Powered by Deep Web Technologies
Note: This page contains sample records for the topic "gev melting point" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Low-melting point heat transfer fluid  

DOE Patents [OSTI]

A low-melting point, heat transfer fluid made of a mixture of five inorganic salts including about 29.1-33.5 mol % LiNO.sub.3, 0-3.9 mol % NaNO.sub.3, 2.4-8.2 mol % KNO.sub.3, 18.6-19.9 mol % NaNO.sub.2, and 40-45.6 mol % KNO.sub.2. These compositions can have liquidus temperatures below 80.degree. C. for some compositions.

Cordaro, Joseph Gabriel (Oakland, CA); Bradshaw, Robert W. (Livermore, CA)

2010-11-09T23:59:59.000Z

2

Low-melting point heat transfer fluid  

DOE Patents [OSTI]

A low-melting point, heat transfer fluid comprising a mixture of LiNO.sub.3, NaNO.sub.3, KNO.sub.3, NaNO.sub.2 and KNO.sub.2 salts where the Li, Na and K cations are present in amounts of about 20-33.5 mol % Li, about 18.6-40 mol % Na, and about 40-50.3 mol % K and where the nitrate and nitrite anions are present in amounts of about 36-50 mol % NO.sub.3, and about 50-62.5 mol % NO.sub.2. These compositions can have liquidus temperatures between 70.degree. C. and 80.degree. C. for some compositions.

Cordaro, Joseph G. (Oakland, CA); Bradshaw, Robert W. (Livermore, CA)

2011-04-12T23:59:59.000Z

3

Standard Reference Material 1751: Gallium Melting-Point Standard  

E-Print Network [OSTI]

Standard Reference Material 1751: Gallium Melting-Point Standard Gregory F. Strouse NIST Special Publication 260-157 #12;#12;NIST Special Publication 260-157 XXXX Standard Reference Material 1751: Gallium Melting-Point Standard Gregory F. Strouse Chemical Science and Technology Laboratory Process Measurements

4

Effect of grain size on the melting point of confined thin aluminum films  

SciTech Connect (OSTI)

The melting of aluminum thin film was studied by a molecular dynamics (MD) simulation technique. The effect of the grain size and type of confinement was investigated for aluminum film with a constant thickness of 4?nm. The results show that coherent intercrystalline interface suppress the transition of solid aluminum into liquid, while free-surface gives melting point depression. The mechanism of melting of polycrystalline aluminum thin film was investigated. It was found that melting starts at grain boundaries and propagates to grain interiors. The melting point was calculated from the Lindemann index criterion, taking into account only atoms near to grain boundaries. This made it possible to extend melting point calculations to bigger grains, which require a long time (in the MD scale) to be fully molten. The results show that 4?nm thick film of aluminum melts at a temperature lower than the melting point of bulk aluminum (933?K) only when the grain size is reduced to 6?nm.

Wejrzanowski, Tomasz; Lewandowska, Malgorzata; Sikorski, Krzysztof; Kurzydlowski, Krzysztof J. [Materials Design Division, Faculty of Materials Science and Engineering, Warsaw University of Technology, Woloska 141, 02-507 Warsaw (Poland)

2014-10-28T23:59:59.000Z

5

Creep measuring device for low melting point metals  

E-Print Network [OSTI]

that there is little concern about the mechanical interaction of the coolant in the solid state and the walls. Because of its suitable thermophysicsl properties, lithium has been selected for the coolant in the SP-100 space reactor design. During launch, the lithium... properties of lithium. An experiment was conducted on lead at 90% of melting temperature (541 K). The results of this experiment agreed well with theoretical predictions of the Harper-Dorn creep model. The three predicted stages of creep were observed...

Portal, Marc-Emmanuel Gilbert

1987-01-01T23:59:59.000Z

6

Measurement of the Melting Point Temperature of Several Lithium-Sodium-Beryllium Fluoride Salt (Flinabe) Mixtures  

SciTech Connect (OSTI)

The molten salt Flibe, a combination of lithium and beryllium fluorides studied for molten salt fission reactors, has been proposed as a breeder and coolant for fusion applications. The melting points of 2LiF-BeF{sub 2} and LiF-BeF{sub 2} are 460 deg. C and 363 deg. C, but LiF-BeF{sub 2} is rather viscous and has less lithium for breeding. In the Advanced Power Extraction (APEX) Program, concepts with a free flowing liquid for the first wall and blanket were investigated. Flinabe (a mixture of LiF, BeF{sub 2} and NaF) was selected for a molten salt design because a melting temperature below 350 deg. C appeared possible and this provided an attractive operating temperature window for a reactor. To confirm that a ternary salt with a low melting temperature existed, several combinations of the fluoride salts, LiF, NaF and BeF{sub 2}, were melted in a stainless steel crucible under vacuum. One had an apparent melting temperature of 305 deg. C. The test system, preparation of the mixtures, melting procedures and temperature curves for the melting and cooling are presented along with the apparent melting points. Thermal modeling of the salt pool and crucible is reported in an accompanying paper.

McDonald, J.M; Nygren, R.E.; Lutz, T.J.; Tanaka, T.J; Ulrickson, M.A.; Boyle, T.J.; Troncosa, K.P. [Sandia National Laboratories (United States)

2005-04-15T23:59:59.000Z

7

Models for mean bonding length, melting point and lattice thermal expansion of nanoparticle materials  

SciTech Connect (OSTI)

Graphical abstract: Three models are derived to explain the nanoparticles size dependence of mean bonding length, melting temperature and lattice thermal expansion applied on Sn, Si and Au. The following figures are shown as an example for Sn nanoparticles indicates hilly applicable models for nanoparticles radius larger than 3 nm. Highlights: ? A model for a size dependent mean bonding length is derived. ? The size dependent melting point of nanoparticles is modified. ? The bulk model for lattice thermal expansion is successfully used on nanoparticles. -- Abstract: A model, based on the ratio number of surface atoms to that of its internal, is derived to calculate the size dependence of lattice volume of nanoscaled materials. The model is applied to Si, Sn and Au nanoparticles. For Si, that the lattice volume is increases from 20 ?{sup 3} for bulk to 57 ?{sup 3} for a 2 nm size nanocrystals. A model, for calculating melting point of nanoscaled materials, is modified by considering the effect of lattice volume. A good approach of calculating size-dependent melting point begins from the bulk state down to about 2 nm diameter nanoparticle. Both values of lattice volume and melting point obtained for nanosized materials are used to calculate lattice thermal expansion by using a formula applicable for tetrahedral semiconductors. Results for Si, change from 3.7 × 10{sup ?6} K{sup ?1} for a bulk crystal down to a minimum value of 0.1 × 10{sup ?6} K{sup ?1} for a 6 nm diameter nanoparticle.

Omar, M.S., E-mail: dr_m_s_omar@yahoo.com [Department of Physics, College of Science, University of Salahaddin-Erbil, Arbil, Kurdistan (Iraq)

2012-11-15T23:59:59.000Z

8

Measurement of the melting point temperature of several lithium-sodium-beryllium fluoride salt (FLINABE) mixtures.  

SciTech Connect (OSTI)

The molten salt Flibe, a combination of lithium and beryllium flourides, was studied for molten salt fission reactors and has been proposed as a breeder and coolant for the fusion applications. 2LiF-BeF{sub 2} melts at 460 C. LiF-BeF{sub 2} melts at a lower temperature, 363 C, but is rather viscous and has less lithium breeder. In the Advanced Power Extraction (APEX) Program, concepts with a free flowing ternary molten salt for the first wall surface and blanket were investigated. The molten salt (FLiNaBe, a ternary mixture of LiF, BeF2 and NaF) salt was selected because a melting temperature below 350 C that would provide an attractive operating temperature window for a reactor application appeared possible. This information came from a Russian binary phase diagram and a US ternary phase diagram in the 1960's that were not wholly consistent. To confirm that a ternary salt with a low melting temperature existed, several combinations of the fluoride salts, LiF, NaF and, BeF{sub 2}, were melted in a small stainless steel crucible under vacuum. The proportions of the three salts were selected to yield conglomerate salts with as low a melting temperature as possible. The temperature of the salts and the crucible were recorded during the melting and subsequent re-solidification using a thermocouple directly in the salt pool and two thermocouples embedded in the crucible. One mixture had an apparent melting temperature of 305 C. Particular attention was paid to the cooling curve of the salt temperature to observe evidence of any mixed intermediate phases between the fully liquid and fully solid states. The clarity, texture, and thickness were observed and noted as well. The test system, preparation of the mixtures, and the melting procedure are described. The temperature curves for the melting and cooling of each of the mixtures are presented along with the apparent melting points. Thermal modeling of the salt pool and crucible was also done and is reported in a separate paper.

Boyle, Timothy J.; Troncosa, Kenneth P.; Nygren, Richard Einar; Lutz, Thomas Joseph; McDonald, Jimmie M.; Tanaka, Tina Joan; Ulrickson, Michael Andrew

2004-09-01T23:59:59.000Z

9

Melting point measurements for quasicrystalline phases. [Al-Mn; icosahedral and decagonal phases  

SciTech Connect (OSTI)

Melting transitions of metastable quasicrystalline phases of Al-Mn have been observed using rapid electron-beam heating of fine-grained icosahedral surface layers. The congruent melting point for icosahedral Al/sub 80/Mn/sub 20/ was directly measured to be 910 +- 20/sup 0/C. Heating to higher temperatures shows another transition which is inferred to correspond to the liquidus of the decagonal phase at 965 +- 20/sup 0/C for 20 at. % Mn. The microstructure and formation kinetics of the decagonal phase are discussed, and its electron diffraction is described.

Knapp, J.A.; Follstaedt, D.M.

1986-01-01T23:59:59.000Z

10

Draft report on melt point as a function of composition for urania-based systems  

SciTech Connect (OSTI)

This report documents the testing of a urania (UO{sub 2.00}) sample as a baseline and the attempt to determine the melt point associated with 4 compositions of urania-ceria and urania-neodymia pseudo binaries provided by ORNL, with compositions of 95/5, and 80/20 and of (U/Ce)O{sub 2.00} and (U/Nd)O{sub 2.00} in the newly developed ceramic melt point determination system. A redesign of the system using parts fabricated from tungsten was undertaken in order to help prevent contamination and tungsten carbide formation in the crucibles. The previously developed system employed mostly graphite parts that were shown to react with the sample containment black-body crucible leading to unstable temperature readings and crucible failure, thus the redesign. Measured melt point values of UO{sub 2.00} and U{sub 0.95}Ce{sub 0.05}O{sub 2.00}, U{sub 0.80}Ce{sub 0.20}O{sub 2.00}, U{sub 0.95}Nd{sub 0.05}O{sub 2.00} and U{sub 0.80}Nd{sub 0.20}O{sub 2.00} were measured using a 2-color pyrometer. The value measured for UO{sub 2.00} was consistent with the published accepted value 2845 C {+-} 25 C, although a wide range of values has been published by researchers and will be discussed later in the text. For comparison, values obtained from a published binary phase diagram of UO{sub 2}-Nd{sub 2}O{sub 3} were used for comparison with our measure values. No literature melt point values for comparison with the measurements performed in this study were found for (U/Ce)O{sub 2.00} in our stoichiometry range.

Valdez, James A [Los Alamos National Laboratory; Byler, Darrin D [Los Alamos National Laboratory

2012-06-08T23:59:59.000Z

11

Liquid Phase 3D Printing for Quickly Manufacturing Metal Objects with Low Melting Point Alloy Ink  

E-Print Network [OSTI]

Conventional 3D printings are generally time-consuming and printable metal inks are rather limited. From an alternative way, we proposed a liquid phase 3D printing for quickly making metal objects. Through introducing metal alloys whose melting point is slightly above room temperature as printing inks, several representative structures spanning from one, two and three dimension to more complex patterns were demonstrated to be quickly fabricated. Compared with the air cooling in a conventional 3D printing, the liquid-phase-manufacturing offers a much higher cooling rate and thus significantly improves the speed in fabricating metal objects. This unique strategy also efficiently prevents the liquid metal inks from air oxidation which is hard to avoid otherwise in an ordinary 3D printing. Several key physical factors (like properties of the cooling fluid, injection speed and needle diameter, types and properties of the printing ink, etc.) were disclosed which would evidently affect the printing quality. In addit...

Wang, Lei

2014-01-01T23:59:59.000Z

12

Liquid Phase 3D Printing for Quickly Manufacturing Metal Objects with Low Melting Point Alloy Ink  

E-Print Network [OSTI]

Conventional 3D printings are generally time-consuming and printable metal inks are rather limited. From an alternative way, we proposed a liquid phase 3D printing for quickly making metal objects. Through introducing metal alloys whose melting point is slightly above room temperature as printing inks, several representative structures spanning from one, two and three dimension to more complex patterns were demonstrated to be quickly fabricated. Compared with the air cooling in a conventional 3D printing, the liquid-phase-manufacturing offers a much higher cooling rate and thus significantly improves the speed in fabricating metal objects. This unique strategy also efficiently prevents the liquid metal inks from air oxidation which is hard to avoid otherwise in an ordinary 3D printing. Several key physical factors (like properties of the cooling fluid, injection speed and needle diameter, types and properties of the printing ink, etc.) were disclosed which would evidently affect the printing quality. In addition, a basic route to make future liquid phase 3D printer incorporated with both syringe pump and needle arrays was also suggested. The liquid phase 3D printing method, which owns potential values not available in a conventional modality, opens an efficient way for quickly making metal objects in the coming time.

Lei Wang; Jing Liu

2014-02-25T23:59:59.000Z

13

A simple monatomic ideal glass former: the glass transition by a first-order phase transition above the melting point  

E-Print Network [OSTI]

A liquid can form under cooling a glassy state either as a result of a continuous slowing down or by a first order polyamorphous phase transition. The second scenario has so far always been observed below the melting point where it interfered with crystalline nucleation. We report the first observation of the liquid-glass transition by a first order phase transition above the melting point. The observation was made in a molecular dynamics simulation of a one-component system with a model metallic pair potential. This is also the first observation of a simple monatomic ideal glass former -- a liquid that avoids crystallization at any cooling rate. Besides its conceptual importance, this result indicates a possibility of existence of metallic ideal glass formers.

Måns Elenius; Tomas Oppelstrup; Mikhail Dzugutov

2010-04-15T23:59:59.000Z

14

Transverse dynamics of water across the melting point: A parallel neutron and x-ray inelastic scattering study  

SciTech Connect (OSTI)

Joint inelastic neutron and x-ray scattering measurements have been performed on heavy water across the melting point. The spectra bear clear evidence of low- and high-frequency inelastic shoulders related to transverse and longitudinal modes, respectively. Upon increasing the momentum transfer, the spectral shape evolves from a viscoelastic regime, where the low-frequency mode is clearly over-damped, toward an elastic one where its propagation becomes instead allowed. The crossover between the two regimes occurs whenever both the characteristic frequency and the linewidth of the low-frequency mode match the inverse of the structural relaxation time. Furthermore, we observe that the frequency of the transverse mode undergoes a discontinuity across the melting, whose extent reduces upon increasing the exchanged momentum.

Cunsolo A.; Kodituwakku C.; Bencivenga, F.; Frontzek, M.; Leu, b.M.; Said, A.H.

2012-05-29T23:59:59.000Z

15

JOURNAL DE PHYSIQUE Colloque C5, supplkment au no 5, Tome 40, Mai 1979, page C5-63 Heat capacity of rare earth metals near the melting point and the vacancy  

E-Print Network [OSTI]

for the difference of the heat capacity of the liquid and solid metal in the neighbourhood of the melting point. From of the atomic heat capacity of solid and liquid metals at the melting point. The basis for this calculationJOURNAL DE PHYSIQUE Colloque C5, supplkment au no 5, Tome 40, Mai 1979, page C5-63 Heat capacity

Paris-Sud XI, Université de

16

Melting of superheated crystals initiates on vacancies  

E-Print Network [OSTI]

In a large variety of ideal crystals we found that when rapidly migrating atoms squash or annihilate a neighbouring vacancy and produce a disordered cluster, the heat of migration stored in the system exceeds the enthalpy increase required for the coordinating atoms of the vacancy to form a liquid phase, i.e. the liquid phase nucleates from vacancies. Furthermore volumetric analysis supports this well. This vacancy-decomposition model provides quantitative information on the melting point, the latent heat and the volume change upon melting and hence clarifies the mechanism of melting.

L. W. Wang; Q. Wang; K. Q. Lu

2010-07-24T23:59:59.000Z

17

Melt containment member  

DOE Patents [OSTI]

A tubular melt containment member for transient containment of molten metals and alloys, especially reactive metals and alloys, includes a melt-contacting layer or region that comprises an oxygen-deficient rare earth oxide material that is less reactive as compared to the counterpart stoichiometric rare earth oxide. The oxygen-deficient (sub-stoichiometric) rare earth oxide can comprise oxygen-deficient yttria represented by Y.sub.2O.sub.3-x wherein x is from 0.01 to 0.1. Use of the oxygen-deficient rare earth oxide as the melt-contacting layer or region material reduces reaction with the melt for a given melt temperature and melt contact time.

Rieken, Joel R.; Heidloff, Andrew J.

2014-09-09T23:59:59.000Z

18

Plasma arc melting of titanium-tantalum alloys  

SciTech Connect (OSTI)

Los Alamos has several applications for high temperature, oxidation and liquid-metal corrosion resistant materials. Further, materials property constraints are dictated by a requirement to maintain low density; e.g., less than the density of stainless steel. Liquid metal compatibility and density requirements have driven the research toward the Ti-Ta system with an upper bound of 60 wt% Ta-40 wt% Ti. Initial melting of these materials was performed in a small button arc melter with several hundred grams of material; however, ingot quantities were soon needed. But, refractory metal alloys whose constituents possess very dissimilar densities, melting temperatures and vapor pressures pose significant difficulty and require specialized melting practices. The Ti-Ta alloys fall into this category with the density of tantalum 16.5 g/cc and that of titanium 4.5 g/cc. Melting is further complicated by the high melting point of Ta(3020 C) and the relatively low boiling point of Ti(3287 C). Previous electron beam melting experience with these materials resulted, in extensive vaporization of the titanium and poor chemical homogeneity. Vacuum arc remelting(VAR) was considered as a melting candidate and discarded due to density and vapor pressure issues associated with electron beam. Plasma arc melting offered the ability to supply a cover gas to deal with vapor pressure issues as well as solidification control to help with macrosegregation in the melt and has successfully produced high quality ingots of the Ti-Ta alloys.

Dunn, P.; Patterson, R.A. [Los Alamos National Lab., NM (United States); Haun, R. [Retech, Inc., Ukiah, CA (United States)

1994-08-01T23:59:59.000Z

19

Vitrification of waste with conitnuous filling and sequential melting  

DOE Patents [OSTI]

A method of filling a canister with vitrified waste starting with a waste, such as high-level radioactive waste, that is cooler than its melting point. Waste is added incrementally to a canister forming a column of waste capable of being separated into an upper zone and a lower zone. The minimum height of the column is defined such that the waste in the lower zone can be dried and melted while maintaining the waste in the upper zone below its melting point. The maximum height of the column is such that the upper zone remains porous enough to permit evolved gases from the lower zone to flow through the upper zone and out of the canister. Heat is applied to the waste in the lower zone to first dry then to raise and maintain its temperature to a target temperature above the melting point of the waste. Then the heat is applied to a new lower zone above the melted waste and the process of adding, drying and melting the waste continues upward in the canister until the entire canister is filled and the entire contents are melted and maintained at the target temperature for the desired period. Cooling of the melted waste takes place incrementally from the bottom of the canister to the top, or across the entire canister surface area, forming a vitrified product.

Powell, James R. (Shoreham, NY); Reich, Morris (Kew Gardens Hills, NY)

2001-09-04T23:59:59.000Z

20

Upgrade of CEBAF from 6 Gev To 12 Gev: Status  

SciTech Connect (OSTI)

The CEBAF accelerator is being upgraded from 6 GeV to 12 GeV by the US Department of Energy. The accelerator upgrade is being done within the existing tunnel footprint. The accelerator upgrade includes: 10 new srfbased high-performance cryomodules plus RF systems, doubling the 2K helium plant's capability, upgrading the existing beamlines to operate at nearly double the original performance envelope, and adding a beamline to a new experimental area. Construction is over 75% complete with final completion projected for late FY13. Details of the upgrade and status of the work will be presented.

Harwood, Leigh [Jefferson Lab, 12000 Jefferson Ave, Newport News, VA, 23606 (United States)

2013-04-19T23:59:59.000Z

Note: This page contains sample records for the topic "gev melting point" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Molecular dynamics simulations of the melting curve of NiAl alloy under pressure  

SciTech Connect (OSTI)

The melting curve of B2-NiAl alloy under pressure has been investigated using molecular dynamics technique and the embedded atom method (EAM) potential. The melting temperatures were determined with two approaches, the one-phase and the two-phase methods. The first one simulates a homogeneous melting, while the second one involves a heterogeneous melting of materials. Both approaches reduce the superheating effectively and their results are close to each other at the applied pressures. By fitting the well-known Simon equation to our melting data, we yielded the melting curves for NiAl: 1783(1 + P/9.801){sup 0.298} (one-phase approach), 1850(1 + P/12.806){sup 0.357} (two-phase approach). The good agreement of the resulting equation of states and the zero-pressure melting point (calc., 1850 ± 25 K, exp., 1911 K) with experiment proved the correctness of these results. These melting data complemented the absence of experimental high-pressure melting of NiAl. To check the transferability of this EAM potential, we have also predicted the melting curves of pure nickel and pure aluminum. Results show the calculated melting point of Nickel agrees well with experiment at zero pressure, while the melting point of aluminum is slightly higher than experiment.

Zhang, Wenjin; Peng, Yufeng [College of Physics and electronic Engineering, Henan Normal University, Xinxiang, 453007 (China)] [College of Physics and electronic Engineering, Henan Normal University, Xinxiang, 453007 (China); Liu, Zhongli, E-mail: zhongliliu@yeah.net [College of Physics and Electric Information, Luoyang Normal University, Luoyang, 471002 (China)] [College of Physics and Electric Information, Luoyang Normal University, Luoyang, 471002 (China)

2014-05-15T23:59:59.000Z

22

Regelation: why does ice melt under pressure?  

E-Print Network [OSTI]

Unlike other unusual materials whose bonds contract under compression, the O:H nonbond undergoes contraction and the H-O bond elongation towards O:H and H-O length symmetry in water and ice. The energy drop of the H-O bond dictates the melting point Tm depression of ice. Once the pressure is relieved, the O:H-O bond fully recovers its initial state, resulting in Regelation.

Chang Q Sun

2015-01-28T23:59:59.000Z

23

Regelation: why does ice melt under pressure?  

E-Print Network [OSTI]

Unlike other unusual materials whose bonds contract under compression, the O:H nonbond undergoes contraction and the H-O bond elongation towards O:H and H-O length symmetry in water and ice. The energy drop of the H-O bond dictates the melting point Tm depression of ice. Once the pressure is relieved, the O:H-O bond fully recovers its initial state, resulting in Regelation.

Sun, Chang Q

2015-01-01T23:59:59.000Z

24

Behavior of melts during softening and melting down of iron ore sinter under load  

SciTech Connect (OSTI)

In order to achieve effective operation in the blast furnace, the distribution control and quality improvement of burden materials are very important. In spite of the difficulties in obtaining suitable samples and making direct observation, significant progress including the placement of probes into the stack, tuyere drilling and laboratory simulation studies has been made. Investigation of the behavior of melts during softening and melting down was carried out in the temperature range of 800 C to 1,515 C. In this report, emphasis is given to investigating the mineral formation and properties of melts during softening and melting down of the iron ore sinter. Sized coke layers were placed above and below the sample to maintain uniform upward flow of gas and insure a smooth downward flow of melts. When the temperature of the sample reached the set point during the test the power was shut off and the sample was cooled in the furnace air. The weight, the height, porosity and contraction of each sample were measured. Chemical composition, observation of microstructures, SEM analysis and X-ray diffraction analysis were conducted. Results are presented.

Cho, Y.H. [Research Inst. of Industrial Science and Technology, Pohang (Korea, Republic of)

1995-12-01T23:59:59.000Z

25

A compact layout for a 50 GeV proton radiography facility  

SciTech Connect (OSTI)

We describe a new compact layout for a 50 GeV proton radiography facility. The more compact design utilizes two-point extraction from the main ring to drive an optimal 8 view imaging system. The lattice design of both the main ring, and of the corresponding 8.5 GeV booster ring is described. The rings have very good longitudinal stability, which is of interest for other applications of high current proton machines in this energy range.

Neri, F. (Filippo); Mottershead, C. T.; Blind, B. (Barbara); Jason, A. J. (Andrew J.); Walstrom, P. L. (Peter L.); Schulze, M. E. (Martin E.); Rybarcyk, L. J. (Lawrence J.); Wang, T. F. (Tai-Sen F.); Thiessen, H. A.; Colestock, P. L. (Patrick L.),; Prichard, B. (Ben)

2003-01-01T23:59:59.000Z

26

Melting of iron-aluminide alloys  

SciTech Connect (OSTI)

The melting of Fe{sub 3}Al-based alloys at the Oak Ridge National Laboratory (ORNL) and commercial vendors is described. The melting processes evaluated includes are melting, air-induction melting (AIM), vacuum-induction melting (VIM), and electroslag remelting (ESR). The quality of the ingots studied are base on internal soundness and the surface finish obtained. The ingots were analyzed for recovery of various elements during melting. The impurity levels observed in the alloys by various melting processes were compared. Recommendations are made for viable processes for commercial melting of these alloys. 1 ref., 5 figs., 3 tabs.

Sikka, V.K.

1990-01-01T23:59:59.000Z

27

Plasma arc melting of zirconium  

SciTech Connect (OSTI)

Zirconium, like some other refractory metals, has an undesirable sensitivity to interstitials such as oxygen. Traditionally, zirconium is processed by electron beam melting to maintain minimum interstitial contamination. Electron beam melted zirconium, however, does not respond positively to mechanical processing due to its large grain size. The authors undertook a study to determine if plasma arc melting (PAM) technology could be utilized to maintain low interstitial concentrations and improve the response of zirconium to subsequent mechanical processing. The PAM process enabled them to control and maintain low interstitial levels of oxygen and carbon, produce a more favorable grain structure, and with supplementary off-gassing, improve the response to mechanical forming.

Tubesing, P.K.; Korzekwa, D.R.; Dunn, P.S.

1997-12-31T23:59:59.000Z

28

Scaleable Clean Aluminum Melting Systems  

SciTech Connect (OSTI)

The project entitled 'Scaleable Clean Aluminum Melting Systems' was a Cooperative Research and Development Agreements (CRADAs) between Oak Ridge National Laboratory (ORNL) and Secat Inc. The three-year project was initially funded for the first year and was then canceled due to funding cuts at the DOE headquarters. The limited funds allowed the research team to visit industrial sites and investigate the status of using immersion heaters for aluminum melting applications. Primary concepts were proposed on the design of furnaces using immersion heaters for melting. The proposed project can continue if the funding agency resumes the funds to this research. The objective of this project was to develop and demonstrate integrated, retrofitable technologies for clean melting systems for aluminum in both the Metal Casting and integrated aluminum processing industries. The scope focused on immersion heating coupled with metal circulation systems that provide significant opportunity for energy savings as well as reduction of melt loss in the form of dross. The project aimed at the development and integration of technologies that would enable significant reduction in the energy consumption and environmental impacts of melting aluminum through substitution of immersion heating for the conventional radiant burner methods used in reverberatory furnaces. Specifically, the program would couple heater improvements with furnace modeling that would enable cost-effective retrofits to a range of existing furnace sizes, reducing the economic barrier to application.

Han, Q.; Das, S.K. (Secat, Inc.)

2008-02-15T23:59:59.000Z

29

Melting processes of oligomeric ? and ? isotactic polypropylene crystals at ultrafast heating rates  

SciTech Connect (OSTI)

The melting behaviors of ? (stable) and ? (metastable) isotactic polypropylene (iPP) crystals at ultrafast heating rates are simulated with atomistic molecular dynamics method. Quantitative information about the melting processes of ?- and ?-iPP crystals at atomistic level is achieved. The result shows that the melting process starts from the interfaces of lamellar crystal through random dislocation of iPP chains along the perpendicular direction of lamellar crystal structure. In the melting process, the lamellar crystal gradually expands but the corresponding thickness decreases. The analysis shows that the system expansion lags behind the crystallinity decreasing and the lagging extents for ?- and ?-iPP are significantly different. The apparent melting points of ?- and ?-iPP crystals rise with the increase of the heating rate and lamellar crystal thickness. The apparent melting point of ?-iPP crystal is always higher than that of ?-iPP at differently heating rates. Applying the Gibbs-Thomson rule and the scaling property of the melting kinetics, the equilibrium melting points of perfect ?- and ?-iPP crystals are finally predicted and it shows a good agreement with experimental result.

Ji, Xiaojing [School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072 (China)] [School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072 (China); He, Xuehao, E-mail: xhhe@tju.edu.cn, E-mail: scjiang@tju.edu.cn [Department of Chemistry, School of Science, Tianjin University, and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072 (China)] [Department of Chemistry, School of Science, Tianjin University, and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072 (China); Jiang, Shichun, E-mail: xhhe@tju.edu.cn, E-mail: scjiang@tju.edu.cn [School of Material, Tianjin University, Tianjin 300072 (China)] [School of Material, Tianjin University, Tianjin 300072 (China)

2014-02-07T23:59:59.000Z

30

Dry melting of high albite  

SciTech Connect (OSTI)

The properties of albitic melts are central to thermodynamic models for synthetic and natural granitic liquids. The authors have analyzed published phase-equilibrium and thermodynamic data for the dry fusion of high albite to develop a more accurate equation for the Biggs free energy of this reaction to 30 kbar and 1,400 C. Strict criteria for reaction reversal were sued to evaluate the phase-equilibrium data, and the thermodynamic properties of solid and liquid albite were evaluated using the published uncertainties in the original measurements. Results suggest that neither available phase-equilibrium experiments nor thermodynamic data tightly constrain the location of the reaction. Experimental solidus temperatures at 1 atm range from 1,100 to 1,120 C. High-pressure experiments were not reversed completely and may have been affected by several sources of error, but the apparent inconsistencies among the results of the various experimentalists are eliminated when only half-reversal data are considered. Uncertainties in thermodynamic data yield large variations in permissible reaction slopes. Disparities between experimental and calculated melting curves are, therefore, largely attributable to these difficulties, and there is no fundamental disagreement between the available phase-equilibrium and thermodynamic data for the dry melting of albite. Consequently, complex speciation models for albitic melts, based on the assumption that these discrepancies represent a real characteristic of the system, are unjustified at this time.

Anovitz, L.M.: Blencoe, J.G.

1999-12-01T23:59:59.000Z

31

Low melting high lithia glass compositions and methods  

DOE Patents [OSTI]

The invention relates to methods of vitrifying waste and for lowering the melting point of glass forming systems by including lithia formers in the glass forming composition in significant amounts, typically from about 0.16 wt % to about 11 wt %, based on the total glass forming oxides. The lithia is typically included as a replacement for alkali oxide glass formers that would normally be present in a particular glass forming system. Replacement can occur on a mole percent or weight percent basis, and typically results in a composition wherein lithia forms about 10 wt % to about 100 wt % of the alkali oxide glass formers present in the composition. The present invention also relates to the high lithia glass compositions formed by these methods. The invention is useful for stabilization of numerous types of waste materials, including aqueous waste uranium oxides The decrease in melting point achieved by the present invention desirably prevents volatilization of hazardous or radioactive species during vitrification.

Jantzen, Carol M.; Pickett, John B.; Cicero-Herman, Connie A.; Marra, James C.

2003-09-23T23:59:59.000Z

32

JEFFERSON LAB 12 GEV CEBAF UPGRADE  

SciTech Connect (OSTI)

The existing continuous electron beam accelerator facility (CEBAF) at Thomas Jefferson National Accelerator Facility (TJNAF) is a 5-pass, recirculating cw electron Linac operating at approx6 GeV and is devoted to basic research in nuclear physics. The 12 GeV CEBAF Upgrade is a $310 M project, sponsored by the Department of Energy (DOE) Office of Nuclear Physics, that will expand its research capabilities substantially by doubling the maximum energy and adding major new experimental apparatus. The project received construction approval in September 2008 and has started the major procurement process. The cryogenic aspects of the 12 GeV CEBAF Upgrade includes: doubling the accelerating voltages of the Linacs by adding ten new high-performance, superconducting radiofrequency (SRF) cryomodules (CMs) to the existing 42 1/4 cryomodules; doubling of the 2 K cryogenics plant; and the addition of eight superconducting magnets.

Rode, C. H. [Thomas Jefferson National Accelerator Facility, Newport News, Virginia, 23606 (United States)

2010-04-09T23:59:59.000Z

33

Safety aspects of EB melting  

SciTech Connect (OSTI)

Electron Beam melting technology, along with other vacuum metallurgical technologies, requires special attention to safety involving operation and maintenance of the EB furnace and systems. Although the EB industry has been relatively accident free, the importance of safety awareness and compliance becomes increasingly important. It is very important to provide a safe work environment for employees and economically important to protect the equipment from damage and potential downtime. Safety and accident prevention directly affects overhead costs by keeping accident insurance rates at a minimum. Routine safety requirements will be reviewed and safety aspects requiring extra attention will be addressed. Safety improvements and experiences of furnace users will be shared as examples.

Hainz, L.C. [Hainz Engineering Services, Inc., Albany, OR (United States)

1994-12-31T23:59:59.000Z

34

Melt and vapor characteristics in an electron beam evaporator  

SciTech Connect (OSTI)

We compare the free surface temperatures T{sub s}, calculated by two methods, in cerium or copper evaporation experiments. The first method considers properties of the melt: by an empirical law we take into account turbulent thermal convection, instabilities and craterization of the free surface. The second method considers the vapor flow expansion and connects T{sub s} to the measured terminal parallel temperature and the terminal mean parallel velocity of the vapor jet, by Direct Simulation Monte Carlo calculations including an atom-atom inelastic collision algorithm. The agreement between the two approaches is better for cerium than for copper in the high craterization case. The analysis, from the point of view of the properties of the melt, of the terminal parameters of the vapor jet for the high beam powers shows that T{sub s} and the Knudsen number at the vapor source reach a threshold when the beam power increases.

Blumenfeld, L.; Fleche, J.L.; Gonella, C. [DCC/DPE/SPEA Centre d`Etudes de Saclay, Gif-sur-Yvette (France)

1994-12-31T23:59:59.000Z

35

Meson Spectroscopy At Jlab At 12 Gev  

SciTech Connect (OSTI)

The 12 GeV upgrade to the Continuous Electron Beam Accelerator Facility (CEBAF) at Jefferson Lab will enable a new generation of experiments in hadronic nuclear physics, seeking to address fundamental questions in our understanding of QCD. The existence of exotic states, suggested by both quark models and lattice calculations, would allow gluonic degrees of freedom to be explored, and may help explain the role played by gluons in the QCD interaction. This article will review the meson spectroscopy program being planned at the lab following the 12 GeV upgrade, utilising real and quasi-real photon beams in two of the lab's four experimental halls, whose distinct capabilities will enable an extensive set of spectroscopy experiments to be performed at the same facility.

Fegan, Stuart [INFN-GENOVA

2014-12-01T23:59:59.000Z

36

The Melting of Greenland William H. Lipscomb  

E-Print Network [OSTI]

). AnAn ice capice cap is a mass of glacier ice smaller than 50,000 kmis a mass of glacier ice smaller is negligibleSurface melting is negligible Antarctic ice thicknessAntarctic ice thickness (British Antarctic of the Greenland iceMuch of the Greenland ice sheet may have meltedsheet may have melted Greenland minimum extent

Born, Andreas

37

Purification of tantalum by plasma arc melting  

DOE Patents [OSTI]

Purification of tantalum by plasma arc melting. The level of oxygen and carbon impurities in tantalum was reduced by plasma arc melting the tantalum using a flowing plasma gas generated from a gas mixture of helium and hydrogen. The flowing plasma gases of the present invention were found to be superior to other known flowing plasma gases used for this purpose.

Dunn, Paul S. (Santa Fe, NM); Korzekwa, Deniece R. (Los Alamos, NM)

1999-01-01T23:59:59.000Z

38

The contribution of glacier melt to streamflow  

SciTech Connect (OSTI)

Ongoing and projected future changes in glacier extent and water storage globally have lead to concerns about the implications for water supplies. However, the current magnitude of glacier contributions to river runoff is not well known, nor is the population at risk to future glacier changes. We estimate an upper bound on glacier melt contribution to seasonal streamflow by computing the energy balance of glaciers globally. Melt water quantities are computed as a fraction of total streamflow simulated using a hydrology model and the melt fraction is tracked down the stream network. In general, our estimates of the glacier melt contribution to streamflow are lower than previously published values. Nonetheless, we find that globally an estimated 225 (36) million people live in river basins where maximum seasonal glacier melt contributes at least 10% (25%) of streamflow, mostly in the High Asia region.

Schaner, Neil; Voisin, Nathalie; Nijssen, Bart; Lettenmaier, D. P.

2012-09-13T23:59:59.000Z

39

Upgrade of CEBAF from 6-GeV To 12-GeV: Status  

SciTech Connect (OSTI)

The CEBAF accelerator is being upgraded from 6 GeV to 12 GeV by the US Department of Energy. The accelerator upgrade is being done within the existing tunnel footprint. The accelerator upgrade includes: 10 new srfbased high-performance cryomodules plus RF systems, doubling the 2K helium plants capability, upgrading the existing beamlines to operate at nearly double the original performance envelope, and adding a beamline to a new experimental area. Construction is over 75% complete with final completion projected for late FY13. Details of the upgrade and status of the work will be presented.

Harwood, Leigh H.

2013-04-01T23:59:59.000Z

40

Talking Points  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security AdministrationcontrollerNanocrystallineForeign ObjectOUR TableE9.security Tag:ResidentialNewTakingPoints

Note: This page contains sample records for the topic "gev melting point" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

alkali carbonate melts: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

8 Glass Transition and Melting Behavior of Carbon Fiber Reinforced Thermoplastic Composite, Studied by Materials Science Websites Summary: Glass Transition and Melting...

42

ITP Metal Casting: Advanced Melting Technologies: Energy Saving...  

Broader source: Energy.gov (indexed) [DOE]

Advanced Melting Technologies: Energy Saving Concepts and Opportunities for the Metal Casting Industry ITP Metal Casting: Advanced Melting Technologies: Energy Saving Concepts and...

43

Energy-Efficient Melting and Direct Delivery of High Quality...  

Broader source: Energy.gov (indexed) [DOE]

Energy-Efficient Melting and Direct Delivery of High Quality Molten Aluminum Energy-Efficient Melting and Direct Delivery of High Quality Molten Aluminum itmdelivery.pdf More...

44

Complex systems influence melting of Greenland ice sheet  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Complex systems influence melting of Greenland ice sheet Complex systems influence melting of Greenland ice sheet International research team's field work shows that, well, things...

45

Media Advisory - Jefferson Lab 12 GeV Upgrade Groundbreaking...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

for its 310 million 12 GeV Upgrade project. When: Tuesday, April 14, 2009. Where: CEBAF Center, Thomas Jefferson National Accelerator Facility, 12000 Jefferson Avenue,...

46

Energy Saving Melting and Revert Reduction Technology (E-SMARRT): Melting Efficiency Improvement  

SciTech Connect (OSTI)

Steel foundries melt recycled scrap in electric furnaces and typically consume 35-100% excess energy from the theoretical energy requirement required to pour metal castings. This excess melting energy is multiplied by yield losses during casting and finishing operations resulting in the embodied energy in a cast product typically being three to six times the theoretical energy requirement. The purpose of this research project was to study steel foundry melting operations to understand energy use and requirements for casting operations, define variations in energy consumption, determine technologies and practices that are successful in reducing melting energy and develop new melting techniques and tools to improve the energy efficiency of melting in steel foundry operations.

Principal Investigator Kent Peaslee; Co-PIà ƒ  ¢Ã ‚  € à ‚  ™ s: Von Richards, Jeffrey Smith

2012-07-31T23:59:59.000Z

47

A preliminary study of the controls on melting during in situ vitrification  

SciTech Connect (OSTI)

In situ vitrification (ISV), developed by Pacific Northwest Laboratory and patented for the US Department of Energy, is one method used to stabilize contaminated soils in place. ISV involves inserting four electrodes in a square array into contaminated soil and applying an electrical potential to the electrodes. The soil is heated to above its melting point, and the molten zone expands with time to encompass the contaminated zone. After cooling, the resulting solid material is usually a mixture of glass and crystalline material that has a significantly higher resistance to leaching than did the original soils. Nonvolatile elements (most radionuclides and metals) are dissolved into the melt or encapsulated in glass if their solubility in the melt is low. Organic compounds tends to be pyrolyzed, with the decomposition products diffusing to the surface and combusting on exiting the molten zone. A hood is placed over the vitrification zone to collect off-gas particulates and volatiles into a processing trailer that scrubs contaminants from the off-gas. The current study identified key parameters and processes in the ISV melt cycle and developed an improved understanding of ISV. Analytical approximations for several properties of molten soil were determined from available data. Using a simplified geometrical approximation for melt geometry, an analytical approximation for the rate of melting (depth) vs time was derived that is consistent with data from field experiments. At small times, the depth of melting increases linearly with time. After approximately 10 h in large-scale tests, however, the depth increases as the square root of time. Existing data is also consistent with a relationship that shows the volumetric growth rate of the melt to be directly proportional to time. These conclusions suggest that heat transfer processes controlling the ISV process may be at the transition between weak convection and conduction.

Solomon, A.D.; Nyquist, J.E.; Alexiades, V.; Jacobs, G.K.; Lenhart, S.M.

1991-12-01T23:59:59.000Z

48

A preliminary study of the controls on melting during in situ vitrification. Environmental Restoration Program  

SciTech Connect (OSTI)

In situ vitrification (ISV), developed by Pacific Northwest Laboratory and patented for the US Department of Energy, is one method used to stabilize contaminated soils in place. ISV involves inserting four electrodes in a square array into contaminated soil and applying an electrical potential to the electrodes. The soil is heated to above its melting point, and the molten zone expands with time to encompass the contaminated zone. After cooling, the resulting solid material is usually a mixture of glass and crystalline material that has a significantly higher resistance to leaching than did the original soils. Nonvolatile elements (most radionuclides and metals) are dissolved into the melt or encapsulated in glass if their solubility in the melt is low. Organic compounds tends to be pyrolyzed, with the decomposition products diffusing to the surface and combusting on exiting the molten zone. A hood is placed over the vitrification zone to collect off-gas particulates and volatiles into a processing trailer that scrubs contaminants from the off-gas. The current study identified key parameters and processes in the ISV melt cycle and developed an improved understanding of ISV. Analytical approximations for several properties of molten soil were determined from available data. Using a simplified geometrical approximation for melt geometry, an analytical approximation for the rate of melting (depth) vs time was derived that is consistent with data from field experiments. At small times, the depth of melting increases linearly with time. After approximately 10 h in large-scale tests, however, the depth increases as the square root of time. Existing data is also consistent with a relationship that shows the volumetric growth rate of the melt to be directly proportional to time. These conclusions suggest that heat transfer processes controlling the ISV process may be at the transition between weak convection and conduction.

Solomon, A.D.; Nyquist, J.E.; Alexiades, V.; Jacobs, G.K.; Lenhart, S.M.

1991-12-01T23:59:59.000Z

49

Low melting high lithia glass compositions and methods  

DOE Patents [OSTI]

The invention relates to methods of vitrifying waste and for lowering the melting point of glass forming systems by including lithia formers in the glass forming composition in significant amounts, typically from about 0.16 wt % to about 11 wt %, based on the total glass forming oxides. The lithia is typically included as a replacement for alkali oxide glass formers that would normally be present in a particular glass forming system. Replacement can occur on a mole percent or weight percent basis, and typically results in a composition wherein lithia forms about 10 wt % to about 100 wt % of the alkali oxide glass formers present in the composition. The present invention also relates to the high lithia glass compositions formed by these methods. The invention is useful for stabilization of numerous types of waste materials, including aqueous waste streams, sludge solids, mixtures of aqueous supernate and sludge solids, combinations of spent filter aids from waste water treatment and waste sludges, supernate alone, incinerator ash, incinerator offgas blowdown, or combinations thereof, geological mine tailings and sludges, asbestos, inorganic filter media, cement waste forms in need of remediation, spent or partially spent ion exchange resins or zeolites, contaminated soils, lead paint, etc. The decrease in melting point achieved by the present invention desirably prevents volatilization of hazardous or radioactive species during vitrification.

Jantzen, Carol M. (Aiken, SC); Pickett, John B. (Aiken, SC); Cicero-Herman, Connie A. (Aiken, SC); Marra, James C. (Aiken, SC)

2000-01-01T23:59:59.000Z

50

Low melting high lithia glass compositions and methods  

DOE Patents [OSTI]

The invention relates to methods of vitrifying waste and for lowering the melting point of glass forming systems by including lithia formers in the glass forming composition in significant amounts, typically from about 0.16 wt % to about 11 wt %, based on the total glass forming oxides. The lithia is typically included as a replacement for alkali oxide glass formers that would normally be present in a particular glass forming system. Replacement can occur on a mole percent or weight percent basis, and typically results in a composition wherein lithia forms about 10 wt % to about 100 wt % of the alkali oxide glass formers present in the composition. The present invention also relates to the high lithia glass compositions formed by these methods. The invention is useful for stabilization of numerous types of waste materials, including aqueous waste streams, sludge solids, mixtures of aqueous supernate and sludge solids, combinations of spent filter aids from waste water treatment and waste sludges, supernate alone, incinerator ash, incinerator offgas blowdown, or combinations thereof, geological mine tailings and sludges, asbestos, inorganic filter media, cement waste forms in need of remediation, spent or partially spent ion exchange resins or zeolites, contaminated soils, lead paint, etc. The decrease in melting point achieved by the present invention desirably prevents volatilization of hazardous or radioactive species during vitrification.

Jantzen, Carol M.; Pickett, John B.; Cicero-Herman, Connie A.; Marra, James C.

2004-11-02T23:59:59.000Z

51

Low melting high lithia glass compositions and methods  

DOE Patents [OSTI]

The invention relates to methods of vitrifying waste and for lowering the melting point of glass forming systems by including lithia formers in the glass forming composition in significant amounts, typically from about 0.16 wt % to about 11 wt %, based on the total glass forming oxides. The lithia is typically included as a replacement for alkali oxide glass formers that would normally be present in a particular glass forming system. Replacement can occur on a mole percent or weight percent basis, and typically results in a composition wherein lithia forms about 10 wt % to about 100 wt % of the alkali oxide glass formers present in the composition. The present invention also relates to the high lithia glass compositions formed by these methods. The invention is useful for stabilization of numerous types of waste materials, including aqueous waste streams, sludge solids, mixtures of aqueous supernate and sludge solids, combinations of spent filter aids from waste water treatment and waste sludges, supernate alone, incinerator ash, incinerator offgas blowdown, or combinations thereof, geological mine tailings and sludges, asbestos, inorganic filter media, cement waste forms in need of remediation, spent or partially spent ion exchange resins or zeolites, contaminated soils, lead paint, etc. The decrease in melting point achieved by the present invention desirably prevents volatilization of hazardous or radioactive species during vitrification.

Jantzen, Carol M.; Pickett, John B.; Cicero-Herman, Connie A.; Marra, James C.

2003-10-07T23:59:59.000Z

52

PURIFICATION OF IRIDIUM BY ELECTRON BEAM MELTING  

SciTech Connect (OSTI)

The purification of iridium metal by electron beam melting has been characterized for 48 impurity elements. Chemical analysis was performed by glow discharge mass spectrographic (GDMS) analysis for all elements except carbon, which was analyzed by combustion. The average levels of individual elemental impurities in the starting powder varied from 37 g/g to 0.02 g/g. The impurity elements Li, Na, Mg, P, S, Cl, K, Ca, Mn, Co, Ni, Cu, Zn, As, Pd, Ag, Cd, Sn, Sb, Te, Ba, Ce, Tl, Pb, and Bi were not detectable following the purification. No significant change in concentration of the elements Ti, V, Zr, Nb, Mo, and Re was found. The elements B, C, Al, Si, Cr, Fe, Ru, Rh, and Pt were partially removed by vaporization during electron beam melting. Langmuir's equation for ideal vaporization into a vacuum was used to calculate for each impurity element the expected ratio of impurity content after melting to that before melting. Equilibrium vapor pressures were calculated using Henry's law, with activity coefficients obtained from published data for the elements Fe, Ti, and Pt. Activity coefficients were estimated from enthalpy data for Al, Si, V, Cr, Mn, Co, Ni, Zr, Nb, Mo, and Hf and an ideal solution model was used for the remaining elements. The melt temperature was determined from measured iridium weight loss. Excellent agreement was found between measured and calculated impurity ratios for all impurity elements. The results are consistent with some localized heating of the melt pool due to rastering of the electron beam, with an average vaporization temperature of 3100 K as compared to a temperature of 2965 K calculated for uniform heating of the melt pool. The results are also consistent with ideal mixing in the melt pool.

Ohriner, Evan Keith [ORNL

2008-01-01T23:59:59.000Z

53

Josephson vortex lattice melting in Bi-2212  

SciTech Connect (OSTI)

The B-T diagram of Josephson vortex lattice melting in Bi-2212 is analyzed (B is magnetic induction parallel to the layers, T is temperature). It is shown that the Josephson vortex lattice melting at B > B* = 0.6-0.7 T is associated with Berezinsky-Kosterlitz-Thouless transition in individual Bi-2212 superconducting layers and is a second-order phase transition.

Latyshev, Yu. I.; Pavlenko, V. N., E-mail: vit@cplire.ru; Orlov, A. P. [Russian Academy of Sciences, Institute of Radio Engineering and Electronics (Russian Federation)

2007-07-15T23:59:59.000Z

54

Metal melting for volume reduction and recycle  

SciTech Connect (OSTI)

This paper summarizes the experiences with melting contaminated steel materials for volume reduction and melting uranium-contaminated copper and aluminum for possible recycle. In the past there has not been an economic incentive to reduce the volume of low-level beta-gamma contaminated metallic scrap materials in the United States. With the rising cost of transportation and burial facility fees new interest in volume reduction is being generated. This new interest has been primarily focused at the Idaho National Engineering Laboratory (INEL) where the Waste Experimental Reduction Facility (WERF) was established to demonstrate both metal melting and incineration of combustible material for volume reduction. Other demonstration programs involving melting for volume reduction and recycle of aluminum and copper, as well as ferrous scrap, were related to the Cascade Improvement and Cascade Upgrade Programs (CIP/CUP) at the Paducah, Kentucky facility. While the melting demonstrations for the CIP/CUP material were not primarily based on economic incentives, several observations recorded during the programs are of interest with regard to melting of copper and aluminum. (4 refs., 8 tabs.)

Miller, R.L.

1987-03-27T23:59:59.000Z

55

3 GeV Injector Design Handbook  

SciTech Connect (OSTI)

This Design Handbook is intended to be the main reference book for the specifications of the 3 GeV SPEAR booster synchrotron project. It is intended to be a consistent description of the project including design criteria, key technical specifications as well as current design approaches. Since a project is not complete till it's complete changes and modifications of early conceptual designs must be expected during the duration of the construction. Therefore, this Design Handbook is issued as a loose leaf binder so that individual sections can be replaced as needed. Each page will be dated to ease identification with respect to latest revisions. At the end of the project this Design Handbook will have become the 'as built' reference book of the injector for operations and maintenance personnel.

Wiedemann, H.; /SLAC, SSRL

2009-12-16T23:59:59.000Z

56

SILICATE MELT PROPERTIES AND VOLCANIC Youxue Zhang,1,2  

E-Print Network [OSTI]

SILICATE MELT PROPERTIES AND VOLCANIC ERUPTIONS Youxue Zhang,1,2 Zhengjiu Xu,2 Mengfan Zhu,1 2007. [1] Knowledge about the properties of silicate melts is needed by volcanologists and petrologists and diffusivity of volatile components in silicate melts, silicate melt viscosity, and the fragmentation condition

Zhang, Youxue

57

Retrieval of Melt Pond Coverage from MODIS using Optimal Estimation   

E-Print Network [OSTI]

results showed an error in melt pond coverage estimation of 1.1%. The technique was then applied to Svalbard sea ice over the 2003 melt season to produce an estimate of melt pond coverage evolution. This melt pond evolution showed a similar general trend...

Dodd, Emma

2011-11-24T23:59:59.000Z

58

Method for producing melt-infiltrated ceramic composites using formed supports  

DOE Patents [OSTI]

A method for producing shaped articles of ceramic composites provides a high degree of dimensional tolerance to these articles. A fiber preform is disposed on a surface of a stable formed support, a surface of which is formed with a plurality of indentations, such as grooves, slots, or channels. Precursors of ceramic matrix materials are provided to the fiber preform to infiltrate from both sides of the fiber preform. The infiltration is conducted under vacuum at a temperature not much greater than a melting point of the precursors. The melt-infiltrated composite article substantially retains its dimension and shape throughout the fabrication process.

Corman, Gregory Scot (Ballston Lake, NY); Brun, Milivoj Konstantin (Ballston Lake, NY); McGuigan, Henry Charles (Duanesburg, NY)

2003-01-01T23:59:59.000Z

59

Project-X Workshop 120 GeV Target  

E-Print Network [OSTI]

Project-X Workshop 120 GeV Target Summary ­ Workshop # 1 N. Simos, M. Martens #12;Project-X Workshop Challenges OVERVIEW Driven by 120 GeV/170 TP-per-spill · Short Term: 170 TPs/2us-spill (materials an existing 400 kW facility ­ Constraints #12;Project-X Workshop Presentations - Discussions · Engineering

McDonald, Kirk

60

Ultra slow EB melting to reduce reactor cladding  

SciTech Connect (OSTI)

A process is described for making an electron beam melted fuel element liner material from sponge zirconium, the process comprising: electron beam melting sponge zirconium at a melting rate of less than 1 inch per hour to form an electron beam melted zirconium material containing less than 300 ppm iron, less than 400 ppm oxygen, and less than 5 ppm aluminum; and alloying the electron beam melted zirconium in a vacuum arc furnace with 0.1-2.0 weight percent of tin.

Worcester, S.A.; Woods, C.R.; Galer, G.S.; Propst, R.L.

1989-03-28T23:59:59.000Z

Note: This page contains sample records for the topic "gev melting point" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Energy Saving Melting and Revert Reduction Technology: Melting Efficiency in Die Casting Operations  

SciTech Connect (OSTI)

This project addressed multiple aspects of the aluminum melting and handling in die casting operations, with the objective of increasing the energy efficiency while improving the quality of the molten metal. The efficiency of melting has always played an important role in the profitability of aluminum die casting operations. Consequently, die casters need to make careful choices in selecting and operating melting equipment and procedures. The capital cost of new melting equipment with higher efficiency can sometimes be recovered relatively fast when it replaces old melting equipment with lower efficiency. Upgrades designed to improve energy efficiency of existing equipment may be well justified. Energy efficiency is however not the only factor in optimizing melting operations. Melt losses and metal quality are also very important. Selection of melting equipment has to take into consideration the specific conditions at the die casting shop such as availability of floor space, average quantity of metal used as well as the ability to supply more metal during peaks in demand. In all these cases, it is essential to make informed decisions based on the best available data.

