National Library of Energy BETA

Sample records for gev melting point

  1. Nanotexturing of surfaces to reduce melting point.

    SciTech Connect (OSTI)

    Garcia, Ernest J.; Zubia, David; Mireles, Jose; Marquez, Noel; Quinones, Stella

    2011-11-01

    This investigation examined the use of nano-patterned structures on Silicon-on-Insulator (SOI) material to reduce the bulk material melting point (1414 C). It has been found that sharp-tipped and other similar structures have a propensity to move to the lower energy states of spherical structures and as a result exhibit lower melting points than the bulk material. Such a reduction of the melting point would offer a number of interesting opportunities for bonding in microsystems packaging applications. Nano patterning process capabilities were developed to create the required structures for the investigation. One of the technical challenges of the project was understanding and creating the specialized conditions required to observe the melting and reshaping phenomena. Through systematic experimentation and review of the literature these conditions were determined and used to conduct phase change experiments. Melting temperatures as low as 1030 C were observed.

  2. Low-melting point heat transfer fluid

    DOE Patents [OSTI]

    Cordaro, Joseph Gabriel; Bradshaw, Robert W.

    2010-11-09

    A low-melting point, heat transfer fluid made of a mixture of five inorganic salts including about 29.1-33.5 mol % LiNO.sub.3, 0-3.9 mol % NaNO.sub.3, 2.4-8.2 mol % KNO.sub.3, 18.6-19.9 mol % NaNO.sub.2, and 40-45.6 mol % KNO.sub.2. These compositions can have liquidus temperatures below 80.degree. C. for some compositions.

  3. Low-melting point heat transfer fluid

    DOE Patents [OSTI]

    Cordaro, Joseph G.; Bradshaw, Robert W.

    2011-04-12

    A low-melting point, heat transfer fluid comprising a mixture of LiNO.sub.3, NaNO.sub.3, KNO.sub.3, NaNO.sub.2 and KNO.sub.2 salts where the Li, Na and K cations are present in amounts of about 20-33.5 mol % Li, about 18.6-40 mol % Na, and about 40-50.3 mol % K and where the nitrate and nitrite anions are present in amounts of about 36-50 mol % NO.sub.3, and about 50-62.5 mol % NO.sub.2. These compositions can have liquidus temperatures between 70.degree. C. and 80.degree. C. for some compositions.

  4. Low-melting point inorganic nitrate salt heat transfer fluid

    DOE Patents [OSTI]

    Bradshaw, Robert W.; Brosseau, Douglas A.

    2009-09-15

    A low-melting point, heat transfer fluid made of a mixture of four inorganic nitrate salts: 9-18 wt % NaNO.sub.3, 40-52 wt % KNO.sub.3, 13-21 wt % LiNO.sub.3, and 20-27 wt % Ca(NO.sub.3).sub.2. These compositions can have liquidus temperatures less than 100 C; thermal stability limits greater than 500 C; and viscosity in the range of 5-6 cP at 300 C; and 2-3 cP at 400 C.

  5. Measurement of the Melting Point Temperature of Several Lithium-Sodium-Beryllium Fluoride Salt (Flinabe) Mixtures

    SciTech Connect (OSTI)

    McDonald, J.M; Nygren, R.E.; Lutz, T.J.; Tanaka, T.J; Ulrickson, M.A.; Boyle, T.J.; Troncosa, K.P.

    2005-04-15

    The molten salt Flibe, a combination of lithium and beryllium fluorides studied for molten salt fission reactors, has been proposed as a breeder and coolant for fusion applications. The melting points of 2LiF-BeF{sub 2} and LiF-BeF{sub 2} are 460 deg. C and 363 deg. C, but LiF-BeF{sub 2} is rather viscous and has less lithium for breeding. In the Advanced Power Extraction (APEX) Program, concepts with a free flowing liquid for the first wall and blanket were investigated. Flinabe (a mixture of LiF, BeF{sub 2} and NaF) was selected for a molten salt design because a melting temperature below 350 deg. C appeared possible and this provided an attractive operating temperature window for a reactor. To confirm that a ternary salt with a low melting temperature existed, several combinations of the fluoride salts, LiF, NaF and BeF{sub 2}, were melted in a stainless steel crucible under vacuum. One had an apparent melting temperature of 305 deg. C. The test system, preparation of the mixtures, melting procedures and temperature curves for the melting and cooling are presented along with the apparent melting points. Thermal modeling of the salt pool and crucible is reported in an accompanying paper.

  6. Models for mean bonding length, melting point and lattice thermal expansion of nanoparticle materials

    SciTech Connect (OSTI)

    Omar, M.S.

    2012-11-15

    Graphical abstract: Three models are derived to explain the nanoparticles size dependence of mean bonding length, melting temperature and lattice thermal expansion applied on Sn, Si and Au. The following figures are shown as an example for Sn nanoparticles indicates hilly applicable models for nanoparticles radius larger than 3 nm. Highlights: ? A model for a size dependent mean bonding length is derived. ? The size dependent melting point of nanoparticles is modified. ? The bulk model for lattice thermal expansion is successfully used on nanoparticles. -- Abstract: A model, based on the ratio number of surface atoms to that of its internal, is derived to calculate the size dependence of lattice volume of nanoscaled materials. The model is applied to Si, Sn and Au nanoparticles. For Si, that the lattice volume is increases from 20 ?{sup 3} for bulk to 57 ?{sup 3} for a 2 nm size nanocrystals. A model, for calculating melting point of nanoscaled materials, is modified by considering the effect of lattice volume. A good approach of calculating size-dependent melting point begins from the bulk state down to about 2 nm diameter nanoparticle. Both values of lattice volume and melting point obtained for nanosized materials are used to calculate lattice thermal expansion by using a formula applicable for tetrahedral semiconductors. Results for Si, change from 3.7 10{sup ?6} K{sup ?1} for a bulk crystal down to a minimum value of 0.1 10{sup ?6} K{sup ?1} for a 6 nm diameter nanoparticle.

  7. Draft report on melt point as a function of composition for urania-based systems

    SciTech Connect (OSTI)

    Valdez, James A; Byler, Darrin D

    2012-06-08

    This report documents the testing of a urania (UO{sub 2.00}) sample as a baseline and the attempt to determine the melt point associated with 4 compositions of urania-ceria and urania-neodymia pseudo binaries provided by ORNL, with compositions of 95/5, and 80/20 and of (U/Ce)O{sub 2.00} and (U/Nd)O{sub 2.00} in the newly developed ceramic melt point determination system. A redesign of the system using parts fabricated from tungsten was undertaken in order to help prevent contamination and tungsten carbide formation in the crucibles. The previously developed system employed mostly graphite parts that were shown to react with the sample containment black-body crucible leading to unstable temperature readings and crucible failure, thus the redesign. Measured melt point values of UO{sub 2.00} and U{sub 0.95}Ce{sub 0.05}O{sub 2.00}, U{sub 0.80}Ce{sub 0.20}O{sub 2.00}, U{sub 0.95}Nd{sub 0.05}O{sub 2.00} and U{sub 0.80}Nd{sub 0.20}O{sub 2.00} were measured using a 2-color pyrometer. The value measured for UO{sub 2.00} was consistent with the published accepted value 2845 C {+-} 25 C, although a wide range of values has been published by researchers and will be discussed later in the text. For comparison, values obtained from a published binary phase diagram of UO{sub 2}-Nd{sub 2}O{sub 3} were used for comparison with our measure values. No literature melt point values for comparison with the measurements performed in this study were found for (U/Ce)O{sub 2.00} in our stoichiometry range.

  8. Low-melting-point titanium-base brazing alloys. Part 1: Characteristics of two-, three-, and four-component filler metals

    SciTech Connect (OSTI)

    Chang, E.; Chen, C.H.

    1997-12-01

    The melting point, microstructure, phase, and electrochemical behavior of Ti-21Ni-15Cu alloy, together with two-, three-, and four-component low-melting-point titanium-base brazing alloys, are presented in this paper. Five filler metals were selected for the study, in which melting points were measured by differential thermal analysis, phases identified by x-ray diffractometry, and corrosion behaviors tested by potentiodynamic polarization. The experimental results show that the three-component Ti-15Cu-15Ni and the newly developed Ti-21Ni-14Cu alloys exhibit the combination of lower melting point and superior corrosion resistance compared to the two- and four-component titanium alloys, 316L stainless steel, and a Co-Cr-Mo alloy in Hank`s solution at 37 C. On a short time basis, the presence of Ti{sub 2}Ni and Ti{sub 2}Cu intermetallics in the Ti-15Cu-15Ni and Ti-21Ni-14Cu alloys should not be preferentially dissolved in galvanic corrosion with respect to the dissimilar Ti-6Al-4V alloy.

  9. Molecular dynamics study of the effect of alkyl chain length on melting points of [CnMIM][PF6] ionic liquids

    SciTech Connect (OSTI)

    Zhang, Y; Maginn, EJ

    2014-01-01

    Based on molecular dynamics simulations, the melting points T-m of a series of 1-alkyl-3-methylimidazolium hexafluorophosphate ionic liquids [CnMIM][PF6] with n = 2, 4, 10, 12, and 14 were studied using the free energy-based pseudosupercritical path (PSCP) method. The experimental trend that the Tm decreases with increasing alkyl chain length for ILs with short alkyl chains and increases for the ones with long alkyl chains was correctly captured. Further analysis revealed that the different trends are the results of the balance between fusion enthalpy and fusion entropy. For the ILs with short alkyl chains (ethyl and butyl groups), fusion entropy plays the dominant role so that [C4MIM][PF6], which has a larger fusion entropy due to its higher liquid phase entropy has the lower melting temperature. As for the ILs with long alkyl chains, due to the enhanced van der Waals interactions brought about by the long non-polar alkyl chains, enthalpy becomes the deciding factor and the melting points increase when the alkyl chain goes from C10 to C14. While the melting points for [C2MIM][PF6] and [C4MIM][PF6] were quantitatively predicted and the trends for the long chain ILs were captured correctly, the absolute melting points for [C10MIM][PF6], [C12MIM][PF6] and [C14MIM][PF6] were systematically overestimated in the simulations. Three possible reasons for the overestimation were studied but all ruled out. Further simulation or experimental studies are needed to explain the difference.

  10. Energy Saving Melting and Revert Reduction Technology: Melting...

    Office of Scientific and Technical Information (OSTI)

    Energy Saving Melting and Revert Reduction Technology: Melting Efficiency in Die Casting Operations Citation Details In-Document Search Title: Energy Saving Melting and Revert ...

  11. 12 GeV! | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    GeV! 12 GeV! December 21, 2015 Our upgrade project is called the 12 GeV CEBAF Upgrade Project. At the time CD-4A was achieved, we demonstrated 2.2 GeV per pass. This was 12 GeV! Well, not quite. In fact with more than one pass, we limited ourselves to a little more than 6 GeV with three passes, and to 10.5 GeV with 5.5 passes. It was not felt to be prudent to demand 12 GeV out of the machine immediately after turn on. Operations in the spring of 2015 at high energy, ~10.5 GeV, came to a

  12. Melt containment member

    DOE Patents [OSTI]

    Rieken, Joel R.; Heidloff, Andrew J.

    2014-09-09

    A tubular melt containment member for transient containment of molten metals and alloys, especially reactive metals and alloys, includes a melt-contacting layer or region that comprises an oxygen-deficient rare earth oxide material that is less reactive as compared to the counterpart stoichiometric rare earth oxide. The oxygen-deficient (sub-stoichiometric) rare earth oxide can comprise oxygen-deficient yttria represented by Y.sub.2O.sub.3-x wherein x is from 0.01 to 0.1. Use of the oxygen-deficient rare earth oxide as the melt-contacting layer or region material reduces reaction with the melt for a given melt temperature and melt contact time.

  13. Isothermal Melting | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Isothermal Melting Isothermal Melting New Energy-Efficient Melting Process Saves Energy and Reduces Production Losses Aluminum melting is an energy intensive process that exhibits a 2% to 3% loss rate due to the generally open heating method for melting. An immersion heating process, Isothermal Melting (ITM), has been developed by Apogee Technology, Inc., with support from AMO. The system uses immersion heaters in a closed loop multiple bay arrangement. Each bay contributes to an efficiency

  14. Vitrification of waste with conitnuous filling and sequential melting

    DOE Patents [OSTI]

    Powell, James R.; Reich, Morris

    2001-09-04

    A method of filling a canister with vitrified waste starting with a waste, such as high-level radioactive waste, that is cooler than its melting point. Waste is added incrementally to a canister forming a column of waste capable of being separated into an upper zone and a lower zone. The minimum height of the column is defined such that the waste in the lower zone can be dried and melted while maintaining the waste in the upper zone below its melting point. The maximum height of the column is such that the upper zone remains porous enough to permit evolved gases from the lower zone to flow through the upper zone and out of the canister. Heat is applied to the waste in the lower zone to first dry then to raise and maintain its temperature to a target temperature above the melting point of the waste. Then the heat is applied to a new lower zone above the melted waste and the process of adding, drying and melting the waste continues upward in the canister until the entire canister is filled and the entire contents are melted and maintained at the target temperature for the desired period. Cooling of the melted waste takes place incrementally from the bottom of the canister to the top, or across the entire canister surface area, forming a vitrified product.

  15. Molecular dynamics simulations of the melting curve of NiAl alloy under pressure

    SciTech Connect (OSTI)

    Zhang, Wenjin; Peng, Yufeng; Liu, Zhongli

    2014-05-15

    The melting curve of B2-NiAl alloy under pressure has been investigated using molecular dynamics technique and the embedded atom method (EAM) potential. The melting temperatures were determined with two approaches, the one-phase and the two-phase methods. The first one simulates a homogeneous melting, while the second one involves a heterogeneous melting of materials. Both approaches reduce the superheating effectively and their results are close to each other at the applied pressures. By fitting the well-known Simon equation to our melting data, we yielded the melting curves for NiAl: 1783(1 + P/9.801){sup 0.298} (one-phase approach), 1850(1 + P/12.806){sup 0.357} (two-phase approach). The good agreement of the resulting equation of states and the zero-pressure melting point (calc., 1850 25 K, exp., 1911 K) with experiment proved the correctness of these results. These melting data complemented the absence of experimental high-pressure melting of NiAl. To check the transferability of this EAM potential, we have also predicted the melting curves of pure nickel and pure aluminum. Results show the calculated melting point of Nickel agrees well with experiment at zero pressure, while the melting point of aluminum is slightly higher than experiment.

  16. Behavior of melts during softening and melting down of iron ore sinter under load

    SciTech Connect (OSTI)

    Cho, Y.H.

    1995-12-01

    In order to achieve effective operation in the blast furnace, the distribution control and quality improvement of burden materials are very important. In spite of the difficulties in obtaining suitable samples and making direct observation, significant progress including the placement of probes into the stack, tuyere drilling and laboratory simulation studies has been made. Investigation of the behavior of melts during softening and melting down was carried out in the temperature range of 800 C to 1,515 C. In this report, emphasis is given to investigating the mineral formation and properties of melts during softening and melting down of the iron ore sinter. Sized coke layers were placed above and below the sample to maintain uniform upward flow of gas and insure a smooth downward flow of melts. When the temperature of the sample reached the set point during the test the power was shut off and the sample was cooled in the furnace air. The weight, the height, porosity and contraction of each sample were measured. Chemical composition, observation of microstructures, SEM analysis and X-ray diffraction analysis were conducted. Results are presented.

  17. DEGREE-SCALE GeV 'JETS' FROM ACTIVE AND DEAD TeV BLAZARS

    SciTech Connect (OSTI)

    Neronov, A.; Semikoz, D.; Kachelriess, M.; Ostapchenko, S.; Elyiv, A.

    2010-08-20

    We show that images of TeV blazars in the GeV energy band should contain, along with point-like sources, degree-scale jet-like extensions. These GeV extensions are the result of electromagnetic cascades initiated by TeV {gamma}-rays interacting with extragalactic background light and the deflection of the cascade electrons/positrons in extragalactic magnetic fields (EGMFs). Using Monte Carlo simulations, we study the spectral and timing properties of the degree-scale extensions in simulated GeV band images of TeV blazars. We show that the brightness profile of such degree-scale extensions can be used to infer the light curve of the primary TeV {gamma}-ray source over the past 10{sup 7} yr, i.e., over a time scale comparable to the lifetime of the parent active galactic nucleus. This implies that the degree-scale jet-like GeV emission could be detected not only near known active TeV blazars, but also from 'TeV blazar remnants', whose central engines were switched off up to 10 million years ago. Since the brightness profile of the GeV 'jets' depends on the strength and the structure of the EGMF, their observation provides additional information about the EGMF.

  18. Melt behavior of aluminum clad rods

    SciTech Connect (OSTI)

    Geiger, G.T.; Long, T.A.; DeWald, A.B. Jr.

    1994-08-01

    Since the Li-Al alloy cores in control rods used to control production reactors are susceptible to corrosion by heavy water, they were clad with Al. This paper reports results of an experimental and numerical study of the behavior of control rods heated to the point of clad and rod-core failure. Results show that the core of the rod melts first; the clad fails only after significant additional heating. Once the rod breaks and drops to the bottom of the quartz tube in the furnace, the lower section of the rod fails by ``poker-chipping`` downward as the topmost portion fails before the portion below it. Part of the core in the remaining top of the rod relocates immediately after rod separation, leaving a hollow tube of Al which also melts upon further heating.

  19. Meson Spectroscopy At Jlab At 12 Gev

    SciTech Connect (OSTI)

    Fegan, Stuart

    2014-12-01

    The 12 GeV upgrade to the Continuous Electron Beam Accelerator Facility (CEBAF) at Jefferson Lab will enable a new generation of experiments in hadronic nuclear physics, seeking to address fundamental questions in our understanding of QCD. The existence of exotic states, suggested by both quark models and lattice calculations, would allow gluonic degrees of freedom to be explored, and may help explain the role played by gluons in the QCD interaction. This article will review the meson spectroscopy program being planned at the lab following the 12 GeV upgrade, utilising real and quasi-real photon beams in two of the lab's four experimental halls, whose distinct capabilities will enable an extensive set of spectroscopy experiments to be performed at the same facility.

  20. 12 GeV Upgrade | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    12 GeV Upgrade Physicists at Jefferson Lab are trying to find answers to some of nature's most perplexing questions about the universe by exploring the nucleus of the atom. Their goal is to answer such questions as: "What is the universe made of?" and "What holds everyday matter together?" In their search for answers, physicists smash electrons into atoms using Jefferson Lab's Continuous Electron Beam Accelerator Facility. CEBAF provides physicists with an unprecedented

  1. MU(& Ge-+v,

    Office of Legacy Management (LM)

    fil MU(& Ge-+v, . !d R&arch & Development b This document consists of 6 Contract Ho. pages and - . --------------_____---. figures No.--~--of.--~~-_-copies, Series,&,, This subcontract entered into this 20 day 0fSepte~ber , 1943, by and between the University of Cliicago, a corporation not for pecuniary profit organized under the ICVS of the Stnto of Illinois, of Chicago, Illinois (hereinafter called "the Contractor") and Yiolverine Tube Divisionof Caluzet 2 Eecla

  2. Commissioning and Operation of 12 GeV CEBAF

    SciTech Connect (OSTI)

    Freyberger, Arne P.

    2015-09-01

    The Continuous Electron Beam Accelerator Facility (CEBAF) located at the Thomas Jefferson National Accelerator Laboratory (JLab) has been recently upgraded to deliver continuous electron beams to the experimental users at a maximum energy of 12 GeV, three times the original design energy of 4 GeV. This paper will present an overview of the upgrade, referred to as the 12GeV upgrade, and highlights from recent beam commissioning results.

  3. 3 GeV Injector Design Handbook

    SciTech Connect (OSTI)

    Wiedemann, H.; /SLAC, SSRL

    2009-12-16

    This Design Handbook is intended to be the main reference book for the specifications of the 3 GeV SPEAR booster synchrotron project. It is intended to be a consistent description of the project including design criteria, key technical specifications as well as current design approaches. Since a project is not complete till it's complete changes and modifications of early conceptual designs must be expected during the duration of the construction. Therefore, this Design Handbook is issued as a loose leaf binder so that individual sections can be replaced as needed. Each page will be dated to ease identification with respect to latest revisions. At the end of the project this Design Handbook will have become the 'as built' reference book of the injector for operations and maintenance personnel.

  4. 6 GeV Parity Violating Deep Inelastic Scattering at Jefferson Laboratory

    SciTech Connect (OSTI)

    Subedi, Ramesh R.; Deng Xiaoyan; Wang Diancheng; Zheng Xiaochao; Michaels, Robert; Pan Kai; Reimer, Paul E.

    2011-10-24

    The 6 GeV Parity Violating Deep Inelastic Scattering (PVDIS) experiment has measured a 10{sup -4} level asymmetry through polarized electron scattering off a liquid deuterium target with a beam energy of 6 GeV. This experiment has a goal of measuring a combination of the product of the weak neutral couplings of the electron and the quark with a factor of six improvement in precision over world data. Precise data for the couplings are essential to search for physics beyond the Standard Model. The experiment took place in Hall A at Thomas Jefferson National Accelerator Facility (Jefferson Laboratory) and data collection was completed in the end of 2009. A highly specialized counting data acquisition system with an inherent particle identification was developed and utilized. We have taken data at two Q{sup 2} points in order to possibly address the hadronic correction due to higher twist effects. An overview of the experiment will be presented.

  5. Exclusive single pion electroproduction off the proton in the high-lying resonances at Q2 < 5 GeV2 from CLAS

    SciTech Connect (OSTI)

    Park, Kijun

    2014-09-01

    The differential cross sections and structure functions for the exclusive electroproduction process ep --> e'n pi+ were measured in the range of the invariantmass for the np+ system 1.6 GeV lte W lte 2.0 GeV, and the photon virtuality 1.8 GeV2 lte Q2 lte 4.0 GeV2 using CLAS at Jefferson Lab. For the first time, these kinematics are probed in the exclusive p+ production from the protons with nearly full coverage in the azimuthal and polar angles of the np+ center-of-mass system. In this analysis, approximately 39,000 differential cross-section data points in terms of W, Q2, cosq theta* _ pi, and phi?_p-, were obtained. The preliminary differential cross section and structure function analyses are carried out, which allow us to extract the helicity amplitudes in high-lying resonances.

  6. Talking Points

    U.S. Energy Information Administration (EIA) Indexed Site

    Talking Points NATURAL GAS MARKET INTEGRITY: How EIA Helps Presentation by William F. Hederman Congressional Research Service at EIA 30 th Anniversary Conference April 8, 2008 Washington, DC INTRODUCTION 1. Price levels and volatility cause suspicions. 2. Actual integrity and perceived integrity are both important for markets. 3. EIA was created in response to a crisis of confidence in energy market information. CANDIDATE INTEGRITY CRITERIA 1. Transparency 2. Efficiency (gathering, reporting,

  7. Compositions of Magmatic and Impact Melt Sulfides in Tissint...

    Office of Scientific and Technical Information (OSTI)

    Title: Compositions of Magmatic and Impact Melt Sulfides in Tissint and EETA79001: Precursors of Immiscible Sulfide Melt Blebs in Shergottite Impact Melts Authors: Ross, D.K. ; ...

  8. Water freezing and ice melting

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Malolepsza, Edyta; Keyes, Tom

    2015-10-12

    The generalized replica exchange method (gREM) is designed to sample states with coexisting phases and thereby to describe strong first order phase transitions. The isobaric MD version of the gREM is presented and applied to freezing of liquid water, and melting of hexagonal and cubic ice. It is confirmed that coexisting states are well sampled. The statistical temperature as a function of enthalpy, TS(H), is obtained. Hysteresis between freezing and melting is observed and discussed. The entropic analysis of phase transitions is applied and equilibrium transition temperatures, latent heats, and surface tensions are obtained for hexagonal ice↔liquid and cubic ice↔liquid,more » with excellent agreement with published values. A new method is given to assign water molecules among various symmetry types. As a result, pathways for water freezing, ultimately leading to hexagonal ice, are found to contain intermediate layered structures built from hexagonal and cubic ice.« less

  9. Low melting high lithia glass compositions and methods

    DOE Patents [OSTI]

    Jantzen, Carol M.; Pickett, John B.; Cicero-Herman, Connie A.; Marra, James C.

    2003-09-23

    The invention relates to methods of vitrifying waste and for lowering the melting point of glass forming systems by including lithia formers in the glass forming composition in significant amounts, typically from about 0.16 wt % to about 11 wt %, based on the total glass forming oxides. The lithia is typically included as a replacement for alkali oxide glass formers that would normally be present in a particular glass forming system. Replacement can occur on a mole percent or weight percent basis, and typically results in a composition wherein lithia forms about 10 wt % to about 100 wt % of the alkali oxide glass formers present in the composition. The present invention also relates to the high lithia glass compositions formed by these methods. The invention is useful for stabilization of numerous types of waste materials, including aqueous waste uranium oxides The decrease in melting point achieved by the present invention desirably prevents volatilization of hazardous or radioactive species during vitrification.

  10. The surface quasiliquid melt acceleration and the role of thermodynamic phase in the thermal decomposition of crystalline organic explosives

    SciTech Connect (OSTI)

    Henson, Bryan F

    2010-01-01

    We show that melt acceleration in the thermal decomposition of crystalline organic solids is a manifestation of the surface quasiliquid phase. We derive a single universal rate law for melt acceleration that is a simple function of the metastable liquid activity below the melting point, and has a zero order term proportional to the quasiliquid thickness. We argue that the underlying mechanisms of this model will provide a molecular definition for the stability of the class of secondary explosives.

  11. Developing vanadium valence state oxybarometers (spinel-melt, olivine-melt,

    Office of Scientific and Technical Information (OSTI)

    spinel-olivine) and V/(Cr+Al) partitioning (spinel-melt) for martian olivine-phyric basalts (Journal Article) | SciTech Connect Journal Article: Developing vanadium valence state oxybarometers (spinel-melt, olivine-melt, spinel-olivine) and V/(Cr+Al) partitioning (spinel-melt) for martian olivine-phyric basalts Citation Details In-Document Search Title: Developing vanadium valence state oxybarometers (spinel-melt, olivine-melt, spinel-olivine) and V/(Cr+Al) partitioning (spinel-melt) for

  12. Developing vanadium valence state oxybarometers (spinel-melt...

    Office of Scientific and Technical Information (OSTI)

    olivine-melt, spinel-olivine) and V(Cr+Al) partitioning (spinel-melt) for ... olivine-melt, spinel-olivine) and V(Cr+Al) partitioning (spinel-melt) for ...

  13. PowerPoint Presentation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Reflectivity Z size, concentration Mean Doppler Velocity V size Spectrum Width distribution width Doppler spectrum DS DSD, phase Linear Depolarization Ratio LDR particle melting ...

  14. Crystallographic texture engineering through novel melt strategies via electron beam melting: Inconel 718

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Dehoff, Ryan R.; Kirka, Michael M.; List, III, Frederick Alyious; Unocic, Kinga A.; Sames, William J.

    2014-01-01

    Preliminary research has demonstrated the ability to utilise novel scan strategies in the electron beam melting (EBM) process to establish control of crystallographic texture within Inconel 718 deposits. Conventional EBM scan strategies and process parameters yield coarse columnar grains aligned parallel to the build direction. Through varying process parameters such as beam power, beam velocity, beam focus and scan strategy, the behaviour of the electron beam can be manipulated from a line source to a point source. The net effect of these variations is that the resulting crystallographic texture is controlled in a manner to produce either epitaxial deposits ormore » fully equiaxed deposits. Furthermore, this research demonstrates the ability to change the crystallographic texture on the macroscale indicating that EBM technology can be used to create complex geometric components with both site-specific microstructures and material properties.« less

  15. The 6 GeV TMD Program at Jefferson Lab

    SciTech Connect (OSTI)

    Puckett, Andrew J.

    2015-01-01

    The study of the transverse momentum dependent parton distributions (TMDs) of the nucleon in semi-inclusive deep-inelastic scattering (SIDIS) has emerged as one of the major physics motivations driving the experimental program using the upgraded 11 GeV electron beam at Jefferson Labs Continuous Electron Beam Accelerator Facility (CEBAF). The accelerator construction phase of the CEBAF upgrade is essentially complete and commissioning of the accelerator has begun as of April, 2014. As the new era of CEBAF operations begins, it is appropriate to review the body of published and forthcoming results on TMDs from the 6 GeV era of CEBAF operations, discuss what has been learned, and discuss the key challenges and opportunities for the 11 GeV SIDIS program of CEBAF.

  16. The 6 GeV TMD Program at Jefferson Lab

    SciTech Connect (OSTI)

    Puckett, Andrew J.

    2015-01-01

    The study of the transverse momentum dependent parton distributions (TMDs) of the nucleon in semi-inclusive deep-inelastic scattering (SIDIS) has emerged as one of the major physics motivations driving the experimental program using the upgraded 11 GeV electron beam at Jefferson Lab’s Continuous Electron Beam Accelerator Facility (CEBAF). The accelerator construction phase of the CEBAF upgrade is essentially complete and commissioning of the accelerator has begun as of April, 2014. As the new era of CEBAF operations begins, it is appropriate to review the body of published and forthcoming results on TMDs from the 6 GeV era of CEBAF operations, discuss what has been learned, and discuss the key challenges and opportunities for the 11 GeV SIDIS program of CEBAF.

  17. CEBAF SRF Performance during Initial 12 GeV Commissioning

    SciTech Connect (OSTI)

    Bachimanchi, Ramakrishna; Allison, Trent; Daly, Edward; Drury, Michael; Hovater, J; Lahti, George; Mounts, Clyde; Nelson, Richard; Plawski, Tomasz

    2015-09-01

    The Continuous Electron Beam Accelerator Facility (CEBAF) energy upgrade from 6 GeV to 12 GeV includes the installation of eleven new 100 MV cryomodules (88 cavities). The superconducting RF cavities are designed to operate CW at an accelerating gradient of 19.3 MV/m with a QL of 3×107. Not all the cavities were operated at the minimum gradient of 19.3 MV/m with the beam. Though the initial 12 GeV milestones were achieved during the initial commissioning of CEBAF, there are still some issues to be addressed for long term reliable operation of these modules. This paper reports the operational experiences during the initial commissioning and the path forward to improve the performance of C100 (100 MV) modules.

  18. RHIC 100 GeV Polarized Proton Luminosity

    SciTech Connect (OSTI)

    Zhang, S. Y.

    2014-01-17

    A big problem in RHIC 100 GeV proton run 2009 was the significantly lower luminosity lifetime than all previous runs. It is shown in this note that the beam intensity decay in run 2009 is caused by the RF voltage ramping in store. It is also shown that the beam decay is not clearly related to the beam momentum spread, therefore, not directly due to the 0.7m. β* Furthermore, the most important factor regarding the low luminosity lifetime is the faster transverse emittance growth in store, which is also much worse than the previous runs, and is also related to the RF ramping. In 100 GeV proton run 2012a, the RF ramping was abandoned, but the β* was increased to 0.85m, with more than 20% loss of luminosity, which is not necessary. It is strongly suggested to use smaller β* in 100 GeV polarized proton run 2015/2016

  19. Melt dumping in string stabilized ribbon growth

    DOE Patents [OSTI]

    Sachs, Emanuel M.

    1986-12-09

    A method and apparatus for stabilizing the edge positions of a ribbon drawn from a melt includes the use of wettable strings drawn in parallel up through the melt surface, the ribbon being grown between the strings. A furnace and various features of the crucible used therein permit continuous automatic growth of flat ribbons without close temperature control or the need for visual inspection.

  20. Purification of tantalum by plasma arc melting

    DOE Patents [OSTI]

    Dunn, Paul S.; Korzekwa, Deniece R.

    1999-01-01

    Purification of tantalum by plasma arc melting. The level of oxygen and carbon impurities in tantalum was reduced by plasma arc melting the tantalum using a flowing plasma gas generated from a gas mixture of helium and hydrogen. The flowing plasma gases of the present invention were found to be superior to other known flowing plasma gases used for this purpose.

  1. The JLAB 12 GeV Energy Upgrade of CEBAF

    SciTech Connect (OSTI)

    Harwood, Leigh H.

    2013-12-01

    This presentation should describe the progress of the 12GeV Upgrade of CEBAF at Jefferson Lab. The status of the upgrade should be presented as well as details on the construction, procurement, installation and commissioning of the magnet and SRF components of the upgrade.

  2. 7-GeV Advanced Photon Source Conceptual Design Report

    SciTech Connect (OSTI)

    Not Available

    1987-04-01

    During the past decade, synchrotron radiation emitted by circulating electron beams has come into wide use as a powerful, versatile source of x-rays for probing the structure of matter and for studying various physical processes. Several synchrotron radiation facilities with different designs and characteristics are now in regular operation throughout the world, with recent additions in this country being the 0.8-GeV and 2.5-GeV rings of NSLS at Brookhaven National Laboratory. However, none of the operating facilities has been designed to use a low-emittance, high-energy stored beam, together with modern undulator devices, to produce a large number of hard x-ray beams of extremely high brilliance. This document is a proposal to the Department of Energy to construct and operate high-energy synchrotron radiation facility at Argonne National Laboratory. We have now chosen to set the design energy of this facility at 7.0 GeV, with the capability to operate at up to 7.5 GeV.

  3. A new physics era at 12 GeV | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A new physics era at 12 GeV January 29, 2015 In several articles over the past years, we ... These are the harbingers of a new era, that of 12 GeV operations and physics. We have been ...

  4. Beam On Target! - CEBAF Accelerator Achieves 12 GeV Commissioning...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    in an experimental hall, recording the first data of the 12 GeV era. The machine sent electrons around the racetrack three times (known as "3-pass" beam), resulting in 6.11 GeV...

  5. EA-0389: Proposed 7-GeV Advanced Photon Source, Argonne, Illinois

    Broader source: Energy.gov [DOE]

    This EA evaluates the environmental impacts of a proposal for construction and operation of a 6- to 7-GeV synchrotron radiation source known as the 7-GeV Advanced Photon Source at DOE's Argonne...

  6. Two GeV Electrons Achieved by Laser Plasma Wakefield Acceleration...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Two GeV Electrons Achieved by Laser Plasma Wakefield Acceleration High Energy Physics ... 07.01.13 Two GeV Electrons Achieved by Laser Plasma Wakefield Acceleration Scientists ...

  7. Illuminating the 130 GeV Gamma Line with Continuum Photons (Journal...

    Office of Scientific and Technical Information (OSTI)

    Illuminating the 130 GeV Gamma Line with Continuum Photons Citation Details In-Document Search Title: Illuminating the 130 GeV Gamma Line with Continuum Photons Authors: Cohen,...

  8. Discovery of GeV Emission tfrom the Circinus Galaxy with the...

    Office of Scientific and Technical Information (OSTI)

    Discovery of GeV Emission tfrom the Circinus Galaxy with the Fermi-Lat Citation Details In-Document Search Title: Discovery of GeV Emission tfrom the Circinus Galaxy with the...

  9. Complex systems influence melting of Greenland ice sheet

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    melting of Greenland ice sheet Complex systems influence melting of Greenland ice sheet International research team's field work shows that, well, things are more complicated...

  10. New climate model predicts likelihood of Greenland ice melt,...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    New climate model predicts likelihood of Greenland ice melt New climate model predicts likelihood of Greenland ice melt, sea level rise and dangerous temperatures A new computer ...

  11. ITP Metal Casting: Advanced Melting Technologies: Energy Saving...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Advanced Melting Technologies: Energy Saving Concepts and Opportunities for the Metal Casting Industry ITP Metal Casting: Advanced Melting Technologies: Energy Saving Concepts and ...

  12. Sandia Energy - Molten Salt Test Loop Melted Salt

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Salt Home Renewable Energy Energy News Concentrating Solar Power Solar Molten Salt Test Loop Melted Salt Previous Next Molten Salt Test Loop Melted Salt The Molten Salt Test...

  13. Melting of clinopyroxene + magnesite in iron-bearing planetary...

    Office of Scientific and Technical Information (OSTI)

    Melting of clinopyroxene + magnesite in iron-bearing planetary mantles and implications for the Earth and Mars Citation Details In-Document Search Title: Melting of clinopyroxene + ...

  14. Why is GeV physics relevant in the age of the LHC?

    SciTech Connect (OSTI)

    Pennington, Michael R.

    2014-02-01

    The contribution that Jefferson Lab has made, with its 6 GeV electron beam, and will make, with its 12 GeV upgrade, to our understanding of the way the fundamental interactions work, particularly strong coupling QCD, is outlined. The physics at the GeV scale is essential even in TeV collisions.

  15. Energy-Efficient Glass Melting: Submerged Combustion

    SciTech Connect (OSTI)

    2004-01-01

    Oxy-gas-fired submerged combustion melter offers simpler, improved performance. For the last 100 years, the domestic glass industry has used the same basic equipment for melting glass on an industrial scale.

  16. ARM - Lesson Plans: When Land Ice Melts

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The Arctic and Antarctica are covered with large, heavy sheets of ice. Other islands like New Zealand have ice masses in the form of glaciers on them. When land-based ice melts, ...

  17. Gold nanorod melting | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Gold nanorod melting Share Topic Programs Materials science Materials simulation & theory Nanoscience Surface & interface studies Mathematics, computing, & computer science Modeling, simulation, & visualization Supercomputing & high-performance computing

  18. Energy Saving Melting and Revert Reduction Technology (E-SMARRT): Melting Efficiency Improvement

    SciTech Connect (OSTI)

    Principal Investigator Kent Peaslee; Co-PI’s: Von Richards, Jeffrey Smith

    2012-07-31

    Steel foundries melt recycled scrap in electric furnaces and typically consume 35-100% excess energy from the theoretical energy requirement required to pour metal castings. This excess melting energy is multiplied by yield losses during casting and finishing operations resulting in the embodied energy in a cast product typically being three to six times the theoretical energy requirement. The purpose of this research project was to study steel foundry melting operations to understand energy use and requirements for casting operations, define variations in energy consumption, determine technologies and practices that are successful in reducing melting energy and develop new melting techniques and tools to improve the energy efficiency of melting in steel foundry operations.

  19. DWPF Macrobatch 2 Melt Rate Tests

    SciTech Connect (OSTI)

    Stone, M.E.

    2001-01-03

    The Defense Waste Processing Facility (DWPF) canister production rate must be increased to meet canister production goals. Although a number of factors exist that could potentially increase melt rate, this study focused on two: (1) changes in frit composition and (2) changes to the feed preparation process to alter the redox of the melter feed. These two factors were investigated for Macrobatch 2 (sludge batch 1B) utilizing crucible studies and a specially designed ''melt rate'' furnace. Other potential factors that could increase melt rate include: mechanical mixing via stirring or the use of bubblers, changing the power skewing to redistribute the power input to the melter, and elimination of heat loss (e.g. air in leakage). The melt rate testing in FY00 demonstrated that melt rate can be improved by adding a different frit or producing a much more reducing glass by the addition of sugar as a reductant. The frit that melted the fastest in the melt rate testing was Frit 165. A paper stud y was performed using the Product Composition Control System (PCCS) to determine the impact on predicted glass viscosity, liquidus, durability, and operating window if the frit was changed from Frit 200 to Frit 165. PCCS indicated that the window was very similar for both frits. In addition, the predicted viscosity of the frit 165 glass was 46 poise versus 84 poise for the Frit 200 glass. As a result, a change from Frit 200 to Frit 165 is expected to increase the melt rate in DWPF without decreasing waste loading.

  20. Manufacturing laser glass by continuous melting

    SciTech Connect (OSTI)

    Campbell, J H; Suratwala, T; krenitsky, S; Takeuchi, K

    2000-07-01

    A novel, continuous melting process is being used to manufacture meter-sized plates of laser glass at a rate 20-times faster, 5-times cheaper, and with 2-3 times better optical quality than with previous one-at-a-time, ''discontinuous'' technology processes. This new technology for manufacturing laser glass, which is arguably the most difficult continuously-melted optical material ever produced, comes as a result of a $60 million, six-year joint R&D program between government and industry. The glasses manufactured by the new continuous melting process are Nd-doped phosphate-based glasses and are marketed under the product names LG-770 (Schott Glass Technologies) and LHG-8 (Hoya Corporation USA). With this advance in glass manufacturing technology, it is now possible to construct high-energy, high-peak-power lasers for use in fusion energy development, national defense, and basic physics research that would have been impractical to build using the old melting technology. The development of continuously melted laser glass required technological advances that have lead to improvements in the manufacture of other optical glass products as well. For example, advances in forming, annealing, and conditioning steps of the laser glass continuous melting process are now being used in manufacture of other large-size optical glasses.

  1. Low melting high lithia glass compositions and methods

    DOE Patents [OSTI]

    Jantzen, Carol M.; Pickett, John B.; Cicero-Herman, Connie A.; Marra, James C.

    2003-10-07

    The invention relates to methods of vitrifying waste and for lowering the melting point of glass forming systems by including lithia formers in the glass forming composition in significant amounts, typically from about 0.16 wt % to about 11 wt %, based on the total glass forming oxides. The lithia is typically included as a replacement for alkali oxide glass formers that would normally be present in a particular glass forming system. Replacement can occur on a mole percent or weight percent basis, and typically results in a composition wherein lithia forms about 10 wt % to about 100 wt % of the alkali oxide glass formers present in the composition. The present invention also relates to the high lithia glass compositions formed by these methods. The invention is useful for stabilization of numerous types of waste materials, including aqueous waste streams, sludge solids, mixtures of aqueous supernate and sludge solids, combinations of spent filter aids from waste water treatment and waste sludges, supernate alone, incinerator ash, incinerator offgas blowdown, or combinations thereof, geological mine tailings and sludges, asbestos, inorganic filter media, cement waste forms in need of remediation, spent or partially spent ion exchange resins or zeolites, contaminated soils, lead paint, etc. The decrease in melting point achieved by the present invention desirably prevents volatilization of hazardous or radioactive species during vitrification.

  2. Low melting high lithia glass compositions and methods

    DOE Patents [OSTI]

    Jantzen, Carol M.; Pickett, John B.; Cicero-Herman, Connie A.; Marra, James C.

    2004-11-02

    The invention relates to methods of vitrifying waste and for lowering the melting point of glass forming systems by including lithia formers in the glass forming composition in significant amounts, typically from about 0.16 wt % to about 11 wt %, based on the total glass forming oxides. The lithia is typically included as a replacement for alkali oxide glass formers that would normally be present in a particular glass forming system. Replacement can occur on a mole percent or weight percent basis, and typically results in a composition wherein lithia forms about 10 wt % to about 100 wt % of the alkali oxide glass formers present in the composition. The present invention also relates to the high lithia glass compositions formed by these methods. The invention is useful for stabilization of numerous types of waste materials, including aqueous waste streams, sludge solids, mixtures of aqueous supernate and sludge solids, combinations of spent filter aids from waste water treatment and waste sludges, supernate alone, incinerator ash, incinerator offgas blowdown, or combinations thereof, geological mine tailings and sludges, asbestos, inorganic filter media, cement waste forms in need of remediation, spent or partially spent ion exchange resins or zeolites, contaminated soils, lead paint, etc. The decrease in melting point achieved by the present invention desirably prevents volatilization of hazardous or radioactive species during vitrification.

  3. Low melting high lithia glass compositions and methods

    DOE Patents [OSTI]

    Jantzen, Carol M.; Pickett, John B.; Cicero-Herman, Connie A.; Marra, James C.

    2000-01-01

    The invention relates to methods of vitrifying waste and for lowering the melting point of glass forming systems by including lithia formers in the glass forming composition in significant amounts, typically from about 0.16 wt % to about 11 wt %, based on the total glass forming oxides. The lithia is typically included as a replacement for alkali oxide glass formers that would normally be present in a particular glass forming system. Replacement can occur on a mole percent or weight percent basis, and typically results in a composition wherein lithia forms about 10 wt % to about 100 wt % of the alkali oxide glass formers present in the composition. The present invention also relates to the high lithia glass compositions formed by these methods. The invention is useful for stabilization of numerous types of waste materials, including aqueous waste streams, sludge solids, mixtures of aqueous supernate and sludge solids, combinations of spent filter aids from waste water treatment and waste sludges, supernate alone, incinerator ash, incinerator offgas blowdown, or combinations thereof, geological mine tailings and sludges, asbestos, inorganic filter media, cement waste forms in need of remediation, spent or partially spent ion exchange resins or zeolites, contaminated soils, lead paint, etc. The decrease in melting point achieved by the present invention desirably prevents volatilization of hazardous or radioactive species during vitrification.

  4. The 12 GeV Energy Upgrade at Jefferson Laboratory

    SciTech Connect (OSTI)

    Pilat, Fulvia C.

    2012-09-01

    Two new cryomodules and an extensive upgrade of the bending magnets at Jefferson Lab has been recently completed in preparation for the full energy upgrade in about one year. Jefferson Laboratory has undertaken a major upgrade of its flagship facility, the CW re-circulating CEBAF linac, with the goal of doubling the linac energy to 12 GeV. I will discuss here the main scope and timeline of the upgrade and report on recent accomplishments and the present status. I will then discuss in more detail the core of the upgrade, the new additional C100 cryomodules, their production, tests and recent successful performance. I will then conclude by looking at the future plans of Jefferson Laboratory, from the commissioning and operations of the 12 GeV CEBAF to the design of the MEIC electron ion collider.

  5. Meson Spectroscopy at JLab@12 GeV

    SciTech Connect (OSTI)

    Celentano, Andrea

    2013-03-01

    Meson, being the simplest hadronic bound system, is the ideal "laboratory" to study the interaction between quarks, to understand the role of the gluons inside hadrons and to investigate the origin of color confinement. To perform such studies it is important to measure the meson spectrum, with precise determination of resonance masses and properties, looking for rare qbar q states and for unconventional mesons with exotic quantum numbers (i.e. mesons with quantum numbers that are not compatible with a qbar q structure). With the imminent advent of the 12 GeV upgrade of Jefferson Lab a new generation of meson spectroscopy experiments will start: "Meson-Ex" in Hall B and "GLUEX" in Hall D. Both will use photo-production to explore the spectrum of mesons in the light-quark sector, in the energy range of few GeVs.

  6. Exclusive processes at JLab at 6 GeV

    SciTech Connect (OSTI)

    Kim, Andrey

    2015-01-01

    Deeply virtual exclusive reactions provide a unique opportunity to probe the complex internal structure of the nucleon. They allow to access information about the correlations between parton transverse spatial and longitudinal momentum distributions from experimental observables. Dedicated experiments to study Deeply Virtual Compton Scattering (DVCS) and Deeply Virtual Meson Production (DVMP) have been carried out at Jefferson Lab using continuous electron beam with energies up to 6 GeV. Unpolarized cross sections, beam, target and double spin asymmetries have been measured for DVCS as well as for ?0 exclusive electroproduction. The data from Hall B provide a wide kinematic coverage with Q2=1-4.5 GeV2, xB=0.1-0.5, and ?t up to 2 GeV2. Hall A data have limited kinematic range partially overlapping with Hall B kinematics but provide a high accuracy measurements. Scaling tests of the DVCS cross sections provide solid evidence of twist-2 dominance, which makes chiral-even GPDs accessible even at modest Q2. We will discuss the interpretation of these data in terms of Generalized Parton Distributions (GPDs) model. Successful description of the recent CLAS ?0 exclusive production data within the framework of the GPD-based model provides a unique opportunity to access the chiral-odd GPDs.

  7. Method for producing melt-infiltrated ceramic composites using formed supports

    DOE Patents [OSTI]

    Corman, Gregory Scot (Ballston Lake, NY); Brun, Milivoj Konstantin (Ballston Lake, NY); McGuigan, Henry Charles (Duanesburg, NY)

    2003-01-01

    A method for producing shaped articles of ceramic composites provides a high degree of dimensional tolerance to these articles. A fiber preform is disposed on a surface of a stable formed support, a surface of which is formed with a plurality of indentations, such as grooves, slots, or channels. Precursors of ceramic matrix materials are provided to the fiber preform to infiltrate from both sides of the fiber preform. The infiltration is conducted under vacuum at a temperature not much greater than a melting point of the precursors. The melt-infiltrated composite article substantially retains its dimension and shape throughout the fabrication process.

  8. Scrap uranium recycling via electron beam melting

    SciTech Connect (OSTI)

    McKoon, R.

    1993-11-01

    A program is underway at the Lawrence Livermore National Laboratory (LLNL) to recycle scrap uranium metal. Currently, much of the material from forging and machining processes is considered radioactive waste and is disposed of by oxidation and encapsulation at significant cost. In the recycling process, uranium and uranium alloys in various forms will be processed by electron beam melting and continuously cast into ingots meeting applicable specifications for virgin material. Existing vacuum processing facilities at LLNL are in compliance with all current federal and state environmental, safety and health regulations for the electron beam melting and vaporization of uranium metal. One of these facilities has been retrofitted with an auxiliary electron beam gun system, water-cooled hearth, crucible and ingot puller to create an electron beam melt furnace. In this furnace, basic process R&D on uranium recycling will be performed with the goal of eventual transfer of this technology to a production facility.

  9. Analysis of Picosecond Pulsed Laser Melted Graphite

    DOE R&D Accomplishments [OSTI]

    Steinbeck, J.; Braunstein, G.; Speck, J.; Dresselhaus, M. S.; Huang, C. Y.; Malvezzi, A. M.; Bloembergen, N.

    1986-12-01

    A Raman microprobe and high resolution TEM have been used to analyze the resolidified region of liquid carbon generated by picosecond pulse laser radiation. From the relative intensities of the zone center Raman-allowed mode for graphite at 1582 cm{sup -1} and the disorder-induced mode at 1360 cm{sup -1}, the average graphite crystallite size in the resolidified region is determined as a function of position. By comparison with Rutherford backscattering spectra and Raman spectra from nanosecond pulsed laser melting experiments, the disorder depth for picosecond pulsed laser melted graphite is determined as a function of irradiating energy density. Comparisons of TEM micrographs for nanosecond and picosecond pulsed laser melting experiments show that the structure of the laser disordered regions in graphite are similar and exhibit similar behavior with increasing laser pulse fluence.

  10. Method and apparatus for melting metals

    DOE Patents [OSTI]

    Moore, Alan F.; Schechter, Donald E.; Morrow, Marvin Stanley

    2006-03-14

    A method and apparatus for melting metals uses microwave energy as the primary source of heat. The metal or mixture of metals are placed in a ceramic crucible which couples, at least partially, with the microwaves to be used. The crucible is encased in a ceramic casket for insulation and placed within a microwave chamber. The chamber may be evacuated and refilled to exclude oxygen. After melting, the crucible may be removed for pouring or poured within the chamber by dripping or running into a heated mold within the chamber. Apparent coupling of the microwaves with softened or molten metal produces high temperatures with great energy savings.

  11. Rock melting tool with annealer section

    DOE Patents [OSTI]

    Bussod, Gilles Y.; Dick, Aaron J.; Cort, George E.

    1998-01-01

    A rock melting penetrator is provided with an afterbody that rapidly cools a molten geological structure formed around the melting tip of the penetrator to the glass transition temperature for the surrounding molten glass-like material. An annealing afterbody then cools the glass slowly from the glass transition temperature through the annealing temperature range to form a solid self-supporting glass casing. This allows thermally induced strains to relax by viscous deformations as the molten glass cools and prevents fracturing of the resulting glass liner. The quality of the glass lining is improved, along with its ability to provide a rigid impermeable casing in unstable rock formations.

  12. A quasimechanism of melt acceleration in the thermal decomposition of crystalline organic solids

    SciTech Connect (OSTI)

    Henson, Bryan F

    2009-01-01

    It has been know for half a century that many crystalline organic solids undergo an acceleration in the rate of thermal decomposition as the melting temperature is approached. This acceleration terminates at the melting point, exhibiting an Arrhenius-like temperature dependence in the faster decomposition rate from the liquid phase. This observation has been modeled previously using various premelting behaviors based on e.g. freezing point depression induced by decomposition products or solvent impurities. These models do not, however, indicate a mechanism for liquid formation and acceleration which is an inherent function of the bulk thermodynamics of the molecule. Here we show that such an inherent thermodynamic mechanism for liquid formation exists in the form of the so-called quasi-liquid layer at the solid surface. We explore a kinetic mechanism which describes the acceleration of rate and is a function of the free energies of sublimation and vaporization. We construct a differential rate law from these thermodynamic free energies and a normalized progress variable. We further construct a reduced variable formulation of the model which is a simple function of the metastable liquid activity below the melting point, and show that it is applicable to the observed melt acceleration in several common organic crystalline solids. A component of the differential rate law, zero order in the progress variable, is shown to be proportional to the thickness of the quasiliquid layer predicted by a recent thermodynamic theory for this phenomenon. This work therefore serves not only to provide new insight into thermal decomposition in a broad class or organic crystalline solids, but also further validates the underlying thermodynamic nature of the phenomenon of liquid formation on the molecular surface at temperatures below the melting point.

  13. Study of formation mechanism of incipient melting in thixo-cast Al–Si–Cu–Mg alloys

    SciTech Connect (OSTI)

    Du, Kang Zhu, Qiang Li, Daquan Zhang, Fan

    2015-08-15

    Mechanical properties of thixo-cast Al–Si–Cu–Mg alloys can be enhanced by T61 heat treatment. Copper and magnesium atoms in aluminum matrix can form homogeneously distributed precipitations after solution and aging treatment which harden the alloys. However, microsegregation of these alloying elements could form numerous tiny multi-compound phases during solidification. These phases could cause incipient melting defects in subsequent heat treatment process and degrade the macro-mechanical properties of productions. This study is to present heterogeneous distribution of Cu, Si, and Mg elements and formation of incipient melting defects (pores). In this study, incipient melting pores that occurred during solution treatment at various temperatures, even lower than common melting points of various intermetallic phases, were identified, in terms of a method of investigating the same surface area in the samples before and after solution treatment in a vacuum environment. The results also show that the incipient melting mostly originates at the clusters with fine intermetallic particles while also some at the edge of block-like Al{sub 2}Cu. The fine particles were determined being Al{sub 2}Cu, Al{sub 5}Cu{sub 2}Mg{sub 8}Si{sub 6} and Al{sub 8}Mg{sub 3}FeSi{sub 2}. Tendency of the incipient melting decreases with decreases of the width of the clusters. The formation mechanism of incipient melting pores in solution treatment process was discussed using both the Fick law and the LSW theory. Finally, a criterion of solution treatment to avoid incipient melting pores for the thixo-cast alloys is proposed. - Highlights: • In-situ comparison technique was used to analysis the change of eutectic phases. • The ralationship between eutectic phase size and incipient melting was studied. • Teat treatment criterion for higher incipient melting resistance was proposed.

