Powered by Deep Web Technologies
Note: This page contains sample records for the topic "geothermometry isotopic analysis" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Geothermometry | Open Energy Information  

Open Energy Info (EERE)

Geothermometry Geothermometry Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Geothermometry Details Activities (65) Areas (48) Regions (5) NEPA(0) Exploration Technique Information Exploration Group: Geochemical Techniques Exploration Sub Group: Geochemical Data Analysis Parent Exploration Technique: Geochemical Data Analysis Information Provided by Technique Lithology: Stratigraphic/Structural: Hydrological: Thermal: used to estimate reservoir temperatures Cost Information Low-End Estimate (USD): 30.003,000 centUSD 0.03 kUSD 3.0e-5 MUSD 3.0e-8 TUSD / sample Median Estimate (USD): 30.003,000 centUSD 0.03 kUSD 3.0e-5 MUSD 3.0e-8 TUSD / sample High-End Estimate (USD): 30.003,000 centUSD 0.03 kUSD 3.0e-5 MUSD 3.0e-8 TUSD / sample Dictionary.png Geothermometry:

2

Geothermometry At Reese River Area (Henkle & Ronne, 2008) | Open Energy  

Open Energy Info (EERE)

Geothermometry At Reese River Area (Henkle & Ronne, 2008) Geothermometry At Reese River Area (Henkle & Ronne, 2008) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermometry At Reese River Area (Henkle & Ronne, 2008) Exploration Activity Details Location Reese River Area Exploration Technique Geothermometry Activity Date Usefulness not indicated DOE-funding Unknown Notes Four formation water samples were collected from well 56-4, during an airlift test which took place between November 11 and November 14, 2007. One sample was taken from the Steiner Well which was the source for drilling water for the drilling of 56-4 and for the short injection test. The samples were analyzed by Thermochem for chemical constituents and by Rafter Lab at GNS for isotope analysis. References

3

Gas Geothermometry | Open Energy Information  

Open Energy Info (EERE)

Gas Geothermometry Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Gas Geothermometry Details Activities (0) Areas (0) Regions (0) NEPA(0)...

4

Definition: Geothermometry | Open Energy Information  

Open Energy Info (EERE)

Definition Definition Edit with form History Facebook icon Twitter icon » Definition: Geothermometry Jump to: navigation, search Dictionary.png Geothermometry Chemical geothermometers are used to estimate reservoir temperatures for most of the systems. The geothermometers are based on temperature- dependent, water-rock reactions which control the chemical and isotopic composition of the thermal water. This method is applicable only to hot-water systems because the common chemical constituents of thermal water (SiO2, Na, K, Ca, Mg, Cl, HCO3, and CO3) are soluble in liquid water but lack significant solubility in steam.[1] View on Wikipedia Wikipedia Definition Geothermobarometry is the science of measuring the previous pressure and temperature history of a metamorphic or intrusive igneous rocks.

5

Geothermometry At Coso Geothermal Area (1978) | Open Energy Information  

Open Energy Info (EERE)

Geothermometry At Coso Geothermal Area (1978) Geothermometry At Coso Geothermal Area (1978) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermometry At Coso Geothermal Area (1978) Exploration Activity Details Location Coso Geothermal Area Exploration Technique Geothermometry Activity Date 1978 Usefulness useful DOE-funding Unknown Exploration Basis Determine fluid origin in two exploratory wells Notes Collected water from original coso hot springs well (1967) and CGEH No. 1. and completed chemical analysis to determine fluid origin. The surface expression of fumarole and acid sulfate pools and shallow steam wells gives a false indication of an extensive vapor dominated system because upward convecting, boiling alkaline-chloride waters do not reach the surface.

6

Geothermometry At Socorro Mountain Area (Armstrong, Et Al., 1995) | Open  

Open Energy Info (EERE)

Geothermometry At Socorro Mountain Area (Armstrong, Et Al., 1995) Geothermometry At Socorro Mountain Area (Armstrong, Et Al., 1995) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermometry At Socorro Mountain Area (Armstrong, Et Al., 1995) Exploration Activity Details Location Socorro Mountain Area Exploration Technique Geothermometry Activity Date Usefulness not indicated DOE-funding Unknown Notes Corresponding Socorro caldera Carboniferous rocks were studied in the field in 1988-1992-Renault later completed geochemistry and silica-crystallite geothermometry, Armstrong petrographic analysis and cathodoluminescence, Oscarson SEM studies, and John Repetski (USGS, Reston, Virgina) conodont stratigraphy and color and textural alteration as guides to the carbonate rocks' thermal history. The carbonate-rock classification used in this

7

Geology, hydrothermal petrology, stable isotope geochemistry, and fluid inclusion geothermometry of LASL geothermal test well C/T-1 (Mesa 31-1), East Mesa, Imperial Valley, California, USA  

DOE Green Energy (OSTI)

Borehole Mesa 31-1 (LASL C/T-1) is an 1899-m (6231-ft) deep well located in the northwestern part of the East Mesa Geothermal Field. Mesa 31-1 is the first Calibration/Test Well (C/T-1) in the Los Alamos Scientific Laboratory (LASL), Geothermal Log Interpretation Program. The purpose of this study is to provide a compilation of drillhole data, drill cuttings, well lithology, and formation petrology that will serve to support the use of well LASL C/T-1 as a calibration/test well for geothermal logging. In addition, reviews of fluid chemistry, stable isotope studies, isotopic and fluid inclusion geothermometry, and the temperature log data are presented. This study provides the basic data on the geology and hydrothermal alteration of the rocks in LASL C/T-1 as background for the interpretation of wireline logs.

Miller, K.R.; Elders, W.A.

1980-08-01T23:59:59.000Z

8

Geothermometry At Coso Geothermal Area (1980) | Open Energy Information  

Open Energy Info (EERE)

Geothermometry At Coso Geothermal Area (1980) Geothermometry At Coso Geothermal Area (1980) Exploration Activity Details Location Coso Geothermal Area Exploration Technique Geothermometry Activity Date 1980 Usefulness useful DOE-funding Unknown Exploration Basis Fluid temperature of feed water Notes Cation and sulfate isotope geothermometers indicate that the reservoir feeding water to the Coso Hot Spring well has a temperature of about 240 -250 C, and the reservoir feeding the CGEH well has a temperature of about 205 C. The variation in the chemical composition of water from the two wells suggests a model in which water-rock chemical equilibrium is maintained as a convecting solution cools from about 245-205 C by conductive heat loss. References Fournier, R.O.; Thompson, J.M.; Austin, C.F. (10 May 1980)

9

Geothermometry At Fort Bliss Area (DOE GTP) | Open Energy Information  

Open Energy Info (EERE)

Geothermometry At Fort Bliss Area (DOE GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermometry At Fort Bliss Area (DOE GTP)...

10

Geothermometry At The Needles Area (DOE GTP) | Open Energy Information  

Open Energy Info (EERE)

Geothermometry At The Needles Area (DOE GTP) Exploration Activity Details Location The Needles Area Exploration Technique Geothermometry Activity Date Usefulness not indicated...

11

Geothermometry At New River Area (DOE GTP) | Open Energy Information  

Open Energy Info (EERE)

Geothermometry At New River Area (DOE GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermometry At New River Area (DOE GTP) Exploration...

12

Category:Geothermometry | Open Energy Information  

Open Energy Info (EERE)

Category Edit History Facebook icon Twitter icon Category:Geothermometry Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermalpower.jpg Looking for the...

13

Isotopic Analysis | Open Energy Information  

Open Energy Info (EERE)

Structural: Hydrological: Source of fluids, circulation, andor mixing. Thermal: Heat source and general reservoir temperatures Dictionary.png Isotopic Analysis: Isotopes...

14

Geothermometry At Upper Hot Creek Ranch Area (Benoit & Blackwell, 2006) |  

Open Energy Info (EERE)

Geothermometry At Upper Hot Creek Ranch Area (Benoit & Blackwell, 2006) Geothermometry At Upper Hot Creek Ranch Area (Benoit & Blackwell, 2006) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermometry At Upper Hot Creek Ranch Area (Benoit & Blackwell, 2006) Exploration Activity Details Location Upper Hot Creek Ranch Area Exploration Technique Geothermometry Activity Date Usefulness useful DOE-funding Unknown Notes Ten water samples were collected for chemical analysis and interpretation. Analyses of three samples of the UHCR thermal give predicted subsurface temperatures ranging from 317 to 334 oF from the Na-K-Ca, silica (quartz), and Na-Li geothermometers. The fact that all three thermometers closely agree gives the predictions added credibility. References Dick Benoit, David Blackwell (2006) Exploration Of The Upper Hot

15

Geothermometry At Hot Springs Ranch Area (Szybinski, 2006) | Open Energy  

Open Energy Info (EERE)

Hot Springs Ranch Area (Szybinski, 2006) Hot Springs Ranch Area (Szybinski, 2006) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermometry At Hot Springs Ranch Area (Szybinski, 2006) Exploration Activity Details Location Hot Springs Ranch Area Exploration Technique Geothermometry Activity Date Usefulness useful DOE-funding Unknown Notes The brine from the drill holes, hot springs, seepages, and irrigation wells was sampled, as well as water from two nearby creeks, (total of 13 samples) and sent for analysis to Thermochem Inc. For sample locations refer to Figure 35; the geochemical data are presented in Appendix C. Geochemical results indicate the presence of two distinct waters in this group of samples (Tom Powell of Thermochem Inc., personal communication, 2005).

16

Geothermometry At Akutan Fumaroles Area (Kolker, Et Al., 2010) | Open  

Open Energy Info (EERE)

Akutan Fumaroles Area (Kolker, Et Al., 2010) Akutan Fumaroles Area (Kolker, Et Al., 2010) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermometry At Akutan Fumaroles Area (Kolker, Et Al., 2010) Exploration Activity Details Location Akutan Fumaroles Area Exploration Technique Geothermometry Activity Date Usefulness useful DOE-funding Unknown Notes The chemistry of the hot springs strongly suggests the existence of a neutral chloride reservoir with economically developable temperature. The fluid geothermometry tells a consistent story, with cation geothermometry detecting a >210degrees C reservoir temperature, probably near the fumarole, and silica geothermometry and presence of sinter suggesting that 160 to 180degrees C exists close to hot spring B. References

17

Geothermometry At Honokowai Area (Thomas, 1986) | Open Energy Information  

Open Energy Info (EERE)

Geothermometry At Honokowai Area (Thomas, 1986) Geothermometry At Honokowai Area (Thomas, 1986) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermometry At Honokowai Area (Thomas, 1986) Exploration Activity Details Location Honokowai Area Exploration Technique Geothermometry Activity Date Usefulness not indicated DOE-funding Unknown Notes Temperature and groundwater chemistry analyses were performed on three wells along the alluvial fan above Honokowai. Water temperatures were approximately 20degrees C and normal basal aquifer water chemistry was observed (Table 4). References Donald M. Thomas (1 January 1986) Geothermal Resources Assessment In Hawaii Retrieved from "http://en.openei.org/w/index.php?title=Geothermometry_At_Honokowai_Area_(Thomas,_1986)&oldid=387033"

18

Isotopic Analysis- Fluid | Open Energy Information  

Open Energy Info (EERE)

Isotopic Analysis- Fluid Isotopic Analysis- Fluid Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Isotopic Analysis- Fluid Details Activities (61) Areas (32) Regions (6) NEPA(0) Exploration Technique Information Exploration Group: Lab Analysis Techniques Exploration Sub Group: Fluid Lab Analysis Parent Exploration Technique: Fluid Lab Analysis Information Provided by Technique Lithology: Water rock interaction Stratigraphic/Structural: Hydrological: Origin of hydrothermal fluids; Mixing of hydrothermal fluids Thermal: Isotopic ratios can be used to characterize and locate subsurface thermal anomalies. Dictionary.png Isotopic Analysis- Fluid: Isotopes are atoms of the same element that have different numbers of neutrons. An isotopic analysis looks at a particular isotopic element(s) in

19

Isotopic Analysis- Rock | Open Energy Information  

Open Energy Info (EERE)

Isotopic Analysis- Rock Isotopic Analysis- Rock Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Isotopic Analysis- Rock Details Activities (13) Areas (11) Regions (0) NEPA(0) Exploration Technique Information Exploration Group: Lab Analysis Techniques Exploration Sub Group: Rock Lab Analysis Parent Exploration Technique: Rock Lab Analysis Information Provided by Technique Lithology: Water rock interaction Stratigraphic/Structural: Hydrological: Thermal: Dictionary.png Isotopic Analysis- Rock: Isotopes are atoms of the same element that have different numbers of neutrons. An isotopic analysis looks at a particular isotopic element(s) in a given system, while the conditions which increase/decrease the number of neutrons are well understood and measurable.

20

Geothermometry At Northern Basin & Range Region (Cole, 1983) | Open Energy  

Open Energy Info (EERE)

Northern Basin & Range Region Northern Basin & Range Region (Cole, 1983) Exploration Activity Details Location Northern Basin and Range Geothermal Region Exploration Technique Geothermometry Activity Date Usefulness not indicated DOE-funding Unknown Notes Wstern Utah hot springs: Antelope, Fish (Deadman), Fish (Wilson), Twin Peak, Cudahy, Laverkin, Grantsville, Crystal Prison, Arrowhead, Red Hill, Monroe, Joseph, Castilla, Saratoga, Thermo, Crater, Wasatch, Beck, Deseret, Big Spring, Blue Warm, Crystal Madsen, Udy, Cutler, Garland, Utah, Ogden, Hooper, Newcastle Area References David R. Cole (1983) Chemical And Isotopic Investigation Of Warm Springs Associated With Normal Faults In Utah Retrieved from "http://en.openei.org/w/index.php?title=Geothermometry_At_Northern_Basin_%26_Range_Region_(Cole,_1983)&oldid=4014

Note: This page contains sample records for the topic "geothermometry isotopic analysis" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Geothermometry At Salt Wells Area (Shevenell, Et Al., 2008) ...  

Open Energy Info (EERE)

search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermometry At Salt Wells Area (Shevenell, Et Al., 2008) Exploration Activity Details Location Salt Wells Area...

22

Geothermometry At Rhodes Marsh Area (Coolbaugh, Et Al., 2006...  

Open Energy Info (EERE)

At Rhodes Marsh Area (Coolbaugh, Et Al., 2006) Exploration Activity Details Location Rhodes Marsh Area Exploration Technique Geothermometry Activity Date Usefulness useful...

23

Geothermometry At Nevada Test And Training Range Area (Sabin...  

Open Energy Info (EERE)

Nevada Test And Training Range Area (Sabin, Et Al., 2004) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermometry At Nevada Test And...

24

Geothermometry At Fish Lake Valley Area (DOE GTP) | Open Energy...  

Open Energy Info (EERE)

Fish Lake Valley Area (DOE GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermometry At Fish Lake Valley Area (DOE GTP) Exploration...

25

Geothermometry At Alum Area (DOE GTP) | Open Energy Information  

Open Energy Info (EERE)

Alum Geothermal Area (DOE GTP) Exploration Activity Details Location Alum Geothermal Area Exploration Technique Geothermometry Activity Date Usefulness not indicated DOE-funding...

26

Geothermometry At Silver Peak Area (DOE GTP) | Open Energy Information  

Open Energy Info (EERE)

DOE GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermometry At Silver Peak Area (DOE GTP) Exploration Activity Details Location...

27

Geochemistry And Geothermometry Of Spring Water From The Blackfoot...  

Open Energy Info (EERE)

And Geothermometry Of Spring Water From The Blackfoot Reservoir Region, Southeastern Idaho Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article:...

28

Geothermometry At Haleakala Volcano Area (Thomas, 1986) | Open Energy  

Open Energy Info (EERE)

Geothermometry At Haleakala Volcano Area (Thomas, 1986) Geothermometry At Haleakala Volcano Area (Thomas, 1986) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermometry At Haleakala Volcano Area (Thomas, 1986) Exploration Activity Details Location Haleakala Volcano Area Exploration Technique Geothermometry Activity Date Usefulness not indicated DOE-funding Unknown Notes The field survey program on the northwest rift zone consisted of soil mercury and radon emanometry surveys, groundwater temperature and chemistry studies, Schlumberger resistivity soundings and self-potential profiles. Geophysical and geochemical surveys along this rift (southwest) were limited by difficult field conditions and access limitations. The geophysical program consisted of one Schlumberger sounding, one

29

Definition: Isotopic Analysis | Open Energy Information  

Open Energy Info (EERE)

Analysis Analysis Jump to: navigation, search Dictionary.png Isotopic Analysis Isotopes are atoms of the same element that have different numbers of neutrons. An isotopic analysis looks at a particular isotopic element(s) in a given system, while the conditions which increase/decrease the number of neutrons are well understood and measurable.[1] View on Wikipedia Wikipedia Definition Isotope analysis is the identification of isotopic signature, the distribution of certain stable isotopes and chemical elements within chemical compounds. This can be applied to a food web to make it possible to draw direct inferences regarding diet, trophic level, and subsistence. Isotope ratios are measured using mass spectrometry, which separates the different isotopes of an element on the basis of their mass-to-charge

30

Definition: Isotopic Analysis- Fluid | Open Energy Information  

Open Energy Info (EERE)

Definition Definition Edit with form History Facebook icon Twitter icon » Definition: Isotopic Analysis- Fluid Jump to: navigation, search Dictionary.png Isotopic Analysis- Fluid Isotopes are atoms of the same element that have different numbers of neutrons. An isotopic analysis looks at a particular isotopic element(s) in a given system, while the conditions which increase/decrease the number of neutrons are well understood and measurable. Fluid isotopes are used to characterize a fluids origin, age, and/or interaction with rocks or other fluids based on unique isotopic ratios or concentrations.[1] View on Wikipedia Wikipedia Definition Isotope geochemistry is an aspect of geology based upon study of the relative and absolute concentrations of the elements and their isotopes in

31

Geothermometry At Central Nevada Seismic Zone Region (Shevenell & De  

Open Energy Info (EERE)

Region (Shevenell & De Region (Shevenell & De Rocher, 2005) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermometry At Central Nevada Seismic Zone Region (Shevenell & De Rocher, 2005) Exploration Activity Details Location Central Nevada Seismic Zone Geothermal Region Exploration Technique Geothermometry Activity Date Usefulness not indicated DOE-funding Unknown References Lisa Shevenell, Ted De Rocher (2005) Evaluation Of Chemical Geothermometers For Calculating Reservoir Temperatures At Nevada Geothermal Power Plants Retrieved from "http://en.openei.org/w/index.php?title=Geothermometry_At_Central_Nevada_Seismic_Zone_Region_(Shevenell_%26_De_Rocher,_2005)&oldid=401374" Category: Exploration Activities What links here

32

Analysis of hydrogen isotope mixtures  

DOE Patents (OSTI)

Disclosed are an apparatus and a method for determining concentrations of hydrogen isotopes in a sample. Hydrogen in the sample is separated from other elements using a filter selectively permeable to hydrogen. Then the hydrogen is condensed onto a cold finger or cryopump. The cold finger is rotated as pulsed laser energy vaporizes a portion of the condensed hydrogen, forming a packet of molecular hydrogen. The desorbed hydrogen is ionized and admitted into a mass spectrometer for analysis.

Villa-Aleman, E.

1992-12-31T23:59:59.000Z

33

Analysis of hydrogen isotope mixtures  

DOE Patents (OSTI)

An apparatus and method for determining the concentrations of hydrogen isotopes in a sample. Hydrogen in the sample is separated from other elements using a filter selectively permeable to hydrogen. Then the hydrogen is condensed onto a cold finger or cryopump. The cold finger is rotated as pulsed laser energy vaporizes a portion of the condensed hydrogen, forming a packet of molecular hydrogen. The desorbed hydrogen is ionized and admitted into a mass spectrometer for analysis.

Villa-Aleman, Eliel (Aiken, SC)

1994-01-01T23:59:59.000Z

34

Definition: Isotopic Analysis- Rock | Open Energy Information  

Open Energy Info (EERE)

Isotopic Analysis- Rock Isotopic Analysis- Rock Jump to: navigation, search Dictionary.png Isotopic Analysis- Rock Isotopes are atoms of the same element that have different numbers of neutrons. An isotopic analysis looks at a particular isotopic element(s) in a given system, while the conditions which increase/decrease the number of neutrons are well understood and measurable.[1] View on Wikipedia Wikipedia Definition References ↑ http://wwwrcamnl.wr.usgs.gov/isoig/isopubs/itchch2.html Ret LikeLike UnlikeLike You like this.Sign Up to see what your friends like. rieved from "http://en.openei.org/w/index.php?title=Definition:Isotopic_Analysis-_Rock&oldid=687702" Category: Definitions What links here Related changes Special pages Printable version Permanent link Browse properties

35

Geothermometry At Kawaihae Area (Thomas, 1986) | Open Energy Information  

Open Energy Info (EERE)

Geothermometry At Kawaihae Area (Thomas, 1986) Geothermometry At Kawaihae Area (Thomas, 1986) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermometry At Kawaihae Area (Thomas, 1986) Exploration Activity Details Location Kawaihae Area Exploration Technique Geothermometry Activity Date Usefulness useful DOE-funding Unknown Notes Groundwater chemical data are limited due to the small number of wells near Kawaihae; however, the data that are available strongly substantiate the presence of a thermal resource. A measured water temperature of 31 degrees C in one well is clearly above normal ambient temperatures, and the chloride/magnesium ion ratio in the same well is elevated substantially above the normal range (Table 8). Both of these data provide strong evidence that at least a low-level thermal anomaly is present in the area.

36

Geothermometry At Lassen Volcanic National Park Area (Janik & Mclaren,  

Open Energy Info (EERE)

Geothermometry At Lassen Volcanic National Park Area (Janik & Mclaren, Geothermometry At Lassen Volcanic National Park Area (Janik & Mclaren, 2010) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermometry At Lassen Volcanic National Park Area (Janik & Mclaren, 2010) Exploration Activity Details Location Lassen Volcanic National Park Area Exploration Technique Geothermometry Activity Date Usefulness useful DOE-funding Unknown Notes Analyses of eight well samples taken consecutively during the flow test showed an inverse correlation between NH3 and Cl_ concentrations. The last sample taken had a pH of 8.35 and contained 2100 ppm Cl_ and 0.55 ppm NH3. Ratios of Na+/K+ and Na+/Cl_ remained nearly constant throughout the flow test. Cation geothermometers (with inherent uncertainties of at least

37

Geothermometry At Mauna Loa Northeast Rift Area (Thomas, 1986) | Open  

Open Energy Info (EERE)

Geothermometry At Mauna Loa Northeast Rift Area (Thomas, 1986) Geothermometry At Mauna Loa Northeast Rift Area (Thomas, 1986) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermometry At Mauna Loa Northeast Rift Area (Thomas, 1986) Exploration Activity Details Location Mauna Loa Northeast Rift Area Exploration Technique Geothermometry Activity Date Usefulness useful DOE-funding Unknown Notes A reexamination of all groundwater sources in the Keaau area was undertaken in an effort to confirm the chemical and temperature anomalies that formed the primary basis on which the Keaau area was identified during the preliminary assessment survey. The data generated by this survey (Table 9) determined that all of the anomalous data present in the earlier data base were spurious and that the groundwater chemistry and temperatures in this

38

Geothermometry At Lualualei Valley Area (Thomas, 1986) | Open Energy  

Open Energy Info (EERE)

Geothermometry At Lualualei Valley Area (Thomas, 1986) Geothermometry At Lualualei Valley Area (Thomas, 1986) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermometry At Lualualei Valley Area (Thomas, 1986) Exploration Activity Details Location Lualualei Valley Area Exploration Technique Geothermometry Activity Date Usefulness useful DOE-funding Unknown Notes Yhe extensive set of groundwater chemical data compiled for the wells in the valley (Table 1) showed that two of the primary indicators that have been commonly used in Hawaii for identifying geothermal potential (i.e. silica concentration and chloride to magnesium ion ratios) were anomalous in the groundwater of this survey area (Cox and Thomas, 1979). Several wells located on the caldera boundaries were found to have both

39

Isotopic Analysis- Rock At Long Valley Caldera Area (Smith &...  

Open Energy Info (EERE)

Isotopic Analysis- Rock At Long Valley Caldera Area (Smith & Suemnicht, 1991) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Isotopic Analysis-...

40

Geochemistry And Geothermometry Of Spring Water From The Blackfoot  

Open Energy Info (EERE)

Geothermometry Of Spring Water From The Blackfoot Geothermometry Of Spring Water From The Blackfoot Reservoir Region, Southeastern Idaho Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Geochemistry And Geothermometry Of Spring Water From The Blackfoot Reservoir Region, Southeastern Idaho Details Activities (3) Areas (1) Regions (0) Abstract: The Blackfoot Reservoir region in southeastern Idaho is recognized as a potential geothermal area because of the presence of several young rhyolite domes (50,000 years old), Quaternary basalt flows, and warm springs. North- to northwest-trending high-angle normal faults of Tertiary to Holocene age appear to be the dominant structural control of spring activity. Surface spring-water temperatures average 14°C except for a group of springs west of the Reservoir Mountains which average 33°C.

Note: This page contains sample records for the topic "geothermometry isotopic analysis" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Geothermometry At Raft River Geothermal Area (1980) | Open Energy  

Open Energy Info (EERE)

Geothermometry At Raft River Geothermal Area (1980) Geothermometry At Raft River Geothermal Area (1980) Exploration Activity Details Location Raft River Geothermal Area Exploration Technique Geothermometry Activity Date 1980 Usefulness not indicated DOE-funding Unknown Notes Geothermometer temperatures of shallow samples suggest significant re-equilibration at temperatures below those found in the deep wells. Silica geothermometer temperatures of water samples from the deep wells are in reasonable agreement with measured temperatures, whereas Na-K-Ca temperatures are significantly higher than measured temperatures. The chemical characteristics of the water, as indicated by chloride concentration, are extremely variable in shallow and deep samples. Chloride concentrations of the deep samples range from 580 to 2200 mg/kg.

42

Geothermometry At Lahaina-Kaanapali Area (Thomas, 1986) | Open Energy  

Open Energy Info (EERE)

Lahaina-Kaanapali Area (Thomas, 1986) Lahaina-Kaanapali Area (Thomas, 1986) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermometry At Lahaina-Kaanapali Area (Thomas, 1986) Exploration Activity Details Location Lahaina-Kaanapali Area Exploration Technique Geothermometry Activity Date Usefulness not indicated DOE-funding Unknown Notes Groundwater temperature and chemistry surveys were similarly unable to identify any detectable thermal influence on the basal groundwaters. Silica concentrations and water temperatures (Table 4) were within the normal range expected for basal groundwaters receiving a limited amount of irrigation return water; chloride/magnesium ratios ranged downward from normal seawater values. References Donald M. Thomas (1 January 1986) Geothermal Resources Assessment In

43

Isotopic Analysis- Fluid At Indian Valley Hot Springs Geothermal...  

Open Energy Info (EERE)

Inyo and Kern Counties, California. Supplement. