Sample records for gev melting point

  1. Nanotexturing of surfaces to reduce melting point.

    SciTech Connect (OSTI)

    Garcia, Ernest J.; Zubia, David (University of Texas at El Paso El Paso, TX); Mireles, Jose (Universidad Aut%C3%94onoma de Ciudad Ju%C3%94arez Ciudad Ju%C3%94arez, Mexico); Marquez, Noel (University of Texas at El Paso El Paso, TX); Quinones, Stella (University of Texas at El Paso El Paso, TX)

    2011-11-01T23:59:59.000Z

    This investigation examined the use of nano-patterned structures on Silicon-on-Insulator (SOI) material to reduce the bulk material melting point (1414 C). It has been found that sharp-tipped and other similar structures have a propensity to move to the lower energy states of spherical structures and as a result exhibit lower melting points than the bulk material. Such a reduction of the melting point would offer a number of interesting opportunities for bonding in microsystems packaging applications. Nano patterning process capabilities were developed to create the required structures for the investigation. One of the technical challenges of the project was understanding and creating the specialized conditions required to observe the melting and reshaping phenomena. Through systematic experimentation and review of the literature these conditions were determined and used to conduct phase change experiments. Melting temperatures as low as 1030 C were observed.

  2. Low-melting point heat transfer fluid

    DOE Patents [OSTI]

    Cordaro, Joseph Gabriel (Oakland, CA); Bradshaw, Robert W. (Livermore, CA)

    2010-11-09T23:59:59.000Z

    A low-melting point, heat transfer fluid made of a mixture of five inorganic salts including about 29.1-33.5 mol % LiNO.sub.3, 0-3.9 mol % NaNO.sub.3, 2.4-8.2 mol % KNO.sub.3, 18.6-19.9 mol % NaNO.sub.2, and 40-45.6 mol % KNO.sub.2. These compositions can have liquidus temperatures below 80.degree. C. for some compositions.

  3. Low-melting point heat transfer fluid

    DOE Patents [OSTI]

    Cordaro, Joseph G. (Oakland, CA); Bradshaw, Robert W. (Livermore, CA)

    2011-04-12T23:59:59.000Z

    A low-melting point, heat transfer fluid comprising a mixture of LiNO.sub.3, NaNO.sub.3, KNO.sub.3, NaNO.sub.2 and KNO.sub.2 salts where the Li, Na and K cations are present in amounts of about 20-33.5 mol % Li, about 18.6-40 mol % Na, and about 40-50.3 mol % K and where the nitrate and nitrite anions are present in amounts of about 36-50 mol % NO.sub.3, and about 50-62.5 mol % NO.sub.2. These compositions can have liquidus temperatures between 70.degree. C. and 80.degree. C. for some compositions.

  4. Low-melting point inorganic nitrate salt heat transfer fluid

    DOE Patents [OSTI]

    Bradshaw, Robert W. (Livermore, CA); Brosseau, Douglas A. (Albuquerque, NM)

    2009-09-15T23:59:59.000Z

    A low-melting point, heat transfer fluid made of a mixture of four inorganic nitrate salts: 9-18 wt % NaNO.sub.3, 40-52 wt % KNO.sub.3, 13-21 wt % LiNO.sub.3, and 20-27 wt % Ca(NO.sub.3).sub.2. These compositions can have liquidus temperatures less than 100 C; thermal stability limits greater than 500 C; and viscosity in the range of 5-6 cP at 300 C; and 2-3 cP at 400 C.

  5. Effect of grain size on the melting point of confined thin aluminum films

    SciTech Connect (OSTI)

    Wejrzanowski, Tomasz; Lewandowska, Malgorzata; Sikorski, Krzysztof; Kurzydlowski, Krzysztof J. [Materials Design Division, Faculty of Materials Science and Engineering, Warsaw University of Technology, Woloska 141, 02-507 Warsaw (Poland)

    2014-10-28T23:59:59.000Z

    The melting of aluminum thin film was studied by a molecular dynamics (MD) simulation technique. The effect of the grain size and type of confinement was investigated for aluminum film with a constant thickness of 4?nm. The results show that coherent intercrystalline interface suppress the transition of solid aluminum into liquid, while free-surface gives melting point depression. The mechanism of melting of polycrystalline aluminum thin film was investigated. It was found that melting starts at grain boundaries and propagates to grain interiors. The melting point was calculated from the Lindemann index criterion, taking into account only atoms near to grain boundaries. This made it possible to extend melting point calculations to bigger grains, which require a long time (in the MD scale) to be fully molten. The results show that 4?nm thick film of aluminum melts at a temperature lower than the melting point of bulk aluminum (933?K) only when the grain size is reduced to 6?nm.

  6. Creep measuring device for low melting point metals

    E-Print Network [OSTI]

    Portal, Marc-Emmanuel Gilbert

    1987-01-01T23:59:59.000Z

    that there is little concern about the mechanical interaction of the coolant in the solid state and the walls. Because of its suitable thermophysicsl properties, lithium has been selected for the coolant in the SP-100 space reactor design. During launch, the lithium... properties of lithium. An experiment was conducted on lead at 90% of melting temperature (541 K). The results of this experiment agreed well with theoretical predictions of the Harper-Dorn creep model. The three predicted stages of creep were observed...

  7. Measurement of the Melting Point Temperature of Several Lithium-Sodium-Beryllium Fluoride Salt (Flinabe) Mixtures

    SciTech Connect (OSTI)

    McDonald, J.M; Nygren, R.E.; Lutz, T.J.; Tanaka, T.J; Ulrickson, M.A.; Boyle, T.J.; Troncosa, K.P. [Sandia National Laboratories (United States)

    2005-04-15T23:59:59.000Z

    The molten salt Flibe, a combination of lithium and beryllium fluorides studied for molten salt fission reactors, has been proposed as a breeder and coolant for fusion applications. The melting points of 2LiF-BeF{sub 2} and LiF-BeF{sub 2} are 460 deg. C and 363 deg. C, but LiF-BeF{sub 2} is rather viscous and has less lithium for breeding. In the Advanced Power Extraction (APEX) Program, concepts with a free flowing liquid for the first wall and blanket were investigated. Flinabe (a mixture of LiF, BeF{sub 2} and NaF) was selected for a molten salt design because a melting temperature below 350 deg. C appeared possible and this provided an attractive operating temperature window for a reactor. To confirm that a ternary salt with a low melting temperature existed, several combinations of the fluoride salts, LiF, NaF and BeF{sub 2}, were melted in a stainless steel crucible under vacuum. One had an apparent melting temperature of 305 deg. C. The test system, preparation of the mixtures, melting procedures and temperature curves for the melting and cooling are presented along with the apparent melting points. Thermal modeling of the salt pool and crucible is reported in an accompanying paper.

  8. Models for mean bonding length, melting point and lattice thermal expansion of nanoparticle materials

    SciTech Connect (OSTI)

    Omar, M.S., E-mail: dr_m_s_omar@yahoo.com [Department of Physics, College of Science, University of Salahaddin-Erbil, Arbil, Kurdistan (Iraq)

    2012-11-15T23:59:59.000Z

    Graphical abstract: Three models are derived to explain the nanoparticles size dependence of mean bonding length, melting temperature and lattice thermal expansion applied on Sn, Si and Au. The following figures are shown as an example for Sn nanoparticles indicates hilly applicable models for nanoparticles radius larger than 3 nm. Highlights: ? A model for a size dependent mean bonding length is derived. ? The size dependent melting point of nanoparticles is modified. ? The bulk model for lattice thermal expansion is successfully used on nanoparticles. -- Abstract: A model, based on the ratio number of surface atoms to that of its internal, is derived to calculate the size dependence of lattice volume of nanoscaled materials. The model is applied to Si, Sn and Au nanoparticles. For Si, that the lattice volume is increases from 20 ?{sup 3} for bulk to 57 ?{sup 3} for a 2 nm size nanocrystals. A model, for calculating melting point of nanoscaled materials, is modified by considering the effect of lattice volume. A good approach of calculating size-dependent melting point begins from the bulk state down to about 2 nm diameter nanoparticle. Both values of lattice volume and melting point obtained for nanosized materials are used to calculate lattice thermal expansion by using a formula applicable for tetrahedral semiconductors. Results for Si, change from 3.7 × 10{sup ?6} K{sup ?1} for a bulk crystal down to a minimum value of 0.1 × 10{sup ?6} K{sup ?1} for a 6 nm diameter nanoparticle.

  9. Temperature control of some metallic conductors in the region of the melting point

    E-Print Network [OSTI]

    Rahman, Arifur

    1961-01-01T23:59:59.000Z

    TEMPERATURE CONTROL OF SOME METALLIC CONDUCTORS IN THE REGION OF THE MELTING POINT A Thesis by Ari fur Rahman Submitted to the Graduate School of the Agricultural and Mechanical College of Texas in partial fulfillment of the requirements... for the degree of MASTER OF SCIENCE May 1961 Ma)or Sub)ect: Electrical Engineering TEMPE~ CONTROL OF SOME METALLIC CONDUCTORS IN THE REGION OF THE MELTING POINT 4 4 E 4 K 0 5 0 A Thesis by Arifur Rahman Approved as to style and content by: (Ch...

  10. Measurement of the melting point temperature of several lithium-sodium-beryllium fluoride salt (FLINABE) mixtures.

    SciTech Connect (OSTI)

    Boyle, Timothy J.; Troncosa, Kenneth P.; Nygren, Richard Einar; Lutz, Thomas Joseph; McDonald, Jimmie M.; Tanaka, Tina Joan; Ulrickson, Michael Andrew

    2004-09-01T23:59:59.000Z

    The molten salt Flibe, a combination of lithium and beryllium flourides, was studied for molten salt fission reactors and has been proposed as a breeder and coolant for the fusion applications. 2LiF-BeF{sub 2} melts at 460 C. LiF-BeF{sub 2} melts at a lower temperature, 363 C, but is rather viscous and has less lithium breeder. In the Advanced Power Extraction (APEX) Program, concepts with a free flowing ternary molten salt for the first wall surface and blanket were investigated. The molten salt (FLiNaBe, a ternary mixture of LiF, BeF2 and NaF) salt was selected because a melting temperature below 350 C that would provide an attractive operating temperature window for a reactor application appeared possible. This information came from a Russian binary phase diagram and a US ternary phase diagram in the 1960's that were not wholly consistent. To confirm that a ternary salt with a low melting temperature existed, several combinations of the fluoride salts, LiF, NaF and, BeF{sub 2}, were melted in a small stainless steel crucible under vacuum. The proportions of the three salts were selected to yield conglomerate salts with as low a melting temperature as possible. The temperature of the salts and the crucible were recorded during the melting and subsequent re-solidification using a thermocouple directly in the salt pool and two thermocouples embedded in the crucible. One mixture had an apparent melting temperature of 305 C. Particular attention was paid to the cooling curve of the salt temperature to observe evidence of any mixed intermediate phases between the fully liquid and fully solid states. The clarity, texture, and thickness were observed and noted as well. The test system, preparation of the mixtures, and the melting procedure are described. The temperature curves for the melting and cooling of each of the mixtures are presented along with the apparent melting points. Thermal modeling of the salt pool and crucible was also done and is reported in a separate paper.

  11. Melting point measurements for quasicrystalline phases. [Al-Mn; icosahedral and decagonal phases

    SciTech Connect (OSTI)

    Knapp, J.A.; Follstaedt, D.M.

    1986-01-01T23:59:59.000Z

    Melting transitions of metastable quasicrystalline phases of Al-Mn have been observed using rapid electron-beam heating of fine-grained icosahedral surface layers. The congruent melting point for icosahedral Al/sub 80/Mn/sub 20/ was directly measured to be 910 +- 20/sup 0/C. Heating to higher temperatures shows another transition which is inferred to correspond to the liquidus of the decagonal phase at 965 +- 20/sup 0/C for 20 at. % Mn. The microstructure and formation kinetics of the decagonal phase are discussed, and its electron diffraction is described.

  12. Draft report on melt point as a function of composition for urania-based systems

    SciTech Connect (OSTI)

    Valdez, James A [Los Alamos National Laboratory; Byler, Darrin D [Los Alamos National Laboratory

    2012-06-08T23:59:59.000Z

    This report documents the testing of a urania (UO{sub 2.00}) sample as a baseline and the attempt to determine the melt point associated with 4 compositions of urania-ceria and urania-neodymia pseudo binaries provided by ORNL, with compositions of 95/5, and 80/20 and of (U/Ce)O{sub 2.00} and (U/Nd)O{sub 2.00} in the newly developed ceramic melt point determination system. A redesign of the system using parts fabricated from tungsten was undertaken in order to help prevent contamination and tungsten carbide formation in the crucibles. The previously developed system employed mostly graphite parts that were shown to react with the sample containment black-body crucible leading to unstable temperature readings and crucible failure, thus the redesign. Measured melt point values of UO{sub 2.00} and U{sub 0.95}Ce{sub 0.05}O{sub 2.00}, U{sub 0.80}Ce{sub 0.20}O{sub 2.00}, U{sub 0.95}Nd{sub 0.05}O{sub 2.00} and U{sub 0.80}Nd{sub 0.20}O{sub 2.00} were measured using a 2-color pyrometer. The value measured for UO{sub 2.00} was consistent with the published accepted value 2845 C {+-} 25 C, although a wide range of values has been published by researchers and will be discussed later in the text. For comparison, values obtained from a published binary phase diagram of UO{sub 2}-Nd{sub 2}O{sub 3} were used for comparison with our measure values. No literature melt point values for comparison with the measurements performed in this study were found for (U/Ce)O{sub 2.00} in our stoichiometry range.

  13. Liquid Phase 3D Printing for Quickly Manufacturing Metal Objects with Low Melting Point Alloy Ink

    E-Print Network [OSTI]

    Wang, Lei

    2014-01-01T23:59:59.000Z

    Conventional 3D printings are generally time-consuming and printable metal inks are rather limited. From an alternative way, we proposed a liquid phase 3D printing for quickly making metal objects. Through introducing metal alloys whose melting point is slightly above room temperature as printing inks, several representative structures spanning from one, two and three dimension to more complex patterns were demonstrated to be quickly fabricated. Compared with the air cooling in a conventional 3D printing, the liquid-phase-manufacturing offers a much higher cooling rate and thus significantly improves the speed in fabricating metal objects. This unique strategy also efficiently prevents the liquid metal inks from air oxidation which is hard to avoid otherwise in an ordinary 3D printing. Several key physical factors (like properties of the cooling fluid, injection speed and needle diameter, types and properties of the printing ink, etc.) were disclosed which would evidently affect the printing quality. In addit...

  14. A molecular dynamics simulation of the melting points and glass transition temperatures of myo-and neo-inositol

    E-Print Network [OSTI]

    de Gispert, Adrià

    A molecular dynamics simulation of the melting points and glass transition temperatures of myo transition temperature are calculated for myo- and neo-inositol, using the condensed-phase optimized temperatures for myo- and neo-inositol also compare very well to the experimentally obtained data. The glass

  15. Liquid Phase 3D Printing for Quickly Manufacturing Metal Objects with Low Melting Point Alloy Ink

    E-Print Network [OSTI]

    Lei Wang; Jing Liu

    2014-02-25T23:59:59.000Z

    Conventional 3D printings are generally time-consuming and printable metal inks are rather limited. From an alternative way, we proposed a liquid phase 3D printing for quickly making metal objects. Through introducing metal alloys whose melting point is slightly above room temperature as printing inks, several representative structures spanning from one, two and three dimension to more complex patterns were demonstrated to be quickly fabricated. Compared with the air cooling in a conventional 3D printing, the liquid-phase-manufacturing offers a much higher cooling rate and thus significantly improves the speed in fabricating metal objects. This unique strategy also efficiently prevents the liquid metal inks from air oxidation which is hard to avoid otherwise in an ordinary 3D printing. Several key physical factors (like properties of the cooling fluid, injection speed and needle diameter, types and properties of the printing ink, etc.) were disclosed which would evidently affect the printing quality. In addition, a basic route to make future liquid phase 3D printer incorporated with both syringe pump and needle arrays was also suggested. The liquid phase 3D printing method, which owns potential values not available in a conventional modality, opens an efficient way for quickly making metal objects in the coming time.

  16. A simple monatomic ideal glass former: the glass transition by a first-order phase transition above the melting point

    E-Print Network [OSTI]

    Måns Elenius; Tomas Oppelstrup; Mikhail Dzugutov

    2010-04-15T23:59:59.000Z

    A liquid can form under cooling a glassy state either as a result of a continuous slowing down or by a first order polyamorphous phase transition. The second scenario has so far always been observed below the melting point where it interfered with crystalline nucleation. We report the first observation of the liquid-glass transition by a first order phase transition above the melting point. The observation was made in a molecular dynamics simulation of a one-component system with a model metallic pair potential. This is also the first observation of a simple monatomic ideal glass former -- a liquid that avoids crystallization at any cooling rate. Besides its conceptual importance, this result indicates a possibility of existence of metallic ideal glass formers.

  17. JOURNAL DE PHYSIQUE Colloque C5, supplkment au no 5, Tome 40, Mai 1979, page C5-63 Heat capacity of rare earth metals near the melting point and the vacancy

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    for the difference of the heat capacity of the liquid and solid metal in the neighbourhood of the melting point. From of the atomic heat capacity of solid and liquid metals at the melting point. The basis for this calculationJOURNAL DE PHYSIQUE Colloque C5, supplkment au no 5, Tome 40, Mai 1979, page C5-63 Heat capacity

  18. Physics of the Lindemann melting rule

    SciTech Connect (OSTI)

    Lawson, Andrew C [Los Alamos National Laboratory

    2008-01-01T23:59:59.000Z

    We investigate the thermodynamics of melting for 74 distinct chemical elements including several actinides and rare earths. We find that the observed melting points are consistent with a linear relationship between the correlation entropy of the liquid and the Grueneisen constant of the solid, and that the Lindemann rule is well obeyed for the elements with simple structures and less well obeyed for the less symmetric more open structures. No special assumptions are required to explain the melting points of the rare earths or light actinides.

  19. Melt containment member

    DOE Patents [OSTI]

    Rieken, Joel R.; Heidloff, Andrew J.

    2014-09-09T23:59:59.000Z

    A tubular melt containment member for transient containment of molten metals and alloys, especially reactive metals and alloys, includes a melt-contacting layer or region that comprises an oxygen-deficient rare earth oxide material that is less reactive as compared to the counterpart stoichiometric rare earth oxide. The oxygen-deficient (sub-stoichiometric) rare earth oxide can comprise oxygen-deficient yttria represented by Y.sub.2O.sub.3-x wherein x is from 0.01 to 0.1. Use of the oxygen-deficient rare earth oxide as the melt-contacting layer or region material reduces reaction with the melt for a given melt temperature and melt contact time.

  20. Plasma arc melting of a 80 wt % tantalum-20 wt % titanium alloy

    SciTech Connect (OSTI)

    Dunn, P.S.; Patterson, R.A.

    1994-10-01T23:59:59.000Z

    An alloy of 80wt% tantalum-20wt% titanium is being considered for use in an oxidizing and highly corrosive liquid metal application. The high melting point of the alloy, 2400 C, and other physical properties narrowed the possible melting techniques. Previous melting experience with these materials by electron beam resulted in extensive vaporization of the titanium during the melt and poor chemical homogeneity. A technique has been developed using plasma arc melting to melt refractory alloys with very dissimilar densities and vapor pressures. The 80Ta--20Ti alloy falls into this category with the density of tantalum 16.5 g/cc and that of titanium 4.5 g/cc. The melting of these materials is further complicated by the high melting point of tantalum( 3020 C) and the relatively low boiling point of titanium( 3287 C). The plasma arc melting technique described results in good chemical homogeneity with ingot size quantities of material.

  1. Plasma arc melting of titanium-tantalum alloys

    SciTech Connect (OSTI)

    Dunn, P.; Patterson, R.A. [Los Alamos National Lab., NM (United States); Haun, R. [Retech, Inc., Ukiah, CA (United States)

    1994-08-01T23:59:59.000Z

    Los Alamos has several applications for high temperature, oxidation and liquid-metal corrosion resistant materials. Further, materials property constraints are dictated by a requirement to maintain low density; e.g., less than the density of stainless steel. Liquid metal compatibility and density requirements have driven the research toward the Ti-Ta system with an upper bound of 60 wt% Ta-40 wt% Ti. Initial melting of these materials was performed in a small button arc melter with several hundred grams of material; however, ingot quantities were soon needed. But, refractory metal alloys whose constituents possess very dissimilar densities, melting temperatures and vapor pressures pose significant difficulty and require specialized melting practices. The Ti-Ta alloys fall into this category with the density of tantalum 16.5 g/cc and that of titanium 4.5 g/cc. Melting is further complicated by the high melting point of Ta(3020 C) and the relatively low boiling point of Ti(3287 C). Previous electron beam melting experience with these materials resulted, in extensive vaporization of the titanium and poor chemical homogeneity. Vacuum arc remelting(VAR) was considered as a melting candidate and discarded due to density and vapor pressure issues associated with electron beam. Plasma arc melting offered the ability to supply a cover gas to deal with vapor pressure issues as well as solidification control to help with macrosegregation in the melt and has successfully produced high quality ingots of the Ti-Ta alloys.

  2. Regelation: why does ice melt under pressure?

    E-Print Network [OSTI]

    Chang Q Sun

    2015-01-28T23:59:59.000Z

    Unlike other unusual materials whose bonds contract under compression, the O:H nonbond undergoes contraction and the H-O bond elongation towards O:H and H-O length symmetry in water and ice. The energy drop of the H-O bond dictates the melting point Tm depression of ice. Once the pressure is relieved, the O:H-O bond fully recovers its initial state, resulting in Regelation.

  3. Regelation: why does ice melt under pressure?

    E-Print Network [OSTI]

    Sun, Chang Q

    2015-01-01T23:59:59.000Z

    Unlike other unusual materials whose bonds contract under compression, the O:H nonbond undergoes contraction and the H-O bond elongation towards O:H and H-O length symmetry in water and ice. The energy drop of the H-O bond dictates the melting point Tm depression of ice. Once the pressure is relieved, the O:H-O bond fully recovers its initial state, resulting in Regelation.

  4. Behavior of melts during softening and melting down of iron ore sinter under load

    SciTech Connect (OSTI)

    Cho, Y.H. [Research Inst. of Industrial Science and Technology, Pohang (Korea, Republic of)

    1995-12-01T23:59:59.000Z

    In order to achieve effective operation in the blast furnace, the distribution control and quality improvement of burden materials are very important. In spite of the difficulties in obtaining suitable samples and making direct observation, significant progress including the placement of probes into the stack, tuyere drilling and laboratory simulation studies has been made. Investigation of the behavior of melts during softening and melting down was carried out in the temperature range of 800 C to 1,515 C. In this report, emphasis is given to investigating the mineral formation and properties of melts during softening and melting down of the iron ore sinter. Sized coke layers were placed above and below the sample to maintain uniform upward flow of gas and insure a smooth downward flow of melts. When the temperature of the sample reached the set point during the test the power was shut off and the sample was cooled in the furnace air. The weight, the height, porosity and contraction of each sample were measured. Chemical composition, observation of microstructures, SEM analysis and X-ray diffraction analysis were conducted. Results are presented.

  5. Upgrade of CEBAF from 6 Gev To 12 Gev: Status

    SciTech Connect (OSTI)

    Harwood, Leigh [Jefferson Lab, 12000 Jefferson Ave, Newport News, VA, 23606 (United States)

    2013-04-19T23:59:59.000Z

    The CEBAF accelerator is being upgraded from 6 GeV to 12 GeV by the US Department of Energy. The accelerator upgrade is being done within the existing tunnel footprint. The accelerator upgrade includes: 10 new srfbased high-performance cryomodules plus RF systems, doubling the 2K helium plant's capability, upgrading the existing beamlines to operate at nearly double the original performance envelope, and adding a beamline to a new experimental area. Construction is over 75% complete with final completion projected for late FY13. Details of the upgrade and status of the work will be presented.

  6. Analysis of Feed Melting Procesess

    SciTech Connect (OSTI)

    Matyas, Josef; Hrma, Pavel R.; Kim, Dong-Sang

    2003-05-12T23:59:59.000Z

    An efficient waste-glass melter with a sustained, high-volume glass throughput will allow a smaller vitrification facility, a shorter lifecycle, and glass with a higher concentration of waste. The vitrification process of two feeds that exhibited different rates of conversion was studied using thermal analyses, including evolved gas analysis with volume-expansion monitoring. Quantitative X-ray diffraction and scanning electron microscopy were performed on quenched samples. The difference in the melting rates was attributed to different melt viscosities at the temperature at which the melt interfaces the cold cap. It was suggested that low viscosity destabilizes foam under the cold cap, thus enhancing the rate of melting.

  7. High pressure melt ejection

    SciTech Connect (OSTI)

    Tarbell, W.W.; Brockmann, J.E.; Pilch, M.

    1983-01-01T23:59:59.000Z

    Recent probabilistic risk assessments have identified the potential for reactor pressure vessel failure while the reactor coolant system is at elevated pressure. The analyses postulate that the blowdown of steam and hydrogen into the reactor cavity will cause the core material to be swept from the cavity region into the containment building. The High Pressure Melt Streaming (HIPS) program is an experimental study of the high pressure ejection of molten material and subsequent interactions within a concrete cavity. The program focuses on using prototypic system conditions and scaled models of reactor geometries to accurately simulate the ex-vessel processes during high-pressure accident sequences. Scaling analyses of the experiment show that the criteria established for core debris removal from the cavity are met or exceeded. Tests are performed at two scales, representing 1/10th and 1/20th linear reproductions of the Zion reactor plant. Results of the 1/20th scale tests are presented.

  8. Quantitative estimates of velocity sensitivity to surface melt variations at a large Greenland outlet glacier

    E-Print Network [OSTI]

    Anderson, M.L.; Nettles, M.; Larsen, T.B.; Hamilton, Gordon S.; Stearns, Leigh

    2011-09-01T23:59:59.000Z

    front. Calving events at the glacier front produce tsunami signals in the tide-gauge record, which we use to verify our visual and seismic detections of major calving events. The combined calving dataset for 2008 that we use to correct the velocity... evolution in sensitivity to melt input indicates a nonlinear velocity response to surface melt, and points to the need for a better understanding of the response to melting, particularly as atmospheric temperatures rise. We believe that our results...

  9. Plasma arc melting of zirconium

    SciTech Connect (OSTI)

    Tubesing, P.K.; Korzekwa, D.R.; Dunn, P.S.

    1997-12-31T23:59:59.000Z

    Zirconium, like some other refractory metals, has an undesirable sensitivity to interstitials such as oxygen. Traditionally, zirconium is processed by electron beam melting to maintain minimum interstitial contamination. Electron beam melted zirconium, however, does not respond positively to mechanical processing due to its large grain size. The authors undertook a study to determine if plasma arc melting (PAM) technology could be utilized to maintain low interstitial concentrations and improve the response of zirconium to subsequent mechanical processing. The PAM process enabled them to control and maintain low interstitial levels of oxygen and carbon, produce a more favorable grain structure, and with supplementary off-gassing, improve the response to mechanical forming.

  10. Melting efficiency in fusion welding

    SciTech Connect (OSTI)

    Fuerschbach, P.W.

    1991-01-01T23:59:59.000Z

    Basic to our knowledge of the science of welding is an understanding of the melting efficiency, which indicates how much of the heat deposited by the welding process is used to produce melting. Recent calorimetric studies of GTAW, PAW, and LBW processes have measured the net heat input to the part thereby quantifying the energy transfer efficiency and in turn permitting an accurate determination of the melting efficiency. It is indicated that the weld process variables can dramatically affect the melting efficiency. This limiting value is shown to depend on the weld heat flow geometry as predicted by analytical solutions to the heat flow equation and as demonstrated by the recent empirical data. A new dimensionless parameter is used to predict the melting efficiency and is shown to correlate extremely well with recent empirical data. This simple prediction methodology is notable because it requires only a knowledge of the weld schedule and the material properties in order to estimate melting efficiency. 22 refs., 16 figs.

  11. A compact layout for a 50 GeV proton radiography facility

    SciTech Connect (OSTI)

    Neri, F. (Filippo); Mottershead, C. T.; Blind, B. (Barbara); Jason, A. J. (Andrew J.); Walstrom, P. L. (Peter L.); Schulze, M. E. (Martin E.); Rybarcyk, L. J. (Lawrence J.); Wang, T. F. (Tai-Sen F.); Thiessen, H. A.; Colestock, P. L. (Patrick L.),; Prichard, B. (Ben)

    2003-01-01T23:59:59.000Z

    We describe a new compact layout for a 50 GeV proton radiography facility. The more compact design utilizes two-point extraction from the main ring to drive an optimal 8 view imaging system. The lattice design of both the main ring, and of the corresponding 8.5 GeV booster ring is described. The rings have very good longitudinal stability, which is of interest for other applications of high current proton machines in this energy range.

  12. Dry melting of high albite

    SciTech Connect (OSTI)

    Anovitz, L.M.: Blencoe, J.G.

    1999-12-01T23:59:59.000Z

    The properties of albitic melts are central to thermodynamic models for synthetic and natural granitic liquids. The authors have analyzed published phase-equilibrium and thermodynamic data for the dry fusion of high albite to develop a more accurate equation for the Biggs free energy of this reaction to 30 kbar and 1,400 C. Strict criteria for reaction reversal were sued to evaluate the phase-equilibrium data, and the thermodynamic properties of solid and liquid albite were evaluated using the published uncertainties in the original measurements. Results suggest that neither available phase-equilibrium experiments nor thermodynamic data tightly constrain the location of the reaction. Experimental solidus temperatures at 1 atm range from 1,100 to 1,120 C. High-pressure experiments were not reversed completely and may have been affected by several sources of error, but the apparent inconsistencies among the results of the various experimentalists are eliminated when only half-reversal data are considered. Uncertainties in thermodynamic data yield large variations in permissible reaction slopes. Disparities between experimental and calculated melting curves are, therefore, largely attributable to these difficulties, and there is no fundamental disagreement between the available phase-equilibrium and thermodynamic data for the dry melting of albite. Consequently, complex speciation models for albitic melts, based on the assumption that these discrepancies represent a real characteristic of the system, are unjustified at this time.

  13. Low melting high lithia glass compositions and methods

    DOE Patents [OSTI]

    Jantzen, Carol M.; Pickett, John B.; Cicero-Herman, Connie A.; Marra, James C.

    2003-09-23T23:59:59.000Z

    The invention relates to methods of vitrifying waste and for lowering the melting point of glass forming systems by including lithia formers in the glass forming composition in significant amounts, typically from about 0.16 wt % to about 11 wt %, based on the total glass forming oxides. The lithia is typically included as a replacement for alkali oxide glass formers that would normally be present in a particular glass forming system. Replacement can occur on a mole percent or weight percent basis, and typically results in a composition wherein lithia forms about 10 wt % to about 100 wt % of the alkali oxide glass formers present in the composition. The present invention also relates to the high lithia glass compositions formed by these methods. The invention is useful for stabilization of numerous types of waste materials, including aqueous waste uranium oxides The decrease in melting point achieved by the present invention desirably prevents volatilization of hazardous or radioactive species during vitrification.

  14. Safety aspects of EB melting

    SciTech Connect (OSTI)

    Hainz, L.C. [Hainz Engineering Services, Inc., Albany, OR (United States)

    1994-12-31T23:59:59.000Z

    Electron Beam melting technology, along with other vacuum metallurgical technologies, requires special attention to safety involving operation and maintenance of the EB furnace and systems. Although the EB industry has been relatively accident free, the importance of safety awareness and compliance becomes increasingly important. It is very important to provide a safe work environment for employees and economically important to protect the equipment from damage and potential downtime. Safety and accident prevention directly affects overhead costs by keeping accident insurance rates at a minimum. Routine safety requirements will be reviewed and safety aspects requiring extra attention will be addressed. Safety improvements and experiences of furnace users will be shared as examples.

  15. Melt and vapor characteristics in an electron beam evaporator

    SciTech Connect (OSTI)

    Blumenfeld, L.; Fleche, J.L.; Gonella, C. [DCC/DPE/SPEA Centre d`Etudes de Saclay, Gif-sur-Yvette (France)

    1994-12-31T23:59:59.000Z

    We compare the free surface temperatures T{sub s}, calculated by two methods, in cerium or copper evaporation experiments. The first method considers properties of the melt: by an empirical law we take into account turbulent thermal convection, instabilities and craterization of the free surface. The second method considers the vapor flow expansion and connects T{sub s} to the measured terminal parallel temperature and the terminal mean parallel velocity of the vapor jet, by Direct Simulation Monte Carlo calculations including an atom-atom inelastic collision algorithm. The agreement between the two approaches is better for cerium than for copper in the high craterization case. The analysis, from the point of view of the properties of the melt, of the terminal parameters of the vapor jet for the high beam powers shows that T{sub s} and the Knudsen number at the vapor source reach a threshold when the beam power increases.

  16. Geothermal: Sponsored by OSTI -- Pavement Snow Melting

    Office of Scientific and Technical Information (OSTI)

    Pavement Snow Melting Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us HomeBasic Search About Publications Advanced Search New Hot Docs News Related...

  17. JEFFERSON LAB 12 GEV CEBAF UPGRADE

    SciTech Connect (OSTI)

    Rode, C. H. [Thomas Jefferson National Accelerator Facility, Newport News, Virginia, 23606 (United States)

    2010-04-09T23:59:59.000Z

    The existing continuous electron beam accelerator facility (CEBAF) at Thomas Jefferson National Accelerator Facility (TJNAF) is a 5-pass, recirculating cw electron Linac operating at approx6 GeV and is devoted to basic research in nuclear physics. The 12 GeV CEBAF Upgrade is a $310 M project, sponsored by the Department of Energy (DOE) Office of Nuclear Physics, that will expand its research capabilities substantially by doubling the maximum energy and adding major new experimental apparatus. The project received construction approval in September 2008 and has started the major procurement process. The cryogenic aspects of the 12 GeV CEBAF Upgrade includes: doubling the accelerating voltages of the Linacs by adding ten new high-performance, superconducting radiofrequency (SRF) cryomodules (CMs) to the existing 42 1/4 cryomodules; doubling of the 2 K cryogenics plant; and the addition of eight superconducting magnets.

  18. Reduced Energy Consumption for Melting in Foundries

    E-Print Network [OSTI]

    ­ 336 ­ 007 TM 06 ­ 07 Department of Manufacturing Engineering and Management Technical University at the Technical University of Denmark, DTU. The project has been financed by the Danish transmission system-melted, and hence reduce the energy consumption for melting in foundries. Traditional gating systems are known

  19. Purification of tantalum by plasma arc melting

    DOE Patents [OSTI]

    Dunn, Paul S. (Santa Fe, NM); Korzekwa, Deniece R. (Los Alamos, NM)

    1999-01-01T23:59:59.000Z

    Purification of tantalum by plasma arc melting. The level of oxygen and carbon impurities in tantalum was reduced by plasma arc melting the tantalum using a flowing plasma gas generated from a gas mixture of helium and hydrogen. The flowing plasma gases of the present invention were found to be superior to other known flowing plasma gases used for this purpose.

  20. The Melting of Greenland William H. Lipscomb

    E-Print Network [OSTI]

    Born, Andreas

    ). AnAn ice capice cap is a mass of glacier ice smaller than 50,000 kmis a mass of glacier ice smaller is negligibleSurface melting is negligible Antarctic ice thicknessAntarctic ice thickness (British Antarctic of the Greenland iceMuch of the Greenland ice sheet may have meltedsheet may have melted Greenland minimum extent

  1. The contribution of glacier melt to streamflow

    SciTech Connect (OSTI)

    Schaner, Neil; Voisin, Nathalie; Nijssen, Bart; Lettenmaier, D. P.

    2012-09-13T23:59:59.000Z

    Ongoing and projected future changes in glacier extent and water storage globally have lead to concerns about the implications for water supplies. However, the current magnitude of glacier contributions to river runoff is not well known, nor is the population at risk to future glacier changes. We estimate an upper bound on glacier melt contribution to seasonal streamflow by computing the energy balance of glaciers globally. Melt water quantities are computed as a fraction of total streamflow simulated using a hydrology model and the melt fraction is tracked down the stream network. In general, our estimates of the glacier melt contribution to streamflow are lower than previously published values. Nonetheless, we find that globally an estimated 225 (36) million people live in river basins where maximum seasonal glacier melt contributes at least 10% (25%) of streamflow, mostly in the High Asia region.

  2. Mechanism of sulfate segregation during glass melting

    SciTech Connect (OSTI)

    Hrma, Pavel R.; Vienna, John D.; Ricklefs, Joel S.

    2005-02-13T23:59:59.000Z

    Sulfate retention in glass during the vitrification process can be as low as 1/3 of the solubility limit, or can exceed the solubility limit if suspended in the glass in the form of droplets. This study is focused on the mechanism of incorporating and segregating sodium sulfate during the melting of an alkali-alumino-borosilicate glass batch. Batches were ramp heated at 4°C/min to temperatures ranging from 600°C to 1050°C and fractured for examination. Observation of the melts showed that as the batch temperature increases and the primary oxo-anionic, predominantly nitrate melt decomposes, the sulfate residue accumulates inside gas bubbles and is transported in them to the melt surface, where it remains segregated. The degree of sulfate incorporation into the final glass depends on the relative rates of sulfate dissolution in the borosilicate melt and sulfate lifting inside bubbles.

  3. Energy-Efficient Melting and Direct Delivery of High Quality...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy-Efficient Melting and Direct Delivery of High Quality Molten Aluminum Energy-Efficient Melting and Direct Delivery of High Quality Molten Aluminum itmdelivery.pdf More...

  4. ITP Metal Casting: Advanced Melting Technologies: Energy Saving...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Advanced Melting Technologies: Energy Saving Concepts and Opportunities for the Metal Casting Industry ITP Metal Casting: Advanced Melting Technologies: Energy Saving Concepts and...

  5. alkali carbonate melts: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    8 Glass Transition and Melting Behavior of Carbon Fiber Reinforced Thermoplastic Composite, Studied by Materials Science Websites Summary: Glass Transition and Melting...

  6. Complex systems influence melting of Greenland ice sheet

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Complex systems influence melting of Greenland ice sheet Complex systems influence melting of Greenland ice sheet International research team's field work shows that, well, things...

  7. A preliminary study of the controls on melting during in situ vitrification

    SciTech Connect (OSTI)

    Solomon, A.D.; Nyquist, J.E.; Alexiades, V.; Jacobs, G.K.; Lenhart, S.M.

    1991-12-01T23:59:59.000Z

    In situ vitrification (ISV), developed by Pacific Northwest Laboratory and patented for the US Department of Energy, is one method used to stabilize contaminated soils in place. ISV involves inserting four electrodes in a square array into contaminated soil and applying an electrical potential to the electrodes. The soil is heated to above its melting point, and the molten zone expands with time to encompass the contaminated zone. After cooling, the resulting solid material is usually a mixture of glass and crystalline material that has a significantly higher resistance to leaching than did the original soils. Nonvolatile elements (most radionuclides and metals) are dissolved into the melt or encapsulated in glass if their solubility in the melt is low. Organic compounds tends to be pyrolyzed, with the decomposition products diffusing to the surface and combusting on exiting the molten zone. A hood is placed over the vitrification zone to collect off-gas particulates and volatiles into a processing trailer that scrubs contaminants from the off-gas. The current study identified key parameters and processes in the ISV melt cycle and developed an improved understanding of ISV. Analytical approximations for several properties of molten soil were determined from available data. Using a simplified geometrical approximation for melt geometry, an analytical approximation for the rate of melting (depth) vs time was derived that is consistent with data from field experiments. At small times, the depth of melting increases linearly with time. After approximately 10 h in large-scale tests, however, the depth increases as the square root of time. Existing data is also consistent with a relationship that shows the volumetric growth rate of the melt to be directly proportional to time. These conclusions suggest that heat transfer processes controlling the ISV process may be at the transition between weak convection and conduction.

  8. A preliminary study of the controls on melting during in situ vitrification. Environmental Restoration Program

    SciTech Connect (OSTI)

    Solomon, A.D.; Nyquist, J.E.; Alexiades, V.; Jacobs, G.K.; Lenhart, S.M.

    1991-12-01T23:59:59.000Z

    In situ vitrification (ISV), developed by Pacific Northwest Laboratory and patented for the US Department of Energy, is one method used to stabilize contaminated soils in place. ISV involves inserting four electrodes in a square array into contaminated soil and applying an electrical potential to the electrodes. The soil is heated to above its melting point, and the molten zone expands with time to encompass the contaminated zone. After cooling, the resulting solid material is usually a mixture of glass and crystalline material that has a significantly higher resistance to leaching than did the original soils. Nonvolatile elements (most radionuclides and metals) are dissolved into the melt or encapsulated in glass if their solubility in the melt is low. Organic compounds tends to be pyrolyzed, with the decomposition products diffusing to the surface and combusting on exiting the molten zone. A hood is placed over the vitrification zone to collect off-gas particulates and volatiles into a processing trailer that scrubs contaminants from the off-gas. The current study identified key parameters and processes in the ISV melt cycle and developed an improved understanding of ISV. Analytical approximations for several properties of molten soil were determined from available data. Using a simplified geometrical approximation for melt geometry, an analytical approximation for the rate of melting (depth) vs time was derived that is consistent with data from field experiments. At small times, the depth of melting increases linearly with time. After approximately 10 h in large-scale tests, however, the depth increases as the square root of time. Existing data is also consistent with a relationship that shows the volumetric growth rate of the melt to be directly proportional to time. These conclusions suggest that heat transfer processes controlling the ISV process may be at the transition between weak convection and conduction.

  9. Energy Saving Melting and Revert Reduction Technology (E-SMARRT): Melting Efficiency Improvement

    SciTech Connect (OSTI)

    Principal Investigator Kent Peaslee; Co-PIà ƒ  ¢Ã ‚  € à ‚  ™ s: Von Richards, Jeffrey Smith

    2012-07-31T23:59:59.000Z

    Steel foundries melt recycled scrap in electric furnaces and typically consume 35-100% excess energy from the theoretical energy requirement required to pour metal castings. This excess melting energy is multiplied by yield losses during casting and finishing operations resulting in the embodied energy in a cast product typically being three to six times the theoretical energy requirement. The purpose of this research project was to study steel foundry melting operations to understand energy use and requirements for casting operations, define variations in energy consumption, determine technologies and practices that are successful in reducing melting energy and develop new melting techniques and tools to improve the energy efficiency of melting in steel foundry operations.

  10. PURIFICATION OF IRIDIUM BY ELECTRON BEAM MELTING

    SciTech Connect (OSTI)

    Ohriner, Evan Keith [ORNL

    2008-01-01T23:59:59.000Z

    The purification of iridium metal by electron beam melting has been characterized for 48 impurity elements. Chemical analysis was performed by glow discharge mass spectrographic (GDMS) analysis for all elements except carbon, which was analyzed by combustion. The average levels of individual elemental impurities in the starting powder varied from 37 g/g to 0.02 g/g. The impurity elements Li, Na, Mg, P, S, Cl, K, Ca, Mn, Co, Ni, Cu, Zn, As, Pd, Ag, Cd, Sn, Sb, Te, Ba, Ce, Tl, Pb, and Bi were not detectable following the purification. No significant change in concentration of the elements Ti, V, Zr, Nb, Mo, and Re was found. The elements B, C, Al, Si, Cr, Fe, Ru, Rh, and Pt were partially removed by vaporization during electron beam melting. Langmuir's equation for ideal vaporization into a vacuum was used to calculate for each impurity element the expected ratio of impurity content after melting to that before melting. Equilibrium vapor pressures were calculated using Henry's law, with activity coefficients obtained from published data for the elements Fe, Ti, and Pt. Activity coefficients were estimated from enthalpy data for Al, Si, V, Cr, Mn, Co, Ni, Zr, Nb, Mo, and Hf and an ideal solution model was used for the remaining elements. The melt temperature was determined from measured iridium weight loss. Excellent agreement was found between measured and calculated impurity ratios for all impurity elements. The results are consistent with some localized heating of the melt pool due to rastering of the electron beam, with an average vaporization temperature of 3100 K as compared to a temperature of 2965 K calculated for uniform heating of the melt pool. The results are also consistent with ideal mixing in the melt pool.

  11. Low melting high lithia glass compositions and methods

    DOE Patents [OSTI]

    Jantzen, Carol M. (Aiken, SC); Pickett, John B. (Aiken, SC); Cicero-Herman, Connie A. (Aiken, SC); Marra, James C. (Aiken, SC)

    2000-01-01T23:59:59.000Z

    The invention relates to methods of vitrifying waste and for lowering the melting point of glass forming systems by including lithia formers in the glass forming composition in significant amounts, typically from about 0.16 wt % to about 11 wt %, based on the total glass forming oxides. The lithia is typically included as a replacement for alkali oxide glass formers that would normally be present in a particular glass forming system. Replacement can occur on a mole percent or weight percent basis, and typically results in a composition wherein lithia forms about 10 wt % to about 100 wt % of the alkali oxide glass formers present in the composition. The present invention also relates to the high lithia glass compositions formed by these methods. The invention is useful for stabilization of numerous types of waste materials, including aqueous waste streams, sludge solids, mixtures of aqueous supernate and sludge solids, combinations of spent filter aids from waste water treatment and waste sludges, supernate alone, incinerator ash, incinerator offgas blowdown, or combinations thereof, geological mine tailings and sludges, asbestos, inorganic filter media, cement waste forms in need of remediation, spent or partially spent ion exchange resins or zeolites, contaminated soils, lead paint, etc. The decrease in melting point achieved by the present invention desirably prevents volatilization of hazardous or radioactive species during vitrification.

  12. Low melting high lithia glass compositions and methods

    DOE Patents [OSTI]

    Jantzen, Carol M.; Pickett, John B.; Cicero-Herman, Connie A.; Marra, James C.

    2004-11-02T23:59:59.000Z

    The invention relates to methods of vitrifying waste and for lowering the melting point of glass forming systems by including lithia formers in the glass forming composition in significant amounts, typically from about 0.16 wt % to about 11 wt %, based on the total glass forming oxides. The lithia is typically included as a replacement for alkali oxide glass formers that would normally be present in a particular glass forming system. Replacement can occur on a mole percent or weight percent basis, and typically results in a composition wherein lithia forms about 10 wt % to about 100 wt % of the alkali oxide glass formers present in the composition. The present invention also relates to the high lithia glass compositions formed by these methods. The invention is useful for stabilization of numerous types of waste materials, including aqueous waste streams, sludge solids, mixtures of aqueous supernate and sludge solids, combinations of spent filter aids from waste water treatment and waste sludges, supernate alone, incinerator ash, incinerator offgas blowdown, or combinations thereof, geological mine tailings and sludges, asbestos, inorganic filter media, cement waste forms in need of remediation, spent or partially spent ion exchange resins or zeolites, contaminated soils, lead paint, etc. The decrease in melting point achieved by the present invention desirably prevents volatilization of hazardous or radioactive species during vitrification.

  13. Low melting high lithia glass compositions and methods

    DOE Patents [OSTI]

    Jantzen, Carol M.; Pickett, John B.; Cicero-Herman, Connie A.; Marra, James C.

    2003-10-07T23:59:59.000Z

    The invention relates to methods of vitrifying waste and for lowering the melting point of glass forming systems by including lithia formers in the glass forming composition in significant amounts, typically from about 0.16 wt % to about 11 wt %, based on the total glass forming oxides. The lithia is typically included as a replacement for alkali oxide glass formers that would normally be present in a particular glass forming system. Replacement can occur on a mole percent or weight percent basis, and typically results in a composition wherein lithia forms about 10 wt % to about 100 wt % of the alkali oxide glass formers present in the composition. The present invention also relates to the high lithia glass compositions formed by these methods. The invention is useful for stabilization of numerous types of waste materials, including aqueous waste streams, sludge solids, mixtures of aqueous supernate and sludge solids, combinations of spent filter aids from waste water treatment and waste sludges, supernate alone, incinerator ash, incinerator offgas blowdown, or combinations thereof, geological mine tailings and sludges, asbestos, inorganic filter media, cement waste forms in need of remediation, spent or partially spent ion exchange resins or zeolites, contaminated soils, lead paint, etc. The decrease in melting point achieved by the present invention desirably prevents volatilization of hazardous or radioactive species during vitrification.

  14. Meson Spectroscopy At Jlab At 12 Gev

    SciTech Connect (OSTI)

    Fegan, Stuart [INFN-GENOVA

    2014-12-01T23:59:59.000Z

    The 12 GeV upgrade to the Continuous Electron Beam Accelerator Facility (CEBAF) at Jefferson Lab will enable a new generation of experiments in hadronic nuclear physics, seeking to address fundamental questions in our understanding of QCD. The existence of exotic states, suggested by both quark models and lattice calculations, would allow gluonic degrees of freedom to be explored, and may help explain the role played by gluons in the QCD interaction. This article will review the meson spectroscopy program being planned at the lab following the 12 GeV upgrade, utilising real and quasi-real photon beams in two of the lab's four experimental halls, whose distinct capabilities will enable an extensive set of spectroscopy experiments to be performed at the same facility.

  15. SILICATE MELT PROPERTIES AND VOLCANIC Youxue Zhang,1,2

    E-Print Network [OSTI]

    Zhang, Youxue

    SILICATE MELT PROPERTIES AND VOLCANIC ERUPTIONS Youxue Zhang,1,2 Zhengjiu Xu,2 Mengfan Zhu,1 2007. [1] Knowledge about the properties of silicate melts is needed by volcanologists and petrologists and diffusivity of volatile components in silicate melts, silicate melt viscosity, and the fragmentation condition

  16. Consequences of diffusive reequilibration for the interpretation of melt inclusions

    E-Print Network [OSTI]

    Langmuir, Charles H.

    are commonly used to interpret melting and melt extraction processes. These interpretations, however, often-diffusing elements with high mineral/melt partition coefficients are modified rapidly, particularly in small inclusions. Because minerals have very different Dmineral/melt for the various elements, the effects

  17. Method for producing melt-infiltrated ceramic composites using formed supports

    DOE Patents [OSTI]

    Corman, Gregory Scot (Ballston Lake, NY); Brun, Milivoj Konstantin (Ballston Lake, NY); McGuigan, Henry Charles (Duanesburg, NY)

    2003-01-01T23:59:59.000Z

    A method for producing shaped articles of ceramic composites provides a high degree of dimensional tolerance to these articles. A fiber preform is disposed on a surface of a stable formed support, a surface of which is formed with a plurality of indentations, such as grooves, slots, or channels. Precursors of ceramic matrix materials are provided to the fiber preform to infiltrate from both sides of the fiber preform. The infiltration is conducted under vacuum at a temperature not much greater than a melting point of the precursors. The melt-infiltrated composite article substantially retains its dimension and shape throughout the fabrication process.

  18. Ultra slow EB melting to reduce reactor cladding

    SciTech Connect (OSTI)

    Worcester, S.A.; Woods, C.R.; Galer, G.S.; Propst, R.L.

    1989-03-28T23:59:59.000Z

    A process is described for making an electron beam melted fuel element liner material from sponge zirconium, the process comprising: electron beam melting sponge zirconium at a melting rate of less than 1 inch per hour to form an electron beam melted zirconium material containing less than 300 ppm iron, less than 400 ppm oxygen, and less than 5 ppm aluminum; and alloying the electron beam melted zirconium in a vacuum arc furnace with 0.1-2.0 weight percent of tin.

  19. Energy Saving Melting and Revert Reduction Technology: Melting Efficiency in Die Casting Operations

    SciTech Connect (OSTI)

    David Schwam

    2012-12-15T23:59:59.000Z

    This project addressed multiple aspects of the aluminum melting and handling in die casting operations, with the objective of increasing the energy efficiency while improving the quality of the molten metal. The efficiency of melting has always played an important role in the profitability of aluminum die casting operations. Consequently, die casters need to make careful choices in selecting and operating melting equipment and procedures. The capital cost of new melting equipment with higher efficiency can sometimes be recovered relatively fast when it replaces old melting equipment with lower efficiency. Upgrades designed to improve energy efficiency of existing equipment may be well justified. Energy efficiency is however not the only factor in optimizing melting operations. Melt losses and metal quality are also very important. Selection of melting equipment has to take into consideration the specific conditions at the die casting shop such as availability of floor space, average quantity of metal used as well as the ability to supply more metal during peaks in demand. In all these cases, it is essential to make informed decisions based on the best available data.

  20. Structure and dynamics of ion clusters in linear octupole traps: Phase diagrams, chirality, and melting mechanisms

    SciTech Connect (OSTI)

    Yurtsever, E.; Onal, E. D.; Calvo, F. [Koc University, Rumelifeneriyolu, Sariyer, Istanbul TR-34450 (Turkey); LASIM, Universite de Lyon and CNRS UMR 5579, 43 Bd du 11 Novembre 1918, FR-69622 Villeurbanne Cedex (France)

    2011-05-15T23:59:59.000Z

    The stable structures and melting dynamics of clusters of identical ions bound by linear octupole radiofrequency traps are theoretically investigated by global optimization methods and molecular dynamics simulations. By varying the cluster sizes in the range of 10-1000 ions and the extent of trap anisotropy by more than one order of magnitude, we find a broad variety of stable structures based on multiple rings at small sizes evolving into tubular geometries at large sizes. The binding energy of these clusters is well represented by two contributions arising from isotropic linear and octupolar traps. The structures generally exhibit strong size effects, and chiral arrangements spontaneously emerge in many crystals. Sufficiently large clusters form nested, coaxial tubes with different thermal stabilities. As in isotropic octupolar clusters, the inner tubes melt at temperatures that are lower than the overall melting point.

  1. Upgrade of CEBAF from 6-GeV To 12-GeV: Status

    SciTech Connect (OSTI)

    Harwood, Leigh H.

    2013-04-01T23:59:59.000Z

    The CEBAF accelerator is being upgraded from 6 GeV to 12 GeV by the US Department of Energy. The accelerator upgrade is being done within the existing tunnel footprint. The accelerator upgrade includes: 10 new srfbased high-performance cryomodules plus RF systems, doubling the 2K helium plants capability, upgrading the existing beamlines to operate at nearly double the original performance envelope, and adding a beamline to a new experimental area. Construction is over 75% complete with final completion projected for late FY13. Details of the upgrade and status of the work will be presented.

  2. Scrap uranium recycling via electron beam melting

    SciTech Connect (OSTI)

    McKoon, R.

    1993-11-01T23:59:59.000Z

    A program is underway at the Lawrence Livermore National Laboratory (LLNL) to recycle scrap uranium metal. Currently, much of the material from forging and machining processes is considered radioactive waste and is disposed of by oxidation and encapsulation at significant cost. In the recycling process, uranium and uranium alloys in various forms will be processed by electron beam melting and continuously cast into ingots meeting applicable specifications for virgin material. Existing vacuum processing facilities at LLNL are in compliance with all current federal and state environmental, safety and health regulations for the electron beam melting and vaporization of uranium metal. One of these facilities has been retrofitted with an auxiliary electron beam gun system, water-cooled hearth, crucible and ingot puller to create an electron beam melt furnace. In this furnace, basic process R&D on uranium recycling will be performed with the goal of eventual transfer of this technology to a production facility.

  3. A model for melting of confined DNA

    E-Print Network [OSTI]

    Werner, E; Ambjörnsson, T; Mehlig, B

    2015-01-01T23:59:59.000Z

    When DNA molecules are heated they denature. This occurs locally so that loops of molten single DNA strands form, connected by intact double-stranded DNA pieces. The properties of this "melting" transition have been intensively investigated. Recently there has been a surge of interest in this question, caused by experiments determining the properties of partially bound DNA confined to nanochannels. But how does such confinement affect the melting transition? To answer this question we introduce, and solve a model predicting how confinement affects the melting transition for a simple model system by first disregarding the effect of self-avoidance. We find that the transition is smoother for narrower channels. By means of Monte-Carlo simulations we then show that a model incorporating self-avoidance shows qualitatively the same behaviour and that the effect of confinement is stronger than in the ideal case.

  4. Melt spreading code assessment, modifications, and application to the EPR core catcher design.

    SciTech Connect (OSTI)

    Farmer, M. T .; Nuclear Engineering Division

    2009-03-30T23:59:59.000Z

    The Evolutionary Power Reactor (EPR) is under consideration by various utilities in the United States to provide base load electrical production, and as a result the design is undergoing a certification review by the U.S. Nuclear Regulatory Commission (NRC). The severe accident design philosophy for this reactor is based upon the fact that the projected power rating results in a narrow margin for in-vessel melt retention by external cooling of the reactor vessel. As a result, the design addresses ex-vessel core melt stabilization using a mitigation strategy that includes: (1) an external core melt retention system to temporarily hold core melt released from the vessel; (2) a layer of 'sacrificial' material that is admixed with the melt while in the core melt retention system; (3) a melt plug in the lower part of the retention system that, when failed, provides a pathway for the mixture to spread to a large core spreading chamber; and finally, (4) cooling and stabilization of the spread melt by controlled top and bottom flooding. The overall concept is illustrated in Figure 1.1. The melt spreading process relies heavily on inertial flow of a low-viscosity admixed melt to a segmented spreading chamber, and assumes that the melt mass will be distributed to a uniform height in the chamber. The spreading phenomenon thus needs to be modeled properly in order to adequately assess the EPR design. The MELTSPREAD code, developed at Argonne National Laboratory, can model segmented, and both uniform and nonuniform spreading. The NRC is thus utilizing MELTSPREAD to evaluate melt spreading in the EPR design. MELTSPREAD was originally developed to support resolution of the Mark I containment shell vulnerability issue. Following closure of this issue, development of MELTSPREAD ceased in the early 1990's, at which time the melt spreading database upon which the code had been validated was rather limited. In particular, the database that was utilized for initial validation consisted of: (1) comparison to an analytical solution for the dam break problem, (2) water spreading tests in a 1/10 linear scale model of the Mark I containment by Theofanous et al., and (3) steel spreading tests by Suzuki et al. that were also conducted in a geometry similar to the Mark I. The objective of this work was to utilize the MELTSPREAD code to check the assumption of uniform melt spreading in the EPR core catcher design. As a starting point for the project, the code was validated against the worldwide melt spreading database that emerged after the code was originally written in the very early 1990's. As part of this exercise, the code was extensively modified and upgraded to incorporate findings from these various analytical and experiment programs. In terms of expanding the ability of the code to analyze various melt simulant experiments, the options to input user-specified melt and/or substrate material properties was added. The ability to perform invisicid and/or adiabatic spreading analysis was also added so that comparisons with analytical solutions and isothermal spreading tests could be carried out. In terms of refining the capability to carry out reactor material melt spreading analyses, the code was upgraded with a new melt viscosity model; the capability was added to treat situations in which solid fraction buildup between the liquidus-solidus is non-linear; and finally, the ability to treat an interfacial heat transfer resistance between the melt and substrate was incorporated. This last set of changes substantially improved the predictive capability of the code in terms of addressing reactor material melt spreading tests. Aside from improvements and upgrades, a method was developed to fit the model to the various melt spreading tests in a manner that allowed uncertainties in the model predictions to be statistically characterized. With these results, a sensitivity study was performed to investigate the assumption of uniform spreading in the EPR core catcher that addressed parametric variations in: (1) melt pour mass, (2) melt composition, (3) me

  5. Rock melting tool with annealer section

    DOE Patents [OSTI]

    Bussod, Gilles Y. (Santa Fe, NM); Dick, Aaron J. (Oakland, CA); Cort, George E. (Montrose, CO)

    1998-01-01T23:59:59.000Z

    A rock melting penetrator is provided with an afterbody that rapidly cools a molten geological structure formed around the melting tip of the penetrator to the glass transition temperature for the surrounding molten glass-like material. An annealing afterbody then cools the glass slowly from the glass transition temperature through the annealing temperature range to form a solid self-supporting glass casing. This allows thermally induced strains to relax by viscous deformations as the molten glass cools and prevents fracturing of the resulting glass liner. The quality of the glass lining is improved, along with its ability to provide a rigid impermeable casing in unstable rock formations.

  6. Pressurized melt ejection into scaled reactor cavities

    SciTech Connect (OSTI)

    Tarbell, W.W.; Pilch, M.; Brockmann, J.E.; Ross, J.W.; Gilbert, D.W.

    1986-10-01T23:59:59.000Z

    This report describes four tests performed in the High-Pressure Melt Streaming Program (HIPS) using linear-scaled cavities of the Zion Nuclear Power Plant. These experiments were conducted to study the phenomena involved in high-pressure ejection of core debris into the cavity beneath the reactor pressure vessel. One-tenth and one-twentieth linear scale models of reactor cavities were constructed and instrumented. The first test used an apparatus constructed of alumina firebrick to minimize the potential interaction between the ejected melt and cavity material. The remaining three experiments used scaled representations of the Zion nuclear plant geometry, constructed of prototypic concrete composition.

  7. Method and apparatus for melting metals

    DOE Patents [OSTI]

    Moore, Alan F.; Schechter, Donald E.; Morrow, Marvin Stanley

    2006-03-14T23:59:59.000Z

    A method and apparatus for melting metals uses microwave energy as the primary source of heat. The metal or mixture of metals are placed in a ceramic crucible which couples, at least partially, with the microwaves to be used. The crucible is encased in a ceramic casket for insulation and placed within a microwave chamber. The chamber may be evacuated and refilled to exclude oxygen. After melting, the crucible may be removed for pouring or poured within the chamber by dripping or running into a heated mold within the chamber. Apparent coupling of the microwaves with softened or molten metal produces high temperatures with great energy savings.

  8. A New Look at the Galactic Diffuse GeV

    E-Print Network [OSTI]

    California at Santa Cruz, University of

    ;Gamma-ray Detectors from 10s MeV to 100s GeV Gamma-rays' trajectories cannot be directly detected #12;Gamma-ray Detectors from 10s MeV to 100s GeV Gamma-rays' trajectories cannot be directly detected Physics 1 #12;Overview Diffuse gamma-ray emission The Galactic diffuse gamma-ray GeV excess Discussion

  9. Pulsed-electron-beam melting of Fe

    SciTech Connect (OSTI)

    Knapp, J.A.; Follstaedt, D.M.

    1981-01-01T23:59:59.000Z

    Pulsed (50 nsec) electron beams with deposited energies of 1.1 to 2.3 J/cm/sup 2/ have been used to rapidly melt a surface layer of Fe. Calculations show that this range of energies produces melt depths from 0.4 to 1.2 ..mu..m and melt times of 100 to 500 nsec. Optical microscopy and SEM of pulse treated polycrystalline foils show slip traces, as well as a general smoothing of surface features which shows that melting has occurred. TEM shows that the resolidified material is bcc, and that the material within a grain is epitaxial with the substrate. TEM also shows slip traces along (110) planes, as well as a high density of dislocations, both extended and loop. At the highest energy, subgrain boundaries are observed. Some samples were implanted with 1 x 10/sup 16/ Sn/cm/sup 2/ at 150 keV. After pulse treatment, the Sn depth profile was observed to have broadened, consistent with liquid phase diffusion. The Sn had the unexpected effect of suppressing slip at the sample surface.

  10. Analysis of an EBeam melting process

    SciTech Connect (OSTI)

    Schunk, P.R.

    1991-01-01T23:59:59.000Z

    Electron-Beam (EBeam) melting furnaces are routinely used to minimize the occurrence of second-phase particles in the processing of segregation-sensitive alloys. As one part of the process, a circulating electron beam impinges the surface of a crucible melt pool to help control the shape of the solidification front below. By modeling melt pool hydrodynamics, heat transfer, and the shape of solidification boundaries, we plan to optimize the dwell pattern of the beam so that the material solidifies with a composition as spatially homogeneous as possible. Both two-and three-dimensional models are being pursued with FIDAP 5.02, the former serving as a test bed for various degrees of model sophistication. A heat flux distribution is specified on the top of the domain to simulate the EBeam dwell pattern. In two dimensions it is found that an inertially-driven recirculation in the melt pool interacts with a counter-rotating buoyancy-driven recirculation, and that both recirculation influence heavily the shape of the solidification front. In three dimensions the inertial cell decays quickly with distance from the position of the inlet stream. Because the Rayleigh number can exceed 10{sup 7} for materials and operating conditions of interest, stability and the possibility of spontaneous transients are explored. 1 refs., 3 figs.

  11. Energy Savings in Electric Arc Furnace Melting

    E-Print Network [OSTI]

    Lubbeck, W.

    1982-01-01T23:59:59.000Z

    Arc furnace melting which at one time was almost exclusively used to produce alloy steel and steel castings is now widely accepted in the industry as an efficient process to produce all types of steel and iron. Presently, about 28% of steel...

  12. Media Advisory - Jefferson Lab 12 GeV Upgrade Groundbreaking...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    for its 310 million 12 GeV Upgrade project. When: Tuesday, April 14, 2009. Where: CEBAF Center, Thomas Jefferson National Accelerator Facility, 12000 Jefferson Avenue,...

  13. Melt generation, crystallization, and extraction beneath segmented oceanic transform faults

    E-Print Network [OSTI]

    Gregg, Patricia M.

    We examine mantle melting, fractional crystallization, and melt extraction beneath fast slipping, segmented oceanic transform fault systems. Three-dimensional mantle flow and thermal structures are calculated using a ...

  14. Experimental studies of melting and crystallization processes in planetary interiors

    E-Print Network [OSTI]

    Krawczynski, Michael James

    2011-01-01T23:59:59.000Z

    Melting and crystallization processes on the Earth and Moon are explored in this thesis, and the topics of melt generation, transport, and crystallization are discussed in three distinct geologic environments: the Moon's ...

  15. 3 GeV Injector Design Handbook

    SciTech Connect (OSTI)

    Wiedemann, H.; /SLAC, SSRL

    2009-12-16T23:59:59.000Z

    This Design Handbook is intended to be the main reference book for the specifications of the 3 GeV SPEAR booster synchrotron project. It is intended to be a consistent description of the project including design criteria, key technical specifications as well as current design approaches. Since a project is not complete till it's complete changes and modifications of early conceptual designs must be expected during the duration of the construction. Therefore, this Design Handbook is issued as a loose leaf binder so that individual sections can be replaced as needed. Each page will be dated to ease identification with respect to latest revisions. At the end of the project this Design Handbook will have become the 'as built' reference book of the injector for operations and maintenance personnel.

  16. Hydrous silicate melt at high pressure Mainak Mookherjee1

    E-Print Network [OSTI]

    Stixrude, Lars

    LETTERS Hydrous silicate melt at high pressure Mainak Mookherjee1 , Lars Stixrude2 & Bijaya Karki3 The structure and physical properties of hydrous silicate melts and the solubility of water in melts over most in structure to our finding that the water­silicate system becomes increasingly ideal at high pressure: we find

  17. Project-X Workshop 120 GeV Target

    E-Print Network [OSTI]

    McDonald, Kirk

    Project-X Workshop 120 GeV Target Summary ­ Workshop # 1 N. Simos, M. Martens #12;Project-X Workshop Challenges OVERVIEW Driven by 120 GeV/170 TP-per-spill · Short Term: 170 TPs/2us-spill (materials an existing 400 kW facility ­ Constraints #12;Project-X Workshop Presentations - Discussions · Engineering

  18. USING THE UTAH ENERGY BALANCE SNOW MELT MODEL TO QUANTIFY SNOW AND GLACIER MELT IN THE HIMALAYAN REGION

    E-Print Network [OSTI]

    Tarboton, David

    USING THE UTAH ENERGY BALANCE SNOW MELT MODEL TO QUANTIFY SNOW AND GLACIER MELT IN THE HIMALAYAN on a distributed version of the Utah Energy Balance (UEB) snowmelt model, referred to as UEBGrid, which was adapted: glacier and snow melt, Energy balance, model, remote sensing) INTRODUCTION Countries in Hindu Kush

  19. Thermally efficient melting for glass making

    DOE Patents [OSTI]

    Chen, Michael S. K. (Zionsville, PA); Painter, Corning F. (Allentown, PA); Pastore, Steven P. (Allentown, PA); Roth, Gary (Trexlertown, PA); Winchester, David C. (Allentown, PA)

    1991-01-01T23:59:59.000Z

    The present invention is an integrated process for the production of glass utilizing combustion heat to melt glassmaking materials in a glassmaking furnace. The fuel combusted to produce heat sufficient to melt the glassmaking materials is combusted with oxygen-enriched oxidant to reduce heat losses from the offgas of the glassmaking furnace. The process further reduces heat losses by quenching hot offgas from the glassmaking furnace with a process stream to retain the heat recovered from quench in the glassmaking process with subsequent additional heat recovery by heat exchange of the fuel to the glassmaking furnace, as well as the glassmaking materials, such as batch and cullet. The process includes recovery of a commercially pure carbon dioxide product by separatory means from the cooled, residual offgas from the glassmaking furnace.

  20. Core-melt source reduction system

    DOE Patents [OSTI]

    Forsberg, C.W.; Beahm, E.C.; Parker, G.W.

    1995-04-25T23:59:59.000Z

    A core-melt source reduction system for ending the progression of a molten core during a core-melt accident and resulting in a stable solid cool matrix. The system includes alternating layers of a core debris absorbing material and a barrier material. The core debris absorbing material serves to react with and absorb the molten core such that containment overpressurization and/or failure does not occur. The barrier material slows the progression of the molten core debris through the system such that the molten core has sufficient time to react with the core absorbing material. The system includes a provision for cooling the glass/molten core mass after the reaction such that a stable solid cool matrix results. 4 figs.

  1. Core-melt source reduction system

    DOE Patents [OSTI]

    Forsberg, Charles W. (Oak Ridge, TN); Beahm, Edward C. (Oak Ridge, TN); Parker, George W. (Concord, TN)

    1995-01-01T23:59:59.000Z

    A core-melt source reduction system for ending the progression of a molten core during a core-melt accident and resulting in a stable solid cool matrix. The system includes alternating layers of a core debris absorbing material and a barrier material. The core debris absorbing material serves to react with and absorb the molten core such that containment overpressurization and/or failure does not occur. The barrier material slows the progression of the molten core debris through the system such that the molten core has sufficient time to react with the core absorbing material. The system includes a provision for cooling the glass/molten core mass after the reaction such that a stable solid cool matrix results.

  2. Blow molding of melt processible rubber

    SciTech Connect (OSTI)

    Abell, W.R.; Stuart, R.E.; Myrick, R.E.

    1991-07-01T23:59:59.000Z

    This article discusses the advantages of making hollow rubber parts by blow molding thermoplastic elastomers (TPEs) versus conventional rubber processing. It describes the various types of blow molding processes and it provides some insight into the rheological properties of melt processible rubber (MPR) and how MPR should be molded by each of these processes. A number of blow molded applications for MPR are also discussed.

  3. Lattice Monte Carlo Simulations of Polymer Melts

    E-Print Network [OSTI]

    Hsiao-Ping Hsu

    2015-03-03T23:59:59.000Z

    We use Monte Carlo simulations to study polymer melts consisting of fully flexible and moderately stiff chains in the bond fluctuation model at a volume fraction $0.5$. In order to reduce the local density fluctuations, we test a pre-packing process for the preparation of the initial configurations of the polymer melts, before the excluded volume interaction is switched on completely. This process leads to a significantly faster decrease of the number of overlapping monomers on the lattice. This is useful for simulating very large systems, where the statistical properties of the model with a marginally incomplete elimination of excluded volume violations are the same as those of the model with strictly excluded volume. We find that the internal mean square end-to-end distance for moderately stiff chains in a melt can be very well described by a freely rotating chain model with a precise estimate of the bond-bond orientational correlation between two successive bond vectors in equilibrium. The plot of the probability distributions of the reduced end-to-end distance of chains of different stiffness also shows that the data collapse is excellent and described very well by the Gaussian distribution for ideal chains. However, while our results confirm the systematic deviations between Gaussian statistics for the chain structure factor $S_c(q)$ [minimum in the Kratky-plot] found by Wittmer et al.~\\{EPL {\\bf 77} 56003 (2007).\\} for fully flexible chains in a melt, we show that for the available chain length these deviations are no longer visible, when the chain stiffness is included. The mean square bond length and the compressibility estimated from collective structure factors depend slightly on the stiffness of the chains.

  4. Exclusive single pion electroproduction off the proton in the high-lying resonances at Q2 < 5 GeV2 from CLAS

    SciTech Connect (OSTI)

    Park, Kijun [ODU, JLAB

    2014-09-01T23:59:59.000Z

    The differential cross sections and structure functions for the exclusive electroproduction process ep --> e'n pi+ were measured in the range of the invariantmass for the np+ system 1.6 GeV lte W lte 2.0 GeV, and the photon virtuality 1.8 GeV2 lte Q2 lte 4.0 GeV2 using CLAS at Jefferson Lab. For the first time, these kinematics are probed in the exclusive p+ production from the protons with nearly full coverage in the azimuthal and polar angles of the np+ center-of-mass system. In this analysis, approximately 39,000 differential cross-section data points in terms of W, Q2, cosq theta* _ pi, and phi?_p-, were obtained. The preliminary differential cross section and structure function analyses are carried out, which allow us to extract the helicity amplitudes in high-lying resonances.

  5. Topological Constraints in Directed Polymer Melts

    E-Print Network [OSTI]

    Serna, Pablo; Nahum, Adam

    2015-01-01T23:59:59.000Z

    Polymers in a melt may be subject to topological constraints, as in the example of unlinked polymer rings. How to do statistical mechanics in the presence of such constraints remains a fundamental open problem. We study the effect of topological constraints on a melt of directed polymers using simulations of a simple quasi-2D model. We find that fixing the global topology of the melt to be trivial changes the polymer conformations drastically. Polymers of length $L$ wander in the transverse direction only by a distance of order $(\\ln L)^\\zeta$ with $\\zeta \\simeq 1.5$. This is strongly suppressed in comparison with the Brownian scaling $L^{1/2}$ which holds in the absence of the topological constraint. It is also much less than the prediction $L^{1/4}$ of a mean-field-like `array of obstacles' model: thus we rule out such a model in the present setting. Dynamics are also strongly affected by the constraints, and a tagged monomer in an infinite system performs logarithmically slow subdiffusion. To cast light on...

  6. Low cation coordination in oxide melts

    SciTech Connect (OSTI)

    Skinner, Lawrie [State University of New York, Stony Brook] [State University of New York, Stony Brook; Benmore, Chris J [Argonne National Laboratory (ANL)] [Argonne National Laboratory (ANL); Du, Jincheng [University of North Texas] [University of North Texas; Weber, Richard [Argonne National Laboratory (ANL)] [Argonne National Laboratory (ANL); Neuefeind, Joerg C [ORNL] [ORNL; Tumber, Sonia [Materials Development, Inc., Evanston, IL] [Materials Development, Inc., Evanston, IL; Parise, John B [Stony Brook University (SUNY)] [Stony Brook University (SUNY)

    2014-01-01T23:59:59.000Z

    The complete set of Faber-Ziman partial pair distribution functions for a rare earth oxide liquid were measured for the first time by combining aerodynamic levitation, neutron diffraction, high energy x-ray diffraction and isomorphic substitution using Y2 O3 and Ho2 O3 melts. The average Y- O coordination is measured to be 5.5(2), which is significantly less than the octahedral coordination of crystalline Y2 O3 (or Ho2 O3 ). Investigation of high temperature La2 O3 , ZrO2 , SiO2 , and Al2 O3 melts by x-ray diffraction and molecular dynamics simulations also show lower-than-crystal cation- oxygen coordination. These measurements suggest a general trend towards lower M-O coordination compared to their crystalline counterparts. It is found that this coordination number drop is larger for lower field strength, larger radius cations and is negligible for high field strength (network forming) cations. These findings have broad implications for predicting the local structure and related physical properties of metal-oxide melts and oxide glasses.

  7. Ratio of jet cross sections at root s=630 GeV and 1800 GeV

    E-Print Network [OSTI]

    Baringer, Philip S.; Bean, Alice; Coppage, Don; Hebert, C.

    2001-03-01T23:59:59.000Z

    The DO Collaboration has measured the inclusive jet cross section in (p) over barp collisions at roots = 630 GeV. The results for pseudorapidities \\ eta \\ < 0.5 are combined with our previous results at roots = 1800 GeV ...

  8. Shallow melt apparatus for semicontinuous czochralski crystal growth

    DOE Patents [OSTI]

    Wang, Tihu; Ciszek, Theodore F.

    2006-01-10T23:59:59.000Z

    In a single crystal pulling apparatus for providing a Czochralski crystal growth process, the improvement of a shallow melt In a single crystal pulling apparatus for providing a Czochralski crystal growth process, the improvement of a shallow melt crucible (20) to eliminate the necessity supplying a large quantity of feed stock materials that had to be preloaded in a deep crucible to grow a large ingot, comprising a gas tight container a crucible with a deepened periphery (25) to prevent snapping of a shallow melt and reduce turbulent melt convection; source supply means for adding source material to the semiconductor melt; a double barrier (23) to minimize heat transfer between the deepened periphery (25) and the shallow melt in the growth compartment; offset holes (24) in the double barrier (23) to increase melt travel length between the deepened periphery (25) and the shallow growth compartment; and the interface heater/heat sink (22) to control the interface shape and crystal growth rate.

  9. Melting a granular glass by cooling

    E-Print Network [OSTI]

    Jan Plagge; Claus Heussinger

    2013-02-05T23:59:59.000Z

    Driven granular systems readily form glassy phases at high particle volume fractions and low driving amplitudes. We use computer simulations of a driven granular glass to evidence a re-entrance melting transition into a fluid state, which, contrary to intuition, occurs by \\emph{reducing} the amplitude of the driving. This transition is accompanied by anomalous particle dynamics and super-diffusive behavior on intermediate time-scales. We highlight the special role played by frictional interactions, which help particles to escape their glassy cages. Such an effect is in striking contrast to what friction is expected to do: reduce particle mobility by making them stick.

  10. Reuse of steel and aluminium without melting

    E-Print Network [OSTI]

    Cooper, Daniel

    2014-01-07T23:59:59.000Z

    -of-life metal components that could be reused for each product, the catalogue formed the basis of a set of semi-structured interviews with industrial experts. The results suggest that approximately 30% of steel and aluminium used in current products could... Allwood J.M., Cullen J.M., Cooper D.R., Milford R.L., Patel A.C.H., Carruth M.A., McBrien M., 2010. Conserving our metal energy: avoiding melting steel and aluminium scrap to save energy and carbon. University of Cambridge, ISBN 978-0-903428-30-9 Allwood...

  11. Melting Instantons, Domain Walls, and Large N

    E-Print Network [OSTI]

    H. B. Thacker

    2008-10-22T23:59:59.000Z

    Monte Carlo studies of $CP^{N-1}$ sigma models have shown that the structure of topological charge in these models undergoes a sharp transition at $N=N_c\\approx 4$. For $NN_c$ it is dominated by extended, thin, 1-dimensionally coherent membranes of topological charge, which can be interpreted as domain walls between discrete quasi-stable vacua. These vacua differ by a unit of background electric flux. The transition can be identified as the delocalization of topological charge, or "instanton melting," a phenomenon first suggested by Witten to resolve the conflict between instantons and large $N$ behavior. Implications for $QCD$ are discussed.

  12. ARM - Lesson Plans: When Land Ice Melts

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadap Documentation TDMADAP : XDC documentationBarrow, AlaskaWhen Floating Ice Melts in the SeaWhen

  13. Microwave Melting | Y-12 National Security Complex

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |IsLove Your1 SECTION A. Revised:7, at 3:00 pmYourMicrowave Melting

  14. Perfluorooctanoic acid Melting point ~55 C, boiling point ~190 C, pKa ~ 2.5, sparingly

    E-Print Network [OSTI]

    Cohen, Robert E.

    developmental and other adverse effects in laboratory animals. · Flammable and forms hazardous products like HF the Parkersburg, WV · Eight companies (Arkema, Asahi, Ciba, Clariant, Daikin, 3M/Dyneon, DuPont, Solvay Solexis

  15. approx omicron1 gev: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Jana Bielcikova 2004-12-21 28 Strong dynamics behind the formation of the 125 GeV Higgs boson HEP - Phenomenology (arXiv) Summary: We consider the scenario, in which the new...

  16. Shallow Melt Apparatus for Semicontinuous Czochralski Crystal Growth

    DOE Patents [OSTI]

    Wang, T.; Ciszek, T. F.

    2006-01-10T23:59:59.000Z

    In a single crystal pulling apparatus for providing a Czochralski crystal growth process, the improvement of a shallow melt crucible (20) to eliminate the necessity supplying a large quantity of feed stock materials that had to be preloaded in a deep crucible to grow a large ingot, comprising a gas tight container a crucible with a deepened periphery (25) to prevent snapping of a shallow melt and reduce turbulent melt convection; source supply means for adding source material to the semiconductor melt; a double barrier (23) to minimize heat transfer between the deepened periphery (25) and the shallow melt in the growth compartment; offset holes (24) in the double barrier (23) to increase melt travel length between the deepened periphery (25) and the shallow growth compartment; and the interface heater/heat sink (22) to control the interface shape and crystal growth rate.

  17. The Jefferson Lab 12 GeV Upgrade

    E-Print Network [OSTI]

    McKeown, R D

    2010-01-01T23:59:59.000Z

    Construction of the 12 GeV upgrade to the Continuous Electron Beam Accelerator Facility (CEBAF) at the Thomas Jefferson National Accelerator Facility is presently underway. This upgrade includes doubling the energy of the electron beam to 12 GeV, the addition of a new fourth experimental hall, and the construction of upgraded detector hardware. An overview of this upgrade project is presented, along with highlights of the anticipated experimental program.

  18. The Jefferson Lab 12 GeV Upgrade

    E-Print Network [OSTI]

    R. D. McKeown

    2010-09-22T23:59:59.000Z

    Construction of the 12 GeV upgrade to the Continuous Electron Beam Accelerator Facility (CEBAF) at the Thomas Jefferson National Accelerator Facility is presently underway. This upgrade includes doubling the energy of the electron beam to 12 GeV, the addition of a new fourth experimental hall, and the construction of upgraded detector hardware. An overview of this upgrade project is presented, along with highlights of the anticipated experimental program.

  19. Retrograde Melting and Internal Liquid Gettering in Silicon

    SciTech Connect (OSTI)

    Hudelson, Steve; Newman, Bonna K.; Bernardis, Sarah; Fenning, David P.; Bertoni, Mariana I.; Marcus, Matthew A.; Fakra, Sirine C.; Lai, Barry; Buonassisi, Tonio

    2011-07-01T23:59:59.000Z

    Retrograde melting (melting upon cooling) is observed in silicon doped with 3d transition metals, via synchrotron-based temperature-dependent X-ray microprobe measurements. Liquid metal-silicon droplets formed via retrograde melting act as efficient sinks for metal impurities dissolved within the silicon matrix. Cooling results in decomposition of the homogeneous liquid phase into solid multiple-metal alloy precipitates. These phenomena represent a novel pathway for engineering impurities in semiconductor-based systems.

  20. Evolution of shear-induced melting in dusty plasma

    E-Print Network [OSTI]

    Yan Feng; J. Goree; Bin Liu

    2010-04-05T23:59:59.000Z

    The spatiotemporal development of melting is studied experimentally in a 2D dusty plasma suspension. Starting with an ordered lattice, and then suddenly applying localized shear, a pair of counter-propagating flow regions develop. A transition between two melting stages is observed before a steady state is reached. Melting spreads with a front that propagates at the transverse sound speed. Unexpectedly, coherent longitudinal waves are excited in the flow region.

  1. Electron beam skull melting and refining of secondary copper

    SciTech Connect (OSTI)

    Bychkov, Y.; Ladokhin, S. [Donetskvtortsvetmet, Donetsk (Ukraine)

    1995-12-31T23:59:59.000Z

    Electron Beam Melting is the most efficient technology for metals and alloys refining. For secondary metals processing the Electron Beam Skull Melting (EBSM) with the electromagnetic stirring (EMS) of melt in the crucible was shown to be the most appropriate. The copper produced by EBSM with EMS possesses higher density and electric conductivity in comparison with other refining methods. The details for high power electrical machines were cast of the copper waste refined by EBSM technology.

  2. Electron beam melting state-of-the-art 1984

    SciTech Connect (OSTI)

    Bakish, R.

    1984-06-01T23:59:59.000Z

    In 1984 electron beam melting and refining appear poised for an important new growth phase. The driving force for this phase is improved production economics made possible by technological advances. There is also a new and exciting growth application for electron beam melting: its use for surface properties beneficiation. This article is based in part on the content of the Conference on Electron Beam Melting and Refining, The State-of-the-Art 1983, held in November 1983 in Reno, Nevada.

  3. Molecular thermodynamics of polymer melts at interfaces

    SciTech Connect (OSTI)

    Theodorou, D.N.

    1988-09-01T23:59:59.000Z

    A lattice model is developed for the prediction of structure and thermodynamic properties at free polymer melt surfaces and polymer melt/solid interfaces. Density variations in the interfacial region are taken into account by introducing voids in the lattice, in the spirit of the equation of state theory of Sanchez and Lacombe. Intramolecular energy (chain stiffness) effects are explicitly incorporated. The model is derived through a rigorous statistical mechanical and thermodynamic analysis, which is based on the concept of availability. Two cases are considered: ''full equilibrium,'' whereby the interfacial polymer is taken as free to exchange heat, work and mass with a bulk polymer phase at given temperature and pressure; and ''restricted equilibrium,'' whereby a thin polymer film is allowed to equilibrate locally in response to ambient temperature and pressure, but in which chains do not necessarily have the same chemical potential as in the unconstrained bulk. Techniques are developed for calculating surface tension, adhesion tension, density profiles, chain shape, bond orientation, as well as the distribution of segments of various orders in the interfacial region. 28 refs., 6 figs.

  4. Atomistic Study of the Melting Behavior of Single Crystalline...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and 110-oriented lateral facets, respectively. Citation: Wang Z, X Zu, F Gao, and WJ Weber.2007."Atomistic Study of the Melting Behavior of Single Crystalline Wurtzite Gallium...

  5. Stability and breakdown of Ca{sup 13}CO{sub 3} melt associated with formation of {sup 13}C-diamond in static high pressure experiments up to 43 GPa and 3900 K

    SciTech Connect (OSTI)

    Spivak, A.V., E-mail: spivak@iem.ac.ru [Institute of Experimental Mineralogy of the Russian Academy of Sciences, Chernogolovka, Moscow Region (Russian Federation); Litvin, Yu.A. [Institute of Experimental Mineralogy of the Russian Academy of Sciences, Chernogolovka, Moscow Region (Russian Federation); Ovsyannikov, S.V. [Bayerishes Geoinstitut, University of Bayreuth, Bayreuth (Germany); Dubrovinskaia, N.A. [Material Physics and Technology at Extreme Conditions, Laboratory of Crystallography, University of Bayreuth, Bayreuth (Germany); Dubrovinsky, L.S. [Bayerishes Geoinstitut, University of Bayreuth, Bayreuth (Germany)

    2012-07-15T23:59:59.000Z

    Melting of calcium carbonate Ca{sup 13}CO{sub 3}, stability of the melt and its decomposition were studied in static high pressure experiments at pressures of 11-43 GPa and temperatures of 1600-3900 K using diamond anvil cell technique with laser heating. We observed formation of {sup 13}C-graphite (below 16 GPa) and {sup 13}C-diamond (between 16 and 43 GPa) on decomposition of the Ca{sup 13}CO{sub 3} melt at temperatures above 3400 K. At temperatures below 3400 K congruent melting of calcium carbonate was confirmed. The experimental results were applied to construction of the phase diagram of CaCO{sub 3} up to 43 GPa and 3900 K focusing at the melting curve of calcium carbonate and the decomposition phase boundary of CaCO{sub 3} melt. - Graphical abstract: Highlights: Black-Right-Pointing-Pointer Phase states of CaCO{sub 3} were studied at P=11-43 GPa and T=1600-3900 K. Black-Right-Pointing-Pointer {sup 13}C-diamond easily crystallizes in carbonate-carbon (Ca{sup 13}CO{sub 3-}{sup 13}C-graphite) melt-solutions. Black-Right-Pointing-Pointer Ca-carbonate melts congruently that was observed in experiments in DAC with laser heating. Black-Right-Pointing-Pointer Decomposition of CaCO{sub 3} melt, indicated by formation of graphite and/or diamond. Black-Right-Pointing-Pointer Decomposition of CaCO{sub 3} was observed at temperatures above 3400 K in the pressure interval studied.

  6. Microsoft PowerPoint - ESGCold Cap Melting (2) [Read-Only]

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |IsLove Your HomeOverview andSinatraMicroBooNEThis page

  7. Detection of Nonthermal Melting by Ultrafast X-ray

    E-Print Network [OSTI]

    Geddes, Cameron Guy Robinson

    of super- heating of the interface but limited by the speed of sound. Typically, a layer a few tens, if a solid is heated to or above the melting temperature, nucleation of the liquid phase occurs around), which exceeds the melting temperature within several picoseconds. After nucleation of the liquid phase

  8. Electron beam melting and casting of zirconium and titanium alloys

    SciTech Connect (OSTI)

    Arzhakova, V.M.; Popov, E.I. [A.A. Bochvar All Union Scientific and Research Institute of Inorganic Materials, Moscow (Russian Federation); Dubrovski, V.A.; Frolov, V.I. [PO ChMZ, Glazov (Russian Federation); Ladohin, S.V.; Levitsky, N.I.; Chernyavsky, V.B. [Scientific and Research Institute of Casting, Kiev (Ukraine)

    1994-12-31T23:59:59.000Z

    The results of electron beam melting (EBM) and casting Zirconium and Titanium alloys are discussed. The data on different schedules used for EBM of this metals as well as equipment for crucible melting and special equipment for casting are described. The results of production of Zirconium and Titanium alloy mold castings for various purposes are presented.

  9. Electron beam melting and refining state of the art 1995

    SciTech Connect (OSTI)

    Bakish, R. [ed.

    1995-12-31T23:59:59.000Z

    This is the proceedings of the Electron Beam Melting and Refining - State of the Art 1995 Conference. It contains 23 of the 30 scheduled papers. Papers cover an array of electron beam melting applications, from industrial plating of metal strip, through government work on manufacturing and processing fissile alloys. Separate abstracts have been prepared for articles from this proceedings.

  10. ARTICLE IN PRESS Kinetics of convective crystal dissolution and melting,

    E-Print Network [OSTI]

    Zhang, Youxue

    Department of Geological Sciences, The University of Michigan, Ann Arbor, MI 48109-1063, USA5 Received 25 instability (similar to melting of ice) with or 14 without water (although presence of warm water may increase the dissociation rate). Dissociation of methane hydrate 15 into gas and water is similar to ice melting

  11. An analysis of variations in isentropic melt productivity

    E-Print Network [OSTI]

    Asimow, Paul D.

    An analysis of variations in isentropic melt productivity B y P. D. Asimow1 , M. M. Hirschmann1 productivity, cannot be determined directly from experiments and is commonly assumed to be constant on a ther- modynamic model of peridotite partial melting, we show that productivity for re- versible

  12. Electron-beam scull melting with electromagnetic stirring of melt in crucible

    SciTech Connect (OSTI)

    Ladokhin, S.V. [Institute for Casting Problems, Kiev (Ukraine)

    1994-12-31T23:59:59.000Z

    The technologies and equipment have been developed for electron-beam scull melting with electromagnetic stirring of melt for some Ni-based superalloys as well as for multi-component Ti-, Zr-, Nb-, and Mo-based alloys. Two types of scull crucible sets with electromagnetic stirring systems have been constructed, with the metal pouring by the crucible tilting or through the hole in the crucible bottom. In the second case slag does not fall into a mold, and the electron beam may be used for metal heating in the costing head, thus improving the quality of castings. The technologies developed allow to utilize scrap, cost part reverts, chips etc. thus saving virgin alloys. The electromagnetic stirring application permits to product multi-component alloys, to increase the mass of the metal poured, and to reduce the specific energy expenditure and metal loss through evaporation.

  13. Electron beam melting of charge based on titanium sponge

    SciTech Connect (OSTI)

    Tikhonovsky, A.L.; Tikhonovsky, K.A. [JS Co FIKO, Kiev (Ukraine)

    1995-12-31T23:59:59.000Z

    An experience of 0.8 MW consumable box melting furnace operation and theoretical simulation have led to the further development of the FIKO plant under construction on the base of melting of two consumable box-like bullets which move opposite each other and form narrow heated space between melted butt ends. It allows to reduce vaporization, spatter and radiation losses by several times and to reach two times increase in melting rate and 99%(97%) yield for c.p. titanium (alloys) without furnace power add. Future furnace design will provide the optimum protection of vacuum pumps against chlorides, the safety when melting titanium sponge and will permit hot ingots to move to the special furnace for EB surface conditioning. The maximum productivity is to be 18,000 t/year. The furnace can be used for the manufacture of aluminum-, copper-, iron-, nickel-, tungsten-based alloys and others of any charge including salvage.

  14. The effect of disorder on the critical points in the vortex phase diagram of YBCO

    SciTech Connect (OSTI)

    Crabtree, G. W.; Kwok, W. K.; Paulius, L. M.; Petrean, A. M.; Olsson, R. J.; Karapetrov, G.; Tobos, V.; Moulton, W. G.

    2000-01-19T23:59:59.000Z

    The effect of line disorder induced by heavy ion irradiation and of point disorder induced by proton and electron irradiation on the upper and lower critical points in the vortex phase diagram of YBCO is presented. The authors find that dilute line disorder induces a Bose glass transition at low fields which is replaced at the lower critical point by first order melting at higher fields. Strong pinning point defects raise the lower critical point, while weak pinning point defects have little or no effect on the lower critical point. The upper critical point is lowered by point disorder, but raised by line disorder. First order melting is suppressed by point disorder in two ways, by lowering of the upper critical point only for weak point pins, or by merging of the upper and lower critical points for strong point pins. The differing responses of the upper and lower critical points to line and point disorder can be understood in a picture of transverse and longitudinal spatial fluctuations.

  15. A starting point | EMSL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    starting point A starting point Released: May 28, 2012 Scientists hone in on size and environmental influence of the quantum dots used in hybrid solar cells Understanding the...

  16. Jefferson Lab 12 GeV CEBAF Upgrade

    SciTech Connect (OSTI)

    Claus Rode

    2010-04-01T23:59:59.000Z

    The existing continuous electron beam accelerator facility (CEBAF) at Thomas Jefferson National Accelerator Facility (TJNAF) is a 5-pass, recirculating cw electron Linac operating at ~6 GeV and is devoted to basic research in nuclear physics. The 12 GeV CEBAF Upgrade is a $310 M project, sponsored by the Department of Energy (DOE) Office of Nuclear Physics, that will expand its research capabilities substantially by doubling the maximum energy and adding major new experimental apparatus. The project received construction approval in September 2008 and has started the major procurement process. The cryogenic aspects of the 12 GeV CEBAF Upgrade includes: doubling the accelerating voltages of the Linacs by adding ten new high-performance, superconducting radiofrequency (SRF) cryomodules (CMs) to the existing 42 1/4 cryomodules; doubling of the 2 K cryogenics plant; and the addition of eight superconducting magnets.

  17. S5 0716+714 : GeV variability study

    E-Print Network [OSTI]

    Rani, B; Lott, B; Fuhrmann, L; Zensus, J A

    2013-01-01T23:59:59.000Z

    The GeV observations by Fermi-LAT give us the opportunity to characterize the high-energy emission (100 MeV - 300 GeV) variability properties of the BL Lac object S5 0716+714. In this study, we performed flux and spectral analysis of more than 3 year long (August 2008 to April 2012) Fermi-LAT data of the source. During this period, the source exhibits two different modes of flux variability with characteristic timescales of ~75 and ~140 days, respectively. We also notice that the flux variations are characterized by a weak spectral hardening. The GeV spectrum of the source shows a clear deviation from a simple power law, and is better explained by a broken power law. Similar to other bright Fermi blazars, the break energy does not vary with the source flux during the different activity states. We discuss several possible scenarios to explain the observed spectral break.

  18. The 6 GeV TMD Program at Jefferson Lab

    SciTech Connect (OSTI)

    Puckett, Andrew J. [University of Connecticut, JLAB

    2015-01-01T23:59:59.000Z

    The study of the transverse momentum dependent parton distributions (TMDs) of the nucleon in semi-inclusive deep-inelastic scattering (SIDIS) has emerged as one of the major physics motivations driving the experimental program using the upgraded 11 GeV electron beam at Jefferson Lab’s Continuous Electron Beam Accelerator Facility (CEBAF). The accelerator construction phase of the CEBAF upgrade is essentially complete and commissioning of the accelerator has begun as of April, 2014. As the new era of CEBAF operations begins, it is appropriate to review the body of published and forthcoming results on TMDs from the 6 GeV era of CEBAF operations, discuss what has been learned, and discuss the key challenges and opportunities for the 11 GeV SIDIS program of CEBAF.

  19. Spin Structure with JLab 6 and 12 GeV

    SciTech Connect (OSTI)

    Jian-Ping Chen

    2012-02-01T23:59:59.000Z

    Highlights of JLab 6 GeV results on spin structure study and plan for 12 GeV program. Spin structure study is full of surprises and puzzles. A decade of experiments from JLab yield these exciting results: (1) valence spin structure; (2) precision measurements of g{sub 2}/d{sub 2} - high-twist; (3) spin sum rules and polarizabilities; and (4) first neutron transversity. There is a bright future as the 12 GeV Upgrade will greatly enhance our capability: (1) Precision determination of the valence quark spin structure flavor separation; (2) Precision measurements of g{sub 2}/d{sub 2}; and (3) Precision extraction of transversity/tensor charge.

  20. GeV Emission from Collisional Magnetized Gamma Ray Bursts

    E-Print Network [OSTI]

    P. Mészáros; M. J. Rees

    2011-04-26T23:59:59.000Z

    Magnetic fields may play a dominant role in gamma-ray bursts, and recent observations by the Fermi satellite indicate that GeV radiation, when detected, arrives delayed by seconds from the onset of the MeV component. Motivated by this, we discuss a magnetically dominated jet model where both magnetic dissipation and nuclear collisions are important. We show that, for parameters typical of the observed bursts, such a model involving a realistic jet structure can reproduce the general features of the MeV and a separate GeV radiation component, including the time delay between the two. The model also predicts a multi-GeV neutrino component.

  1. Assessment of ceramic coatings for metal fuel melting crucible

    SciTech Connect (OSTI)

    Kim, Ki-Hwan; Song, Hoon; Kim, Jong-Hwan; Oh, Seok-Jin; Kim, Hyung-Tae; Lee, Chan-Bock [Korea Atomic Energy Research Institute, Yuseong, Daejeon 305-600 (Korea, Republic of)

    2013-07-01T23:59:59.000Z

    The objective of this study is to develop a coating method and material for crucibles to prevent material interactions with the U-Zr/U-TRU-Zr fuels during the manufacturing of SFR fuels. Refractory coatings were applied to niobium substrates by vacuum plasma-spray coating method. Melt dipping tests conducted were the coated rods lowered into the fuel melt at 1600 C. degrees, and withdrawn and cooled outside the crucible in the inert atmosphere of the induction furnace. Melt dipping tests of the coated Nb rods indicated that plasma-sprayed Y{sub 2}O{sub 3} coating doesn't form significant reaction layer between fuel melt and coating layer. Melt dipping tests of the coated Nb rods showed that TiC, TaC, and Y{sub 2}O{sub 3} coatings exhibited the promising performance among other ceramic coatings. These materials could be promising candidate materials for the reusable melt crucible of metal fuel for SFR. In addition, in order to develop the vacuum plasma-spray coating method for re-usable crucible of metal fuel slugs to be overcome the issue of thermal expansion mismatch between coating material and crucible, various combinations of coating conditions were investigated to find the bonding effect on the substrate in pursuit of more effective ways to withstand the thermal stresses. It is observed that most coating methods maintained sound coating state in U-Zr melt. (authors)

  2. Calving on tidewater glaciers amplified by submarine frontal melting

    E-Print Network [OSTI]

    O'Leary, Martin

    2012-01-01T23:59:59.000Z

    While it has been shown repeatedly that ocean conditions exhibit an important control on the behaviour of grounded tidewater glaciers, modelling studies have focused largely on the effects of basal and surface melting. Here, a finite-element model of stresses near the front of a tidewater glacier is used to investigate the effects of frontal melting on calving, independently of the calving criterion used. Applications of the stress model to idealized scenarios reveal that undercutting of the ice front due to frontal melting can drive calving at up to ten times the mean melt rate. Factors which cause increased frontal melt-driven calving include a strong thermal gradient in the ice, and a concentration of frontal melt at the base of the glacier. These properties are typical of both Arctic and Antarctic tidewater glaciers. The finding that frontal melt near the base is a strong driver of calving leads to the conclusion that water temperatures near the bed of the glacier are critically important to the glacier f...

  3. Exploration of Melt Spinning as a Route to Large Volume Production...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Exploration of Melt Spinning as a Route to Large Volume Production of Skutterudite Thermoelectric Materials Exploration of Melt Spinning as a Route to Large Volume Production of...

  4. 2013 American Geophysical Union. All Rights Reserved. High resolution imaging of the melt distribution in 1

    E-Print Network [OSTI]

    © 2013 American Geophysical Union. All Rights Reserved. High resolution imaging of the melt;© 2013 American Geophysical Union. All Rights Reserved. Abstract We determine the 3-D melt geometry

  5. Geek-Up: K East Reactor Demolition, Retrograde Melting and Cloud Pattern Tracking

    Broader source: Energy.gov [DOE]

    Recovery Act funds help clean up the Hanford site, retrograde melting (melting as something cools) and how open-cell clouds could help predict climate change.

  6. Consequences of melt transport for uranium series disequilibrium in young lavas

    E-Print Network [OSTI]

    Spiegelman, Marc W.

    Consequences of melt transport for uranium series disequilibrium in young lavas Marc Spiegelman do not actu- ally include melt transport. Here we explore the be- haviour of short

  7. Diffusion and Interdiffusion in Binary Metallic Melts

    E-Print Network [OSTI]

    P. Kuhn; J. Horbach; F. Kargl; A. Meyer; Th. Voigtmann

    2014-08-09T23:59:59.000Z

    We discuss the dependence of self- and interdiffusion coefficients on temperature and composition for two prototypical binary metallic melts, Al-Ni and Zr-Ni, in molecular-dynamics (MD) computer simulations and the mode-coupling theory of the glass transition (MCT). Dynamical processes that are mainly entropic in origin slow down mass transport (as expressed through self diffusion) in the mixture as compared to the ideal-mixing contribution. Interdiffusion of chemical species is a competition of slow kinetic modes with a strong thermodynamic driving force that is caused by non-entropic interactions. The combination of both dynamic and thermodynamic effects causes qualitative differences in the concentration dependence of self-diffusion and interdiffusion coefficients. At high temperatures, the thermodynamic enhancement of interdiffusion prevails, while at low temperatures, kinetic effects dominate the concentration dependence, rationalized within MCT as the approach to its ideal-glass transition temperature $T_c$. The Darken equation relating self- and interdiffusion qualitatively reproduces the concentration-dependence in both Zr-Ni and Al-Ni, but quantitatively, the kinetic contributions to interdiffusion can be slower than the lower bound suggested by the Darken equation. As temperature is decreased, the agreement with Darken's equation improves, due to a strong coupling of all kinetic modes that is a generic feature predicted by MCT.

  8. String melting in a photon bath

    SciTech Connect (OSTI)

    Karouby, Johanna, E-mail: karoubyj@mit.edu [Center for Theoretical Physics and Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachussetts 02139 (United States)

    2013-10-01T23:59:59.000Z

    We compute the decay rate of a metastable cosmic string in contact with a thermal bath by finding the instanton solution. The new feature is that this decay rate is found in the context of non thermal scalar fields in contact with a thermal bath of photons. In general, to make topologically unstable strings stable, one can couple them to such a bath. The resulting plasma effect creates metastable configurations which can decay from the false vacuum to the true vacuum. In our specific set-up, the instanton computation is realized for the case of two out-of-equilibrium complex scalar fields: one is charged and coupled to the photon field, and the other is neutral. New effects coming from the thermal bath of photons make the radius of the nucleated bubble and most of the relevant physical quantities temperature-dependent. However, the temperature appears in a different way than in the purely thermal case, where all scalar fields are in thermal equilibrium. As a result of the tunneling, the core of the initial string melts while bubbles of true vacuum expand at the speed of light.

  9. Method for synthesizing extremely high-temperature melting materials

    DOE Patents [OSTI]

    Saboungi, Marie-Louise (Chicago, IL); Glorieux, Benoit (Perpignan, FR)

    2007-11-06T23:59:59.000Z

    The invention relates to a method of synthesizing high-temperature melting materials. More specifically the invention relates to a containerless method of synthesizing very high temperature melting materials such as carbides and transition-metal, lanthanide and actinide oxides, using an aerodynamic levitator and a laser. The object of the invention is to provide a method for synthesizing extremely high-temperature melting materials that are otherwise difficult to produce, without the use of containers, allowing the manipulation of the phase (amorphous/crystalline/metastable) and permitting changes of the environment such as different gaseous compositions.

  10. Method For Synthesizing Extremely High-Temperature Melting Materials

    DOE Patents [OSTI]

    Saboungi, Marie-Louise (Chicago, IL); Glorieux, Benoit (Perpignan, FR)

    2005-11-22T23:59:59.000Z

    The invention relates to a method of synthesizing high-temperature melting materials. More specifically the invention relates to a containerless method of synthesizing very high temperature melting materials such as borides, carbides and transition-metal, lanthanide and actinide oxides, using an Aerodynamic Levitator and a laser. The object of the invention is to provide a method for synthesizing extremely high-temperature melting materials that are otherwise difficult to produce, without the use of containers, allowing the manipulation of the phase (amorphous/crystalline/metastable) and permitting changes of the environment such as different gaseous compositions.

  11. Energy Efficient Glass Melting - The Next Generation Melter

    SciTech Connect (OSTI)

    David Rue

    2008-03-01T23:59:59.000Z

    The objective of this project is to demonstrate a high intensity glass melter, based on the submerged combustion melting technology. This melter will serve as the melting and homogenization section of a segmented, lower-capital cost, energy-efficient Next Generation Glass Melting System (NGMS). After this project, the melter will be ready to move toward commercial trials for some glasses needing little refining (fiberglass, etc.). For other glasses, a second project Phase or glass industry research is anticipated to develop the fining stage of the NGMS process.

  12. Dissolution retardation of solid silica during glass batch-melting

    SciTech Connect (OSTI)

    Hrma, Pavel R.; Marcial, Jose

    2011-07-15T23:59:59.000Z

    During glass-batch melting, solid silica (quartz) usually dissolves last. A retardation function was defined as a measure of the progressive inhibition of silica dissolution that occurs during batch melting. This function is based on the comparison of the measured rate of dissolution of silica particles with the hypothetical diffusion-controlled volume flux from regularly distributed particles with uniform concentration layers around them. The severe inhibition of silica dissolution has been attributed to the irregular spatial distribution of silica particles that is associated with the formation of nearly saturated melt at a portion of their surfaces. Irregular shapes and unequal sizes of particles also contribute to their extended lifetime.

  13. Melt-band instabilities with two-phase damage

    E-Print Network [OSTI]

    Rudge, John F.; Bercovici, David

    2015-03-09T23:59:59.000Z

    . Petrol., 151, 101–111. Holtzman, B.K., Groebner, N.J., Zimmerman, M.E., Ginsberg, S. & Kohlst- edt, D., 2003. Stress-driven melt segregation in partially molten rocks, Geochem. Geophys. Geosyst., 4, 8607, doi:10.1029/2001GC000258. Karato, S., 1989. Grain... olivine-rich rocks deformed in torsion, J. Petrol., 51, 21–42. Kohlstedt, D.L. & Holtzman, B.K., 2009. Shearing melt out of the Earth: an experimentalist’s perspective on the influence of deformation on melt extraction, Ann. Rev. Earth planet. Sci., 37...

  14. Method for Synthesizing Extremeley High Temperature Melting Materials

    DOE Patents [OSTI]

    Saboungi, Marie-Louise and Glorieux, Benoit

    2005-11-22T23:59:59.000Z

    The invention relates to a method of synthesizing high-temperature melting materials. More specifically the invention relates to a containerless method of synthesizing very high temperature melting materials such as borides, carbides and transition-metal, lanthanide and actinide oxides, using an Aerodynamic Levitator and a laser. The object of the invention is to provide a method for synthesizing extremely high-temperature melting materials that are otherwise difficult to produce, without the use of containers, allowing the manipulation of the phase (amorphous/crystalline/metastable) and permitting changes of the environment such as different gaseous compositions.

  15. 7-GeV Advanced Photon Source Conceptual Design Report

    SciTech Connect (OSTI)

    Not Available

    1987-04-01T23:59:59.000Z

    During the past decade, synchrotron radiation emitted by circulating electron beams has come into wide use as a powerful, versatile source of x-rays for probing the structure of matter and for studying various physical processes. Several synchrotron radiation facilities with different designs and characteristics are now in regular operation throughout the world, with recent additions in this country being the 0.8-GeV and 2.5-GeV rings of NSLS at Brookhaven National Laboratory. However, none of the operating facilities has been designed to use a low-emittance, high-energy stored beam, together with modern undulator devices, to produce a large number of hard x-ray beams of extremely high brilliance. This document is a proposal to the Department of Energy to construct and operate high-energy synchrotron radiation facility at Argonne National Laboratory. We have now chosen to set the design energy of this facility at 7.0 GeV, with the capability to operate at up to 7.5 GeV.

  16. Nucleon Form Factors experiments with 12 GeV CEBAF

    SciTech Connect (OSTI)

    Wojtsekhowski, Bogdan

    2008-11-01T23:59:59.000Z

    A number of precision form factor experiments at high momentum transfer will be performed with the 11 GeV electron beam of CEBAF. We review the approved proposals and the conceptual schemes of several new suggestions. Form factor data will serve as a major input for the construction of a tomographic image of the nucleon.

  17. GeV C. W. electron microtron design report

    SciTech Connect (OSTI)

    Not Available

    1982-05-01T23:59:59.000Z

    Rising interest in the nuclear physics community in a GeV C.W. electron accelerator reflects the growing importance of high-resolution short-range nuclear physics to future advances in the field. In this report major current problems are reviewed and the details of prospective measurements which could be made with a GeV C.W. electron facility are discussed, together with their impact on an understanding of nuclear forces and the structure of nuclear matter. The microtron accelerator has been chosen as the technology to generate the electron beams required for the research discussed because of the advantages of superior beam quality, low capital and operating cost and capability of furnishing beams of several energies and intensities simultaneously. A complete technical description of the conceptual design for a 2 GeV double-sided C.W. electron microtron is presented. The accelerator can furnish three beams with independently controlled energy and intensity. The maximum current per beam is 100 ..mu..amps. Although the precise objective for maximum beam energy is still a subject of debate, the design developed in this study provides the base technology for microtron accelerators at higher energies (2 to 6 GeV) using multi-sided geometries.

  18. The JLAB 12 GeV Energy Upgrade of CEBAF

    SciTech Connect (OSTI)

    Harwood, Leigh H. [JLAB

    2013-12-01T23:59:59.000Z

    This presentation should describe the progress of the 12GeV Upgrade of CEBAF at Jefferson Lab. The status of the upgrade should be presented as well as details on the construction, procurement, installation and commissioning of the magnet and SRF components of the upgrade.

  19. Melt extrusion and continuous manufacturing of pharmaceutical materials

    E-Print Network [OSTI]

    Bell, Erin R

    2011-01-01T23:59:59.000Z

    Melt extrusion is an alternative processing technique that operates continuously, reduces the total number of unit operations, allows for incorporation of difficult-to-process drug substances, and has the potential to ...

  20. Variational bounds for the shear viscosity of gelling melts

    E-Print Network [OSTI]

    Claas H. Köhler; Henning Löwe; Peter Müller; Annette Zippelius

    2007-05-03T23:59:59.000Z

    We study shear stress relaxation for a gelling melt of randomly crosslinked, interacting monomers. We derive a lower bound for the static shear viscosity $\\eta$, which implies that it diverges algebraically with a critical exponent $k\\ge 2\

  1. Modeling pulsed-laser melting of embedded semiconductor nanoparticles

    E-Print Network [OSTI]

    Sawyer, C.A.

    2012-01-01T23:59:59.000Z

    Pulsed-laser melting (PLM) is commonly used to achieve athe size evolution during PLM of nanoparticles con?ned in aextended to include the PLM process. The PLM model includes

  2. Melt generation in the Earth's mantle at Convergent Plate Margins

    E-Print Network [OSTI]

    Till, Christy B

    2011-01-01T23:59:59.000Z

    The five geologic studies presented in this thesis document how the recycling of tectonic plates at subduction zones has a profound effect on the melting behavior of the Earth's mantle. Two experimental studies (Chapters ...

  3. Characterization of electron beam melted uranium - 6% niobium ingots

    SciTech Connect (OSTI)

    McKoon, R.H.

    1997-10-31T23:59:59.000Z

    A study was undertaken at Lawrence Livermore National Laboratory to characterize uranium, 6{percent} niobium ingots produced via electron beam melting,hearth refining and continuous casting and to compare this material with conventional VIM/skull melt /VAR material. Samples of both the ingot and feed material were analyzed for niobium, trace metallic elements, carbon, oxygen and nitrogen. Ingot samples were also inspected metallographically and via microprobe analysis.

  4. Apparatus for melt growth of crystalline semiconductor sheets

    DOE Patents [OSTI]

    Ciszek, Theodore F. (Evergreen, CO); Hurd, Jeffery L. (Golden, CO)

    1986-01-01T23:59:59.000Z

    An economical method is presented for forming thin sheets of crystalline silicon suitable for use in a photovoltaic conversion cell by solidification from the liquid phase. Two spatially separated, generally coplanar filaments wettable by liquid silicon and joined together at the end by a bridge member are immersed in a silicon melt and then slowly withdrawn from the melt so that a silicon crystal is grown between the edge of the bridge and the filaments.

  5. Method and apparatus for melt growth of crystalline semiconductor sheets

    DOE Patents [OSTI]

    Ciszek, T.F.; Hurd, J.L.

    1981-02-25T23:59:59.000Z

    An economical method is presented for forming thin sheets of crystalline silicon suitable for use in a photovoltaic conversion cell by solidification from the liquid phase. Two spatially separated, generally coplanar filaments wettable by liquid silicon and joined together at the end by a bridge member are immersed in a silicon melt and then slowly withdrawn from the melt so that a silicon crystal is grown between the edge of the bridge and the filaments.

  6. Velocity of sound in solid methane near melting temperatures

    E-Print Network [OSTI]

    Whitehead, John Martin

    1968-01-01T23:59:59.000Z

    VELOCITY OF SOUND IN SOLID METHANE NEAR MELTING TEMPERATURES A Thesis By JOHN MARTIN WHITEHEAD Submitted to the Graduate College of the Texas A&M University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE May... 1968 Ma)or Sub)ect: Physics VELOCITY OF SOVND IN SOLID METHANE NEAR MELTING TEMPERATURES A Thesis By JOHN MARTIN WHITEHEAD Approved as to style and content by& (Chairman of Committee) (Head of Departsmnt) (Mem er (Member) May 1968...

  7. Methods of vitrifying waste with low melting high lithia glass compositions

    DOE Patents [OSTI]

    Jantzen, Carol M. (Aiken, SC); Pickett, John B. (Aiken, SC); Cicero-Herman, Connie A. (Aiken, SC); Marra, James C. (Aiken, SC)

    2001-01-01T23:59:59.000Z

    The invention relates to methods of vitrifying waste and for lowering the melting point of glass forming systems by including lithia formers in the glass forming composition in significant amounts, typically from about 0.16 wt % to about 11 wt %, based on the total glass forming oxides. The lithia is typically included as a replacement for alkali oxide glass formers that would normally be present in a particular glass forming system. Replacement can occur on a mole percent or weight percent basis, and typically results in a composition wherein lithia forms about 10 wt % to about 100 wt % of the alkali oxide glass formers present in the composition. The present invention also relates to the high lithia glass compositions formed by these methods. The invention is useful for stabilization of numerous types of waste materials, including aqueous waste streams, sludge solids, mixtures of aqueous supernate and sludge solids, combinations of spent filter aids from waste water treatment and waste sludges, supernate alone, incinerator ash, incinerator offgas blowdown, or combinations thereof, geological mine tailings and sludges, asbestos, inorganic filter media, cement waste forms in need of remediation, spent or partially spent ion exchange resins or zeolites, contaminated soils, lead paint, etc. The decrease in melting point achieved by the present invention desirably prevents volatilization of hazardous or radioactive species during vitrification.

  8. Melt Rate Improvement for High-Level Waste Glass

    SciTech Connect (OSTI)

    Matyas, Josef; Hrma, Pavel R.; Kim, Dong-Sang

    2002-09-09T23:59:59.000Z

    This report summarizes results of research accomplished during the first year of the 3-year project. The data presented in this report have been gathered to support work on the mathematical modeling of waste-glass melters. At this stage, only a qualitative description and interpretation of the observed phenomena has been attempted. Two Savannah Rive feeds were used for the study. These feeds were subjected to thermal gravimetric analysis, differential thermal analysis, differential scanning calorimetry, evolved gas analysis with volume-expansion monitoring, modified reboil test, quantitative X-ray diffraction, scanning electron microscopy with energy dispersive spectroscopy, wet chemical analysis, and M?ssbauer spectroscopy. Glass viscosity was also measured. Finally, it was recommended to use melt-rate furnace test data to measure thermal diffusivity of the feed. Though both feed were reduced to prevent oxygen evolution from the melt, oxygen evolved form one of the melts and COx evolved from both. Hence, foam is likely to form under the cold cap even when the feed is reduced. An important difference between the feeds was in the melt viscosity at the temperature at which the melt interfaces the cold cap. It was suggested that low viscosity destabilizes foam under the cold cap, thus enhancing the rate of melting.

  9. Solidification microstructures in single-crystal stainless steel melt pools

    SciTech Connect (OSTI)

    Sipf, J.B.; Boatner, L.A.; David, S.A.

    1994-03-01T23:59:59.000Z

    Development of microstructure of stationary melt pools of oriented stainless steel single crystals (70%Fe-15%Ni-15%Cr was analyzed. Stationary melt pools were formed by electron-beam and gas-tungsten-arc heating on (001), (011), and (111) oriented planes of the austenitic, fcc-alloy crystals. Characterization and analysis of resulting microstructure was carried out for each crystallographic plane and welding method. Results showed that crystallography which favors ``easy growth`` along the <100> family of directions is a controlling factor in the microstructural formation along with the melt-pool shape. The microstructure was found to depend on the melting method, since each method forms a unique melt-pool shape. These results are used in making a three-dimensional reconstruction of the microstructure for each plane and melting method employed. This investigation also suggests avenues for future research into the microstructural properties of electron-beam welds as well as providing an experimental basis for mathematical models for the prediction of solidification microstructures.

  10. EA-0389: Proposed 7-GeV Advanced Photon Source, Argonne, Illinois

    Broader source: Energy.gov [DOE]

    This EA evaluates the environmental impacts of a proposal for construction and operation of a 6- to 7-GeV synchrotron radiation source known as the 7-GeV Advanced Photon Source at DOE's Argonne...

  11. 6 GeV LIGHT SOURCE PROJECT COST ESTIMATING PROCEDURE LS-34

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    GeV LIGHT SOURCE PROJECT COST ESTIMATING PROCEDURE LS-34 October 23, 1985 YCAVR To maintain uniformity in estimating the cost requirements of the various components of the 6 GeV...

  12. $J/?$, $?(2S)$ Production in pp Collisions at E=510 GeV

    E-Print Network [OSTI]

    Leonard S. Kisslinger; Debasish Das

    2014-10-06T23:59:59.000Z

    This brief report is an extension of studies of $J/\\Psi,\\Psi(2S)$ production in pp collisions at the BNL with E=$\\sqrt{s}$=200 GeV to E=510 GeV at PHENIX.

  13. Measurement of thermodynamic temperature of high temperature fixed points

    SciTech Connect (OSTI)

    Gavrilov, V. R.; Khlevnoy, B. B.; Otryaskin, D. A.; Grigorieva, I. A.; Samoylov, M. L.; Sapritsky, V. I. [All-Russian Research Institute for Optical and Physical Measurements (VNIIOFI), 46 Ozernaya St., Moscow 119361 (Russian Federation)] [All-Russian Research Institute for Optical and Physical Measurements (VNIIOFI), 46 Ozernaya St., Moscow 119361 (Russian Federation)

    2013-09-11T23:59:59.000Z

    The paper is devoted to VNIIOFI's measurements of thermodynamic temperature of the high temperature fixed points Co-C, Pt-C and Re-C within the scope of the international project coordinated by the Consultative Committee for Thermometry working group 5 'Radiation Thermometry'. The melting temperatures of the fixed points were measured by a radiance mode radiation thermometer calibrated against a filter radiometer with known irradiance spectral responsivity via a high temperature black body. This paper describes the facility used for the measurements, the results and estimated uncertainties.

  14. CRYSTALLOGRAPHIC POINT AND SPACE

    E-Print Network [OSTI]

    California at Santa Cruz, University of

    CRYSTALLOGRAPHIC POINT AND SPACE GROUPS Andy Elvin June 10, 2013 #12;Contents Point and Space no reflection axes #12;Cube and Octahedron are dual Symmetries under Oh #12;Space Groups Subgroups of E(3) Point Group + Translation { R | 0 }{ E | t }a = { R | t }a = Ra + t 230 Space Groups 73 symmorphic space

  15. Melt segregation under compaction and shear channelling: Application to granitic magma segregation in a continental crust

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    1 Melt segregation under compaction and shear channelling: Application to granitic magma segregation in a mush submitted to both compaction and shear. It applies to a granitic melt imbedded within of melt to about 20 % in total to be extracted from the matrix. Abridged title Granitic melt segregation

  16. Why is GeV physics relevant in the age of the LHC?

    SciTech Connect (OSTI)

    Pennington, Michael R. [JLAB

    2014-02-01T23:59:59.000Z

    The contribution that Jefferson Lab has made, with its 6 GeV electron beam, and will make, with its 12 GeV upgrade, to our understanding of the way the fundamental interactions work, particularly strong coupling QCD, is outlined. The physics at the GeV scale is essential even in TeV collisions.

  17. The 12 GeV Energy Upgrade at Jefferson Laboratory

    SciTech Connect (OSTI)

    Pilat, Fulvia C.

    2012-09-01T23:59:59.000Z

    Two new cryomodules and an extensive upgrade of the bending magnets at Jefferson Lab has been recently completed in preparation for the full energy upgrade in about one year. Jefferson Laboratory has undertaken a major upgrade of its flagship facility, the CW re-circulating CEBAF linac, with the goal of doubling the linac energy to 12 GeV. I will discuss here the main scope and timeline of the upgrade and report on recent accomplishments and the present status. I will then discuss in more detail the core of the upgrade, the new additional C100 cryomodules, their production, tests and recent successful performance. I will then conclude by looking at the future plans of Jefferson Laboratory, from the commissioning and operations of the 12 GeV CEBAF to the design of the MEIC electron ion collider.

  18. GeV emission from Gamma-Ray Burst afterglows

    E-Print Network [OSTI]

    A. Panaitescu

    2008-01-10T23:59:59.000Z

    We calculate the GeV afterglow emission expected from a few mechanisms related to GRBs and their afterglows. Given the brightness of the early X-ray afterglow emission measured by Swift/XRT, GLAST/LAT should detect the self-Compton emission from the forward-shock driven by the GRB ejecta into the circumburst medium. Novel features discovered by Swift in X-ray afterglows (plateaus and chromatic light-curve breaks) indicate the existence of a pair-enriched, relativistic outflow located behind the forward shock. Bulk and inverse-Compton upscattering of the prompt GRB emission by such outflows provide another source of GeV afterglow emission detectable by LAT. The large-angle burst emission and synchrotron forward-shock emission are, most likely, too dim at high photon energy to be observed by LAT. The spectral slope of the high-energy afterglow emission and its decay rate (if it can be measured) allow the identification of the mechanism producing the GeV transient emission following GRBs.

  19. Exclusive processes at JLab at 6 GeV

    SciTech Connect (OSTI)

    Kim, Andrey [University of Connecticut, JLAB

    2015-01-01T23:59:59.000Z

    Deeply virtual exclusive reactions provide a unique opportunity to probe the complex internal structure of the nucleon. They allow to access information about the correlations between parton transverse spatial and longitudinal momentum distributions from experimental observables. Dedicated experiments to study Deeply Virtual Compton Scattering (DVCS) and Deeply Virtual Meson Production (DVMP) have been carried out at Jefferson Lab using continuous electron beam with energies up to 6 GeV. Unpolarized cross sections, beam, target and double spin asymmetries have been measured for DVCS as well as for ?0 exclusive electroproduction. The data from Hall B provide a wide kinematic coverage with Q2=1-4.5 GeV2, xB=0.1-0.5, and ?t up to 2 GeV2. Hall A data have limited kinematic range partially overlapping with Hall B kinematics but provide a high accuracy measurements. Scaling tests of the DVCS cross sections provide solid evidence of twist-2 dominance, which makes chiral-even GPDs accessible even at modest Q2. We will discuss the interpretation of these data in terms of Generalized Parton Distributions (GPDs) model. Successful description of the recent CLAS ?0 exclusive production data within the framework of the GPD-based model provides a unique opportunity to access the chiral-odd GPDs.

  20. 07/06/2009 Melting Ice Could Lead to Massive Waves of Climate Refugees Treehugger 06/30/2009 MELTING GREENLAND ICE SHEETS MAY THREATEN

    E-Print Network [OSTI]

    Hu, Aixue

    /30/2009 MELTING GREENLAND ICE SHEETS MAY THREATEN NORTHEAST U.S., CANADA Federal News Service 06/30/2009 Sea raises spectre of displaced humanity peopleandplanet.net 06/16/2009 Melting Greenland Ice Sheets May Report - Online 06/02/2009 Melting Greenland Ice Sheets May Threaten Northeast, Canada usagnet 06

  1. Device and method for skull-melting depth measurement

    DOE Patents [OSTI]

    Lauf, Robert J. (Oak Ridge, TN); Heestand, Richard L. (Oak Ridge, TN)

    1993-01-01T23:59:59.000Z

    A method of skull-melting comprises the steps of: a. providing a vessel adapted for a skull-melting process, the vessel having an interior, an underside, and an orifice in connecting the interior and the underside; b. disposing a waveguide in the orifice so that the waveguide protrudes sufficiently into the interior to interact with the skull-melting process; c. providing a signal energy transducer in signal communication with the waveguide; d. introducing into the vessel a molten working material; e. carrying out the skull-melting process so that a solidified skull of the working material is formed, the skull and the vessel having an interface therebetween, the skull becoming fused to the waveguide so the signal energy can be transmitted through the waveguide and the skull without interference from the interface; f. activating the signal energy transducer so that a signal is propagated through the waveguide; and, g. controlling at least one variable of the skull-melting process utilizing feedback information derived from the propagated signal energy.

  2. Device and method for skull-melting depth measurement

    DOE Patents [OSTI]

    Lauf, R.J.; Heestand, R.L.

    1993-02-09T23:59:59.000Z

    A method of skull-melting comprises the steps of: (a) providing a vessel adapted for a skull-melting process, the vessel having an interior, an underside, and an orifice connecting the interior and the underside; (b) disposing a waveguide in the orifice so that the waveguide protrudes sufficiently into the interior to interact with the skull-melting process; (c) providing a signal energy transducer in signal communication with the waveguide; (d) introducing into the vessel a molten working material; (e) carrying out the skull-melting process so that a solidified skull of the working material is formed, the skull and the vessel having an interface therebetween, the skull becoming fused to the waveguide so the signal energy can be transmitted through the waveguide and the skull without interference from the interface; (f) activating the signal energy transducer so that a signal is propagated through the waveguide; and, (g) controlling at least one variable of the skull-melting process utilizing feedback information derived from the propagated signal energy.

  3. Validation of the THIRMAL-1 melt-water interaction code

    SciTech Connect (OSTI)

    Chu, C.C.; Sienicki, J.J.; Spencer, B.W.

    1995-05-01T23:59:59.000Z

    The THIRMAL-1 computer code has been used to calculate nonexplosive LWR melt-water interactions both in-vessel and ex-vessel. To support the application of the code and enhance its acceptability, THIRMAL-1 has been compared with available data from two of the ongoing FARO experiments at Ispra and two of the Corium Coolant Mixing (CCM) experiments performed at Argonne. THIRMAL-1 calculations for the FARO Scoping Test and Quenching Test 2 as well as the CCM-5 and -6 experiments were found to be in excellent agreement with the experiment results. This lends confidence to the modeling that has been incorporated in the code describing melt stream breakup due to the growth of both Kelvin-Helmholtz and large wave instabilities, the sizes of droplets formed, multiphase flow and heat transfer in the mixing zone surrounding and below the melt stream, as well as hydrogen generation due to oxidation of the melt metallic phase. As part of the analysis of the FARO tests, a mechanistic model was developed to calculate the prefragmentation as it may have occurred when melt relocated from the release vessel to the water surface and the model was compared with the relevant data from FARO.

  4. Curvature fluctuations and the Lyapunov exponent at melting

    SciTech Connect (OSTI)

    Mehra, V.; Ramaswamy, R. [School of Physical Sciences, Jawaharlal Nehru University, New Delhi 110067 (India)] [School of Physical Sciences, Jawaharlal Nehru University, New Delhi 110067 (India)

    1997-09-01T23:59:59.000Z

    We calculate the maximal Lyapunov exponent in constant-energy molecular-dynamics simulations at the melting transition for finite clusters of 6{endash}13 particles (model rare-gas and metallic systems) as well as for bulk rare-gas solids. For clusters, the Lyapunov exponent generally varies linearly with the total energy, but the {ital slope} changes sharply at the melting transition. In the bulk system, melting corresponds to a jump in the Lyapunov exponent, and this corresponds to a singularity in the variance of the curvature of the potential-energy surface. In these systems there are two mechanisms of chaos{emdash}local instability and parametric instability. We calculate the contribution of the parametric instability toward the chaoticity of these systems using a recently proposed formalism. The contribution of parametric instability is a continuous function of energy in small clusters but not in the bulk where the melting corresponds to a decrease in this quantity. This implies that the melting in small clusters does not lead to enhanced local instability. {copyright} {ital 1997} {ital The American Physical Society}

  5. Infrared optical properties of ?-alumina with the approach to melting: ?-like tetrahedral structure and small polaron conduction

    SciTech Connect (OSTI)

    Brun, J. F., E-mail: brun@cnrs-orleans.fr [CNRS, UPR 3079 CEMHTI, Orléans 45071 (France); UFR Collégium Sciences et Techniques, Université d'Orléans, Orléans 45067 (France); Campo, L. del; De Sousa Meneses, D. [CNRS, UPR 3079 CEMHTI, Orléans 45071 (France); Polytech'Orléans, Université d'Orléans, 45072 Orléans (France); Echegut, P. [CNRS, UPR 3079 CEMHTI, Orléans 45071 (France)

    2013-12-14T23:59:59.000Z

    The normal spectral emittance of ?-Al{sub 2}O{sub 3} single crystal has been measured from room temperature up to the liquid state and from 20?cm{sup ?1} up to 10 000?cm{sup ?1}, in two polarization configurations. The spectra were fitted with a semi-quantum dielectric function model. AlO{sub 4} structure units are revealed within the phonon spectral range more than a hundred degrees below the melting point when heating from the solid state. In parallel, the anomalous increase of emittance observed within the transparency spectral range with the approach to melting appears strongly correlated. Implications on the electronic structure are discussed: the existence of small polaron conduction is suggested which has never been mentioned before.

  6. PowerPoint Presentation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    drug delivery device. Commercial Applications Point of Care DiagnosticsHome Health Care Sports Medicine Infectious Disease Treatment Defense of the...

  7. PowerPoint Presentation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    for cancer and infectious disease biomarkers in human biological samples * Point-of-Care diagnostics amenable to health clinics and field sensing applications * Integrated...

  8. Web points of interest

    E-Print Network [OSTI]

    Web points of interest ... JUGGLING CLUB; The Lafayette Citizens Band Home Page; Harold Boas' incredible list of math and life resources on the WEB.

  9. Melt processing of Bi--2212 superconductors using alumina

    DOE Patents [OSTI]

    Holesinger, Terry G. (Los Alamos, NM)

    1999-01-01T23:59:59.000Z

    Superconducting articles and a method of forming them, where the superconducting phase of an article is Bi.sub.2 Sr.sub.2 CaCu.sub.2 O.sub.y (Bi-2212). Alumina is combined with Bi-2212 powder or Bi-2212 precursor powder and, in order to form an intimate mixture, the mixture is melted and rapidly cooled to form a glassy solid. The glassy solid is comminuted and the resulting powder is combined with a carrier. An alternative to melting is to form the mixture of nanophase alumina and material having a particle size of less than about 10 microns. The powder, with the carrier, is melt processed to form a superconducting article.

  10. Technical and economical considerations of new DRI melting process

    SciTech Connect (OSTI)

    Ito, Shuzo; Tokuda, Koji; Sammt, F.; Gray, R.

    1997-12-31T23:59:59.000Z

    The new DRI melting process can effectively and economically produce high quality molten iron. This process utilizes hot charging of DRI directly from a reduction furnace into a dedicated new melting furnace. The molten iron from this DRI premelter can be charged into a steelmaking furnace, such as an electric arc furnace (EAF), where the molten iron, together with other iron sources, can be processed to produce steel. Alternatively the molten iron can be pigged or granulated for off-site merchant sales. Comprehensive research and development of the new process has been conducted including operational process simulation, melting tests using FASTMET DRI, slag technology development, and refractory corrosion testing. This paper describes the process concept, its operational characteristics and further applications of the process.

  11. Lattice cluster theory for polymer melts with specific interactions

    E-Print Network [OSTI]

    Wen-Sheng Xu; Karl F. Freed

    2014-07-12T23:59:59.000Z

    Despite the long-recognized fact that chemical structure and specific interactions greatly influence the thermodynamic properties of polymer systems, a predictive molecular theory that enables systematically addressing the role of chemical structure and specific interactions has been slow to develop even for polymer melts. While the lattice cluster theory (LCT) provides a powerful vehicle for understanding the influence of various molecular factors, such as monomer structure, on the thermodynamic properties of polymer melts and blends, the application of the LCT has heretofore been limited to the use of the simplest polymer model in which all united atom groups within the monomers of a species interact with a common monomer averaged van der Waals energy. Thus, the description of a compressible polymer melt involves a single van der Waals energy. As a first step towards developing more realistic descriptions to aid in the analysis of experimental data and the design of new materials, the LCT is extended here to treat models of polymer melts in which the backbone and side groups have different interaction strengths, so three energy parameters are present, namely, backbone-backbone, side group-side group, and backbone-side group interaction energies. Because of the great algebraic complexity of this extension, we retain maximal simplicity within this class of models by further specializing this initial study to models of polymer melts comprising chains with poly($n$-$\\alpha$-olefin) structures where only the end segments on the side chains may have different, specific van der Waals interaction energies with the other united atom groups. An analytical expression for the LCT Helmholtz free energy is derived for the new model. Illustrative calculations are presented to demonstrate the degree to which the thermodynamic properties of polymer melts can be controlled by specific interactions.

  12. Effect of glass-batch makeup on the melting process

    SciTech Connect (OSTI)

    Hrma, Pavel R.; Schweiger, Michael J.; Humrickhouse, Carissa J.; Moody, J. Adam; Tate, Rachel M.; Rainsdon, Timothy T.; Tegrotenhuis, Nathan E.; Arrigoni, Benjamin M.; Marcial, Jose; Rodriguez, Carmen P.; Tincher, Benjamin

    2010-03-29T23:59:59.000Z

    The response of a glass batch to heating is determined by the batch makeup and in turn determines the rate of melting. Batches formulated for a high-alumina nuclear waste to be vitrified in an all-electric melter were heated at a constant temperature-increase rate to determine changes in melting behavior in response to the selection of batch chemicals and silica grain-size as well as the addition of heat-generating reactants. The type of batch materials and the size of silica grains determine how much, if any, primary foam occurs during melting. Small quartz grains, 5-?m in size, caused extensive foaming because their major portion dissolved at temperatures <800°C, contributing to the formation of viscous glass-forming melt that trapped evolving batch gases. Primary foam did not occur in batches with larger quartz grains, ?75 ?m in size, because their major portion dissolved at temperatures >800°C when batch gases no longer evolved. The exothermal reaction of nitrates with sucrose was ignited at a temperature as low as 160°C and caused a temporary jump in temperature of several hundred degrees. Secondary foam, the source of which is oxygen from redox reactions, occurred in all batches of a limited composition variation involving five oxides, B2O3, CaO, Li2O, MgO, and Na2O. The foam volume at the maximum volume-increase rate was a weak function of temperature and melt basicity. Neither the batch makeup nor the change in glass composition had a significant impact on the dissolution of silica grains. The impacts of primary foam generation on glass homogeneity and the rate of melting in large-scale continuous furnaces have yet to be established via mathematical modeling and melter experiments.

  13. EFFECT OF GLASS-BATCH MAKEUP ON THE MELTING PROCESS

    SciTech Connect (OSTI)

    KRUGER AA; HRMA P

    2010-12-07T23:59:59.000Z

    The response of a glass batch to heating is determined by the batch makeup and in turn determines the rate of melting. Batches formulated for a high-alumina nuclear waste to be vitrified in an all-electric melter were heated at a constant temperature-increase rate to determine changes in melting behavior in response to the selection of batch chemicals and silica grain-size as well as the addition of heat-generating reactants. The type of batch materials and the size of silica grains determine how much, if any, primary foam occurs during melting. Small quartz grains, 5 {micro}m in size, caused extensive foaming because their major portion dissolved at temperatures <800 C, contributing to the formation of viscous glass forming melt that trapped evolving batch gases. Primary foam did not occur in batches with larger quartz grains, {+-}75 {micro}m in size, because their major portion dissolved at temperatures >800 C when batch gases no longer evolved. The exothermal reaction of nitrates with sucrose was ignited at a temperature as low as 160 C and caused a temporary jump in temperature of several hundred degrees. Secondary foam, the source of which is oxygen from redox reactions, occurred in all batches of a limited composition variation involving five oxides, B{sub 2}O{sub 3}, CaO, Li{sub 2}O, MgO, and Na{sub 2}O. The foam volume at the maximum volume-increase rate was a weak function of temperature and melt basicity. Neither the batch makeup nor the change in glass composition had a significant impact on the dissolution of silica grains. The impacts of primary foam generation on glass homogeneity and the rate of melting in large-scale continuous furnaces have yet to be established via mathematical modeling and melter experiments.

  14. Hybrid redox polyether melts based on polyether-tailed counterions

    SciTech Connect (OSTI)

    Dickinson, E. V; Williams, M.E.; Hendrickson, S.M.; Masui, Hitoshi; Murray, R.W.

    1999-02-03T23:59:59.000Z

    Interesting ionic materials can be transformed into room temperature molten salts by combining them with polyether-tailed counterions such as polyether-tailed 2-sulfobenzoate (MePEG-BzSO{sub 3}{sup {minus}}) and polyethertailed triethylammonium (MePEG-Et{sub 3}N{sup +}). Melts containing ruthenium hexamine, metal trisbipyridines, metal trisphenanthrolines, and ionic forms of aluminum quinolate, anthraquinone, phthalocyanine, and porphyrins are described. These melts exhibit ionic conductivities in the 7 x 10{sup {minus}5} to 7 x 10{sup {minus}10} {Omega}{sup {minus}1} cm{sup {minus}1} range, which permit microelectrode voltammetry in the undiluted materials, examples of which are presented.

  15. Aerosol source term in high pressure melt ejection

    SciTech Connect (OSTI)

    Brockmann, J.E.; Tarbell, W.W.

    1984-11-01T23:59:59.000Z

    Pressurized ejection of melt from a reactor pressure vessel has been identified as an important element of a severe reactor accident. Copious aerosol production is observed when thermitically generated melts pressurized with nitrogen or carbon dioxide to 1.3 to 17 MPa are ejected into an air atmosphere. Aerosol particle size distributions measured in the tests have modes of about 0.5, 5, and > 10 ..mu..m. Mechanisms leading to formation of these multimodal size distributions are suggested. This aerosol is a potentially important fission product source term that has not been considered in previous severe accident analyses.

  16. Critical fluctuations of the proton density in A+A collisions at $158A$ GeV

    E-Print Network [OSTI]

    T. Anticic; B. Baatar; D. Barna; J. Bartke; J. Beck; L. Betev; H. Bia?kowska; C. Blume; M. Bogusz; B. Boimska; J. Book; M. Botje; P. Bun?i?; T. Cetner; P. Christakoglou; P. Chung; O. Chvala; J. Cramer; V. Eckardt; Z. Fodor; P. Foka; V. Friese; M. Ga?dzicki; K. Grebieszkow; C. Höhne; K. Kadija; A. Karev; V. I. Kolesnikov; M. Kowalski; D. Kresan; A. Laszlo; R. Lacey; M. van Leeuwen; M. Ma?kowiak-Paw?owska; M. Makariev; A. I. Malakhov; M. Mateev; G. L. Melkumov; M. Mitrovski; St. Mrówczy?ski; G. Pálla; A. D. Panagiotou; W. Peryt; J. Pluta; D. Prindle; F. Pühlhofer; R. Renfordt; C. Roland; G. Roland; A. Rustamov; M. Rybczy?ski; A. Rybicki; A. Sandoval; N. Schmitz; T. Schuster; P. Seyboth; F. Siklér; E. Skrzypczak; M. Slodkowski; G. Stefanek; R. Stock; H. Ströbele; T. Susa; M. Szuba; D. Varga; M. Vassiliou; G. I. Veres; G. Vesztergombi; D. Vrani?; Z. W?odarczyk; A. Wojtaszek-Szwar?; N. G. Antoniou; N. Davis; F. K. Diakonos

    2015-05-06T23:59:59.000Z

    We look for traces of the QCD critical point using an intermittency analysis in the transverse momentum phase space of protons produced around midrapidity in the 12.5\\% most central C+C, Si+Si and Pb+Pb collisions at the maximum SPS energy of 158$A$ GeV. We find evidence of power-law fluctuations for the Si+Si data. The fitted power-law exponent $\\phi_{2} = 0.96^{+0.38}_{-0.25}\\text{(stat.)} \\pm 0.16\\text{(syst.)}$ is consistent with the value expected for critical fluctuations. Power-law fluctuations had previously also been observed in low-mass $\\pi^+ \\pi^-$ pairs in the same Si+Si collisions. Keywords: quark gluon plasma, QCD critical point, proton density fluctuations, transverse momentum, intermittency analysis, NA49 experiment

  17. The Jefferson Lab 12 GeV Upgrade

    SciTech Connect (OSTI)

    R.D. McKeown

    2011-10-01T23:59:59.000Z

    A major upgrade of the Continuous Electron Beam Accelerator Facility (CEBAF) at the Thomas Jefferson National Accelerator Facility is in progress. Construction began in 2008 and the project should be completed in 2015. The upgrade includes doubling the energy of the electron beam to 12 GeV, the addition of a new fourth experimental hall, and new experimental equipment in three of the experimental halls. A brief overview of this upgrade project is presented along with some highlights of the anticipated experimental program.

  18. The 12 GeV JLab Upgrade Project

    SciTech Connect (OSTI)

    Smith, Elton

    2009-01-01T23:59:59.000Z

    The upgrade of the CEBAF Accelerator at Jefferson Lab to 12 GeV will deliver high luminosity and high quality beams, which will open unique opportunities for studies of the quark and gluon structure of hadrons in the valence region. Such physics will be made accessible by substantial additions to the experimental equipment in combination with the increased energy reach of the upgraded machine. The emphasis of the talk will be on the program in a new experimental Hall D designed to search for gluonic excitations.

  19. HTS wire irradiation test with 8 GeV protons

    SciTech Connect (OSTI)

    S. Feher; H. Glass; Y. Huang; P.J. Limon; D.F. Orris; P. Schlabach; M.A. Tartaglia; J.C. Tompkins

    1999-11-02T23:59:59.000Z

    The radiation level at High Energy Particle Accelerators (HEPA) is relatively high. Any active component which should be close to the accelerator has to be radiation hard. Since High Temperature Superconductors (HTS) have a great potential to be used in HEPAs (e.g., in superconducting magnets, current leads, RF cavities), it is important to understand the radiation hardness of these materials. A radiation test of HTS wire (Bi-2223) was performed at Fermilab. The HTS sample was irradiated with 8 GeV protons and the relative I{sub c} was measured during the irradiation. The total radiation dose was 10 Mrad, and no I{sub c} degradation was observed.

  20. Proton Profile Function at 52.8 GeV

    E-Print Network [OSTI]

    Geovanna L. P. Silva; Marcio J. Menon; Regina F. Avila

    2008-02-12T23:59:59.000Z

    We present the results of a novel model-independent fit to elastic proton-proton differential cross section data at $\\sqrt s$ = 52.8 GeV. Taking into account the error propagation from the fit parameters, we determine the scattering amplitude in the impact parameter space (the proton profile function) and its statistical uncertainty region. We show that both the real and imaginary parts of the profile are consistent with two dynamical contributions, one from a central dense region, up to roughly 1 fm and another from a peripheral evanescent region from 1 to 3 fm.

  1. The 12 GeV JLab Upgrade Project

    E-Print Network [OSTI]

    Elton S. Smith

    2009-01-21T23:59:59.000Z

    The upgrade of the CEBAF Accelerator at Jefferson Lab to 12 GeV will deliver high luminosity and high quality beams, which will open unique opportunities for studies of the quark and gluon structure of hadrons in the valence region. Such physics will be made accessible by substantial additions to the experimental equipment in combination with the increased energy reach of the upgraded machine. The emphasis of the talk will be on the program in a new experimental Hall D designed to search for gluonic excitations.

  2. Method and apparatus for improved melt flow during continuous strip casting

    DOE Patents [OSTI]

    Follstaedt, D.W.; King, E.L.; Schneider, K.C.

    1991-11-12T23:59:59.000Z

    The continuous casting of metal strip using the melt overflow process is improved by controlling the weir conditions in the nozzle to provide a more uniform flow of molten metal across the width of the nozzle and reducing the tendency for freezing of metal along the interface with refractory surfaces. A weir design having a sloped rear wall and tapered sidewalls and critical gap controls beneath the weir has resulted in the drastic reduction in edge tearing and a significant improvement in strip uniformity. The floor of the container vessel is preferably sloped and the gap between the nozzle and the rotating substrate is critically controlled. The resulting flow patterns observed with the improved casting process have reduced thermal gradients in the bath, contained surface slag and eliminated undesirable solidification near the discharge area by increasing the flow rates at those points. 8 figures.

  3. Network Modeling of Arctic Melt Ponds Meenakshi Barjatiaa

    E-Print Network [OSTI]

    Golden, Kenneth M.

    . In late spring and summer, the albedo of the ice pack is determined primarily by melt ponds that form­albedo feedback [7], and has played a significant role in the decline of the summer Arctic ice pack [8]. Sea ice precipitous losses of summer Arctic sea ice have outpaced the pro- jections of most climate models. Efforts

  4. The effect of pressure upon the melting transition of polyethylene

    E-Print Network [OSTI]

    Mroz, George Joseph

    1961-01-01T23:59:59.000Z

    THE EFFECT OF PRESSURE UPON THE MELTING TRANSITION OF POLYETHYLENE o m vS n Z 8 i c6 C 0 A Thesis By George Joseph Nros Approved as to style and content by: C a rman o Comm ttee (Head of Department) August 1961 ACKNOWLEDGEMENT...

  5. Buoyant melting instabilities beneath extending lithosphere: 1. Numerical models

    E-Print Network [OSTI]

    Tackley, Paul J.

    Buoyant melting instabilities beneath extending lithosphere: 1. Numerical models John W. Hernlund,1,2 Paul J. Tackley,1,3 and David J. Stevenson4 Received 18 November 2006; revised 18 October 2007 diffusely extending lithosphere is studied using numerical convection models covering a wide range

  6. Feasibility of re-melting NORM-contaminated scrap metal

    SciTech Connect (OSTI)

    Winters, S. J.; Smith, K. P.

    1999-10-26T23:59:59.000Z

    Naturally occurring radioactive materials (NORM) sometimes accumulate inside pieces of equipment associated with oil and gas production and processing activities. Typically, the NORM accumulates when radium that is present in solution in produced water precipitates out in scale and sludge deposits. Scrap equipment containing residual quantities of these NORM-bearing scales and sludges can present a waste management problem if the radium concentrations exceed regulatory limits or activate the alarms on radiation screening devices installed at most scrap metal recycling facilities. Although NORM-contaminated scrap metal currently is not disposed of by re-melting, this form of recycling could present a viable disposition option for this waste stream. Studies indicate that re-melting NORM-contaminated scrap metal is a viable recycling option from a risk-based perspective. However, a myriad of economic, regulatory, and policy issues have caused the recyclers to turn away virtually all radioactive scrap metal. Until these issues can be resolved, re-melting of the petroleum industry's NORM-impacted scrap metal is unlikely to be a widespread practice. This paper summarizes the issues associated with re-melting radioactive scrap so that the petroleum industry and its regulators will understand the obstacles. This paper was prepared as part of a report being prepared by the Interstate Oil and Gas Compact Commission's NORM Subcommittee.

  7. Laser thermoelastic generation in metals above the melt threshold

    SciTech Connect (OSTI)

    Every, A. G. [School of Physics, University of the Witwatersrand, PO Wits 2050 (South Africa)] [School of Physics, University of the Witwatersrand, PO Wits 2050 (South Africa); Utegulov, Z. N. [Department of Physics, School of Science and Technology, Nazarbayev University, Astana 010000 (Kazakhstan)] [Department of Physics, School of Science and Technology, Nazarbayev University, Astana 010000 (Kazakhstan); Veres, I. A. [RECENDT Research Center for Non-Destructive Testing GmbH, A-4040 Linz (Austria)] [RECENDT Research Center for Non-Destructive Testing GmbH, A-4040 Linz (Austria)

    2013-11-28T23:59:59.000Z

    An approach is presented for calculating thermoelastic generation of ultrasound in a metal plate exposed to nanosecond pulsed laser heating, sufficient to cause melting but not ablation. Detailed consideration is given to the spatial and temporal profiles of the laser pulse, penetration of the laser beam into the sample, the appearance and subsequent growth and then contraction of the melt pool, and the time dependent thermal conduction in the melt and surrounding solid throughout. The excitation of the ultrasound takes place during and shortly after the laser pulse and occurs predominantly within the thermal diffusion length of a micron or so beneath the surface. It is shown how, because of this, the output of the thermal simulations can be expressed as axially symmetric transient radial and normal surface force distributions. The epicentral displacement response to these force distributions is obtained by two methods, the one based on the elastodynamic Green's functions for plate geometry determined by the Cagniard generalized ray method and the other using a finite element numerical method. The two approaches are in very close agreement. Numerical simulations are reported on the epicentral displacement response of a 3.12 mm thick tungsten plate irradiated with a 4 ns pulsed laser beam with Gaussian spatial profile, at intensities below and above the melt threshold.

  8. Seasonal glacier melt contribution to streamflow Neil Schaner

    E-Print Network [OSTI]

    Washington at Seattle, University of

    1 Seasonal glacier melt contribution to streamflow Neil Schaner Department of Civil of Washington Seattle, WA 98195 dennisl@u.washington.edu #12;2 Ongoing and projected future changes in glacier. However, the current magnitude of glacier contributions to river runoff is not well known, nor

  9. Glacier melt contribution to streamflow1 Neil Schaner1

    E-Print Network [OSTI]

    Washington at Seattle, University of

    1 Glacier melt contribution to streamflow1 Neil Schaner1 , Nathalie Voisin2 , Bart Nijssen1 12 * Corresponding author13 Abstract. Ongoing and projected future changes in glacier extent and water storage14 globally have led to concerns about the implications for water supplies. Glacier15

  10. Melting Alpine Glaciers Enrich High-Elevation Lakes with Reactive

    E-Print Network [OSTI]

    Williamson, Craig E.

    Melting Alpine Glaciers Enrich High-Elevation Lakes with Reactive Nitrogen J A S M I N E E . S A R received May 26, 2010. Accepted May 28, 2010. Alpine glaciers have receded substantially over the last. Our results demonstrate that the presence of glaciers on alpine watersheds more strongly influences NO

  11. THE CONTRIBUTION OF GREENLAND ICE SHEET MELTING TO

    E-Print Network [OSTI]

    THE CONTRIBUTION OF GREENLAND ICE SHEET MELTING TO GLOBAL SEA-LEVEL CHANGE Conor Mc three major sources, the Greenland ice sheet, Antarctica, and other eustatic components. Each has its own predictable spatial signal, and particular attention was paid to the Greenland ice sheet, given

  12. Potential for tunneling based on rock and soil melting. Abstracts

    SciTech Connect (OSTI)

    Rowley, J.C.

    1985-01-01T23:59:59.000Z

    The rock-melting drill was invented at Los Alamos Scientific Laboratory in 1960. Electrically heated, laboratory-scale drills were subsequently shown to penetrate igneous rocks at usefully high rates, with moderate power consumptions. The development of compact nuclear reactors and of heat pipes now makes possible the extension of this technology to much larger melting penetrators, potentially capable of producing holes up to several meters in diameter and several tens of kilometers long or deep. Development of a rapid, versatile, economical method of boring large, long shafts and tunnels offers solutions to many of man's most urgent ecological, scientific, raw-materials, and energy-supply problems. A melting method appears to be the most promising and flexible means of producing such holes. It is relatively insensitive to the composition, hardness, structure, and temperature of the rock, and offers the possibilities of producing self-supporting, glass-lined holes in almost any formation and (using a technique called lithofracturing) of eliminating the debris-removal problem by forcing molten rock into cracks created in the bore wall. Large rock-melting penetrators, called Electric Subterrenes or Nuclear Subterrenes according to the energy source used, are discussed in this report, together with problems anticipated in their development. It is concluded that this development is within the grasp of present technology.

  13. PowerPoint Presentation

    Energy Savers [EERE]

    be formatted to fit on 8.5 x 11 inch paper with margins not less than one inch on every side. Use Times New Roman typeface, a black font color, and a font size of 12 point or...

  14. The Jefferson Lab program: From 6 GeV operations to the 12 GeV upgrade

    SciTech Connect (OSTI)

    Marco Battaglieri

    2012-04-01T23:59:59.000Z

    The Thomas Jefferson National Laboratory and the CEBAF accelerator operated for more than a decade, running a comprehensive scientific program that improved our understanding of the strong interaction. The facility is now moving toward an upgrade of the machine, from 6 to 12 GeV; a new experimental hall will be added and the equipment of the three existing halls will be enhanced. In this contribution some selected results from the rich physics program run at JLab, as well as the prospects for the near future, will be presented.

  15. Sideward Flow in Au + Au Collisions Between 2A GeV and 8A GeV

    E-Print Network [OSTI]

    E895 Collaboration; H. Liu; N. N. Ajitanand; J. Alexander; M. Anderson; D. Best; F. P. Brady; T. Case; W. Caskey; D. Cebra; J. Chance; B. Cole; K. Crowe; A. Das; J. Draper; M. Gilkes; S. Gushue; M. Heffner; A. Hirsch; E. Hjort; L. Huo; M. Justice; M. Kaplan; D. Keane; J. Kintner; J. Klay; D. Krofcheck; R. Lacey; M. A. Lisa; Y. M. Liu; R. McGrath; Z. Milosevich; G. Odyniec; D. Olson; S. Y. Panitkin; N. Porile; G. Rai; H. G. Ritter; J. Romero; R. Scharenberg; L. S. Schroeder; B. Srivastava; N. T. B. Stone; T. J. M. Symons; S. Wang; J. Whitfield; T. Wienold; R. Witt; L. Wood; X. Yang; W. N. Zhang; Y. Zhang

    2000-05-24T23:59:59.000Z

    Using the large acceptance Time Projection Chamber of experiment E895 at Brookhaven, measurements of collective sideward flow in Au + Au collisions at beam energies of 2, 4, 6 and 8A GeV are presented in the form of in-plane transverse momentum and the first Fourier coefficient of azimuthal anisotropy v_1. These measurements indicate a smooth variation of sideward flow as a function of beam energy. The data are compared with four nuclear transport models which have an orientation towards this energy range. All four exhibit some qualitative trends similar to those found in the data, although none shows a consistent pattern of agreement within experimental uncertainties.

  16. Search for GeV GRBs at Chacaltaya

    SciTech Connect (OSTI)

    Castellina, A.; Ghia, P. L.; Morello, C.; Trinchero, G.; Vallania, P.; Vernetto, S. [Istituto di Cosmogeofisica del C.N.R., Torino (Italy); Navarra, G.; Saavedra, O. [Dipartimento di Fisica Generale dell'Universita' di Torino (Italy); Yoshii, H. [Department of Physics, Ehime University, Ehime 790 (Japan); Kaneko, T. [Department of Physics, Okayama University, Okayama 700 (Japan); Kakimoto, K. [Department of Physics, Tokyo Institute of Technology, Meguro, Tokyo 152 (Japan); Nishi, K. [Institute of Physical and Chemical Research, Wako, Saitama 351-01 (Japan); Cabrera, R.; Urzagasti, D.; Velarde, A. [Instituto de Investigaciones Fisicas, Universidad Mayor de San Andres, La Paz (Bolivia, Plurinational State of); Barthelmy, S. D.; Butterworth, P.; Cline, T. L.; Gehrels, N. [NASA Goddard Space Flight Center, Greenbelt, Maryland 20771 (United States); Fishman, G. J. [NASA Marshall Space Flight Center, Huntsville, Alabama 35812 (United States)] (and others)

    1998-05-16T23:59:59.000Z

    In this paper we present the results of a search for GeV Gamma Ray Bursts made by the INCA experiment during the first 9 months of operation. INCA, an air shower array located at Mount Chacaltaya (Bolivia) at 5200 m a.s.l., has been searching for GRBs since December 1996. Up to August, 1997, 34 GRBs detected by BATSE occurred in the field of view of the experiment. For any burst, the counting rate of the array in the 2 hours interval around the burst trigger time has been studied. No significant excess has been observed. Assuming for the bursts a power low energy spectrum extending up to 1 TeV with a slope {alpha}=-2 and a duration of 10 s, the obtained 1 GeV-1 TeV energy fluence upper limits range from 7.9 10{sup -5} erg cm{sup -2} to 3.5 10{sup -3} erg cm{sup -2} depending on the event zenith angles.

  17. Detector development for Jefferson Lab's 12GeV Upgrade

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Qiang, Yi [JLAB] (ORCID:0000000170267841)

    2015-05-01T23:59:59.000Z

    Jefferson Lab will soon finish its highly anticipated 12 GeV Upgrade. With doubled maximum energy, Jefferson Lab’s Continuous Electron Beam Accelerator Facility (CEBAF) will enable a new experimental program with substantial discovery potential, addressing important topics in nuclear, hadronic and electroweak physics. In order to take full advantage of the high energy, high luminosity beam, new detectors are being developed, designed and constructed to fit the needs of different physics topics. The paper will give an overview of various new detector technologies to be used for 12 GeV experiments. It will then focus on the development of two solenoid-based spectrometers, the GlueX and SoLID spectrometers. The GlueX experiment in Hall D will study the complex properties of gluons through exotic hybrid meson spectroscopy. The GlueX spectrometer, a hermetic detector package designed for spectroscopy and the associated partial wave analysis, is currently in the final stage of construction. Hall A, on the other hand, is developing the SoLID spectrometer to capture the 3D image of the nucleon from semi-inclusive processes and to study the intrinsic properties of quarks through mirror symmetry breaking. Such a spectrometer will have the capability to handle very high event rates while still maintaining a large acceptance in the forward region.

  18. 12 GeV Upgrade Project - Cryomodule Production

    SciTech Connect (OSTI)

    J. Hogan, A. Burrill, G.K. Davis, M.A. Drury, M. Wiseman

    2012-07-01T23:59:59.000Z

    The Thomas Jefferson National Accelerator Facility (Jefferson Lab) is producing ten 100+MV SRF cryomodules (C100) as part of the CEBAF 12 GeV Upgrade Project. Once installed, these cryomodules will become part of an integrated accelerator system upgrade that will result in doubling the energy of the CEBAF machine from 6 to 12 GeV. This paper will present a complete overview of the C100 cryomodule production process. The C100 cryomodule was designed to have the major components procured from private industry and assembled together at Jefferson Lab. In addition to measuring the integrated component performance, the performance of the individual components is verified prior to being released for production and assembly into a cryomodule. Following a comprehensive cold acceptance test of all subsystems, the completed C100 cryomodules are installed and commissioned in the CEBAF machine in preparation of accelerator operations. This overview of the cryomodule production process will include all principal performance measurements, acceptance criterion and up to date status of current activities.

  19. STANDARDIZATION OF CEBAF 12 GEV UPGRADE CAVITY TESTING

    SciTech Connect (OSTI)

    Tiffany Bass, G. Davis, Christiana Wilson, Mircea Stirbet

    2012-07-01T23:59:59.000Z

    CEBAF 12GeV upgrade project includes 80 new 7-cell cavities to form 10 cryomodules. Each cavity underwent RF qualification at 2.07K using a high power accelerating gradient test and an HOM survey in Jefferson Lab's Vertical Testing Area (VTA) before cavity string assembly. In order to ensure consistently high quality data, updated cavity testing procedures and analysis were implemented and used by a group of VTA operators. For high power tests, a cavity testing procedure was developed and used in conjunction with a LabVIEW program to collect the test data. Additionally while the cavity was at 2.07K, an HOM survey was performed using a network analyzer and a combination of Excel and Mathematica programs. Data analysis was standardized and an online logbook, Pansophy, was used for data storage and mining. The Pansophy system allowed test results to be easily summarized and searchable across all cavity tests. In this presentation, the CEBAF 12GeV upgrade cavity testing procedure, method for data analysis, and results reporting results will be discussed.

  20. Detector development for Jefferson Lab's 12GeV Upgrade

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Qiang, Yi

    2015-05-01T23:59:59.000Z

    Jefferson Lab will soon finish its highly anticipated 12 GeV Upgrade. With doubled maximum energy, Jefferson Lab’s Continuous Electron Beam Accelerator Facility (CEBAF) will enable a new experimental program with substantial discovery potential, addressing important topics in nuclear, hadronic and electroweak physics. In order to take full advantage of the high energy, high luminosity beam, new detectors are being developed, designed and constructed to fit the needs of different physics topics. The paper will give an overview of various new detector technologies to be used for 12 GeV experiments. It will then focus on the development of two solenoid-based spectrometers,more »the GlueX and SoLID spectrometers. The GlueX experiment in Hall D will study the complex properties of gluons through exotic hybrid meson spectroscopy. The GlueX spectrometer, a hermetic detector package designed for spectroscopy and the associated partial wave analysis, is currently in the final stage of construction. Hall A, on the other hand, is developing the SoLID spectrometer to capture the 3D image of the nucleon from semi-inclusive processes and to study the intrinsic properties of quarks through mirror symmetry breaking. Such a spectrometer will have the capability to handle very high event rates while still maintaining a large acceptance in the forward region.« less

  1. Radiation microscope for SEE testing using GeV ions.

    SciTech Connect (OSTI)

    Doyle, Barney Lee; Knapp, James Arthur; Rossi, Paolo; Hattar, Khalid M.; Vizkelethy, Gyorgy; Brice, David Kenneth; Branson, Janelle V.

    2009-09-01T23:59:59.000Z

    Radiation Effects Microscopy is an extremely useful technique in failure analysis of electronic parts used in radiation environment. It also provides much needed support for development of radiation hard components used in spacecraft and nuclear weapons. As the IC manufacturing technology progresses, more and more overlayers are used; therefore, the sensitive region of the part is getting farther and farther from the surface. The thickness of these overlayers is so large today that the traditional microbeams, which are used for REM are unable to reach the sensitive regions. As a result, higher ion beam energies have to be used (> GeV), which are available only at cyclotrons. Since it is extremely complicated to focus these GeV ion beams, a new method has to be developed to perform REM at cyclotrons. We developed a new technique, Ion Photon Emission Microscopy, where instead of focusing the ion beam we use secondary photons emitted from a fluorescence layer on top of the devices being tested to determine the position of the ion hit. By recording this position information in coincidence with an SEE signal we will be able to indentify radiation sensitive regions of modern electronic parts, which will increase the efficiency of radiation hard circuits.

  2. Geek-Up: K East Reactor Demolition, Retrograde Melting and Cloud...

    Broader source: Energy.gov (indexed) [DOE]

    Geek-Up: K East Reactor Demolition, Retrograde Melting and Cloud Pattern Tracking Geek-Up: K East Reactor Demolition, Retrograde Melting and Cloud Pattern Tracking August 13, 2010...

  3. CATALYTIC LIQUEFACTION BY ZINC CHLORIDE MELTS AT PRE-PYROLYSIS TEMPERATURE

    E-Print Network [OSTI]

    Vermeulen, T.

    2012-01-01T23:59:59.000Z

    stream. Plug flow of melt/coal slurry is projected, becauseviscosity of the melt/coal slurry would always be less thanscheme, raw coal is blended into a slurry with ZnCl2/CH30H

  4. PHYSICAL REVIEW B 84, 092102 (2011) Melting temperature of tungsten from two ab initio approaches

    E-Print Network [OSTI]

    Alfè, Dario

    2011-01-01T23:59:59.000Z

    PHYSICAL REVIEW B 84, 092102 (2011) Melting temperature of tungsten from two ab initio approaches L the melting temperature of tungsten by two ab initio approaches. The first approach can be divided into two

  5. Shear wave attenuation and dispersion in melt-bearing olivine polycrystals

    E-Print Network [OSTI]

    interpretation and seismological implications Ulrich H. Faul, John D. Fitz Gerald, and Ian Jackson Research: seismic wave attenuation, olivine, partial melting, grain boundary sliding, grain boundary structure and dispersion in melt-bearing olivine polycrystals: 2. Microstructural interpretation and seismological

  6. Crustal structure beneath the gravity lineations in the Gravity Lineations, Intraplate Melting, Petrologic and Seismic Expedition

    E-Print Network [OSTI]

    Webb, Spahr C.

    , Petrologic and Seismic Expedition (GLIMPSE) study area from seismic refraction data R. Chadwick Holmes,1, Intraplate Melting, Petrologic and Seismic Expedition (GLIMPSE) experiment investigated the velocity in the Gravity Lineations, Intraplate Melting, Petrologic and Seismic Expedition (GLIMPSE) study area from

  7. Trace element partitioning during high-P partial melting and melt-rock interaction; an example from northern Fiordland,

    E-Print Network [OSTI]

    Daczko, Nathan

    reaction zones. New data acquired using a Laser Ablation Inductively Coupled Plasma Mass Spectrometer (LA to sites of partial melting in the dioritic gneiss. Key words: garnet granulite; Laser Ablation Inductively-clinopyroxene assemblage. In this paper, we present geochemical data obtained by an in-situ Laser Ablation Inductively

  8. Adiabat_1ph: A new public front-end to the MELTS, pMELTS, and pHMELTS models

    E-Print Network [OSTI]

    Asimow, Paul D.

    and Petrology: Geochemical modeling (1009, 8410); 3611 Mineralogy and Petrology: Thermodynamics (0766, 1011, 8411); 3612 Mineralogy and Petrology: Reactions and phase equilibria (1012, 8412); 3618 Mineralogy and Petrology: Magma chamber processes (1036); 3619 Mineralogy and Petrology: Magma genesis and partial melting

  9. Sequential melting of charmonium states in an expanding Quark Gluon Plasma and $J/?$ suppression at RHIC and LHC energy collisions

    E-Print Network [OSTI]

    A. K. Chaudhuri

    2008-07-04T23:59:59.000Z

    We have developed a hydrodynamic model to study sequential melting of charmonium states in an expanding QGP medium. According to the initial fluid temperature profile, $J/\\psi$'s are randomly distributed in the transverse plane. As the fluid evolve in time, the free streaming $J/\\psi$'s are suppressed if the local fluid temperature exceed a critical temperature. PHENIX data on the centrality dependence of $J/\\psi$ suppression in Au+Au collisions at mid-rapidity are explained by sequential melting of the charmonium states, $\\chi_c$, $\\psi\\prime$ and $J/\\psi$, in the expanding medium. The critical temperatures $T_{J/\\psi} \\approx2.09T_c$ and $T_\\chi=T_{\\chi_c}=T_{\\psi\\prime} \\approx 1.1T_c$ agree with lattice motivated calculations. The feed-down fraction $F$ depend on whether the cold nuclear matter effect is included or not. It changes from $F=0.3$ with cold nuclear matter effect included to $F=0.5$ when the effect is neglected. Model fails to reproduce the PHENIX data on the centrality dependence of $J/\\psi$ suppression in Cu+Cu collisions at mid-rapidity, indicating that the mechanism of $J/\\psi$ suppression is different in Au+Au and in Cu+Cu collisions. We also use the model to predict for the centrality dependence of $J/\\psi$ suppression in Pb+Pb collisions at LHC energy, $\\sqrt{s}$=5500 GeV. In LHC energy, $J/\\psi$'s are more suppressed in mid central collisions than in Au+Au collisions at RHIC energy.

  10. METHODOLOGICAL RE-EVALUATION OF THE ELECTRICAL CONDUCTIVITY OF SILICATE MELTS

    E-Print Network [OSTI]

    Boyer, Edmond

    1 Revised ms METHODOLOGICAL RE-EVALUATION OF THE ELECTRICAL CONDUCTIVITY OF SILICATE MELTS A in laboratory on silicate melts are used to interpret magnetotelluric anomalies. On the basis of two- and four to small chemical and physical changes, it represents a subtle probe for studying silicate melts properties

  11. Blast from the Past: Melting Glaciers as a Relevant Source for

    E-Print Network [OSTI]

    Wehrli, Bernhard

    Blast from the Past: Melting Glaciers as a Relevant Source for Persistent Organic Pollutants C H R, 2009. Accepted August 31, 2009. In this study, the hypothesis that melting Alpine glaciers may organic chemicals from melting Alpine glaciers. Considering ongoing global warming and accelerated massive

  12. Melt Rate Improvement for DWPF MB3: Foaming Theory and Mitigation Techniques

    SciTech Connect (OSTI)

    Peeler, D.K.

    2001-07-24T23:59:59.000Z

    The objective of this research is to enhance the basic understanding of the role of glass chemistry, including the chemical kinetics of pre-melting, solid state reactions, batch melting, and the reaction pathways in glass and/or acid addition strategy changes on the overall melting process for the Defense Waste Processing Facility (DWPF) Macrobatch 3 (MB3).

  13. A NEW METHOD FOR MELT DETECTION ON ANTARCTIC ICE-SHELVES AND SCATTEROMETER CALIBRATION

    E-Print Network [OSTI]

    Long, David G.

    A NEW METHOD FOR MELT DETECTION ON ANTARCTIC ICE-SHELVES AND SCATTEROMETER CALIBRATION VERIFICATION of Engineering and Technology #12;ABSTRACT A NEW METHOD FOR MELT DETECTION ON ANTARCTIC ICE-SHELVES to determine periods of surface melt and freeze in the Antarctic ice-shelves. The normalized radar backscatter

  14. Ion fractionation and percolation in ice cores with seasonal melting John C. Moore*, Aslak Grinsted **

    E-Print Network [OSTI]

    Moore, John

    and with the type of data that was expected to come from ice caps with seasonal melt. The objective of this paperIon fractionation and percolation in ice cores with seasonal melting John C. Moore*, Aslak Grinsted that suffer limited seasonal melting. We show that the impact in the case of at least one Svalbard ice core

  15. Basal melting of snow on early Mars: A possible origin of some valley Michael H. Carr

    E-Print Network [OSTI]

    Head III, James William

    that valley networks could have formed as a result of basal melting of thick snow and ice deposits. Depending in part by basal melting of the south polar cap [Clifford, 1987], this cannot be the only mechanismBasal melting of snow on early Mars: A possible origin of some valley networks Michael H. Carr U. S

  16. Melting of small Arctic ice caps observed from ERS scatterometer time series

    E-Print Network [OSTI]

    Smith, Laurence C.

    Melting of small Arctic ice caps observed from ERS scatterometer time series Laurence C. Smith,1 of melt onset can be observed over small ice caps, as well as the major ice sheets and multi-year sea ice for 14 small Arctic ice caps from 1992­2000. Interannual and regional variability in the timing of melt

  17. Blazar Variability and Evolution in the GeV Regime

    E-Print Network [OSTI]

    Tsujimoto, S; Nishijima, K; Kodani, K

    2015-01-01T23:59:59.000Z

    One of the most important problem of the blazar astrophysics is to understand the physical origin of the blazar sequence. In this study, we focus on the GeV gamma-ray variability of blazars and evolution perspective we search the relation between the redshift and the variability amplitude of blazars for each blazar subclass. We analyzed the Fermi-LAT data of the TeV blazars and the bright AGNs (flux $\\geq$ 4$\\times10^{-9}$ cm$^{-2}$s$^{-1}$) selected from the 2LAC (the 2nd LAT AGN catalog) data base. As a result, we found a hint of the correlation between the redshift and the variability amplitude in the FSRQs. Furthermore the BL Lacs which have relatively lower peak frequency of the synchrotron radiation and relatively lower redshift, have a tendency to have a smaller variability amplitude.

  18. Pressure Safety of JLAB 12GeV Upgrade Cryomodule

    SciTech Connect (OSTI)

    Cheng, Gary [JLAB; Wiseman, Mark A. [JLAB; Daly, Ed [JLAB

    2009-11-01T23:59:59.000Z

    This paper reviews pressure safety considerations, per the US Department of Energy (DOE) 10CFR851 Final Rule [1], which are being implemented during construction of the 100 Megavolt Cryomodule (C100 CM) for Jefferson Lab’s 12 GeV Upgrade Project. The C100 CM contains several essential subsystems that require pressure safety measures: piping in the supply and return end cans, piping in the thermal shield and the helium headers, the helium vessel assembly which includes high RRR niobium cavities, the end cans, and the vacuum vessel. Due to the vessel sizes and pressure ranges, applicable national consensus code rules are applied. When national consensus codes are not applicable, equivalent design and fabrication approaches are identified and implemented. Considerations for design, material qualification, fabrication, inspection and examination are summarized. In addition, JLAB’s methodologies for implementation of the 10 CFR 851 requirements are described.

  19. Vacancies in Al after pulsed electron beam melting

    SciTech Connect (OSTI)

    Follstaedt, D.M.; Wampler, W.R.

    1981-02-01T23:59:59.000Z

    We have used transmission electron microscopy (TEM) to study the retention of vacancies in Al after rapid melting and resolidification of a thin (approx. 3 ..mu..m) surface layer using a pulsed (approx.50 ns) electron beam. After pulsing and aging at room temperature, TEM examination showed dislocation loops, which are interpreted to be due to the coalescence of the quenched-in vacancies on )111) planes as is the case for the loops observed in earlier furnace quenching studies. Our results indicate that the rapid melting and resolidification leaves a high vacancy concentration (approx.100 ppm) in the resolidified Al. Heat transport calculations show that cooling rates for the pulse heated samples (approx.10/sup 8/ K/s) are much higher than those achieved by conventional quenching techniques (approx. 10/sup 4/ K/s).