  14. Material Point Methods

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Material Point Methods and Multiphysics for Fracture and Multiphase Problems Joseph Teran, UCLA and Alice Koniges, LBL Contact: jteran@math.ucla.edu Material point methods (MPM) ...

  15. PowerPoint Presentation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Oceanic Upwelling and Cloud - - Aerosol Properties Aerosol Properties at the AMF Point Reyes Site at the AMF Point Reyes Site Maureen Dunn , Mike Jensen , Pavlos Kollias , Mark...

  16. Method for the melting of metals

    DOE Patents [OSTI]

    White, Jack C.; Traut, Davis E.

    1992-01-01

    A method of quantitatively determining the molten pool configuration in melting of metals. The method includes the steps of introducing hafnium metal seeds into a molten metal pool at intervals to form ingots, neutron activating the ingots and determining the hafnium location by radiometric means. Hafnium possesses exactly the proper metallurgical and radiochemical properties for this use.

  17. Silicon purification melting for photovoltaic applications

    SciTech Connect (OSTI)

    VAN DEN AVYLE,JAMES A.; HO,PAULINE; GEE,JAMES M.

    2000-04-01

    The availability of polysilicon feedstock has become a major issue for the photovoltaic (PV) industry in recent years. Most of the current polysilicon feedstock is derived from rejected material from the semiconductor industry. However, the reject material can become scarce and more expensive during periods of expansion in the integrated-circuit industry. Continued rapid expansion of the PV crystalline-silicon industry will eventually require a dedicated supply of polysilicon feedstock to produce solar cells at lower costs. The photovoltaic industry can accept a lower purity polysilicon feedstock (solar-grade) compared to the semiconductor industry. The purity requirements and potential production techniques for solar-grade polysilicon have been reviewed. One interesting process from previous research involves reactive gas blowing of the molten silicon charge. As an example, Dosaj et all reported a reduction of metal and boron impurities from silicon melts using reactive gas blowing with 0{sub 2} and Cl{sub 2}. The same authors later reassessed their data and the literature, and concluded that Cl{sub 2}and 0{sub 2}/Cl{sub 2} gas blowing are only effective for removing Al, Ca, and Mg from the silicon melt. Researchers from Kawasaki Steel Corp. reported removal of B and C from silicon melts using reactive gas blowing with an 0{sub 2}/Ar plasma torch. Processes that purify the silicon melt are believed to be potentially much lower cost compared to present production methods that purify gas species.

  18. Pulsed laser generation of ultrasound in a metal plate between the melting and ablation thresholds

    SciTech Connect (OSTI)

    Every, A. G.; Utegulov, Z. N.; Veres, I. A.

    2015-03-31

    The generation of ultrasound in a metal plate exposed to nanosecond pulsed laser heating, sufficient to cause melting but not ablation, is treated. Consideration is given to the spatial and temporal profiles of the laser pulse, penetration of the laser beam into the sample, the evolution of the melt pool, and thermal conduction in the melt and surrounding solid. The excitation of the ultrasound takes place over a few nanoseconds, and occurs predominantly within the thermal diffusion length of a micron or so beneath the surface. Because of this, the output of the thermal simulations can be represented as axially symmetric transient radial and normal surface force distributions. The epicentral displacement response at the opposite surface to these forces is obtained by two methods, the one based on the elastodynamic Green’s functions for plate geometry determined by the Cagniard generalized ray method, and the other using a finite element numerical method. The two approaches are in very close agreement. Numerical simulations are reported of the epicentral displacement response of a 3.12mm thick tungsten plate irradiated with a 4 ns pulsed laser beam with Gaussian spatial profile, at intensities below and above the melt threshold. Comparison is made between results obtained using available temperature dependent thermophysical data, and room temperature materials constants except near the melting point.

  19. Floating Point Control Library

    Energy Science and Technology Software Center (OSTI)

    2007-08-02

    Floating Point Control is a Library that allows for the manipulation of floating point unit exception masking funtions control exceptions in both the Streaming "Single Instruction, Multiple Data" Extension 2 (SSE2) unit and the floating point unit simultaneously. FPC also provides macros to set floating point rounding and precision control.

  20. Melt spreading code assessment, modifications, and application to the EPR core catcher design.

    SciTech Connect (OSTI)

    Farmer, M. T .; Nuclear Engineering Division

    2009-03-30

    The Evolutionary Power Reactor (EPR) is under consideration by various utilities in the United States to provide base load electrical production, and as a result the design is undergoing a certification review by the U.S. Nuclear Regulatory Commission (NRC). The severe accident design philosophy for this reactor is based upon the fact that the projected power rating results in a narrow margin for in-vessel melt retention by external cooling of the reactor vessel. As a result, the design addresses ex-vessel core melt stabilization using a mitigation strategy that includes: (1) an external core melt retention system to temporarily hold core melt released from the vessel; (2) a layer of 'sacrificial' material that is admixed with the melt while in the core melt retention system; (3) a melt plug in the lower part of the retention system that, when failed, provides a pathway for the mixture to spread to a large core spreading chamber; and finally, (4) cooling and stabilization of the spread melt by controlled top and bottom flooding. The overall concept is illustrated in Figure 1.1. The melt spreading process relies heavily on inertial flow of a low-viscosity admixed melt to a segmented spreading chamber, and assumes that the melt mass will be distributed to a uniform height in the chamber. The spreading phenomenon thus needs to be modeled properly in order to adequately assess the EPR design. The MELTSPREAD code, developed at Argonne National Laboratory, can model segmented, and both uniform and nonuniform spreading. The NRC is thus utilizing MELTSPREAD to evaluate melt spreading in the EPR design. MELTSPREAD was originally developed to support resolution of the Mark I containment shell vulnerability issue. Following closure of this issue, development of MELTSPREAD ceased in the early 1990's, at which time the melt spreading database upon which the code had been validated was rather limited. In particular, the database that was utilized for initial validation consisted of: (1) comparison to an analytical solution for the dam break problem, (2) water spreading tests in a 1/10 linear scale model of the Mark I containment by Theofanous et al., and (3) steel spreading tests by Suzuki et al. that were also conducted in a geometry similar to the Mark I. The objective of this work was to utilize the MELTSPREAD code to check the assumption of uniform melt spreading in the EPR core catcher design. As a starting point for the project, the code was validated against the worldwide melt spreading database that emerged after the code was originally written in the very early 1990's. As part of this exercise, the code was extensively modified and upgraded to incorporate findings from these various analytical and experiment programs. In terms of expanding the ability of the code to analyze various melt simulant experiments, the options to input user-specified melt and/or substrate material properties was added. The ability to perform invisicid and/or adiabatic spreading analysis was also added so that comparisons with analytical solutions and isothermal spreading tests could be carried out. In terms of refining the capability to carry out reactor material melt spreading analyses, the code was upgraded with a new melt viscosity model; the capability was added to treat situations in which solid fraction buildup between the liquidus-solidus is non-linear; and finally, the ability to treat an interfacial heat transfer resistance between the melt and substrate was incorporated. This last set of changes substantially improved the predictive capability of the code in terms of addressing reactor material melt spreading tests. Aside from improvements and upgrades, a method was developed to fit the model to the various melt spreading tests in a manner that allowed uncertainties in the model predictions to be statistically characterized. With these results, a sensitivity study was performed to investigate the assumption of uniform spreading in the EPR core catcher that addressed parametric variations in: (1) melt pour mass, (2) melt composition, (3) me

  1. Detector development for Jefferson Lab's 12GeV Upgrade

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Qiang, Yi

    2015-05-01

    Jefferson Lab will soon finish its highly anticipated 12 GeV Upgrade. With doubled maximum energy, Jefferson Lab’s Continuous Electron Beam Accelerator Facility (CEBAF) will enable a new experimental program with substantial discovery potential, addressing important topics in nuclear, hadronic and electroweak physics. In order to take full advantage of the high energy, high luminosity beam, new detectors are being developed, designed and constructed to fit the needs of different physics topics. The paper will give an overview of various new detector technologies to be used for 12 GeV experiments. It will then focus on the development of two solenoid-based spectrometers,more » the GlueX and SoLID spectrometers. The GlueX experiment in Hall D will study the complex properties of gluons through exotic hybrid meson spectroscopy. The GlueX spectrometer, a hermetic detector package designed for spectroscopy and the associated partial wave analysis, is currently in the final stage of construction. Hall A, on the other hand, is developing the SoLID spectrometer to capture the 3D image of the nucleon from semi-inclusive processes and to study the intrinsic properties of quarks through mirror symmetry breaking. Such a spectrometer will have the capability to handle very high event rates while still maintaining a large acceptance in the forward region.« less

  2. Search for GeV GRBs at Chacaltaya

    SciTech Connect (OSTI)

    Castellina, A.; Ghia, P. L.; Morello, C.; Trinchero, G.; Vallania, P.; Vernetto, S.; Navarra, G.; Saavedra, O.; Yoshii, H.; Kaneko, T.; Kakimoto, K.; Nishi, K.; Cabrera, R.; Urzagasti, D.; Velarde, A.; Barthelmy, S. D.; Butterworth, P.; Cline, T. L.; Gehrels, N.; Fishman, G. J.

    1998-05-16

    In this paper we present the results of a search for GeV Gamma Ray Bursts made by the INCA experiment during the first 9 months of operation. INCA, an air shower array located at Mount Chacaltaya (Bolivia) at 5200 m a.s.l., has been searching for GRBs since December 1996. Up to August, 1997, 34 GRBs detected by BATSE occurred in the field of view of the experiment. For any burst, the counting rate of the array in the 2 hours interval around the burst trigger time has been studied. No significant excess has been observed. Assuming for the bursts a power low energy spectrum extending up to 1 TeV with a slope {alpha}=-2 and a duration of 10 s, the obtained 1 GeV-1 TeV energy fluence upper limits range from 7.9 10{sup -5} erg cm{sup -2} to 3.5 10{sup -3} erg cm{sup -2} depending on the event zenith angles.

  3. Jefferson Lab Accelerator Delivers Its First 12 GeV Electrons | Jefferson

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Lab Accelerator Delivers Its First 12 GeV Electrons On December 14, full-energy 12 GeV electron beam was provided for the first time, to the Experimental Hall D complex, located in the upper, left corner of this aerial photo of the Continuous Electron Beam Accelerator Facility. Hall D is the new experimental research facility - added to CEBAF as part of the 12 GeV Upgrade project. Beam was also delivered to Hall A (dome in the lower left). Jefferson Lab Accelerator Delivers Its First 12 GeV

  4. Commissioning of the 123 MeV injector for 12 GeV CEBAF

    SciTech Connect (OSTI)

    Wang, Yan; Hofler, Alicia S.; Kazimi, Reza

    2015-09-01

    The upgrade of CEBAF to 12GeV included modifications to the injector portion of the accelerator. These changes included the doubling of the injection energy and relocation of the final transport elements to accommodate changes in the CEBAF recirculation arcs. This paper will describe the design changes and the modelling of the new 12GeV CEBAF injector. Stray magnetic fields have been a known issue for 6 GeV CEBAF injector, the results of modelling the new 12GeV injector and the resulting changes implemented to mitigate this issue are describe in this paper. The results of beam commissioning of the injector are also presented.

  5. Method and apparatus for drawing monocrystalline ribbon from a melt

    DOE Patents [OSTI]

    Ciszek, Theodore F.; Schwuttke, Guenter H.

    1981-11-10

    A method and apparatus for drawing a monocrystalline ribbon or web from a melt comprising utilizing a shaping die including at least two elements spaced one from the other each having a portion thereof located below the level of the melt and another portion located above the level of the melt a distance sufficient to form a raised meniscus of melt about the corresponding element.

  6. Dynamics and pattern selection at the crystal-melt interface

    SciTech Connect (OSTI)

    Cummins, H.Z.

    1990-01-01

    This report discusses: light scattering at the crystal-melt interface; morphological instability and pattern selection; and sidebranching.

  7. Thermally efficient melting for glass making

    DOE Patents [OSTI]

    Chen, Michael S. K.; Painter, Corning F.; Pastore, Steven P.; Roth, Gary; Winchester, David C.

    1991-01-01

    The present invention is an integrated process for the production of glass utilizing combustion heat to melt glassmaking materials in a glassmaking furnace. The fuel combusted to produce heat sufficient to melt the glassmaking materials is combusted with oxygen-enriched oxidant to reduce heat losses from the offgas of the glassmaking furnace. The process further reduces heat losses by quenching hot offgas from the glassmaking furnace with a process stream to retain the heat recovered from quench in the glassmaking process with subsequent additional heat recovery by heat exchange of the fuel to the glassmaking furnace, as well as the glassmaking materials, such as batch and cullet. The process includes recovery of a commercially pure carbon dioxide product by separatory means from the cooled, residual offgas from the glassmaking furnace.

  8. Core-melt source reduction system

    DOE Patents [OSTI]

    Forsberg, C.W.; Beahm, E.C.; Parker, G.W.

    1995-04-25

    A core-melt source reduction system for ending the progression of a molten core during a core-melt accident and resulting in a stable solid cool matrix. The system includes alternating layers of a core debris absorbing material and a barrier material. The core debris absorbing material serves to react with and absorb the molten core such that containment overpressurization and/or failure does not occur. The barrier material slows the progression of the molten core debris through the system such that the molten core has sufficient time to react with the core absorbing material. The system includes a provision for cooling the glass/molten core mass after the reaction such that a stable solid cool matrix results. 4 figs.

  9. Core-melt source reduction system

    DOE Patents [OSTI]

    Forsberg, Charles W.; Beahm, Edward C.; Parker, George W.

    1995-01-01

    A core-melt source reduction system for ending the progression of a molten core during a core-melt accident and resulting in a stable solid cool matrix. The system includes alternating layers of a core debris absorbing material and a barrier material. The core debris absorbing material serves to react with and absorb the molten core such that containment overpressurization and/or failure does not occur. The barrier material slows the progression of the molten core debris through the system such that the molten core has sufficient time to react with the core absorbing material. The system includes a provision for cooling the glass/molten core mass after the reaction such that a stable solid cool matrix results.

  10. End Points Specification Methods

    Broader source: Energy.gov [DOE]

    Two methods to develop end point specifications are presented. These have evolved from use in the field for deactivation projects.

  11. GRB 131231A: IMPLICATIONS OF THE GeV EMISSION

    SciTech Connect (OSTI)

    Liu, Bin; Chen, Wei; Liang, Yun-Feng; Zhou, Bei; He, Hao-Ning; Jin, Zhi-Ping; Fan, Yi-Zhong; Wei, Da-Ming [Key laboratory of Dark Matter and Space Astronomy, Purple Mountain Observatory, Chinese Academy of Sciences, Nanjing 210008 (China); Tam, Pak-Hin Thomas [Institute of Astronomy and Department of Physics, National Tsing Hua University, Hsinchu 30013, Taiwan (China); Shao, Lang, E-mail: liangyf@pmo.ac.cn, E-mail: beizhou@pmo.ac.cn, E-mail: yzfan@pmo.ac.cn, E-mail: dmwei@pmo.ac.cn, E-mail: phtam@phys.nthu.edu.tw [Department of Physics, Hebei Normal University, Shijiazhuang 050024 (China)

    2014-05-20

    GRB 131231A was detected by the Large Area Telescope on board the Fermi Space Gamma-ray Telescope. The high-energy gamma-ray (>100MeV) afterglow emission spectrum is F {sub ?}??{sup 0.54} {sup } {sup 0.15} in the first ?1300s after the trigger and the most energetic photon has an energy of ?62GeV, arriving at t ? 520s. With reasonable parameters of the gamma-ray burst (GRB) outflow as well as the density of the circum-burst medium, the synchrotron radiation of electrons or protons accelerated at an external forward shock have difficulty accounting for the data. Rather, the synchrotron self-Compton radiation of the forward shock-accelerated electrons can account for both the spectrum and temporal behavior of theGeV afterglow emission. We also show that the prospect for detecting GRB 131231A-like GRBs with the Cherenkov Telescope Array is promising.

  12. Pressure Safety of JLAB 12GeV Upgrade Cryomodule

    SciTech Connect (OSTI)

    Cheng, Gary; Wiseman, Mark A.; Daly, Ed

    2009-11-01

    This paper reviews pressure safety considerations, per the US Department of Energy (DOE) 10CFR851 Final Rule [1], which are being implemented during construction of the 100 Megavolt Cryomodule (C100 CM) for Jefferson Lab’s 12 GeV Upgrade Project. The C100 CM contains several essential subsystems that require pressure safety measures: piping in the supply and return end cans, piping in the thermal shield and the helium headers, the helium vessel assembly which includes high RRR niobium cavities, the end cans, and the vacuum vessel. Due to the vessel sizes and pressure ranges, applicable national consensus code rules are applied. When national consensus codes are not applicable, equivalent design and fabrication approaches are identified and implemented. Considerations for design, material qualification, fabrication, inspection and examination are summarized. In addition, JLAB’s methodologies for implementation of the 10 CFR 851 requirements are described.

  13. Nucleon Form Factors above 6 GeV

    DOE R&D Accomplishments [OSTI]

    Taylor, R. E.

    1967-09-01

    This report describes the results from a preliminary analysis of an elastic electron-proton scattering experiment... . We have measured cross sections for e-p scattering in the range of q{sup 2} from 0.7 to 25.0 (GeV/c){sup 2}, providing a large region of overlap with previous measurements. In this experiment we measure the cross section by observing electrons scattered from a beam passing through a liquid hydrogen target. The scattered particles are momentum analyzed by a magnetic spectrometer and identified as electrons in a total absorption shower counter. Data have been obtained with primary electron energies from 4.0 to 17.9 GeV and at scattering angles from 12.5 to 35.0 degrees. In general, only one measurement of a cross section has been made at each momentum transfer.

  14. Studies of beam halo formation in the 12GeV CEBAF design

    SciTech Connect (OSTI)

    Yves Roblin; Arne Freyberger

    2007-06-01

    Beam halo formation in the beam transport design for the Jefferson Lab 12GeV upgrade was investigated using 12GeV beam transport models as well as data from 6GeV CEBAF operations. Various halo sources were considered; these covered both nuclear interactions with beam gas as well as optics-related effects such as non linearities in the magnetic fields of the transport elements. Halo due to beam gas scattering was found to be less of a problem at 12GeV compared to the 6GeV machine. Halo due to non linear effects of magnetic elements was characterized as a function of beam orbit and functional forms of the distribution were derived. These functional forms were used as inputs in subsequent detector optimizations studies.

  15. Parity Violation Inelastic Scattering Experiments at 6 GeV and 12 GeV Jefferson Lab

    SciTech Connect (OSTI)

    Sulkosky, Vincent A.; et. al.,

    2015-03-01

    We report on the measurement of parity-violating asymmetries in the deep inelastic scattering and nucleon resonance regions using inclusive scattering of longitudinally polarized electrons from an unpolarized deuterium target. The effective weak couplings C$_{2q}$ are accessible through the deep-inelastic scattering measurements. Here we report a measurement of the parity-violating asymmetry, which yields a determination of 2C$_{2u}$ - C$_{2d}$ with an improved precision of a factor of five relative to the previous result. This result indicates evidence with 95% confidence that the 2C$_{2u}$ - C$_{2d}$ is non-zero. This experiment also provides the first parity-violation data covering the whole resonance region, which provide constraints on nucleon resonance models. Finally, the program to extend these measurements at Jefferson Lab in the 12 GeV era using the Solenoidal Large Intensity Device was also discussed.

  16. Shallow melt apparatus for semicontinuous czochralski crystal growth

    DOE Patents [OSTI]

    Wang, Tihu; Ciszek, Theodore F.

    2006-01-10

    In a single crystal pulling apparatus for providing a Czochralski crystal growth process, the improvement of a shallow melt In a single crystal pulling apparatus for providing a Czochralski crystal growth process, the improvement of a shallow melt crucible (20) to eliminate the necessity supplying a large quantity of feed stock materials that had to be preloaded in a deep crucible to grow a large ingot, comprising a gas tight container a crucible with a deepened periphery (25) to prevent snapping of a shallow melt and reduce turbulent melt convection; source supply means for adding source material to the semiconductor melt; a double barrier (23) to minimize heat transfer between the deepened periphery (25) and the shallow melt in the growth compartment; offset holes (24) in the double barrier (23) to increase melt travel length between the deepened periphery (25) and the shallow growth compartment; and the interface heater/heat sink (22) to control the interface shape and crystal growth rate.

  17. Ferritic steel melt and FLiBe/steel experiment : melting ferritic steel.

    SciTech Connect (OSTI)

    Troncosa, Kenneth P.; Smith, Brandon M.; Tanaka, Tina Joan

    2004-11-01

    In preparation for developing a Z-pinch IFE power plant, the interaction of ferritic steel with the coolant, FLiBe, must be explored. Sandia National Laboratories Fusion Technology Department was asked to drop molten ferritic steel and FLiBe in a vacuum system and determine the gas byproducts and ability to recycle the steel. We tried various methods of resistive heating of ferritic steel using available power supplies and easily obtained heaters. Although we could melt the steel, we could not cause a drop to fall. This report describes the various experiments that were performed and includes some suggestions and materials needed to be successful. Although the steel was easily melted, it was not possible to drip the molten steel into a FLiBe pool Levitation melting of the drop is likely to be more successful.

  18. RHIC polarized proton-proton operation at 100 GeV in Run 15

    SciTech Connect (OSTI)

    Schoefer, V.; Aschenauer, E. C.; Atoian, G.; Blaskiewicz, M.; Brown, K. A.; Bruno, D.; Connolly, R.; D Ottavio, T.; Drees, K. A.; Dutheil, Y.; Fischer, W.; Gardner, C.; Gu, X.; Hayes, T.; Huang, H.; Laster, J.; Liu, C.; Luo, Y.; Makdisi, Y.; Marr, G.; Marusic, A.; Meot, F.; Mernick, K.; Michnoff, R.; Marusic, A.; Minty, M.; Montag, C.; Morris, J.; Narayan, G.; Nemesure, S.; Pile, P.; Poblaguev, A.; Ranjbar, V.; Robert-Demolaize, G.; Roser, T.; Schmidke, W. B.; Severino, F.; Shrey, T.; Smith, K.; Steski, D.; Tepikian, S.; Trbojevic, D.; Tsoupas, N.; Tuozzolo, J.; Wang, G.; White, S.; Yip, K.; Zaltsman, A.; Zelenski, A.; Zeno, K.; Zhang, S. Y.

    2015-05-03

    The first part of RHIC Run 15 consisted of ten weeks of polarized proton on proton collisions at a beam energy of 100 GeV at two interaction points. In this paper we discuss several of the upgrades to the collider complex that allowed for improved performance. The largest effort consisted in commissioning of the electron lenses, one in each ring, which are designed to compensate one of the two beam-beam interactions experienced by the proton bunches. The e-lenses raise the per bunch intensity at which luminosity becomes beam-beam limited. A new lattice was designed to create the phase advances necessary for a beam-beam compensation with the e-lens, which also has an improved off-momentum dynamic aperture relative to previous runs. In order to take advantage of the new, higher intensity limit without suffering intensity driven emittance deterioration, other features were commissioned including a continuous transverse bunch-by-bunch damper in RHIC and a double harmonic RF cature scheme in the Booster. Other high intensity protections include improvements to the abort system and the installation of masks to intercept beam lost due to abort kicker pre-fires.

  19. Compositions of Magmatic and Impact Melt Sulfides in Tissint and EETA79001:

    Office of Scientific and Technical Information (OSTI)

    Precursors of Immiscible Sulfide Melt Blebs in Shergottite Impact Melts (Conference) | SciTech Connect Conference: Compositions of Magmatic and Impact Melt Sulfides in Tissint and EETA79001: Precursors of Immiscible Sulfide Melt Blebs in Shergottite Impact Melts Citation Details In-Document Search Title: Compositions of Magmatic and Impact Melt Sulfides in Tissint and EETA79001: Precursors of Immiscible Sulfide Melt Blebs in Shergottite Impact Melts Authors: Ross, D.K. ; Rao, M.N. ; Nyquist,

  20. Compositions of Magmatic and Impact Melt Sulfides in Tissint and EETA79001:

    Office of Scientific and Technical Information (OSTI)

    Precursors of Immiscible Sulfide Melt Blebs in Shergottite Impact Melts (Conference) | SciTech Connect SciTech Connect Search Results Conference: Compositions of Magmatic and Impact Melt Sulfides in Tissint and EETA79001: Precursors of Immiscible Sulfide Melt Blebs in Shergottite Impact Melts Citation Details In-Document Search Title: Compositions of Magmatic and Impact Melt Sulfides in Tissint and EETA79001: Precursors of Immiscible Sulfide Melt Blebs in Shergottite Impact Melts Authors:

  1. PowerPoint Presentation

    Energy Savers [EERE]

    John Nangle, National Renewable Energy Laboratory (NREL) Tribal Leader Forum, Phoenix, AZ - May 30 - 31, 2013 State Incentives and Project Impacts Main Points - Market Context * ...

  2. PowerPoint Presentation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    disease biomarkers in human biological samples * Point-of-Care diagnostics amenable to health clinics and field sensing applications * Integrated miniaturized electronics, optical...

  3. PowerPoint Presentation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    optic links will replace many hardwire connections - Remotely programmable set-points and monitoring for each klystron cart - Klystron collector over-temperature protection will...

  4. PowerPoint Presentation

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Smart meters and national BMS for 200 most energy intensive facilities Big data: GSA Link logs 15 million data points day Opportunities and Drivers Program Objectives ...

  5. PowerPoint Presentation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    11, 2013 2 Secretary Moniz Visits Hanford Tank Farm Project Assistant Manager Tom Fletcher points out C-Farm activity from observation platform ORP Manager Kevin Smith (Far...

  6. Exclusive electroproduction of strange mesons with JLab 12 GeV (Conference)

    Office of Scientific and Technical Information (OSTI)

    | SciTech Connect Exclusive electroproduction of strange mesons with JLab 12 GeV Citation Details In-Document Search Title: Exclusive electroproduction of strange mesons with JLab 12 GeV We summarize the physics topics which can be addressed by measurements of high-Q^2 exclusive electroproduction of strange mesons, gamma* N -> phi N, K* Lambda, K Lambda, K Sigma, at Jefferson Lab with 11 GeV beam energy. The proposed investigations are aimed both at exploring the reaction mechanism

  7. JLab's 12 GeV Upgrade Project Clears Critical Hurdle | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    JLab's 12 GeV Upgrade Project Clears Critical Hurdle JLab's 12 GeV Upgrade Project Clears Critical Hurdle Independent Project Review committee members Independent Project Review committee members, visiting JLab to evaluate the readiness of the 12 GeV Upgrade project, tour Hall B during their site visit. Here they view the CEBAF Large Acceptance Spectrometer as Hall B Leader Volker Burkert and Lead Engineer Dave Kashy explain the system. NEWPORT NEWS, VA - The U.S. Department of Energy's Thomas

  8. 9 GeV energy gain in a beam-driven plasma wakefield accelerator (Journal

    Office of Scientific and Technical Information (OSTI)

    Article) | SciTech Connect 9 GeV energy gain in a beam-driven plasma wakefield accelerator Citation Details In-Document Search Title: 9 GeV energy gain in a beam-driven plasma wakefield accelerator An electron beam has gained a maximum energy of 9 GeV per particle in a 1.3 m-long electron beam-driven plasma wakefield accelerator. The amount of charge accelerated in the spectral peak was 28.3 pC, and the root-mean-square energy spread was 5.0%. The mean accelerated charge and energy gain per

  9. Jefferson Lab to Mark the End of CEBAF 6 GeV Operations on May 18 |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Jefferson Lab to Mark the End of CEBAF 6 GeV Operations on May 18 Jefferson Lab to Mark the End of CEBAF 6 GeV Operations on May 18 CEBAF_Aerial.jpg Jefferson Lab will officially end 6 GeV operations of the Continuous Electron Beam Accelerator Facility during a short ceremony planned for May 18 in the Machine Control Center. This aerial photo depicts the basic outline of the tunnel housing CEBAF - the accelerator and the experimental halls. NEWPORT NEWS, VA - The U.S. Department of Energy's

  10. Research Perspectives at Jefferson Lab: 12 GeV and Beyond

    SciTech Connect (OSTI)

    Kees de Jager

    2002-09-01

    The plans for upgrading the CEBAF accelerator at Jefferson Lab to 12 GeV are presented. The research program supporting that upgrade are illustrated with a few selected examples. The instrumentation under design to carry out that research program is discussed. Finally, a conceptual design of a future upgrade which combines a 25 GeV fixed-target facility and an electron-ion collider facility at a luminosity of up to 10{sup 35}cm{sup -2}s{sup -1} and a CM energy of over 40 GeV.

  11. Shallow Melt Apparatus for Semicontinuous Czochralski Crystal Growth

    DOE Patents [OSTI]

    Wang, T.; Ciszek, T. F.

    2006-01-10

    In a single crystal pulling apparatus for providing a Czochralski crystal growth process, the improvement of a shallow melt crucible (20) to eliminate the necessity supplying a large quantity of feed stock materials that had to be preloaded in a deep crucible to grow a large ingot, comprising a gas tight container a crucible with a deepened periphery (25) to prevent snapping of a shallow melt and reduce turbulent melt convection; source supply means for adding source material to the semiconductor melt; a double barrier (23) to minimize heat transfer between the deepened periphery (25) and the shallow melt in the growth compartment; offset holes (24) in the double barrier (23) to increase melt travel length between the deepened periphery (25) and the shallow growth compartment; and the interface heater/heat sink (22) to control the interface shape and crystal growth rate.

  12. Early Commissioning Experience and Future Plans for the 12 GeV Continuous Electron Beam Accelerator Facility

    SciTech Connect (OSTI)

    Spata, Michael F.

    2014-12-01

    Jefferson Lab has recently completed the accelerator portion of the 12 GeV Upgrade for the Continuous Electron Beam Accelerator Facility. All 52 SRF cryomodules have been commissioned and operated with beam. The initial beam transport goals of demonstrating 2.2 GeV per pass, greater than 6 GeV in 3 passes to an existing experimental facility and greater than 10 GeV in 5-1/2 passes have all been accomplished. These results along with future plans to commission the remaining beamlines and to increase the performance of the accelerator to achieve reliable, robust and efficient operations at 12 GeV are presented.

  13. ARM - What About Melting Polar Ice Caps and Sea Levels?

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    What About Melting Polar Ice Caps and Sea Levels? Outreach Home Room News Publications Traditional Knowledge Kiosks Barrow, Alaska Tropical Western Pacific Site Tours Contacts Students Study Hall About ARM Global Warming FAQ Just for Fun Meet our Friends Cool Sites Teachers Teachers' Toolbox Lesson Plans What About Melting Polar Ice Caps and Sea Levels? As the northern polar zone warms up, sea ice could melt (very probable) and the sea/ice interface could retreat to the north. This is likely to

  14. Deloitte MarketPoint.

    Energy Savers [EERE]

    Deloitte MarketPoint. Analysis of Economic Impact of LNG Exports from the United States i Contents Executive summary 1 Overview of Deloitte MarketPoint Reference Case 5 Potential impact of LNG exports 10 Comparison of results to other studies 18 Appendix A: Price Impact Charts for other Export Cases 20 Appendix B: DMP's World Gas Model and data 24 Executive summary 1 Executive summary Deloitte MarketPoint LLC ("DMP") has been engaged by Excelerate Energy L.P. ("Excelerate")

  15. Energy Saving Melting and Revert Reduction Technology: Improved...

    Office of Scientific and Technical Information (OSTI)

    Energy Saving Melting and Revert Reduction Technology: Improved Die Casting Process to Preserve the Life of the Inserts Citation Details In-Document Search Title: Energy Saving ...

  16. Energy-Efficient Melting and Direct Delivery of High Quality...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    PDF icon itmdelivery.pdf More Documents & Publications ITP Metal Casting: Advanced Melting Technologies: Energy Saving Concepts and Opportunities for the Metal Casting Industry ...

  17. Ultralow viscosity of carbonate melts at high pressures (Journal...

    Office of Scientific and Technical Information (OSTI)

    Title: Ultralow viscosity of carbonate melts at high pressures Authors: Kono, Yoshio ; Kenney-Benson, Curtis ; Hummer, Daniel ; Ohfuji, Hiroaki ; Park, Changyong ; Shen, Guoyin ; ...

  18. Physics Opportunities with the 12 GeV Upgrade at Jefferson Lab...

    Office of Scientific and Technical Information (OSTI)

    SciTech Connect Search Results Program Document: Physics Opportunities with the 12 GeV Upgrade at Jefferson Lab Citation Details In-Document Search Title: Physics Opportunities ...

  19. Project planning workshop 6-GeV synchrotron light source: Volume 2

    SciTech Connect (OSTI)

    Not Available

    1986-01-01

    A series of work sheets, graphs, and printouts are given which detail the work breakdown structure, cost, and manpower requirements for the 6 GeV Synchrotron Light Source. (LEW)

  20. PowerPoint Presentation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Microneedles for medical point of care diagnostics and drug delivery Ronen Polsky Department of Biosensors and Nanomaterials February 25, 2015 Sandia MedTech Showcase Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. SAND2015-1388C Brief Technology Overview Wearable Point of

  1. Points of Contact - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Points of Contact About Us Hanford Site Solid Waste Acceptance Program What's New Acceptance Criteria Acceptance Process Tools Points of Contact Points of Contact Email Email Page...

  2. Measurement of thermodynamic temperature of high temperature fixed points

    SciTech Connect (OSTI)

    Gavrilov, V. R.; Khlevnoy, B. B.; Otryaskin, D. A.; Grigorieva, I. A.; Samoylov, M. L.; Sapritsky, V. I.

    2013-09-11

    The paper is devoted to VNIIOFI's measurements of thermodynamic temperature of the high temperature fixed points Co-C, Pt-C and Re-C within the scope of the international project coordinated by the Consultative Committee for Thermometry working group 5 'Radiation Thermometry'. The melting temperatures of the fixed points were measured by a radiance mode radiation thermometer calibrated against a filter radiometer with known irradiance spectral responsivity via a high temperature black body. This paper describes the facility used for the measurements, the results and estimated uncertainties.

  3. Crystallographic texture engineering through novel melt strategies...

    Office of Scientific and Technical Information (OSTI)

    varying process parameters such as beam power, beam velocity, beam focus and scan strategy, the behaviour of the electron beam can be manipulated from a line source to a point...

  4. Flow induced migration in polymer melts – Theory and simulation

    SciTech Connect (OSTI)

    Dorgan, John Robert Rorrer, Nicholas Andrew

    2015-04-28

    Flow induced migration, whereby polymer melts are fractionated by molecular weight across a flow field, represents a significant complication in the processing of polymer melts. Despite its long history, such phenomena remain relatively poorly understood. Here a simple analytical theory is presented which predicts the phenomena based on well-established principles of non-equilibrium thermodynamics. It is unambiguously shown that for purely viscous materials, a gradient in shear rate is needed to drive migration; for purely viscometric flows no migration is expected. Molecular scale simulations of flow migration effects in dense polymer melts are also presented. In shear flow the melts exhibit similar behavior as the quiescent case; a constant shear rate across the gap does not induce chain length based migration. In comparison, parabolic flow causes profound migration for both unentangled and entangled melts. These findings are consistent with the analytical theory. The picture that emerges is consistent with flow induced migration mechanisms predominating over competing chain degradation mechanisms.

  5. Appendix B - Control Points

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    B B Control Points B.1 Injector Control Points Qty Type Device 2 Magnet Bend magnet - DL1 bend 9 Magnet Quad magnet 10 Magnet X-Y Corrector Pair 2 Magnet Solenoid 2 Magnet Spectrometer 1 RF Gun 2 RF Accelerating Structure 1 RF Transverse RF Structure 1 TIMING Timing/Trigger System 1 Laser Gun Laser 1 Laser Alignment Laser 13 DIAG BPM 4 DIAG Wire Scanner 11 DIAG Profile Monitor 3 DIAG Toroid 1 DIAG Transverse RF BL Monitor 3 DIAG Faraday Cup 1 DIAG Energy Collimator 1 DIAG Tune-up Dump 1 VAC

  6. Glass Furnace Combustion and Melting Research Facility.

    SciTech Connect (OSTI)

    Connors, John J.; McConnell, John F.; Henry, Vincent I.; MacDonald, Blake A.; Gallagher, Robert J.; Field, William B.; Walsh, Peter M.; Simmons, Michael C.; Adams, Michael E.; Leadbetter, James M.; Tomasewski, Jack W.; Operacz, Walter J.; Houf, William G.; Davis, James W.; Marvin, Bart G.; Gunner, Bruce E.; Farrell, Rick G.; Bivins, David P.; Curtis, Warren; Harris, James E.

    2004-08-01

    The need for a Combustion and Melting Research Facility focused on the solution of glass manufacturing problems common to all segments of the glass industry was given high priority in the earliest version of the Glass Industry Technology Roadmap (Eisenhauer et al., 1997). Visteon Glass Systems and, later, PPG Industries proposed to meet this requirement, in partnership with the DOE/OIT Glass Program and Sandia National Laboratories, by designing and building a research furnace equipped with state-of-the-art diagnostics in the DOE Combustion Research Facility located at the Sandia site in Livermore, CA. Input on the configuration and objectives of the facility was sought from the entire industry by a variety of routes: (1) through a survey distributed to industry leaders by GMIC, (2) by conducting an open workshop following the OIT Glass Industry Project Review in September 1999, (3) from discussions with numerous glass engineers, scientists, and executives, and (4) during visits to glass manufacturing plants and research centers. The recommendations from industry were that the melting tank be made large enough to reproduce the essential processes and features of industrial furnaces yet flexible enough to be operated in as many as possible of the configurations found in industry as well as in ways never before attempted in practice. Realization of these objectives, while still providing access to the glass bath and combustion space for optical diagnostics and measurements using conventional probes, was the principal challenge in the development of the tank furnace design. The present report describes a facility having the requirements identified as important by members of the glass industry and equipped to do the work that the industry recommended should be the focus of research. The intent is that the laboratory would be available to U.S. glass manufacturers for collaboration with Sandia scientists and engineers on both precompetitive basic research and the solution of proprietary glass production problems. As a consequence of the substantial increase in scale and scope of the initial furnace concept in response to industry recommendations, constraints on funding of industrial programs by DOE, and reorientation of the Department's priorities, the OIT Glass Program is unable to provide the support for construction of such a facility. However, it is the present investigators' hope that a group of industry partners will emerge to carry the project forward, taking advantage of the detailed furnace design presented in this report. The engineering, including complete construction drawings, bill of materials, and equipment specifications, is complete. The project is ready to begin construction as soon as the quotations are updated. The design of the research melter closely follows the most advanced industrial practice, firing by natural gas with oxygen. The melting area is 13 ft x 6 ft, with a glass depth of 3 ft and an average height in the combustion space of 3 ft. The maximum pull rate is 25 tons/day, ranging from 100% batch to 100% cullet, continuously fed, with variable batch composition, particle size distribution, and raft configuration. The tank is equipped with bubblers to control glass circulation. The furnace can be fired in three modes: (1) using a single large burner mounted on the front wall, (2) by six burners in a staggered/opposed arrangement, three in each breast wall, and (3) by down-fired burners mounted in the crown in any combination with the front wall or breast-wall-mounted burners. Horizontal slots are provided between the tank blocks and tuck stones and between the breast wall and skewback blocks, running the entire length of the furnace on both sides, to permit access to the combustion space and the surface of the glass for optical measurements and sampling probes. Vertical slots in the breast walls provide additional access for measurements and sampling. The furnace and tank are to be fully instrumented with standard measuring equipment, such as flow meters, thermocouples, continuous gas composition

  7. Measurements of $ep \\to e^\\prime ?^+n$ at W = 1.6 - 2.0 GeV and extraction of nucleon resonance electrocouplings at CLAS

    SciTech Connect (OSTI)

    Park, Kijun; Aznauryan, I. G.; Burkert, V. D.; Adhikari, K. P.; Amaryan, M. J.; Pereira, S. Anefalos; Avakian, H.; Battaglieri, M.; Badui, R.; Bedlinskiy, I.; Biselli, A. S.; Bono, J.; Briscoe, W. J.; Brooks, W. K.; Carman, D. S.; Celentano, A.; Chandavar, S.; Charles, G.; Colaneri, L.; Cole, P. L.; Contalbrigo, M.; Cortes, O.; Crede, V.; D'Angelo, A.; Dashyan, N.; De Vita, R.; De Sanctis, E.; Deur, A.; Djalali, C.; Doughty, D.; Dupre, R.; Egiyan, H.; Alaoui, A. El; Elouadrhiri, L.; Fassi, L. El; Eugenio, P.; Fedotov, G.; Fegan, S.; Fersch, R.; Filippi, A.; Fleming, J. A.; Garillon, B.; Garcon, M.; Gevorgyan, N.; Gilfoyle, G. P.; Giovanetti, K. L.; Girod, F. X.; Joo, H. S.; Goetz, J. T.; Golovatch, E.; Gothe, R. W.; Griffioen, K. A.; Guegan, B.; Guidal, M.; Guo, L.; Hakobyan, H.; Hanretty, C.; Hattawy, M.; Hicks, K.; Holtrop, M.; Hughes, S. M.; Hyde, C. E.; Ilieva, Y.; Ireland, D. G.; Ishkhanov, B. S.; Isupov, E. L.; Jenkins, D.; Jiang, H.; Jo, H. S.; Joo, K.; Joosten, S.; Keller, D.; Khandaker, M.; Kim, A.; Kim, W.; Klein, A.; Klein, F. J.; Kubarovsky, V.; Kuhn, S. E.; Kuleshov, S. V.; Lenisa, P.; Livingston, K.; Lu, H. Y.; MacGregor, I. J.; Markov, N.; Martinez, D.; McKinnon, B.; Mokeev, V.; Montgomery, R. A.; Moutarde, H.; Camacho, C. Munoz; Nadel-Turonski, P.; Niccolai, S.; Niculescu, G.; Niculescu, I.; Osipenko, M.; Ostrovidov, A. I.; Paolone, M.; Pasyuk, E.; Peng, P.; Phelps, W.; Phillips, J. J.; Pisano, S.; Pogorelko, O.; Price, J. W.; Procureur, S.; Prok, Y.; Protopopescu, D.; Puckett, A. J.; Raue, B. A.; Ripani, M.; Rizzo, A.; Rosner, G.; Rossi, P.; Roy, P.; Sabati??, F.; Salgado, C.; Schott, D.; Schumacher, R. A.; Seder, E.; Sharabian, Y. G.; Simonyan, A.; Skorodumina, Iu.; Smith, E. S.; Smith, G. D.; Sparveris, N.; Stoler, P.; Strakovsky, I. I.; Strauch, S.; Sytnik, V.; Taiuti, M.; Tang, W.; Taylor, C. E.; Tian, Ye; Trivedi, A.; Ungaro, M.; Voskanyan, H.; Voutier, E.; Walford, N. K.; Watts, D. P.; Wei, X.; Weinstein, L. B.; Wood, M. H.; Zachariou, N.; Zana, L.; Zhang, J.; Zhao, Z. W.; Zonta, I.

    2015-04-01

    Differential cross sections of the exclusive process $e p \\to e^\\prime \\pi^+ n$ were measured with good precision in the range of the photon virtuality $Q^2 = 1.8 - 4.5$ GeV$^2$, and the invariant mass range of the $\\pi^+ n$ final state W = 1.6 - 2.0 GeV using the CEBAF Large Acceptance Spectrometer. Data were collected with nearly complete coverage in the azimuthal and polar angles of the $n\\pi^+$ center-of-mass system. More than 37,000 cross section points were measured. The contributions of the isospin $I = {1\\over 2}$ resonances $N(1675){5\\over 2}^-$, $N(1680){5\\over 2}^+$ and $N(1710){1\\over 2}^+$ were extracted at different values of $Q^2$ using a single-channel, energy-dependent resonance amplitude analysis. Two different approaches, the unitary isobar model and the fixed-$t$ dispersion relations, were employed in the analysis. We observe significant strength of the $N(1675){5\\over 2}^-$ in the $A_{1/2}$ amplitude, which is in strong disagreement with quark models that predict both transverse amplitudes to be strongly suppressed. For the $N(1680){5\\over 2}^+$ we observe a slow changeover from the dominance of the $A_{3/2}$ amplitude at the real photon point ($Q^2=0$) to a $Q^2$ where $A_{1/2}$ begins to dominate. The scalar amplitude $S_{1/2}$ drops rapidly with $Q^2$ consistent with quark model prediction. For the $N(1710){1\\over 2}^+$ resonance our analysis shows significant strength for the $A_{1/2}$ amplitude at $Q^2 < 2.5$ GeV$^2$.

  8. MountPointAttributes

    Energy Science and Technology Software Center (OSTI)

    2001-06-16

    MountPointAttributes is a software component that provides client code with a technique to raise the local namespace of a file to a global namespace. Its abstractions and mechanisms allow the client code to gather global properties of a file and to use them in devising an effective storage access strategy on this file.

  9. EndPoints 2000

    Energy Science and Technology Software Center (OSTI)

    2009-08-13

    The application leads the user through a logical framework to determine the minimum effort and cost necessary to reach the desired end state for each space, system, and facility. Endpoints are used to plan the project work, track and manage the determination, management, verification, and closure of D&D endpoints, consistent with DOE End Point guidance documents.

  10. Assessment of ceramic coatings for metal fuel melting crucible

    SciTech Connect (OSTI)

    Kim, Ki-Hwan; Song, Hoon; Kim, Jong-Hwan; Oh, Seok-Jin; Kim, Hyung-Tae; Lee, Chan-Bock

    2013-07-01

    The objective of this study is to develop a coating method and material for crucibles to prevent material interactions with the U-Zr/U-TRU-Zr fuels during the manufacturing of SFR fuels. Refractory coatings were applied to niobium substrates by vacuum plasma-spray coating method. Melt dipping tests conducted were the coated rods lowered into the fuel melt at 1600 C. degrees, and withdrawn and cooled outside the crucible in the inert atmosphere of the induction furnace. Melt dipping tests of the coated Nb rods indicated that plasma-sprayed Y{sub 2}O{sub 3} coating doesn't form significant reaction layer between fuel melt and coating layer. Melt dipping tests of the coated Nb rods showed that TiC, TaC, and Y{sub 2}O{sub 3} coatings exhibited the promising performance among other ceramic coatings. These materials could be promising candidate materials for the reusable melt crucible of metal fuel for SFR. In addition, in order to develop the vacuum plasma-spray coating method for re-usable crucible of metal fuel slugs to be overcome the issue of thermal expansion mismatch between coating material and crucible, various combinations of coating conditions were investigated to find the bonding effect on the substrate in pursuit of more effective ways to withstand the thermal stresses. It is observed that most coating methods maintained sound coating state in U-Zr melt. (authors)

  11. Computational fluid dynamics simulations of a glass melting furnace

    SciTech Connect (OSTI)

    Egelja, A.; Lottes, S. A.

    2000-05-09

    The glass production industry is one of the major users of natural gas in the US, and approximately 75% of the energy produced from natural gas is used in the melting process. Industrial scale glass melting furnaces are large devices, typically 5 or more meters wide, and twice as long. To achieve efficient heat transfer to the glass melt below, the natural gas flame must extend over a large portion of the glass melt. Therefore modern high efficiency burners are not used in these furnaces. The natural gas is injected as a jet, and a jet flame forms in the flow of air entering the furnace. In most current glass furnaces the energy required to melt the batch feed stock is about twice the theoretical requirement. An improved understanding of the heat transfer and two phase flow processes in the glass melt and solid batch mix offers a substantial opportunity for energy savings and consequent emission reductions. The batch coverage form and the heat flux distribution have a strong influence on the glass flow pattern. This flow pattern determines to a significant extent the melting rate and the quality of glass.

  12. PowerPoint Presentation

    Office of Environmental Management (EM)

    John Nangle, National Renewable Energy Laboratory (NREL) Tribal Leader Forum, Phoenix, AZ - May 30 - 31, 2013 State Incentives and Project Impacts Main Points - Market Context * State Renewable Portfolio Standards (RPS) - What are they? - How can they help your project? - Potential gap means more market demand for RE projects Starting a Renewable Energy Project * What renewable resources exist? * What sites with resources do you own? * To whom will you sell the electricity? * How will federal

  13. Energy Efficient Glass Melting - The Next Generation Melter

    SciTech Connect (OSTI)

    David Rue

    2008-03-01

    The objective of this project is to demonstrate a high intensity glass melter, based on the submerged combustion melting technology. This melter will serve as the melting and homogenization section of a segmented, lower-capital cost, energy-efficient Next Generation Glass Melting System (NGMS). After this project, the melter will be ready to move toward commercial trials for some glasses needing little refining (fiberglass, etc.). For other glasses, a second project Phase or glass industry research is anticipated to develop the fining stage of the NGMS process.

  14. Method for Synthesizing Extremeley High Temperature Melting Materials

    DOE Patents [OSTI]

    Saboungi, Marie-Louise and Glorieux, Benoit

    2005-11-22

    The invention relates to a method of synthesizing high-temperature melting materials. More specifically the invention relates to a containerless method of synthesizing very high temperature melting materials such as borides, carbides and transition-metal, lanthanide and actinide oxides, using an Aerodynamic Levitator and a laser. The object of the invention is to provide a method for synthesizing extremely high-temperature melting materials that are otherwise difficult to produce, without the use of containers, allowing the manipulation of the phase (amorphous/crystalline/metastable) and permitting changes of the environment such as different gaseous compositions.

  15. Method For Synthesizing Extremely High-Temperature Melting Materials

    DOE Patents [OSTI]

    Saboungi, Marie-Louise (Chicago, IL); Glorieux, Benoit (Perpignan, FR)

    2005-11-22

    The invention relates to a method of synthesizing high-temperature melting materials. More specifically the invention relates to a containerless method of synthesizing very high temperature melting materials such as borides, carbides and transition-metal, lanthanide and actinide oxides, using an Aerodynamic Levitator and a laser. The object of the invention is to provide a method for synthesizing extremely high-temperature melting materials that are otherwise difficult to produce, without the use of containers, allowing the manipulation of the phase (amorphous/crystalline/metastable) and permitting changes of the environment such as different gaseous compositions.

  16. Method for synthesizing extremely high-temperature melting materials

    DOE Patents [OSTI]

    Saboungi, Marie-Louise (Chicago, IL); Glorieux, Benoit (Perpignan, FR)

    2007-11-06

    The invention relates to a method of synthesizing high-temperature melting materials. More specifically the invention relates to a containerless method of synthesizing very high temperature melting materials such as carbides and transition-metal, lanthanide and actinide oxides, using an aerodynamic levitator and a laser. The object of the invention is to provide a method for synthesizing extremely high-temperature melting materials that are otherwise difficult to produce, without the use of containers, allowing the manipulation of the phase (amorphous/crystalline/metastable) and permitting changes of the environment such as different gaseous compositions.

  17. END POINTS MANAGEMENT End Points Management The Need for End Point Specifications

    Office of Environmental Management (EM)

    MANAGEMENT End Points Management The Need for End Point Specifications The Need for a Method to Derive End Points Guiding Principles for Specifying End Points Tailored Approach Headquarters, Field Office, and Contractor Roles End Points Approvals Contractor Organization Functions for End Points Implementation Training and Walkdown Guidance for the Facility Engineers The Need for End Point Specifications The policy of the EM is that a formal project management approach be used for the planning,

  18. Energy dependence of transverse momentum fluctuations in Pb+Pb collisions at the CERN Super Proton Synchrotron (SPS) at 20A to 158A GeV

    SciTech Connect (OSTI)

    Anticic, T.; Kadija, K.; Nicolic, V.; Susa, T.; Baatar, B.; Kolesnikov, V. I.; Malakhov, A. I.; Melkumov, G. L.; Barna, D.; Csato, P.; Fodor, Z.; Gal, J.; Hegyi, S.; Laszlo, A.; Levai, P.; Molnar, J.; Palla, G.; Sikler, F.; Szentpetery, I.; Sziklai, J.

    2009-04-15

    Results are presented on event-by-event fluctuations of transverse momenta p{sub T} in central Pb+Pb interactions at 20A, 30A, 40A, 80A, and 158A GeV. The analysis was performed for charged particles at forward center-of-mass rapidity (1.1point, and with the UrQMD model. Transverse momentum fluctuations, similar to multiplicity fluctuations, do not show the increase expected for freeze-out near the critical point of QCD.

  19. Energy dependence of transverse momentum fluctuations in Pb+Pb collisions at the CERN Super Proton Synchrotron (SPS) at 20A to 158A GeV

    SciTech Connect (OSTI)

    NA49 Collaboration; Anticic, T.

    2009-04-15

    Results are presented on event-by-event fluctuations of transverse momenta p{sub T} in central Pb+Pb interactions at 20A, 30A, 40A, 80A, and 158A GeV. The analysis was performed for charged particles at forward center-of-mass rapidity (1.1 < y*{sub {pi}} < 2.6). Three fluctuation measures were studied: the distribution of average transverse momentum M(p{sub T}) in the event, the {phi}{sub p{sub T}} fluctuation measure, and two-particle transverse momentum correlations. Fluctuations of p{sub T} are small and show no significant energy dependence in the energy range of the CERN Super Proton Synchrotron. Results are compared with QCD-inspired predictions for the critical point, and with the UrQMD model. Transverse momentum fluctuations, similar to multiplicity fluctuations, do not show the increase expected for freeze-out near the critical point of QCD.