David Schwam

2012-12-15T23:59:59.000Z

62

Exclusive single pion electroproduction off the proton in the high-lying resonances at Q2 < 5 GeV2 from CLAS  

SciTech Connect (OSTI)

The differential cross sections and structure functions for the exclusive electroproduction process ep --> e'n pi+ were measured in the range of the invariantmass for the np+ system 1.6 GeV lte W lte 2.0 GeV, and the photon virtuality 1.8 GeV2 lte Q2 lte 4.0 GeV2 using CLAS at Jefferson Lab. For the first time, these kinematics are probed in the exclusive p+ production from the protons with nearly full coverage in the azimuthal and polar angles of the np+ center-of-mass system. In this analysis, approximately 39,000 differential cross-section data points in terms of W, Q2, cosq theta* _ pi, and phi?_p-, were obtained. The preliminary differential cross section and structure function analyses are carried out, which allow us to extract the helicity amplitudes in high-lying resonances.

Park, Kijun [ODU, JLAB

2014-09-01T23:59:59.000Z

63

Direct Measurement of Competing Quantum Effects on the Kinetic Energy of Heavy Water upon Melting  

E-Print Network [OSTI]

Even at room temperature, quantum mechanics plays a major role in determining the quantitative behaviour of light nuclei, changing significantly the values of physical properties such as the heat capacity. However, other observables appear to be only weakly affected by nuclear quantum effects (NQEs): for instance, the melting temperatures of light and heavy water differ by less than 4 K. Recent theoretical work has attributed this to a competition between intra and inter molecular NQEs, which can be separated by computing the anisotropy of the quantum kinetic energy tensor. The principal values of this tensor change in opposite directions when ice melts, leading to a very small net quantum mechanical effect on the melting point. This paper presents the first direct experimental observation of this phenomenon, achieved by measuring the deuterium momentum distributions n(p) in heavy water and ice using Deep Inelastic Neutron Scattering (DINS), and resolving their anisotropy. Results from the experiments, supple...

Romanelli, Giovanni; Manolopoulos, David E; Pantalei, Claudia; Senesi, Roberto; Andreani, Carla

2013-01-01T23:59:59.000Z

64

Scrap uranium recycling via electron beam melting  

SciTech Connect (OSTI)

A program is underway at the Lawrence Livermore National Laboratory (LLNL) to recycle scrap uranium metal. Currently, much of the material from forging and machining processes is considered radioactive waste and is disposed of by oxidation and encapsulation at significant cost. In the recycling process, uranium and uranium alloys in various forms will be processed by electron beam melting and continuously cast into ingots meeting applicable specifications for virgin material. Existing vacuum processing facilities at LLNL are in compliance with all current federal and state environmental, safety and health regulations for the electron beam melting and vaporization of uranium metal. One of these facilities has been retrofitted with an auxiliary electron beam gun system, water-cooled hearth, crucible and ingot puller to create an electron beam melt furnace. In this furnace, basic process R&D on uranium recycling will be performed with the goal of eventual transfer of this technology to a production facility.

McKoon, R.

1993-11-01T23:59:59.000Z

65

Method and apparatus for melting metals  

DOE Patents [OSTI]

A method and apparatus for melting metals uses microwave energy as the primary source of heat. The metal or mixture of metals are placed in a ceramic crucible which couples, at least partially, with the microwaves to be used. The crucible is encased in a ceramic casket for insulation and placed within a microwave chamber. The chamber may be evacuated and refilled to exclude oxygen. After melting, the crucible may be removed for pouring or poured within the chamber by dripping or running into a heated mold within the chamber. Apparent coupling of the microwaves with softened or molten metal produces high temperatures with great energy savings.

Moore, Alan F.; Schechter, Donald E.; Morrow, Marvin Stanley

2006-03-14T23:59:59.000Z

66

Melt spreading code assessment, modifications, and application to the EPR core catcher design.  

SciTech Connect (OSTI)

The Evolutionary Power Reactor (EPR) is under consideration by various utilities in the United States to provide base load electrical production, and as a result the design is undergoing a certification review by the U.S. Nuclear Regulatory Commission (NRC). The severe accident design philosophy for this reactor is based upon the fact that the projected power rating results in a narrow margin for in-vessel melt retention by external cooling of the reactor vessel. As a result, the design addresses ex-vessel core melt stabilization using a mitigation strategy that includes: (1) an external core melt retention system to temporarily hold core melt released from the vessel; (2) a layer of 'sacrificial' material that is admixed with the melt while in the core melt retention system; (3) a melt plug in the lower part of the retention system that, when failed, provides a pathway for the mixture to spread to a large core spreading chamber; and finally, (4) cooling and stabilization of the spread melt by controlled top and bottom flooding. The overall concept is illustrated in Figure 1.1. The melt spreading process relies heavily on inertial flow of a low-viscosity admixed melt to a segmented spreading chamber, and assumes that the melt mass will be distributed to a uniform height in the chamber. The spreading phenomenon thus needs to be modeled properly in order to adequately assess the EPR design. The MELTSPREAD code, developed at Argonne National Laboratory, can model segmented, and both uniform and nonuniform spreading. The NRC is thus utilizing MELTSPREAD to evaluate melt spreading in the EPR design. MELTSPREAD was originally developed to support resolution of the Mark I containment shell vulnerability issue. Following closure of this issue, development of MELTSPREAD ceased in the early 1990's, at which time the melt spreading database upon which the code had been validated was rather limited. In particular, the database that was utilized for initial validation consisted of: (1) comparison to an analytical solution for the dam break problem, (2) water spreading tests in a 1/10 linear scale model of the Mark I containment by Theofanous et al., and (3) steel spreading tests by Suzuki et al. that were also conducted in a geometry similar to the Mark I. The objective of this work was to utilize the MELTSPREAD code to check the assumption of uniform melt spreading in the EPR core catcher design. As a starting point for the project, the code was validated against the worldwide melt spreading database that emerged after the code was originally written in the very early 1990's. As part of this exercise, the code was extensively modified and upgraded to incorporate findings from these various analytical and experiment programs. In terms of expanding the ability of the code to analyze various melt simulant experiments, the options to input user-specified melt and/or substrate material properties was added. The ability to perform invisicid and/or adiabatic spreading analysis was also added so that comparisons with analytical solutions and isothermal spreading tests could be carried out. In terms of refining the capability to carry out reactor material melt spreading analyses, the code was upgraded with a new melt viscosity model; the capability was added to treat situations in which solid fraction buildup between the liquidus-solidus is non-linear; and finally, the ability to treat an interfacial heat transfer resistance between the melt and substrate was incorporated. This last set of changes substantially improved the predictive capability of the code in terms of addressing reactor material melt spreading tests. Aside from improvements and upgrades, a method was developed to fit the model to the various melt spreading tests in a manner that allowed uncertainties in the model predictions to be statistically characterized. With these results, a sensitivity study was performed to investigate the assumption of uniform spreading in the EPR core catcher that addressed parametric variations in: (1) melt pour mass, (2) melt composition, (3) me

Farmer, M. T .; Nuclear Engineering Division

2009-03-30T23:59:59.000Z

67

Pulsed-electron-beam melting of Fe  

SciTech Connect (OSTI)

Pulsed (50 nsec) electron beams with deposited energies of 1.1 to 2.3 J/cm/sup 2/ have been used to rapidly melt a surface layer of Fe. Calculations show that this range of energies produces melt depths from 0.4 to 1.2 ..mu..m and melt times of 100 to 500 nsec. Optical microscopy and SEM of pulse treated polycrystalline foils show slip traces, as well as a general smoothing of surface features which shows that melting has occurred. TEM shows that the resolidified material is bcc, and that the material within a grain is epitaxial with the substrate. TEM also shows slip traces along (110) planes, as well as a high density of dislocations, both extended and loop. At the highest energy, subgrain boundaries are observed. Some samples were implanted with 1 x 10/sup 16/ Sn/cm/sup 2/ at 150 keV. After pulse treatment, the Sn depth profile was observed to have broadened, consistent with liquid phase diffusion. The Sn had the unexpected effect of suppressing slip at the sample surface.

Knapp, J.A.; Follstaedt, D.M.

1981-01-01T23:59:59.000Z

68

Analysis of an EBeam melting process  

SciTech Connect (OSTI)

Electron-Beam (EBeam) melting furnaces are routinely used to minimize the occurrence of second-phase particles in the processing of segregation-sensitive alloys. As one part of the process, a circulating electron beam impinges the surface of a crucible melt pool to help control the shape of the solidification front below. By modeling melt pool hydrodynamics, heat transfer, and the shape of solidification boundaries, we plan to optimize the dwell pattern of the beam so that the material solidifies with a composition as spatially homogeneous as possible. Both two-and three-dimensional models are being pursued with FIDAP 5.02, the former serving as a test bed for various degrees of model sophistication. A heat flux distribution is specified on the top of the domain to simulate the EBeam dwell pattern. In two dimensions it is found that an inertially-driven recirculation in the melt pool interacts with a counter-rotating buoyancy-driven recirculation, and that both recirculation influence heavily the shape of the solidification front. In three dimensions the inertial cell decays quickly with distance from the position of the inlet stream. Because the Rayleigh number can exceed 10{sup 7} for materials and operating conditions of interest, stability and the possibility of spontaneous transients are explored. 1 refs., 3 figs.

Schunk, P.R.

1991-01-01T23:59:59.000Z

69

Energy Savings in Electric Arc Furnace Melting  

E-Print Network [OSTI]

Arc furnace melting which at one time was almost exclusively used to produce alloy steel and steel castings is now widely accepted in the industry as an efficient process to produce all types of steel and iron. Presently, about 28% of steel...

Lubbeck, W.

1982-01-01T23:59:59.000Z

70

Laser Guiding for GeV Laser-Plasma Accelerators  

E-Print Network [OSTI]

Overview of plasma-based accelerator concepts. IEEE Trans.using laser wake?eld accelerators. Meas. Sci. Technol. 12,for GeV laser-plasma accelerators. In Advanced Accelerator

Leemans, Wim; Esarey, Eric; Geddes, Cameron; Schroeder, C.B.; Toth, Csaba

2005-01-01T23:59:59.000Z

71

Experimental studies of melting and crystallization processes in planetary interiors  

E-Print Network [OSTI]

Melting and crystallization processes on the Earth and Moon are explored in this thesis, and the topics of melt generation, transport, and crystallization are discussed in three distinct geologic environments: the Moon's ...

Krawczynski, Michael James

2011-01-01T23:59:59.000Z

72

The Melting Temperature of Bulk Silicon from ab initio Molecular Dynamics Simulations  

SciTech Connect (OSTI)

We estimated a melting temperature of Tm ~ 1540 ± 90 K at zero pressure for silicon from constant enthalpy and constant pressure (NPH) Born-Oppenheimer Molecular Dynamics (BOMD) simulations of a coexisting crystalline-liquid phase. The computed Tm is below the experimental melting point of 1685 K, but it is consistent with a previously predicted first-order liquid-liquid phase transition (LLPT) at a critical point Tc ~ 1232 K and Pc ~ - 12kB [Ganesh and Widom, Phys. Rev. Lett. 102, 075701 (2009)], which is in a highly supercooled state. This work was supported by the US Department of Energy, Office of Basic Energy Sciences, Chemical Sciences program. Pacific Northwest National Laboratory is operated by Battelle for the US Department of Energy.

Yoo, Soohaeng; Xantheas, Sotiris S.; Zeng, Xiao Cheng

2009-10-19T23:59:59.000Z

73

Hydrous silicate melt at high pressure Mainak Mookherjee1  

E-Print Network [OSTI]

LETTERS Hydrous silicate melt at high pressure Mainak Mookherjee1 , Lars Stixrude2 & Bijaya Karki3 The structure and physical properties of hydrous silicate melts and the solubility of water in melts over most in structure to our finding that the water­silicate system becomes increasingly ideal at high pressure: we find

Stixrude, Lars

74

Core-melt source reduction system  

DOE Patents [OSTI]

A core-melt source reduction system for ending the progression of a molten core during a core-melt accident and resulting in a stable solid cool matrix. The system includes alternating layers of a core debris absorbing material and a barrier material. The core debris absorbing material serves to react with and absorb the molten core such that containment overpressurization and/or failure does not occur. The barrier material slows the progression of the molten core debris through the system such that the molten core has sufficient time to react with the core absorbing material. The system includes a provision for cooling the glass/molten core mass after the reaction such that a stable solid cool matrix results. 4 figs.

Forsberg, C.W.; Beahm, E.C.; Parker, G.W.

1995-04-25T23:59:59.000Z

75

Specific heat in two-dimensional melting  

E-Print Network [OSTI]

We report the specific heat $c_N$ around the melting transition(s) of micrometer-sized superparamagnetic particles confined in two dimensions, calculated from fluctuations of positions and internal energy, and corresponding Monte Carlo simulations. Since colloidal systems provide single particle resolution, they offer the unique possibility to compare the experimental temperatures of peak position of $c_N(T)$ and symmetry breaking, respectively. While order parameter correlation functions confirm the Kosterlitz-Thouless-Halperin-Nelson-Young melting scenario where translational and orientational order symmetries are broken at different temperatures with an intermediate so called hexatic phase, we observe a single peak of the specific heat within the hexatic phase, with excellent agreement between experiment and simulation. Thus, the peak is not associated with broken symmetries but can be explained with the total defect density, which correlates with the maximum increase of isolated dislocations. The absence of a latent heat strongly supports the continuous character of both transitions.

Sven Deutschländer; Antonio M. Puertas; Georg Maret; Peter Keim

2014-05-14T23:59:59.000Z

76

Thermally efficient melting for glass making  

DOE Patents [OSTI]

The present invention is an integrated process for the production of glass utilizing combustion heat to melt glassmaking materials in a glassmaking furnace. The fuel combusted to produce heat sufficient to melt the glassmaking materials is combusted with oxygen-enriched oxidant to reduce heat losses from the offgas of the glassmaking furnace. The process further reduces heat losses by quenching hot offgas from the glassmaking furnace with a process stream to retain the heat recovered from quench in the glassmaking process with subsequent additional heat recovery by heat exchange of the fuel to the glassmaking furnace, as well as the glassmaking materials, such as batch and cullet. The process includes recovery of a commercially pure carbon dioxide product by separatory means from the cooled, residual offgas from the glassmaking furnace.

Chen, Michael S. K. (Zionsville, PA); Painter, Corning F. (Allentown, PA); Pastore, Steven P. (Allentown, PA); Roth, Gary (Trexlertown, PA); Winchester, David C. (Allentown, PA)

1991-01-01T23:59:59.000Z

77

Core-melt source reduction system  

DOE Patents [OSTI]

A core-melt source reduction system for ending the progression of a molten core during a core-melt accident and resulting in a stable solid cool matrix. The system includes alternating layers of a core debris absorbing material and a barrier material. The core debris absorbing material serves to react with and absorb the molten core such that containment overpressurization and/or failure does not occur. The barrier material slows the progression of the molten core debris through the system such that the molten core has sufficient time to react with the core absorbing material. The system includes a provision for cooling the glass/molten core mass after the reaction such that a stable solid cool matrix results.

Forsberg, Charles W. (Oak Ridge, TN); Beahm, Edward C. (Oak Ridge, TN); Parker, George W. (Concord, TN)

1995-01-01T23:59:59.000Z

78

Low cation coordination in oxide melts  

SciTech Connect (OSTI)

The complete set of Faber-Ziman partial pair distribution functions for a rare earth oxide liquid were measured for the first time by combining aerodynamic levitation, neutron diffraction, high energy x-ray diffraction and isomorphic substitution using Y2 O3 and Ho2 O3 melts. The average Y- O coordination is measured to be 5.5(2), which is significantly less than the octahedral coordination of crystalline Y2 O3 (or Ho2 O3 ). Investigation of high temperature La2 O3 , ZrO2 , SiO2 , and Al2 O3 melts by x-ray diffraction and molecular dynamics simulations also show lower-than-crystal cation- oxygen coordination. These measurements suggest a general trend towards lower M-O coordination compared to their crystalline counterparts. It is found that this coordination number drop is larger for lower field strength, larger radius cations and is negligible for high field strength (network forming) cations. These findings have broad implications for predicting the local structure and related physical properties of metal-oxide melts and oxide glasses.

Skinner, Lawrie [State University of New York, Stony Brook] [State University of New York, Stony Brook; Benmore, Chris J [Argonne National Laboratory (ANL)] [Argonne National Laboratory (ANL); Du, Jincheng [University of North Texas] [University of North Texas; Weber, Richard [Argonne National Laboratory (ANL)] [Argonne National Laboratory (ANL); Neuefeind, Joerg C [ORNL] [ORNL; Tumber, Sonia [Materials Development, Inc., Evanston, IL] [Materials Development, Inc., Evanston, IL; Parise, John B [Stony Brook University (SUNY)] [Stony Brook University (SUNY)

2014-01-01T23:59:59.000Z

79

Perfluorooctanoic acid Melting point ~55 C, boiling point ~190 C, pKa ~ 2.5, sparingly  

E-Print Network [OSTI]

developmental and other adverse effects in laboratory animals. · Flammable and forms hazardous products like HF the Parkersburg, WV · Eight companies (Arkema, Asahi, Ciba, Clariant, Daikin, 3M/Dyneon, DuPont, Solvay Solexis

Cohen, Robert E.

80

Ferritic steel melt and FLiBe/steel experiment : melting ferritic steel.  

SciTech Connect (OSTI)

In preparation for developing a Z-pinch IFE power plant, the interaction of ferritic steel with the coolant, FLiBe, must be explored. Sandia National Laboratories Fusion Technology Department was asked to drop molten ferritic steel and FLiBe in a vacuum system and determine the gas byproducts and ability to recycle the steel. We tried various methods of resistive heating of ferritic steel using available power supplies and easily obtained heaters. Although we could melt the steel, we could not cause a drop to fall. This report describes the various experiments that were performed and includes some suggestions and materials needed to be successful. Although the steel was easily melted, it was not possible to drip the molten steel into a FLiBe pool Levitation melting of the drop is likely to be more successful.

Troncosa, Kenneth P.; Smith, Brandon M.; Tanaka, Tina Joan

2004-11-01T23:59:59.000Z

Note: This page contains sample records for the topic "gev melting point" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Spin Structure with JLab 6 and 12 GeV  

SciTech Connect (OSTI)

Highlights of JLab 6 GeV results on spin structure study and plan for 12 GeV program. Spin structure study is full of surprises and puzzles. A decade of experiments from JLab yield these exciting results: (1) valence spin structure; (2) precision measurements of g{sub 2}/d{sub 2} - high-twist; (3) spin sum rules and polarizabilities; and (4) first neutron transversity. There is a bright future as the 12 GeV Upgrade will greatly enhance our capability: (1) Precision determination of the valence quark spin structure flavor separation; (2) Precision measurements of g{sub 2}/d{sub 2}; and (3) Precision extraction of transversity/tensor charge.

Jian-Ping Chen

2012-02-01T23:59:59.000Z

82

Jefferson Lab 12 GeV CEBAF Upgrade  

SciTech Connect (OSTI)

The existing continuous electron beam accelerator facility (CEBAF) at Thomas Jefferson National Accelerator Facility (TJNAF) is a 5-pass, recirculating cw electron Linac operating at ~6 GeV and is devoted to basic research in nuclear physics. The 12 GeV CEBAF Upgrade is a $310 M project, sponsored by the Department of Energy (DOE) Office of Nuclear Physics, that will expand its research capabilities substantially by doubling the maximum energy and adding major new experimental apparatus. The project received construction approval in September 2008 and has started the major procurement process. The cryogenic aspects of the 12 GeV CEBAF Upgrade includes: doubling the accelerating voltages of the Linacs by adding ten new high-performance, superconducting radiofrequency (SRF) cryomodules (CMs) to the existing 42 1/4 cryomodules; doubling of the 2 K cryogenics plant; and the addition of eight superconducting magnets.

Claus Rode

2010-04-01T23:59:59.000Z

83

The 6 GeV TMD Program at Jefferson Lab  

SciTech Connect (OSTI)

The study of the transverse momentum dependent parton distributions (TMDs) of the nucleon in semi-inclusive deep-inelastic scattering (SIDIS) has emerged as one of the major physics motivations driving the experimental program using the upgraded 11 GeV electron beam at Jefferson Lab’s Continuous Electron Beam Accelerator Facility (CEBAF). The accelerator construction phase of the CEBAF upgrade is essentially complete and commissioning of the accelerator has begun as of April, 2014. As the new era of CEBAF operations begins, it is appropriate to review the body of published and forthcoming results on TMDs from the 6 GeV era of CEBAF operations, discuss what has been learned, and discuss the key challenges and opportunities for the 11 GeV SIDIS program of CEBAF.

Puckett, Andrew J. [University of Connecticut, JLAB

2015-01-01T23:59:59.000Z

84

GeV Emission from Collisional Magnetized Gamma Ray Bursts  

E-Print Network [OSTI]

Magnetic fields may play a dominant role in gamma-ray bursts, and recent observations by the Fermi satellite indicate that GeV radiation, when detected, arrives delayed by seconds from the onset of the MeV component. Motivated by this, we discuss a magnetically dominated jet model where both magnetic dissipation and nuclear collisions are important. We show that, for parameters typical of the observed bursts, such a model involving a realistic jet structure can reproduce the general features of the MeV and a separate GeV radiation component, including the time delay between the two. The model also predicts a multi-GeV neutrino component.

P. Mészáros; M. J. Rees

2011-04-26T23:59:59.000Z

85

Reuse of steel and aluminium without melting  

E-Print Network [OSTI]

-of-life metal components that could be reused for each product, the catalogue formed the basis of a set of semi-structured interviews with industrial experts. The results suggest that approximately 30% of steel and aluminium used in current products could... Allwood J.M., Cullen J.M., Cooper D.R., Milford R.L., Patel A.C.H., Carruth M.A., McBrien M., 2010. Conserving our metal energy: avoiding melting steel and aluminium scrap to save energy and carbon. University of Cambridge, ISBN 978-0-903428-30-9 Allwood...

Cooper, Daniel

2014-01-07T23:59:59.000Z

86

Shallow Melt Apparatus for Semicontinuous Czochralski Crystal Growth  

DOE Patents [OSTI]

In a single crystal pulling apparatus for providing a Czochralski crystal growth process, the improvement of a shallow melt crucible (20) to eliminate the necessity supplying a large quantity of feed stock materials that had to be preloaded in a deep crucible to grow a large ingot, comprising a gas tight container a crucible with a deepened periphery (25) to prevent snapping of a shallow melt and reduce turbulent melt convection; source supply means for adding source material to the semiconductor melt; a double barrier (23) to minimize heat transfer between the deepened periphery (25) and the shallow melt in the growth compartment; offset holes (24) in the double barrier (23) to increase melt travel length between the deepened periphery (25) and the shallow growth compartment; and the interface heater/heat sink (22) to control the interface shape and crystal growth rate.

Wang, T.; Ciszek, T. F.

2006-01-10T23:59:59.000Z

87

Temperature control of some metallic conductors in the region of the melting point  

E-Print Network [OSTI]

. A. C. Power Amplifier and Demodulator Figure 14 shows the A. C. power amplifier and the demodulator stage of the control system. 150 V. D. C. 150 U. D. C. 15K 40MF 20NF 5K 6V6 6SN7 220 ohms 45v 1K Pot . 470 ohms 7 II Figure 14 The 6V6... is shown in Figure 19. 0. 25 to 1 MF 2 OK Pot. 3 100K 1 M 1 MP 68K 1 M 100K Chopper ] I I I I I I I I I I I I ?? I I I I I I I I 9 I r I I I I I I I I I I 2. 2 M 7 I -30 volts 2' 3' 40 MF 20 MF 6V6 24MF 220...

Rahman, Arifur

1961-01-01T23:59:59.000Z

88

Microsoft PowerPoint - ESGCold Cap Melting (2) [Read-Only]  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas Conchas recovery challenge fundProject Quarterly ReportsMicrofluidicThis DOE10 -10T

89

ONE GEV BEAM ACCELERATION IN A ONE METER LONG  

E-Print Network [OSTI]

ONE GEV BEAM ACCELERATION IN A ONE METER LONG PLASMA CELL A Proposal to the Stanford Linear. A single SLC bunch is used to both induce wakefields in the one meter long plasma and to witness that are needed to apply high-gradient plasma wakefield acceleration to large scale accelerators. The one meter

90

12 GeV detector technology at Jefferson Lab  

SciTech Connect (OSTI)

The Thomas Jefferson National Accelerator Facility (JLab) is presently in the middle of an upgrade to increase the energy of its CW electron beam from 6 GeV to 12 GeV along with the addition of a fourth experimental hall. Driven both by necessity and availability, novel detectors and electronics modules have been used in the upgrade. One such sensor is the Silicon Photomultiplier (SiPM), specifically a Multi-Pixel Photon Counter (MPPC), which is an array of avalanche photodiode pixels operating in Geiger mode that are used to sense photons. The SiPMs replace conventional photomultiplier tubes and have several distinct advantages including the safe operation in a magnetic field and the lack of need for high voltage. Another key to 12 GeV success is advanced fast electronics. Jlab will use custom 250 MHz and 125 MHz 12-bit analog to digital converters (ADCs) and time to digital converters (TDCs) all of which take advantage of VME Switched Serial (VXS) bus with its GB/s high bandwidth readout capability. These new technologies will be used to readout drift chambers, calorimeters, spectrometers and other particle detectors at Jlab once the 12 GeV upgrade is complete. The largest experiment at Jlab utilizing these components is GlueX - an experiment in the newly constructed Hall D that will study the photoproduction of light mesons in the search for hybrid mesons. The performance of these components and their respective detectors will be presented.

Leckey, John P. [Indiana U.

2013-04-01T23:59:59.000Z

91

12 GeV detector technology at Jefferson Lab  

SciTech Connect (OSTI)

The Thomas Jefferson National Accelerator Facility (JLab) is presently in the middle of an upgrade to increase the energy of its CW electron beam from 6 GeV to 12 GeV along with the addition of a fourth experimental hall. Driven both by necessity and availability, novel detectors and electronics modules have been used in the upgrade. One such sensor is the Silicon Photomultiplier (SiPM), specifically a Multi-Pixel Photon Counter (MPPC), which is an array of avalanche photodiode pixels operating in Geiger mode that are used to sense photons. The SiPMs replace conventional photomultiplier tubes and have several distinct advantages including the safe operation in a magnetic field and the lack of need for high voltage. Another key to 12 GeV success is advanced fast electronics. Jlab will use custom 250 MHz and 125 MHz 12-bit analog to digital converters (ADCs) and time to digital converters (TDCs) all of which take advantage of VME Switched Serial (VXS) bus with its GB/s high bandwidth readout capability. These new technologies will be used to readout drift chambers, calorimeters, spectrometers and other particle detectors at Jlab once the 12 GeV upgrade is complete. The largest experiment at Jlab utilizing these components is GlueX - an experiment in the newly constructed Hall D that will study the photoproduction of light mesons in the search for hybrid mesons. The performance of these components and their respective detectors will be presented.

Leckey, John P. [Indiana University, Bloomington, IN 47405 (United States); Collaboration: GlueX Collaboration

2013-04-19T23:59:59.000Z

92

7-GeV Advanced Photon Source Conceptual Design Report  

SciTech Connect (OSTI)

During the past decade, synchrotron radiation emitted by circulating electron beams has come into wide use as a powerful, versatile source of x-rays for probing the structure of matter and for studying various physical processes. Several synchrotron radiation facilities with different designs and characteristics are now in regular operation throughout the world, with recent additions in this country being the 0.8-GeV and 2.5-GeV rings of NSLS at Brookhaven National Laboratory. However, none of the operating facilities has been designed to use a low-emittance, high-energy stored beam, together with modern undulator devices, to produce a large number of hard x-ray beams of extremely high brilliance. This document is a proposal to the Department of Energy to construct and operate high-energy synchrotron radiation facility at Argonne National Laboratory. We have now chosen to set the design energy of this facility at 7.0 GeV, with the capability to operate at up to 7.5 GeV.

Not Available

1987-04-01T23:59:59.000Z

93

Nucleon Form Factors experiments with 12 GeV CEBAF  

SciTech Connect (OSTI)

A number of precision form factor experiments at high momentum transfer will be performed with the 11 GeV electron beam of CEBAF. We review the approved proposals and the conceptual schemes of several new suggestions. Form factor data will serve as a major input for the construction of a tomographic image of the nucleon.

Wojtsekhowski, Bogdan

2008-11-01T23:59:59.000Z

94

The JLAB 12 GeV Energy Upgrade of CEBAF  

SciTech Connect (OSTI)

This presentation should describe the progress of the 12GeV Upgrade of CEBAF at Jefferson Lab. The status of the upgrade should be presented as well as details on the construction, procurement, installation and commissioning of the magnet and SRF components of the upgrade.

Harwood, Leigh H. [JLAB

2013-12-01T23:59:59.000Z

95

Electron beam skull melting and refining of secondary copper  

SciTech Connect (OSTI)

Electron Beam Melting is the most efficient technology for metals and alloys refining. For secondary metals processing the Electron Beam Skull Melting (EBSM) with the electromagnetic stirring (EMS) of melt in the crucible was shown to be the most appropriate. The copper produced by EBSM with EMS possesses higher density and electric conductivity in comparison with other refining methods. The details for high power electrical machines were cast of the copper waste refined by EBSM technology.

Bychkov, Y.; Ladokhin, S. [Donetskvtortsvetmet, Donetsk (Ukraine)

1995-12-31T23:59:59.000Z

96

Electron beam melting state-of-the-art 1984  

SciTech Connect (OSTI)

In 1984 electron beam melting and refining appear poised for an important new growth phase. The driving force for this phase is improved production economics made possible by technological advances. There is also a new and exciting growth application for electron beam melting: its use for surface properties beneficiation. This article is based in part on the content of the Conference on Electron Beam Melting and Refining, The State-of-the-Art 1983, held in November 1983 in Reno, Nevada.

Bakish, R.

1984-06-01T23:59:59.000Z

97

Retrograde Melting and Internal Liquid Gettering in Silicon  

SciTech Connect (OSTI)

Retrograde melting (melting upon cooling) is observed in silicon doped with 3d transition metals, via synchrotron-based temperature-dependent X-ray microprobe measurements. Liquid metal-silicon droplets formed via retrograde melting act as efficient sinks for metal impurities dissolved within the silicon matrix. Cooling results in decomposition of the homogeneous liquid phase into solid multiple-metal alloy precipitates. These phenomena represent a novel pathway for engineering impurities in semiconductor-based systems.

Hudelson, Steve; Newman, Bonna K.; Bernardis, Sarah; Fenning, David P.; Bertoni, Mariana I.; Marcus, Matthew A.; Fakra, Sirine C.; Lai, Barry; Buonassisi, Tonio

2011-07-01T23:59:59.000Z

98

Evolution of shear-induced melting in dusty plasma  

E-Print Network [OSTI]

The spatiotemporal development of melting is studied experimentally in a 2D dusty plasma suspension. Starting with an ordered lattice, and then suddenly applying localized shear, a pair of counter-propagating flow regions develop. A transition between two melting stages is observed before a steady state is reached. Melting spreads with a front that propagates at the transverse sound speed. Unexpectedly, coherent longitudinal waves are excited in the flow region.

Yan Feng; J. Goree; Bin Liu

2010-04-05T23:59:59.000Z

99

The effect of disorder on the critical points in the vortex phase diagram of YBCO  

SciTech Connect (OSTI)

The effect of line disorder induced by heavy ion irradiation and of point disorder induced by proton and electron irradiation on the upper and lower critical points in the vortex phase diagram of YBCO is presented. The authors find that dilute line disorder induces a Bose glass transition at low fields which is replaced at the lower critical point by first order melting at higher fields. Strong pinning point defects raise the lower critical point, while weak pinning point defects have little or no effect on the lower critical point. The upper critical point is lowered by point disorder, but raised by line disorder. First order melting is suppressed by point disorder in two ways, by lowering of the upper critical point only for weak point pins, or by merging of the upper and lower critical points for strong point pins. The differing responses of the upper and lower critical points to line and point disorder can be understood in a picture of transverse and longitudinal spatial fluctuations.

Crabtree, G. W.; Kwok, W. K.; Paulius, L. M.; Petrean, A. M.; Olsson, R. J.; Karapetrov, G.; Tobos, V.; Moulton, W. G.

2000-01-19T23:59:59.000Z

100

Atomistic Study of the Melting Behavior of Single Crystalline...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

and 110-oriented lateral facets, respectively. Citation: Wang Z, X Zu, F Gao, and WJ Weber.2007."Atomistic Study of the Melting Behavior of Single Crystalline Wurtzite Gallium...

Note: This page contains sample records for the topic "gev melting point" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Melt zones beneath five volcanic complexes in California: an...  

Open Energy Info (EERE)

melt zones. 23 figs. Authors Goldstein, N. E.; Flexser and S. Published DOE Information Bridge, 1211984 DOI Not Provided Check for DOI availability: http:crossref.org...

102

Stability and breakdown of Ca{sup 13}CO{sub 3} melt associated with formation of {sup 13}C-diamond in static high pressure experiments up to 43 GPa and 3900 K  

SciTech Connect (OSTI)

Melting of calcium carbonate Ca{sup 13}CO{sub 3}, stability of the melt and its decomposition were studied in static high pressure experiments at pressures of 11-43 GPa and temperatures of 1600-3900 K using diamond anvil cell technique with laser heating. We observed formation of {sup 13}C-graphite (below 16 GPa) and {sup 13}C-diamond (between 16 and 43 GPa) on decomposition of the Ca{sup 13}CO{sub 3} melt at temperatures above 3400 K. At temperatures below 3400 K congruent melting of calcium carbonate was confirmed. The experimental results were applied to construction of the phase diagram of CaCO{sub 3} up to 43 GPa and 3900 K focusing at the melting curve of calcium carbonate and the decomposition phase boundary of CaCO{sub 3} melt. - Graphical abstract: Highlights: Black-Right-Pointing-Pointer Phase states of CaCO{sub 3} were studied at P=11-43 GPa and T=1600-3900 K. Black-Right-Pointing-Pointer {sup 13}C-diamond easily crystallizes in carbonate-carbon (Ca{sup 13}CO{sub 3-}{sup 13}C-graphite) melt-solutions. Black-Right-Pointing-Pointer Ca-carbonate melts congruently that was observed in experiments in DAC with laser heating. Black-Right-Pointing-Pointer Decomposition of CaCO{sub 3} melt, indicated by formation of graphite and/or diamond. Black-Right-Pointing-Pointer Decomposition of CaCO{sub 3} was observed at temperatures above 3400 K in the pressure interval studied.

Spivak, A.V., E-mail: spivak@iem.ac.ru [Institute of Experimental Mineralogy of the Russian Academy of Sciences, Chernogolovka, Moscow Region (Russian Federation); Litvin, Yu.A. [Institute of Experimental Mineralogy of the Russian Academy of Sciences, Chernogolovka, Moscow Region (Russian Federation); Ovsyannikov, S.V. [Bayerishes Geoinstitut, University of Bayreuth, Bayreuth (Germany); Dubrovinskaia, N.A. [Material Physics and Technology at Extreme Conditions, Laboratory of Crystallography, University of Bayreuth, Bayreuth (Germany); Dubrovinsky, L.S. [Bayerishes Geoinstitut, University of Bayreuth, Bayreuth (Germany)

2012-07-15T23:59:59.000Z

103

$J/?$, $?(2S)$ Production in pp Collisions at E=510 GeV  

E-Print Network [OSTI]

This brief report is an extension of studies of $J/\\Psi,\\Psi(2S)$ production in pp collisions at the BNL with E=$\\sqrt{s}$=200 GeV to E=510 GeV at PHENIX.

Leonard S. Kisslinger; Debasish Das

2014-10-06T23:59:59.000Z

104

EA-0389: Proposed 7-GeV Advanced Photon Source, Argonne, Illinois  

Broader source: Energy.gov [DOE]

This EA evaluates the environmental impacts of a proposal for construction and operation of a 6- to 7-GeV synchrotron radiation source known as the 7-GeV Advanced Photon Source at DOE's Argonne...

105

Twofold reentrant melting in a double-Gaussian fluid  

E-Print Network [OSTI]

Isotropic pair potentials that are bounded at the origin have been proposed from time to time as models of the effective interaction between macromolecules of interest in the chemical physics of soft matter. We present a thorough study of the phase behavior of point particles interacting through a potential which combines a bounded short-range repulsion with a much weaker attraction at moderate distances, both of Gaussian shape. Notwithstanding the fact that the attraction acts as a small perturbation of the Gaussian-core model potential, the phase diagram of the double-Gaussian model (DGM) is far richer, showing two fluid phases and four distinct solid phases in the case that we have studied. Using free-energy calculations, the various regions of confluence of three distinct phases in the DGM system have all been characterized in detail. Moreover, two distinct lines of reentrant melting are found, and for each of them a rationale is provided in terms of the elastic properties of the solid phases.

S. Prestipino; C. Speranza; G. Malescio; P. V. Giaquinta

2014-03-04T23:59:59.000Z

106

Electron-beam scull melting with electromagnetic stirring of melt in crucible  

SciTech Connect (OSTI)

The technologies and equipment have been developed for electron-beam scull melting with electromagnetic stirring of melt for some Ni-based superalloys as well as for multi-component Ti-, Zr-, Nb-, and Mo-based alloys. Two types of scull crucible sets with electromagnetic stirring systems have been constructed, with the metal pouring by the crucible tilting or through the hole in the crucible bottom. In the second case slag does not fall into a mold, and the electron beam may be used for metal heating in the costing head, thus improving the quality of castings. The technologies developed allow to utilize scrap, cost part reverts, chips etc. thus saving virgin alloys. The electromagnetic stirring application permits to product multi-component alloys, to increase the mass of the metal poured, and to reduce the specific energy expenditure and metal loss through evaporation.

Ladokhin, S.V. [Institute for Casting Problems, Kiev (Ukraine)

1994-12-31T23:59:59.000Z

107

Electron beam melting and casting of zirconium and titanium alloys  

SciTech Connect (OSTI)

The results of electron beam melting (EBM) and casting Zirconium and Titanium alloys are discussed. The data on different schedules used for EBM of this metals as well as equipment for crucible melting and special equipment for casting are described. The results of production of Zirconium and Titanium alloy mold castings for various purposes are presented.

Arzhakova, V.M.; Popov, E.I. [A.A. Bochvar All Union Scientific and Research Institute of Inorganic Materials, Moscow (Russian Federation); Dubrovski, V.A.; Frolov, V.I. [PO ChMZ, Glazov (Russian Federation); Ladohin, S.V.; Levitsky, N.I.; Chernyavsky, V.B. [Scientific and Research Institute of Casting, Kiev (Ukraine)

1994-12-31T23:59:59.000Z

108

Electron beam melting and refining state of the art 1995  

SciTech Connect (OSTI)

This is the proceedings of the Electron Beam Melting and Refining - State of the Art 1995 Conference. It contains 23 of the 30 scheduled papers. Papers cover an array of electron beam melting applications, from industrial plating of metal strip, through government work on manufacturing and processing fissile alloys. Separate abstracts have been prepared for articles from this proceedings.

Bakish, R. [ed.

1995-12-31T23:59:59.000Z

109

ARTICLE IN PRESS Kinetics of convective crystal dissolution and melting,  

E-Print Network [OSTI]

Department of Geological Sciences, The University of Michigan, Ann Arbor, MI 48109-1063, USA5 Received 25 instability (similar to melting of ice) with or 14 without water (although presence of warm water may increase the dissociation rate). Dissociation of methane hydrate 15 into gas and water is similar to ice melting

Zhang, Youxue

110

An analysis of variations in isentropic melt productivity  

E-Print Network [OSTI]

An analysis of variations in isentropic melt productivity B y P. D. Asimow1 , M. M. Hirschmann1 productivity, cannot be determined directly from experiments and is commonly assumed to be constant on a ther- modynamic model of peridotite partial melting, we show that productivity for re- versible

Asimow, Paul D.

111

Glacier melt contribution to streamflow1 Neil Schaner1  

E-Print Network [OSTI]

, firn, or ice. We50 include all ice caps (ice sheets covering less than 50,000 km2 ) and other permanent1 Glacier melt contribution to streamflow1 Neil Schaner1 , Nathalie Voisin2 , Bart Nijssen1 gross domestic product,28 resides in areas that rely on snow or glacier melt for a majority of its water

Washington at Seattle, University of

112

Seasonal glacier melt contribution to streamflow Neil Schaner  

E-Print Network [OSTI]

source is perennial snow, firn, or ice. We include all ice caps (ice sheets covering less than 50,000 km21 Seasonal glacier melt contribution to streamflow Neil Schaner Department of Civil is the population at risk to future glacier changes. We estimate an upper bound on glacier melt contribution

Washington at Seattle, University of

113

Detection of Nonthermal Melting by Ultrafast X-ray  

E-Print Network [OSTI]

of super- heating of the interface but limited by the speed of sound. Typically, a layer a few tens, if a solid is heated to or above the melting temperature, nucleation of the liquid phase occurs around), which exceeds the melting temperature within several picoseconds. After nucleation of the liquid phase

Geddes, Cameron Guy Robinson

114

CRYSTALLOGRAPHIC POINT AND SPACE  

E-Print Network [OSTI]

CRYSTALLOGRAPHIC POINT AND SPACE GROUPS Andy Elvin June 10, 2013 #12;Contents Point and Space no reflection axes #12;Cube and Octahedron are dual Symmetries under Oh #12;Space Groups Subgroups of E(3) Point Group + Translation { R | 0 }{ E | t }a = { R | t }a = Ra + t 230 Space Groups 73 symmorphic space

California at Santa Cruz, University of

115

Electron beam melting of charge based on titanium sponge  

SciTech Connect (OSTI)

An experience of 0.8 MW consumable box melting furnace operation and theoretical simulation have led to the further development of the FIKO plant under construction on the base of melting of two consumable box-like bullets which move opposite each other and form narrow heated space between melted butt ends. It allows to reduce vaporization, spatter and radiation losses by several times and to reach two times increase in melting rate and 99%(97%) yield for c.p. titanium (alloys) without furnace power add. Future furnace design will provide the optimum protection of vacuum pumps against chlorides, the safety when melting titanium sponge and will permit hot ingots to move to the special furnace for EB surface conditioning. The maximum productivity is to be 18,000 t/year. The furnace can be used for the manufacture of aluminum-, copper-, iron-, nickel-, tungsten-based alloys and others of any charge including salvage.

Tikhonovsky, A.L.; Tikhonovsky, K.A. [JS Co FIKO, Kiev (Ukraine)

1995-12-31T23:59:59.000Z

116

The 12 GeV Energy Upgrade at Jefferson Laboratory  

SciTech Connect (OSTI)

Two new cryomodules and an extensive upgrade of the bending magnets at Jefferson Lab has been recently completed in preparation for the full energy upgrade in about one year. Jefferson Laboratory has undertaken a major upgrade of its flagship facility, the CW re-circulating CEBAF linac, with the goal of doubling the linac energy to 12 GeV. I will discuss here the main scope and timeline of the upgrade and report on recent accomplishments and the present status. I will then discuss in more detail the core of the upgrade, the new additional C100 cryomodules, their production, tests and recent successful performance. I will then conclude by looking at the future plans of Jefferson Laboratory, from the commissioning and operations of the 12 GeV CEBAF to the design of the MEIC electron ion collider.

Pilat, Fulvia C.

2012-09-01T23:59:59.000Z

117

GeV emission from Gamma-Ray Burst afterglows  

E-Print Network [OSTI]

We calculate the GeV afterglow emission expected from a few mechanisms related to GRBs and their afterglows. Given the brightness of the early X-ray afterglow emission measured by Swift/XRT, GLAST/LAT should detect the self-Compton emission from the forward-shock driven by the GRB ejecta into the circumburst medium. Novel features discovered by Swift in X-ray afterglows (plateaus and chromatic light-curve breaks) indicate the existence of a pair-enriched, relativistic outflow located behind the forward shock. Bulk and inverse-Compton upscattering of the prompt GRB emission by such outflows provide another source of GeV afterglow emission detectable by LAT. The large-angle burst emission and synchrotron forward-shock emission are, most likely, too dim at high photon energy to be observed by LAT. The spectral slope of the high-energy afterglow emission and its decay rate (if it can be measured) allow the identification of the mechanism producing the GeV transient emission following GRBs.

A. Panaitescu

2008-01-10T23:59:59.000Z

118

Exclusive processes at JLab at 6 GeV  

SciTech Connect (OSTI)

Deeply virtual exclusive reactions provide a unique opportunity to probe the complex internal structure of the nucleon. They allow to access information about the correlations between parton transverse spatial and longitudinal momentum distributions from experimental observables. Dedicated experiments to study Deeply Virtual Compton Scattering (DVCS) and Deeply Virtual Meson Production (DVMP) have been carried out at Jefferson Lab using continuous electron beam with energies up to 6 GeV. Unpolarized cross sections, beam, target and double spin asymmetries have been measured for DVCS as well as for ?0 exclusive electroproduction. The data from Hall B provide a wide kinematic coverage with Q2=1-4.5 GeV2, xB=0.1-0.5, and ?t up to 2 GeV2. Hall A data have limited kinematic range partially overlapping with Hall B kinematics but provide a high accuracy measurements. Scaling tests of the DVCS cross sections provide solid evidence of twist-2 dominance, which makes chiral-even GPDs accessible even at modest Q2. We will discuss the interpretation of these data in terms of Generalized Parton Distributions (GPDs) model. Successful description of the recent CLAS ?0 exclusive production data within the framework of the GPD-based model provides a unique opportunity to access the chiral-odd GPDs.

Kim, Andrey [University of Connecticut, JLAB

2015-01-01T23:59:59.000Z

119

Intrinsic Route to Melt Fracture in Polymer Extrusion: AWeakly Nonlinear Subcritical Instability of Viscoelastic Poiseuille Flow  

E-Print Network [OSTI]

Intrinsic Route to Melt Fracture in Polymer Extrusion: AWeakly Nonlinear Subcritical Instability generic route to melt fracture via a weakly nonlinear subcritical instability of viscoelastic Poiseuille ``subcritical'') instability due to normal stress effects; this instability appears to make melt fracture

van Saarloos, Wim

120

Assessment of ceramic coatings for metal fuel melting crucible  

SciTech Connect (OSTI)

The objective of this study is to develop a coating method and material for crucibles to prevent material interactions with the U-Zr/U-TRU-Zr fuels during the manufacturing of SFR fuels. Refractory coatings were applied to niobium substrates by vacuum plasma-spray coating method. Melt dipping tests conducted were the coated rods lowered into the fuel melt at 1600 C. degrees, and withdrawn and cooled outside the crucible in the inert atmosphere of the induction furnace. Melt dipping tests of the coated Nb rods indicated that plasma-sprayed Y{sub 2}O{sub 3} coating doesn't form significant reaction layer between fuel melt and coating layer. Melt dipping tests of the coated Nb rods showed that TiC, TaC, and Y{sub 2}O{sub 3} coatings exhibited the promising performance among other ceramic coatings. These materials could be promising candidate materials for the reusable melt crucible of metal fuel for SFR. In addition, in order to develop the vacuum plasma-spray coating method for re-usable crucible of metal fuel slugs to be overcome the issue of thermal expansion mismatch between coating material and crucible, various combinations of coating conditions were investigated to find the bonding effect on the substrate in pursuit of more effective ways to withstand the thermal stresses. It is observed that most coating methods maintained sound coating state in U-Zr melt. (authors)

Kim, Ki-Hwan; Song, Hoon; Kim, Jong-Hwan; Oh, Seok-Jin; Kim, Hyung-Tae; Lee, Chan-Bock [Korea Atomic Energy Research Institute, Yuseong, Daejeon 305-600 (Korea, Republic of)

2013-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "gev melting point" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Measurement of thermodynamic temperature of high temperature fixed points  

SciTech Connect (OSTI)

The paper is devoted to VNIIOFI's measurements of thermodynamic temperature of the high temperature fixed points Co-C, Pt-C and Re-C within the scope of the international project coordinated by the Consultative Committee for Thermometry working group 5 'Radiation Thermometry'. The melting temperatures of the fixed points were measured by a radiance mode radiation thermometer calibrated against a filter radiometer with known irradiance spectral responsivity via a high temperature black body. This paper describes the facility used for the measurements, the results and estimated uncertainties.

Gavrilov, V. R.; Khlevnoy, B. B.; Otryaskin, D. A.; Grigorieva, I. A.; Samoylov, M. L.; Sapritsky, V. I. [All-Russian Research Institute for Optical and Physical Measurements (VNIIOFI), 46 Ozernaya St., Moscow 119361 (Russian Federation)] [All-Russian Research Institute for Optical and Physical Measurements (VNIIOFI), 46 Ozernaya St., Moscow 119361 (Russian Federation)

2013-09-11T23:59:59.000Z

122

Geek-Up: K East Reactor Demolition, Retrograde Melting and Cloud Pattern Tracking  

Broader source: Energy.gov [DOE]

Recovery Act funds help clean up the Hanford site, retrograde melting (melting as something cools) and how open-cell clouds could help predict climate change.

123

Energy Efficient Glass Melting - The Next Generation Melter  

SciTech Connect (OSTI)

The objective of this project is to demonstrate a high intensity glass melter, based on the submerged combustion melting technology. This melter will serve as the melting and homogenization section of a segmented, lower-capital cost, energy-efficient Next Generation Glass Melting System (NGMS). After this project, the melter will be ready to move toward commercial trials for some glasses needing little refining (fiberglass, etc.). For other glasses, a second project Phase or glass industry research is anticipated to develop the fining stage of the NGMS process.

David Rue

2008-03-01T23:59:59.000Z

124

Method for Synthesizing Extremeley High Temperature Melting Materials  

DOE Patents [OSTI]

The invention relates to a method of synthesizing high-temperature melting materials. More specifically the invention relates to a containerless method of synthesizing very high temperature melting materials such as borides, carbides and transition-metal, lanthanide and actinide oxides, using an Aerodynamic Levitator and a laser. The object of the invention is to provide a method for synthesizing extremely high-temperature melting materials that are otherwise difficult to produce, without the use of containers, allowing the manipulation of the phase (amorphous/crystalline/metastable) and permitting changes of the environment such as different gaseous compositions.

Saboungi, Marie-Louise and Glorieux, Benoit

2005-11-22T23:59:59.000Z

125

Method For Synthesizing Extremely High-Temperature Melting Materials  

DOE Patents [OSTI]

The invention relates to a method of synthesizing high-temperature melting materials. More specifically the invention relates to a containerless method of synthesizing very high temperature melting materials such as borides, carbides and transition-metal, lanthanide and actinide oxides, using an Aerodynamic Levitator and a laser. The object of the invention is to provide a method for synthesizing extremely high-temperature melting materials that are otherwise difficult to produce, without the use of containers, allowing the manipulation of the phase (amorphous/crystalline/metastable) and permitting changes of the environment such as different gaseous compositions.

Saboungi, Marie-Louise (Chicago, IL); Glorieux, Benoit (Perpignan, FR)

2005-11-22T23:59:59.000Z

126

Method for synthesizing extremely high-temperature melting materials  

SciTech Connect (OSTI)

The invention relates to a method of synthesizing high-temperature melting materials. More specifically the invention relates to a containerless method of synthesizing very high temperature melting materials such as carbides and transition-metal, lanthanide and actinide oxides, using an aerodynamic levitator and a laser. The object of the invention is to provide a method for synthesizing extremely high-temperature melting materials that are otherwise difficult to produce, without the use of containers, allowing the manipulation of the phase (amorphous/crystalline/metastable) and permitting changes of the environment such as different gaseous compositions.

Saboungi, Marie-Louise (Chicago, IL); Glorieux, Benoit (Perpignan, FR)

2007-11-06T23:59:59.000Z

127

Contemporary Trends power point  

E-Print Network [OSTI]

Power point slides guiding presentation on closing the gap between political acceptability and administrative sustainability as a prerequisite for effective governance. Leadership challenges are described

Nalbandian, John

2013-02-01T23:59:59.000Z

128

PowerPoint Presentation  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

for cancer and infectious disease biomarkers in human biological samples * Point-of-Care diagnostics amenable to health clinics and field sensing applications * Integrated...

129

Overview o floating point  

E-Print Network [OSTI]

condition codes and branches are same as for single-precision o absolute value and negation can Co-processor o Integer, BCD, and floating point representations o floating point have sign instructions) or even popped twice (FCOMPP) o tests set condition codes: - C0: less or unordered

Biagioni, Edoardo S.

130

Variational bounds for the shear viscosity of gelling melts  

E-Print Network [OSTI]

We study shear stress relaxation for a gelling melt of randomly crosslinked, interacting monomers. We derive a lower bound for the static shear viscosity $\\eta$, which implies that it diverges algebraically with a critical exponent $k\\ge 2\

Claas H. Köhler; Henning Löwe; Peter Müller; Annette Zippelius

2007-05-03T23:59:59.000Z

131

Melt extrusion and continuous manufacturing of pharmaceutical materials  

E-Print Network [OSTI]

Melt extrusion is an alternative processing technique that operates continuously, reduces the total number of unit operations, allows for incorporation of difficult-to-process drug substances, and has the potential to ...

Bell, Erin R

2011-01-01T23:59:59.000Z

132

Melt generation in the Earth's mantle at Convergent Plate Margins  

E-Print Network [OSTI]

The five geologic studies presented in this thesis document how the recycling of tectonic plates at subduction zones has a profound effect on the melting behavior of the Earth's mantle. Two experimental studies (Chapters ...

Till, Christy B

2011-01-01T23:59:59.000Z

133

The 12 GeV JLab Upgrade Project  

E-Print Network [OSTI]

The upgrade of the CEBAF Accelerator at Jefferson Lab to 12 GeV will deliver high luminosity and high quality beams, which will open unique opportunities for studies of the quark and gluon structure of hadrons in the valence region. Such physics will be made accessible by substantial additions to the experimental equipment in combination with the increased energy reach of the upgraded machine. The emphasis of the talk will be on the program in a new experimental Hall D designed to search for gluonic excitations.

Elton S. Smith

2009-01-21T23:59:59.000Z

134

The Jefferson Lab 12 GeV Upgrade  

SciTech Connect (OSTI)

A major upgrade of the Continuous Electron Beam Accelerator Facility (CEBAF) at the Thomas Jefferson National Accelerator Facility is in progress. Construction began in 2008 and the project should be completed in 2015. The upgrade includes doubling the energy of the electron beam to 12 GeV, the addition of a new fourth experimental hall, and new experimental equipment in three of the experimental halls. A brief overview of this upgrade project is presented along with some highlights of the anticipated experimental program.

R.D. McKeown

2011-10-01T23:59:59.000Z

135

The 12 GeV JLab Upgrade Project  

SciTech Connect (OSTI)

The upgrade of the CEBAF Accelerator at Jefferson Lab to 12 GeV will deliver high luminosity and high quality beams, which will open unique opportunities for studies of the quark and gluon structure of hadrons in the valence region. Such physics will be made accessible by substantial additions to the experimental equipment in combination with the increased energy reach of the upgraded machine. The emphasis of the talk will be on the program in a new experimental Hall D designed to search for gluonic excitations.