  20. Simulation of multicomponent evaporation in electron beam melting and refining

    SciTech Connect (OSTI)

    Powell, A.; Szekely, J. [Massachusetts Inst. of Tech., Cambridge, MA (United States); Van Den Avyle, J.; Damkroger, B. [Sandia National Labs., Albuquerque, NM (United States)

    1996-06-01T23:59:59.000Z

    Experimental results and a mathematical model are presented to describe differential evaporation rates in electron beam melting of titanium alloys containing aluminum and vanadium. Experiments characterized the evaporation rate of commercially pure titanium, and vapor composition over titanium with up to 6% Al and 4.5% V content as a function of beam power, scan frequency and background pressure. The model is made up of a steady-state heat and mass transport model of a melting hearth and a model of transient thermal and flow behavior near the surface. Activity coefficients for aluminum and vanadium in titanium are roughly estimated by fitting model parameters to experimental results. Based on the ability to vary evaporation rate by 10-15% using scan frequency alone, we discuss the possibility of on-line composition control by means of intelligent manipulation of the electron beam.

  1. Hydrodynamic coarsening in phase-separated silicate melts

    E-Print Network [OSTI]

    David Bouttes; Océane Lambert; Corinne Claireaux; William Woelffel; Davy Dalmas; Emmanuelle Gouillart; Pierre Lhuissier; Luc Salvo; Elodie Boller; Damien Vandembroucq

    2015-02-12T23:59:59.000Z

    Using in-situ synchrotron tomography, we investigate the coarsening dynamics of barium borosilicate melts during phase separation. The 3-D geometry of the two interconnected phases is determined thanks to image processing. We observe a linear growth of the size of domains with time, at odds with the sublinear diffusive growth usually observed in phase-separating glasses or alloys. Such linear coarsening is attributed to viscous flow inside the bicontinuous phases, and quantitative measurements show that the growth rate is well explained by the ratio of surface tension over viscosity. The geometry of the domains is shown to be statistically similar at different times, provided that the microstructure is rescaled by the average domain size. Complementary experiments on melts with a droplet morphology demonstrate that viscous flow prevails over diffusion in the large range of domain sizes measured in our experiments (1 - 80 microns).

  2. Removing a sheet from the surface of a melt using gas jets

    DOE Patents [OSTI]

    Kellerman, Peter L; Thronson, Gregory D; Sun, Dawei

    2014-04-01T23:59:59.000Z

    In one embodiment, a sheet production apparatus comprises a vessel configured to hold a melt of a material. A cooling plate is disposed proximate the melt and is configured to form a sheet of the material on the melt. A first gas jet is configured to direct a gas toward an edge of the vessel. A sheet of a material is translated horizontally on a surface of the melt and the sheet is removed from the melt. The first gas jet may be directed at the meniscus and may stabilize this meniscus or increase local pressure within the meniscus.

  3. Advanced coal-fired glass melting development program

    SciTech Connect (OSTI)

    Not Available

    1991-05-01T23:59:59.000Z

    The objective of Phase 1 of the current contract was to verify the technical feasibility and economic benefits of Vortec's advanced combustion/melting technology using coal as the fuel of choice. The objective of the Phase 2 effort was to improve the performance of the primary components and demonstrate the effective operation of a subscale process heater system integrated with a glass separator/reservoir. (VC)

  4. Proceedings of ALGORITMY 2005 BOUNDARY CONTROL OF SEMICONDUCTOR MELTS

    E-Print Network [OSTI]

    Hinze, Michael

    -type functionals of the form J(u, c) = 1 2 T 0 |u - u|2 ddt + 2 T 0 c (2 c + 2 ct ) ddt,(1) whereas goal (ii) may be related to minimal values of vorticity-type functionals of the form J(u, c) = 1 2 T 0 |curlu|2 ddt + 2 T 0 c (2 c + 2 ct ) ddt .(2) Above, u denotes the flow velocity vector field in the melt, and u

  5. Novel Phases and Reentrant Melting of Two Dimensional Colloidal Crystals

    E-Print Network [OSTI]

    Leo Radzihovsky; Erwin Frey; David R. Nelson

    2000-08-11T23:59:59.000Z

    We investigate two-dimensional (2d) melting in the presence of a one-dimensional (1d) periodic potential as, for example, realized in recent experiments on 2d colloids subjected to two interfering laser beams. The topology of the phase diagram is found to depend primarily on two factors: the relative orientation of the 2d crystal and the periodic potential troughs, which select a set of Bragg planes running parallel to the troughs, and the commensurability ratio p= a'/d of the spacing a' between these Bragg planes to the period d of the periodic potential. The complexity of the phase diagram increases with the magnitude of the commensurabilty ratio p. Rich phase diagram, with ``modulated liquid'', ``floating'' and ``locked floating'' solid and smectic phases are found. Phase transitions between these phases fall into two broad universality classes, roughening and melting, driven by the proliferation of discommensuration walls and dislocations, respectively. We discuss correlation functions and the static structure factor in these phases and make detailed predictions of the universal features close to the phase boundaries. We predict that for charged systems with highly screened short-range interactions these melting transitions are generically reentrant as a function of the strength of the periodic potential, prediction that is in accord with recent 2d colloid experiments. Implications of our results for future experiments are also discussed.

  6. Rapid additive manufacturing of MR compatible multipinhole collimators with selective laser melting of tungsten powder

    SciTech Connect (OSTI)

    Deprez, Karel; Vandenberghe, Stefaan; Van Audenhaege, Karen; Van Vaerenbergh, Jonas; Van Holen, Roel [MEDISIP, Department of Electronics and Information Systems, Ghent University-iMinds-IBiTech, De Pintelaan 185, B-9000 Ghent (Belgium); Layerwise NV, Kapeldreef 60, 3001 Leuven (Belgium); MEDISIP, Department of Electronics and Information Systems, Ghent University-iMinds-IBiTech, De Pintelaan 185, B-9000 Ghent (Belgium)

    2013-01-15T23:59:59.000Z

    Purpose: The construction of complex collimators with a high number of oblique pinholes is very labor intensive, expensive or is sometimes impossible with the current available techniques (drilling, milling or electric discharge machining). All these techniques are subtractive: one starts from solid plates and the material at the position of the pinholes is removed. The authors used a novel technique for collimator construction, called metal additive manufacturing. This process starts with a solid piece of tungsten on which a first layer of tungsten powder is melted. Each subsequent layer is then melted on the previous layer. This melting is done by selective laser melting at the locations where the CAD design file defines solid material. Methods: A complex collimator with 20 loftholes with 500 {mu}m diameter pinhole opening was designed and produced (16 mm thick and 70 Multiplication-Sign 52 mm{sup 2} transverse size). The density was determined, the production accuracy was measured (GOM ATOS II Triple Scan, Nikon AZ100M microscope, Olympus IMT200 microscope). Point source measurements were done by mounting the collimator on a SPECT detector. Because there is increasing interest in dual-modality SPECT-MR imaging, the collimator was also positioned in a 7T MRI scanner (Bruker Pharmascan). A uniform phantom was acquired using T1, T2, and T2* sequences to check for artifacts or distortion of the phantom images due to the collimator presence. Additionally, three tungsten sample pieces (250, 500, and 750 {mu}m thick) were produced. The density, attenuation (140 keV beam), and uniformity (GE eXplore Locus SP micro-CT) of these samples were measured. Results: The density of the collimator was equal to 17.31 {+-} 0.10 g/cm{sup 3} (89.92% of pure tungsten). The production accuracy ranges from -260 to +650 {mu}m. The aperture positions have a mean deviation of 5 {mu}m, the maximum deviation was 174 {mu}m and the minimum deviation was -122 {mu}m. The mean aperture diameter is 464 {+-} 19 {mu}m. The calculated and measured sensitivity and resolution of point sources at different positions in the field-of-view agree well. The measured and expected attenuation of the three sample pieces are in a good agreement. There was no influence of the 7T magnetic field on the collimator (which is paramagnetic) and minimal distortion was noticed on the MR scan of the uniform phantom. Conclusions: Additive manufacturing is a very promising technique for the production of complex multipinhole collimators and may also be used for producing other complex collimators. The cost of this technique is only related to the amount of powder needed and the time it takes to have the collimator built. The timeframe from design to collimator production is significantly reduced.

  7. A computational model for viscous fluid flow, heat transfer, and melting in in situ vitrification melt pools

    SciTech Connect (OSTI)

    McHugh, P.R.; Ramshaw, J.D.

    1991-11-01T23:59:59.000Z

    MAGMA is a FORTRAN computer code designed to viscous flow in in situ vitrification melt pools. It models three-dimensional, incompressible, viscous flow and heat transfer. The momentum equation is coupled to the temperature field through the buoyancy force terms arising from the Boussinesq approximation. All fluid properties, except density, are assumed variable. Density is assumed constant except in the buoyancy force terms in the momentum equation. A simple melting model based on the enthalpy method allows the study of the melt front progression and latent heat effects. An indirect addressing scheme used in the numerical solution of the momentum equation voids unnecessary calculations in cells devoid of liquid. Two-dimensional calculations can be performed using either rectangular or cylindrical coordinates, while three-dimensional calculations use rectangular coordinates. All derivatives are approximated by finite differences. The incompressible Navier-Stokes equations are solved using a new fully implicit iterative technique, while the energy equation is differenced explicitly in time. Spatial derivatives are written in conservative form using a uniform, rectangular, staggered mesh based on the marker and cell placement of variables. Convective terms are differenced using a weighted average of centered and donor cell differencing to ensure numerical stability. Complete descriptions of MAGMA governing equations, numerics, code structure, and code verification are provided. 14 refs.

  8. Method of and apparatus for determining deposition-point temperature

    DOE Patents [OSTI]

    Mansure, Arthur J. (Albuquerque, NM); Spates, James J. (Albuquerque, NM); Martin, Stephen J. (Albuquerque, NM)

    1998-01-01T23:59:59.000Z

    Acoustic-wave sensor apparatus and method for analyzing a normally liquid petroleum-based composition for monitoring deposition-point temperature. The apparatus includes at least one acoustic-wave device such as SAW, QCM, FPM, TSM or APM type devices in contact with the petroleum-based composition for sensing or detecting the surface temperature at which deposition occurs and/or rate of deposition as a function of temperature by sensing an accompanying change in frequency, phase shift, damping voltage or damping current of an electrical oscillator to a known calibrated condition. The acoustic wave device is actively cooled to monitor the deposition of constituents such as paraffins by determining the point at which solids from the liquid composition begin to form on the acoustic wave device. The acoustic wave device can be heated to melt or boil off the deposits to reset the monitor and the process can be repeated.

  9. Method of and apparatus for determining deposition-point temperature

    DOE Patents [OSTI]

    Mansure, A.J.; Spates, J.J.; Martin, S.J.

    1998-10-27T23:59:59.000Z

    Acoustic-wave sensor apparatus and method are disclosed for analyzing a normally liquid petroleum-based composition for monitoring deposition-point temperature. The apparatus includes at least one acoustic-wave device such as SAW, QCM, FPM, TSM or APM type devices in contact with the petroleum-based composition for sensing or detecting the surface temperature at which deposition occurs and/or rate of deposition as a function of temperature by sensing an accompanying change in frequency, phase shift, damping voltage or damping current of an electrical oscillator to a known calibrated condition. The acoustic wave device is actively cooled to monitor the deposition of constituents such as paraffins by determining the point at which solids from the liquid composition begin to form on the acoustic wave device. The acoustic wave device can be heated to melt or boil off the deposits to reset the monitor and the process can be repeated. 5 figs.

  10. Author's personal copy Coexisting silicate melt inclusions and H2O-bearing, CO2-rich fluid inclusions in mantle

    E-Print Network [OSTI]

    Bodnar, Robert J.

    Author's personal copy Coexisting silicate melt inclusions and H2O-bearing, CO2-rich fluid­Pannonian region Hungary C­O­H­S fluid inclusions Peridotite xenoliths Silicate melt inclusions Volatile (fluid)­silicate melt immiscibility Coexisting fluid inclusions and silicate melt inclusions, trapped as primary

  11. $\\Lambda$(1520)-Produktion in Proton-Proton- und zentralen Blei-Blei-Reaktionen bei 158 GeV pro Nukleon

    E-Print Network [OSTI]

    Markert, C

    2000-01-01T23:59:59.000Z

    $\\Lambda$(1520)-Produktion in Proton-Proton- und zentralen Blei-Blei-Reaktionen bei 158 GeV pro Nukleon

  12. Shower characteristics of particles with momenta from up to 100 GeV in the CALICE Scintillator-Tungsten HCAL

    E-Print Network [OSTI]

    Klempt W

    2015-01-01T23:59:59.000Z

    Shower characteristics of particles with momenta from up to 100 GeV in the CALICE Scintillator-Tungsten HCAL

  13. Photon electroproduction from hydrogen at backward angles and momentum transfer squared of $Q^{2}=1.0Gev^{2}$

    E-Print Network [OSTI]

    Laveissière, G; Jaminion, S; Jutier, C; Todor, L; Di Salvo, R; Van Hoorebeke, L; Alexa, L C; Anderson, B D; Aniol, K A; Arundell, K; Audit, G; Auerbach, L; Baker, F T; Baylac, M; Berthot, J; Bertin, P Y; Bertozzi, W; Bimbot, L; Böglin, W; Brash, E J; Breton, V; Breuer, H; Burtin, E; Calarco, J R; Cardman, L S; Cavata, C; Chang, C C; Chen, J P; Chudakov, E; Cisbani, E; Dale, D S; De Jager, C W; De Leo, R; Deur, A; D'Hose, N; Dodge, G E; Domingo, John J; Elouadrhiri, L; Epstein, M B; Ewell, L A; Finn, J M; Fissum, K G; Fonvieille, H; Fournier, G; Frois, B; Frullani, S; Furget, C; Gao, H; Gao, J; Garibaldi, F; Gasparian, A; Gilad, S; Gilman, R; Glamazdin, A; Glashausser, C; Gómez, J; Gorbenko, V; Grenier, P; Guichon, P A M; Hansen, J O; Holmes, R; Holtrop, M; Howell, C; Huber, G M; Hyde-Wright, C E; Incerti, S; Iodice, M; Jardillier, J; Jones, M K; Kahl, W; Kamalov, S; Kato, S; Katramatou, A T; Kelly, J J; Kerhoas, S; Ketikyan, A; Khayat, M; Kino, K; Kox, S; Kramer, L H; Kumar, K S; Kumbartzki, G; Kuss, M; Leone, A; Le Rose, J J; Liang, M; Lindgren, R A; Liyanage, N K; Lolos, G J; Lourie, R W; Madey, R; Maeda, K; Malov, S; Manley, D M; Marchand, C; Marchand, D; Margaziotis, D J; Markowitz, P; Marroncle, J; Martino, J; McCormick, K; McIntyre, J; Mehrabyan, S S; Merchez, F; Meziani, Z E; Michaels, R; Miller, G W; Mougey, J Y; Nanda, S K; Neyret, D; Offermann, E; Papandreou, Z; Perdrisat, C F; Perrino, R; Petratos, G G; Platchkov, S; Pomatsalyuk, R I; Prout, D L; Punjabi, V A; Pussieux, T; Quéméner, G; Ransome, R D; Ravel, O; Real, J S; Renard, F; Roblin, Y; Rowntree, D; Rutledge, G; Rutt, P M; Saha, A; Saitô, T; Sarty, A J; Serdarevic, A; Smith, T; Smirnov, G; Soldi, K; Sorokin, P; Souder, P A; Suleiman, R; Templon, J A; Terasawa, T; Tiator, L; Tieulent, R; Tomasi-Gustafsson, E; Tsubota, H; Ueno, H; Ulmer, P E; Urciuoli, G M; Van De Vyver, R; Van, R L J; der Meer; Vernin, P; Vlahovic, B; Voskanyan, H; Voutier, E; Watson, J W; Weinstein, L B; Wijesooriya, K; Wilson, R; Wojtsekhowski, B B; Zainea, D G; Zhang, W M; Zhao, J; Zhou, Z L

    2004-01-01T23:59:59.000Z

    Photon electroproduction from hydrogen at backward angles and momentum transfer squared of $Q^{2}=1.0Gev^{2}$

  14. Positron-production Experiment In Tungsten Crystal Using 4 And 8-gev Channeling Electrons At The Kekb Injector Linac

    E-Print Network [OSTI]

    Suwada, T; Chehab, R; Enomoto, A; Furukawa, K; Kakihara, K; Kamitani, T; Ogawa, Y; Ohsawa, S; Okuno, H; Oogoe, T; Fujita, T; Umemori, K; Yoshida, K; Ababiy, V; Potylitsin, A P; Vnukov, I E; Hamatsu, R; Sasahara, K

    2002-01-01T23:59:59.000Z

    Positron-production Experiment In Tungsten Crystal Using 4 And 8-gev Channeling Electrons At The Kekb Injector Linac

  15. Positron-production Experiment By 8-gev Channeling Electrons In Crystal Tungsten At The Kekb Injector Linac

    E-Print Network [OSTI]

    Suwada, T

    2001-01-01T23:59:59.000Z

    Positron-production Experiment By 8-gev Channeling Electrons In Crystal Tungsten At The Kekb Injector Linac

  16. Strategic Focus Points

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33Frequently AskedEnergyIssues DOE's NuclearSpurringSteam Systems SteamR.Strategic Focus Points

  17. Gamma-Ray Bursts Above 1 GeV

    E-Print Network [OSTI]

    Matthew G. Baring

    1997-11-21T23:59:59.000Z

    One of the principal results obtained by the Compton Gamma Ray Observatory relating to the study of gamma-ray bursts was the detection by the EGRET instrument of energetic ($>$100 MeV) photons from a handful of bright bursts. The most extreme of these was the single 18 GeV photon from the GRB940217 source. Given EGRET's sensitivity and limited field of view, the detection rate implies that such high energy emission may be ubiquitous in bursts. Hence expectations that bursts emit out to at least TeV energies are quite realistic, and the associated target-of-opportunity activity of the TeV gamma-ray community is well-founded. This review summarizes the observations and a handful of theoretical models for generating GeV--TeV emission in bursts sources, outlining possible ways that future positive detections could discriminate between different scenarios. The power of observations in the GeV--TeV range to distinguish between spectral structure intrinsic to bursts and that due to the intervening medium between source and observer is also discussed.

  18. A point of order 8

    E-Print Network [OSTI]

    Semjon Adlaj

    2011-10-03T23:59:59.000Z

    A formula expressing a point of order 8 on an elliptic curve, in terms of the roots of the associated cubic polynomial, is given. Doubling such a point yields a point of order 4 distinct from the well-known points of order 4 given in standard references such as "A course of Modern Analysis" by Whittaker and Watson.

  19. Production of medium-mass neutron-rich nuclei in reactions induced by 136Xe projectiles at 1 A GeV on a beryllium target

    E-Print Network [OSTI]

    J. Benlliure; M. Fernandez-Ordonez; L. Audouin; A. Boudard; E. Casarejos; J. E. Ducret; T. Enqvist; A. Heinz; D. Henzlova; V. Henzl; A. Kelic; S. Leray; P. Napolitani; J. Pereira; F. Rejmund; M. V. Ricciardi; K. -H. Schmidt; C. Schmitt; C. Stephan; L. Tassan-Got; C. Volant; C. Villagrasa; O. Yordanov

    2008-07-17T23:59:59.000Z

    Production cross sections of medium-mass neutron-rich nuclei obtained in the fragmentation of 136Xe projectiles at 1 A GeV have been measured with the FRagment Separator (FRS) at GSI. 125Pd was identified for the first time. The measured cross sections are compared to 238U fission yields and model calculations in order to determine the optimum reaction mechanism to extend the limits of the chart of the nuclides around the r-process waiting point at N=82.

  20. Measurement of the complete nuclide production and kinetic energies of the system 136Xe + hydrogen at 1 GeV per nucleon

    E-Print Network [OSTI]

    P. Napolitani; K. -H. Schmidt; L. Tassan-Got; P. Armbruster; T. Enqvist; A. Heinz; V. Henzl; D. Henzlova; A. Kelic; R. Pleskac; M. V. Ricciardi; C. Schmitt; O. Yordanov; L. Audouin; M. Bernas; A. Lafriaskh; F. Rejmund; C. Stephan; J. Benlliure; E. Casarejos; M. Fernandez Ordonez; J. Pereira; A. Boudard; B. Fernandez; S. Leray; C. Villagrasa; C. Volant

    2007-06-05T23:59:59.000Z

    We present an extensive overview of production cross sections and kinetic energies for the complete set of nuclides formed in the spallation of 136Xe by protons at the incident energy of 1 GeV per nucleon. The measurement was performed in inverse kinematics at the FRagment Separator (GSI, Darmstadt). Slightly below the Businaro-Gallone point, 136Xe is the stable nuclide with the largest neutron excess. The kinematic data and cross sections collected in this work for the full nuclide production are a general benchmark for modelling the spallation process in a neutron-rich nuclear system, where fission is characterised by predominantly mass-asymmetric splits.

  1. Pion-proton correlations and asymmetry measurement in Au+Au collisions at $\\sqrt{s_{NN}}=200$ $GeV$ data

    E-Print Network [OSTI]

    Marcin Zawisza; for the STAR Collaboration

    2010-12-30T23:59:59.000Z

    Correlations between non-identical particles at small relative velocity probe asymmetries in the average space-time emission points at freeze-out. The origin of such asymmetries may be from long-lived resonances, bulk collective effects, or differences in the freeze-out scenario for the different particle species. STAR has extracted pion-proton correlation functions from a dataset of Au+Au collisions at $\\sqrt{s_{NN}}=200$ $GeV$. We present correlation functions in the spherical harmonic decomposition representation, for different centralities and for different combinations of pions and (anti-)protons.

  2. Composition monitoring of electron beam melting processes using diode lasers

    SciTech Connect (OSTI)

    Berzins, L.V.

    1991-11-20T23:59:59.000Z

    Electron beam melting processes are used to produce high purity alloys for a wide range of applications. Real time monitoring of the alloy constituents, however, has historically been difficult. Absorption spectroscopy using diode lasers provides a means for measuring constituent densities, and hence alloy composition, in real time. Diode lasers are suggested because they are inexpensive and require little maintenance. There is increasing interest in the composition and quality control of titanium alloys used in aircraft parts. For this reason we describe a proposed system for composition monitoring of titanium alloys. Performance and cost of the proposed system is addressed. We discuss the applicability of this approach to other alloys.

  3. Melt coolability modeling and comparison to MACE test results

    SciTech Connect (OSTI)

    Farmer, M.T.; Sienicki, J.J.; Spencer, B.W.

    1992-04-01T23:59:59.000Z

    An important question in the assessment of severe accidents in light water nuclear reactors is the ability of water to quench a molten corium-concrete interaction and thereby terminate the accident progression. As part of the Melt Attack and Coolability Experiment (MACE) Program, phenomenological models of the corium quenching process are under development. The modeling approach considers both bulk cooldown and crust-limited heat transfer regimes, as well as criteria for the pool thermal hydraulic conditions which separate the two regimes. The model is then compared with results of the MACE experiments.

  4. Melt coolability modeling and comparison to MACE test results

    SciTech Connect (OSTI)

    Farmer, M.T.; Sienicki, J.J.; Spencer, B.W.

    1992-01-01T23:59:59.000Z

    An important question in the assessment of severe accidents in light water nuclear reactors is the ability of water to quench a molten corium-concrete interaction and thereby terminate the accident progression. As part of the Melt Attack and Coolability Experiment (MACE) Program, phenomenological models of the corium quenching process are under development. The modeling approach considers both bulk cooldown and crust-limited heat transfer regimes, as well as criteria for the pool thermal hydraulic conditions which separate the two regimes. The model is then compared with results of the MACE experiments.

  5. Sedimentation profiles of systems with reentrant melting behavior

    E-Print Network [OSTI]

    J. Dzubiella; H. M. Harreis; C. N. Likos; H. Lowen

    2001-01-26T23:59:59.000Z

    We examine sedimentation density profiles of star polymer solutions as an example of colloidal systems in sedimentation equilibrium which exhibit reentrant melting in their bulk phase diagram. Phase transitions between a fluid and a fluid with an intercalated solid are observed below a critical gravitational strength $\\alpha^{*}$. Characteristics of the two fluid-solid interfaces in the density profiles occurring in Monte Carlo simulations for $\\alpha laws put forth in the framework of a phenomenological theory. Furthermore we detect density oscillations at the fluid-gas interface at high altitudes for high gravitational fields, which are verified with density functional theory and should be observable in surface scattering experiments.

  6. ARM - Lesson Plans: When Floating Ice Melts in the Sea

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadap Documentation TDMADAP : XDC documentationBarrow, AlaskaWhen Floating Ice Melts in the Sea

  7. Simultaneous feature selection and parameter optimisation using an artificial ant colony: case study of melting point prediction

    E-Print Network [OSTI]

    O'Boyle, Noel M; Palmer, David S; Nigsch, Florian; Mitchell, John B O

    2008-10-29T23:59:59.000Z

    .8990097,9.8990097,-1.0703599,53.921799,5.2134662,-0.045375373,35.842514,0.017433109,-0.97723341,0.82533467,8.7683783,0.042186011,3.2546716,35.88789,0.016062379,-164.384,-948.87329,26.971001,-10.19251,10.19251,-1.50967,0.00078117027,8709.8232,3.7016466,0...

  8. Bottomonium and Drell-Yan production in p-A collisions at 450 GeV

    E-Print Network [OSTI]

    NA50 Collaboration

    2006-03-23T23:59:59.000Z

    The NA50 Collaboration has measured heavy-quarkonium production in p-A collisions at 450 GeV incident energy (sqrt(s) = 29.1 GeV). We report here results on the production of the Upsilon states and of high-mass Drell-Yan muon pairs (m > 6 GeV). The cross-section at midrapidity and the A-dependence of the measured yields are determined and compared with the results of other fixed-target experiments and with the available theoretical estimates. Finally, we also address some issues concerning the transverse momentum distributions of the measured dimuons.

  9. Bottomonium and Drell-Yan production in p-A collisions at 450 GeV

    E-Print Network [OSTI]

    Alessandro, B; Arnaldi, R; Atayan, M; Beolè, S; Boldea, V; Bordalo, P; Borges, G; Castor, J; Chaurand, B; Cheynis, B; Chiavassa, E; Cicalò, C; Comets, M P; Constantinescu, S; Cortese, P; De Falco, A; De Marco, N; Dellacasa, G; Devaux, A; Dita, S; Fargeix, J; Force, P; Gallio, M; Gerschel, C; Giubellino, P; Golubeva, M B; Grigorian, A A; Grossiord, J Y; Guber, F F; Guichard, A; Gulkanian, H R; Idzik, M; Jouan, D; Karavicheva, T L; Kluberg, L; Kurepin, A B; Le Bornec, Y; Lourenço, C; MacCormick, M; Marzari-Chiesa, A; Masera, M; Masoni, A; Monteno, M; Musso, A; Petiau, P; Piccotti, A; Pizzi, J R; Prino, F; Puddu, G; Quintans, C; Ramello, L; Ramos, S; Riccati, L; Santos, H; Saturnini, P; Scomparin, E; Serci, S; Shahoyan, R; Sitta, M; Sonderegger, P; Tarrago, X; Topilskaya, N S; Usai, G L; Vercellin, E; Willis, N

    2006-01-01T23:59:59.000Z

    The NA50 Collaboration has measured heavy-quarkonium production in p-A collisions at 450 GeV incident energy (sqrt(s) = 29.1 GeV). We report here results on the production of the Upsilon states and of high-mass Drell-Yan muon pairs (m > 6 GeV). The cross-section at midrapidity and the A-dependence of the measured yields are determined and compared with the results of other fixed-target experiments and with the available theoretical estimates. Finally, we also address some issues concerning the transverse momentum distributions of the measured dimuons.

  10. Co-gasification of municipal solid waste and material recovery in a large-scale gasification and melting system

    SciTech Connect (OSTI)

    Tanigaki, Nobuhiro, E-mail: tanigaki.nobuhiro@nsc-eng.co.jp [Nippon Steel Engineering Co., Ltd. (Head Office), Osaki Center Building 1-5-1, Osaki, Shinagawa-ku, Tokyo 141-8604 (Japan); Manako, Kazutaka [Nippon Steel Engineering Co., Ltd., 46-59, Nakabaru, Tobata-ku, Kitakyushu, Fukuoka 804-8505 (Japan); Osada, Morihiro [Nippon Steel Engineering Co., Ltd. (Head Office), Osaki Center Building 1-5-1, Osaki, Shinagawa-ku, Tokyo 141-8604 (Japan)

    2012-04-15T23:59:59.000Z

    Highlights: Black-Right-Pointing-Pointer This study evaluates the effects of co-gasification of MSW with MSW bottom ash. Black-Right-Pointing-Pointer No significant difference between MSW treatment with and without MSW bottom ash. Black-Right-Pointing-Pointer PCDD/DFs yields are significantly low because of the high carbon conversion ratio. Black-Right-Pointing-Pointer Slag quality is significantly stable and slag contains few hazardous heavy metals. Black-Right-Pointing-Pointer The final landfill amount is reduced and materials are recovered by DMS process. - Abstract: This study evaluates the effects of co-gasification of municipal solid waste with and without the municipal solid waste bottom ash using two large-scale commercial operation plants. From the viewpoint of operation data, there is no significant difference between municipal solid waste treatment with and without the bottom ash. The carbon conversion ratios are as high as 91.7% and 95.3%, respectively and this leads to significantly low PCDD/DFs yields via complete syngas combustion. The gross power generation efficiencies are 18.9% with the bottom ash and 23.0% without municipal solid waste bottom ash, respectively. The effects of the equivalence ratio are also evaluated. With the equivalence ratio increasing, carbon monoxide concentration is decreased, and carbon dioxide and the syngas temperature (top gas temperature) are increased. The carbon conversion ratio is also increased. These tendencies are seen in both modes. Co-gasification using the gasification and melting system (Direct Melting System) has a possibility to recover materials effectively. More than 90% of chlorine is distributed in fly ash. Low-boiling-point heavy metals, such as lead and zinc, are distributed in fly ash at rates of 95.2% and 92.0%, respectively. Most of high-boiling-point heavy metals, such as iron and copper, are distributed in metal. It is also clarified that slag is stable and contains few harmful heavy metals such as lead. Compared with the conventional waste management framework, 85% of the final landfill amount reduction is achieved by co-gasification of municipal solid waste with bottom ash and incombustible residues. These results indicate that the combined production of slag with co-gasification of municipal solid waste with the bottom ash constitutes an ideal approach to environmental conservation and resource recycling.

  11. Removing a sheet from the surface of a melt using elasticity and buoyancy

    DOE Patents [OSTI]

    Kellerman, Peter L.; Sun, Dawei; Helenbrook, Brian; Harvey, David S.

    2014-07-01T23:59:59.000Z

    Embodiments related to sheet production are disclosed. A melt of a material is cooled to form a sheet of the material on the melt. The sheet is formed in a first region at a first sheet height. The sheet is translated to a second region such that it has a second sheet height higher than the first sheet height. The sheet is then separated from the melt. A seed wafer may be used to form the sheet.

  12. A model for the latent heat of melting in free standing metal nanoparticles

    SciTech Connect (OSTI)

    Shin, Jeong-Heon; Deinert, Mark R., E-mail: mdeinert@mail.utexas.edu [Department of Mechanical Engineering, The University of Texas at Austin, Austin, Texas 78715 (United States)

    2014-04-28T23:59:59.000Z

    Nanoparticles of many metals are known to exhibit scale dependent latent heats of melting. Analytical models for this phenomenon have so far failed to completely capture the observed phenomena. Here we present a thermodynamic analysis for the melting of metal nanoparticles in terms of their internal energy and a scale dependent surface tension proposed by Tolman. The resulting model predicts the scale dependence of the latent heat of melting and is confirmed using published data for tin and aluminum.

  13. Method for detecting point mutations in DNA utilizing fluorescence energy transfer

    DOE Patents [OSTI]

    Parkhurst, Lawrence J. (Lincoln, NE); Parkhurst, Kay M. (Lincoln, NE); Middendorf, Lyle (Lincoln, NE)

    2001-01-01T23:59:59.000Z

    A method for detecting point mutations in DNA using a fluorescently labeled oligomeric probe and Forster resonance energy transfer (FRET) is disclosed. The selected probe is initially labeled at each end with a fluorescence dye, which act together as a donor/acceptor pair for FRET. The fluorescence emission from the dyes changes dramatically from the duplex stage, wherein the probe is hybridized to the complementary strand of DNA, to the single strand stage, when the probe is melted to become detached from the DNA. The change in fluorescence is caused by the dyes coming into closer proximity after melting occurs and the probe becomes detached from the DNA strand. The change in fluorescence emission as a function of temperature is used to calculate the melting temperature of the complex or T.sub.m. In the case where there is a base mismatch between the probe and the DNA strand, indicating a point mutation, the T.sub.m has been found to be significantly lower than the T.sub.m for a perfectly match probelstand duplex. The present invention allows for the detection of the existence and magnitude of T.sub.m, which allows for the quick and accurate detection of a point mutation in the DNA strand and, in some applications, the determination of the approximate location of the mutation within the sequence.

  14. Interfacial tension between aluminum and chloride-fluoride melts

    SciTech Connect (OSTI)

    Silny, A. [Slovak Academy of Sciences, Bratislava (Slovakia). Inst. of Inorganic Chemistry] [Slovak Academy of Sciences, Bratislava (Slovakia). Inst. of Inorganic Chemistry; Utigard, T.A. [Univ. of Toronto, Ontario (Canada). Dept. of Metallurgy and Materials Science] [Univ. of Toronto, Ontario (Canada). Dept. of Metallurgy and Materials Science

    1996-11-01T23:59:59.000Z

    Scrap and recycled aluminum have to be remelted and refined before being made into useful new products. This often involves melting the aluminum under a molten salt cover in order to prevent oxidation and to enhance the coalescence and recovery of the molten metal. A technique was developed for the measurement of the interfacial tension between liquid metals and molten salts at elevated temperatures. The technique is based on the measurement of the capillary depression occurring when a capillary, which is moved vertically down through the molten salt layer, passes through the salt/metal interface. The depression is measured by simultaneous video recording of the immersion height of the alumina capillary and the position of a liquid meniscus in a horizontal tube connected to the alumina capillary. The interfacial tension was measured for (a) aluminum and an equimolar melt of NaCl + KCl with several salt additions at 1,000 K, (b) aluminum and NaCl + NaF at 1,123 K, and (c) aluminum and NaCl + KF at 1,123 K. It was found that the interfacial tension decreases with increasing amount of NaF, increases with the increasing amount of MgCl{sub 2} additions, remains unchanged with AlF{sub 3} additions, and slightly decreases with the addition of MgF{sub 2} and Na{sub 3}AlF{sub 6}.

  15. Microwires fabricated by glass-coated melt spinning

    SciTech Connect (OSTI)

    Zhao, Y. Y.; Li, H.; Hao, H. Y.; Li, M.; Zhang, Y. [State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, No. 30, Xueyuan Road, Beijing 100083 (China)] [State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, No. 30, Xueyuan Road, Beijing 100083 (China); Liaw, P. K. [Department of Materials Science and Engineering, University of Tennessee, Knoxville, Tennessee 37996-2200 (United States)] [Department of Materials Science and Engineering, University of Tennessee, Knoxville, Tennessee 37996-2200 (United States)

    2013-07-15T23:59:59.000Z

    The glass-coated melt spinning method offers a route for the manufacture of metal filaments with a few micrometers in diameter in a single operation directly from the melt. Cobalt-based amorphous wires, Cu-15.0 atomic percent (at. %) Sn shape-memory wires, and Ni{sub 2}MnGa (atomic percent) ferromagnetic wires were successfully produced by this method. The cobalt-based amorphous wire is flexible, and Cu-15.0 at. % Sn shape-memory wires have the tensile elongation of 14%. However, because of chemical reaction with glass and oxidation, it is hard to make Cu–Al–Ni shape-memory wires and Ni–Nb–Sn amorphous wires. Conditions for preparing these materials were summarized, and the differences of the solidification processes among glass-coated amorphous cobalt-based wires, Cu-15.0 at. % Sn shape-memory wires, and Ni{sub 2}MnGa wires were analyzed and discussed.

  16. Volatilization of Fission Products from Metallic Melts in the Melt-Dilute Treatment Technology Development for Al-Based DOE Spent Nuclear Fuels

    SciTech Connect (OSTI)

    Adams, T.

    1999-11-18T23:59:59.000Z

    The melt-dilute treatment technology is being developed to facilitate the ultimate disposition of highly enriched Al-Base DOE spent nuclear fuels in a geologic repository such as that proposed for Yucca Mountain. Currently, approximately 28 MTHM is expected to be returned to the Savannah River Site from domestic and foreign research reactors. The melt-dilute treatment technology will melt the fuel assemblies to reduce their volume and alloys them with depleted uranium to isotopically dilute the 235U concentration. The resulting alloy is cast into a form for long term geologic repository storage. Benefits accrued from the melt-dilute process include the potential for significant volume reduction; reduced criticality potential, and proliferation concerns. A critical technology element in the development of the melt-dilute process is the development of offgas system requirements. The volatilization of radioactive species during the melting stage of the process primarily constitutes the offgas in this process. Several of the species present following irradiation of a fuel assembly have been shown to be volatile or semi-volatile under reactor core melt-down conditions. Some of the key species that have previously been studied are krypton, iodine, and cesium. All of these species have been shown to volatilize during melting experiments however, the degree to which they are released is highly dependent upon atmosphere, fuel burnup, temperature, and fuel composition. With this in mind an analytical and experimental program has been undertaken to assess the volatility and capture of species under the melt-dilute operating conditions.

  17. Early Commissioning Experience and Future Plans for the 12 GeV Continuous Electron Beam Accelerator Facility

    SciTech Connect (OSTI)

    Spata, Michael F. [JLAB

    2014-12-01T23:59:59.000Z

    Jefferson Lab has recently completed the accelerator portion of the 12 GeV Upgrade for the Continuous Electron Beam Accelerator Facility. All 52 SRF cryomodules have been commissioned and operated with beam. The initial beam transport goals of demonstrating 2.2 GeV per pass, greater than 6 GeV in 3 passes to an existing experimental facility and greater than 10 GeV in 5-1/2 passes have all been accomplished. These results along with future plans to commission the remaining beamlines and to increase the performance of the accelerator to achieve reliable, robust and efficient operations at 12 GeV are presented.

  18. Mobile Melt-Dilute Technology Development Project FY 2005 Test Report

    SciTech Connect (OSTI)

    David A. Sell; Donald Fisher

    2006-01-01T23:59:59.000Z

    The adaptation of Melt-Dilute technology to a mobile and deployable platform progressed with the installation of the prototype air-cooled induction furnace and power generator in an ISO cargo container. Process equipment tests were conducted in FY’05 on two fronts: the melt container and its associated hardware and the mobile furnace and generator. Container design was validated through tests at elevated temperature and pressure, under vacuum, and subjected to impact. The Mobile Melt-Dilute (MMD) furnace and power source tests were completed per the plan. The tests provided information necessary to successfully melt and dilute HEU research reactor fuel assemblies.

  19. Ex-Vessel Core Melt Modeling Comparison between MELTSPREAD-CORQUENCH and MELCOR 2.1

    SciTech Connect (OSTI)

    Robb, Kevin R [ORNL; Farmer, Mitchell [Argonne National Laboratory (ANL); Francis, Matthew W [ORNL

    2014-03-01T23:59:59.000Z

    System-level code analyses by both United States and international researchers predict major core melting, bottom head failure, and corium-concrete interaction for Fukushima Daiichi Unit 1 (1F1). Although system codes such as MELCOR and MAAP are capable of capturing a wide range of accident phenomena, they currently do not contain detailed models for evaluating some ex-vessel core melt behavior. However, specialized codes containing more detailed modeling are available for melt spreading such as MELTSPREAD as well as long-term molten corium-concrete interaction (MCCI) and debris coolability such as CORQUENCH. In a preceding study, Enhanced Ex-Vessel Analysis for Fukushima Daiichi Unit 1: Melt Spreading and Core-Concrete Interaction Analyses with MELTSPREAD and CORQUENCH, the MELTSPREAD-CORQUENCH codes predicted the 1F1 core melt readily cooled in contrast to predictions by MELCOR. The user community has taken notice and is in the process of updating their systems codes; specifically MAAP and MELCOR, to improve and reduce conservatism in their ex-vessel core melt models. This report investigates why the MELCOR v2.1 code, compared to the MELTSPREAD and CORQUENCH 3.03 codes, yield differing predictions of ex-vessel melt progression. To accomplish this, the differences in the treatment of the ex-vessel melt with respect to melt spreading and long-term coolability are examined. The differences in modeling approaches are summarized, and a comparison of example code predictions is provided.

  20. Probing the QCD Critical Point by Higher Moments of Net-Charge Distribution

    E-Print Network [OSTI]

    Nihar Ranjan Sahoo

    2011-01-26T23:59:59.000Z

    The Beam Energy Scan program has been undertaken at the Relativistic Heavy Ion Collider (RHIC) to search for the QCD critical point. The presence of the critical point is expected to lead to non-monotonic behavior of several quantities. Here we report the result of higher moments of net-charge distributions for Au+Au collisions at $\\sqrt{s_{NN}}$ = 39 GeV as measured by the STAR experiment. The STAR results are compared with results from HIJING event generator and Hadron Resonance (HRG) Models.

  1. MODEL STORAGE RING FOR 6 GEV OPERATION AS A SYNCHROTRON RADIATION...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    STORAGE RING FOR 6 GEV OPERATION AS A SYNCHROTRON RADIATION SOURCE PARAMETER LIST Comments: (- To be completed). (* To be defined by workshop) LATTICE PARAMETERS Energy (CeV) Beam...

  2. Beam On Target! - CEBAF Accelerator Achieves 12 GeV Commissioning...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Q2 and Measurements of the Electron-Helicity Dependent Cross Sections of Deeply Virtual Compton Scattering with CEBAF at 12 GeV) Both experiments will be run in Experimental Hall...

  3. St Andrews Recycling Points Recycling Points are situated locally to

    E-Print Network [OSTI]

    St Andrews, University of

    St Andrews Recycling Points Recycling Points are situated locally to allow you to recycle the following materials: To find your nearest Recycling Point please visit www.fifedirect.org.uk/wasteaware or call the Recycling Helpline on 08451 55 00 22. R&A GOLF CLUB OLD COURSE HOTEL UNIVERSITY NORTH HAUGH

  4. Accelerating into the Future Zero to 1GeV in a Few Centimeters

    ScienceCinema (OSTI)

    LBNL

    2009-09-01T23:59:59.000Z

    July 8, 2008 Berkeley Lab lecture: By exciting electric fields in plasma-based waveguides, lasers accelerate electrons in a fraction of the distance conventional accelerators require. The Accelerator and Fusion Research Division's LOASIS program, headed by Wim Leemans, has used 40-trillion-watt laser pulses to deliver billion-electron-volt (1 GeV) electron beams within centimeters. Leemans looks ahead to BELLA, 10-GeV accelerating modules that could power a future linear collider.

  5. Measurements of $ep \\to e^\\prime ?^+n$ at W = 1.6 - 2.0 GeV and extraction of nucleon resonance electrocouplings at CLAS

    E-Print Network [OSTI]

    K. Park; I. G. Aznauryan; V. D. Burkert; the CLAS collaboration

    2014-12-17T23:59:59.000Z

    Differential cross sections of the exclusive process $e p \\to e^\\prime \\pi^+ n$ were measured with good precision in the range of the photon virtuality $Q^2 = 1.8 - 4.5$ GeV$^2$, and the invariant mass range of the $\\pi^+ n$ final state W = 1.6 - 2.0 GeV using the CEBAF Large Acceptance Spectrometer. Data were collected with nearly complete coverage in the azimuthal and polar angles of the $n\\pi^+$ center-of-mass system. More than 37,000 cross section points were measured. The contributions of the isospin $I = {1\\over 2}$ resonances $N(1675){5\\over 2}^-$, $N(1680){5\\over 2}^+$ and $N(1710){1\\over 2}^+$ were extracted at different values of $Q^2$ using a single-channel, energy-dependent resonance amplitude analysis. Two different approaches, the unitary isobar model and the fixed-$t$ dispersion relations, were employed in the analysis. We observe significant strength of the $N(1675){5\\over 2}^-$ in the $A_{1/2}$ amplitude, which is in strong disagreement with quark models that predict both transverse amplitudes to be strongly suppressed. For the $N(1680){5\\over 2}^+$ we observe a slow changeover from the dominance of the $A_{3/2}$ amplitude at the real photon point ($Q^2=0$) to a $Q^2$ where $A_{1/2}$ begins to dominate. The scalar amplitude $S_{1/2}$ drops rapidly with $Q^2$ consistent with quark model prediction. For the $N(1710){1\\over 2}^+$ resonance our analysis shows significant strength for the $A_{1/2}$ amplitude at $Q^2 < 2.5$ GeV$^2$.

  6. Measurements of $ep \\to e^\\prime ?^+n$ at W = 1.6 - 2.0 GeV and extraction of nucleon resonance electrocouplings at CLAS

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Park, Kijun [ODU, JLAB; et. al.,; Aznauryan, I. G.; Burkert, V. D.; Adhikari, K. P.; Amaryan, M. J.; Pereira, S. Anefalos; Avakian, H.; Battaglieri, M.; Badui, R.; Bedlinskiy, I.; Biselli, A. S.; Bono, J.; Briscoe, W. J.; Brooks, W. K.; Carman, D. S.; Celentano, A.; Chandavar, S.; Charles, G.; Colaneri, L.; Cole, P. L.; Contalbrigo, M.; Cortes, O.; Crede, V.; D'Angelo, A.; Dashyan, N.; De Vita, R.; De Sanctis, E.; Deur, A.; Djalali, C.; Doughty, D.; Dupre, R.; Egiyan, H.; Alaoui, A. El; Elouadrhiri, L.; Fassi, L. El; Eugenio, P.; Fedotov, G.; Fegan, S.; Fersch, R.; Filippi, A.; Fleming, J. A.; Garillon, B.; Gar??on, M.; Gevorgyan, N.; Gilfoyle, G. P.; Giovanetti, K. L.; Girod, F. X.; Joo, H.S.; Goetz, J. T.; Golovatch, E.; Gothe, R. W.; Griffioen, K. A.; Guegan, B.; Guidal, M.; Guo, L.; Hakobyan, H.; Hanretty, C.; Hattawy, M.; Hicks, K.; Holtrop, M.; Hughes, S. M.; Hyde, C. E.; Ilieva, Y.; Ireland, D. G.; Ishkhanov, B. S.; Isupov, E. L.; Jenkins, D.; Jiang, H.; Jo, H. S.; Joo, K.; Joosten, S.; Keller, D.; Khandaker, M.; Kim, A.; Kim, W.; Klein, A.; Klein, F. J.; Kubarovsky, V.; Kuhn, S. E.; Kuleshov, S. V.; Lenisa, P.; Livingston, K.; Lu, H. Y.; MacGregor, I. J.; Markov, N.; Martinez, D.; McKinnon, B.; Mokeev, V.; Montgomery, R. A.; Moutarde, H.; Camacho, C. Munoz; Nadel-Turonski, P.; Niccolai, S.; Niculescu, G.; Niculescu, I.; Osipenko, M.; Ostrovidov, A. I.; Paolone, M.; Pasyuk, E.; Peng, P.; Phelps, W.; Phillips, J. J.; Pisano, S.; Pogorelko, O.; Price, J. W.; Procureur, S.; Prok, Y.; Protopopescu, D.; Puckett, A. J.; Raue, B. A.; Ripani, M.; Rizzo, A.; Rosner, G.; Rossi, P.; Roy, P.; Sabati??, F.; Salgado, C.; Schott, D.; Schumacher, R. A.; Seder, E.; Sharabian, Y. G.; Simonyan, A.; Skorodumina, Iu.; Smith, E. S.; Smith, G. D.; Sparveris, N.; Stoler, P.; Strakovsky, I. I.; Strauch, S.; Sytnik, V.; Taiuti, M.; Tang, W.; Taylor, C. E.; Tian, Ye; Trivedi, A.; Ungaro, M.; Voskanyan, H.; Voutier, E.; Walford, N. K.; Watts, D. P.; Wei, X.; Weinstein, L. B.; Wood, M. H.; Zachariou, N.; Zana, L.; Zhang, J.; Zhao, Z. W.; Zonta, I.

    2015-04-01T23:59:59.000Z

    Differential cross sections of the exclusive process $e p \\to e^\\prime \\pi^+ n$ were measured with good precision in the range of the photon virtuality $Q^2 = 1.8 - 4.5$ GeV$^2$, and the invariant mass range of the $\\pi^+ n$ final state W = 1.6 - 2.0 GeV using the CEBAF Large Acceptance Spectrometer. Data were collected with nearly complete coverage in the azimuthal and polar angles of the $n\\pi^+$ center-of-mass system. More than 37,000 cross section points were measured. The contributions of the isospin $I = {1\\over 2}$ resonances $N(1675){5\\over 2}^-$, $N(1680){5\\over 2}^+$ and $N(1710){1\\over 2}^+$ were extracted at different values of $Q^2$ using a single-channel, energy-dependent resonance amplitude analysis. Two different approaches, the unitary isobar model and the fixed-$t$ dispersion relations, were employed in the analysis. We observe significant strength of the $N(1675){5\\over 2}^-$ in the $A_{1/2}$ amplitude, which is in strong disagreement with quark models that predict both transverse amplitudes to be strongly suppressed. For the $N(1680){5\\over 2}^+$ we observe a slow changeover from the dominance of the $A_{3/2}$ amplitude at the real photon point ($Q^2=0$) to a $Q^2$ where $A_{1/2}$ begins to dominate. The scalar amplitude $S_{1/2}$ drops rapidly with $Q^2$ consistent with quark model prediction. For the $N(1710){1\\over 2}^+$ resonance our analysis shows significant strength for the $A_{1/2}$ amplitude at $Q^2 < 2.5$ GeV$^2$.

  7. Charmonium in a hot medium: melting vs absorption

    E-Print Network [OSTI]

    B. Z. Kopeliovich; I. K. Potashnikova; Ivan Schmidt; M. Siddikov

    2014-08-11T23:59:59.000Z

    A charmonium produced in heavy ion collisions at RHIC and LHC propagates through a dense co-moving matter with a rather high relative momentum, =4-10GeV^2. In spite of Debye screening of the binding potential, the charmonium survives with a substantial probability, even if the c-cbar potential is completely screened in the hot environment. In addition, the color-exchange interaction with the medium is another important source of charmonium suppression. Attenuation in a hot medium caused by both effects is evaluated by means of the path integral technique, which requires ability of boosting the binding potential to a moving reference frame. This problem is solved in the approximation of small intrinsic velocities of the charmed quarks.

  8. Thermal vibration and melting from a local perspective

    SciTech Connect (OSTI)

    Stern, E.A.; Livns, P.; Zhang, Z. (Department of Physics, FM-15, University of Washington, Seattle, Washington 98195 (US))

    1991-04-15T23:59:59.000Z

    X-ray-absorption fine-structure (XAFS) measurements of lead from 10 K through and above the melting transition at 600 K have been carried out. A cumulant expansion analysis provides data on the first four moments of the radial distribution of the first shell, which are used to construct a consistent temperature-dependent radial distribution function for the solid. The distribution is one given by a simple one-dimensional anharmonic oscillator. The results also demonstrate that XAFS, a local probe, can clearly distinguish between the liquid and solid state. In the liquid, the apparent coordination number is decreased by the fraction of the time the atom is diffusing. An improved method for determining the background at low {ital k} is discussed that gives a reliable determination of the background much closer to the threshold than allowed by standard methods.

  9. Energy dependence of transverse momentum fluctuations in Pb+Pb collisions at the CERN Super Proton Synchrotron (SPS) at 20A to 158A GeV

    SciTech Connect (OSTI)

    NA49 Collaboration; Anticic, T.

    2009-04-15T23:59:59.000Z

    Results are presented on event-by-event fluctuations of transverse momenta p{sub T} in central Pb+Pb interactions at 20A, 30A, 40A, 80A, and 158A GeV. The analysis was performed for charged particles at forward center-of-mass rapidity (1.1 < y*{sub {pi}} < 2.6). Three fluctuation measures were studied: the distribution of average transverse momentum M(p{sub T}) in the event, the {phi}{sub p{sub T}} fluctuation measure, and two-particle transverse momentum correlations. Fluctuations of p{sub T} are small and show no significant energy dependence in the energy range of the CERN Super Proton Synchrotron. Results are compared with QCD-inspired predictions for the critical point, and with the UrQMD model. Transverse momentum fluctuations, similar to multiplicity fluctuations, do not show the increase expected for freeze-out near the critical point of QCD.

  10. Comparisons of numerical modelling of the Selective Laser Melting Laurent VAN BELLE1, 2, a

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    and arc additive layer manufacturing (WAALM), laser metal deposition (LMD), selective laser melting (SLM laser melting (SLM) first developed for rapid prototyping (RP) is now used for rapid manufacturing is based upon a double meshing with a multi step birth and death technique of manufactured part

  11. Investigation of residual stresses induced during the selective laser melting process

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    jean-claude.boyer@insa-lyon.fr Keywords: Selective laser melting, layer additional method, Residual stresses. Abstract. The selective laser melting process (SLM), belonging to the family of additive manufacturing processes, can create complex geometry parts from a CAD file. Previously, only prototypes were

  12. Mechanisms of summertime upper Arctic Ocean warming and the effect on sea ice melt

    E-Print Network [OSTI]

    Zhang, Jinlun

    but occurs over a much broader area of the ice pack. Citation: Steele, M., J. Zhang, and W. Ermold (2010Mechanisms of summertime upper Arctic Ocean warming and the effect on sea ice melt Michael Steele,1 summertime upper ocean warming and sea ice melt during the 21st century in the Arctic Ocean. Our first

  13. ORIGINAL PAPER Hydrous partial melting in the sheeted dike complex at fast

    E-Print Network [OSTI]

    Demouchy, Sylvie

    and plagioclase have compositions that are characteristic of the same minerals in granoblastic dikes. Published the compositions of oceanic plagiogranites; however, the compositions of the coexisting experimental minerals within the melt lens resulting in hybridized and contaminated MORB melts. It represents the main MORB

  14. IDENTIFICATION NUMBER: 4ME20 Abstract--Artificial welding of melt-textured YBCO blocks

    E-Print Network [OSTI]

    Politècnica de Catalunya, Universitat

    1 IDENTIFICATION NUMBER: 4ME20 Abstract--Artificial welding of melt-textured YBCO blocks opens the superconducting quality of the welds, we have developed a Hall probe mapping system, able to record the local to characterize welded samples prepared with a new Ag induced surface melting joining technique. The magnetization

  15. Proceedings of the conference on electron beam melting and refining - state of the art 1996

    SciTech Connect (OSTI)

    Bakish, R. [ed.

    1996-12-31T23:59:59.000Z

    This conference proceedings summarizes state-of-the-art work in the field of electron-beam melting and refining, as presented at the 1996 conference. Papers are grouped as follows: invited papers; tutorial papers; electron beam melting related fundamentals; electron beam evaporation papers; and miscellaneous papers. Separate abstracts have been submitted to the energy database for some contributions to this proceedings.

  16. Glass science tutorial: Lecture No. 4, commercial glass melting and associated air emission issues

    SciTech Connect (OSTI)

    Kruger, A.A.

    1995-01-01T23:59:59.000Z

    This document serves as a manual for a workshop on commercial glass melting and associated air emission issues. Areas covered include: An overview of the glass industry; Furnace design and construction practices; Melting furnace operation; Energy input methods and controls; Air legislation and regulations; Soda lime emission mechanisms; and, Post furnace emission controls. Supporting papers are also included.

  17. HOW IS THE GRANITE MELT FLOW NETWORK RECORDED IN MIGMATITES AND BY ASSOCIATED GRANITE PLUTONS?

    E-Print Network [OSTI]

    Solar, Gary S.

    1 HOW IS THE GRANITE MELT FLOW NETWORK RECORDED IN MIGMATITES AND BY ASSOCIATED GRANITE PLUTONS of granite magma during orogeny has important implications because melt transfer affects the thermal; Milord et al., 2001; Barraud et al., 2001a, 2001b). We also understand well how granite magma is emplaced

  18. Analysis of melting and resolidification in a two-component metal powder bed subjected

    E-Print Network [OSTI]

    Zhang, Yuwen

    produced. Ó 2005 Elsevier Ltd. All rights reserved. 1. Introduction Selective laser sintering (SLS the surface of a powder bed is scanned with a laser heat source to melt the pow- der and as the beam movesAnalysis of melting and resolidification in a two-component metal powder bed subjected to temporal

  19. Crystal-melt interfacial free energies of hard-dumbbell systems Yan Mu and Xueyu Song

    E-Print Network [OSTI]

    Song, Xueyu

    Crystal-melt interfacial free energies of hard-dumbbell systems Yan Mu and Xueyu Song Department September 2006; published 29 September 2006 The crystal-melt interfacial free energies of different crystal that for the plastic crystal phase, the interfacial free energies decrease as the reduced bond length L* increases

  20. Molecular H2O as carrier for oxygen diffusion in hydrous silicate melts

    E-Print Network [OSTI]

    Zhang, Youxue

    Molecular H2O as carrier for oxygen diffusion in hydrous silicate melts H. Behrens a,, Y. Zhang b water is known to dramatically enhance oxygen diffusion in silicate melts, glasses and minerals in the diffusion of water and oxygen in silicates, Earth Planet. Sci. Lett., 103 (1991) 228­240.]. Here we report

  1. Electrical structure beneath the northern MELT line on the East Pacific Rise at 15450

    E-Print Network [OSTI]

    Brest, Université de

    Electrical structure beneath the northern MELT line on the East Pacific Rise at 15°450 S Kiyoshi] The electrical structure of the upper mantle beneath the East Pacific Rise (EPR) at 15°450 S is imaged structure beneath the northern MELT line on the East Pacific Rise at 15°450 S, Geophys. Res. Lett., 33, L

  2. Quantification of glacier melt volume in the Indus River watershed Maria Nicole Asay

    E-Print Network [OSTI]

    Seamons, Kent E.

    Quantification of glacier melt volume in the Indus River watershed Maria Nicole Asay A thesis;ABSTRACT Quantification of glacier melt volume in the Indus River watershed Maria N. Asay Department of Geological Sciences, BYU Master of Science Quantifying the contribution of glaciers to water resources

  3. Spatial distribution of melt conduits in the mantle beneath oceanic spreading ridges: Observations

    E-Print Network [OSTI]

    accretion beneath the ridges. Dunite veins, composed of the minerals olivine and spinel, mark conduits that mantle melt extraction occurs in a fractal, branching network, and with recent results on formation] There are two essential observational con- straints on melt extraction from the mantle beneath oceanic spreading

  4. The anisotropic free energy of the Lennard-Jones crystal-melt interface James R. Morris

    E-Print Network [OSTI]

    Song, Xueyu

    The anisotropic free energy of the Lennard-Jones crystal-melt interface James R. Morris Metal; accepted 22 May 2003 We have calculated the free energy of the crystal-melt interface for the Lennard are in good agreement with previous calculations of the free energies, based upon simulations used

  5. ccsd-00001059(version1):26Jan2004 Continuous melting of compact polymers

    E-Print Network [OSTI]

    Boyer, Edmond

    ccsd-00001059(version1):26Jan2004 Continuous melting of compact polymers Jesper Lykke Jacobsen and bending rigidity in compact polymers can be ad- dressed within a lattice model introduced by P.J. Flory for polymers on surfaces, such as DNA adsorbed on a lipid bilayer. We predict a continuous melting transition

  6. Generation of CO2-rich melts during basalt magma ascent and degassing

    E-Print Network [OSTI]

    Boyer, Edmond

    to solubilities. In contrast, the rate of vesiculation controls the final melt CO2 concentration. HighGeneration of CO2-rich melts during basalt magma ascent and degassing Michel Pichavant . Ida Di magma degassing, continuous decompressions of volatile-bearing (2.7-3.8 wt% H2O, 600-1300 ppm CO2

  7. NOTES AND CORRESPONDENCE Surface Melting over Ice Shelves and Ice Sheets as Assessed from Modeled

    E-Print Network [OSTI]

    Meissner, Katrin Juliane

    NOTES AND CORRESPONDENCE Surface Melting over Ice Shelves and Ice Sheets as Assessed from Modeled of ice shelves and their progenitor ice sheets. To explore the magnitude of surface melt occurring over modern ice shelves and ice sheets in a climate scenario forced by anthropogenic emissions of carbon

  8. Continuum Model for the Phase Behavior, Microstructure, and Rheology of Unentangled Polymer Nanocomposite Melts

    E-Print Network [OSTI]

    Georgiou, Georgios

    integrated them into our lives.3 Polymer matrix nanocomposites (PNCs), in particular, are hybrid organic Nanocomposite Melts Pavlos S. Stephanou,*, Vlasis G. Mavrantzas,,§ and Georgios C. Georgiou Department) bracket. The model describes the polymer nanocomposite melt at a mesoscopic level by using three fields

  9. Thirty-year history of glacier melting in the Nepal Himalayas Koji Fujita,1

    E-Print Network [OSTI]

    Howat, Ian M.

    Thirty-year history of glacier melting in the Nepal Himalayas Koji Fujita,1 Lonnie G. Thompson,2 of glacier melting in the Nepal Himalayas, J. Geophys. Res., 111, D03109, doi:10.1029/2005JD005894. 1. Introduction [2] Rapid shrinkage of glaciers in the Nepal Himalayas has been observed during recent decades [e

  10. Contribution of unresolved point sources to the galactic diffuse emission

    E-Print Network [OSTI]

    Sabrina Casanova; Brenda L. Dingus

    2006-09-12T23:59:59.000Z

    The detection by the HESS atmospheric Cherenkov telescope of fifteen new sources from the Galactic plane makes it possible to estimate the contribution of unresolved point sources like those detected by HESS to the diffuse Galactic emission measured by EGRET and recently at higher energies by the Milagro Collaboration. Assuming that HESS sources have all the same intrinsic luminosity, the contribution of this new source population can account for most of the Milagro $\\gamma$-ray emission at TeV energies and between 10 and 20 per cent of EGRET diffuse Galactic $\\gamma$-ray emission for energies bigger than 10 GeV. Also, by combining the HESS and the Milagro results, constraints can be put on the distribution and the luminosities of gamma ray emitters in the Galaxy.

  11. Contribution of unresolved point sources to the galactic diffuse emission

    E-Print Network [OSTI]

    Casanova, S; Casanova, Sabrina; Dingus, Brenda L.

    2006-01-01T23:59:59.000Z

    The detection by the HESS atmospheric Cherenkov telescope of fifteen new sources from the Galactic plane makes it possible to estimate the contribution of unresolved point sources like those detected by HESS to the diffuse Galactic emission measured by EGRET and recently at higher energies by the Milagro Collaboration. Assuming that HESS sources have all the same intrinsic luminosity, the contribution of this new source population can account for most of the Milagro $\\gamma$-ray emission at TeV energies and between 10 and 20 per cent of EGRET diffuse Galactic $\\gamma$-ray emission for energies bigger than 10 GeV. Also, by combining the HESS and the Milagro results, constraints can be put on the distribution and the luminosities of gamma ray emitters in the Galaxy.

  12. Anisotropic flow and flow fluctuations for Au + Au at $\\sqrt{s_{NN}}$ = 200 GeV in a multiphase transport model

    E-Print Network [OSTI]

    L. Ma; G. L. Ma; Y. G. Ma

    2014-04-23T23:59:59.000Z

    Anisotropic flow coefficients and their fluctuations are investigated for Au+Au collisions at center of mass energy $\\sqrt{s_{NN}}$ = 200 GeV by using a multi-phase transport model with string melting scenario. Experimental results of azimuthal anisotropies by means of the two- and four-particle cumulants are generally well reproduced by the model including both parton cascade and hadronic rescatterings. Event-by-event treatments of the harmonic flow coefficients $v_n$ (for n = 2, 3 and 4) are performed, in which event distributions of $v_n$ for different orders are consistent with Gaussian shapes over all centrality bins. Systematic studies on centrality, transverse momentum ($p_{T}$) and pseudo-rapidity ($\\eta$) dependencies of anisotropic flows and quantitative estimations of the flow fluctuations are presented. The $p_{T}$ and $\\eta$ dependencies of absolute fluctuations for both $v_2$ and $v_3$ follow similar trends as their flow coefficients. Relative fluctuation of triangular flow $v_3$ is slightly centrality-dependent, which is quite different from that of elliptic flow $v_2$. It is observed that parton cascade has a large effect on the flow fluctuations, but hadronic scatterings make little contribution to the flow fluctuations, which indicates flow fluctuations are mainly modified during partonic evolution stage.

  13. Phase field simulation of kinetic superheating and melting of aluminum nanolayer irradiated by pico- and femtosecond laser

    SciTech Connect (OSTI)

    Seok Hwang, Yong [Department of Aerospace Engineering, Iowa State University, Ames, Iowa 50011 (United States)] [Department of Aerospace Engineering, Iowa State University, Ames, Iowa 50011 (United States); Levitas, Valery I. [Departments of Aerospace Engineering, Mechanical Engineering, and Material Science and Engineering, Iowa State University, Ames, Iowa 50011 (United States)] [Departments of Aerospace Engineering, Mechanical Engineering, and Material Science and Engineering, Iowa State University, Ames, Iowa 50011 (United States)

    2013-12-23T23:59:59.000Z

    Two melting mechanisms are reproduced and quantified for superheating and melting of Al nanolayer irradiated by pico- and femtosecond laser using the advanced phase-field approach coupled with mechanics and a two-temperature model. At heating rates Q?79.04 K/ps induced by picosecond laser, two-sided barrierless surface melting forms two solid-melt interfaces, which meet near the center of a sample. The temperature for surface melting is a linear function, and for complete melting it is a cubic function, of logQ. At Q?300 K/ps induced by femtosecond laser, barrierless and homogeneous melting (without nucleation) at the sample center occurs faster than due to interface propagation. Good agreement with experimental melting time was achieved in a range of 0.95?Q?1290 K/ps without fitting of material parameters.

  14. GaGa11--xxMnMnxxAsAs11--yyTeTeyy Synthesized bySynthesized by Ion Implantation & Pulsed Laser MeltingIon Implantation & Pulsed Laser Melting

    E-Print Network [OSTI]

    Priour, Don - Department of Physics, University of Missouri

    ] · stabilizing EF by compensation might allow higher MnGa add Te · experiment possible using II-PLM no chamber Implantation & Pulsed Laser Melting (IIPulsed Laser Melting (II--PLM)PLM) Excimer Laser Pulse GaAs Liquid Melt, NATURE MATERIALS 1 185 (2002) [4] Scarpulla, PHYSICA B 340 908 (2003) #12;IIII--PLM GaPLM Ga11--xx

  15. Localising the H.E.S.S. Galactic Centre point source

    E-Print Network [OSTI]

    C. van Eldik; O. Bolz; I. Braun; G. Hermann; J. Hinton; W. Hofmann

    2007-09-24T23:59:59.000Z

    Observations by the H.E.S.S. system of imaging atmospheric Cherenkov telescopes provide the most sensitive measurements of the Galactic Centre region in the energy range 150 GeV - 30 TeV. The vicinity of the kinetic centre of our galaxy harbours numerous objects which could potentially accelerate particles to very high energies (VHE, > 100 GeV) and thus produce the Gamma-ray flux observed. Within statistical and systematic errors, the centroid of the point-like emission measured by H.E.S.S. was found to be in good agreement with the position of the supermassive black hole Sgr A* and the recently discovered PWN candidate G359.95-0.04. Given a systematic pointing error of about 30'', a possible association with the SNR Sgr A East could not be ruled out with the 2004 H.E.S.S. data. In this contribution an update is given on the position of the H.E.S.S. Galactic Centre source using 2005/2006 data. The systematic pointing error is reduced to 6'' per axis using guiding telescopes for pointing corrections, making it possible to exclude with high significance Sgr A East as the source of the VHE Gamma-Rays.

  16. Measurement of the Crab Flux Above 60 GeV with the CELESTE Cherenkov Telescope

    E-Print Network [OSTI]

    M. De Naurois; J. Holder; R. Bazer-Bachi; H. Bergeret; P. Bruel; A. Cordier; G. Debiais; J-P. Dezalay; D. Dumora; E. Durand; P. Eschstruth; P. Espigat; B. Fabre; P. Fleury; N. Herault; M. Hrabovsky; S. Incerti; R. Le Gallou; F. Munz; A. Musquere; J-F. Olive; E. Pare; J. Quebert; R. C. Rannot; T. Reposeur; L. Rob; P. Roy; T. Sako; P. Schovanek; D. A. Smith; P. Snabre; A. Volte

    2001-12-05T23:59:59.000Z

    We have converted the former solar electrical plant THEMIS (French Pyrenees) into an atmospheric Cherenkov detector called CELESTE, which records gamma rays above 30 GeV (7E24 Hz). Here we present the first sub-100 GeV detection by a ground based telescope of a gamma ray source, the Crab nebula, in the energy region between satellite measurements and imaging atmospheric Cherenkov telescopes. At our analysis threshold energy of 60 +/- 20 GeV we measure a gamma ray rate of 6.1 +/- 0.8 per minute. Allowing for 30% systematic uncertainties and a 30% error on the energy scale yields an integral gamma ray flux of I(E>60 GeV) = 6.2^{+5.3}_{-2.3} E-6 photons m^-2 s^-1. The analysis methods used to obtain the gamma ray signal from the raw data are detailed. In addition, we determine the upper limit for pulsed emission to be <12% of the Crab flux at the 99% confidence level, in the same energy range. Our result indicates that if the power law observed by EGRET is attenuated by a cutoff of form e^{-E/E_0} then E_0 < 26 GeV. This is the lowest energy probed by a Cherenkov detector and leaves only a narrow range unexplored beyond the energy range studied by EGRET.

  17. Dynamics and pattern selection at the crystal-melt interface. Progress report No. 4, March 1, 1989--February 28, 1990

    SciTech Connect (OSTI)

    Cummins, H.Z.

    1990-12-31T23:59:59.000Z

    This report discusses: light scattering at the crystal-melt interface; morphological instability and pattern selection; and sidebranching.

  18. Modelling of Melt Damage of Tungsten Armour under Multiple Transients Expected in ITER and Validations Against JET-ILW Experiments

    E-Print Network [OSTI]

    Modelling of Melt Damage of Tungsten Armour under Multiple Transients Expected in ITER and Validations Against JET-ILW Experiments

  19. Eddy-resolving simulations of the Fimbul Ice Shelf cavity circulation: Basal melting and exchange with open ocean

    E-Print Network [OSTI]

    Lilly, Jonathan

    that govern the heat supply to ice shelves in the Eastern Weddell Sea. The simulations confirm the low melt

  20. Florida Nuclear Profile - Turkey Point

    U.S. Energy Information Administration (EIA) Indexed Site

    Turkey Point" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License expiration date"...

  1. Inclusive jet production at {radical}s =630 GeV and a test of scaling at CDF

    SciTech Connect (OSTI)

    Bhatti, A.A. [Rockefeller Univ., New York, NY (United States). Dept. of Physics; CDF Collaboration

    1996-10-01T23:59:59.000Z

    A preliminary measurement of the inclusive jet cross section at {radical}{ital s} = 630 GeV is presented. The data are compared with NLO QCD predictions. The ratio of scaled inclusive jet cross section a {radical}{ital s} = 1800 GeV and {radical}{ital s} = 630 GeV is presented and compared with previous CDF results and QCD predictions.

  2. Anisotropic Interfacial Free Energies of the Hard-Sphere Crystal-Melt Interfaces Yan Mu, Andrew Houk, and Xueyu Song*

    E-Print Network [OSTI]

    Song, Xueyu

    Anisotropic Interfacial Free Energies of the Hard-Sphere Crystal-Melt Interfaces Yan Mu, Andrew-melt interfacial free energy calculations using capillary wave approach. Using this method, we have calculated the free energies of the fcc crystal-melt interfaces for the hard-sphere system as a function of crystal

  3. An experimental and numerical study of surface tension-driven melt flow R.A. Parsons a,, F. Nimmo a

    E-Print Network [OSTI]

    Nimmo, Francis

    An experimental and numerical study of surface tension-driven melt flow R.A. Parsons a,, F. Nimmo 2007 Abstract To determine the role of surface tension-driven melt migration in planetary bodies, we, surface tension causes the melt to relax back to a homogeneous distribution. Samples composed of 76 vol

  4. Numerical and experimental investigation of melting with internal heat generation within cylindrical enclosures

    SciTech Connect (OSTI)

    Amber Shrivastava; Brian Williams; Ali S. Siahpush; Bruce Savage; John Crepeau

    2014-06-01T23:59:59.000Z

    There have been significant efforts by the heat transfer community to investigate the melting phenomenon of materials. These efforts have included the analytical development of equations to represent melting, numerical development of computer codes to assist in modeling the phenomena, and collection of experimental data. The understanding of the melting phenomenon has application in several areas of interest, for example, the melting of a Phase Change Material (PCM) used as a thermal storage medium as well as the melting of the fuel bundle in a nuclear power plant during an accident scenario. The objective of this research is two-fold. First a numerical investigation, using computational fluid dynamics (CFD), of melting with internal heat generation for a vertical cylindrical geometry is presented. Second, to the best of authors knowledge, there are very limited number of engineering experimental results available for the case of melting with Internal Heat Generation (IHG). An experiment was performed to produce such data using resistive, or Joule, heating as the IHG mechanism. The numerical results are compared against the experimental results and showed favorable correlation. Uncertainties in the numerical and experimental analysis are discussed. Based on the numerical and experimental analysis, recommendations are made for future work.

  5. Measurement of charged pions in 12C + 12C collisions at 1A GeV and 2A GeV with HADES

    E-Print Network [OSTI]

    The HADES Collaboration; G. Agakishiev; C. Agodi; A. Balanda; G. Bellia; D. Belver; A. Belyaev; J. Bielcik; A. Blanco; A. Bortolotti; J. L. Boyard; P. Braun-Munzinger; P. Cabanelas; S. Chernenko; T. Christ; R. Coniglione; M. Destefanis; J. Diaz; F. Dohrmann; I. Duran; A. Dybczak; T. Eberl; L. Fabbietti; O. Fateev; R. Ferreira-Marques; P. Finocchiaro; P. Fonte; J. Friese; I. Froehlich; T. Galatyuk; J. A. Garzon; R. Gernhaeuser; A. Gil; C. Gilardi; M. Golubeva; D. Gonzalez-Diaz; E. Grosse; F. Guber; M. Heilmann; T. Heinz; T. Hennino; R. Holzmann; A. Ierusalimov; I. Iori; A. Ivashkin; M. Jurkovic; B. Kaempfer; K. Kanaki; T. Karavicheva; D. Kirschner; I. Koenig; W. Koenig; B. W. Kolb; R. Kotte; A. Kozuch; A. Krasa; F. Krizek; R. Kruecken; W. Kuehn; A. Kugler; A. Kurepin; J. Lamas-Valverde; S. Lang; J. S. Lange; K. Lapidus; L. Lopes; M. Lorenz; L. Maier; C. Maiolino; A. Mangiarotti; J. Marin; J. Markert; V. Metag; B. Michalska; J. Michel; E. Moriniere; J. Mousa; M. Muench; C. Muentz; L. Naumann; R. Novotny; J. Otwinowski; Y. C. Pachmayer; M. Palka; Y. Parpottas; V. Pechenov; O. Pechenova; T. Perez Cavalcanti; P. Piattelli; J. Pietraszko; V. Pospisil; W. Przygoda; B. Ramstein; A. Reshetin; M. Roy-Stephan; A. Rustamov; A. Sadovsky; B. Sailer; P. Salabura; P. Sapienza; A. Schmah; C. Schroeder; E. Schwab; R. S. Simon; Yu. G. Sobolev; S. Spataro; B. Spruck; H. Stroebele; J. Stroth; C. Sturm; M. Sudol; A. Tarantola; K. Teilab; P. Tlusty; M. Traxler; R. Trebacz; H. Tsertos; V. Wagner; M. Weber; M. Wisniowski; T. Wojcik; J. Wuestenfeld; S. Yurevich; Y. Zanevsky; P. Zhou; P. Zumbruch

    2009-05-18T23:59:59.000Z

    We present the results of a study of charged pion production in 12C + 12C collisions at incident beam energies of 1A GeV and 2A GeV using the HADES spectrometer at GSI. The main emphasis of the HADES program is on the dielectron signal from the early phase of the collision. Here, however, we discuss the data with respect to the emission of charged hadrons, specifically the production of pi+- mesons, which are related to neutral pions representing a dominant contribution to the dielectron yield. We have performed the first large-angular range measurement of the distribution of pi+- mesons for the 12C + 12C collision system covering a fairly large rapidity interval. The pion yields, transverse-mass and angular distributions are compared with calculations done within a transport model, as well as with existing data from other experiments. The anisotropy of pion production is systematically analyzed.

  6. 5-10 GeV Neutrinos from Gamma-Ray Burst Fireballs

    E-Print Network [OSTI]

    John N. Bahcall; Peter Meszaros

    2000-06-23T23:59:59.000Z

    A gamma-ray burst fireball is likely to contain an admixture of neutrons, in addition to protons, in essentially all progenitor scenarios. Inelastic collisions between differentially streaming protons and neutrons in the fireball produce muon neutrinos (antineutrinos) of ~ 10 GeV as well as electron neutrinos (antineutrinos) of ~ 5 GeV, which could produce ~ 7 events/year in kilometer cube detectors, if the neutron abundance is comparable to that of protons. Photons of ~ 10 GeV from pi-zero decay and ~ 100 MeV electron antineutrinos from neutron decay are also produced, but will be difficult to detect. Photons with energies < 1 MeV from shocks following neutron decay produce a characteristic signal which may be distinguishable from the proton-related MeV photons.

  7. Options for an 11 GeV RF Beam Separator for the Jefferson Lab CEBAF Upgrade

    SciTech Connect (OSTI)

    Jean Delayen, Michael Spata, Haipeng Wang

    2009-05-01T23:59:59.000Z

    The CEBAF accelerator at Jefferson Lab has had, since first demonstration in 1996, the ability to deliver a 5-pass electron beam to experimental halls (A, B, and C) simultaneously. This capability was provided by a set of three, room temperature 499 MHz rf separators in the 5th pass beamline. The separator was two-rod, TEM mode type resonator, which has a high shunt impedance. The maximum rf power to deflect the 6 GeV beams was about 3.4kW. The 12 GeV baseline design does not preserve the capability of separating the 5th pass, 11 GeV beam for the 3 existing halls. Several options for restoring this capability, including extension of the present room temperature system or a new superconducting design in combination with magnetic systems, are under investigation and are presented.

  8. The JLAB 3D program at 12 GeV (TMDs + GPDs)

    SciTech Connect (OSTI)

    Pisano, Silvia [Lab. Naz. Frascati, Frascati, Italy

    2015-01-01T23:59:59.000Z

    The Jefferson Lab CEBAF accelerator is undergoing an upgrade that will increase the beam energy up to 12 GeV. The three experimental Halls operating in the 6-GeV era are upgrading their detectors to adapt their performances to the new available kinematics, and a new Hall (D) is being built. The investigation of the three-dimensional nucleon structure both in the coordinate and in the momentum space represents an essential part of the 12-GeV physics program, and several proposals aiming at the extraction of related observables have been already approved in Hall A, B and C. In this proceedings, the focus of the JLab 3D program will be described, and a selection of proposals will be discussed.

  9. Changing the PEP-II Center-of-Mass Energy Down to 10 GeV and up to 11 GeV

    SciTech Connect (OSTI)

    Sullivan, M; Bertsche, K.; Novokhatski, A.; Seeman, J.; Wienands, U.; /SLAC

    2009-05-20T23:59:59.000Z

    PEP-II, the SLAC, LBNL, LLNL B-Factory was designed and optimized to run at the Upsilon 4S resonance (10.580 GeV with an 8.973 GeV e- beam and a 3.119 GeV e+ beam). The interaction region (IR) used permanent magnet dipoles to bring the beams into a head-on collision. The first focusing element for both beams was also a permanent magnet. The IR geometry, masking, beam orbits and beam pipe apertures were designed for 4S running. Even though PEP-II was optimized for the 4S, we successfully changed the center-of-mass energy (E{sub cm}) down to the Upsilon 2S resonance and completed an E{sub cm} scan from the 4S resonance up to 11.2 GeV. The luminosity throughout most of these changes remained near 1 x 10{sup 34} cm{sup -2}s{sup -1}. The E{sub cm} was changed by moving the energy of the high-energy beam (HEB). The beam energy differed by more than 20% which produced significantly different running conditions for the RF system. The energy loss per turn changed 2.5 times over this range. We describe how the beam energy was changed and discuss some of the consequences for the beam orbit in the interaction region. We also describe some of the RF issues that arose and how we solved them as the high-current HEB energy changed.

  10. Redox reaction and foaming in nuclear waste glass melting

    SciTech Connect (OSTI)

    Ryan, J.L.

    1995-08-01T23:59:59.000Z

    This document was prepared by Pacific Northwest Laboratory (PNL) and is an attempt to analyze and estimate the effects of feed composition variables and reducing agent variables on the expected chemistry of reactions occurring in the cold cap and in the glass melt in the nuclear waste glass Slurry-fed, joule-heated melters as they might affect foaming during the glass-making process. Numerous redox reactions of waste glass components and potential feed additives, and the effects of other feed variables on these reactions are reviewed with regard to their potential effect on glass foaming. A major emphasis of this report is to examine the potential positive or negative aspects of adjusting feed with formic acid as opposed to other feed modification techniques including but not limited to use of other reducing agents. Feed modification techniques other than the use of reductants that should influence foaming behavior include control of glass melter feed pH through use of nitric acid. They also include partial replacement of sodium salts by lithium salts. This latter action (b) apparently lowers glass viscosity and raises surface tension. This replacement should decrease foaming by decreasing foam stability.

  11. Free energy barrier for single-chain melting and crystallization

    E-Print Network [OSTI]

    Wenbing Hu; Daan Frenkel; Vincent B. F. Mathot

    2002-06-28T23:59:59.000Z

    In this paper, we report dynamic Monte Carlo simulations of melting and crystallization in a single-chain system. Their free energy barriers are calculated by the umbrella sampling method and can be described well by a simple expression DeltaF = n Deltaf+sigma (N-n)^(2/3), where n is the amount of molten bonds, Deltaf is the free energy change of each molten bond from a crystalline state, N is the chain length, and sigma is the surface free energy of crystallite. We found that, together with the expression Delta F = n Delta f+ sigma (N-n)^(1/2) for molecular nucleation, the molecular-weight dependent properties of the free-energy barriers for polymer primary and secondary nucleation, in particular, the molecular segregation during crystal growth, can be reproduced. Then for the mechanism of polymer crystallization, we suggested a quantitative model of intramolecular nucleation, as a direct development from the previous qualitative description of molecular nucleation model.

  12. Melt Infiltrated Ceramic Composites (Hipercomp) for Gas Turbine Engine Applications

    SciTech Connect (OSTI)

    Gregory Corman; Krishan Luthra

    2005-09-30T23:59:59.000Z

    This report covers work performed under the Continuous Fiber Ceramic Composites (CFCC) program by GE Global Research and its partners from 1994 through 2005. The processing of prepreg-derived, melt infiltrated (MI) composite systems based on monofilament and multifilament tow SiC fibers is described. Extensive mechanical and environmental exposure characterizations were performed on these systems, as well as on competing Ceramic Matrix Composite (CMC) systems. Although current monofilament SiC fibers have inherent oxidative stability limitations due to their carbon surface coatings, the MI CMC system based on multifilament tow (Hi-Nicalon ) proved to have excellent mechanical, thermal and time-dependent properties. The materials database generated from the material testing was used to design turbine hot gas path components, namely the shroud and combustor liner, utilizing the CMC materials. The feasibility of using such MI CMC materials in gas turbine engines was demonstrated via combustion rig testing of turbine shrouds and combustor liners, and through field engine tests of shrouds in a 2MW engine for >1000 hours. A unique combustion test facility was also developed that allowed coupons of the CMC materials to be exposed to high-pressure, high-velocity combustion gas environments for times up to {approx}4000 hours.

  13. High-Pressure Melt Streaming (HIPS) program plan

    SciTech Connect (OSTI)

    Tarbell, W.; Brockmann, J.; Pilch, M.

    1984-08-01T23:59:59.000Z

    The Zion Probabilistic Safety Study (ZPSS) envisions accident sequences that could lead to failure of the reactor vessel while the primary system is pressurized. The resulting ejection of molten core material into the reactor cavity followed by the blowdown of steam and hydrogen is shown to cause the debris to enter into the containment region. The High Pressure Melt Streaming (HIPS) program has been developed to provide an experimental and analytical investigation of the scenario described above. One-tenth linear scale models of the Zion cavity region will be used to investigate the debris dispersal phenomena. Smaller-scale experiments (SPIT-tests) are also used to study high-velocity jets, jet-water interactions, and 1/20th scale cavity geometries. Both matrices are developed using a factorial design approach. The document describes certain aspects of the ZPSS ex-vessel phenomena, the experimental matrices, test equipment, and instrumentation, and the program's analytical efforts. Preliminary data from SPIT testing are included.

  14. Preparation of nanodispersed titania using stabilized ammonium nitrate melts

    SciTech Connect (OSTI)

    Raciulete, Monica; Kachina, Anna; Puzenat, Eric [Institut de recherches sur la catalyse et l'environnement de Lyon UMR5256, CNRS-Universite de Lyon 1, 2 avenue Albert Einstein 69626 Villeurbanne Cedex (France); Afanasiev, Pavel, E-mail: pavel.afanasiev@ircelyon.univ-lyon1.f [Institut de recherches sur la catalyse et l'environnement de Lyon UMR5256, CNRS-Universite de Lyon 1, 2 avenue Albert Einstein 69626 Villeurbanne Cedex (France)

    2010-10-15T23:59:59.000Z

    An expedite one-step approach using simple precursors has been proposed to obtain metallic oxide compounds and exemplified by preparation of highly dispersed TiO{sub 2}. The technique consists in heating to 400-500 {sup o}C of molten ammonium nitrate stabilized with an organic nitrogen-containing compound (urea, melamine, ammonium oxalate) and containing dissolved metal salt precursor (TiOCl{sub 2}). The crystallites of the resulting TiO{sub 2} demonstrated variable size and shape as a function of stabilizer used. Their activity in photocatalytic oxidation of formic acid also depends on the nature of the stabilizer. The catalysts as-prepared showed high photocatalytic performance, superior to that of the Degussa P25 reference. Nitrogen containing stabilizers play a double role of increasing the process safety and modifying the properties of the solid products. - Graphical abstract: Ammonium nitrate melts stabilized by nitrogen-containing organic molecules can be applied for expedite one-step preparation of highly dispersed oxides, as exemplified by synthesis of titania photocatalysts.

  15. Free-energy barrier to melting of single-chain polymer crystallite

    E-Print Network [OSTI]

    Wenbing Hu; Daan Frenkel; Vincent B. F. Mathot

    2002-06-27T23:59:59.000Z

    We report Monte Carlo simulations of the melting of a single-polymer crystallite. We find that, unlike most atomic and molecular crystals, such crystallites can be heated appreciably above their melting temperature before they transform to the disordered "coil" state. The surface of the superheated crystallite is found to be disordered. The thickness of the disordered layer increases with superheating. However, the order-disorder transition is not gradual but sudden. Free-energy calculations reveal the presence of a large free-energy barrier to melting.

  16. Parameter studies of candidate lattices for the 1-2 GeV synchrotron radiation source

    SciTech Connect (OSTI)

    Zisman, M.S.

    1986-01-13T23:59:59.000Z

    This document discusses the implications of various collective phenomena on the required performance of candidate lattices for the LBL 1 to 2 GeV Synchrotron Radiation Source. The performance issues considered include bunch length, emittance growth, and beam lifetime. In addition, the possible use of the 1 to 2 GeV Synchrotron Radiation Source as a high-gain FEL is explored briefly. Generally, the differences between lattices are minor. It appears that the most significant feature distinguishing the various alternatives will be the beam lifetime.

  17. Depleted uranium dioxide melting in cold crucible melter and production of granules from the melt for use in casks for spent nuclear fuel and radioactive wastes

    SciTech Connect (OSTI)

    Gotovchikov, Vitaly; Seredenko, V.A.; Shatalov, V.V.; Mironov, B.S.; Kaplenkov, V.N.; Seredenko, A.V.; Saranchin, V.K.; Shulgin, A.S.; Kalmakov, Danila [All-Russian Research Institute of Chemical Technology (ARRICT), Kashirskoe Shosse 33, Moscow 115230 (Russian Federation); Haire, M.J.; Forsberg, C.W. [Oak Ridge National Laboratory - ORNL, 1 Bethel Valley Rd, Oak Ridge, TN 37830 (United States)

    2007-07-01T23:59:59.000Z

    Available in abstract form only. Full text of publication follows: This paper describes the results of joint research program of Russian Research Institute of Chemical Technology and Oak Ridge National Laboratory to develop new materials for build spent nuclear fuel (SNF) storage, transport, and disposal casks using shielding made with depleted uranium dioxide (DUO{sub 2}) in a DUO{sub 2}-steel cermet or a DUCRETE with DUAGG (DUO{sub 2} aggregate) with selective additives in cement matrix. The preparation of DUO{sub 2} particles and aggregates for shielding could be produced from technologies that are extrapolated from the costly multi-step nuclear fuel pellet technologies. Melting the DUO{sub 2} and allowing it to freeze will produce a product near 100% theoretical density and assure that the product produces no volatile materials upon subsequent heating. Melting is a one step process that provides an opportunity to include additives in the DUO{sub 2} to modify its chemical or nuclear properties. The proposed work is directed to develop cold-wall induction heated melters (ICCM) for this specific application. Experiments on melting DUO{sub 2} were carried out in high frequency ICCM with cold crucible. It was experimentally proved an opportunity to produce molten DUO{sub 2} from mixed oxides (DU{sub 3}O{sub 8}) by reducing melting in ICCM. This will allow using DU{sub 3}O{sub 8} generated in direct conversion of depleted uranium hexafluoride as source material for melted and granulated DUO{sub 2} production. Experiments on the addition of alloying components - gadolinium oxide and others into DUO{sub 2} melt while in crucible to improve neutron and gamma radiation-shielding and operation properties of the final solids were carried out. (authors)

  18. Chemistry modification of high oxygen-carbon powder by plasma melting: Follow up to complete the story

    SciTech Connect (OSTI)

    Dunn, P.S.; Korzekwa, D.R.; Garcia, F.G. [Los Alamos National Lab., NM (United States); Michaluk, C.A. [Cabot Performance Materials (United States)

    1998-03-01T23:59:59.000Z

    State of the art melting of tantalum and tantalum alloys has relied on electron beam (EB) or vacuum arc remelting (VAR) for commercial ingot production. Plasma arc melting (PAM) provides an alternative for melting tantalum that contains very high levels of interstitials where other melting techniques can not be applied. Previous work in this area centered on plasma arc melt quality and final interstitial content of tantalum feedstock containing excessive levels of interstitial impurities as a function of melt rate and plasma gas. This report is an expansion of this prior study and provides the findings from the analysis of second phase components observed in the microstructure of the PAM tantalum. In addition, results from subsequent EB melting trials of PAM tantalum are included.

  19. Mathematical modeling of cold cap: Effect of bubbling on melting rate

    SciTech Connect (OSTI)

    Pokorny, Richard; Kruger, Albert A.; Hrma, Pavel R.

    2014-12-31T23:59:59.000Z

    The rate of melting is a primary concern in the vitrification of radioactive wastes because it directly influences the life cycle of nuclear waste cleanup efforts. To increase glass melting performance, experimental and industrial all-electric waste glass melters employ various melt-rate enhancement techniques, the most prominent being the application of bubblers submerged into molten glass. This study investigates various ways in which bubbling affects melting rate in a waste glass melter. Using the recently developed cold cap model, we suggest that forced convection of molten glass, which increases the cold cap bottom temperature, is the main factor. Other effects, such as stirring the feed into molten glass or reducing the insulating effect of foaming, also play a role.

  20. Controlling electrode gap during vacuum arc remelting at low melting current

    DOE Patents [OSTI]

    Williamson, R.L.; Zanner, F.J.; Grose, S.M.

    1997-04-15T23:59:59.000Z

    An apparatus and method are disclosed for controlling electrode gap in a vacuum arc remelting furnace, particularly at low melting currents. Spectrographic analysis is performed of the metal vapor plasma, from which estimates of electrode gap are derived. 5 figs.

  1. Controlling electrode gap during vacuum arc remelting at low melting current

    DOE Patents [OSTI]

    Williamson, Rodney L. (Albuquerque, NM); Zanner, Frank J. (Sandia Park, NM); Grose, Stephen M. (Glenwood, WV)

    1997-01-01T23:59:59.000Z

    An apparatus and method for controlling electrode gap in a vacuum arc remelting furnace, particularly at low melting currents. Spectrographic analysis is performed of the metal vapor plasma, from which estimates of electrode gap are derived.

  2. Seismic and gravitational studies of melting in the mantle's thermal boundary layers

    E-Print Network [OSTI]

    Van Ark, Emily M

    2007-01-01T23:59:59.000Z

    This thesis presents three studies which apply geophysical tools to the task of better understanding mantle melting phenomena at the upper and lower boundaries of the mantle. The first study uses seafloor bathymetry and ...

  3. On the formation of continental silicic melts in thermo-chemical

    E-Print Network [OSTI]

    van Thienen, Peter

    Chapter 7 On the formation of continental silicic melts in thermo-chemical mantle convection models-consistently produced by numerical thermo- chemical mantle convection models, presented in this paper, including partial

  4. Increased Runoff from Melt from the Greenland Ice Sheet: A Response to Global Warming

    E-Print Network [OSTI]

    Huybrechts, Philippe

    conditions over the ablation zone of the ice sheet, which caused a record melt extent. The year 2006 mass balance changes of the GrIS. Airborne and satellite laser-altimetry data analyses were used

  5. Partitioning behavior of trace elements between dacitic melt and plagioclase, orthopyroxene, and clinopyroxene based on

    E-Print Network [OSTI]

    Bodnar, Robert J.

    , and clinopyroxene based on laser ablation ICPMS analysis of silicate melt inclusions Matthew J. Severs a,d , James S and clinopyroxene, orthopyroxene, and plagioclase has been determined based on laser ablation-inductively cou- pled

  6. The Use of Induction Melting for the Treatment of Metal Radioactive Waste - 13088

    SciTech Connect (OSTI)

    Zherebtsov, Alexander; Pastushkov, Vladimir; Poluektov, Pavel; Smelova, Tatiana; Shadrin, Andrey [JSC 'VNIINM', Rogova st., 5, 123098, Moscow (Russian Federation)] [JSC 'VNIINM', Rogova st., 5, 123098, Moscow (Russian Federation)

    2013-07-01T23:59:59.000Z

    The aim of the work is to assess the efficacy of induction melting metal for recycling radioactive waste in order to reduce the volume of solid radioactive waste to be disposed of, and utilization of the metal. (authors)

  7. Atomic-Level Study of Melting Behavior of GaN Nanotubes. | EMSL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Behavior of GaN Nanotubes. Abstract: Molecular dynamics simulations with a Stillinger-Weber potential have been used to investigate the melting behavior of wurtzite-type single...

  8. Examination of offsite radiological emergency protective measures for nuclear reactor accidents involving core melt

    E-Print Network [OSTI]

    Aldrich, David C.

    1979-01-01T23:59:59.000Z

    Evacuation, sheltering followed by population relocation, and iodine prophylaxis are evaluated as offsite public protective measures in response to nuclear reactor accidents involving core-melt. Evaluations were conducted ...

  9. Geochemical Behaviour of S, Cl and Fe in Silicate Melts/Glasses...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Geochemical Behaviour of S, Cl and Fe in Silicate MeltsGlasses Simulating Natural Magmas Monday, March 26, 2012 - 11:00am SSRL Conference Room 137-322 G. Giuli, R. Alonso-Mori, E....

  10. High resolution melt analysis (HRMA) for detection of CRISPR indels Andrew Bassett 19th

    E-Print Network [OSTI]

    High resolution melt analysis (HRMA) for detection of CRISPR indels Andrew Bassett 19th June 2013 approximately 1 ul per 10 ul PCR reaction HRMA analysis 1. Design primers to amplify 100-200 bp product across

  11. Molecular simulation study of homogeneous crystal nucleation in n-alkane melts

    E-Print Network [OSTI]

    Yi, Peng, Ph. D. Massachusetts Institute of Technology

    2011-01-01T23:59:59.000Z

    This work used molecular dynamics (MD) and Monte Carlo (MC) method to study the homogeneous crystal nucleation in the melts of n-alkanes, the simplest class of chain molecules. Three n-alkanes with progressive chain length ...

  12. Retrograde melting in transition metal-silicon systems : thermodynamic modeling, experimental verification, and potential application

    E-Print Network [OSTI]

    Fenning, David P

    2010-01-01T23:59:59.000Z

    A theoretical framework is presented in this work for retrograde melting in silicon driven by the retrograde solubility of low-concentration metallic solutes at temperatures above the binary eutectic. High enthalpy of ...

  13. Apollo 16 site geology and impact melts - Implications for the geologic history of the lunar highlands

    SciTech Connect (OSTI)

    Spudis, P.D.

    1984-11-15T23:59:59.000Z

    The geology of the Apollo 16 site is reconsidered on the basis of data from photogeology, geochemical remote sensing, and lunar samples. The site possesses an upper surface of anorthositic gabbro and related rocks. Mafic components were deposited as basin ejecta. The events involved in its geological evolution were the Nectaris impact and the Imbrium impact. The role of large, local craters in the history of the region was to serve as topographic depressions to accumulate basin ejecta. The most abundant melt composition at Apollo 16 is an aluminous variety of LKFM basalt supplied by the Nectaris impact as ejected basin impact melt. The mafic LKFM melt may have been supplied by the Imbrium impact. More aluminous melt groups are probably derived from local, small craters. The remainder of the deposits in the region are composed of anorthositic clastic debris derived from the Nectaris basin, the local crustal substrate, and Imbrium and other basins.

  14. The melting pot of automated discovery: principles for a new science

    E-Print Network [OSTI]

    Ras, Zbigniew W.

    The melting pot of automated discovery: principles for a new science Jan M. _Zytkow Computer, 1993, Si- mon, Valdes-Perez & Sleeman 1997, and in Proceedings of 1995 AAAI Spring Symposium

  15. Identified particle production, azimuthal anisotropy, and interferometry measurements in Au+Au collisions at sqrt sNN = 9.2 GeV

    SciTech Connect (OSTI)

    STAR Collaboration; Abelev, Betty

    2010-07-05T23:59:59.000Z

    We present the first measurements of identified hadron production, azimuthal anisotropy, and pion interferometry from Au+Au collisions below the nominal injection energy at the Relativistic Heavy-Ion Collider (RHIC) facility. The data were collected using the large acceptance STAR detector at {radical}s{sub NN} = 9.2 GeV from a test run of the collider in the year 2008. Midrapidity results on multiplicity density (dN/dy) in rapidity (y), average transverse momentum (), particle ratios, elliptic flow, and HBT radii are consistent with the corresponding results at similar {radical}s{sub NN} from fixed target experiments. Directed flow measurements are presented for both midrapidity and forward rapidity regions. Furthermore the collision centrality dependence of identified particle dN/dy, , and particle ratios are discussed. These results also demonstrate that the capabilities of the STAR detector, although optimized for {radical}s{sub NN} = 200 GeV, are suitable for the proposed QCD critical point search and exploration of the QCD phase diagram at RHIC.

  16. HBT puzzle at RHIC AMPT model with String Melting

    E-Print Network [OSTI]

    Lin, Zi-wei

    /RsideSmall radii Small duration time dt by Stephen Johnson at RWW02 One way out: Hydro Softest point in EOS Measured extensively in heavy ion collisions reasonably described by models (hydro-ph/01120062 recent hydro studies: #12;HIJING energy in strings(soft) and minijet partons(hard) ZPC (Zhang

  17. Points

    Broader source: Energy.gov (indexed) [DOE]

    2,540,631 East Lansing, MI Vehicle Technologies The wave disc engine, a gas-fueled electric generator that is five times more efficient than traditional engines for...

  18. VERITAS Observations of the Unidentified Point Source HESS J1943+213

    E-Print Network [OSTI]

    ,

    2015-01-01T23:59:59.000Z

    The H.E.S.S. Galactic plane scan has revealed a large population of Galactic very high energy (VHE; E > 100 GeV) emitters. The majority of the galactic sources are extended and can typically be associated with pulsar wind nebulae (35%) and supernova remnants (21%), while some of the sources remain unidentified (31%). A much smaller fraction of point-like sources (5 in total, corresponding to 4%) are identified as gamma-ray binaries. Active galactic nuclei located behind the Galactic plane are also a potential source class. An active galaxy could be identified in the VHE regime by a point like extension, a high variability amplitude (up to a factor of 100) and a typically soft spectrum (due to absorption by the extra-galactic background light). Here we report on VERITAS observations of HESS J1943+213, an unidentified point source discovered to emit above 470 GeV during the extended H.E.S.S. Galactic plane scan. This source is thought to be a distant BL Lac object behind the Galactic plane and, though it exhibi...

  19. Energy-efficient modification of reduction-melting for lead recovery from cathode ray tube funnel glass

    SciTech Connect (OSTI)

    Okada, Takashi, E-mail: t-okada@u-fukui.ac.jp; Yonezawa, Susumu

    2013-08-15T23:59:59.000Z

    Highlights: • We recovered Pb from cathode ray tube funnel glass using reduction melting process. • We modified the melting process to achieve Pb recovery with low energy consumption. • Pb in the funnel glass is efficiently recovered at 1000 °C by adding Na{sub 2}CO{sub 3}. • Pb remaining in the glass after reduction melting is extracted with 1 M HCl. • 98% of Pb in the funnel glass was recovered by reduction melting and HCl leaching. - Abstract: Lead can be recovered from funnel glass of waste cathode ray tubes via reduction melting. While low-temperature melting is necessary for reduced energy consumption, previously proposed methods required high melting temperatures (1400 °C) for the reduction melting. In this study, the reduction melting of the funnel glass was performed at 900–1000 °C using a lab-scale reactor with varying concentrations of Na{sub 2}CO{sub 3} at different melting temperatures and melting times. The optimum Na{sub 2}CO{sub 3} dosage and melting temperature for efficient lead recovery was 0.5 g per 1 g of the funnel glass and 1000 °C respectively. By the reduction melting with the mentioned conditions, 92% of the lead in the funnel glass was recovered in 60 min. However, further lead recovery was difficult because the rate of the lead recovery decreased as with the recovery of increasing quantity of the lead from the glass. Thus, the lead remaining in the glass after the reduction melting was extracted with 1 M HCl, and the lead recovery improved to 98%.

  20. A Critical Point for Science?

    E-Print Network [OSTI]

    Josephson, B D

    2008-03-05T23:59:59.000Z

    , taboo ideas become arespectable part of science? Occult Sciences Tripos? CU Institute of Astrology? Telepathy, ‘memory of water’, ‘cold fusion’?Scientific theology, intelligent design? Mar. 5, 2008/CUPS A Critical Point for Science / Brian Josephson 32...

  1. Dielectron production from $\\sqrt{s_{NN}}$ = 200 GeV Au + Au collisions at STAR

    E-Print Network [OSTI]

    Jie Zhao; for the STAR Collaboration

    2014-07-10T23:59:59.000Z

    We present the first STAR dielectron measurement in 200 GeV Au + Au collisions. Results are compared to hadron decay cocktail to search for vector meson in-medium modification in low mass region and quark gluon plasma thermal radiation in the intermediate mass region. The transverse mass slope parameters in the intermediate mass region is also discussed.

  2. Azimuthal anisotropy in Au plus Au collisions at root S-NN=200 GeV

    E-Print Network [OSTI]

    Adams, J.; Aggarwal, MM; Ahammed, Z.; Amonett, J.; Anderson, BD; Arkhipkin, D.; Averichev, GS; Badyal, SK; Bai, Y.; Balewski, J.; Barannikova, O.; Barnby, LS; Baudot, J.; Bekele, S.; Belaga, VV; Bellwied, R.; Berger, J.; Bezverkhny, BI; Bharadwaj, S.; Bhasin, A.; Bhati, AK; Bhatia, VS; Bichsel, H.; Bielcik, J.; Bielcikova, J.; Billmeier, A.; Bland, LC; Blyth, CO; Bonner, BE; Botje, M.; Boucham, A.; Brandin, AV; Bravar, A.; Bystersky, M.; Cadman, RV; Cai, XZ; Caines, H.; Sanchez, MCD; Castillo, J.; Catu, O.; Cebra, D.; Chajecki, Z.; Chaloupka, P.; Chattopadhyay, S.; Chen, HF; Chen, Y.; Cheng, J.; Cherney, M.; Chikanian, A.; Christie, W.; Coffin, JP; Cormier, TM; Cramer, JG; Crawford, HJ; Das, D.; Das, S.; de Moura, MM; Derevschikov, AA; Didenko, L.; Dietel, T.; Dogra, SM; Dong, WJ; Dong, X.; Draper, JE; Du, F.; Dubey, AK; Dunin, VB; Dunlop, JC; Mazumdar, MRD; Eckardt, V.; Edwards, WR; Efimov, LG; Emelianov, V.; Engelage, J.; Eppley, G.; Erazmus, B.; Estienne, M.; Fachini, P.; Faivre, J.; Fatemi, R.; Fedorisin, J.; Filimonov, K.; Filip, P.; Finch, E.; Fine, V.; Fisyak, Y.; Fomenko, K.; Fu, J.; Gagliardi, Carl A.; Gaillard, L.; Gans, J.; Ganti, MS; Gaudichet, L.; Guerts, F.; Ghazikhanian, V.; Ghosh, P.; Gonzalez, JE; Grachov, O.; Grebenyuk, O.; Grosnick, D.; Guertin, SM; Guo, Y.; Gupta, A.; Gutierrez, TD; Hallman, TJ; Hamed, A.; Hardtke, D.; Harris, JW; Heinz, M.; Henry, TW; Hepplemann, S.; Hippolyte, B.; Hirsch, A.; Hjort, E.; Hoffmann, GW; Huang, HZ; Huang, SL; Hughes, EW; Humanic, TJ; Igo, G.; Ishihara, A.; Jacobs, P.; Jacobs, WW; Janik, M.; Jiang, H.; Jones, PG; Judd, EG; Kabana, S.; Kang, K.; Kaplan, M.; Keane, D.; Khodyrev, VY; Kiryluk, J.; Kisiel, A.; Kislov, EM; Klay, J.; Klein, SR; Koetke, DD; Kollegger, T.; Kopytine, M.; Kotchenda, L.; Kramer, M.; Kravtsov, P.; Kravtsov, VI; Krueger, K.; Kuhn, C.; Kulikov, AI; Kumar, A.; Kutuev, RK; Kuznetsov, AA; Lamont, MAC; Landgraf, JM; Lange, S.; Laue, F.; Lauret, J.; Lebedev, A.; Lednicky, R.; Lehocka, S.; LeVine, MJ; Li, C.; Li, Q.; Li, Y.; Lin, G.; Lindenbaum, SJ; Lisa, MA; Liu, F.; Liu, L.; Liu, QJ; Liu, Z.; Ljubicic, T.; Llope, WJ; Long, H.; Langacre, RS; Lopez-Noriega, M.; Love, WA; Lu, Y.; Ludlam, T.; Lynn, D.; Ma, GL; Ma, JG; Ma, YG; Magestro, D.; Mahajan, S.; Mahapatra, DP; Majka, R.; Mangotra, LK; Manweiler, R.; Margetis, S.; Markert, C.; Martin, L.; Marx, JN; Matis, HS; Matulenko, YA; McClain, CJ; McShane, TS; Meissner, F.; Melnick, Y.; Meschanin, A.; Miller, ML; Minaev, NG; Mironov, C.; Mischke, A.; Mishra, DK; Mitchell, J.; Mohanty, B.; Molnar, L.; Moore, CF; Morozov, DA; Munhoz, MG; Nandi, BK; Nayak, SK; Nayak, TK; Nelson, JM; Netrakanti, PK; Nikitin, VA; Nogach, LV; Nurushev, SB; Odyniec, G.; Ogawa, A.; Okorokov, V.; Oldenburg, M.; Olson, D.; Pal, SK; Panebratsev, Y.; Panitkin, SY; Pavlinov, AI; Pawlak, T.; Peitzmann, T.; Perevoztchikov, V.; Perkins, C.; Peryt, W.; Petrov, VA; Phatak, SC; Picha, R.; Planinic, M.; Pluta, J.; Porile, N.; Porter, J.; Poskanzer, AM; Potekhin, M.; Potrebenikova, E.; Potukuchi, BVKS; Prindle, D.; Pruneau, C.; Putschke, J.; Rakness, G.; Raniwala, R.; Raniwala, S.; Ravel, O.; Ray, RL; Razin, SV; Reichhold, D.; Reid, JG; Renault, G.; Retiere, F.; Ridiger, A.; Ritter, HG; Roberts, JB; Rogachevskiy, OV; Romero, JL; Rose, A.; Roy, C.; Ruan, L.; Sahoo, R.; Sakrejda, I.; Salur, S.; Sandweiss, J.; Sarsour, M.; Savin, I.; Sazhin, PS; Schambach, J.; Scharenberg, RP; Schmitz, N.; Schweda, K.; Seger, J.; Seyboth, P.; Shahaliev, E.; Shao, M.; Shao, W.; Sharma, M.; Shen, WQ; Shestermanov, KE; Shimanskiy, SS; Sichtermann, E.; Simon, F.; Singaraju, RN; Skoro, G.; Smirnov, N.; Snellings, R.; Sood, G.; Sorensen, P.; Sowinski, J.; Speltz, J.; Spinka, H. M.; Srivastava, B.; Stadnik, A.; Stanislaus, TDS; Stock, R.; Stolpovsky, A.; Strikhanov, M.; Stringfellow, B.; Suaide, AAP; Sugarbaker, E.; Suire, C.; Sumbera, M.; Surrow, B.; Symons, TJM; de Toledo, AS; Szarwas, P.; Tai, A.; Takahashi, J.; Tang, AH; Tarnowsky, T.; Thein, D.; Thomas, JH; Timoshenko, S.; Tokarev, M.; Trainor, TA; Trentalange, S.; Tribble, Robert E.; Tsai, OD; Ulery, J.; Ullrich, T.; Underwood, DG; Urkinbaev, A.; van Buren, G.; van Leeuwen, M.; Molen, AMV; Varma, R.; Vasilevski, IM; Vasiliev, AN; Vernet, R.; Vigdor, SE; Viyogi, YP; Vokal, S.; Voloshin, SA; Vznuzdaev, M.; Waggoner, WT; Wang, F.; Wang, G.; Wang, G.; Wang, XL; Wang, Y.; Wang, Y.; Wang, ZM; Ward, H.; Watson, JW; Webb, JC; Wells, R.; Westfall, GD; Wetzler, A.; Whitten, C.; Wieman, H.; Wissink, SW; Witt, R.; Wood, J.; Wu, J.; Xu, N.; Xu, Z.; Xu, ZZ; Yamamoto, E.; Yepes, P.; Yurevich, VI; Zanevsky, YV; Zhang, H.; Zhang, WM; Zhang, ZP; Zoulkarneev, R.; Zoulkarneeva, Y.; Zubarev, AN; Braem, A.; Davenport, M.; Cataldo, GD; Bari, DD; Martinengo, P.; Nappi, E.; Paic, G.; Posa, E.; Puiz, F.; Schyns, E.; Star Collaboration; STAR-RICH Collaboration.

    2005-01-01T23:59:59.000Z

    The results from the STAR Collaboration on directed flow (v(1)), elliptic flow (v(2)), and the fourth harmonic (v(4)) in the anisotropic azimuthal distribution of particles from Au+Au collisions at root s(NN) = 200 GeV are summarized and compared...

  3. The Jefferson Lab 12 GeV program on nucleon structure

    SciTech Connect (OSTI)

    Burkert, Volker D. [JLAB

    2013-10-01T23:59:59.000Z

    This slide-show presents the experiments planned at JLab with their 12 GeV upgrade. Experiments reported address: the use of hadron spectra as probes of QCD; the transverse structure of hadrons; the longitudinal structure of hadrons; the 3-dimensional structure of hadrons; hadrons and cold nuclear matter; and low-energy tests of the Standard Model and fundamental symmetries.

  4. Heavy Quarkonium Production at sqrt{s_{NN}} = 200 GeV

    E-Print Network [OSTI]

    Cervantes, Matthew

    2012-12-12T23:59:59.000Z

    -alignment (‘polarization’) and Upsilon + hadron correlations (? + h) to investigate the Upsilon production mechanism, using triggered data from Run-8 (2008) d+Au and Run-9 (2009) p+p collisions at sqrt(sN N) = 200 GeV, detected at STAR. The result of the spin...

  5. Fabrication and Testing Status of CEBAF 12 GeV Upgrade Cavities

    SciTech Connect (OSTI)

    Marhauser, F; Davis, G K; Forehand, D; Grenoble, C; Hogan, J; Overton, R B; Reilly, A V; Rimmer, R A

    2011-09-01T23:59:59.000Z

    The 12 GeV upgrade of the Continuous Electron Beam Accelerator Facility (CEBAF) at Jefferson Laboratory (JLab) is under way. All cavities have been built by industry and are presently undergoing post-processing and final low and high power qualification before cryomodule assembly. The status is reported including fabrication-related experiences, observations and issues throughout production, post-processing and qualification.

  6. Performance of First C100 Cryomodules for the CEBAF 12 GeV Upgrade Project

    SciTech Connect (OSTI)

    Drury, Michael A.; Burrill, Andrew B.; Davis, G. Kirk; Hogan, John P.; King, Lawrence; Marhauser, Frank; Park, HyeKyoung; Preble, Joseph; Reece, Charles E.; Reilly, Anthony V.; Rimmer, Robert A.; Wang, Haipeng; Wiseman, Mark A.

    2012-09-01T23:59:59.000Z

    The Thomas Jefferson National Accelerator Facility is currently engaged in the 12 GeV Upgrade Project. The goal of the project is a doubling of the available beam energy of CEBAF from 6 GeV to 12 GeV. This increase in beam energy will be due primarily to the construction and installation of ten "C100" cryomodules in the CEBAF linacs. The C100 cryomodules are designed to deliver an average 108 MV each from a string of eight seven-cell, electropolished superconducting RF cavities operating at an average accelerating gradient of 19.2 MV/m. The new cryomodules fit in the same available linac space as the original CEBAF 20 MV cryomodules. Cryomodule production started in September 2010. Initial acceptance testing started in June 2011. The first two C100 cryomodules were installed and tested from August 2011 through October 2011, and successfully operated during the last period of the CEBAF 6 GeV era, which ended in May 2012. This paper will present the results of acceptance testing and commissioning of the C100 style cryomodules to date.

  7. HIGH POWER TEST OF RF SEPARATOR FOR 12 GEV UPGRADE OF CEBAF AT JLAB

    SciTech Connect (OSTI)

    S. Ahmed, M. Wissmann, J. Mammosser, C. Hovater, M. Spata, G. Krafft, J. Delayen

    2012-07-01T23:59:59.000Z

    CEBAF at JLab is in the process of an energy upgrade from 6 GeV to 12 GeV. The existing setup of the RF separator cavities in the 5th pass will not be adequate to extract the highest energy (11 GeV) beam to any two existing halls (A, B or C) while simultaneously delivering to the new hall D in the case of the proposed 12 GeV upgrade of the machine. To restore this capability, we are exploring the possibility of extension of existing normal conducting 499 MHz TEM-type rf separator cavities. Detailed numerical studies suggest that six 2-cell normal conducting structures meet the requirements; each 2-cell structure will require up to 4 kW RF input power in contrast with the current nominal operating power of 1.0 to 2.0 kW. A high power test of 4 kW confirms that the cavity meet the requirement.

  8. Measurement of the Crab Flux Above 60 GeV with the CELESTE Cherenkov Telescope

    E-Print Network [OSTI]

    De Naurois, Mathieu; Bazer-Bachi, R; Bergeret, H; Bruel, P; Cordier, A; Debiais, G; Dezalay, J P; Dumora, D; Durand, E; Eschstruth, P T; Espigat, P; Fabre, B; Fleury, P; Herault, N; Hrabovsky, M; Incerti, S; Le Gallou, R; Munz, F; Musquere, A; Olive, J F; Paré, E; Quebert, J; Rannot, R C; Reposeur, T; Rob, L; Roy, P; Sako, T; Schovanek, P; Smith, D A; Snabre, P; Volte, A

    2002-01-01T23:59:59.000Z

    We have converted the former solar electrical plant THEMIS (French Pyrenees) into an atmospheric Cherenkov detector called CELESTE, which records gamma rays above 30 GeV (7E24 Hz). Here we present the first sub-100 GeV detection by a ground based telescope of a gamma ray source, the Crab nebula, in the energy region between satellite measurements and imaging atmospheric Cherenkov telescopes. At our analysis threshold energy of 60 +/- 20 GeV we measure a gamma ray rate of 6.1 +/- 0.8 per minute. Allowing for 30% systematic uncertainties and a 30% error on the energy scale yields an integral gamma ray flux of I(E>60 GeV) = 6.2^{+5.3}_{-2.3} E-6 photons m^-2 s^-1. The analysis methods used to obtain the gamma ray signal from the raw data are detailed. In addition, we determine the upper limit for pulsed emission to be <12% of the Crab flux at the 99% confidence level, in the same energy range. Our result indicates that if the power law observed by EGRET is attenuated by a cutoff of form e^{-E/E_0} then E_0 &l...

  9. Search for GeV Emission from Gamma-Ray Bursts Using Milagro Scaler Data

    E-Print Network [OSTI]

    California at Santa Cruz, University of

    Search for GeV Emission from Gamma-Ray Bursts Using Milagro Scaler Data D. A. Williams to search for high energy emission from a sample of 98 gamma-ray bursts (GRB) detected from January 2000: gamma-ray sources; gamma-ray bursts; astronomical observations: gamma-ray PACS: 98.70.Rz,95.85.Pw Air

  10. The evaluation of cleanness by electron beam button melting and other methods - a review

    SciTech Connect (OSTI)

    Quested, P.N.; Hayes, D.M. [National Physical Lab., Middlesex (United Kingdom)

    1994-12-31T23:59:59.000Z

    The accurate determination of both the number and size distribution of inclusions in superclean materials is difficult. Some of the methods used for nickel-base alloys and steels are briefly reviewed; all the methods have problems associated with them. Electron Beam Button Melting (EBBM) and the new technique of Cold Crucible Melting (CCM) as methods of concentrating the inclusions offer the advantage of sampling large volumes of material quickly. The number, size and composition of the entrapped particles can be determined using Scanning Electron Microscopy, (SEM). Both techniques may be used for semi-quantitative assessment such as ranking different heats of materials but care is required with quantitative evaluation. The mechanisms controlling inclusion collection efficiency for EBBM are reviewed including investigations with samples doped with particles of known size and number and assessing recovery rates on button rafts. In EBBM low power melting and solidification programmes are recommended to minimise the melting or sintering of the inclusions and melt compositions, particularly sulphur, have a major effect on the efficiency of inclusion collection. Under favourable conditions collection efficiencies of 90-95% can be achieved. As a result of these types of studies a draft code of practice for the evaluation of alloy cleanness by EBBM has been prepared. Cold crucible melting is an attractive alternative to EBBM for cleanness evaluation. Trials have established that collection efficiencies of 80-85% can be achieved with this method but SEM examination of the buttons is more time consuming compared with EBBM.

  11. Investigation of MSWI fly ash melting characteristic by DSC-DTA

    SciTech Connect (OSTI)

    Li, Rundong [Institute of Clean Energy and Environmental Engineering, Liaoning Key Laboratory of Clean Energy, Shenyang Institute of Aeronautical Engineering, Shenyang 110136 (China)], E-mail: leerd@mail.tsinghua.edu.cn; Wang, Lei; Yang, Tianhua; Raninger, Bernhard [Institute of Clean Energy and Environmental Engineering, Liaoning Key Laboratory of Clean Energy, Shenyang Institute of Aeronautical Engineering, Shenyang 110136 (China)

    2007-07-01T23:59:59.000Z

    The melting process of MSWI (Municipal Solid Waste Incineration) fly ash has been studied by high-temperature DSC-DTA experiments. The experiments were performed at a temperature range of 20-1450 deg. C, and the considerable variables included atmosphere (O{sub 2} and N{sub 2}), heating rates (5 deg. C/min, 10 deg. C/min, 20 deg. C/min) and CaO addition. Three main transitions were observed during the melting process of fly ash: dehydration, polymorphic transition and fusion, occurring in the temperature range of 100-200 deg. C, 480-670 deg. C and 1101-1244 deg. C, respectively. The apparent heat capacity and heat requirement for melting of MSWI fly ash were obtained by DSC (Differential Scanning Calorimeter). A thermodynamic modeling to predict the heat requirements for melting process has been presented, and it agrees well with the experimental data. Finally, a zero-order kinetic model of fly ash melting transition was established. The apparent activation energy of MSWI fly ash melting transition was obtained.

  12. A Brief Review of Past INL Work Assessing Radionuclide Content in TMI-2 Melted Fuel Debris: The Use of 144Ce as a Surrogate for Pu Accountancy

    SciTech Connect (OSTI)

    D. L. Chichester; S. J. Thompson

    2013-09-01T23:59:59.000Z

    This report serves as a literature review of prior work performed at Idaho National Laboratory, and its predecessor organizations Idaho National Engineering Laboratory (INEL) and Idaho National Engineering and Environmental Laboratory (INEEL), studying radionuclide partitioning within the melted fuel debris of the reactor of the Three Mile Island 2 (TMI-2) nuclear power plant. The purpose of this review is to document prior published work that provides supporting evidence of the utility of using 144Ce as a surrogate for plutonium within melted fuel debris. When the TMI-2 accident occurred no quantitative nondestructive analysis (NDA) techniques existed that could assay plutonium in the unconventional wastes from the reactor. However, unpublished work performed at INL by D. W. Akers in the late 1980s through the 1990s demonstrated that passive gamma-ray spectrometry of 144Ce could potentially be used to develop a semi-quantitative correlation for estimating plutonium content in these materials. The fate and transport of radioisotopes in fuel from different regions of the core, including uranium, fission products, and actinides, appear to be well characterized based on the maximum temperature reached by fuel in different parts of the core and the melting point, boiling point, and volatility of those radioisotopes. Also, the chemical interactions between fuel, fuel cladding, control elements, and core structural components appears to have played a large role in determining when and how fuel relocation occurred in the core; perhaps the most important of these reaction appears to be related to the formation of mixed-material alloys, eutectics, in the fuel cladding. Because of its high melting point, low volatility, and similar chemical behavior to plutonium, the element cerium appears to have behaved similarly to plutonium during the evolution of the TMI-2 accident. Anecdotal evidence extrapolated from open-source literature strengthens this logical feasibility for using cerium, which is rather easy to analyze using passive nondestructive analysis gamma-ray spectrometry, as a surrogate for plutonium in the final analysis of TMI-2 melted fuel debris. The generation of this report is motivated by the need to perform nuclear material accountancy measurements on the melted fuel debris that will be excavated from the damaged nuclear reactors at the Fukushima Daiichi nuclear power plant in Japan, which were destroyed by the Tohoku earthquake and tsunami on March 11, 2011. Lessons may be taken from prior U.S. work related to the study of the TMI-2 core debris to support the development of new assay methods for use at Fukushima Daiichi. While significant differences exist between the two reactor systems (pressurized water reactor (TMI-2) versus boiling water reactor (FD), fresh water post-accident cooing (TMI-2) versus salt water (FD), maintained containment (TMI-2) versus loss of containment (FD)) there remain sufficient similarities to motivate these comparisons.

  13. Virtual Compton Scattering and the Generalized Polarizabilities of the Proton at Q^2=0.92 and 1.76 GeV^2

    E-Print Network [OSTI]

    Fonvieille, H; Degrande, N; Jaminion, S; Jutier, C; Di Salvo, L TodorR; Van Hoorebeke, L; Alexa, L C; Anderson, B D; Aniol, K A; Arundell, K; Audit, G; Auerbach, L; Baker, F T; Baylac, M; Berthot, J; Bertin, P Y; Bertozzi, W; Bimbot, L; Boeglin, W U; Brash, E J; Breton, V; Breuer, H; Burtin, E; Calarco, J R; Cardman, L S; Cavata, C; Chang, C -C; Chen, J -P; Chudakov, E; Cisbani, E; Dale, D S; deJager, C W; De Leo, R; Deur, A; d'Hose, N; Dodge, G E; Domingo, J J; Elouadrhiri, L; Epstein, M B; Ewell, L A; Finn, J M; Fissum, K G; Fournier, G; Frois, B; Frullani, S; Furget, C; Gao, H; Gao, J; Garibaldi, F; Gasparian, A; Gilad, S; Gilman, R; Glamazdin, A; Glashausser, C; Gomez, J; Gorbenko, V; Grenier, P; Guichon, P A M; Hansen, J O; Holmes, R; Holtrop, M; Howell, C; Huber, G M; Hyde, C E; Incerti, S; Iodice, M; Jardillier, J; Jones, M K; Kahl, W; Kato, S; Katramatou, A T; Kelly, J J; Kerhoas, S; Ketikyan, A; Khayat, M; Kino, K; Kox, S; Kramer, L H; Kumar, K S; Kumbartzki, G; Kuss, M; Leone, A; LeRose, J J; Liang, M; Lindgren, R A; Liyanage, N; Lolos, G J; Lourie, R W; Madey, R; Maeda, K; Malov, S; Manley, D M; Marchand, C; Marchand, D; Margaziotis, D J; Markowitz, P; Marroncle, J; Martino, J; McCormick, K; McIntyre, J; Mehrabyan, S; Merchez, F; Meziani, Z E; Michaels, R; Miller, G W; Mougey, J Y; Nanda, S K; Neyret, D; Offermann, E A J M; Papandreou, Z; Pasquini, B; Perdrisat, C F; Perrino, R; Petratos, G G; Platchkov, S; Pomatsalyuk, R; Prout, D L; Punjabi, V A; Pussieux, T; Quemener, G; Ransome, R D; Ravel, O; Real, J S; Renard, F; Roblin, Y; Rowntree, D; Rutledge, G; Rutt, P M; Saha, A; Saito, T; Sarty, A J; Serdarevic, A; Smith, T; Smirnov, G; Soldi, K; Sorokin, P; Souder, P A; Suleiman, R; Templon, J A; Terasawa, T; Tieulent, R; Tomasi-Gustaffson, E; Tsubota, H; Ueno, H; Ulmer, P E; Urciuoli, G M; Vanderhaeghen, M; Van der Meer, R L J; Van De Vyver, R; Vernin, P; Vlahovic, B; Voskanyan, H; Voutier, E; Watson, J W; Weinstein, L B; Wijesooriya, K; Wilson, R; Wojtsekhowski, B B; Zainea, D G; Zhang, W-M; Zhao, J; Zhou, Z -L

    2012-01-01T23:59:59.000Z

    Virtual Compton Scattering (VCS) on the proton has been studied at Jefferson Lab using the exclusive photon electroproduction reaction (e p --> e p gamma). This paper gives a detailed account of the analysis which has led to the determination of the structure functions P_LL-P_TT/epsilon and P_LT, and the electric and magnetic generalized polarizabilities (GPs) alpha_E(Q^2) and beta_M(Q^2) at values of the four-momentum transfer squared Q^2= 0.92 and 1.76 GeV^2. These data, together with the results of VCS experiments at lower momenta, help building a coherent picture of the electric and magnetic GPs of the proton over the full measured Q^2-range, and point to their non-trivial behavior.

  14. Virtual Compton Scattering and the Generalized Polarizabilities of the Proton at Q^2=0.92 and 1.76 GeV^2

    E-Print Network [OSTI]

    H. Fonvieille; G. Laveissiere; N. Degrande; S. Jaminion; C. Jutier; L. Todor; R. Di Salvo; L. Van Hoorebeke; L. C. Alexa; B. D. Anderson; K. A. Aniol; K. Arundell; G. Audit; L. Auerbach; F. T. Baker; M. Baylac; J. Berthot; P. Y. Bertin; W. Bertozzi; L. Bimbot; W. U. Boeglin; E. J. Brash; V. Breton; H. Breuer; E. Burtin; J. R. Calarco; L. S. Cardman; C. Cavata; C. -C. Chang; J. -P. Chen; E. Chudakov; E. Cisbani; D. S. Dale; C. W. deJager; R. De Leo; A. Deur; N. d'Hose; G. E. Dodge; J. J. Domingo; L. Elouadrhiri; M. B. Epstein; L. A. Ewell; J. M. Finn; K. G. Fissum; G. Fournier; B. Frois; S. Frullani; C. Furget; H. Gao; J. Gao; F. Garibaldi; A. Gasparian; S. Gilad; R. Gilman; A. Glamazdin; C. Glashausser; J. Gomez; V. Gorbenko; P. Grenier; P. A. M. Guichon; J. O. Hansen; R. Holmes; M. Holtrop; C. Howell; G. M. Huber; C. E. Hyde; S. Incerti; M. Iodice; J. Jardillier; M. K. Jones; W. Kahl; S. Kato; A. T. Katramatou; J. J. Kelly; S. Kerhoas; A. Ketikyan; M. Khayat; K. Kino; S. Kox; L. H. Kramer; K. S. Kumar; G. Kumbartzki; M. Kuss; A. Leone; J. J. LeRose; M. Liang; R. A. Lindgren; N. Liyanage; G. J. Lolos; R. W. Lourie; R. Madey; K. Maeda; S. Malov; D. M. Manley; C. Marchand; D. Marchand; D. J. Margaziotis; P. Markowitz; J. Marroncle; J. Martino; K. McCormick; J. McIntyre; S. Mehrabyan; F. Merchez; Z. E. Meziani; R. Michaels; G. W. Miller; J. Y. Mougey; S. K. Nanda; D. Neyret; E. A. J. M. Offermann; Z. Papandreou; B. Pasquini; C. F. Perdrisat; R. Perrino; G. G. Petratos; S. Platchkov; R. Pomatsalyuk; D. L. Prout; V. A. Punjabi; T. Pussieux; G. Quemener; R. D. Ransome; O. Ravel; J. S. Real; F. Renard; Y. Roblin; D. Rowntree; G. Rutledge; P. M. Rutt; A. Saha; T. Saito; A. J. Sarty; A. Serdarevic; T. Smith; G. Smirnov; K. Soldi; P. Sorokin; P. A. Souder; R. Suleiman; J. A. Templon; T. Terasawa; R. Tieulent; E. Tomasi-Gustaffson; H. Tsubota; H. Ueno; P. E. Ulmer; G. M. Urciuoli; M. Vanderhaeghen; R. L. J. Van der Meer; R. Van De Vyver; P. Vernin; B. Vlahovic; H. Voskanyan; E. Voutier; J. W. Watson; L. B. Weinstein; K. Wijesooriya; R. Wilson; B. B. Wojtsekhowski; D. G. Zainea; W. -M. Zhang; J. Zhao; Z. -L. Zhou

    2012-06-28T23:59:59.000Z

    Virtual Compton Scattering (VCS) on the proton has been studied at Jefferson Lab using the exclusive photon electroproduction reaction (e p --> e p gamma). This paper gives a detailed account of the analysis which has led to the determination of the structure functions P_LL-P_TT/epsilon and P_LT, and the electric and magnetic generalized polarizabilities (GPs) alpha_E(Q^2) and beta_M(Q^2) at values of the four-momentum transfer squared Q^2= 0.92 and 1.76 GeV^2. These data, together with the results of VCS experiments at lower momenta, help building a coherent picture of the electric and magnetic GPs of the proton over the full measured Q^2-range, and point to their non-trivial behavior.

  15. Measurements of $ep \\to e^\\prime ?^+n$ at W = 1.6 - 2.0 GeV and extraction of nucleon resonance electrocouplings at CLAS

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Park, Kijun; et. al.,; Aznauryan, I. G.; Burkert, V. D.; Adhikari, K. P.; Amaryan, M. J.; Pereira, S. Anefalos; Avakian, H.; Battaglieri, M.; Badui, R.; et al

    2015-04-01T23:59:59.000Z

    Differential cross sections of the exclusive process $e p \\to e^\\prime \\pi^+ n$ were measured with good precision in the range of the photon virtuality $Q^2 = 1.8 - 4.5$ GeV$^2$, and the invariant mass range of the $\\pi^+ n$ final state W = 1.6 - 2.0 GeV using the CEBAF Large Acceptance Spectrometer. Data were collected with nearly complete coverage in the azimuthal and polar angles of the $n\\pi^+$ center-of-mass system. More than 37,000 cross section points were measured. The contributions of the isospin $I = {1\\over 2}$ resonances $N(1675){5\\over 2}^-$, $N(1680){5\\over 2}^+$ and $N(1710){1\\over 2}^+$ were extracted atmore »different values of $Q^2$ using a single-channel, energy-dependent resonance amplitude analysis. Two different approaches, the unitary isobar model and the fixed-$t$ dispersion relations, were employed in the analysis. We observe significant strength of the $N(1675){5\\over 2}^-$ in the $A_{1/2}$ amplitude, which is in strong disagreement with quark models that predict both transverse amplitudes to be strongly suppressed. For the $N(1680){5\\over 2}^+$ we observe a slow changeover from the dominance of the $A_{3/2}$ amplitude at the real photon point ($Q^2=0$) to a $Q^2$ where $A_{1/2}$ begins to dominate. The scalar amplitude $S_{1/2}$ drops rapidly with $Q^2$ consistent with quark model prediction. For the $N(1710){1\\over 2}^+$ resonance our analysis shows significant strength for the $A_{1/2}$ amplitude at $Q^2 « less

  16. OECD MCCI project Melt Eruption Test (MET) design report, Rev. 2. April 15, 2003.

    SciTech Connect (OSTI)

    Farmer, M. T.; Lomperski, S.; Kilsdonk, D. J.; Aeschlimann, R. W.; Basu, S. (Nuclear Engineering Division); (NRC)

    2011-05-23T23:59:59.000Z

    The Melt Attack and Coolability Experiments (MACE) program at Argonne National Laboratory addressed the issue of the ability of water to cool and thermally stabilize a molten core-concrete interaction when the reactants are flooded from above. These tests provided data regarding the nature of corium interactions with concrete, the heat transfer rates from the melt to the overlying water pool, and the role of noncondensable gases in the mixing processes that contribute to melt quenching. The Melt Coolability and Concrete Interaction (MCCI) program is pursuing separate effect tests to examine the viability of the melt coolability mechanisms identified as part of the MACE program. These mechanisms include bulk cooling, water ingression, volcanic eruptions, and crust breach. At the second PRG meeting held at ANL on 22-23 October 2002, a preliminary design1 for a separate effects test to investigate the melt eruption cooling mechanism was presented for PRG review. At this meeting, NUPEC made several recommendations on the experiment approach aimed at optimizing the chances of achieving a floating crust boundary condition in this test. The principal recommendation was to incorporate a mortar sidewall liner into the test design, since data from the COTELS experiment program indicates that corium does not form a strong mechanical bond with this material. Other recommendations included: (i) reduction of the electrode elevation to well below the melt upper surface elevation (since the crust may bond to these solid surfaces), and (ii) favorably taper the mortar liner to facilitate crust detachment and relocation during the experiment. Finally, as a precursor to implementing these modifications, the PRG recommended the development of a design for a small-scale scoping test intended to verify the ability of the mortar liner to preclude formation of an anchored bridge crust under core-concrete interaction conditions. This revised Melt Eruption Test (MET) plan is intended to satisfy these PRG recommendations. Specifically, the revised plan focuses on providing data on the extent of crust growth and melt eruptions as a function of gas sparging rate under well-controlled experiment conditions, including a floating crust boundary condition. The overall objective of MET is to determine to what extent core debris is rendered coolable by eruptive-type processes that breach the crust that rests upon the melt. The specific objectives of this test are as follows: (1) Evaluate the augmentation in surface heat flux during periods of melt eruption; (2) Evaluate the melt entrainment coefficient from the heat flux and gas flow rate data for input into models that calculate ex-vessel debris coolability; (3) Characterize the morphology and coolability of debris resulting from eruptive processes that transport melt into overlying water; and (4) Discriminate between periods when eruptions take the form of particle ejections into overlying water, leading to a porous particle bed, and single-phase extrusions, which lead to volcano-type structures.

  17. Tomographic location of potential melt-bearing phenocrysts in lunar glass spherules

    SciTech Connect (OSTI)

    Ebel, D.S.; Fogel, R.A.; Rivers, M.L. (AMNH); (UC)

    2005-02-04T23:59:59.000Z

    Apollo 17 orange glass spherules contain olivine phenocrysts with melt inclusions from depth. Tomography (<2micron/pxl) of >200 spherules located 1 phenocryst. We will try to find melt inclusions and obtain original magma volatiles and compositions. In 1971, Apollo 17 astronauts collected a 10 cm soil sample (74220) comprised almost entirely of orange glass spherules. Below this, a double drive-tube core sampled a 68 cm thick horizon comprised of orange glass and black beads (crystallized equivalents of orange glass). Primitive lunar glass spherules (e.g.-A17 orange glasses) are thought to represent ejecta from lunar mare fire fountains. The fire-fountains were apparently driven by a combination of C-O gas exsolution from orange glass melt and the oxidation of graphite. Upon eruption, magmas lost their volatiles (e.g., S, CO, CO{sub 2}) to space. Evidence for volatile escape remains as volatile-rich coatings on the exteriors of many spherules. Moreover, it showed that Type I and II Fe-Ni-rich metal particles found within orange glass olivine phenocrysts, or free-floating in the glass itself, are powerful evidence for the volatile driving force for lunar fire fountains. More direct evidence for the volatile mechanism has yet to be uncovered. Issues remaining include: the exact composition of magmatic volatiles; the hypothesized existence of graphite in the magma; the oxygen fugacity of the magma and of the lunar interior. In 1996 reported a single {approx}450 micron, equant olivine phenocryst, containing four glassy melt inclusions (or inclusion cores), the largest {approx}30micron in size, in a thin section of the 74001/2 drill core. The melt is assumed to sample the parent magma of the lunar basalts at depth, evidenced by the S content of the inclusion (600 ppm) which is 400 ppm greater than that of the orange glass host. Such melts potentially contain a full complement of the volatile components of the parent magma, which can be analyzed by infrared spectroscopy. Although the A17 orange glass magma is thought to derive from {approx} 400 km depth, the calculations imply a 4 km depth of graphite oxidation (and melt saturation in C-O volatiles) during ascent. We have imaged several hundred similar orange glass spherules, from sample 74220,764, using synchrotron x-ray computer-aided microtomography (XRCMT). Our goals: (1) locate similar phenocrysts containing melt inclusions; (2) analyze phenocrysts to understand the evolution of the magma; (3) analyze melt and fluid inclusions using EPMA and FTIR to obtain direct evidence of magmatic volatiles and pristine bulk compositions.

  18. CenterPoint November 2009

    E-Print Network [OSTI]

    Hemmers, Oliver

    CenterPoint November 2009 The Center for Academic Enrichment & Outreach Newsletter ONLINE ARTICLES (which is housed in the Center for Academic Enrichment and Outreach (CAEO)) assisted parents is committed to working with families and students to provide challenging academic classes, as well as social

  19. End points for facility deactivation

    SciTech Connect (OSTI)

    Szilagyi, A.P. [Dept. of Energy, Germantown, MD (United States); Negin, C.A. [Oak Technologies, Washington Grove, MD (United States); Stefanski, L.D. [Westinghouse Hanford, Richland, WA (United States)

    1996-12-31T23:59:59.000Z

    DOE`s Office of Nuclear Material and Facility Stabilization mission includes deactivating surplus nuclear facilities. Each deactivation project requires a systematic and explicit specification of the conditions to be established. End Point methods for doing so have been field developed and implemented. These methods have worked well and are being made available throughout the DOE establishment.

  20. Decontamination of metals by melt refinings/slagging: An annotated bibliography

    SciTech Connect (OSTI)

    Mizia, R.E. [ed.; Worcester, S.A.; Twidwell, L.G.; Paolini, D.J.; Weldon, T.A.

    1993-07-01T23:59:59.000Z

    As the number of nuclear installations undergoing decontamination and decommissioning (D&D) increases, current radioactive waste storage space is consumed and establishment of new waste storage areas becomes increasingly difficult, the problem of handling and storing radioactive scrap metal (RSM) gains increasing importance in the DOE Environmental Restoration and Waste Management Program. To alleviate present and future waste storage problems, Westinghouse Idaho Nuclear Company (WINCO) is managing a program for the recycling of RSM for beneficial use within the DOE complex. As part of that effort, Montana Tech has been awarded a contract to help optimize melting and refining technology for the recycling of stainless steel RSM. The scope of the Montana Tech program includes a literature survey, a decontaminating slag design study, small scale melting studies to determine optimum slag compositions for removal of radioactive contaminant surrogates, analysis of preferred melting techniques, and coordination of large scale melting demonstrations (100--500 lbs) to be conducted at selected facilities. The program will support recycling and decontaminating stainless steel RSM for use in waste canisters for Idaho Waste Immobilization Facility densified high level waste. This report is the result of the literature search conducted to establish a basis for experimental melt/slag program development.

  1. Nuclear reactor melt-retention structure to mitigate direct containment heating

    DOE Patents [OSTI]

    Tutu, Narinder K. (Manorville, NY); Ginsberg, Theodore (East Setauket, NY); Klages, John R. (Mattituck, NY)

    1991-01-01T23:59:59.000Z

    A light water nuclear reactor melt-retention structure to mitigate the extent of direct containment heating of the reactor containment building. The structure includes a retention chamber for retaining molten core material away from the upper regions of the reactor containment building when a severe accident causes the bottom of the pressure vessel of the reactor to fail and discharge such molten material under high pressure through the reactor cavity into the retention chamber. In combination with the melt-retention chamber there is provided a passageway that includes molten core droplet deflector vanes and has gas vent means in its upper surface, which means are operable to deflect molten core droplets into the retention chamber while allowing high pressure steam and gases to be vented into the upper regions of the containment building. A plurality of platforms are mounted within the passageway and the melt-retention structure to direct the flow of molten core material and help retain it within the melt-retention chamber. In addition, ribs are mounted at spaced positions on the floor of the melt-retention chamber, and grid means are positioned at the entrance side of the retention chamber. The grid means develop gas back pressure that helps separate the molten core droplets from discharged high pressure steam and gases, thereby forcing the steam and gases to vent into the upper regions of the reactor containment building.

  2. Fundamentals of Melt-Water Interfacial Transport Phenomena: Improved Understanding for Innovative Safety Technologies in ALWRs

    SciTech Connect (OSTI)

    M. Anderson; M. Corradini; K.Y. Bank; R. Bonazza; D. Cho

    2005-04-26T23:59:59.000Z

    The interaction and mixing of high-temperature melt and water is the important technical issue in the safety assessment of water-cooled reactors to achieve ultimate core coolability. For specific advanced light water reactor (ALWR) designs, deliberate mixing of the core-melt and water is being considered as a mitigative measure, to assure ex-vessel core coolability. The goal of this work is to provide the fundamental understanding needed for melt-water interfacial transport phenomena, thus enabling the development of innovative safety technologies for advanced LWRs that will assure ex-vessel core coolability. The work considers the ex-vessel coolability phenomena in two stages. The first stage is the melt quenching process and is being addressed by Argonne National Lab and University of Wisconsin in modified test facilities. Given a quenched melt in the form of solidified debris, the second stage is to characterize the long-term debris cooling process and is being addressed by Korean Maritime University in via test and analyses. We then address the appropriate scaling and design methodologies for reactor applications.

  3. Lattice model of linear telechelic polymer melts. II. Influence of chain stiffness on basic thermodynamic properties

    E-Print Network [OSTI]

    Wen-Sheng Xu; Karl F. Freed

    2015-06-26T23:59:59.000Z

    The lattice cluster theory (LCT) for semiflexible linear telechelic melts, developed in paper I, is applied to examine the influence of chain stiffness on the average degree of self-assembly and the basic thermodynamic properties of linear telechelic polymer melts. Our calculations imply that chain stiffness promotes self-assembly of linear telechelic polymer melts that assemble on cooling when either polymer volume fraction $\\phi$ or temperature $T$ is high, but opposes self-assembly when both $\\phi$ and $T$ are sufficiently low. This allows us to identify a boundary line in the $\\phi$-$T$ plane that separates two regions of qualitatively different influence of chain stiffness on self-assembly. The enthalpy and entropy of self-assembly are usually treated as adjustable parameters in classical Flory-Huggins type theories for the equilibrium self-assembly of polymers, but they are demonstrated here to strongly depend on chain stiffness. Moreover, illustrative calculations for the dependence of the entropy density of linear telechelic polymer melts on chain stiffness demonstrate the importance of including semiflexibility within the LCT when exploring the nature of glass formation in models of linear telechelic polymer melts.

  4. Melting temperatures of the ZrO{sub 2}-MOX system

    SciTech Connect (OSTI)

    Uchida, T.; Hirooka, S.; Kato, M.; Morimoto, K. [Japan Atomic Energy Agency, 4-33, Muramatsu, Tokai-mura, Naka-gun, Ibaraki 319-1194 (Japan); Sugata, H.; Shibata, K.; Sato, D. [Inspection Development Company, 4-33, Muramatsu, Tokai-mura, Naka-gun, Ibaraki 319-1194 (Japan)

    2013-07-01T23:59:59.000Z

    Severe accidents occurred at the Fukushima Daiichi Nuclear Power Plant Units 1-3 on March 11, 2011. MOX fuels were loaded in the Unit 3. For the thermal analysis of the severe accident, melting temperature and phase state of MOX corium were investigated. The simulated coriums were prepared from 4%Pu-containing MOX, 8%Pu-containing MOX and ZrO{sub 2}. Then X-ray diffraction, density and melting temperature measurements were carried out as a function of zirconium and plutonium contents. The cubic phase was observed in the 25%Zr-containing corium and the tetragonal phase was observed in the 50% and 75%Zr-containing coria. The lattice parameter and density monotonically changed with Pu content. Melting temperature increased with increasing Pu content; melting temperature were estimated to be 2932 K for 4%Pu MOX corium and 3012 K for 8%Pu MOX corium in the 25%ZrO{sub 2}-MOX system. The lowest melting temperature was observed for 50%Zr-containing corium. (authors)

  5. Determination of the b-quark production cross section in p{anti p} collisions at 630 GeV

    SciTech Connect (OSTI)

    Abbott, B.

    1997-10-01T23:59:59.000Z

    We present a preliminary measurement of the b-quark production cross section in p{anti p} collisions at {radical}s = 630 GeV. The analysis is based on 340 nb{sup -1} of data collected with the D0 detector at the Fermilab Tevatron Collider. We determine the ratio of the b-quark production cross sections at 630 GeV to 1800 GeV and compare our results with the CDF and UA1 measurements, and with the next-to- leading order QCD predictions.

  6. The MAGIC Telescope Project for Gamma Astronomy above 10 GeV

    E-Print Network [OSTI]

    N. Magnussen

    1998-05-14T23:59:59.000Z

    A project to construct a 17 m diameter imaging air Cherenkov telescope, called the MAGIC Telescope, is described. The aim of the project is to close the observation gap in the gamma-ray sky extending from 10 GeV as the highest energy measurable by space-borne experiments to 300 GeV, the lowest energy measurable by the current generation of ground-based Cherenkov telescopes. The MAGIC Telescope will incorporate several new features in order to reach the very low energy threshold. At the same time the new technology will yield an improvement in sensitivity in the energy region where current Cherenkov telescopes are measuring by about an order of magnitude.

  7. GeV electrons due to a transition from laser wakefield acceleration to plasma wakefield acceleration

    E-Print Network [OSTI]

    P. E. Masson-Laborde; M. Z. Mo; A. Ali; S. Fourmaux; P. Lassonde; J. C. Kieffer; W. Rozmus; D. Teychenne; R. Fedosejevs

    2014-08-06T23:59:59.000Z

    We show through experiments that a transition from laser wakefield acceleration (LWFA) regime to a plasma wakefield acceleration (PWFA) regime can drive electrons up to energies close to the GeV level. Initially, the acceleration mechanism is dominated by the bubble created by the laser in the nonlinear regime of LWFA, leading to an injection of a large number of electrons. After propagation beyond the depletion length, leading to a depletion of the laser pulse, whose transverse ponderomotive force is not able to sustain the bubble anymore, the high energy dense bunch of electrons propagating inside bubble will drive its own wakefield by a PWFA regime. This wakefield will be able to trap and accelerate a population of electrons up to the GeV level during this second stage. Three dimensional (3D) particle-in-cell (PIC) simulations support this analysis, and confirm the scenario.

  8. SRF CAVITY PERFORMANCE OVERVIEW FOR THE 12 GeV UPGRADE

    SciTech Connect (OSTI)

    A. Burrill, G.K. Davis, C.E. Reece, A.V. Reilly, M. Stirbet

    2012-07-01T23:59:59.000Z

    The CEBAF accelerator, a recirculating CW electron accelerator that is currently operating at Jefferson Laboratory, is in the process of having 10 new cryomodules installed to allow for the maximum beam energy to be increased from 6 GeV to 12 GeV. This upgrade required the fabrication, processing and RF qualification of 80, seven cell elliptical SRF cavities, a process that was completed in February 2012. The RF performance achieve in the vertical testing dewars has exceeded the design specification by {approx}25% and is a testament to the cavity design and processing cycle that has been implemented. This paper will provide a summary of the cavity RF performance in the vertical tests, as well as review the overall cavity processing cycle and duration for the project.

  9. An overview of the planned Jefferson Lab 12-GeV helium refrigerator upgrade

    SciTech Connect (OSTI)

    Arenius, Dana; Creel, Jonathan; Dixon, Kelly; Ganni, Venkatarao; Knudsen, Peter; Sidi-Yekhlef, Ahmed; Wright, Mathew

    2008-03-01T23:59:59.000Z

    In February 2006, Jefferson Laboratory in Newport News, VA, received â Critical Decision 1â (CD-1) approval to proceed with the engineering and design of the long anticipated upgrade to increase the beam energy of CEBAF, the Continuous Electron Beam Accelerator Facility, from 6 GeV to 12 GeV. This will require the installation of 10 new cryomodules, and additional 2.1-K refrigeration beyond the available 4600 W to handle the increased heat loads. Additionally, a new experimental hall, Hall D, is planned that will require the installation of a small, available refrigerator. This paper will present an overview of the integration of the new proposed refrigeration system into CEBAF, the installation of the available refrigerator for Hall D, and includes planned work scope, current schedule plans and project status.

  10. Inclusive Pion Double Charge Exchange above 0.5 GeV

    E-Print Network [OSTI]

    M. J. Vicente-Vacas; M. Kh. Khankhasayev; S. G. Mashnik

    1994-12-16T23:59:59.000Z

    A cascade model has been developed to study pion induced multichannel reactions (quasielastic, SCX, DCX, absorption and pion production) at pion energies above 0.5 GeV. Special attention has been paid to pion double charge exchange. Pion production is a determinant feature in the high energy pion nucleus reactions, and the DCX signal not related to pion production is sizeable only at forward angles and for high energy outgoing pions. The contribution to DCX of the conventional mechanism, with two quasielastic SCX steps decreases very fast as a function of the energy and reaches very low values at energies above 0.7 GeV. This opens the opportunity of having sizeable contributions of exotic mechanisms that are negligible at the delta resonance energies.

  11. Measurements of Deuteron Photodisintegration up to 4.0 GeV

    E-Print Network [OSTI]

    E89-012 Collaboration; :; C. Bochna; B. P. Terburg et al

    1998-08-11T23:59:59.000Z

    The first measurements of the differential cross section for the d(gamma,p)n reaction up to 4.0 GeV were performed at Continuous Electron Beam Accelerator Facility (CEBAF) at Jefferson Lab. We report the cross sections at the proton center-of-mass angles of 36, 52, 69 and 89 degrees. These results are in reasonable agreement with previous measurements at lower energy. The 89 and 69 degree data show constituent-counting-rule behavior up to 4.0 GeV photon energy. The 36 and 52 degree data disagree with the counting rule behavior. The quantum chromodynamics (QCD) model of nuclear reactions involving reduced amplitudes disagrees with the present data.

  12. An electron front end for the Fermilab multi-species 8 GeV SCRF linac

    SciTech Connect (OSTI)

    Philippe R.-G. Piot; G W Foster

    2004-07-08T23:59:59.000Z

    Fermilab is considering a 8 GeV superconducting linac whose primary mission is to serve as an intense H{sup -} injector for the main injector. This accelerator is also planned to be used for accelerating various other species (e.g. electrons, protons and muons). In the present paper we investigate the possibility of such a linac to accelerate high-brightness electron beam up to {approx} 7 GeV. We propose a design for the electron front end based on a photoinjector and consider the electron beam dynamics along the linac. Start-to-end simulations of the full accelerator for electrons are presented. Finally the potential applications of such an electron beam are outlined.

  13. 20 - 50 GeV muon storage rings for a neutrino factory

    SciTech Connect (OSTI)

    Rees, G.H.; /Rutherford; Johnstone, C.; /Fermilab; Meot, F.; /DAPNIA, Saclay

    2006-07-01T23:59:59.000Z

    Muon decay rings are under study as part of an International Scoping Study (ISS) for a future Neutrino Factory. Both isosceles triangle- and racetrack-shaped rings are being considered for a 20 GeV muon energy, but with upgrade potentials of 40 or 50 GeV. Both rings are designed with long straights to optimize directional muon decay. The neutrinos from muon decay pass to one or two distant detectors; the racetrack ring has one very long production straight aligned with one detector while the triangular ring has two straights which can be aligned with two detectors. Decay ring specifications and lattice studies are the primary topic of this paper. Injection, collimation, and the RF system are covered in a second contribution to these proceedings.

  14. On the origin of GeV emission in gamma-ray bursts

    SciTech Connect (OSTI)

    Beloborodov, Andrei M.; Hascoët, Romain; Vurm, Indrek, E-mail: amb@phys.columbia.edu [Physics Department and Columbia Astrophysics Laboratory, Columbia University, 538 West 120th Street, New York, NY 10027 (United States)

    2014-06-10T23:59:59.000Z

    The most common progenitors of gamma-ray bursts (GRBs) are massive stars with strong stellar winds. We show that the GRB blast wave in the wind should emit a bright GeV flash. It is produced by inverse-Compton cooling of the thermal plasma behind the forward shock. The main part of the flash is shaped by scattering of the prompt MeV radiation (emitted at smaller radii) which streams through the external blast wave. The inverse-Compton flash is bright due to the huge e {sup ±} enrichment of the external medium by the prompt radiation ahead of the blast wave. At late times, the blast wave switches to normal synchrotron-self-Compton cooling. The mechanism is demonstrated by a detailed transfer simulation. The observed prompt MeV radiation is taken as an input of the simulation; we use GRB 080916C as an example. The result reproduces the GeV flash observed by the Fermi telescope. It explains the delayed onset, the steep rise, the peak flux, the time of the peak, the long smooth decline, and the spectral slope of GeV emission. The wind density required to reproduce all these features is typical of Wolf-Rayet stars. Our simulation predicts strong TeV emission 1 minute after the burst trigger; then a cutoff in the observed high-energy spectrum is expected from absorption by extragalactic background light. In addition, a bright optical counterpart of the GeV flash is predicted for plausible values of the magnetic field; such a double (optical+GeV) flash has been observed in GRB 130427A.

  15. Study of the dp-elastic scattering at 2 GeV

    E-Print Network [OSTI]

    Terekhin, A A; Isupov, A Yu; Khrenov, A N; Kurilkin, A K; Kurilkin, P K; Ladygin, V P; Ladygina, N B; Piyadin, S M; Reznikov, S G; Vnukov, I E

    2015-01-01T23:59:59.000Z

    The results on the measurements of dp-elastic scattering cross section at the energy 2 GeV at Internal Target Station at the Nuclotron JINR are reported. The data were obtained for the angular range of 70-107 deg. in the c.m.s. by using CH2 and C targets. The results are compared with the existing data and with the theoretical calculations based on the relativistic multiple scattering theory.

  16. Physics Opportunities with the 12 GeV Upgrade at Jefferson Lab

    E-Print Network [OSTI]

    Dudek, Jozef; Essig, Rouven; Kumar, Krishna; Meyer, Curtis; McKeown, Robert; Meziani, Zein Eddine; Miller, Gerald A; Pennington, Michael; Richards, David; Weinstein, Larry; Young, Glenn

    2012-01-01T23:59:59.000Z

    This white paper summarizes the scientific opportunities for utilization of the upgraded 12 GeV Continuous Electron Beam Accelerator Facility (CEBAF) and associated experimental equipment at Jefferson Lab. It is based on the 52 proposals recommended for approval by the Jefferson Lab Physics Advisory Committee.The upgraded facility will enable a new experimental program with substantial discovery potential to address important topics in nuclear, hadronic, and electroweak physics.

  17. Physics Opportunities with the 12 GeV Upgrade at Jefferson Lab

    E-Print Network [OSTI]

    Jozef Dudek; Rolf Ent; Rouven Essig; Krishna Kumar; Curtis Meyer; Robert McKeown; Zein Eddine Meziani; Gerald A. Miller; Michael Pennington; David Richards; Larry Weinstein; Glenn Young

    2012-08-07T23:59:59.000Z

    This white paper summarizes the scientific opportunities for utilization of the upgraded 12 GeV Continuous Electron Beam Accelerator Facility (CEBAF) and associated experimental equipment at Jefferson Lab. It is based on the 52 proposals recommended for approval by the Jefferson Lab Program Advisory Committee.The upgraded facility will enable a new experimental program with substantial discovery potential to address important topics in nuclear, hadronic, and electroweak physics.

  18. TARGET FRAGMENT ENERGIES AND MOMENTA IN THE REACTION OF 4.8 GeV {sup 12}C AND 5.0 GeV {sup 20}Ne WITH {sup 238}U

    SciTech Connect (OSTI)

    Loveland, W.; Luo, Cheng; McGaughey, P. L.; Morrissey, D. J.; Seaborg, G. T.

    1980-10-01T23:59:59.000Z

    Target fragment recoil properties were measured using the thick target-thick catcher technique for the interaction of 4.8 GeV {sup 12}C and 5.0 GeV {sup 20}Ne with {sup 238}U. The target fragment energies and momenta are very similar for the reaction of 4.8 GeV (400 MeV/A) {sup 12}C and 5.0 GeV (250 MeV/A) {sup 20}Ne with {sup 238}U. In the complex variation of fragment momenta with their N/Z ratio, one finds evidence suggesting the existence of several mechanisms leading to the formation of the target fragments. Comparison of these results with the predictions of the intranuclear cascade model of Yariv and Fraenkel and the firestreak model shows that both model predictions grossly overestimate the target fragment momenta.

  19. ON THE ORIGIN OF > 10 GeV PHOTONS IN GAMMA-RAY BURST AFTERGLOWS

    SciTech Connect (OSTI)

    Wang Xiangyu; Liu Ruoyu [School of Astronomy and Space Science, Nanjing University, Nanjing 210093 (China); Lemoine, Martin [Institut d'Astrophysique de paris, CNRS, UPMC, 98 bis boulevard Arago, F-75014 Paris (France)

    2013-07-10T23:59:59.000Z

    Fermi/LAT has detected long-lasting high-energy photons (>100 MeV) from gamma-ray bursts (GRBs), with the highest energy photons reaching about 100 GeV. One proposed scenario is that they are produced by high-energy electrons accelerated in GRB forward shocks via synchrotron radiation. We study the maximum synchrotron photon energy in this scenario, considering the properties of the microturbulence magnetic fields behind the shock, as revealed by recent particle-in-cell simulations and theoretical analyses of relativistic collisionless shocks. Due to the small-scale nature of the microturbulent magnetic field, the Bohm acceleration approximation, in which the scattering mean free path is equal to the particle Larmor radius, breaks down at such high energies. This effect leads to a typical maximum synchrotron photon of a few GeV at 100 s after the burst and this maximum synchrotron photon energy decreases quickly with time. We show that the fast decrease of the maximum synchrotron photon energy leads to a fast decay of the synchrotron flux. The 10-100 GeV photons detected after the prompt phase cannot be produced by the synchrotron mechanism. They could originate from the synchrotron self-Compton emission of the early afterglow if the circumburst density is sufficiently large, or from the external inverse Compton process in the presence of central X-ray emission, such as X-ray flares and prompt high-latitude X-ray emission.

  20. Polarization experiments with hadronic and electromagnetic probes. [2. 1 and 4. 4 GeV

    SciTech Connect (OSTI)

    Punjabi, V.

    1993-03-30T23:59:59.000Z

    The following research activities were carried out during the past year Calibration of focal plane polarimeter POMME up to 2.4 GeV at Saturne National Laboratory (LNS) in Saclay. Measurement of tensor analyzing power T[sub 20] and polarization transfer [kappa][sub 0] at Saturne up to 2.1 GeV in elastic backward dp scattering [rvec d]p [yields] [rvec p]d. Measurement of tensor analyzing power T[sub 20] at synchrophasotron in Dubha up to 4.4 Gev in elastic backward dp scattering [rvec d]p [yields] pd. Resubmission of conditionally Approved G[sub EP] proposal 89-14 at CEBAF. Start construction of focal plane polarimeter (FPP) for CEBAF hall A hadron spectrometer. The planned work for the next year includes: Construction of FPP for CEBAF hall A hadron spectrometer; measurement of polarization transfer [kappa][sub 0] and tensor analyzing power T[sub 20] in elastic backward dp scattering at Saturne; measurements of tensor analyzing power in [sup 1]H([sup 6]Li,d)X, [sup 1]H([sup 6]Li,[alpha])X, [sup 1]H([sup 6]Li,t)X and [sup 1]H([sup 6]Li,[sup 3]He)X reactions at Saturne; and study of polarization transfer in [sup 2]H([rvec e],e[prime][rvec p])n reaction at Bates.

  1. GeV Gamma-ray Flux Upper Limits from Clusters of Galaxies

    E-Print Network [OSTI]

    al., M Ackermann et

    2010-01-01T23:59:59.000Z

    The detection of diffuse radio emission associated with clusters of galaxies indicates populations of relativistic leptons infusing the intracluster medium. Those electrons and positrons are either injected into and accelerated directly in the intracluster medium, or produced as secondary pairs by cosmic-ray ions scattering on ambient protons. Radiation mechanisms involving the energetic leptons together with decay of neutral pions produced by hadronic interactions have the potential to produce abundant GeV photons. Here, we report on the search for GeV emission from clusters of galaxies using data collected by the Large Area Telescope (LAT) on the Fermi Gamma-ray Space Telescope (Fermi) from August 2008 to February 2010. Thirty-three galaxy clusters have been selected according to their proximity and high mass, X-ray flux and temperature, and indications of non-thermal activity for this study. We report upper limits on the photon flux in the range 0.2-100 GeV towards a sample of observed clusters (typical va...

  2. The BErkeley Lab Laser Accelerator (BELLA): A 10 GeV Laser Plasma Accelerator

    SciTech Connect (OSTI)

    Leemans, W.P.; Duarte, R.; Esarey, E.; Fournier, S.; Geddes, C.G.R.; Lockhart, D.; Schroeder, C.B.; Toth, C.; Vay, J.-L.; Zimmermann, S.

    2010-06-01T23:59:59.000Z

    An overview is presented of the design of a 10 GeV laser plasma accelerator (LPA) that will be driven by a PW-class laser system and of the BELLA Project, which has as its primary goal to build and install the required Ti:sapphire laser system for the acceleration experiments. The basic design of the 10 GeV stage aims at operation in the quasi-linear regime, where the laser excited wakes are largely sinusoidal and offer the possibility of accelerating both electrons and positrons. Simulations show that a 10 GeV electron beam can be generated in a meter scale plasma channel guided LPA operating at a density of about 1017 cm-3 and powered by laser pulses containing 30-40 J of energy in a 50- 200 fs duration pulse, focused to a spotsize of 50-100 micron. The lay-out of the facility and laser system will be presented as well as the progress on building the facility.

  3. Conformal Higgs model: Charged gauge fields can produce a 125GeV resonance

    E-Print Network [OSTI]

    R. K. Nesbet

    2014-11-06T23:59:59.000Z

    The Lagrangian density that defines conformal Higgs scalar field $\\Phi$ contains $(w^2-R/6-\\lambda\\Phi^\\dagger\\Phi)\\Phi^\\dagger\\Phi$. The value of $\\lambda$ is shown here to depend on the mass of a field $W_2$ that combines interacting scalars $W^+_\\mu W_-^\\mu$ and $Z^*_\\mu Z^\\mu$. $\\Phi$ is coupled to this state or resonance by the cosmological time dependence of gravitational Ricci scalar $R$, known from fitting the implied Friedmann cosmic evolution equation to Hubble expansion data. If the $W_2$ mass is $125GeV$, $\\lambda$ is negative and of order $10^{-88}$, in agreement with its empirical value determined by well-established cosmological and electroweak data. Hence neutral scalar field $W_2$ is a candidate to explain the recently observed LHC resonance. An earlier derivation, restricted to neutral $Z_{\\mu}$, determined parameter $w^2$ consistent with dark energy density inferred from observed Hubble expansion. The present model predicts that the $125GeV$ state is accompanied by a short-lived resonance at approximately $173GeV$.

  4. Observation of the critical end point in the phase diagram for hot and dense nuclear matter

    E-Print Network [OSTI]

    Lacey, Roy A

    2014-01-01T23:59:59.000Z

    Excitation functions for the Gaussian emission source radii difference ($R^2_{\\text{out}} - R^2_{\\text{side}}$) obtained from two-pion interferometry measurements in Au+Au ($\\sqrt{s_{NN}}= 7.7 - 200$ GeV) and Pb+Pb ($\\sqrt{s_{NN}}= 2.76$ TeV) collisions, are studied for a broad range of collision centralities. The observed non-monotonic excitation functions validate the finite-size scaling patterns expected for the deconfinement phase transition and the critical end point (CEP), in the temperature vs. baryon chemical potential ($T,\\mu_B$) plane of the nuclear matter phase diagram. A Finite-Size Scaling (FSS) analysis of these data indicate a second order phase transition with the estimates $T^{\\text{cep}} \\sim 165$~MeV and $\\mu_B^{\\text{cep}} \\sim 100$~MeV for the location of the critical end point. The critical exponents ($\

  5. A Study of the QCD Critical Point Using Particle Ratio Fluctuations

    E-Print Network [OSTI]

    Terence J Tarnowsky for the STAR Collaboration

    2011-06-30T23:59:59.000Z

    Dynamical fluctuations in global conserved quantities such as baryon number, strangeness, or charge may be observed near a QCD critical point. Results from new measurements of dynamical $K/\\pi$ and $p/\\pi$ ratio fluctuations are presented. The commencing of a QCD critical point search at RHIC has extended the reach of possible measurements of dynamical $K/\\pi$ and $p/\\pi$ ratio fluctuations from Au+Au collisions to lower energies. The STAR experiment has performed a comprehensive study of the energy dependence of these dynamical fluctuations in Au+Au collisions at the energies $\\sqrt{s_{NN}}$ = 7.7, 11.5, and 39 GeV. New results are compared to previous measurements and to theoretical predictions from several models.

  6. Incorporation and distribution of rhenium in a borosilicate glass melt heat treated in a sealed ampoule

    SciTech Connect (OSTI)

    Kim, Dong-Sang; Schweiger, Michael J.

    2013-07-25T23:59:59.000Z

    We investigated a mass balance of rhenium (used as a surrogate for technetium-99) in a borosilicate glass that was mixed with excess Re source (KReO4) beyond its solubility and heat treated in a vacuum-sealed fused silica ampoule. Distribution of Re in the bulk of the glass, in a salt phase formed on the melt surface, and in condensate material deposited on the ampoule wall was evaluated to understand the Re migration into different phases during the reaction between the molten glass and KReO4. The information gained from this study will contribute to an effort to understand the mechanism of technetium retention in or escape from glass melt during early stages of glass batch melting, which is a goal of the present series of studies.

  7. Method for melting glass by measurement of non-bridging oxygen

    DOE Patents [OSTI]

    Jantzen, Carol M. (3922 Wood Valley Dr., Aiken, SC 29801)

    1992-01-01T23:59:59.000Z

    A method for making better quality molten glass in a glass melter, the glass having the desired viscosity and, preferably, also the desired resistivity so that the glass melt can be established effectively and the product of the glass melter will have the desired level of quality. The method includes the adjustment of the composition of the glass constituents that are fed into the melter in accordance with certain correlations that reliably predict the viscosity and resistivity from the melter temperature and the melt composition, then heating the ingredients to the melter's operating temperature until they melt and homogenize. The equations include the calculation of a "non-bridging oxygen" term from the numbers of moles of the various ingredients, and then the determination of the viscosity and resistivity from the operating temperature of the melter and the non-bridging oxygen term.

  8. Analysis of multicomponent evaporation in electron beam melting and refining of titanium alloys

    SciTech Connect (OSTI)

    Powell, A.; Szekely, J.; Pal, U. [Massachusetts Inst. of Tech., Cambridge, MA (United States). Dept. of Materials Science and Engineering; Avyle, J. van den; Damkroger, B. [Sandia National Labs., Albuquerque, NM (United States). Materials Processing Dept.

    1997-12-01T23:59:59.000Z

    Experimental evidence and a mathematical model are presented to evaluate the effect of beam-scan frequency on composition change in electron-beam melting of titanium alloys. Experiments characterized the evaporation rate of commercially pure (CP) titanium and vapor composition over titanium alloy with up to 6 wt pct aluminum and 4.5 wt pct vanadium, as a function of beam power, scan frequency, and background pressure. These data and thermal mapping of the hearth melt surface are used to estimate activity coefficients of aluminum and vanadium in the hearth. The model describes transient heat transfer in the surface of the melt and provides a means of estimating enhancement of pure titanium evaporation and change in final aluminum composition due to local heating at moderate beam-scan frequencies.

  9. Combined electron beam and vacuum ARC melting for barrier tube shell material

    SciTech Connect (OSTI)

    Worcester, S.A.; Woods, C.R.

    1989-07-18T23:59:59.000Z

    This patent describes a process of the type wherein zirconium tetrachloride is reduced to produce a metallic zirconium sponge. The sponge is distilled to generally remove residual magnesium and magnesium chloride, and the distilled sponge is melted to produce an ingot, the improvement for making a non-crystal bar material for use in lining the interior of zirconium alloy fuel element cladding which comprises: a. forming the distilled sponge into a consumable electrode; b. melting the consumable electrode in a multiple swept beam electron furnace with a feed rate between 1 and 20 inches per hour to form an intermediate ingot; and c. vacuum arc melting the intermediate ingot to produce a homogeneous final ingot, having 50-500 ppm iron.

  10. Optimal beam pattern to maximize inclusion residence time in an electron beam melting hearth

    SciTech Connect (OSTI)

    Powell, A.; Pal, U. [Massachusetts Inst. of Tech., Cambridge, MA (United States); Avyle, J. van den [Sandia National Labs., Albuquerque, NM (United States)

    1997-02-01T23:59:59.000Z

    Approximate probabilities of inclusion survival through an electron beam melting hearth are computed from nitride dissolution rates, flotation velocities, and residence times. Dissolution rates were determined by measuring shrinkage rates of pure TiN and nitrided sponge in small pools of molten titanium in an electron beam melting hearth. Flotation velocities were calculated using correlations for fluid flow around spheres, and show that particles sink or float unless their densities are extremely close to that of molten titanium. Flow field characteristics which lead to effective inclusion removal are discussed in terms of heat flux pattern required to produce them, based on the electron beam`s unique ability to impart a nearly arbitrary heat flux pattern to the melt surface.

  11. Systematic prediction of high-pressure melting curves of transition metals

    SciTech Connect (OSTI)

    Hieu, Ho Khac, E-mail: hieuhk@duytan.edu.vn [Institute of Research and Development, Duy Tan University, K7/25 Quang Trung, Danang (Viet Nam)

    2014-10-28T23:59:59.000Z

    The pressure effects on melting temperatures of transition metals have been studied based on the combination of the modified Lindemann criterion with statistical moment method in quantum statistical mechanics. Numerical calculations have been performed for five transition metals including Cu, Pd, Pt, Ni, and Mn up to pressure 100?GPa. Our results are in good and reasonable agreements with available experimental data. This approach gives us a relatively simple method for qualitatively calculating high-pressure melting temperature. Moreover, it can be used to verify future experimental and theoretical works. This research proposes the potential of the combination of statistical moment method and the modified Lindemann criterion on predicting high-pressure melting of materials.

  12. Study on LiCl waste salt treatment process by layer melt crystallization

    SciTech Connect (OSTI)

    Cho, Yung-Zun; Lee, Tae-Kyo; Choi, Jung-Hoon; Eun, Hee-Chul; Park, Hwan-Seo; Kim, In-Tae; Park, Geun-Il [Korea Atomic Energy Research Institute, 1045 Daedeok-daero, Yuseong-gu, Daejeon, 305-353 (Korea, Republic of)

    2013-07-01T23:59:59.000Z

    Layer melt crystallization operated in a static mode has been applied to separate Group I and II chlorides from surrogate LiCl waste salt. The effects of operating conditions such as crystal growing rate(or flux) and initial impurity concentration on separation (or concentration) of cesium, strontium and barium involved in a LiCl melts were analyzed. In a layer crystallization process, separation was impaired by occlusion of impurities and by residual melt adhering to LiCl crystal after at the end of the process. The crystal growth rate strongly affects the crystal structure, therefore the separation efficiency, while the effect of the initial Cs and Sr concentration in LiCl molten salt was nearly negligible. (authors)

  13. Method for melting glass by measurement of non-bridging oxygen

    DOE Patents [OSTI]

    Jantzen, C.M.

    1992-04-07T23:59:59.000Z

    A method is described for making better quality molten glass in a glass melter, the glass having the desired viscosity and, preferably, also the desired resistivity so that the glass melt can be established effectively and the product of the glass melter will have the desired level of quality. The method includes the adjustment of the composition of the glass constituents that are fed into the melter in accordance with certain correlations that reliably predict the viscosity and resistivity from the melter temperature and the melt composition, then heating the ingredients to the melter's operating temperature until they melt and homogenize. The equations include the calculation of a non-bridging oxygen' term from the numbers of moles of the various ingredients, and then the determination of the viscosity and resistivity from the operating temperature of the melter and the non-bridging oxygen term. 4 figs.

  14. Chromium Phase Behavior in a Multi-Component Borosilicate Glass Melt

    SciTech Connect (OSTI)

    Hrma, Pavel R.; Vienna, John D.; Wilson, B. K.; Plaisted, Trevor J.; Heald, Steve M.