  20. Multiple hadron production by 14. 5 GeV electron and positron scattering from nuclear targets

    SciTech Connect (OSTI)

    Degtyarenko, P.V.; Button-Shafer, J.; Elouadrhiri, L.; Miskimen, R.A.; Peterson, G.A.; Wang, K. ); Gavrilov, V.B.; Kossov, M.V.; Leksin, G.A.; Shuvalov, S.M. ); Dietrich, F.S.; Melnikoff, S.O.; Molitoris, J.D.; Bibber, K.V. )

    1994-08-01

    Multiple proton and pion electroproduction from nuclei are studied. Final states including at least two protons produced by the interaction of 14.5 GeV electrons and positrons with light nuclei (mainly [sup 12]C and [sup 16]O) have been measured, and compared with analogous data from [sup 40]Ar. Scattered electrons and positrons were detected in the energy transfer range from 0.2 to 12.5 GeV, and four-momentum transfer squared range from 0.1 to 5.0 GeV[sup 2]/[ital c][sup 2]. Phenomenological characteristics of the secondary hadron production cross sections such as temperature and velocity of the effective source of hadrons were found to be dependent on energy transfer to the nucleus and independent on the four-momentum transfer squared at energy transfers greater than 2 GeV.

  1. Geek-Up: K East Reactor Demolition, Retrograde Melting and Cloud Pattern Tracking

    Broader source: Energy.gov [DOE]

    Recovery Act funds help clean up the Hanford site, retrograde melting (melting as something cools) and how open-cell clouds could help predict climate change.

  2. Two-point

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    point motional Stark effect diagnostic for Madison Symmetric Torus a... J. Ko, 1,b͒ D. J. Den Hartog, 1 K. J. Caspary, 1 E. A. Den Hartog, 1 N. A. Pablant, 2 and H. P. Summers 3 1 University of Wisconsin-Madison, Madison, Wisconsin 53706, USA 2 University of California-San Diego, La Jolla, California 92093, USA 3 University of Strathclyde, Glasgow G1 1XQ, Scotland, United Kingdom ͑Presented 18 May 2010; received 17 May 2010; accepted 28 May 2010; published online 1 October 2010͒ A

  3. PowerPoint Presentation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    RapiDx Victoria VanderNoot, Ph.D. February 25, 2015 Sandia MedTech Showcase Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. SAND2015-1392C Brief Technology Overview - RapiDx Rapid, Automated Point-of-Care System (RapiDx) * Portable microfluidic in vitro diagnostic instrument

  4. PowerPoint Presentation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Automated Prep of Nucleic Acids from Blood for Point-of-Care Applications Steven S. Branda Principal Member of Technical Staff February 25, 2015 Sandia MedTech Showcase Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. SAND2015-1389C Technology Overview * Platform for automated

  5. Dacite Melt at the Puna Geothermal Venture Wellfield, Big Island...

    Open Energy Info (EERE)

    (PGV) well field, on the island of Hawaii, a 75-meter interval of diorite containing brown glass inclusions was penetrated at a depth of 2415 m. At a depth of 2488 m a melt of...

  6. Jefferson Lab Awards $3.54 Million Contract To Pennsylvania Firm for 12 GeV

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Project | Jefferson Lab 3.54 Million Contract To Pennsylvania Firm for 12 GeV Project Jefferson Lab Awards $3.54 Million Contract To Pennsylvania Firm for 12 GeV Project NEWPORT NEWS, Va., May 1, 2009 - A Pennsylvania company has been awarded a $3.54 million contract to provide 84 klystrons to the U.S. Department of Energy's Thomas Jefferson National Accelerator Facility. The 13 kW klystrons, devices which will generate the electromagnetic fields that will accelerate the CEBAF electron

  7. Straw man 900-1000 GeV crystal extraction test beam for Fermilab collider operation

    SciTech Connect (OSTI)

    Carrigan, R.A. Jr.

    1996-10-01

    A design for a 900-1000 GeV, 100 khz parasitic test beam for use during collider operations has been developed. The beam makes use of two bent crystals, one for extraction and the other one for redirecting the beam in to the present Switchyard beam system. The beam requires only a few modifications in the A0 area and largely uses existing devices. It should be straight-forward to modify one or two beam lines in the fixed target experimental areas to work above 800 GeV. Possibilities for improvements to the design,to operate at higher fluxes are discussed.

  8. Capital Point | Open Energy Information

    Open Energy Info (EERE)

    Point Jump to: navigation, search Name: Capital Point Place: Israel Sector: Services Product: General Financial & Legal Services ( Joint Venture Consortium ) References: Capital...

  9. ITP Metal Casting: Advanced Melting Technologies: Energy Saving Concepts

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Opportunities for the Metal Casting Industry | Department of Energy Advanced Melting Technologies: Energy Saving Concepts and Opportunities for the Metal Casting Industry ITP Metal Casting: Advanced Melting Technologies: Energy Saving Concepts and Opportunities for the Metal Casting Industry PDF icon advancedmeltingtechnologies.pdf More Documents & Publications ITP Metal Casting: Theoretical/Best Practice Energy Use in Metalcasting Operations ITP Metal Casting: Energy and

  10. Structural response of a prealigned cylindrical block copolymer melt to

    Office of Scientific and Technical Information (OSTI)

    extensional flow (Journal Article) | SciTech Connect Journal Article: Structural response of a prealigned cylindrical block copolymer melt to extensional flow Citation Details In-Document Search Title: Structural response of a prealigned cylindrical block copolymer melt to extensional flow Authors: McCready, Erica M. ; Burghardt, Wesley R. [1] + Show Author Affiliations (NWU) Publication Date: 2015-08-24 OSTI Identifier: 1179492 Resource Type: Journal Article Resource Relation: Journal Name:

  11. Method and apparatus for melt growth of crystalline semiconductor sheets

    DOE Patents [OSTI]

    Ciszek, T.F.; Hurd, J.L.

    1981-02-25

    An economical method is presented for forming thin sheets of crystalline silicon suitable for use in a photovoltaic conversion cell by solidification from the liquid phase. Two spatially separated, generally coplanar filaments wettable by liquid silicon and joined together at the end by a bridge member are immersed in a silicon melt and then slowly withdrawn from the melt so that a silicon crystal is grown between the edge of the bridge and the filaments.

  12. MELT RATE FURNACE TESTING FOR SLUDGE BATCH 5 FRIT OPTIMIZATION

    SciTech Connect (OSTI)

    Miller, D; Fox, K; Pickenheim, B; Stone, M

    2008-10-03

    Savannah River National Laboratory (SRNL) was requested to provide the Defense Waste Processing Facility (DWPF) with a frit composition for Sludge Batch 5 (SB5) to optimize processing. A series of experiments were designed for testing in the Melt Rate Furnace (MRF). This dry fed tool can be used to quickly determine relative melt rates for a large number of candidate frit compositions and lead to a selection for further testing. Simulated Sludge Receipt and Adjustment Tank (SRAT) product was made according to the most recent SB5 sludge projections and a series of tests were conducted with frits that covered a range of boron and alkali ratios. Several frits with relatively large projected operating windows indicated melt rates that would not severely impact production. As seen with previous MRF testing, increasing the boron concentration had positive impacts on melt rate on the SB5 system. However, there appears to be maximum values for both boron and sodium above which the there is a negative effect on melt rate. Based on these data and compositional trends, Frit 418 and a specially designed frit (Frit 550) have been selected for additional melt rate testing. Frit 418 and Frit 550 will be run in the Slurry Fed Melt Rate Furnace (SMRF), which is capable of distinguishing rheological properties not detected by the MRF. Frit 418 will be used initially for SB5 processing in DWPF (given its robustness to compositional uncertainty). The Frit 418-SB5 system will provide a baseline from which potential melt rate advantages of Frit 550 can be gauged. The data from SMRF testing will be used to determine whether Frit 550 should be recommended for implementation in DWPF.

  13. Melting of ice wedges adds to arctic warming

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Can we someday predict earthquakes? Melting of ice wedges adds to arctic warming New ways of looking at seismic information and innovative laboratory experiments are offering tantalizing clues to what triggers earthquakes-and when. March 14, 2016 Ice throughout the Arctic is vanishing due to a rapidly warming climate. Ice throughout the Arctic is vanishing due to a rapidly warming climate. Melting of ice wedges adds to arctic warming Ice wedges are a particularly cool surface feature in the

  14. Complex systems influence melting of Greenland ice sheet

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Complex systems influence melting of Greenland ice sheet Complex systems influence melting of Greenland ice sheet International research team's field work shows that, well, things are more complicated than we thought December 22, 2014 The newly discovered rolling movement shown in (A) three-dimensional cryo-electron microscopy image of ribosome, and (B) computer-generated atomic-resolution model of the human ribosome consistent with microscopy. An international team of researchers deployed to

  15. Apparatus for melt growth of crystalline semiconductor sheets

    DOE Patents [OSTI]

    Ciszek, Theodore F.; Hurd, Jeffery L.

    1986-01-01

    An economical method is presented for forming thin sheets of crystalline silicon suitable for use in a photovoltaic conversion cell by solidification from the liquid phase. Two spatially separated, generally coplanar filaments wettable by liquid silicon and joined together at the end by a bridge member are immersed in a silicon melt and then slowly withdrawn from the melt so that a silicon crystal is grown between the edge of the bridge and the filaments.

  16. Methods of vitrifying waste with low melting high lithia glass compositions

    DOE Patents [OSTI]

    Jantzen, Carol M.; Pickett, John B.; Cicero-Herman, Connie A.; Marra, James C.

    2001-01-01

    The invention relates to methods of vitrifying waste and for lowering the melting point of glass forming systems by including lithia formers in the glass forming composition in significant amounts, typically from about 0.16 wt % to about 11 wt %, based on the total glass forming oxides. The lithia is typically included as a replacement for alkali oxide glass formers that would normally be present in a particular glass forming system. Replacement can occur on a mole percent or weight percent basis, and typically results in a composition wherein lithia forms about 10 wt % to about 100 wt % of the alkali oxide glass formers present in the composition. The present invention also relates to the high lithia glass compositions formed by these methods. The invention is useful for stabilization of numerous types of waste materials, including aqueous waste streams, sludge solids, mixtures of aqueous supernate and sludge solids, combinations of spent filter aids from waste water treatment and waste sludges, supernate alone, incinerator ash, incinerator offgas blowdown, or combinations thereof, geological mine tailings and sludges, asbestos, inorganic filter media, cement waste forms in need of remediation, spent or partially spent ion exchange resins or zeolites, contaminated soils, lead paint, etc. The decrease in melting point achieved by the present invention desirably prevents volatilization of hazardous or radioactive species during vitrification.

  17. Details and justifications for the MAP concept specification for acceleration above 63 GeV

    SciTech Connect (OSTI)

    Berg, J. Scott

    2014-02-28

    The Muon Accelerator Program (MAP) requires a concept specification for each of the accelerator systems. The Muon accelerators will bring the beam energy from a total energy of 63 GeV to the maximum energy that will fit on the Fermilab site. Justifications and supporting references are included, providing more detail than will appear in the concept specification itself.

  18. The Case for a 500 GeV e+e- Linear Collider

    SciTech Connect (OSTI)

    Baggers, J.; Baltay, C.; Barker, T.; Barklow, T.; Bauer, U.; Bolton, T.; Brau, J.; Breidenbach, M.; Burke, D.; Burrows, P.; Dixon, L.; Fisk, H.E.; Frey, R.; Gerdes, D.; Graf, D.; Grannis, P.; Haber, H.E.; Hearty, C.; Hertzbach, S.; Heusch, C.; Hewett, J.; Hollebeek, R.; Jacobsen, R.; Jaros, J.; Kamon, T.; Karlen, D.; Koltick, D.; Kronfeld, A.; Marciano, W.; Markiewicz, T.; Murayama, H.; Nauenberg, U.; Orr, L.; Paige, F.; Para, A.; Peskin, M. E.; Porter, F.; Riles, K.; Ronan, M.; Rosenberg, L.; Schumm, B.; Stroynowski, R.; Tkaczyk, S.; Turcot, A.S.; van Bibber, K.; van Kooten, R.; Wells, J.D.; Yamamoto, H.

    2000-07-05

    Several proposals are being developed around the world for an e+e- linear collider with an initial center of mass energy of 500 GeV. In this paper, we will discuss why a project of this type deserves priority as the next major initiative in high energy physics.

  19. THE CASE FOR A 500 GEV E+E- LINEAR COLLIDER

    SciTech Connect (OSTI)

    BAGGER,J.; BALTAY,C.; ET AL; MARCIANO,W.; PAIGE,F.; TURCOT,A.S.; AMERICAN LINEAR COLLIDER WORKING GROUP

    2000-06-30

    There are now several proposals that have been put forward from around the world for an e{sup +}e{sup {minus}} linear collider with an initial center of mass energy of 500 GeV. In this paper, the authors discuss why a project of this type deserves priority as the next, major initiative in high energy physics.

  20. Device and method for skull-melting depth measurement

    DOE Patents [OSTI]

    Lauf, Robert J. (Oak Ridge, TN); Heestand, Richard L. (Oak Ridge, TN)

    1993-01-01

    A method of skull-melting comprises the steps of: a. providing a vessel adapted for a skull-melting process, the vessel having an interior, an underside, and an orifice in connecting the interior and the underside; b. disposing a waveguide in the orifice so that the waveguide protrudes sufficiently into the interior to interact with the skull-melting process; c. providing a signal energy transducer in signal communication with the waveguide; d. introducing into the vessel a molten working material; e. carrying out the skull-melting process so that a solidified skull of the working material is formed, the skull and the vessel having an interface therebetween, the skull becoming fused to the waveguide so the signal energy can be transmitted through the waveguide and the skull without interference from the interface; f. activating the signal energy transducer so that a signal is propagated through the waveguide; and, g. controlling at least one variable of the skull-melting process utilizing feedback information derived from the propagated signal energy.

  1. Device and method for skull-melting depth measurement

    DOE Patents [OSTI]

    Lauf, R.J.; Heestand, R.L.

    1993-02-09

    A method of skull-melting comprises the steps of: (a) providing a vessel adapted for a skull-melting process, the vessel having an interior, an underside, and an orifice connecting the interior and the underside; (b) disposing a waveguide in the orifice so that the waveguide protrudes sufficiently into the interior to interact with the skull-melting process; (c) providing a signal energy transducer in signal communication with the waveguide; (d) introducing into the vessel a molten working material; (e) carrying out the skull-melting process so that a solidified skull of the working material is formed, the skull and the vessel having an interface therebetween, the skull becoming fused to the waveguide so the signal energy can be transmitted through the waveguide and the skull without interference from the interface; (f) activating the signal energy transducer so that a signal is propagated through the waveguide; and, (g) controlling at least one variable of the skull-melting process utilizing feedback information derived from the propagated signal energy.

  2. END POINTS SPECIFICATION METHODS End Points Specification Methods

    Office of Environmental Management (EM)

    SPECIFICATION METHODS End Points Specification Methods Hierarchical End-Points Method Checklist End-Points Method Two methods to develop end point specifications are presented. These have evolved from use in the field for deactivation projects.  The hierarchical method is systematic, comprehensive, and completely defensible as to the basis for each specification. This method may appear complex to the uninitiated, but it is a straightforward application of a systematic engineering approach. It

  3. Energy dependence of multiplicity fluctuations in heavy ion collisions at 20A to 158A GeV

    SciTech Connect (OSTI)

    Alt, C.; Blume, C.; Bramm, R.; Dinkelaker, P.; Flierl, D.; Kliemant, M.; Kniege, S.; Lungwitz, B.; Mitrovski, M.; Renfordt, R.; Schuster, T.; Stock, R.; Strabel, C.; Stroebele, H.; Utvic, M.; Wetzler, A.; Anticic, T.; Kadija, K.; Nicolic, V.; Susa, T.

    2008-09-15

    Multiplicity fluctuations of positively, negatively, and all charged hadrons in the forward hemisphere were studied in central Pb+Pb collisions at 20A,30A,40A,80A, and 158A GeV. The multiplicity distributions and their scaled variances {omega} are presented as functions of their dependence on collision energy as well as on rapidity and transverse momentum. The distributions have bell-like shapes and their scaled variances are in the range from 0.8 to 1.2 without any significant structure in their energy dependence. No indication of the critical point in fluctuations are observed. The string-hadronic ultrarelativistic quantum molecular dynamics (UrQMD) model significantly overpredicts the mean, but it approximately reproduces the scaled variance of the multiplicity distributions. The predictions of the statistical hadron-resonance gas model obtained within the grand-canonical and canonical ensembles disagree with the measured scaled variances. The narrower than Poissonian multiplicity fluctuations measured in numerous cases may be explained by the impact of conservation laws on fluctuations in relativistic systems.

  4. Technical and economical considerations of new DRI melting process

    SciTech Connect (OSTI)

    Ito, Shuzo; Tokuda, Koji; Sammt, F.; Gray, R.

    1997-12-31

    The new DRI melting process can effectively and economically produce high quality molten iron. This process utilizes hot charging of DRI directly from a reduction furnace into a dedicated new melting furnace. The molten iron from this DRI premelter can be charged into a steelmaking furnace, such as an electric arc furnace (EAF), where the molten iron, together with other iron sources, can be processed to produce steel. Alternatively the molten iron can be pigged or granulated for off-site merchant sales. Comprehensive research and development of the new process has been conducted including operational process simulation, melting tests using FASTMET DRI, slag technology development, and refractory corrosion testing. This paper describes the process concept, its operational characteristics and further applications of the process.

  5. Melt processing of Bi--2212 superconductors using alumina

    DOE Patents [OSTI]

    Holesinger, Terry G.

    1999-01-01

    Superconducting articles and a method of forming them, where the superconducting phase of an article is Bi.sub.2 Sr.sub.2 CaCu.sub.2 O.sub.y (Bi-2212). Alumina is combined with Bi-2212 powder or Bi-2212 precursor powder and, in order to form an intimate mixture, the mixture is melted and rapidly cooled to form a glassy solid. The glassy solid is comminuted and the resulting powder is combined with a carrier. An alternative to melting is to form the mixture of nanophase alumina and material having a particle size of less than about 10 microns. The powder, with the carrier, is melt processed to form a superconducting article.

  6. Melting of Uranium Metal Powders with Residual Salts

    SciTech Connect (OSTI)

    Jin-Mok Hur; Dae-Seung Kang; Chung-Seok Seo

    2007-07-01

    The Advanced Spent Fuel Conditioning Process (ACP) of the Korea Atomic Energy Research Institute focuses on the conditioning of Pressurized Water Reactor spent oxide nuclear fuel. After the oxide reduction step of the ACP, the resultant metal powders containing {approx} 30 wt% residual LiCl-Li{sub 2}O should be melted for a consolidation of the fine metal powders. In this study, we investigated the melting behaviors of uranium metal powders considering the effects of a LiCl-Li{sub 2}O residual salt. (authors)

  7. Tracking in full Monte Carlo detector simulations of 500 GeV e{sup +}e{sup {minus}} collisions

    SciTech Connect (OSTI)

    Ronan, M.T.

    2000-03-01

    In full Monte Carlo simulation models of future Linear Collider detectors, charged tracks are reconstructed from 3D space points in central tracking detectors. The track reconstruction software is being developed for detailed physics studies that take realistic detector resolution and background modeling into account. At this stage of the analysis, reference tracking efficiency and resolutions for ideal detector conditions are presented. High performance detectors are being designed to carry out precision studies of e{sup +}e{sup {minus}} annihilation events in the energy range of 500 GeV to 1.5 TeV. Physics processes under study include Higgs mass and branching ratio measurements, measurement of possible manifestations of Supersymmetry (SUSY), precision Electro-Weak (EW) studies and searches for new phenomena beyond their current expectations. The relatively-low background machine environment at future Linear Colliders will allow precise measurements if proper consideration is given to the effects of the backgrounds on these studies. In current North American design studies, full Monte Carlo detector simulation and analysis is being used to allow detector optimization taking into account realistic models of machine backgrounds. In this paper the design of tracking software that is being developed for full detector reconstruction is discussed. In this study, charged tracks are found from simulated space point hits allowing for the straight-forward addition of background hits and for the accounting of missing information. The status of the software development effort is quantified by some reference performance measures, which will be modified by future work to include background effects.

  8. Method of and apparatus for determining deposition-point temperature

    DOE Patents [OSTI]

    Mansure, Arthur J.; Spates, James J.; Martin, Stephen J.

    1998-01-01

    Acoustic-wave sensor apparatus and method for analyzing a normally liquid petroleum-based composition for monitoring deposition-point temperature. The apparatus includes at least one acoustic-wave device such as SAW, QCM, FPM, TSM or APM type devices in contact with the petroleum-based composition for sensing or detecting the surface temperature at which deposition occurs and/or rate of deposition as a function of temperature by sensing an accompanying change in frequency, phase shift, damping voltage or damping current of an electrical oscillator to a known calibrated condition. The acoustic wave device is actively cooled to monitor the deposition of constituents such as paraffins by determining the point at which solids from the liquid composition begin to form on the acoustic wave device. The acoustic wave device can be heated to melt or boil off the deposits to reset the monitor and the process can be repeated.

  9. Arctic sea ice modeling with the material-point method.

    SciTech Connect (OSTI)

    Peterson, Kara J.; Bochev, Pavel Blagoveston

    2010-04-01

    Arctic sea ice plays an important role in global climate by reflecting solar radiation and insulating the ocean from the atmosphere. Due to feedback effects, the Arctic sea ice cover is changing rapidly. To accurately model this change, high-resolution calculations must incorporate: (1) annual cycle of growth and melt due to radiative forcing; (2) mechanical deformation due to surface winds, ocean currents and Coriolis forces; and (3) localized effects of leads and ridges. We have demonstrated a new mathematical algorithm for solving the sea ice governing equations using the material-point method with an elastic-decohesive constitutive model. An initial comparison with the LANL CICE code indicates that the ice edge is sharper using Materials-Point Method (MPM), but that many of the overall features are similar.

  10. Method of and apparatus for determining deposition-point temperature

    DOE Patents [OSTI]

    Mansure, A.J.; Spates, J.J.; Martin, S.J.

    1998-10-27

    Acoustic-wave sensor apparatus and method are disclosed for analyzing a normally liquid petroleum-based composition for monitoring deposition-point temperature. The apparatus includes at least one acoustic-wave device such as SAW, QCM, FPM, TSM or APM type devices in contact with the petroleum-based composition for sensing or detecting the surface temperature at which deposition occurs and/or rate of deposition as a function of temperature by sensing an accompanying change in frequency, phase shift, damping voltage or damping current of an electrical oscillator to a known calibrated condition. The acoustic wave device is actively cooled to monitor the deposition of constituents such as paraffins by determining the point at which solids from the liquid composition begin to form on the acoustic wave device. The acoustic wave device can be heated to melt or boil off the deposits to reset the monitor and the process can be repeated. 5 figs.

  11. Coalescing at 8 GeV in the Fermilab Main Injector

    SciTech Connect (OSTI)

    Scott, D.J.; Capista, D.; Chase, B.; Dye, J.; Kourbanis, I.; Seiya, K.; Yang, M.-J.; /Fermilab

    2012-05-01

    For Project X, it is planned to inject a beam of 3 10{sup 11} particles per bunch into the Main Injector. To prepare for this by studying the effects of higher intensity bunches in the Main Injector it is necessary to perform coalescing at 8 GeV. The results of a series of experiments and simulations of 8 GeV coalescing are presented. To increase the coalescing efficiency adiabatic reduction of the 53 MHz RF is required. This results in {approx}70% coalescing efficiency of 5 initial bunches. Data using wall current monitors has been taken to compare previous work and new simulations for 53 MHz RF reduction, bunch rotations and coalescing, good agreement between experiment and simulation was found. By increasing the number of bunches to 7 and compressing the bunch energy spread a scheme generating approximately 3 10{sup 11} particles in a bunch has been achieved. These bunches will then be used in further investigations.

  12. Dirac gauginos, R symmetry and the 125 GeV Higgs

    SciTech Connect (OSTI)

    Bertuzzo, Enrico; Frugiuele, Claudia; Gregoire, Thomas; Ponton, Eduardo

    2015-04-20

    We study a supersymmetric scenario with a quasi exact R-symmetry in light of the discovery of a Higgs resonance with a mass of 125 GeV. In such a framework, the additional adjoint superfields, needed to give Dirac masses to the gauginos, contribute both to the Higgs mass and to electroweak precision observables. We then analyze the interplay between the two aspects, finding regions in parameter space in which the contributions to the precision observables are under control and a 125 GeV Higgs boson can be accommodated. Furthermore, we estimate the fine-tuning of the model finding regions of the parameter space still unexplored by the LHC with a fine-tuning considerably improved with respect to the minimal supersymmetric scenario. In particular, sizable non-holomorphic (non-supersoft) adjoints masses are required to reduce the fine-tuning.

  13. An overview of the planned Jefferson Lab 12-GeV helium refrigerator upgrade

    SciTech Connect (OSTI)

    Arenius, Dana; Creel, Jonathan; Dixon, Kelly; Ganni, Venkatarao; Knudsen, Peter; Sidi-Yekhlef, Ahmed; Wright, Mathew

    2008-03-01

    In February 2006, Jefferson Laboratory in Newport News, VA, received Critical Decision 1 (CD-1) approval to proceed with the engineering and design of the long anticipated upgrade to increase the beam energy of CEBAF, the Continuous Electron Beam Accelerator Facility, from 6 GeV to 12 GeV. This will require the installation of 10 new cryomodules, and additional 2.1-K refrigeration beyond the available 4600 W to handle the increased heat loads. Additionally, a new experimental hall, Hall D, is planned that will require the installation of a small, available refrigerator. This paper will present an overview of the integration of the new proposed refrigeration system into CEBAF, the installation of the available refrigerator for Hall D, and includes planned work scope, current schedule plans and project status.

  14. Lattice study of an electroweak phase transition at m{sub h} ? 126 GeV

    SciTech Connect (OSTI)

    Laine, M.; Nardini, G.; Rummukainen, K. E-mail: germano@physik.uni-bielefeld.de

    2013-01-01

    We carry out lattice simulations of a cosmological electroweak phase transition for a Higgs mass m{sub h} ? 126 GeV. The analysis is based on a dimensionally reduced effective theory for an MSSM-like scenario including a relatively light coloured SU(2)-singlet scalar, referred to as a right-handed stop. The non-perturbative transition is stronger than in 2-loop perturbation theory, and may offer a window for electroweak baryogenesis. The main remaining uncertainties concern the physical value of the right-handed stop mass which according to our analysis could be as high as m{sub t-tilde{sub R}} ? 155 GeV; a more precise effective theory derivation and vacuum renormalization than available at present are needed for confirming this value.

  15. Dirac gauginos, R symmetry and the 125 GeV Higgs

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Bertuzzo, Enrico; Frugiuele, Claudia; Grgoire, Thomas; Pontn, Eduardo

    2015-04-01

    We study a supersymmetric scenario with a quasi exact R-symmetry in light of the discovery of a Higgs resonance with a mass of 125 GeV. In such a framework, the additional adjoint superfields, needed to give Dirac masses to the gauginos, contribute both to the Higgs mass and to electroweak precision observables. We analyze the interplay between the two aspects, finding regions in parameter space in which the contributions to the precision observables are under control and a 125 GeV Higgs boson can be accommodated. We estimate the fine-tuning of the model finding regions of the parameter space still unexploredmoreby the LHC with a fine-tuning considerably improved with respect to the minimal supersymmetric scenario. In particular, sizable non-holomorphic (non-supersoft) adjoints masses are required to reduce the fine-tuning.less

  16. Superconducting Magnets for the 12 GeV Upgrade at Jefferson Lab

    SciTech Connect (OSTI)

    Fair, Ruben J.; Young, Glenn R.

    2015-06-01

    Jefferson Laboratory is embarked on an energy upgrade to its flagship continuous electron beam accelerator in order to expand the scope of its research capabilities and probe further into the structure of nuclear particles. The 12 GeV upgrade includes the design, manufacture, integration, installation and commissioning of eight different superconducting magnets in three separate experimental halls. The effort involves other national laboratories, universities and industry spanning three countries. This paper will summarize the key characteristics of these magnets, ranging in size from 0.2 to 23 MJ in stored energy, and featuring many different types and configurations. The paper will also give an overview of the specific technical challenges for each magnet, and a status report on magnet manufacture and expected delivery dates. The 12GeV upgrade at J-Lab represents the largest superconducting magnet fabrication and installation program currently ongoing in the United States and this paper will present the breadth of collaborations supporting it.

  17. Dirac gauginos, R symmetry and the 125 GeV Higgs

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Bertuzzo, Enrico; Frugiuele, Claudia; Gregoire, Thomas; Ponton, Eduardo

    2015-04-20

    We study a supersymmetric scenario with a quasi exact R-symmetry in light of the discovery of a Higgs resonance with a mass of 125 GeV. In such a framework, the additional adjoint superfields, needed to give Dirac masses to the gauginos, contribute both to the Higgs mass and to electroweak precision observables. We then analyze the interplay between the two aspects, finding regions in parameter space in which the contributions to the precision observables are under control and a 125 GeV Higgs boson can be accommodated. Furthermore, we estimate the fine-tuning of the model finding regions of the parameter spacemore » still unexplored by the LHC with a fine-tuning considerably improved with respect to the minimal supersymmetric scenario. In particular, sizable non-holomorphic (non-supersoft) adjoints masses are required to reduce the fine-tuning.« less

  18. Dirac gauginos, R symmetry and the 125 GeV Higgs

    SciTech Connect (OSTI)

    Bertuzzo, Enrico; Frugiuele, Claudia; Grgoire, Thomas; Pontn, Eduardo

    2015-04-01

    We study a supersymmetric scenario with a quasi exact R-symmetry in light of the discovery of a Higgs resonance with a mass of 125 GeV. In such a framework, the additional adjoint superfields, needed to give Dirac masses to the gauginos, contribute both to the Higgs mass and to electroweak precision observables. We analyze the interplay between the two aspects, finding regions in parameter space in which the contributions to the precision observables are under control and a 125 GeV Higgs boson can be accommodated. We estimate the fine-tuning of the model finding regions of the parameter space still unexplored by the LHC with a fine-tuning considerably improved with respect to the minimal supersymmetric scenario. In particular, sizable non-holomorphic (non-supersoft) adjoints masses are required to reduce the fine-tuning.

  19. SRF CAVITY PERFORMANCE OVERVIEW FOR THE 12 GeV UPGRADE

    SciTech Connect (OSTI)

    A. Burrill, G.K. Davis, C.E. Reece, A.V. Reilly, M. Stirbet

    2012-07-01

    The CEBAF accelerator, a recirculating CW electron accelerator that is currently operating at Jefferson Laboratory, is in the process of having 10 new cryomodules installed to allow for the maximum beam energy to be increased from 6 GeV to 12 GeV. This upgrade required the fabrication, processing and RF qualification of 80, seven cell elliptical SRF cavities, a process that was completed in February 2012. The RF performance achieve in the vertical testing dewars has exceeded the design specification by {approx}25% and is a testament to the cavity design and processing cycle that has been implemented. This paper will provide a summary of the cavity RF performance in the vertical tests, as well as review the overall cavity processing cycle and duration for the project.

  20. AMF Deployment, Point Reyes National Seashore, California

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    California Point Reyes Deployment AMF Home Point Reyes Home Data Plots and Baseline ... AMF Deployment, Point Reyes National Seashore, California Point Reyes National Seashore, ...

  1. Point Bio Energy LLC | Open Energy Information

    Open Energy Info (EERE)

    Point Bio Energy LLC Jump to: navigation, search Name: Point Bio Energy LLC Place: La Pointe, Wisconsin Product: Wisconsin-based wood fuel pellet producer. References: Point Bio...

  2. eDT and Model-based Configuration of 12GeV CEBAF

    SciTech Connect (OSTI)

    Turner, Dennison L.

    2015-09-01

    This poster will discuss model-driven setup of CEBAF for the 12GeV era, focusing on the elegant Download Tool (eDT). eDT is a new operator tool that generates magnet design setpoints for various machine energies and pass configurations. eDT was developed in the effort towards a process for reducing machine configuration time and reproducibility by way of an accurate accelerator model.

  3. On the origin of GeV emission in gamma-ray bursts

    SciTech Connect (OSTI)

    Beloborodov, Andrei M.; Hascot, Romain; Vurm, Indrek, E-mail: amb@phys.columbia.edu [Physics Department and Columbia Astrophysics Laboratory, Columbia University, 538 West 120th Street, New York, NY 10027 (United States)

    2014-06-10

    The most common progenitors of gamma-ray bursts (GRBs) are massive stars with strong stellar winds. We show that the GRB blast wave in the wind should emit a bright GeV flash. It is produced by inverse-Compton cooling of the thermal plasma behind the forward shock. The main part of the flash is shaped by scattering of the prompt MeV radiation (emitted at smaller radii) which streams through the external blast wave. The inverse-Compton flash is bright due to the huge e {sup } enrichment of the external medium by the prompt radiation ahead of the blast wave. At late times, the blast wave switches to normal synchrotron-self-Compton cooling. The mechanism is demonstrated by a detailed transfer simulation. The observed prompt MeV radiation is taken as an input of the simulation; we use GRB 080916C as an example. The result reproduces the GeV flash observed by the Fermi telescope. It explains the delayed onset, the steep rise, the peak flux, the time of the peak, the long smooth decline, and the spectral slope of GeV emission. The wind density required to reproduce all these features is typical of Wolf-Rayet stars. Our simulation predicts strong TeV emission 1 minute after the burst trigger; then a cutoff in the observed high-energy spectrum is expected from absorption by extragalactic background light. In addition, a bright optical counterpart of the GeV flash is predicted for plausible values of the magnetic field; such a double (optical+GeV) flash has been observed in GRB 130427A.

  4. Optics solutions for pp operation with electron lenses at 100 GeV

    SciTech Connect (OSTI)

    White, S.; Fischer, W.; Luo, Y.

    2014-07-12

    Electron lenses for head-on compensation are currently under commissioning and foreseen to be operational for the 2015 polarized proton run. These devices will provide a partial compensation of head-on beam-beam effects and allow to double the RHIC proton luminosity. This note reviews the optics constraints related to beam-beam compensation and summarizes the current lattice options for proton operation at 100 GeV.

  5. Mixing of Isotactic and Syndiotactic Polypropylenes in the Melt

    SciTech Connect (OSTI)

    CLANCY,THOMAS C.; PUTZ,MATHIAS; WEINHOLD,JEFFREY D.; CURRO,JOHN G.; MATTICE,WAYNE L.

    2000-07-14

    The miscibility of polypropylene (PP) melts in which the chains differ only in stereochemical composition has been investigated by two different procedures. One approach used detailed local information from a Monte Carlo simulation of a single chain, and the other approach takes this information from a rotational isomeric state model devised decades ago, for another purpose. The first approach uses PRISM theory to deduce the intermolecular packing in the polymer blend, while the second approach uses a Monte Carlo simulation of a coarse-grained representation of independent chains, expressed on a high-coordination lattice. Both approaches find a positive energy change upon mixing isotactic PP (iPP) and syndiotactic polypropylene (sPP) chains in the melt. This conclusion is qualitatively consistent with observations published recently by Muelhaupt and coworkers. The size of the energy chain on mixing is smaller in the MC/PRISM approach than in the RIS/MC simulation, with the smaller energy change being in better agreement with the experiment. The RIS/MC simulation finds no demixing for iPP and atactic polypropylene (aPP) in the melt, consistent with several experimental observations in the literature. The demixing of the iPP/sPP blend may arise from attractive interactions in the sPP melt that are disrupted when the sPP chains are diluted with aPP or iPP chains.

  6. Laser beam surface melting of high alloy austenitic stainless steel

    SciTech Connect (OSTI)

    Woollin, P.

    1996-12-31

    The welding of high alloy austenitic stainless steels is generally accompanied by a substantial reduction in pitting corrosion resistance relative to the parent, due to microsegregation of Mo and Cr. This prevents the exploitation of the full potential of these steels. Processing to achieve remelting and rapid solidification offers a means of reducing microsegregation levels and improving corrosion resistance. Surface melting of parent UNS S31254 steel by laser beam has been demonstrated as a successful means of producing fine, as-solidified structures with pitting resistance similar to that of the parent, provided that an appropriate minimum beam travel speed is exceeded. The use of N{sub 2} laser trail gas increased the pitting resistance of the surface melted layer. Application of the technique to gas tungsten arc (GTA) melt runs has shown the ability to raise the pitting resistance significantly. Indeed, the use of optimized beam conditions, N{sub 2} trail gas and appropriate surface preparation prior to laser treatment increased the pitting resistance of GTA melt runs to a level approaching that of the parent material.

  7. Structural Properties and Melting of 2D-Plasma Crystals

    SciTech Connect (OSTI)

    Knapek, C.; Samsonov, D.; Zhdanov, S.; Konopka, U.; Morfill, G.E.

    2005-10-31

    Melting of a monolayer plasma crystal was induced by an electric pulse. We investigated, how structural parameters like defect fraction and correlation lengths as well as dynamical properties like the particle kinetic energy changed during the recrystallisation. As an indication of the phase transition, the change of the Lindemann parameter and the Coulomb coupling parameter were considered.

  8. Decontamination and melting of low-level waste

    SciTech Connect (OSTI)

    Clements, D.W.

    1997-03-01

    This article describes the decommissioning project of the Capenhurst Diffusion Plant in Europe. Over 99 percent of the low-level waste was successfully treated and recycled. Topics include the following: decommissioning philosophy; specialized techniques including plant pretreatment, plant dismantling, size reduction, decontamination, melting, and encapsulation of waste; recycled materials and waste stream; project safety; cost drivers and savings. 5 refs., 5 figs.

  9. Laser thermoelastic generation in metals above the melt threshold

    SciTech Connect (OSTI)

    Every, A. G.; Utegulov, Z. N.; Veres, I. A.

    2013-11-28

    An approach is presented for calculating thermoelastic generation of ultrasound in a metal plate exposed to nanosecond pulsed laser heating, sufficient to cause melting but not ablation. Detailed consideration is given to the spatial and temporal profiles of the laser pulse, penetration of the laser beam into the sample, the appearance and subsequent growth and then contraction of the melt pool, and the time dependent thermal conduction in the melt and surrounding solid throughout. The excitation of the ultrasound takes place during and shortly after the laser pulse and occurs predominantly within the thermal diffusion length of a micron or so beneath the surface. It is shown how, because of this, the output of the thermal simulations can be expressed as axially symmetric transient radial and normal surface force distributions. The epicentral displacement response to these force distributions is obtained by two methods, the one based on the elastodynamic Green's functions for plate geometry determined by the Cagniard generalized ray method and the other using a finite element numerical method. The two approaches are in very close agreement. Numerical simulations are reported on the epicentral displacement response of a 3.12 mm thick tungsten plate irradiated with a 4 ns pulsed laser beam with Gaussian spatial profile, at intensities below and above the melt threshold.

  10. Evidence for the 125 GeV Higgs boson decaying to a pair of $$\\tau$$ leptons

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Chatrchyan, Serguei

    2014-01-20

    A search for a standard model Higgs boson decaying into a pair of tau leptons is performed using events recorded by the CMS experiment at the LHC in 2011 and 2012. The dataset corresponds to an integrated luminosity of 4.9 inverse femtobarns at a centre-of-mass energy of 7 TeV and 19.7 inverse femtobarns at 8 TeV. Each tau lepton decays hadronically or leptonically to an electron or a muon, leading to six different final states for the tau-lepton pair, all considered in this analysis. An excess of events is observed over the expected background contributions, with a local significance largermore » than 3 standard deviations for m[H] values between 115 and 130 GeV. The best fit of the observed H to tau tau signal cross section for m[H] = 125 GeV is 0.78 +- 0.27 times the standard model expectation. These observations constitute evidence for the 125 GeV Higgs boson decaying to a pair of tau leptons.« less

  11. ON THE ORIGIN OF > 10 GeV PHOTONS IN GAMMA-RAY BURST AFTERGLOWS

    SciTech Connect (OSTI)

    Wang Xiangyu; Liu Ruoyu [School of Astronomy and Space Science, Nanjing University, Nanjing 210093 (China); Lemoine, Martin [Institut d'Astrophysique de paris, CNRS, UPMC, 98 bis boulevard Arago, F-75014 Paris (France)

    2013-07-10

    Fermi/LAT has detected long-lasting high-energy photons (>100 MeV) from gamma-ray bursts (GRBs), with the highest energy photons reaching about 100 GeV. One proposed scenario is that they are produced by high-energy electrons accelerated in GRB forward shocks via synchrotron radiation. We study the maximum synchrotron photon energy in this scenario, considering the properties of the microturbulence magnetic fields behind the shock, as revealed by recent particle-in-cell simulations and theoretical analyses of relativistic collisionless shocks. Due to the small-scale nature of the microturbulent magnetic field, the Bohm acceleration approximation, in which the scattering mean free path is equal to the particle Larmor radius, breaks down at such high energies. This effect leads to a typical maximum synchrotron photon of a few GeV at 100 s after the burst and this maximum synchrotron photon energy decreases quickly with time. We show that the fast decrease of the maximum synchrotron photon energy leads to a fast decay of the synchrotron flux. The 10-100 GeV photons detected after the prompt phase cannot be produced by the synchrotron mechanism. They could originate from the synchrotron self-Compton emission of the early afterglow if the circumburst density is sufficiently large, or from the external inverse Compton process in the presence of central X-ray emission, such as X-ray flares and prompt high-latitude X-ray emission.

  12. 9 GeV energy gain in a beam-driven plasma wakefield accelerator

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Litos, M.; Adli, E.; Allen, J. M.; An, W.; Clarke, C. I.; Corde, S.; Clayton, C. E.; Frederico, J.; Gessner, S. J.; Green, S. Z.; et al

    2016-02-15

    An electron beam has gained a maximum energy of 9 GeV per particle in a 1.3 m-long electron beam-driven plasma wakefield accelerator. The amount of charge accelerated in the spectral peak was 28.3 pC, and the root-mean-square energy spread was 5.0%. The mean accelerated charge and energy gain per particle of the 215 shot data set was 115 pC and 5.3 GeV, respectively, corresponding to an acceleration gradient of 4.0 GeV m-1 at the spectral peak. Moreover, the mean energy spread of the data set was 5.1%. Our results are consistent with the extrapolation of the previously reported energy gainmore » results using a shorter, 36 cm-long plasma source to within 10%, evincing a non-evolving wake structure that can propagate distances of over a meter in length. Wake-loading effects were evident in the data through strong dependencies observed between various spectral properties and the amount of accelerated charge.« less

  13. The Time of Flight Upgrade for CLAS at 12 GeV

    SciTech Connect (OSTI)

    Graham, Lewis

    2007-10-26

    The Time of Flight (TOF) system is a detection system within the CEBAF Large Acceptance Spectrometer (CLAS) at Jefferson National Accelerator Facility. CLAS, being a magnetic toroidal multi-gap spectrometer, is used in the detection of particles and their varying properties. Jefferson National Accelerator Facility is providing an incoming electron beam of energy 6 GeV that is used to probe the structure and production of these particles. The CLAS detector is currently adapted to energies of up to 6 GeV, but with recent approval it will now upgrade to energies of 12 GeV. CLAS consists of drift chambers to determine the charged particle paths, gas Cherenkov counters for electron discrimination, TOF scintillators for particle identification, and an electromagnetic calorimeter for identifying showering electrons and photons. The TOF system, which is our focus, is composed of scintillation counters at the forward angle, and covers an area of 206 meters squared. Therefore, we look to upgrade and construct the TOF system of CLAS and outline strategies of current construction, purpose for design, and outlook for the TOF system upgrade.

  14. The Time of Flight Upgrade for CLAS at 12 GeV

    SciTech Connect (OSTI)

    Lewis Graham

    2007-10-01

    The Time of Flight (TOF) system is a detection system within the CEBAF Large Acceptance Spectrometer (CLAS) at Jefferson National Accelerator Facility. CLAS, being a magnetic toroidal multi-gap spectrometer, is used in the detection of particles and their varying properties. Jefferson National Accelerator Facility is providing an incoming electron beam of energy 6 GeV that is used to probe the structure and production of these particles. The CLAS detector is currently adapted to energies of up to 6 GeV, but with recent approval it will now upgrade to energies of 12 GeV. CLAS consists of drift chambers to determine the charged particle paths, gas Cherenkov counters for electron discrimination, TOF scintillators for particle identification, and an electromagnetic calorimeter for identifying showering electrons and photons. The TOF system, which is our focus, is composed of scintillation counters at the forward angle, and covers an area of 206 meters squared. Therefore, we look to upgrade and construct the TOF system of CLAS and outline strategies of current construction, purpose for design, and outlook for the TOF system upgrade

  15. Microstructure of selective laser melted nickeltitanium

    SciTech Connect (OSTI)

    Bormann, Therese; Mller, Bert; Kessler, Anja; Thalmann, Peter

    2014-08-15

    In selective laser melting, the layer-wise local melting of metallic powder by means of a scanning focused laser beam leads to anisotropic microstructures, which reflect the pathway of the laser beam. We studied the impact of laser power, scanning speed, and laser path onto the microstructure of NiTi cylinders. Here, we varied the laser power from 56 to 100 W and the scanning speed from about 100 to 300 mm/s. In increasing the laser power, the grain width and length increased from (33 7) to (90 15) ?m and from (60 20) to (600 200) ?m, respectively. Also, the grain size distribution changed from uni- to bimodal. Ostwald-ripening of the crystallites explains the distinct bimodal size distributions. Decreasing the scanning speed did not alter the microstructure but led to increased phase transformation temperatures of up to 40 K. This was experimentally determined using differential scanning calorimetry and explained as a result of preferential nickel evaporation during the fabrication process. During selective laser melting of the NiTi shape memory alloy, the control of scanning speed allows restricted changes of the transformation temperatures, whereas controlling the laser power and scanning path enables us to tailor the microstructure, i.e. the crystallite shapes and arrangement, the extent of the preferred crystallographic orientation and the grain size distribution. - Highlights: Higher laser powers during selective laser melting of NiTi lead to larger grains. Selective laser melting of NiTi gives rise to preferred <111> orientation. The observed Ni/Ti ratio depends on the exposure time. Ostwald ripening explains the bimodal grain size distribution.

  16. Method and apparatus for improved melt flow during continuous strip casting

    DOE Patents [OSTI]

    Follstaedt, D.W.; King, E.L.; Schneider, K.C.

    1991-11-12

    The continuous casting of metal strip using the melt overflow process is improved by controlling the weir conditions in the nozzle to provide a more uniform flow of molten metal across the width of the nozzle and reducing the tendency for freezing of metal along the interface with refractory surfaces. A weir design having a sloped rear wall and tapered sidewalls and critical gap controls beneath the weir has resulted in the drastic reduction in edge tearing and a significant improvement in strip uniformity. The floor of the container vessel is preferably sloped and the gap between the nozzle and the rotating substrate is critically controlled. The resulting flow patterns observed with the improved casting process have reduced thermal gradients in the bath, contained surface slag and eliminated undesirable solidification near the discharge area by increasing the flow rates at those points. 8 figures.

  17. Method and apparatus for improved melt flow during continuous strip casting

    DOE Patents [OSTI]

    Follstaedt, Donald W.; King, Edward L.; Schneider, Ken C.

    1991-11-12

    The continuous casting of metal strip using the melt overflow process is improved by controlling the weir conditions in the nozzle to provide a more uniform flow of molten metal across the width of the nozzle and reducing the tendency for freezing of metal along the interface with refractory surfaces. A weir design having a sloped rear wall and tapered sidewalls and critical gap controls beneath the weir has resulted in the drastic reduction in edge tearing and a significant improvement in strip uniformity. The floor of the container vessel is preferably sloped and the gap between the nozzle and the rotating substrate is critically controlled. The resulting flow patterns observed with the improved casting process have reduced thermal gradients in the bath, contained surface slag and eliminated undesirable solidification near the discharge area by increasing the flow rates at those points.

  18. Microsoft PowerPoint - WIPPRecovery

    Office of Environmental Management (EM)

    Department of Energy Tsinghua Slideshow final for distribution (2) Microsoft PowerPoint - Tsinghua Slideshow final for distribution (2) PDF icon Microsoft PowerPoint - Tsinghua Slideshow final for distribution (2) More Documents & Publications Microsoft PowerPoint - Final translated version of Tsinghua Speech Idaho Operations AMWTP Fact Sheet Methane Hydrate R&D

    Innovation that Can Make a Difference Secretary Steven Chu Emirates Palace Hotel Abu Dhabi, United Arab Emirates 24

  19. Accelerating Into the Future: From 0 to GeV in a Few Centimeters (LBNL Summer Lecture Series)

    ScienceCinema (OSTI)

    Leemans, Wim [LOASIS Program, AFRD

    2011-04-28

    Summer Lecture Series 2008: By exciting electric fields in plasma-based waveguides, lasers accelerate electrons in a fraction of the distance conventional accelerators require. The Accelerator and Fusion Research Division's LOASIS program, headed by Wim Leemans, has used 40-trillion-watt laser pulses to deliver billion-electron-volt (1 GeV) electron beams within centimeters. Leemans looks ahead to BELLA, 10-GeV accelerating modules that could power a future linear collider.

  20. Accelerating Into the Future: From 0 to GeV in a Few Centimeters (LBNL Summer Lecture Series)

    ScienceCinema (OSTI)

    Leemans, Wim [LOASIS Program, AFRD

    2009-09-01

    July 8, 2008 Berkeley Lab lecture: By exciting electric fields in plasma-based waveguides, lasers accelerate electrons in a fraction of the distance conventional accelerators require. The Accelerator and Fusion Research Division's LOASIS program, headed by Wim Leemans, has used 40-trillion-watt laser pulses to deliver billion-electron-volt (1 GeV) electron beams within centimeters. Leemans looks ahead to BELLA, 10-GeV accelerating modules that could power a future linear collider.

  1. Advanced Melting Technologies: Energy Saving Concepts and Opportunities for the Metal Casting Industry

    SciTech Connect (OSTI)

    none,

    2005-11-01

    The study examines current and emerging melting technologies and discusses their technical barriers to scale-up issues and research needed to advance these technologies, improving melting efficiency, lowering metal transfer heat loss, and reducing scrap.

  2. END POINT IMPLEMENTATION EXAMPLES End Point Implementation Examples

    Office of Environmental Management (EM)

    POINT IMPLEMENTATION EXAMPLES End Point Implementation Examples General Cleanup Decontamination Decisions Control of Contamination Nuclear Material Residuals Structures and Roofs Electrical Systems Ventilation Fire Protection Systems Drainage, Sumps, and Flood Protection Process Systems and Equipment Utility and Service Systems and Equipment Gloveboxes, Hot Cells, and Hoods Worker Support and Protection during Post-Deactivation S&M Disposal, Reclamation, or Sale of Commodities General

  3. Method of melting metals to reduce contamination from crucibles

    DOE Patents [OSTI]

    Banker, John G.; Wigginton, Hubert L.

    1977-01-01

    Contamination of metals from crucible materials during melting operations is reduced by coating the interior surface of the crucible with a ceramic non-reactive with the metallic charge and disposing a metal liner formed from a portion of the metallic charge within the coated crucible. The liner protects the ceramic coating during loading of the remainder of the charge and expands against the ceramic coating during heat-up to aid in sintering the coating.

  4. Advanced coal-fired glass melting development program

    SciTech Connect (OSTI)

    Not Available

    1991-05-01

    The objective of Phase 1 of the current contract was to verify the technical feasibility and economic benefits of Vortec's advanced combustion/melting technology using coal as the fuel of choice. The objective of the Phase 2 effort was to improve the performance of the primary components and demonstrate the effective operation of a subscale process heater system integrated with a glass separator/reservoir. (VC)

  5. Melt-spin processing of high {Tc} oxide superconductors

    SciTech Connect (OSTI)

    Folkerts, T.J.; Wu, Hengning; Yoo, S.I.; Merkle, B.D.; Arrasmith, S.R.; Dennis, K.W.; Kramer, M.J.; McCallum, R.W.

    1993-10-01

    Containerless techniques offer distinct advantages for the melt processing of oxide superconductors. The majority of these materials form liquids which are highly reactive with standard crucible materials such as Al{sub 2}O{sub 3} and Pt, resulting in non-negligible contamination. We have developed a containerless melt-spin processing technique where in 50--400 {mu}m particles of REBa{sub 2}Cu{sub 3}O{sub 7-x} high temperature oxide superconductors are melted in free fall through a vertical tube furnace and quenched onto a copper wheel. Previously this method has been successful in producing glasses of NdBa{sub 2}Cu{sub 3}O{sub 7-x} and GdBa{sub 2}Cu{sub 3}O{sub 7-x}. In this report we discuss the results for both stoichiometric and non-stoichiometric YBa{sub 2}Cu{sub 3}O{sub 7-x} (Y123). Thermal, microstructural, and superconducting characterization of both the as-quenched and the annealed materials will be presented.

  6. Method for detecting point mutations in DNA utilizing fluorescence energy transfer

    DOE Patents [OSTI]

    Parkhurst, Lawrence J.; Parkhurst, Kay M.; Middendorf, Lyle

    2001-01-01

    A method for detecting point mutations in DNA using a fluorescently labeled oligomeric probe and Forster resonance energy transfer (FRET) is disclosed. The selected probe is initially labeled at each end with a fluorescence dye, which act together as a donor/acceptor pair for FRET. The fluorescence emission from the dyes changes dramatically from the duplex stage, wherein the probe is hybridized to the complementary strand of DNA, to the single strand stage, when the probe is melted to become detached from the DNA. The change in fluorescence is caused by the dyes coming into closer proximity after melting occurs and the probe becomes detached from the DNA strand. The change in fluorescence emission as a function of temperature is used to calculate the melting temperature of the complex or T.sub.m. In the case where there is a base mismatch between the probe and the DNA strand, indicating a point mutation, the T.sub.m has been found to be significantly lower than the T.sub.m for a perfectly match probelstand duplex. The present invention allows for the detection of the existence and magnitude of T.sub.m, which allows for the quick and accurate detection of a point mutation in the DNA strand and, in some applications, the determination of the approximate location of the mutation within the sequence.