Smith, Elton

2009-01-01T23:59:59.000Z

136

Methods of vitrifying waste with low melting high lithia glass compositions  

DOE Patents [OSTI]

The invention relates to methods of vitrifying waste and for lowering the melting point of glass forming systems by including lithia formers in the glass forming composition in significant amounts, typically from about 0.16 wt % to about 11 wt %, based on the total glass forming oxides. The lithia is typically included as a replacement for alkali oxide glass formers that would normally be present in a particular glass forming system. Replacement can occur on a mole percent or weight percent basis, and typically results in a composition wherein lithia forms about 10 wt % to about 100 wt % of the alkali oxide glass formers present in the composition. The present invention also relates to the high lithia glass compositions formed by these methods. The invention is useful for stabilization of numerous types of waste materials, including aqueous waste streams, sludge solids, mixtures of aqueous supernate and sludge solids, combinations of spent filter aids from waste water treatment and waste sludges, supernate alone, incinerator ash, incinerator offgas blowdown, or combinations thereof, geological mine tailings and sludges, asbestos, inorganic filter media, cement waste forms in need of remediation, spent or partially spent ion exchange resins or zeolites, contaminated soils, lead paint, etc. The decrease in melting point achieved by the present invention desirably prevents volatilization of hazardous or radioactive species during vitrification.

Jantzen, Carol M. (Aiken, SC); Pickett, John B. (Aiken, SC); Cicero-Herman, Connie A. (Aiken, SC); Marra, James C. (Aiken, SC)

2001-01-01T23:59:59.000Z

137

Characterization of electron beam melted uranium - 6% niobium ingots  

SciTech Connect (OSTI)

A study was undertaken at Lawrence Livermore National Laboratory to characterize uranium, 6{percent} niobium ingots produced via electron beam melting,hearth refining and continuous casting and to compare this material with conventional VIM/skull melt /VAR material. Samples of both the ingot and feed material were analyzed for niobium, trace metallic elements, carbon, oxygen and nitrogen. Ingot samples were also inspected metallographically and via microprobe analysis.

McKoon, R.H.

1997-10-31T23:59:59.000Z

138

Method and apparatus for melt growth of crystalline semiconductor sheets  

DOE Patents [OSTI]

An economical method is presented for forming thin sheets of crystalline silicon suitable for use in a photovoltaic conversion cell by solidification from the liquid phase. Two spatially separated, generally coplanar filaments wettable by liquid silicon and joined together at the end by a bridge member are immersed in a silicon melt and then slowly withdrawn from the melt so that a silicon crystal is grown between the edge of the bridge and the filaments.

Ciszek, T.F.; Hurd, J.L.

1981-02-25T23:59:59.000Z

139

Apparatus for melt growth of crystalline semiconductor sheets  

DOE Patents [OSTI]

An economical method is presented for forming thin sheets of crystalline silicon suitable for use in a photovoltaic conversion cell by solidification from the liquid phase. Two spatially separated, generally coplanar filaments wettable by liquid silicon and joined together at the end by a bridge member are immersed in a silicon melt and then slowly withdrawn from the melt so that a silicon crystal is grown between the edge of the bridge and the filaments.

Ciszek, Theodore F. (Evergreen, CO); Hurd, Jeffery L. (Golden, CO)

1986-01-01T23:59:59.000Z

140

Velocity of sound in solid methane near melting temperatures  

E-Print Network [OSTI]

VELOCITY OF SOUND IN SOLID METHANE NEAR MELTING TEMPERATURES A Thesis By JOHN MARTIN WHITEHEAD Submitted to the Graduate College of the Texas A&M University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE May... 1968 Ma)or Sub)ect: Physics VELOCITY OF SOVND IN SOLID METHANE NEAR MELTING TEMPERATURES A Thesis By JOHN MARTIN WHITEHEAD Approved as to style and content by& (Chairman of Committee) (Head of Departsmnt) (Mem er (Member) May 1968...

Whitehead, John Martin

1968-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "gev melting point" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

The Jefferson Lab program: From 6 GeV operations to the 12 GeV upgrade  

SciTech Connect (OSTI)

The Thomas Jefferson National Laboratory and the CEBAF accelerator operated for more than a decade, running a comprehensive scientific program that improved our understanding of the strong interaction. The facility is now moving toward an upgrade of the machine, from 6 to 12 GeV; a new experimental hall will be added and the equipment of the three existing halls will be enhanced. In this contribution some selected results from the rich physics program run at JLab, as well as the prospects for the near future, will be presented.

Marco Battaglieri

2012-04-01T23:59:59.000Z

142

Sideward Flow in Au + Au Collisions Between 2A GeV and 8A GeV  

E-Print Network [OSTI]

Using the large acceptance Time Projection Chamber of experiment E895 at Brookhaven, measurements of collective sideward flow in Au + Au collisions at beam energies of 2, 4, 6 and 8A GeV are presented in the form of in-plane transverse momentum and the first Fourier coefficient of azimuthal anisotropy v_1. These measurements indicate a smooth variation of sideward flow as a function of beam energy. The data are compared with four nuclear transport models which have an orientation towards this energy range. All four exhibit some qualitative trends similar to those found in the data, although none shows a consistent pattern of agreement within experimental uncertainties.

E895 Collaboration; H. Liu; N. N. Ajitanand; J. Alexander; M. Anderson; D. Best; F. P. Brady; T. Case; W. Caskey; D. Cebra; J. Chance; B. Cole; K. Crowe; A. Das; J. Draper; M. Gilkes; S. Gushue; M. Heffner; A. Hirsch; E. Hjort; L. Huo; M. Justice; M. Kaplan; D. Keane; J. Kintner; J. Klay; D. Krofcheck; R. Lacey; M. A. Lisa; Y. M. Liu; R. McGrath; Z. Milosevich; G. Odyniec; D. Olson; S. Y. Panitkin; N. Porile; G. Rai; H. G. Ritter; J. Romero; R. Scharenberg; L. S. Schroeder; B. Srivastava; N. T. B. Stone; T. J. M. Symons; S. Wang; J. Whitfield; T. Wienold; R. Witt; L. Wood; X. Yang; W. N. Zhang; Y. Zhang

2000-05-24T23:59:59.000Z

143

STANDARDIZATION OF CEBAF 12 GEV UPGRADE CAVITY TESTING  

SciTech Connect (OSTI)

CEBAF 12GeV upgrade project includes 80 new 7-cell cavities to form 10 cryomodules. Each cavity underwent RF qualification at 2.07K using a high power accelerating gradient test and an HOM survey in Jefferson Lab's Vertical Testing Area (VTA) before cavity string assembly. In order to ensure consistently high quality data, updated cavity testing procedures and analysis were implemented and used by a group of VTA operators. For high power tests, a cavity testing procedure was developed and used in conjunction with a LabVIEW program to collect the test data. Additionally while the cavity was at 2.07K, an HOM survey was performed using a network analyzer and a combination of Excel and Mathematica programs. Data analysis was standardized and an online logbook, Pansophy, was used for data storage and mining. The Pansophy system allowed test results to be easily summarized and searchable across all cavity tests. In this presentation, the CEBAF 12GeV upgrade cavity testing procedure, method for data analysis, and results reporting results will be discussed.

Tiffany Bass, G. Davis, Christiana Wilson, Mircea Stirbet

2012-07-01T23:59:59.000Z

144

12 GeV Upgrade Project - Cryomodule Production  

SciTech Connect (OSTI)

The Thomas Jefferson National Accelerator Facility (Jefferson Lab) is producing ten 100+MV SRF cryomodules (C100) as part of the CEBAF 12 GeV Upgrade Project. Once installed, these cryomodules will become part of an integrated accelerator system upgrade that will result in doubling the energy of the CEBAF machine from 6 to 12 GeV. This paper will present a complete overview of the C100 cryomodule production process. The C100 cryomodule was designed to have the major components procured from private industry and assembled together at Jefferson Lab. In addition to measuring the integrated component performance, the performance of the individual components is verified prior to being released for production and assembly into a cryomodule. Following a comprehensive cold acceptance test of all subsystems, the completed C100 cryomodules are installed and commissioned in the CEBAF machine in preparation of accelerator operations. This overview of the cryomodule production process will include all principal performance measurements, acceptance criterion and up to date status of current activities.

J. Hogan, A. Burrill, G.K. Davis, M.A. Drury, M. Wiseman

2012-07-01T23:59:59.000Z

145

Search for GeV GRBs at Chacaltaya  

SciTech Connect (OSTI)

In this paper we present the results of a search for GeV Gamma Ray Bursts made by the INCA experiment during the first 9 months of operation. INCA, an air shower array located at Mount Chacaltaya (Bolivia) at 5200 m a.s.l., has been searching for GRBs since December 1996. Up to August, 1997, 34 GRBs detected by BATSE occurred in the field of view of the experiment. For any burst, the counting rate of the array in the 2 hours interval around the burst trigger time has been studied. No significant excess has been observed. Assuming for the bursts a power low energy spectrum extending up to 1 TeV with a slope {alpha}=-2 and a duration of 10 s, the obtained 1 GeV-1 TeV energy fluence upper limits range from 7.9 10{sup -5} erg cm{sup -2} to 3.5 10{sup -3} erg cm{sup -2} depending on the event zenith angles.

Castellina, A.; Ghia, P. L.; Morello, C.; Trinchero, G.; Vallania, P.; Vernetto, S. [Istituto di Cosmogeofisica del C.N.R., Torino (Italy); Navarra, G.; Saavedra, O. [Dipartimento di Fisica Generale dell'Universita' di Torino (Italy); Yoshii, H. [Department of Physics, Ehime University, Ehime 790 (Japan); Kaneko, T. [Department of Physics, Okayama University, Okayama 700 (Japan); Kakimoto, K. [Department of Physics, Tokyo Institute of Technology, Meguro, Tokyo 152 (Japan); Nishi, K. [Institute of Physical and Chemical Research, Wako, Saitama 351-01 (Japan); Cabrera, R.; Urzagasti, D.; Velarde, A. [Instituto de Investigaciones Fisicas, Universidad Mayor de San Andres, La Paz (Bolivia, Plurinational State of); Barthelmy, S. D.; Butterworth, P.; Cline, T. L.; Gehrels, N. [NASA Goddard Space Flight Center, Greenbelt, Maryland 20771 (United States); Fishman, G. J. [NASA Marshall Space Flight Center, Huntsville, Alabama 35812 (United States)] (and others)

1998-05-16T23:59:59.000Z

146

Melt segregation under compaction and shear channelling: Application to granitic magma segregation in a continental crust  

E-Print Network [OSTI]

1 Melt segregation under compaction and shear channelling: Application to granitic magma segregation in a mush submitted to both compaction and shear. It applies to a granitic melt imbedded within of melt to about 20 % in total to be extracted from the matrix. Abridged title Granitic melt segregation

Paris-Sud XI, Université de

147

Spatial and Temporal Transferability of a Distributed Energy-Balance Glacier Melt Model  

E-Print Network [OSTI]

Spatial and Temporal Transferability of a Distributed Energy-Balance Glacier Melt Model ANDREW H model transferability, a distributed energy-balance melt model (DEBM) is applied to two small glaciers- face energy balance, and empirically based melt models, which correlate melt with temperature

Flowers, Gwenn

148

PowerPoint Presentation  

Energy Savers [EERE]

be formatted to fit on 8.5 x 11 inch paper with margins not less than one inch on every side. Use Times New Roman typeface, a black font color, and a font size of 12 point or...

149

Dynamics of crystallization from segregated block copolymer melts  

SciTech Connect (OSTI)

Microphase separation in semicrystalline block copolymers can be driven by two forces: thermodynamic incompatibility between blocks or crystallization of one or more blocks. Prior work has demonstrated that when the block incompatibility is small, crystallization occurs from a single-phase melt and alternating lamellar microdomains result regardless of the copolymer composition. Several experimental studies have examined the time-resolved process of crystallization from single-phase melts. An added complexity in the case of semicrystalline block copolymers which have large block incompatibilities is the possible formation of an ordered melt mesophase; the presence of these microdomains may affect the crystallization process and the resultant morphology. A number of studies have investigated time-resolved crystallization from weakly segregated diblock copolymer melts, concluding that crystallization destroys any pre-existing melt microstructure resulting in a lamellar morphology. We recently reported the statically determined crystallization results for a series of ethylene-block-(3-methyl-1-butene) polymers, which will be referred to as E/MB`s. The composition of each of the polymers in the series was held constant at {approx}26 wt. % E (f{sub E}) block to produce hexagonally packed cylindrical melts, while the molecular weights were altered to obtain varying degrees of incompatibility. Through static scattering measurements, we have clearly shown that a strongly segregated cylindrical melt can confine crystallization to the pre-established microdomains under ordinary processing conditions. In this work, combined synchrotron-based SAXS and WAXS are employed to dynamically follow the microphase separation and crystallization in these materials at both the unit cell and microdomain scales.

Quiram, D.J.; Register, R.A. [Princeton Univ., NJ (United States); Marchand, G.R. [Dow Chemical Co., Plaquemine, LA (United States); Ryan, A.J. [Univ. of Manchester Institute of Science and Technology, MI (United States)

1996-12-31T23:59:59.000Z

150

Validation of the THIRMAL-1 melt-water interaction code  

SciTech Connect (OSTI)

The THIRMAL-1 computer code has been used to calculate nonexplosive LWR melt-water interactions both in-vessel and ex-vessel. To support the application of the code and enhance its acceptability, THIRMAL-1 has been compared with available data from two of the ongoing FARO experiments at Ispra and two of the Corium Coolant Mixing (CCM) experiments performed at Argonne. THIRMAL-1 calculations for the FARO Scoping Test and Quenching Test 2 as well as the CCM-5 and -6 experiments were found to be in excellent agreement with the experiment results. This lends confidence to the modeling that has been incorporated in the code describing melt stream breakup due to the growth of both Kelvin-Helmholtz and large wave instabilities, the sizes of droplets formed, multiphase flow and heat transfer in the mixing zone surrounding and below the melt stream, as well as hydrogen generation due to oxidation of the melt metallic phase. As part of the analysis of the FARO tests, a mechanistic model was developed to calculate the prefragmentation as it may have occurred when melt relocated from the release vessel to the water surface and the model was compared with the relevant data from FARO.

Chu, C.C.; Sienicki, J.J.; Spencer, B.W.

1995-05-01T23:59:59.000Z

151

Device and method for skull-melting depth measurement  

DOE Patents [OSTI]

A method of skull-melting comprises the steps of: a. providing a vessel adapted for a skull-melting process, the vessel having an interior, an underside, and an orifice in connecting the interior and the underside; b. disposing a waveguide in the orifice so that the waveguide protrudes sufficiently into the interior to interact with the skull-melting process; c. providing a signal energy transducer in signal communication with the waveguide; d. introducing into the vessel a molten working material; e. carrying out the skull-melting process so that a solidified skull of the working material is formed, the skull and the vessel having an interface therebetween, the skull becoming fused to the waveguide so the signal energy can be transmitted through the waveguide and the skull without interference from the interface; f. activating the signal energy transducer so that a signal is propagated through the waveguide; and, g. controlling at least one variable of the skull-melting process utilizing feedback information derived from the propagated signal energy.

Lauf, Robert J. (Oak Ridge, TN); Heestand, Richard L. (Oak Ridge, TN)

1993-01-01T23:59:59.000Z

152

Device and method for skull-melting depth measurement  

DOE Patents [OSTI]

A method of skull-melting comprises the steps of: (a) providing a vessel adapted for a skull-melting process, the vessel having an interior, an underside, and an orifice connecting the interior and the underside; (b) disposing a waveguide in the orifice so that the waveguide protrudes sufficiently into the interior to interact with the skull-melting process; (c) providing a signal energy transducer in signal communication with the waveguide; (d) introducing into the vessel a molten working material; (e) carrying out the skull-melting process so that a solidified skull of the working material is formed, the skull and the vessel having an interface therebetween, the skull becoming fused to the waveguide so the signal energy can be transmitted through the waveguide and the skull without interference from the interface; (f) activating the signal energy transducer so that a signal is propagated through the waveguide; and, (g) controlling at least one variable of the skull-melting process utilizing feedback information derived from the propagated signal energy.

Lauf, R.J.; Heestand, R.L.

1993-02-09T23:59:59.000Z

153

07/06/2009 Melting Ice Could Lead to Massive Waves of Climate Refugees Treehugger 06/30/2009 MELTING GREENLAND ICE SHEETS MAY THREATEN  

E-Print Network [OSTI]

/30/2009 MELTING GREENLAND ICE SHEETS MAY THREATEN NORTHEAST U.S., CANADA Federal News Service 06/30/2009 Sea raises spectre of displaced humanity peopleandplanet.net 06/16/2009 Melting Greenland Ice Sheets May Report - Online 06/02/2009 Melting Greenland Ice Sheets May Threaten Northeast, Canada usagnet 06

Hu, Aixue

154

Infrared optical properties of ?-alumina with the approach to melting: ?-like tetrahedral structure and small polaron conduction  

SciTech Connect (OSTI)

The normal spectral emittance of ?-Al{sub 2}O{sub 3} single crystal has been measured from room temperature up to the liquid state and from 20?cm{sup ?1} up to 10 000?cm{sup ?1}, in two polarization configurations. The spectra were fitted with a semi-quantum dielectric function model. AlO{sub 4} structure units are revealed within the phonon spectral range more than a hundred degrees below the melting point when heating from the solid state. In parallel, the anomalous increase of emittance observed within the transparency spectral range with the approach to melting appears strongly correlated. Implications on the electronic structure are discussed: the existence of small polaron conduction is suggested which has never been mentioned before.

Brun, J. F., E-mail: brun@cnrs-orleans.fr [CNRS, UPR 3079 CEMHTI, Orléans 45071 (France); UFR Collégium Sciences et Techniques, Université d'Orléans, Orléans 45067 (France); Campo, L. del; De Sousa Meneses, D. [CNRS, UPR 3079 CEMHTI, Orléans 45071 (France); Polytech'Orléans, Université d'Orléans, 45072 Orléans (France); Echegut, P. [CNRS, UPR 3079 CEMHTI, Orléans 45071 (France)

2013-12-14T23:59:59.000Z

155

Pressure Safety of JLAB 12GeV Upgrade Cryomodule  

SciTech Connect (OSTI)

This paper reviews pressure safety considerations, per the US Department of Energy (DOE) 10CFR851 Final Rule [1], which are being implemented during construction of the 100 Megavolt Cryomodule (C100 CM) for Jefferson Lab’s 12 GeV Upgrade Project. The C100 CM contains several essential subsystems that require pressure safety measures: piping in the supply and return end cans, piping in the thermal shield and the helium headers, the helium vessel assembly which includes high RRR niobium cavities, the end cans, and the vacuum vessel. Due to the vessel sizes and pressure ranges, applicable national consensus code rules are applied. When national consensus codes are not applicable, equivalent design and fabrication approaches are identified and implemented. Considerations for design, material qualification, fabrication, inspection and examination are summarized. In addition, JLAB’s methodologies for implementation of the 10 CFR 851 requirements are described.

Cheng, Gary [JLAB; Wiseman, Mark A. [JLAB; Daly, Ed [JLAB

2009-11-01T23:59:59.000Z

156

Blazar Variability and Evolution in the GeV Regime  

E-Print Network [OSTI]

One of the most important problem of the blazar astrophysics is to understand the physical origin of the blazar sequence. In this study, we focus on the GeV gamma-ray variability of blazars and evolution perspective we search the relation between the redshift and the variability amplitude of blazars for each blazar subclass. We analyzed the Fermi-LAT data of the TeV blazars and the bright AGNs (flux $\\geq$ 4$\\times10^{-9}$ cm$^{-2}$s$^{-1}$) selected from the 2LAC (the 2nd LAT AGN catalog) data base. As a result, we found a hint of the correlation between the redshift and the variability amplitude in the FSRQs. Furthermore the BL Lacs which have relatively lower peak frequency of the synchrotron radiation and relatively lower redshift, have a tendency to have a smaller variability amplitude.

Tsujimoto, S; Nishijima, K; Kodani, K

2015-01-01T23:59:59.000Z

157

Melt processing of Bi--2212 superconductors using alumina  

DOE Patents [OSTI]

Superconducting articles and a method of forming them, where the superconducting phase of an article is Bi.sub.2 Sr.sub.2 CaCu.sub.2 O.sub.y (Bi-2212). Alumina is combined with Bi-2212 powder or Bi-2212 precursor powder and, in order to form an intimate mixture, the mixture is melted and rapidly cooled to form a glassy solid. The glassy solid is comminuted and the resulting powder is combined with a carrier. An alternative to melting is to form the mixture of nanophase alumina and material having a particle size of less than about 10 microns. The powder, with the carrier, is melt processed to form a superconducting article.

Holesinger, Terry G. (Los Alamos, NM)

1999-01-01T23:59:59.000Z

158

Technical and economical considerations of new DRI melting process  

SciTech Connect (OSTI)

The new DRI melting process can effectively and economically produce high quality molten iron. This process utilizes hot charging of DRI directly from a reduction furnace into a dedicated new melting furnace. The molten iron from this DRI premelter can be charged into a steelmaking furnace, such as an electric arc furnace (EAF), where the molten iron, together with other iron sources, can be processed to produce steel. Alternatively the molten iron can be pigged or granulated for off-site merchant sales. Comprehensive research and development of the new process has been conducted including operational process simulation, melting tests using FASTMET DRI, slag technology development, and refractory corrosion testing. This paper describes the process concept, its operational characteristics and further applications of the process.

Ito, Shuzo; Tokuda, Koji; Sammt, F.; Gray, R.

1997-12-31T23:59:59.000Z

159

Experimental limits on massive neutrinos from e(+)e(-) annihilations at 29 GeV  

E-Print Network [OSTI]

A search was made in 29-GeV e(+)e(-) annihilations for massive neutrinos decaying to e(±)X(?)(?) where X is a muon or meson. A 300-pb(-1) data sample yielded just one candidate event with a mass m(e)X>1.8 GeV. Significant limits are found for new...

Baringer, Philip S.; Akerlof, C.; Chapman, J.; Errede, D.; Ken, M. T.; Meyer, D. I.; Neal, H.; Nitz,D.; Thun, R.; Tschirhart, R.; Derrick, M.

1988-02-01T23:59:59.000Z

160

The BErkeley Lab Laser Accelerator (BELLA): A 10 GeV Laser Plasma Accelerator  

E-Print Network [OSTI]

used at the world's first x-ray free electron laser (FEL) at the LCLS at SLAC, and the lower energyThe BErkeley Lab Laser Accelerator (BELLA): A 10 GeV Laser Plasma Accelerator W.P. Leemansa,b,c , R, USA Abstract. An overview is presented of the design of a 10 GeV laser plasma accelerator (LPA

Geddes, Cameron Guy Robinson

Note: This page contains sample records for the topic "gev melting point" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Lattice cluster theory for polymer melts with specific interactions  

E-Print Network [OSTI]

Despite the long-recognized fact that chemical structure and specific interactions greatly influence the thermodynamic properties of polymer systems, a predictive molecular theory that enables systematically addressing the role of chemical structure and specific interactions has been slow to develop even for polymer melts. While the lattice cluster theory (LCT) provides a powerful vehicle for understanding the influence of various molecular factors, such as monomer structure, on the thermodynamic properties of polymer melts and blends, the application of the LCT has heretofore been limited to the use of the simplest polymer model in which all united atom groups within the monomers of a species interact with a common monomer averaged van der Waals energy. Thus, the description of a compressible polymer melt involves a single van der Waals energy. As a first step towards developing more realistic descriptions to aid in the analysis of experimental data and the design of new materials, the LCT is extended here to treat models of polymer melts in which the backbone and side groups have different interaction strengths, so three energy parameters are present, namely, backbone-backbone, side group-side group, and backbone-side group interaction energies. Because of the great algebraic complexity of this extension, we retain maximal simplicity within this class of models by further specializing this initial study to models of polymer melts comprising chains with poly($n$-$\\alpha$-olefin) structures where only the end segments on the side chains may have different, specific van der Waals interaction energies with the other united atom groups. An analytical expression for the LCT Helmholtz free energy is derived for the new model. Illustrative calculations are presented to demonstrate the degree to which the thermodynamic properties of polymer melts can be controlled by specific interactions.

Wen-Sheng Xu; Karl F. Freed

2014-07-12T23:59:59.000Z

162

EFFECT OF GLASS-BATCH MAKEUP ON THE MELTING PROCESS  

SciTech Connect (OSTI)

The response of a glass batch to heating is determined by the batch makeup and in turn determines the rate of melting. Batches formulated for a high-alumina nuclear waste to be vitrified in an all-electric melter were heated at a constant temperature-increase rate to determine changes in melting behavior in response to the selection of batch chemicals and silica grain-size as well as the addition of heat-generating reactants. The type of batch materials and the size of silica grains determine how much, if any, primary foam occurs during melting. Small quartz grains, 5 {micro}m in size, caused extensive foaming because their major portion dissolved at temperatures <800 C, contributing to the formation of viscous glass forming melt that trapped evolving batch gases. Primary foam did not occur in batches with larger quartz grains, {+-}75 {micro}m in size, because their major portion dissolved at temperatures >800 C when batch gases no longer evolved. The exothermal reaction of nitrates with sucrose was ignited at a temperature as low as 160 C and caused a temporary jump in temperature of several hundred degrees. Secondary foam, the source of which is oxygen from redox reactions, occurred in all batches of a limited composition variation involving five oxides, B{sub 2}O{sub 3}, CaO, Li{sub 2}O, MgO, and Na{sub 2}O. The foam volume at the maximum volume-increase rate was a weak function of temperature and melt basicity. Neither the batch makeup nor the change in glass composition had a significant impact on the dissolution of silica grains. The impacts of primary foam generation on glass homogeneity and the rate of melting in large-scale continuous furnaces have yet to be established via mathematical modeling and melter experiments.

KRUGER AA; HRMA P

2010-12-07T23:59:59.000Z

163

The effect of pressure upon the melting transition of polyethylene  

E-Print Network [OSTI]

THE EFFECT OF PRESSURE UPON THE MELTING TRANSITION OF POLYETHYLENE o m vS n Z 8 i c6 C 0 A Thesis By George Joseph Nros Approved as to style and content by: C a rman o Comm ttee (Head of Department) August 1961 ACKNOWLEDGEMENT... of the melting transition temperature of polyethylene was found to be linear for samples which have been annealed. This dependence was found to conform to the Clausius-Clapeyron equation and this equation was used to obtain values for the change in specific...

Mroz, George Joseph

1961-01-01T23:59:59.000Z

164

Hybrid redox polyether melts based on polyether-tailed counterions  

SciTech Connect (OSTI)

Interesting ionic materials can be transformed into room temperature molten salts by combining them with polyether-tailed counterions such as polyether-tailed 2-sulfobenzoate (MePEG-BzSO{sub 3}{sup {minus}}) and polyethertailed triethylammonium (MePEG-Et{sub 3}N{sup +}). Melts containing ruthenium hexamine, metal trisbipyridines, metal trisphenanthrolines, and ionic forms of aluminum quinolate, anthraquinone, phthalocyanine, and porphyrins are described. These melts exhibit ionic conductivities in the 7 x 10{sup {minus}5} to 7 x 10{sup {minus}10} {Omega}{sup {minus}1} cm{sup {minus}1} range, which permit microelectrode voltammetry in the undiluted materials, examples of which are presented.

Dickinson, E. V; Williams, M.E.; Hendrickson, S.M.; Masui, Hitoshi; Murray, R.W.

1999-02-03T23:59:59.000Z

165

PowerPoint Presentation  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 - SeptemberMicroneedles for medical point of care

166

Feasibility of re-melting NORM-contaminated scrap metal  

SciTech Connect (OSTI)

Naturally occurring radioactive materials (NORM) sometimes accumulate inside pieces of equipment associated with oil and gas production and processing activities. Typically, the NORM accumulates when radium that is present in solution in produced water precipitates out in scale and sludge deposits. Scrap equipment containing residual quantities of these NORM-bearing scales and sludges can present a waste management problem if the radium concentrations exceed regulatory limits or activate the alarms on radiation screening devices installed at most scrap metal recycling facilities. Although NORM-contaminated scrap metal currently is not disposed of by re-melting, this form of recycling could present a viable disposition option for this waste stream. Studies indicate that re-melting NORM-contaminated scrap metal is a viable recycling option from a risk-based perspective. However, a myriad of economic, regulatory, and policy issues have caused the recyclers to turn away virtually all radioactive scrap metal. Until these issues can be resolved, re-melting of the petroleum industry's NORM-impacted scrap metal is unlikely to be a widespread practice. This paper summarizes the issues associated with re-melting radioactive scrap so that the petroleum industry and its regulators will understand the obstacles. This paper was prepared as part of a report being prepared by the Interstate Oil and Gas Compact Commission's NORM Subcommittee.

Winters, S. J.; Smith, K. P.

1999-10-26T23:59:59.000Z

167

THE CONTRIBUTION OF GREENLAND ICE SHEET MELTING TO  

E-Print Network [OSTI]

THE CONTRIBUTION OF GREENLAND ICE SHEET MELTING TO GLOBAL SEA-LEVEL CHANGE Conor Mc three major sources, the Greenland ice sheet, Antarctica, and other eustatic components. Each has its own predictable spatial signal, and particular attention was paid to the Greenland ice sheet, given

168

THERMODYNAMIC AND TRANSPORT PROPERTIES OF SILICATE MELTS AND MAGMA  

E-Print Network [OSTI]

PROPERTIES5 Density and Equation of State6 Enthalpy, Entropy and Heat Capacity7 VI. MAGMA TRANSPORT-1- THERMODYNAMIC AND TRANSPORT PROPERTIES OF SILICATE MELTS AND MAGMA Charles E. Lesher PROPERTIES8 Magma Rheology9 Thermal Conductivity: Radiative and Phonon10 Diffusion: Self, Tracer and Chemical

Spera, Frank J.

169

Laser thermoelastic generation in metals above the melt threshold  

SciTech Connect (OSTI)

An approach is presented for calculating thermoelastic generation of ultrasound in a metal plate exposed to nanosecond pulsed laser heating, sufficient to cause melting but not ablation. Detailed consideration is given to the spatial and temporal profiles of the laser pulse, penetration of the laser beam into the sample, the appearance and subsequent growth and then contraction of the melt pool, and the time dependent thermal conduction in the melt and surrounding solid throughout. The excitation of the ultrasound takes place during and shortly after the laser pulse and occurs predominantly within the thermal diffusion length of a micron or so beneath the surface. It is shown how, because of this, the output of the thermal simulations can be expressed as axially symmetric transient radial and normal surface force distributions. The epicentral displacement response to these force distributions is obtained by two methods, the one based on the elastodynamic Green's functions for plate geometry determined by the Cagniard generalized ray method and the other using a finite element numerical method. The two approaches are in very close agreement. Numerical simulations are reported on the epicentral displacement response of a 3.12 mm thick tungsten plate irradiated with a 4 ns pulsed laser beam with Gaussian spatial profile, at intensities below and above the melt threshold.

Every, A. G. [School of Physics, University of the Witwatersrand, PO Wits 2050 (South Africa)] [School of Physics, University of the Witwatersrand, PO Wits 2050 (South Africa); Utegulov, Z. N. [Department of Physics, School of Science and Technology, Nazarbayev University, Astana 010000 (Kazakhstan)] [Department of Physics, School of Science and Technology, Nazarbayev University, Astana 010000 (Kazakhstan); Veres, I. A. [RECENDT Research Center for Non-Destructive Testing GmbH, A-4040 Linz (Austria)] [RECENDT Research Center for Non-Destructive Testing GmbH, A-4040 Linz (Austria)

2013-11-28T23:59:59.000Z

170

Potential for tunneling based on rock and soil melting. Abstracts  

SciTech Connect (OSTI)

The rock-melting drill was invented at Los Alamos Scientific Laboratory in 1960. Electrically heated, laboratory-scale drills were subsequently shown to penetrate igneous rocks at usefully high rates, with moderate power consumptions. The development of compact nuclear reactors and of heat pipes now makes possible the extension of this technology to much larger melting penetrators, potentially capable of producing holes up to several meters in diameter and several tens of kilometers long or deep. Development of a rapid, versatile, economical method of boring large, long shafts and tunnels offers solutions to many of man's most urgent ecological, scientific, raw-materials, and energy-supply problems. A melting method appears to be the most promising and flexible means of producing such holes. It is relatively insensitive to the composition, hardness, structure, and temperature of the rock, and offers the possibilities of producing self-supporting, glass-lined holes in almost any formation and (using a technique called lithofracturing) of eliminating the debris-removal problem by forcing molten rock into cracks created in the bore wall. Large rock-melting penetrators, called Electric Subterrenes or Nuclear Subterrenes according to the energy source used, are discussed in this report, together with problems anticipated in their development. It is concluded that this development is within the grasp of present technology.

Rowley, J.C.

1985-01-01T23:59:59.000Z

171

Shower characteristics of particles with momenta from up to 100 GeV in the CALICE Scintillator-Tungsten HCAL  

E-Print Network [OSTI]

Shower characteristics of particles with momenta from up to 100 GeV in the CALICE Scintillator-Tungsten HCAL

Klempt W

2015-01-01T23:59:59.000Z

172

Positron-production Experiment In Tungsten Crystal Using 4 And 8-gev Channeling Electrons At The Kekb Injector Linac  

E-Print Network [OSTI]

Positron-production Experiment In Tungsten Crystal Using 4 And 8-gev Channeling Electrons At The Kekb Injector Linac

Suwada, T; Chehab, R; Enomoto, A; Furukawa, K; Kakihara, K; Kamitani, T; Ogawa, Y; Ohsawa, S; Okuno, H; Oogoe, T; Fujita, T; Umemori, K; Yoshida, K; Ababiy, V; Potylitsin, A P; Vnukov, I E; Hamatsu, R; Sasahara, K

2002-01-01T23:59:59.000Z

173

Positron-production Experiment By 8-gev Channeling Electrons In Crystal Tungsten At The Kekb Injector Linac  

E-Print Network [OSTI]

Positron-production Experiment By 8-gev Channeling Electrons In Crystal Tungsten At The Kekb Injector Linac

Suwada, T

2001-01-01T23:59:59.000Z

174

Gamma-Ray Bursts Above 1 GeV  

E-Print Network [OSTI]

One of the principal results obtained by the Compton Gamma Ray Observatory relating to the study of gamma-ray bursts was the detection by the EGRET instrument of energetic ($>$100 MeV) photons from a handful of bright bursts. The most extreme of these was the single 18 GeV photon from the GRB940217 source. Given EGRET's sensitivity and limited field of view, the detection rate implies that such high energy emission may be ubiquitous in bursts. Hence expectations that bursts emit out to at least TeV energies are quite realistic, and the associated target-of-opportunity activity of the TeV gamma-ray community is well-founded. This review summarizes the observations and a handful of theoretical models for generating GeV--TeV emission in bursts sources, outlining possible ways that future positive detections could discriminate between different scenarios. The power of observations in the GeV--TeV range to distinguish between spectral structure intrinsic to bursts and that due to the intervening medium between source and observer is also discussed.

Matthew G. Baring

1997-11-21T23:59:59.000Z

175

Sequential melting of charmonium states in an expanding Quark Gluon Plasma and $J/?$ suppression at RHIC and LHC energy collisions  

E-Print Network [OSTI]

We have developed a hydrodynamic model to study sequential melting of charmonium states in an expanding QGP medium. According to the initial fluid temperature profile, $J/\\psi$'s are randomly distributed in the transverse plane. As the fluid evolve in time, the free streaming $J/\\psi$'s are suppressed if the local fluid temperature exceed a critical temperature. PHENIX data on the centrality dependence of $J/\\psi$ suppression in Au+Au collisions at mid-rapidity are explained by sequential melting of the charmonium states, $\\chi_c$, $\\psi\\prime$ and $J/\\psi$, in the expanding medium. The critical temperatures $T_{J/\\psi} \\approx2.09T_c$ and $T_\\chi=T_{\\chi_c}=T_{\\psi\\prime} \\approx 1.1T_c$ agree with lattice motivated calculations. The feed-down fraction $F$ depend on whether the cold nuclear matter effect is included or not. It changes from $F=0.3$ with cold nuclear matter effect included to $F=0.5$ when the effect is neglected. Model fails to reproduce the PHENIX data on the centrality dependence of $J/\\psi$ suppression in Cu+Cu collisions at mid-rapidity, indicating that the mechanism of $J/\\psi$ suppression is different in Au+Au and in Cu+Cu collisions. We also use the model to predict for the centrality dependence of $J/\\psi$ suppression in Pb+Pb collisions at LHC energy, $\\sqrt{s}$=5500 GeV. In LHC energy, $J/\\psi$'s are more suppressed in mid central collisions than in Au+Au collisions at RHIC energy.

A. K. Chaudhuri

2008-07-04T23:59:59.000Z

176

USING THE UTAH ENERGY BALANCE SNOW MELT MODEL TO QUANTIFY SNOW AND GLACIER MELT IN THE HIMALAYAN REGION  

E-Print Network [OSTI]

-Himalayan (HKH) region are highly disaster prone and have wide variety of water resources problems. Bangladesh, and for water resources management and flood protection. Access to and monitoring of the glaciers and their melt information to improve water resources decision making and management. In this paper we report

Tarboton, David

177

PowerPoint Presentation  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 - SeptemberMicroneedles for medical point of care diagnostics and drug delivery

178

PowerPoint Presentation  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 - SeptemberMicroneedles for medical point of care diagnostics and drug delivery8,

179

PowerPoint Presentation  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 - SeptemberMicroneedles for medical point of care diagnostics and drug delivery8,SWL

180

PowerPoint Presentation  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 - SeptemberMicroneedles for medical point of care diagnostics and drug

Note: This page contains sample records for the topic "gev melting point" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

PowerPoint Presentation  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 - SeptemberMicroneedles for medical point of care diagnostics and drugMark Dixson

182

PowerPoint Presentation  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 - SeptemberMicroneedles for medical point of care diagnostics and drugMark

183

PowerPoint Presentation  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 - SeptemberMicroneedles for medical point of care diagnostics and drugMark7/2006 1

184

PowerPoint Presentation  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 - SeptemberMicroneedles for medical point of care diagnostics and drugMark7/2006 1

185

PowerPoint Presentation  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 - SeptemberMicroneedles for medical point of care diagnostics and drugMark7/2006

186

PowerPoint Presentation  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 - SeptemberMicroneedles for medical point of care diagnostics and drugMark7/200611

187

PowerPoint Presentation  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 - SeptemberMicroneedles for medical point of care diagnostics and drugMark7/200611US

188

PowerPoint Presentation  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 - SeptemberMicroneedles for medical point of care diagnostics and

189

PowerPoint Presentation  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 - SeptemberMicroneedles for medical point of care diagnostics andDivision LITTLE

190

PowerPoint Presentation  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 - SeptemberMicroneedles for medical point of care diagnostics andDivision LITTLEDan

191

PowerPoint Presentation  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 - SeptemberMicroneedles for medical point of care diagnostics andDivision

192

PowerPoint Presentation  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 - SeptemberMicroneedles for medical point of care diagnostics andDivision72.5 $75.5

193

PowerPoint Presentation  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 - SeptemberMicroneedles for medical point of care diagnostics andDivision72.5

194

PowerPoint Presentation  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 - SeptemberMicroneedles for medical point of care diagnostics andDivision72.54

195

PowerPoint Presentation  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 - SeptemberMicroneedles for medical point of care diagnostics andDivision72.545

196

PowerPoint Presentation  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 - SeptemberMicroneedles for medical point of care diagnostics

197

PowerPoint Presentation  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 - SeptemberMicroneedles for medical point of care diagnosticsFuture

198

PowerPoint Presentation  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 - SeptemberMicroneedles for medical point of care diagnosticsFutureMiniBooNE

199

PowerPoint Presentation  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 - SeptemberMicroneedles for medical point of careUpdated Oscillation Results from

200

PowerPoint Presentation  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 - SeptemberMicroneedles for medical point of careUpdated Oscillation Results

Note: This page contains sample records for the topic "gev melting point" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

PowerPoint Presentation  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 - SeptemberMicroneedles for medical point of careUpdated Oscillation Resultsand

202

PowerPoint Presentation  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 - SeptemberMicroneedles for medical point of careUpdated Oscillation

203

PowerPoint Presentation  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 - SeptemberMicroneedles for medical point of careUpdated OscillationNuFact 2007

204

PowerPoint Presentation  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 - SeptemberMicroneedles for medical point of careUpdated OscillationNuFact 2007Term

205

PowerPoint Presentation  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 - SeptemberMicroneedles for medical point of careUpdated OscillationNuFact

206

PowerPoint Presentation  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 - SeptemberMicroneedles for medical point of careUpdated OscillationNuFactEvent

207

PowerPoint Presentation  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 - SeptemberMicroneedles for medical point of careUpdated OscillationNuFactEventν μ

208

PowerPoint Presentation  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 - SeptemberMicroneedles for medical point of careUpdated OscillationNuFactEventν

209

PowerPoint Presentation  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 - SeptemberMicroneedles for medical point of careUpdated

210

PowerPoint Presentation  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 - SeptemberMicroneedles for medical point of careUpdated2007 FNAL Users' Meeting

211

PowerPoint Presentation  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 - SeptemberMicroneedles for medical point of careUpdated2007 FNAL Users'

212

PowerPoint Presentation  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 - SeptemberMicroneedles for medical point of careUpdated2007 FNAL Users'Oscillation

213

PowerPoint Presentation  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 - SeptemberMicroneedles for medical point of careUpdated2007 FNAL

214

PowerPoint Presentation  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 - SeptemberMicroneedles for medical point of careUpdated2007 FNALThermo-Magnetic

215

PowerPoint Presentation  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 - SeptemberMicroneedles for medical point of careUpdated2007

216

PowerPoint Presentation  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 - SeptemberMicroneedles for medical point of careUpdated2007Supply Chain &

217

PowerPoint Presentation  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 - SeptemberMicroneedles for medical point of careUpdated2007Supply Chain &th

218

PowerPoint Presentation  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 - SeptemberMicroneedles for medical point of careUpdated2007Supply Chain &th”pH

219

PHYSICAL REVIEW B 84, 092102 (2011) Melting temperature of tungsten from two ab initio approaches  

E-Print Network [OSTI]

PHYSICAL REVIEW B 84, 092102 (2011) Melting temperature of tungsten from two ab initio approaches L the melting temperature of tungsten by two ab initio approaches. The first approach can be divided into two

Alfè, Dario

2011-01-01T23:59:59.000Z

220

Investigation into the Morphology and Mechanical Properties of Melt-Drawn Filaments from  

E-Print Network [OSTI]

-density polyethylene (HDPE) were melt-processed in a single-screw extruder fitted with a fine screen mesh and capillary in extruder output rate in this region, an indicator of the melt interaction of the two phases as co

Note: This page contains sample records for the topic "gev melting point" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Measurement of the complete nuclide production and kinetic energies of the system 136Xe + hydrogen at 1 GeV per nucleon  

E-Print Network [OSTI]

We present an extensive overview of production cross sections and kinetic energies for the complete set of nuclides formed in the spallation of 136Xe by protons at the incident energy of 1 GeV per nucleon. The measurement was performed in inverse kinematics at the FRagment Separator (GSI, Darmstadt). Slightly below the Businaro-Gallone point, 136Xe is the stable nuclide with the largest neutron excess. The kinematic data and cross sections collected in this work for the full nuclide production are a general benchmark for modelling the spallation process in a neutron-rich nuclear system, where fission is characterised by predominantly mass-asymmetric splits.

P. Napolitani; K. -H. Schmidt; L. Tassan-Got; P. Armbruster; T. Enqvist; A. Heinz; V. Henzl; D. Henzlova; A. Kelic; R. Pleskac; M. V. Ricciardi; C. Schmitt; O. Yordanov; L. Audouin; M. Bernas; A. Lafriaskh; F. Rejmund; C. Stephan; J. Benlliure; E. Casarejos; M. Fernandez Ordonez; J. Pereira; A. Boudard; B. Fernandez; S. Leray; C. Villagrasa; C. Volant

2007-06-05T23:59:59.000Z

222

Bottomonium and Drell-Yan production in p-A collisions at 450 GeV  

E-Print Network [OSTI]

The NA50 Collaboration has measured heavy-quarkonium production in p-A collisions at 450 GeV incident energy (sqrt(s) = 29.1 GeV). We report here results on the production of the Upsilon states and of high-mass Drell-Yan muon pairs (m > 6 GeV). The cross-section at midrapidity and the A-dependence of the measured yields are determined and compared with the results of other fixed-target experiments and with the available theoretical estimates. Finally, we also address some issues concerning the transverse momentum distributions of the measured dimuons.

NA50 Collaboration

2006-03-23T23:59:59.000Z

223

Bottomonium and Drell-Yan production in p-A collisions at 450 GeV  

E-Print Network [OSTI]

The NA50 Collaboration has measured heavy-quarkonium production in p-A collisions at 450 GeV incident energy (sqrt(s) = 29.1 GeV). We report here results on the production of the Upsilon states and of high-mass Drell-Yan muon pairs (m > 6 GeV). The cross-section at midrapidity and the A-dependence of the measured yields are determined and compared with the results of other fixed-target experiments and with the available theoretical estimates. Finally, we also address some issues concerning the transverse momentum distributions of the measured dimuons.

Alessandro, B; Arnaldi, R; Atayan, M; Beolè, S; Boldea, V; Bordalo, P; Borges, G; Castor, J; Chaurand, B; Cheynis, B; Chiavassa, E; Cicalò, C; Comets, M P; Constantinescu, S; Cortese, P; De Falco, A; De Marco, N; Dellacasa, G; Devaux, A; Dita, S; Fargeix, J; Force, P; Gallio, M; Gerschel, C; Giubellino, P; Golubeva, M B; Grigorian, A A; Grossiord, J Y; Guber, F F; Guichard, A; Gulkanian, H R; Idzik, M; Jouan, D; Karavicheva, T L; Kluberg, L; Kurepin, A B; Le Bornec, Y; Lourenço, C; MacCormick, M; Marzari-Chiesa, A; Masera, M; Masoni, A; Monteno, M; Musso, A; Petiau, P; Piccotti, A; Pizzi, J R; Prino, F; Puddu, G; Quintans, C; Ramello, L; Ramos, S; Riccati, L; Santos, H; Saturnini, P; Scomparin, E; Serci, S; Shahoyan, R; Sitta, M; Sonderegger, P; Tarrago, X; Topilskaya, N S; Usai, G L; Vercellin, E; Willis, N

2006-01-01T23:59:59.000Z

224

A point of order 8  

E-Print Network [OSTI]

A formula expressing a point of order 8 on an elliptic curve, in terms of the roots of the associated cubic polynomial, is given. Doubling such a point yields a point of order 4 distinct from the well-known points of order 4 given in standard references such as "A course of Modern Analysis" by Whittaker and Watson.

Semjon Adlaj

2011-10-03T23:59:59.000Z

225

GEOCHEMISTRY AND 40 AR GEOCHRONOLOGY OF IMPACT-MELT CLASTS IN LUNAR  

E-Print Network [OSTI]

-melt clasts in lunar meteorites [1, 2]. The dissimilarity of DaG262 and Calcalong Creek impact-melt clasts clasts, melt veins and metal grains. Calcalong Creek [4] is a polymict breccia containing sub-mm clasts of both highlands and mare affinity welded by a glassy, vesicular matrix. It is unusual among lunar

Cohen, Barbara Anne

226

Examining the mechanics of granulation with a hot melt binder in a twin-screw extruder  

E-Print Network [OSTI]

Examining the mechanics of granulation with a hot melt binder in a twin-screw extruder B. Mu, M processing Melt agglomeration Twin screw extruder a b s t r a c t Hot melt granulation involves particle-rotating intermeshing twin screw extruder for operating temperatures between 80 1C and 120 1C. Three different screw

Thompson, Michael

227

On the Effect of Porous Layers on Melting Heat Transfer in an Enclosure  

E-Print Network [OSTI]

On the Effect of Porous Layers on Melting Heat Transfer in an Enclosure E. A. Ellinger* and C. To enhance heat transfer, the porous layers are located in regions where the melting rates for a pure the porous layer and the pure fluid layer cause strong variations in heat transfer, melt convection

Beckermann, Christoph

228

A model of the threedimensional evolution of Arctic melt ponds on firstyear and multiyear sea ice  

E-Print Network [OSTI]

ice. In the summer the upper layers of sea ice and snow melts producing meltwater that accumulatesA model of the threedimensional evolution of Arctic melt ponds on firstyear and multiyear sea ice F in Arctic melt ponds on the surface of sea ice. An accurate estimate of the fraction of the sea ice surface

Feltham, Daniel

229

Ion fractionation and percolation in ice cores with seasonal melting John C. Moore*, Aslak Grinsted **  

E-Print Network [OSTI]

and with the type of data that was expected to come from ice caps with seasonal melt. The objective of this paperIon fractionation and percolation in ice cores with seasonal melting John C. Moore*, Aslak Grinsted that suffer limited seasonal melting. We show that the impact in the case of at least one Svalbard ice core

Moore, John

230

Basal melting of snow on early Mars: A possible origin of some valley Michael H. Carr  

E-Print Network [OSTI]

that valley networks could have formed as a result of basal melting of thick snow and ice deposits. Depending in part by basal melting of the south polar cap [Clifford, 1987], this cannot be the only mechanismBasal melting of snow on early Mars: A possible origin of some valley networks Michael H. Carr U. S

Head III, James William

231

Melting of small Arctic ice caps observed from ERS scatterometer time series  

E-Print Network [OSTI]

Melting of small Arctic ice caps observed from ERS scatterometer time series Laurence C. Smith,1 of melt onset can be observed over small ice caps, as well as the major ice sheets and multi-year sea ice for 14 small Arctic ice caps from 1992­2000. Interannual and regional variability in the timing of melt

Smith, Laurence C.

232

METHODOLOGICAL RE-EVALUATION OF THE ELECTRICAL CONDUCTIVITY OF SILICATE MELTS  

E-Print Network [OSTI]

1 Revised ms METHODOLOGICAL RE-EVALUATION OF THE ELECTRICAL CONDUCTIVITY OF SILICATE MELTS A in laboratory on silicate melts are used to interpret magnetotelluric anomalies. On the basis of two- and four to small chemical and physical changes, it represents a subtle probe for studying silicate melts properties

Boyer, Edmond

233

Melt Rate Improvement for DWPF MB3: Foaming Theory and Mitigation Techniques  

SciTech Connect (OSTI)

The objective of this research is to enhance the basic understanding of the role of glass chemistry, including the chemical kinetics of pre-melting, solid state reactions, batch melting, and the reaction pathways in glass and/or acid addition strategy changes on the overall melting process for the Defense Waste Processing Facility (DWPF) Macrobatch 3 (MB3).

Peeler, D.K.

2001-07-24T23:59:59.000Z

234

Arctic sea ice modeling with the material-point method.  

SciTech Connect (OSTI)

Arctic sea ice plays an important role in global climate by reflecting solar radiation and insulating the ocean from the atmosphere. Due to feedback effects, the Arctic sea ice cover is changing rapidly. To accurately model this change, high-resolution calculations must incorporate: (1) annual cycle of growth and melt due to radiative forcing; (2) mechanical deformation due to surface winds, ocean currents and Coriolis forces; and (3) localized effects of leads and ridges. We have demonstrated a new mathematical algorithm for solving the sea ice governing equations using the material-point method with an elastic-decohesive constitutive model. An initial comparison with the LANL CICE code indicates that the ice edge is sharper using Materials-Point Method (MPM), but that many of the overall features are similar.

Peterson, Kara J.; Bochev, Pavel Blagoveston

2010-04-01T23:59:59.000Z

235

Method of and apparatus for determining deposition-point temperature  

DOE Patents [OSTI]

Acoustic-wave sensor apparatus and method for analyzing a normally liquid petroleum-based composition for monitoring deposition-point temperature. The apparatus includes at least one acoustic-wave device such as SAW, QCM, FPM, TSM or APM type devices in contact with the petroleum-based composition for sensing or detecting the surface temperature at which deposition occurs and/or rate of deposition as a function of temperature by sensing an accompanying change in frequency, phase shift, damping voltage or damping current of an electrical oscillator to a known calibrated condition. The acoustic wave device is actively cooled to monitor the deposition of constituents such as paraffins by determining the point at which solids from the liquid composition begin to form on the acoustic wave device. The acoustic wave device can be heated to melt or boil off the deposits to reset the monitor and the process can be repeated.

Mansure, Arthur J. (Albuquerque, NM); Spates, James J. (Albuquerque, NM); Martin, Stephen J. (Albuquerque, NM)

1998-01-01T23:59:59.000Z

236

Method of and apparatus for determining deposition-point temperature  

DOE Patents [OSTI]

Acoustic-wave sensor apparatus and method are disclosed for analyzing a normally liquid petroleum-based composition for monitoring deposition-point temperature. The apparatus includes at least one acoustic-wave device such as SAW, QCM, FPM, TSM or APM type devices in contact with the petroleum-based composition for sensing or detecting the surface temperature at which deposition occurs and/or rate of deposition as a function of temperature by sensing an accompanying change in frequency, phase shift, damping voltage or damping current of an electrical oscillator to a known calibrated condition. The acoustic wave device is actively cooled to monitor the deposition of constituents such as paraffins by determining the point at which solids from the liquid composition begin to form on the acoustic wave device. The acoustic wave device can be heated to melt or boil off the deposits to reset the monitor and the process can be repeated. 5 figs.

Mansure, A.J.; Spates, J.J.; Martin, S.J.

1998-10-27T23:59:59.000Z

237

Beam On Target! - CEBAF Accelerator Achieves 12 GeV Commissioning...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Beam On Target CEBAF Accelerator Achieves 12 GeV Commissioning Milestone The accelerator crew on hand The accelerator crew on hand for the beam-on-target achievement included...

238

Polymer crystal-melt interfaces and nucleation in polyethylene  

E-Print Network [OSTI]

Kinetic barriers cause polymers to crystallize incompletely, into nanoscale lamellae interleaved with amorphous regions. As a result, crystalline polymers are full of crystal-melt interfaces, which dominate their physical properties. The longstanding theoretical challenge to understand these interfaces has new relevance, because of accumulating evidence that polymer crystals often nucleate via a metastable, partially ordered "rotator" phase. To test this idea requires a theory of the bulk and interfacial free energies of the critical nucleus. We present a new approach to the crystal-melt interface, which represents the amorphous region as a grafted brush of loops in a self-consistent pressure field. We combine this theory with estimates of bulk free energy differences, to calculate nucleation barriers and rates via rotator versus crystal nuclei for polyethylene. We find rotator-phase nucleation is indeed favored throughout the temperature range where nucleation is observed. Our methods can be extended to other polymers.