    2006-07-31T23:59:59.000Z

    This paper reports the phase behavior of a multicomponent borosilicate glass melt with 0?3 mass% Cr2O3 at 800?1500°C in equilibrium with air. Both upper and lower liquidus temperatures were observed. When the temperature was between the upper and lower liquidus temperatures, eskolaite (Cr2O3) formed in melts with >2 mass% Cr2O3. Below the lower liquidus temperature, a dispersed chromate phase appeared in the melt that eventually became macroscopically segregated. The chemical durability of the glasses was virtually unaffected by chromium concentration. The particular glass studied was prototypic for the vitrification of high-Cr high-level radioactive wastes stored in underground tanks at the Hanford site. The results suggest a significant potential cost benefit for Hanford tank waste cleanup.

  15. Thermal and nonthermal melting of silicon under femtosecond x-ray irradiation

    E-Print Network [OSTI]

    Medvedev, Nikita; Ziaja, Beata

    2015-01-01T23:59:59.000Z

    As it is known from visible light experiments, silicon under femtosecond pulse irradiation can undergo the so-called 'nonthermal melting' if the density of electrons excited from the valence to the conduction band overcomes a certain critical value. Such ultrafast transition is induced by strong changes in the atomic potential energy surface, which trigger atomic relocation. However, heating of a material due to the electron-phonon coupling can also lead to a phase transition, called 'thermal melting'. This thermal melting can occur even if the excited-electron density is much too low to induce non-thermal effects. To study phase transitions, and in particular, the interplay of the thermal and nonthermal effects in silicon under a femtosecond x-ray irradiation, we propose their unified treatment by going beyond the Born-Oppenheimer approximation within our hybrid model based on tight binding molecular dynamics. With our extended model we identify damage thresholds for various phase transitions in irradiated s...

  16. Evaluation of feeds for melt and dilute process using an analytical hierarchy process

    SciTech Connect (OSTI)

    Krupa, J.F.

    2000-03-22T23:59:59.000Z

    Westinghouse Savannah River Company was requested to evaluate whether nuclear materials other than aluminum-clad spent nuclear fuel should be considered for treatment to prepare them for disposal in the melt and dilute facility as part of the Treatment and Storage Facility currently projected for construction in the L-Reactor process area. The decision analysis process used to develop this analysis considered many variables and uncertainties, including repository requirements that are not yet finalized. The Analytical Hierarchy Process using a ratings methodology was used to rank potential feed candidates for disposition through the Melt and Dilute facility proposed for disposition of Savannah River Site aluminum-clad spent nuclear fuel. Because of the scoping nature of this analysis, the expert team convened for this purpose concentrated on technical feasibility and potential cost impacts associated with using melt and dilute versus the current disposition option. This report documents results of the decision analysis.

  17. Is Rho-Meson Melting Compatible with Chiral Restoration?

    E-Print Network [OSTI]

    Paul M. Hohler; Ralf Rapp

    2014-04-30T23:59:59.000Z

    Utilizing in-medium vector spectral functions which describe dilepton data in ultra-relativistic heavy-ion collisions, we conduct a comprehensive evaluation of QCD and Weinberg sum rules at finite temperature. The starting point is our recent study in vacuum, where the sum rules have been quantitatively satisfied using phenomenological axial-/vector spectral functions which describe hadronic tau-decay data. In the medium, the temperature dependence of condensates and chiral order parameters is taken from thermal lattice QCD where available, and otherwise estimated from a hadron resonance gas. Since little is known about the in-medium axial-vector spectral function, we model it with a Breit-Wigner ansatz allowing for smooth temperature variations of its width and mass parameters. Our study thus amounts to testing the compatibility of the $\\rho$-broadening found in dilepton experiments with (the approach toward) chiral restoration, and thereby searching for viable in-medium axial-vector spectral functions.

  18. Femtosecond photoelectron point projection microscope

    SciTech Connect (OSTI)

    Quinonez, Erik; Handali, Jonathan; Barwick, Brett [Department of Physics, Trinity College, 300 Summit St., Hartford, Connecticut 06106 (United States)] [Department of Physics, Trinity College, 300 Summit St., Hartford, Connecticut 06106 (United States)

    2013-10-15T23:59:59.000Z

    By utilizing a nanometer ultrafast electron source in a point projection microscope we demonstrate that images of nanoparticles with spatial resolutions of the order of 100 nanometers can be obtained. The duration of the emission process of the photoemitted electrons used to make images is shown to be of the order of 100 fs using an autocorrelation technique. The compact geometry of this photoelectron point projection microscope does not preclude its use as a simple ultrafast electron microscope, and we use simple analytic models to estimate temporal resolutions that can be expected when using it as a pump-probe ultrafast electron microscope. These models show a significant increase in temporal resolution when comparing to ultrafast electron microscopes based on conventional designs. We also model the microscopes spectroscopic abilities to capture ultrafast phenomena such as the photon induced near field effect.

  19. Field's Point Wastewater Treatment Facility (Narragansett Bay...

    Open Energy Info (EERE)

    Field's Point Wastewater Treatment Facility (Narragansett Bay Commission) Jump to: navigation, search Name Field's Point Wastewater Treatment Facility (Narragansett Bay Commission)...

  20. Starting Points | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    (M&O) Contract Competition Starting Points Starting Points Kansas City Plant Related Web Pages Summary Kansas City Plant Home Page Kansas City Plant Contracts DOE Directives...

  1. Video Lessons, PowerPoints, and Outlines

    E-Print Network [OSTI]

    POWERPOINT PRESENTATIONS, VIDEO LESSONS AND OUTLINES ... 6/11. Lesson 1 PowerPoint (Part A) · Lesson 1 PowerPoint (Part B) · Lesson 1 Video.

  2. Beam spin asymmetries in deeply virtual Compton scattering (DVCS) with CLAS at 4.8 GeV

    E-Print Network [OSTI]

    Prok, Yelena

    We report measurements of the beam spin asymmetry in deeply virtual Compton scattering (DVCS) at an electron beam energy of 4.8 GeV using the CLAS detector at the Thomas Jefferson National Accelerator Facility. The DVCS ...

  3. Net charge fluctuations in Au+Au collisions at root s(NN)=130 GeV

    E-Print Network [OSTI]

    Adams, J.; Adler, C.; Aggarwal, MM; Ahammed, Z.; Amonett, J.; Anderson, BD; Anderson, M.; Arkhipkin, D.; Averichev, GS; Badyal, SK; Balewski, J.; Barannikova, O.; Barnby, LS; Baudot, J.; Bekele, S.; Belaga, VV; Bellwied, R.; Berger, J.; Bezverkhny, BI; Bhardwaj, S.; Bhaskar, P.; Bhati, AK; Bichsel, H.; Billmeier, A.; Bland, LC; Blyth, CO; Bonner, BE; Botje, M.; Boucham, A.; Brandin, A.; Bravar, A.; Cadman, RV; Cai, XZ; Caines, H.; Sanchez, MCD; Cardenas, A.; Carroll, J.; Castillo, J.; Castro, M.; Cebra, D.; Chaloupka, P.; Chattopadhyay, S.; Chen, HF; Chen, Y.; Chernenko, SP; Cherney, M.; Chikanian, A.; Choi, B.; Christie, W.; Coffin, JP; Cormier, TM; Cramer, JG; Crawford, HJ; Das, D.; Das, S.; Derevschikov, AA; Didenko, L.; Dietel, T.; Dong, X.; Draper, JE; Du, F.; Dubey, AK; Dunin, VB; Dunlop, JC; Majumdar, MRD; Eckardt, V.; Efimov, LG; Emelianov, V.; Elage, JE; Eppley, G.; Erazmus, B.; Fachini, P.; Faine, V.; Faivre, J.; Fatemi, R.; Filimonov, K.; Filip, P.; Finch, E.; Fisyak, Y.; Flierl, D.; Foley, KJ; Fu, J.; Gagliardi, Carl A.; Ganti, MS; Gutierrez, TD; Gagunashvili, N.; Gans, J.; Gaudichet, L.; Germain, M.; Geurts, E.; Ghazikhanian, V.; Ghosh, R.; Gonzalez, JE; Grachov, O.; Grigoriev, V.; Gronstal, S.; Grosnick, D.; Guedon, M.; Guertin, SM; Gupta, A.; Gushin, E.; Hallman, TJ; Hardtke, D.; Harris, JW; Heinz, M.; Henry, TW; Heppelmann, S.; Herston, T.; Hippolyte, B.; Hirsch, A.; Hjort, E.; Hoffmann, GW; Horsley, M.; Huang, HZ; Huang, SL; Humanic, TJ; Igo, G.; Ishihara, A.; Jacobs, P.; Jacobs, WW; Janik, M.; Johnson, I.; Jones, PG; Judd, EG; Kabana, S.; Kaneta, M.; Kaplan, M.; Keane, D.; Kiryluk, J.; Kisiel, A.; Klay, J.; Klein, SR; Klyachko, A.; Koetke, DD; Kolleger, T.; Konstantmov, AS; Kopytine, M.; Kotchenda, L.; Kovalenko, AD; Kramer, M.; Kravtsov, P.; Krueger, K.; Kuhn, C.; Kulikov, AI; Kumar, A.; Kunde, GJ; Kunz, CL; Kutuev, RK; Kuznetsov, AA; Lamont, MAC; Landgraf, JM; Lange, S.; Lansdell, CP; Lasiuk, B.; Laue, F.; Lauret, J.; Lebedev, A.; Lednicky, R.; Leontiev, VM; LeVine, MJ; Li, C.; Li, Q.; Lindenbatim, SJ; Lisa, MA; Liu, E.; Liu, L.; Liu, Z.; Liu, QJ; Ljubicic, T.; Llope, WJ; Long, H.; Longacre, RS; Lopez-Noriega, M.; Love, WA; Ludlam, T.; Lynn, D.; Ma, J.; Ma, YG; Maestro, D.; Mahajan, S.; Mangotra, LK; Mahapatra, DP; Majka, R.; Manweiler, R.; Margetis, S.; Markert, C.; Martin, L.; Marx, J.; Matis, HS; Matulenko, YA; McShane, TS; Meissner, F.; Melnick, Y.; Meschanin, A.; Messer, M.; Miller, ML; Milosevich, Z.; Minaev, NG; Mironov, C.; Mishra, D.; Mitchell, J.; Mohanty, B.; Molnar, L.; Moore, CF; Mora-Corral, MJ; Morozov, V.; de Moura, MM; Munhoz, MG; Nandi, BK; Nayak, SK; Nayak, TK; Nelson, JM; Nevski, P.; Nikitin, VA; Nogach, LV; Norman, B.; Nurushev, SB; Odyniec, G.; Ogawa, A.; Okorokov, V.; Oldenburg, M.; Olson, D.; Paic, G.; Pandey, SU; Pal, SK; Panebratsev, Y.; Panitkin, SY; Pavlinov, AI; Pawlak, T.; Perevoztchikov, V.; Peryt, W.; Petrov, VA; Phatak, SC; Picha, R.; Planinic, M.; Pluta, J.; Porile, N.; Porter, J.; Poskanzer, AM; Potekhin, M.; Potrebenikova, E.; Potukuchi, BVKS; Prindle, D.; Pruneau, C.; Putschke, J.; Rai, G.; Rakness, G.; Raniwala, R.; Raniwala, S.; Ravel, O.; Razin, SV; Reichhold, D.; Reid, JG; Renault, G.; Retiere, F.; Ridiger, A.; Ritter, HG; Roberts, JB; Rogachevski, OV; Romero, JL; Rose, A.; Roy, C.; Ruan, LJ; Rykov, V.; Sahoo, R.; Sakrejda, I.; Salur, S.; Sandweiss, J.; Savin, I.; Schambach, J.; Scharenberg, RP; Schmitz, N.; Schroeder, LS; Schweda, K.; Seger, J.; Seliverstov, D.; Seyboth, P.; Shahaliev, E.; Shao, M.; Sharma, M.; Shestermanov, KE; Shimanskii, SS; Singaraju, RN; Simon, F.; Skoro, G.; Smirnov, N.; Snellings, R.; Sood, G.; Sorensen, P.; Sowinski, J.; Spinka, H. M.; Srivastava, B.; Stanislaus, S.; Stock, R.; Stolpovsky, A.; Strikhanov, M.; Stringfellow, B.; Struck, C.; Suaide, AAP; Sugarbaker, E.; Suite, C.; Sumbera, M.; Surrow, B.; Symons, TJM; de Toledo, AS; Szarwas, P.; Tai, A.; Takahashi, J.; Tang, AH; Thein, D.; Thomas, JH; Tikhomirov, V.; Tokarev, M.; Tonjes, MB; Trentalange, S.; Tribble, Robert E.; Trivedi, MD; Trofimov, V.; Tsai, O.; Ullrich, T.; Underwood, DG; Van Buren, G.; VanderMolen, AM; Vasiliev, AN; Vasiliev, M.; Vigdor, SE; Viyogi, YP; Voloshin, SA; Waggoner, W.; Wang, F.; Wang, G.; Wang, XL; Wang, ZM; Ward, H.; Watson, JW; Wells, R.; Westfall, GD; Whitten, C.; Wieman, H.; Willson, R.; Wissink, SW; Witt, R.; Wood, J.; Wu, J.; Xu, N.; Xu, Z.; Xu, ZZ; Yakutin, AE; Yamamoto, E.; Yang, J.; Yepes, P.; Yurevich, VI; Zanevski, YV; Zborovsky, I.; Zhang, H.; Zhang, HY; Zhang, WM; Zhang, ZP; Zolnierczuk, PA; Zoulkarneev, R.; Zoulkarneeva, J.; Zubarev, AN; STAR Collaboration.

    2003-01-01T23:59:59.000Z

    We present the results of charged particle fluctuations measurements in Au+Au collisions at rootS(NN)=130 GeV using the STAR detector. Dynamical fluctuations measurements are presented for inclusive charged particle multiplicities as well...

  4. Precision measurements of $g_1$ of the proton and the deuteron with 6 GeV electrons

    E-Print Network [OSTI]

    Y. Prok; P. Bosted; N. Kvaltine; K. P. Adhikari; D. Adikaram; M. Aghasyan; M. J. Amaryan; M. D. Anderson; S. Anefalos Pereira; H. Avakian; H. Baghdasaryan; J. Ball; N. A. Baltzell; M. Battaglieri; A. S. Biselli; J. Bono; W. J. Briscoe; J. Brock; W. K. Brooks; S. Bültmann; V. D. Burkert; C. Carlin; D. S. Carman; A. Celentano; S. Chandavar; L. Colaneri; P. L. Cole; M. Contalbrigo; O. Cortes; D. Crabb; V. Crede; A. D'Angelo; N. Dashyan; R. De Vita; E. De Sanctis; A. Deur; C. Djalali; G. E. Dodge; D. Doughty; R. Dupre; A. El Alaoui; L. El Fassi; L. Elouadrhiri; G. Fedotov; S. Fegan; R. Fersch; J. A. Fleming; T. A. Forest; M. Garcon; N. Gevorgyan; Y. Ghandilyan; G. P. Gilfoyle; F. X. Girod; K. L. Giovanetti; J. T. Goetz; W. Gohn; R. W. Gothe; K. A. Griffioen; B. Guegan; N. Guler; K. Haffidi; C. Hanretty; N. Harrison; M. Hattawy; K. Hicks; D. Ho; M. Holtrop; Y. Ilieva; D. G. Ireland; B. S. Ishkhanov; E. L. Isupov; S. Jawalkar; X. Jiang; H. S. Jo; K. Joo; N. Kalantarians; C. Keith; D. Keller; M. Khandaker; A. Kim; W. Kim; A. Klein; F. J. Klein; S. Koirala; V. Kubarovsky; S. E. Kuhn; S. V. Kuleshov; P. Lenisa; K. Livingston; H. Y. Lu; I . J. D. MacGregor; N. Markov; M. Mayee; B. McKinnon; D. Meekins; T. Mineeva; M. Mirazita; V. Mokeev; R. A. Montgomery; H. Moutarde; A Movsisyan; E. Munevar; C. Munoz Camacho; P. Nadel-Turonski; S. Niccolai; G. Niculescu; I. Niculescu; M. Osipenko; A. I. Ostrovidov; L. L. Pappalardo; R. Paremuzyan; K. Park; P. Peng; J. J. Phillips; J. Pierce; S. Pisano; O. Pogorelko; S. Pozdniakov; J. W. Price; S. Procureur; D. Protopopescu; A. J. R. Puckett; B. A. Raue; D. Rimal; M. Ripani; A. Rizzo; G. Rosner; P. Rossi; P. Roy; F. Sabatié; M. S. Saini; C. Salgado; D. Schott; R. A. Schumacher; E. Seder; Y. G. Sharabian; A. Simonyan; C. Smith; G. Smith; D. I. Sober; D. Sokhan; S. S. Stepanyan; S. Stepanyan; I. I. Strakovsky; S. Strauch; V. Sytnik; M. Taiuti; W. Tang; S. Tkachenko; M. Ungaro; B . Vernarsky; A. V. Vlassov; H. Voskanyan; E. Voutier; N. K. Walford; D . P. Watts; L. B. Weinstein; N. Zachariou; L. Zana; J. Zhang; B. Zhao; Z. W. Zhao; I. Zonta; for the CLAS collaboration

    2014-04-24T23:59:59.000Z

    The inclusive polarized structure functions of the proton and deuteron, g1p and g1d, were measured with high statistical precision using polarized 6 GeV electrons incident on a polarized ammonia target in Hall B at Jefferson Laboratory. Electrons scattered at lab angles between 18 and 45 degrees were detected using the CEBAF Large Acceptance Spectrometer (CLAS). For the usual DIS kinematics, Q^2>1 GeV^2 and the final-state invariant mass W>2 GeV, the ratio of polarized to unpolarized structure functions g1/F1 is found to be nearly independent of Q^2 at fixed x. Significant resonant structure is apparent at values of W up to 2.3 GeV. In the framework of perturbative QCD, the high-W results can be used to better constrain the polarization of quarks and gluons in the nucleon, as well as high-twist contributions.

  5. Measurement of 3pi^0 photoproduction on the proton from threshold to 1.4 GeV

    E-Print Network [OSTI]

    Starostin, A; Nefkens, B M K; Ahrens, J; Annand, J R M; Arends, H J; Bantawa, K; Bartolome, P A; Beck, R; Bekrenev, V; Braghieri, A; Branford, D; Briscoe, W J; Brudvik, J; Cherepnya, S; Dieterle, M; Downie, E J; Fil'kov, L V; Glazier, D I; Gregor, R; Heid, E; Hornidge, D; Jaegle, I; Jahn, O; Jude, T C; Kashevarov, V L; Keshelashvili, I; Kondratiev, R; Korolija, M; Koulbardis, A; Kruglov, S; Krusche, B; Lisin, V; Livingston, K; MacGregor, I J D; Manley, D M; Martinez, M; McGeorge, J C; McNicoll, E F; Metag, V; Mushkarenkov, A; Oberle, M; Ostrick, M; Pedroni, P; Polonski, A; Prakhov, S; Robinson, J; Rosner, G; Rostomyan, T; Schumann, S; Sikora, M H; Sober, D; Supek, I; Thiel, M; Thomas, A; Unverzagt, M; Watts, D P; Wertmueller, D; Witthauer, L

    2011-01-01T23:59:59.000Z

    The total cross section for gamma p -> 3pi0 p has been measured for the first time from threshold to 1.4 GeV using the tagged photon beam of the Mainz Microtron. The equipment utilized the Crystal Ball multiphoton spectrometer, the TAPS forward detector and a particle identification detector. The gamma p -> 3pi0 p total cross section has two broad enhancements at sqrt{s}~1.5 GeV and 1.7 GeV. We obtained the ratio of the total cross sections gamma p -> 3pi0 p to gamma p -> eta p equal to 0.014 \\pm 0.001 at sqrt{s}~1.5 GeV.

  6. Measurement of 3pi^0 photoproduction on the proton from threshold to 1.4 GeV

    E-Print Network [OSTI]

    A. Starostin; I. M. Suarez; B. M. K. Nefkens; J. Ahrens; J. R. M. Annand; H. J. Arends; K. Bantawa; P. A. Bartolome; R. Beck; V. Bekrenev; A. Braghieri; D. Branford; W. J. Briscoe; J. Brudvik; S. Cherepnya; M. Dieterle; E. J. Downie; L. V. Fil'kov; D. I. Glazier; R. Gregor; E. Heid; D. Hornidge; I. Jaegle; O. Jahn; T. C. Jude; V. L. Kashevarov; I. Keshelashvili; R. Kondratiev; M. Korolija; A. Koulbardis; S. Kruglov; B. Krusche; V. Lisin; K. Livingston; I. J. D. MacGregor; D. M. Manley; M. Martinez; J. C. McGeorge; E. F. McNicoll; V. Metag; A. Mushkarenkov; M. Oberle; M. Ostrick; P. Pedroni; A. Polonski; S. Prakhov; J. Robinson; G. Rosner; T. Rostomyan; S. Schumann; M. H. Sikora; D. Sober; I. Supek; M. Thiel; A. Thomas; M. Unverzagt; D. P. Watts; D. Wertmueller; L. Witthauer

    2011-01-19T23:59:59.000Z

    The total cross section for gamma p -> 3pi0 p has been measured for the first time from threshold to 1.4 GeV using the tagged photon beam of the Mainz Microtron. The equipment utilized the Crystal Ball multiphoton spectrometer, the TAPS forward detector and a particle identification detector. The gamma p -> 3pi0 p total cross section has two broad enhancements at sqrt{s}~1.5 GeV and 1.7 GeV. We obtained the ratio of the total cross sections gamma p -> 3pi0 p to gamma p -> eta p equal to 0.014 \\pm 0.001 at sqrt{s}~1.5 GeV.

  7. Precision measurements of g1 of the proton and the deuteron with 6 GeV electrons

    SciTech Connect (OSTI)

    Prok, Yelena; Bosted, Peter; Kvaltine, Nicholas; Adhikari, Krishna; Adikaram-Mudiyanselage, Dasuni; Aghasyan, Mher; Amaryan, Moskov; Anderson, Mark; Anefalos Pereira, Sergio; Avagyan, Harutyun; Baghdasaryan, Hovhannes; Ball, Jacques; Baltzell, Nathan; Battaglieri, Marco; Biselli, Angela; Bono, Jason; Briscoe, William; Brock, Joseph; Brooks, William; Bueltmann, Stephen; Burkert, Volker; Carlin, Christopher; Carman, Daniel; Celentano, Andrea; Chandavar, Shloka; Colaneri, Luca; Cole, Philip; Contalbrigo, Marco; Cortes, Olga; Crabb, Donald; Crede, Volker; D'Angelo, Annalisa; Dashyan, Natalya; De Vita, Raffaella; De Sanctis, Enzo; Deur, Alexandre; Djalali, Chaden; Dodge, Gail; Doughty, David; Dupre, Raphael; El Alaoui, Ahmed; El Fassi, Lamiaa; Elouadrhiri, Latifa; Fedotov, Gleb; Fegan, Stuart; Fersch, Robert; Fleming, Jamie; Forest, Tony; Garcon, Michel; Gevorgyan, Nerses; Ghandilyan, Yeranuhi; Gilfoyle, Gerard; Girod-Gard, Francois-Xavier; Giovanetti, Kevin; Goetz, John; Gohn, Wesley; Gothe, Ralf; Griffioen, Keith; Guegan, Baptiste; Guler, Nevzat; Hafidi, Kawtar; Hanretty, Charles; Harrison, Nathan; Hattawy, Mohammad; Hicks, Kenneth; Ho, Dao; Holtrop, Maurik; Ilieva, Yordanka; Ireland, David; Ishkhanov, Boris; Isupov, Evgeny; Jawalkar, Sucheta; Jiang, Xiaodong; Jo, Hyon-Suk; Joo, Kyungseon; Kalantarians, Narbe; Keith, Christopher; Keller, Daniel; Khandaker, Mahbubul; Kim, Andrey; Kim, Wooyoung; Klein, Andreas; Klein, Franz; Koirala, Suman; Kubarovsky, Valery; Kuhn, Sebastian; Kuleshov, Sergey; Lenisa, Paolo; Livingston, Kenneth; Lu, Haiyun; MacGregor, Ian; Markov, Nikolai; Mayer, Michael; McKinnon, Bryan; Meekins, David; Mineeva, Taisiya; Mirazita, Marco; Mokeev, Viktor; Montgomery, Rachel; MOUTARDE, Herve; Movsisyan, Aram; Munevar Espitia, Edwin; Munoz Camacho, Carlos; Nadel-Turonski, Pawel; Niccolai, Silvia; Niculescu, Gabriel; Niculescu, Maria; Osipenko, Mikhail; Ostrovidov, Alexander; Pappalardo, Luciano; Paremuzyan, Rafayel; Park, K.; Peng, Peng; Phillips, J.J.; Pierce, Joshua; Pisano, Silvia; Pogorelko, Oleg; Pozdniakov, Serguei; Price, John; Procureur, Sebastien; Protopopescu, Dan; Puckett, Andrew; Raue, Brian; Rimal, Dipak; Ripani, Marco; Rizzo, Alessandro; Rosner, Guenther; Rossi, Patrizia; Roy, Priyashree; Sabatie, Franck; Saini, Mukesh; Salgado, Carlos; Schott, Diane; Schumacher, Reinhard; Seder, Erin; Sharabian, Youri; Simonyan, Ani; Smith, Claude; Smith, Gregory; Sober, Daniel; Sokhan, Daria; Stepanyan, Stepan; Stepanyan, Samuel; Strakovski, Igor; Strauch, Steffen; Sytnik, Valeriy; Taiuti, Mauro; Tang, Wei; Tkachenko, Svyatoslav; Ungaro, Maurizio; Vernarsky, Brian; Vlasov, Alexander; Voskanyan, Hakob; Voutier, Eric; Walford, Natalie; Watts, Daniel; Weinstein, Lawrence; Zachariou, Nicholas; Zana, Lorenzo; Zhang, Jixie; Zhao, Bo; Zhao, Zhiwen; Zonta, Irene

    2014-08-01T23:59:59.000Z

    The inclusive polarized structure functions of the proton and deuteron, g1p and g1d, were measured with high statistical precision using polarized 6 GeV electrons incident on a polarized ammonia target in Hall B at Jefferson Laboratory. Electrons scattered at lab angles between 18 and 45 degrees were detected using the CEBAF Large Acceptance Spectrometer (CLAS). For the usual DIS kinematics, Q^2>1 GeV^2 and the final-state invariant mass W>2 GeV, the ratio of polarized to unpolarized structure functions g1/F1 is found to be nearly independent of Q^2 at fixed x. Significant resonant structure is apparent at values of W up to 2.3 GeV. In the framework of perturbative QCD, the high-W results can be used to better constrain the polarization of quarks and gluons in the nucleon, as well as high-twist contributions.

  8. Pp and p-barp elastic scattering at 53 GeV and the Chou-Yang model

    SciTech Connect (OSTI)

    Bellandi F., J.; Brunetto, S.Q.; Covolan, R.J.M.; Menon, M.J.; Pimentel, B.M.; Padua, A.B.

    1987-03-01T23:59:59.000Z

    We analyze the pp and p-barp elastic scattering at ..sqrt..s = 53 GeV by means of the Chou-Yang model under the assumption that the hadronic form factors are energy-dependent.

  9. Jet-Hadron Correlations in ?s[subscript NN] = 200 GeV p + p and Central Au + Au Collisions

    E-Print Network [OSTI]

    Stevens, Justin

    Azimuthal angular correlations of charged hadrons with respect to the axis of a reconstructed (trigger) jet in Au + Au and p + p collisions at ?s[subscript NN] = 200??GeV in STAR are presented. The trigger jet population ...

  10. Jitter Studies for a 2.4 GeV Light Source Accelerator Using LiTrack

    E-Print Network [OSTI]

    Penn, Gregory E

    2010-01-01T23:59:59.000Z

    S2E simulations on jitter for European XFEL project,”Jitter Studies for a 2.4 GeV Light Source Accelerator Usingpeak current, and energy chirp. Jitter in average energy is

  11. Pion femtoscopy in p?+?p collisions at ?s=200 [square root of s = 200] GeV

    E-Print Network [OSTI]

    Balewski, Jan T.

    The STAR Collaboration at the BNL Relativistic Heavy Ion Collider has measured two-pion correlation functions from p+p collisions at ?s=200 [square root of s = 200] GeV. Spatial scales are extracted via a femtoscopic ...

  12. Scale/Analytical Analyses of Freezing and Convective Melting with Internal Heat Generation

    SciTech Connect (OSTI)

    Ali S. Siahpush; John Crepeau; Piyush Sabharwall

    2013-07-01T23:59:59.000Z

    Using a scale/analytical analysis approach, we model phase change (melting) for pure materials which generate constant internal heat generation for small Stefan numbers (approximately one). The analysis considers conduction in the solid phase and natural convection, driven by internal heat generation, in the liquid regime. The model is applied for a constant surface temperature boundary condition where the melting temperature is greater than the surface temperature in a cylindrical geometry. The analysis also consider constant heat flux (in a cylindrical geometry).We show the time scales in which conduction and convection heat transfer dominate.

  13. High pressure ejection of melt from a reactor pressure vessel. The discharge phase. Revision 7

    SciTech Connect (OSTI)

    Pilch, M.; Tarbell, W.M.

    1985-09-01T23:59:59.000Z

    Recent probabilistic risk-assessment studies identified potential accident sequences in which reactor vessel failure occurs while the primary system is at elevated pressure. The phenomenology of the discharge phase is reviewed here. We propose an improved model for hole ablation following vessel failure, and we compare the model with experiment data. Gas blowthrough is identified as a mechanism that allows steam to escape through the vessel breach before melt ejection is complete. Gas blowthrough leads to pneumatic atomization of the remaining melt before significant depressurization of the primary system occurs.

  14. Aerosol source term in high-pressure-melt ejection. [PWR; BWR

    SciTech Connect (OSTI)

    Brockmann, J.E.; Tarbell, W.W.

    1983-01-01T23:59:59.000Z

    Pressurized ejection of melt from a reactor pressure vessel has been identified as an important element of a severe reactor accident. Copious aerosol production is observed when thermitically generated melts pressurized with nitrogen or carbon dioxide to 1.3 to 17 MPa are ejected into an air atmosphere. Aerosol particle size distributions measured in the tests have modes of about 0.5, 5, and > 10..mu..m. Mechanisms leading to formation of these multimodal size distributions are suggested. This aerosol is a potentially important fission product source term which has not been considered in previous severe accident analyses.

  15. A Simple Thermodynamic Model for Melting of Peridotite in the System NCFMASOCr

    E-Print Network [OSTI]

    Jennings, Eleanor S.; Holland, Tim J. B.

    2015-05-25T23:59:59.000Z

    not included and melting was not considered. The consequences of adding Fe3þ and Cr to peridotites and their constituent phases is exam- ined here, particularly with respect to the effects on the spinel–garnet transition and on melting at depth. Addition of Fe3... þ and Cr in garnet is done via the end- members andradite (andr, Ca3Fe2Si3O12) and knorrin- gite (knor, Mg3Cr2Si3O12), both of which exist already in the dataset of Holland & Powell (2011). The mixing model for garnets is an extension of that used...

  16. Study of Gamma-Ray Bursts of energy E 10 GeV with the ARGO-YBJ detector

    E-Print Network [OSTI]

    Morselli, Aldo

    Study of Gamma-Ray Bursts of energy E 10 GeV with the ARGO-YBJ detector ARGO-YBJ Collaboration of high energy gamma-ray bursts can be performed by large area air shower arrays operating at very high is the study of gamma-ray bursts of energies E 10 GeV. This can be achieved using the "single particle

  17. Investigation of quasielastic muon-neutrino scattering on nuclei at E{sub v} < 1 GeV

    SciTech Connect (OSTI)

    Agababyan, N. M. [Joint Institute for Nuclear Research (Russian Federation); Ammosov, V. V. [Institute for High Energy Physics (Russian Federation); Atayan, M.; Grigoryan, N.; Gulkanyan, H. [Yerevan Physics Institute (Armenia); Ivanilov, A. A. [Institute for High Energy Physics (Russian Federation)], E-mail: ivanilov@ihep.ru; Karamyan, Zh. [Yerevan Physics Institute (Armenia); Korotkov, B. A. [Institute for High Energy Physics (Russian Federation)

    2007-10-15T23:59:59.000Z

    Quasielastic muon-neutrino scattering on nuclei of propane-Freon mixture at energies in the range E{sub v} < 1 GeV is studied. The multiplicity, momentum, and emission-angle distributions of final protons are measured along with the dependence of the mean values for these distributions on the neutrino energy in the range 0.2 < E{sub v} < 1 GeV.

  18. Accelerating Into the Future: From 0 to GeV in a Few Centimeters (LBNL Summer Lecture Series)

    ScienceCinema (OSTI)

    Leemans, Wim [LOASIS Program, AFRD

    2011-04-28T23:59:59.000Z

    Summer Lecture Series 2008: By exciting electric fields in plasma-based waveguides, lasers accelerate electrons in a fraction of the distance conventional accelerators require. The Accelerator and Fusion Research Division's LOASIS program, headed by Wim Leemans, has used 40-trillion-watt laser pulses to deliver billion-electron-volt (1 GeV) electron beams within centimeters. Leemans looks ahead to BELLA, 10-GeV accelerating modules that could power a future linear collider.

  19. Development of a new radiometer for the thermodynamic measurement of high temperature fixed points

    SciTech Connect (OSTI)

    Dury, M. R.; Goodman, T. M.; Lowe, D. H.; Machin, G.; Woolliams, E. R. [National Physical Laboratory, Teddington (United Kingdom)] [National Physical Laboratory, Teddington (United Kingdom)

    2013-09-11T23:59:59.000Z

    The National Physical Laboratory (NPL) has developed a new radiometer to measure the thermodynamic melting point temperatures of high temperature fixed points with ultra-low uncertainties. In comparison with the NPL's Absolute Radiation Thermometer (ART), the 'THermodynamic Optical Radiometer' (THOR) is more portable and compact, with a much lower size-of-source effect and improved performance in other parameters such as temperature sensitivity. It has been designed for calibration as a whole instrument via the radiance method, removing the need to calibrate the individual subcomponents, as required by ART, and thereby reducing uncertainties. In addition, the calibration approach has been improved through a new integrating sphere that has been designed to have greater uniformity.

  20. Lifetime Response of a Hi-Nicalon Fiber-Reinforced Melt-Infiltrated SiC Matrix Composites

    SciTech Connect (OSTI)

    Becher, P.F.; Lin, H.T.; Singh, M.

    1999-04-25T23:59:59.000Z

    Lifetime studies in four-point flexure were performed on a Hi-NicalonTM fiber-reinforced SiC matrix composite over a temperature range of 700 degrees to 1150 degrees C in air. The composite consisted of ~40 vol. % Hi-NicalonTM fiber (8-harness weave) with a 0.5 Mu-m BN fiber coating and a melt-infiltration SiC matrix wand was tested with as-machined surfaces. Lifetime results indicated that the composite exhibited a stress-dependent lifetime at stress levels above an apparent fatigue limit, similar to the trend observed in CG-NicalonTM fiber reinforced CVI SiC matrix composites. At less than or equal to 950 degrees C, the lifetimes of Hi-Nicalon/MI SiC composites decreased with increasing applied stress level and test temperature. However, the lifetimes were extended as test temperature increased from 950 degees to 1150 degrees C as a result of surface crack sealing due to glass formation by the oxidation of Mi SiC matrix. The lifetime governing processes were, in general, attributed to the progressive oxidation of BN fiber coating and formation of glassy phase, which formed a strong bond between fiber and matrix, resulting in embrittlement of the composite with time.

  1. Theory of Polymer Chains in Poor Solvent: Single-Chain Structure, Solution Thermodynamics and Theta Point

    E-Print Network [OSTI]

    Rui Wang; Zhen-Gang Wang

    2014-06-05T23:59:59.000Z

    Using the language of the Flory chi parameter, we develop a theory that unifies the treatment of the single-chain structure and the solution thermodynamics of polymers in poor solvents. The structure of a globule and its melting thermodynamics is examined using the self-consistent filed theory. Our results show that the chain conformation involves three states prior to the globule-to-coil transition: the fully-collapsed globule, the swollen globule and the molten globule, which are distinguished by the core density and the interfacial thickness. By examining the chain-length dependence of the melting of the swollen globule, we find universal scaling behavior in the chain properties near the Theta point. The information of density profile and free energy of the globule is used in the dilute solution thermodynamics to study the phase equilibrium of polymer solution. Our results show different scaling behavior of the solubility of polymers in the dilute solution compared to the F-H theory, both in the chi dependence and the chain-length dependence. From the perspectives of single chain structure and solution thermodynamics, our results verifies the consistency of the Theta point defined by different criteria in the limit of infinite chain length: the disappearance of the second viral coefficient, the abrupt change in chain size and the critical point in the phase diagram of the polymer solution. Our results show the value of chi at the Theta point is 0.5 (for the case of equal monomer and solvent volume), which coincides with the value predicted from the F-H theory.

  2. Sensing and Control for Geometry Stability of the Melt Pool and the Cross Sectional Area in Laser Cladding

    E-Print Network [OSTI]

    Nan, Liangliang

    Sensing and Control for Geometry Stability of the Melt Pool and the Cross Sectional Area in Laser is particularly important for the growth of high quality structures during laser cladding. Melt pool size between laser and powder particles and to predict and control the cross sectional area. Also, a vision

  3. Melting-Induced Enhancement of the Second-Harmonic Generation from Metal Nanoparticles A. M. Malvezzi,1

    E-Print Network [OSTI]

    in a SiOx matrix, with femtosecond laser pulses at 800 nm. A remarkable melting-induced enhancementMelting-Induced Enhancement of the Second-Harmonic Generation from Metal Nanoparticles A. M [3]. While consid- erable efforts have been mainly focused on selection of new materials

  4. How Does a Gold Nanorod Melt?# Stephan Link, Zhong L. Wang, and Mostafa A. El-Sayed*,

    E-Print Network [OSTI]

    Wang, Zhong L.

    LETTERS How Does a Gold Nanorod Melt?# Stephan Link, Zhong L. Wang, and Mostafa A. El-Sayed*, Laser that short-laser pulsed photothermal melting begins with the creation of defects inside the nanorods followed contact with a temperature source. On the other hand, the laser light selectively excites the metallic

  5. A new approach to the equation of state of silicate melts: An application of the theory of hard sphere mixtures

    E-Print Network [OSTI]

    A new approach to the equation of state of silicate melts: An application of the theory of hard 8 September 2011 Abstract A comparison of compressional properties of silicate solids, glasses solids and glasses and the bulk moduli of various silicate melts have a narrow range of values; (2

  6. Iron under Earth's core conditions: Liquid-state thermodynamics and high-pressure melting curve from ab initio calculations

    E-Print Network [OSTI]

    Alfè, Dario

    Hugoniot curves cross the melting line, and the sound speed and Gru¨neisen parameter along the HugoniotIron under Earth's core conditions: Liquid-state thermodynamics and high-pressure melting curve-augmented-wave implementation are used to calculate the free energy and a range of other thermodynamic properties of liquid iron

  7. ANNALS OF GEOPHYSICS, VOL. 48, N. 4/5, August/October 2005 Key words diffusion silicate melts volatiles

    E-Print Network [OSTI]

    Long, Bernard

    ­ volatiles ­ water ­ carbon dioxide ­ sulfur ­ fluorine ­ chlorine ­ melt inclusion ­ igneous processes 1 in silicate magmas provides the frame- work necessary for the understanding of process- es such as bubble equations for water, carbon dioxide, sulfur, flu- orine, and chlorine in silicate melts similar

  8. The Influences of Fiber Feature and Polymer Melt Index on Mechanical Properties of Sugarcane Fiber/Polymer

    E-Print Network [OSTI]

    The Influences of Fiber Feature and Polymer Melt Index on Mechanical Properties of Sugarcane Fiber/Polymer.interscience.wiley.com). ABSTRACT: The fiber characteristics (i.e., the fiber type, morphology, and dimension) and polymer melt flow sugarcane fiber/polymer composites, the HDPE resins with a low MFI value presented high tensile and impact

  9. Rapid detection and identification of non-tuberculous mycobacterial pathogens in fish1 using high resolution melting analysis (HRMA)2

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    resolution melting analysis (HRMA)2 3 4 Thu Nguyet Phung 1,2 , Domenico Caruso 2 , Sylvain Godreuil 3 19 Running title: identification of fish mycobateria by HRMA20 ird-00940286,version1-31Jan2014 Author diagnostic test exists, we tested the potential of27 high resolution melting analysis (HRMA) to rapidly

  10. PETROGRAPHY AND CHEMISTRY OF IMPACT-MELT CLASTS IN APOLLO 16 BRECCIAS. B.A. , S.J. Symes2

    E-Print Network [OSTI]

    Cohen, Barbara Anne

    PETROGRAPHY AND CHEMISTRY OF IMPACT-MELT CLASTS IN APOLLO 16 BRECCIAS. B.A. Cohen1 , S.J. Symes2 samples of unequivocal impact origin, from either the Apollo collection or lunar meteorites, suggest of samples, impact melts and crystalline lunar spherules (CLS) within demonstrably old Apollo breccias

  11. Bonus points The National Access Scheme

    E-Print Network [OSTI]

    Chen, Ying

    Bonus points The National Access Scheme ANU offers bonus points for nationally strategic senior secondary subjects, and in recognition of difficult circumstances that students face in their studies. Bonus) will be awarded. Bonus points to do not apply to programs with an ATAR cut-off of 98 or higher. Bonus Points

  12. NUMERICAL FORECAST OF THE MELTING AND THERMAL HISTORIES OF PARTICLES INJECTED IN A PLASMA JET

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    NUMERICAL FORECAST OF THE MELTING AND THERMAL HISTORIES OF PARTICLES INJECTED IN A PLASMA JET Jorge devices. Among the different coating systems, the thermal barrier coatings (TBCs) are commonly used to protect hardware operating in high temperature environments, such as combustor liners and gas turbine

  13. Langmuir 1994,10, 3867-3873 3867 Nanorheology of Confined Polymer Melts. 2. Nonlinear

    E-Print Network [OSTI]

    Granick, Steve

    significancetounderstand rheologyofultrathin films under these extreme conditions. For simple mol- ecules this nonlinear such as extrusion in polymer process- ing,l lubrication inmagnetic storagemedia? and polymer matrices filled. The accompanying paper5considered the linear shear response of confined polymer melts-the condition under

  14. Kinetic Limit of Heterogeneous Melting in Metals Dmitriy S. Ivanov* and Leonid V. Zhigilei

    E-Print Network [OSTI]

    Zhigilei, Leonid V.

    3% of the room temperature speed of sound in the crystal, suggesting a limited contribution of heterogeneous melting remains poor. In particular, in the absence of more reliable estimates, the speed of sound, have been focused on the regime of relatively low overheatings of the liquid-crystal interface above

  15. Combined atomistic-continuum modeling of short-pulse laser melting and disintegration of metal films

    E-Print Network [OSTI]

    Zhigilei, Leonid V.

    Combined atomistic-continuum modeling of short-pulse laser melting and disintegration of metal Ni and Au films irradiated by a short, from 200 fs to 150 ps, laser pulse are investigated of the inertial stress confinement, realized in the case of short 10 ps laser pulses and strong electron

  16. Atomistic Modeling of Short Pulse Laser Ablation of Metals: Connections between Melting, Spallation, and Phase Explosion

    E-Print Network [OSTI]

    Zhigilei, Leonid V.

    Atomistic Modeling of Short Pulse Laser Ablation of Metals: Connections between Melting, Spallation 14, 2009; ReVised Manuscript ReceiVed: May 4, 2009 The mechanisms of short pulse laser interactions. Introduction Short pulse laser ablation is the phenomenon that is actively usedinabroadrangeofapplications

  17. On the Effect of Porous Layers on Melting Heat Transfer in an Enclosure

    E-Print Network [OSTI]

    Beckermann, Christoph

    : melting, porous media, thermal energy storage, natural convection INTRODUCTION Latent heat thermal energy-change materials used in such thermal energy storage devices have a relatively low thermal conductivity, means investigated in detail. The presence of the porous medium can considerably reduce the thermal energy storage

  18. Thermal and electrodynamic effects in melting current-carrying conductors Yu. Dolinsky and T. Elperina)

    E-Print Network [OSTI]

    Elperin, Tov

    , there exists a single-valued correlation between the rate of inductance change and a temperature at the phase and the material phase composition be- comes heterogeneous.1,2 The cause of all these effects is that electric equilibrium melting, when the dynamics of a phase-transition front are determined by a heat balance

  19. Video imaging system and thermal mapping of the molten hearth in an electron beam melting furnace

    SciTech Connect (OSTI)

    Miszkiel, M.E.; Davis, R.A.; Van Den Avyle, J.A. [Sandia National Laboratories, Albuquerque, NM (United States)] [and others

    1995-12-31T23:59:59.000Z

    This project was initiated to develop an enhanced video imaging system for the Liquid Metal Processing Laboratory Electron Beam Melting (EB) Furnace at Sandia and to use color video images to map the temperature distribution of the surface of the molten hearth. In a series of test melts, the color output of the video image was calibrated against temperatures measured by an optical pyrometer and CCD camera viewing port above the molten pool. To prevent potential metal vapor deposition onto line-of-sight optical surfaces above the pool, argon backfill was used along with a pinhole aperture to obtain the vide image. The geometry of the optical port to the hearth set the limits for the focus lens and CCD camera`s field of view. Initial melts were completed with the pyrometer and pinhole aperture port in a fixed position. Using commercially available vacuum components, a second flange assembly was constructed to provide flexibility in choosing pyrometer target sights on the hearth and to adjust the field of view for the focus lens/CCD combination. RGB video images processed from the melts verified that red wavelength light captured with the video camera could be calibrated with the optical pyrometer target temperatures and used to generate temperature maps of the hearth surface. Two color ratio thermal mapping using red and green video images, which has theoretical advantages, was less successful due to probable camera non-linearities in the red and green image intensities.

  20. Manufacturing capabilities of high power electron beam furnaces for melting ignots to 40 tons in weight

    SciTech Connect (OSTI)

    Boiko, Ju.P.; Braim, V.P.; Kormitch, A.T.; Zorin, G.V.; Kostenuk, Ju.V.; Nikitin, V.S.; Pokrovsky, S.V.

    1994-12-31T23:59:59.000Z

    A tendency to using special technologies of melting steels and alloys to get large ingots free of macrodefects and shrinking shells used to provide defectless products, ensuring an increase of ingot-to-product yield is well known. The electron beam furnace process improves the economical efficiency of production of large ingots, slabs for rolling mills, where high quality of special purpose steels and alloys is required. Metals, made by means of electron beam melting can be used for power, nuclear and chemical machine-buildings, aircraft and automotive, instrument and bearing productions, injection moulds and moulds for cold rollings, magnetic and titanium alloys, ship shafts, propellers and high speed power turbine parts. Melting technologies, which is one of the most important stages in production of steels and alloys, predetermines a required quality of metals and alloys to get the following characteristics of remelted metals: impact strength; isotropy of properties in central and surface zones of ingots; fatigue strength and resistance under mechanical and heat loads; corrosion resistance to attack by aggressive media; and polishing properties. The furnace is equipped with five electron beam guns, type EH-1200/50 and pumps for pumping out cavities of technological equipments: melting and ingot chambers, charging devices.

  1. Melting and resolidification of a subcooled metal powder particle subjected to nanosecond laser heating

    E-Print Network [OSTI]

    Zhang, Yuwen

    Melting and resolidification of a subcooled metal powder particle subjected to nanosecond laser were investigated. The Selective Laser Sintering (SLS) process for a pulsed laser can be simulated. Introduction Selective Laser Sintering (SLS) is an emerging technol- ogy that can build structurally

  2. Al NMR study of the structure of lanthanum and yttrium based aluminosilicate glasses and melts

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    A 27 Al NMR study of the structure of lanthanum and yttrium based aluminosilicate glasses and melts allowed to follow selected samples from 2200°C down to 1700°C and hence to characterize the aluminum of glasses has a large range of applications in modern technology like (a) host materials for laser, optical

  3. Experimental determination of electrical conductivity during deformation of melt-bearing olivine aggregates: implications for

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    .11.041 #12; 2 Abstract A novel experimental setup was used to measure in-situ variations of electrical melt. Impedance was measured along the sample radius, in a direction parallel to the shear gradient inherent in torsion experiments. During the tests, increasing values of the impedance measured suggest

  4. MELT-MEDIATED LASER CRYSTALLIZATION OF THIN FILM NITI SHAPE MEMORY ALLOYS

    E-Print Network [OSTI]

    Yao, Y. Lawrence

    1 MELT-MEDIATED LASER CRYSTALLIZATION OF THIN FILM NITI SHAPE MEMORY ALLOYS Paper (M406) Andrew J zones within an as sputter- deposited amorphous matrix. Since shape memory responses stem from not only spatial control over the shape memory response, but potentially, through proper use of operational

  5. Climate change impacts on mountain glaciers and permafrost Due to their proximity to melting conditions under

    E-Print Network [OSTI]

    Raup, Bruce H.

    Editorial Climate change impacts on mountain glaciers and permafrost Due to their proximity to melting conditions under terrestrial conditions, mountain glaciers and permafrost are particularly glaciers as the best terrestrial indicator of climate change, due both to their sensitivity to climatic

  6. Solar Energy Materials & Solar Cells 88 (2005) 6573 Investigation of pulsed non-melt laser annealing

    E-Print Network [OSTI]

    Anderson, Timothy J.

    Solar Energy Materials & Solar Cells 88 (2005) 65­73 Investigation of pulsed non-melt laser annealing on the film properties and performance of Cu(In,Ga)Se2 solar cells Xuege Wanga , Sheng S. Lia,�, C time to modify near- surface defects and related junction properties in Cu(In,Ga)Se2 (CIGS) solar cells

  7. Melt Inclusion Study of the Embryonic Porphyry Copper System at White Island, New Zealand

    E-Print Network [OSTI]

    Bodnar, Robert J.

    the efficient extraction of copper from melt by the magmatic aqueous phase. Mineral phases, such as pyrrhotite 10 ka and, as such, is an ideal location to study early magmatic processes associated with formation minerals, suggesting a different P-T history compared to the other samples. Data obtained from White Island

  8. Conductivity enhancement of carbon nanotube and nanofiber-based polymer nanocomposites by melt annealing

    E-Print Network [OSTI]

    Raghavan, Srinivasa

    Conductivity enhancement of carbon nanotube and nanofiber-based polymer nanocomposites by melt and CNF-based composites in polystyrene (PS). The mech- anism behind the conductivity increase­CNF nano- composites, and impressive conductivities have been reported. For example, conductivities around

  9. GREENLAND INLAND ICE MELT-OFF: ANALYSIS OF GLOBAL GRAVITY DATA FROM THE GRACE SATELLITES

    E-Print Network [OSTI]

    GREENLAND INLAND ICE MELT-OFF: ANALYSIS OF GLOBAL GRAVITY DATA FROM THE GRACE SATELLITES Allan A) in meters starting at 29 July 2002 and ending at 25 August 2010. Results focussing on Greenland show indications of a transition taking place in the mass loss in Greenland from mid-2004 to early 2006. Index

  10. Interpretation of seismic anisotropy in terms of mantle flow when melt is present

    E-Print Network [OSTI]

    Kaminski, Edouard

    Interpretation of seismic anisotropy in terms of mantle flow when melt is present E. Kaminski scale. Citation: Kaminski, E. (2006), Interpretation of seismic anisotropy in terms of mantle flow when of seismic anisotropy to image upper mantle flow is usually based on the assumption that the direction

  11. Calculations of crystal-melt interfacial free energies by nonequilibrium work measurements

    E-Print Network [OSTI]

    Song, Xueyu

    Calculations of crystal-melt interfacial free energies by nonequilibrium work measurements Yan Mu perturbation method to compute the interfacial free energies by nonequilibrium work measurements with cleaving potential procedure. Using this method, we calculated the interfacial free energies of different crystal

  12. Laboratory-Scale Melter for Determination of Melting Rate of Waste Glass Feeds

    SciTech Connect (OSTI)

    Kim, Dong-Sang; Schweiger, Michael J.; Buchmiller, William C.; Matyas, Josef

    2012-01-09T23:59:59.000Z

    The purpose of this study was to develop the laboratory-scale melter (LSM) as a quick and inexpensive method to determine the processing rate of various waste glass slurry feeds. The LSM uses a 3 or 4 in. diameter-fused quartz crucible with feed and off-gas ports on top. This LSM setup allows cold-cap formation above the molten glass to be directly monitored to obtain a steady-state melting rate of the waste glass feeds. The melting rate data from extensive scaled-melter tests with Hanford Site high-level wastes performed for the Hanford Tank Waste Treatment and Immobilization Plant have been compiled. Preliminary empirical model that expresses the melting rate as a function of bubbling rate and glass yield were developed from the compiled database. The two waste glass feeds with most melter run data were selected for detailed evaluation and model development and for the LSM tests so the melting rates obtained from LSM tests can be compared with those from scaled-melter tests. The present LSM results suggest the LSM setup can be used to determine the glass production rates for the development of new glass compositions or feed makeups that are designed to increase the processing rate of the slurry feeds.

  13. Hot Melt Inks for 3D Printing Veronika Chovancova*, Alexandra Pekarovicova* and Paul D. Fleming III

    E-Print Network [OSTI]

    Fleming, Paul D. "Dan"

    Hot Melt Inks for 3D Printing Veronika Chovancova*, Alexandra Pekarovicova* and Paul D. Fleming III for 3D printing comprises different waxes, tackifier and plasticizer resins, rheology modifiers, and UV rheological (or flow) behavior. 1 3D printing, direct ink-jet printing, and related approaches such as hot

  14. Mercury in the Atmosphere, Snow and Melt Water Ponds in the North

    E-Print Network [OSTI]

    Jacob, Daniel J.

    . Introduction Compared to most heavy metals, mercury behaves excepMercury in the Atmosphere, Snow and Melt Water Ponds in the North Atlantic Ocean during Arctic dominant species, with a northern hemispheric back- ground concentration of 1.7 ng/m3 (3). Under these same

  15. A comparison of neutron scattering studies and computer simulations of polymer melts

    E-Print Network [OSTI]

    Utah, University of

    A comparison of neutron scattering studies and computer simulations of polymer melts G.D. Smith a; in ®nal form 22 May 2000 Abstract Neutron scattering and computer simulations are powerful tools in particular. When neutron scattering studies and quan- titative atomistic molecular dynamics simulations

  16. Effect of Drug Loading and Laser Surface Melting on Drug Release Profile from Biodegradable Polymer

    E-Print Network [OSTI]

    Yao, Y. Lawrence

    Effect of Drug Loading and Laser Surface Melting on Drug Release Profile from Biodegradable Polymer(L-lactic acid) is promising in drug delivery applications because it allows for drug release in a controlled manner. In a polymer-based drug delivery system, drug release is controlled by polymer degradation

  17. Effect of Drug Loading and Laser Surface Melting on Drug Release Profile from Biodegradable Polymer

    E-Print Network [OSTI]

    Yao, Y. Lawrence

    1 Effect of Drug Loading and Laser Surface Melting on Drug Release Profile from Biodegradable The biodegradable polymer such as poly(L-lactic acid) is promising in drug delivery applications because it allows for drug release in a controlled manner. In a polymer-based drug delivery system, drug release

  18. Melt Rate Improvements for DWPF MB3: Frit Development and Model Assessment

    SciTech Connect (OSTI)

    Peeler, D.K.

    2001-07-11T23:59:59.000Z

    The objective of this research was to enhance the basic understanding of the role of glass batch chemistry (more specifically via control of frit composition) on the overall melting process for Macrobatch 3 (MB3). The overall strategy for the frit development activities was to explore frit compositional regions which challenged ''acceptable'' predicted property behavior.

  19. 406 ASHRAE Transactions: Research The transient response of snow melting systems for pave-

    E-Print Network [OSTI]

    Ghajar, Afshin J.