  7. Measurements of $$ep \\to e^\\prime π^+n$$ at W = 1.6 - 2.0 GeV and extraction of nucleon resonance electrocouplings at CLAS

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Park, Kijun; Aznauryan, I. G.; Burkert, V. D.; Adhikari, K. P.; Amaryan, M. J.; Pereira, S. Anefalos; Avakian, H.; Battaglieri, M.; Badui, R.; Bedlinskiy, I.; et al

    2015-04-01

    Differential cross sections of the exclusive processmore » $$e p \\to e^\\prime \\pi^+ n$$ were measured with good precision in the range of the photon virtuality $Q^2 = 1.8 - 4.5$ GeV$^2$, and the invariant mass range of the $$\\pi^+ n$$ final state W = 1.6 - 2.0 GeV using the CEBAF Large Acceptance Spectrometer. Data were collected with nearly complete coverage in the azimuthal and polar angles of the $$n\\pi^+$$ center-of-mass system. More than 37,000 cross section points were measured. The contributions of the isospin $$I = {1\\over 2}$$ resonances $$N(1675){5\\over 2}^-$$, $$N(1680){5\\over 2}^+$$ and $$N(1710){1\\over 2}^+$$ were extracted at different values of $Q^2$ using a single-channel, energy-dependent resonance amplitude analysis. Two different approaches, the unitary isobar model and the fixed-$t$ dispersion relations, were employed in the analysis. We observe significant strength of the $$N(1675){5\\over 2}^-$$ in the $$A_{1/2}$$ amplitude, which is in strong disagreement with quark models that predict both transverse amplitudes to be strongly suppressed. For the $$N(1680){5\\over 2}^+$$ we observe a slow changeover from the dominance of the $$A_{3/2}$$ amplitude at the real photon point ($Q^2=0$) to a $Q^2$ where $$A_{1/2}$$ begins to dominate. The scalar amplitude $$S_{1/2}$$ drops rapidly with $Q^2$ consistent with quark model prediction. For the $$N(1710){1\\over 2}^+$$ resonance our analysis shows significant strength for the $$A_{1/2}$$ amplitude at $Q^2 < 2.5$ GeV$^2$.« less

  8. 9 GeV energy gain in a beam-driven plasma wakefield accelerator

    Office of Scientific and Technical Information (OSTI)

    9 GeV energy gain in a beam-driven plasma wakefield accelerator This content has been downloaded from IOPscience. Please scroll down to see the full text. View the table of contents for this issue, or go to the journal homepage for more Download details: IP Address: 192.107.175.1 This content was downloaded on 27/04/2016 at 15:27 iopscience.iop.org Please note that terms and conditions apply. Plasma Physics and Controlled Fusion OPEN ACCESS IOP Publishing Plasma Phys. Control. Fusion 58 (2016)

  9. A Bunch Length Monitor for JLab 12 GeV Upgrade

    SciTech Connect (OSTI)

    Ahmad, Mahmoud Mohamad Ali; Freyberger, Arne P.; Gubeli, Joseph F.; Krafft, Geoffrey A.

    2013-12-01

    A continuous non-invasive bunch length monitor for the 12 GeV upgrade of Jefferson Lab will be used to determine the bunch length of the beam. The measurement will be done at the fourth dipole of the injector chicane at 123 MeV using the coherent synchrotron light emitted from the dipole. The estimated bunch length is 333 fs. A vacuum chamber will be fabricated and a Radiabeam real time interferometer will be used. In this paper, background, the estimated calculations and the construction of the chamber will be discussed.

  10. Application of JLab 12GeV helium refrigeration system for the FRIB accelerator at MSU

    SciTech Connect (OSTI)

    Ganni, Venkatarao; Knudsen, Peter N.; Arenius, Dana M.; Casagrande, Fabio

    2014-01-01

    The planned approach to have a turnkey helium refrigeration system for the MSU-FRIB accelerator system, encompassing the design, fabrication, installation and commissioning of the 4.5-K refrigerator cold box(es), cold compression system, warm compression system, gas management, oil removal and utility/ancillary systems, was found to be cost prohibitive. Following JLab’s suggestion, MSU-FRIB accelerator management made a formal request to evaluate the applicability of the recently designed 12GeV JLab cryogenic system for this application. The following paper will outline the findings and the planned approach for the FRIB helium refrigeration system.

  11. Application of JLab 12GeV helium refrigeration system for the FRIB accelerator at MSU

    SciTech Connect (OSTI)

    Ganni, V.; Knudsen, P.; Arenius, D.; Casagrande, F.

    2014-01-29

    The planned approach to have a turnkey helium refrigeration system for the MSU-FRIB accelerator system, encompassing the design, fabrication, installation and commissioning of the 4.5-K refrigerator cold box(es), cold compression system, warm compression system, gas management, oil removal and utility/ancillary systems, was found to be cost prohibitive. Following JLab’s suggestion, MSU-FRIB accelerator management made a formal request to evaluate the applicability of the recently designed 12GeV JLab cryogenic system for this application. The following paper will outline the findings and the planned approach for the FRIB helium refrigeration system.

  12. Higgs portal vector dark matter for GeV scale ?-ray excess from galactic center

    SciTech Connect (OSTI)

    Ko, P.; Park, Wan-Il; Tang, Yong E-mail: wipark@kias.re.kr

    2014-09-01

    We show that the GeV scale ?-ray excess from the direction of the Galactic Center can be naturally explained by the pair annihilation of Abelian vector dark matter (VDM) into a pair of dark Higgs bosons (VV???), followed by the subsequent decay of ? into b b-bar or ??-bar . All the processes are described by a renormalizable VDM model with the Higgs portal, which is naturally flavor-dependent. Some parameter space of this scenario can be tested at the near future direct dark matter search experiments such as LUX and XENON1T.

  13. SPIN Effects, QCD, and Jefferson Laboratory with 12 GeV electrons

    SciTech Connect (OSTI)

    Prokudin, Alexey

    2013-11-01

    QCD and Spin physics are playing important role in our understanding of hadron structure. I will give a short overview of origin of hadron structure in QCD and highlight modern understanding of the subject. Jefferson Laboratory is undergoing an upgrade that will increase the energy of electron beam up to 12 GeV. JLab is one of the leading facilities in nuclear physics studies and once operational in 2015 JLab 12 will be crucial for future of nuclear physics. I will briefly discuss future studies in four experimental halls of Jefferson Lab.

  14. Removing a sheet from the surface of a melt using gas jets

    DOE Patents [OSTI]

    Kellerman, Peter L; Thronson, Gregory D; Sun, Dawei

    2014-04-01

    In one embodiment, a sheet production apparatus comprises a vessel configured to hold a melt of a material. A cooling plate is disposed proximate the melt and is configured to form a sheet of the material on the melt. A first gas jet is configured to direct a gas toward an edge of the vessel. A sheet of a material is translated horizontally on a surface of the melt and the sheet is removed from the melt. The first gas jet may be directed at the meniscus and may stabilize this meniscus or increase local pressure within the meniscus.

  15. PowerPoint Presentation | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    PowerPoint Presentation PowerPoint Presentation PDF icon PowerPoint Presentation More Documents & Publications 2012 Quality Assurance Improvement Project Plan EM QA Working Group...

  16. Star Point Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Point Wind Farm Jump to: navigation, search Name Star Point Wind Farm Facility Star Point Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility Status In...

  17. Cedar Point Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Cedar Point Wind Farm Jump to: navigation, search Name Cedar Point Wind Farm Facility Cedar Point Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility Status...

  18. Energy dependence of Kπ, pπ and Kp fluctuations in Au+Au collisions from √sNN=7.7 to 200 GeV

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Adamczyk, L.

    2015-08-07

    A search for the quantum chromodynamics (QCD) critical point was performed by the STAR experiment at the Relativistic Heavy Ion Collider, using dynamical fluctuations of unlike particle pairs. Heavy ion collisions were studied over a large range of collision energies with homogeneous acceptance and excellent particle identification, covering a significant range in the QCD phase diagram where a critical point may be located. Dynamical Kπ, pπ, and Kp fluctuations as measured by the STAR experiment in central 0–5% Au+Au collisions from center-of-mass collision energies √sNN=7.7 to 200 GeV are presented. The observable νdyn was used to quantify the magnitude ofmore » the dynamical fluctuations in event-by-event measurements of the Kπ, pπ, and Kp pairs. The energy dependences of these fluctuations from central 0–5% Au+Au collisions all demonstrate a smooth evolution with collision energy.« less

  19. Energy dependence of Kπ, pπ and Kp fluctuations in Au+Au collisions from √sNN=7.7 to 200 GeV

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Adamczyk, L.

    2015-08-07

    A search for the quantum chromodynamics (QCD) critical point was performed by the STAR experiment at the Relativistic Heavy Ion Collider, using dynamical fluctuations of unlike particle pairs. Heavy ion collisions were studied over a large range of collision energies with homogeneous acceptance and excellent particle identification, covering a significant range in the QCD phase diagram where a critical point may be located. Dynamical Kπ, pπ, and Kp fluctuations as measured by the STAR experiment in central 0–5% Au+Au collisions from center-of-mass collision energies √sNN=7.7 to 200 GeV are presented. The observable νdyn was used to quantify the magnitude ofmore »the dynamical fluctuations in event-by-event measurements of the Kπ, pπ, and Kp pairs. The energy dependences of these fluctuations from central 0–5% Au+Au collisions all demonstrate a smooth evolution with collision energy.« less

  20. Right-handed neutrino production rate at T>160 GeV

    SciTech Connect (OSTI)

    Ghisoiu, I.; Laine, M. E-mail: laine@itp.unibe.ch

    2014-12-01

    The production rate of right-handed neutrinos from a Standard Model plasma at a temperature above a hundred GeV has previously been evaluated up to NLO in Standard Model couplings (g ? 2/3) in relativistic (M ? ?T) and non-relativistic regimes (M >> ?T), and up to LO in an ultrarelativistic regime (M ?< gT). The last result necessitates an all-orders resummation of the loop expansion, accounting for multiple soft scatterings of the nearly light-like particles participating in 1 ? 2 reactions. In this paper we suggest how the regimes can be interpolated into a result applicable for any right-handed neutrino mass and at all temperatures above 160GeV. The results can also be used for determining the lepton number washout rate in models containing right-handed neutrinos. Numerical results are given in a tabulated form permitting for their incorporation into leptogenesis codes. We note that due to effects from soft Higgs bosons there is a narrow intermediate regime around (M?g{sup 1/2}T in which our interpolation is phenomenological and a more precise study would be welcome.

  1. PILAC: A pion linac facility for 1-GeV pion physics at LAMPF

    SciTech Connect (OSTI)

    Thiessen, H.A.; White, D.H.

    1991-11-22

    A design study for a Pion Linac (PILAC) at LAMPF is under way at Los Alamos. We present here a reference design for a system of pion source, linac, and high-resolution beam line and spectrometer that will provide 10{sup 9} pions per second on target and 200-keV resolution for the ({pi}{sup +}, K{sup +}) reaction at 0.92 GeV. A general-purpose beam line that delivers both positive and negative pions in the energy range 0.4-1.1 GeV is included, thus opening up the possibility of a broad experimental program as is discussed in this report. A kicker-based beam sharing system allows delivery of beam to both beam lines simultaneously with independent sign and energy control. Because the pion linac acts like an rf particle separator, all beams produced by PILAC will be free of electron (or positron) and proton contamination. 4 refs., 6 figs.

  2. Right-handed neutrino production rate at T>160 GeV

    SciTech Connect (OSTI)

    Ghisoiu, I.; Laine, M.

    2014-12-16

    The production rate of right-handed neutrinos from a Standard Model plasma at a temperature above a hundred GeV has previously been evaluated up to NLO in Standard Model couplings (g∼2/3) in relativistic (M∼πT) and non-relativistic regimes (M≫πT), and up to LO in an ultrarelativistic regime (M≲gT). The last result necessitates an all-orders resummation of the loop expansion, accounting for multiple soft scatterings of the nearly light-like particles participating in 1↔2 reactions. In this paper we suggest how the regimes can be interpolated into a result applicable for any right-handed neutrino mass and at all temperatures above 160 GeV. The results can also be used for determining the lepton number washout rate in models containing right-handed neutrinos. Numerical results are given in a tabulated form permitting for their incorporation into leptogenesis codes. We note that due to effects from soft Higgs bosons there is a narrow intermediate regime around M∼g{sup 1/2}T in which our interpolation is phenomenological and a more precise study would be welcome.

  3. Environmental assessment of the proposed 7-GeV Advanced Photon Source

    SciTech Connect (OSTI)

    Not Available

    1990-02-01

    The potential environmental impacts of construction and operation of a 6- to 7-GeV synchrotron radiation source known as the 7-GeV Advanced Photon Source at Argonne National Laboratory were evaluated. Key elements considered include on- and off-site radiological effects; socioeconomic effects; and impacts to aquatic and terrestrial flora and fauna, wetlands, water and air quality, cultural resources, and threatened or endangered species. Also incorporated are the effects of decisions made as a result of the preliminary design (Title I) being prepared. Mitigation plans to further reduce impacts are being developed. These plans include coordination with the US Army Corps of Engineers (COE) and other responsible agencies to mitigate potential impacts to wetlands. This mitigation includes providing habitat of comparable ecological value to assure no net loss of wetlands. These mitigation actions would be permitted and monitored by COE. A data recovery plan to protect cultural resources has been developed and approved, pursuant to a Programmatic Agreement among the US Department of Energy, the Advisory Council on Historic Preservation, and the Illinois State Historic Preservation Office. Applications for National Emission Standard for Hazardous Air Pollutants (NESHAP) and air emissions permits have been submitted to the US Environmental Protection Agency (EPA) and the Illinois Environmental Protection Agency (IEPA), respectively. 71 refs., 10 figs., 11 tabs.

  4. Energy dependence of Kπ, pπ and Kp fluctuations in Au+Au collisions from √sNN=7.7 to 200 GeV

    SciTech Connect (OSTI)

    Adamczyk, L.

    2015-08-07

    A search for the quantum chromodynamics (QCD) critical point was performed by the STAR experiment at the Relativistic Heavy Ion Collider, using dynamical fluctuations of unlike particle pairs. Heavy ion collisions were studied over a large range of collision energies with homogeneous acceptance and excellent particle identification, covering a significant range in the QCD phase diagram where a critical point may be located. Dynamical Kπ, pπ, and Kp fluctuations as measured by the STAR experiment in central 0–5% Au+Au collisions from center-of-mass collision energies √sNN=7.7 to 200 GeV are presented. The observable νdyn was used to quantify the magnitude of the dynamical fluctuations in event-by-event measurements of the Kπ, pπ, and Kp pairs. The energy dependences of these fluctuations from central 0–5% Au+Au collisions all demonstrate a smooth evolution with collision energy.

  5. Method to decrease loss of aluminum and magnesium melts

    DOE Patents [OSTI]

    Hryn, John N. (Naperville, IL); Pellin, Michael J. (Naperville, IL); Calaway, Jr., Wallis F. (Woodridge, IL); Moore, Jerry F. (Naperville, IL); Krumdick, Gregory K. (Crete, IL)

    2002-01-01

    A method to minimize oxidation of metal during melting processes is provided, the method comprising placing solid phase metal into a furnace environ-ment, transforming the solid-phase metal into molten metal phase having a molten metal surface, and creating a barrier between the surface and the environment. Also provided is a method for isolating the surface of molten metal from its environment, the method comprising confining the molten metal to a controlled atmos-phere, and imposing a floating substrate between the surface and the atmosphere.

  6. Method for harvesting single crystals from a peritectic melt

    DOE Patents [OSTI]

    Todt, V.R.; Sengupta, S.; Shi, D.

    1996-08-27

    A method of preparing single crystals is disclosed. The method of preparation involves preparing precursor materials of a particular composition, heating the precursor material to achieve a peritectic mixture of peritectic liquid and crystals, cooling the peritectic mixture to quench directly the mixture on a porous, wettable inert substrate to wick off the peritectic liquid, leaving single crystals on the porous substrate. Alternatively, the peritectic mixture can be cooled to a solid mass and reheated on a porous, inert substrate to melt the matrix of peritectic fluid while leaving the crystals unmelted, allowing the wicking away of the peritectic liquid. 2 figs.

  7. Method for harvesting single crystals from a peritectic melt

    DOE Patents [OSTI]

    Todt, Volker R.; Sengupta, Suvankar; Shi, Donglu

    1996-01-01

    A method of preparing single crystals. The method of preparation involves preparing precursor materials of a particular composition, heating the precursor material to achieve a peritectic mixture of peritectic liquid and crystals, cooling the peritectic mixture to quench directly the mixture on a porous, wettable inert substrate to wick off the peritectic liquid, leaving single crystals on the porous substrate. Alternatively, the peritectic mixture can be cooled to a solid mass and reheated on a porous, inert substrate to melt the matrix of peritectic fluid while leaving the crystals unmelted, allowing the wicking away of the peritectic liquid.

  8. Core melt/coolant interactions: modelling. [PWR; BWR

    SciTech Connect (OSTI)

    Berman, M.; McGlaun, J.M.; Corradini, M.L.

    1983-01-01

    If there is not adequate cooling water in the core of a light-water reactor (LWR), the fission product decay heat would eventually cause the reactor fuel and cladding to melt. This could lead to slumping of the molten core materials into the lower plenum of the reactor vessel, possibly followed by failure of the vessel wall and pouring of the molten materials into the reactor cavity. When the molten core materials enter either region, there is a strong possibility of molten core contacting water. This paper focuses on analysis of recent FITS experiments, mechanistic and probabilistic model development, and the application of these models to reactor considerations.

  9. Hydrostatic extrusion of Cu-Ag melt spun ribbon

    DOE Patents [OSTI]

    Hill, M.A.; Bingert, J.F.; Bingert, S.A.; Thoma, D.J.

    1998-09-08

    The present invention provides a method of producing high-strength and high-conductance copper and silver materials comprising the steps of combining a predetermined ratio of the copper with the silver to produce a composite material, and melt spinning the composite material to produce a ribbon of copper and silver. The ribbon of copper and silver is heated in a hydrogen atmosphere, and thereafter die pressed into a slug. The slug then is placed into a high-purity copper vessel and the vessel is sealed with an electron beam. The vessel and slug then are extruded into wire form using a cold hydrostatic extrusion process. 5 figs.

  10. Hydrostatic extrusion of Cu-Ag melt spun ribbon

    DOE Patents [OSTI]

    Hill, Mary Ann; Bingert, John F.; Bingert, Sherri A.; Thoma, Dan J.

    1998-01-01

    The present invention provides a method of producing high-strength and high-conductance copper and silver materials comprising the steps of combining a predetermined ratio of the copper with the silver to produce a composite material, and melt spinning the composite material to produce a ribbon of copper and silver. The ribbon of copper and silver is heated in a hydrogen atmosphere, and thereafter die pressed into a slug. The slug then is placed into a high-purity copper vessel and the vessel is sealed with an electron beam. The vessel and slug then are extruded into wire form using a cold hydrostatic extrusion process.

  11. PowerPoint Presentation Templates

    Broader source: Energy.gov [DOE]

    The Office of Energy Efficiency and Renewable Energy (EERE) PowerPoint templates can be used for all EERE presentations. They provide a consistent look and feel for all presentations given by the EERE's offices. The templates below do not include any content or material.

  12. Exclusive Photoproduction of Charged Pions in Hydrogen and Deuterium from 1 to 6 GeV

    SciTech Connect (OSTI)

    Lingyan Zhu

    2004-02-28

    The study of the transition region in the description of exclusive processes and hadron structure, from the nucleon-meson degrees of freedom in meson-exchange models at low energy to the quark-gluon degrees of freedom in pQCD at high energy, is essential for us to understand the strong interaction. The differential cross section measurements for exclusive reactions at fixed center-of-mass angles enable us to investigate the constituent counting rule, which explicitly connects the quark-gluon degrees of freedom to the energy dependence of differential cross sections. JLab Experiment E94-104 was carried out in Hall A with two high resolution spectrometers. It included the coincidence cross section measurement for the [gamma]n --> pi{sup -}[p] process with a deuterium target and the singles measurement for the [gamma]p --> pi{sup +}[n] process with a hydrogen target. The untagged real photons were generated by the electron beam impinging on a copper radiator. The photon energies ranged from 1.1 to 5.5 GeV, corresponding to the center-of-mass energies from 1.7 to 3.4 GeV. The pion center-of-mass angles were fixed at 50 deg, 70 deg, 90 deg, and also 100 deg, 110 deg at a few energies. The JLab E94-104 data presented in this thesis contain four interesting features. The data exhibit a global scaling behavior for both [pi]{sup -} and [pi]{sup +} photoproduction at high energies and high transverse momenta, consistent with the constituent counting rule and the existing [pi]{sup +} photoproduction data. This implies that the quark-gluon degrees of freedom start to play a role at this energy scale. The data suggests possible substructure of the scaling behavior, which might be oscillations around the scaling value. There are several possible mechanisms that can cause oscillations, for example the one associated with the generalized constituent counting rule involving quark orbital angular momentum. The data show an enhancement in the scaled cross section at center-of-mass energy near 2.2 GeV, where baryon resonances are not as well known as those at low energies. The differential cross section ratios for exclusive [gamma]n --> pi{sup -}[p] to [gamma]p --> pi{sup +}[n] process at [theta]{sub cm} = 90 deg start to show consistency with the prediction based on one-hard-gluon-exchange diagrams at high energies.

  13. Microwires fabricated by glass-coated melt spinning

    SciTech Connect (OSTI)

    Zhao, Y. Y.; Li, H.; Hao, H. Y.; Li, M.; Zhang, Y.; Liaw, P. K.

    2013-07-15

    The glass-coated melt spinning method offers a route for the manufacture of metal filaments with a few micrometers in diameter in a single operation directly from the melt. Cobalt-based amorphous wires, Cu-15.0 atomic percent (at. %) Sn shape-memory wires, and Ni{sub 2}MnGa (atomic percent) ferromagnetic wires were successfully produced by this method. The cobalt-based amorphous wire is flexible, and Cu-15.0 at. % Sn shape-memory wires have the tensile elongation of 14%. However, because of chemical reaction with glass and oxidation, it is hard to make CuAlNi shape-memory wires and NiNbSn amorphous wires. Conditions for preparing these materials were summarized, and the differences of the solidification processes among glass-coated amorphous cobalt-based wires, Cu-15.0 at. % Sn shape-memory wires, and Ni{sub 2}MnGa wires were analyzed and discussed.

  14. Quantum Hooke's Law to classify pulse laser induced ultrafast melting

    SciTech Connect (OSTI)

    Hu, Hao; Ding, Hepeng; Liu, Feng

    2015-02-03

    Ultrafast crystal-to-liquid phase transition induced by femtosecond pulse laser excitation is an interesting material's behavior manifesting the complexity of light-matter interaction. There exist two types of such phase transitions: one occurs at a time scale shorter than a picosecond via a nonthermal process mediated by electron-hole plasma formation; the other at a longer time scale via a thermal melting process mediated by electron-phonon interaction. However, it remains unclear what material would undergo which process and why? Here, by exploiting the property of quantum electronic stress (QES) governed by quantum Hooke's law, we classify the transitions by two distinct classes of materials: the faster nonthermal process can only occur in materials like ice having an anomalous phase diagram characterized with dTm/dP < 0, where Tm is the melting temperature and P is pressure, above a high threshold laser fluence; while the slower thermal process may occur in all materials. Especially, the nonthermal transition is shown to be induced by the QES, acting like a negative internal pressure, which drives the crystal into a super pressing state to spontaneously transform into a higher-density liquid phase. Our findings significantly advance fundamental understanding of ultrafast crystal-to-liquid phase transitions, enabling quantitative a priori predictions.

  15. Quantum Hooke's Law to classify pulse laser induced ultrafast melting

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Hu, Hao; Ding, Hepeng; Liu, Feng

    2015-02-03

    Ultrafast crystal-to-liquid phase transition induced by femtosecond pulse laser excitation is an interesting material's behavior manifesting the complexity of light-matter interaction. There exist two types of such phase transitions: one occurs at a time scale shorter than a picosecond via a nonthermal process mediated by electron-hole plasma formation; the other at a longer time scale via a thermal melting process mediated by electron-phonon interaction. However, it remains unclear what material would undergo which process and why? Here, by exploiting the property of quantum electronic stress (QES) governed by quantum Hooke's law, we classify the transitions by two distinct classes ofmore » materials: the faster nonthermal process can only occur in materials like ice having an anomalous phase diagram characterized with dTm/dP < 0, where Tm is the melting temperature and P is pressure, above a high threshold laser fluence; while the slower thermal process may occur in all materials. Especially, the nonthermal transition is shown to be induced by the QES, acting like a negative internal pressure, which drives the crystal into a “super pressing” state to spontaneously transform into a higher-density liquid phase. Our findings significantly advance fundamental understanding of ultrafast crystal-to-liquid phase transitions, enabling quantitative a priori predictions.« less

  16. Co-gasification of municipal solid waste and material recovery in a large-scale gasification and melting system

    SciTech Connect (OSTI)

    Tanigaki, Nobuhiro; Manako, Kazutaka; Osada, Morihiro

    2012-04-15

    Highlights: Black-Right-Pointing-Pointer This study evaluates the effects of co-gasification of MSW with MSW bottom ash. Black-Right-Pointing-Pointer No significant difference between MSW treatment with and without MSW bottom ash. Black-Right-Pointing-Pointer PCDD/DFs yields are significantly low because of the high carbon conversion ratio. Black-Right-Pointing-Pointer Slag quality is significantly stable and slag contains few hazardous heavy metals. Black-Right-Pointing-Pointer The final landfill amount is reduced and materials are recovered by DMS process. - Abstract: This study evaluates the effects of co-gasification of municipal solid waste with and without the municipal solid waste bottom ash using two large-scale commercial operation plants. From the viewpoint of operation data, there is no significant difference between municipal solid waste treatment with and without the bottom ash. The carbon conversion ratios are as high as 91.7% and 95.3%, respectively and this leads to significantly low PCDD/DFs yields via complete syngas combustion. The gross power generation efficiencies are 18.9% with the bottom ash and 23.0% without municipal solid waste bottom ash, respectively. The effects of the equivalence ratio are also evaluated. With the equivalence ratio increasing, carbon monoxide concentration is decreased, and carbon dioxide and the syngas temperature (top gas temperature) are increased. The carbon conversion ratio is also increased. These tendencies are seen in both modes. Co-gasification using the gasification and melting system (Direct Melting System) has a possibility to recover materials effectively. More than 90% of chlorine is distributed in fly ash. Low-boiling-point heavy metals, such as lead and zinc, are distributed in fly ash at rates of 95.2% and 92.0%, respectively. Most of high-boiling-point heavy metals, such as iron and copper, are distributed in metal. It is also clarified that slag is stable and contains few harmful heavy metals such as lead. Compared with the conventional waste management framework, 85% of the final landfill amount reduction is achieved by co-gasification of municipal solid waste with bottom ash and incombustible residues. These results indicate that the combined production of slag with co-gasification of municipal solid waste with the bottom ash constitutes an ideal approach to environmental conservation and resource recycling.

  17. Thermal sprayed composite melt containment tubular component and method of making same

    DOE Patents [OSTI]

    Besser, Matthew F. (Urbandale, IA); Terpstra, Robert L. (Ames, IA); Sordelet, Daniel J. (Ames, IA); Anderson, Iver E. (Ames, IA)

    2002-03-19

    A tubular thermal sprayed melt containment component for transient containment of molten metal or alloy wherein the tubular member includes a thermal sprayed inner melt-contacting layer for contacting molten metal or alloy to be processed, a thermal sprayed heat-generating layer deposited on the inner layer, and an optional thermal sprayed outer thermal insulating layer. The thermal sprayed heat-generating layer is inductively heated as a susceptor of an induction field or electrical resistively heated by passing electrical current therethrough. The tubular thermal sprayed melt containment component can comprise an elongated melt pour tube of a gas atomization apparatus where the melt pour tube supplies molten material from a crucible to an underlying melt atomization nozzle.

  18. Annex to 7-GeV Advanced Photon Source Conceptual Design Report

    SciTech Connect (OSTI)

    Not Available

    1988-05-01

    The Annex to the 7-GeV Advanced Photon Source Conceptual Design Report updates the Conceptual Design Report of 1987 (CDR-87) to include the results of further optimization and changes of the design during the past year. The design changes can be summarized as affecting three areas: the accelerator system, conventional facilities, and experimental systems. Most of the changes in the accelerator system result from inclusion of a positron accumulator ring (PAR), which was added at the suggestion of the 1987 DOE Review Committee, to speed up the filling rate of the storage ring. The addition of the PAR necessitates many minor changes in the linac system, the injector synchrotron, and the low-energy beam transport lines. 63 figs., 18 tabs.

  19. FMEA on the superconducting torus for the Jefferson Lab 12 GeV accelerator upgrade

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Ghoshal, Probir K.; Biallas, George H.; Fair, Ruben J.; Rajput-Ghoshal, Renuka; Schneider, William J.; Legg, Robert A.; Kashy, David H.; Hogan, John P.; Wiseman, Mark A.; Luongo, Cesar; et al

    2015-01-16

    As part of the Jefferson Lab 12GeV accelerator upgrade project, Hall B requires two conduction cooled superconducting magnets. One is a magnet system consisting of six superconducting trapezoidal racetrack-type coils assembled in a toroidal configuration and the second is an actively shielded solenoidal magnet system consisting of 5 coils. Both magnets are to be wound with Superconducting Super Collider-36 NbTi strand Rutherford cable soldered into a copper channel. This paper describes the various failure modes in torus magnet along with the failure modes that could be experienced by the torus and its interaction with the solenoid which is located inmore » close proximity.« less

  20. Parameter choices for a muon recirculating linear accelerator from 5 to 63 GeV

    SciTech Connect (OSTI)

    Berg, J. S.

    2014-06-19

    A recirculating linear accelerator (RLA) has been proposed to accelerate muons from 5 to 63 GeV for a muon collider. It should be usable both for a Higgs factory and as a stage for a higher energy collider. First, the constraints due to the beam loading are computed. Next, an expression for the longitudinal emittance growth to lowest order in the longitudinal emittance is worked out. After finding the longitudinal expression, a simplified model that describes the arcs and their approximate expression for the time of flight dependence on energy in those arcs is found. Finally, these results are used to estimate the parameters required for the RLA arcs and the linac phase.

  1. Commissioning of helium compression system for the 12 GeV refrigerator

    SciTech Connect (OSTI)

    Knudsen, Peter N.; Ganni, Venkatarao; Dixon, Kelly D.; Norton, Robert O.; Creel, Jonathan D.; Arenius, Dana M.

    2014-01-01

    The compressor system used for the Jefferson Lab (JLab) 12 GeV upgrade, also known as the CHL-2 compressor system, incorporates many design changes to the typical compressor skid design to improve the efficiency, reliability and maintainability from previous systems. These include a considerably smaller bulk oil separator design that does not use coalescing elements/media, automated control of cooling oil injection based on the helium discharge temperature, a helium after-cooler design that is designed for and promotes coalescing of residual oil and a variable speed bearing oil pump to reduce oil bypass. The CHL-2 helium compression system has five compressors configured with four pressure levels that supports the three pressure levels in the cold box. This paper will briefly review several of these improvements and discuss some of the recent commissioning results.

  2. Exclusive pi^0 electroproduction at W > 2 GeV with CLAS

    SciTech Connect (OSTI)

    Bedlinskiy, I.; Kubarovsky, V.; Niccolai, S.; Stoler, P.; Adhikari, K.P.; Anderson, M.D.; Pereira, S. Anefalos; Avakian, H.; Ball, J.; Baltzell, N.A.; Battaglieri, M.; Batourine, V.; Biselli, A.S.; Boiarinov, S.; Bono, J.; Briscoe, W.J.; Brooks, W.K.; Burkert, V.D.; Carman, D.S.; Celentano, A.; Chandavar, S.; Colaneri, L.; Cole, P.L.; Contalbrigo, M.; Cortes, O.; Crede, V.; D'Angelo, A.; Dashyan, N.; De Vita, R.; De Sanctis, E.; Deur, A.; Djalali, C.; Doughty, D.; Dupre, R.; Egiyan, H.; El Alaoui, A.; El Fassi, L.; Elouadrhiri, L.; Eugenio, P.; Fedotov, G.; Fegan, S.; Fleming, J.A.; Forest, T.A.; Garillon, B.; Garcon, M.; Gavalian, G.; Gevorgyan, N.; Ghandilyan, Y.; Gilfoyle, G.P.; Giovanetti, K.L.; Girod, F.X.; Golovatch, E.; Gothe, R.W.; Griffioen, K.A.; Guegan, B.; Guo, L.; Hafidi, K.; Hakobyan, H.; Harrison, N.; Hattawy, M.; Hicks, K.; Holtrop, M.; Ireland, D.G.; Ishkhanov, B.S.; Isupov, E.L.; Jenkins, D.; Jo, H.S.; Joo, K.; Keller, D.; Khandaker, M.; Kim, A.; Kim, W.; Klein, A.; Klein, F.J.; Koirala, S.; Kuhn, S.E.; Kuleshov, S.V.; Lenisa, P.; Levine, W.I.; Livingston, K.; Lu, H.Y.; MacGregor, I.J.D.; Markov, N.; Mayer, M.; McKinnon, B.; Mirazita, M.; Mokeev, V.; Montgomery, R.A.; Moody, C.I.; Moutarde, H.; Movsisyan, A; Munoz Camacho, C.; Nadel-Turonski, P.; Niculescu, I.; Osipenko, M.; Ostrovidov, A.I.; Pappalardo, L.L.; Park, K.; Park, S.; Pasyuk, E.; Phelps, E.; Phelps, W.; Phillips, J.J.; Pisano, S.; Pogorelko, O.; Price, J.W.; Prok, Y.; Protopopescu, D.; Procureur, S.; Puckett, A.J.R.; Raue, B.A.; Ripani, M.; Ritchie, B.G.; Rizzo, A.; Rossi, P.; Roy, P.; Sabati, F.; Salgado, C.; Schott, D.; Schumacher, R.A.; Seder, E.; Senderovich, I.; Sharabian, Y.G.; Simonyan, A.; Smith, G.D.; Sober, D.I.; Sokhan, D.; Stepanyan, S.S.; Strauch, S.; Sytnik, V.; Tang, W.; Tian, Ye; Ungaro, M.; Vlassov, A.V.; Voskanyan, H.; Voutier, E.; Walford, N.K.; Watts, D.; Wei, X.; Weinstein, L.B.; Yurov, M.; Zachariou, N.; Zana, L.; Zhang, J.; Zhao, Z.W.; Zonta, I.

    2014-08-01

    Exclusive neutral-pion electroproduction (ep-->e'p'pi0) was measured at Jefferson Lab with a 5.75-GeV electron beam and the CLAS detector. Differential cross sections d4sigma/dtdQ2dxBdphipi and structure functions sigmaT+epsilonsigmaL,sigmaTT and ?LT as functions of t were obtained over a wide range of Q2 and xB. The data are compared with Regge and handbag theoretical calculations. Analyses in both frameworks find that a large dominance of transverse processes is necessary to explain the experimental results. For the Regge analysis it is found that the inclusion of vector meson rescattering processes is necessary to bring the magnitude of the calculated and measured structure functions into rough agreement. In the handbag framework, there are two independent calculations, both of which appear to roughly explain the magnitude of the structure functions in terms of transversity generalized parton distributions.

  3. Sideward flow in Au+Au collisions between 2A and 8A GeV

    SciTech Connect (OSTI)

    Liu, H.; Ajitanand, N.N.; Alexander, J.; Anderson, M.; Best, D.; Brady, F.P.; Case, T.; Caskey, W.; Cebra, D.; Chance, J.; Cole, B.; Crowe, K.; Das, A.; Draper, J.; Gilkes, M.; Gushue, S.; Heffner, M.; Hirsch, A.; Hjort, E.; Huo, L.; Justice, M.; Kaplan, M.; Keane, D.; Kintner, J.; Klay, J.; Krofcheck, D.; Lacey, R.; Lisa, M.A.; Liu, Y.M.; McGrath, R.; Milosevich, Z.; Odyniec, G.; Olson, D.; Panitkin, S.Y.; Porile, N.; Rai, G.; Ritter, H.G.; Romero, J.; Scharenberg, R.; Schroeder, L.S.; Srivastava, B.; Stone, N.T.B.; Symons, T.J.M.; Wang, S.; Whitfield, J.; Wienold, T.; Witt, R.; Wood, L.; Yang, X.; Zhang, W.N.; Zhang, Y.; E895 Collaboration

    2000-04-05

    Using the large acceptance Time Projection Chamber of experiment E895 at Brookhaven, measurements of collective sideward flow in Au + Au collisions at beam energies of 2A, 4A, 6A, and 8A GeV are presented in the form of in-plane transverse momentum

  4. Analysis of Superconducting Dipole Coil of 11 GeV Super High Momentum Spectrometer

    SciTech Connect (OSTI)

    Sun, Eric; Cheng, Gary; Lassiter, Steve R.; Brindza, Paul D.; Fowler, Michael J.

    2015-06-01

    Jefferson Lab is constructing five Super High Momentum Spectrometer (SHMS) superconducting magnets for the 12 GeV Upgrade. This paper reports measured coil material properties and the results of the extensive finite element analysis (FEA) for the dipole coil. To properly define the smeared orthotropic material of the coil, a detailed coil model is set up to compute material parameters because not all parameters were measured. Stress and strain acceptance criteria are discussed. Eight load steps are defined. The preheat temperature of the force collar is optimized under two loading scenarios so that the positive pressure between the inner coil and central spacer is maintained while there is not too much squeeze to the coil.

  5. Femtosecond photoelectron point projection microscope

    SciTech Connect (OSTI)

    Quinonez, Erik; Handali, Jonathan; Barwick, Brett

    2013-10-15

    By utilizing a nanometer ultrafast electron source in a point projection microscope we demonstrate that images of nanoparticles with spatial resolutions of the order of 100 nanometers can be obtained. The duration of the emission process of the photoemitted electrons used to make images is shown to be of the order of 100 fs using an autocorrelation technique. The compact geometry of this photoelectron point projection microscope does not preclude its use as a simple ultrafast electron microscope, and we use simple analytic models to estimate temporal resolutions that can be expected when using it as a pump-probe ultrafast electron microscope. These models show a significant increase in temporal resolution when comparing to ultrafast electron microscopes based on conventional designs. We also model the microscopes spectroscopic abilities to capture ultrafast phenomena such as the photon induced near field effect.

  6. Hard photon processes in electron-positron annihilation at 29 GeV

    SciTech Connect (OSTI)

    Gold, M.S.

    1986-11-01

    The hard photon processes ..mu mu gamma.. and hadrons + ..gamma.. in e/sup +/e/sup -/ annihilation at 29 GeV have been studied. The study is based on an integrated luminosity of 226 pb/sup -1/ taken at PEP with the Mark II detector. For the ..mu mu gamma.. process, a small fraction of non-planar events are observed with missing momentum along the beam direction. The resulting missing energy spectrum is consistent with that expected from higher order effects. The observed cross section is consistent with the predicted cross section for this process, sigma/sup exp/sigma/sup th/ = .90 +- .05 +- .06. The observed hard photon energy spectrum and mass distributions are found to be in agreement with O(..cap alpha../sup 3/) QED. The measured charge asymmetry is in good agreement with the predicted value, A/sub exp/A/sub th/ = .83 +- .25 +- .12. The ..mu gamma.. invariant mass distribution is used to place a limit on a possible excited muon coupling G..gamma../M* for excited muon masses in the range 1 < M* < 21 GeV of (G..gamma../M*)/sup 2/ < 10/sup -5/ GeV/sup -2/ at a 95% confidence level. In the hadrons + ..gamma.. process, evidence for final state radiation is found in an excess of events over that predicted from initial state radiation alone of 253 +- 54 +- 60 events. Further evidence for final state radiation is found in a large hadronic charge asymmetry A/sub Had+..gamma../= (-24.6 +- 5.5)%.

  7. Removing a sheet from the surface of a melt using elasticity and buoyancy

    DOE Patents [OSTI]

    Kellerman, Peter L.; Sun, Dawei; Helenbrook, Brian; Harvey, David S.

    2014-07-01

    Embodiments related to sheet production are disclosed. A melt of a material is cooled to form a sheet of the material on the melt. The sheet is formed in a first region at a first sheet height. The sheet is translated to a second region such that it has a second sheet height higher than the first sheet height. The sheet is then separated from the melt. A seed wafer may be used to form the sheet.

  8. Ex-Vessel Core Melt Modeling Comparison between MELTSPREAD-CORQUENCH and MELCOR 2.1

    SciTech Connect (OSTI)

    Robb, Kevin R.; Farmer, Mitchell; Francis, Matthew W.

    2014-03-01

    System-level code analyses by both United States and international researchers predict major core melting, bottom head failure, and corium-concrete interaction for Fukushima Daiichi Unit 1 (1F1). Although system codes such as MELCOR and MAAP are capable of capturing a wide range of accident phenomena, they currently do not contain detailed models for evaluating some ex-vessel core melt behavior. However, specialized codes containing more detailed modeling are available for melt spreading such as MELTSPREAD as well as long-term molten corium-concrete interaction (MCCI) and debris coolability such as CORQUENCH. In a preceding study, Enhanced Ex-Vessel Analysis for Fukushima Daiichi Unit 1: Melt Spreading and Core-Concrete Interaction Analyses with MELTSPREAD and CORQUENCH, the MELTSPREAD-CORQUENCH codes predicted the 1F1 core melt readily cooled in contrast to predictions by MELCOR. The user community has taken notice and is in the process of updating their systems codes; specifically MAAP and MELCOR, to improve and reduce conservatism in their ex-vessel core melt models. This report investigates why the MELCOR v2.1 code, compared to the MELTSPREAD and CORQUENCH 3.03 codes, yield differing predictions of ex-vessel melt progression. To accomplish this, the differences in the treatment of the ex-vessel melt with respect to melt spreading and long-term coolability are examined. The differences in modeling approaches are summarized, and a comparison of example code predictions is provided.

  9. The re-evaluation of the AVR melt-wire experiment with specific...

    Office of Scientific and Technical Information (OSTI)

    1988. The AVR melt-wire experiments, where graphite spheres ... analysis codes available at the time. The reason for these discrepancies are often attributed to the special design ...

  10. Exploration of Melt Spinning as a Route to Large Volume Production...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Melt spinning combined with Spark Plasma Sintering provides a potential route to the mass production of Skutterudite based thermoelectric materials PDF icon salvador.pdf More ...

  11. Thermodynamic principles of the process of the effect of electromagnetic fields on a polymer melt

    SciTech Connect (OSTI)

    Miroshnichenko, V.F.; Semenyuk, N.I.

    1989-06-23

    The effect of electromagnetic fields on a polymer melt leads to an increase in the strength of polymers while magnetostatic field virtually does not have an effect on the immobile polymer melt. However, if relative motion of magnetic field and polymer melt occurs, then, according to the laws of electrodynamics, besides magnetic field in the polymer melt appears the electric field, which will interact with the macromolecules of polymer. As a result of this can be changed the structure of polymer melt, which will be fixed/recorded in proportion to cooling fusion/melt, which must immediately be reflected in the properties of solid polymer. Change in structure of polymer melt can be considered as peculiar phase transitions. Apparently, for the polymer melts besides the phase transformations of the first and second kind there are other, possibly, mixed phase transitions. We experimentally established presence of Delta T-effect in polymer melts, which is characteristic for phase second-order transformations. Therefore in this article we use theory of second-order phase transitions in application to the phenomena in question.

  12. The Case for a 500 GeV e{sup +}e{sub {minus}} Linear Collider

    SciTech Connect (OSTI)

    Peskin, Michael E

    2000-07-12

    Several proposals are being developed around the world for an e{sup +}e{sub {minus}} linear collider with an initial center of mass energy of 500 GeV. In this paper, the authors discuss why a project of this type deserves priority as the next major initiative in high energy physics.

  13. Simulation of the deflection of 200- and 450-GeV protons by a bent germanium crystal

    SciTech Connect (OSTI)

    Koshcheev, V. P. Kholodov, A. K.; Morgun, D. A.

    2009-04-15

    It is shown that the result obtained by numerically solving the kinetic Fokker-Planck equation in the transverse-energy space on the basis of computer simulations of channeled-particle trajectories describes well the results of an experiment that studied the deflection of 200- and 450-GeV protons by a bent germanium crystal.

  14. How resonance-continuum interference changes 750 GeV diphoton excess: Signal enhancement and peak shift

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Jung, Sunghoon; Song, Jeonghyeon; Yoon, Yeo Woong

    2016-05-02

    A hypothetical new scalar resonance, a candidate explanation for the recently observed 750 GeV diphoton excess at the LHC 13 TeV, necessarily interferes with the continuum background gg → γγ. The interference has two considerable effects: (1) enhancing or suppressing diphoton signal rate due to the imaginary-part interference and (2) distorting resonance shape due to the real-part interference. We study them based on the best-fit analysis of two benchmark models: two Higgs doublets with ~50 GeV width (exhibiting the imaginary-part interference effect) and a singlet scalar with 5 GeV width (exhibiting the real-part one), both extended with vector-like fermions. Furthermore,more » we find that the resonance contribution can be enhanced by a factor of 2 (1.6) for 3 (6) fb signal rate, or the 68% CL allowed mass region is shifted by O (1) GeV. If the best-fit excess rate decreases in the future data, the interference effects will become more significant.« less

  15. Modeling of 10 GeV-1 TeV laser-plasma accelerators using Lorentz booster simulations

    SciTech Connect (OSTI)

    Vay, J.-L.; Geddes, C.G.R.; Esarey, E.; Esarey, E.; Leemans, W.P.; Cormier-Michel, E.; Grote, D.P.

    2011-12-01

    Modeling of laser-plasma wakefield accelerators in an optimal frame of reference [J.-L. Vay, Phys. Rev. Lett. 98 130405 (2007)] allows direct and e#14;fficient full-scale modeling of deeply depleted and beam loaded laser-plasma stages of 10 GeV-1 TeV (parameters not computationally accessible otherwise). This verifies the scaling of plasma accelerators to very high energies and accurately models the laser evolution and the accelerated electron beam transverse dynamics and energy spread. Over 4, 5 and 6 orders of magnitude speedup is achieved for the modeling of 10 GeV, 100 GeV and 1 TeV class stages, respectively. Agreement at the percentage level is demonstrated between simulations using different frames of reference for a 0.1 GeV class stage. Obtaining these speedups and levels of accuracy was permitted by solutions for handling data input (in particular particle and laser beams injection) and output in a relativistically boosted frame of reference, as well as mitigation of a high-frequency instability that otherwise limits effectiveness.

  16. Eutectic precipitation of melt quenched titanium-silicon-neodymium alloy

    SciTech Connect (OSTI)

    Li, G.P.; Liu, Y.Y.; Li, D.; Hu, Z.Q. . Inst. of Metal Research)

    1995-01-15

    Titanium based metallic glasses have attracted keen interest because of the promise of industrial applications owing to their improves corrosion resistance, better mechanical properties, occurrence of superconductivity and superior magnetic properties. The titanium alloy systems where metallic glass has been obtained include Ti-Cu, Ti-Be, Ti-Si, Ti-B. Polk et al. had reported that they were able to produce an amorphous phase in binary Ti[sub 80]Si[sub 20] alloy system by using an arc-melting piston and anvil apparatus. In the present study, the authors have investigated the effect of adding rare earth element Nd on eutective precipitation of the amorphous Ti[sub 80]Si[sub 20] alloy and the orientation relationship which exists between the [beta]-Ti and Ti[sub 5]Si[sub 3].

  17. Florida Nuclear Profile - Turkey Point

    U.S. Energy Information Administration (EIA) Indexed Site

    Turkey Point" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License expiration date" 3,693,"5,356",88.2,"PWR","application/vnd.ms-excel","application/vnd.ms-excel" 4,693,"5,950",98.0,"PWR","application/vnd.ms-excel","application/vnd.ms-excel"

  18. TEPP Points of Contact | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Transportation Emergency Preparedness Program TEPP Points of Contact TEPP Points of Contact TEPP is a national program managed at a headquarters level and implemented through...

  19. Field's Point Wastewater Treatment Facility (Narragansett Bay...

    Open Energy Info (EERE)

    Field's Point Wastewater Treatment Facility (Narragansett Bay Commission) Jump to: navigation, search Name Field's Point Wastewater Treatment Facility (Narragansett Bay Commission)...

  20. Microsoft PowerPoint - CAMD_SRI_2010.pptx

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    * 1.3 GeV electron storage ring that produces a broad spectrum of light from IR to VUV to X-rays * established with 25M Congressionally directed funding, operational 1992 * state ...

  1. Low-melting elemental metal or fusible alloy encapsulated polymerization initiator for delayed initiation

    DOE Patents [OSTI]

    Hermes, Robert E.

    2015-12-22

    An encapsulated composition for polymerization includes an initiator composition for initiating a polymerization reaction, and a capsule prepared from an elemental metal or fusible alloy having a melting temperature from about 20.degree. C. to about 200.degree. C. A fluid for polymerization includes the encapsulated composition and a monomer. When the capsule melts or breaks open, the initiator is released.

  2. Thermomechanical response of a semicrystalline polymer in the vicinity of the melting by using microcantilever technology

    SciTech Connect (OSTI)

    Soccio, M.; Rueda, D. R.; Garca-Gutirrez, M. C.; Ezquerra, T. A.; Luongo, G.; Esteves, C.; Salvador-Matar, A.; Ahumada, O.; Lotti, N.; Munari, A.

    2014-06-23

    The melting transition of a model semicrystalline polymer has been detected by the microcantilever deflection as a function of temperature. Deflection measurements were done on arrays of 8-cantilevers spin coated with the semicrystalline polymer: poly (propylene azelate). The melting of the polymer has been corroborated by grazing incidence wide angle x-ray scattering experiments performed with synchrotron radiation over a single cantilever.

  3. Detection of melting by X-ray imaging at high pressure

    SciTech Connect (OSTI)

    Li, Li; Weidner, Donald J.

    2014-06-15

    The occurrence of partial melting at elevated pressure and temperature is documented in real time through measurement of volume strain induced by a fixed temperature change. Here we present the methodology for measuring volume strains to one part in 10{sup ?4} for mm{sup 3} sized samples in situ as a function of time during a step in temperature. By calibrating the system for sample thermal expansion at temperatures lower than the solidus, the onset of melting can be detected when the melting volume increase is of comparable size to the thermal expansion induced volume change. We illustrate this technique with a peridotite sample at 1.5 GPa during partial melting. The Re capsule is imaged with a CCD camera at 20 frames/s. Temperature steps of 100 K induce volume strains that triple with melting. The analysis relies on image comparison for strain determination and the thermal inertia of the sample is clearly seen in the time history of the volume strain. Coupled with a thermodynamic model of the melting, we infer that we identify melting with 2 vol.% melting.

  4. Glass science tutorial: Lecture No. 4, commercial glass melting and associated air emission issues

    SciTech Connect (OSTI)

    Kruger, A.A.

    1995-01-01

    This document serves as a manual for a workshop on commercial glass melting and associated air emission issues. Areas covered include: An overview of the glass industry; Furnace design and construction practices; Melting furnace operation; Energy input methods and controls; Air legislation and regulations; Soda lime emission mechanisms; and, Post furnace emission controls. Supporting papers are also included.

  5. An FTIR Study of Hydrogen in Anorthosite and Associated Melt Inclusions

    SciTech Connect (OSTI)

    Seaman,S.; Dyar, M.; Marinkovic, N.; Dunbar, N.

    2006-01-01

    High-resolution Fourier transform infrared (FTIR) spectroscopy has been used to document the presence of hydrogen, to estimate its concentration, and to document its oxygen speciation in anorthoclase crystals and associated melt inclusions from Mount Erebus, Antarctica. Synchrotron-generated infrared radiation, 100 to 1000 times brighter than globar-generated infrared radiation, permits rapid collection of maps that depict relative intensities of a chosen FTIR band across the mapped area. Spectra and/or compositional maps showing variations in water concentration were collected from anorthoclase megacrysts and melt inclusions in the megacrysts. Studies of anorthoclase megacrysts involved collection of spectra from three mutually perpendicular sections cut from the crystals. FTIR spectra of anorthoclase crystals are characterized by a broad absorption band at approximately 3200 cm{sup -1} in the mid-IR range. The universal mass absorption coefficient for mid-IR range feldspar spectra, established by Johnson and Rossman (2003), was used for quantitative estimates of water concentrations in the feldspar crystals based on integrated area under the 3200 cm{sup -1} band. Water concentration in the anorthoclase sample was approximately 126 ppm, with an overall error of approximately {+-}30%. FTIR spectra of melt inclusions are characterized by a broad asymmetric absorption band at {approx}3550 cm{sup -1} that was used to calculate total water concentration. The absence of a band at 1630 cm{sup -1} suggests that water in the melt inclusions occurs as OH{sup -} rather than as molecular H{sub 2}O. Absorption coefficients established by Mandeville et al. (2002) for H species in glass were used to calculate water concentrations in the melt inclusions. Melt inclusions in the Mt. Erebus anorthoclase have water concentrations ranging from 0.12 to 0.39 wt%, with an overall error of approximately {+-}15%. The ratio of water in anorthoclase crystals to water in the melt from which the crystals formed, based on this study, and at these low melt water concentrations, is approximately 1:10. However, water concentration varies significantly from one melt inclusion to another, possibly suggesting initial melt water heterogeneity. Maps of water concentration show that variations in water concentration within melt inclusions are associated with fractures that cut the melt inclusions and in some cases do not extend out into surrounding crystals or into crystal inclusions. Thin ({approx}50 {micro}m thick) zones of elevated water concentrations on the boundaries of the crystals in contact with melt inclusions suggest that water has diffused into the crystals from the melt inclusions.