Scott T. Milner

2010-09-22T23:59:59.000Z

239

Vacancies in Al after pulsed electron beam melting  

SciTech Connect (OSTI)

We have used transmission electron microscopy (TEM) to study the retention of vacancies in Al after rapid melting and resolidification of a thin (approx. 3 ..mu..m) surface layer using a pulsed (approx.50 ns) electron beam. After pulsing and aging at room temperature, TEM examination showed dislocation loops, which are interpreted to be due to the coalescence of the quenched-in vacancies on )111) planes as is the case for the loops observed in earlier furnace quenching studies. Our results indicate that the rapid melting and resolidification leaves a high vacancy concentration (approx.100 ppm) in the resolidified Al. Heat transport calculations show that cooling rates for the pulse heated samples (approx.10/sup 8/ K/s) are much higher than those achieved by conventional quenching techniques (approx. 10/sup 4/ K/s).

Follstaedt, D.M.; Wampler, W.R.

1981-02-01T23:59:59.000Z

240

Simulation of multicomponent evaporation in electron beam melting and refining  

SciTech Connect (OSTI)

Experimental results and a mathematical model are presented to describe differential evaporation rates in electron beam melting of titanium alloys containing aluminum and vanadium. Experiments characterized the evaporation rate of commercially pure titanium, and vapor composition over titanium with up to 6% Al and 4.5% V content as a function of beam power, scan frequency and background pressure. The model is made up of a steady-state heat and mass transport model of a melting hearth and a model of transient thermal and flow behavior near the surface. Activity coefficients for aluminum and vanadium in titanium are roughly estimated by fitting model parameters to experimental results. Based on the ability to vary evaporation rate by 10-15% using scan frequency alone, we discuss the possibility of on-line composition control by means of intelligent manipulation of the electron beam.

Powell, A.; Szekely, J. [Massachusetts Inst. of Tech., Cambridge, MA (United States); Van Den Avyle, J.; Damkroger, B. [Sandia National Labs., Albuquerque, NM (United States)

1996-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "gev melting point" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

On modifying properties of polymeric melts by nanoscopic particles  

E-Print Network [OSTI]

We study geometric and energetic factors that partake in modifying properties of polymeric melts via inserting well-dispersed nanoscopic particles (NP). Model systems are polybutadiene melts including 10-150 atom atomic clusters (0.1-1.5% v/v). We tune interactions between chains and particle by van der Waals terms. Using molecular dynamics we study equilibrium fluctuations and dynamical properties at the interface. Effect of bead size and interaction strength both on volume and volumetric fluctuations is manifested in mechanical properties, quantified here by bulk modulus, K. Tuning NP size and non-bonded interactions results in ~15% enhancement in K by addition of a maximum of 1.5% v/v NP.

Canan Atilgan; Ibrahim Inanc; Ali Rana Atilgan

2012-07-09T23:59:59.000Z

242

Hydrodynamic coarsening in phase-separated silicate melts  

E-Print Network [OSTI]

Using in-situ synchrotron tomography, we investigate the coarsening dynamics of barium borosilicate melts during phase separation. The 3-D geometry of the two interconnected phases is determined thanks to image processing. We observe a linear growth of the size of domains with time, at odds with the sublinear diffusive growth usually observed in phase-separating glasses or alloys. Such linear coarsening is attributed to viscous flow inside the bicontinuous phases, and quantitative measurements show that the growth rate is well explained by the ratio of surface tension over viscosity. The geometry of the domains is shown to be statistically similar at different times, provided that the microstructure is rescaled by the average domain size. Complementary experiments on melts with a droplet morphology demonstrate that viscous flow prevails over diffusion in the large range of domain sizes measured in our experiments (1 - 80 microns).

David Bouttes; Océane Lambert; Corinne Claireaux; William Woelffel; Davy Dalmas; Emmanuelle Gouillart; Pierre Lhuissier; Luc Salvo; Elodie Boller; Damien Vandembroucq

2015-02-12T23:59:59.000Z

243

Accelerating into the Future Zero to 1GeV in a Few Centimeters  

ScienceCinema (OSTI)

July 8, 2008 Berkeley Lab lecture: By exciting electric fields in plasma-based waveguides, lasers accelerate electrons in a fraction of the distance conventional accelerators require. The Accelerator and Fusion Research Division's LOASIS program, headed by Wim Leemans, has used 40-trillion-watt laser pulses to deliver billion-electron-volt (1 GeV) electron beams within centimeters. Leemans looks ahead to BELLA, 10-GeV accelerating modules that could power a future linear collider.

LBNL

2009-09-01T23:59:59.000Z

244

Probing the QCD Critical Point by Higher Moments of Net-Charge Distribution  

E-Print Network [OSTI]

The Beam Energy Scan program has been undertaken at the Relativistic Heavy Ion Collider (RHIC) to search for the QCD critical point. The presence of the critical point is expected to lead to non-monotonic behavior of several quantities. Here we report the result of higher moments of net-charge distributions for Au+Au collisions at $\\sqrt{s_{NN}}$ = 39 GeV as measured by the STAR experiment. The STAR results are compared with results from HIJING event generator and Hadron Resonance (HRG) Models.

Nihar Ranjan Sahoo

2011-01-26T23:59:59.000Z

245

Advanced coal-fired glass melting development program  

SciTech Connect (OSTI)

The objective of Phase 1 of the current contract was to verify the technical feasibility and economic benefits of Vortec's advanced combustion/melting technology using coal as the fuel of choice. The objective of the Phase 2 effort was to improve the performance of the primary components and demonstrate the effective operation of a subscale process heater system integrated with a glass separator/reservoir. (VC)

Not Available

1991-05-01T23:59:59.000Z

246

Proceedings of ALGORITMY 2005 BOUNDARY CONTROL OF SEMICONDUCTOR MELTS  

E-Print Network [OSTI]

-type functionals of the form J(u, c) = 1 2 T 0 |u - u|2 ddt + 2 T 0 c (2 c + 2 ct ) ddt,(1) whereas goal (ii) may be related to minimal values of vorticity-type functionals of the form J(u, c) = 1 2 T 0 |curlu|2 ddt + 2 T 0 c (2 c + 2 ct ) ddt .(2) Above, u denotes the flow velocity vector field in the melt, and u

Hinze, Michael

247

Dislocation-mediated melting of one-dimensional Rydberg crystals  

SciTech Connect (OSTI)

We consider cold Rydberg atoms in a one-dimensional optical lattice in the Mott regime with a single atom per site at zero temperature. An external laser drive with Rabi frequency {Omega} and laser detuning {Delta} creates Rydberg excitations whose dynamics is governed by an effective spin-chain model with (quasi) long-range interactions. This system possesses intrinsically a large degree of frustration resulting in a ground-state phase diagram in the ({Delta},{Omega}) plane with a rich topology. As a function of {Delta}, the Rydberg blockade effect gives rise to a series of crystalline phases commensurate with the optical lattice that form a so-called devil's staircase. The Rabi frequency {Omega}, on the other hand, creates quantum fluctuations that eventually lead to a quantum melting of the crystalline states. Upon increasing {Omega}, we find that generically a commensurate-incommensurate transition to a floating Rydberg crystal that supports gapless phonon excitations occurs first. For even larger {Omega}, dislocations within the floating Rydberg crystal start to proliferate and a second, Kosterlitz-Thouless-Nelson-Halperin-Young dislocation-mediated melting transition finally destroys the crystalline arrangement of Rydberg excitations. This latter melting transition is generic for one-dimensional Rydberg crystals and persists even in the absence of an optical lattice. The floating phase and the concomitant transitions can, in principle, be detected by Bragg scattering of light.

Sela, Eran; Garst, Markus [Institut fuer Theoretische Physik, Universitaet zu Koeln, Zuelpicher Str. 77, DE-50937 Koeln (Germany); Punk, Matthias [Physik Department, Technische Universitaet Muenchen, James-Franck-Strasse, DE-85748 Garching (Germany); Department of Physics, Harvard University, Cambridge, Massachusetts 02138 (United States)

2011-08-15T23:59:59.000Z

248

Removing a sheet from the surface of a melt using gas jets  

DOE Patents [OSTI]

In one embodiment, a sheet production apparatus comprises a vessel configured to hold a melt of a material. A cooling plate is disposed proximate the melt and is configured to form a sheet of the material on the melt. A first gas jet is configured to direct a gas toward an edge of the vessel. A sheet of a material is translated horizontally on a surface of the melt and the sheet is removed from the melt. The first gas jet may be directed at the meniscus and may stabilize this meniscus or increase local pressure within the meniscus.

Kellerman, Peter L; Thronson, Gregory D; Sun, Dawei

2014-04-01T23:59:59.000Z

249

St Andrews Recycling Points Recycling Points are situated locally to  

E-Print Network [OSTI]

St Andrews Recycling Points Recycling Points are situated locally to allow you to recycle the following materials: To find your nearest Recycling Point please visit www.fifedirect.org.uk/wasteaware or call the Recycling Helpline on 08451 55 00 22. R&A GOLF CLUB OLD COURSE HOTEL UNIVERSITY NORTH HAUGH

St Andrews, University of

250

Measurements of $ep \\to e^\\prime ?^+n$ at W = 1.6 - 2.0 GeV and extraction of nucleon resonance electrocouplings at CLAS  

E-Print Network [OSTI]

Differential cross sections of the exclusive process $e p \\to e^\\prime \\pi^+ n$ were measured with good precision in the range of the photon virtuality $Q^2 = 1.8 - 4.5$ GeV$^2$, and the invariant mass range of the $\\pi^+ n$ final state W = 1.6 - 2.0 GeV using the CEBAF Large Acceptance Spectrometer. Data were collected with nearly complete coverage in the azimuthal and polar angles of the $n\\pi^+$ center-of-mass system. More than 37,000 cross section points were measured. The contributions of the isospin $I = {1\\over 2}$ resonances $N(1675){5\\over 2}^-$, $N(1680){5\\over 2}^+$ and $N(1710){1\\over 2}^+$ were extracted at different values of $Q^2$ using a single-channel, energy-dependent resonance amplitude analysis. Two different approaches, the unitary isobar model and the fixed-$t$ dispersion relations, were employed in the analysis. We observe significant strength of the $N(1675){5\\over 2}^-$ in the $A_{1/2}$ amplitude, which is in strong disagreement with quark models that predict both transverse amplitudes to be strongly suppressed. For the $N(1680){5\\over 2}^+$ we observe a slow changeover from the dominance of the $A_{3/2}$ amplitude at the real photon point ($Q^2=0$) to a $Q^2$ where $A_{1/2}$ begins to dominate. The scalar amplitude $S_{1/2}$ drops rapidly with $Q^2$ consistent with quark model prediction. For the $N(1710){1\\over 2}^+$ resonance our analysis shows significant strength for the $A_{1/2}$ amplitude at $Q^2 < 2.5$ GeV$^2$.

K. Park; I. G. Aznauryan; V. D. Burkert; the CLAS collaboration

2014-12-17T23:59:59.000Z

251

Rapid additive manufacturing of MR compatible multipinhole collimators with selective laser melting of tungsten powder  

SciTech Connect (OSTI)

Purpose: The construction of complex collimators with a high number of oblique pinholes is very labor intensive, expensive or is sometimes impossible with the current available techniques (drilling, milling or electric discharge machining). All these techniques are subtractive: one starts from solid plates and the material at the position of the pinholes is removed. The authors used a novel technique for collimator construction, called metal additive manufacturing. This process starts with a solid piece of tungsten on which a first layer of tungsten powder is melted. Each subsequent layer is then melted on the previous layer. This melting is done by selective laser melting at the locations where the CAD design file defines solid material. Methods: A complex collimator with 20 loftholes with 500 {mu}m diameter pinhole opening was designed and produced (16 mm thick and 70 Multiplication-Sign 52 mm{sup 2} transverse size). The density was determined, the production accuracy was measured (GOM ATOS II Triple Scan, Nikon AZ100M microscope, Olympus IMT200 microscope). Point source measurements were done by mounting the collimator on a SPECT detector. Because there is increasing interest in dual-modality SPECT-MR imaging, the collimator was also positioned in a 7T MRI scanner (Bruker Pharmascan). A uniform phantom was acquired using T1, T2, and T2* sequences to check for artifacts or distortion of the phantom images due to the collimator presence. Additionally, three tungsten sample pieces (250, 500, and 750 {mu}m thick) were produced. The density, attenuation (140 keV beam), and uniformity (GE eXplore Locus SP micro-CT) of these samples were measured. Results: The density of the collimator was equal to 17.31 {+-} 0.10 g/cm{sup 3} (89.92% of pure tungsten). The production accuracy ranges from -260 to +650 {mu}m. The aperture positions have a mean deviation of 5 {mu}m, the maximum deviation was 174 {mu}m and the minimum deviation was -122 {mu}m. The mean aperture diameter is 464 {+-} 19 {mu}m. The calculated and measured sensitivity and resolution of point sources at different positions in the field-of-view agree well. The measured and expected attenuation of the three sample pieces are in a good agreement. There was no influence of the 7T magnetic field on the collimator (which is paramagnetic) and minimal distortion was noticed on the MR scan of the uniform phantom. Conclusions: Additive manufacturing is a very promising technique for the production of complex multipinhole collimators and may also be used for producing other complex collimators. The cost of this technique is only related to the amount of powder needed and the time it takes to have the collimator built. The timeframe from design to collimator production is significantly reduced.

Deprez, Karel; Vandenberghe, Stefaan; Van Audenhaege, Karen; Van Vaerenbergh, Jonas; Van Holen, Roel [MEDISIP, Department of Electronics and Information Systems, Ghent University-iMinds-IBiTech, De Pintelaan 185, B-9000 Ghent (Belgium); Layerwise NV, Kapeldreef 60, 3001 Leuven (Belgium); MEDISIP, Department of Electronics and Information Systems, Ghent University-iMinds-IBiTech, De Pintelaan 185, B-9000 Ghent (Belgium)

2013-01-15T23:59:59.000Z

252

Simultaneous feature selection and parameter optimisation using an artificial ant colony: case study of melting point prediction  

E-Print Network [OSTI]

.8990097,9.8990097,-1.0703599,53.921799,5.2134662,-0.045375373,35.842514,0.017433109,-0.97723341,0.82533467,8.7683783,0.042186011,3.2546716,35.88789,0.016062379,-164.384,-948.87329,26.971001,-10.19251,10.19251,-1.50967,0.00078117027,8709.8232,3.7016466,0...

O'Boyle, Noel M; Palmer, David S; Nigsch, Florian; Mitchell, John B O

2008-10-29T23:59:59.000Z

253

A computational model for viscous fluid flow, heat transfer, and melting in in situ vitrification melt pools  

SciTech Connect (OSTI)

MAGMA is a FORTRAN computer code designed to viscous flow in in situ vitrification melt pools. It models three-dimensional, incompressible, viscous flow and heat transfer. The momentum equation is coupled to the temperature field through the buoyancy force terms arising from the Boussinesq approximation. All fluid properties, except density, are assumed variable. Density is assumed constant except in the buoyancy force terms in the momentum equation. A simple melting model based on the enthalpy method allows the study of the melt front progression and latent heat effects. An indirect addressing scheme used in the numerical solution of the momentum equation voids unnecessary calculations in cells devoid of liquid. Two-dimensional calculations can be performed using either rectangular or cylindrical coordinates, while three-dimensional calculations use rectangular coordinates. All derivatives are approximated by finite differences. The incompressible Navier-Stokes equations are solved using a new fully implicit iterative technique, while the energy equation is differenced explicitly in time. Spatial derivatives are written in conservative form using a uniform, rectangular, staggered mesh based on the marker and cell placement of variables. Convective terms are differenced using a weighted average of centered and donor cell differencing to ensure numerical stability. Complete descriptions of MAGMA governing equations, numerics, code structure, and code verification are provided. 14 refs.

McHugh, P.R.; Ramshaw, J.D.

1991-11-01T23:59:59.000Z

254

Group Response System Turning Point  

E-Print Network [OSTI]

. · But more often I do use it within a slide show. Somewhat more difficult to manage. But some great uses-Add-in for Power Point. · Some "Clicking" practice. #12;Make A Slide-Add to this file. · Esc, click on TurningPoint add-in · Pick Insert Slide in Turning Point bar and insert a Turning Point slide after this slide

255

Fluctuations of the number of neutral pions at high multiplicity in pp interactions at 50 GeV  

SciTech Connect (OSTI)

Results obtained by measuring fluctuations of the number of neutral pions in the SERP-E-190 Experiment (Thermalization Project) upon irradiating a liquid-hydrogen target of the SVD-2 setup with a beam of 50-GeV protons are presented. A simulation of the detection of photons from the decay of neutral pions with the aid of an electromagnetic calorimeter revealed a linear relation between the number of detected photons and the mean number of neutral pions in an event. After the introduction of corrections for the loss of charged tracks because of a limited acceptance of the setup, trigger operation, and the efficiency of the data-treatment system, distributions of the number of neutral pions, N{sub 0}, were obtained for each value of the total number of particles in an event, N{sub tot} = N{sub ch} + N{sub 0}. The fluctuation parameter {omega} = D/ Left-Pointing-Angle-Bracket N{sub 0} Right-Pointing-Angle-Bracket was measured. In the region N{sub tot} > 22, fluctuations of the number of neutral pions increase, which, within statistical models (GCE, CE, MCE), indicates that the system involving a large number of pions approaches the pion-condensate state. This effect was observed for the first time.

Ryadovikov, V. N., E-mail: riadovikov@ihep.ru [Institute for High Energy Physics (Russian Federation)

2012-08-15T23:59:59.000Z

256

Energy dependence of transverse momentum fluctuations in Pb+Pb collisions at the CERN Super Proton Synchrotron (SPS) at 20A to 158A GeV  

SciTech Connect (OSTI)

Results are presented on event-by-event fluctuations of transverse momenta p{sub T} in central Pb+Pb interactions at 20A, 30A, 40A, 80A, and 158A GeV. The analysis was performed for charged particles at forward center-of-mass rapidity (1.1 < y*{sub {pi}} < 2.6). Three fluctuation measures were studied: the distribution of average transverse momentum M(p{sub T}) in the event, the {phi}{sub p{sub T}} fluctuation measure, and two-particle transverse momentum correlations. Fluctuations of p{sub T} are small and show no significant energy dependence in the energy range of the CERN Super Proton Synchrotron. Results are compared with QCD-inspired predictions for the critical point, and with the UrQMD model. Transverse momentum fluctuations, similar to multiplicity fluctuations, do not show the increase expected for freeze-out near the critical point of QCD.

NA49 Collaboration; Anticic, T.

2009-04-15T23:59:59.000Z

257

Contribution of unresolved point sources to the galactic diffuse emission  

E-Print Network [OSTI]

The detection by the HESS atmospheric Cherenkov telescope of fifteen new sources from the Galactic plane makes it possible to estimate the contribution of unresolved point sources like those detected by HESS to the diffuse Galactic emission measured by EGRET and recently at higher energies by the Milagro Collaboration. Assuming that HESS sources have all the same intrinsic luminosity, the contribution of this new source population can account for most of the Milagro $\\gamma$-ray emission at TeV energies and between 10 and 20 per cent of EGRET diffuse Galactic $\\gamma$-ray emission for energies bigger than 10 GeV. Also, by combining the HESS and the Milagro results, constraints can be put on the distribution and the luminosities of gamma ray emitters in the Galaxy.

Casanova, S; Casanova, Sabrina; Dingus, Brenda L.

2006-01-01T23:59:59.000Z

258

Contribution of unresolved point sources to the galactic diffuse emission  

E-Print Network [OSTI]

The detection by the HESS atmospheric Cherenkov telescope of fifteen new sources from the Galactic plane makes it possible to estimate the contribution of unresolved point sources like those detected by HESS to the diffuse Galactic emission measured by EGRET and recently at higher energies by the Milagro Collaboration. Assuming that HESS sources have all the same intrinsic luminosity, the contribution of this new source population can account for most of the Milagro $\\gamma$-ray emission at TeV energies and between 10 and 20 per cent of EGRET diffuse Galactic $\\gamma$-ray emission for energies bigger than 10 GeV. Also, by combining the HESS and the Milagro results, constraints can be put on the distribution and the luminosities of gamma ray emitters in the Galaxy.

Sabrina Casanova; Brenda L. Dingus

2006-09-12T23:59:59.000Z

259

Method for detecting point mutations in DNA utilizing fluorescence energy transfer  

DOE Patents [OSTI]

A method for detecting point mutations in DNA using a fluorescently labeled oligomeric probe and Forster resonance energy transfer (FRET) is disclosed. The selected probe is initially labeled at each end with a fluorescence dye, which act together as a donor/acceptor pair for FRET. The fluorescence emission from the dyes changes dramatically from the duplex stage, wherein the probe is hybridized to the complementary strand of DNA, to the single strand stage, when the probe is melted to become detached from the DNA. The change in fluorescence is caused by the dyes coming into closer proximity after melting occurs and the probe becomes detached from the DNA strand. The change in fluorescence emission as a function of temperature is used to calculate the melting temperature of the complex or T.sub.m. In the case where there is a base mismatch between the probe and the DNA strand, indicating a point mutation, the T.sub.m has been found to be significantly lower than the T.sub.m for a perfectly match probelstand duplex. The present invention allows for the detection of the existence and magnitude of T.sub.m, which allows for the quick and accurate detection of a point mutation in the DNA strand and, in some applications, the determination of the approximate location of the mutation within the sequence.

Parkhurst, Lawrence J. (Lincoln, NE); Parkhurst, Kay M. (Lincoln, NE); Middendorf, Lyle (Lincoln, NE)

2001-01-01T23:59:59.000Z

260

Author's personal copy Coexisting silicate melt inclusions and H2O-bearing, CO2-rich fluid inclusions in mantle  

E-Print Network [OSTI]

Author's personal copy Coexisting silicate melt inclusions and H2O-bearing, CO2-rich fluid­Pannonian region Hungary C­O­H­S fluid inclusions Peridotite xenoliths Silicate melt inclusions Volatile (fluid)­silicate melt immiscibility Coexisting fluid inclusions and silicate melt inclusions, trapped as primary

Bodnar, Robert J.

Note: This page contains sample records for the topic "gev melting point" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Raman spectroscopic studies of chemical speciation in calcium chloride melts  

SciTech Connect (OSTI)

Raman spectroscopy was applied to CaCl2 melts at 900 degrees C under both non-electrolyzed and electrolyzed conditions. The later used titania cathodes supplied by TIMET, Inc. and graphite anodes. Use of pulse-gating to collect the Raman spectra successfully eliminated any interference from black-body radiation and other stray light. The spectrum of molten CaCl2 exhibited no distinct, resolvable bands that could be correlated with a calcium chloride complex similar to MgCl42- in MgCl2 melts. Rather, the low frequency region of the spectrum was dominated by a broad “tail” arising from collective oscillations of both charge and mass in the molten salt “network.” Additions of both CaO and Ca at concentrations of a percent or two resulted in no new features in the spectra. Addition of CO2, both chemically and via electrolysis at concentrations dictated by stability and solubility at 900 degrees C and 1 bar pressure, also produced no new bands that could be correlated with either dissolved CO2 or the carbonate ion. These results indicated that Raman spectroscopy, at least under the conditions evaluated in the research, was not well suited for following the reactions and coordination chemistry of calcium ions, nor species such as dissolved metallic Ca and CO2 that are suspected to impact current efficiency in titanium electrolysis cells using molten CaCl2. Raman spectra of TIMET titania electrodes were successfully obtained as a function of temperature up to 900 degrees C, both in air and in-situ in CaCl2 melts. However, spectra of these electrodes could only be obtained when the material was in the unreduced state. When reduced, either with hydrogen or within an electrolysis cell, the resulting electrodes exhibited no measurable Raman bands under the conditions used in this work.

Windisch, Charles F.; Lavender, Curt A.

2005-02-01T23:59:59.000Z

262

Measurement of the Crab Flux Above 60 GeV with the CELESTE Cherenkov Telescope  

E-Print Network [OSTI]

We have converted the former solar electrical plant THEMIS (French Pyrenees) into an atmospheric Cherenkov detector called CELESTE, which records gamma rays above 30 GeV (7E24 Hz). Here we present the first sub-100 GeV detection by a ground based telescope of a gamma ray source, the Crab nebula, in the energy region between satellite measurements and imaging atmospheric Cherenkov telescopes. At our analysis threshold energy of 60 +/- 20 GeV we measure a gamma ray rate of 6.1 +/- 0.8 per minute. Allowing for 30% systematic uncertainties and a 30% error on the energy scale yields an integral gamma ray flux of I(E>60 GeV) = 6.2^{+5.3}_{-2.3} E-6 photons m^-2 s^-1. The analysis methods used to obtain the gamma ray signal from the raw data are detailed. In addition, we determine the upper limit for pulsed emission to be <12% of the Crab flux at the 99% confidence level, in the same energy range. Our result indicates that if the power law observed by EGRET is attenuated by a cutoff of form e^{-E/E_0} then E_0 < 26 GeV. This is the lowest energy probed by a Cherenkov detector and leaves only a narrow range unexplored beyond the energy range studied by EGRET.

M. De Naurois; J. Holder; R. Bazer-Bachi; H. Bergeret; P. Bruel; A. Cordier; G. Debiais; J-P. Dezalay; D. Dumora; E. Durand; P. Eschstruth; P. Espigat; B. Fabre; P. Fleury; N. Herault; M. Hrabovsky; S. Incerti; R. Le Gallou; F. Munz; A. Musquere; J-F. Olive; E. Pare; J. Quebert; R. C. Rannot; T. Reposeur; L. Rob; P. Roy; T. Sako; P. Schovanek; D. A. Smith; P. Snabre; A. Volte

2001-12-05T23:59:59.000Z

263

Melt coolability modeling and comparison to MACE test results  

SciTech Connect (OSTI)

An important question in the assessment of severe accidents in light water nuclear reactors is the ability of water to quench a molten corium-concrete interaction and thereby terminate the accident progression. As part of the Melt Attack and Coolability Experiment (MACE) Program, phenomenological models of the corium quenching process are under development. The modeling approach considers both bulk cooldown and crust-limited heat transfer regimes, as well as criteria for the pool thermal hydraulic conditions which separate the two regimes. The model is then compared with results of the MACE experiments.

Farmer, M.T.; Sienicki, J.J.; Spencer, B.W.

1992-04-01T23:59:59.000Z

264

Melt coolability modeling and comparison to MACE test results  

SciTech Connect (OSTI)

An important question in the assessment of severe accidents in light water nuclear reactors is the ability of water to quench a molten corium-concrete interaction and thereby terminate the accident progression. As part of the Melt Attack and Coolability Experiment (MACE) Program, phenomenological models of the corium quenching process are under development. The modeling approach considers both bulk cooldown and crust-limited heat transfer regimes, as well as criteria for the pool thermal hydraulic conditions which separate the two regimes. The model is then compared with results of the MACE experiments.

Farmer, M.T.; Sienicki, J.J.; Spencer, B.W.

1992-01-01T23:59:59.000Z

265

Composition monitoring of electron beam melting processes using diode lasers  

SciTech Connect (OSTI)

Electron beam melting processes are used to produce high purity alloys for a wide range of applications. Real time monitoring of the alloy constituents, however, has historically been difficult. Absorption spectroscopy using diode lasers provides a means for measuring constituent densities, and hence alloy composition, in real time. Diode lasers are suggested because they are inexpensive and require little maintenance. There is increasing interest in the composition and quality control of titanium alloys used in aircraft parts. For this reason we describe a proposed system for composition monitoring of titanium alloys. Performance and cost of the proposed system is addressed. We discuss the applicability of this approach to other alloys.

Berzins, L.V.

1991-11-20T23:59:59.000Z

266

Method for harvesting single crystals from a peritectic melt  

DOE Patents [OSTI]

A method of preparing single crystals is disclosed. The method of preparation involves preparing precursor materials of a particular composition, heating the precursor material to achieve a peritectic mixture of peritectic liquid and crystals, cooling the peritectic mixture to quench directly the mixture on a porous, wettable inert substrate to wick off the peritectic liquid, leaving single crystals on the porous substrate. Alternatively, the peritectic mixture can be cooled to a solid mass and reheated on a porous, inert substrate to melt the matrix of peritectic fluid while leaving the crystals unmelted, allowing the wicking away of the peritectic liquid. 2 figs.

Todt, V.R.; Sengupta, S.; Shi, D.

1996-08-27T23:59:59.000Z

267

Method for harvesting single crystals from a peritectic melt  

DOE Patents [OSTI]

A method of preparing single crystals. The method of preparation involves preparing precursor materials of a particular composition, heating the precursor material to achieve a peritectic mixture of peritectic liquid and crystals, cooling the peritectic mixture to quench directly the mixture on a porous, wettable inert substrate to wick off the peritectic liquid, leaving single crystals on the porous substrate. Alternatively, the peritectic mixture can be cooled to a solid mass and reheated on a porous, inert substrate to melt the matrix of peritectic fluid while leaving the crystals unmelted, allowing the wicking away of the peritectic liquid.

Todt, Volker R. (Lemont, IL); Sengupta, Suvankar (Columbus, OH); Shi, Donglu (Cincinnati, OH)

1996-01-01T23:59:59.000Z

268

Method to decrease loss of aluminum and magnesium melts  

DOE Patents [OSTI]

A method to minimize oxidation of metal during melting processes is provided, the method comprising placing solid phase metal into a furnace environ-ment, transforming the solid-phase metal into molten metal phase having a molten metal surface, and creating a barrier between the surface and the environment. Also provided is a method for isolating the surface of molten metal from its environment, the method comprising confining the molten metal to a controlled atmos-phere, and imposing a floating substrate between the surface and the atmosphere.

Hryn, John N. (Naperville, IL); Pellin, Michael J. (Naperville, IL); Calaway, Jr., Wallis F. (Woodridge, IL); Moore, Jerry F. (Naperville, IL); Krumdick, Gregory K. (Crete, IL)

2002-01-01T23:59:59.000Z

269

An Extendible Reconfigurable Robot Based on Hot Melt Adhesives  

E-Print Network [OSTI]

(25mm× 30mm) that is heated and cooled to form or break bonds with the HMA in contact with the connection surface. A Peltier element (Cente- nary Materials, TEC1-01703, 15mm× 15mm, 3.9W) is used for thermo-electric cooling and two resistors (Vishay, PR... bounds of self-reconfiguration with our robotic (a) melting cavity HMA stick nozzle servo motor (b) connection surface peltier element power resisitor (c) Fig. 3 The robot base is extended with a structure from wood blocks combined with an HMA tool (a...

Brodbeck, Luzius; Iida, Fumiya

2015-01-01T23:59:59.000Z

270

Hydrostatic extrusion of Cu-Ag melt spun ribbon  

DOE Patents [OSTI]

The present invention provides a method of producing high-strength and high-conductance copper and silver materials comprising the steps of combining a predetermined ratio of the copper with the silver to produce a composite material, and melt spinning the composite material to produce a ribbon of copper and silver. The ribbon of copper and silver is heated in a hydrogen atmosphere, and thereafter die pressed into a slug. The slug then is placed into a high-purity copper vessel and the vessel is sealed with an electron beam. The vessel and slug then are extruded into wire form using a cold hydrostatic extrusion process.

Hill, Mary Ann (Los Alamos, NM); Bingert, John F. (Jemez Springs, NM); Bingert, Sherri A. (Jemez Springs, NM); Thoma, Dan J. (Los Alamos, NM)

1998-01-01T23:59:59.000Z

271

Hydrostatic extrusion of Cu-Ag melt spun ribbon  

DOE Patents [OSTI]

The present invention provides a method of producing high-strength and high-conductance copper and silver materials comprising the steps of combining a predetermined ratio of the copper with the silver to produce a composite material, and melt spinning the composite material to produce a ribbon of copper and silver. The ribbon of copper and silver is heated in a hydrogen atmosphere, and thereafter die pressed into a slug. The slug then is placed into a high-purity copper vessel and the vessel is sealed with an electron beam. The vessel and slug then are extruded into wire form using a cold hydrostatic extrusion process. 5 figs.

Hill, M.A.; Bingert, J.F.; Bingert, S.A.; Thoma, D.J.

1998-09-08T23:59:59.000Z

272

Sandia National Laboratories: Molten Salt Test Loop Melted Salt  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -theErik Spoerke SSLS ExhibitIowaLosSandiaManagementMolecularFacilityMoltenMelted

273

Co-gasification of municipal solid waste and material recovery in a large-scale gasification and melting system  

SciTech Connect (OSTI)

Highlights: Black-Right-Pointing-Pointer This study evaluates the effects of co-gasification of MSW with MSW bottom ash. Black-Right-Pointing-Pointer No significant difference between MSW treatment with and without MSW bottom ash. Black-Right-Pointing-Pointer PCDD/DFs yields are significantly low because of the high carbon conversion ratio. Black-Right-Pointing-Pointer Slag quality is significantly stable and slag contains few hazardous heavy metals. Black-Right-Pointing-Pointer The final landfill amount is reduced and materials are recovered by DMS process. - Abstract: This study evaluates the effects of co-gasification of municipal solid waste with and without the municipal solid waste bottom ash using two large-scale commercial operation plants. From the viewpoint of operation data, there is no significant difference between municipal solid waste treatment with and without the bottom ash. The carbon conversion ratios are as high as 91.7% and 95.3%, respectively and this leads to significantly low PCDD/DFs yields via complete syngas combustion. The gross power generation efficiencies are 18.9% with the bottom ash and 23.0% without municipal solid waste bottom ash, respectively. The effects of the equivalence ratio are also evaluated. With the equivalence ratio increasing, carbon monoxide concentration is decreased, and carbon dioxide and the syngas temperature (top gas temperature) are increased. The carbon conversion ratio is also increased. These tendencies are seen in both modes. Co-gasification using the gasification and melting system (Direct Melting System) has a possibility to recover materials effectively. More than 90% of chlorine is distributed in fly ash. Low-boiling-point heavy metals, such as lead and zinc, are distributed in fly ash at rates of 95.2% and 92.0%, respectively. Most of high-boiling-point heavy metals, such as iron and copper, are distributed in metal. It is also clarified that slag is stable and contains few harmful heavy metals such as lead. Compared with the conventional waste management framework, 85% of the final landfill amount reduction is achieved by co-gasification of municipal solid waste with bottom ash and incombustible residues. These results indicate that the combined production of slag with co-gasification of municipal solid waste with the bottom ash constitutes an ideal approach to environmental conservation and resource recycling.

Tanigaki, Nobuhiro, E-mail: tanigaki.nobuhiro@nsc-eng.co.jp [Nippon Steel Engineering Co., Ltd. (Head Office), Osaki Center Building 1-5-1, Osaki, Shinagawa-ku, Tokyo 141-8604 (Japan); Manako, Kazutaka [Nippon Steel Engineering Co., Ltd., 46-59, Nakabaru, Tobata-ku, Kitakyushu, Fukuoka 804-8505 (Japan); Osada, Morihiro [Nippon Steel Engineering Co., Ltd. (Head Office), Osaki Center Building 1-5-1, Osaki, Shinagawa-ku, Tokyo 141-8604 (Japan)

2012-04-15T23:59:59.000Z

274

Measurement of charged pions in 12C + 12C collisions at 1A GeV and 2A GeV with HADES  

E-Print Network [OSTI]

We present the results of a study of charged pion production in 12C + 12C collisions at incident beam energies of 1A GeV and 2A GeV using the HADES spectrometer at GSI. The main emphasis of the HADES program is on the dielectron signal from the early phase of the collision. Here, however, we discuss the data with respect to the emission of charged hadrons, specifically the production of pi+- mesons, which are related to neutral pions representing a dominant contribution to the dielectron yield. We have performed the first large-angular range measurement of the distribution of pi+- mesons for the 12C + 12C collision system covering a fairly large rapidity interval. The pion yields, transverse-mass and angular distributions are compared with calculations done within a transport model, as well as with existing data from other experiments. The anisotropy of pion production is systematically analyzed.

Agakichiev, G

2009-01-01T23:59:59.000Z

275

Measurement of charged pions in 12C + 12C collisions at 1A GeV and 2A GeV with HADES  

E-Print Network [OSTI]

We present the results of a study of charged pion production in 12C + 12C collisions at incident beam energies of 1A GeV and 2A GeV using the HADES spectrometer at GSI. The main emphasis of the HADES program is on the dielectron signal from the early phase of the collision. Here, however, we discuss the data with respect to the emission of charged hadrons, specifically the production of pi+- mesons, which are related to neutral pions representing a dominant contribution to the dielectron yield. We have performed the first large-angular range measurement of the distribution of pi+- mesons for the 12C + 12C collision system covering a fairly large rapidity interval. The pion yields, transverse-mass and angular distributions are compared with calculations done within a transport model, as well as with existing data from other experiments. The anisotropy of pion production is systematically analyzed.

The HADES Collaboration; G. Agakishiev; C. Agodi; A. Balanda; G. Bellia; D. Belver; A. Belyaev; J. Bielcik; A. Blanco; A. Bortolotti; J. L. Boyard; P. Braun-Munzinger; P. Cabanelas; S. Chernenko; T. Christ; R. Coniglione; M. Destefanis; J. Diaz; F. Dohrmann; I. Duran; A. Dybczak; T. Eberl; L. Fabbietti; O. Fateev; R. Ferreira-Marques; P. Finocchiaro; P. Fonte; J. Friese; I. Froehlich; T. Galatyuk; J. A. Garzon; R. Gernhaeuser; A. Gil; C. Gilardi; M. Golubeva; D. Gonzalez-Diaz; E. Grosse; F. Guber; M. Heilmann; T. Heinz; T. Hennino; R. Holzmann; A. Ierusalimov; I. Iori; A. Ivashkin; M. Jurkovic; B. Kaempfer; K. Kanaki; T. Karavicheva; D. Kirschner; I. Koenig; W. Koenig; B. W. Kolb; R. Kotte; A. Kozuch; A. Krasa; F. Krizek; R. Kruecken; W. Kuehn; A. Kugler; A. Kurepin; J. Lamas-Valverde; S. Lang; J. S. Lange; K. Lapidus; L. Lopes; M. Lorenz; L. Maier; C. Maiolino; A. Mangiarotti; J. Marin; J. Markert; V. Metag; B. Michalska; J. Michel; E. Moriniere; J. Mousa; M. Muench; C. Muentz; L. Naumann; R. Novotny; J. Otwinowski; Y. C. Pachmayer; M. Palka; Y. Parpottas; V. Pechenov; O. Pechenova; T. Perez Cavalcanti; P. Piattelli; J. Pietraszko; V. Pospisil; W. Przygoda; B. Ramstein; A. Reshetin; M. Roy-Stephan; A. Rustamov; A. Sadovsky; B. Sailer; P. Salabura; P. Sapienza; A. Schmah; C. Schroeder; E. Schwab; R. S. Simon; Yu. G. Sobolev; S. Spataro; B. Spruck; H. Stroebele; J. Stroth; C. Sturm; M. Sudol; A. Tarantola; K. Teilab; P. Tlusty; M. Traxler; R. Trebacz; H. Tsertos; V. Wagner; M. Weber; M. Wisniowski; T. Wojcik; J. Wuestenfeld; S. Yurevich; Y. Zanevsky; P. Zhou; P. Zumbruch

2009-05-18T23:59:59.000Z

276

Options for an 11 GeV RF Beam Separator for the Jefferson Lab CEBAF Upgrade  

SciTech Connect (OSTI)

The CEBAF accelerator at Jefferson Lab has had, since first demonstration in 1996, the ability to deliver a 5-pass electron beam to experimental halls (A, B, and C) simultaneously. This capability was provided by a set of three, room temperature 499 MHz rf separators in the 5th pass beamline. The separator was two-rod, TEM mode type resonator, which has a high shunt impedance. The maximum rf power to deflect the 6 GeV beams was about 3.4kW. The 12 GeV baseline design does not preserve the capability of separating the 5th pass, 11 GeV beam for the 3 existing halls. Several options for restoring this capability, including extension of the present room temperature system or a new superconducting design in combination with magnetic systems, are under investigation and are presented.

Jean Delayen, Michael Spata, Haipeng Wang

2009-05-01T23:59:59.000Z

277

5-10 GeV Neutrinos from Gamma-Ray Burst Fireballs  

E-Print Network [OSTI]

A gamma-ray burst fireball is likely to contain an admixture of neutrons, in addition to protons, in essentially all progenitor scenarios. Inelastic collisions between differentially streaming protons and neutrons in the fireball produce muon neutrinos (antineutrinos) of ~ 10 GeV as well as electron neutrinos (antineutrinos) of ~ 5 GeV, which could produce ~ 7 events/year in kilometer cube detectors, if the neutron abundance is comparable to that of protons. Photons of ~ 10 GeV from pi-zero decay and ~ 100 MeV electron antineutrinos from neutron decay are also produced, but will be difficult to detect. Photons with energies < 1 MeV from shocks following neutron decay produce a characteristic signal which may be distinguishable from the proton-related MeV photons.

John N. Bahcall; Peter Meszaros

2000-06-23T23:59:59.000Z

278

The JLAB 3D program at 12 GeV (TMDs + GPDs)  

SciTech Connect (OSTI)

The Jefferson Lab CEBAF accelerator is undergoing an upgrade that will increase the beam energy up to 12 GeV. The three experimental Halls operating in the 6-GeV era are upgrading their detectors to adapt their performances to the new available kinematics, and a new Hall (D) is being built. The investigation of the three-dimensional nucleon structure both in the coordinate and in the momentum space represents an essential part of the 12-GeV physics program, and several proposals aiming at the extraction of related observables have been already approved in Hall A, B and C. In this proceedings, the focus of the JLab 3D program will be described, and a selection of proposals will be discussed.

Pisano, Silvia [Lab. Naz. Frascati, Frascati, Italy

2015-01-01T23:59:59.000Z

279

Florida Nuclear Profile - Turkey Point  

U.S. Energy Information Administration (EIA) Indexed Site

Turkey Point" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License expiration date"...

280

Interfacial tension between aluminum and chloride-fluoride melts  

SciTech Connect (OSTI)

Scrap and recycled aluminum have to be remelted and refined before being made into useful new products. This often involves melting the aluminum under a molten salt cover in order to prevent oxidation and to enhance the coalescence and recovery of the molten metal. A technique was developed for the measurement of the interfacial tension between liquid metals and molten salts at elevated temperatures. The technique is based on the measurement of the capillary depression occurring when a capillary, which is moved vertically down through the molten salt layer, passes through the salt/metal interface. The depression is measured by simultaneous video recording of the immersion height of the alumina capillary and the position of a liquid meniscus in a horizontal tube connected to the alumina capillary. The interfacial tension was measured for (a) aluminum and an equimolar melt of NaCl + KCl with several salt additions at 1,000 K, (b) aluminum and NaCl + NaF at 1,123 K, and (c) aluminum and NaCl + KF at 1,123 K. It was found that the interfacial tension decreases with increasing amount of NaF, increases with the increasing amount of MgCl{sub 2} additions, remains unchanged with AlF{sub 3} additions, and slightly decreases with the addition of MgF{sub 2} and Na{sub 3}AlF{sub 6}.

Silny, A. [Slovak Academy of Sciences, Bratislava (Slovakia). Inst. of Inorganic Chemistry] [Slovak Academy of Sciences, Bratislava (Slovakia). Inst. of Inorganic Chemistry; Utigard, T.A. [Univ. of Toronto, Ontario (Canada). Dept. of Metallurgy and Materials Science] [Univ. of Toronto, Ontario (Canada). Dept. of Metallurgy and Materials Science

1996-11-01T23:59:59.000Z

Note: This page contains sample records for the topic "gev melting point" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Electrical charging during the sharkskin instability of a metallocene melt  

E-Print Network [OSTI]

Flow instabilities are widely studied because of their economical and theoretical interest, however few results have been published about the polymer electrification during the extrusion. Nevertheless the generation of the electrical charges is characteristic of the interaction between the polymer melt and the die walls. In our study, the capillary extrusion of a metallocene polyethylene (mPE) through a tungsten carbide die is characterized through accurate electrical measurements thanks a Faraday pail. No significant charges are observed since the extrudate surface remains smooth. However, as soon as the sharkskin distortion appears, measurable charges are collected (around 5 10-8 C/m2). Higher level of charges are measured during the spurt or the gross-melt fracture (g.m.f) defects. This work is focused on the electrical charging during the sharkskin instability. The variation of the electrical charges versus the apparent wall shear stress is investigated for different die geometries. This curve exhibits a linear increase, followed by a sudden growth just before the onset of the spurt instability. This abrupt charging corresponds also to the end of the sharkskin instability. It is also well-known that wall slip appears just at the same time, with smaller velocity values than during spurt flow. Our results indicate that electrification could be a signature of the wall slip. We show also that the electrification curves can be shifted according to the time-temperature superposition principle, leading to the conclusion that molecular features of the polymer are also involved in this process.

S. Tonon; A. Lavernhe-Gerbier; F. Flores; A. Allal; C. Guerret-Piécourt

2007-07-18T23:59:59.000Z

282

Theoretical investigation of finite size effects at DNA melting  

E-Print Network [OSTI]

We investigated how the finiteness of the length of the sequence affects the phase transition that takes place at DNA melting temperature. For this purpose, we modified the Transfer Integral method to adapt it to the calculation of both extensive (partition function, entropy, specific heat, etc) and non-extensive (order parameter and correlation length) thermodynamic quantities of finite sequences with open boundary conditions, and applied the modified procedure to two different dynamical models. We showed that rounding of the transition clearly takes place when the length of the sequence is decreased. We also performed a finite-size scaling analysis of the two models and showed that the singular part of the free energy can indeed be expressed in terms of an homogeneous function. However, both the correlation length and the average separation between paired bases diverge at the melting transition, so that it is no longer clear to which of these two quantities the length of the system should be compared. Moreo...

Buyukdagli, S; Buyukdagli, Sahin; Joyeux, Marc

2007-01-01T23:59:59.000Z

283

Changing the PEP-II Center-of-Mass Energy Down to 10 GeV and up to 11 GeV  

SciTech Connect (OSTI)

PEP-II, the SLAC, LBNL, LLNL B-Factory was designed and optimized to run at the Upsilon 4S resonance (10.580 GeV with an 8.973 GeV e- beam and a 3.119 GeV e+ beam). The interaction region (IR) used permanent magnet dipoles to bring the beams into a head-on collision. The first focusing element for both beams was also a permanent magnet. The IR geometry, masking, beam orbits and beam pipe apertures were designed for 4S running. Even though PEP-II was optimized for the 4S, we successfully changed the center-of-mass energy (E{sub cm}) down to the Upsilon 2S resonance and completed an E{sub cm} scan from the 4S resonance up to 11.2 GeV. The luminosity throughout most of these changes remained near 1 x 10{sup 34} cm{sup -2}s{sup -1}. The E{sub cm} was changed by moving the energy of the high-energy beam (HEB). The beam energy differed by more than 20% which produced significantly different running conditions for the RF system. The energy loss per turn changed 2.5 times over this range. We describe how the beam energy was changed and discuss some of the consequences for the beam orbit in the interaction region. We also describe some of the RF issues that arose and how we solved them as the high-current HEB energy changed.

Sullivan, M; Bertsche, K.; Novokhatski, A.; Seeman, J.; Wienands, U.; /SLAC

2009-05-20T23:59:59.000Z

284

A model for the latent heat of melting in free standing metal nanoparticles  

SciTech Connect (OSTI)

Nanoparticles of many metals are known to exhibit scale dependent latent heats of melting. Analytical models for this phenomenon have so far failed to completely capture the observed phenomena. Here we present a thermodynamic analysis for the melting of metal nanoparticles in terms of their internal energy and a scale dependent surface tension proposed by Tolman. The resulting model predicts the scale dependence of the latent heat of melting and is confirmed using published data for tin and aluminum.

Shin, Jeong-Heon; Deinert, Mark R., E-mail: mdeinert@mail.utexas.edu [Department of Mechanical Engineering, The University of Texas at Austin, Austin, Texas 78715 (United States)

2014-04-28T23:59:59.000Z

285

Removing a sheet from the surface of a melt using elasticity and buoyancy  

DOE Patents [OSTI]

Embodiments related to sheet production are disclosed. A melt of a material is cooled to form a sheet of the material on the melt. The sheet is formed in a first region at a first sheet height. The sheet is translated to a second region such that it has a second sheet height higher than the first sheet height. The sheet is then separated from the melt. A seed wafer may be used to form the sheet.

Kellerman, Peter L.; Sun, Dawei; Helenbrook, Brian; Harvey, David S.

2014-07-01T23:59:59.000Z

286

Volatilization of Fission Products from Metallic Melts in the Melt-Dilute Treatment Technology Development for Al-Based DOE Spent Nuclear Fuels  

SciTech Connect (OSTI)

The melt-dilute treatment technology is being developed to facilitate the ultimate disposition of highly enriched Al-Base DOE spent nuclear fuels in a geologic repository such as that proposed for Yucca Mountain. Currently, approximately 28 MTHM is expected to be returned to the Savannah River Site from domestic and foreign research reactors. The melt-dilute treatment technology will melt the fuel assemblies to reduce their volume and alloys them with depleted uranium to isotopically dilute the 235U concentration. The resulting alloy is cast into a form for long term geologic repository storage. Benefits accrued from the melt-dilute process include the potential for significant volume reduction; reduced criticality potential, and proliferation concerns. A critical technology element in the development of the melt-dilute process is the development of offgas system requirements. The volatilization of radioactive species during the melting stage of the process primarily constitutes the offgas in this process. Several of the species present following irradiation of a fuel assembly have been shown to be volatile or semi-volatile under reactor core melt-down conditions. Some of the key species that have previously been studied are krypton, iodine, and cesium. All of these species have been shown to volatilize during melting experiments however, the degree to which they are released is highly dependent upon atmosphere, fuel burnup, temperature, and fuel composition. With this in mind an analytical and experimental program has been undertaken to assess the volatility and capture of species under the melt-dilute operating conditions.

Adams, T.

1999-11-18T23:59:59.000Z

287

Parameter studies of candidate lattices for the 1-2 GeV synchrotron radiation source  

SciTech Connect (OSTI)

This document discusses the implications of various collective phenomena on the required performance of candidate lattices for the LBL 1 to 2 GeV Synchrotron Radiation Source. The performance issues considered include bunch length, emittance growth, and beam lifetime. In addition, the possible use of the 1 to 2 GeV Synchrotron Radiation Source as a high-gain FEL is explored briefly. Generally, the differences between lattices are minor. It appears that the most significant feature distinguishing the various alternatives will be the beam lifetime.

Zisman, M.S.

1986-01-13T23:59:59.000Z

288

Charmonium in a hot medium: melting vs absorption  

E-Print Network [OSTI]

A charmonium produced in heavy ion collisions at RHIC and LHC propagates through a dense co-moving matter with a rather high relative momentum, =4-10GeV^2. In spite of Debye screening of the binding potential, the charmonium survives with a substantial probability, even if the c-cbar potential is completely screened in the hot environment. In addition, the color-exchange interaction with the medium is another important source of charmonium suppression. Attenuation in a hot medium caused by both effects is evaluated by means of the path integral technique, which requires ability of boosting the binding potential to a moving reference frame. This problem is solved in the approximation of small intrinsic velocities of the charmed quarks.

B. Z. Kopeliovich; I. K. Potashnikova; Ivan Schmidt; M. Siddikov

2014-08-11T23:59:59.000Z

289

E-Print Network 3.0 - aphanitic melt rocks Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

emplacement; (2) we... KIMBERLITE MELT CHEMISTRY Table 1: Jericho ... Source: Russell, Kelly - Department of Earth and Ocean Sciences, University of British Columbia Collection:...

290

Mobile Melt-Dilute Technology Development Project FY 2005 Test Report  

SciTech Connect (OSTI)

The adaptation of Melt-Dilute technology to a mobile and deployable platform progressed with the installation of the prototype air-cooled induction furnace and power generator in an ISO cargo container. Process equipment tests were conducted in FY’05 on two fronts: the melt container and its associated hardware and the mobile furnace and generator. Container design was validated through tests at elevated temperature and pressure, under vacuum, and subjected to impact. The Mobile Melt-Dilute (MMD) furnace and power source tests were completed per the plan. The tests provided information necessary to successfully melt and dilute HEU research reactor fuel assemblies.

David A. Sell; Donald Fisher

2006-01-01T23:59:59.000Z

291

E-Print Network 3.0 - activity glass melts Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Volume 85, pages 397406, 2000 0003-004X00030439705.00 397 Summary: : PHENOMENOLOGY OF OXIDATION IN FE-BEARING ALUMINOSILICATE MELTS AND GLASSES Chemical diffusion in...

292

Identified particle production, azimuthal anisotropy, and interferometry measurements in Au+Au collisions at sqrt sNN = 9.2 GeV  

SciTech Connect (OSTI)

We present the first measurements of identified hadron production, azimuthal anisotropy, and pion interferometry from Au+Au collisions below the nominal injection energy at the Relativistic Heavy-Ion Collider (RHIC) facility. The data were collected using the large acceptance STAR detector at {radical}s{sub NN} = 9.2 GeV from a test run of the collider in the year 2008. Midrapidity results on multiplicity density (dN/dy) in rapidity (y), average transverse momentum (), particle ratios, elliptic flow, and HBT radii are consistent with the corresponding results at similar {radical}s{sub NN} from fixed target experiments. Directed flow measurements are presented for both midrapidity and forward rapidity regions. Furthermore the collision centrality dependence of identified particle dN/dy, , and particle ratios are discussed. These results also demonstrate that the capabilities of the STAR detector, although optimized for {radical}s{sub NN} = 200 GeV, are suitable for the proposed QCD critical point search and exploration of the QCD phase diagram at RHIC.

STAR Collaboration; Abelev, Betty

2010-07-05T23:59:59.000Z

293

Baryon resonance production and dielectron decays in proton-proton collisions at 3.5 GeV  

E-Print Network [OSTI]

We report on baryon resonance production and decay in proton-proton collisions at a kinetic energy of $3.5$ GeV based on data measured with HADES. The exclusive channels $pp \\rightarrow np\\pi^{+}$ and $pp \\rightarrow pp\\pi^{0}$ as well as $pp \\rightarrow ppe^{+}e^{-}$ are studied simultaneously for the first time. The invariant masses and angular distributions of the pion-nucleon systems were studied and compared to simulations based on a resonance model ansatz assuming saturation of the pion production by an incoherent sum of baryonic resonances (R) with masses $<2~$ GeV/$c^2$. A very good description of the one-pion production is achieved allowing for an estimate of individual baryon-resonance production-cross-sections which are used as input to calculate the dielectron yields from $R\\rightarrow pe^+e^-$ decays. Two models of the resonance decays into dielectrons are examined assuming a point-like $RN \\gamma^*$ coupling and the dominance of the $\\rho$ meson. The results of model calculations are compared to data from the exclusive $ppe^{+}e^{-}$ channel by means of the dielectron and $pe^+e^-$ invariant mass distributions.

G. Agakishiev; A. Balanda; D. Belver; A. Belyaev; J. C. Berger-Chen; A. Blanco; M. Böhmer; J. L. Boyard; P. Cabanelas; S. Chernenko; A. Dybczak; E. Epple; L. Fabbietti; O. Fateev; P. Finocchiaro; P. Fonte; J. Friese; I. Fröhlich; T. Galatyuk; J. A. Garzón; R. Gernhäuser; K. Göbel; M. Golubeva; D. González-Díaz; F. Guber; M. Gumberidze; T. Heinz; T. Hennino; R. Holzmann; A. Ierusalimov; I. Iori; A. Ivashkin; M. Jurkovic; B. Kämpfer; T. Karavicheva; I. König; W. König; B. W. Kolb; G. Kornakov; R. Kotte; A. Krása; F. Krizek; R. Krücken; H. Kuc; W. Kühn; A. Kugler; A. Kurepin; V. Ladygin; R. Lalik; S. Lang; K. Lapidus; A. Lebedev; T. Liu; L. Lopes; M. Lorenz; L. Maier; A. Mangiarotti; J. Markert; V. Metag; B. Michalska; J. Michel; C. Müntz; L. Naumann; Y. C. Pachmayer; M. Pa\\lka; Y. Parpottas; V. Pechenov; O. Pechenova; J. Pietraszko; W. Przygoda; B. Ramstein; A. Reshetin; A. Rustamov; A. Sadovsky; P. Salabura; A. Schmah; E. Schwab; J. Siebenson; Yu. G. Sobolev; S. Spataro; B. Spruck; H. Ströbele; J. Stroth; C. Sturm; A. Tarantola; K. Teilab; P. Tlusty; M. Traxler; R. Trebacz; H. Tsertos; T. Vasiliev; V. Wagner; M. Weber; C. Wendisch; J. Wüstenfeld; S. Yurevich; Y. Zanevsky

2014-03-28T23:59:59.000Z

294

Nuclear stopping in Au+Au collisions at root s(NN) = 200 GeV  

E-Print Network [OSTI]

Transverse momentum spectra and rapidity densities, dN/dy, of protons, antiprotons, and net protons (p-(p) over bar) from central (0%-5%) Au+Au collisions at roots(NN)=200 GeV were measured with the BRAHMS experiment within ...

Ito, H.; Kim, E. J.; Murray, Michael J.; Norris, J.; Sanders, Stephen J.

2004-09-01T23:59:59.000Z

295

Forward Di-hadron Asymmetries from p + p at ?s = 200 GeV at STAR  

E-Print Network [OSTI]

to Interference Fragmentation Functions (IFF) and the Sivers effect. In 2008, RHIC dedicated a portion of the run to transversely polarized proton collisions at sqrt(s) = 200 GeV. STAR was equipped with a Foward Meson Spectrometer (FMS) and a Forward Time...

Drachenberg, James Lucas

2012-07-16T23:59:59.000Z

296

Fabrication and Testing Status of CEBAF 12 GeV Upgrade Cavities  

SciTech Connect (OSTI)

The 12 GeV upgrade of the Continuous Electron Beam Accelerator Facility (CEBAF) at Jefferson Laboratory (JLab) is under way. All cavities have been built by industry and are presently undergoing post-processing and final low and high power qualification before cryomodule assembly. The status is reported including fabrication-related experiences, observations and issues throughout production, post-processing and qualification.

Marhauser, F; Davis, G K; Forehand, D; Grenoble, C; Hogan, J; Overton, R B; Reilly, A V; Rimmer, R A

2011-09-01T23:59:59.000Z

297

Performance of First C100 Cryomodules for the CEBAF 12 GeV Upgrade Project  

SciTech Connect (OSTI)

The Thomas Jefferson National Accelerator Facility is currently engaged in the 12 GeV Upgrade Project. The goal of the project is a doubling of the available beam energy of CEBAF from 6 GeV to 12 GeV. This increase in beam energy will be due primarily to the construction and installation of ten "C100" cryomodules in the CEBAF linacs. The C100 cryomodules are designed to deliver an average 108 MV each from a string of eight seven-cell, electropolished superconducting RF cavities operating at an average accelerating gradient of 19.2 MV/m. The new cryomodules fit in the same available linac space as the original CEBAF 20 MV cryomodules. Cryomodule production started in September 2010. Initial acceptance testing started in June 2011. The first two C100 cryomodules were installed and tested from August 2011 through October 2011, and successfully operated during the last period of the CEBAF 6 GeV era, which ended in May 2012. This paper will present the results of acceptance testing and commissioning of the C100 style cryomodules to date.

Drury, Michael A.; Burrill, Andrew B.; Davis, G. Kirk; Hogan, John P.; King, Lawrence; Marhauser, Frank; Park, HyeKyoung; Preble, Joseph; Reece, Charles E.; Reilly, Anthony V.; Rimmer, Robert A.; Wang, Haipeng; Wiseman, Mark A.

2012-09-01T23:59:59.000Z

298

HIGH POWER TEST OF RF SEPARATOR FOR 12 GEV UPGRADE OF CEBAF AT JLAB  

SciTech Connect (OSTI)

CEBAF at JLab is in the process of an energy upgrade from 6 GeV to 12 GeV. The existing setup of the RF separator cavities in the 5th pass will not be adequate to extract the highest energy (11 GeV) beam to any two existing halls (A, B or C) while simultaneously delivering to the new hall D in the case of the proposed 12 GeV upgrade of the machine. To restore this capability, we are exploring the possibility of extension of existing normal conducting 499 MHz TEM-type rf separator cavities. Detailed numerical studies suggest that six 2-cell normal conducting structures meet the requirements; each 2-cell structure will require up to 4 kW RF input power in contrast with the current nominal operating power of 1.0 to 2.0 kW. A high power test of 4 kW confirms that the cavity meet the requirement.

S. Ahmed, M. Wissmann, J. Mammosser, C. Hovater, M. Spata, G. Krafft, J. Delayen

2012-07-01T23:59:59.000Z

299

The Jefferson Lab 12 GeV program on nucleon structure  

SciTech Connect (OSTI)

This slide-show presents the experiments planned at JLab with their 12 GeV upgrade. Experiments reported address: the use of hadron spectra as probes of QCD; the transverse structure of hadrons; the longitudinal structure of hadrons; the 3-dimensional structure of hadrons; hadrons and cold nuclear matter; and low-energy tests of the Standard Model and fundamental symmetries.

Burkert, Volker D. [JLAB

2013-10-01T23:59:59.000Z

300

Measurement of the Crab Flux Above 60 GeV with the CELESTE Cherenkov Telescope  

E-Print Network [OSTI]

We have converted the former solar electrical plant THEMIS (French Pyrenees) into an atmospheric Cherenkov detector called CELESTE, which records gamma rays above 30 GeV (7E24 Hz). Here we present the first sub-100 GeV detection by a ground based telescope of a gamma ray source, the Crab nebula, in the energy region between satellite measurements and imaging atmospheric Cherenkov telescopes. At our analysis threshold energy of 60 +/- 20 GeV we measure a gamma ray rate of 6.1 +/- 0.8 per minute. Allowing for 30% systematic uncertainties and a 30% error on the energy scale yields an integral gamma ray flux of I(E>60 GeV) = 6.2^{+5.3}_{-2.3} E-6 photons m^-2 s^-1. The analysis methods used to obtain the gamma ray signal from the raw data are detailed. In addition, we determine the upper limit for pulsed emission to be <12% of the Crab flux at the 99% confidence level, in the same energy range. Our result indicates that if the power law observed by EGRET is attenuated by a cutoff of form e^{-E/E_0} then E_0 &l...

De Naurois, Mathieu; Bazer-Bachi, R; Bergeret, H; Bruel, P; Cordier, A; Debiais, G; Dezalay, J P; Dumora, D; Durand, E; Eschstruth, P T; Espigat, P; Fabre, B; Fleury, P; Herault, N; Hrabovsky, M; Incerti, S; Le Gallou, R; Munz, F; Musquere, A; Olive, J F; Paré, E; Quebert, J; Rannot, R C; Reposeur, T; Rob, L; Roy, P; Sako, T; Schovanek, P; Smith, D A; Snabre, P; Volte, A

2002-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "gev melting point" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

A Letter of Intent to The J-PARC 50 GeV Proton Synchrotron  

E-Print Network [OSTI]

system would also be provide higher intensity muon beams for the PRISM project. The proposed studies are to be made using small numbers ( 1,000 total) of intense proton pulses from the 50-GeV ring at J of Materials for Vacuum Windows . . . . . . . . . . . . 9 1.3.2 Studies of Carbon Targets . . . . . . . . . . . . . . . . . . .

McDonald, Kirk

302

Search for GeV Emission from Gamma-Ray Bursts Using Milagro Scaler Data  

E-Print Network [OSTI]

Search for GeV Emission from Gamma-Ray Bursts Using Milagro Scaler Data D. A. Williams to search for high energy emission from a sample of 98 gamma-ray bursts (GRB) detected from January 2000: gamma-ray sources; gamma-ray bursts; astronomical observations: gamma-ray PACS: 98.70.Rz,95.85.Pw Air

California at Santa Cruz, University of

303

Azimuthal anisotropy in Au plus Au collisions at root S-NN=200 GeV  

E-Print Network [OSTI]

The results from the STAR Collaboration on directed flow (v(1)), elliptic flow (v(2)), and the fourth harmonic (v(4)) in the anisotropic azimuthal distribution of particles from Au+Au collisions at root s(NN) = 200 GeV are summarized and compared...

Adams, J.; Aggarwal, MM; Ahammed, Z.; Amonett, J.; Anderson, BD; Arkhipkin, D.; Averichev, GS; Badyal, SK; Bai, Y.; Balewski, J.; Barannikova, O.; Barnby, LS; Baudot, J.; Bekele, S.; Belaga, VV; Bellwied, R.; Berger, J.; Bezverkhny, BI; Bharadwaj, S.; Bhasin, A.; Bhati, AK; Bhatia, VS; Bichsel, H.; Bielcik, J.; Bielcikova, J.; Billmeier, A.; Bland, LC; Blyth, CO; Bonner, BE; Botje, M.; Boucham, A.; Brandin, AV; Bravar, A.; Bystersky, M.; Cadman, RV; Cai, XZ; Caines, H.; Sanchez, MCD; Castillo, J.; Catu, O.; Cebra, D.; Chajecki, Z.; Chaloupka, P.; Chattopadhyay, S.; Chen, HF; Chen, Y.; Cheng, J.; Cherney, M.; Chikanian, A.; Christie, W.; Coffin, JP; Cormier, TM; Cramer, JG; Crawford, HJ; Das, D.; Das, S.; de Moura, MM; Derevschikov, AA; Didenko, L.; Dietel, T.; Dogra, SM; Dong, WJ; Dong, X.; Draper, JE; Du, F.; Dubey, AK; Dunin, VB; Dunlop, JC; Mazumdar, MRD; Eckardt, V.; Edwards, WR; Efimov, LG; Emelianov, V.; Engelage, J.; Eppley, G.; Erazmus, B.; Estienne, M.; Fachini, P.; Faivre, J.; Fatemi, R.; Fedorisin, J.; Filimonov, K.; Filip, P.; Finch, E.; Fine, V.; Fisyak, Y.; Fomenko, K.; Fu, J.; Gagliardi, Carl A.; Gaillard, L.; Gans, J.; Ganti, MS; Gaudichet, L.; Guerts, F.; Ghazikhanian, V.; Ghosh, P.; Gonzalez, JE; Grachov, O.; Grebenyuk, O.; Grosnick, D.; Guertin, SM; Guo, Y.; Gupta, A.; Gutierrez, TD; Hallman, TJ; Hamed, A.; Hardtke, D.; Harris, JW; Heinz, M.; Henry, TW; Hepplemann, S.; Hippolyte, B.; Hirsch, A.; Hjort, E.; Hoffmann, GW; Huang, HZ; Huang, SL; Hughes, EW; Humanic, TJ; Igo, G.; Ishihara, A.; Jacobs, P.; Jacobs, WW; Janik, M.; Jiang, H.; Jones, PG; Judd, EG; Kabana, S.; Kang, K.; Kaplan, M.; Keane, D.; Khodyrev, VY; Kiryluk, J.; Kisiel, A.; Kislov, EM; Klay, J.; Klein, SR; Koetke, DD; Kollegger, T.; Kopytine, M.; Kotchenda, L.; Kramer, M.; Kravtsov, P.; Kravtsov, VI; Krueger, K.; Kuhn, C.; Kulikov, AI; Kumar, A.; Kutuev, RK; Kuznetsov, AA; Lamont, MAC; Landgraf, JM; Lange, S.; Laue, F.; Lauret, J.; Lebedev, A.; Lednicky, R.; Lehocka, S.; LeVine, MJ; Li, C.; Li, Q.; Li, Y.; Lin, G.; Lindenbaum, SJ; Lisa, MA; Liu, F.; Liu, L.; Liu, QJ; Liu, Z.; Ljubicic, T.; Llope, WJ; Long, H.; Langacre, RS; Lopez-Noriega, M.; Love, WA; Lu, Y.; Ludlam, T.; Lynn, D.; Ma, GL; Ma, JG; Ma, YG; Magestro, D.; Mahajan, S.; Mahapatra, DP; Majka, R.; Mangotra, LK; Manweiler, R.; Margetis, S.; Markert, C.; Martin, L.; Marx, JN; Matis, HS; Matulenko, YA; McClain, CJ; McShane, TS; Meissner, F.; Melnick, Y.; Meschanin, A.; Miller, ML; Minaev, NG; Mironov, C.; Mischke, A.; Mishra, DK; Mitchell, J.; Mohanty, B.; Molnar, L.; Moore, CF; Morozov, DA; Munhoz, MG; Nandi, BK; Nayak, SK; Nayak, TK; Nelson, JM; Netrakanti, PK; Nikitin, VA; Nogach, LV; Nurushev, SB; Odyniec, G.; Ogawa, A.; Okorokov, V.; Oldenburg, M.; Olson, D.; Pal, SK; Panebratsev, Y.; Panitkin, SY; Pavlinov, AI; Pawlak, T.; Peitzmann, T.; Perevoztchikov, V.; Perkins, C.; Peryt, W.; Petrov, VA; Phatak, SC; Picha, R.; Planinic, M.; Pluta, J.; Porile, N.; Porter, J.; Poskanzer, AM; Potekhin, M.; Potrebenikova, E.; Potukuchi, BVKS; Prindle, D.; Pruneau, C.; Putschke, J.; Rakness, G.; Raniwala, R.; Raniwala, S.; Ravel, O.; Ray, RL; Razin, SV; Reichhold, D.; Reid, JG; Renault, G.; Retiere, F.; Ridiger, A.; Ritter, HG; Roberts, JB; Rogachevskiy, OV; Romero, JL; Rose, A.; Roy, C.; Ruan, L.; Sahoo, R.; Sakrejda, I.; Salur, S.; Sandweiss, J.; Sarsour, M.; Savin, I.; Sazhin, PS; Schambach, J.; Scharenberg, RP; Schmitz, N.; Schweda, K.; Seger, J.; Seyboth, P.; Shahaliev, E.; Shao, M.; Shao, W.; Sharma, M.; Shen, WQ; Shestermanov, KE; Shimanskiy, SS; Sichtermann, E.; Simon, F.; Singaraju, RN; Skoro, G.; Smirnov, N.; Snellings, R.; Sood, G.; Sorensen, P.; Sowinski, J.; Speltz, J.; Spinka, H. M.; Srivastava, B.; Stadnik, A.; Stanislaus, TDS; Stock, R.; Stolpovsky, A.; Strikhanov, M.; Stringfellow, B.; Suaide, AAP; Sugarbaker, E.; Suire, C.; Sumbera, M.; Surrow, B.; Symons, TJM; de Toledo, AS; Szarwas, P.; Tai, A.; Takahashi, J.; Tang, AH; Tarnowsky, T.; Thein, D.; Thomas, JH; Timoshenko, S.; Tokarev, M.; Trainor, TA; Trentalange, S.; Tribble, Robert E.; Tsai, OD; Ulery, J.; Ullrich, T.; Underwood, DG; Urkinbaev, A.; van Buren, G.; van Leeuwen, M.; Molen, AMV; Varma, R.; Vasilevski, IM; Vasiliev, AN; Vernet, R.; Vigdor, SE; Viyogi, YP; Vokal, S.; Voloshin, SA; Vznuzdaev, M.; Waggoner, WT; Wang, F.; Wang, G.; Wang, G.; Wang, XL; Wang, Y.; Wang, Y.; Wang, ZM; Ward, H.; Watson, JW; Webb, JC; Wells, R.; Westfall, GD; Wetzler, A.; Whitten, C.; Wieman, H.; Wissink, SW; Witt, R.; Wood, J.; Wu, J.; Xu, N.; Xu, Z.; Xu, ZZ; Yamamoto, E.; Yepes, P.; Yurevich, VI; Zanevsky, YV; Zhang, H.; Zhang, WM; Zhang, ZP; Zoulkarneev, R.; Zoulkarneeva, Y.; Zubarev, AN; Braem, A.; Davenport, M.; Cataldo, GD; Bari, DD; Martinengo, P.; Nappi, E.; Paic, G.; Posa, E.; Puiz, F.; Schyns, E.; Star Collaboration; STAR-RICH Collaboration.

2005-01-01T23:59:59.000Z

304

Points  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Careerlumens_placard-green.epsEnergy1.pdfMarket |21, 2015 7:00AM to 10:30AMPlayPlug-inProject

305

VERITAS Observations of the Unidentified Point Source HESS J1943+213  

E-Print Network [OSTI]

The H.E.S.S. Galactic plane scan has revealed a large population of Galactic very high energy (VHE; E > 100 GeV) emitters. The majority of the galactic sources are extended and can typically be associated with pulsar wind nebulae (35%) and supernova remnants (21%), while some of the sources remain unidentified (31%). A much smaller fraction of point-like sources (5 in total, corresponding to 4%) are identified as gamma-ray binaries. Active galactic nuclei located behind the Galactic plane are also a potential source class. An active galaxy could be identified in the VHE regime by a point like extension, a high variability amplitude (up to a factor of 100) and a typically soft spectrum (due to absorption by the extra-galactic background light). Here we report on VERITAS observations of HESS J1943+213, an unidentified point source discovered to emit above 470 GeV during the extended H.E.S.S. Galactic plane scan. This source is thought to be a distant BL Lac object behind the Galactic plane and, though it exhibi...

,

2015-01-01T23:59:59.000Z

306

Oak Ridge Office SharePoint( MicrosoftSHarePointServer) PIA,...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

SharePoint( MicrosoftSHarePointServer) PIA, Information Resourses Management Division Oak Ridge Office SharePoint( MicrosoftSHarePointServer) PIA, Information Resourses Management...

307

Floating hot-melt extruded tablets for gastroretentive controlled drug release system  

E-Print Network [OSTI]

a gastric floating dosage form using the puff ability at the die of a twin-screw extruder. Wei et al. [21Floating hot-melt extruded tablets for gastroretentive controlled drug release system Mamoru Fukuda bicarbonate on the physicochemical properties of controlled release hot- melt extruded (HME) tablets

Peppas, Nicholas A.

308

The anisotropic free energy of the Lennard-Jones crystal-melt interface James R. Morris  

E-Print Network [OSTI]

The anisotropic free energy of the Lennard-Jones crystal-melt interface James R. Morris Metal; accepted 22 May 2003 We have calculated the free energy of the crystal-melt interface for the Lennard are in good agreement with previous calculations of the free energies, based upon simulations used

Song, Xueyu

309

IDENTIFICATION NUMBER: 4ME20 Abstract--Artificial welding of melt-textured YBCO blocks  

E-Print Network [OSTI]

1 IDENTIFICATION NUMBER: 4ME20 Abstract--Artificial welding of melt-textured YBCO blocks opens the superconducting quality of the welds, we have developed a Hall probe mapping system, able to record the local to characterize welded samples prepared with a new Ag induced surface melting joining technique. The magnetization

Politècnica de Catalunya, Universitat

310

Thermomechanical response of a semicrystalline polymer in the vicinity of the melting by using microcantilever technology  

SciTech Connect (OSTI)

The melting transition of a model semicrystalline polymer has been detected by the microcantilever deflection as a function of temperature. Deflection measurements were done on arrays of 8-cantilevers spin coated with the semicrystalline polymer: poly (propylene azelate). The melting of the polymer has been corroborated by grazing incidence wide angle x-ray scattering experiments performed with synchrotron radiation over a single cantilever.

Soccio, M.; Rueda, D. R.; García-Gutiérrez, M. C.; Ezquerra, T. A., E-mail: t.ezquerra@csic.es [Instituto de Estructura de la Materia, IEM-CSIC, Serrano 121, Madrid (Spain); Luongo, G. [Department of Materials, Imperial College London, London SW7 2AZ (United Kingdom); Esteves, C.; Salvador-Matar, A.; Ahumada, O. [MECWINS, Calle de Santiago Grisolía, No. 2, 28760 Tres Cantos, Madrid (Spain); Lotti, N.; Munari, A. [Dipartimento di Ingegneria Civile, Chimica, Ambientale e dei Materiali, Universitá di Bologna, Via Terracini 28, Bologna 40131 (Italy)

2014-06-23T23:59:59.000Z

311

DSC Evidence for Microstructure and Phase Transitions in Polyethylene Melts at High Temperatures  

E-Print Network [OSTI]

DSC Evidence for Microstructure and Phase Transitions in Polyethylene Melts at High Temperatures polyethylenes of types HDPE, LDPE, and LLDPE. DSC data were obtained for a range of heating and cooling rates previous rheology findings of order and high-temperature transitions in polyethylene melts. Introduction

Hussein, Ibnelwaleed A.

312

Proceedings of the conference on electron beam melting and refining - state of the art 1996  

SciTech Connect (OSTI)

This conference proceedings summarizes state-of-the-art work in the field of electron-beam melting and refining, as presented at the 1996 conference. Papers are grouped as follows: invited papers; tutorial papers; electron beam melting related fundamentals; electron beam evaporation papers; and miscellaneous papers. Separate abstracts have been submitted to the energy database for some contributions to this proceedings.

Bakish, R. [ed.

1996-12-31T23:59:59.000Z

313

Glass science tutorial: Lecture No. 4, commercial glass melting and associated air emission issues  

SciTech Connect (OSTI)

This document serves as a manual for a workshop on commercial glass melting and associated air emission issues. Areas covered include: An overview of the glass industry; Furnace design and construction practices; Melting furnace operation; Energy input methods and controls; Air legislation and regulations; Soda lime emission mechanisms; and, Post furnace emission controls. Supporting papers are also included.

Kruger, A.A.

1995-01-01T23:59:59.000Z

314

HOW IS THE GRANITE MELT FLOW NETWORK RECORDED IN MIGMATITES AND BY ASSOCIATED GRANITE PLUTONS?  

E-Print Network [OSTI]

1 HOW IS THE GRANITE MELT FLOW NETWORK RECORDED IN MIGMATITES AND BY ASSOCIATED GRANITE PLUTONS of granite magma during orogeny has important implications because melt transfer affects the thermal; Milord et al., 2001; Barraud et al., 2001a, 2001b). We also understand well how granite magma is emplaced

Solar, Gary S.

315

Generation of CO2-rich melts during basalt magma ascent and degassing  

E-Print Network [OSTI]

Generation of CO2-rich melts during basalt magma ascent and degassing Michel Pichavant . Ida Di magma degassing, continuous decompressions of volatile-bearing (2.7-3.8 wt% H2O, 600-1300 ppm CO2 to solubilities. In contrast, the rate of vesiculation controls the final melt CO2 concentration. High

Boyer, Edmond

316

Trace element partitioning between baddeleyite and carbonatite melt at high pressures and high temperatures  

E-Print Network [OSTI]

as the heavy rare earth elements (HREE) prefer to enter baddeleyite rather than carbonate melts (D>1), whereas the light rare earth elements (LREE) and other trace elements behave incompatibly (D in carbonatite melts. Baddeleyite is known to accumulate the high field strength elements (HFSE) and some rare

317

Trace element partitioning between apatite and silicate melts Stefan Prowatke a,1  

E-Print Network [OSTI]

). The experiments were conducted at pressures of 1.0 GPa and temperatures of 1250 °C. The rare earth elements (La polymerisation of the melt, apatite/melt partition coefficients for the rare earth elements increase for about occurring apatites contain large amounts of the rare earth elements and Sr, it has been well known

318

High field strength element/rare earth element fractionation during partial melting in the presence  

E-Print Network [OSTI]

High field strength element/rare earth element fractionation during partial melting in the presence the amount of fractionation between the two decreases. In contrast, the heavy rare earth element partition field strength element/rare earth element fractionation during partial melting in the presence of garnet

van Westrenen, Wim

319

Comparisons of numerical modelling of the Selective Laser Melting Laurent VAN BELLE1, 2, a  

E-Print Network [OSTI]

and arc additive layer manufacturing (WAALM), laser metal deposition (LMD), selective laser melting (SLM laser melting (SLM) first developed for rapid prototyping (RP) is now used for rapid manufacturing is based upon a double meshing with a multi step birth and death technique of manufactured part

Paris-Sud XI, Université de

320

Investigation of residual stresses induced during the selective laser melting process  

E-Print Network [OSTI]

jean-claude.boyer@insa-lyon.fr Keywords: Selective laser melting, layer additional method, Residual stresses. Abstract. The selective laser melting process (SLM), belonging to the family of additive manufacturing processes, can create complex geometry parts from a CAD file. Previously, only prototypes were

Paris-Sud XI, Université de

Note: This page contains sample records for the topic "gev melting point" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Sediment Melt-Migration Dynamics in Perennial Antarctic Lake Ice Steven M. Jepsen*  

E-Print Network [OSTI]

melting through laboratory ice at 22 uC in simulated summer conditions, with warmer ice producing faster boundaries was pronounced in laboratory ice warmer than 21 uC. This mechanism produced a flux of 0.1 g m22 hrSediment Melt-Migration Dynamics in Perennial Antarctic Lake Ice Steven M. Jepsen* Edward E. Adams

Priscu, John C.

322

Thirty-year history of glacier melting in the Nepal Himalayas Koji Fujita,1  

E-Print Network [OSTI]

Thirty-year history of glacier melting in the Nepal Himalayas Koji Fujita,1 Lonnie G. Thompson,2 of glacier melting in the Nepal Himalayas, J. Geophys. Res., 111, D03109, doi:10.1029/2005JD005894. 1. Introduction [2] Rapid shrinkage of glaciers in the Nepal Himalayas has been observed during recent decades [e

Howat, Ian M.

323

NOTES AND CORRESPONDENCE Surface Melting over Ice Shelves and Ice Sheets as Assessed from Modeled  

E-Print Network [OSTI]

NOTES AND CORRESPONDENCE Surface Melting over Ice Shelves and Ice Sheets as Assessed from Modeled of ice shelves and their progenitor ice sheets. To explore the magnitude of surface melt occurring over) and most of the Greenland Ice Sheet (GIS) by the year 2500. Capping CO2 concentrations at present

Meissner, Katrin Juliane

324

Molecular H2O as carrier for oxygen diffusion in hydrous silicate melts  

E-Print Network [OSTI]

Molecular H2O as carrier for oxygen diffusion in hydrous silicate melts H. Behrens a,, Y. Zhang b water is known to dramatically enhance oxygen diffusion in silicate melts, glasses and minerals in the diffusion of water and oxygen in silicates, Earth Planet. Sci. Lett., 103 (1991) 228­240.]. Here we report

Zhang, Youxue

325

Electrical structure beneath the northern MELT line on the East Pacific Rise at 15450  

E-Print Network [OSTI]

Electrical structure beneath the northern MELT line on the East Pacific Rise at 15°450 S Kiyoshi] The electrical structure of the upper mantle beneath the East Pacific Rise (EPR) at 15°450 S is imaged structure beneath the northern MELT line on the East Pacific Rise at 15°450 S, Geophys. Res. Lett., 33, L

Brest, Université de

326

Rare earth element partitioning between titanite and silicate melts: Henry's law revisited  

E-Print Network [OSTI]

Rare earth element partitioning between titanite and silicate melts: Henry's law revisited Stefan earth elements (REE) between titanite and a range of different silicate melts. Our results show. For geochemical modelling of magmatic processes involving titanite, and indeed other accessory phases

327

Has the QCD Critical Point Been Signaled by Observations at the BNL Relativistic Heavy Ion Collider?  

SciTech Connect (OSTI)

The shear viscosity to entropy ratio ({eta}/s) is estimated for the hot and dense QCD matter created in Au+Au collisions at BNL Relativistic Heavy Ion Collider ({radical}(s{sub NN})=200 GeV). A very low value is found; {eta}/s{approx}0.1, which is close to the conjectured lower bound (1/4{pi}). It is argued that such a low value is indicative of thermodynamic trajectories for the decaying matter which lie close to the QCD critical end point.

Lacey, Roy A.; Ajitanand, N. N.; Alexander, J. M.; Chung, P.; Holzmann, W. G.; Issah, M.; Taranenko, A. [Department of Chemistry, State University of New York at Stony Brook, Stony Brook, New York 11794-3400 (United States); Danielewicz, P. [National Superconducting Cyclotron Laboratory and Department of Physics and Astronomy, Michigan State University, East Lansing, Michigan 48824-1321 (United States); Stoecker, Horst [Institut fuer Theoretische Physik, Johann Wolfgang Goethe-Universitaet D60438 Frankfurt (Germany)

2007-03-02T23:59:59.000Z

328

Has the QCD Critical Point been Signaled by Observations at RHIC ?  

E-Print Network [OSTI]

The shear viscosity to entropy ratio ($\\eta/s$) is estimated for the hot and dense QCD matter created in Au+Au collisions at RHIC ($\\sqrt{s_{NN}}=200$ GeV). A very low value is found $\\eta/s \\sim 0.1$, which is close to the absolute lower bound ($1/4\\pi$). It is argued that such a low value is indicative of thermodynamic trajectories for the decaying matter which lie close to the QCD critical end point.

Lacey, R A; Alexander, J M; Chung, P; Danielewicz, P; Holzmann, W G; Issah, M; Stöcker, H; Taranenko, A; Lacey, Roy A.; Stocker, Horst

2006-01-01T23:59:59.000Z

329

Has the QCD Critical Point been Signaled by Observations at RHIC ?  

E-Print Network [OSTI]

The shear viscosity to entropy ratio ($\\eta/s$) is estimated for the hot and dense QCD matter created in Au+Au collisions at RHIC ($\\sqrt{s_{NN}}=200$ GeV). A very low value is found $\\eta/s \\sim 0.1$, which is close to the conjectured lower bound ($1/4\\pi$). It is argued that such a low value is indicative of thermodynamic trajectories for the decaying matter which lie close to the QCD critical end point.

Roy A. Lacey; N. N. Ajitanand; J. M. Alexander; P. Chung; W. G. Holzmann; M. Issah; A. Taranenko; P. Danielewicz; Horst Stocker

2006-09-18T23:59:59.000Z

330

MEASUREMENT OF THE SHOCK-HEATED MELT CURVE OF LEAD USING PYROMETRY AND REFLECTOMETRY  

SciTech Connect (OSTI)

Data on the high-pressure melting temperatures of metals is of great interest in several fields of physics including geophysics. Measuring melt curves is difficult but can be performed in static experiments (with laser-heated diamond-anvil cells for instance) or dynamically (i.e., using shock experiments). However, at the present time, both experimental and theoretical results for the melt curve of lead are at too much variance to be considered definitive. As a result, we decided to perform a series of shock experiments designed to provide a measurement of the melt curve of lead up to about 50 GPa in pressure. At the same time, we developed and fielded a new reflectivity diagnostic, using it to make measurements on tin. The results show that the melt curve of lead is somewhat higher than the one previously obtained with static compression and heating techniques.

D. Partouche-Sebban and J. L. Pelissier, Commissariat a` l'Energie Atomique,; F. G. Abeyta, Los Alamos National Laboratory; W. W. Anderson, Los Alamos National Laboratory; M. E. Byers, Los Alamos National Laboratory; D. Dennis-Koller, Los Alamos National Laboratory; J. S. Esparza, Los Alamos National Laboratory; S. D. Borror, Bechtel Nevada; C. A. Kruschwitz, Bechtel Nevada

2004-01-01T23:59:59.000Z

331

Phase field simulation of kinetic superheating and melting of aluminum nanolayer irradiated by pico- and femtosecond laser  

SciTech Connect (OSTI)

Two melting mechanisms are reproduced and quantified for superheating and melting of Al nanolayer irradiated by pico- and femtosecond laser using the advanced phase-field approach coupled with mechanics and a two-temperature model. At heating rates Q?79.04 K/ps induced by picosecond laser, two-sided barrierless surface melting forms two solid-melt interfaces, which meet near the center of a sample. The temperature for surface melting is a linear function, and for complete melting it is a cubic function, of logQ. At Q?300 K/ps induced by femtosecond laser, barrierless and homogeneous melting (without nucleation) at the sample center occurs faster than due to interface propagation. Good agreement with experimental melting time was achieved in a range of 0.95?Q?1290 K/ps without fitting of material parameters.

Seok Hwang, Yong [Department of Aerospace Engineering, Iowa State University, Ames, Iowa 50011 (United States)] [Department of Aerospace Engineering, Iowa State University, Ames, Iowa 50011 (United States); Levitas, Valery I. [Departments of Aerospace Engineering, Mechanical Engineering, and Material Science and Engineering, Iowa State University, Ames, Iowa 50011 (United States)] [Departments of Aerospace Engineering, Mechanical Engineering, and Material Science and Engineering, Iowa State University, Ames, Iowa 50011 (United States)

2013-12-23T23:59:59.000Z

332

Eddy-resolving simulations of the Fimbul Ice Shelf cavity circulation: Basal melting and exchange with open ocean  

E-Print Network [OSTI]

that govern the heat supply to ice shelves in the Eastern Weddell Sea. The simulations confirm the low melt

Lilly, Jonathan

333

An experimental and numerical study of surface tension-driven melt flow R.A. Parsons a,, F. Nimmo a  

E-Print Network [OSTI]

An experimental and numerical study of surface tension-driven melt flow R.A. Parsons a,, F. Nimmo 2007 Abstract To determine the role of surface tension-driven melt migration in planetary bodies, we, surface tension causes the melt to relax back to a homogeneous distribution. Samples composed of 76 vol

Nimmo, Francis

334

Numerical and experimental investigation of melting with internal heat generation within cylindrical enclosures  

SciTech Connect (OSTI)

There have been significant efforts by the heat transfer community to investigate the melting phenomenon of materials. These efforts have included the analytical development of equations to represent melting, numerical development of computer codes to assist in modeling the phenomena, and collection of experimental data. The understanding of the melting phenomenon has application in several areas of interest, for example, the melting of a Phase Change Material (PCM) used as a thermal storage medium as well as the melting of the fuel bundle in a nuclear power plant during an accident scenario. The objective of this research is two-fold. First a numerical investigation, using computational fluid dynamics (CFD), of melting with internal heat generation for a vertical cylindrical geometry is presented. Second, to the best of authors knowledge, there are very limited number of engineering experimental results available for the case of melting with Internal Heat Generation (IHG). An experiment was performed to produce such data using resistive, or Joule, heating as the IHG mechanism. The numerical results are compared against the experimental results and showed favorable correlation. Uncertainties in the numerical and experimental analysis are discussed. Based on the numerical and experimental analysis, recommendations are made for future work.

Amber Shrivastava; Brian Williams; Ali S. Siahpush; Bruce Savage; John Crepeau

2014-06-01T23:59:59.000Z

335

Hybrid Dynamic Density Functional Theory for Polymer Melts and Blends  

E-Print Network [OSTI]

We propose a high-speed and accurate hybrid dynamic density functional theory for the computer simulations of the phase separation processes of polymer melts and blends. The proposed theory is a combination of the dynamic self-consistent field (SCF) theory and a time-dependent Ginzburg-Landau type theory with the random phase approximation (GRPA). The SCF theory is known to be accurate in evaluating the free energy of the polymer systems in both weak and strong segregation regions although it has a disadvantage of the requirement of a considerable amount of computational cost. On the other hand, the GRPA theory has an advantage of much smaller amount of required computational cost than the SCF theory while its applicability is limited to the weak segregation region. To make the accuracy of the SCF theory and the high-performance of the GRPA theory compatible, we adjust the chemical potential of the GRPA theory by using the SCF theory every constant time steps in the dynamic simulations. The performance of the GRPA and the hybrid theories is tested by using several systems composed of an A/B homopolymer, an AB diblock copolymer, or an ABC triblock copolymer. Using the hybrid theory, we succeeded in reproducing the metastable complex phase-separated domain structures of an ABC triblock copolymer observed by experiments.

Takashi Honda; Toshihiro Kawakatsu

2006-09-05T23:59:59.000Z

336

Redox reaction and foaming in nuclear waste glass melting  

SciTech Connect (OSTI)

This document was prepared by Pacific Northwest Laboratory (PNL) and is an attempt to analyze and estimate the effects of feed composition variables and reducing agent variables on the expected chemistry of reactions occurring in the cold cap and in the glass melt in the nuclear waste glass Slurry-fed, joule-heated melters as they might affect foaming during the glass-making process. Numerous redox reactions of waste glass components and potential feed additives, and the effects of other feed variables on these reactions are reviewed with regard to their potential effect on glass foaming. A major emphasis of this report is to examine the potential positive or negative aspects of adjusting feed with formic acid as opposed to other feed modification techniques including but not limited to use of other reducing agents. Feed modification techniques other than the use of reductants that should influence foaming behavior include control of glass melter feed pH through use of nitric acid. They also include partial replacement of sodium salts by lithium salts. This latter action (b) apparently lowers glass viscosity and raises surface tension. This replacement should decrease foaming by decreasing foam stability.

Ryan, J.L.

1995-08-01T23:59:59.000Z

337

Melt Infiltrated Ceramic Composites (Hipercomp) for Gas Turbine Engine Applications  

SciTech Connect (OSTI)

This report covers work performed under the Continuous Fiber Ceramic Composites (CFCC) program by GE Global Research and its partners from 1994 through 2005. The processing of prepreg-derived, melt infiltrated (MI) composite systems based on monofilament and multifilament tow SiC fibers is described. Extensive mechanical and environmental exposure characterizations were performed on these systems, as well as on competing Ceramic Matrix Composite (CMC) systems. Although current monofilament SiC fibers have inherent oxidative stability limitations due to their carbon surface coatings, the MI CMC system based on multifilament tow (Hi-Nicalon ) proved to have excellent mechanical, thermal and time-dependent properties. The materials database generated from the material testing was used to design turbine hot gas path components, namely the shroud and combustor liner, utilizing the CMC materials. The feasibility of using such MI CMC materials in gas turbine engines was demonstrated via combustion rig testing of turbine shrouds and combustor liners, and through field engine tests of shrouds in a 2MW engine for >1000 hours. A unique combustion test facility was also developed that allowed coupons of the CMC materials to be exposed to high-pressure, high-velocity combustion gas environments for times up to {approx}4000 hours.

Gregory Corman; Krishan Luthra

2005-09-30T23:59:59.000Z

338

SRF CAVITY PERFORMANCE OVERVIEW FOR THE 12 GeV UPGRADE  

SciTech Connect (OSTI)

The CEBAF accelerator, a recirculating CW electron accelerator that is currently operating at Jefferson Laboratory, is in the process of having 10 new cryomodules installed to allow for the maximum beam energy to be increased from 6 GeV to 12 GeV. This upgrade required the fabrication, processing and RF qualification of 80, seven cell elliptical SRF cavities, a process that was completed in February 2012. The RF performance achieve in the vertical testing dewars has exceeded the design specification by {approx}25% and is a testament to the cavity design and processing cycle that has been implemented. This paper will provide a summary of the cavity RF performance in the vertical tests, as well as review the overall cavity processing cycle and duration for the project.

A. Burrill, G.K. Davis, C.E. Reece, A.V. Reilly, M. Stirbet

2012-07-01T23:59:59.000Z

339

An overview of the planned Jefferson Lab 12-GeV helium refrigerator upgrade  

SciTech Connect (OSTI)

In February 2006, Jefferson Laboratory in Newport News, VA, received â Critical Decision 1â (CD-1) approval to proceed with the engineering and design of the long anticipated upgrade to increase the beam energy of CEBAF, the Continuous Electron Beam Accelerator Facility, from 6 GeV to 12 GeV. This will require the installation of 10 new cryomodules, and additional 2.1-K refrigeration beyond the available 4600 W to handle the increased heat loads. Additionally, a new experimental hall, Hall D, is planned that will require the installation of a small, available refrigerator. This paper will present an overview of the integration of the new proposed refrigeration system into CEBAF, the installation of the available refrigerator for Hall D, and includes planned work scope, current schedule plans and project status.

Arenius, Dana; Creel, Jonathan; Dixon, Kelly; Ganni, Venkatarao; Knudsen, Peter; Sidi-Yekhlef, Ahmed; Wright, Mathew

2008-03-01T23:59:59.000Z

340

The MAGIC Telescope Project for Gamma Astronomy above 10 GeV  

E-Print Network [OSTI]

A project to construct a 17 m diameter imaging air Cherenkov telescope, called the MAGIC Telescope, is described. The aim of the project is to close the observation gap in the gamma-ray sky extending from 10 GeV as the highest energy measurable by space-borne experiments to 300 GeV, the lowest energy measurable by the current generation of ground-based Cherenkov telescopes. The MAGIC Telescope will incorporate several new features in order to reach the very low energy threshold. At the same time the new technology will yield an improvement in sensitivity in the energy region where current Cherenkov telescopes are measuring by about an order of magnitude.

N. Magnussen

1998-05-14T23:59:59.000Z

Note: This page contains sample records for the topic "gev melting point" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

GeV electrons due to a transition from laser wakefield acceleration to plasma wakefield acceleration  

E-Print Network [OSTI]

We show through experiments that a transition from laser wakefield acceleration (LWFA) regime to a plasma wakefield acceleration (PWFA) regime can drive electrons up to energies close to the GeV level. Initially, the acceleration mechanism is dominated by the bubble created by the laser in the nonlinear regime of LWFA, leading to an injection of a large number of electrons. After propagation beyond the depletion length, leading to a depletion of the laser pulse, whose transverse ponderomotive force is not able to sustain the bubble anymore, the high energy dense bunch of electrons propagating inside bubble will drive its own wakefield by a PWFA regime. This wakefield will be able to trap and accelerate a population of electrons up to the GeV level during this second stage. Three dimensional (3D) particle-in-cell (PIC) simulations support this analysis, and confirm the scenario.

P. E. Masson-Laborde; M. Z. Mo; A. Ali; S. Fourmaux; P. Lassonde; J. C. Kieffer; W. Rozmus; D. Teychenne; R. Fedosejevs

2014-08-06T23:59:59.000Z

342

Study of the dp-elastic scattering at 2 GeV  

E-Print Network [OSTI]

The results on the measurements of dp-elastic scattering cross section at the energy 2 GeV at Internal Target Station at the Nuclotron JINR are reported. The data were obtained for the angular range of 70-107 deg. in the c.m.s. by using CH2 and C targets. The results are compared with the existing data and with the theoretical calculations based on the relativistic multiple scattering theory.

Terekhin, A A; Isupov, A Yu; Khrenov, A N; Kurilkin, A K; Kurilkin, P K; Ladygin, V P; Ladygina, N B; Piyadin, S M; Reznikov, S G; Vnukov, I E

2015-01-01T23:59:59.000Z

343

Experimental study of radium partitioning between anorthite and melt at 1 atm  

SciTech Connect (OSTI)

We present the first experimental radium mineral/melt partitioning data, specifically between anorthite and a CMAS melt at atmospheric pressure. Ion microprobe measurement of coexisting anorthite and glass phases produces a molar D{sub Ra} = 0.040 {+-} 0.006 and D{sub Ra}/D{sub Ba} = 0.23 {+-} 0.05 at 1400 C. Our results indicate that lattice strain partitioning models fit the divalent (Ca, Sr, Ba, Ra) partition coefficient data of this study well, supporting previous work on crustal melting and magma chamber dynamics that has relied on such models to approximate radium partitioning behavior in the absence of experimentally determined values.

Miller, S; Burnett, D; Asimow, P; Phinney, D; Hutcheon, I

2007-03-08T23:59:59.000Z

344

End points for facility deactivation  

SciTech Connect (OSTI)

DOE`s Office of Nuclear Material and Facility Stabilization mission includes deactivating surplus nuclear facilities. Each deactivation project requires a systematic and explicit specification of the conditions to be established. End Point methods for doing so have been field developed and implemented. These methods have worked well and are being made available throughout the DOE establishment.

Szilagyi, A.P. [Dept. of Energy, Germantown, MD (United States); Negin, C.A. [Oak Technologies, Washington Grove, MD (United States); Stefanski, L.D. [Westinghouse Hanford, Richland, WA (United States)

1996-12-31T23:59:59.000Z

345

Bar Mar field Point field  

E-Print Network [OSTI]

Bone Spring Seay Nance Regional Study (Cimarex Energy) West Texas (Various Counties) West Texas Yates Seay Nance Regional Study (Lynx Production) West Texas (Various Counties) #12;Bar Mar field Umbrella Point field Nuare field East Texas field Copano Bay Bar Mar field Umbrella

Texas at Austin, University of

346

CenterPoint November 2009  

E-Print Network [OSTI]

CenterPoint November 2009 The Center for Academic Enrichment & Outreach Newsletter ONLINE ARTICLES (which is housed in the Center for Academic Enrichment and Outreach (CAEO)) assisted parents is committed to working with families and students to provide challenging academic classes, as well as social

Hemmers, Oliver

347

GeV Gamma-ray Flux Upper Limits from Clusters of Galaxies  

E-Print Network [OSTI]

The detection of diffuse radio emission associated with clusters of galaxies indicates populations of relativistic leptons infusing the intracluster medium. Those electrons and positrons are either injected into and accelerated directly in the intracluster medium, or produced as secondary pairs by cosmic-ray ions scattering on ambient protons. Radiation mechanisms involving the energetic leptons together with decay of neutral pions produced by hadronic interactions have the potential to produce abundant GeV photons. Here, we report on the search for GeV emission from clusters of galaxies using data collected by the Large Area Telescope (LAT) on the Fermi Gamma-ray Space Telescope (Fermi) from August 2008 to February 2010. Thirty-three galaxy clusters have been selected according to their proximity and high mass, X-ray flux and temperature, and indications of non-thermal activity for this study. We report upper limits on the photon flux in the range 0.2-100 GeV towards a sample of observed clusters (typical va...

al., M Ackermann et

2010-01-01T23:59:59.000Z

348

Polarization experiments with hadronic and electromagnetic probes. [2. 1 and 4. 4 GeV  

SciTech Connect (OSTI)

The following research activities were carried out during the past year Calibration of focal plane polarimeter POMME up to 2.4 GeV at Saturne National Laboratory (LNS) in Saclay. Measurement of tensor analyzing power T[sub 20] and polarization transfer [kappa][sub 0] at Saturne up to 2.1 GeV in elastic backward dp scattering [rvec d]p [yields] [rvec p]d. Measurement of tensor analyzing power T[sub 20] at synchrophasotron in Dubha up to 4.4 Gev in elastic backward dp scattering [rvec d]p [yields] pd. Resubmission of conditionally Approved G[sub EP] proposal 89-14 at CEBAF. Start construction of focal plane polarimeter (FPP) for CEBAF hall A hadron spectrometer. The planned work for the next year includes: Construction of FPP for CEBAF hall A hadron spectrometer; measurement of polarization transfer [kappa][sub 0] and tensor analyzing power T[sub 20] in elastic backward dp scattering at Saturne; measurements of tensor analyzing power in [sup 1]H([sup 6]Li,d)X, [sup 1]H([sup 6]Li,[alpha])X, [sup 1]H([sup 6]Li,t)X and [sup 1]H([sup 6]Li,[sup 3]He)X reactions at Saturne; and study of polarization transfer in [sup 2]H([rvec e],e[prime][rvec p])n reaction at Bates.

Punjabi, V.

1993-03-30T23:59:59.000Z

349

The BErkeley Lab Laser Accelerator (BELLA): A 10 GeV Laser Plasma Accelerator  

SciTech Connect (OSTI)

An overview is presented of the design of a 10 GeV laser plasma accelerator (LPA) that will be driven by a PW-class laser system and of the BELLA Project, which has as its primary goal to build and install the required Ti:sapphire laser system for the acceleration experiments. The basic design of the 10 GeV stage aims at operation in the quasi-linear regime, where the laser excited wakes are largely sinusoidal and offer the possibility of accelerating both electrons and positrons. Simulations show that a 10 GeV electron beam can be generated in a meter scale plasma channel guided LPA operating at a density of about 1017 cm-3 and powered by laser pulses containing 30-40 J of energy in a 50- 200 fs duration pulse, focused to a spotsize of 50-100 micron. The lay-out of the facility and laser system will be presented as well as the progress on building the facility.

Leemans, W.P.; Duarte, R.; Esarey, E.; Fournier, S.; Geddes, C.G.R.; Lockhart, D.; Schroeder, C.B.; Toth, C.; Vay, J.-L.; Zimmermann, S.

2010-06-01T23:59:59.000Z

350

ON THE ORIGIN OF > 10 GeV PHOTONS IN GAMMA-RAY BURST AFTERGLOWS  

SciTech Connect (OSTI)

Fermi/LAT has detected long-lasting high-energy photons (>100 MeV) from gamma-ray bursts (GRBs), with the highest energy photons reaching about 100 GeV. One proposed scenario is that they are produced by high-energy electrons accelerated in GRB forward shocks via synchrotron radiation. We study the maximum synchrotron photon energy in this scenario, considering the properties of the microturbulence magnetic fields behind the shock, as revealed by recent particle-in-cell simulations and theoretical analyses of relativistic collisionless shocks. Due to the small-scale nature of the microturbulent magnetic field, the Bohm acceleration approximation, in which the scattering mean free path is equal to the particle Larmor radius, breaks down at such high energies. This effect leads to a typical maximum synchrotron photon of a few GeV at 100 s after the burst and this maximum synchrotron photon energy decreases quickly with time. We show that the fast decrease of the maximum synchrotron photon energy leads to a fast decay of the synchrotron flux. The 10-100 GeV photons detected after the prompt phase cannot be produced by the synchrotron mechanism. They could originate from the synchrotron self-Compton emission of the early afterglow if the circumburst density is sufficiently large, or from the external inverse Compton process in the presence of central X-ray emission, such as X-ray flares and prompt high-latitude X-ray emission.

Wang Xiangyu; Liu Ruoyu [School of Astronomy and Space Science, Nanjing University, Nanjing 210093 (China); Lemoine, Martin [Institut d'Astrophysique de paris, CNRS, UPMC, 98 bis boulevard Arago, F-75014 Paris (France)

2013-07-10T23:59:59.000Z

351

HBT puzzle at RHIC AMPT model with String Melting  

E-Print Network [OSTI]

/RsideSmall radii Small duration time dt by Stephen Johnson at RWW02 One way out: Hydro Softest point in EOS Measured extensively in heavy ion collisions reasonably described by models (hydro-ph/01120062 recent hydro studies: #12;HIJING energy in strings(soft) and minijet partons(hard) ZPC (Zhang

Lin, Zi-wei

352

System-size and centrality dependence of charged kaon and pion production in nucleus-nucleus collisions at 40A GeV and158A GeV beam energy  

E-Print Network [OSTI]

Measurements of charged pion and kaon production are presented in centrality selected Pb+Pb collisions at 40A GeV and 158A GeV beam energy as well as in semi-central C+C and Si+Si interactions at 40A GeV. Transverse mass spectra, rapidity spectra and total yields are determined as a function of centrality. The system-size and centrality dependence of relative strangeness production in nucleus-nucleus collisions at 40A GeV and 158A GeV beam energy are derived from the data presented here and published data for C+C and Si+Si collisions at 158A GeV beam energy. At both energies a steep increase with centrality is observed for small systems followed by a weak rise or even saturation for higher centralities. This behavior is compared to calculations using transport models (UrQMD and HSD), a percolation model and the core-corona approach.

T. Anticic; B. Baatar; D. Barna; J. Bartke; H. Beck; L. Betev; H. Bialkowska; C. Blume; M. Bogusz; B. Boimska; J. Book; M. Botje; P. Buncic; T. Cetner; P. Christakoglou; P. Chung; O. Chvala; J. G. Cramer; P. Dinkelaker; V. Eckardt; Z. Fodor; P. Foka; V. Friese; M. Gazdzicki; K. Grebieszkow; C. Höhne; K. Kadija; A. Karev; M. Kliemant; V. I. Kolesnikov; T. Kollegger; M. Kowalski; D. Kresan; A. Laszlo; R. Lacey; M. van Leeuwen; B. Lungwitz; M. Mackowiak; M. Makariev; A. I. Malakhov; M. Mateev; G. L. Melkumov; M. Mitrovski; St. Mrowczynski; V. Nicolic; G. Palla; A. D. Panagiotou; W. Peryt; J. Pluta; D. Prindle; F. Pühlhofer; R. Renfordt; C. Roland; G. Roland; M. Rybczynski; 1 A. Rybicki; A. Sandoval; N. Schmitz; T. Schuster; P. Seyboth; F. Sikler; E. Skrzypczak; M. Slodkowski; G. Stefanek; R. Stock; H. Ströbele; T. Susa; M. Szuba; M. Utvic; D. Varga; M. Vassiliou; G. I. Veres; G. Vesztergombi; D. Vranic; Z. Wlodarczyk; A. Wojtaszek-Szwarc

2012-07-02T23:59:59.000Z

353

Pp and p-barp elastic scattering at 53 GeV and the Chou-Yang model  

SciTech Connect (OSTI)

We analyze the pp and p-barp elastic scattering at ..sqrt..s = 53 GeV by means of the Chou-Yang model under the assumption that the hadronic form factors are energy-dependent.

Bellandi F., J.; Brunetto, S.Q.; Covolan, R.J.M.; Menon, M.J.; Pimentel, B.M.; Padua, A.B.

1987-03-01T23:59:59.000Z

354

Precision measurements of $g_1$ of the proton and the deuteron with 6 GeV electrons  

E-Print Network [OSTI]

The inclusive polarized structure functions of the proton and deuteron, g1p and g1d, were measured with high statistical precision using polarized 6 GeV electrons incident on a polarized ammonia target in Hall B at Jefferson Laboratory. Electrons scattered at lab angles between 18 and 45 degrees were detected using the CEBAF Large Acceptance Spectrometer (CLAS). For the usual DIS kinematics, Q^2>1 GeV^2 and the final-state invariant mass W>2 GeV, the ratio of polarized to unpolarized structure functions g1/F1 is found to be nearly independent of Q^2 at fixed x. Significant resonant structure is apparent at values of W up to 2.3 GeV. In the framework of perturbative QCD, the high-W results can be used to better constrain the polarization of quarks and gluons in the nucleon, as well as high-twist contributions.