    -state conditions. Design loads (surface heat fluxes) have been calculated by taking the instantaneous weather a significant effect on overall systemperformance.Traditionalsteady-statemethodsofsnow melting system load calculation have not been able to take into account the thermal history of the system or the transient nature

  20. Large-Scale Oceanographic Constraints on the Distribution of Melting and Freezing under Ice Shelves

    E-Print Network [OSTI]

    Gnanadesikan, Anand

    Large-Scale Oceanographic Constraints on the Distribution of Melting and Freezing under Ice Shelves received 10 October 2007, in final form 11 March 2008) ABSTRACT Previous studies suggest that ice shelves. Introduction Fifty percent of the Antarctic coastline is fringed by ice shelves (floating extensions

  1. Differentiation of planetesimals and the thermal consequences of melt migration Nicholas MOSKOVITZ1*

    E-Print Network [OSTI]

    Moskovitz, Nicholas

    Branch Road, Washington, District of Columbia 20015, USA 2 Department of Geology and Geophysics the heating of a primordial planetesimal by decay of the short-lived radionuclides 26 Al and 60 Fe internal temperatures. However, subsequent heating from the decay of 60 Fe generated melt fractions

  2. Energy Dependence of $K/?$, $p/?$, and $K/p$ Fluctuations in Au+Au Collisions from $\\rm \\sqrt{s_{NN}}$ = 7.7 to 200 GeV

    E-Print Network [OSTI]

    STAR Collaboration; N. M. Abdelwahab; L. Adamczyk; J. K. Adkins; G. Agakishiev; M. M. Aggarwal; Z. Ahammed; I. Alekseev; J. Alford; C. D. Anson; A. Aparin; D. Arkhipkin; E. C. Aschenauer; G. S. Averichev; A. Banerjee; D. R. Beavis; R. Bellwied; A. Bhasin; A. K. Bhati; P. Bhattarai; J. Bielcik; J. Bielcikova; L. C. Bland; I. G. Bordyuzhin; W. Borowski; J. Bouchet; A. V. Brandin; S. G. Brovko; S. Bültmann; I. Bunzarov; T. P. Burton; J. Butterworth; H. Caines; M. Calderón de la Barca Sánchez; J. M. Campbell; D. Cebra; R. Cendejas; M. C. Cervantes; P. Chaloupka; Z. Chang; S. Chattopadhyay; H. F. Chen; J. H. Chen; L. Chen; J. Cheng; M. Cherney; A. Chikanian; W. Christie; J. Chwastowski; M. J. M. Codrington; G. Contin; J. G. Cramer; H. J. Crawford; X. Cui; S. Das; A. Davila Leyva; L. C. De Silva; R. R. Debbe; T. G. Dedovich; J. Deng; A. A. Derevschikov; R. Derradi de Souza; B. di Ruzza; L. Didenko; C. Dilks; F. Ding; P. Djawotho; X. Dong; J. L. Drachenberg; J. E. Draper; C. M. Du; L. E. Dunkelberger; J. C. Dunlop; L. G. Efimov; J. Engelage; K. S. Engle; G. Eppley; R. Esha; L. Eun; O. Evdokimov; O. Eyser; R. Fatemi; S. Fazio; J. Fedorisin; P. Filip; Y. Fisyak; C. E. Flores; C. A. Gagliardi; D. R. Gangadharan; D. Garand; F. Geurts; A. Gibson; M. Girard; S. Gliske; L. Greiner; D. Grosnick; D. S. Gunarathne; Y. Guo; A. Gupta; S. Gupta; W. Guryn; B. Haag; A. Hamad; A. Hamed; L-X. Han; R. Haque; J. W. Harris; S. Heppelmann; A. Hirsch; G. W. Hoffmann; D. J. Hofman; S. Horvat; B. Huang; H. Z. Huang; X. Huang; P. Huck; T. J. Humanic; G. Igo; W. W. Jacobs; H. Jang; E. G. Judd; S. Kabana; D. Kalinkin; K. Kang; K. Kauder; H. W. Ke; D. Keane; A. Kechechyan; A. Kesich; Z. H. Khan; D. P. Kikola; I. Kisel; A. Kisiel; D. D. Koetke; T. Kollegger; J. Konzer; I. Koralt; L. K. Kosarzewski; L. Kotchenda; A. F. Kraishan; P. Kravtsov; K. Krueger; I. Kulakov; L. Kumar; R. A. Kycia; M. A. C. Lamont; J. M. Landgraf; K. D. Landry; J. Lauret; A. Lebedev; R. Lednicky; J. H. Lee; C. Li; W. Li; X. Li; X. Li; Y. Li; Z. M. Li; M. A. Lisa; F. Liu; T. Ljubicic; W. J. Llope; M. Lomnitz; R. S. Longacre; X. Luo; G. L. Ma; Y. G. Ma; D. P. Mahapatra; R. Majka; S. Margetis; C. Markert; H. Masui; H. S. Matis; D. McDonald; T. S. McShane; N. G. Minaev; S. Mioduszewski; B. Mohanty; M. M. Mondal; D. A. Morozov; M. K. Mustafa; B. K. Nandi; Md. Nasim; T. K. Nayak; J. M. Nelson; G. Nigmatkulov; L. V. Nogach; S. Y. Noh; J. Novak; S. B. Nurushev; G. Odyniec; A. Ogawa; K. Oh; A. Ohlson; V. Okorokov; E. W. Oldag; D. L. Olvitt Jr.; B. S. Page; Y. X. Pan; Y. Pandit; Y. Panebratsev; T. Pawlak; B. Pawlik; H. Pei; C. Perkins; P. Pile; M. Planinic; J. Pluta; N. Poljak; K. Poniatowska; J. Porter; A. M. Poskanzer; N. K. Pruthi; M. Przybycien; J. Putschke; H. Qiu; A. Quintero; S. Ramachandran; R. Raniwala; S. Raniwala; R. L. Ray; C. K. Riley; H. G. Ritter; J. B. Roberts; O. V. Rogachevskiy; J. L. Romero; J. F. Ross; A. Roy; L. Ruan; J. Rusnak; O. Rusnakova; N. R. Sahoo; P. K. Sahu; I. Sakrejda; S. Salur; A. Sandacz; J. Sandweiss; E. Sangaline; A. Sarkar; J. Schambach; R. P. Scharenberg; A. M. Schmah; W. B. Schmidke; N. Schmitz; J. Seger; P. Seyboth; N. Shah; E. Shahaliev; P. V. Shanmuganathan; M. Shao; B. Sharma; W. Q. Shen; S. S. Shi; Q. Y. Shou; E. P. Sichtermann; M. Simko; M. J. Skoby; D. Smirnov; N. Smirnov; D. Solanki; P. Sorensen; H. M. Spinka; B. Srivastava; T. D. S. Stanislaus; J. R. Stevens; R. Stock; M. Strikhanov; B. Stringfellow; M. Sumbera; X. Sun; X. M. Sun; Y. Sun; Z. Sun; B. Surrow; D. N. Svirida; T. J. M. Symons; M. A. Szelezniak; J. Takahashi; A. H. Tang; Z. Tang; T. Tarnowsky; J. H. Thomas; A. R. Timmins; D. Tlusty; M. Tokarev; S. Trentalange; R. E. Tribble; P. Tribedy; B. A. Trzeciak; O. D. Tsai; J. Turnau; T. Ullrich; D. G. Underwood; G. Van Buren; G. van Nieuwenhuizen; M. Vandenbroucke; J. A. Vanfossen, Jr.; R. Varma; G. M. S. Vasconcelos; A. N. Vasiliev; R. Vertesi; F. Videbæk; Y. P. Viyogi; S. Vokal; S. A. Voloshin; A. Vossen; M. Wada; F. Wang; G. Wang; H. Wang; J. S. Wang; X. L. Wang; Y. Wang; Y. Wang; G. Webb; J. C. Webb; L. Wen; G. D. Westfall; H. Wieman; S. W. Wissink; Y. F. Wu; Z. Xiao; W. Xie; K. Xin; H. Xu; J. Xu; N. Xu; Q. H. Xu; Y. Xu; Z. Xu; W. Yan; C. Yang; Y. Yang; Y. Yang; Z. Ye; P. Yepes; L. Yi; K. Yip; I-K. Yoo; N. Yu; H. Zbroszczyk; W. Zha; J. B. Zhang; J. L. Zhang; S. Zhang; X. P. Zhang; Y. Zhang; Z. P. Zhang; F. Zhao; J. Zhao; C. Zhong; X. Zhu; Y. H. Zhu; Y. Zoulkarneeva; M. Zyzak

    2014-10-21T23:59:59.000Z

    A search for the quantum chromodynamics (QCD) critical point was performed by the STAR experiment at the Relativistic Heavy Ion Collider, using dynamical fluctuations of unlike particle pairs. Heavy-ion collisions were studied over a large range of collision energies with homogeneous acceptance and excellent particle identification, covering a significant range in the QCD phase diagram where a critical point may be located. Dynamical $K/\\pi$, $p/\\pi$, and $K/p$ fluctuations as measured by the STAR experiment in central 0-5% Au+Au collisions from center-of-mass collision energies $\\rm \\sqrt{s_{NN}}$ = 7.7 to 200 GeV are presented. The observable $\\rm \

  3. Control of Laser Plasma Based Accelerators up to 1 GeV

    SciTech Connect (OSTI)

    Nakamura, Kei

    2007-12-03T23:59:59.000Z

    This dissertation documents the development of a broadband electron spectrometer (ESM) for GeV class Laser Wakefield Accelerators (LWFA), the production of high quality GeV electron beams (e-beams) for the first time in a LWFA by using a capillary discharge guide (CDG), and a statistical analysis of CDG-LWFAs. An ESM specialized for CDG-LWFAs with an unprecedented wide momentum acceptance, from 0.01 to 1.1 GeV in a single shot, has been developed. Simultaneous measurement of e-beam spectra and output laser properties as well as a large angular acceptance (> {+-} 10 mrad) were realized by employing a slitless scheme. A scintillating screen (LANEX Fast back, LANEX-FB)--camera system allowed faster than 1 Hz operation and evaluation of the spatial properties of e-beams. The design provided sufficient resolution for the whole range of the ESM (below 5% for beams with 2 mrad divergence). The calibration between light yield from LANEX-FB and total charge, and a study on the electron energy dependence (0.071 to 1.23 GeV) of LANEX-FB were performed at the Advanced light source (ALS), Lawrence Berkeley National Laboratory (LBNL). Using this calibration data, the developed ESM provided a charge measurement as well. The production of high quality electron beams up to 1 GeV from a centimeter-scale accelerator was demonstrated. The experiment used a 310 {micro}m diameter gas-filled capillary discharge waveguide that channeled relativistically-intense laser pulses (42 TW, 4.5 x 10{sup 18} W/cm{sup 2}) over 3.3 centimeters of sufficiently low density ({approx_equal} 4.3 x 10{sup 18}/cm{sup 3}) plasma. Also demonstrated was stable self-injection and acceleration at a beam energy of {approx_equal} 0.5 GeV by using a 225 {micro}m diameter capillary. Relativistically-intense laser pulses (12 TW, 1.3 x 10{sup 18}W/cm{sup 2}) were guided over 3.3 centimeters of low density ({approx_equal} 3.5 x 10{sup 18}/cm{sup 3}) plasma in this experiment. A statistical analysis of the CDG-LWFAs performance was carried out. By taking advantage of the high repetition rate experimental system, several thousands of shots were taken in a broad range of the laser and plasma parameters. An analysis program was developed to sort and select the data by specified parameters, and then to evaluate performance statistically. The analysis suggested that the generation of GeV-level beams comes from a highly unstable and regime. By having the plasma density slightly above the threshold density for self injection, (1) the longest dephasing length possible was provided, which led to the generation of high energy e-beams, and (2) the number of electrons injected into the wakefield was kept small, which led to the generation of high quality (low energy spread) e-beams by minimizing the beam loading effect on the wake. The analysis of the stable half-GeV beam regime showed the requirements for stable self injection and acceleration. A small change of discharge delay t{sub dsc}, and input energy E{sub in}, significantly affected performance. The statistical analysis provided information for future optimization, and suggested possible schemes for improvement of the stability and higher quality beam generation. A CDG-LWFA is envisioned as a construction block for the next generation accelerator, enabling significant cost and size reductions.

  4. IMPACT OF SMALL COLUMN ION EXCHANGE STREAMS ON DWPF GLASS FORMULATION MELT RATE STUDIES

    SciTech Connect (OSTI)

    Fox, K.; Miller, D.; Koopman, D.

    2011-04-26T23:59:59.000Z

    This study was undertaken to evaluate the potential impacts of the Small Column Ion Exchange (SCIX) streams - particularly the addition of Monosodium Titanate (MST) and Crystalline Silicotitanate (CST) - on the melt rate of simulated feed for the Defense Waste Processing Facility (DWPF). Additional MST was added to account for contributions from the Salt Waste Processing Facility (SWPF). The Savannah River National Laboratory (SRNL) Melt Rate Furnace (MRF) was used to evaluate four melter feed compositions: two with simulated SCIX and SWPF material and two without. The Slurry-fed Melt Rate Furnace (SMRF) was then used to compare two different feeds: one with and one without bounding concentrations of simulated SCIX and SWPF material. Analyses of the melter feed materials confirmed that they met their targeted compositions. Four feeds were tested in triplicate in the MRF. The linear melt rates were determined by using X-ray computed tomography to measure the height of the glass formed along the bottom of the beakers. The addition of the SCIX and SWPF material reduced the average measured melt rate by about 10% in MRF testing, although there was significant scatter in the data. Two feeds were tested in the SMRF. It was noted that the ground CST alone (ground CST with liquid in a bucket) was extremely difficult to resuspend during preparation of the feed with material from SCIX and SWPF. This feed was also more difficult to pump than the material without MST and CST due to settling occurring in the melter feed line, although the yield stress of both feeds was high relative to the DWPF design basis. Steady state feeding conditions were maintained for about five hours for each feed. There was a reduction in the feed and pour rates of approximately 15% when CST and MST were added to the feed, although there was significant scatter in the data. Analysis of samples collected from the SMRF pour stream showed that the composition of the glass changed as expected when MST and CST were added to the feed. These reductions in melt rate are consistent with previous studies that showed a negative impact of increased TiO{sub 2} concentrations on the rate of melting. The impact of agitating the melt pool via bubbling was not studied as part of this work, but may be of interest for further testing. It is recommended that additional melt rate testing be performed should a potential reduction in melt rate of 10-15% be considered an issue of concern, or should the anticipated composition of the glass with the addition of material from salt waste processing be modified significantly from the current projections, either due to changes in sludge batch preparation or changes in the composition or volume of SCIX and SWPF material.

  5. Late-phase melt progression experiment: MP-2. Results and analysis

    SciTech Connect (OSTI)

    Gasser, R.D.; Gauntt, R.O.; Bourcier, S.C. [and others

    1997-05-01T23:59:59.000Z

    In-pile experiments addressing late-phase processes in Light Water Reactors (LWRs) were performed in the Annular Core Research Reactor (ACRR) at Sandia National Laboratories. Melt Progression (MP) experiments were designed to provide information to develop and verify computer models for analysis of LWR core damage in severe accidents. Experiments examine the formation and motion of ceramic molten pools in disrupted reactor core regions. The MP-2 experiment assembly consisted of: (1) a rubble bed of enriched UO{sub 2} and ZrO{sub 2} simulating severely disrupted reactor core regions, (2) a ceramic/metallic crust representing blockage formed by early phase melting, relocation, and refreezing of core components, and (3) an intact rod stub region that remained in place below the blockage region. The test assembly was fission heated in the central cavity of the ACRR at an average rate of about 0.2 KA, reaching a peak molten pool temperature around 3400 K. Melting of the debris bed ceramic components was initiated near the center of the bed. The molten material relocated downward, refreezing to form a ceramic crust near the bottom of the rubble bed. As power levels were increased, the crust gradually remelted and reformed at progressively lower positions in the bed until late in the experiment when it penetrated into and attacked the ceramic/metallic blockage. The metallic components of the blockage region melted and relocated to the bottom of the intact rod stub region before the ceramic melt penetrated the blockage region from above. The ceramic pool penetrated halfway into the blockage region by the end of the experiment. Measurements of thermal response and material relocation are compared to the results of the computer simulations. Postexperiment examination of the assembly with the associated material interactions and metallurgy are also discussed in detail with the analyses and interpretation of results. 16 refs., 206 figs., 24 tabs.

  6. Plasma Sprayed Pour Tubes and Other Melt Handling Components for Use in Gas Atomization

    SciTech Connect (OSTI)

    Byrd, David; Rieken, Joel; Heidloff, Andy; Besser, Matthew; Anderson, Iver

    2011-04-01T23:59:59.000Z

    Ames Laboratory has successfully used plasma sprayed ceramic components made from yttria stabilized zirconia as melt pouring tubes for gas atomization for many years. These tubes have proven to be strong, thermal shock resistant and versatile. Various configurations are possible both internally and externally. Accurate dimensions are achieved internally with a machined fugitive graphite mandrel and externally by diamond grinding. The previous study of the effect of spray parameters on density was extended to determine the effect of the resulting density on the thermal shock characteristics on down-quenching and up-quenching. Encouraging results also prompted investigation of the use of plasma spraying as a method to construct a melt pour exit stopper that is mechanically robust, thermal shock resistant, and not susceptible to attack by reactive melt additions. The Ames Laboratory operates two close-coupled high pressure gas atomizers. These two atomizers are designed to produce fine and coarse spherical metal powders (5{mu} to 500{mu} diameter) of many different metals and alloys. The systems vary in size, but generally the smaller atomizer can produce up to 5 kg of powder whereas the larger can produce up to 25 kg depending on the charge form and density. In order to make powders of such varying compositions, it is necessary to have melt systems capable of heating and containing the liquid charge to the desired superheat temperature prior to pouring through the atomization nozzle. For some metals and alloys this is not a problem; however for some more reactive and/or high melting materials this can pose unique challenges. Figure 1 is a schematic that illustrates the atomization system and its components.

  7. FMEA on the superconducting torus for the Jefferson Lab 12 GeV accelerator upgrade

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Ghoshal, Probir K.; Biallas, George H.; Fair, Ruben J.; Rajput-Ghoshal, Renuka; Schneider, William J.; Legg, Robert A.; Kashy, David H.; Hogan, John P.; Wiseman, Mark A.; Luongo, Cesar; et al

    2015-06-01T23:59:59.000Z

    As part of the Jefferson Lab 12GeV accelerator upgrade project, Hall B requires two conduction cooled superconducting magnets. One is a magnet system consisting of six superconducting trapezoidal racetrack-type coils assembled in a toroidal configuration and the second is an actively shielded solenoidal magnet system consisting of 5 coils. Both magnets are to be wound with Superconducting Super Collider-36 NbTi strand Rutherford cable soldered into a copper channel. This paper describes the various failure modes in torus magnet along with the failure modes that could be experienced by the torus and its interaction with the solenoid which is located inmore »close proximity.« less

  8. MARS14 simulation of Fermilab 120-GeV beam dumps

    SciTech Connect (OSTI)

    Nikolai V. Mokhov

    2003-04-09T23:59:59.000Z

    To estimate groundwater activation around the Fermilab Switchyard, Meson Target Train and M03 Meson beam dumps at 120 GeV, express MARS14 [1] simulations have been performed. A proton beam RMS spot size is {sigma}{sub x}={sigma}{sub y}=1 cm in the first two cases, while {sigma}{sub x}={sigma}{sub y}=2 cm for M03. Calculated are star density distributions (above 50 MeV) normalized per one incident proton. The configurations proposed by Chuck Brown have been implemented into the MARS code.

  9. Design for APS 7 GeV storage ring vacuum system at ANL

    SciTech Connect (OSTI)

    Whrele, R.B.; Nielsen, R.W.

    1988-09-30T23:59:59.000Z

    The 7 GeV advanced Photon Source (APS) design includes a storage ring having a 1060-m circumference with the capability of accomodating 34 insertion devices (ID) and their associated photon beam lines. An additional 35 photon lines can be provided from bending magnets. The vacuum systems for the storage ring is designed to maintain a beam-on operating pressure of 1n Torr or less to achieve a positron beam lifetime of approximately 20 hours. The vacuum system and its current developmental status are described.

  10. Higgs mass 125 GeV and g-2 of the muon in Gaugino Mediation Model

    E-Print Network [OSTI]

    Keisuke Harigaya; Tsutomu T. Yanagida; Norimi Yokozaki

    2015-01-29T23:59:59.000Z

    Gaugino mediation is very attractive since it is free from the serious flavor problem in the supersymmetric standard model. We show that the observed Higgs boson mass at around 125 GeV and the anomaly of the muon g-2 can be easily explained in gaugino mediation models. It should be noted that no dangerous CP violating phases are generated in our framework. Furthermore, there are large parameter regions which can be tested not only at the planned International Linear Collider but also at the coming 13-14 TeV Large Hadron Collider.

  11. Higgs mass 125 GeV and g-2 of the muon in Gaugino Mediation Model

    E-Print Network [OSTI]

    Harigaya, Keisuke; Yokozaki, Norimi

    2015-01-01T23:59:59.000Z

    Gaugino mediation is very attractive since it is free from the serious flavor problem in the supersymmetric standard model. We show that the observed Higgs boson mass at around 125 GeV and the anomaly of the muon g-2 can be easily explained in gaugino mediation models. It should be noted that no dangerous CP violating phases are generated in our framework. Furthermore, there are large parameter regions which can be tested not only at the planned International Linear Collider but also at the coming 13-14 TeV Large Hadron Collider.

  12. Recirculating Beam Breakup Study for the 12 GeV Upgrade at Jefferson Lab

    SciTech Connect (OSTI)

    Ilkyoung Shin, Todd Satogata, Shahid Ahmed, Slawomir Bogacz, Mircea Stirbet, Haipeng Wang, Yan Wang, Byung Yunn, Ryan Bodenstein

    2012-07-01T23:59:59.000Z

    Two new high gradient C100 cryomodules with a total of 16 new cavities were installed at the end of the CEBAF south linac during the 2011 summer shutdown as part of the 12-GeV upgrade project at Jefferson Lab. We surveyed the higher order modes (HOMs) of these cavities in the Jefferson Lab cryomodule test facility and CEBAF tunnel. We then studied recirculating beam breakup (BBU) in November 2011 to evaluate CEBAF low energy performance, measure transport optics, and evaluate BBU thresholds due to these HOMs. This paper discusses the experiment setup, cavity measurements, machine setup, optics measurements, and lower bounds on BBU thresholds by new cryomodules.

  13. Application of JLab 12GeV helium refrigeration system for the FRIB accelerator at MSU

    SciTech Connect (OSTI)

    Ganni, V.; Knudsen, P.; Arenius, D. [Thomas Jefferson National Accelerator Facility, Newport News, VA 23606 (United States); Casagrande, F. [MSU-FRIB, East Lansing, MI 48824 (United States)

    2014-01-29T23:59:59.000Z

    The planned approach to have a turnkey helium refrigeration system for the MSU-FRIB accelerator system, encompassing the design, fabrication, installation and commissioning of the 4.5-K refrigerator cold box(es), cold compression system, warm compression system, gas management, oil removal and utility/ancillary systems, was found to be cost prohibitive. Following JLab’s suggestion, MSU-FRIB accelerator management made a formal request to evaluate the applicability of the recently designed 12GeV JLab cryogenic system for this application. The following paper will outline the findings and the planned approach for the FRIB helium refrigeration system.

  14. Application of JLab 12GeV helium refrigeration system for the FRIB accelerator at MSU

    SciTech Connect (OSTI)

    Ganni, Venkatarao [JLAB; Knudsen, Peter N. [JLAB; Arenius, Dana M. [JLAB; Casagrande, Fabio [Michigan State University

    2014-01-01T23:59:59.000Z

    The planned approach to have a turnkey helium refrigeration system for the MSU-FRIB accelerator system, encompassing the design, fabrication, installation and commissioning of the 4.5-K refrigerator cold box(es), cold compression system, warm compression system, gas management, oil removal and utility/ancillary systems, was found to be cost prohibitive. Following JLab’s suggestion, MSU-FRIB accelerator management made a formal request to evaluate the applicability of the recently designed 12GeV JLab cryogenic system for this application. The following paper will outline the findings and the planned approach for the FRIB helium refrigeration system.

  15. Partial-wave analyses of hadron scattering below 2 GeV

    SciTech Connect (OSTI)

    Arndt, R.A.; Roper, L.D.

    1991-01-01T23:59:59.000Z

    The Center for Analysis of Particle Scattering (CAPS) in the Department of Physics at Virginia Polytechnic Institute and State University has analyzed basic two-body hadron reactions below 2 GeV for the last two decades. Reactions studied were nucleon-nucleon, pion-nucleon, K{sup +}-nucleon and pion photoproduction systems. In addition to analyses of these systems, a computer graphics system (SAID) has been developed and disseminated to over 250 research institutions using VAX computers. The computer-interactive system for disseminating information on basic scattering reactions is also accessible to the physics community through TELNET on the VPI SU physics department VAX. 6 refs.

  16. Partial-wave analyses of hadron scattering below 2 GeV

    SciTech Connect (OSTI)

    Arndt, R.A.; Roper, L.D.

    1992-01-01T23:59:59.000Z

    The Center for Analysis of Particle Scattering (CAPS) in the Department of Physics at Virginia Polytechnic Institute and State University has analyzed basic two-body hadron reactions below 2 GeV for the last two decades. Reactions studied were nucleon-nucleon, pion-nucleon, K[sup +]-nucleon and pion photoproduction systems. In addition to analyses of these reactions, a computer graphics system (SAID) has been developed and disseminated to over 250 research institutions using VAX computers. The computer-interactive system for disseminating information on basic scattering reactions is also accessible to the physics community through TELNET on the VPI SU physics department VAX.

  17. SPIN Effects, QCD, and Jefferson Laboratory with 12 GeV electrons

    SciTech Connect (OSTI)

    Prokudin, Alexey [JLAB

    2013-11-01T23:59:59.000Z

    QCD and Spin physics are playing important role in our understanding of hadron structure. I will give a short overview of origin of hadron structure in QCD and highlight modern understanding of the subject. Jefferson Laboratory is undergoing an upgrade that will increase the energy of electron beam up to 12 GeV. JLab is one of the leading facilities in nuclear physics studies and once operational in 2015 JLab 12 will be crucial for future of nuclear physics. I will briefly discuss future studies in four experimental halls of Jefferson Lab.

  18. A Bunch Length Monitor for JLab 12 GeV Upgrade

    SciTech Connect (OSTI)

    Ahmad, Mahmoud Mohamad Ali [ODU; Freyberger, Arne P. [JLAB; Gubeli, Joseph F. [JLAB; Krafft, Geoffrey A. [JLAB

    2013-12-01T23:59:59.000Z

    A continuous non-invasive bunch length monitor for the 12 GeV upgrade of Jefferson Lab will be used to determine the bunch length of the beam. The measurement will be done at the fourth dipole of the injector chicane at 123 MeV using the coherent synchrotron light emitted from the dipole. The estimated bunch length is 333 fs. A vacuum chamber will be fabricated and a Radiabeam real time interferometer will be used. In this paper, background, the estimated calculations and the construction of the chamber will be discussed.

  19. Vibration Response Testing of the CEBAF 12GeV Upgrade Cryomodules

    SciTech Connect (OSTI)

    Davis, G. Kirk; Matalevich, Joseph R.; Wiseman, Mark A.; Powers, Thomas J.

    2012-09-01T23:59:59.000Z

    The CEBAF 12 GeV upgrade project includes 80 new 7-cell cavities to form 10 cryomodules. These cryomodules were tested during production to characterize their microphonic response in situ. For several early cryomodules, detailed (vibration) modal studies of the cryomodule string were performed during the assembly process to identify the structural contributors to the measured cryomodule microphonic response. Structural modifications were then modelled, implemented, and verified by subsequent modal testing and in-situ microphonic response testing. Interim and latest results from this multi-stage process will be reviewed.

  20. Precision nuclear targets for Drell-Yan cross section measurements at 800 GeV

    SciTech Connect (OSTI)

    Gursky, J.C.; Baer, H.; Flick, F.F.; Gallegos, D.

    1988-01-01T23:59:59.000Z

    Targets of iron, tungsten, carbon, and calcium of areal densities 2.3 to 5.8 g/cm/sup 2/ were fabricated to high precision for a fixed-target experiment performed in 1988 at Fermilab to measure relative Drell-Yan cross sections. The experiment used 800-GeV protons at an intensity of 2 x 10/sup 12/ protons per 23-second spill. Areal densities were determined to an accuracy of approximately 1 part in 10/sup 4/. The calcium targets were vacuum-encapsulated in stainless steel by electron-beam welding. 1 ref., 5 figs., 4 tabs.

  1. Prediction of narrow $N^{*}$ and $?^*$ resonances with hidden charm above 4 GeV

    E-Print Network [OSTI]

    Jia-Jun Wu; R. Molina; E. Oset; B. S. Zou

    2010-07-04T23:59:59.000Z

    The interaction between various charmed mesons and charmed baryons are studied within the framework of the coupled channel unitary approach with the local hidden gauge formalism. Several meson-baryon dynamically generated narrow $N^*$ and $\\Lambda^*$ resonances with hidden charm are predicted with mass above 4 GeV and width smaller than 100 MeV. The predicted new resonances definitely cannot be accommodated by quark models with three constituent quarks and can be looked for at the forthcoming PANDA/FAIR experiments.

  2. Young Pulsars and the Galactic Center GeV Gamma-ray Excess

    E-Print Network [OSTI]

    O'Leary, Ryan M; Kerr, Matthew; Dexter, Jason

    2015-01-01T23:59:59.000Z

    Studies of Fermi data indicate an excess of GeV gamma rays around the Galactic center (GC), possibly due to dark matter. We show that young gamma-ray pulsars can yield a similar signal. First, a high concentration of GC supernovae naturally leads to a population of kicked pulsars symmetric about the GC. Second, while very-young pulsars with soft spectra reside near the Galactic plane, pulsars with spectra that have hardened with age accumulate at larger angles. This combination, including unresolved foreground pulsars, traces the morphology and spectrum of the Excess.

  3. Pion femtoscopy in p+p collisions at sqrt(s)=200 GeV

    E-Print Network [OSTI]

    M. M. Aggarwal; Z. Ahammed; A. V. Alakhverdyants; I. Alekseev; J. Alford; B. D. Anderson; D. Arkhipkin; G. S. Averichev; J. Balewski; L. S. Barnby; S. Baumgart; D. R. Beavis; R. Bellwied; M. J. Betancourt; R. R. Betts; A. Bhasin; A. K. Bhati; H. Bichsel; J. Bielcik; J. Bielcikova; B. Biritz; L. C. Bland; 3 B. E. Bonner; J. Bouchet; E. Braidot; A. V. Brandin; A. Bridgeman; E. Bruna; S. Bueltmann; I. Bunzarov; T. P. Burton; X. Z. Cai; H. Caines; M. Calderón de la Barca Sánchez; O. Catu; D. Cebra; R. Cendejas; M. C. Cervantes; Z. Chajecki; P. Chaloupka; S. Chattopadhyay; H. F. Chen; J. H. Chen; J. Y. Chen; J. Cheng; M. Cherney; A. Chikanian; K. E. Choi; W. Christie; P. Chung; R. F. Clarke; M. J. M. Codrington; R. Corliss; J. G. Cramer; H. J. Crawford; D. Das; S. Dash; A. Davila Leyva; L. C. De Silva; R. R. Debbe; T. G. Dedovich; A. A. Derevschikov; R. Derradi de Souza; L. Didenko; P. Djawotho; S. M. Dogra; X. Dong; J. L. Drachenberg; J. E. Draper; J. C. Dunlop; M. R. Dutta Mazumdar; L. G. Efimov; E. Elhalhuli; M. Elnimr; J. Engelage; G. Eppley; B. Erazmus; M. Estienne; L. Eun; O. Evdokimov; P. Fachini; R. Fatemi; J. Fedorisin; R. G. Fersch; P. Filip; E. Finch; V. Fine; Y. Fisyak; C. A. Gagliardi; D. R. Gangadharan; M. S. Ganti; E. J. Garcia-Solis; A. Geromitsos; F. Geurts; V. Ghazikhanian; P. Ghosh; Y. N. Gorbunov; A. Gordon; O. Grebenyuk; D. Grosnick; S. M. Guertin; A. Gupta; N. Gupta; W. Guryn; B. Haag; A. Hamed; L-X. Han; J. W. Harris; J. P. Hays-Wehle; M. Heinz; S. Heppelmann; A. Hirsch; E. Hjort; A. M. Hoffman; G. W. Hoffmann; D. J. Hofman; B. Huang; H. Z. Huang; T. J. Humanic; L. Huo; G. Igo; P. Jacobs; W. W. Jacobs; C. Jena; F. Jin; C. L. Jones; P. G. Jones; J. Joseph; E. G. Judd; S. Kabana; K. Kajimoto; K. Kang; J. Kapitan; K. Kauder; D. Keane; A. Kechechyan; D. Kettler; D. P. Kikola; J. Kiryluk; A. Kisiel; S. R. Klein; A. G. Knospe; A. Kocoloski; D. D. Koetke; T. Kollegger; J. Konzer; I. Koralt; L. Koroleva; W. Korsch; L. Kotchenda; V. Kouchpil; P. Kravtsov; K. Krueger; M. Krus; L. Kumar; P. Kurnadi; M. A. C. Lamont; J. M. Landgraf; S. LaPointe; J. Lauret; A. Lebedev; R. Lednicky; C-H. Lee; J. H. Lee; W. Leight; M. J. LeVine; C. Li; L. Li; N. Li; W. Li; X. Li; X. Li; Y. Li; Z. M. Li; G. Lin; S. J. Lindenbaum; M. A. Lisa; F. Liu; H. Liu; J. Liu; T. Ljubicic; W. J. Llope; R. S. Longacre; W. A. Love; Y. Lu; E. V. Lukashov; X. Luo; G. L. Ma; Y. G. Ma; D. P. Mahapatra; R. Majka; O. I. Mall; L. K. Mangotra; R. Manweiler; S. Margetis; C. Markert; H. Masui; H. S. Matis; Yu. A. Matulenko; D. McDonald; T. S. McShane; A. Meschanin; R. Milner; N. G. Minaev; S. Mioduszewski; A. Mischke; M. K. Mitrovski; B. Mohanty; M. M. Mondal. B. Morozov; D. A. Morozov; M. G. Munhoz; B. K. Nandi; C. Nattrass; T. K. Nayak; J. M. Nelson; P. K. Netrakanti; M. J. Ng; L. V. Nogach; S. B. Nurushev; G. Odyniec; A. Ogawa; V. Okorokov; E. W. Oldag; D. Olson; M. Pachr; B. S. Page; S. K. Pal; Y. Pandit; Y. Panebratsev; T. Pawlak; T. Peitzmann; V. Perevoztchikov; C. Perkins; W. Peryt; S. C. Phatak; P. Pile; M. Planinic; M. A. Ploskon; J. Pluta; D. Plyku; N. Poljak; A. M. Poskanzer; B. V. K. S. Potukuchi; C. B. Powell; D. Prindle; C. Pruneau; N. K. Pruthi; P. R. Pujahari; J. Putschke; H. Qiu; R. Raniwala; S. Raniwala; R. L. Ray; R. Redwine; R. Reed; H. G. Ritter; J. B. Roberts; O. V. Rogachevsky; J. L. Romero; A. Rose; C. Roy; L. Ruan; R. Sahoo; S. Sakai; I. Sakrejda; T. Sakuma; S. Salur; J. Sandweiss; E. Sangaline; J. Schambach; R. P. Scharenberg; N. Schmitz; T. R. Schuster; J. Seele; J. Seger; I. Selyuzhenkov; P. Seyboth; E. Shahaliev; M. Shao; M. Sharma; S. S. Shi; E. P. Sichtermann; F. Simon; R. N. Singaraju; M. J. Skoby; N. Smirnov; P. Sorensen; J. Sowinski; H. M. Spinka; B. Srivastava; T. D. S. Stanislaus; D. Staszak; J. R. Stevens; R. Stock; M. Strikhanov; B. Stringfellow; A. A. P. Suaide; M. C. Suarez; N. L. Subba; M. Sumbera; X. M. Sun; Y. Sun; Z. Sun; B. Surrow; D. N. Svirida; T. J. M. Symons; A. Szanto de Toledo; J. Takahashi; A. H. Tang; Z. Tang; L. H. Tarini; T. Tarnowsky; D. Thein; J. H. Thomas; J. Tian; A. R. Timmins; S. Timoshenko; D. Tlusty; M. Tokarev; V. N. Tram; S. Trentalange; R. E. Tribble; O. D. Tsai; J. Ulery; T. Ullrich; D. G. Underwood; G. Van Buren; M. van Leeuwen; G. van Nieuwenhuizen; J. A. Vanfossen, Jr.; R. Varma; G. M. S. Vasconcelos; A. N. Vasiliev; F. Videbaek; Y. P. Viyogi; S. Vokal; S. A. Voloshin; M. Wada; M. Walker; F. Wang; G. Wang; H. Wang; J. S. Wang; Q. Wang; X. L. Wang; Y. Wang; G. Webb; J. C. Webb; G. D. Westfall; C. Whitten Jr.; H. Wieman; S. W. Wissink; R. Witt; Y. F. Wu; W. Xie; H. Xu; N. Xu; Q. H. Xu; W. Xu; Y. Xu; Z. Xu; L. Xue; Y. Yang; P. Yepes; K. Yip; I-K. Yoo; Q. Yue; M. Zawisza; H. Zbroszczyk; W. Zhan; J. B. Zhang; S. Zhang; W. M. Zhang; X. P. Zhang; Y. Zhang; Z. P. Zhang; J. Zhao; C. Zhong; J. Zhou; W. Zhou; X. Zhu; Y. H. Zhu; R. Zoulkarneev

    2011-09-22T23:59:59.000Z

    The STAR Collaboration at RHIC has measured two-pion correlation functions from p+p collisions at sqrt(s)=200 GeV. Spatial scales are extracted via a femtoscopic analysis of the correlations, though this analysis is complicated by the presence of strong non-femtoscopic effects. Our results are put into the context of the world dataset of femtoscopy in hadron-hadron collisions. We present the first direct comparison of femtoscopy in p+p and heavy ion collisions, under identical analysis and detector conditions.

  4. Young Pulsars and the Galactic Center GeV Gamma-ray Excess

    E-Print Network [OSTI]

    Ryan M. O'Leary; Matthew D. Kistler; Matthew Kerr; Jason Dexter

    2015-04-09T23:59:59.000Z

    Studies of Fermi data indicate an excess of GeV gamma rays around the Galactic center (GC), possibly due to dark matter. We show that young gamma-ray pulsars can yield a similar signal. First, a high concentration of GC supernovae naturally leads to a population of kicked pulsars symmetric about the GC. Second, while very-young pulsars with soft spectra reside near the Galactic plane, pulsars with spectra that have hardened with age accumulate at larger angles. This combination, including unresolved foreground pulsars, traces the morphology and spectrum of the Excess.

  5. Multifragmentation in Collisions of 4.4gev-Deuterons with Gold Target

    E-Print Network [OSTI]

    S. P. Avdeyev; V. A. Karnaukhov; H. Oeschler; V. V. Kirakosyan; P. A. Rukoyatkin; A. Budzanowski; W. Karcz; E. Norbeck; A. S. Botvina

    2010-01-23T23:59:59.000Z

    The relative velocity correlation function of pairs of intermediate mass fragments has been studied for d+Au collitions at 4.4 GeV. Experimental correlation functions are compared to that obtained by multibody Coulomb trajectory calculations under the assumption of various decay timees of the fragmenting system. The combined approach with the empirically modified intranuclear cascade code followed by the statistical multifragmentation model was used to generate the starting conditions for these calculations. The fragment emossion time is found to be less than 40 fm/c.

  6. Time scale of the thermal multifragmentation in p(3.6 GeV) + Au collisions

    E-Print Network [OSTI]

    S. P. Avdeyev; V. A. Karnaukhov; H. Oeschler; V. K. Rodionov; A. V. Simonenko; V. V. Kirakosyan; P. A. Rukoyatkin; A. Budzanowski; W. Karcz; I. Skwirczynska; B. Czech; E. A. Kuzmin; L. V. Chulkov; E. Norbeck; A. S. Botvina

    2006-03-14T23:59:59.000Z

    The relative angle correlation of intermediate mass fragments has been studied for p+Au collisions at 3.6 GeV. Strong suppression at small angles is observed caused by IMF-IMF Coulomb repulsion. Experimental correlation function is compared to that obtained by the multi-body Coulomb trajectory calculations with the various decay time of fragmenting system. The combined model including the empirically modified intranuclear cascade followed by statistical multifragmentation was used to generate starting conditions for these calculations. The model dependence of the results obtained has been carefully checked. The mean decay time of fragmenting system is found to be 85 +- 50 fm/c.

  7. Non-magnetic compensation in ferromagnetic Ga1-xMnxAs and Ga1-xMnxP synthesized by ion implantation and pulsed-laser melting

    E-Print Network [OSTI]

    Scarpulla, M.A.

    2008-01-01T23:59:59.000Z

    and pulsed-laser melting (II-PLM). It is demonstrated thatpulsed laser melting (II-PLM) is an established techniquewith Se and Te using II-PLM . Our group has successfully

  8. Depleted uranium dioxide melting in cold crucible melter and production of granules from the melt for use in casks for spent nuclear fuel and radioactive wastes

    SciTech Connect (OSTI)

    Gotovchikov, V.T.; Seredenko, V.A.; Shatalov, V.V.; Mironov, B.S.; Kaplenkov, V.N.; Seredenko, A.V.; Saranchin, V.K.; Shulgin, A.S. [All-Russian Research Institute of Chemical Technology (ARRICT), Moscow (Russian Federation); Haire, M.J.; Forsberg, C.W. [Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States)

    2007-07-01T23:59:59.000Z

    This paper describes the results of a joint research program between the Russian Research Institute of Chemical Technology and Oak Ridge National Laboratory in the United States to develop new radiation shielding materials for use in the construction of casks for spent nuclear fuel (SNF) and radioactive wastes. Research and development is underway to develop SNF storage, transport, and disposal casks using shielding made with two new depleted uranium dioxide (DUO{sub 2}) materials: a DUO{sub 2}-steel cermet, and, DUCRETE with DUAGG (DUO{sub 2} aggregate). Melting the DUO{sub 2} and allowing it to freeze will produce a near 100% theoretical density product and assures that the product produces no volatile materials upon subsequent heating. Induction cold-crucible melters (ICCM) are being developed for this specific application. An ICCM is, potentially, a high throughput low-cost process. Schematics of a pilot facility were developed for the production of molten DUO{sub 2} from DU{sub 3}O{sub 8} to produce granules <1 mm in diameter in a continuous mode of operation. Thermodynamic analysis was conducted for uranium-oxygen system in the temperature range from 300 to 4000 K in various gas mediums. Temperature limits of stability for various uranium oxides were determined. Experiments on melting DUO{sub 2} were carried out in a high frequency ICCM in a cold crucible with a 120 mm in diameter. The microstructure of molten DUO{sub 2} was studied and lattice parameters were determined. It was experimentally proved, and validated by X-ray analysis, that an opportunity exists to produce molten DUO{sub 2} from mixed oxides (primarily DU{sub 3}O{sub 8}) by reduction melting in ICCM. This will allow using DU{sub 3}O{sub 8} directly to make DUO{sub 2}-a separate unit operation to produce UO{sub 2} feed material is not needed. Experiments were conducted concerning the addition of alloying components, gadolinium et al. oxides, into the DUO{sub 2} melt while in the crucible. These additives improve neutron and gamma radiation shielding and operation properties of the final solids. Cermet samples of 50 wt % DUO{sub 2} were produced. (authors)

  9. Modeling the summertime evolution of sea-ice melt ponds rsted-DTU, Electromagnetic Systems, Technical University of Denmark, Lyngby, Denmark

    E-Print Network [OSTI]

    Feltham, Daniel

    ablation. The model predictions are tested for sensitivity to the melt rate of unponded ice, enhanced melt with surface topographies derived from laser altimetry corresponding to first-year sea ice and multiyear sea ice are important in determining the total surface ablation and area covered by melt ponds. Citation

  10. Effect of H2O on the density of silicate melts at high pressures: Static experiments and the application of a

    E-Print Network [OSTI]

    Effect of H2O on the density of silicate melts at high pressures: Static experiments in revised form 1 March 2012; available online 13 March 2012 Abstract Density of ultramafic silicate melts­Murnaghan equation of state and a newly devel- oped equation of state for silicate melts based on the model of hard

  11. Society for Experimental Mechanics, 2002 SEM Annual Conference Proceedings, Milwaukee, WI, 2002. Mechanical Behavior of Nanostructured Melt Spun NiTi Shape Memory Alloy

    E-Print Network [OSTI]

    Crone, Wendy C.

    . Mechanical Behavior of Nanostructured Melt Spun NiTi Shape Memory Alloy Dabin Wu æ , Wendy C. Crone ¥ § æTi Shape memory alloys (SMAs) were fabricated by cold-rolling melt-spun near equatomic NiTi. SMAs represent. Shape memory behavior was observed in the melt-spun ribbons, and pseudoelasitc behavior was observed

  12. Polarization components in ?0 photoproduction at photon energies up to 5.6 GeV

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Luo, W; Brash, E J; Gilman, R; Jones, M K; Meziane, M; Pentchev, L; Perdrisat, C F; Puckett, A.J.R.; Punjabi,; Wesselmann, F R; et al

    2012-05-31T23:59:59.000Z

    We present new data for the polarization observables of the final state proton in the 1H(? ?, ? p)?0 reaction. These data can be used to test predictions based on hadron helicity conservation (HHC) and perturbative QCD (pQCD). These data have both small statistical and systematic uncertainties, and were obtained with beam energies between 1.8 and 5.6 GeV and for ?0 scattering angles larger than 75{sup o} in center-of-mass (c.m.) frame. The data extend the polarization measurements data base for neutral pion photoproduction up to E? = 5.6 GeV. The results show non-zero induced polarization above the resonance region. Themore »polarization transfer components vary rapidly with the photon energy and ?0 scattering angle in the center-of-mass frame. This indicates that HHC does not hold and that the pQCD limit is still not reached in the energy regime of this experiment.« less

  13. Novel Higgs-to-125 GeV Higgs boson decays in the complex NMSSM

    E-Print Network [OSTI]

    Shoaib Munir

    2014-05-05T23:59:59.000Z

    In the Next-to-Minimal Supersymmetric Standard Model (NMSSM) a variety of parameter configurations yields a Higgs boson consistent with the one observed at the LHC. Additionally, the Higgs sector of the model can contain explicit CP-violating phases even at the tree level, in contrast with the Minimal Supersymmetric Standard Model (MSSM). In this article we present the one-loop Higgs boson mass matrix of the complex NMSSM in the renormalisation-group-improved effective potential approach. We also present the trilinear Higgs boson self-couplings as well as various partial decay widths of a generic CP-mixed Higgs boson in the model. We then analyse a very interesting phenomenological scenario wherein the decay of a relatively light pseudoscalar-like Higgs boson into ~ 125 GeV SM-like Higgs boson(s) is induced by non-zero CP-violating phases. We discuss in detail a few benchmark cases in which such a decay can contribute significantly to the production of SM-like Higgs bosons at the LHC on top of the gluon fusion process. It can thus be partially responsible for the gamma.gamma excess near 125 GeV due to the subsequent decay of the SM-like Higgs boson. Such a scenario is extremely difficult to realize in the complex MSSM and, if probed at the LHC, it could provide an indication of the non-minimal nature of supersymmetry.

  14. MULTIWAVELENGTH OBSERVATIONS OF GRB 110731A: GeV EMISSION FROM ONSET TO AFTERGLOW

    SciTech Connect (OSTI)

    Ackermann, M. [Deutsches Elektronen Synchrotron DESY, D-15738 Zeuthen (Germany)] [Deutsches Elektronen Synchrotron DESY, D-15738 Zeuthen (Germany); Ajello, M.; Blandford, R. D.; Borgland, A. W.; Bottacini, E.; Buehler, R.; Cameron, R. A. [W. W. Hansen Experimental Physics Laboratory, Kavli Institute for Particle Astrophysics and Cosmology, Department of Physics and SLAC National Accelerator Laboratory, Stanford University, Stanford, CA 94305 (United States)] [W. W. Hansen Experimental Physics Laboratory, Kavli Institute for Particle Astrophysics and Cosmology, Department of Physics and SLAC National Accelerator Laboratory, Stanford University, Stanford, CA 94305 (United States); Asano, K. [Interactive Research Center of Science, Tokyo Institute of Technology, Meguro City, Tokyo 152-8551 (Japan)] [Interactive Research Center of Science, Tokyo Institute of Technology, Meguro City, Tokyo 152-8551 (Japan); Baldini, L.; Bellazzini, R.; Bregeon, J. [Istituto Nazionale di Fisica Nucleare, Sezione di Pisa, I-56127 Pisa (Italy)] [Istituto Nazionale di Fisica Nucleare, Sezione di Pisa, I-56127 Pisa (Italy); Barbiellini, G. [Istituto Nazionale di Fisica Nucleare, Sezione di Trieste, I-34127 Trieste (Italy)] [Istituto Nazionale di Fisica Nucleare, Sezione di Trieste, I-34127 Trieste (Italy); Baring, M. G. [Department of Physics and Astronomy, Rice University, MS-108, P.O. Box 1892, Houston, TX 77251 (United States)] [Department of Physics and Astronomy, Rice University, MS-108, P.O. Box 1892, Houston, TX 77251 (United States); Bastieri, D.; Buson, S. [Istituto Nazionale di Fisica Nucleare, Sezione di Padova, I-35131 Padova (Italy)] [Istituto Nazionale di Fisica Nucleare, Sezione di Padova, I-35131 Padova (Italy); Bonamente, E. [Istituto Nazionale di Fisica Nucleare, Sezione di Perugia, I-06123 Perugia (Italy)] [Istituto Nazionale di Fisica Nucleare, Sezione di Perugia, I-06123 Perugia (Italy); Brigida, M. [Dipartimento di Fisica 'M. Merlin' dell'Universita e del Politecnico di Bari, I-70126 Bari (Italy)] [Dipartimento di Fisica 'M. Merlin' dell'Universita e del Politecnico di Bari, I-70126 Bari (Italy); Bruel, P. [Laboratoire Leprince-Ringuet, Ecole polytechnique, CNRS/IN2P3, Palaiseau (France)] [Laboratoire Leprince-Ringuet, Ecole polytechnique, CNRS/IN2P3, Palaiseau (France); Caliandro, G. A. [Institut de Ciencies de l'Espai (IEEE-CSIC), Campus UAB, E-08193 Barcelona (Spain)] [Institut de Ciencies de l'Espai (IEEE-CSIC), Campus UAB, E-08193 Barcelona (Spain); Caraveo, P. A., E-mail: kocevski@slac.stanford.edu, E-mail: giacomov@slac.stanford.edu, E-mail: johan.bregeon@pi.infn.it, E-mail: srazzaque@ssd5.nrl.navy.mil, E-mail: eleonora.troja@nasa.gov, E-mail: dgruber@mpe.mpg.de [INAF-Istituto di Astrofisica Spaziale e Fisica Cosmica, I-20133 Milano (Italy); and others

    2013-02-15T23:59:59.000Z

    We report on the multiwavelength observations of the bright, long gamma-ray burst GRB 110731A, by the Fermi and Swift observatories, and by the MOA and GROND optical telescopes. The analysis of the prompt phase reveals that GRB 110731A shares many features with bright Large Area Telescope bursts observed by Fermi during the first three years on-orbit: a light curve with short time variability across the whole energy range during the prompt phase, delayed onset of the emission above 100 MeV, extra power-law component and temporally extended high-energy emission. In addition, this is the first GRB for which simultaneous GeV, X-ray, and optical data are available over multiple epochs beginning just after the trigger time and extending for more than 800 s, allowing temporal and spectral analysis in different epochs that favor emission from the forward shock in a wind-type medium. The observed temporally extended GeV emission is most likely part of the high-energy end of the afterglow emission. Both the single-zone pair transparency constraint for the prompt signal and the spectral and temporal analysis of the forward-shock afterglow emission independently lead to an estimate of the bulk Lorentz factor of the jet {Gamma} {approx} 500-550.

  15. Environmental assessment of the proposed 7-GeV Advanced Photon Source

    SciTech Connect (OSTI)

    Not Available

    1990-02-01T23:59:59.000Z

    The potential environmental impacts of construction and operation of a 6- to 7-GeV synchrotron radiation source known as the 7-GeV Advanced Photon Source at Argonne National Laboratory were evaluated. Key elements considered include on- and off-site radiological effects; socioeconomic effects; and impacts to aquatic and terrestrial flora and fauna, wetlands, water and air quality, cultural resources, and threatened or endangered species. Also incorporated are the effects of decisions made as a result of the preliminary design (Title I) being prepared. Mitigation plans to further reduce impacts are being developed. These plans include coordination with the US Army Corps of Engineers (COE) and other responsible agencies to mitigate potential impacts to wetlands. This mitigation includes providing habitat of comparable ecological value to assure no net loss of wetlands. These mitigation actions would be permitted and monitored by COE. A data recovery plan to protect cultural resources has been developed and approved, pursuant to a Programmatic Agreement among the US Department of Energy, the Advisory Council on Historic Preservation, and the Illinois State Historic Preservation Office. Applications for National Emission Standard for Hazardous Air Pollutants (NESHAP) and air emissions permits have been submitted to the US Environmental Protection Agency (EPA) and the Illinois Environmental Protection Agency (IEPA), respectively. 71 refs., 10 figs., 11 tabs.

  16. Design of the Trigger Interface and Distribution Board for CEBAF 12 GeV Upgrade

    SciTech Connect (OSTI)

    Gu, Jianhui; Dong, Hai; Cuevas, R; Gyurjyan, Vardan; Heyes, William; Jastrzembski, Edward; Kaneta, Scott; Nganga, Nicholas; Moffit, Bryan; Raydo, Benjamin; Timmer, Carl

    2012-10-01T23:59:59.000Z

    The design of the Trigger Interface and Distribution (TID) board for the 12 GeV Upgrade at the Continuous Electron Beam Accelerator Facility (CEBAF) at TJNAL is described. The TID board distributes a low jitter system clock, synchronized trigger, and synchronized multi-purpose SYNC signal. The TID also initiates data acquisition for the crate. With the TID boards, a multi-crate system can be setup for experiment test and commissioning. The TID board can be selectively populated as a Trigger Interface (TI) board, or a Trigger Distribution (TD) board for the 12 GeV upgrade experiments. When the TID is populated as a TI, it can be located in the VXS crate and distribute the CLOCK/TRIGGER/SYNC through the VXS P0 connector; it can also be located in the standard VME64 crate, and distribute the CLOCK/TRIGGER/SYNC through the VME P2 connector or front panel. It initiates the data acquisition for the front crate where the TI is positioned in. When the TID is populated as a TD, it fans out the CLOCK/TRIGGER/SYNC from trigger supervisor to the front end crates through optical fibres. The TD monitors the trigger processing on the TIs, and gives feedback to the TS for trigger flow control. Field Programmable Gate Arrays (FPGA) is utilised on TID board to provide programmability. The TID boards were intensively tested on the bench, and various setups.

  17. Multiwavelength observations of GRB 110731A: GeV emission from onset to afterglow

    E-Print Network [OSTI]

    ,

    2012-01-01T23:59:59.000Z

    We report on the multiwavelength observations of the bright, long gamma-ray burst \\GRB, by the \\Fermi and \\Swift observatories, and by the MOA and GROND optical telescopes. The analysis of the prompt phase reveals that \\GRB shares many features with bright Large Area Telescope bursts observed by \\Fermi during the first 3 years on-orbit: a light curve with short time variability across the whole energy range during the prompt phase, delayed onset of the emission above 100 MeV, extra power law component and temporally extended high-energy emission. In addition, this the first GRB for which simultaneous GeV, X-ray, and optical data are available over multiple epochs beginning just after the trigger time and extending for more than 800 s, allowing temporal and spectral analysis in different epochs that favor emission from the forward shock in a wind-type medium. The observed temporally extended GeV emission is most likely part of the high-energy end of the afterglow emission. Both the single-zone pair transparenc...

  18. Polarization components in ?0 photoproduction at photon energies up to 5.6 GeV

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Luo, W; Brash, E J; Gilman, R; Jones, M K; Meziane, M; Pentchev, L; Perdrisat, C F; Puckett, A.J.R.; Punjabi,; Wesselmann, F R; Marsh,; Matulenko, Y; Maxwell, J; Meekins, D; Melnik, Y; Miller, J; Mkrtchyan, A; Mkrtchyan, H; Moffit, B; Moreno, O; Mulholland, J; Narayan, A; Nuruzzaman,; Nedev, S; Piasetzky, E; Pierce, W; Piskunov, N M; Prok, Y; Ransome, R D; Razin, D S; Reimer, P E; Reinhold, J; Rondon, O; Shabestari, M; Shahinyan, A; Shestermanov, K; Sirca, S; Sitnik, I; Smykov, L; Smith, G; Solovyev, L; Solvignon, P; Strakovsky, I I; Subedi, R; Suleiman, R; Tomasi-Gustafsson, E; Vasiliev, A; Veilleux, M; Wood, S; Ye, Z; Zanevsky, Y; Zhang, X; Zhang, Y; Zheng, X; Zhu, L; Ahmidouch, A; Albayrak, I; Aniol, K A; Arrington, J; Asaturyan, A; Ates, O; Baghdasaryan, H; Benmokhtar, F; Bertozzi, W; Bimbot, L; Bosted, P; Boeglin, W; Butuceanu, C; Carter, P; Chernenko, S; Christy, M E; Commisso, M; Cornejo, J C; Covrig, S; Danagoulian, S; Daniel, A; Davidenko, A; Day, D; Dhamija, S; Dutta, D; Ent, R; Frullani, S; Fenker, H; Frlez, E; Garibaldi, F; Gaskell, D; Gilad, S; Goncharenko, Y; Hafidi, K; Hamilton, D; Higinbotham, D W; Hinton, W; Horn, T; Hu, B; Huang, J; Huber, G M; Jensen, E; Kang, H; Keppel, C; Khandaker, M; King, P; Kirillov, D; Kohl, M; Kravtsov, V; Kumbartzki, G; Li, Y; Mamyan, V; Margaziotis, D J; Markowitz, P

    2012-05-31T23:59:59.000Z

    We present new data for the polarization observables of the final state proton in the 1H(? ?, ? p)?0 reaction. These data can be used to test predictions based on hadron helicity conservation (HHC) and perturbative QCD (pQCD). These data have both small statistical and systematic uncertainties, and were obtained with beam energies between 1.8 and 5.6 GeV and for ?0 scattering angles larger than 75{sup o} in center-of-mass (c.m.) frame. The data extend the polarization measurements data base for neutral pion photoproduction up to E? = 5.6 GeV. The results show non-zero induced polarization above the resonance region. The polarization transfer components vary rapidly with the photon energy and ?0 scattering angle in the center-of-mass frame. This indicates that HHC does not hold and that the pQCD limit is still not reached in the energy regime of this experiment.

  19. Evidence for the direct decay of the 125 GeV Higgs boson to fermions

    E-Print Network [OSTI]

    CMS Collaboration

    2014-11-02T23:59:59.000Z

    The discovery of a new boson with a mass of approximately 125 GeV in 2012 at the LHC has heralded a new era in understanding the nature of electroweak symmetry breaking and possibly completing the standard model of particle physics. Since the first observation in decays to gamma gamma, WW, and ZZ boson pairs, an extensive set of measurements of the mass and couplings to W and Z bosons, as well as multiple tests of the spin-parity quantum numbers, have revealed that the properties of the new boson are consistent with those of the long-sought agent responsible for electroweak symmetry breaking. An important open question is whether the new particle also couples to fermions, and in particular to down-type fermions, since the current measurements mainly constrain the couplings to the up-type top quark. Determination of the couplings to down-type fermions requires direct measurement of the corresponding Higgs boson decays, as recently reported by the CMS experiment in the study of Higgs decays to bottom quarks and tau leptons. In this paper we report the combination of these two channels which results, for the first time, in strong evidence for the direct coupling of the 125 GeV Higgs boson to down-type fermions, with an observed significance of 3.8 standard deviations, when 4.4 are expected.

  20. A Simple Transition-Free Lattice of an 8 Gev Proton Synchrotron

    E-Print Network [OSTI]

    Chou, W

    2009-01-01T23:59:59.000Z

    A transition-free lattice is a basic requirement of a high-intensity medium-energy (several GeV) proton synchrotron in order to eliminate beam losses during transition crossing. An 8 GeV synchrotron is proposed as a principal component in an alternative hybrid design of Project-X [1]. This machine would be housed in the Fermilab antiproton source enclosure replacing the present Debuncher. A simple doublet lattice with high transition gamma has been designed. It uses just one type of dipoles and one type of quadrupoles (QF and QD are of the same length). It has no transition crossing. It has a triangular shape with three zero dispersion straight sections, which can be used for injection, extraction, RF and collimators. The beta-functions and dispersion are low. This lattice has plenty of free space for correctors and diagnostic devices, as well as good optical properties including large dynamic aperture, weak dependence of lattice functions on amplitude and momentum deviation.