulate with cold water to increase power production. Coordinates: 39.033545, -78.272579 Show Map...

  9. Crump Geyser Geothermal Project | Open Energy Information

    Open Energy Info (EERE)

    ectangles":,"copycoords":false,"static":false,"wmsoverlay":"","layers":,"controls":"pan","zoom","type","scale","streetview","zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoi...

  10. Geysers Project Geothermal Project | Open Energy Information

    Open Energy Info (EERE)

    ectangles":,"copycoords":false,"static":false,"wmsoverlay":"","layers":,"controls":"pan","zoom","type","scale","streetview","zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoi...

  11. Sweet Surface Area

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sweet Surface Area Sweet Surface Area Create a delicious root beer float and learn sophisticated science concepts at the same time. Sweet Surface Area Science is all around us, so ...

  12. 300 Area - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    300 Area 324 Building 325 Building 400 AreaFast Flux Test Facility 618-10 and 618-11 Burial Grounds 700 Area B Plant B Reactor C Reactor Canister Storage Building and Interim ...

  13. 200 Area - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    300 Area 324 Building 325 Building 400 AreaFast Flux Test Facility 618-10 and 618-11 Burial Grounds 700 Area B Plant B Reactor C Reactor Canister Storage Building and Interim ...

  14. 700 Area - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    300 Area 324 Building 325 Building 400 AreaFast Flux Test Facility 618-10 and 618-11 Burial Grounds 700 Area B Plant B Reactor C Reactor Canister Storage Building and Interim ...

  15. AREA 5 RWMS CLOSURE

    National Nuclear Security Administration (NNSA)

    153 CLOSURE STRATEGY NEVADA TEST SITE AREA 5 RADIOACTIVE WASTE MANAGEMENT SITE Revision 0 ... Closure Strategy Nevada Test Site Area 5 Radioactive Waste Management ...

  16. Strategic Focus Areas

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Strategic Focus Areas Lockheed Martin on behalf of Sandia National Laboratories will consider grant requests that best support the Corporation's strategic focus areas and reflect ...

  17. 100 Area - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    00 Area About Us About Hanford Cleanup Hanford History Hanford Site Wide Programs Contact Us 100 Area 118-K-1 Burial Ground 200 Area 222-S Laboratory 242-A Evaporator 300 Area 324 Building 325 Building 400 Area/Fast Flux Test Facility 618-10 and 618-11 Burial Grounds 700 Area B Plant B Reactor C Reactor Canister Storage Building and Interim Storage Area Canyon Facilities Cold Test Facility D and DR Reactors Effluent Treatment Facility Environmental Restoration Disposal Facility F Reactor H

  18. Technical Area 21

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Technical Area 21 Technical Area 21 Technical Area 21 was the site of chemical research for refining plutonium and plutonium metal production from 1945 to 1978. August 1, 2013 Technical Area 21 in 2011 Technical Area 21 in 2011 Technical Area 21 (TA-21), also known as DP Site was the site of chemical research for refining plutonium and plutonium metal production from 1945 to 1978. Between 2008 and 2011, MDAs B, U, and V were excavated and removed. 24 buildings were demolished in 2010 and 2011

  19. Site Monitoring Area Maps

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Maps Individual Permit: Site Monitoring Area Maps Each Site Monitoring Area Map is updated whenever the map information is updated. Contact Environmental Communication & Public Involvement P.O. Box 1663 MS M996 Los Alamos, NM 87545 (505) 667-0216 Email What do these maps show? The Individual Permit for Storm Water site monitoring area maps display the following information: Surface hydrological features Locations of the Site(s) assigned to the Site Monitoring Area (SMA) The Site Monitoring

  20. Inner Area Principles

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Inner Area Principles The Inner Area principles proposed by the Tri-Parties are a good beginning toward consideration of what kind of approach will be needed to remedy the problems of the Central Plateau. However, the Board feels that some principles have been overlooked in the preparation of these. [1] While it has been generally agreed that designated waste disposal facilities of the Inner Area (like ERDF and IDF) would not be candidates for remediation. What happened to the remedial approach

  1. Imperial Valley Geothermal Area

    Broader source: Energy.gov [DOE]

    The Imperial Valley Geothermal project consists of 10 generating plants in the Salton Sea Known Geothermal Resource Area in Southern California's Imperial Valley. The combined capacity at Imperial...

  2. Western Area Power Administration

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Area Power Administration Follow-up to Nov. 25, 2008 Transition ... Southwestern Power Administration CONSTRUCTION BUDGET ITEM DESCRIPTION FY 2009* MICROWAVE ...

  3. Geothermal br Resource br Area Geothermal br Resource br Area...

    Open Energy Info (EERE)

    Aluto Langano Geothermal Area Aluto Langano Geothermal Area East African Rift System Ethiopian Rift Valley Major Normal Fault Basalt MW K Amatitlan Geothermal Area Amatitlan...

  4. Decontamination & decommissioning focus area

    SciTech Connect (OSTI)

    1996-08-01

    In January 1994, the US Department of Energy Office of Environmental Management (DOE EM) formally introduced its new approach to managing DOE`s environmental research and technology development activities. The goal of the new approach is to conduct research and development in critical areas of interest to DOE, utilizing the best talent in the Department and in the national science community. To facilitate this solutions-oriented approach, the Office of Science and Technology (EM-50, formerly the Office of Technology Development) formed five Focus AReas to stimulate the required basic research, development, and demonstration efforts to seek new, innovative cleanup methods. In February 1995, EM-50 selected the DOE Morgantown Energy Technology Center (METC) to lead implementation of one of these Focus Areas: the Decontamination and Decommissioning (D & D) Focus Area.

  5. Physics Thrust Areas

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Thrust Areas Physics Thrust Areas Physics Division serves the nation through its broad portfolio of fundamental and applied research. Quality basic science research: critical component of maintaining our capabilities in national security research To further understand the physical world, generate new or improved technology in experimental physics, and establish a physics foundation for current and future Los Alamos programs, Physics Division leverages its expertise and experimental capabilities

  6. Hanford 300 Area ROD

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    300 Area ROD Briefing to the Hanford Advisory Board March 6, 2014 Larry Gadbois -- EPA Recap of the 300 Area ROD Primary new concept -- Uranium Sequestration: * Purpose: Accelerate restoration of groundwater uranium contamination. * Protect groundwater from downward leaching from the vadose zone (overlying soil). * Add phosphate to chemically bond with uranium into geologically stable autunite. Does not dissolve. * Dissolve phosphate in water, apply at ground surface, inject into the ground,

  7. Operational Area Monitoring Plan

    Office of Legacy Management (LM)

    ' SECTION 11.7B Operational Area Monitoring Plan for the Long -Term H yd rol og ical M o n i to ri ng - Program Off The Nevada Test Site S . C. Black Reynolds Electrical & Engineering, Co. and W. G. Phillips, G. G. Martin, D. J. Chaloud, C. A. Fontana, and 0. G. Easterly Environmental Monitoring Systems Laboratory U. S. Environmental Protection Agency October 23, 1991 FOREWORD This is one of a series of Operational Area Monitoring Plans that comprise the overall Environmental Monitoring Plan

  8. OLED area illumination source

    DOE Patents [OSTI]

    Foust, Donald Franklin; Duggal, Anil Raj; Shiang, Joseph John; Nealon, William Francis; Bortscheller, Jacob Charles

    2008-03-25

    The present invention relates to an area illumination light source comprising a plurality of individual OLED panels. The individual OLED panels are configured in a physically modular fashion. Each OLED panel comprising a plurality of OLED devices. Each OLED panel comprises a first electrode and a second electrode such that the power being supplied to each individual OLED panel may be varied independently. A power supply unit capable of delivering varying levels of voltage simultaneously to the first and second electrodes of each of the individual OLED panels is also provided. The area illumination light source also comprises a mount within which the OLED panels are arrayed.

  9. Site Monitoring Area Maps

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The spatial location and boundaries for each Site shown on the Site Monitoring Area maps ... P-SMA-2 DP-SMA-0.4 LA-SMA-2.3 LA-SMA-5.51 LA-SMA-6.38 P-SMA-2.15 DP-SMA-0.6 ...

  10. Plutonium focus area

    SciTech Connect (OSTI)

    1996-08-01

    To ensure research and development programs focus on the most pressing environmental restoration and waste management problems at the U.S. Department of Energy (DOE), the Assistant Secretary for the Office of Environmental Management (EM) established a working group in August 1993 to implement a new approach to research and technology development. As part of this new approach, EM developed a management structure and principles that led to the creation of specific Focus Areas. These organizations were designed to focus the scientific and technical talent throughout DOE and the national scientific community on the major environmental restoration and waste management problems facing DOE. The Focus Area approach provides the framework for intersite cooperation and leveraging of resources on common problems. After the original establishment of five major Focus Areas within the Office of Technology Development (EM-50, now called the Office of Science and Technology), the Nuclear Materials Stabilization Task Group (EM-66) followed the structure already in place in EM-50 and chartered the Plutonium Focus Area (PFA). The following information outlines the scope and mission of the EM, EM-60, and EM-66 organizations as related to the PFA organizational structure.

  11. Subsurface contaminants focus area

    SciTech Connect (OSTI)

    1996-08-01

    The US Department of Enregy (DOE) Subsurface Contaminants Focus Area is developing technologies to address environmental problems associated with hazardous and radioactive contaminants in soil and groundwater that exist throughout the DOE complex, including radionuclides, heavy metals; and dense non-aqueous phase liquids (DNAPLs). More than 5,700 known DOE groundwater plumes have contaminated over 600 billion gallons of water and 200 million cubic meters of soil. Migration of these plumes threatens local and regional water sources, and in some cases has already adversely impacted off-site rsources. In addition, the Subsurface Contaminants Focus Area is responsible for supplying technologies for the remediation of numerous landfills at DOE facilities. These landfills are estimated to contain over 3 million cubic meters of radioactive and hazardous buried Technology developed within this specialty area will provide efective methods to contain contaminant plumes and new or alternative technologies for development of in situ technologies to minimize waste disposal costs and potential worker exposure by treating plumes in place. While addressing contaminant plumes emanating from DOE landfills, the Subsurface Contaminants Focus Area is also working to develop new or alternative technologies for the in situ stabilization, and nonintrusive characterization of these disposal sites.

  12. Property:AreaGeology | Open Energy Information

    Open Energy Info (EERE)

    Geothermal Area B Beowawe Hot Springs Geothermal Area Blue Mountain Geothermal Area Brady Hot Springs Geothermal Area C Chena Geothermal Area Coso Geothermal Area D Desert Peak...

  13. Figure 1. Project Area, Focused Study Area, Potential Access...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Page 4 of 8 Figure 1. Project Area, Focused Study Area, Potential Access Agreement Land, and Land Not Suitable for Conveyance

  14. Figure 1. Project Area, Focused Study Area, Potential Access...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Page 4 of 8 Figure 1. Project Area, Focused Study Area, Potential Access Agreement Land, and Land Not Suitable for Conveyance...

  15. Bay Area | Open Energy Information

    Open Energy Info (EERE)

    Page Edit History Bay Area Jump to: navigation, search Contents 1 Clean Energy Clusters in the Bay Area 1.1 Products and Services in the Bay Area 1.2 Research and Development...

  16. Rockies Area | Open Energy Information

    Open Energy Info (EERE)

    Rockies Area Jump to: navigation, search Contents 1 Clean Energy Clusters in the Rockies Area 1.1 Products and Services in the Rockies Area 1.2 Research and Development...

  17. Texas Area | Open Energy Information

    Open Energy Info (EERE)

    Area Jump to: navigation, search Contents 1 Clean Energy Clusters in the Texas Area 1.1 Products and Services in the Texas Area 1.2 Research and Development Institutions in the...

  18. Large area bulk superconductors

    DOE Patents [OSTI]

    Miller, Dean J.; Field, Michael B.

    2002-01-01

    A bulk superconductor having a thickness of not less than about 100 microns is carried by a polycrystalline textured substrate having misorientation angles at the surface thereof not greater than about 15.degree.; the bulk superconductor may have a thickness of not less than about 100 microns and a surface area of not less than about 50 cm.sup.2. The textured substrate may have a thickness not less than about 10 microns and misorientation angles at the surface thereof not greater than about 15.degree.. Also disclosed is a process of manufacturing the bulk superconductor and the polycrystalline biaxially textured substrate material.

  19. T-1 Training Area

    SciTech Connect (OSTI)

    2014-11-07

    Another valuable homeland security asset at the NNSS is the T-1 training area, which covers more than 10 acres and includes more than 20 separate training venues. Local, County, and State first responders who train here encounter a variety of realistic disaster scenarios. A crashed 737 airliner lying in pieces across the desert, a helicopter and other small aircraft, trucks, buses, and derailed train cars are all part of the mock incident scene. After formal classroom education, first responders are trained to take immediate decisive action to prevent or mitigate the use of radiological or nuclear devices by terrorists. The Counterterrorism Operations Support Center for Radiological Nuclear Training conducts the courses and exercises providing first responders from across the nation with the tools they need to protect their communities. All of these elements provide a training experience that cannot be duplicated anywhere else in the country.

  20. T-1 Training Area

    ScienceCinema (OSTI)

    None

    2015-01-09

    Another valuable homeland security asset at the NNSS is the T-1 training area, which covers more than 10 acres and includes more than 20 separate training venues. Local, County, and State first responders who train here encounter a variety of realistic disaster scenarios. A crashed 737 airliner lying in pieces across the desert, a helicopter and other small aircraft, trucks, buses, and derailed train cars are all part of the mock incident scene. After formal classroom education, first responders are trained to take immediate decisive action to prevent or mitigate the use of radiological or nuclear devices by terrorists. The Counterterrorism Operations Support Center for Radiological Nuclear Training conducts the courses and exercises providing first responders from across the nation with the tools they need to protect their communities. All of these elements provide a training experience that cannot be duplicated anywhere else in the country.