  6. Wide-angle point-to-point x-ray imaging with almost arbitrarily...

    Office of Scientific and Technical Information (OSTI)

    Wide-angle point-to-point x-ray imaging with almost arbitrarily large angles of incidence Citation Details In-Document Search Title: Wide-angle point-to-point x-ray imaging with ...

  7. New time-line technique for station blackout core-melt analysis

    SciTech Connect (OSTI)

    Stutzke, M.A.

    1986-01-01

    Florida Power Corporation (FPC) has developed a new method for analyzing station blackout (SBO) core-melt accidents. This method, created during the recent probabilistic risk assessment (PRA) of Crystal River Unit 3 (CR-3), originated from the need to analyze the interactions among the two-train emergency feedwater (EFW) system, station batteries, and diesel generators (DGs) following a loss of off-site power (LOSP) event. SBO core-melt sequences for CR-3 are unique since the time core-melt commences depends on which DG fails last. The purpose of this paper is to outline the new method of analysis of SBO core-melt accidents at CR-3. The significance of SBO core-melt accidents to total plant risk, along with the efficacy of various methods to reduce SBO risk, are also discussed.

  8. MEASUREMENT OF THE SHOCK-HEATED MELT CURVE OF LEAD USING PYROMETRY AND REFLECTOMETRY

    SciTech Connect (OSTI)

    D. Partouche-Sebban and J. L. Pelissier, Commissariat a` l'Energie Atomique,; F. G. Abeyta, Los Alamos National Laboratory; W. W. Anderson, Los Alamos National Laboratory; M. E. Byers, Los Alamos National Laboratory; D. Dennis-Koller, Los Alamos National Laboratory; J. S. Esparza, Los Alamos National Laboratory; S. D. Borror, Bechtel Nevada; C. A. Kruschwitz, Bechtel Nevada

    2004-01-01

    Data on the high-pressure melting temperatures of metals is of great interest in several fields of physics including geophysics. Measuring melt curves is difficult but can be performed in static experiments (with laser-heated diamond-anvil cells for instance) or dynamically (i.e., using shock experiments). However, at the present time, both experimental and theoretical results for the melt curve of lead are at too much variance to be considered definitive. As a result, we decided to perform a series of shock experiments designed to provide a measurement of the melt curve of lead up to about 50 GPa in pressure. At the same time, we developed and fielded a new reflectivity diagnostic, using it to make measurements on tin. The results show that the melt curve of lead is somewhat higher than the one previously obtained with static compression and heating techniques.

  9. Public Meetings: Talking Points | Department of Energy

    Energy Savers [EERE]

    Public Meetings: Talking Points Public Meetings: Talking Points Talking Points from December 2008 PDF icon Public Meetings: Talking Points More Documents & Publications ATVM Technical Support Document ATVM Loan Program Interim Final Rule (November 12, 2008) 2004 FUEL ECONOMY GUIDE BEST IN CLASS

  10. Oak Ridge Office SharePoint( MicrosoftSHarePointServer) PIA, Information

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Resourses Management Division | Department of Energy SharePoint( MicrosoftSHarePointServer) PIA, Information Resourses Management Division Oak Ridge Office SharePoint( MicrosoftSHarePointServer) PIA, Information Resourses Management Division Oak Ridge Office SharePoint( MicrosoftSHarePointServer) PIA, Information Resourses Management Division PDF icon Oak Ridge Office SharePoint( MicrosoftSHarePointServer) PIA, Information Resourses Management Division More Documents & Publications

  11. VPP POINTS OF CONTACT | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    VPP POINTS OF CONTACT VPP POINTS OF CONTACT July 9, 2015 The VPP Points of Contact document provides a current listing of all current DOE VPP participants Points of Contact for both Federal and Contractor positions. PDF icon VPP Points of Contact - July 9, 2015 More Documents & Publications 2009 Voluntary Protection Programs Participants' Association (VPPPA) Presentation: Conducting your Annual VPP Self Assessment 2009 Voluntary Protection Programs Participants' Association (VPPPA)

  12. Light Stops, Light Staus and the 125 GeV Higgs

    SciTech Connect (OSTI)

    Carena, Marcela; Gori, Stefania; Shah, Nausheen R.; Wagner, Carlos E.M.; Wang, Lian-Tao

    2013-08-01

    The ATLAS and CMS experiments have recently announced the discovery of a Higgs-like resonance with mass close to 125 GeV. Overall, the data is consistent with a Standard Model (SM)-like Higgs boson. Such a particle may arise in the minimal supersymmetric extension of the SM with average stop masses of the order of the TeV scale and a sizable stop mixing parameter. In this article we discuss properties of the SM-like Higgs production and decay rates induced by the possible presence of light staus and light stops. Light staus can affect the decay rate of the Higgs into di-photons and, in the case of sizable left-right mixing, induce an enhancement in this production channel up to $\\sim$ 50% of the Standard Model rate. Light stops may induce sizable modifications of the Higgs gluon fusion production rate and correlated modifications to the Higgs diphoton decay. Departures from SM values of the bottom-quark and tau-lepton couplings to the Higgs can be obtained due to Higgs mixing effects triggered by light third generation scalar superpartners. We describe the phenomenological implications of light staus on searches for light stops and non-standard Higgs bosons. Finally, we discuss the current status of the search for light staus produced in association with sneutrinos, in final states containing a $W$ gauge boson and a pair of $\\tau$s.

  13. Performance Testing of Jefferson Lab 12 GeV Helium Screw Compressors

    SciTech Connect (OSTI)

    Knudsen, P.; Ganni, V.; Dixon, K.; Norton, R.; Creel, J.

    2015-08-10

    Oil injected screw compressors have essentially superseded all other types of compressors in modern helium refrigeration systems due to their large displacement capacity, reliability, minimal vibration, and capability of handling helium's high heat of compression. At the present state of compressor system designs for helium refrigeration systems, typically two-thirds of the lost input power is due to the compression system. It is important to understand the isothermal and volumetric efficiencies of these machines to help properly design the compression system to match the refrigeration process. It is also important to identify those primary compressor skid exergetic loss mechanisms which may be reduced, thereby offering the possibility of significantly reducing the input power to helium refrigeration processes which are extremely energy intensive. This paper summarizes the results collected during the commissioning of the new compressor system for Jefferson Lab's (JLab's) 12 GeV upgrade. The compressor skid packages were designed by JLab and built to print by industry. They incorporate a number of modifications not typical of helium screw compressor packages and most importantly allow a very wide range of operation so that JLab's patented Floating Pressure Process can be fully utilized. This paper also summarizes key features of the skid design that allow this process and facilitate the maintenance and reliability of these helium compressor systems.

  14. Commissioning of helium refrigeration system at JLab for 12 GeV upgrade

    SciTech Connect (OSTI)

    Ganni, Venkatarao; Dixon, Kelly D.; Knudsen, Peter N.; Norton, Robert O.; Creel, Jonathan D.

    2014-01-01

    The new 4.5 K refrigerator system added to the Jefferson Lab (JLab) Central Helium Liquefier (CHL) for the 12 GeV upgrade will double its previous capacity. It includes a 4.5 K cold box system and compressor system with associated oil removal and gas management systems. At its maximum capacity condition, this new system supports an additional 238 g/s 30 K 1.16 bar cold compressor return flow, a 15 g/s 4.5 K liquefaction load and a 12.6 kW 35–55 K shield load. Five more design conditions, ranging from liquefaction to refrigeration and a stand-by/reduced load state, were specified for the sizing and selection of its components. The cold box system is comprised of a 300–60 K vertical cold box that incorporates a liquid nitrogen pre-cooler and a 60–4.5 K horizontal cold box housing seven turbines that are configured in four expansion stages including one Joule-Thompson expander. The helium compression system has five compressors to support three pressure levels in the cold box. This paper will briefly review the salient 4.5 K system design features and discuss the recent commissioning results.

  15. Performance Testing of Jefferson Lab 12 GeV Helium Screw Compressors

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Knudsen, P.; Ganni, V.; Dixon, K.; Norton, R.; Creel, J.

    2015-08-10

    Oil injected screw compressors have essentially superseded all other types of compressors in modern helium refrigeration systems due to their large displacement capacity, reliability, minimal vibration, and capability of handling helium's high heat of compression. At the present state of compressor system designs for helium refrigeration systems, typically two-thirds of the lost input power is due to the compression system. It is important to understand the isothermal and volumetric efficiencies of these machines to help properly design the compression system to match the refrigeration process. It is also important to identify those primary compressor skid exergetic loss mechanisms which maymore » be reduced, thereby offering the possibility of significantly reducing the input power to helium refrigeration processes which are extremely energy intensive. This paper summarizes the results collected during the commissioning of the new compressor system for Jefferson Lab's (JLab's) 12 GeV upgrade. The compressor skid packages were designed by JLab and built to print by industry. They incorporate a number of modifications not typical of helium screw compressor packages and most importantly allow a very wide range of operation so that JLab's patented Floating Pressure Process can be fully utilized. This paper also summarizes key features of the skid design that allow this process and facilitate the maintenance and reliability of these helium compressor systems.« less

  16. Discovery of a GeV Blazar Shining Through the Galactic Plane

    SciTech Connect (OSTI)

    Vandenbroucke, J.; Buehler, R.; Ajello, M.; Bechtol, K.; /Stanford U., HEPL /KIPAC, Menlo Park /SLAC; Bellini, A.; /Padua U., Astron. Dept. /Baltimore, Space Telescope Sci.; Bolte, M.; /UC, Santa Cruz; Cheung, C.C.; /Naval Research Lab, Wash., D.C. /NAS, Washington, D.C.; Civano, F.; /Smithsonian Astrophys. Observ.; Donato, D.; /NASA, Goddard; Fuhrmann, L.; /Bonn, Max Planck Inst., Radioastron.; Funk, S.; Healey, S.E.; /Stanford U., HEPL /KIPAC, Menlo Park /SLAC; Hill, A.B.; /Joseph Fourier U.; Knigge, C.; /Southampton U.; Madejski, G.M.; Romani, R.W.; /Stanford U., HEPL /KIPAC, Menlo Park /SLAC; Santander-Garcia, M.; /IAC, La Laguna /Isaac Newton Group /Laguna U., Tenerife; Shaw, M.S.; /Stanford U., HEPL /KIPAC, Menlo Park /SLAC; Steeghs, D.; /Warwick U.; Torres, M.A.P.; /Smithsonian Astrophys. Observ.; Van Etten, A.; /Stanford U., HEPL /KIPAC, Menlo Park /SLAC /Texas U., Astron. Dept.

    2011-08-11

    The Fermi Large Area Telescope (LAT) discovered a new gamma-ray source near the Galactic plane, Fermi J0109+6134, when it flared brightly in 2010 February. The low Galactic latitude (b = -1.2{sup o}) indicated that the source could be located within the Galaxy, which motivated rapid multi-wavelength follow-up including radio, optical, and X-ray observations. We report the results of analyzing all 19 months of LAT data for the source, and of X-ray observations with both Swift and the Chandra X-ray Observatory. We determined the source redshift, z = 0.783, using a Keck LRIS observation. Finally, we compiled a broadband spectral energy distribution (SED) from both historical and new observations contemporaneous with the 2010 February flare. The redshift, SED, optical line width, X-ray obsorption, and multi-band variability indicate that this new Gev source is a blazar seen through the Galactic plane. Because several of the optical emission lines have equivalent width > 5 {angstrom}, this blazar belongs in the flat-spectrum radio quasar category.

  17. Vertical zone melt growth of GaAs

    SciTech Connect (OSTI)

    Henry, R.L.; Nordquist, P.E.R.; Gorman, R.J.

    1993-12-31

    A Vertical Zone Melt (VZM) technique has been applied to the single crystal growth of GaAs. A pyrolytic boron nitride crucible and a (100) oriented seed were used along with liquid encapsulation by boric oxide. In the case of GaAs, the ampoule was pressurized with either argon or argensic vapor from elemental arsenic at pressures ranging from 1 to 2 atmospheres. A molten zone length of 22 mm gave a growth interface which is nearly flat and resulted in routine single crystal growth. Temperature gradients of 4{degrees}C/cm. and 9{degrees}C/cm. have produced dislocation densities of <1000/cm{sup 2} and 2000-5000/cm{sup 2} respectively for 34 mm diameter crystals of GaAs. Post growth cooling rates for GaAs have been 35, 160 and 500{degrees}C/hr. The cooling rate has been found to affect the number and size of arsenic precipitates and the EL2 concentration in the GaAs crystal. The effects of these and other growth parameters on the crystalline perfection and electrical properties of the crystals will be discussed.

  18. Energetics of melts from thermal diffusion studies. Final report

    SciTech Connect (OSTI)

    Lesher, C.E.

    1998-12-01

    Most processes in geology are a consequence at some level of the flow of energy or mass. Heat conduction and chemical diffusion are examples of two of these sorts of flows which are driven by temperature and chemical potential imbalances, respectively. In the general case these flows may be coupled so that, for instance, a temperature gradient may result in a flow of mass as well as heat. This effect in liquids was demonstrated by Soret (1879) and bears his name. In gases or solids the phenomenon is given the general name thermal diffusion. It was the purpose of this research program to examine the Soret effect in molten silicates under laboratory conditions. Results of these experiments are used to evaluate the form and quantitative values of many thermodynamic and kinetic properties of silicate melts over a range of temperature, pressure, and bulk composition. The author published a comprehensive review and synthesis with a microscopic theoretical explanation for the effect at low pressure in silicate liquids of geological interest. He conducted experimental investigations of molecular diffusion in the absence of a thermal gradient through experiments involving dissolution of solid silicates in molten silicate and interdiffusion of species between miscible silicate liquids. Collectively these results enable the author to construct a more comprehensive model of molecular diffusion in magmatic liquids. He has applied this model to problems of magma mixing and crustal assimilation.

  19. Rouse mode analysis of chain relaxation in homopolymer melts

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Kalathi, Jagannathan T.; Kumar, Sanat K.; Rubinstein, Michael; Grest, Gary S.

    2014-09-15

    We use molecular dynamics simulations of the Kremer–Grest (KG) bead–spring model of polymer chains of length between 10 and 500, and a closely related analogue that allows for chain crossing, to clearly delineate the effects of entanglements on the length-scale-dependent chain relaxation in polymer melts. We analyze the resulting trajectories using the Rouse modes of the chains and find that entanglements strongly affect these modes. The relaxation rates of the chains show two limiting effective monomeric frictions, with the local modes experiencing much lower effective friction than the longer modes. The monomeric relaxation rates of longer modes vary approximately inverselymore » with chain length due to kinetic confinement effects. The time-dependent relaxation of Rouse modes has a stretched exponential character with a minimum of stretching exponent in the vicinity of the entanglement chain length. None of these trends are found in models that allow for chain crossing. As a result, these facts, in combination, argue for the confined motion of chains for time scales between the entanglement time and their ultimate free diffusion.« less

  20. Melt Infiltrated Ceramic Composites (Hipercomp) for Gas Turbine Engine Applications

    SciTech Connect (OSTI)

    Gregory Corman; Krishan Luthra

    2005-09-30

    This report covers work performed under the Continuous Fiber Ceramic Composites (CFCC) program by GE Global Research and its partners from 1994 through 2005. The processing of prepreg-derived, melt infiltrated (MI) composite systems based on monofilament and multifilament tow SiC fibers is described. Extensive mechanical and environmental exposure characterizations were performed on these systems, as well as on competing Ceramic Matrix Composite (CMC) systems. Although current monofilament SiC fibers have inherent oxidative stability limitations due to their carbon surface coatings, the MI CMC system based on multifilament tow (Hi-Nicalon ) proved to have excellent mechanical, thermal and time-dependent properties. The materials database generated from the material testing was used to design turbine hot gas path components, namely the shroud and combustor liner, utilizing the CMC materials. The feasibility of using such MI CMC materials in gas turbine engines was demonstrated via combustion rig testing of turbine shrouds and combustor liners, and through field engine tests of shrouds in a 2MW engine for >1000 hours. A unique combustion test facility was also developed that allowed coupons of the CMC materials to be exposed to high-pressure, high-velocity combustion gas environments for times up to {approx}4000 hours.

  1. Light nuclides produced in the proton-induced spallation of {sup 238}U at 1 GeV

    SciTech Connect (OSTI)

    Ricciardi, M.V.; Armbruster, P.; Enqvist, T.; Kelic, A.; Rejmund, F.; Schmidt, K.-H.; Yordanov, O.; Benlliure, J.; Pereira, J.; Bernas, M.; Mustapha, B.; Stephan, C.; Tassan-Got, L.

    2006-01-15

    The production of light and intermediate-mass nuclides formed in the reaction {sup 1}H+{sup 238}U at 1 GeV was measured at the Fragment Separator at GSI, Darmstadt. The experiment was performed in inverse kinematics, by shooting a 1 A GeV {sup 238}U beam on a thin liquid-hydrogen target. A total of 254 isotopes of all elements in the range 7{<=}Z{<=}37 were unambiguously identified, and the velocity distributions of the produced nuclides were determined with high precision. The results show that the nuclides are produced in a very asymmetric binary decay of heavy nuclei originating from the spallation of uranium. All the features of the produced nuclides merge with the characteristics of the fission products as their mass increases.

  2. An inverse Compton origin for the 55 GeV photon in the late afterglow of GRB 130907A

    SciTech Connect (OSTI)

    Tang, Qing-Wen; Wang, Xiang-Yu [School of Astronomy and Space Science, Nanjing University, Nanjing 210093 (China); Tam, Pak-Hin Thomas, E-mail: xywang@nju.edu.cn, E-mail: phtam@phys.nthu.edu.tw [Institute of Astronomy and Department of Physics, National Tsing Hua University, Hsinchu 30013, Taiwan (China)

    2014-06-20

    The extended high-energy gamma-ray (>100 MeV) emission which occurs well after the prompt gamma-ray bursts (GRBs) is usually explained as the afterglow synchrotron radiation. Here we report the analysis of Fermi Large Area Telescope observations of GRB 130907A. A 55 GeV photon compatible with the position of the burst was found about 5 hr after the prompt phase. The probability that this photon is associated with GRB 130907A is higher than 99.96%. The energy of this photon exceeds the maximum synchrotron photon energy at this time and its occurrence thus challenges the synchrotron mechanism as the origin for the extended high-energy >10 GeV emission. Modeling of the broadband spectral energy distribution suggests that such high energy photons can be produced by the synchrotron self-Compton emission of the afterglow.

  3. Measurements of $ep \\to e^\\prime π^+n$ at W = 1.6 - 2.0 GeV and extraction of nucleon resonance electrocouplings at CLAS

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Park, Kijun; Aznauryan, I. G.; Burkert, V. D.; Adhikari, K. P.; Amaryan, M. J.; Pereira, S. Anefalos; Avakian, H.; Battaglieri, M.; Badui, R.; Bedlinskiy, I.; et al

    2015-04-01

    Differential cross sections of the exclusive process $e p \\to e^\\prime \\pi^+ n$ were measured with good precision in the range of the photon virtuality $Q^2 = 1.8 - 4.5$ GeV$^2$, and the invariant mass range of the $\\pi^+ n$ final state W = 1.6 - 2.0 GeV using the CEBAF Large Acceptance Spectrometer. Data were collected with nearly complete coverage in the azimuthal and polar angles of the $n\\pi^+$ center-of-mass system. More than 37,000 cross section points were measured. The contributions of the isospin $I = {1\\over 2}$ resonances $N(1675){5\\over 2}^-$, $N(1680){5\\over 2}^+$ and $N(1710){1\\over 2}^+$ were extracted atmore »different values of $Q^2$ using a single-channel, energy-dependent resonance amplitude analysis. Two different approaches, the unitary isobar model and the fixed-$t$ dispersion relations, were employed in the analysis. We observe significant strength of the $N(1675){5\\over 2}^-$ in the $A_{1/2}$ amplitude, which is in strong disagreement with quark models that predict both transverse amplitudes to be strongly suppressed. For the $N(1680){5\\over 2}^+$ we observe a slow changeover from the dominance of the $A_{3/2}$ amplitude at the real photon point ($Q^2=0$) to a $Q^2$ where $A_{1/2}$ begins to dominate. The scalar amplitude $S_{1/2}$ drops rapidly with $Q^2$ consistent with quark model prediction. For the $N(1710){1\\over 2}^+$ resonance our analysis shows significant strength for the $A_{1/2}$ amplitude at $Q^2 « less

  4. Decision Point 1 Topical Report

    SciTech Connect (OSTI)

    Yablonsky, Al; Barsoumian, Shant; Legere, David

    2013-05-01

    This Topical Report addresses accomplishments achieved during Phase 2a of the SkyMine® Carbon Mineralization Pilot Project. The primary objectives of this project are to design, construct, and operate a system to capture CO2 from a slipstream of flue gas from a commercial coal-fired cement kiln, convert that CO2 to products having commercial value (i.e., beneficial use), show the economic viability of the CO2 capture and conversion process, and thereby advance the technology to the point of readiness for commercial scale demonstration and proliferation. The overall process is carbon negative, resulting in mineralization of CO2 that would otherwise be released into the atmosphere. The project will also substantiate market opportunities for the technology by sales of chemicals into existing markets, and identify opportunities to improve technology performance and reduce costs at the commercial scale. The project is being conducted in two phases. The primary objectives of Phase 1 were to elaborate proven SkyMine® process chemistry to commercial pilot-scale operation and complete the preliminary design for the pilot plant to be built and operated in Phase 2, complete a NEPA evaluation, and develop a comprehensive carbon life cycle analysis. The objective of the current Phase (2a) is to complete the detailed design of the pilot plant to be built in Phase 2b.

  5. Acceleration of highly charged GeV Fe ions from a low-Z substrate by intense femtosecond laser

    SciTech Connect (OSTI)

    Nishiuchi, M. Sakaki, H.; Esirkepov, T. Zh.; Pirozhkov, A. S.; Sagisaka, A.; Ogura, K.; Kiriyama, H.; Fukuda, Y.; Kando, M.; Bulanov, S. V.; Kondo, K.; Nishio, K.; Orlandi, R.; Koura, H.; Imai, K.; Pikuz, T. A.; Faenov, A. Ya.; Skobelev, I. Yu.; Sako, H.; Matsukawa, K.; and others

    2015-03-15

    Almost fully stripped Fe ions accelerated up to 0.9?GeV are demonstrated with a 200 TW femtosecond high-intensity laser irradiating a micron-thick Al foil with Fe impurity on the surface. An energetic low-emittance high-density beam of heavy ions with a large charge-to-mass ratio can be obtained, which is useful for many applications, such as a compact radio isotope source in combination with conventional technology.

  6. Exotic Effects at the Charm Threshold and Other Novel Physics Topics at JLab-12 GeV

    SciTech Connect (OSTI)

    Brodsky, Stanley J.; /SLAC

    2012-05-03

    I briefly survey a number of novel hadron physics topics which can be investigated with the 12 GeV upgrade at J-Lab. The topics include new the formation of exotic heavy quark resonances accessible above the charm threshold, intrinsic charm and strangeness phenomena, the exclusive Sivers effect, hidden-color Fock states of nuclei, local two-photon interactions in deeply virtual Compton scattering, and non-universal antishadowing.

  7. Measurement of J/? Azimuthal Anisotropy in Au+Au Collisions at ?sNN=200 GeV

    SciTech Connect (OSTI)

    Adamczyk, L.; Adkins, J. K.; Agakishiev, G.; Aggarwal, M. M.; Ahammed, Z.; Alekseev, I.; Alford, J.; Anson, C. D.; Aparin, A.; Arkhipkin, D.; Aschenauer, E.; Averichev, G. S.; Balewski, J.; Banerjee, A.; Barnovska, Z.; Beavis, D. R.; Bellwied, R.; Betancourt, M. J.; Betts, R. R.; Bhasin, A.; Bhati, A. K.; Bhattarai, P.; Bichsel, H.; Bielcik, J.; Bielcikova, J.; Bland, L. C.; Bordyuzhin, I. G.; Borowski, W.; Bouchet, J.; Brandin, A. V.; Brovko, S. G.; Bruna, E.; Bltmann, S.; Bunzarov, I.; Burton, T. P.; Butterworth, J.; Cai, X. Z.; Caines, H.; Caldern de la Barca Snchez, M.; Cebra, D.; Cendejas, R.; Cervantes, M. C.; Chaloupka, P.; Chang, Z.; Chattopadhyay, S.; Chen, H. F.; Chen, J. H.; Chen, J. Y.; Chen, L.; Cheng, J.; Cherney, M.; Chikanian, A.; Christie, W.; Chung, P.; Chwastowski, J.; Codrington, M. J. M.; Corliss, R.; Cramer, J. G.; Crawford, H. J.; Cui, X.; Das, S.; Davila Leyva, A.; De Silva, L. C.; Debbe, R. R.; Dedovich, T. G.; Deng, J.; Derradi de Souza, R.; Dhamija, S.; di Ruzza, B.; Didenko, L.; Ding, F.; Dion, A.; Djawotho, P.; Dong, X.; Drachenberg, J. L.; Draper, J. E.; Du, C. M.; Dunkelberger, L. E.; Dunlop, J. C.; Efimov, L. G.; Elnimr, M.; Engelage, J.; Eppley, G.; Eun, L.; Evdokimov, O.; Fatemi, R.; Fazio, S.; Fedorisin, J.; Fersch, R. G.; Filip, P.; Finch, E.; Fisyak, Y.; Flores, E.; Gagliardi, C. A.; Gangadharan, D. R.; Garand, D.; Geurts, F.; Gibson, A.; Gliske, S.; Grebenyuk, O. G.; Grosnick, D.; Gupta, A.; Gupta, S.; Guryn, W.; Haag, B.; Hajkova, O.; Hamed, A.; Han, L-X.; Harris, J. W.; Hays-Wehle, J. P.; Heppelmann, S.; Hirsch, A.; Hoffmann, G. W.; Hofman, D. J.; Horvat, S.; Huang, B.; Huang, H. Z.; Huck, P.; Humanic, T. J.; Igo, G.; Jacobs, W. W.; Jena, C.; Judd, E. G.; Kabana, S.; Kang, K.; Kapitan, J.; Kauder, K.; Ke, H. W.; Keane, D.; Kechechyan, A.; Kesich, A.; Kikola, D. P.; Kiryluk, J.; Kisel, I.; Kisiel, A.; Klein, S. R.; Koetke, D. D.; Kollegger, T.; Konzer, J.; Koralt, I.; Korsch, W.; Kotchenda, L.; Kravtsov, P.; Krueger, K.; Kulakov, I.; Kumar, L.; Lamont, M. A. C.; Landgraf, J. M.; Landry, K. D.; LaPointe, S.; Lauret, J.; Lebedev, A.; Lednicky, R.; Lee, J. H.; Leight, W.; LeVine, M. J.; Li, C.; Li, W.; Li, X.; Li, X.; Li, Y.; Li, Z. M.; Lima, L. M.; Lisa, M. A.; Liu, F.; Ljubicic, T.; Llope, W. J.; Longacre, R. S.; Lu, Y.; Luo, X.; Luszczak, A.; Ma, G. L.; Ma, Y. G.; Madagodagettige Don, D. M. M. D.; Mahapatra, D. P.; Majka, R.; Margetis, S.; Markert, C.; Masui, H.; Matis, H. S.; McDonald, D.; McShane, T. S.; Mioduszewski, S.; Mitrovski, M. K.; Mohammed, Y.; Mohanty, B.; Mondal, M. M.; Munhoz, M. G.; Mustafa, M. K.; Naglis, M.; Nandi, B. K.; Nasim, Md.; Nayak, T. K.; Nelson, J. M.; Nogach, L. V.; Novak, J.; Odyniec, G.; Ogawa, A.; Oh, K.; Ohlson, A.; Okorokov, V.; Oldag, E. W.; Oliveira, R. A. N.; Olson, D.; Pachr, M.; Page, B. S.; Pal, S. K.; Pan, Y. X.; Pandit, Y.; Panebratsev, Y.; Pawlak, T.; Pawlik, B.; Pei, H.; Perkins, C.; Peryt, W.; Pile, P.; Planinic, M.; Pluta, J.; Poljak, N.; Porter, J.; Poskanzer, A. M.; Powell, C. B.; Pruneau, C.; Pruthi, N. K.; Przybycien, M.; Pujahari, P. R.; Putschke, J.; Qiu, H.; Ramachandran, S.; Raniwala, R.; Raniwala, S.; Ray, R. L.; Riley, C. K.; Ritter, H. G.; Roberts, J. B.; Rogachevskiy, O. V.; Romero, J. L.; Ross, J. F.; Ruan, L.; Rusnak, J.; Sahoo, N. R.; Sahu, P. K.; Sakrejda, I.; Salur, S.; Sandacz, A.; Sandweiss, J.; Sangaline, E.; Sarkar, A.; Schambach, J.; Scharenberg, R. P.; Schmah, A. M.; Schmidke, B.; Schmitz, N.; Schuster, T. R.; Seger, J.; Seyboth, P.; Shah, N.; Shahaliev, E.; Shao, M.; Sharma, B.; Sharma, M.; Shi, S. S.; Shou, Q. Y.; Sichtermann, E. P.; Singaraju, R. N.; Skoby, M. J.; Smirnov, D.; Smirnov, N.; Solanki, D.; Sorensen, P.; deSouza, U. G.; Spinka, H. M.; Srivastava, B.; Stanislaus, T. D. S.; Stevens, J. R.; Stock, R.; Strikhanov, M.; Stringfellow, B.; Suaide, A. A. P.; Suarez, M. C.; Sumbera, M.; Sun, X. M.; Sun, Y.; Sun, Z.; Surrow, B.; Svirida, D. N.; Symons, T. J. M.; Szanto de Toledo, A.; Takahashi, J.; Tang, A. H.; Tang, Z.; Tarini, L. H.; Tarnowsky, T.; Thomas, J. H.; Tian, J.; Timmins, A. R.; Tlusty, D.; Tokarev, M.; Trentalange, S.; Tribble, R. E.; Tribedy, P.; Trzeciak, B. A.; Tsai, O. D.; Turnau, J.; Ullrich, T.; Underwood, D. G.; Van Buren, G.; van Nieuwenhuizen, G.; Vanfossen, J. A.; Varma, R.; Vasconcelos, G. M. S.; Videbk, F.; Viyogi, Y. P.; Vokal, S.; Voloshin, S. A.; Vossen, A.; Wada, M.; Wang, F.; Wang, G.; Wang, H.; Wang, J. S.; Wang, Q.; Wang, X. L.; Wang, Y.; Webb, G.; Webb, J. C.; Westfall, G. D.; Whitten, C.; Wieman, H.; Wissink, S. W.; Witt, R.; Wu, Y. F.; Xiao, Z.; Xie, W.; Xin, K.; Xu, H.; Xu, N.; Xu, Q. H.; Xu, W.; Xu, Y.; Xu, Z.; Xue, L.; Yang, Y.; Yang, Y.; Yepes, P.; Yi, L.; Yip, K.; Yoo, I-K.; Zawisza, M.; Zbroszczyk, H.; Zhang, J. B.; Zhang, S.; Zhang, X. P.; Zhang, Y.

    2013-08-02

    The measurement of J/? azimuthal anisotropy is presented as a function of transverse momentum for different centralities in Au+Au collisions at ?sNN>/sub>=200 GeV. The measured J/? elliptic flow is consistent with zero within errors for transverse momentum between 2 and 10 GeV/c. Our measurement suggests that J/? particles with relatively large transverse momenta are not dominantly produced by coalescence from thermalized charm quarks, when comparing to model calculations.

  8. Measurement of J/? Azimuthal Anisotropy in Au+Au Collisions at ?sNN=200 GeV

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Adamczyk, L.; Adkins, J. K.; Agakishiev, G.; Aggarwal, M. M.; Ahammed, Z.; Alekseev, I.; Alford, J.; Anson, C. D.; Aparin, A.; Arkhipkin, D.; et al

    2013-08-02

    The measurement of J/? azimuthal anisotropy is presented as a function of transverse momentum for different centralities in Au+Au collisions at ?sNN>/sub>=200 GeV. The measured J/? elliptic flow is consistent with zero within errors for transverse momentum between 2 and 10 GeV/c. Our measurement suggests that J/? particles with relatively large transverse momenta are not dominantly produced by coalescence from thermalized charm quarks, when comparing to model calculations.

  9. Dynamics and pattern selection at the crystal-melt interface. Progress report No. 4, March 1, 1989--February 28, 1990

    SciTech Connect (OSTI)

    Cummins, H.Z.

    1990-12-31

    This report discusses: light scattering at the crystal-melt interface; morphological instability and pattern selection; and sidebranching.

  10. Numerical and experimental investigation of melting with internal heat generation within cylindrical enclosures

    SciTech Connect (OSTI)

    Amber Shrivastava; Brian Williams; Ali S. Siahpush; Bruce Savage; John Crepeau

    2014-06-01

    There have been significant efforts by the heat transfer community to investigate the melting phenomenon of materials. These efforts have included the analytical development of equations to represent melting, numerical development of computer codes to assist in modeling the phenomena, and collection of experimental data. The understanding of the melting phenomenon has application in several areas of interest, for example, the melting of a Phase Change Material (PCM) used as a thermal storage medium as well as the melting of the fuel bundle in a nuclear power plant during an accident scenario. The objective of this research is two-fold. First a numerical investigation, using computational fluid dynamics (CFD), of melting with internal heat generation for a vertical cylindrical geometry is presented. Second, to the best of authors knowledge, there are very limited number of engineering experimental results available for the case of melting with Internal Heat Generation (IHG). An experiment was performed to produce such data using resistive, or Joule, heating as the IHG mechanism. The numerical results are compared against the experimental results and showed favorable correlation. Uncertainties in the numerical and experimental analysis are discussed. Based on the numerical and experimental analysis, recommendations are made for future work.

  11. Investigation of platinum alloys for melting of inclusion free laser glass: Final report

    SciTech Connect (OSTI)

    Izumitani, T.; Toratani, H.; Meissner, H.E.

    1986-02-28

    The objective of this work is to evaluate the suitability of Pt alloys as crucible materials for melting LHG-8 phosphate laser glass. The tendency of forming metallic inclusions and ionic dissolution of alloy components in the glass is to be compared with that of pure Pt. Ionic Pt is introduced into the glass melt by direct dissolution of Pt at the crucible-melt interface and by vapor phase transport. It was felt that a Pt-alloy may behave sufficiently differently from Pt that a number of alloys should be studied. Pt inclusions may originate from Pt which reprecipitates from the glass melt on cooling or change in redox-conditions; from volatilized Pt which deposits in colder zones of the melting environment as crystallites which may drop back into the glass melt; and/or from Pt particles which are mechanically removed from the crucible and drop into the glass melt. Besides pure Pt, the following alloys have been tested: Pt//sup 10/Ir, Pt//sup 10/Rh, Pt//sup 5/Au, Pt-ZGS, Pt//sup 5/Au-ZGS, Pt//sup 10/Rh-ZGS.

  12. Development of a simultaneous Hugoniot and temperature measurement for preheated-metal shock experiments: Melting temperatures of Ta at pressures of 100 GPa

    SciTech Connect (OSTI)

    Li Jun; Zhou Xianming; Li Jiabo; Wu Qiang; Cai Lingcang; Dai Chengda

    2012-05-15

    Equations of state of metals are important issues in earth science and planetary science. A major limitation of them is the lack of experimental data for determining pressure-volume and temperature of shocked metal simultaneously. By measuring them in a single experiment, a major source of systematic error is eliminated in determining from which shock pressure release pressure originates. Hence, a non-contact fast optical method was developed and demonstrated to simultaneously measure a Hugoniot pressure-volume (P{sub H}-V{sub H}) point and interfacial temperature T{sub R} on the release of Hugoniot pressure (P{sub R}) for preheated metals up to 1000 K. Experimental details in our investigation are (i) a Ni-Cr resistance coil field placed around the metal specimen to generate a controllable and stable heating source, (ii) a fiber-optic probe with an optical lens coupling system and optical pyrometer with ns time resolution to carry out non-contact fast optical measurements for determining P{sub H}-V{sub H} and T{sub R}. The shock response of preheated tantalum (Ta) at 773 K was investigated in our work. Measured data for shock velocity versus particle velocity at an initial state of room temperature was in agreement with previous shock compression results, while the measured shock data between 248 and 307 GPa initially heated to 773 K were below the Hugoniot evaluation from its off-Hugoniot states. Obtained interfacial temperatures on release of Hugoniot pressures (100-170 GPa) were in agreement with shock-melting points at initial ambient condition and ab initio calculations of melting curve. It indicates a good consistency for shock melting data of Ta at different initial temperatures. Our combined diagnostics for Hugoniot and temperature provides an important approach for studying EOS and the temperature effect of shocked metals. In particular, our measured melting temperatures of Ta address the current controversy about the difference by more than a factor of 2 between the melting temperatures measured under shock and those measured in a laser-heated diamond anvil cell at {approx}100 GPa.

  13. Theory of melting at high pressures: Amending density functional theory with quantum Monte Carlo

    SciTech Connect (OSTI)

    Shulenburger, L.; Desjarlais, M. P.; Mattsson, T. R.

    2014-10-01

    We present an improved first-principles description of melting under pressure based on thermodynamic integration comparing Density Functional Theory (DFT) and quantum Monte Carlo (QMC) treatments of the system. The method is applied to address the longstanding discrepancy between density functional theory (DFT) calculations and diamond anvil cell (DAC) experiments on the melting curve of xenon, a noble gas solid where van der Waals binding is challenging for traditional DFT methods. The calculations show excellent agreement with data below 20 GPa and that the high-pressure melt curve is well described by a Lindemann behavior up to at least 80 GPa, a finding in stark contrast to DAC data.

  14. RHIC Performance as a 100 GeV Polarized Proton Collider in Run-9

    SciTech Connect (OSTI)

    Montag, C.; Ahrens, L.; Bai, M.; Beebe-Wang, J.; Blaskiewicz, M.; Brennan, J.M.; Brown, K.A.; Bruno, D.; Connolly, R.; DOttavio, T.; Drees, A.; Fedotov, A.V.; Fischer, W.; Ganetis, G.; Gardner, C.; Glenn, J.; Hahn, H.; Harvey, M.; Hayes, T.; Huang, H.; Ingrassia, P.; Jamilkowski, J.; Kayran, D.; Kewisch, J.; Lee, R.C.; Luccio, A.U.; Luo, Y.; MacKay, W.W.; Makdisi, Y.; Malitsky, N.; Marr, G.; Marusic, A.; Menga, P.M.; Michnoff, R.; Minty, M.; Morris, J.; Oerter, B.; Pilat, F.; Pile, P.; Pozdeyev, E.; Ptitsyn, V.; Robert-Demolaize, G.; Roser, T.; Russo, T.; Satogata, T.; Schoefer, V.; Schultheiss, C.; Severino, F.; Sivertz, M.; Smith, K.; Tepikian, S.; Thieberger, P.; Trbojevic, D.; Tsoupas, N.; Tuozzolo, J.; Zaltsman, A.; Zelenski, A.; Zeno, K.; Zhang, S.Y.

    2010-05-23

    During the second half of Run-9, the Relativisitc Heavy Ion Collider (RHIC) provided polarized proton collisions at two interaction points. The spin orientation of both beams at these collision points was controlled by helical spin rotators, and physics data were taken with different orientations of the beam polarization. Recent developments and improvements will be presented, as well as luminosity and polarization performance achieved during Run-9.

  15. Physics Opportunities with the 12 GeV Upgrade at Jefferson Lab

    SciTech Connect (OSTI)

    Dudek, Jozef; Essig, Rouven; Kumar, Krishna; Meyer, Curtis; McKeown, Robert; Meziani, Zein Eddine; Miller, Gerald A; Pennington, Michael; Richards, David; Weinstein, Larry

    2012-08-01

    We are at the dawn of a new era in the study of hadronic nuclear physics. The non-Abelian nature of Quantum Chromodynamics (QCD) and the resulting strong coupling at low energies represent a significant challenge to nuclear and particle physicists. The last decade has seen the development of new theoretical and experimental tools to quantitatively study the nature of confinement and the structure of hadrons comprised of light quarks and gluons. Together these will allow both the spectrum and the structure of hadrons to be elucidated in unprecedented detail. Exotic mesons that result from excitation of the gluon field will be explored. Multidimensional images of hadrons with great promise to reveal the dynamics of the key underlying degrees of freedom will be produced. In particular, these multidimensional distributions open a new window on the elusive spin content of the nucleon through observables that are directly related to the orbital angular momenta of quarks and gluons. Moreover, computational techniques in Lattice QCD now promise to provide insightful and quantitative predictions that can be meaningfully confronted with, and elucidated by, forthcoming experimental data. In addition, the development of extremely high intensity, highly polarized and extraordinarily stable beams of electrons provides innovative opportunities for probing (and extending) the Standard Model, both through parity violation studies and searches for new particles. Thus the 12 GeV upgrade of the Continuous Electron Beam Accelerator Facility (CEBAF) at Jefferson Lab will enable a new experimental program with substantial discovery potential to address these and other important topics in nuclear, hadronic and electroweak physics.

  16. Points of Contact and Privacy Act Advisory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Points of Contact Points of Contact and Privacy Act Advisory If you are trying to contact an agency other than the Department of Energy, use the web address: http:...

  17. CenterPoint Comments | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    CenterPoint Comments CenterPoint Comments CenterPoint Comments on the Smart Grid RFI: Addressing Policy and Logistical Challenges PDF icon CenterPoint Comments More Documents & Publications City Utilities of Springfield Missouri Comments on Smart Grid RFI: Addressing Policy and Logistical Challenges Dairyland Power Cooperative Comments on Smart Grid RFI: Addressing Policy and Logistical Challenges Comments of North American Electric Reliability Corporation (NERC) to DOE Smart Grid RFI:

  18. Critical Point Finder () | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    Critical Point Finder Citation Details Software Request Title: Critical Point Finder The program robustly finds the critical points in the electric field generated by a specified collection of point charges. Authors: Max, Nelson Publication Date: 2007-03-15 OSTI Identifier: 1231069 Report Number(s): CRIT; 002212WKSTN00 LLNL-CODE-402108 DOE Contract Number: AC52-07NA27344 Software Revision: 00 Software Package Number: 002212 Software Package Contents: Media Directory; Software Abstract; Media

  19. Beryllium Program Points of Contact - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Program Points of Contact About Us Beryllium Program Beryllium Program Points of Contact Beryllium Facilities & Areas Beryllium Program Information Hanford CBDPP Committee Beryllium FAQs Beryllium Related Links Hanford Beryllium Awareness Group (BAG) Program Performance Assessments Beryllium Program Feedback Beryllium Health Advocates Primary Contractors/Employers Medical Testing and Surveillance Facilities General Resources Beryllium Program Points of Contact Email Email Page | Print Print

  20. Analysis of impact melt and vapor production in CTH for planetary applications

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Quintana, S. N.; Crawford, D. A.; Schultz, P. H.

    2015-05-19

    This study explores impact melt and vapor generation for a variety of impact speeds and materials using the shock physics code CTH. The study first compares the results of two common methods of impact melt and vapor generation to demonstrate that both the peak pressure method and final temperature method are appropriate for high-speed impact models (speeds greater than 10 km/s). However, for low-speed impact models (speeds less than 10 km/s), only the final temperature method is consistent with laboratory analyses to yield melting and vaporization. Finally, a constitutive model for material strength is important for low-speed impacts because strengthmore » can cause an increase in melting and vaporization.« less

  1. High Pressure Melting Curve of TIn (Journal Article) | SciTech...

    Office of Scientific and Technical Information (OSTI)

    High Pressure Melting Curve of TIn Citation Details ... OSTI Identifier: 1124823 Report Number(s): LLNL-JRNL-522418 DOE Contract Number: W-7405-ENG-48 Resource Type: Journal ...

  2. The Use of Induction Melting for the Treatment of Metal Radioactive Waste - 13088

    SciTech Connect (OSTI)

    Zherebtsov, Alexander; Pastushkov, Vladimir; Poluektov, Pavel; Smelova, Tatiana; Shadrin, Andrey

    2013-07-01

    The aim of the work is to assess the efficacy of induction melting metal for recycling radioactive waste in order to reduce the volume of solid radioactive waste to be disposed of, and utilization of the metal. (authors)

  3. Migration of carbon in tempered martensitic steel during excimer laser melting

    SciTech Connect (OSTI)

    Hirvonen, J.P.; Jervis, T.R.; Zocco, T.G.

    1989-01-01

    The migration of ion implanted {sup 13}C in tempered martensitic steel (nominal composition 1.05 wt. % C, 0.2 wt. % Si, and 0.3 wt. % Mn) during excimer laser melting was examined utilizing the resonance of the {sup 13}C(p,{gamma}){sup 14}N reaction at Ep = 1747.6 keV. Depth concentration profiles after five and ten laser pulses of 1 J/cm{sup 2} revealed deviation from random walk diffusion in a homogeneous media. This was modelled by using the solubility controlled flow of carbon in iron-carbon melt. A diffusion length of 2{radical}D{tau} 34 {plus minus} 2 nm during a period {tau} of the melted phase was deduced. Significant amorphous to crystalline transformation occurred during the rapid self quenching following laser melting. 18 refs., 3 figs.

  4. Energy-Efficient Melting and Direct Delivery of High Quality Molten Aluminum

    SciTech Connect (OSTI)

    None

    2009-05-01

    This factsheet describes a research project whose main objective is demonstrating a technology that will eliminate melting and holding furnaces at the casting cell and move these operations to centralized and optimized off-site facilities.

  5. Melting of “non-magic” argon clusters and extrapolation to the bulk limit

    SciTech Connect (OSTI)

    Senn, Florian Wiebke, Jonas; Schumann, Ole; Gohr, Sebastian; Schwerdtfeger, Peter; Pahl, Elke

    2014-01-28

    The melting of argon clusters Ar{sub N} is investigated by applying a parallel-tempering Monte Carlo algorithm for all cluster sizes in the range from 55 to 309 atoms. Extrapolation to the bulk gives a melting temperature of 85.9 K in good agreement with the previous value of 88.9 K using only Mackay icosahedral clusters for the extrapolation [E. Pahl, F. Calvo, L. Koči, and P. Schwerdtfeger, “Accurate melting temperatures for neon and argon from ab initio Monte Carlo simulations,” Angew. Chem., Int. Ed. 47, 8207 (2008)]. Our results for argon demonstrate that for the extrapolation to the bulk one does not have to restrict to magic number cluster sizes in order to obtain good estimates for the bulk melting temperature. However, the extrapolation to the bulk remains a problem, especially for the systematic selection of suitable cluster sizes.

  6. Mathematical modeling of cold cap: Effect of bubbling on melting rate

    SciTech Connect (OSTI)

    Pokorny, Richard; Kruger, Albert A.; Hrma, Pavel R.

    2014-12-31

    The rate of melting is a primary concern in the vitrification of radioactive wastes because it directly influences the life cycle of nuclear waste cleanup efforts. To increase glass melting performance, experimental and industrial all-electric waste glass melters employ various melt-rate enhancement techniques, the most prominent being the application of bubblers submerged into molten glass. This study investigates various ways in which bubbling affects melting rate in a waste glass melter. Using the recently developed cold cap model, we suggest that forced convection of molten glass, which increases the cold cap bottom temperature, is the main factor. Other effects, such as stirring the feed into molten glass or reducing the insulating effect of foaming, also play a role.

  7. Controlling electrode gap during vacuum arc remelting at low melting current

    DOE Patents [OSTI]

    Williamson, R.L.; Zanner, F.J.; Grose, S.M.

    1997-04-15

    An apparatus and method are disclosed for controlling electrode gap in a vacuum arc remelting furnace, particularly at low melting currents. Spectrographic analysis is performed of the metal vapor plasma, from which estimates of electrode gap are derived. 5 figs.

  8. Controlling electrode gap during vacuum arc remelting at low melting current

    DOE Patents [OSTI]

    Williamson, Rodney L.; Zanner, Frank J.; Grose, Stephen M.

    1997-01-01

    An apparatus and method for controlling electrode gap in a vacuum arc remelting furnace, particularly at low melting currents. Spectrographic analysis is performed of the metal vapor plasma, from which estimates of electrode gap are derived.

  9. Microsoft PowerPoint - WIPP Statement

    Energy Savers [EERE]

    | Department of Energy WH Energy and Climate Stakeholders 10-7-09 final.ppt Microsoft PowerPoint - WH Energy and Climate Stakeholders 10-7-09 final.ppt PDF icon Microsoft PowerPoint - WH Energy and Climate Stakeholders 10-7-09 final.ppt More Documents & Publications Microsoft PowerPoint - CHU_Grid Week 9-21-09 final.ppt Microsoft PowerPoint - 5.3 Item 01 Top Kill Operation Status 09 June 1400.pptx Microsoft PowerPoint - Enterprise Top Hat Phases - 07-04-2010.pptx

    EMHQ Approved

  10. Analysis of Crossover Points for MVLT Superclass

    Energy Savers [EERE]

    Analysis of Crossover Points for MVLT Superclass 58761v1 Page 1 White Paper - Analysis of Cross-Over Points for Grain-Oriented Electrical Steel and Amorphous Ribbon for the MVLT Superclass Cross-over points for the Medium Voltage Liquid Filled distribution transformer super-class have been analyzed based on the Engineering Analysis provided by the Department of Energy. For the purpose of this white paper, a cross-over point is defined as where the low-cost curve fitted to the point cloud for all

  11. Contribution of Anticipated Transients Without Scram (ATWS) to core melt at United States nuclear power plants

    SciTech Connect (OSTI)

    Giachetti, R.T. (Giachetti (Richard T.), Ann Arbor, MI (USA))

    1989-09-01

    This report looks at WASH-1400 and several other Probabilistic Risk Assessments (PRAs) and Probabilistic Safety Studies (PSSs) to determine the contribution of Anticipated Transients Without Scram (ATWS) events to the total core melt probability at eight nuclear power plants in the United States. After considering each plant individually, the results are compared from plant to plant to see if any generic conclusions regarding ATWS, or core melt in general, can be made. 8 refs., 34 tabs.

  12. MELTING OF GLASS BATCH: MODEL FOR MULTIPLE OVERLAPPING GAS-EVOLVING

    Office of Scientific and Technical Information (OSTI)

    REACTIONS (Journal Article) | SciTech Connect Journal Article: MELTING OF GLASS BATCH: MODEL FOR MULTIPLE OVERLAPPING GAS-EVOLVING REACTIONS Citation Details In-Document Search Title: MELTING OF GLASS BATCH: MODEL FOR MULTIPLE OVERLAPPING GAS-EVOLVING REACTIONS In this study, we present a model for the kinetics of multiple overlapping reactions. Mathematical representation of the kinetics of gas-evolving reactions is crucial for the modeling of the feed-to-glass conversion in a waste-glass

  13. Melting Hanford LAW into Iron-Phosphate Glass in a CCIM (Technical Report)

    Office of Scientific and Technical Information (OSTI)

    | SciTech Connect Melting Hanford LAW into Iron-Phosphate Glass in a CCIM Citation Details In-Document Search Title: Melting Hanford LAW into Iron-Phosphate Glass in a CCIM A vitrification test has been conducted using the cold crucible induction melter (CCIM) test system at the Idaho National Laboratory. The test was conducted to demonstrate the vitrification of a Hanford low activity waste (LAW) that contains relatively large amounts of sulfate and sodium, compared to other radioactive

  14. Melting of clinopyroxene + magnesite in iron-bearing planetary mantles and

    Office of Scientific and Technical Information (OSTI)

    implications for the Earth and Mars (Journal Article) | SciTech Connect Melting of clinopyroxene + magnesite in iron-bearing planetary mantles and implications for the Earth and Mars Citation Details In-Document Search Title: Melting of clinopyroxene + magnesite in iron-bearing planetary mantles and implications for the Earth and Mars Authors: Martin, Audrey M. ; Righter, Kevin [1] + Show Author Affiliations (NASA-JSC) [NASA-JSC Publication Date: 2013-12-05 OSTI Identifier: 1107421 Resource

  15. Critical point analysis of phase envelope diagram

    SciTech Connect (OSTI)

    Soetikno, Darmadi; Siagian, Ucok W. R.; Kusdiantara, Rudy Puspita, Dila Sidarto, Kuntjoro A. Soewono, Edy; Gunawan, Agus Y.

    2014-03-24

    Phase diagram or phase envelope is a relation between temperature and pressure that shows the condition of equilibria between the different phases of chemical compounds, mixture of compounds, and solutions. Phase diagram is an important issue in chemical thermodynamics and hydrocarbon reservoir. It is very useful for process simulation, hydrocarbon reactor design, and petroleum engineering studies. It is constructed from the bubble line, dew line, and critical point. Bubble line and dew line are composed of bubble points and dew points, respectively. Bubble point is the first point at which the gas is formed when a liquid is heated. Meanwhile, dew point is the first point where the liquid is formed when the gas is cooled. Critical point is the point where all of the properties of gases and liquids are equal, such as temperature, pressure, amount of substance, and others. Critical point is very useful in fuel processing and dissolution of certain chemicals. Here in this paper, we will show the critical point analytically. Then, it will be compared with numerical calculations of Peng-Robinson equation by using Newton-Raphson method. As case studies, several hydrocarbon mixtures are simulated using by Matlab.

  16. Chemistry modification of high oxygen-carbon powder by plasma melting: Follow up to complete the story

    SciTech Connect (OSTI)

    Dunn, P.S.; Korzekwa, D.R.; Garcia, F.G.; Michaluk, C.A.

    1998-03-01

    State of the art melting of tantalum and tantalum alloys has relied on electron beam (EB) or vacuum arc remelting (VAR) for commercial ingot production. Plasma arc melting (PAM) provides an alternative for melting tantalum that contains very high levels of interstitials where other melting techniques can not be applied. Previous work in this area centered on plasma arc melt quality and final interstitial content of tantalum feedstock containing excessive levels of interstitial impurities as a function of melt rate and plasma gas. This report is an expansion of this prior study and provides the findings from the analysis of second phase components observed in the microstructure of the PAM tantalum. In addition, results from subsequent EB melting trials of PAM tantalum are included.