Y. Prok; P. Bosted; N. Kvaltine; K. P. Adhikari; D. Adikaram; M. Aghasyan; M. J. Amaryan; M. D. Anderson; S. Anefalos Pereira; H. Avakian; H. Baghdasaryan; J. Ball; N. A. Baltzell; M. Battaglieri; A. S. Biselli; J. Bono; W. J. Briscoe; J. Brock; W. K. Brooks; S. Bültmann; V. D. Burkert; C. Carlin; D. S. Carman; A. Celentano; S. Chandavar; L. Colaneri; P. L. Cole; M. Contalbrigo; O. Cortes; D. Crabb; V. Crede; A. D'Angelo; N. Dashyan; R. De Vita; E. De Sanctis; A. Deur; C. Djalali; G. E. Dodge; D. Doughty; R. Dupre; A. El Alaoui; L. El Fassi; L. Elouadrhiri; G. Fedotov; S. Fegan; R. Fersch; J. A. Fleming; T. A. Forest; M. Garcon; N. Gevorgyan; Y. Ghandilyan; G. P. Gilfoyle; F. X. Girod; K. L. Giovanetti; J. T. Goetz; W. Gohn; R. W. Gothe; K. A. Griffioen; B. Guegan; N. Guler; K. Haffidi; C. Hanretty; N. Harrison; M. Hattawy; K. Hicks; D. Ho; M. Holtrop; Y. Ilieva; D. G. Ireland; B. S. Ishkhanov; E. L. Isupov; S. Jawalkar; X. Jiang; H. S. Jo; K. Joo; N. Kalantarians; C. Keith; D. Keller; M. Khandaker; A. Kim; W. Kim; A. Klein; F. J. Klein; S. Koirala; V. Kubarovsky; S. E. Kuhn; S. V. Kuleshov; P. Lenisa; K. Livingston; H. Y. Lu; I . J. D. MacGregor; N. Markov; M. Mayee; B. McKinnon; D. Meekins; T. Mineeva; M. Mirazita; V. Mokeev; R. A. Montgomery; H. Moutarde; A Movsisyan; E. Munevar; C. Munoz Camacho; P. Nadel-Turonski; S. Niccolai; G. Niculescu; I. Niculescu; M. Osipenko; A. I. Ostrovidov; L. L. Pappalardo; R. Paremuzyan; K. Park; P. Peng; J. J. Phillips; J. Pierce; S. Pisano; O. Pogorelko; S. Pozdniakov; J. W. Price; S. Procureur; D. Protopopescu; A. J. R. Puckett; B. A. Raue; D. Rimal; M. Ripani; A. Rizzo; G. Rosner; P. Rossi; P. Roy; F. Sabatié; M. S. Saini; C. Salgado; D. Schott; R. A. Schumacher; E. Seder; Y. G. Sharabian; A. Simonyan; C. Smith; G. Smith; D. I. Sober; D. Sokhan; S. S. Stepanyan; S. Stepanyan; I. I. Strakovsky; S. Strauch; V. Sytnik; M. Taiuti; W. Tang; S. Tkachenko; M. Ungaro; B . Vernarsky; A. V. Vlassov; H. Voskanyan; E. Voutier; N. K. Walford; D . P. Watts; L. B. Weinstein; N. Zachariou; L. Zana; J. Zhang; B. Zhao; Z. W. Zhao; I. Zonta; for the CLAS collaboration

2014-04-24T23:59:59.000Z

355

Precision measurements of g1 of the proton and the deuteron with 6 GeV electrons  

SciTech Connect (OSTI)

The inclusive polarized structure functions of the proton and deuteron, g1p and g1d, were measured with high statistical precision using polarized 6 GeV electrons incident on a polarized ammonia target in Hall B at Jefferson Laboratory. Electrons scattered at lab angles between 18 and 45 degrees were detected using the CEBAF Large Acceptance Spectrometer (CLAS). For the usual DIS kinematics, Q^2>1 GeV^2 and the final-state invariant mass W>2 GeV, the ratio of polarized to unpolarized structure functions g1/F1 is found to be nearly independent of Q^2 at fixed x. Significant resonant structure is apparent at values of W up to 2.3 GeV. In the framework of perturbative QCD, the high-W results can be used to better constrain the polarization of quarks and gluons in the nucleon, as well as high-twist contributions.

Prok, Yelena; Bosted, Peter; Kvaltine, Nicholas; Adhikari, Krishna; Adikaram-Mudiyanselage, Dasuni; Aghasyan, Mher; Amaryan, Moskov; Anderson, Mark; Anefalos Pereira, Sergio; Avagyan, Harutyun; Baghdasaryan, Hovhannes; Ball, Jacques; Baltzell, Nathan; Battaglieri, Marco; Biselli, Angela; Bono, Jason; Briscoe, William; Brock, Joseph; Brooks, William; Bueltmann, Stephen; Burkert, Volker; Carlin, Christopher; Carman, Daniel; Celentano, Andrea; Chandavar, Shloka; Colaneri, Luca; Cole, Philip; Contalbrigo, Marco; Cortes, Olga; Crabb, Donald; Crede, Volker; D'Angelo, Annalisa; Dashyan, Natalya; De Vita, Raffaella; De Sanctis, Enzo; Deur, Alexandre; Djalali, Chaden; Dodge, Gail; Doughty, David; Dupre, Raphael; El Alaoui, Ahmed; El Fassi, Lamiaa; Elouadrhiri, Latifa; Fedotov, Gleb; Fegan, Stuart; Fersch, Robert; Fleming, Jamie; Forest, Tony; Garcon, Michel; Gevorgyan, Nerses; Ghandilyan, Yeranuhi; Gilfoyle, Gerard; Girod-Gard, Francois-Xavier; Giovanetti, Kevin; Goetz, John; Gohn, Wesley; Gothe, Ralf; Griffioen, Keith; Guegan, Baptiste; Guler, Nevzat; Hafidi, Kawtar; Hanretty, Charles; Harrison, Nathan; Hattawy, Mohammad; Hicks, Kenneth; Ho, Dao; Holtrop, Maurik; Ilieva, Yordanka; Ireland, David; Ishkhanov, Boris; Isupov, Evgeny; Jawalkar, Sucheta; Jiang, Xiaodong; Jo, Hyon-Suk; Joo, Kyungseon; Kalantarians, Narbe; Keith, Christopher; Keller, Daniel; Khandaker, Mahbubul; Kim, Andrey; Kim, Wooyoung; Klein, Andreas; Klein, Franz; Koirala, Suman; Kubarovsky, Valery; Kuhn, Sebastian; Kuleshov, Sergey; Lenisa, Paolo; Livingston, Kenneth; Lu, Haiyun; MacGregor, Ian; Markov, Nikolai; Mayer, Michael; McKinnon, Bryan; Meekins, David; Mineeva, Taisiya; Mirazita, Marco; Mokeev, Viktor; Montgomery, Rachel; MOUTARDE, Herve; Movsisyan, Aram; Munevar Espitia, Edwin; Munoz Camacho, Carlos; Nadel-Turonski, Pawel; Niccolai, Silvia; Niculescu, Gabriel; Niculescu, Maria; Osipenko, Mikhail; Ostrovidov, Alexander; Pappalardo, Luciano; Paremuzyan, Rafayel; Park, K.; Peng, Peng; Phillips, J.J.; Pierce, Joshua; Pisano, Silvia; Pogorelko, Oleg; Pozdniakov, Serguei; Price, John; Procureur, Sebastien; Protopopescu, Dan; Puckett, Andrew; Raue, Brian; Rimal, Dipak; Ripani, Marco; Rizzo, Alessandro; Rosner, Guenther; Rossi, Patrizia; Roy, Priyashree; Sabatie, Franck; Saini, Mukesh; Salgado, Carlos; Schott, Diane; Schumacher, Reinhard; Seder, Erin; Sharabian, Youri; Simonyan, Ani; Smith, Claude; Smith, Gregory; Sober, Daniel; Sokhan, Daria; Stepanyan, Stepan; Stepanyan, Samuel; Strakovski, Igor; Strauch, Steffen; Sytnik, Valeriy; Taiuti, Mauro; Tang, Wei; Tkachenko, Svyatoslav; Ungaro, Maurizio; Vernarsky, Brian; Vlasov, Alexander; Voskanyan, Hakob; Voutier, Eric; Walford, Natalie; Watts, Daniel; Weinstein, Lawrence; Zachariou, Nicholas; Zana, Lorenzo; Zhang, Jixie; Zhao, Bo; Zhao, Zhiwen; Zonta, Irene

2014-08-01T23:59:59.000Z

356

Net charge fluctuations in Au+Au collisions at root s(NN)=130 GeV  

E-Print Network [OSTI]

We present the results of charged particle fluctuations measurements in Au+Au collisions at rootS(NN)=130 GeV using the STAR detector. Dynamical fluctuations measurements are presented for inclusive charged particle multiplicities as well...

Adams, J.; Adler, C.; Aggarwal, MM; Ahammed, Z.; Amonett, J.; Anderson, BD; Anderson, M.; Arkhipkin, D.; Averichev, GS; Badyal, SK; Balewski, J.; Barannikova, O.; Barnby, LS; Baudot, J.; Bekele, S.; Belaga, VV; Bellwied, R.; Berger, J.; Bezverkhny, BI; Bhardwaj, S.; Bhaskar, P.; Bhati, AK; Bichsel, H.; Billmeier, A.; Bland, LC; Blyth, CO; Bonner, BE; Botje, M.; Boucham, A.; Brandin, A.; Bravar, A.; Cadman, RV; Cai, XZ; Caines, H.; Sanchez, MCD; Cardenas, A.; Carroll, J.; Castillo, J.; Castro, M.; Cebra, D.; Chaloupka, P.; Chattopadhyay, S.; Chen, HF; Chen, Y.; Chernenko, SP; Cherney, M.; Chikanian, A.; Choi, B.; Christie, W.; Coffin, JP; Cormier, TM; Cramer, JG; Crawford, HJ; Das, D.; Das, S.; Derevschikov, AA; Didenko, L.; Dietel, T.; Dong, X.; Draper, JE; Du, F.; Dubey, AK; Dunin, VB; Dunlop, JC; Majumdar, MRD; Eckardt, V.; Efimov, LG; Emelianov, V.; Elage, JE; Eppley, G.; Erazmus, B.; Fachini, P.; Faine, V.; Faivre, J.; Fatemi, R.; Filimonov, K.; Filip, P.; Finch, E.; Fisyak, Y.; Flierl, D.; Foley, KJ; Fu, J.; Gagliardi, Carl A.; Ganti, MS; Gutierrez, TD; Gagunashvili, N.; Gans, J.; Gaudichet, L.; Germain, M.; Geurts, E.; Ghazikhanian, V.; Ghosh, R.; Gonzalez, JE; Grachov, O.; Grigoriev, V.; Gronstal, S.; Grosnick, D.; Guedon, M.; Guertin, SM; Gupta, A.; Gushin, E.; Hallman, TJ; Hardtke, D.; Harris, JW; Heinz, M.; Henry, TW; Heppelmann, S.; Herston, T.; Hippolyte, B.; Hirsch, A.; Hjort, E.; Hoffmann, GW; Horsley, M.; Huang, HZ; Huang, SL; Humanic, TJ; Igo, G.; Ishihara, A.; Jacobs, P.; Jacobs, WW; Janik, M.; Johnson, I.; Jones, PG; Judd, EG; Kabana, S.; Kaneta, M.; Kaplan, M.; Keane, D.; Kiryluk, J.; Kisiel, A.; Klay, J.; Klein, SR; Klyachko, A.; Koetke, DD; Kolleger, T.; Konstantmov, AS; Kopytine, M.; Kotchenda, L.; Kovalenko, AD; Kramer, M.; Kravtsov, P.; Krueger, K.; Kuhn, C.; Kulikov, AI; Kumar, A.; Kunde, GJ; Kunz, CL; Kutuev, RK; Kuznetsov, AA; Lamont, MAC; Landgraf, JM; Lange, S.; Lansdell, CP; Lasiuk, B.; Laue, F.; Lauret, J.; Lebedev, A.; Lednicky, R.; Leontiev, VM; LeVine, MJ; Li, C.; Li, Q.; Lindenbatim, SJ; Lisa, MA; Liu, E.; Liu, L.; Liu, Z.; Liu, QJ; Ljubicic, T.; Llope, WJ; Long, H.; Longacre, RS; Lopez-Noriega, M.; Love, WA; Ludlam, T.; Lynn, D.; Ma, J.; Ma, YG; Maestro, D.; Mahajan, S.; Mangotra, LK; Mahapatra, DP; Majka, R.; Manweiler, R.; Margetis, S.; Markert, C.; Martin, L.; Marx, J.; Matis, HS; Matulenko, YA; McShane, TS; Meissner, F.; Melnick, Y.; Meschanin, A.; Messer, M.; Miller, ML; Milosevich, Z.; Minaev, NG; Mironov, C.; Mishra, D.; Mitchell, J.; Mohanty, B.; Molnar, L.; Moore, CF; Mora-Corral, MJ; Morozov, V.; de Moura, MM; Munhoz, MG; Nandi, BK; Nayak, SK; Nayak, TK; Nelson, JM; Nevski, P.; Nikitin, VA; Nogach, LV; Norman, B.; Nurushev, SB; Odyniec, G.; Ogawa, A.; Okorokov, V.; Oldenburg, M.; Olson, D.; Paic, G.; Pandey, SU; Pal, SK; Panebratsev, Y.; Panitkin, SY; Pavlinov, AI; Pawlak, T.; Perevoztchikov, V.; Peryt, W.; Petrov, VA; Phatak, SC; Picha, R.; Planinic, M.; Pluta, J.; Porile, N.; Porter, J.; Poskanzer, AM; Potekhin, M.; Potrebenikova, E.; Potukuchi, BVKS; Prindle, D.; Pruneau, C.; Putschke, J.; Rai, G.; Rakness, G.; Raniwala, R.; Raniwala, S.; Ravel, O.; Razin, SV; Reichhold, D.; Reid, JG; Renault, G.; Retiere, F.; Ridiger, A.; Ritter, HG; Roberts, JB; Rogachevski, OV; Romero, JL; Rose, A.; Roy, C.; Ruan, LJ; Rykov, V.; Sahoo, R.; Sakrejda, I.; Salur, S.; Sandweiss, J.; Savin, I.; Schambach, J.; Scharenberg, RP; Schmitz, N.; Schroeder, LS; Schweda, K.; Seger, J.; Seliverstov, D.; Seyboth, P.; Shahaliev, E.; Shao, M.; Sharma, M.; Shestermanov, KE; Shimanskii, SS; Singaraju, RN; Simon, F.; Skoro, G.; Smirnov, N.; Snellings, R.; Sood, G.; Sorensen, P.; Sowinski, J.; Spinka, H. M.; Srivastava, B.; Stanislaus, S.; Stock, R.; Stolpovsky, A.; Strikhanov, M.; Stringfellow, B.; Struck, C.; Suaide, AAP; Sugarbaker, E.; Suite, C.; Sumbera, M.; Surrow, B.; Symons, TJM; de Toledo, AS; Szarwas, P.; Tai, A.; Takahashi, J.; Tang, AH; Thein, D.; Thomas, JH; Tikhomirov, V.; Tokarev, M.; Tonjes, MB; Trentalange, S.; Tribble, Robert E.; Trivedi, MD; Trofimov, V.; Tsai, O.; Ullrich, T.; Underwood, DG; Van Buren, G.; VanderMolen, AM; Vasiliev, AN; Vasiliev, M.; Vigdor, SE; Viyogi, YP; Voloshin, SA; Waggoner, W.; Wang, F.; Wang, G.; Wang, XL; Wang, ZM; Ward, H.; Watson, JW; Wells, R.; Westfall, GD; Whitten, C.; Wieman, H.; Willson, R.; Wissink, SW; Witt, R.; Wood, J.; Wu, J.; Xu, N.; Xu, Z.; Xu, ZZ; Yakutin, AE; Yamamoto, E.; Yang, J.; Yepes, P.; Yurevich, VI; Zanevski, YV; Zborovsky, I.; Zhang, H.; Zhang, HY; Zhang, WM; Zhang, ZP; Zolnierczuk, PA; Zoulkarneev, R.; Zoulkarneeva, J.; Zubarev, AN; STAR Collaboration.

2003-01-01T23:59:59.000Z

357

Observation of the critical end point in the phase diagram for hot and dense nuclear matter  

E-Print Network [OSTI]

Excitation functions for the Gaussian emission source radii difference ($R^2_{\\text{out}} - R^2_{\\text{side}}$) obtained from two-pion interferometry measurements in Au+Au ($\\sqrt{s_{NN}}= 7.7 - 200$ GeV) and Pb+Pb ($\\sqrt{s_{NN}}= 2.76$ TeV) collisions, are studied for a broad range of collision centralities. The observed non-monotonic excitation functions validate the finite-size scaling patterns expected for the deconfinement phase transition and the critical end point (CEP), in the temperature vs. baryon chemical potential ($T,\\mu_B$) plane of the nuclear matter phase diagram. A Finite-Size Scaling (FSS) analysis of these data indicate a second order phase transition with the estimates $T^{\\text{cep}} \\sim 165$~MeV and $\\mu_B^{\\text{cep}} \\sim 100$~MeV for the location of the critical end point. The critical exponents ($\

Lacey, Roy A

2014-01-01T23:59:59.000Z

358

A Study of the QCD Critical Point Using Particle Ratio Fluctuations  

E-Print Network [OSTI]

Dynamical fluctuations in global conserved quantities such as baryon number, strangeness, or charge may be observed near a QCD critical point. Results from new measurements of dynamical $K/\\pi$ and $p/\\pi$ ratio fluctuations are presented. The commencing of a QCD critical point search at RHIC has extended the reach of possible measurements of dynamical $K/\\pi$ and $p/\\pi$ ratio fluctuations from Au+Au collisions to lower energies. The STAR experiment has performed a comprehensive study of the energy dependence of these dynamical fluctuations in Au+Au collisions at the energies $\\sqrt{s_{NN}}$ = 7.7, 11.5, and 39 GeV. New results are compared to previous measurements and to theoretical predictions from several models.

Terence J Tarnowsky for the STAR Collaboration

2011-06-30T23:59:59.000Z

359

High Strain-Rate Response of High Purity Aluminum at Temperatures Approaching Melt  

SciTech Connect (OSTI)

High-temperature, pressure-shear plate impact experiments were conducted to investigate the rate-controlling mechanisms of the plastic response of high-purity aluminum at high strain rates (10{sup 6} s{sup -1}) and at temperatures approaching melt. Since the melting temperature of aluminum is pressure dependent, and a typical pressure-shear plate impact experiment subjects the sample to large pressures (2 GPa-7 GPa), a pressure-release type experiment was used to reduce the pressure in order to measure the shearing resistance at temperatures up to 95% of the current melting temperature. The measured shearing resistance was remarkably large (50 MPa at a shear strain of 2.5) for temperatures this near melt. Numerical simulations conducted using a version of the Nemat-Nasser/Isaacs constitutive equation, modified to model the mechanism of geometric softening, appear to capture adequately the hardening/softening behavior observed experimentally.

Grunschel, S E; Clifton, R J; Jiao, T

2010-01-28T23:59:59.000Z

360

Development of a plasma coating system for induction melting zirconium in a graphite crucible  

SciTech Connect (OSTI)

A plasma coating system has been developed for induction melting zirconium at 1900 C using a graphite crucible. This laminated coating system consists of plasma spraying the following materials onto the graphite: (1) molybdenum or tungsten, (2) a 50% blend by weight of the metal powder and calcia-stabilized zirconium oxide, and (3) calcia-stabilized zirconia followed by painting a final coating of nonstabilized zirconia on top of the plasma-sprayed coating system. Zirconium was melted in argon using both laminating systems without any degradation of the graphite crucible and with only a minimal amount of carbon absorption. This novel approach that is being proposed as an alternative method of melting zirconium alloys offers substantial cost savings over the standard practice of electric arc melting using a consumable electrode.

Bird, E.L.; Holcombe, C.E. Jr.

1993-05-26T23:59:59.000Z

Note: This page contains sample records for the topic "gev melting point" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Molecular simulation study of homogeneous crystal nucleation in n-alkane melts  

E-Print Network [OSTI]

This work used molecular dynamics (MD) and Monte Carlo (MC) method to study the homogeneous crystal nucleation in the melts of n-alkanes, the simplest class of chain molecules. Three n-alkanes with progressive chain length ...

Yi, Peng, Ph. D. Massachusetts Institute of Technology

2011-01-01T23:59:59.000Z

362

Controlling dopant profiles in hyperdoped silicon by modifying dopant evaporation rates during pulsed laser melting  

E-Print Network [OSTI]

We describe a method to control the sub-surface dopant profile in “hyperdoped” silicon fabricated by ion implantation and pulsed laser melting. Dipping silicon ion implanted with sulfur into hydrofluoric acid prior to ...

Recht, Daniel

363

Crystal structure and interaction dependence of the crystal-melt interfacial free energy  

E-Print Network [OSTI]

We examine via molecular simulation the dependence of the crystal-melt interfacial free energy gamma on molecular interaction and crystal structure (fcc vs bcc) for systems interacting with inverse-power repulsive potentials, u...

Davidchack, R. L.; Laird, Brian Bostian

2005-03-01T23:59:59.000Z

364

Theoretical description of laser melt pool dynamics, Task order number B239634, Quarter 3 report  

SciTech Connect (OSTI)

Melting of solid matter under laser radiation is realized in almost every process of laser technology. The present paper addresses melted material flows in cases when melt zones are shallow, i.e., the zone width is appreciably greater than or of the same order as its depth. Such conditions are usually realized when hardening, doping or perforating thin plates or when using none-deep penetration. Melted material flowing under conditions of deep penetration, drilling of deep openings and cutting depends on a number of additional factors (as compared to the shallow-pool case), namely, formation of a vapor and gas cavern in the sample and propagation of the laser beam through the cavern. These extra circumstances complicate hydrodynamic consideration of the liquid bath and will be addressed is the paper to follow.

Dykhne, A.

1995-05-10T23:59:59.000Z

365

E-Print Network 3.0 - alkaline melts beneath Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

et al. 2001), mac alkaline magmas... , it is not coincident that the mac rock at Bingham Canyon is alkaline (Waite et al. 1997) and the basaltic mac melt... specia- tion...

366

Retrograde melting in transition metal-silicon systems : thermodynamic modeling, experimental verification, and potential application  

E-Print Network [OSTI]

A theoretical framework is presented in this work for retrograde melting in silicon driven by the retrograde solubility of low-concentration metallic solutes at temperatures above the binary eutectic. High enthalpy of ...

Fenning, David P

2010-01-01T23:59:59.000Z

367

Examination of offsite radiological emergency protective measures for nuclear reactor accidents involving core melt  

E-Print Network [OSTI]

Evacuation, sheltering followed by population relocation, and iodine prophylaxis are evaluated as offsite public protective measures in response to nuclear reactor accidents involving core-melt. Evaluations were conducted ...

Aldrich, David C.

1979-01-01T23:59:59.000Z

368

Geochemical Behaviour of S, Cl and Fe in Silicate Melts/Glasses...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Geochemical Behaviour of S, Cl and Fe in Silicate MeltsGlasses Simulating Natural Magmas Monday, March 26, 2012 - 11:00am SSRL Conference Room 137-322 G. Giuli, R. Alonso-Mori, E....

369

Controlling electrode gap during vacuum arc remelting at low melting current  

DOE Patents [OSTI]

An apparatus and method are disclosed for controlling electrode gap in a vacuum arc remelting furnace, particularly at low melting currents. Spectrographic analysis is performed of the metal vapor plasma, from which estimates of electrode gap are derived. 5 figs.

Williamson, R.L.; Zanner, F.J.; Grose, S.M.

1997-04-15T23:59:59.000Z

370

Controlling electrode gap during vacuum arc remelting at low melting current  

DOE Patents [OSTI]

An apparatus and method for controlling electrode gap in a vacuum arc remelting furnace, particularly at low melting currents. Spectrographic analysis is performed of the metal vapor plasma, from which estimates of electrode gap are derived.

Williamson, Rodney L. (Albuquerque, NM); Zanner, Frank J. (Sandia Park, NM); Grose, Stephen M. (Glenwood, WV)

1997-01-01T23:59:59.000Z

371

Seismic and gravitational studies of melting in the mantle's thermal boundary layers  

E-Print Network [OSTI]

This thesis presents three studies which apply geophysical tools to the task of better understanding mantle melting phenomena at the upper and lower boundaries of the mantle. The first study uses seafloor bathymetry and ...

Van Ark, Emily M

2007-01-01T23:59:59.000Z

372

The melting pot of automated discovery: principles for a new science  

E-Print Network [OSTI]

The melting pot of automated discovery: principles for a new science Jan M. _Zytkow Computer, 1993, Si- mon, Valdes-Perez & Sleeman 1997, and in Proceedings of 1995 AAAI Spring Symposium

Ras, Zbigniew W.

373

Accelerating Into the Future: From 0 to GeV in a Few Centimeters (LBNL Summer Lecture Series)  

ScienceCinema (OSTI)

Summer Lecture Series 2008: By exciting electric fields in plasma-based waveguides, lasers accelerate electrons in a fraction of the distance conventional accelerators require. The Accelerator and Fusion Research Division's LOASIS program, headed by Wim Leemans, has used 40-trillion-watt laser pulses to deliver billion-electron-volt (1 GeV) electron beams within centimeters. Leemans looks ahead to BELLA, 10-GeV accelerating modules that could power a future linear collider.

Leemans, Wim [LOASIS Program, AFRD

2011-04-28T23:59:59.000Z

374

Study of Gamma-Ray Bursts of energy E 10 GeV with the ARGO-YBJ detector  

E-Print Network [OSTI]

Study of Gamma-Ray Bursts of energy E 10 GeV with the ARGO-YBJ detector ARGO-YBJ Collaboration of high energy gamma-ray bursts can be performed by large area air shower arrays operating at very high is the study of gamma-ray bursts of energies E 10 GeV. This can be achieved using the "single particle

Morselli, Aldo

375

Vacuum-induction melting, refining, and casting of uranium and its alloys  

SciTech Connect (OSTI)

The vacuum-induction melting (VIM), refining, and casting of uranium and its alloys are discussed. Emphasis is placed on historical development, VIM equipment, crucible and mold design, furnace atmospheres, melting parameters, impurity pickup, ingot quality, and economics. The VIM procedures used to produce high-purity, high-quality sound ingots at the US Department of Energy Rocky Flats Plant are discussed in detail.

Jackson, R.J.

1989-10-11T23:59:59.000Z

376

Energy-efficient modification of reduction-melting for lead recovery from cathode ray tube funnel glass  

SciTech Connect (OSTI)

Highlights: • We recovered Pb from cathode ray tube funnel glass using reduction melting process. • We modified the melting process to achieve Pb recovery with low energy consumption. • Pb in the funnel glass is efficiently recovered at 1000 °C by adding Na{sub 2}CO{sub 3}. • Pb remaining in the glass after reduction melting is extracted with 1 M HCl. • 98% of Pb in the funnel glass was recovered by reduction melting and HCl leaching. - Abstract: Lead can be recovered from funnel glass of waste cathode ray tubes via reduction melting. While low-temperature melting is necessary for reduced energy consumption, previously proposed methods required high melting temperatures (1400 °C) for the reduction melting. In this study, the reduction melting of the funnel glass was performed at 900–1000 °C using a lab-scale reactor with varying concentrations of Na{sub 2}CO{sub 3} at different melting temperatures and melting times. The optimum Na{sub 2}CO{sub 3} dosage and melting temperature for efficient lead recovery was 0.5 g per 1 g of the funnel glass and 1000 °C respectively. By the reduction melting with the mentioned conditions, 92% of the lead in the funnel glass was recovered in 60 min. However, further lead recovery was difficult because the rate of the lead recovery decreased as with the recovery of increasing quantity of the lead from the glass. Thus, the lead remaining in the glass after the reduction melting was extracted with 1 M HCl, and the lead recovery improved to 98%.

Okada, Takashi, E-mail: t-okada@u-fukui.ac.jp; Yonezawa, Susumu

2013-08-15T23:59:59.000Z

377

Investigation of MSWI fly ash melting characteristic by DSC-DTA  

SciTech Connect (OSTI)

The melting process of MSWI (Municipal Solid Waste Incineration) fly ash has been studied by high-temperature DSC-DTA experiments. The experiments were performed at a temperature range of 20-1450 deg. C, and the considerable variables included atmosphere (O{sub 2} and N{sub 2}), heating rates (5 deg. C/min, 10 deg. C/min, 20 deg. C/min) and CaO addition. Three main transitions were observed during the melting process of fly ash: dehydration, polymorphic transition and fusion, occurring in the temperature range of 100-200 deg. C, 480-670 deg. C and 1101-1244 deg. C, respectively. The apparent heat capacity and heat requirement for melting of MSWI fly ash were obtained by DSC (Differential Scanning Calorimeter). A thermodynamic modeling to predict the heat requirements for melting process has been presented, and it agrees well with the experimental data. Finally, a zero-order kinetic model of fly ash melting transition was established. The apparent activation energy of MSWI fly ash melting transition was obtained.

Li, Rundong [Institute of Clean Energy and Environmental Engineering, Liaoning Key Laboratory of Clean Energy, Shenyang Institute of Aeronautical Engineering, Shenyang 110136 (China)], E-mail: leerd@mail.tsinghua.edu.cn; Wang, Lei; Yang, Tianhua; Raninger, Bernhard [Institute of Clean Energy and Environmental Engineering, Liaoning Key Laboratory of Clean Energy, Shenyang Institute of Aeronautical Engineering, Shenyang 110136 (China)

2007-07-01T23:59:59.000Z

378

The evaluation of cleanness by electron beam button melting and other methods - a review  

SciTech Connect (OSTI)

The accurate determination of both the number and size distribution of inclusions in superclean materials is difficult. Some of the methods used for nickel-base alloys and steels are briefly reviewed; all the methods have problems associated with them. Electron Beam Button Melting (EBBM) and the new technique of Cold Crucible Melting (CCM) as methods of concentrating the inclusions offer the advantage of sampling large volumes of material quickly. The number, size and composition of the entrapped particles can be determined using Scanning Electron Microscopy, (SEM). Both techniques may be used for semi-quantitative assessment such as ranking different heats of materials but care is required with quantitative evaluation. The mechanisms controlling inclusion collection efficiency for EBBM are reviewed including investigations with samples doped with particles of known size and number and assessing recovery rates on button rafts. In EBBM low power melting and solidification programmes are recommended to minimise the melting or sintering of the inclusions and melt compositions, particularly sulphur, have a major effect on the efficiency of inclusion collection. Under favourable conditions collection efficiencies of 90-95% can be achieved. As a result of these types of studies a draft code of practice for the evaluation of alloy cleanness by EBBM has been prepared. Cold crucible melting is an attractive alternative to EBBM for cleanness evaluation. Trials have established that collection efficiencies of 80-85% can be achieved with this method but SEM examination of the buttons is more time consuming compared with EBBM.

Quested, P.N.; Hayes, D.M. [National Physical Lab., Middlesex (United Kingdom)

1994-12-31T23:59:59.000Z

379

NREL Scientists Reveal Origin of Diverse Melting Behaviors of Aluminum Nanoclusters (Fact Sheet)  

SciTech Connect (OSTI)

Research reveals active role of cluster symmetries on the size-sensitive, diverse melting behaviors of metallic nanoclusters, providing insight to understanding phase changes of nanoparticles for thermal energy storage. Unlike macroscopic bulk materials, intermediate-sized nanoclusters with around 55 atoms inherently exhibit size-sensitive melting changes: adding just a single atom to a nanocluster can cause a dramatic change in melting behavior. Microscopic understanding of thermal behaviors of metal nanoclusters is important for nanoscale catalysis and thermal energy storage applications. However, it is a challenge to obtain a structural interpretation at the atomic level from measured thermodynamic quantities such as heat capacity. Using ab initio molecular dynamics simulations, scientists at the National Renewable Energy Laboratory (NREL) revealed a clear correlation between the diverse melting behaviors of aluminum nanoclusters and cluster core symmetries. These simulations reproduced, for the first time, the size-sensitive heat capacities of aluminum nanoclusters, which exhibit several distinctive shapes associated with the diverse melting behaviors of the clusters. The size-dependent, diverse melting behaviors of the aluminum clusters are attributed to the reduced symmetry (from Td {yields} D2d {yields} Cs) with increasing the cluster sizes and can be used to help design thermal storage materials.

Not Available

2011-10-01T23:59:59.000Z

380

Video Lessons, PowerPoints, and Outlines  

E-Print Network [OSTI]

POWERPOINT PRESENTATIONS, VIDEO LESSONS AND OUTLINES ... 6/11. Lesson 1 PowerPoint (Part A) · Lesson 1 PowerPoint (Part B) · Lesson 1 Video.

Note: This page contains sample records for the topic "gev melting point" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Field's Point Wastewater Treatment Facility (Narragansett Bay...  

Open Energy Info (EERE)

Field's Point Wastewater Treatment Facility (Narragansett Bay Commission) Jump to: navigation, search Name Field's Point Wastewater Treatment Facility (Narragansett Bay Commission)...

382

Starting Points | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

(M&O) Contract Competition Starting Points Starting Points Kansas City Plant Related Web Pages Summary Kansas City Plant Home Page Kansas City Plant Contracts DOE Directives...

383

A Brief Review of Past INL Work Assessing Radionuclide Content in TMI-2 Melted Fuel Debris: The Use of 144Ce as a Surrogate for Pu Accountancy  

SciTech Connect (OSTI)

This report serves as a literature review of prior work performed at Idaho National Laboratory, and its predecessor organizations Idaho National Engineering Laboratory (INEL) and Idaho National Engineering and Environmental Laboratory (INEEL), studying radionuclide partitioning within the melted fuel debris of the reactor of the Three Mile Island 2 (TMI-2) nuclear power plant. The purpose of this review is to document prior published work that provides supporting evidence of the utility of using 144Ce as a surrogate for plutonium within melted fuel debris. When the TMI-2 accident occurred no quantitative nondestructive analysis (NDA) techniques existed that could assay plutonium in the unconventional wastes from the reactor. However, unpublished work performed at INL by D. W. Akers in the late 1980s through the 1990s demonstrated that passive gamma-ray spectrometry of 144Ce could potentially be used to develop a semi-quantitative correlation for estimating plutonium content in these materials. The fate and transport of radioisotopes in fuel from different regions of the core, including uranium, fission products, and actinides, appear to be well characterized based on the maximum temperature reached by fuel in different parts of the core and the melting point, boiling point, and volatility of those radioisotopes. Also, the chemical interactions between fuel, fuel cladding, control elements, and core structural components appears to have played a large role in determining when and how fuel relocation occurred in the core; perhaps the most important of these reaction appears to be related to the formation of mixed-material alloys, eutectics, in the fuel cladding. Because of its high melting point, low volatility, and similar chemical behavior to plutonium, the element cerium appears to have behaved similarly to plutonium during the evolution of the TMI-2 accident. Anecdotal evidence extrapolated from open-source literature strengthens this logical feasibility for using cerium, which is rather easy to analyze using passive nondestructive analysis gamma-ray spectrometry, as a surrogate for plutonium in the final analysis of TMI-2 melted fuel debris. The generation of this report is motivated by the need to perform nuclear material accountancy measurements on the melted fuel debris that will be excavated from the damaged nuclear reactors at the Fukushima Daiichi nuclear power plant in Japan, which were destroyed by the Tohoku earthquake and tsunami on March 11, 2011. Lessons may be taken from prior U.S. work related to the study of the TMI-2 core debris to support the development of new assay methods for use at Fukushima Daiichi. While significant differences exist between the two reactor systems (pressurized water reactor (TMI-2) versus boiling water reactor (FD), fresh water post-accident cooing (TMI-2) versus salt water (FD), maintained containment (TMI-2) versus loss of containment (FD)) there remain sufficient similarities to motivate these comparisons.

D. L. Chichester; S. J. Thompson

2013-09-01T23:59:59.000Z

384

Theory of melt fracture instabilities in the capillary flow of polymer melts Joel D. Shore,1,* David Ronis,1,2  

E-Print Network [OSTI]

occur when a poly- mer melt is extruded through a capillary or ``die'' is a longstanding problem pressure, respectively. The inset in Fig. 1 is a cartoon of a typical experimental setup: a piston or screw regimes 2,3,6 : At the lowest flow rates, the extrudate is smooth and regular. Next, one encounters a re

Grant, Martin

385

Young Pulsars and the Galactic Center GeV Gamma-ray Excess  

E-Print Network [OSTI]

Studies of Fermi data indicate an excess of GeV gamma rays around the Galactic center (GC), possibly due to dark matter. We show that young gamma-ray pulsars can yield a similar signal. First, a high concentration of GC supernovae naturally leads to a population of kicked pulsars symmetric about the GC. Second, while very-young pulsars with soft spectra reside near the Galactic plane, pulsars with spectra that have hardened with age accumulate at larger angles. This combination, including unresolved foreground pulsars, traces the morphology and spectrum of the Excess.

O'Leary, Ryan M; Kerr, Matthew; Dexter, Jason

2015-01-01T23:59:59.000Z

386

Partial-wave analyses of hadron scattering below 2 GeV  

SciTech Connect (OSTI)

The Center for Analysis of Particle Scattering (CAPS) in the Department of Physics at Virginia Polytechnic Institute and State University has analyzed basic two-body hadron reactions below 2 GeV for the last two decades. Reactions studied were nucleon-nucleon, pion-nucleon, K{sup +}-nucleon and pion photoproduction systems. In addition to analyses of these systems, a computer graphics system (SAID) has been developed and disseminated to over 250 research institutions using VAX computers. The computer-interactive system for disseminating information on basic scattering reactions is also accessible to the physics community through TELNET on the VPI SU physics department VAX. 6 refs.

Arndt, R.A.; Roper, L.D.

1991-01-01T23:59:59.000Z

387

Partial-wave analyses of hadron scattering below 2 GeV  

SciTech Connect (OSTI)

The Center for Analysis of Particle Scattering (CAPS) in the Department of Physics at Virginia Polytechnic Institute and State University has analyzed basic two-body hadron reactions below 2 GeV for the last two decades. Reactions studied were nucleon-nucleon, pion-nucleon, K[sup +]-nucleon and pion photoproduction systems. In addition to analyses of these reactions, a computer graphics system (SAID) has been developed and disseminated to over 250 research institutions using VAX computers. The computer-interactive system for disseminating information on basic scattering reactions is also accessible to the physics community through TELNET on the VPI SU physics department VAX.

Arndt, R.A.; Roper, L.D.

1992-01-01T23:59:59.000Z

388

Application of JLab 12GeV helium refrigeration system for the FRIB accelerator at MSU  

SciTech Connect (OSTI)

The planned approach to have a turnkey helium refrigeration system for the MSU-FRIB accelerator system, encompassing the design, fabrication, installation and commissioning of the 4.5-K refrigerator cold box(es), cold compression system, warm compression system, gas management, oil removal and utility/ancillary systems, was found to be cost prohibitive. Following JLab’s suggestion, MSU-FRIB accelerator management made a formal request to evaluate the applicability of the recently designed 12GeV JLab cryogenic system for this application. The following paper will outline the findings and the planned approach for the FRIB helium refrigeration system.

Ganni, V.; Knudsen, P.; Arenius, D. [Thomas Jefferson National Accelerator Facility, Newport News, VA 23606 (United States); Casagrande, F. [MSU-FRIB, East Lansing, MI 48824 (United States)

2014-01-29T23:59:59.000Z

389

Recirculating Beam Breakup Study for the 12 GeV Upgrade at Jefferson Lab  

SciTech Connect (OSTI)

Two new high gradient C100 cryomodules with a total of 16 new cavities were installed at the end of the CEBAF south linac during the 2011 summer shutdown as part of the 12-GeV upgrade project at Jefferson Lab. We surveyed the higher order modes (HOMs) of these cavities in the Jefferson Lab cryomodule test facility and CEBAF tunnel. We then studied recirculating beam breakup (BBU) in November 2011 to evaluate CEBAF low energy performance, measure transport optics, and evaluate BBU thresholds due to these HOMs. This paper discusses the experiment setup, cavity measurements, machine setup, optics measurements, and lower bounds on BBU thresholds by new cryomodules.

Ilkyoung Shin, Todd Satogata, Shahid Ahmed, Slawomir Bogacz, Mircea Stirbet, Haipeng Wang, Yan Wang, Byung Yunn, Ryan Bodenstein

2012-07-01T23:59:59.000Z

390

Vibration Response Testing of the CEBAF 12GeV Upgrade Cryomodules  

SciTech Connect (OSTI)

The CEBAF 12 GeV upgrade project includes 80 new 7-cell cavities to form 10 cryomodules. These cryomodules were tested during production to characterize their microphonic response in situ. For several early cryomodules, detailed (vibration) modal studies of the cryomodule string were performed during the assembly process to identify the structural contributors to the measured cryomodule microphonic response. Structural modifications were then modelled, implemented, and verified by subsequent modal testing and in-situ microphonic response testing. Interim and latest results from this multi-stage process will be reviewed.

Davis, G. Kirk; Matalevich, Joseph R.; Wiseman, Mark A.; Powers, Thomas J.

2012-09-01T23:59:59.000Z

391

Precision nuclear targets for Drell-Yan cross section measurements at 800 GeV  

SciTech Connect (OSTI)

Targets of iron, tungsten, carbon, and calcium of areal densities 2.3 to 5.8 g/cm/sup 2/ were fabricated to high precision for a fixed-target experiment performed in 1988 at Fermilab to measure relative Drell-Yan cross sections. The experiment used 800-GeV protons at an intensity of 2 x 10/sup 12/ protons per 23-second spill. Areal densities were determined to an accuracy of approximately 1 part in 10/sup 4/. The calcium targets were vacuum-encapsulated in stainless steel by electron-beam welding. 1 ref., 5 figs., 4 tabs.

Gursky, J.C.; Baer, H.; Flick, F.F.; Gallegos, D.

1988-01-01T23:59:59.000Z

392

Prediction of narrow $N^{*}$ and $?^*$ resonances with hidden charm above 4 GeV  

E-Print Network [OSTI]

The interaction between various charmed mesons and charmed baryons are studied within the framework of the coupled channel unitary approach with the local hidden gauge formalism. Several meson-baryon dynamically generated narrow $N^*$ and $\\Lambda^*$ resonances with hidden charm are predicted with mass above 4 GeV and width smaller than 100 MeV. The predicted new resonances definitely cannot be accommodated by quark models with three constituent quarks and can be looked for at the forthcoming PANDA/FAIR experiments.

Jia-Jun Wu; R. Molina; E. Oset; B. S. Zou

2010-07-04T23:59:59.000Z

393

SPIN Effects, QCD, and Jefferson Laboratory with 12 GeV electrons  

SciTech Connect (OSTI)

QCD and Spin physics are playing important role in our understanding of hadron structure. I will give a short overview of origin of hadron structure in QCD and highlight modern understanding of the subject. Jefferson Laboratory is undergoing an upgrade that will increase the energy of electron beam up to 12 GeV. JLab is one of the leading facilities in nuclear physics studies and once operational in 2015 JLab 12 will be crucial for future of nuclear physics. I will briefly discuss future studies in four experimental halls of Jefferson Lab.

Prokudin, Alexey [JLAB

2013-11-01T23:59:59.000Z

394

Pion femtoscopy in p+p collisions at sqrt(s)=200 GeV  

E-Print Network [OSTI]

The STAR Collaboration at RHIC has measured two-pion correlation functions from p+p collisions at sqrt(s)=200 GeV. Spatial scales are extracted via a femtoscopic analysis of the correlations, though this analysis is complicated by the presence of strong non-femtoscopic effects. Our results are put into the context of the world dataset of femtoscopy in hadron-hadron collisions. We present the first direct comparison of femtoscopy in p+p and heavy ion collisions, under identical analysis and detector conditions.

M. M. Aggarwal; Z. Ahammed; A. V. Alakhverdyants; I. Alekseev; J. Alford; B. D. Anderson; D. Arkhipkin; G. S. Averichev; J. Balewski; L. S. Barnby; S. Baumgart; D. R. Beavis; R. Bellwied; M. J. Betancourt; R. R. Betts; A. Bhasin; A. K. Bhati; H. Bichsel; J. Bielcik; J. Bielcikova; B. Biritz; L. C. Bland; 3 B. E. Bonner; J. Bouchet; E. Braidot; A. V. Brandin; A. Bridgeman; E. Bruna; S. Bueltmann; I. Bunzarov; T. P. Burton; X. Z. Cai; H. Caines; M. Calderón de la Barca Sánchez; O. Catu; D. Cebra; R. Cendejas; M. C. Cervantes; Z. Chajecki; P. Chaloupka; S. Chattopadhyay; H. F. Chen; J. H. Chen; J. Y. Chen; J. Cheng; M. Cherney; A. Chikanian; K. E. Choi; W. Christie; P. Chung; R. F. Clarke; M. J. M. Codrington; R. Corliss; J. G. Cramer; H. J. Crawford; D. Das; S. Dash; A. Davila Leyva; L. C. De Silva; R. R. Debbe; T. G. Dedovich; A. A. Derevschikov; R. Derradi de Souza; L. Didenko; P. Djawotho; S. M. Dogra; X. Dong; J. L. Drachenberg; J. E. Draper; J. C. Dunlop; M. R. Dutta Mazumdar; L. G. Efimov; E. Elhalhuli; M. Elnimr; J. Engelage; G. Eppley; B. Erazmus; M. Estienne; L. Eun; O. Evdokimov; P. Fachini; R. Fatemi; J. Fedorisin; R. G. Fersch; P. Filip; E. Finch; V. Fine; Y. Fisyak; C. A. Gagliardi; D. R. Gangadharan; M. S. Ganti; E. J. Garcia-Solis; A. Geromitsos; F. Geurts; V. Ghazikhanian; P. Ghosh; Y. N. Gorbunov; A. Gordon; O. Grebenyuk; D. Grosnick; S. M. Guertin; A. Gupta; N. Gupta; W. Guryn; B. Haag; A. Hamed; L-X. Han; J. W. Harris; J. P. Hays-Wehle; M. Heinz; S. Heppelmann; A. Hirsch; E. Hjort; A. M. Hoffman; G. W. Hoffmann; D. J. Hofman; B. Huang; H. Z. Huang; T. J. Humanic; L. Huo; G. Igo; P. Jacobs; W. W. Jacobs; C. Jena; F. Jin; C. L. Jones; P. G. Jones; J. Joseph; E. G. Judd; S. Kabana; K. Kajimoto; K. Kang; J. Kapitan; K. Kauder; D. Keane; A. Kechechyan; D. Kettler; D. P. Kikola; J. Kiryluk; A. Kisiel; S. R. Klein; A. G. Knospe; A. Kocoloski; D. D. Koetke; T. Kollegger; J. Konzer; I. Koralt; L. Koroleva; W. Korsch; L. Kotchenda; V. Kouchpil; P. Kravtsov; K. Krueger; M. Krus; L. Kumar; P. Kurnadi; M. A. C. Lamont; J. M. Landgraf; S. LaPointe; J. Lauret; A. Lebedev; R. Lednicky; C-H. Lee; J. H. Lee; W. Leight; M. J. LeVine; C. Li; L. Li; N. Li; W. Li; X. Li; X. Li; Y. Li; Z. M. Li; G. Lin; S. J. Lindenbaum; M. A. Lisa; F. Liu; H. Liu; J. Liu; T. Ljubicic; W. J. Llope; R. S. Longacre; W. A. Love; Y. Lu; E. V. Lukashov; X. Luo; G. L. Ma; Y. G. Ma; D. P. Mahapatra; R. Majka; O. I. Mall; L. K. Mangotra; R. Manweiler; S. Margetis; C. Markert; H. Masui; H. S. Matis; Yu. A. Matulenko; D. McDonald; T. S. McShane; A. Meschanin; R. Milner; N. G. Minaev; S. Mioduszewski; A. Mischke; M. K. Mitrovski; B. Mohanty; M. M. Mondal. B. Morozov; D. A. Morozov; M. G. Munhoz; B. K. Nandi; C. Nattrass; T. K. Nayak; J. M. Nelson; P. K. Netrakanti; M. J. Ng; L. V. Nogach; S. B. Nurushev; G. Odyniec; A. Ogawa; V. Okorokov; E. W. Oldag; D. Olson; M. Pachr; B. S. Page; S. K. Pal; Y. Pandit; Y. Panebratsev; T. Pawlak; T. Peitzmann; V. Perevoztchikov; C. Perkins; W. Peryt; S. C. Phatak; P. Pile; M. Planinic; M. A. Ploskon; J. Pluta; D. Plyku; N. Poljak; A. M. Poskanzer; B. V. K. S. Potukuchi; C. B. Powell; D. Prindle; C. Pruneau; N. K. Pruthi; P. R. Pujahari; J. Putschke; H. Qiu; R. Raniwala; S. Raniwala; R. L. Ray; R. Redwine; R. Reed; H. G. Ritter; J. B. Roberts; O. V. Rogachevsky; J. L. Romero; A. Rose; C. Roy; L. Ruan; R. Sahoo; S. Sakai; I. Sakrejda; T. Sakuma; S. Salur; J. Sandweiss; E. Sangaline; J. Schambach; R. P. Scharenberg; N. Schmitz; T. R. Schuster; J. Seele; J. Seger; I. Selyuzhenkov; P. Seyboth; E. Shahaliev; M. Shao; M. Sharma; S. S. Shi; E. P. Sichtermann; F. Simon; R. N. Singaraju; M. J. Skoby; N. Smirnov; P. Sorensen; J. Sowinski; H. M. Spinka; B. Srivastava; T. D. S. Stanislaus; D. Staszak; J. R. Stevens; R. Stock; M. Strikhanov; B. Stringfellow; A. A. P. Suaide; M. C. Suarez; N. L. Subba; M. Sumbera; X. M. Sun; Y. Sun; Z. Sun; B. Surrow; D. N. Svirida; T. J. M. Symons; A. Szanto de Toledo; J. Takahashi; A. H. Tang; Z. Tang; L. H. Tarini; T. Tarnowsky; D. Thein; J. H. Thomas; J. Tian; A. R. Timmins; S. Timoshenko; D. Tlusty; M. Tokarev; V. N. Tram; S. Trentalange; R. E. Tribble; O. D. Tsai; J. Ulery; T. Ullrich; D. G. Underwood; G. Van Buren; M. van Leeuwen; G. van Nieuwenhuizen; J. A. Vanfossen, Jr.; R. Varma; G. M. S. Vasconcelos; A. N. Vasiliev; F. Videbaek; Y. P. Viyogi; S. Vokal; S. A. Voloshin; M. Wada; M. Walker; F. Wang; G. Wang; H. Wang; J. S. Wang; Q. Wang; X. L. Wang; Y. Wang; G. Webb; J. C. Webb; G. D. Westfall; C. Whitten Jr.; H. Wieman; S. W. Wissink; R. Witt; Y. F. Wu; W. Xie; H. Xu; N. Xu; Q. H. Xu; W. Xu; Y. Xu; Z. Xu; L. Xue; Y. Yang; P. Yepes; K. Yip; I-K. Yoo; Q. Yue; M. Zawisza; H. Zbroszczyk; W. Zhan; J. B. Zhang; S. Zhang; W. M. Zhang; X. P. Zhang; Y. Zhang; Z. P. Zhang; J. Zhao; C. Zhong; J. Zhou; W. Zhou; X. Zhu; Y. H. Zhu; R. Zoulkarneev

2011-09-22T23:59:59.000Z

395

$?$ meson reconstruction in pp reactions at 2.2 GeV with HADES  

E-Print Network [OSTI]

The HADES spectrometer installed at GSI Darmstadt is devoted to study the production of di-electron pairs from proton, pion and nucleus induced reactions at 1-2 AGeV. In pp collisions at 2.2 GeV we have focused mainly on exclusive reconstruction of the $\\eta$ meson decays in the hadronic ($\\eta\\to\\pi^{+}\\pi^{-}\\pi^{0}$) and the electromagnetic channels ($\\eta\\to e^{+}e^{-}\\gamma$). We present analysis techniques and discuss first results on $\\eta$ production, with the main focus on comparisons of reconstructed distributions to results obtained by other experiments and theoretical predictions.

S. Spataro; for the HADES Collaboration

2006-10-12T23:59:59.000Z

396

$\\eta$ meson reconstruction in pp reactions at 2.2 GeV with HADES  

E-Print Network [OSTI]

The HADES spectrometer installed at GSI Darmstadt is devoted to study the production of di-electron pairs from proton, pion and nucleus induced reactions at 1-2 AGeV. In pp collisions at 2.2 GeV we have focused mainly on exclusive reconstruction of the $\\eta$ meson decays in the hadronic ($\\eta\\to\\pi^{+}\\pi^{-}\\pi^{0}$) and the electromagnetic channels ($\\eta\\to e^{+}e^{-}\\gamma$). We present analysis techniques and discuss first results on $\\eta$ production, with the main focus on comparisons of reconstructed distributions to results obtained by other experiments and theoretical predictions.

Spataro, S

2007-01-01T23:59:59.000Z

397

Energy Dependence of $K/?$, $p/?$, and $K/p$ Fluctuations in Au+Au Collisions from $\\rm \\sqrt{s_{NN}}$ = 7.7 to 200 GeV  

E-Print Network [OSTI]

A search for the quantum chromodynamics (QCD) critical point was performed by the STAR experiment at the Relativistic Heavy Ion Collider, using dynamical fluctuations of unlike particle pairs. Heavy-ion collisions were studied over a large range of collision energies with homogeneous acceptance and excellent particle identification, covering a significant range in the QCD phase diagram where a critical point may be located. Dynamical $K/\\pi$, $p/\\pi$, and $K/p$ fluctuations as measured by the STAR experiment in central 0-5% Au+Au collisions from center-of-mass collision energies $\\rm \\sqrt{s_{NN}}$ = 7.7 to 200 GeV are presented. The observable $\\rm \

STAR Collaboration; N. M. Abdelwahab; L. Adamczyk; J. K. Adkins; G. Agakishiev; M. M. Aggarwal; Z. Ahammed; I. Alekseev; J. Alford; C. D. Anson; A. Aparin; D. Arkhipkin; E. C. Aschenauer; G. S. Averichev; A. Banerjee; D. R. Beavis; R. Bellwied; A. Bhasin; A. K. Bhati; P. Bhattarai; J. Bielcik; J. Bielcikova; L. C. Bland; I. G. Bordyuzhin; W. Borowski; J. Bouchet; A. V. Brandin; S. G. Brovko; S. Bültmann; I. Bunzarov; T. P. Burton; J. Butterworth; H. Caines; M. Calderón de la Barca Sánchez; J. M. Campbell; D. Cebra; R. Cendejas; M. C. Cervantes; P. Chaloupka; Z. Chang; S. Chattopadhyay; H. F. Chen; J. H. Chen; L. Chen; J. Cheng; M. Cherney; A. Chikanian; W. Christie; J. Chwastowski; M. J. M. Codrington; G. Contin; J. G. Cramer; H. J. Crawford; X. Cui; S. Das; A. Davila Leyva; L. C. De Silva; R. R. Debbe; T. G. Dedovich; J. Deng; A. A. Derevschikov; R. Derradi de Souza; B. di Ruzza; L. Didenko; C. Dilks; F. Ding; P. Djawotho; X. Dong; J. L. Drachenberg; J. E. Draper; C. M. Du; L. E. Dunkelberger; J. C. Dunlop; L. G. Efimov; J. Engelage; K. S. Engle; G. Eppley; R. Esha; L. Eun; O. Evdokimov; O. Eyser; R. Fatemi; S. Fazio; J. Fedorisin; P. Filip; Y. Fisyak; C. E. Flores; C. A. Gagliardi; D. R. Gangadharan; D. Garand; F. Geurts; A. Gibson; M. Girard; S. Gliske; L. Greiner; D. Grosnick; D. S. Gunarathne; Y. Guo; A. Gupta; S. Gupta; W. Guryn; B. Haag; A. Hamad; A. Hamed; L-X. Han; R. Haque; J. W. Harris; S. Heppelmann; A. Hirsch; G. W. Hoffmann; D. J. Hofman; S. Horvat; B. Huang; H. Z. Huang; X. Huang; P. Huck; T. J. Humanic; G. Igo; W. W. Jacobs; H. Jang; E. G. Judd; S. Kabana; D. Kalinkin; K. Kang; K. Kauder; H. W. Ke; D. Keane; A. Kechechyan; A. Kesich; Z. H. Khan; D. P. Kikola; I. Kisel; A. Kisiel; D. D. Koetke; T. Kollegger; J. Konzer; I. Koralt; L. K. Kosarzewski; L. Kotchenda; A. F. Kraishan; P. Kravtsov; K. Krueger; I. Kulakov; L. Kumar; R. A. Kycia; M. A. C. Lamont; J. M. Landgraf; K. D. Landry; J. Lauret; A. Lebedev; R. Lednicky; J. H. Lee; C. Li; W. Li; X. Li; X. Li; Y. Li; Z. M. Li; M. A. Lisa; F. Liu; T. Ljubicic; W. J. Llope; M. Lomnitz; R. S. Longacre; X. Luo; G. L. Ma; Y. G. Ma; D. P. Mahapatra; R. Majka; S. Margetis; C. Markert; H. Masui; H. S. Matis; D. McDonald; T. S. McShane; N. G. Minaev; S. Mioduszewski; B. Mohanty; M. M. Mondal; D. A. Morozov; M. K. Mustafa; B. K. Nandi; Md. Nasim; T. K. Nayak; J. M. Nelson; G. Nigmatkulov; L. V. Nogach; S. Y. Noh; J. Novak; S. B. Nurushev; G. Odyniec; A. Ogawa; K. Oh; A. Ohlson; V. Okorokov; E. W. Oldag; D. L. Olvitt Jr.; B. S. Page; Y. X. Pan; Y. Pandit; Y. Panebratsev; T. Pawlak; B. Pawlik; H. Pei; C. Perkins; P. Pile; M. Planinic; J. Pluta; N. Poljak; K. Poniatowska; J. Porter; A. M. Poskanzer; N. K. Pruthi; M. Przybycien; J. Putschke; H. Qiu; A. Quintero; S. Ramachandran; R. Raniwala; S. Raniwala; R. L. Ray; C. K. Riley; H. G. Ritter; J. B. Roberts; O. V. Rogachevskiy; J. L. Romero; J. F. Ross; A. Roy; L. Ruan; J. Rusnak; O. Rusnakova; N. R. Sahoo; P. K. Sahu; I. Sakrejda; S. Salur; A. Sandacz; J. Sandweiss; E. Sangaline; A. Sarkar; J. Schambach; R. P. Scharenberg; A. M. Schmah; W. B. Schmidke; N. Schmitz; J. Seger; P. Seyboth; N. Shah; E. Shahaliev; P. V. Shanmuganathan; M. Shao; B. Sharma; W. Q. Shen; S. S. Shi; Q. Y. Shou; E. P. Sichtermann; M. Simko; M. J. Skoby; D. Smirnov; N. Smirnov; D. Solanki; P. Sorensen; H. M. Spinka; B. Srivastava; T. D. S. Stanislaus; J. R. Stevens; R. Stock; M. Strikhanov; B. Stringfellow; M. Sumbera; X. Sun; X. M. Sun; Y. Sun; Z. Sun; B. Surrow; D. N. Svirida; T. J. M. Symons; M. A. Szelezniak; J. Takahashi; A. H. Tang; Z. Tang; T. Tarnowsky; J. H. Thomas; A. R. Timmins; D. Tlusty; M. Tokarev; S. Trentalange; R. E. Tribble; P. Tribedy; B. A. Trzeciak; O. D. Tsai; J. Turnau; T. Ullrich; D. G. Underwood; G. Van Buren; G. van Nieuwenhuizen; M. Vandenbroucke; J. A. Vanfossen, Jr.; R. Varma; G. M. S. Vasconcelos; A. N. Vasiliev; R. Vertesi; F. Videbæk; Y. P. Viyogi; S. Vokal; S. A. Voloshin; A. Vossen; M. Wada; F. Wang; G. Wang; H. Wang; J. S. Wang; X. L. Wang; Y. Wang; Y. Wang; G. Webb; J. C. Webb; L. Wen; G. D. Westfall; H. Wieman; S. W. Wissink; Y. F. Wu; Z. Xiao; W. Xie; K. Xin; H. Xu; J. Xu; N. Xu; Q. H. Xu; Y. Xu; Z. Xu; W. Yan; C. Yang; Y. Yang; Y. Yang; Z. Ye; P. Yepes; L. Yi; K. Yip; I-K. Yoo; N. Yu; H. Zbroszczyk; W. Zha; J. B. Zhang; J. L. Zhang; S. Zhang; X. P. Zhang; Y. Zhang; Z. P. Zhang; F. Zhao; J. Zhao; C. Zhong; X. Zhu; Y. H. Zhu; Y. Zoulkarneeva; M. Zyzak

2014-10-21T23:59:59.000Z

398

Development of a new radiometer for the thermodynamic measurement of high temperature fixed points  

SciTech Connect (OSTI)

The National Physical Laboratory (NPL) has developed a new radiometer to measure the thermodynamic melting point temperatures of high temperature fixed points with ultra-low uncertainties. In comparison with the NPL's Absolute Radiation Thermometer (ART), the 'THermodynamic Optical Radiometer' (THOR) is more portable and compact, with a much lower size-of-source effect and improved performance in other parameters such as temperature sensitivity. It has been designed for calibration as a whole instrument via the radiance method, removing the need to calibrate the individual subcomponents, as required by ART, and thereby reducing uncertainties. In addition, the calibration approach has been improved through a new integrating sphere that has been designed to have greater uniformity.

Dury, M. R.; Goodman, T. M.; Lowe, D. H.; Machin, G.; Woolliams, E. R. [National Physical Laboratory, Teddington (United Kingdom)] [National Physical Laboratory, Teddington (United Kingdom)

2013-09-11T23:59:59.000Z

399

OECD MCCI project Melt Eruption Test (MET) design report, Rev. 2. April 15, 2003.  

SciTech Connect (OSTI)

The Melt Attack and Coolability Experiments (MACE) program at Argonne National Laboratory addressed the issue of the ability of water to cool and thermally stabilize a molten core-concrete interaction when the reactants are flooded from above. These tests provided data regarding the nature of corium interactions with concrete, the heat transfer rates from the melt to the overlying water pool, and the role of noncondensable gases in the mixing processes that contribute to melt quenching. The Melt Coolability and Concrete Interaction (MCCI) program is pursuing separate effect tests to examine the viability of the melt coolability mechanisms identified as part of the MACE program. These mechanisms include bulk cooling, water ingression, volcanic eruptions, and crust breach. At the second PRG meeting held at ANL on 22-23 October 2002, a preliminary design1 for a separate effects test to investigate the melt eruption cooling mechanism was presented for PRG review. At this meeting, NUPEC made several recommendations on the experiment approach aimed at optimizing the chances of achieving a floating crust boundary condition in this test. The principal recommendation was to incorporate a mortar sidewall liner into the test design, since data from the COTELS experiment program indicates that corium does not form a strong mechanical bond with this material. Other recommendations included: (i) reduction of the electrode elevation to well below the melt upper surface elevation (since the crust may bond to these solid surfaces), and (ii) favorably taper the mortar liner to facilitate crust detachment and relocation during the experiment. Finally, as a precursor to implementing these modifications, the PRG recommended the development of a design for a small-scale scoping test intended to verify the ability of the mortar liner to preclude formation of an anchored bridge crust under core-concrete interaction conditions. This revised Melt Eruption Test (MET) plan is intended to satisfy these PRG recommendations. Specifically, the revised plan focuses on providing data on the extent of crust growth and melt eruptions as a function of gas sparging rate under well-controlled experiment conditions, including a floating crust boundary condition. The overall objective of MET is to determine to what extent core debris is rendered coolable by eruptive-type processes that breach the crust that rests upon the melt. The specific objectives of this test are as follows: (1) Evaluate the augmentation in surface heat flux during periods of melt eruption; (2) Evaluate the melt entrainment coefficient from the heat flux and gas flow rate data for input into models that calculate ex-vessel debris coolability; (3) Characterize the morphology and coolability of debris resulting from eruptive processes that transport melt into overlying water; and (4) Discriminate between periods when eruptions take the form of particle ejections into overlying water, leading to a porous particle bed, and single-phase extrusions, which lead to volcano-type structures.

Farmer, M. T.; Lomperski, S.; Kilsdonk, D. J.; Aeschlimann, R. W.; Basu, S. (Nuclear Engineering Division); (NRC)

2011-05-23T23:59:59.000Z

400

Nuclear reactor melt-retention structure to mitigate direct containment heating  

DOE Patents [OSTI]

A light water nuclear reactor melt-retention structure to mitigate the extent of direct containment heating of the reactor containment building. The structure includes a retention chamber for retaining molten core material away from the upper regions of the reactor containment building when a severe accident causes the bottom of the pressure vessel of the reactor to fail and discharge such molten material under high pressure through the reactor cavity into the retention chamber. In combination with the melt-retention chamber there is provided a passageway that includes molten core droplet deflector vanes and has gas vent means in its upper surface, which means are operable to deflect molten core droplets into the retention chamber while allowing high pressure steam and gases to be vented into the upper regions of the containment building. A plurality of platforms are mounted within the passageway and the melt-retention structure to direct the flow of molten core material and help retain it within the melt-retention chamber. In addition, ribs are mounted at spaced positions on the floor of the melt-retention chamber, and grid means are positioned at the entrance side of the retention chamber. The grid means develop gas back pressure that helps separate the molten core droplets from discharged high pressure steam and gases, thereby forcing the steam and gases to vent into the upper regions of the reactor containment building.

Tutu, Narinder K. (Manorville, NY); Ginsberg, Theodore (East Setauket, NY); Klages, John R. (Mattituck, NY)

1991-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "gev melting point" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Decontamination of metals by melt refinings/slagging: An annotated bibliography  

SciTech Connect (OSTI)

As the number of nuclear installations undergoing decontamination and decommissioning (D&D) increases, current radioactive waste storage space is consumed and establishment of new waste storage areas becomes increasingly difficult, the problem of handling and storing radioactive scrap metal (RSM) gains increasing importance in the DOE Environmental Restoration and Waste Management Program. To alleviate present and future waste storage problems, Westinghouse Idaho Nuclear Company (WINCO) is managing a program for the recycling of RSM for beneficial use within the DOE complex. As part of that effort, Montana Tech has been awarded a contract to help optimize melting and refining technology for the recycling of stainless steel RSM. The scope of the Montana Tech program includes a literature survey, a decontaminating slag design study, small scale melting studies to determine optimum slag compositions for removal of radioactive contaminant surrogates, analysis of preferred melting techniques, and coordination of large scale melting demonstrations (100--500 lbs) to be conducted at selected facilities. The program will support recycling and decontaminating stainless steel RSM for use in waste canisters for Idaho Waste Immobilization Facility densified high level waste. This report is the result of the literature search conducted to establish a basis for experimental melt/slag program development.

Mizia, R.E. [ed.; Worcester, S.A.; Twidwell, L.G.; Paolini, D.J.; Weldon, T.A.

1993-07-01T23:59:59.000Z

402

Melting temperatures of the ZrO{sub 2}-MOX system  

SciTech Connect (OSTI)

Severe accidents occurred at the Fukushima Daiichi Nuclear Power Plant Units 1-3 on March 11, 2011. MOX fuels were loaded in the Unit 3. For the thermal analysis of the severe accident, melting temperature and phase state of MOX corium were investigated. The simulated coriums were prepared from 4%Pu-containing MOX, 8%Pu-containing MOX and ZrO{sub 2}. Then X-ray diffraction, density and melting temperature measurements were carried out as a function of zirconium and plutonium contents. The cubic phase was observed in the 25%Zr-containing corium and the tetragonal phase was observed in the 50% and 75%Zr-containing coria. The lattice parameter and density monotonically changed with Pu content. Melting temperature increased with increasing Pu content; melting temperature were estimated to be 2932 K for 4%Pu MOX corium and 3012 K for 8%Pu MOX corium in the 25%ZrO{sub 2}-MOX system. The lowest melting temperature was observed for 50%Zr-containing corium. (authors)

Uchida, T.; Hirooka, S.; Kato, M.; Morimoto, K. [Japan Atomic Energy Agency, 4-33, Muramatsu, Tokai-mura, Naka-gun, Ibaraki 319-1194 (Japan); Sugata, H.; Shibata, K.; Sato, D. [Inspection Development Company, 4-33, Muramatsu, Tokai-mura, Naka-gun, Ibaraki 319-1194 (Japan)

2013-07-01T23:59:59.000Z

403

Multiwavelength observations of GRB 110731A: GeV emission from onset to afterglow  

E-Print Network [OSTI]

We report on the multiwavelength observations of the bright, long gamma-ray burst \\GRB, by the \\Fermi and \\Swift observatories, and by the MOA and GROND optical telescopes. The analysis of the prompt phase reveals that \\GRB shares many features with bright Large Area Telescope bursts observed by \\Fermi during the first 3 years on-orbit: a light curve with short time variability across the whole energy range during the prompt phase, delayed onset of the emission above 100 MeV, extra power law component and temporally extended high-energy emission. In addition, this the first GRB for which simultaneous GeV, X-ray, and optical data are available over multiple epochs beginning just after the trigger time and extending for more than 800 s, allowing temporal and spectral analysis in different epochs that favor emission from the forward shock in a wind-type medium. The observed temporally extended GeV emission is most likely part of the high-energy end of the afterglow emission. Both the single-zone pair transparenc...

,

2012-01-01T23:59:59.000Z

404

Polarization components in ?0 photoproduction at photon energies up to 5.6 GeV  

DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

We present new data for the polarization observables of the final state proton in the 1H(? ?, ? p)?0 reaction. These data can be used to test predictions based on hadron helicity conservation (HHC) and perturbative QCD (pQCD). These data have both small statistical and systematic uncertainties, and were obtained with beam energies between 1.8 and 5.6 GeV and for ?0 scattering angles larger than 75{sup o} in center-of-mass (c.m.) frame. The data extend the polarization measurements data base for neutral pion photoproduction up to E? = 5.6 GeV. The results show non-zero induced polarization above the resonance region. The polarization transfer components vary rapidly with the photon energy and ?0 scattering angle in the center-of-mass frame. This indicates that HHC does not hold and that the pQCD limit is still not reached in the energy regime of this experiment.

Luo, W; Brash, E J; Gilman, R; Jones, M K; Meziane, M; Pentchev, L; Perdrisat, C F; Puckett, A.J.R.; Punjabi,; Wesselmann, F R; Marsh,; Matulenko, Y; Maxwell, J; Meekins, D; Melnik, Y; Miller, J; Mkrtchyan, A; Mkrtchyan, H; Moffit, B; Moreno, O; Mulholland, J; Narayan, A; Nuruzzaman,; Nedev, S; Piasetzky, E; Pierce, W; Piskunov, N M; Prok, Y; Ransome, R D; Razin, D S; Reimer, P E; Reinhold, J; Rondon, O; Shabestari, M; Shahinyan, A; Shestermanov, K; Sirca, S; Sitnik, I; Smykov, L; Smith, G; Solovyev, L; Solvignon, P; Strakovsky, I I; Subedi, R; Suleiman, R; Tomasi-Gustafsson, E; Vasiliev, A; Veilleux, M; Wood, S; Ye, Z; Zanevsky, Y; Zhang, X; Zhang, Y; Zheng, X; Zhu, L; Ahmidouch, A; Albayrak, I; Aniol, K A; Arrington, J; Asaturyan, A; Ates, O; Baghdasaryan, H; Benmokhtar, F; Bertozzi, W; Bimbot, L; Bosted, P; Boeglin, W; Butuceanu, C; Carter, P; Chernenko, S; Christy, M E; Commisso, M; Cornejo, J C; Covrig, S; Danagoulian, S; Daniel, A; Davidenko, A; Day, D; Dhamija, S; Dutta, D; Ent, R; Frullani, S; Fenker, H; Frlez, E; Garibaldi, F; Gaskell, D; Gilad, S; Goncharenko, Y; Hafidi, K; Hamilton, D; Higinbotham, D W; Hinton, W; Horn, T; Hu, B; Huang, J; Huber, G M; Jensen, E; Kang, H; Keppel, C; Khandaker, M; King, P; Kirillov, D; Kohl, M; Kravtsov, V; Kumbartzki, G; Li, Y; Mamyan, V; Margaziotis, D J; Markowitz, P

2012-05-31T23:59:59.000Z

405

Nucleon-Nucleon Optical Model for Energies to 3 GeV  

E-Print Network [OSTI]

Several nucleon-nucleon potentials, Paris, Nijmegen, Argonne, and those derived by quantum inversion, which describe the NN interaction for T-lab below 300$ MeV are extended in their range of application as NN optical models. Extensions are made in r-space using complex separable potentials definable with a wide range of form factor options including those of boundary condition models. We use the latest phase shift analyses SP00 (FA00, WI00) of Arndt et al. from 300 MeV to 3 GeV to determine these extensions. The imaginary parts of the optical model interactions account for loss of flux into direct or resonant production processes. The optical potential approach is of particular value as it permits one to visualize fusion, and subsequent fission, of nucleons when T-lab above 2 GeV. We do so by calculating the scattering wave functions to specify the energy and radial dependences of flux losses and of probability distributions. Furthermore, half-off the energy shell t-matrices are presented as they are readily deduced with this approach. Such t-matrices are required for studies of few- and many-body nuclear reactions.

A. Funk; H. V. von Geramb; K. A. Amos

2001-05-04T23:59:59.000Z

406

Inferring the nature of the boson at 125-126 GeV  

E-Print Network [OSTI]

The presence of a bosonic resonance near 125 GeV has been firmly established at the Large Hadron Collider. Understanding the exact nature of this boson is a priority. The task now is to verify whether the boson is indeed the scalar Higgs as proposed in the Standard Model of particle physics, or something more esoteric as proposed in the plethora of extensions to the Standard Model. This requires a verification that the boson is a $J^{PC}=0^{++}$ state with couplings precisely as predicted by the Standard Model. Since a non Standard Model boson can in some cases mimic the Standard Model Higgs in its couplings to gauge bosons, it is essential to rule out any anomalous behavior in its gauge couplings. We present a step by step methodology to determine the properties of this resonance without making any assumptions about its couplings. We present the analysis in terms of uni-angular distributions which lead to angular asymmetries that allow for the extraction of the couplings of the 125-126 GeV resonance to Z bosons. We show analytically and numerically, that these asymmetries can unambiguously confirm whether the new boson is indeed the Standard Model Higgs boson.

Arjun Menon; Tanmoy Modak; Dibyakrupa Sahoo; Rahul Sinha; Hai-Yang Cheng

2014-05-01T23:59:59.000Z

407

Design of the Trigger Interface and Distribution Board for CEBAF 12 GeV Upgrade  

SciTech Connect (OSTI)

The design of the Trigger Interface and Distribution (TID) board for the 12 GeV Upgrade at the Continuous Electron Beam Accelerator Facility (CEBAF) at TJNAL is described. The TID board distributes a low jitter system clock, synchronized trigger, and synchronized multi-purpose SYNC signal. The TID also initiates data acquisition for the crate. With the TID boards, a multi-crate system can be setup for experiment test and commissioning. The TID board can be selectively populated as a Trigger Interface (TI) board, or a Trigger Distribution (TD) board for the 12 GeV upgrade experiments. When the TID is populated as a TI, it can be located in the VXS crate and distribute the CLOCK/TRIGGER/SYNC through the VXS P0 connector; it can also be located in the standard VME64 crate, and distribute the CLOCK/TRIGGER/SYNC through the VME P2 connector or front panel. It initiates the data acquisition for the front crate where the TI is positioned in. When the TID is populated as a TD, it fans out the CLOCK/TRIGGER/SYNC from trigger supervisor to the front end crates through optical fibres. The TD monitors the trigger processing on the TIs, and gives feedback to the TS for trigger flow control. Field Programmable Gate Arrays (FPGA) is utilised on TID board to provide programmability. The TID boards were intensively tested on the bench, and various setups.

Gu, Jianhui; Dong, Hai; Cuevas, R; Gyurjyan, Vardan; Heyes, William; Jastrzembski, Edward; Kaneta, Scott; Nganga, Nicholas; Moffit, Bryan; Raydo, Benjamin; Timmer, Carl

2012-10-01T23:59:59.000Z

408

Novel Higgs-to-125 GeV Higgs boson decays in the complex NMSSM  

E-Print Network [OSTI]

In the Next-to-Minimal Supersymmetric Standard Model (NMSSM) a variety of parameter configurations yields a Higgs boson consistent with the one observed at the LHC. Additionally, the Higgs sector of the model can contain explicit CP-violating phases even at the tree level, in contrast with the Minimal Supersymmetric Standard Model (MSSM). In this article we present the one-loop Higgs boson mass matrix of the complex NMSSM in the renormalisation-group-improved effective potential approach. We also present the trilinear Higgs boson self-couplings as well as various partial decay widths of a generic CP-mixed Higgs boson in the model. We then analyse a very interesting phenomenological scenario wherein the decay of a relatively light pseudoscalar-like Higgs boson into ~ 125 GeV SM-like Higgs boson(s) is induced by non-zero CP-violating phases. We discuss in detail a few benchmark cases in which such a decay can contribute significantly to the production of SM-like Higgs bosons at the LHC on top of the gluon fusion process. It can thus be partially responsible for the gamma.gamma excess near 125 GeV due to the subsequent decay of the SM-like Higgs boson. Such a scenario is extremely difficult to realize in the complex MSSM and, if probed at the LHC, it could provide an indication of the non-minimal nature of supersymmetry.

Shoaib Munir

2014-05-05T23:59:59.000Z

409

Environmental assessment of the proposed 7-GeV Advanced Photon Source  

SciTech Connect (OSTI)

The potential environmental impacts of construction and operation of a 6- to 7-GeV synchrotron radiation source known as the 7-GeV Advanced Photon Source at Argonne National Laboratory were evaluated. Key elements considered include on- and off-site radiological effects; socioeconomic effects; and impacts to aquatic and terrestrial flora and fauna, wetlands, water and air quality, cultural resources, and threatened or endangered species. Also incorporated are the effects of decisions made as a result of the preliminary design (Title I) being prepared. Mitigation plans to further reduce impacts are being developed. These plans include coordination with the US Army Corps of Engineers (COE) and other responsible agencies to mitigate potential impacts to wetlands. This mitigation includes providing habitat of comparable ecological value to assure no net loss of wetlands. These mitigation actions would be permitted and monitored by COE. A data recovery plan to protect cultural resources has been developed and approved, pursuant to a Programmatic Agreement among the US Department of Energy, the Advisory Council on Historic Preservation, and the Illinois State Historic Preservation Office. Applications for National Emission Standard for Hazardous Air Pollutants (NESHAP) and air emissions permits have been submitted to the US Environmental Protection Agency (EPA) and the Illinois Environmental Protection Agency (IEPA), respectively. 71 refs., 10 figs., 11 tabs.

Not Available

1990-02-01T23:59:59.000Z

410

Theory of Polymer Chains in Poor Solvent: Single-Chain Structure, Solution Thermodynamics and Theta Point  

E-Print Network [OSTI]

Using the language of the Flory chi parameter, we develop a theory that unifies the treatment of the single-chain structure and the solution thermodynamics of polymers in poor solvents. The structure of a globule and its melting thermodynamics is examined using the self-consistent filed theory. Our results show that the chain conformation involves three states prior to the globule-to-coil transition: the fully-collapsed globule, the swollen globule and the molten globule, which are distinguished by the core density and the interfacial thickness. By examining the chain-length dependence of the melting of the swollen globule, we find universal scaling behavior in the chain properties near the Theta point. The information of density profile and free energy of the globule is used in the dilute solution thermodynamics to study the phase equilibrium of polymer solution. Our results show different scaling behavior of the solubility of polymers in the dilute solution compared to the F-H theory, both in the chi dependence and the chain-length dependence. From the perspectives of single chain structure and solution thermodynamics, our results verifies the consistency of the Theta point defined by different criteria in the limit of infinite chain length: the disappearance of the second viral coefficient, the abrupt change in chain size and the critical point in the phase diagram of the polymer solution. Our results show the value of chi at the Theta point is 0.5 (for the case of equal monomer and solvent volume), which coincides with the value predicted from the F-H theory.

Rui Wang; Zhen-Gang Wang

2014-06-05T23:59:59.000Z

411

K* production in Cu+Cu and Au+Au collisions at sqrt(s_{NN}) = 62.4 GeV and 200 GeV in STAR  

E-Print Network [OSTI]

We report the measurements of $p_T$ spectra of $K^*$ up to intermediate $p_T$ region in mid-rapidity through its hadronic decay channel using the STAR detector in Au+Au and Cu+Cu collisions at $\\sqrt{s_{\\mathrm{NN}}}$= 62.4 GeV and 200 GeV. Particle ratios such as $K^{*}/K$ and $K^{*}/\\phi$ is used to understand the rescattering and regeneration effect on $K^{*}$ production in the hadronic medium. The $K^*$ $v_{2}$ measurement using a high statistics Au+Au 200 GeV dataset and nuclear modification factor measurement supports the quark coalescence model of particle production in the intermediate $p_T$ range.

Sadhana Dash; for the STAR Collaboration

2008-05-01T23:59:59.000Z

412

K*0 production in Cu+Cu and Au+Au collisions at \\sqrt{s_NN} = 62.4 GeV and 200 GeV  

E-Print Network [OSTI]

We report on K*0 production at mid-rapidity in Au+Au and Cu+Cu collisions at \\sqrt{s_{NN}} = 62.4 and 200 GeV collected by the Solenoid Tracker at RHIC (STAR) detector. The K*0 is reconstructed via the hadronic decays K*0 \\to K+ pi- and \\bar{K*0} \\to K-pi+. Transverse momentum, pT, spectra are measured over a range of pT extending from 0.2 GeV/c to 5 GeV/c. The center of mass energy and system size dependence of the rapidity density, dN/dy, and the average transverse momentum, , are presented. The measured N(K*0)/N(K) and N(\\phi)/N(K*0) ratios favor the dominance of re-scattering of decay daughters of K*0 over the hadronic regeneration for the K*0 production. In the intermediate pT region (2.0 < pT < 4.0 GeV/c), the elliptic flow parameter, v2, and the nuclear modification factor, RCP, agree with the expectations from the quark coalescence model of particle production.

M. M. Aggarwal; Z. Ahammed; A. V. Alakhverdyants; I. Alekseev; J. Alford; B. D. Anderson; Daniel Anson; D. Arkhipkin; G. S. Averichev; J. Balewski; L. S. Barnby; S. Baumgart; D. R. Beavis; R. Bellwied; M. J. Betancourt; R. R. Betts; A. Bhasin; A. K. Bhati; H. Bichsel; J. Bielcik; J. Bielcikova; B. Biritz; L. C. Bland; B. E. Bonner; W. Borowski; J. Bouchet; E. Braidot; A. V. Brandin; A. Bridgeman; E. Bruna; S. Bueltmann; I. Bunzarov; T. P. Burton; X. Z. Cai; H. Caines; M. Calderon; O. Catu; D. Cebra; R. Cendejas; M. C. Cervantes; Z. Chajecki; P. chaloupka; S. Chattopadhyay; H. F. Chen; J. H. Chen; J. Y. Chen; J. Cheng; M. Cherney; A. Chikanian; K. E. Choi; W. Christie; P. Chung; R. F. Clarke; M. J. M. Codrington; R. Corliss; J. G. Cramer; H. J. Crawford; D. Das; S. Dash; A. Davila Leyva; L. C. De Silva; R. R. Debbe; T. G. Dedovich; A. A. Derevschikov; R. Derradi de Souza; L. Didenko; P. Djawotho; S. M. Dogra; X. Dong; J. L. Drachenberg; J. E. Draper; J. C. Dunlop; M. R. Dutta Mazumdar; L. G. Efimov; E. Elhalhuli; M. Elnimr; J. Engelage; G. Eppley; B. Erazmus; M. Estienne; L. Eun; O. Evdokimov; P. Fachini; R. Fatemi; J. Fedorisin; R. G. Fersch; P. Filip; E. Finch; V. Fine; Y. Fisyak; C. A. Gagliardi; D. R. Gangadharan; M. S. Ganti; E. J. Garcia-Solis; A. Geromitsos; F. Geurts; V. Ghazikhanian; P. Ghosh; Y. N. Gorbunov; A. Gordon; O. Grebenyuk; D. Grosnick; S. M. Guertin; A. Gupta; W. Guryn; B. Haag; A. Hamed; L-X. Han; J. W. Harris; J. P. Hays-Wehle; M. Heinz; S. Heppelmann; A. Hirsch; E. Hjort; A. M. Hoffman; G. W. Hoffmann; D. J. Hofman; B. Huang; H. Z. Huang; T. J. Humanic; L. Huo; G. Igo; P. Jacobs; W. W. Jacobs; C. Jena; F. Jin; C. L. Jones; P. G. Jones; J. Joseph; E. G. Judd; S. Kabana; K. Kajimoto; K. Kang; J. Kapitan; K. Kauder; D. Keane; A. Kechechyan; D. Kettler; D. P. Kikola; J. Kiryluk; A. Kisiel; V. Kizka; S. R. Klein; A. G. Knospe; A. Kocoloski; D. D. Koetke; T. Kollegger; J. Konzer; I. Koralt; L. Koroleva; W. Korsch; L. Kotchenda; V. Kouchpil; P. Kravtsov; K. Krueger; M. Krus; L. Kumar; P. Kurnadi; M. A. C. Lamont; J. M. Landgraf; S. LaPointe; J. Lauret; A. Lebedev; R. Lednicky; C-H. Lee; J. H. Lee; W. Leight; M. J. LeVine; C. Li; L. Li; N. Li; W. Li; X. Li; X. Li; Y. Li; Z. M. Li; G. Lin; S. J. Lindenbaum; M. A. Lisa; F. Liu; H. Liu; J. Liu; T. Ljubicic; W. J. Llope; R. S. Longacre; W. A. Love; Y. Lu; E. V. Lukashov; X. Luo; G. L. Ma; Y. G. Ma; D. P. Mahapatra; R. Majka; O. I. Mall; L. K. Mangotra; R. Manweiler; S. Margetis; C. Markert; H. Masui; H. S. Matis; Yu. A. Matulenko; D. McDonald; T. S. McShane; A. Meschanin; R. Milner; N. G. Minaev; S. Mioduszewski; A. Mischke; M. K. Mitrovski; B. Mohanty; M. M. Mondal; B. Morozov; D. A. Morozov; M. G. Munhoz; B. K. Nandi; C. Nattrass; T. K. Nayak; J. M. Nelson; P. K. Netrakanti; M. J. Ng; L. V. Nogach; S. B. Nurushev; G. Odyniec; A. Ogawa; V. Okorokov; E. W. Oldag; D. Olson; M. Pachr; B. S. Page; S. K. Pal; Y. Pandit; Y. Panebratsev; T. Pawlak; T. Peitzmann; C. Perkins; W. Peryt; S. C. Phatak; P. Pile; M. Planinic; M. A. Ploskon; J. Pluta; D. Plyku; N. Poljak; A. M. Poskanzer; B. V. K. S. Potukuchi; C. B. Powell; D. Prindle; C. Pruneau; N. K. Pruthi; P. R. Pujahari; J. Putschke; H. Qiu; R. Raniwala; S. Raniwala; R. L. Ray; R. Redwine; R. Reed; H. G. Ritter; J. B. Roberts; O. V. Rogachevskiy; J. L. Romero; A. Rose; C. Roy; L. Ruan; R. Sahoo; S. Sakai; I. Sakrejda; T. Sakuma; S. Salur; J. Sandweiss; E. Sangaline; J. Schambach; R. P. Scharenberg; N. Schmitz; T. R. Schuster; J. Seele; J. Seger; I. Selyuzhenkov; P. Seyboth; E. Shahaliev; M. Shao; M. Sharma; S. S. Shi; E. P. Sichtermann; F. Simon; R. N. Singaraju; M. J. Skoby; N. Smirnov; P. Sorensen; J. Sowinski; H. M. Spinka; B. Srivastava; T. D. S. Stanislaus; D. Staszak; J. R. Stevens; R. Stock; M. Strikhanov; B. Stringfellow; A. A. P. Suaide; M. C. Suarez; N. L. Subba; M. Sumbera; X. M. Sun; Y. Sun; Z. Sun; B. Surrow; D. N. Svirida; T. J. M. Symons; A. Szanto de Toledo; J. Takahashi; A. H. Tang; Z. Tang; L. H. Tarini; T. Tarnowsky; D. Thein; J. H. Thomas; J. Tian; A. R. Timmins; S. Timoshenko; D. Tlusty; M. Tokarev; T. A. Trainor; V. N. Tram; S. Trentalange; R. E. Tribble; O. D. Tsai; J. Ulery; T. Ullrich; D. G. Underwood; G. Van Buren; M. van Leeuwen; G. van Nieuwenhuizen; J. A. Vanfossen, Jr.; R. Varma; G. M. S. Vasconcelos; A. N. Vasiliev; F. Videbaek; Y. P. Viyogi; S. Vokal; S. A. Voloshin; M. Wada; M. Walker; F. Wang; G. Wang; H. Wang; J. S. Wang; Q. Wang; X. L. Wang; Y. Wang; G. Webb; J. C. Webb; G. D. Westfall; C. Whitten Jr.; H. Wieman; S. W. Wissink; R. Witt; Y. F. Wu; W. Xie; H. Xu; N. Xu; Q. H. Xu; W. Xu; Y. Xu; Z. Xu; L. Xue; Y. Yang; P. Yepes; K. Yip; I-K. Yoo; Q. Yue; M. Zawisza; H. Zbroszczyk; W. Zhan; J. B. Zhang; S. Zhang; W. M. Zhang; X. P. Zhang; Y. Zhang; Z. P. Zhang; J. Zhao; C. Zhong; J. Zhou; W. Zhou; X. Zhu; Y. H. Zhu; R. Zoulkarneev

2010-06-10T23:59:59.000Z

413

Is Rho-Meson Melting Compatible with Chiral Restoration?  

E-Print Network [OSTI]

Utilizing in-medium vector spectral functions which describe dilepton data in ultra-relativistic heavy-ion collisions, we conduct a comprehensive evaluation of QCD and Weinberg sum rules at finite temperature. The starting point is our recent study in vacuum, where the sum rules have been quantitatively satisfied using phenomenological axial-/vector spectral functions which describe hadronic tau-decay data. In the medium, the temperature dependence of condensates and chiral order parameters is taken from thermal lattice QCD where available, and otherwise estimated from a hadron resonance gas. Since little is known about the in-medium axial-vector spectral function, we model it with a Breit-Wigner ansatz allowing for smooth temperature variations of its width and mass parameters. Our study thus amounts to testing the compatibility of the $\\rho$-broadening found in dilepton experiments with (the approach toward) chiral restoration, and thereby searching for viable in-medium axial-vector spectral functions.

Paul M. Hohler; Ralf Rapp

2014-04-30T23:59:59.000Z

414

Higher Moments of Net-Baryon Distribution as Probes of QCD Critical Point  

E-Print Network [OSTI]

It is crucially important to find an observable which is independent on the acceptance and late collision process, in order to search for the possible Critical Point predicted by QCD. By utilizing A Multi-Phase Transport (AMPT) model and Ultra Relativistic Quantum Molecular Dynamics (UrQMD) model, we study the centrality and evolution time dependence of higher moments of net-baryon distribution in Au + Au collisions at $\\sqrt{s_{NN}}=17.3$ GeV. The results suggest that Kurtosis and Skewness are less sensitive to the acceptance effect and late collision process. Thus, they should be good observables providing the information of the early stage of heavy ion collision. In addition, our study shows that the Kurtosis times $\\sigma^{2}$ of net-proton distribution are quite different to that of net-baryon when collisions energy is lower than $\\sqrt{s_{NN}}$ = 20 GeV, the Monte Calor calculations on Kurtosis$\\cdot\\sigma^{2}$ have a deviation from the theoretical predictions.

Y. Zhou; S. S. Shi; K. Xiao; K. J. Wu; F. Liu

2010-04-15T23:59:59.000Z

415

Proposal for the Purchase, Without a Call for Tenders, of a Medium-Temperature Hot Water Boiler for the 300 GeV Accelerator  

E-Print Network [OSTI]

Proposal for the Purchase, Without a Call for Tenders, of a Medium-Temperature Hot Water Boiler for the 300 GeV Accelerator

1976-01-01T23:59:59.000Z

416

Multiplicity of Charged and Neutral Pions in Deep-Inelastic Scattering of 27.5 GeV Positrons on Hydrogen  

E-Print Network [OSTI]

Multiplicity of Charged and Neutral Pions in Deep-Inelastic Scattering of 27.5 GeV Positrons on Hydrogen

Airapetian, A; Amarian, M; Arrington, J; Aschenauer, E C; Avakian, H; Avakian, R; Avetisian, A; Avetissian, E; Bailey, P; Bains, B; Baumgarten, C; Beckmann, M; Belostotskii, S; Bernreuther, S; Bianchi, N; Böttcher, Helmut B; Borisov, A; Bouwhuis, M; Brack, J; Brauksiepe, S; Braun, B; Brückner, W; Brüll, A; Budz, P; Bulten, H J; Capitani, G P; Carter, P; Chumney, P; Cisbani, E; Court, G R; Dalpiaz, P F; De Leo, R; De Nardo, L; De Sanctis, E; De Schepper, D; Devitsin, E G; De Witt-Huberts, P K A; Di Nezza, P; Dzhordzhadze, V; Düren, M; Dvoredsky, A P; Elbakian, G M; Ely, J; Fantoni, A; Feshchenko, A; Ferro-Luzzi, M; Fiedler, K; Filippone, B W; Fischer, H; Fox, B; Franz, J; Frullani, S; Gärber, Y; Garibaldi, F; Garutti, E; Gavrilov, G E; Karibian, V; Golendukhin, A; Graw, G; Grebenyuk, O; Green, P W; Greeniaus, L G; Gute, A; Haeberli, W; Hartig, M; Hasch, D; Heesbeen, D; Heinsius, F H; Henoch, M; Hertenberger, R; Hesselink, W H A; Hoffmann-Rothe, P; Hofman, G J; Holler, Y; Holt, R J; Hommez, B; Hoprich, W; Iarygin, G; Ihssen, H; Iodice, M; Izotov, A A; Jackson, H E; Jgoun, A; Kaiser, R; Kanesaka, J; Kinney, E R; Kiselev, A; Kitching, P; Kobayashi, H; Koch, N; Königsmann, K C; Kolster, H; Korotkov, V A; Kotik, E; Kozlov, V; Krivokhizhin, V G; Kyle, G S; Lagamba, L; Laziev, A; Lenisa, P; Lindemann, T; Lorenzon, W; Makins, N C R; Martin, J W; Marukyan, H O; Masoli, F; McAndrew, M; McIlhany, K; McKeown, R D; Meissner, F; Menden, F; Metz, A; Meyners, N; Miklukho, O; Miller, C A; Milner, R; Muccifora, V; Mussa, R; Nagaitsev, A P; Nappi, E; Naryshkin, Yu; Nass, A; Nowak, Wolf-Dieter; O'Neill, T G; Openshaw, R; Ouyang, J; Owen, B R; Pate, S F; Potashov, S Yu; Potterveld, D H; Rakness, G; Redwine, R P; Reggiani, D; Reolon, A R; Ristinen, R; Rith, K; Robinson, D; Rostomyan, A; Ruh, M; Ryckbosch, D; Sakemi, Y; Sato, F; Savin, I A; Scarlett, C; Schäfer, A; Schill, C; Schmidt, F; Schmitt, M; Schnell, G; Schüler, K P; Schwind, A; Seibert, J; Shibata, T A; Shin, T; Shutov, V B; Simani, M C; Simon, A; Sinram, K; Steffens, E; Steijger, J J M; Stewart, J; Stösslein, U; Suetsugu, K; Sutter, M F; Tallini, H A; Taroian, S P; Terkulov, A R; Tessarin, S; Thomas, E; Tipton, B; Tytgat, M; Urciuoli, G M; Van den Brand, J F J; van der Steenhoven, G; Van de Vyver, R; Van Hunen, J J; Vetterli, Martin C; Vikhrov, V V; Vincter, M G; Visser, J; Volk, E; Weiskopf, C; Wendland, J; Wilbert, J; Wise, T; Woller, K; Yoneyama, S; Zohrabyan, H G

2001-01-01T23:59:59.000Z

417

Study on LiCl waste salt treatment process by layer melt crystallization  

SciTech Connect (OSTI)

Layer melt crystallization operated in a static mode has been applied to separate Group I and II chlorides from surrogate LiCl waste salt. The effects of operating conditions such as crystal growing rate(or flux) and initial impurity concentration on separation (or concentration) of cesium, strontium and barium involved in a LiCl melts were analyzed. In a layer crystallization process, separation was impaired by occlusion of impurities and by residual melt adhering to LiCl crystal after at the end of the process. The crystal growth rate strongly affects the crystal structure, therefore the separation efficiency, while the effect of the initial Cs and Sr concentration in LiCl molten salt was nearly negligible. (authors)

Cho, Yung-Zun; Lee, Tae-Kyo; Choi, Jung-Hoon; Eun, Hee-Chul; Park, Hwan-Seo; Kim, In-Tae; Park, Geun-Il [Korea Atomic Energy Research Institute, 1045 Daedeok-daero, Yuseong-gu, Daejeon, 305-353 (Korea, Republic of)

2013-07-01T23:59:59.000Z

418

Ceramic plasma-sprayed coating of melting crucibles for casting metal fuel slugs  

SciTech Connect (OSTI)

Thermal cycling and melt reaction studies of ceramic coatings plasma-sprayed on Nb substrates were carried out to evaluate the performance of barrier coatings for metallic fuel casting applications. Thermal cycling tests of the ceramic plasma-sprayed coatings to 1450 degrees C showed that HfN, TiC, ZrC, and Y2O3 coating had good cycling characteristics with few interconnected cracks even after 20 cycles. Interaction studies by 1550 degrees C melt dipping tests of the plasma-sprayed coatings also indicated that HfN and Y2O3 do not form significant reaction layer between U–20 wt.% Zr melt and the coating layer. Plasma-sprayed Y2O3 coating exhibited the most promising characteristics among HfN, TiC, ZrC, and Y2O3 coating.

K.H. Kim; C.T. Lee; C.B. Lee; R.S. Fielding; J.R. Kennedy

2013-10-01T23:59:59.000Z

419

Analysis of multicomponent evaporation in electron beam melting and refining of titanium alloys  

SciTech Connect (OSTI)

Experimental evidence and a mathematical model are presented to evaluate the effect of beam-scan frequency on composition change in electron-beam melting of titanium alloys. Experiments characterized the evaporation rate of commercially pure (CP) titanium and vapor composition over titanium alloy with up to 6 wt pct aluminum and 4.5 wt pct vanadium, as a function of beam power, scan frequency, and background pressure. These data and thermal mapping of the hearth melt surface are used to estimate activity coefficients of aluminum and vanadium in the hearth. The model describes transient heat transfer in the surface of the melt and provides a means of estimating enhancement of pure titanium evaporation and change in final aluminum composition due to local heating at moderate beam-scan frequencies.

Powell, A.; Szekely, J.; Pal, U. [Massachusetts Inst. of Tech., Cambridge, MA (United States). Dept. of Materials Science and Engineering; Avyle, J. van den; Damkroger, B. [Sandia National Labs., Albuquerque, NM (United States). Materials Processing Dept.

1997-12-01T23:59:59.000Z

420

Combined electron beam and vacuum ARC melting for barrier tube shell material  

SciTech Connect (OSTI)

This patent describes a process of the type wherein zirconium tetrachloride is reduced to produce a metallic zirconium sponge. The sponge is distilled to generally remove residual magnesium and magnesium chloride, and the distilled sponge is melted to produce an ingot, the improvement for making a non-crystal bar material for use in lining the interior of zirconium alloy fuel element cladding which comprises: a. forming the distilled sponge into a consumable electrode; b. melting the consumable electrode in a multiple swept beam electron furnace with a feed rate between 1 and 20 inches per hour to form an intermediate ingot; and c. vacuum arc melting the intermediate ingot to produce a homogeneous final ingot, having 50-500 ppm iron.

Worcester, S.A.; Woods, C.R.

1989-07-18T23:59:59.000Z

Note: This page contains sample records for the topic "gev melting point" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Optimal beam pattern to maximize inclusion residence time in an electron beam melting hearth  

SciTech Connect (OSTI)

Approximate probabilities of inclusion survival through an electron beam melting hearth are computed from nitride dissolution rates, flotation velocities, and residence times. Dissolution rates were determined by measuring shrinkage rates of pure TiN and nitrided sponge in small pools of molten titanium in an electron beam melting hearth. Flotation velocities were calculated using correlations for fluid flow around spheres, and show that particles sink or float unless their densities are extremely close to that of molten titanium. Flow field characteristics which lead to effective inclusion removal are discussed in terms of heat flux pattern required to produce them, based on the electron beam`s unique ability to impart a nearly arbitrary heat flux pattern to the melt surface.

Powell, A.; Pal, U. [Massachusetts Inst. of Tech., Cambridge, MA (United States); Avyle, J. van den [Sandia National Labs., Albuquerque, NM (United States)

1997-02-01T23:59:59.000Z

422

A parametric model for analysis of melt progression in U-A1 assemblies  

SciTech Connect (OSTI)

A computational model has been developed that calculates the thermal degradation of the reactor core of the production reactors at the Savannah River Site (SRS) under postulated severe accident conditions. This model addresses heatup and degradation of the U-Al fuel and Li-Al or U-metal target assemblies and neighboring structures. Models included are those for assembly heatup due to decay heat generation, material melting and relocation, volume expansion of fuel due to foaming and melt/debris accumulation in assembly bottom end-fittings. Sample results are presented that illustrate the effect of alternative assumptions regarding the temperature at which U-Al alloy melts and relocates and the extent to which fuel foaming thermally couples adjacent fuel and target tubes. 5 refs., 6 figs., 1 tab.

Paik, I.K. (Westinghouse Savannah River Co., Aiken, SC (USA)); Kim, S.H.; Leonard, M.T.; Amos, C.N. (Science Applications International Corp., Albuquerque, NM (USA))

1990-06-15T23:59:59.000Z

423

Method for melting glass by measurement of non-bridging oxygen  

DOE Patents [OSTI]

A method is described for making better quality molten glass in a glass melter, the glass having the desired viscosity and, preferably, also the desired resistivity so that the glass melt can be established effectively and the product of the glass melter will have the desired level of quality. The method includes the adjustment of the composition of the glass constituents that are fed into the melter in accordance with certain correlations that reliably predict the viscosity and resistivity from the melter temperature and the melt composition, then heating the ingredients to the melter's operating temperature until they melt and homogenize. The equations include the calculation of a non-bridging oxygen' term from the numbers of moles of the various ingredients, and then the determination of the viscosity and resistivity from the operating temperature of the melter and the non-bridging oxygen term. 4 figs.

Jantzen, C.M.

1992-04-07T23:59:59.000Z

424

pi0 photoproduction on the proton for photon energies from 0.675 to 2.875-GeV  

SciTech Connect (OSTI)

Differential cross sections for the reaction $\\gamma p \\to p \\pi^0$ have been measured with the CEBAF Large Acceptance Spectrometer (CLAS) and a tagged photon beam with energies from 0.675 to 2.875 GeV. The results reported here possess greater accuracy in the absolute normalization than previous measurements. They disagree with recent CB-ELSA measurements for the process at forward scattering angles. Agreement with the SAID and MAID fits is found below 1 GeV. The present set of cross sections has been incorporated into the SAID database, and exploratory fits have been extended to 3 GeV. Resonance couplings have been extracted and compared to previous determinations.

Michael Dugger; Barry Ritchie; Jacques Ball; Patrick Collins; Evgueni Pasyuk; Richard Arndt; William Briscoe; Igor Strakovski; Ron Workman; Gary Adams; Moscov Amaryan; Pawel Ambrozewicz; Eric Anciant; Marco Anghinolfi; Burin Asavapibhop; G. Asryan; Gerard Audit; Harutyun Avakian; H. Bagdasaryan; Nathan Baillie; Nathan Baltzell; Steve Barrow; Marco Battaglieri; Kevin Beard; Ivan Bedlinski; Ivan Bedlinskiy; Mehmet Bektasoglu; Matthew Bellis; Nawal Benmouna; Barry Berman; Nicola Bianchi; Angela Biselli; Billy Bonner; Sylvain Bouchigny; Sergey Boyarinov; Robert Bradford; Derek Branford; William Brooks; Stephen Bueltmann; Volker Burkert; Cornel Butuceanu; John Calarco; Sharon Careccia; Daniel Carman; Bryan Carnahan; Shifeng Chen; Philip Cole; Alan Coleman; Philip Coltharp; Dieter Cords; Pietro Corvisiero; Donald Crabb; Hall Crannell; John Cummings; Enzo De Sanctis; Raffaella De Vita; Pavel Degtiarenko; Haluk Denizli; Lawrence Dennis; Alexandre Deur; Kahanawita Dharmawardane; Kalvir Dhuga; Richard Dickson; Chaden Djalali; Gail Dodge; Joseph Donnelly; David Doughty; P. Dragovitsch; Steven Dytman; Oleksandr Dzyubak; Hovanes Egiyan; Kim Egiyan; Latifa Elouadrhiri; A. Empl; Paul Eugenio; Renee Fatemi; Gleb Fedotov; Gerald Feldman; Robert Feuerbach; John Ficenec; Tony Forest; Herbert Funsten; Michel Garcon; Gagik Gavalian; Gerard Gilfoyle; Kevin Giovanetti; Francois-Xavier Girod; John Goetz; Ralf Gothe; Keith Griffioen; Michel Guidal; Matthieu Guillo; Nevzat Guler; Lei Guo; Vardan Gyurjyan; Cynthia Hadjidakis; Rafael Hakobyan; John Hardie; D. Heddle; F. Hersman; Kenneth Hicks; Ishaq Hleiqawi; Maurik Holtrop; J. Hu; Marco Huertas; Charles Hyde; Charles Hyde-Wright; Yordanka Ilieva; David Ireland; Boris Ishkhanov; Mark Ito; David Jenkins; Hyon-Suk Jo; Kyungseon Joo; Henry Juengst; Narbe Kalantarians; James Kellie; Mahbubul Khandaker; Kui Kim; Kinney Kim; Wooyoung Kim; Andreas Klein; Franz Klein; Alexei Klimenko; Mike Klusman; Mikhail Kossov; Zebulun Krahn; Laird Kramer; Valery Kubarovsky; Joachim Kuhn; Sebastian Kuhn; Viacheslav Kuznetsov; Jeff Lachniet; Jean Laget; Jorn Langheinrich; David Lawrence; Tsung-shung Lee; Ana Lima; Kenneth Livingston; K. Lukashin; Joseph Manak; Claude Marchand; Leonard Maximon; Simeon McAleer; Bryan McKinnon; John McNabb; Bernhard Mecking; Mac Mestayer; Curtis Meyer; Tsutomu Mibe; Konstantin Mikhaylov; Ralph Minehart; Marco Mirazita; Rory Miskimen; Viktor Mokeev; Kei Moriya; Steven Morrow; Valeria Muccifora; James Mueller; Gordon Mutchler; Pawel Nadel-Turonski; James Napolitano; Rakhsha Nasseripour; Silvia Niccolai; Gabriel Niculescu; Maria-Ioana Niculescu; Bogdan Niczyporuk; Megh Niroula; Rustam Niyazov; Mina Nozar; Grant O'Rielly; Mikhail Osipenko; Alexander Ostrovidov; K Park; Craig Paterson; Sasha Philips; Joshua Pierce; Nikolay Pivnyuk; Dinko Pocanic; Oleg Pogorelko; S. Pozdniakov; Barry Preedom; John Price; Yelena Prok; Dan Protopopescu; Liming Qin; Brian Raue; Gregory Riccardi; Giovanni Ricco; Marco Ripani; Federico Ronchetti; Guenther Rosner; Patrizia Rossi; David Rowntree; Philip Rubin; Franck Sabatie; Julian Salamanca; Carlos Salgado; Joseph Santoro; Vladimir Sapunenko; Reinhard Schumacher; Vladimir Serov; Aziz Shafi; Youri Sharabian; J. Shaw; Sebastio Simionatto; Alexander Skabelin; Elton Smith; Lee Smith; Daniel Sober; M. Spraker; Aleksey Stavinskiy; Samuel Stepanyan; Stepan Stepanyan; Burnham Stokes; Paul Stoler; Steffen Strauch; Mauro Taiuti; Simon Taylor; David Tedeschi; Ulrike Thoma; R. Thompson; Avtandil Tkabladze; Svyatoslav Tkachenko; Luminita Todor; Clarisse Tur; Maurizio Ungaro; Michael Vineyard; Alexander Vlassov; Xue kai Wang; Lawrence Weinstein; Henry Weller; Dennis Weygand; M. Williams; Elliott Wolin; M.H. Wood; A. Yegneswaran; Jae-Chul Yun; Lorenzo Zana; Jixie Zhang

2007-07-23T23:59:59.000Z

425

Scale/Analytical Analyses of Freezing and Convective Melting with Internal Heat Generation  

SciTech Connect (OSTI)

Using a scale/analytical analysis approach, we model phase change (melting) for pure materials which generate constant internal heat generation for small Stefan numbers (approximately one). The analysis considers conduction in the solid phase and natural convection, driven by internal heat generation, in the liquid regime. The model is applied for a constant surface temperature boundary condition where the melting temperature is greater than the surface temperature in a cylindrical geometry. The analysis also consider constant heat flux (in a cylindrical geometry).We show the time scales in which conduction and convection heat transfer dominate.

Ali S. Siahpush; John Crepeau; Piyush Sabharwall

2013-07-01T23:59:59.000Z

426

SUMMARY OF 2010 DOE EM INTERNATIONAL PROGRAM STUDIES OF WASTE GLASS MELT RATE ENHANCEMENT  

SciTech Connect (OSTI)

A collaborative study has been established under the U.S. Department of Energy (DOE) Office of Environmental Management International Program between the Savannah River National Laboratory (SRNL) and the V. G. Khlopin Radium Institute (KRI) in St. Petersburg, Russia, to investigate potential improvements in melt rate via chemical additions to the glass frit. Researchers at KRI suggested a methodology for selecting frit additives based on empirical coefficients for optimization of glass melting available in the Russian literature. Using these coefficients, KRI identified B{sub 2}O{sub 3}, CuO, and MnO as frit additives that were likely to improve melt rate without having adverse effects on crystallization of the glass or its chemical durability. The results of the melt rate testing in the SMK melter showed that the slurry feed rate (used as a gauge of melt rate) could be significantly increased when MnO or CuO were added to Frit 550 with the SMR-2 sludge. The feed rates increased by about 27% when MnO was added to the frit and by about 26% when CuO was added to the frit, as compared to earlier results for Frit 550 alone. The impact of adding additional B{sub 2}O{sub 3} to the frit was minor when added with CuO. The additional B{sub 2}O{sub 3} showed a more significant, 39% improvement in melt rate when added with MnO. The additional B{sub 2}O{sub 3} also reduced the viscosity of the glasses during pouring. Samples of the glasses from the melt rate testing characterized at SRNL showed that there were no significant impacts on crystallization of the glasses. All of the glasses had very good chemical durability. Chemical composition measurements showed that the frit additives were present in concentrations below the targeted values in some of the glasses. Therefore, it is possible that higher concentrations of these additives may further improve melt rate, although the impacts of higher concentrations of these components on crystallization and durability would need to be determined. Overall, the results show an excellent potential for these additives to significantly improve waste throughput for DOE vitrification facilities. A complete report from KRI is included as an appendix to this document.