  1. AREA RADIATION MONITOR

    DOE Patents [OSTI]

    Manning, F.W.; Groothuis, S.E.; Lykins, J.H.; Papke, D.M.

    1962-06-12

    S>An improved area radiation dose monitor is designed which is adapted to compensate continuously for background radiation below a threshold dose rate and to give warning when the dose integral of the dose rate of an above-threshold radiation excursion exceeds a selected value. This is accomplished by providing means for continuously charging an ionization chamber. The chamber provides a first current proportional to the incident radiation dose rate. Means are provided for generating a second current including means for nulling out the first current with the second current at all values of the first current corresponding to dose rates below a selected threshold dose rate value. The second current has a maximum value corresponding to that of the first current at the threshold dose rate. The excess of the first current over the second current, which occurs above the threshold, is integrated and an alarm is given at a selected integrated value of the excess corresponding to a selected radiation dose. (AEC)

  2. SSL Demonstration: Area Lighting Yuma Sector Border Patrol Area...

    Energy Savers [EERE]

    DEMONSTRATION: Area Lighting Yuma Sector Border Patrol Area, AZ A unique GATEWAY evaluation on a stretch of border between the U.S. and Mexico looks at how high-flux LED lighting ...

  3. F Reactor Area Cleanup Complete

    Broader source: Energy.gov [DOE]

    RICHLAND, Wash. – U.S. Department of Energy (DOE) contractors have cleaned up the F Reactor Area, the first reactor area at the Hanford Site in southeastern Washington state to be fully remediated.

  4. Focus Areas | Critical Materials Institute

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Focus Areas FA 1: Diversifying Supply FA 2: Developing Substitutes FA 3: Improving Reuse and Recycling FA 4: Crosscutting Research

  5. Characterizing Fractures in the Geysers Geothermal Field by Micro...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Using Soft Computing, Fractals, and Shear Wave Anisotropy Determine if fracturing could ... enough to allow economic production of power. seismicityaminzadehmicroseismicdata.pd...

  6. 2D Seismic Reflection Survey Crump Geyser Geothermal Prospect...

    Open Energy Info (EERE)

    Additional Info Field Value Author Nevada Geothermal Power Company Maintainer Nicole Smith bureaucode 019:20 Catalog DOE harvestobjectid 80f3a9f1-e224-4a02-951b-229cd8e273fd...

  7. Seismic Velocity And Attenuation Structure Of The Geysers Geothermal...

    Open Energy Info (EERE)

    of the world's largest producers of electricity from geothermal energy. A key resource management issue at this field is the distribution of fluid in the matrix of the reservoir...

  8. The Northwest Geysers High-Temperature Reservoir- Evidence For...

    Open Energy Info (EERE)

    with steam from the HTR is magmatic, and add new constraints to genetic models of the system and its evolution. The intensity of the magmatic signal is inconsistent with deep...

  9. Characterizing Fractures in Geysers Geothermal Field by Micro...

    Open Energy Info (EERE)

    cooling shrinkage. The stimulated, existing fractures thus enhance the permeability of the hot rock formations, hence enabling better circulation of water for the...

  10. Characterizing Fractures in the Geysers Geothermal Field by Micro...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    for fuzzy segmentation and hybrid Neuro-fuzzy autopicking Improved ... Implemented a noise based segmentation approach to validate the requirement for Neuro-fuzz...

  11. Geothermal resource area 9: Nye County. Area development plan

    SciTech Connect (OSTI)

    Pugsley, M.

    1981-01-01

    Geothermal Resource area 9 encompasses all of Nye County, Nevada. Within this area there are many different known geothermal sites ranging in temperature from 70/sup 0/ to over 265/sup 0/ F. Fifteen of the more major sites have been selected for evaluation in this Area Development Plan. Various potential uses of the energy found at each of the resource sites discussed in this Area Development Plan were determined after evaluating the area's physical characteristics, land ownership and land use patterns, existing population and projected growth rates, and transportation facilities, and comparing those with the site specific resource characteristics. The uses considered were divided into five main categories: electrical generation, space heating, recreation, industrial process heat, and agriculture. Within two of these categories certain subdivisions were considered separately. The findings about each of the 15 geothermal sites considered in this Area Development Plan are summarized.

  12. SSL Demonstration: Area Lighting, Yuma Sector Border Patrol Area, AZ

    SciTech Connect (OSTI)

    2015-05-28

    Along the Yuma Sector Border Patrol Area in Yuma, Arizona, the GATEWAY program conducted a trial demonstration in which the incumbent quartz metal halide area lighting was replaced with LED at three pole locations at the Yuma Sector Border Patrol Area in Yuma, Arizona. The retrofit was documented to better understand LED technology performance in high-temperature environments. This document is a summary brief of the Phase 1.0 and 1.1 reports previously published on this demonstration.

  13. Cove Fort Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    Cove Fort Geothermal Area (Redirected from Cove Fort Geothermal Area - Vapor) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Cove Fort Geothermal Area Contents 1 Area...

  14. Blue Mountain Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    Blue Mountain Geothermal Area (Redirected from Blue Mountain Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Blue Mountain Geothermal Area Contents 1 Area...

  15. Stillwater Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    Stillwater Geothermal Area (Redirected from Stillwater Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Stillwater Geothermal Area Contents 1 Area Overview 2...

  16. Chena Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    Chena Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Chena Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 2.1 Chena Area...

  17. Salton Sea Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    Salton Sea Geothermal Area (Redirected from Salton Sea Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Salton Sea Geothermal Area Contents 1 Area Overview 2...

  18. Heber Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    Heber Geothermal Area (Redirected from Heber Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Heber Geothermal Area Contents 1 Area Overview 2 History and...

  19. Desert Peak Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    Desert Peak Geothermal Area (Redirected from Desert Peak Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Desert Peak Geothermal Area Contents 1 Area Overview 2...

  20. PPPL Area Map | Princeton Plasma Physics Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    PPPL Area Map View Larger Map

  1. Property:GeothermalArea | Open Energy Information

    Open Energy Info (EERE)

    Area + Babadere Geothermal Project + Tuzla Geothermal Area + Bacman 1 GEPP + Bac-Man Laguna Geothermal Area + Bacman 2 GEPP + Bac-Man Laguna Geothermal Area + Bacman...

  2. NEPA | Open Energy Information

    Open Energy Info (EERE)

    EA Neal Hot Springs Geothermal Area US Geothermal Inc United States Department of Energy GeothermalPower Plant DOE-EA-1733 EA Geysers Geothermal Area Calpine United States...

  3. Why SRS Matters - F Area

    SciTech Connect (OSTI)

    Howell, Steve; Tadlock, Bill; Beeler, Dewitt; Gardner, Curt

    2015-02-17

    A video series presenting an overview of the Savannah River Site's (SRS) mission and operations. Each episode features a specific area/operation and how it contributes to help make the world safer. This episode features F Area's mission and operations.