  17. Investigation of MSWI fly ash melting characteristic by DSC-DTA

    SciTech Connect (OSTI)

    Li, Rundong Wang, Lei; Yang, Tianhua; Raninger, Bernhard

    2007-07-01

    The melting process of MSWI (Municipal Solid Waste Incineration) fly ash has been studied by high-temperature DSC-DTA experiments. The experiments were performed at a temperature range of 20-1450 deg. C, and the considerable variables included atmosphere (O{sub 2} and N{sub 2}), heating rates (5 deg. C/min, 10 deg. C/min, 20 deg. C/min) and CaO addition. Three main transitions were observed during the melting process of fly ash: dehydration, polymorphic transition and fusion, occurring in the temperature range of 100-200 deg. C, 480-670 deg. C and 1101-1244 deg. C, respectively. The apparent heat capacity and heat requirement for melting of MSWI fly ash were obtained by DSC (Differential Scanning Calorimeter). A thermodynamic modeling to predict the heat requirements for melting process has been presented, and it agrees well with the experimental data. Finally, a zero-order kinetic model of fly ash melting transition was established. The apparent activation energy of MSWI fly ash melting transition was obtained.

  18. Channeling, volume reflection and gamma emission using 14GeV electrons in bent silicon crystals - Oral presentation

    SciTech Connect (OSTI)

    Benson, Brandon

    2015-08-23

    High energy electrons can be deflected with very tight bending radius using a bent silicon crystal. This produces gamma radiation. As these crystals can be thin, a series of bent silicon crystals with alternating direction has the potential to produce coherent gamma radiation with reasonable energy of the driving electron beam. Such an electron crystal undulator offers the prospect for higher energy radiation at lower cost than current methods. Permanent magnetic undulators like LCLS at SLAC National Accelerator Laboratory are expensive and very large (about 100 m in case of the LCLS undulator). Silicon crystals are inexpensive and compact when compared to the large magnetic undulators. Additionally, such a high energy coherent light source could be used for probing through materials currently impenetrable by x-rays. In this work we present the experimental data and analysis of experiment T523 conducted at SLAC National Accelerator Laboratory. We collected the spectrum of gamma ray emission from 14 GeV electrons on a bent silicon crystal counting single photons. We also investigated the dynamics of electron motion in the crystal i.e. processes of channeling and volume reflection at 14 GeV, extending and building off previous work. Our single photon spectrum for the amorphous crystal orientation is consistent with bremsstrahlung radiation and the volume reflection crystal orientation shows a trend consistent with synchrotron radiation at a critical energy of 740 MeV. We observe that in these two cases the data are consistent, but we make no further claims because of statistical limitations. We also extended the known energy range of electron crystal dechanneling length and channeling efficiency to 14 GeV.

  19. A Brief Review of Past INL Work Assessing Radionuclide Content in TMI-2 Melted Fuel Debris: The Use of 144Ce as a Surrogate for Pu Accountancy

    SciTech Connect (OSTI)

    D. L. Chichester; S. J. Thompson

    2013-09-01

    This report serves as a literature review of prior work performed at Idaho National Laboratory, and its predecessor organizations Idaho National Engineering Laboratory (INEL) and Idaho National Engineering and Environmental Laboratory (INEEL), studying radionuclide partitioning within the melted fuel debris of the reactor of the Three Mile Island 2 (TMI-2) nuclear power plant. The purpose of this review is to document prior published work that provides supporting evidence of the utility of using 144Ce as a surrogate for plutonium within melted fuel debris. When the TMI-2 accident occurred no quantitative nondestructive analysis (NDA) techniques existed that could assay plutonium in the unconventional wastes from the reactor. However, unpublished work performed at INL by D. W. Akers in the late 1980s through the 1990s demonstrated that passive gamma-ray spectrometry of 144Ce could potentially be used to develop a semi-quantitative correlation for estimating plutonium content in these materials. The fate and transport of radioisotopes in fuel from different regions of the core, including uranium, fission products, and actinides, appear to be well characterized based on the maximum temperature reached by fuel in different parts of the core and the melting point, boiling point, and volatility of those radioisotopes. Also, the chemical interactions between fuel, fuel cladding, control elements, and core structural components appears to have played a large role in determining when and how fuel relocation occurred in the core; perhaps the most important of these reaction appears to be related to the formation of mixed-material alloys, eutectics, in the fuel cladding. Because of its high melting point, low volatility, and similar chemical behavior to plutonium, the element cerium appears to have behaved similarly to plutonium during the evolution of the TMI-2 accident. Anecdotal evidence extrapolated from open-source literature strengthens this logical feasibility for using cerium, which is rather easy to analyze using passive nondestructive analysis gamma-ray spectrometry, as a surrogate for plutonium in the final analysis of TMI-2 melted fuel debris. The generation of this report is motivated by the need to perform nuclear material accountancy measurements on the melted fuel debris that will be excavated from the damaged nuclear reactors at the Fukushima Daiichi nuclear power plant in Japan, which were destroyed by the Tohoku earthquake and tsunami on March 11, 2011. Lessons may be taken from prior U.S. work related to the study of the TMI-2 core debris to support the development of new assay methods for use at Fukushima Daiichi. While significant differences exist between the two reactor systems (pressurized water reactor (TMI-2) versus boiling water reactor (FD), fresh water post-accident cooing (TMI-2) versus salt water (FD), maintained containment (TMI-2) versus loss of containment (FD)) there remain sufficient similarities to motivate these comparisons.

  20. ΛΛ correlation function in Au + Au collisions at √sNN = 200 GeV

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Adamczyk, L.

    2015-01-12

    In this study, we present ΛΛ correlation measurements in heavy-ion collisions for Au+Au collisions at √sNN = 200 GeV using the STAR experiment at the Relativistic Heavy-Ion Collider (RHIC). The Lednický-Lyuboshitz analytical model has been used to fit the data to obtain a source size, a scattering length and an effective range. Implications of the measurement of the ΛΛ correlation function and interaction parameters for di-hyperon searches are discussed.

  1. Search for neutrino oscillations by detecting UNK-1 600-GeV neutrino beams at Gran Sasso (Italy)

    SciTech Connect (OSTI)

    Vasil`ev, P.S.; Kuznetsov, A.E.; Kuznetsov, E.P.

    1995-12-01

    The possibility of formation of neutrino beams from the 600-GeV UNK-1 accelerator toward Gran Sasso (Italy) and of study neutrino oscillations with the ICARUS detector is demonstrated. The proposed experiment is sensitive to {Delta}m{sup 2} values down to 10{sup -3} eV{sup 2} at maximum neutrino mixing and to sin{sup 2}2{theta} values down to 6 x 10{sup -3} at {Delta}m{sup 2} {approximately} 2 x 10{sup -2} eV{sup 2}. 21 refs., 6 figs., 3 tabs.

  2. Higgs portal vector dark matter for GeV scale γ-ray excess from galactic center

    SciTech Connect (OSTI)

    Ko, P.; Park, Wan-Il; Tang, Yong

    2014-09-05

    We show that the GeV scale γ-ray excess from the direction of the Galactic Center can be naturally explained by the pair annihilation of Abelian vector dark matter (VDM) into a pair of dark Higgs bosons (VV→ϕϕ), followed by the subsequent decay of ϕ into bb{sup -bar} or ττ{sup -bar}. All the processes are described by a renormalizable VDM model with the Higgs portal, which is naturally flavor-dependent. Some parameter space of this scenario can be tested at the near future direct dark matter search experiments such as LUX and XENON1T.

  3. Dielectron Azimuthal Anisotropy at mid-rapidity in Au+Au collisions at root s=200GeV

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Adamczyk, L.

    2014-12-11

    We report on the first measurement of the azimuthal anisotropy (v₂) of dielectrons (e⁺e⁻ pairs) at mid-rapidity from √(sNN)=200 GeV Au + Au collisions with the STAR detector at the Relativistic Heavy Ion Collider (RHIC), presented as a function of transverse momentum (pT) for different invariant-mass regions. In the mass region Meeee<2.9GeV/c², the measured dielectron v₂ is consistent, within experimental uncertainties, with that from the cc¯ contributions.

  4. Atomic Number Dependence of Hadron Production at Large Transverse Momentum in 300 GeV Proton--Nucleus Collisions

    DOE R&D Accomplishments [OSTI]

    Cronin, J. W.; Frisch, H. J.; Shochet, M. J.; Boymond, J. P.; Mermod, R.; Piroue, P. A.; Sumner, R. L.

    1974-07-15

    In an experiment at the Fermi National Accelerator Laboratory we have compared the production of large transverse momentum hadrons from targets of W, Ti, and Be bombarded by 300 GeV protons. The hadron yields were measured at 90 degrees in the proton-nucleon c.m. system with a magnetic spectrometer equipped with 2 Cerenkov counters and a hadron calorimeter. The production cross-sections have a dependence on the atomic number A that grows with P{sub 1}, eventually leveling off proportional to A{sup 1.1}.

  5. Structural Analysis of Thermal Shields During a Quench of a Torus Magnet for the 12 GeV Upgrade

    SciTech Connect (OSTI)

    Pastor, Orlando; Willard, Thomas; Ghoshal, Probir K.; Kashy, David H.; Wiseman, Mark A.; Kashikhin, V.; Young, Glenn R.; Elouadrhiri, Latifa; Rode, Claus H.

    2015-06-01

    A toroidal magnet system consisting of six superconducting coils is being built for the Jefferson Lab 12- GeV accelerator upgrade project. This paper details the analysis of eddy current effects during a quench event on the aluminum thermal shield. The shield has been analyzed for mechanical stresses induced as a result of a coil quench as well as a fast discharge of the complete magnet system. The shield has been designed to reduce the eddy current effects and result in stresses within allowable limits.

  6. DETERMINATION OF HLW GLASS MELT RATE USING X-RAY COMPUTED TOMOGRAPHY

    SciTech Connect (OSTI)

    Choi, A.; Miller, D.; Immel, D.

    2011-10-06

    The purpose of the high-level waste (HLW) glass melt rate study is two-fold: (1) to gain a better understanding of the impact of feed chemistry on melt rate through bench-scale testing, and (2) to develop a predictive tool for melt rate in support of the on-going frit development efforts for the Defense Waste Processing Facility (DWPF). In particular, the focus is on predicting relative melt rates, not the absolute melt rates, of various HLW glass formulations solely based on feed chemistry, i.e., the chemistry of both waste and glass-forming frit for DWPF. Critical to the successful melt rate modeling is the accurate determination of the melting rates of various HLW glass formulations. The baseline procedure being used at the Savannah River National Laboratory (SRNL) is to; (1) heat a 4 inch-diameter stainless steel beaker containing a mixture of dried sludge and frit in a furnace for a preset period of time, (2) section the cooled beaker along its diameter, and (3) measure the average glass height across the sectioned face using a ruler. As illustrated in Figure 1-1, the glass height is measured for each of the 16 horizontal segments up to the red lines where relatively large-sized bubbles begin to appear. The linear melt rate (LMR) is determined as the average of all 16 glass height readings divided by the time during which the sample was kept in the furnace. This 'visual' method has proved useful in identifying melting accelerants such as alkalis and sulfate and further ranking the relative melt rates of candidate frits for a given sludge batch. However, one of the inherent technical difficulties of this method is to determine the glass height in the presence of numerous gas bubbles of varying sizes, which is prevalent especially for the higher-waste-loading glasses. That is, how the red lines are drawn in Figure 1-1 can be subjective and, therefore, may influence the resulting melt rates significantly. For example, if the red lines are drawn too low, a significant amount of glassy material interspersed among the gas bubbles will be excluded, thus underestimating the melt rate. Likewise, if they are drawn too high, many large voids will be counted as glass, thus overestimating the melt rate. As will be shown later in this report, there is also no guarantee that a given distribution of glass and gas bubbles along a particular sectioned plane will always be representative of the entire sample volume. Poor reproducibility seen in some LMR data may be related to these difficulties of the visual method. In addition, further improvement of the existing melt rate model requires that the overall impact of feed chemistry on melt rate be reflected on measured data at a greater quantitative resolution on a more consistent basis than the visual method can provide. An alternate method being pursued is X-ray computed tomography (CT). It involves X-ray scanning of glass samples, performing CT on the 2-D X-ray images to build 3-D volumetric data, and adaptive segmentation analysis of CT results to not only identify but quantify the distinct regions within each sample based on material density and morphologies. The main advantage of this new method is that it can determine the relative local density of the material remaining in the beaker after the heat treatment regardless of its morphological conditions by selectively excluding all the voids greater than a given volumetric pixel (voxel) size, thus eliminating much of the subjectivity involved in the visual method. As a result, the melt rate data obtained from CT scan will give quantitative descriptions not only on the fully-melted glass, but partially-melted and unmelted feed materials. Therefore, the CT data are presumed to be more reflective of the actual melt rate trends in continuously-fed melters than the visual data. In order to test the applicability of X-ray CT scan to the HLW glass melt rate study, several new series of HLW simulant/frit mixtures were melted in the Melt Rate Furnace (MRF) and the contents of each cooled but un-sectioned beaker were CT scanned and analyzed.

  7. Reaction of Inconel 690 and 693 in Iron Phosphate Melts: Alternative Glasses for Waste Vitrification

    SciTech Connect (OSTI)

    Day, Delbert E.

    2005-09-13

    The corrosion resistance of candidate materials used for the electrodes (Inconel 690 & 693) and the melt contact refractory (Monofrax K-3) in a Joule Heated Melter (JHM) has been investigated at the University of Missouri-Rolla (UMR) during the period from June 1, 2004 to August 31, 2005. This work was supported by the U.S. Department of Energy (DOE) Office of Biological and Environmental Research (DE-FG02-04ER63831). The unusual properties and characteristics of iron phosphate glasses, as viewed from the standpoint of alternative glasses for vitrifying nuclear and hazardous wastes which contain components that make them poorly suited for vitrification in borosilicate glass, were recently discovered at UMR. The expanding national and international interest in iron phosphate glasses for waste vitrification stems from their rapid melting and chemical homogenization which results in higher furnace output, their high waste loading that varies from 32 wt% up to 75 wt% for the Hanford LAW and HLW, respectively, and the outstanding chemical durability of the iron phosphate wasteforms which meets all present DOE requirements (PCT and VHT). The higher waste loading in iron phosphate glasses, compared to the baseline borosilicate glass, can reduce the time and cost of vitrification considerably since a much smaller mass of glass will be produced, for example, about 43% less glass when the LAW at Hanford is vitrified in an iron phosphate glass according to PNNL estimates. In view of the promising performance of iron phosphate glasses, information is needed for how to best melt these glasses on the scale needed for practical use. Melting iron phosphate glasses in a JHM is considered the preferred method at this time because its design could be nearly identical to the JHM now used to melt borosilicate glasses at the Defense Waste Processing Facility (DWPF), Westinghouse Savannah River Co. Therefore, it is important to have information for the corrosion of candidate electrode and refractory materials in iron phosphate melts in a JHM. During the period from June 1, 2004 to August 31, 2005, the corrosion resistance of coupons of Inconel 690 & 693 metals and Monofrax K-3 refractory, partially submerged in several iron phosphate melts at 950-1200?C, has been investigated to determine whether iron phosphate glasses could be melted in a JHM equipped with such electrodes and refractory in the same manner as now being used to melt borosilicate glass. These representative iron phosphate melts, which contained 30 wt% Hanford LAW and 40 wt% Idaho SBW simulants, did not corrode the Inconel 690 to any greater extent than what has been reported for Inconel 690 in the borosilicate melt in the JHM at DWPF. Inconel 693 appeared to be an even better candidate for use in iron phosphate melts since its corrosion rate (1.8 to 25.4 ?m/day) was only about one half that (5.4 to 45.4 ?m/day) of Inconel 690. The dynamic corrosion measured for the candidate refractory, Monofrax K-3, by iron phosphate melts is quite encouraging since the measured corrosion (0.011 to 0.132 mm/day at 9.2 rpm) is less than the corrosion (0.137 mm/day) that has been reported in the JHM used to melt borosilicate glass at DWPF. During the period covered by this final report, the results of the research on iron phosphate glasses have been described in seven technical papers and have been presented at one national meeting. In addition to the principal investigator, one research professor and one undergraduate research aide were supported by this project.

  8. End Point Implementation Examples | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    PDF icon End Point Implementation Examples More Documents & Publications Post-Deactivation Surveillance and Maintenance Planning Project Management Plan Examples 1 - 80 ...

  9. Building Green in Greensburg: Prairie Pointe Townhomes

    Broader source: Energy.gov [DOE]

    This poster highlights energy efficiency, renewable energy, and sustainable features of the high-performing Prairie Pointe Townhomes in Greensburg, Kansas.

  10. Point of Compliance | Department of Energy

    Office of Environmental Management (EM)

    Generic Technical Issue Discussion on Point of Compliance More Documents & Publications Long-Term Grout Performance Concentration Averaging Sensitivity and Uncertainty Analysis...

  11. West Point Utility System | Open Energy Information

    Open Energy Info (EERE)

    Utility System Jump to: navigation, search Name: West Point Utility System Place: Iowa Phone Number: (319) 837-6313 Website: www.westpointiowa.comwp-utili Facebook: https:...

  12. GreatPoint Energy | Open Energy Information

    Open Energy Info (EERE)

    Jump to: navigation, search Name: GreatPoint Energy Address: 222 Third Street Place: Cambridge, Massachusetts Zip: 02142 Region: Greater Boston Area Sector: Biomass Product:...

  13. Point380 LLC | Open Energy Information

    Open Energy Info (EERE)

    Zip: 80302 Sector: Carbon Product: Point380 provides carbon consulting and resource management solutions to a broad range of clients seeking energy related risk analysis and...

  14. Starting Points | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    Starting Points Kansas City Plant Related Web Pages Summary Kansas City Plant Home Page Kansas City Plant Contracts DOE Directives NNSA Policy System Kansas City Field Office ...

  15. CenterPoint Energy New Homes Program

    Broader source: Energy.gov [DOE]

    Note: This program is only available to electric customers in CenterPoint Energy's service territory (greater Houston area, Texas). 

  16. Energy and centrality dependence of p and p production and the {lambda}/p ratio in Pb+Pb collisions between 20A GeV and 158A GeV

    SciTech Connect (OSTI)

    Alt, C.; Blume, C.; Bramm, R.; Dinkelaker, P.; Flierl, D.; Kliemant, M.; Kniege, S.; Lungwitz, B.; Mitrovski, M.; Renfordt, R.; Schuster, T.; Stock, R.; Strabel, C.; Stroebele, H.; Wetzler, A.; Anticic, T.; Kadija, K.; Nicolic, V.; Susa, T.; Baatar, B.

    2006-04-15

    The transverse mass m{sub t} distributions for antiprotons are measured at midrapidity for minimum bias Pb+Pb collisions at 158A GeV and for central Pb+Pb collisions at 20A, 30A, 40A, and 80A GeV beam energies in the fixed target experiment NA49 at the CERN SPS. The rapidity density dn/dy, inverse slope parameter T, and mean transverse mass derived from the m{sub t} distributions are studied as a function of the incident energy and the collision centrality and compared to the relevant data on proton production. The shapes of the m{sub t} distributions of p and p are very similar. The ratios of the particle yields, p/p and {lambda}/p, are also analyzed. The p/p ratio exhibits an increase with decreasing centrality and a steep rise with increasing beam energy. The {lambda}/p ratio increases beyond unity with decreasing beam energy.

  17. Three-point spherical mirror mount

    DOE Patents [OSTI]

    Cutburth, R.W.

    1984-01-23

    A three-point spherical mirror mount for use with lasers is disclosed. The improved mirror mount is adapted to provide a pivot ring having an outer surface with at least three spaced apart mating points to engage an inner spherical surface of a support housing.

  18. Polarization components in π0 photoproduction at photon energies up to 5.6 GeV

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Luo, W.; Brash, E. J.; Gilman, R.; Jones, M. K.; Meziane, M.; Pentchev, L.; Perdrisat, C. F; Puckett, A. J.R.; Punjabi, V.; Wesselmann, F. R.; et al

    2012-05-31

    We present new data for the polarization observables of the final state proton in the 1H(→ γ, → p)π0 reaction. These data can be used to test predictions based on hadron helicity conservation (HHC) and perturbative QCD (pQCD). These data have both small statistical and systematic uncertainties, and were obtained with beam energies between 1.8 and 5.6 GeV and for π0 scattering angles larger than 75{sup o} in center-of-mass (c.m.) frame. The data extend the polarization measurements data base for neutral pion photoproduction up to Eγ = 5.6 GeV. The results show non-zero induced polarization above the resonance region. Themore » polarization transfer components vary rapidly with the photon energy and π0 scattering angle in the center-of-mass frame. This indicates that HHC does not hold and that the pQCD limit is still not reached in the energy regime of this experiment.« less

  19. Identified high-pT spectra in Cu+Cu collisions at sqrt sNN=200 GeV

    SciTech Connect (OSTI)

    STAR Collaboration; Abelev, Betty

    2010-07-05

    We report new results on identified (anti)proton and charged pion spectra at large transverse momenta (3 < p{sub T} < 10 GeV/c) from Cu+Cu collisions at {radical}s{sub NN} = 200 GeV using the STAR detector at the Relativistic Heavy Ion Collider (RHIC). This study explores the system size dependence of two novel features observed at RHIC with heavy ions: the hadron suppression at high-p{sub T} and the anomalous baryon to meson enhancement at intermediate transverse momenta. Both phenomena could be attributed to the creation of a new form of QCD matter. The results presented here bridge the system size gap between the available pp and Au+Au data, and allow the detailed exploration for the on-set of the novel features. Comparative analysis of all available 200 GeV data indicates that the system size is a major factor determining both the magnitude of the hadron spectra suppression at large transverse momenta and the relative baryon to meson enhancement.

  20. High Luminosity Options for the JLC.NLC at 500 GeV cms(LCC-0004)

    SciTech Connect (OSTI)

    Raubenheimer, T

    2004-04-22

    The present JLC/NLC parameters are chosen to provide luminosities between 0.5 {approx} 0.75 x 10{sup 34} s{sup -1} cm{sup -2} at a cms energy of 500 GeV; the parameters are listed in Table 1 for both the 500 GeV and 1 TeV cases. In all cases, these luminosities assume extensive margins and emittance dilutions to ensure that they are attainable. In this note, they consider the feasibility of substantially higher luminosities which might be attained by operating with smaller emittance dilutins and higher beam currents. The parameters they describe are listed in Table 2 where these high luminosity sets (ILC-IHa and ILC-IHb) are compared with the base JLC/NLC set (ILC-Ib) and with the high luminosity TESLA parameter set. In the next sections, they will discuss the limitations and assumptions leading to these higher luminosity parameter sets. The details in their discussion will be based on the NLC design described in the Zeroth-order Design Report (ZDR) but the same arguments, with slightly different values, could be applied to the JLC reference design.

  1. A tale of tails. Dark matter interpretations of the Fermi GeV excess in light of background model systematics

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Calore, Francesca; Cholis, Ilias; McCabe, Christopher; Weniger, Christoph

    2015-03-10

    Several groups have identified an extended excess of gamma rays over the modeled foreground and background emissions towards the Galactic center (GC) based on observations with the Fermi Large Area Telescope. This excess emission is compatible in morphology and spectrum with a telltale sign from dark matter (DM) annihilation. Here, we present a critical reassessment of DM interpretations of the GC signal in light of the foreground and background uncertainties that some of us recently outlaid in Calore et al. (2014). We find that a much larger number of DM models fits the gamma-ray data than previously noted. In particular:more(1) In the case of DM annihilation into bb, we find that even large DM masses up to m??74 GeV are allowed at p-value >0.05. (2) Surprisingly, annihilation into nonrelativistic hh gives a good fit to the data. (3) The inverse Compton emission from ?+? with m? ~ 6070 GeV can also account for the excess at higher latitudes, |b|>2, both in its spectrum and morphology. We also present novel constraints on a large number of mixed annihilation channels, including cascade annihilation involving hidden sector mediators. In conclusion, we show that the current limits from dwarf spheroidal observations are not in tension with a DM interpretation when uncertainties on the DM halo profile are accounted for.less

  2. A Tale of Tails. Dark Matter Interpretations of the Fermi GeV Excess in Light of Background Model Systematics

    SciTech Connect (OSTI)

    Calore, Francesca; Cholis, Ilias; McCabe, Christopher; Weniger, Christoph

    2015-03-10

    Several groups have identified an extended excess of gamma rays over the modeled foreground and background emissions towards the Galactic center (GC) based on observations with the Fermi Large Area Telescope. The excess emission is compatible in morphology and spectrum with a telltale sign from dark matter (DM) annihilation. Here, we present a critical reassessment of DM interpretations of the GC signal in light of the foreground and background uncertainties that some of us recently outlaid in Calore et al. (2014). We also find that a much larger number of DM models fits the gamma-ray data than previously noted. In particular: (1) In the case of DM annihilation into bb, we find that even large DM masses up to m??74 GeV are allowed at p-value >0.05. (2) Surprisingly, annihilation into nonrelativistic hh gives a good fit to the data. (3) The inverse Compton emission from ?+?- with m?~6070 GeV can also account for the excess at higher latitudes, |b|>2, both in its spectrum and morphology. We also present novel constraints on a large number of mixed annihilation channels, including cascade annihilation involving hidden sector mediators. Finally, we show that the current limits from dwarf spheroidal observations are not in tension with a DM interpretation when uncertainties on the DM halo profile are accounted for.

  3. A Tale of Tails. Dark Matter Interpretations of the Fermi GeV Excess in Light of Background Model Systematics

    SciTech Connect (OSTI)

    Calore, Francesca; Cholis, Ilias; McCabe, Christopher; Weniger, Christoph

    2015-03-10

    Several groups have identified an extended excess of gamma rays over the modeled foreground and background emissions towards the Galactic center (GC) based on observations with the Fermi Large Area Telescope. The excess emission is compatible in morphology and spectrum with a telltale sign from dark matter (DM) annihilation. Here, we present a critical reassessment of DM interpretations of the GC signal in light of the foreground and background uncertainties that some of us recently outlaid in Calore et al. (2014). We also find that a much larger number of DM models fits the gamma-ray data than previously noted. In particular: (1) In the case of DM annihilation into b¯b, we find that even large DM masses up to mχ≃74 GeV are allowed at p-value >0.05. (2) Surprisingly, annihilation into nonrelativistic hh gives a good fit to the data. (3) The inverse Compton emission from μ+μ- with mχ~60–70 GeV can also account for the excess at higher latitudes, |b|>2°, both in its spectrum and morphology. We also present novel constraints on a large number of mixed annihilation channels, including cascade annihilation involving hidden sector mediators. Finally, we show that the current limits from dwarf spheroidal observations are not in tension with a DM interpretation when uncertainties on the DM halo profile are accounted for.

  4. Overview and Lessons Learned of the Jefferson Lab Cryomodule Production for the CEBAF 12 GeV Upgrade

    SciTech Connect (OSTI)

    Hogan, John P.; Burrill, Andrew B.; Drury, Michael A.; Harwood, Leigh H.; Hovater, J. Curt; Reece, Charles E.; Wiseman, Mark A.

    2013-12-01

    The Continuous Electron Beam Accelerator Facility (CEBAF) at Jefferson Lab is nearing completion of an energy upgrade from 6 to 12 GeV. An integral part of the upgrade is the addition of ten new cryomodules, each consisting of eight seven-cell superconducting radio-frequency (SRF) cavities. An average performance of 100+MV of acceleration per cryomodule is needed to achieve the 12 GeV beam energy goal. The production methodology was for industry to provide and deliver the major components to Jefferson Lab, where they were tested and assembled into cryomodules. The production process begins with an inspection upon receiving of all major components followed by individual performance qualification testing. The SRF cavities received their final chemical processing and cleaning at Jefferson Lab. The qualified components along with all associated hardware and instrumentation are assembled, tested, installed into CEBAF and run through an integrated system checkout in preparation for beam operations. The production process is complete and one of the first completed cryomodules has successfully produced 108 MV of acceleration with a linac beam current of 465 {micro}A.

  5. A Tale of Tails. Dark Matter Interpretations of the Fermi GeV Excess in Light of Background Model Systematics

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Calore, Francesca; Cholis, Ilias; McCabe, Christopher; Weniger, Christoph

    2015-03-10

    Several groups have identified an extended excess of gamma rays over the modeled foreground and background emissions towards the Galactic center (GC) based on observations with the Fermi Large Area Telescope. The excess emission is compatible in morphology and spectrum with a telltale sign from dark matter (DM) annihilation. Here, we present a critical reassessment of DM interpretations of the GC signal in light of the foreground and background uncertainties that some of us recently outlaid in Calore et al. (2014). We also find that a much larger number of DM models fits the gamma-ray data than previously noted. Inmore » particular: (1) In the case of DM annihilation into b¯b, we find that even large DM masses up to mχ≃74 GeV are allowed at p-value >0.05. (2) Surprisingly, annihilation into nonrelativistic hh gives a good fit to the data. (3) The inverse Compton emission from μ+μ- with mχ~60–70 GeV can also account for the excess at higher latitudes, |b|>2°, both in its spectrum and morphology. We also present novel constraints on a large number of mixed annihilation channels, including cascade annihilation involving hidden sector mediators. Finally, we show that the current limits from dwarf spheroidal observations are not in tension with a DM interpretation when uncertainties on the DM halo profile are accounted for.« less

  6. Nuclear reactor melt-retention structure to mitigate direct containment heating

    DOE Patents [OSTI]

    Tutu, Narinder K.; Ginsberg, Theodore; Klages, John R.

    1991-01-01

    A light water nuclear reactor melt-retention structure to mitigate the extent of direct containment heating of the reactor containment building. The structure includes a retention chamber for retaining molten core material away from the upper regions of the reactor containment building when a severe accident causes the bottom of the pressure vessel of the reactor to fail and discharge such molten material under high pressure through the reactor cavity into the retention chamber. In combination with the melt-retention chamber there is provided a passageway that includes molten core droplet deflector vanes and has gas vent means in its upper surface, which means are operable to deflect molten core droplets into the retention chamber while allowing high pressure steam and gases to be vented into the upper regions of the containment building. A plurality of platforms are mounted within the passageway and the melt-retention structure to direct the flow of molten core material and help retain it within the melt-retention chamber. In addition, ribs are mounted at spaced positions on the floor of the melt-retention chamber, and grid means are positioned at the entrance side of the retention chamber. The grid means develop gas back pressure that helps separate the molten core droplets from discharged high pressure steam and gases, thereby forcing the steam and gases to vent into the upper regions of the reactor containment building.

  7. Models and correlations of the DEBRIS Late-Phase Melt Progression Model

    SciTech Connect (OSTI)

    Schmidt, R.C.; Gasser, R.D.

    1997-09-01

    The DEBRIS Late Phase Melt Progression Model is an assembly of models, embodied in a computer code, which is designed to treat late-phase melt progression in dry rubble (or debris) regions that can form as a consequence of a severe core uncover accident in a commercial light water nuclear reactor. The approach is fully two-dimensional, and incorporates a porous medium modeling framework together with conservation and constitutive relationships to simulate the time-dependent evolution of such regions as various physical processes act upon the materials. The objective of the code is to accurately model these processes so that the late-phase melt progression that would occur in different hypothetical severe nuclear reactor accidents can be better understood and characterized. In this report the models and correlations incorporated and used within the current version of DEBRIS are described. These include the global conservation equations solved, heat transfer and fission heating models, melting and refreezing models (including material interactions), liquid and solid relocation models, gas flow and pressure field models, and the temperature and compositionally dependent material properties employed. The specific models described here have been used in the experiment design analysis of the Phebus FPT-4 debris-bed fission-product release experiment. An earlier DEBRIS code version was used to analyze the MP-1 and MP-2 late-phase melt progression experiments conducted at Sandia National Laboratories for the US Nuclear Regulatory Commission.

  8. Melting temperatures of the ZrO{sub 2}-MOX system

    SciTech Connect (OSTI)

    Uchida, T.; Hirooka, S.; Kato, M.; Morimoto, K.; Sugata, H.; Shibata, K.; Sato, D.

    2013-07-01

    Severe accidents occurred at the Fukushima Daiichi Nuclear Power Plant Units 1-3 on March 11, 2011. MOX fuels were loaded in the Unit 3. For the thermal analysis of the severe accident, melting temperature and phase state of MOX corium were investigated. The simulated coriums were prepared from 4%Pu-containing MOX, 8%Pu-containing MOX and ZrO{sub 2}. Then X-ray diffraction, density and melting temperature measurements were carried out as a function of zirconium and plutonium contents. The cubic phase was observed in the 25%Zr-containing corium and the tetragonal phase was observed in the 50% and 75%Zr-containing coria. The lattice parameter and density monotonically changed with Pu content. Melting temperature increased with increasing Pu content; melting temperature were estimated to be 2932 K for 4%Pu MOX corium and 3012 K for 8%Pu MOX corium in the 25%ZrO{sub 2}-MOX system. The lowest melting temperature was observed for 50%Zr-containing corium. (authors)

  9. Decontamination of metals by melt refinings/slagging: An annotated bibliography

    SciTech Connect (OSTI)

    Mizia, R.E.; Worcester, S.A.; Twidwell, L.G.; Paolini, D.J.; Weldon, T.A.

    1993-07-01

    As the number of nuclear installations undergoing decontamination and decommissioning (D&D) increases, current radioactive waste storage space is consumed and establishment of new waste storage areas becomes increasingly difficult, the problem of handling and storing radioactive scrap metal (RSM) gains increasing importance in the DOE Environmental Restoration and Waste Management Program. To alleviate present and future waste storage problems, Westinghouse Idaho Nuclear Company (WINCO) is managing a program for the recycling of RSM for beneficial use within the DOE complex. As part of that effort, Montana Tech has been awarded a contract to help optimize melting and refining technology for the recycling of stainless steel RSM. The scope of the Montana Tech program includes a literature survey, a decontaminating slag design study, small scale melting studies to determine optimum slag compositions for removal of radioactive contaminant surrogates, analysis of preferred melting techniques, and coordination of large scale melting demonstrations (100--500 lbs) to be conducted at selected facilities. The program will support recycling and decontaminating stainless steel RSM for use in waste canisters for Idaho Waste Immobilization Facility densified high level waste. This report is the result of the literature search conducted to establish a basis for experimental melt/slag program development.

  10. Triple point temperature of neon isotopes: Dependence on nitrogen impurity and sealed-cell model

    SciTech Connect (OSTI)

    Pavese, F.; Steur, P. P. M.; Giraudi, D.

    2013-09-11

    This paper illustrates a study conducted at INRIM, to further check how some quantities influence the value of the triple point temperature of the neon high-purity isotopes {sup 20}Ne and {sup 22}Ne. The influence of nitrogen as a chemical impurity in neon is critical with regard to the present best total uncertainty achieved in the measurement of these triple points, but only one determination is available in the literature. Checks are reported, performed on two different samples of {sup 22}Ne known to contain a N{sub 2} amount of 157⋅10{sup −6}, using two different models of sealed cells. The model of the cell can, in principle, have some effects on the shape of the melting plateau or on the triple point temperature observed for the sample sealed in it. This can be due to cell thermal parameters, or because the INRIM cell element mod. c contains many copper wires closely packed, which can, in principle, constrain the interface and induce a premelting-like effect. The reported results on a cell mod. Bter show no evident effect from the cell model and provide a value for the effect of N{sub 2} in Ne liquidus point of 8.6(1.9) μK ppm N{sub 2}{sup −1}, only slightly different from the literature datum.

  11. Wide-angle point-to-point x-ray imaging with almost arbitrarily large

    Office of Scientific and Technical Information (OSTI)

    angles of incidence (Journal Article) | SciTech Connect Wide-angle point-to-point x-ray imaging with almost arbitrarily large angles of incidence Citation Details In-Document Search Title: Wide-angle point-to-point x-ray imaging with almost arbitrarily large angles of incidence The paper describes a new scheme for wide-angle point-to-point x-ray imaging with almost arbitrarily large angles of incidence by a matched pair of spherically bent crystals to eliminate the astigmatism, which is a

  12. Theory of melting at high pressures: Amending density functional theory with quantum Monte Carlo

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Shulenburger, L.; Desjarlais, M. P.; Mattsson, T. R.

    2014-10-01

    We present an improved first-principles description of melting under pressure based on thermodynamic integration comparing Density Functional Theory (DFT) and quantum Monte Carlo (QMC) treatments of the system. The method is applied to address the longstanding discrepancy between density functional theory (DFT) calculations and diamond anvil cell (DAC) experiments on the melting curve of xenon, a noble gas solid where van der Waals binding is challenging for traditional DFT methods. The calculations show excellent agreement with data below 20 GPa and that the high-pressure melt curve is well described by a Lindemann behavior up to at least 80 GPa, amore » finding in stark contrast to DAC data.« less

  13. Chromium Phase Behavior in a Multi-Component Borosilicate Glass Melt

    SciTech Connect (OSTI)

    Hrma, Pavel R.; Vienna, John D.; Wilson, B. K.; Plaisted, Trevor J.; Heald, Steve M.

    2006-07-31

    This paper reports the phase behavior of a multicomponent borosilicate glass melt with 0?3 mass% Cr2O3 at 800?1500C in equilibrium with air. Both upper and lower liquidus temperatures were observed. When the temperature was between the upper and lower liquidus temperatures, eskolaite (Cr2O3) formed in melts with >2 mass% Cr2O3. Below the lower liquidus temperature, a dispersed chromate phase appeared in the melt that eventually became macroscopically segregated. The chemical durability of the glasses was virtually unaffected by chromium concentration. The particular glass studied was prototypic for the vitrification of high-Cr high-level radioactive wastes stored in underground tanks at the Hanford site. The results suggest a significant potential cost benefit for Hanford tank waste cleanup.

  14. Cold Crucible Induction Melting Technology for Vitrification of High Level Waste: Development and Status in India

    SciTech Connect (OSTI)

    Sugilal, G.; Sengar, P.B.S. [Nuclear Recycle Group, Bhabha Atomic Research Centre, Trombay, Mumbai (India)

    2008-07-01

    Cold crucible induction melting is globally emerging as an alternative technology for the vitrification of high level radioactive waste. The new technology offers several advantages such as high temperature availability with long melter life, high waste loading, high specific capacity etc. Based on the laboratory and bench scale studies, an engineering scale cold crucible induction melter was locally developed in India. The melter was operated continuously to assess its performance. The electrical and thermal efficiencies were found to be in the range of 70-80 % and 10-20 % respectively. Glass melting capacities up to 200 kg m{sup -2} hr{sup -1} were accomplished using the ESCCIM. Industrially adaptable melter operating procedures for start-up, melting and pouring operations were established (author)

  15. Method for melting glass by measurement of non-bridging oxygen

    DOE Patents [OSTI]

    Jantzen, Carol M.

    1992-01-01

    A method for making better quality molten glass in a glass melter, the glass having the desired viscosity and, preferably, also the desired resistivity so that the glass melt can be established effectively and the product of the glass melter will have the desired level of quality. The method includes the adjustment of the composition of the glass constituents that are fed into the melter in accordance with certain correlations that reliably predict the viscosity and resistivity from the melter temperature and the melt composition, then heating the ingredients to the melter's operating temperature until they melt and homogenize. The equations include the calculation of a "non-bridging oxygen" term from the numbers of moles of the various ingredients, and then the determination of the viscosity and resistivity from the operating temperature of the melter and the non-bridging oxygen term.

  16. Method for melting glass by measurement of non-bridging oxygen

    DOE Patents [OSTI]

    Jantzen, C.M.

    1992-04-07

    A method is described for making better quality molten glass in a glass melter, the glass having the desired viscosity and, preferably, also the desired resistivity so that the glass melt can be established effectively and the product of the glass melter will have the desired level of quality. The method includes the adjustment of the composition of the glass constituents that are fed into the melter in accordance with certain correlations that reliably predict the viscosity and resistivity from the melter temperature and the melt composition, then heating the ingredients to the melter's operating temperature until they melt and homogenize. The equations include the calculation of a non-bridging oxygen' term from the numbers of moles of the various ingredients, and then the determination of the viscosity and resistivity from the operating temperature of the melter and the non-bridging oxygen term. 4 figs.

  17. Ceramic plasma-sprayed coating of melting crucibles for casting metal fuel slugs

    SciTech Connect (OSTI)

    K.H. Kim; C.T. Lee; C.B. Lee; R.S. Fielding; J.R. Kennedy

    2013-10-01

    Thermal cycling and melt reaction studies of ceramic coatings plasma-sprayed on Nb substrates were carried out to evaluate the performance of barrier coatings for metallic fuel casting applications. Thermal cycling tests of the ceramic plasma-sprayed coatings to 1450 degrees C showed that HfN, TiC, ZrC, and Y2O3 coating had good cycling characteristics with few interconnected cracks even after 20 cycles. Interaction studies by 1550 degrees C melt dipping tests of the plasma-sprayed coatings also indicated that HfN and Y2O3 do not form significant reaction layer between U20 wt.% Zr melt and the coating layer. Plasma-sprayed Y2O3 coating exhibited the most promising characteristics among HfN, TiC, ZrC, and Y2O3 coating.

  18. Measurement of diffusion potentials at porous diaphragms separating chloride and chloride-fluoride melts

    SciTech Connect (OSTI)

    Mitysev, V.S.; Komarov, V.E.

    1985-09-01

    An attempt was made in this work to measure the potential drops across diaphragms separating chloride and chloride-fluoride melts. These values can then be taken into account when analyzing the results of emf measurements made with the galvanic cell expressed here, and will help to make them more reliable, according to the authors. To check whether the activities of the alkali metal in alloys of the two half cells remained equal throughout the entire experiment, an experimental cell was used where alloy M-Bi was placed into a crucible of metallic molybdenum (d = 10 mm, h = 10 mm), which was immersed in turns into the chloride melt and into the chloride-fluoride melt while keeping the setup closed. The emf values increase with increasing temperature and alkali-metal fluoride concentration. They decrease with increasing cation radius in the salt medium.

  19. Influence of lithium-containing waste materials on the melting of packaging glass

    SciTech Connect (OSTI)

    Katkova, K.S.; Balandina, T.I.; Belyaeva, A.G.; Guloyan, Y.A.; Seregina, E.P.

    1986-07-01

    Lithium-containing waste materials from mica enrichment factories are studied. The possibilities of using the wastes for melting of green and semi-white sodium calcium silicate glasses are studied as well. Using physical methods, the authors study the influence of lithium-containing mica waste materials on the process of batch melting, silicate and glass formation, and clarification of molten glass. Tables show melting characteristics with various additions of lithium-containing mica waste, and the influence of added Li/sub 2/O on glass clarification. It is shown that the addition of lithium-containing mica waste materials to sodium calcium silicate glass has a positive effect on silicate and glass formation and on clarification.

  20. Systematic prediction of high-pressure melting curves of transition metals

    SciTech Connect (OSTI)

    Hieu, Ho Khac, E-mail: hieuhk@duytan.edu.vn [Institute of Research and Development, Duy Tan University, K7/25 Quang Trung, Danang (Viet Nam)

    2014-10-28

    The pressure effects on melting temperatures of transition metals have been studied based on the combination of the modified Lindemann criterion with statistical moment method in quantum statistical mechanics. Numerical calculations have been performed for five transition metals including Cu, Pd, Pt, Ni, and Mn up to pressure 100?GPa. Our results are in good and reasonable agreements with available experimental data. This approach gives us a relatively simple method for qualitatively calculating high-pressure melting temperature. Moreover, it can be used to verify future experimental and theoretical works. This research proposes the potential of the combination of statistical moment method and the modified Lindemann criterion on predicting high-pressure melting of materials.

  1. Shock compression behavior of bi-material powder composites with disparate melting temperatures

    SciTech Connect (OSTI)

    Sullivan, Kyle T.; Swift, Damian; Barham, Matthew; Stlken, James; Kuntz, Joshua; Kumar, Mukul

    2014-01-14

    Laser driven experiments were used to investigate the shock compression behavior of powder processed Bismuth/Tungsten (Bi/W) composite samples. The constituents provide different functionality to the composite behavior as Bi could be shock melted at the pressures attained in this work, while the W could not. Samples were prepared by uniaxial pressing, and the relative density was measured as a function of particle size, applied pressure, and composition for both hot and cold pressing conditions. This resulted in sample densities between 73% and 99% of the theoretical maximum density, and also noticeable differences in microstructure in the hot and cold pressed samples. The compression waves were generated with a 1.3 1.3?mm square spot directly onto the surface of the sample, using irradiances between 10{sup 12} and 10{sup 13}?W/cm{sup 2}, which resulted in calculated peak pressures between 50 and 150?GPa within a few micrometers. Sample recovery and post-mortem analysis revealed the formation of a crater on the laser drive surface, and the depth of this crater corresponded to the depth to which the Bi had been melted. The melt depth was found to be primarily a function of residual porosity and composition, and ranged from 167 to 528??m. In general, a higher porosity led to a larger melt depth. Direct numerical simulations were performed, and indicated that the observed increase in melt depth for low-porosity samples could be largely attributed to increased heating associated with work done for pore collapse. However, the relative scaling was sensitive to composition, with low volume fraction Bi samples exhibiting a much stronger dependence on porosity than high Bi content samples. Select samples were repeated using an Al foil ablator, but there were no noticeable differences ensuring that the observed melting was indeed pressure-driven and was not a result of direct laser heating. The resultant microstructures and damage near the spall surface were also investigated qualitatively.

  2. Microsoft PowerPoint - Seitz HIDRA final

    Office of Environmental Management (EM)

    Department of Energy Saudi Arabia 2-22-10 final for distribution.pptx Microsoft PowerPoint - Saudi Arabia 2-22-10 final for distribution.pptx PDF icon Microsoft PowerPoint - Saudi Arabia 2-22-10 final for distribution.pptx More Documents & Publications Microsoft PowerPoint - UAE Masdar 2-24

    Considerations Related to Human Intrusion in the Context of Disposal of Radioactive Waste - Results of the IAEA HIDRA Project Roger Seitz Senior Advisory Scientist P&RA Community of Practice -

  3. Microsoft PowerPoint - DOE O 413 3B Brief v9 with key points...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Example BCP Template Microsoft PowerPoint - DOE O 413 3B Brief v9 with key points in notes Read-Only CD-2, Approve Performance Baseline External Independent Review (EIR) Standard ...

  4. Temperature and melting of laser-shocked iron releasing into an LiF window

    SciTech Connect (OSTI)

    Huser, G.; Koenig, M.; Benuzzi-Mounaix, A.; Henry, E.; Vinci, T.; Faral, B.; Tomasini, M.; Telaro, B.; Batani, D.

    2005-06-15

    Absolute reflectivity and self-emission diagnostics are used to determine the gray-body equivalent temperature of laser-shocked iron partially releasing into a lithium fluoride window. Pressure and reflectivity are measured simultaneously by means of velocity interferometer system for any reflector interferometers. In the temperature-pressure plane, a temperature plateau in the release is observed which is attributed to iron's melting line. Extrapolation of data leads to a melting temperature at Earth's inner-outer core boundary of 7800{+-}1200 K, in good agreement with previous works based on dynamic compression. Shock temperatures were calculated and found to be in the liquid phase.

  5. Numerical modeling of aerial bursts and ablation melting of Libyan desert

    Office of Scientific and Technical Information (OSTI)

    glass. (Conference) | SciTech Connect Numerical modeling of aerial bursts and ablation melting of Libyan desert glass. Citation Details In-Document Search Title: Numerical modeling of aerial bursts and ablation melting of Libyan desert glass. No abstract prepared. Authors: Boslough, Mark Bruce Elrick Publication Date: 2006-07-01 OSTI Identifier: 892766 Report Number(s): SAND2006-4263C TRN: US200623%%501 DOE Contract Number: AC04-94AL85000 Resource Type: Conference Resource Relation:

  6. Primary arm spacing in chill block melt spun Ni-Mo alloys

    SciTech Connect (OSTI)

    Tewari, S.N.; Glasgow, T.K.

    1986-01-01

    Chill block melt spun ribbons of Ni-Mo binary alloys containing 8.0 to 41.8 wt % Mo have been prepared under carefully controlled processing conditions. The growth velocity has been determined as a function of distance from the quench surface from the observed ribbon thickness dependence on the melt puddle residence time. Primary arm spacings measured at the midribbon thickness locations show a dependence on growth velocity and alloy composition which is expected from dendritic growth models for binary alloys directionally solidified in a positive temperature gradient.

  7. High-temperature apparatus for chaotic mixing of natural silicate melts

    Office of Scientific and Technical Information (OSTI)

    (Journal Article) | SciTech Connect High-temperature apparatus for chaotic mixing of natural silicate melts Citation Details In-Document Search Title: High-temperature apparatus for chaotic mixing of natural silicate melts A unique high-temperature apparatus was developed to trigger chaotic mixing at high-temperature (up to 1800 °C). This new apparatus, which we term Chaotic Magma Mixing Apparatus (COMMA), is designed to carry out experiments with high-temperature and high-viscosity (up to

  8. Melting in the Iron-Oxygen-Silicon System up to 85 GPa. (Journal Article) |

    Office of Scientific and Technical Information (OSTI)

    SciTech Connect SciTech Connect Search Results Journal Article: Melting in the Iron-Oxygen-Silicon System up to 85 GPa. Citation Details In-Document Search Title: Melting in the Iron-Oxygen-Silicon System up to 85 GPa. Authors: Seagle, Christopher T ; Cottrell, Elizabeth ; Fei, Yingwei ; Dera, Przemyslaw. Publication Date: 2012-03-01 OSTI Identifier: 1074068 Report Number(s): SAND2012-1892J DOE Contract Number: AC04-94AL85000 Resource Type: Journal Article Resource Relation: Journal Name:

  9. Melting in the Iron-Oxygen-Silicon System up to 85 GPa. (Journal Article) |

    Office of Scientific and Technical Information (OSTI)

    SciTech Connect Journal Article: Melting in the Iron-Oxygen-Silicon System up to 85 GPa. Citation Details In-Document Search Title: Melting in the Iron-Oxygen-Silicon System up to 85 GPa. Abstract not provided. Authors: Seagle, Christopher T ; Cottrell, Elizabeth ; Fei, Yingwei ; Dera, Przemyslaw Publication Date: 2012-03-01 OSTI Identifier: 1078694 Report Number(s): SAND2012-1892J 447870 DOE Contract Number: AC04-94AL85000 Resource Type: Journal Article Resource Relation: Journal Name: J.

  10. The re-evaluation of the AVR melt-wire experiment with specific focus on

    Office of Scientific and Technical Information (OSTI)

    different modeling strategies and simplifications (Journal Article) | SciTech Connect The re-evaluation of the AVR melt-wire experiment with specific focus on different modeling strategies and simplifications Citation Details In-Document Search Title: The re-evaluation of the AVR melt-wire experiment with specific focus on different modeling strategies and simplifications The AVR is a pebble-bed type reactor that operated in Germany for 21 years and was closed down in December 1988. The AVR

  11. Evidence for the onset of deconfinement and quest for the critical point by NA49 at the CERN SPS

    SciTech Connect (OSTI)

    Melkumov, G. L.; Anticic, T.; Baatar, B.; Barna, D.; Bartke, J.; Beck, H.; Betev, L.; Bialkowska, H.; Blume, C.; Bogusz, M.; Boimska, B.; Book, J.; Botje, M.; Buncic, P.; Cetner, T.; Christakoglou, P.; Chung, P.; Chvala, O.; Cramer, J. G.; Eckardt, V.; and others

    2012-05-15

    The NA49 results on hadron production obtained in PbPb collisions at SPS energies from 20 to 158 A GeV are shown and discussed as evidence for the onset of deconfinement. The primary measures are the pion yield, the kaon-to-pion ratio and the slope parameter of transverse mass distributions. The possible indication of the QCD critical point signatures was investigated in the event-by-event fluctuations of various observables such as the mean transverse momentum, particle multiplicity and azimuthal angle distributions as well as in the particle ratio fluctuations. The energy dependence of these observables was measured in central PbPb collisions in the full SPS energy range while for analysis of the system size dependence data from pp, CC, SiSi, and PbPb collisions at the top SPS energy were used.

  12. Anderson Acceleration for Fixed-Point Iterations

    SciTech Connect (OSTI)

    Walker, Homer F.

    2015-08-31

    The purpose of this grant was to support research on acceleration methods for fixed-point iterations, with applications to computational frameworks and simulation problems that are of interest to DOE.

  13. FortyPoint Seven | Open Energy Information

    Open Energy Info (EERE)

    search Name: FortyPoint Seven Place: England, United Kingdom Zip: BH14 8LQ Sector: Biofuels Product: A Biofuels company founded by John Nicholas, one of Biofuels Corporation...

  14. LMJ Points Plus v2.6

    Energy Science and Technology Software Center (OSTI)

    2013-01-15

    Short summary of the software's functionality: • built-in scan feature to acquire optical image of the surface to be analyzed • click-and-point selection of points of interest on the surface • supporting standalone autosampler/HPLC/MS operation: creating independent batch files after points of interests are selected for LEAPShell (autosampler control software from Leap Technologies) and Analyst® (mass spectrometry (MS) software from AB Sciex) • supporting integrated autosampler/HPLC/MS operation: creating one batch file for all instruments controlledmore » by Analyst® (mass spectrometry software from AB Sciex) after points of interests are selected •creating heatmaps of analytes of interests from collected MS files in a hand-off fashion« less

  15. CenterPoint Energy Sustainable Schools Program

    Broader source: Energy.gov [DOE]

    The Sustainable Schools Program focuses on energy savings through behavioral and operational improvements, and may be used along with CenterPoint Energy’s SCORE and Load Management programs. It...

  16. power point | OpenEI Community

    Open Energy Info (EERE)

    power point Home Jweers's picture Submitted by Jweers(88) Contributor 12 March, 2012 - 14:40 Mockups of the Geothermal Checklist on OpenEI checklist geothermal mockups OpenEI...

  17. CenterPoint Energy's Energy Wise Program

    Broader source: Energy.gov [DOE]

    CenterPoint Energy's Energy Wise program provides take-home kits containing efficiency devices with classroom and in-home education techniques with the aim to inspire families to adopt new resource...

  18. Microsoft PowerPoint - Salishan_dpc

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    dpc@lanl.gov Salishan Conference on High Performance Computing April 24-27 2006 LA-UR-06-0977 Main points of presentation * Brief history of archival storage at LANL. * More...

  19. Starting Points | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    Starting Points Kansas City Plant Related Web Pages Summary Kansas City Plant Home Page Kansas City Plant Contracts DOE Directives NNSA Policy System Kansas City Field Office (KCFO) Home Page List of Applicable Directives in the Current Contract

  20. Point Power Systems | Open Energy Information

    Open Energy Info (EERE)

    systems, ranging from 1-6kW. It has received support from Environmental Business Cluster, a California-based incubator. References: Point Power Systems1 This article is a...

  1. City of Boulder- Green Points Building Program

    Broader source: Energy.gov [DOE]

    The Boulder Green Points Building Program is a mandatory residential green building program that requires a builder or homeowner to include a minimum amount of sustainable building components bas...

  2. large-point | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Carbon Dioxide Capture from Large Point Sources Project No.: FG02-04ER83925 SBIR Commercial hollow fiber membrane cartridge. Commercial hollow fiber membrane cartridge [6"(D) X 17"(L)]. (click on image to enlarge) Compact Membrane Systems, Inc. developed and tested a carbon dioxide (CO2) removal system for flue gas streams from large point sources that offers improved mass transfer rates compared to conventional technologies. The project fabricated perfluorinated membranes on

  3. TEPP Points of Contact | Department of Energy

    Energy Savers [EERE]

    TEPP Points of Contact TEPP Points of Contact TEPP is a national program managed at a headquarters level and implemented through the TEPP Central Operations Center managed by Technical Resources Group, Inc. For additional information on the TEPP, or to find out how you can obtain TEPP materials or schedule a class, contact either the HQ Program Manager or TEPP Central Operations. EM Contact EM Headquarters Program Manager Ellen Edge, Office of Transportation Ellen.Edge@em.doe.gov U.S. Department

  4. Suggested Talking Points for Hydrogen Road Tour | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Suggested Talking Points for Hydrogen Road Tour Suggested Talking Points for Hydrogen Road Tour PDF icon Suggested Talking Points for Hydrogen Road Tour More Documents & ...

  5. POINT OF CONTACT RESPONSIBILITIES FOR RECORDS MANAGEMENT | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    POINT OF CONTACT RESPONSIBILITIES FOR RECORDS MANAGEMENT POINT OF CONTACT RESPONSIBILITIES FOR RECORDS MANAGEMENT A list of point of contact responsibilites for Records Management...

  6. Continuous Learning Points: Earn CLPs! | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Continuous Learning Points: Earn CLPs Continuous Learning Points: Earn CLPs File 2014 CLP Form - Attendees at the PM Workshop can earn Continuing Learning Points (CLPs) for both...

  7. Observation of D0 meson nuclear modifications in Au+Au collisions at sNN=200 GeV

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Adamczyk, L.; Adkins, J. K.; Agakishiev, G.; Aggarwal, M. M.; Ahammed, Z.; Alekseev, I.; Alford, J.; Anson, C. D.; Aparin, A.; Arkhipkin, D.; et al

    2014-09-30

    We report the first measurement of charmed-hadron (D0) production via the hadronic decay channel (D0→K-+π+) in Au+Au collisions at √sNN=200 GeV with the STAR experiment. The charm production cross section per nucleon-nucleon collision at midrapidity scales with the number of binary collisions, Nbin, from p+p to central Au+Au collisions. The D0 meson yields in central Au+Aucollisions are strongly suppressed compared to those in p+p scaled by Nbin, for transverse momenta pT>3 GeV/c, demonstrating significant energy loss of charm quarks in the hot and dense medium. An enhancement at intermediate pT is also observed. Model calculations including strong charm-medium interactions andmore » coalescence hadronization describe our measurements.« less

  8. Observation of D0 meson nuclear modifications in Au+Au collisions at sNN=200 GeV

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Adamczyk, L.; Adkins, J. K.; Agakishiev, G.; Aggarwal, M. M.; Ahammed, Z.; Alekseev, I.; Alford, J.; Anson, C. D.; Aparin, A.; Arkhipkin, D.; et al

    2014-09-30

    We report the first measurement of charmed-hadron (D0) production via the hadronic decay channel (D0→K-+π+) in Au+Au collisions at √sNN=200 GeV with the STAR experiment. The charm production cross section per nucleon-nucleon collision at midrapidity scales with the number of binary collisions, Nbin, from p+p to central Au+Au collisions. The D0 meson yields in central Au+Aucollisions are strongly suppressed compared to those in p+p scaled by Nbin, for transverse momenta pT>3 GeV/c, demonstrating significant energy loss of charm quarks in the hot and dense medium. An enhancement at intermediate pT is also observed. Model calculations including strong charm-medium interactions andmore »coalescence hadronization describe our measurements.« less

  9. Production of K⁺K⁻ pairs in proton-proton collisions at 2.83 GeV

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Ye, Q. J.; Hartmann, M.; Maeda, Y.; Barsov, S.; Büscher, M.; Chiladze, D.; Dymov, S.; Dzyuba, A.; Gao, H.; Gebel, R.; et al

    2012-03-30

    Differential and total cross sections for the pp→ppK⁺K⁻ reaction have been measured at a proton beam energy of 2.83 GeV using the COSY-ANKE magnetic spectrometer. Detailed model descriptions fitted to a variety of one-dimensional distributions permit the separation of the pp→ppφ cross section from that of non-φ production. The differential spectra show that higher partial waves represent the majority of the pp→ppφ total cross section at an excess energy of 76 MeV, whose energy dependence would then seem to require some s-wave φp enhancement near threshold. The non-φ data can be described in terms of the combined effects of two-bodymore » final state interactions using the same effective scattering parameters determined from lower energy data.« less

  10. Dielectron Azimuthal Anisotropy at mid-rapidity in Au+Au collisions at root s=200GeV

    SciTech Connect (OSTI)

    Adamczyk, L.; STAR Collaboration

    2014-12-01

    We report on the first measurement of the azimuthal anisotropy (v?) of dielectrons (e?e? pairs) at mid-rapidity from ?(sNN)=200 GeV Au + Au collisions with the STAR detector at the Relativistic Heavy Ion Collider (RHIC), presented as a function of transverse momentum (pT) for different invariant-mass regions. In the mass region Mee<1.1 GeV/c the dielectron v? measurements are found to be consistent with expectations from ??,?,?, and ? decay contributions. In the mass region 1.1ee<2.9GeV/c, the measured dielectron v? is consistent, within experimental uncertainties, with that from the cc contributions.

  11. Dielectron Azimuthal Anisotropy at mid-rapidity in Au+Au collisions at root s=200GeV

    SciTech Connect (OSTI)

    Adamczyk, L.

    2014-12-11

    We report on the first measurement of the azimuthal anisotropy (v₂) of dielectrons (e⁺e⁻ pairs) at mid-rapidity from √(sNN)=200 GeV Au + Au collisions with the STAR detector at the Relativistic Heavy Ion Collider (RHIC), presented as a function of transverse momentum (pT) for different invariant-mass regions. In the mass region Mee<1.1 GeV/c² the dielectron v₂ measurements are found to be consistent with expectations from π⁰,η,ω, and Φ decay contributions. In the mass region 1.1ee<2.9GeV/c², the measured dielectron v₂ is consistent, within experimental uncertainties, with that from the cc¯ contributions.

  12. Nuclear matter effects on J/? production in asymmetric Cu+Au collisions at ?SNN=200 GeV

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Adare, A.

    2014-12-18

    We report on J/? production from asymmetric Cu+Au heavy-ion collisions at ?sNN =200 GeV at the Relativistic Heavy Ion Collider at both forward (Cu-going direction) and backward (Au-going direction) rapidities. The nuclear modification of J/? yields in Cu+Au collisions in the Au-going direction is found to be comparable to that in Au+Au collisions when plotted as a function of the number of participating nucleons. In the Cu-going direction, J/? production shows a stronger suppression. This difference is comparable in magnitude and has the same sign as the difference expected from shadowing effects due to stronger low-x gluon suppression in themorelarger Au nucleus. The relative suppression is opposite to that expected from hot nuclear matter dissociation, since a higher energy density is expected in the Au-going direction.less

  13. Design and Manufacture of the Conduction Cooled Torus Coils for The Jefferson Laboratory 12-GeV Upgrade

    SciTech Connect (OSTI)

    Wiseman, M.; Elementi, L.; Elouadhiri, L.; Gabrielli, G.; Gardner, T. J.; Ghoshal, P. K.; Kashy, D.; Kiemschies, O.; Krave, S.; Makarov, A.; Robotham, B.; Szal, J.; Velev, G.

    2015-01-01

    The design of the 12-GeV torus required the construction of six superconducting coils with a unique geometry required for the experimental needs of Jefferson Laboratory Hall B. Each of these coils consists of 234 turns of copper-stabilized superconducting cable conduction cooled by 4.6 K helium gas. The finished coils are each roughly 2 × 4 × 0.05 m and supported in an aluminum coil case. Because of its geometry, new tooling and manufacturing methods had to be developed for each stage of construction. The tooling was designed and developed while producing a practice coil at Fermi National Laboratory. This paper describes the tooling and manufacturing techniques required to produce the six production coils and two spare coils required by the project. Project status and future plans are also presented.

  14. Dielectron Azimuthal Anisotropy at mid-rapidity in Au+Au collisions at root s=200GeV

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Adamczyk, L.

    2014-12-11

    We report on the first measurement of the azimuthal anisotropy (v₂) of dielectrons (e⁺e⁻ pairs) at mid-rapidity from √(sNN)=200 GeV Au + Au collisions with the STAR detector at the Relativistic Heavy Ion Collider (RHIC), presented as a function of transverse momentum (pT) for different invariant-mass regions. In the mass region Mee<1.1 GeV/c² the dielectron v₂ measurements are found to be consistent with expectations from π⁰,η,ω, and Φ decay contributions. In the mass region 1.1ee<2.9GeV/c², the measured dielectron v₂ is consistent, within experimental uncertainties, with that from the cc¯ contributions.

  15. Undulator-Based Production of Polarized Positrons, A Proposal for the 50-GeV Beam in the FFTB

    SciTech Connect (OSTI)

    G. Alexander; P. Anthony; V. Bharadwaj; Yu.K. Batygin; T. Behnke; S. Berridge; G.R. Bower; W. Bugg; R. Carr; E. Chudakov; J.E. Clendenin; F.J. Decker; Yu. Efremenko; T. Fieguth; K. Flottmann; M. Fukuda; V. Gharibyan; T. Handler; T. Hirose; R.H. Iverson; Yu. Kamyshkov; H. Kolanoski; T. Lohse; Chang-guo Lu; K.T. McDonald; N. Meyners; R. Michaels; A.A. Mikhailichenko; K. Monig; G. Moortgat-Pick; M. Olson; T. Omori; D. Onoprienko; N. Pavel; R. Pitthan; M. Purohit; L. Rinolfi; K.P. Schuler; J.C. Sheppard; S. Spanier; A. Stahl; Z.M. Szalata; J. Turner; D. Walz; A. Weidemann; J. Weisend

    2003-06-01

    The full exploitation of the physics potential of future linear colliders such as the JLC, NLC, and TESLA will require the development of polarized positron beams. In the proposed scheme of Balakin and Mikhailichenko [1] a helical undulator is employed to generate photons of several MeV with circular polarization which are then converted in a relatively thin target to generate longitudinally polarized positrons. This experiment, E-166, proposes to test this scheme to determine whether such a technique can produce polarized positron beams of sufficient quality for use in future linear colliders. The experiment will install a meter-long, short-period, pulsed helical undulator in the Final Focus Test Beam (FFTB) at SLAC. A low-emittance 50-GeV electron beam passing through this undulator will generate circularly polarized photons with energies up to 10 MeV. These polarized photons are then converted to polarized positrons via pair production in thin targets. Titanium and tungsten targets, which are both candidates for use in linear colliders, will be tested. The experiment will measure the flux and polarization of the undulator photons, and the spectrum and polarization of the positrons produced in the conversion target, and compare the measurement results to simulations. Thus the proposed experiment directly tests for the first time the validity of the simulation programs used for the physics of polarized pair production in finite matter, in particular the effects of multiple scattering on polarization. Successful comparison of the experimental results to the simulations will lead to greater confidence in the proposed designs of polarized positrons sources for the next generation of linear colliders. This experiment requests six-weeks of time in the FFTB beam line: three weeks for installation and setup and three weeks of beam for data taking. A 50-GeV beam with about twice the SLC emittance at a repetition rate of 30 Hz is required.

  16. Arc-melting preparation of single crystal LaB.sub.6 cathodes

    DOE Patents [OSTI]

    Gibson, Edwin D.; Verhoeven, John D.

    1977-06-21

    A method for preparing single crystals of lanthanum hexaboride (LaB.sub.6) by arc melting a rod of compacted LaB.sub.6 powder. The method is especially suitable for preparing single crystal LaB.sub.6 cathodes for use in scanning electron microscopes (SEM) and scanning transmission electron microscopes (STEM).

  17. Laboratory-Scale Melter for Determination of Melting Rate of Waste Glass Feeds

    SciTech Connect (OSTI)

    Kim, Dong-Sang; Schweiger, Michael J.; Buchmiller, William C.; Matyas, Josef

    2012-01-09

    The purpose of this study was to develop the laboratory-scale melter (LSM) as a quick and inexpensive method to determine the processing rate of various waste glass slurry feeds. The LSM uses a 3 or 4 in. diameter-fused quartz crucible with feed and off-gas ports on top. This LSM setup allows cold-cap formation above the molten glass to be directly monitored to obtain a steady-state melting rate of the waste glass feeds. The melting rate data from extensive scaled-melter tests with Hanford Site high-level wastes performed for the Hanford Tank Waste Treatment and Immobilization Plant have been compiled. Preliminary empirical model that expresses the melting rate as a function of bubbling rate and glass yield were developed from the compiled database. The two waste glass feeds with most melter run data were selected for detailed evaluation and model development and for the LSM tests so the melting rates obtained from LSM tests can be compared with those from scaled-melter tests. The present LSM results suggest the LSM setup can be used to determine the glass production rates for the development of new glass compositions or feed makeups that are designed to increase the processing rate of the slurry feeds.

  18. IMPACT OF SMALL COLUMN ION EXCHANGE STREAMS ON DWPF GLASS FORMULATION MELT RATE STUDIES

    SciTech Connect (OSTI)

    Fox, K.; Miller, D.; Koopman, D.

    2011-04-26

    This study was undertaken to evaluate the potential impacts of the Small Column Ion Exchange (SCIX) streams - particularly the addition of Monosodium Titanate (MST) and Crystalline Silicotitanate (CST) - on the melt rate of simulated feed for the Defense Waste Processing Facility (DWPF). Additional MST was added to account for contributions from the Salt Waste Processing Facility (SWPF). The Savannah River National Laboratory (SRNL) Melt Rate Furnace (MRF) was used to evaluate four melter feed compositions: two with simulated SCIX and SWPF material and two without. The Slurry-fed Melt Rate Furnace (SMRF) was then used to compare two different feeds: one with and one without bounding concentrations of simulated SCIX and SWPF material. Analyses of the melter feed materials confirmed that they met their targeted compositions. Four feeds were tested in triplicate in the MRF. The linear melt rates were determined by using X-ray computed tomography to measure the height of the glass formed along the bottom of the beakers. The addition of the SCIX and SWPF material reduced the average measured melt rate by about 10% in MRF testing, although there was significant scatter in the data. Two feeds were tested in the SMRF. It was noted that the ground CST alone (ground CST with liquid in a bucket) was extremely difficult to resuspend during preparation of the feed with material from SCIX and SWPF. This feed was also more difficult to pump than the material without MST and CST due to settling occurring in the melter feed line, although the yield stress of both feeds was high relative to the DWPF design basis. Steady state feeding conditions were maintained for about five hours for each feed. There was a reduction in the feed and pour rates of approximately 15% when CST and MST were added to the feed, although there was significant scatter in the data. Analysis of samples collected from the SMRF pour stream showed that the composition of the glass changed as expected when MST and CST were added to the feed. These reductions in melt rate are consistent with previous studies that showed a negative impact of increased TiO{sub 2} concentrations on the rate of melting. The impact of agitating the melt pool via bubbling was not studied as part of this work, but may be of interest for further testing. It is recommended that additional melt rate testing be performed should a potential reduction in melt rate of 10-15% be considered an issue of concern, or should the anticipated composition of the glass with the addition of material from salt waste processing be modified significantly from the current projections, either due to changes in sludge batch preparation or changes in the composition or volume of SCIX and SWPF material.

  19. Heavy-quark production and elliptic flow in Au+Au collisions at √sNN=62.4 GeV

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Adare, A.

    2015-04-28

    In this study, we present measurements of electrons and positrons from the semileptonic decays of heavy-flavor hadrons at midrapidity (|y|NN = 62.4 GeV. The data were collected in 2010 by the PHENIX experiment that included the new hadron-blind detector. The invariant yield of electrons from heavy-flavor decays is measured as a function of transverse momentum in the range 1 eT more »may be a result of the interplay between initial-state Cronin effects, final-state flow, and energy loss in medium. The v₂ of electrons from heavy-flavor decays is nonzero when averaged between 1.3 eT NN = 62.4 GeV. For 20%–40% centrality collisions, the v₂ at √sNN = 62.4 GeV is smaller than that for heavy-flavor decays at √sNN = 200 GeV. The v₂ of the electrons from heavy-flavor decay at the lower beam energy is also smaller than v₂ for pions. Both results indicate that the heavy-quarks interact with the medium formed in these collisions, but they may not be at the same level of thermalization with the medium as observed at √sNN = 200 GeV.« less

  20. Plasma Sprayed Pour Tubes and Other Melt Handling Components for Use in Gas Atomization

    SciTech Connect (OSTI)

    Byrd, David; Rieken, Joel; Heidloff, Andy; Besser, Matthew; Anderson, Iver

    2011-04-01

    Ames Laboratory has successfully used plasma sprayed ceramic components made from yttria stabilized zirconia as melt pouring tubes for gas atomization for many years. These tubes have proven to be strong, thermal shock resistant and versatile. Various configurations are possible both internally and externally. Accurate dimensions are achieved internally with a machined fugitive graphite mandrel and externally by diamond grinding. The previous study of the effect of spray parameters on density was extended to determine the effect of the resulting density on the thermal shock characteristics on down-quenching and up-quenching. Encouraging results also prompted investigation of the use of plasma spraying as a method to construct a melt pour exit stopper that is mechanically robust, thermal shock resistant, and not susceptible to attack by reactive melt additions. The Ames Laboratory operates two close-coupled high pressure gas atomizers. These two atomizers are designed to produce fine and coarse spherical metal powders (5{mu} to 500{mu} diameter) of many different metals and alloys. The systems vary in size, but generally the smaller atomizer can produce up to 5 kg of powder whereas the larger can produce up to 25 kg depending on the charge form and density. In order to make powders of such varying compositions, it is necessary to have melt systems capable of heating and containing the liquid charge to the desired superheat temperature prior to pouring through the atomization nozzle. For some metals and alloys this is not a problem; however for some more reactive and/or high melting materials this can pose unique challenges. Figure 1 is a schematic that illustrates the atomization system and its components.

  1. Treatment of Asbestos Wastes Using the GeoMelt Vitrification Process

    SciTech Connect (OSTI)

    Finucane, K.G. [AMEC Nuclear Holdings Ltd., GeoMelt Div., Richland, WA (United States); Thompson, L.E. [Capto Group LLC, Dallas, TX (United States); Abuku, T. [ISV Japan Ltd., Yokohama-city (Japan); Nakauchi, H. [Mie Chuo Kaihatsu Co. Ltd., Hachiya, Iga City (Japan)

    2008-07-01

    The disposal of waste asbestos from decommissioning activities is becoming problematic in countries which have limited disposal space. A particular challenge is the disposal of asbestos wastes from the decommissioning of nuclear sites because some of it is radioactively contaminated or activated and disposal space for such wastes is limited. GeoMelt{sup R} vitrification is being developed as a treatment method for volume and toxicity minimization and radionuclide immobilization for UK radioactive asbestos mixed waste. The common practice to date for asbestos wastes is disposal in licensed landfills. In some cases, compaction techniques are used to minimize the disposal space requirements. However, such practices are becoming less practical. Social pressures have resulted in changes to disposal regulations which, in turn, have resulted in the closure of some landfills and increased disposal costs. In the UK, tens of thousands of tonnes of asbestos waste will result from the decommissioning of nuclear sites over the next 20 years. In Japan, it is estimated that over 40 million tonnes of asbestos materials used in construction will require disposal. Methods for the safe and cost effective volume reduction of asbestos wastes are being evaluated for many sites. The GeoMelt{sup R} vitrification process is being demonstrated at full-scale in Japan for the Japan Ministry of Environment and plans are being developed for the GeoMelt treatment of UK nuclear site decommissioning-related asbestos wastes. The full-scale treatment operations in Japan have also included contaminated soils and debris. The GeoMelt{sup R} vitrification process result in the maximum possible volume reduction, destroys the asbestos fibers, treats problematic debris associated with asbestos wastes, and immobilizes radiological contaminants within the resulting glass matrix. Results from recent full-scale treatment operations in Japan are discussed and plans for GeoMelt treatment of UK nuclear site decommissioning-related asbestos wastes are outlined. (authors)

  2. Molecular dynamics simulation of Coulomb explosion, melting and shock wave creation in silicon after an ionization pulse

    SciTech Connect (OSTI)

    Li, Zhongyu; Shao, Lin; Chen, Di; Wang, Jing

    2014-04-14

    Strong electronic stopping power of swift ions in a semiconducting or insulating substrate can lead to localized electron stripping. The subsequent repulsive interactions among charged target atoms can cause Coulomb explosion. Using molecular dynamics simulation, we simulate Coulomb explosion in silicon by introducing an ionization pulse lasting for different periods, and at different substrate temperatures. We find that the longer the pulse period, the larger the melting radius. The observation can be explained by a critical energy density model assuming that melting required thermal energy density is a constant value and the total thermal energy gained from Coulomb explosion is linearly proportional to the ionization period. Our studies also show that melting radius is larger at higher substrate temperatures. The temperature effect is explained due to a longer structural relaxation above the melting temperature at original ionization boundary due to lower heat dissipation rates. Furthermore, simulations show the formation of shock waves, created due to the compression from the melting core.

  3. Phase-shifting point diffraction interferometer

    DOE Patents [OSTI]

    Medecki, Hector

    1998-01-01

    Disclosed is a point diffraction interferometer for evaluating the quality of a test optic. In operation, the point diffraction interferometer includes a source of radiation, the test optic, a beam divider, a reference wave pinhole located at an image plane downstream from the test optic, and a detector for detecting an interference pattern produced between a reference wave emitted by the pinhole and a test wave emitted from the test optic. The beam divider produces separate reference and test beams which focus at different laterally separated positions on the image plane. The reference wave pinhole is placed at a region of high intensity (e.g., the focal point) for the reference beam. This allows reference wave to be produced at a relatively high intensity. Also, the beam divider may include elements for phase shifting one or both of the reference and test beams.

  4. Phase-shifting point diffraction interferometer

    DOE Patents [OSTI]

    Medecki, H.

    1998-11-10

    Disclosed is a point diffraction interferometer for evaluating the quality of a test optic. In operation, the point diffraction interferometer includes a source of radiation, the test optic, a beam divider, a reference wave pinhole located at an image plane downstream from the test optic, and a detector for detecting an interference pattern produced between a reference wave emitted by the pinhole and a test wave emitted from the test optic. The beam divider produces separate reference and test beams which focus at different laterally separated positions on the image plane. The reference wave pinhole is placed at a region of high intensity (e.g., the focal point) for the reference beam. This allows reference wave to be produced at a relatively high intensity. Also, the beam divider may include elements for phase shifting one or both of the reference and test beams. 8 figs.

  5. Hot Springs Point Geothermal Project | Open Energy Information

    Open Energy Info (EERE)

    Point Geothermal Project Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Development Project: Hot Springs Point Geothermal Project Project Location Information...

  6. Tribal Points of Contacts | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Points of Contacts Tribal Points of Contacts US DOE-Office of Environmental Management 1000 Independence Avenue, SW Washington, DC 20585 ph: (202) 586-5944 fax: (202) 586-5000 Richland Operations Office- Hanford Indian Nations Program P.O. Box 550- MSIN A7-75 Richland, WA 99352 ph: (509) 376-6332 fax: (509) 376-1563 West Valley Demonstration Project Tribal Government Liaison P.O. Box 191- 10282 Rock Springs Road West Valley, NY 14171 ph: (716) 942-4629 fax: (716) 942-2068 Albuquerque Operations

  7. Remote temperature-set-point controller

    DOE Patents [OSTI]

    Burke, William F.; Winiecki, Alan L.

    1986-01-01

    An instrument for carrying out mechanical strain tests on metallic samples with the addition of an electrical system for varying the temperature with strain, the instrument including opposing arms and associated equipment for holding a sample and varying the mechanical strain on the sample through a plurality of cycles of increasing and decreasing strain within predetermined limits, circuitry for producing an output signal representative of the strain during the tests, apparatus including a set point and a coil about the sample for providing a controlled temperature in the sample, and circuitry interconnected between the strain output signal and set point for varying the temperature of the sample linearly with strain during the tests.

  8. Non-lead hollow point bullet

    DOE Patents [OSTI]

    Vaughn, Norman L.; Lowden, Richard A.

    2003-04-15

    The non-lead hollow point bullet of the instant invention comprises a mixed construction slug further comprising, a monolithic metal insert having a tapered (preferred conical) hollow point tip and a tapered (preferred conical) tail protrusion, and an unsintered powdered metal composite core in tandem alignment with the insert. The core has a hollow tapered (preferred conical) cavity tip portion coupled with the tapered (preferred conical) tail protrusion on the insert. An open tip jacket envelops at least a portion of the insert and the core. The jacket is swaged at the open tip.

  9. Microsoft PowerPoint - 3 Dave Esh

    Office of Environmental Management (EM)

    of Energy 2009.10.27 Bridge Inspection Follow-up Microsoft PowerPoint - 2009.10.27 Bridge Inspection Follow-up PDF icon Microsoft PowerPoint - 2009.10.27 Bridge Inspection Follow-up More Documents & Publications Slide 1 Slide 1 Microsoft Word - Issue FY2009 Q4 Draft 20090910.doc

    Asset Revitalization Initiative Goals, Task Force, and Deliverables Tania Smith, DOE-EM ARI Task Force Leader February 2013 ARI Mission The Asset Revitalization Initiative (ARI) is a U.S. Department of Energy

  10. Microsoft PowerPoint - Interface_Levin

    Office of Environmental Management (EM)

    Energy Rebecca Kujawa Vice President gy Solutions from Clean Coal Vice President Business Development Indian Energy Forum March 1, 2012 Sustainable Energy Solutions from Clean Coal C l M k t Key Discussion Points Key Discussion Points ●Coal Markets ●Clean Coal Technologies ●Clean Coal Technologies ●Sustainable Partnerships 2 Coal is the Power Energizing the World Our Energy Needs in Perspective: In Just One Day... Our Energy Needs in Perspective: In Just One Day... Global Population Will

  11. Microsoft PowerPoint - Introduction_to_CAMD_2012.pptx

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    More than 275 CAMD Users from Louisiana Institutions * 1.3 GeV synchrotron : light from IR - VUV - X-rays Materials Characterization * structure: crystalline, polymers, films, proteins/enzymes * composition: elemental, chemical valence, molecular fingerprints * spatial: elemental & molecular mapping, microtomography * microfabrication: high-aspect ratio MEMS systems CAMD SSRL ALS APS CHESS NSLS SRC SURF Synchrotron Radiation Facilities in the US Is the only State-funded SR source! SR is the

  12. Systematic study of azimuthal anisotropy in Cu + Cu and Au + Au collisions at √sNN = 62.4 and 200 GeV

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Adare, A.

    2015-09-23

    We have studied the dependence of azimuthal anisotropy v2 for inclusive and identified charged hadrons in Au+Au and Cu+Cu collisions on collision energy, species, and centrality. The values of v2 as a function of transverse momentum pT and centrality in Au+Au collisions at √sNN=200 and 62.4 GeV are the same within uncertainties. However, in Cu+Cu collisions we observe a decrease in v2 values as the collision energy is reduced from 200 to 62.4 GeV. The decrease is larger in the more peripheral collisions. By examining both Au+Au and Cu+Cu collisions we find that v2 depends both on eccentricity and themore » number of participants, Npart. We observe that v2 divided by eccentricity (ε) monotonically increases with Npart and scales as N1/3part. Thus, the Cu+Cu data at 62.4 GeV falls below the other scaled v2 data. For identified hadrons, v2 divided by the number of constituent quarks nq is independent of hadron species as a function of transverse kinetic energy KET=mT–m between 0.1T/nq<1 GeV. Combining all of the above scaling and normalizations, we observe a near-universal scaling, with the exception of the Cu+Cu data at 62.4 GeV, of v2/(nq∙ε∙N1/3part) vs KET/nq for all measured particles.« less

  13. A LINGERING NON-THERMAL COMPONENT IN THE GAMMA-RAY BURST PROMPT EMISSION: PREDICTING GeV EMISSION FROM THE MeV SPECTRUM

    SciTech Connect (OSTI)

    Basak, Rupal; Rao, A. R., E-mail: rupalb@tifr.res.in, E-mail: arrao@tifr.res.in [Tata Institute of Fundamental Research, Mumbai 400005 (India)

    2013-09-20

    The high-energy GeV emission of gamma-ray bursts (GRBs) detected by Fermi/LAT has a significantly different morphology compared to the lower energy MeV emission detected by Fermi/GBM. Though the late-time GeV emission is believed to be synchrotron radiation produced via an external shock, this emission as early as the prompt phase is puzzling. A meaningful connection between these two emissions can be drawn only by an accurate description of the prompt MeV spectrum. We perform a time-resolved spectroscopy of the Gamma-ray Burst Monitor (GBM) data of long GRBs with significant GeV emission, using a model consisting of two blackbodies and a power law. We examine in detail the evolution of the spectral components and find that GRBs with high GeV emission (GRB 090902B and GRB 090926A) have a delayed onset of the power-law component in the GBM spectrum, which lingers at the later part of the prompt emission. This behavior mimics the flux evolution in the Large Area Telescope (LAT). In contrast, bright GBM GRBs with an order of magnitude lower GeV emission (GRB 100724B and GRB 091003) show a coupled variability of the total and the power-law flux. Further, by analyzing the data for a set of 17 GRBs, we find a strong correlation between the power-law fluence in the MeV and the LAT fluence (Pearson correlation: r = 0.88 and Spearman correlation: ? = 0.81). We demonstrate that this correlation is not influenced by the correlation between the total and the power-law fluences at a confidence level of 2.3?. We speculate the possible radiation mechanisms responsible for the correlation.

  14. Systematic study of azimuthal anisotropy in Cu + Cu and Au + Au collisions at √sNN = 62.4 and 200 GeV

    SciTech Connect (OSTI)

    Adare, A.

    2015-09-23

    We have studied the dependence of azimuthal anisotropy v2 for inclusive and identified charged hadrons in Au+Au and Cu+Cu collisions on collision energy, species, and centrality. The values of v2 as a function of transverse momentum pT and centrality in Au+Au collisions at √sNN=200 and 62.4 GeV are the same within uncertainties. However, in Cu+Cu collisions we observe a decrease in v2 values as the collision energy is reduced from 200 to 62.4 GeV. The decrease is larger in the more peripheral collisions. By examining both Au+Au and Cu+Cu collisions we find that v2 depends both on eccentricity and the number of participants, Npart. We observe that v2 divided by eccentricity (ε) monotonically increases with Npart and scales as N1/3part. Thus, the Cu+Cu data at 62.4 GeV falls below the other scaled v2 data. For identified hadrons, v2 divided by the number of constituent quarks nq is independent of hadron species as a function of transverse kinetic energy KET=mT–m between 0.1T/nq<1 GeV. Combining all of the above scaling and normalizations, we observe a near-universal scaling, with the exception of the Cu+Cu data at 62.4 GeV, of v2/(nq∙ε∙N1/3part) vs KET/nq for all measured particles.

  15. Heavy-quark production and elliptic flow in Au+Au collisions at ?sNN=62.4 GeV

    SciTech Connect (OSTI)

    Adare, A.

    2015-04-28

    In this study, we present measurements of electrons and positrons from the semileptonic decays of heavy-flavor hadrons at midrapidity (|y|< 0.35) in Au+Au collisions at ?sNN = 62.4 GeV. The data were collected in 2010 by the PHENIX experiment that included the new hadron-blind detector. The invariant yield of electrons from heavy-flavor decays is measured as a function of transverse momentum in the range 1 < peT < 5 GeV/c. The invariant yield per binary collision is slightly enhanced above the p+p reference in Au+Au 0%20%, 20%40%, and 40%60% centralities at a comparable level. At this low beam energy this may be a result of the interplay between initial-state Cronin effects, final-state flow, and energy loss in medium. The v? of electrons from heavy-flavor decays is nonzero when averaged between 1.3 < peT < 2.5 GeV/c for 0%40% centrality collisions at ?sNN = 62.4 GeV. For 20%40% centrality collisions, the v? at ?sNN = 62.4 GeV is smaller than that for heavy-flavor decays at ?sNN = 200 GeV. The v? of the electrons from heavy-flavor decay at the lower beam energy is also smaller than v? for pions. Both results indicate that the heavy-quarks interact with the medium formed in these collisions, but they may not be at the same level of thermalization with the medium as observed at ?sNN = 200 GeV.

  16. ChargePoint America | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting PDF icon arravt073_vss_gogineni_2012_o.pdf More Documents & Publications ChargePoint America Electric Drive Vehicle Infrastructure Deployment Vehicle Technologies Office: 2011 Vehicle and Systems Simulation and Testing R&D Annual Progress Report

  17. The effect of venting on cookoff of a melt-castable explosive (Comp-B)

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Hobbs, Michael L.; Kaneshige, Michael J.

    2015-03-01

    Occasionally, our well-controlled cookoff experiments with Comp-B give anomalous results when venting conditions are changed. For example, a vented experiment may take longer to ignite than a sealed experiment. In the current work, we show the effect of venting on thermal ignition of Comp-B. We use Sandia’s Instrumented Thermal Ignition (SITI) experiment with various headspace volumes in both vented and sealed geometries to study ignition of Comp-B. In some of these experiments, we have used a boroscope to observe Comp-B as it melts and reacts. We propose that the mechanism for ignition involves TNT melting, dissolution of RDX, and complexmore » bubbly liquid flow. High pressure inhibits bubble formation and flow is significantly reduced. At low pressure, a vigorous dispersed bubble flow was observed.« less

  18. Surface hardening of titanium alloys with melting depth controlled by heat sink

    DOE Patents [OSTI]

    Oden, Laurance L.; Turner, Paul C.

    1995-01-01

    A process for forming a hard surface coating on titanium alloys includes providing a piece of material containing titanium having at least a portion of one surface to be hardened. The piece having a portion of a surface to be hardened is contacted on the backside by a suitable heat sink such that the melting depth of said surface to be hardened may be controlled. A hardening material is then deposited as a slurry. Alternate methods of deposition include flame, arc, or plasma spraying, electrodeposition, vapor deposition, or any other deposition method known by those skilled in the art. The surface to be hardened is then selectively melted to the desired depth, dependent on the desired coating thickness, such that a molten pool is formed of the piece surface and the deposited hardening material. Upon cooling a hardened surface is formed.

  19. Determination of the fundamental softening and melting characteristics of blast furnace burden materials

    SciTech Connect (OSTI)

    Bakker, T.; Heerema, R.H.

    1996-12-31

    An experimental technique to investigate the fundamental mechanisms taking place on a microscale in the softening and melting zone in the blast furnace, is presented. In the present paper, attention is focused on determination of the softening viscosity of porous wustite. The technique may be potentially useful to investigate more complex samples of ironbearing material, as occurring in the blast furnace. In comparison with the results obtained by other researchers the viscosity of porous wustite found in the present work is substantially higher than reported elsewhere for sinter and pellets. This may be an indication that softening is not merely a reflection of the solid state deformation under load of wustite. An important factor may be local melting of some of the phases present within the sinter and pellet structures.

  20. The effect of venting on cookoff of a melt-castable explosive (Comp-B)

    SciTech Connect (OSTI)

    Hobbs, Michael L.; Kaneshige, Michael J.

    2015-03-01

    Occasionally, our well-controlled cookoff experiments with Comp-B give anomalous results when venting conditions are changed. For example, a vented experiment may take longer to ignite than a sealed experiment. In the current work, we show the effect of venting on thermal ignition of Comp-B. We use Sandia’s Instrumented Thermal Ignition (SITI) experiment with various headspace volumes in both vented and sealed geometries to study ignition of Comp-B. In some of these experiments, we have used a boroscope to observe Comp-B as it melts and reacts. We propose that the mechanism for ignition involves TNT melting, dissolution of RDX, and complex bubbly liquid flow. High pressure inhibits bubble formation and flow is significantly reduced. At low pressure, a vigorous dispersed bubble flow was observed.

  1. Melting behaviour of gold-platinum nanoalloy clusters by molecular dynamics simulations

    SciTech Connect (OSTI)

    Ong, Yee Pin; Yoon, Tiem Leong; Lim, Thong Leng

    2015-04-24

    The melting behavior of bimetallic gold-platinum nanoclusters is studied by applying Brownian-type isothermal molecular dynamics (MD) simulation, a program modified from the cubic coupling scheme (CCS). The process begins with the ground-state structures obtained from global minimum search algorithm and proceeds with the investigation of the effect of temperature on the thermal properties of gold-platinum nanoalloy clusters. N-body Gupta potential has been employed in order to account for the interactions between gold and platinum atoms. The ground states of the nanoalloy clusters, which are core-shell segregated, are heated until they become thermally segregated. The detailed melting mechanism of the nanoalloy clusters is studied via this approach to provide insight into the thermal stability of the nanoalloy clusters.

  2. Melt-castable energetic compounds comprising oxadiazoles and methods of production thereof

    DOE Patents [OSTI]

    Pagoria, Philip F; Zhang, Mao X

    2013-11-12

    In one embodiment, a melt-castable energetic material comprises at least one of: 3,5-bis(4-nitro-1,2,5-oxadiazol-3-yl)-1,2,4-oxadiazole (DNFO), and 3-(4-amino-1,2,5-oxadiazol-3-yl)-5-(4-nitro-1,2,5-oxadiazol-3-yl)-1,2- ,4-oxadiazole (ANFO). In another embodiment, a method for forming a melt-castable energetic material includes reacting 3,5-bis(4-amino-1,2,5-oxadiazol-3-yl)-1,2,4-oxadiazole (DAFO) with oxygen or an oxygen-containing compound to form a mixture of at least: DNFO, and ANFO.

  3. Reducing Ultra-Clean Transportation Fuel Costs with HyMelt Hydrogen

    SciTech Connect (OSTI)

    Donald P. Malone; William R. Renner

    2006-01-01

    This report describes activities for the thirteenth quarter of work performed under this agreement. EnviRes initiated a wire transfer of funds for procurement of a pressure vessel and associated refractory lining. Phase I of the work to be done under this agreement consisted of conducting atmospheric gasification of coal using the HyMelt technology to produce separate hydrogen rich and carbon monoxide rich product streams. In addition smaller quantities of petroleum coke and a low value refinery stream were gasified. Phase II of the work to be done under this agreement, consists of gasification of the above-mentioned feeds at a gasifier pressure of approximately 5 bar. The results of this work will be used to evaluate the technical and economic aspects of producing ultra-clean transportation fuels using the HyMelt technology in existing and proposed refinery configurations.

  4. Reducing Ultra-Clean Transportation Fuel Costs with HyMelt Hydrogen

    SciTech Connect (OSTI)

    Donald P. Malone; William R. Renner

    2006-04-01

    Phase I of the work to be done under this agreement consisted of conducting atmospheric gasification of coal using the HyMelt technology to produce separate hydrogen rich and carbon monoxide rich product streams. In addition smaller quantities of petroleum coke and a low value refinery stream were gasified. Phase II of the work to be done under this agreement, consists of gasification of the above-mentioned feeds at a gasifier pressure of approximately 5 bar. The results of this work will be used to evaluate the technical and economic aspects of producing ultra-clean transportation fuels using the HyMelt technology in existing and proposed refinery configurations. This report describes activities for the thirteenth quarter of work performed under this agreement. MEFOS, the gasification testing subcontractor, reported to EnviRes that they were having difficulty with refractory vendors meeting specifications for the lining of the pressure vessel. EnviRes is working to resolve this issue.

  5. Remote temperature-set-point controller

    DOE Patents [OSTI]

    Burke, W.F.; Winiecki, A.L.

    1984-10-17

    An instrument is described for carrying out mechanical strain tests on metallic samples with the addition of means for varying the temperature with strain. The instrument includes opposing arms and associated equipment for holding a sample and varying the mechanical strain on the sample through a plurality of cycles of increasing and decreasing strain within predetermined limits, circuitry for producing an output signal representative of the strain during the tests, apparatus including a a set point and a coil about the sample for providing a controlled temperature in the sample, and circuitry interconnected between the strain output signal and set point for varying the temperature of the sample linearly with strain during the tests.

  6. CHEMISTRY OF IMPACT-GENERATED SILICATE MELT-VAPOR DEBRIS DISKS

    SciTech Connect (OSTI)

    Visscher, Channon; Fegley, Bruce Jr.

    2013-04-10

    In the giant impact theory for lunar origin, the Moon forms from material ejected by the impact into an Earth-orbiting disk. Here we report the initial results from a silicate melt-vapor equilibrium chemistry model for such impact-generated planetary debris disks. In order to simulate the chemical behavior of a two-phase (melt+vapor) disk, we calculate the temperature-dependent pressure and chemical composition of vapor in equilibrium with molten silicate from 2000 to 4000 K. We consider the elements O, Na, K, Fe, Si, Mg, Ca, Al, Ti, and Zn for a range of bulk silicate compositions (Earth, Moon, Mars, eucrite parent body, angrites, and ureilites). In general, the disk atmosphere is dominated by Na, Zn, and O{sub 2} at lower temperatures (<3000 K) and SiO, O{sub 2}, and O at higher temperatures. The high-temperature chemistry is consistent for any silicate melt composition, and we thus expect abundant SiO, O{sub 2}, and O to be a common feature of hot, impact-generated debris disks. In addition, the saturated silicate vapor is highly oxidizing, with oxygen fugacity (f{sub O{sub 2}}) values (and hence H{sub 2}O/H{sub 2} and CO{sub 2}/CO ratios) several orders of magnitude higher than those in a solar-composition gas. High f{sub O{sub 2}} values in the disk atmosphere are found for any silicate composition because oxygen is the most abundant element in rock. We thus expect high oxygen fugacity to be a ubiquitous feature of any silicate melt-vapor disk produced via collisions between rocky planets.

  7. EIS-0153: Niagara Import Point Project

    Broader source: Energy.gov [DOE]

    The Federal Energy Regulatory Commission prepared this statement to assess the environmental impacts of the proposed Niagara Import Point project that would construct an interstate natural gas pipeline to transport gas from Canada and domestic sources to the Northeastern United States market. The U.S. Department of Energy's Office of Fossil Energy was a cooperating agency during statement development and adopted this statement on 6/15/1990.

  8. New York Nuclear Profile - Indian Point

    U.S. Energy Information Administration (EIA) Indexed Site

    Indian Point" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License expiration date" 2,"1,022","7,326",81.8,"PWR","application/vnd.ms-excel","application/vnd.ms-excel"

  9. Photoacoustic Point Spectroscopy - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Analysis Energy Analysis Early Stage R&D Early Stage R&D Find More Like This Return to Search Photoacoustic Point Spectroscopy Oak Ridge National Laboratory Contact ORNL About This Technology Technology Marketing SummaryORNL researchers invented a detector that uses photoacoustic waves to excite a vibratory sensor coated with unknown molecules. This invention can be used to identify these molecules and study solid, gas, or liquid samples. DescriptionThe device is an advance over

  10. SNL Starting Points | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    SNL Starting Points Sandia Field Office Home Page SNL Contract DOE Directives NNSA Policy System SNL's Economic Impact Brochure SNL's Fact Sheets SNL's Accomplishments SNL Strategic Plan SNL Strategic Plan FY16-FY20 State of the Labs Presentation State of the Labs Presentation 2015 SNL Corporate Overview and Organization (Updated on May 12) SNL Corporate Overview FY16 SNL Corporate Overview FY 16 Presenter Notes SNL Organization Chart Agreements 2014 MTC Joint Review CBA 2014 OPEIU CBA 2014 SPA

  11. Microsoft PowerPoint - salishan-04

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Next Quarter-Century at Salishan Burton Smith Cray Inc. The vision for this conference "...to improve communications, develop collaborations, solve problems of mutual interest, and provide effective leadership in the field of high-speed computing" How well have we succeeded? What will our future challenges be? Communications We have learned many things at this conference about: * Monte Carlo * Functional languages * Big code development * Floating point arithmetic * Lagrangian

  12. Approximate Model for Turbulent Stagnation Point Flow.

    SciTech Connect (OSTI)

    Dechant, Lawrence

    2016-01-01

    Here we derive an approximate turbulent self-similar model for a class of favorable pressure gradient wedge-like flows, focusing on the stagnation point limit. While the self-similar model provides a useful gross flow field estimate this approach must be combined with a near wall model is to determine skin friction and by Reynolds analogy the heat transfer coefficient. The combined approach is developed in detail for the stagnation point flow problem where turbulent skin friction and Nusselt number results are obtained. Comparison to the classical Van Driest (1958) result suggests overall reasonable agreement. Though the model is only valid near the stagnation region of cylinders and spheres it nonetheless provides a reasonable model for overall cylinder and sphere heat transfer. The enhancement effect of free stream turbulence upon the laminar flow is used to derive a similar expression which is valid for turbulent flow. Examination of free stream enhanced laminar flow suggests that the rather than enhancement of a laminar flow behavior free stream disturbance results in early transition to turbulent stagnation point behavior. Excellent agreement is shown between enhanced laminar flow and turbulent flow behavior for high levels, e.g. 5% of free stream turbulence. Finally the blunt body turbulent stagnation results are shown to provide realistic heat transfer results for turbulent jet impingement problems.

  13. High speed point derivative microseismic detector

    DOE Patents [OSTI]

    Uhl, James Eugene; Warpinski, Norman Raymond; Whetten, Ernest Blayne

    1998-01-01

    A high speed microseismic event detector constructed in accordance with the present invention uses a point derivative comb to quickly and accurately detect microseismic events. Compressional and shear waves impinging upon microseismic receiver stations disposed to collect waves are converted into digital data and analyzed using a point derivative comb including assurance of quiet periods prior to declaration of microseismic events. If a sufficient number of quiet periods have passed, the square of a two point derivative of the incoming digital signal is compared to a trip level threshold exceeding the determined noise level to declare a valid trial event. The squaring of the derivative emphasizes the differences between noise and signal, and the valid event is preferably declared when the trip threshold has been exceeded over a temporal comb width to realize a comb over a given time period. Once a trial event has been declared, the event is verified through a spatial comb, which applies the temporal event comb to additional stations. The detector according to the present invention quickly and accurately detects initial compressional waves indicative of a microseismic event which typically exceed the ambient cultural noise level by a small amount, and distinguishes the waves from subsequent larger amplitude shear waves.

  14. High speed point derivative microseismic detector

    DOE Patents [OSTI]

    Uhl, J.E.; Warpinski, N.R.; Whetten, E.B.

    1998-06-30

    A high speed microseismic event detector constructed in accordance with the present invention uses a point derivative comb to quickly and accurately detect microseismic events. Compressional and shear waves impinging upon microseismic receiver stations disposed to collect waves are converted into digital data and analyzed using a point derivative comb including assurance of quiet periods prior to declaration of microseismic events. If a sufficient number of quiet periods have passed, the square of a two point derivative of the incoming digital signal is compared to a trip level threshold exceeding the determined noise level to declare a valid trial event. The squaring of the derivative emphasizes the differences between noise and signal, and the valid event is preferably declared when the trip threshold has been exceeded over a temporal comb width to realize a comb over a given time period. Once a trial event has been declared, the event is verified through a spatial comb, which applies the temporal event comb to additional stations. The detector according to the present invention quickly and accurately detects initial compressional waves indicative of a microseismic event which typically exceed the ambient cultural noise level by a small amount, and distinguishes the waves from subsequent larger amplitude shear waves. 9 figs.

  15. Enhanced power factor of higher manganese silicide via melt spin synthesis method

    SciTech Connect (OSTI)

    Shi, Xiaoya; Shi, Xun; Li, Yulong; He, Ying; Chen, Lidong; Li, Qiang

    2014-12-30

    We report on the thermoelectric properties of the Higher Manganese Silicide MnSi₁.₇₅ (HMS) synthesized by means of a one-step non-equilibrium method. The ultrahigh cooling rate generated from the melt-spin technique is found to be effective in reducing second phases, which are inevitable during the traditional solid state diffusion processes. Aside from being detrimental to thermoelectric properties, second phases skew the revealing of the intrinsic properties of this class of materials, for example the optimal level of carrier concentration. With this melt-spin sample, we are able to formulate a simple model based on a single parabolic band that can well describe the carrier concentration dependence of the Seebeck coefficient and power factor of the data reported in the literature. An optimal carrier concentration around 5x10²⁰ cm⁻³ at 300 K is predicted according to this model. The phase-pure melt-spin sample shows the largest power factor at high temperature, resulting in the highest zT value among the three samples in this paper; the maximum value is superior to those reported in the literatures.

  16. Mixed Waste Treatment Cost Analysis for a Range of GeoMelt Vitrification Process Configurations

    SciTech Connect (OSTI)

    Thompson, L. E.

    2002-02-27

    GeoMelt is a batch vitrification process used for contaminated site remediation and waste treatment. GeoMelt can be applied in several different configurations ranging from deep subsurface in situ treatment to aboveground batch plants. The process has been successfully used to treat a wide range of contaminated wastes and debris including: mixed low-level radioactive wastes; mixed transuranic wastes; polychlorinated biphenyls; pesticides; dioxins; and a range of heavy metals. Hypothetical cost estimates for the treatment of mixed low-level radioactive waste were prepared for the GeoMelt subsurface planar and in-container vitrification methods. The subsurface planar method involves in situ treatment and the in-container vitrification method involves treatment in an aboveground batch plant. The projected costs for the subsurface planar method range from $355-$461 per ton. These costs equate to 18-20 cents per pound. The projected cost for the in-container method is $1585 per ton. This cost equates to 80 cents per pound. These treatment costs are ten or more times lower than the treatment costs for alternative mixed waste treatment technologies according to a 1996 study by the US Department of Energy.

  17. Enhanced power factor of higher manganese silicide via melt spin synthesis method

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Shi, Xiaoya; Shi, Xun; Li, Yulong; He, Ying; Chen, Lidong; Li, Qiang

    2014-12-30

    We report on the thermoelectric properties of the Higher Manganese Silicide MnSi₁.₇₅ (HMS) synthesized by means of a one-step non-equilibrium method. The ultrahigh cooling rate generated from the melt-spin technique is found to be effective in reducing second phases, which are inevitable during the traditional solid state diffusion processes. Aside from being detrimental to thermoelectric properties, second phases skew the revealing of the intrinsic properties of this class of materials, for example the optimal level of carrier concentration. With this melt-spin sample, we are able to formulate a simple model based on a single parabolic band that can well describemore » the carrier concentration dependence of the Seebeck coefficient and power factor of the data reported in the literature. An optimal carrier concentration around 5x10²⁰ cm⁻³ at 300 K is predicted according to this model. The phase-pure melt-spin sample shows the largest power factor at high temperature, resulting in the highest zT value among the three samples in this paper; the maximum value is superior to those reported in the literatures.« less

  18. Cluster Morphology-Polymer Dynamics Correlations in Sulfonated Polystyrene Melts: Computational Study

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Agrawal, Anupriya; Perahia, Dvora; Grest, Gary S.

    2016-04-11

    Reaching exceptionally long times up to 500 ns in equilibrium and nonequilibrium molecular dynamics simulations studies, we have attained a fundamental molecular understanding of the correlation of ionomer clusters structure and multiscale dynamics, providing new insight into one critical, long-standing challenge in ionic polymer physics. The cluster structure in melts of sulfonated polystyrene with Na+ and Mg2+ counterions are resolved and correlated with the dynamics on multiple length and time scales extracted from measurements of the dynamic structure factor and shear rheology. We find that as the morphology of the ionic clusters changes from ladderlike for Na+ to disordered structuresmore » for Mg2+, the dynamic structure factor is affected on the length scale corresponding to the ionic clusters. Lastly, rheology studies show that the viscosity for Mg2+ melts is higher than for Na+ ones for all shear rates, which is well correlated with the larger ionic clusters’ size for the Mg2+ melts.« less

  19. Enhanced power factor of higher manganese silicide via melt spin synthesis method

    SciTech Connect (OSTI)

    Shi, Xiaoya; Shi, Xun; Li, Yulong; He, Ying; Chen, Lidong; Li, Qiang

    2014-12-30

    We report on the thermoelectric properties of the Higher Manganese Silicide MnSi?.?? (HMS) synthesized by means of a one-step non-equilibrium method. The ultrahigh cooling rate generated from the melt-spin technique is found to be effective in reducing second phases, which are inevitable during the traditional solid state diffusion processes. Aside from being detrimental to thermoelectric properties, second phases skew the revealing of the intrinsic properties of this class of materials, for example the optimal level of carrier concentration. With this melt-spin sample, we are able to formulate a simple model based on a single parabolic band that can well describe the carrier concentration dependence of the Seebeck coefficient and power factor of the data reported in the literature. An optimal carrier concentration around 5x10? cm? at 300 K is predicted according to this model. The phase-pure melt-spin sample shows the largest power factor at high temperature, resulting in the highest zT value among the three samples in this paper. And the maximum value is superior to those reported in the literatures.