Fox, K.; Marra, J.

2011-01-19T23:59:59.000Z

427

PRELIMINARY FRIT DEVELOPMENT AND MELT RATE TESTING FOR SLUDGE BATCH 6 (SB6)  

SciTech Connect (OSTI)

The Liquid Waste Organization (LWO) provided the Savannah River National Laboratory (SRNL) with a Sludge Batch 6 (SB6) composition projection in March 2009. Based on this projection, frit development efforts were undertaken to gain insight into compositional effects on the predicted and measured properties of the glass waste form and to gain insight into frit components that may lead to improved melt rate for SB6-like compositions. A series of Sludge Batch 6 (SB6) based glasses was selected, fabricated and characterized in this study to better understand the ability of frit compositions to accommodate uncertainty in the projected SB6 composition. Acceptable glasses (compositions where the Product Composition Control System (PCCS) Measurement Acceptability Region (MAR) predicted acceptable properties, good chemical durability was measured, and no detrimental nepheline crystallization was observed) can be made using Frit 418 with SB6 over a range of Na{sub 2}O and Al{sub 2}O{sub 3} concentrations. However, the ability to accommodate variation in the sludge composition limits the ability to utilize alternative frits for potential improvements in melt rate. Frit 535, which may offer improvements in melt rate due to its increased B2O3 concentration, produced acceptable glasses with the baseline SB6 composition at waste loadings of 34 and 42%. However, the PCCS MAR results showed that it is not as robust as Frit 418 in accommodating variation in the sludge composition. Preliminary melt rate testing was completed in the Melt Rate Furnace (MRF) with four candidate frits for SB6. These four frits were selected to evaluate the impacts of B{sub 2}O{sub 3} and Na{sub 2}O concentrations in the frit relative to those of Frit 418, although they are not necessarily candidates for SB6 vitrification. Higher concentrations of B{sub 2}O{sub 3} in the frit relative to that of Frit 418 appeared to improve melt rate. However, when a higher concentration of B{sub 2}O{sub 3} was coupled with a lower concentration of Na{sub 2}O relative to Frit 418, melt rate did not appear to improve. It is expected that a SB6 composition projection with less uncertainty will be received during analysis of the Tank 51 E-1 sample, which will be pulled after the completion of aluminum dissolution in August 2009. At that time, additional frit development work will be performed to seek improved melt rates while maintaining viable projected operating windows. This later work will ultimately lead to a frit recommendation for SB6.

Fox, K.; Miller, D.; Edwards, T.

2009-07-21T23:59:59.000Z

428

BROUWER'S FIXED POINT THEOREM JASPER DEANTONIO  

E-Print Network [OSTI]

BROUWER'S FIXED POINT THEOREM JASPER DEANTONIO Abstract. In this paper we prove Brouwer's Fixed be used to make three sequences which all have p as their limit point. Date: July 27, 2009. 1 #12;2 JASPER

May, J. Peter

429

Anticorrelation between Surface and Subsurface Point Defects...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

between Surface and Subsurface Point Defects and the Impact on the Redox Chemistry of TiO2(110). Anticorrelation between Surface and Subsurface Point Defects and the...

430

Exclusive Photoproduction of Charged Pions in Hydrogen and Deuterium from 1 to 6 GeV  

SciTech Connect (OSTI)

The study of the transition region in the description of exclusive processes and hadron structure, from the nucleon-meson degrees of freedom in meson-exchange models at low energy to the quark-gluon degrees of freedom in pQCD at high energy, is essential for us to understand the strong interaction. The differential cross section measurements for exclusive reactions at fixed center-of-mass angles enable us to investigate the constituent counting rule, which explicitly connects the quark-gluon degrees of freedom to the energy dependence of differential cross sections. JLab Experiment E94-104 was carried out in Hall A with two high resolution spectrometers. It included the coincidence cross section measurement for the [gamma]n --> pi{sup -}[p] process with a deuterium target and the singles measurement for the [gamma]p --> pi{sup +}[n] process with a hydrogen target. The untagged real photons were generated by the electron beam impinging on a copper radiator. The photon energies ranged from 1.1 to 5.5 GeV, corresponding to the center-of-mass energies from 1.7 to 3.4 GeV. The pion center-of-mass angles were fixed at 50 deg, 70 deg, 90 deg, and also 100 deg, 110 deg at a few energies. The JLab E94-104 data presented in this thesis contain four interesting features. The data exhibit a global scaling behavior for both [pi]{sup -} and [pi]{sup +} photoproduction at high energies and high transverse momenta, consistent with the constituent counting rule and the existing [pi]{sup +} photoproduction data. This implies that the quark-gluon degrees of freedom start to play a role at this energy scale. The data suggests possible substructure of the scaling behavior, which might be oscillations around the scaling value. There are several possible mechanisms that can cause oscillations, for example the one associated with the generalized constituent counting rule involving quark orbital angular momentum. The data show an enhancement in the scaled cross section at center-of-mass energy near 2.2 GeV, where baryon resonances are not as well known as those at low energies. The differential cross section ratios for exclusive [gamma]n --> pi{sup -}[p] to [gamma]p --> pi{sup +}[n] process at [theta]{sub cm} = 90 deg start to show consistency with the prediction based on one-hard-gluon-exchange diagrams at high energies.

Lingyan Zhu

2004-02-28T23:59:59.000Z

431

Measurement of D* Mesons in Jets from p + p Collisions at sqrt s = 200 GeV  

SciTech Connect (OSTI)

We report the measurement of charged D* mesons in inclusive jets produced in proton-proton collisions at a center of mass energy {radical}s = 200 GeV with the STAR experiment at RHIC. For D* mesons with fractional momenta 0.2 < z < 0.5 in inclusive jets with 11.5 GeV mean transverse energy, the production rate is found to be N(D*{sup +} + D*{sup -})/N(jet) = 0.015 {+-} 0.008(stat) {+-} 0.007(sys). This rate is consistent with perturbative QCD evaluation of gluon splitting into a pair of charm quarks and subsequent hadronization.

STAR Coll

2009-05-16T23:59:59.000Z

432

A Higgs boson near 125 GeV with enhanced di-photon signal in the NMSSM  

E-Print Network [OSTI]

A natural region in the parameter space of the NMSSM can accomodate a CP-even Higgs boson with a mass of about 125 GeV and, simultaneously, an enhanced cross section times branching ratio in the di-photon channel. This happens in the case of strong singlet-doublet mixing, when the partial width of a 125 GeV Higgs boson into bb is strongly reduced. In this case, a second lighter CP-even Higgs boson is potentially also observable at the LHC.

Ulrich Ellwanger

2012-02-23T23:59:59.000Z

433

C-O-H ratios of silicate melt inclusions in basalts from the Galapagos spreading center near 95 degree W: A leaser decrepitation mass spectrometry study  

SciTech Connect (OSTI)

Volatile ratios (primarily of H{sub 2}O and CO{sub 2}) in individual silicate melt (glass) inclusions in minerals have been analyzed using laser volatilization and mass spectrometry. A Nd-glass laser was used to produce 50-micrometer diameter pits in silicate melt inclusions. Released volatiles were analyzed directly with a computer-controlled quadrupole mass spectrometer. The mean CO{sub 2}/H{sub 2}O from the propagating rift (0.245 {plus minus} 0.068) silicate glass inclusions is significantly lower than that of the actively failing rift (0.641 {plus minus} 0.241); this difference probably reflects different degrees of degassing during contrasting magmatic histories for the two regions. Relatively undifferentiated failing rift magmas must have relatively short crustal residence time prior to eruption and, therefore, have not undergone significant degassing of CO{sub 2}, as would appear to be the case for the more highly fractionated propagating rift magmas. The laser-mass spectrometric system described herein has the ability to act as a point-source probing device that can differentiate between the various volatile sites in minerals and rocks (as well as synthetic materials) on a micrometer scale.

Yonover, R.N.; Sinton, J.M. (Univ. of Hawaii, Honolulu (USA)); Gibson, E.K. (NASA/Johnson Space Center, Houston, TX (USA)); Sommer, M.A.

1989-12-01T23:59:59.000Z

434

Other Purdue Web points of Interest  

E-Print Network [OSTI]

Other Purdue Web points of interest. Purdue University Home Page --- Schedule of Classes · Graduate School · Agronomy · Computer Science --- CS & E ...

435

Team Total Points Beta Theta Pi 2271  

E-Print Network [OSTI]

Bubbles 40 Upset City 30 Team Success 30 #12;Team Total Points Sly Tye 16 Barringer 15 Fire Stinespring 15

Buehrer, R. Michael

436

AN INTERIOR POINT METHOD FOR MATHEMATICAL PROGRAMS ...  

E-Print Network [OSTI]

Abstract. Interior point methods for nonlinear programs (NLP) are adapted for solution of mathematical programs with complementarity constraints (MPCCs).

437

Lifetime Response of a Hi-Nicalon Fiber-Reinforced Melt-Infiltrated SiC Matrix Composites  

SciTech Connect (OSTI)

Lifetime studies in four-point flexure were performed on a Hi-NicalonTM fiber-reinforced SiC matrix composite over a temperature range of 700 degrees to 1150 degrees C in air. The composite consisted of ~40 vol. % Hi-NicalonTM fiber (8-harness weave) with a 0.5 Mu-m BN fiber coating and a melt-infiltration SiC matrix wand was tested with as-machined surfaces. Lifetime results indicated that the composite exhibited a stress-dependent lifetime at stress levels above an apparent fatigue limit, similar to the trend observed in CG-NicalonTM fiber reinforced CVI SiC matrix composites. At less than or equal to 950 degrees C, the lifetimes of Hi-Nicalon/MI SiC composites decreased with increasing applied stress level and test temperature. However, the lifetimes were extended as test temperature increased from 950 degees to 1150 degrees C as a result of surface crack sealing due to glass formation by the oxidation of Mi SiC matrix. The lifetime governing processes were, in general, attributed to the progressive oxidation of BN fiber coating and formation of glassy phase, which formed a strong bond between fiber and matrix, resulting in embrittlement of the composite with time.

Becher, P.F.; Lin, H.T.; Singh, M.

1999-04-25T23:59:59.000Z

438

Level Set Implementations on Unstructured Point Cloud  

E-Print Network [OSTI]

Level Set Implementations on Unstructured Point Cloud by HO, Hon Pong A Thesis Submitted;Level Set Implementations on Unstructured Point Cloud by HO, Hon Pong This is to certify that I have implementations on unstructured point cloud 15 3.1 Level set initialization

Duncan, James S.

439

Differential Point Rendering Aravind Kalaiah Amitabh Varshney  

E-Print Network [OSTI]

Differential Point Rendering Aravind Kalaiah Amitabh Varshney University of Maryland1 Abstract. We present a novel point rendering primitive, called Differential Point (DP), that captures the local-based models. This information is used to efficiently render the surface as a collection of local neighborhoods

Varshney, Amitabh

440

Nesting points in the sphere Dan Archdeacon  

E-Print Network [OSTI]

Nesting points in the sphere Dan Archdeacon Dept. of Computer Science University of Vermont) Abstract Let G be a graph embedded in the sphere. A k-nest of a point x not in G is a collection C 1 nested if each point not on the graph has a k-nest. In this paper we

Archdeacon, Dan

Note: This page contains sample records for the topic "gev melting point" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Multifragmentation of Au induced by 14.6 GeV {sup 4}He  

SciTech Connect (OSTI)

The multifragmentation reaction channel was investigated in 14.6 GeV {sup 4}He+Au interactions. The experimental setup enabled event-by-event analysis. An internal correlation study suggests a nearly simultaneous emission of fragments. The velocities (V{sub c.m.}) of the center-of-mass system of correlated fragments were calculated. The transverse component of V{sub c.m.} with respect to the beam direction has higher values than the longitudinal one, which corresponds to large recoil angles of the source. The angular distributions of fragments are sideways peaked. The peak angle is dependent on the atomic number of fragment and multiplicity. Our results show that the heaviest fragment in one event corresponds, on average, to the largest emission angle, the second heaviest fragment corresponds to the second largest emission angle, and so on.

Grabez, B.; Dragic, A. [Institute of Physics, P.O. Box 68, 11080 Belgrade (Serbia and Montenegro)

2006-11-15T23:59:59.000Z

442

Commissioning of helium compression system for the 12 GeV refrigerator  

SciTech Connect (OSTI)

The compressor system used for the Jefferson Lab (JLab) 12 GeV upgrade, also known as the CHL-2 compressor system, incorporates many design changes to the typical compressor skid design to improve the efficiency, reliability and maintainability from previous systems. These include a considerably smaller bulk oil separator design that does not use coalescing elements/media, automated control of cooling oil injection based on the helium discharge temperature, a helium after-cooler design that is designed for and promotes coalescing of residual oil and a variable speed bearing oil pump to reduce oil bypass. The CHL-2 helium compression system has five compressors configured with four pressure levels that supports the three pressure levels in the cold box. This paper will briefly review several of these improvements and discuss some of the recent commissioning results.

Knudsen, Peter N. [JLAB; Ganni, Venkatarao [JLAB; Dixon, Kelly D. [JLAB; Norton, Robert O. [JLAB; Creel, Jonathan D. [JLAB; Arenius, Dana M. [JLAb

2014-01-01T23:59:59.000Z

443

Production and Testing Experience with the SRF Cavities for the CEBAF 12 GeV Upgrade  

SciTech Connect (OSTI)

The CEBAF recirculating CW electron linear accelerator at Jefferson Lab is presently undergoing a major upgrade to 12 GeV. This project includes the fabrication, preparation, and testing of 80 new 7-cell SRF cavities, followed by their incorporation into ten new cryomodules for subsequent testing and installation. In order to maximize the cavity Q over the full operable dynamic range in CEBAF (as high as 25 MV/m), the decision was taken to apply a streamlined preparation process that includes a final light temperature-controlled electropolish of the rf surface over the vendor-provided bulk BCP etch. Cavity processing work began at JLab in September 2010 and will continue through December 2011. The excellent performance results are exceeding project requirements and indicate a fabrication and preparation process that is stable and well controlled. The cavity production and performance experience to date will be summarized and lessons learned reported to the community.

A. Burrill, G.K. Davis, F. Marhauser, C.E. Reece, A.V. Reilly, M. Stirbet

2011-09-01T23:59:59.000Z

444

Progress on Neutron-Target Multipoles above 1 GeV  

SciTech Connect (OSTI)

We report a new extraction of nucleon resonance couplings using ?{sup ?} photo-production cross sections on the neutron. The world database for the process ?n ? ?{sup ?}p above 1 GeV has quadrupled with the addition of new differential cross sections from the CEBAF Large Acceptance Spectrometer (CLAS) at Jefferson Lab in Hall B. Differential cross sections from CLAS have been improved with a new final-state interaction determination using a diagrammatic technique taking into account the SAID phenomenological NN and ?N final-state interaction amplitudes. Resonance couplings have been extracted and compared to previous determinations. With the addition of these new cross sections, significant changes are seen in the high-energy behavior of the SAID cross sections and amplitudes.

Strakovsky, I I; Gao, H; Briscoe, W J; Dutta, D; Kudryavtsev, A E; Mirazite, M; Paris, M; Rossi, P; Stepanyan, S; Tarasov, V E

2012-12-01T23:59:59.000Z

445

Soft QCD Measurements at 900 GeV and 7 TeV with ATLAS  

E-Print Network [OSTI]

We present results on charged hadron production in proton-proton collisions at the Large Hadron Collider and center of mass energies ps = 900 GeV and 7 TeV in the ATLAS Detector. Charged tracks are measured with high precision in the inner tracking system; track multiplicities, transverse momentum spectrum and the average track transverse momentum as a function of track multiplicity are compared to phenomenological models describing the soft QCD processes participating in the interaction. Although all models approximately describe the data, none show complete agreement, with the deviation between data and Monte Carlo becoming more significant at the the higher center of mass energy and for higher track transverse momentum. These data have been used in the determination of a new optimised model which provides a much improved description of the data.

Proudfoot, J; The ATLAS collaboration

2010-01-01T23:59:59.000Z

446

Exclusive pi^0 electroproduction at W > 2 GeV with CLAS  

SciTech Connect (OSTI)

Exclusive neutral-pion electroproduction (ep-->e'p'pi0) was measured at Jefferson Lab with a 5.75-GeV electron beam and the CLAS detector. Differential cross sections d4sigma/dtdQ2dxBdphipi and structure functions sigmaT+epsilonsigmaL,sigmaTT and ?LT as functions of t were obtained over a wide range of Q2 and xB. The data are compared with Regge and handbag theoretical calculations. Analyses in both frameworks find that a large dominance of transverse processes is necessary to explain the experimental results. For the Regge analysis it is found that the inclusion of vector meson rescattering processes is necessary to bring the magnitude of the calculated and measured structure functions into rough agreement. In the handbag framework, there are two independent calculations, both of which appear to roughly explain the magnitude of the structure functions in terms of transversity generalized parton distributions.

Bedlinskiy, I.; Kubarovsky, V.; Niccolai, S.; Stoler, P.; Adhikari, K.P.; Anderson, M.D.; Pereira, S. Anefalos; Avakian, H.; Ball, J.; Baltzell, N.A.; Battaglieri, M.; Batourine, V.; Biselli, A.S.; Boiarinov, S.; Bono, J.; Briscoe, W.J.; Brooks, W.K.; Burkert, V.D.; Carman, D.S.; Celentano, A.; Chandavar, S.; Colaneri, L.; Cole, P.L.; Contalbrigo, M.; Cortes, O.; Crede, V.; D'Angelo, A.; Dashyan, N.; De Vita, R.; De Sanctis, E.; Deur, A.; Djalali, C.; Doughty, D.; Dupre, R.; Egiyan, H.; El Alaoui, A.; El Fassi, L.; Elouadrhiri, L.; Eugenio, P.; Fedotov, G.; Fegan, S.; Fleming, J.A.; Forest, T.A.; Garillon, B.; Garcon, M.; Gavalian, G.; Gevorgyan, N.; Ghandilyan, Y.; Gilfoyle, G.P.; Giovanetti, K.L.; Girod, F.X.; Golovatch, E.; Gothe, R.W.; Griffioen, K.A.; Guegan, B.; Guo, L.; Hafidi, K.; Hakobyan, H.; Harrison, N.; Hattawy, M.; Hicks, K.; Holtrop, M.; Ireland, D.G.; Ishkhanov, B.S.; Isupov, E.L.; Jenkins, D.; Jo, H.S.; Joo, K.; Keller, D.; Khandaker, M.; Kim, A.; Kim, W.; Klein, A.; Klein, F.J.; Koirala, S.; Kuhn, S.E.; Kuleshov, S.V.; Lenisa, P.; Levine, W.I.; Livingston, K.; Lu, H.Y.; MacGregor, I.J.D.; Markov, N.; Mayer, M.; McKinnon, B.; Mirazita, M.; Mokeev, V.; Montgomery, R.A.; Moody, C.I.; Moutarde, H.; Movsisyan, A; Munoz Camacho, C.; Nadel-Turonski, P.; Niculescu, I.; Osipenko, M.; Ostrovidov, A.I.; Pappalardo, L.L.; Park, K.; Park, S.; Pasyuk, E.; Phelps, E.; Phelps, W.; Phillips, J.J.; Pisano, S.; Pogorelko, O.; Price, J.W.; Prok, Y.; Protopopescu, D.; Procureur, S.; Puckett, A.J.R.; Raue, B.A.; Ripani, M.; Ritchie, B.G.; Rizzo, A.; Rossi, P.; Roy, P.; Sabatié, F.; Salgado, C.; Schott, D.; Schumacher, R.A.; Seder, E.; Senderovich, I.; Sharabian, Y.G.; Simonyan, A.; Smith, G.D.; Sober, D.I.; Sokhan, D.; Stepanyan, S.S.; Strauch, S.; Sytnik, V.; Tang, W.; Tian, Ye; Ungaro, M.; Vlassov, A.V.; Voskanyan, H.; Voutier, E.; Walford, N.K.; Watts, D.; Wei, X.; Weinstein, L.B.; Yurov, M.; Zachariou, N.; Zana, L.; Zhang, J.; Zhao, Z.W.; Zonta, I.

2014-08-01T23:59:59.000Z

447

Preparation and Testing of the SRF Cavities for the CEBAF 12 GeV Upgrade  

SciTech Connect (OSTI)

Eighty new 7-cell, low-loss cell-shaped cavities are required for the CEBAF 12 GeV Upgrade project. In addition to ten pre-production units fabricated at JLab, the full set of commercially-produced cavities have been delivered. An efficient processing routine, which includes a controlled 30 micron electropolish, has been established to transform these cavities into qualified 8-cavity strings. This work began in 2010 and will run through the end of 2011. The realized cavity performance consistently exceeds project requirements and also the maximum useful gradient in CEBAF: 25 MV/m. We will describe the cavity processing and preparation protocols and summarize test results obtained to date.

Reilly, A. V.; Bass, T.; Burrill, A.; Davis, G. K.; Marhauser, F.; Reece, C. E.; Stirbet, M.

2011-07-01T23:59:59.000Z

448

Upsilon cross section in p+p collisions at sqrt(s) = 200 GeV  

E-Print Network [OSTI]

We report on a measurement of the Upsilon(1S+2S+3S) -> e+e- cross section at midrapidity in p+p collisions at sqrt(s)=200 GeV. We find the cross section to be 114 +/- 38 (stat.) +23,-24 (syst.) pb. Perturbative QCD calculations at next-to-leading order in the Color Evaporation Model are in agreement with our measurement, while calculations in the Color Singlet Model underestimate it by 2 sigma. Our result is consistent with the trend seen in world data as a function of the center-of-mass energy of the collision and extends the availability of Upsilon data to RHIC energies. The dielectron continuum in the invariant mass range near the Upsilon is also studied to obtain a combined cross section of Drell-Yan plus (b b-bar) -> e+e-.

STAR Collaboration; B. I. Abelev; M. M. Aggarwal; Z. Ahammed; A. V. Alakhverdyants; B. D. Anderson; D. Arkhipkin; G. S. Averichev; J. Balewski; L. S. Barnby; S. Baumgart; D. R. Beavis; R. Bellwied; M. J. Betancourt; R. R. Betts; A. Bhasin; A. K. Bhati; H. Bichsel; J. Bielcik; J. Bielcikova; B. Biritz; L. C. Bland; B. E. Bonner; J. Bouchet; E. Braidot; A. V. Brandin; A. Bridgeman; E. Bruna; S. Bueltmann; I. Bunzarov; T. P. Burton; X. Z. Cai; H. Caines; M. Calderón de la Barca Sánchez; O. Catu; D. Cebra; R. Cendejas; M. C. Cervantes; Z. Chajecki; P. Chaloupka; S. Chattopadhyay; H. F. Chen; J. H. Chen; J. Y. Chen; J. Cheng; M. Cherney; A. Chikanian; K. E. Choi; W. Christie; P. Chung; R. F. Clarke; M. J. M. Codrington; R. Corliss; J. G. Cramer; H. J. Crawford; D. Das; S. Dash; A. Davila Leyva; L. C. De Silva; R. R. Debbe; T. G. Dedovich; M. DePhillips; A. A. Derevschikov; R. Derradi de Souza; L. Didenko; P. Djawotho; S. M. Dogra; X. Dong; J. L. Drachenberg; J. E. Draper; J. C. Dunlop; M. R. Dutta Mazumdar; L. G. Efimov; E. Elhalhuli; M. Elnimr; J. Engelage; G. Eppley; B. Erazmus; M. Estienne; L. Eun; O. Evdokimov; P. Fachini; R. Fatemi; J. Fedorisin; R. G. Fersch; P. Filip; E. Finch; V. Fine; Y. Fisyak; C. A. Gagliardi; D. R. Gangadharan; M. S. Ganti; E. J. Garcia-Solis; A. Geromitsos; F. Geurts; V. Ghazikhanian; P. Ghosh; Y. N. Gorbunov; A. Gordon; O. Grebenyuk; D. Grosnick; B. Grube; S. M. Guertin; A. Gupta; N. Gupta; W. Guryn; B. Haag; T. J. Hallman; A. Hamed; L-X. Han; J. W. Harris; J. P. Hays-Wehle; M. Heinz; S. Heppelmann; A. Hirsch; E. Hjort; A. M. Hoffman; G. W. Hoffmann; D. J. Hofman; R. S. Hollis; H. Z. Huang; T. J. Humanic; L. Huo; G. Igo; A. Iordanova; P. Jacobs; W. W. Jacobs; P. Jakl; C. Jena; F. Jin; C. L. Jones; P. G. Jones; J. Joseph; E. G. Judd; S. Kabana; K. Kajimoto; K. Kang; J. Kapitan; K. Kauder; D. Keane; A. Kechechyan; D. Kettler; D. P. Kikola; J. Kiryluk; A. Kisiel; A. G. Knospe; A. Kocoloski; D. D. Koetke; T. Kollegger; J. Konzer; M. Kopytine; I. Koralt; W. Korsch; L. Kotchenda; V. Kouchpil; P. Kravtsov; K. Krueger; M. Krus; L. Kumar; P. Kurnadi; M. A. C. Lamont; J. M. Landgraf; S. LaPointe; J. Lauret; A. Lebedev; R. Lednicky; C-H. Lee; J. H. Lee; W. Leight; M. J. LeVine; C. Li; L. Li; N. Li; W. Li; X. Li; X. Li; Y. Li; Z. Li; G. Lin; S. J. Lindenbaum; M. A. Lisa; F. Liu; H. Liu; J. Liu; T. Ljubicic; W. J. Llope; R. S. Longacre; W. A. Love; Y. Lu; G. L. Ma; Y. G. Ma; D. P. Mahapatra; R. Majka; O. I. Mall; L. K. Mangotra; R. Manweiler; S. Margetis; C. Markert; H. Masui; H. S. Matis; Yu. A. Matulenko; D. McDonald; T. S. McShane; A. Meschanin; R. Milner; N. G. Minaev; S. Mioduszewski; A. Mischke; M. K. Mitrovski; B. Mohanty; M. M. Mondal; D. A. Morozov; M. G. Munhoz; B. K. Nandi; C. Nattrass; T. K. Nayak; J. M. Nelson; P. K. Netrakanti; M. J. Ng; L. V. Nogach; S. B. Nurushev; G. Odyniec; A. Ogawa; H. Okada; V. Okorokov; D. Olson; M. Pachr; B. S. Page; S. K. Pal; Y. Pandit; Y. Panebratsev; T. Pawlak; T. Peitzmann; V. Perevoztchikov; C. Perkins; W. Peryt; S. C. Phatak; P. Pile; M. Planinic; M. A. Ploskon; J. Pluta; D. Plyku; N. Poljak; A. M. Poskanzer; B. V. K. S. Potukuchi; C. B. Powell; D. Prindle; C. Pruneau; N. K. Pruthi; P. R. Pujahari; J. Putschke; R. Raniwala; S. Raniwala; R. L. Ray; R. Redwine; R. Reed; J. M. Rehberg; H. G. Ritter; J. B. Roberts; O. V. Rogachevskiy; J. L. Romero; A. Rose; C. Roy; L. Ruan; R. Sahoo; S. Sakai; I. Sakrejda; T. Sakuma; S. Salur; J. Sandweiss; E. Sangaline; J. Schambach; R. P. Scharenberg; N. Schmitz; T. R. Schuster; J. Seele; J. Seger; I. Selyuzhenkov; P. Seyboth; E. Shahaliev; M. Shao; M. Sharma; S. S. Shi; E. P. Sichtermann; F. Simon; R. N. Singaraju; M. J. Skoby; N. Smirnov; P. Sorensen; J. Sowinski; H. M. Spinka; B. Srivastava; T. D. S. Stanislaus; D. Staszak; J. R. Stevens; R. Stock; M. Strikhanov; B. Stringfellow; A. A. P. Suaide; M. C. Suarez; N. L. Subba; M. Sumbera; X. M. Sun; Y. Sun; Z. Sun; B. Surrow; T. J. M. Symons; A. Szanto de Toledo; J. Takahashi; A. H. Tang; Z. Tang; L. H. Tarini; T. Tarnowsky; D. Thein; J. H. Thomas; J. Tian; A. R. Timmins; S. Timoshenko; D. Tlusty; M. Tokarev; T. A. Trainor; V. N. Tram; S. Trentalange; R. E. Tribble; O. D. Tsai; J. Ulery; T. Ullrich; D. G. Underwood; G. Van Buren; M. van Leeuwen; G. van Nieuwenhuizen; J. A. Vanfossen Jr.; R. Varma; G. M. S. Vasconcelos; A. N. Vasiliev; F. Videbaek; Y. P. Viyogi; S. Vokal; S. A. Voloshin; M. Wada; M. Walker; F. Wang; G. Wang; H. Wang; J. S. Wang; Q. Wang; X. L. Wang; Y. Wang; G. Webb; J. C. Webb; G. D. Westfall; C. Whitten Jr.; H. Wieman; E. Wingfield; S. W. Wissink; R. Witt; Y. Wu; W. Xie; N. Xu; Q. H. Xu; W. Xu; Y. Xu; Z. Xu; L. Xue; Y. Yang; P. Yepes; K. Yip; I-K. Yoo; Q. Yue; M. Zawisza; H. Zbroszczyk; W. Zhan; S. Zhang; W. M. Zhang; X. P. Zhang; Y. Zhang; Z. P. Zhang; J. Zhao; C. Zhong; J. Zhou; W. Zhou; X. Zhu; Y. H. Zhu

2010-05-10T23:59:59.000Z

449

1 GeV CW nonscaling FFAG for ADS, and magnet parameters  

SciTech Connect (OSTI)

Multi-MW proton driver capability remains a challenging, critical technology for many core HEP programs, particularly the neutrino ones such as the Muon Collider and Neutrino factory, and for high-profile energy applications such as Accelerator Driven Subcritical Reactors (ADS) and Accelerator Transmutation of Waste for nuclear power and waste management. Work is focused almost exclusively on an SRF linac, as, to date, no re-circulating accelerator can attain the 10-20 MW capability necessary for the nuclear applications. Recently, the concept of isochronous orbits has been explored and developed for nonscaling FFAGs using powerful new methodologies in FFAG accelerator design. Work is progressing on a stable, high-intensity, 1 GeV isochronous FFAG. Initial specifications of novel magnets with the nonlinear radial fields required to support isochronous operation are also reported here.

Johnstone C.; Meot, F.; Snopok, P.; Weng, W.

2012-05-20T23:59:59.000Z

450

Medium effects in proton-induced $K^{0}$ production at 3.5 GeV  

E-Print Network [OSTI]

We present the analysis of the inclusive $K^{0}$ production in p+p and p+Nb collisions measured with the HADES detector at a beam kinetic energy of 3.5 GeV. Data are compared to the GiBUU transport model. The data suggest the presence of a repulsive momentum-dependent kaon potential as predicted by the Chiral Perturbation Theory (ChPT). For the kaon at rest and at normal nuclear density, the ChPT potential amounts to $\\approx 35$ MeV. A detailed tuning of the kaon production cross sections implemented in the model has been carried out to reproduce the experimental data measured in p+p collisions. The uncertainties in the parameters of the model were examined with respect to the sensitivity of the experimental results from p+Nb collisions to the in-medium kaon potential.

G. Agakishiev; O. Arnold; D. Belver; A. Belyaev; J. C. Berger-Chen; A. Blanco; M. Böhmer; J. L. Boyard; P. Cabanelas; S. Chernenko; A. Dybczak; E. Epple; L. Fabbietti; O. Fateev; P. Finocchiaro; P. Fonte; J. Friese; I. Fröhlich; T. Galatyuk; J. A. Garzón; R. Gernhäuser; K. Göbel; M. Golubeva; D. González-Díaz; F. Guber; M. Gumberidze; T. Heinz; T. Hennino; R. Holzmann; A. Ierusalimov; I. Iori; A. Ivashkin; M. Jurkovic; B. Kämpfer; T. Karavicheva; I. Koenig; W. Koenig; B. W. Kolb; G. Korcyl; G. Kornakov; R. Kotte; A. Krása; F. Krizek; R. Krücken; H. Kuc; W. Kühn; A. Kugler; T. Kunz; A. Kurepin; V. Ladygin; R. Lalik; K. Lapidus; A. Lebedev; L. Lopes; M. Lorenz; L. Maier; A. Mangiarotti; J. Markert; V. Metag; J. Michel; C. Müntz; R. Münzer; L. Naumann; Y. C. Pachmayer; M. Palka; Y. Parpottas; V. Pechenov; O. Pechenova; J. Pietraszko; W. Przygoda; B. Ramstein; A. Reshetin; A. Rustamov; A. Sadovsky; P. Salabura; A. Schmah; E. Schwab; J. Siebenson; Yu. G. Sobolev; B. Spruck; H. Ströbele; J. Stroth; C. Sturm; A. Tarantola; K. Teilab; P. Tlusty; M. Traxler; H. Tsertos; T. Vasiliev; V. Wagner; M. Weber; C. Wendisch; J. Wüstenfeld; S. Yurevich; Y. Zanevsky; . T. Gaitanos; J. Weil

2014-04-29T23:59:59.000Z

451

Study of the pp-> np+ reaction at 1.25 GeV with HADES  

E-Print Network [OSTI]

In pp collisions at 1.25 GeV kinetic energy, the HADES collaboration aimed at investigating the di-electron production related to (1232) Dalitz decay ( + ! pe+e?). In order to constrain the models predicting the cross section and the production mechanisms of resonance, the hadronic channels have been measured and studied in parallel to the leptonic channels. The analyses of pp ! np + and pp ! pp 0 channels and the comparison to simulations are presented in this contribution, in particular the angular distributions being sensitive to production and decay. The accurate acceptance corrections have been performed as well, which could be tested in all the phase space region thanks to the high statistic data. These analyses result in an overall agreement with the one- exchange model and previous data.

Liu, T; Agakishiev, G; Agodi, C; Balanda, A; Bellia, G; Belver, D; Belyaev, A; Blanco, A; Böhmer, M; Boyard, J L; Braun-Munzinger, P; Cabanelas, P; Castro, E; Christ, T; Destefanis, M; Díaz, J; Dohrmann, F; Dybczak, A; Fabbietti, L; Fateev, O; Finocchiaro, P; Fonte, P; Friese, J; Fröhlich, I; Galatyuk, T; Garzón, J A; Gernhäuser, R; Gil, A; Gilardi, C; Golubeva, M; González-Díaz, D; Grosse, E; Guber, F; Heilmann, M; Hennino, T; Holzmann, R; Ierusalimov, A; Iori, I; Ivashkin, A; Jurkovic, M; Kämpfer, B; Kanaki, K; Karavicheva, T; Kirschner, D; Koenig, I; Koenig, W; Kolb, B W; Kotte, R; Kozuch, A; Krása, A; Krížek, F; Krücken, R; Kühn, W; Kugler, A; Kurepin, A; Lamas-Valverde, J; Lang, S; Lange, J S; Lapidus, K; Lopes, L; Lorenz, M; Maier, L; Mangiarotti, A; Marín, J; Markert, J; Metag, V; Michalska, B; Michel, J; Mishra, D; Morini?re, E; Mousa, J; Müntz, C; Naumann, L; Novotny, R; Otwinowski, J; Pachmayer, Y C; Palka, M; Parpottas, Y; Pechenov, V; Pechenova, O; Pérez Cavalcanti, T; Pietraszko, J; Przygoda, W; Ramstein, B; Reshetin, A; Rustamov, A; Sadovsky, A; Salabura, P; Schmah, A; Simon, R; Sobolev, Yu G; Spataro, S; Spruck, B; Ströbele, H; Stroth, J; Sturm, C; Sudol, M; Tarantola, A; Teilab, K; Tlustý, P; Traxler, M; Trebacz, R; Tsertos, H; Veretenkin, I; Wagner, V; Weber, M; Wisniowski, M; Wüstenfeld, J; Yurevich, S; Zanevsky, Y V; Zhou, P; Zumbruch, P

2010-01-01T23:59:59.000Z

452

Study of the $pp \\to np?^+$ reaction at 1.25 GeV with HADES  

E-Print Network [OSTI]

In pp collisions at 1.25 GeV kinetic energy, the HADES collaboration aimed at investigating the di-electron production related to $\\Delta$ (1232) Dalitz decay ($\\Delta^+ \\to pe^+e^-$). In order to constrain the models predicting the cross section and the production mechanisms of $\\Delta$ resonance, the hadronic channels have been measured and studied in parallel to the leptonic channels. The analyses of $pp\\to np\\pi^+$ and $pp\\to pp\\pi^0$ channels and the comparison to simulations are presented in this contribution, in particular the angular distributions being sensitive to $\\Delta$ production and decay. The accurate acceptance corrections have been performed as well, which could be tested in all the phase space region thanks to the high statistic data. These analyses result in an overall agreement with the one-$\\pi$ exchange model and previous data.

T. Liu; for the HADES collaboration

2009-09-18T23:59:59.000Z

453

Energy Doubling of 42 GeV Electrons in a Meter-scale Plasma Wakefield Accelerator  

SciTech Connect (OSTI)

The energy frontier of particle physics is several trillion electron volts, but colliders capable of reaching this regime (such as the Large Hadron Collider and the International Linear Collider) are costly and time-consuming to build; it is therefore important to explore new methods of accelerating particles to high energies. Plasma-based accelerators are particularly attractive because they are capable of producing accelerating fields that are orders of magnitude larger than those used in conventional colliders. In these accelerators, a drive beam (either laser or particle) produces a plasma wave (wakefield) that accelerates charged particles. The ultimate utility of plasma accelerators will depend on sustaining ultrahigh accelerating fields over a substantial length to achieve a significant energy gain. Here we show that an energy gain of more than 42 GeV is achieved in a plasma wakefield accelerator of 85 cm length, driven by a 42 GeV electron beam at the Stanford Linear Accelerator Center (SLAC). The results are in excellent agreement with the predictions of three-dimensional particle-in-cell simulations. Most of the beam electrons lose energy to the plasma wave, but some electrons in the back of the same beam pulse are accelerated with a field of {approx} 52GV m{sup -1}. This effectively doubles their energy, producing the energy gain of the 3-km-long SLAC accelerator in less than a meter for a small fraction of the electrons in the injected bunch. This is an important step towards demonstrating the viability of plasma accelerators for high-energy physics applications.

Blumenfeld, Ian; Clayton, Christopher E.; Decker, Franz-Josef; Hogan, Mark J.; Huang, Chengkun; Ischebeck, Rasmus; Iverson, Richard; Joshi, Chandrashekhar; Katsouleas,; Kirby, Neil; Lu, Wei; Marsh, Kenneth A.; Mori, Warren B.; Muggli, Patric; Oz, Erdem; Siemann, Robert H.; Walz, Dieter; Zhou, Miaomiao; /SLAC /UCLA /Southern California U.

2007-03-14T23:59:59.000Z

454

Neutron energy spectrum from 120 GeV protons on a thick copper target  

E-Print Network [OSTI]

Neutron energy spectrum from 120 GeV protons on a thick copper target was measured at the Meson Test Beam Facility (MTBF) at Fermi National Accelerator Laboratory. The data allows for evaluation of neutron production process implemented in theoretical simulation codes. It also helps exploring the reasons for some disagreement between calculation results and shielding benchmark data taken at high energy accelerator facilities, since it is evaluated separately from neutron transport. The experiment was carried out using a 120 GeV proton beam of 3E5 protons/spill. Since the spill duration was 4 seconds, proton-induced events were counted pulse by pulse. The intensity was maintained using diffusers and collimators installed in the beam line to MTBF. The protons hit a copper block target the size of which is 5cm x 5cm x 60 cm long. The neutrons produced in the target were measured using NE213 liquid scintillator detectors, placed about 5.5 m away from the target at 30^{\\circ} and 5 m 90^{\\circ} with respect to the proton beam axis. The neutron energy was determined by time-of-flight technique using timing difference between the NE213 and a plastic scintillator located just before the target. Neutron detection efficiency of NE213 was determined on basis of experimental data from the high energy neutron beam line at Los Alamos National Laboratory. The neutron spectrum was compared with the results of multi-particle transport codes to validate the implemented theoretical models. The apparatus would be applied to future measurements to obtain a systematic data set for secondary particle production on various target materials.

Nobuhiro Shigyo; Toshiya Sanami; Tsuyoshi Kajimoto; Yosuke Iwamoto; Masayuki Hagiwara; Kiwamu Saito; Kenji Ishibashi; Hiroshi Nakashima; Yukio Sakamoto; Hee-Seock Lee; Erik Ramberg; Aria A. Meyhoefer; Rick Coleman; Doug Jensen; Anthony F. Leveling; David J. Boehnlein; Nikolai V. Mokhov

2012-02-07T23:59:59.000Z

455

Critical point analysis of phase envelope diagram  

SciTech Connect (OSTI)

Phase diagram or phase envelope is a relation between temperature and pressure that shows the condition of equilibria between the different phases of chemical compounds, mixture of compounds, and solutions. Phase diagram is an important issue in chemical thermodynamics and hydrocarbon reservoir. It is very useful for process simulation, hydrocarbon reactor design, and petroleum engineering studies. It is constructed from the bubble line, dew line, and critical point. Bubble line and dew line are composed of bubble points and dew points, respectively. Bubble point is the first point at which the gas is formed when a liquid is heated. Meanwhile, dew point is the first point where the liquid is formed when the gas is cooled. Critical point is the point where all of the properties of gases and liquids are equal, such as temperature, pressure, amount of substance, and others. Critical point is very useful in fuel processing and dissolution of certain chemicals. Here in this paper, we will show the critical point analytically. Then, it will be compared with numerical calculations of Peng-Robinson equation by using Newton-Raphson method. As case studies, several hydrocarbon mixtures are simulated using by Matlab.

Soetikno, Darmadi; Siagian, Ucok W. R. [Department of Petroleum Engineering, Institut Teknologi Bandung, Jl. Ganesha 10, Bandung 40132 (Indonesia); Kusdiantara, Rudy, E-mail: rkusdiantara@s.itb.ac.id; Puspita, Dila, E-mail: rkusdiantara@s.itb.ac.id; Sidarto, Kuntjoro A., E-mail: rkusdiantara@s.itb.ac.id; Soewono, Edy; Gunawan, Agus Y. [Department of Mathematics, Institut Teknologi Bandung, Jl. Ganesha 10, Bandung 40132 (Indonesia)

2014-03-24T23:59:59.000Z

456

Iron under Earth's core conditions: Liquid-state thermodynamics and high-pressure melting curve from ab initio calculations  

E-Print Network [OSTI]

Hugoniot curves cross the melting line, and the sound speed and Gru¨neisen parameter along the HugoniotIron under Earth's core conditions: Liquid-state thermodynamics and high-pressure melting curve-augmented-wave implementation are used to calculate the free energy and a range of other thermodynamic properties of liquid iron

Alfè, Dario

457

Controls on Eurasian coastal sea ice formation, melt onset and decay from ERS scatterometry: regional contrasts and effects of river  

E-Print Network [OSTI]

first-year sea ice (FYI) are observed in the Eurasian Arctic using the C-band (5.3 GHz) European RemoteControls on Eurasian coastal sea ice formation, melt onset and decay from ERS scatterometry and Kolyma rivers. Melt onset of the sea ice surface is associated with abrupt changes in s0 40, with values

Smith, Laurence C.

458

Melt and collapse of buried water ice: An alternative hypothesis for the formation of chaotic terrains on Mars  

E-Print Network [OSTI]

Melt and collapse of buried water ice: An alternative hypothesis for the formation of chaotic: T. Spohn Keywords: Mars chaotic terrain heat flux outflow channel Chaotic terrains if these features can form by melting and collapse of buried water ice in a confined basin. 2D thermal modelling

Utrecht, Universiteit

459

Vacuum Induction Melting Unit Induction heating is a process wherein induced eddy currents heat conductive materials. This heating  

E-Print Network [OSTI]

graphite) crucible inside the coil. The coil serves as the transformer primary and the part to be heated Principle: An outline of the induction melting system is presented here. A solid state RF power supply sends can be melted at a time. There are three main parts to the system: chiller, power unit and vacuum unit

Subramaniam, Anandh

460

A new approach to the equation of state of silicate melts: An application of the theory of hard sphere mixtures  

E-Print Network [OSTI]

A new approach to the equation of state of silicate melts: An application of the theory of hard 8 September 2011 Abstract A comparison of compressional properties of silicate solids, glasses solids and glasses and the bulk moduli of various silicate melts have a narrow range of values; (2

Note: This page contains sample records for the topic "gev melting point" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Solar Energy Materials & Solar Cells 88 (2005) 6573 Investigation of pulsed non-melt laser annealing  

E-Print Network [OSTI]

Solar Energy Materials & Solar Cells 88 (2005) 65­73 Investigation of pulsed non-melt laser annealing on the film properties and performance of Cu(In,Ga)Se2 solar cells Xuege Wanga , Sheng S. Lia,�, C time to modify near- surface defects and related junction properties in Cu(In,Ga)Se2 (CIGS) solar cells

Anderson, Timothy J.

462

GREENLAND INLAND ICE MELT-OFF: ANALYSIS OF GLOBAL GRAVITY DATA FROM THE GRACE SATELLITES  

E-Print Network [OSTI]

GREENLAND INLAND ICE MELT-OFF: ANALYSIS OF GLOBAL GRAVITY DATA FROM THE GRACE SATELLITES Allan A) in meters starting at 29 July 2002 and ending at 25 August 2010. Results focussing on Greenland show indications of a transition taking place in the mass loss in Greenland from mid-2004 to early 2006. Index

463

Unique composition niobium-silicide alloy, plasma melted for the Air Force as part of  

E-Print Network [OSTI]

Unique composition niobium-silicide alloy, plasma melted for the Air Force as part of advanced investments in metal casting; thermomechanical processing; electrochemistry; powder processing; sol gel Laboratory. Hot and cold rolling of metals is used to meet customer dimensional and crystallographic

464

Pulverized coal firing of aluminum melting furnances. Quarterly technical report, January 1, 1980-March 31, 1980  

SciTech Connect (OSTI)

The ultimate objective of this program is the commercial demonstration of an efficient, environmentally acceptable coal firing process suitable for implementation on melting furnaces throughout the aluminum industry. To achieve this goal, the program has been divided into two phases. Phase I has begun with the design and construction of a 350 pound (coal) per hour staged slagging cyclone combustor (SSCC) attached to a 7-ft diameter aluminum melting ladle furnace. Process development will culminate with a 1000 pph prototype SSCC firing a 40,000 pound capacity open hearth melting furnace at the Alcoa Laboratories. Phase II implementation is currently planned for Alcoa's Lafayette, IN, Works, where two of the ingot plant's five open hearth melting furnaces will be converted to utilize coal. In addition to confirmation of data gathered in Phase I, the effect of extended production schedule operation on equipment and efficiencies will be determined. This work would begin in 1982 pursuant to technical and economic evaluation of the process development at that time.

West, C E

1980-10-01T23:59:59.000Z

465

Pulverized coal firing of aluminum melting furnaces. Second annual technical progress report, July 1979-June 1980  

SciTech Connect (OSTI)

The ultimate objective of this program is the commercial demonstration of an efficient, environmentally acceptable coal firing process suitable for implementation on melting furnaces throughout the aluminum industry. To achieve this goal, the program has been divided into two phases. Phase I has proceeded through design and construction of a 350 pound (coal) per hour staged slagging cyclone combustor (SSCC) attached to a 7-ft diameter aluminum melting ladle furnace. Process development will culminate with a 1000 pph prototype SSCC firing a 40,000 pound capacity open hearth melting furnace at the Alcoa Laboratories. Phase II implementation is currently planned for Alcoa's Lafayette, IN, Works, where two of the ingot plant's five open hearth melting furnaces will be converted to utilize coal. In addition to confirmation of data gathered in Phase I, the effect of extended production schedule operation on equipment and efficiencies will be determined. This work would begin in 1982 pursuant to technical and economic evaluation of the process development at that time.

West, C E; Stewart, D L

1980-08-01T23:59:59.000Z

466

Pulverized coal firing of aluminum melting furnaces. Quarterly technical progress report, July 1-September 30, 1979  

SciTech Connect (OSTI)

The ultimate objective of this program is the commercial demonstration of an efficient, environmentally acceptable coal firing process suitable for implementation on melting furnaces throughout the aluminum industry. To achieve this goal, the program has been divided into two phases. Phase I has begun with the design and construction of a 350 pound (coal) per hour staged slagging cyclone combustor (SSCC) attached to a 7-ft diameter aluminum melting ladle furnace. Process development will culminate with a 1000 pph prototype SSCC firing a 40,000 pound capacity open hearth melting furnace at the Alcoa Laboratories. Phase II implementation is currently planned for Alcoa's Lafayette, IN, Works, where two of the ingot plant's five open hearth melting furnaces will be converted to utilize coal. In addition to confirmation of data gathered in Phase I, the effect of extended production schedule operation on equipment and efficiencies will be determined. This work would begin in 1982 pursuant to technical and economic evaluation of the process development at that time.

West, C E

1980-09-01T23:59:59.000Z

467

Substrate Effect on the Melting Temperature of Thin Polyethylene Films M. Rafailovich,1,* J. Sokolov,1  

E-Print Network [OSTI]

Substrate Effect on the Melting Temperature of Thin Polyethylene Films Y. Wang,1 M. Rafailovich,1 polyethylene thin films. The Tm decreases with the film thickness decrease when the film is thinner than that the degree of crystal- linity of polyethylene (PE) remained high even in films as thin as 15 nm [5]. A novel

468

Video imaging system and thermal mapping of the molten hearth in an electron beam melting furnace  

SciTech Connect (OSTI)

This project was initiated to develop an enhanced video imaging system for the Liquid Metal Processing Laboratory Electron Beam Melting (EB) Furnace at Sandia and to use color video images to map the temperature distribution of the surface of the molten hearth. In a series of test melts, the color output of the video image was calibrated against temperatures measured by an optical pyrometer and CCD camera viewing port above the molten pool. To prevent potential metal vapor deposition onto line-of-sight optical surfaces above the pool, argon backfill was used along with a pinhole aperture to obtain the vide image. The geometry of the optical port to the hearth set the limits for the focus lens and CCD camera`s field of view. Initial melts were completed with the pyrometer and pinhole aperture port in a fixed position. Using commercially available vacuum components, a second flange assembly was constructed to provide flexibility in choosing pyrometer target sights on the hearth and to adjust the field of view for the focus lens/CCD combination. RGB video images processed from the melts verified that red wavelength light captured with the video camera could be calibrated with the optical pyrometer target temperatures and used to generate temperature maps of the hearth surface. Two color ratio thermal mapping using red and green video images, which has theoretical advantages, was less successful due to probable camera non-linearities in the red and green image intensities.

Miszkiel, M.E.; Davis, R.A.; Van Den Avyle, J.A. [Sandia National Laboratories, Albuquerque, NM (United States)] [and others

1995-12-31T23:59:59.000Z

469

Manufacturing capabilities of high power electron beam furnaces for melting ignots to 40 tons in weight  

SciTech Connect (OSTI)

A tendency to using special technologies of melting steels and alloys to get large ingots free of macrodefects and shrinking shells used to provide defectless products, ensuring an increase of ingot-to-product yield is well known. The electron beam furnace process improves the economical efficiency of production of large ingots, slabs for rolling mills, where high quality of special purpose steels and alloys is required. Metals, made by means of electron beam melting can be used for power, nuclear and chemical machine-buildings, aircraft and automotive, instrument and bearing productions, injection moulds and moulds for cold rollings, magnetic and titanium alloys, ship shafts, propellers and high speed power turbine parts. Melting technologies, which is one of the most important stages in production of steels and alloys, predetermines a required quality of metals and alloys to get the following characteristics of remelted metals: impact strength; isotropy of properties in central and surface zones of ingots; fatigue strength and resistance under mechanical and heat loads; corrosion resistance to attack by aggressive media; and polishing properties. The furnace is equipped with five electron beam guns, type EH-1200/50 and pumps for pumping out cavities of technological equipments: melting and ingot chambers, charging devices.

Boiko, Ju.P.; Braim, V.P.; Kormitch, A.T.; Zorin, G.V.; Kostenuk, Ju.V.; Nikitin, V.S.; Pokrovsky, S.V.

1994-12-31T23:59:59.000Z

470

Melting of Iron under Earth's Core Conditions from Diffusion Monte Carlo Free Energy Calculations  

E-Print Network [OSTI]

Melting of Iron under Earth's Core Conditions from Diffusion Monte Carlo Free Energy Calculations Ester Sola1 and Dario Alfe`1,2 1 Thomas Young Centre@UCL, and Department of Earth Sciences, UCL, Gower. Here we used quantum Monte Carlo techniques to compute the free energies of solid and liquid iron

Alfè, Dario

471

406 ASHRAE Transactions: Research The transient response of snow melting systems for pave-  

E-Print Network [OSTI]

-state conditions. Design loads (surface heat fluxes) have been calculated by taking the instantaneous weather a significant effect on overall systemperformance.Traditionalsteady-statemethodsofsnow melting system load calculation have not been able to take into account the thermal history of the system or the transient nature

Ghajar, Afshin J.

472

NorthNorth Sea ice and glaciers are melting, permafrost is thawing, tundra  

E-Print Network [OSTI]

], in which rising temperatures produce short- er winters and less extensive snow and ice cover, with ripple#12;NorthNorth in the Sea ice and glaciers are melting, permafrost is thawing, tundra scientists yielding to shrubs--and changes will affect not just the Arctic but the entire planet REDUCTION IN SEA ICE

Sturm, Matthew

473

A comparison of neutron scattering studies and computer simulations of polymer melts  

E-Print Network [OSTI]

A comparison of neutron scattering studies and computer simulations of polymer melts G.D. Smith a; in ®nal form 22 May 2000 Abstract Neutron scattering and computer simulations are powerful tools in particular. When neutron scattering studies and quan- titative atomistic molecular dynamics simulations

Utah, University of

474

EXPERIMENTAL PRODUCTION OF PURE IRON GLOBULES FROM MELTS OF LUNAR SOIL-COMPOSITIONS. Antonio Buono1  

E-Print Network [OSTI]

particles [1, 2]. The melt scavenges dust and quenches to form agglutinates [3]. Because solar wind hydrogen-atmosphere in a vertical tube gas-mixing furnace. Starting materials were a mixture of oxide and carbonate powders was placed in a loosely closed silica tube that was suspended in the hot spot of the furnace. The loosely

Schieber, Juergen