  4. Tech Area II: A history

    SciTech Connect (OSTI)

    Ullrich, R.

    1998-07-01

    This report documents the history of the major buildings in Sandia National Laboratories` Technical Area II. It was prepared in support of the Department of Energy`s compliance with Section 106 of the National Historic Preservation Act. Technical Area II was designed and constructed in 1948 specifically for the final assembly of the non-nuclear components of nuclear weapons, and was the primary site conducting such assembly until 1952. Both the architecture and location of the oldest buildings in the area reflect their original purpose. Assembly activities continued in Area II from 1952 to 1957, but the major responsibility for this work shifted to other sites in the Atomic Energy Commission`s integrated contractor complex. Gradually, additional buildings were constructed and the original buildings were modified. After 1960, the Area`s primary purpose was the research and testing of high-explosive components for nuclear weapons. In 1994, Sandia constructed new facilities for work on high-explosive components outside of the original Area II diamond-shaped parcel. Most of the buildings in the area are vacant and Sandia has no plans to use them. They are proposed for decontamination and demolition as funding becomes available.

  5. Why SRS Matters - L Area

    SciTech Connect (OSTI)

    Hunt, Paul

    2015-01-28

    A video series presenting an overview of the Savannah River Site's (SRS) mission and operations. Each episode features a specific area/operation and how it contributes to help make the world safer. This episode features L Area's mission and operations.

  6. Why SRS Matters - E Area

    SciTech Connect (OSTI)

    Howell, Steve; Mooneyhan, Verne; Tempel, Kevin; Bullington, Michele

    2015-03-09

    A video series presenting an overview of the Savannah River Site's (SRS) mission and operations. Each episode features a specific area/operation and how it contributes to help make the world safer. This episode features E Area's mission and operations.

  7. AREA

    Broader source: Energy.gov (indexed) [DOE]

    or if they need to add this to their audit they have performed yearly by a public accounting firm. 316 audits are essentially A-133 audits for for-profit entities. They DO...

  8. AREA

    Office of Environmental Management (EM)

    DCAA would never agree to perform A-133 or our 316 audits. They don't do A-133 audits for DOD awardees. The purpose of the audits are different, look at different things and in the ...

  9. Vital area analysis using sets

    SciTech Connect (OSTI)

    Stack, D.W.; Francis, K.A.

    1980-05-01

    This report describes the use of the Set Equation Transformation System (SETS) for vital area analysis. Several concepts are introduced which enable the analyst to construct more efficient SETS user programs to perform vital area analysis. The advantages of performing the transformation of variables without first determining the minimal cut sets of the fault tree are discussed. A ''bottom-up'' approach to solving a fault tree is presented. The techniques described for vital area analysis are also suitable and efficient for many kinds of common cause analysis.

  10. Security Area Vouching and Piggybacking

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2000-06-05

    Establishes requirements for the Department of Energy (DOE) Security Area practice of "vouching" or "piggybacking" access by personnel. DOE N 251.40, dated 5-3-01, extends this directive until 12-31-01.

  11. Manhattan Project: Tech Area Gallery

    Office of Scientific and Technical Information (OSTI)

    All of the photographs below are of the "Tech Area" at Los Alamos during or shortly after the wartime years. If you have a fast internet connection, you may wish to click here for ...

  12. Fire in a contaminated area

    SciTech Connect (OSTI)

    Ryan, G.W., Westinghouse Hanford

    1996-08-28

    This document supports the development and presentation of the following accident scenario in the TWRS Final Safety Analysis Report: Fire in Contaminated Area. The calculations needed to quantify the risk associated with this accident scenario are included within.

  13. Progress Update: M Area Closure

    ScienceCinema (OSTI)

    Cody, Tom

    2012-06-14

    A progress update of the Recovery Act at work at the Savannah River Site. The celebration of the first area cleanup completion with the help of the Recovery Act.

  14. CENTRAL NEVPJJA SUPPLEMENTAL TEST AREA

    Office of Legacy Management (LM)

    CENTRAL NEVPJJA SUPPLEMENTAL TEST AREA ,FACILITY RECORDS 1970 UNITED STATES ATOMIC ENERGY ... Prepared By Holmes & Narver. Inc. On-Continent Test Division P.O. Box 14340 Las Vegas, ...

  15. Manhattan Project: Tech Area Gallery

    Office of Scientific and Technical Information (OSTI)

    All of the photographs below are of the "Tech Area" at Los Alamos during or shortly after the wartime years. If this page is taking a long time to load, click here for a photo ...

  16. Focus Areas | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Focus Areas Focus Areas Safety With this focus on cleanup completion and risk reducing results, safety still remains the utmost priority. EM will continue to maintain and demand the highest safety performance. All workers deserve to go home as healthy as they were when they came to the job in the morning. There is no schedule or milestone worth any injury to the work force. Project Management EM is increasing its concentration on project management to improve its overall performance toward

  17. Variable area fuel cell cooling

    DOE Patents [OSTI]

    Kothmann, Richard E.

    1982-01-01

    A fuel cell arrangement having cooling fluid flow passages which vary in surface area from the inlet to the outlet of the passages. A smaller surface area is provided at the passage inlet, which increases toward the passage outlet, so as to provide more uniform cooling of the entire fuel cell. The cooling passages can also be spaced from one another in an uneven fashion.

  18. Carlsbad Area Office Executive Summary

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    June 1998 Carlsbad Area Office Executive Summary The mission of the Carlsbad Area Office (CAO) is to protect human health and the environment by opening and operating the Waste Isolation Pilot Plant (WIPP) for safe disposal of transuranic (TRU) waste and by establishing an effective system for management of TRU waste from generation to disposal. It includes personnel assigned to CAO, WIPP site operations, transportation, and other activities associated with the National TRU Program (NTP). The

  19. Alum Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    Alum Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Alum Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and...

  20. Aurora Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    Aurora Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Aurora Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and...

  1. Berln Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    Berln Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Berln Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and...

  2. Stillwater Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    Stillwater Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Stillwater Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3...

  3. Krafla Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    Krafla Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Krafla Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and...

  4. Salt Wells Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    Salt Wells Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Salt Wells Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 2.1 Salt...

  5. Rye Patch Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    Rye Patch Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Rye Patch Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory...

  6. Amedee Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    Amedee Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Amedee Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and...

  7. Miravalles Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    Miravalles Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Miravalles Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3...

  8. Oita Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    Oita Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Oita Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and...

  9. Cove Fort Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    Cove Fort Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Cove Fort Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory...

  10. Larderello Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    Larderello Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Larderello Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3...

  11. Butte Springs Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    Butte Springs Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Butte Springs Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3...

  12. Chocolate Mountains Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    Chocolate Mountains Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Chocolate Mountains Geothermal Area Contents 1 Area Overview 2 History and...

  13. Research Subject Areas for IGPPS Proposals

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research Subject Areas Research Subject Areas for IGPPS Proposals High quality, cutting-edge science in the areas of astrophysics, space physics, solid planetary geoscience, and...

  14. Java - Dieng Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    Java - Dieng Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Java - Dieng Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3...

  15. Java - Kamojang Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    Java - Kamojang Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Java - Kamojang Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3...

  16. Java - Darajat Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    Java - Darajat Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Java - Darajat Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3...

  17. Great Basin Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    Great Basin Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Great Basin Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3...

  18. Sacramento Area Technology Alliance | Open Energy Information

    Open Energy Info (EERE)

    Sacramento Area Technology Alliance Jump to: navigation, search Logo: Sacramento Area Technology Alliance Name: Sacramento Area Technology Alliance Address: 5022 Bailey Loop Place:...

  19. Wild Rose Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    Wild Rose Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Wild Rose Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory...

  20. Dixie Valley Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    Field Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Dixie Valley Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 2.1 U.S. Department...

  1. Dixie Valley Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    Dixie Valley Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Dixie Valley Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 2.1...

  2. Mcgee Mountain Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    Mcgee Mountain Geothermal Area (Redirected from Mcgee Mountain Area) Redirect page Jump to: navigation, search REDIRECT McGee Mountain Geothermal Area Retrieved from "http:...

  3. Geothermal resource area 11, Clark County area development plan

    SciTech Connect (OSTI)

    Pugsley, M.

    1981-01-01

    Geothermal Resource Area 11 includes all of the land in Clark County, Nevada. Within this area are nine geothermal anomalies: Moapa Area, Las Vegas Valley, Black Canyon, Virgin River Narrows, Roger's Springs, Indian Springs, White Rock Springs, Brown's Spring, and Ash Creek Spring. All of the geothermal resources in Clark County have relatively low temperatures. The highest recorded temperature is 145{sup 0}F at Black Canyon. The temperatures of the other resources range from 70 to 90{sup 0}F. Because of the low temperature of the resources and, for the most part, the distance of the resources from any population base, the potential for the development of the resources are considered to be somewhat limited.

  4. Los Humeros Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    (0) 10 References Area Overview Geothermal Area Profile Location: Chignautla, Puebla, Mexico Exploration Region: Transmexican Volcanic Belt GEA Development Phase:...

  5. H-Area Seepage Basins

    SciTech Connect (OSTI)

    Stejskal, G.

    1990-12-01

    During the third quarter of 1990 the wells which make up the H-Area Seepage Basins (H-HWMF) monitoring network were sampled. Laboratory analyses were performed to measure levels of hazardous constituents, indicator parameters, tritium, nonvolatile beta, and gross alpha. A Gas Chromatograph Mass Spectrometer (GCMS) scan was performed on all wells sampled to determine any hazardous organic constituents present in the groundwater. The primary contaminants observed at wells monitoring the H-Area Seepage Basins are tritium, nitrate, mercury, gross alpha, nonvolatile beta, trichloroethylene (TCE), tetrachloroethylene, lead, cadmium, arsenic, and total radium.

  6. AreaMapWeb copy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ORNL ETTP CITY OF OAK RIDGE MAP AREA (below) 170 170 62 162 162 62 62 61 61 62 61 95 95 61 61 58 95 62 129 321 411 411 321 321 129 11W 11E 11 70 11 11 70 11 11 70 70 40 40 140 140 40 75 40 40 40 640 640 75 75 75 75 61 62 ALCOA MARYVILLE LENOIR CITY FARRAGUT LOUDON OLIVER SPRINGS OAK RIDGE KNOXVILLE AIRPORT McGhee Tyson Municipal Airport (Knoxville Airport) Route between Knoxville Airport, Downtown Knoxville, and Oak Ridge area Take left lane for I-40 West to Nashville, Chattanooga No. 376A Oak

  7. 200 area TEDF sample schedule

    SciTech Connect (OSTI)

    Brown, M.J.

    1995-03-22

    This document summarizes the sampling criteria associated with the 200 Area Treatment Effluent Facility (TEDF) that are needed to comply with the requirements of the Washington State Discharge Permit No. WA ST 4502 and good engineering practices at the generator streams that feed into TEDF. In addition, this document Identifies the responsible parties for both sampling and data transference.

  8. A Comprehensive Study Of Fracture Patterns And Densities In The...

    Open Energy Info (EERE)

    specific knowledge of these in the Geysers area. (2)By locating zones of high fracture density it will be possible to reduce the cost of geothermal power development with the...

  9. Areas Participating in the Reformulated Gasoline Program

    Gasoline and Diesel Fuel Update (EIA)

    Reformulated Gasoline Program Contents * Introduction * Mandated RFG Program Areas o Table 1. Mandated RFG Program Areas * RFG Program Opt-In Areas o Table 2. RFG Program Opt-In Areas * RFG Program Opt-Out Procedures and Areas o Table 3. History of EPA Rulemaking on Opt-Out Procedures o Table 4. RFG Program Opt-Out Areas * State Programs o Table 5. State Reformulated Gasoline Programs * Endnotes Spreadsheets Referenced in this Article * Reformulated Gasoline Control Area Populations Related EIA

  10. Variable area light reflecting assembly

    DOE Patents [OSTI]

    Howard, T.C.

    1986-12-23

    Device is described for tracking daylight and projecting it into a building. The device tracks the sun and automatically adjusts both the orientation and area of the reflecting surface. The device may be mounted in either a wall or roof of a building. Additionally, multiple devices may be employed in a light shaft in a building, providing daylight to several different floors. The preferred embodiment employs a thin reflective film as the reflecting device. One edge of the reflective film is fixed, and the opposite end is attached to a spring-loaded take-up roller. As the sun moves across the sky, the take-up roller automatically adjusts the angle and surface area of the film. Additionally, louvers may be mounted at the light entrance to the device to reflect incoming daylight in an angle perpendicular to the device to provide maximum reflective capability when daylight enters the device at non-perpendicular angles. 9 figs.

  11. Variable area light reflecting assembly

    DOE Patents [OSTI]

    Howard, Thomas C.

    1986-01-01

    Device for tracking daylight and projecting it into a building. The device tracks the sun and automatically adjusts both the orientation and area of the reflecting surface. The device may be mounted in either a wall or roof of a building. Additionally, multiple devices may be employed in a light shaft in a building, providing daylight to several different floors. The preferred embodiment employs a thin reflective film as the reflecting device. One edge of the reflective film is fixed, and the opposite end is attached to a spring-loaded take-up roller. As the sun moves across the sky, the take-up roller automatically adjusts the angle and surface area of the film. Additionally, louvers may be mounted at the light entrance to the device to reflect incoming daylight in an angle perpendicular to the device to provide maximum reflective capability when daylight enters the device at non-perpendicular angles.

  12. Final DOE Areas Feasibility Study

    Office of Legacy Management (LM)

    Management, Washington, DC Weiss Associates Environmental Science, Engineering and Management FINAL DOE AREAS FEASIBILITY STUDY for the: LABORATORY FOR ENERGY-RELATED HEALTH RESEARCH UNIVERSITY OF CALIFORNIA, DAVIS Prepared for: SM Stoller Corporation 2597 B ¾ Road Grand Junction, Colorado 81503 Prepared by: Weiss Associates 5801 Christie Avenue, Suite 600 Emeryville, California 94608-1827 March 07, 2008 Rev. 0 J:\DOE_STOLLER\4110\143\FEASIBILITY_STUDY\20080307_FS_TEXT_REV0.DOC WEISS ASSOCIATES

  13. Innovation investment area: Technology summary

    SciTech Connect (OSTI)

    Not Available

    1994-03-01

    The mission of Environmental Management`s (EM) Office of Technology Development (OTD) Innovation Investment Area is to identify and provide development support for two types of technologies that are developed to characterize, treat and dispose of DOE waste, and to remediate contaminated sites. They are: technologies that show promise to address specific EM needs, but require proof-of-principle experimentation; and (2) already proven technologies in other fields that require critical path experimentation to demonstrate feasibility for adaptation to specific EM needs. The underlying strategy is to ensure that private industry, other Federal Agencies, universities, and DOE National Laboratories are major participants in developing and deploying new and emerging technologies. To this end, about 125 different new and emerging technologies are being developed through Innovation Investment Area`s (IIA) two program elements: RDDT&E New Initiatives (RD01) and Interagency Agreements (RD02). Both of these activities are intended to foster research and development partnerships so as to introduce innovative technologies into other OTD program elements for expedited evaluation.

  14. EA-1177: Salvage/Demolition of 200 West Area, 200 East Area, and 300 Area Steam Plants, Richland, Washington

    Broader source: Energy.gov [DOE]

    This EA evaluates the environmental impacts for the proposal to salvage and demolish the 200 West Area, 200 East Area, and 300 Area steam plants and their associated steam distribution piping...

  15. Nevada Geothermal Area | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Nevada Geothermal Area Nevada Geothermal Area The extensive Steamboat Springs geothermal area contains three geothermal power-generating plants. The plants provide approximately 30% of the total Nevada geothermal power output. Photo of Nevada power plant

  16. Southern CA Area | Open Energy Information

    Open Energy Info (EERE)

    CA Area Jump to: navigation, search Contents 1 Clean Energy Clusters in the Southern CA Area 1.1 Products and Services in the Southern CA Area 1.2 Research and Development...

  17. Fenton Hill Hdr Area | Open Energy Information

    Open Energy Info (EERE)

    Hill Hdr Area Redirect page Jump to: navigation, search REDIRECT Fenton Hill Hdr Geothermal Area Retrieved from "http:en.openei.orgwindex.php?titleFentonHillHdrArea&oldid...

  18. Carlsbad Area Office strategic plan

    SciTech Connect (OSTI)

    NONE

    1995-10-01

    This edition of the Carlsbad Area Office Strategic Plan captures the U.S. Department of Energy`s new focus, and supercedes the edition issued previously in 1995. This revision reflects a revised strategy designed to demonstrate compliance with environmental regulations earlier than the previous course of action; and a focus on the selected combination of scientific investigations, engineered alternatives, and waste acceptance criteria for supporting the compliance applications. An overview of operations and historical aspects of the Waste Isolation Pilot Plant near Carlsbad, New Mexico is presented.

  19. East Brawley Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    Area Overview Geothermal Area Profile Location: California Exploration Region: Gulf of California Rift Zone GEA Development Phase: Coordinates: 32.99, -115.35 Resource...

  20. New River Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    Area Overview Geothermal Area Profile Location: California Exploration Region: Gulf of California Rift Zone GEA Development Phase: Resource Estimate Mean Reservoir Temp:...

  1. Canby Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    Area Overview Geothermal Area Profile Location: California Exploration Region: Transition Zone GEA Development Phase: Coordinates: 41.438, -120.8676 Resource Estimate...

  2. Research Areas | National Nuclear Security Administration | ...

    National Nuclear Security Administration (NNSA)

    Magnetized High Energy Density Plasma Physics Specific areas of interest include, but are ... Nonlinear Optics of Plasmas and Laser-Plasma Interactions Specific areas of interest ...

  3. AREA USA LLC | Open Energy Information

    Open Energy Info (EERE)

    AREA USA LLC Jump to: navigation, search Name: AREA USA LLC Place: Washington, DC Zip: 20004 Sector: Services Product: Washington, D.C.-based division of Fabiani & Company...

  4. Socorro Mountain Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid...

  5. La Primavera Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid...

  6. Florida Mountains Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid...

  7. Jemez Mountain Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid...

  8. Cerro Prieto Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid...

  9. Jemez Pueblo Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid...

  10. Jemez Springs Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid...

  11. Los Azufres Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid...

  12. Outdoor Area Lighting | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    for outdoor areas. Outdoor Area Lighting (June 2008) More Documents & Publications Philadelphia International Airport Apron Lighting: LED System Performance in a Trial...

  13. Western Area Power Administration | Open Energy Information

    Open Energy Info (EERE)

    Western Area Power Administration Jump to: navigation, search Name: Western Area Power Administration Place: Colorado Phone Number: 720-962-7000 Website: ww2.wapa.govsites...

  14. Ahuachapan Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    Activities (0) 10 References Area Overview Geothermal Area Profile Location: El Salvador Exploration Region: Central American Volcanic Arc Chain GEA Development Phase:...

  15. Area Science Park | Open Energy Information

    Open Energy Info (EERE)

    Area Science Park Jump to: navigation, search Name: Area Science Park Place: Italy Sector: Services Product: General Financial & Legal Services ( Government Public sector )...

  16. Kizildere Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    Activities (0) 10 References Area Overview Geothermal Area Profile Location: Denizli, Turkey Exploration Region: Aegean-West Anatolian Extensional Province - Western Anatolian...

  17. Western Area Power Administration Borrowing Authority, Recovery...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Western Area Power Administration Borrowing Authority, Recovery Act Western Area Power Administration Borrowing Authority, Recovery Act PDF icon Microsoft Word - PSRP May 15 2009 ...

  18. 300 Area signal cable study

    SciTech Connect (OSTI)

    Whattam, J.W.

    1994-09-15

    This report was prepared to discuss the alternatives available for removing the 300 Area overhead signal cable system. This system, installed in 1969, has been used for various monitoring and communication signaling needs throughout the 300 Area. Over the years this cabling system has deteriorated, has been continually reconfigured, and has been poorly documented to the point of nonreliability. The first step was to look at the systems utilizing the overhead signal cable that are still required for operation. Of the ten systems that once operated via the signal cable, only five are still required; the civil defense evacuation alarms, the public address (PA) system, the criticality alarms, the Pacific Northwest Laboratory Facilities Management Control System (FMCS), and the 384 annunciator panel. Of these five, the criticality alarms and the FMCS have been dealt with under other proposals. Therefore, this study focused on the alternatives available for the remaining three systems (evacuation alarms, PA system, and 384 panel) plus the accountability aid phones. Once the systems to be discussed were determined, then three alternatives for providing the signaling pathway were examined for each system: (1) re-wire using underground communication ducts, (2) use the Integrated Voice/Data Telecommunications System (IVDTS) already installed and operated by US West, and (3) use radio control. Each alternative was developed with an estimated cost, advantages, and disadvantages. Finally, a recommendation was provided for the best alternative for each system.

  19. Wide area continuous offender monitoring

    SciTech Connect (OSTI)

    Hoshen, J.; Drake, G.; Spencer, D.

    1996-11-01

    The corrections system in the U.S. is supervising over five million offenders. This number is rising fast and so are the direct and indirect costs to society. To improve supervision and reduce the cost of parole and probation, first generation home arrest systems were introduced in 1987. While these systems proved to be helpful to the corrections system, their scope is rather limited because they only cover an offender at a single location and provide only a partial time coverage. To correct the limitations of first-generation systems, second-generation wide area continuous electronic offender monitoring systems, designed to monitor the offender at all times and locations, are now on the drawing board. These systems use radio frequency location technology to track the position of offenders. The challenge for this technology is the development of reliable personal locator devices that are small, lightweight, with long operational battery life, and indoors/outdoors accuracy of 100 meters or less. At the center of a second-generation system is a database that specifies the offender`s home, workplace, commute, and time the offender should be found in each. The database could also define areas from which the offender is excluded. To test compliance, the system would compare the observed coordinates of the offender with the stored location for a given time interval. Database logfiles will also enable law enforcement to determine if a monitored offender was present at a crime scene and thus include or exclude the offender as a potential suspect.

  20. Sealed head access area enclosure

    DOE Patents [OSTI]

    Golden, Martin P.; Govi, Aldo R.

    1978-01-01

    A liquid-metal-cooled fast breeder power reactor is provided with a sealed head access area enclosure disposed above the reactor vessel head consisting of a plurality of prefabricated structural panels including a center panel removably sealed into position with inflatable seals, and outer panels sealed into position with semipermanent sealant joints. The sealant joints are located in the joint between the edge of the panels and the reactor containment structure and include from bottom to top an inverted U-shaped strip, a lower layer of a room temperature vulcanizing material, a separator strip defining a test space therewithin, and an upper layer of a room temperature vulcanizing material. The test space is tapped by a normally plugged passage extending to the top of the enclosure for testing the seal or introducing a buffer gas thereinto.

  1. Geothermal resource evaluation of the Yuma area

    SciTech Connect (OSTI)

    Poluianov, E.W.; Mancini, F.P.

    1985-11-29

    This report presents an evaluation of the geothermal potential of the Yuma, Arizona area. A description of the study area and the Salton Trough area is followed by a geothermal analysis of the area, a discussion of the economics of geothermal exploration and exploitation, and recommendations for further testing. It was concluded economic considerations do not favor geothermal development at this time. (ACR)

  2. Biomass Program 2007 Accomplishments - Infrastructure Technology Area

    SciTech Connect (OSTI)

    Glickman, Joan

    2007-09-01

    This document details the accomplishments of the Biomass Program Infrastructure Technoloy Area in 2007.

  3. Outdoor Area Lighting | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Outdoor Area Lighting Outdoor Area Lighting This document reviews the major design and specification concerns for outdoor area lighting, and discusses the potential for LED luminaires to save energy plant-wide while providing high quality lighting for outdoor areas. Outdoor Area Lighting (June 2008) (3.16 MB) More Documents & Publications Philadelphia International Airport Apron Lighting: LED System Performance in a Trial Installation Model Specification for LED Roadway Luminaires, V2.0

  4. Pyramid Lake Paiute Tribe - Pyramid Lake Energy Project - Geothermal Assessment

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Tribe Pyramid Lake Paiute Tribe Pyramid Lake Energy Project Pyramid Lake Energy Project Geothermal Assessment Geothermal Assessment Pyramid Lake Paiute Reservation 40 miles north of Reno 475,000 acres Pyramid Lake 125,000 surface acres Northern Reservation Needles Area Needles Geyser Needles Geyser Exploration conducted Exploration conducted in 1968 in 1968 Hot water was found Hot water was found at 160 degrees f at 160 degrees f Was not considered Was not considered feasible feasible PLEP

  5. Categorical Exclusion Determinations: Western Area Power Administration |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Administration Categorical Exclusion Determinations: Western Area Power Administration Categorical Exclusion Determinations issued by Western Area Power Administration. DOCUMENTS AVAILABLE FOR DOWNLOAD No downloads found for this office.

  6. West Flank Cosa, CA FORGE Test Area

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Doug Blankenship

    2015-11-15

    A map with the Coso West Flank FORGE test area outlined, along with regional seismicity, the aeromagnetic data set and the area currently being utilized for the creation of the 3D model.

  7. Magnetotellurics At Truckhaven Area (Layman Energy Associates...

    Open Energy Info (EERE)

    9. The 95 magnetotelluric (MT) soundings cover a central area of about 80 square kilometers. The 126 gravity stations extend over a broader area of about 150 square kilometers,...

  8. LED Outdoor Area Lighting Fact Sheet

    SciTech Connect (OSTI)

    2008-06-01

    This fact sheet reviews the major design and specification concerns for outdoor area lighting, and discusses the potential for LED luminaires to save energy while providing high quality lighting for outdoor areas.

  9. WASTE AREA GROUP 7 PROPOSED PLAN

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AREA GROUP 7 PROPOSED PLAN The Idaho National Laboratory (INL) Citizens Advisory Board (CAB) has provided its input to the Department of Energy on the Waste Area Group 7 (WAG 7)...

  10. Transfer Area Mechanical Handling Calculation

    SciTech Connect (OSTI)

    B. Dianda

    2004-06-23

    This calculation is intended to support the License Application (LA) submittal of December 2004, in accordance with the directive given by DOE correspondence received on the 27th of January 2004 entitled: ''Authorization for Bechtel SAX Company L.L. C. to Include a Bare Fuel Handling Facility and Increased Aging Capacity in the License Application, Contract Number DE-AC28-01R W12101'' (Arthur, W.J., I11 2004). This correspondence was appended by further Correspondence received on the 19th of February 2004 entitled: ''Technical Direction to Bechtel SAIC Company L.L. C. for Surface Facility Improvements, Contract Number DE-AC28-OIRW12101; TDL No. 04-024'' (BSC 2004a). These documents give the authorization for a Fuel Handling Facility to be included in the baseline. The purpose of this calculation is to establish preliminary bounding equipment envelopes and weights for the Fuel Handling Facility (FHF) transfer areas equipment. This calculation provides preliminary information only to support development of facility layouts and preliminary load calculations. The limitations of this preliminary calculation lie within the assumptions of section 5 , as this calculation is part of an evolutionary design process. It is intended that this calculation is superseded as the design advances to reflect information necessary to support License Application. The design choices outlined within this calculation represent a demonstration of feasibility and may or may not be included in the completed design. This calculation provides preliminary weight, dimensional envelope, and equipment position in building for the purposes of defining interface variables. This calculation identifies and sizes major equipment and assemblies that dictate overall equipment dimensions and facility interfaces. Sizing of components is based on the selection of commercially available products, where applicable. This is not a specific recommendation for the future use of these components or their related

  11. Considering LEDs for Street and Area Lighting

    Broader source: Energy.gov [DOE]

    View Jim Brodrick's keynote video from the September 2009 IES Street and Area Lighting Conference in Philadelphia.

  12. D-Area Preliminary Hazards Analysis

    SciTech Connect (OSTI)

    Blanchard, A.; Paik, I.R.

    1998-04-01

    A comprehensive review of hazards associated with the D-Area was performed to identify postulated event scenarios.

  13. Focus Areas 1 and 4 Deliverables

    Office of Environmental Management (EM)

    1 - Requirements Flow Down and Focus Area #4 - Graded Approach to Quality Assurance Graded Approach Model and Expectation Page 1 of 18 Office of Environmental Management And Energy Facility Contractors Group Quality Assurance Improvement Project Plan Project Focus Area Task # and Description Deliverable Project Area 1: Requirements Flow Down Task #1.9 - Complete White Paper covering procurement QA process flow diagram Draft White Paper and Amended Flow Diagram Project Area 4: Graded Approach

  14. Water Sampling At International Geothermal Area, Philippines...

    Open Energy Info (EERE)

    Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Water Sampling At International Geothermal Area, Philippines (Wood, 2002) Exploration...

  15. Sandia National Laboratories: About Sandia: Mission Areas

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Mission Areas Mission Statements The Laboratory Leadership Team decided on a set of integrated Mission Areas that best reflect Sandia's mission based on three key characteristics: synergy with nuclear weapons capabilities, national security impact, and strategic value needed to ensure Sandia's enduring contribution to the nation. The Mission Areas bring focus to the work we conduct in national security. The middle tier Mission Areas are strongly interdependent with and essential to the nuclear

  16. Research Areas | National Nuclear Security Administration | (NNSA)

    National Nuclear Security Administration (NNSA)

    Research Areas High Energy Density Laboratory Plasmas (HEDLP) Research Areas During open solicitations proposals are sought in the following subfields and cross-cutting areas of HEDLP: High Energy Density Hydrodynamics Specific areas of interest include, but are not limited to, turbulent mixing, probing properties of high energy density (HED) matter through hydrodynamics, solid-state hydrodynamics at high pressures, new hydrodynamic instabilities, and hydrodynamic scaling. Radiation-Dominated

  17. Bay Area | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    Bay Area San Francisco Bay Area Aerial Radiation Assessment Survey (SAN JOSE and SAN FRANCISCO, California) - A helicopter may be seen flying at low altitudes over portions of the San Francisco Bay Area from January 29 through February 6, 2016. The purpose of the flyovers is to measure naturally occurring background radiation. Officials from the National Nuclear... NNSA to Conduct Aerial Radiological Surveys Over San Francisco, Pacifica, Berkeley, And Oakland, CA Areas A U.S. Department of

  18. Fire Protection Engineering Functional Area Qualification Standard

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    FIRE PROTECTION ENGINEERING FUNCTIONAL AREA QUALIFICATION STANDARD DOE Defense Nuclear Facilities Technical ... by applied engineering fundamentals, research, fire hazard ...

  19. Geothermal Literature Review At International Geothermal Area...

    Open Energy Info (EERE)

    navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermal Literature Review At International Geothermal Area, Iceland (Ranalli & Rybach, 2005)...

  20. Geothermal Literature Review At International Geothermal Area...

    Open Energy Info (EERE)

    navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermal Literature Review At International Geothermal Area, New Zealand (Ranalli & Rybach, 2005)...

  1. Geothermal Literature Review At International Geothermal Area...

    Open Energy Info (EERE)

    navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermal Literature Review At International Geothermal Area, Italy (Ranalli & Rybach, 2005) Exploration...

  2. Geographic Information System At International Geothermal Area...

    Open Energy Info (EERE)

    search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geographic Information System At International Geothermal Area, Indonesia (Nash, Et Al., 2002) Exploration Activity...

  3. Functional Area Qualification Standard Reference Guides

    Broader source: Energy.gov [DOE]

    The reference guides have been developed to address the competency statements in DOE Functional Area Qualification Standard.

  4. Navy 1 Geothermal Area | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Navy 1 Geothermal Area Navy 1 Geothermal Area The Navy 1 Geothermal Project is located on the test and evaluation ranges of the Naval Air Weapons Station, China Lake. At its peak, the project produced more than 273 megawatts of electricity that was sold into the local utility grid under a long-term power sales agreement. Photo of the Coso Geothermal Area

  5. Beryllium Facilities & Areas - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Facilities & Areas About Us Hanford Cultural Resources Beryllium Program Beryllium Program Points of Contact Beryllium Facilities & Areas Beryllium Program Information Hanford CBDPP Committee Beryllium FAQs Beryllium Related Links Hanford Beryllium Awareness Group (BAG) Program Performance Assessments Beryllium Program Feedback Beryllium Health Advocates Primary Contractors/Employers Medical Testing and Surveillance Facilities General Resources Beryllium Facilities & Areas Email

  6. Casa Diablo Geothermal Area | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Casa Diablo Geothermal Area Casa Diablo Geothermal Area The Mammoth-Pacific geothermal power plants at Casa Diablo on the eastern front of the Sierra Nevada Range generate enough power for approximately 40,000 homes. The power is sold to Southern California Edison under long-term contracts. Photo of the Casa Diablo Geothermal area.

  7. Technical Area (TA)-54 Area G Nitrate-Salt Waste Container Response...

    Broader source: Energy.gov (indexed) [DOE]

    Pilot Plant on February 14, 2014, report in Attachment F. Bibliography and References, are available on various public websites. Technical Area (TA)-54 Area G Nitrate-Salt ...

  8. 2016 DOE Project Management Workshop - Area Restaurants | Department...

    Office of Environmental Management (EM)

    Area Restaurants 2016 DOE Project Management Workshop - Area Restaurants Information on surrounding area restaurants PDF icon Area restaurants Key Resources PMCDP EVMS PARS IIe FPD ...

  9. Research Subject Areas for CSES Proposals

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research Subject Areas Research Subject Areas for CSES Proposals High quality, cutting-edge science in the areas of astrophysics, space physics, solid planetary geoscience, and climate science. Contact Director Reiner Friedel (505) 665-1936 Email Professional Staff Assistant Georgia D. Sanchez (505) 665-0855 Email Science Discipline Leaders Astrophysics & Cosmology Hui Li (505) 665-3131 Email Climate Keeley Costigan (505) 665-4788 Email Geophysics David Coblentz (505) 667-2781 Email Space

  10. 2010sr29[M Area].doc

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Wednesday, October 20, 2010 Paivi Nettamo, SRNS, (803) 952-6938 Savannah River Site Marks Recovery Act Cleanup Milestone M Area cleanup work was finished nearly two years ahead of schedule AIKEN, S.C. (October 20) - Department of Energy, contractor and regulatory representatives gathered today to celebrate the completion of cleanup work at Savannah River Site's M Area, nearly two years ahead of schedule. This area cleanup was the first at SRS to be completed with the help of American Recovery