  20. Theoretical calculation of the melting curve of Cu-Zr binary alloys

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Gunawardana, K. G.S.H.; Wilson, S. R.; Mendelev, M. I.; Song, Xueyu

    2014-11-14

    Helmholtz free energies of the dominant binary crystalline solids found in the Cu-Zr system at high temperatures close to the melting curve are calculated. This theoretical approach combines fundamental measure density functional theory (applied to the hard-sphere reference system) and a perturbative approach to include the attractive interactions. The studied crystalline solids are Cu(fcc), Cu51Zr14(β), CuZr(B2), CuZr2(C11b), Zr(hcp), and Zr(bcc). The calculated Helmholtz free energies of crystalline solids are in good agreement with results from molecular-dynamics (MD) simulations. Using the same perturbation approach, the liquid phase free energies are calculated as a function of composition and temperature, from which themore » melting curve of the entire composition range of this system can be obtained. Phase diagrams are determined in this way for two leading embedded atom method potentials, and the results are compared with experimental data. Furthermore, theoretical melting temperatures are compared both with experimental values and with values obtained directly from MD simulations at several compositions.« less

  1. Theoretical calculation of the melting curve of Cu-Zr binary alloys

    SciTech Connect (OSTI)

    Gunawardana, K. G.S.H.; Wilson, S. R.; Mendelev, M. I.; Song, Xueyu

    2014-11-14

    Helmholtz free energies of the dominant binary crystalline solids found in the Cu-Zr system at high temperatures close to the melting curve are calculated. This theoretical approach combines fundamental measure density functional theory (applied to the hard-sphere reference system) and a perturbative approach to include the attractive interactions. The studied crystalline solids are Cu(fcc), Cu51Zr14(β), CuZr(B2), CuZr2(C11b), Zr(hcp), and Zr(bcc). The calculated Helmholtz free energies of crystalline solids are in good agreement with results from molecular-dynamics (MD) simulations. Using the same perturbation approach, the liquid phase free energies are calculated as a function of composition and temperature, from which the melting curve of the entire composition range of this system can be obtained. Phase diagrams are determined in this way for two leading embedded atom method potentials, and the results are compared with experimental data. Furthermore, theoretical melting temperatures are compared both with experimental values and with values obtained directly from MD simulations at several compositions.

  2. Φ meson production in d+Au collisions at √sNN = 200 GeV

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Adare, A.

    2015-10-19

    The PHENIX Collaboration has measured Φ meson production in d+Au collisions at √sNN=200 GeV using the dimuon and dielectron decay channels. The Φ meson is measured in the forward (backward) d-going (Au-going) direction, 1.2 T) range from 1–7 GeV/c and at midrapidity |y|T range below 7 GeV/c. The Φ meson invariant yields and nuclear-modification factors as a function of pT, rapidity, and centrality are reported. An enhancement of Φ meson production is observed in the Au-going direction, while suppression is seen in the d-going direction,more »and no modification is observed at midrapidity relative to the yield in p+p collisions scaled by the number of binary collisions. As a result, similar behavior was previously observed for inclusive charged hadrons and open heavy flavor, indicating similar cold-nuclear-matter effects.« less

  3. Fermi-LAT Discovery of GeV Gamma-ray Emission from the Young Supernova Remnant Cassiopeia A

    SciTech Connect (OSTI)

    Abdo, A.A.

    2011-08-19

    We report on the first detection of GeV high-energy gamma-ray emission from a young supernova remnant with the Large Area Telescope aboard the Fermi Gamma-ray Space Telescope. These observations reveal a source with no discernible spatial extension detected at a significance level of 12.2{sigma} above 500 MeV at a location that is consistent with the position of the remnant of the supernova explosion that occurred around 1680 in the Cassiopeia constellation - Cassiopeia A. The gamma-ray flux and spectral shape of the source are consistent with a scenario in which the gamma-ray emission originates from relativistic particles accelerated in the shell of this remnant. The total content of cosmic rays (electrons and protons) accelerated in Cas A can be estimated as W{sub CR} {approx_equal} (1-4) x 10{sup 49} erg thanks to the well-known density in the remnant assuming that the observed gamma-ray originates in the SNR shell(s). The magnetic field in the radio-emitting plasma can be robustly constrained as B {ge} 0.1 mG, providing new evidence of the magnetic field amplification at the forward shock and the strong field in the shocked ejecta.

  4. Φ meson production in d+Au collisions at √sNN = 200 GeV

    SciTech Connect (OSTI)

    Adare, A.

    2015-10-19

    The PHENIX Collaboration has measured Φ meson production in d+Au collisions at √sNN=200 GeV using the dimuon and dielectron decay channels. The Φ meson is measured in the forward (backward) d-going (Au-going) direction, 1.2 < y < 2.2 (–2.2 < y < –1.2) in the transverse-momentum (pT) range from 1–7 GeV/c and at midrapidity |y|<0.35 in the pT range below 7 GeV/c. The Φ meson invariant yields and nuclear-modification factors as a function of pT, rapidity, and centrality are reported. An enhancement of Φ meson production is observed in the Au-going direction, while suppression is seen in the d-going direction, and no modification is observed at midrapidity relative to the yield in p+p collisions scaled by the number of binary collisions. As a result, similar behavior was previously observed for inclusive charged hadrons and open heavy flavor, indicating similar cold-nuclear-matter effects.

  5. Electromagnetic and Mechanical Analysis of the Coil Structure for the CLAS12 Torus for 12 GeV Upgrade

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Ghoshal, P. K.; Pastor, O.; Kashy, D.; Schneider, W.; Wiseman, M.; Zarecky, M.; Young, G.; Rode, C.; Elouadrhiri, L.; Burkert, V.

    2014-12-18

    The torus magnet for the CLAS12 spectrometer is a 3.6 T superconducting magnet being designed and built as part of the Jefferson Lab 12 GeV Upgrade. The magnet consists of six coil case assemblies mounted to a cold central hub. The coil case assembly consists of an aluminum case and cover enclosing an epoxy vacuum impregnated coil pack. The coil pack consists of a 117 turn double-pancake winding wrapped with 2 layers of 0.635 mm thick copper cooling sheets. The coil case assembly is cooled by supercritical helium at 4.6 K. This report details the structural analysis of the coilmore » case assembly and the assessment of the coil pack stresses. For the normal operation of the torus magnet, the coil case assembly was analyzed for cool down to 4.6 K and the Lorentz forces at normal operating current. In addition to the normal operating configuration, the coil case assembly was analyzed for Lorentz forces arising from coil misalignment and current imbalances. The allowable stress criteria for the magnet followed the approach of the ASME codes. Primary stresses were limited to the lesser of 2/3 times the yield strength or 1/3 times the ultimate tensile strength. Primary plus secondary stresses were limited to 3 times the primary stress allowable. The analysis was performed using ANSYS Maxwell to calculate the magneto-static loads and ANSYS Mechanical to calculate the stresses.« less

  6. FERMI LARGE AREA TELESCOPE DISCOVERY OF GeV GAMMA-RAY EMISSION FROM THE VICINITY OF SNR W44

    SciTech Connect (OSTI)

    Uchiyama, Yasunobu; Funk, Stefan; Katsuta, Junichiro; Lemoine-Goumard, Marianne; Torres, Diego F.

    2012-04-20

    We report the detection of GeV {gamma}-ray emission from the molecular cloud complex that surrounds the supernova remnant (SNR) W44 using the Large Area Telescope on board Fermi. While the previously reported {gamma}-ray emission from SNR W44 is likely to arise from the dense radio-emitting filaments within the remnant, the {gamma}-ray emission that appears to come from the surrounding molecular cloud complex can be ascribed to the cosmic rays (CRs) that have escaped from W44. The non-detection of synchrotron radio emission associated with the molecular cloud complex suggests the decay of {pi}{sup 0} mesons produced in hadronic collisions as the {gamma}-ray emission mechanism. The total kinetic energy channeled into the escaping CRs is estimated to be W{sub esc} {approx} (0.3-3) Multiplication-Sign 10{sup 50} erg, in broad agreement with the conjecture that SNRs are the main sources of Galactic CRs.

  7. Φ meson production in d+Au collisions at √sNN = 200 GeV

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Adare, A.

    2015-10-19

    The PHENIX Collaboration has measured Φ meson production in d+Au collisions at √sNN=200 GeV using the dimuon and dielectron decay channels. The Φ meson is measured in the forward (backward) d-going (Au-going) direction, 1.2 < y < 2.2 (–2.2 < y < –1.2) in the transverse-momentum (pT) range from 1–7 GeV/c and at midrapidity |y|<0.35 in the pT range below 7 GeV/c. The Φ meson invariant yields and nuclear-modification factors as a function of pT, rapidity, and centrality are reported. An enhancement of Φ meson production is observed in the Au-going direction, while suppression is seen in the d-going direction,more » and no modification is observed at midrapidity relative to the yield in p+p collisions scaled by the number of binary collisions. As a result, similar behavior was previously observed for inclusive charged hadrons and open heavy flavor, indicating similar cold-nuclear-matter effects.« less

  8. Electromagnetic and Mechanical Analysis of the Coil Structure for the CLAS12 Torus for 12 GeV Upgrade

    SciTech Connect (OSTI)

    Ghoshal, P. K.; Pastor, O.; Kashy, D.; Schneider, W.; Wiseman, M.; Zarecky, M.; Young, G.; Rode, C.; Elouadrhiri, L.; Burkert, V.

    2014-12-18

    The torus magnet for the CLAS12 spectrometer is a 3.6 T superconducting magnet being designed and built as part of the Jefferson Lab 12 GeV Upgrade. The magnet consists of six coil case assemblies mounted to a cold central hub. The coil case assembly consists of an aluminum case and cover enclosing an epoxy vacuum impregnated coil pack. The coil pack consists of a 117 turn double-pancake winding wrapped with 2 layers of 0.635 mm thick copper cooling sheets. The coil case assembly is cooled by supercritical helium at 4.6 K. This report details the structural analysis of the coil case assembly and the assessment of the coil pack stresses. For the normal operation of the torus magnet, the coil case assembly was analyzed for cool down to 4.6 K and the Lorentz forces at normal operating current. In addition to the normal operating configuration, the coil case assembly was analyzed for Lorentz forces arising from coil misalignment and current imbalances. The allowable stress criteria for the magnet followed the approach of the ASME codes. Primary stresses were limited to the lesser of 2/3 times the yield strength or 1/3 times the ultimate tensile strength. Primary plus secondary stresses were limited to 3 times the primary stress allowable. The analysis was performed using ANSYS Maxwell to calculate the magneto-static loads and ANSYS Mechanical to calculate the stresses.

  9. Energy Saving Melting and Revert Reduction Technology (Energy-SMARRT): Clean Steel Casting Production

    SciTech Connect (OSTI)

    Kuyucak, Selcuk; Li, Delin

    2013-12-31

    Inclusions in steel castings can cause rework, scrap, poor machining, and reduced casting performance, which can obviously result in excess energy consumption. Significant progress in understanding inclusion source, formation and control has been made. Inclusions can be defined as non-metallic materials such as refractory, sand, slag, or coatings, embedded in a metallic matrix. This research project has focused on the mold filling aspects to examine the effects of pouring methods and gating designs on the steel casting cleanliness through water modeling, computer modeling, and melting/casting experiments. Early in the research project, comprehensive studies of bottom-pouring water modeling and low-alloy steel casting experiments were completed. The extent of air entrainment in bottom-poured large castings was demonstrated by water modeling. Current gating systems are designed to prevent air aspiration. However, air entrainment is equally harmful and no prevention measures are in current practice. In this study, new basin designs included a basin dam, submerged nozzle, and nozzle extension. The entrained air and inclusions from the gating system were significantly reduced using the new basin method. Near the end of the project, there has been close collaboration with Wescast Industries Inc., a company manufacturing automotive exhaust components. Both computer modeling using Magma software and melting/casting experiments on thin wall turbo-housing stainless steel castings were completed in this short period of time. Six gating designs were created, including the current gating on the pattern, non-pressurized, partially pressurized, naturally pressurized, naturally pressurized without filter, and radial choke gating without filter, for Magma modeling. The melt filling velocity and temperature were determined from the modeling. Based on the simulation results, three gating designs were chosen for further melting and casting experiments on the same casting pattern using the lip pouring method. It was observed again that gating designs greatly influenced the melt filling velocity and the number of inclusion defects. The radial choked gating showed improvements in casting cleanliness and yield over the other gatings, even though no mold filters were used in the gating system.

  10. Generation of 500 MeV-1 GeV energy electrons from laser wakefield acceleration via ionization induced injection using CO{sub 2} mixed in He

    SciTech Connect (OSTI)

    Mo, M. Z.; Ali, A.; Fedosejevs, R.; Fourmaux, S.; Lassonde, P.; Kieffer, J. C.

    2013-04-01

    Laser wakefield acceleration of 500 MeV to 1 GeV electron bunches has been demonstrated using ionization injection in mixtures of 4% to 10% of CO{sub 2} in He. 80 TW laser pulses were propagated through 5 mm gas jet targets at electron densities of 0.4-1.5 Multiplication-Sign 10{sup 19}cm{sup -3}. Ionization injection led to lower density thresholds, a higher total electron charge, and an increased probability of producing electrons above 500 MeV in energy compared to self-injection in He gas alone. Electrons with GeV energies were also observed on a few shots and indicative of an additional energy enhancement mechanism.

  11. Thermodynamic estimation of minor element distribution between immiscible liquids in Fe-Cu-based metal phase generated in melting treatment of municipal solid wastes

    SciTech Connect (OSTI)

    Lu, X.; Nakajima, K.; Sakanakura, H.; Matsubae, K.; Bai, H.; Nagasaka, T.

    2012-06-15

    Graphical abstract: Display Omitted Highlights: Black-Right-Pointing-Pointer Two liquids separation of metal occurs in the melting of municipal solid waste. Black-Right-Pointing-Pointer The distribution of PGMs etc. between two liquid metal phases is studied. Black-Right-Pointing-Pointer Quite simple thermodynamic model is applied to predict the distribution ratio. Black-Right-Pointing-Pointer Au and Ag originated from WEEE are found to be concentrated into Cu-rich phase. - Abstract: Waste electrical and electronic equipment (WEEE) has become an important target in managing material cycles from the viewpoint of not only waste management and control of environmental pollution but also resource conservation. This study investigated the distribution tendency of trace elements in municipal solid waste (MSW) or incinerator ash, including valuable non-ferrous metals (Ni, Co, Cr, Mn, Mo, Ti, V, W, Zr), precious group metals (PGMs) originated from WEEE (Ag, Au, Pd, Pt), and others (Al, B, Pb, Si), between Fe-rich and Cu-rich metal phases by means of simple thermodynamic calculations. Most of the typical alloying elements for steel (Co, Cr, Mo, Nb, Ni, Si, Ti, V, and W) and Rh were preferentially distributed into the Fe-rich phase. PGMs, such as Au, Ag, and Pd, were enriched in the Cu-rich phase, whereas Pt was almost equally distributed into both phases. Since the primary metallurgical processing of Cu is followed by an electrolysis for refining, and since PGMs in crude copper have been industrially recovered from the resulting anode slime, our results indicated that Ag, Au, and Pd could be effectively recovered from MSW if the Cu-rich phase could be selectively collected.

  12. GeoMelt{sup R} ICV{sup TM} Treatment of Sellafield Pond Solids Waste - 13414

    SciTech Connect (OSTI)

    Witwer, Keith; Woosley, Steve; Campbell, Brett [Kurion, Inc., GeoMelt Division, 3015 Horn Rapids Road, Richland, Washington (United States)] [Kurion, Inc., GeoMelt Division, 3015 Horn Rapids Road, Richland, Washington (United States); Wong, Martin; Hill, Joanne [AMEC Inc., Birchwood Park, 601 Faraday Street, Birchwood, Warrington, WA3 6GN (United Kingdom)] [AMEC Inc., Birchwood Park, 601 Faraday Street, Birchwood, Warrington, WA3 6GN (United Kingdom)

    2013-07-01

    Kurion, Inc., in partnership with AMEC Ltd., is demonstrating its GeoMelt{sup R} In-Container Vitrification (ICV){sup TM} Technology to Sellafield Ltd. (SL). SL is evaluating the proposition of directly converting a container (skip/box/drum) of raw solid ILW into an immobilized waste form using thermal treatment, such that the resulting product is suitable for interim storage at Sellafield and subsequent disposal at a future Geological Disposal Facility. Potential SL feed streams include sludges, ion-exchange media, sand, plutonium contaminated material, concrete, uranium, fuel cladding, soils, metals, and decommissioning wastes. The solid wastes have significant proportions of metallic constituents in the form of containers, plant equipment, structural material and swarf arising from the nuclear operations at Sellafield. GeoMelt's proprietary ICV process was selected for demonstration, with the focus being high and reactive metal wastes arising from solid ILW material. A composite surrogate recipe was used to demonstrate the technology towards treating waste forms of diverse types and shapes, as well as those considered difficult to process; all the while requiring few (if any) pre-treatment activities. Key strategic objectives, along with their success criterion, were established by SL for this testing, namely: 1. Passivate and stabilize the raw waste simulant, as demonstrated by the entire quantity of material being vitrified, 2. Immobilize the radiological and chemo-toxic species, as demonstrated via indicative mass balance using elemental analyses from an array of samples, 3. Production of an inert and durable product as evidenced by transformation of reactive metals to their inert oxide forms and satisfactory leachability results using PCT testing. Two tests were performed using the GeoMelt Demonstration Unit located at AMEC's Birchwood Park Facilities in the UK. Post-melt examination of the first test indicated some of the waste simulant had not fully processed, due to insufficient processing time and melt temperature. A second test, incorporating operational experience from the first test, was performed and resulted in all of the 138 kg of feed material being treated. The waste simulant portion, at 41 kg, constituted 30 wt% of the total feed mass, with over 90% of this being made up of various reactive and non-reactive metals. The 95 liters of staged material was volume reduced to 41 liters, providing a 57% overall feed to product volume reduction in a fully passivated two-phase glass/metal product. The GeoMelt equipment operated as designed, vitrifying the entire batch of waste simulant. Post-melt analytical testing verified that 91-99+% of the radiological tracer metals were uniformly distributed within the glass/cast refractory/metal product, and the remaining fraction was captured in the offgas filtration systems. PCT testing of the glass and inner refractory liner showed leachability results that outperform the DOE regulatory limit of 2 g/m{sup 2} for the radiological species of interest (Sr, Ru, Cs, Eu, Re), and by more than an order of magnitude better for standard reference analytes (B, Na, Si). (authors)

  13. Generation and pointing stabilization of multi-GeV electron beams from a laser plasma accelerator driven in a pre-formed plasma waveguide

    SciTech Connect (OSTI)

    Gonsalves, A. J.; Nakamura, K.; Daniels, J.; Mao, H.-S.; Benedetti, C.; Schroeder, C. B.; Tth, Cs.; Tilborg, J. van; Vay, J.-L.; Geddes, C. G. R.; Esarey, E.; Mittelberger, D. E.; Bulanov, S. S.; Leemans, W. P.

    2015-05-15

    Laser pulses with peak power 0.3?PW were used to generate electron beams with energy >4?GeV within a 9?cm-long capillary discharge waveguide operated with a plasma density of ?710{sup 17}?cm{sup ?3}. Simulations showed that the super-Gaussian near-field laser profile that is typical of high-power femtosecond laser systems reduces the efficacy of guiding in parabolic plasma channels compared with the Gaussian laser pulses that are typically simulated. In the experiments, this was mitigated by increasing the plasma density and hence the contribution of self-guiding. This allowed for the generation of multi-GeV electron beams, but these had angular fluctuation ?2?mrad rms. Mitigation of capillary damage and more accurate alignment allowed for stable beams to be produced with energy 2.70.1?GeV. The pointing fluctuation was 0.6?mrad rms, which was less than the beam divergence of ?1?mrad full-width-half-maximum.

  14. The equilibrium vortex melting transition in YBa{sub 2}Cu{sub 3}O{sub 7}

    SciTech Connect (OSTI)

    Crabtree, G.W.; Welp, U.; Kwok, W.K.; Fendrich, J.A.; Veal, B.W.

    1996-10-01

    The dynamic and thermodynamic experimental evidence supporting first order vortex melting in clean crystals of YBa{sub 2}Cu{sub 3}O{sub 7} is reviewed.

  15. Development of Physics-Based Numerical Models for Uncertainty Quantification of Selective Laser Melting Processes - 2015 Annual Progress Report

    SciTech Connect (OSTI)

    Anderson, A.; Delplanque, Jean-Pierre

    2015-10-08

    The primary goal of the proposed research is to characterize the influence of process parameter variability inherent to Selective Laser Melting (SLM) on components manufactured with the SLM technique for space flight systems and their performance.

  16. Points of Contact for FEOSH Program at Field Sites | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Points of Contact for FEOSH Program at Field Sites Points of Contact for FEOSH Program at Field Sites U.S. Department of Energy (DOE) Points of contact (POC) for Federal Employee...

  17. Energy dependence of {phi} meson production in central Pb+Pb collisions at {radical}(s{sub NN})=6 to 17 GeV

    SciTech Connect (OSTI)

    Alt, C.; Blume, C.; Dinkelaker, P.; Flierl, D.; Kliemant, M.; Kniege, S.; Kollegger, T.; Lungwitz, B.; Mitrovski, M.; Renfordt, R.; Schuster, T.; Stock, R.; Strabel, C.; Stroebele, H.; Wetzler, A.; Anticic, T.; Kadija, K.; Nicolic, V.; Susa, T.; Baatar, B.

    2008-10-15

    {phi} meson production is studied by the NA49 Collaboration in central Pb+Pb collisions at 20A,30A,40A,80A, and 158A GeV beam energy. The data are compared with measurements at lower and higher energies and with microscopic and thermal models. The energy dependence of yields and spectral distributions is compatible with the assumption that partonic degrees of freedom set in at low SPS energies.

  18. Nuclear Transparency and Single Particle Spectral Functions from Quasielastic A(e,e'p) Reactions up to Q2=8.1 GeV2

    SciTech Connect (OSTI)

    David McKee

    2003-05-01

    High statistics elastic and quasielastic scattering measurements were performed on hydrogen, deuterium, carbon, and iron at squared momentum transfers up to 8.1 GeV2. Both the nuclear transparency and the single particle spectral functions were extracted by means of comparison with a Plane- Wave Impulse Approximation calculation. Our data provide no evidence of the onset of color transparency within our kinematic range.

  19. Heavy-quark production and elliptic flow in Au+Au collisions at √sNN=62.4 GeV

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Adare, A.

    2015-04-28

    In this study, we present measurements of electrons and positrons from the semileptonic decays of heavy-flavor hadrons at midrapidity (|y|< 0.35) in Au+Au collisions at √sNN = 62.4 GeV. The data were collected in 2010 by the PHENIX experiment that included the new hadron-blind detector. The invariant yield of electrons from heavy-flavor decays is measured as a function of transverse momentum in the range 1 < peT < 5 GeV/c. The invariant yield per binary collision is slightly enhanced above the p+p reference in Au+Au 0%–20%, 20%–40%, and 40%–60% centralities at a comparable level. At this low beam energy thismore » may be a result of the interplay between initial-state Cronin effects, final-state flow, and energy loss in medium. The v₂ of electrons from heavy-flavor decays is nonzero when averaged between 1.3 < peT < 2.5 GeV/c for 0%–40% centrality collisions at √sNN = 62.4 GeV. For 20%–40% centrality collisions, the v₂ at √sNN = 62.4 GeV is smaller than that for heavy-flavor decays at √sNN = 200 GeV. The v₂ of the electrons from heavy-flavor decay at the lower beam energy is also smaller than v₂ for pions. Both results indicate that the heavy-quarks interact with the medium formed in these collisions, but they may not be at the same level of thermalization with the medium as observed at √sNN = 200 GeV.« less

  20. Wax Point Determinations Using Acoustic Resonance Spectroscopy

    SciTech Connect (OSTI)

    Bostick, D.T.; Jubin, R.T.; Schmidt, T.W.

    2001-06-01

    The thermodynamic characterization of the wax point of a given crude is essential in order to maintain flow conditions that prevent plugging of undersea pipelines. This report summarizes the efforts made towards applying an Acoustic Cavity Resonance Spectrometer (ACRS) to the determination of pressures and temperatures at which wax precipitates from crude. Phillips Petroleum Company, Inc., the CRADA participant, supplied the ACRS. The instrumentation was shipped to Dr. Thomas Schmidt of ORNL, the CRADA contractor, in May 2000 after preliminary software development performed under the guidance of Dr. Samuel Colgate and Dr. Evan House of the University of Florida, Gainesville, Fl. Upon receipt it became apparent that a number of modifications still needed to be made before the ACRS could be precisely and safely used for wax point measurements. This report reviews the sequence of alterations made to the ACRS, as well as defines the possible applications of the instrumentation once the modifications have been completed. The purpose of this Cooperative Research and Development Agreement (CRADA) between Phillips Petroleum Company, Inc. (Participant) and Lockheed Martin Energy Research Corporation (Contractor) was the measurement of the formation of solids in crude oils and petroleum products that are commonly transported through pipelines. This information is essential in the proper design, operation and maintenance of the petroleum pipeline system in the United States. Recently, new petroleum discoveries in the Gulf of Mexico have shown that there is a potential for plugging of undersea pipeline because of the precipitation of wax. It is important that the wax points of the expected crude oils be well characterized so that the production facilities for these new wells are capable of properly transporting the expected production. The goal of this work is to perform measurements of solids formation in crude oils and petroleum products supplied by the Participant. It is anticipated that these data will be used in the design of new production facilities and in the development of thermodynamic models that describe the behavior of wax-saturated petroleum.

  1. Agency Points of Contact for Tribal Consultation Agency Point of Contact Email and Phone

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Agency Points of Contact for Tribal Consultation Agency Point of Contact Email and Phone Department of the Interior Sarah Harris Chief of Staff to the Assist Secretary - Indian Affairs Tribalconsultation@bia.gov (202) 208-7163 Department of Justice Tracy Toulou Director, Office of Tribal Justice OTJ@usdoj.gov (202) 514-8812 Department of State Reta Lewis Special Representative for Global Intergovernmental Affairs tribalconsultation@state.gov (202) 647-7710 Department of the Treasury Alexander

  2. VPP Points of Contact web version 07092015

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Updated 7/9/2015 VPP POINTS OF CONTACT Organization DOE POC Contractor DOE Federal POC Advanced Technologies and Laboratories International, Inc. (ATL)/222-S Laboratory Analytical Services and Testing (LAS&T)/Office of River Protection Bldg. 2704-S/Room 5 200 West Area William (Bill) J. Leonard ES&H Manager W_j_iv_bill_leonard@rl.gov Robert W. Schroeder, ALARA Robert_W_Schroeder@rl.gov Melissa Soto, VPP Chair Melissa_M_Soto@rl.gov Robert (Rob) D. Meyers, ZAC Chair Robert_D_Meyers@rl.gov

  3. Undercompensated Kondo Impurity with Quantum Critical Point

    SciTech Connect (OSTI)

    Schlottmann, P.

    2000-02-14

    The low-temperature properties of a magnetic impurity of spin S interacting with an electron gas via anisotropic spin exchange are studied via Bethe's ansatz. For S>1/2 the impurity is only partially compensated at T=0 , leaving an effective spin that is neither integer nor half integer. The entropy has an essential singularity at H=T=0 , and the susceptibility and the specific heat follow power laws of H and T with nonuniversal exponents, which are the consequence of a quantum critical point. The results for the generalization to an arbitrary number of channels are also reported. (c) 2000 The American Physical Society.

  4. Microsoft PowerPoint - 8 Greg Flach

    Office of Environmental Management (EM)

    org SRNL-MS-2014-00605 Advanced Simulation Capability for Environmental Management ASCEM Software Capabilities and Performance Assessment Deployments Greg Flach ASCEM Site Applications Team Performance & Risk Assessment Community of Practice Technical Exchange Meeting December 11-12, 2014 Las Vegas NM ascemdoe.org SRNL-MS-2014-00605 1 ASCEM Points of Contact HPC Thrust David Moulton (moulton@lanl.gov; 505-665-4712) Platform Thrust Vicky Freedman (vicky.freedman@pnnl.gov; 509-372-4067) Site

  5. Wisconsin Nuclear Profile - Point Beach Nuclear Plant

    U.S. Energy Information Administration (EIA) Indexed Site

    Point Beach Nuclear Plant" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License expiration date" 1,506,"3,954",89.2,"PWR","application/vnd.ms-excel","application/vnd.ms-excel" 2,512,"4,336",96.7,"PWR","application/vnd.ms-excel","application/vnd.ms-excel"

  6. Freezing and Melting of 3D Complex Plasma Structures under Microgravity Conditions Driven by Neutral Gas Pressure Manipulation

    SciTech Connect (OSTI)

    Khrapak, S. A.; Klumov, B. A.; Huber, P.; Thomas, H. M.; Ivlev, A. V.; Morfill, G. E.; Molotkov, V. I.; Lipaev, A. M.; Naumkin, V. N.; Petrov, O. F.; Fortov, V. E.; Malentschenko, Yu.; Volkov, S.

    2011-05-20

    Freezing and melting of large three-dimensional complex plasmas under microgravity conditions is investigated. The neutral gas pressure is used as a control parameter to trigger the phase changes: Complex plasma freezes (melts) by decreasing (increasing) the pressure. The evolution of complex plasma structural properties upon pressure variation is studied. Theoretical estimates allow us to identify the main factors responsible for the observed behavior.

  7. Measurement of the numu Charged Current pi+ to Quasi-Elastic Cross Section Ratio on Mineral Oil in a 0.8 GeV Neutrino Beam

    SciTech Connect (OSTI)

    Linden, Steven K.; /Yale U.

    2011-01-01

    Charged current single pion production (CC{pi}{sup +}) and charged current quasi-elastic scattering (CCQE) are the most abundant interaction types for neutrinos at energies around 1 GeV, a region of great interest to oscillation experiments. The cross-sections for these processes, however, are not well understood in this energy range. This dissertation presents a measurement of the ratio of CC{pi}{sup +} to CCQE cross-sections for muon neutrinos on mineral oil (CH{sub 2}) in the MiniBooNE experiment. The measurement is presented here both with and without corrections for hadronic re-interactions in the target nucleus and is given as a function of neutrino energy in the range 0.4 GeV < E{sub {nu}} < 2.4 GeV. With more than 46,000 CC{pi}{sup +} events collected in MiniBooNE, and with a fractional uncertainty of roughly 11% in the region of highest statistics, this measurement represents a dramatic improvement in statistics and precision over previous CC{pi}{sup +} and CCQE measurements.

  8. The mystery of spectral breaks: Lyman continuum absorption by photon-photon pair production in the Fermi GeV spectra of bright blazars

    SciTech Connect (OSTI)

    Stern, Boris E. [Institute for Nuclear Research, Russian Academy of Sciences, Prospekt 60-letiya Oktyabrya 7a, Moscow 117312 (Russian Federation); Poutanen, Juri, E-mail: stern.boris@gmail.com, E-mail: juri.poutanen@utu.fi [Tuorla Observatory, University of Turku, Vislntie 20, FI-21500 Piikki (Finland)

    2014-10-10

    We re-analyze Fermi/LAT ?-ray spectra of bright blazars using the new Pass 7 version of the detector response files and detect breaks at ?5 GeV in the rest-frame spectra of 3C 454.3 and possibly also 4C +21.35, associated with the photon-photon pair production absorption by the He II Lyman continuum (LyC). We also detect significant breaks at ?20 GeV associated with hydrogen LyC in both the individual spectra and the stacked redshift-corrected spectrum of several bright blazars. The detected breaks in the stacked spectra univocally prove that they are associated with atomic ultraviolet emission features of the quasar broad-line region (BLR). The dominance of the absorption by the hydrogen Ly complex over He II, a small detected optical depth, and break energy consistent with head-on collisions with LyC photons imply that the ?-ray emission site is located within the BLR, but most of the BLR emission comes from a flat disk-like structure producing little opacity. Alternatively, the LyC emission region size might be larger than the BLR size measured from reverberation mapping, and/or the ?-ray emitting region is extended. These solutions would resolve the long-standing issue of how the multi-hundred GeV photons can escape from the emission zone without being absorbed by softer photons.

  9. Measurement of K+ production cross section by 8 GeV protons using high energy neutrino interactions in the SciBooNE detector

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Cheng, G.

    2011-07-28

    The SciBooNE Collaboration reports K+ production cross section and rate measurements using high energy daughter muon neutrino scattering data off the SciBar polystyrene (C8H8) target in the SciBooNE detector. The K+ mesons are produced by 8 GeV protons striking a beryllium target in Fermilab Booster Neutrino Beam line (BNB). Using observed neutrino and antineutrino events in SciBooNE, we measure d2σ/dpdΩ = (5.34 ±0.76) mb/(GeV/c x sr) for p + Be =K+ + X at mean K+ energy of 3.9 GeV and angle (with respect to the proton beam direction) of 3.7 degrees, corresponding to the selected K+ sample. Compared tomore »Monte Carlo predictions using previous higher energy K+ production measurements, this measurement, which uses the NUANCE neutrino interaction generator, is consistent with a normalization factor of 0.85 ± 0.12. This agreement is evidence that the extrapolation of the higher energy K+ measurements to an 8 GeV beam energy using Feynman scaling is valid. This measurement reduces the error on the K+ production cross section from 40% to 14%.« less

  10. CONSTRAINING THE DISTRIBUTION OF DARK MATTER IN THE INNER GALAXY WITH AN INDIRECT DETECTION SIGNAL: THE CASE OF A TENTATIVE 130 GeV {gamma}-RAY LINE

    SciTech Connect (OSTI)

    Yang Ruizhi; Feng Lei; Li Xiang; Fan Yizhong

    2013-06-20

    Dark matter distribution in the very inner region of our Galaxy is still debated. In N-body simulations, a cuspy dark matter halo density profile is favored. Several dissipative baryonic processes, however, are found to be able to significantly flatten dark matter distribution, and a cored dark matter halo density profile is possible. Baryons dominate the gravitational potential in the inner Galaxy, hence a direct constraint on the abundance of dark matter particles is rather challenging. Recently, a few groups have identified a tentative 130 GeV line signal in the Galactic center, which could be interpreted as the signal of dark matter annihilation. Using current 130 GeV line data and adopting the generalized Navarro-Frenk-White profile of the dark matter halo-local dark matter density {rho}{sub 0} = 0.4 GeV cm{sup -3} and r{sub s} = 20 kpc-we obtain a 95% confidence level lower (upper) limit on the inner slope of dark matter density distribution, {alpha} = 1.06 (the cross section of dark matter annihilation into {gamma}-rays ({sigma}v){sub {chi}{chi}{sub {yields}{sub {gamma}{gamma}}}} = 1.3 Multiplication-Sign 10{sup -27} cm{sup 3} s{sup -1}). Such a slope is consistent with the results of some N-body simulations and, if the signal is due to dark matter, suggests that baryonic processes may be unimportant.

  11. Measurement of K+ production cross section by 8 GeV protons using high energy neutrino interactions in the SciBooNE detector

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Cheng, G.

    2011-07-28

    The SciBooNE Collaboration reports K+ production cross section and rate measurements using high energy daughter muon neutrino scattering data off the SciBar polystyrene (C8H8) target in the SciBooNE detector. The K+ mesons are produced by 8 GeV protons striking a beryllium target in Fermilab Booster Neutrino Beam line (BNB). Using observed neutrino and antineutrino events in SciBooNE, we measure d2σ/dpdΩ = (5.34 ±0.76) mb/(GeV/c x sr) for p + Be =K+ + X at mean K+ energy of 3.9 GeV and angle (with respect to the proton beam direction) of 3.7 degrees, corresponding to the selected K+ sample. Compared tomore » Monte Carlo predictions using previous higher energy K+ production measurements, this measurement, which uses the NUANCE neutrino interaction generator, is consistent with a normalization factor of 0.85 ± 0.12. This agreement is evidence that the extrapolation of the higher energy K+ measurements to an 8 GeV beam energy using Feynman scaling is valid. This measurement reduces the error on the K+ production cross section from 40% to 14%.« less

  12. FPD's Perspective Talking Points - Los Alamos National Labratory...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    FPD's Perspective Talking Points - Los Alamos National Labratory - NISA FPD's Perspective Talking Points - Los Alamos National Labratory - NISA 2014 DOE Project Management Workshop ...

  13. Atmospheric Radiation Measurement (ARM) Data from Point Reyes...

    Office of Scientific and Technical Information (OSTI)

    Point Reyes, California for the Marine Stratus, Radiation, Aerosol, and Drizzle (MASRAD) Project Title: Atmospheric Radiation Measurement (ARM) Data from Point Reyes, California ...

  14. Recommendation 217: Stewardship Point of Contact for the Oak...

    Office of Environmental Management (EM)

    7: Stewardship Point of Contact for the Oak Ridge Reservation Recommendation 217: Stewardship Point of Contact for the Oak Ridge Reservation The Oak Ridge Site Specific Advisory...

  15. Microsoft PowerPoint - Final translated version of Tsinghua Speech...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Final translated version of Tsinghua Speech Microsoft PowerPoint - Final translated version of Tsinghua Speech PDF icon Microsoft PowerPoint - Final translated version of Tsinghua ...

  16. Energy Department Authorizes Dominion's Proposed Cove Point Facility...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Dominion's Proposed Cove Point Facility to Export Liquefied Natural Gas Energy Department Authorizes Dominion's Proposed Cove Point Facility to Export Liquefied Natural Gas ...

  17. OpenEI:Neutral point of view | Open Energy Information

    Open Energy Info (EERE)

    point of view Jump to: navigation, search Neutral point of view (NPOV) means that articles and content contributed or edited on the platform must be unbiased. All significant...

  18. Dynamic trapping near a quantum critical point (Journal Article...

    Office of Scientific and Technical Information (OSTI)

    Dynamic trapping near a quantum critical point Citation Details In-Document Search Title: Dynamic trapping near a quantum critical point Authors: Kolodrubetz, Michael ; Katz, ...

  19. MissionPoint Capital Partners | Open Energy Information

    Open Energy Info (EERE)

    MissionPoint Capital Partners Jump to: navigation, search Name: MissionPoint Capital Partners Place: Norwalk, Connecticut Zip: CT 06854 Product: Private Investment company...

  20. EA-1967: Hills Creek-Lookout Point Transmission Line Rebuild...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    967: Hills Creek-Lookout Point Transmission Line Rebuild, Lane County, Oregon EA-1967: Hills Creek-Lookout Point Transmission Line Rebuild, Lane County, Oregon Summary Bonneville ...

  1. Generalized focus point and mass spectra comparison of highly...

    Office of Scientific and Technical Information (OSTI)

    Generalized focus point and mass spectra comparison of highly natural SUGRA GUT models ... Title: Generalized focus point and mass spectra comparison of highly natural SUGRA GUT ...

  2. Windy Point (08) Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    (08) Wind Farm Jump to: navigation, search Name Windy Point (08) Wind Farm Facility Windy Point (08) Sector Wind energy Facility Type Commercial Scale Wind Facility Status In...

  3. Windy Point - Siemens Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Siemens Wind Farm Jump to: navigation, search Name Windy Point - Siemens Wind Farm Facility Windy Point - Siemens Sector Wind energy Facility Type Commercial Scale Wind Facility...

  4. Windy Point - REpower (09) Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    REpower (09) Wind Farm Jump to: navigation, search Name Windy Point - REpower (09) Wind Farm Facility Windy Point - REpower (09) Sector Wind energy Facility Type Commercial Scale...

  5. City of Strawberry Point, Iowa (Utility Company) | Open Energy...

    Open Energy Info (EERE)

    Strawberry Point, Iowa (Utility Company) Jump to: navigation, search Name: City of Strawberry Point Place: Iowa Phone Number: 563-933-4482 Website: www.strawberrypt.com Facebook:...

  6. Vantage Point Venture Partners (Canada) | Open Energy Information

    Open Energy Info (EERE)

    Canada) Jump to: navigation, search Logo: Vantage Point Venture Partners (Canada) Name: Vantage Point Venture Partners (Canada) Address: 1200 McGill College, Suite 1240 Place:...

  7. Nucleon-gold collisions at 200A GeV using tagged d + Au interactions in the PHOBOS detector

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Back, B. B.; Nouicer, R.; Baker, M. D.; Ballintijn, M.; Barton, D. S.; Becker, B.; Betts, R. R.; Bickley, A. A; Stienberg, P.; Ioradnova, A.; et al

    2015-09-23

    Forward calorimetry in the PHOBOS detector has been used to study charged hadron production in d+Au, p+Au, and n+Au collisions at √sNN =200GeV. The forward proton calorimeter detectors are described and a procedure for determining collision centrality with these detectors is detailed. The deposition of energy by deuteron spectator nucleons in the forward calorimeters is used to identify p+Au and n+Au collisions in the data. A weighted combination of the yield of p+Au and n+Au is constructed to build a reference for Au+Au collisions that better matches the isospin composition of the gold nucleus. The pT and centrality dependence ofmore » the yield of this improved reference system is found to match that of d+Au. The shape of the charged-particle transverse momentum distribution is observed to extrapolate smoothly from p+p¯ to central d+Au as a function of the charged-particle pseudorapidity density. The asymmetry of positively and negatively charged hadron production in p+Au is compared to that of n+Au. No significant asymmetry is observed at midrapidity. In conclusion, these studies augment recent results from experiments at the CERN Large Hadron Collider and BNL Relativistic Heavy Ion Collider facilities to give a more complete description of particle production in p+A and d+A collisions, essential for the understanding the medium produced in high-energy nucleus-nucleus collisions.« less

  8. Measurements of dielectron production in Au + Au collisions at sNN=200 GeV from the STAR experiment

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Adamczyk, L.; Adkins, J. K.; Agakishiev, G.; Aggarwal, M. M.; Ahammed, Z.; Alekseev, I.; Alford, J.; Aparin, A.; Arkhipkin, D.; Aschenauer, E. C.; et al

    2015-08-24

    We report on measurements of dielectron (e⁺e⁻) production in Au+Au collisions at a center-of-mass energy of 200 GeV per nucleon-nucleon pair using the STAR detector at RHIC. Systematic measurements of the dielectron yield as a function of transverse momentum (pT) and collision centrality show an enhancement compared to a cocktail simulation of hadronic sources in the low invariant-mass region (Mee < 1GeV/c2). This enhancement cannot be reproduced by the ρ-meson vacuum spectral function. In minimum-bias collisions, in the invariant-mass range of 0.30 – 0.76GeV/c², integrated over the full pT acceptance, the enhancement factor is 1.76±0.06(stat.)±0.26(sys.)±0.29(cocktail). The enhancement factor exhibits weakmore » centrality and pT dependence in STAR's accessible kinematic regions, while the excess yield in this invariant-mass region as a function of the number of participating nucleons follows a power-law shape with a power of 1.44±0.10. Models that assume an in-medium broadening of the ρ-meson spectral function consistently describe the observed excess in these measurements. In addition, we report on measurements of ω- and Φ-meson production through their e⁺e⁻ decay channel. These measurements show good agreement with Tsallis blast-wave model predictions, as well as, in the case of the Φ meson, results through its K⁺K⁻ decay channel. In the intermediate invariant-mass region (1.1 < Mee < 3GeV/c²), we investigate the spectral shapes from different collision centralities. Physics implications for possible in-medium modification of charmed hadron production and other physics sources are discussed.« less

  9. Nucleon-gold collisions at 200A GeV using tagged d + Au interactions in the PHOBOS detector

    SciTech Connect (OSTI)

    Back, B. B.; Nouicer, R.; Baker, M. D.; Ballintijn, M.; Barton, D. S.; Becker, B.; Betts, R. R.; Bickley, A. A; Stienberg, P.; Ioradnova, A.; Pak, R.; Sukhanov, A.

    2015-09-23

    Forward calorimetry in the PHOBOS detector has been used to study charged hadron production in d+Au, p+Au, and n+Au collisions at √sNN =200GeV. The forward proton calorimeter detectors are described and a procedure for determining collision centrality with these detectors is detailed. The deposition of energy by deuteron spectator nucleons in the forward calorimeters is used to identify p+Au and n+Au collisions in the data. A weighted combination of the yield of p+Au and n+Au is constructed to build a reference for Au+Au collisions that better matches the isospin composition of the gold nucleus. The pT and centrality dependence of the yield of this improved reference system is found to match that of d+Au. The shape of the charged-particle transverse momentum distribution is observed to extrapolate smoothly from p+p¯ to central d+Au as a function of the charged-particle pseudorapidity density. The asymmetry of positively and negatively charged hadron production in p+Au is compared to that of n+Au. No significant asymmetry is observed at midrapidity. In conclusion, these studies augment recent results from experiments at the CERN Large Hadron Collider and BNL Relativistic Heavy Ion Collider facilities to give a more complete description of particle production in p+A and d+A collisions, essential for the understanding the medium produced in high-energy nucleus-nucleus collisions.

  10. Measurement of the Parity-Violating Asymmetry in Deep Inelastic Scattering at JLab 6 GeV

    SciTech Connect (OSTI)

    Wang, Diancheng

    2013-12-01

    The parity-violating asymmetry in deep inelastic scattering (PVDIS) offers us a useful tool to study the weak neutral couplings and the hadronic structure of the nucleon, and provides high precision tests on the Standard Model. During the 6 GeV PVDIS experiment at the Thomas Jefferson National Accelerator Facility, the parity-violating asymmetries A{sub PV} of a polarized electron beam scattering off an unpolarized deuteron target in the deep inelastic scattering region were precisely measured at two Q{sup 2} values of 1.1 and 1.9 (GeV/c){sup 2}. The asymmetry at Q{sup 2}=1.9 (GeV/c){sup 2} can be used to extract the weak coupling combination 2C{sub 2u} - C{sub 2d}, assuming the higher twist effect is small. The extracted result from this measurement is in good agreement with the Standard Model prediction, and improves the precision by a factor of five over previous data. In addition, combining the asymmetries at both Q{sup 2} values provides us extra knowledge on the higher twist effects. The parity violation asymmetries in the resonance region were also measured during this experiment. These results are the first A{sub PV} data in the resonance region beyond the {Delta}#1;(1232). They provide evidence that the quark hadron duality works for A{sub PV} at the (10-15)% level, and set constraints on nucleon resonance models that are commonly used for background calculations to other parity-violating electron scattering measurements.

  11. Experiments of one-point cold fusion

    SciTech Connect (OSTI)

    Matsumoto, Takaaki )

    1993-11-01

    Experiments of one-point cold fusion have been performed by electrical discharging in ordinary and heavy water mixed with 0.6 mol/l potassium carbonate. A platinum pin anode was located perpendicular to a copper plate cathode. After discharge, the surfaces of the copper plates were examined by an optical microscope. Many ring spots caused by gravity decay of single and di-neutrons were separately distributed on the plates. Furthermore, several kinds of traces that might be produced by itonic hydrogen clusters and by tiny black and white holes were observed. The mechanisms of cold fusion by electrical discharge are also discussed in terms of the Nattoh model. 13 refs., 12 figs.

  12. Laser beam centering and pointing system

    DOE Patents [OSTI]

    Rushford, Michael Charles

    2015-01-13

    An optical instrument aligns an optical beam without the need for physical intervention of the instrument within the apparatus or platforms from which the trajectory of the beam to be ascertained. The alignment apparatus and method enable the desired function to be realized without the placement of physical apertures or sensors directly in the path of the beam through the system whose spatial position and slope is to be sought. An image plane provides the observer with a pair of well-defined images that are indicative of the beam centering and pointing alignment parameters. The optical alignment can be realized without the need for referencing to an external or fixed set of coordinates or fiducials. The instrument can therefore service situations where adverse environments would otherwise prohibit the use of such instruments, including regions of high radiation, high temperature, vacuum and/or cryogenic atmospheres.

  13. Binding Energies and Melting Temperatures of Heavy Hadrons in Quark-Gluon Plasma

    SciTech Connect (OSTI)

    Narodetskii, I. M.; Simonov, Yu. A.; Veselov, A. I.

    2011-05-23

    We discuss the consequences of the suggestion that the non-perturbative quark-antiquark potential at T{>=}T{sub c}, where T{sub c} is a temperature of a deconfinement phase transition in QCD can be studied through the modification of the correlation functions, which define the quadratic field correlators of the nonperturbative vaccuum fields. We use the non-perturbative quark-antiquark potential derived within the Field Correlator Method and the screened Coulomb potential with T-dependent Debye mass to calculate J/{psi}, {Upsilon} and {Omega}{sub bbb} binding energies and melting temperatures in the deconfined phase of QCD.

  14. Surface layering and melting in an ionic liquid studied by resonant soft

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    X-ray reflectivity | Center for Gas SeparationsRelevant to Clean Energy Technologies | Blandine Jerome Surface layering and melting in an ionic liquid studied by resonant soft X-ray reflectivity Previous Next List Markus Mezger, Benjamin M. Ocko, Harald Reichert, and Moshe Deutsche, PNAS, 110, 3733-3737, 2013, DOI: 10.1073/pnas.1211749110 Abstract: The molecular-scale structure of the ionic liquid [C18mim]+[FAP]- near its free surface was studied by complementary methods. X-ray absorption

  15. Cooling rate and stress relaxation in silica melts and glasses via microsecond molecular dyanmics

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Lane, J. Matthew D.

    2015-07-22

    We have conducted extremely long molecular dynamics simulations of glasses to microsecond times, which close the gap between experimental and atomistic simulation time scales by two to three orders of magnitude. The static, thermal, and structural properties of silica glass are reported for glass cooling rates down to 5×109 K/s and viscoelastic response in silica melts and glasses are studied over nine decades of time. We finally present results from relaxation of hydrostatic compressive stress in silica and show that time-temperature superposition holds in these systems for temperatures from 3500 to 1000 K.

  16. Method for reproducibly preparing a low-melting high-carbon yield precursor

    DOE Patents [OSTI]

    Smith, Wesley E.; Napier, Jr., Bradley

    1978-01-01

    The present invention is directed to a method for preparing a reproducible synthetic carbon precursor by the autoclave polymerization of indene (C.sub.9 H.sub.8) at a temperature in the range of 470.degree.-485.degree. C, and at a pressure in the range of about 1000 to about 4300 psi. Volatiles in the resulting liquid indene polymer are removed by vacuum outgassing to form a solid carbon precursor characterized by having a relatively low melting temperature, high-carbon yield, and high reproducibility which provide for the fabrication of carbon and graphite composites having strict requirements for reproducible properties.

  17. Tunable mega-ampere electron current propagation in solids by dynamic control of lattice melt

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    MacLellan, D.  A.; Carroll, D.  C.; Gray, R.  J.; Booth, N.; Burza, M.; Desjarlais, M.  P.; Du, F.; Neely, D.; Powell, H.  W.; Robinson, A.  P. L.; et al

    2014-10-31

    The influence of lattice-melt-induced resistivity gradients on the transport of mega-ampere currents of fast electrons in solids is investigated numerically and experimentally using laser-accelerated protons to induce isochoric heating. Tailoring the heating profile enables the resistive magnetic fields which strongly influence the current propagation to be manipulated. This tunable laser-driven process enables important fast electron beam properties, including the beam divergence, profile, and symmetry to be actively tailored, and without recourse to complex target manufacture.

  18. Reptation dynamics of a polymer melt near an attractive solid interface

    SciTech Connect (OSTI)

    Zheng, X.; Sauer, B.B.; Van Alsten, J.G.; Schwarz, S.A.; Rafailovich, M.H.; Sokolov, J.; Rubinstein, M. E.I. DuPont de Nemours and Company, Inc., Experimental Station, Wilmington, Delaware 19880 Physics Department, Queens College, Flushing, New York 11367 Imaging Research and Advanced Development, Eastman Kodak Company, Rochester, New York 14650 )

    1995-01-16

    The tracer diffusion coefficients [ital D][sup *] of polystyrene (PS) chains near PS melt-solid interfaces have been measured by secondary ion mass spectrometry. The [ital D][sup *] for poly(2--vinylpyridine) (PVP) and oxide (SiO) covered silicon surfaces were smaller by, respectively, [similar to]3 and [similar to]10[sup 2] than for diffusion near the vacuum interface. [ital D][sup *] scaled with degree of polymerization [ital N] as [ital N][sup [minus][proportional to

  19. Geochemical Behaviour of S, Cl and Fe in Silicate Melts/Glasses Simulating

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Natural Magmas | Stanford Synchrotron Radiation Lightsource Geochemical Behaviour of S, Cl and Fe in Silicate Melts/Glasses Simulating Natural Magmas Monday, March 26, 2012 - 11:00am SSRL Conference Room 137-322 G. Giuli, R. Alonso-Mori, E. Paris, P. Glatzel, S. Eeckhout, M. Carroll, School of Science and Technology, Geology Division, University of Camerino, Via G. III da Varano, 62032 Camerino; e-mail: The solubility behaviour of S and Cl in silicate magmas is a key to understand the

  20. Cooling rate and stress relaxation in silica melts and glasses via microsecond molecular dyanmics

    SciTech Connect (OSTI)

    Lane, J. Matthew D.

    2015-07-22

    We have conducted extremely long molecular dynamics simulations of glasses to microsecond times, which close the gap between experimental and atomistic simulation time scales by two to three orders of magnitude. The static, thermal, and structural properties of silica glass are reported for glass cooling rates down to 5×109 K/s and viscoelastic response in silica melts and glasses are studied over nine decades of time. We finally present results from relaxation of hydrostatic compressive stress in silica and show that time-temperature superposition holds in these systems for temperatures from 3500 to 1000 K.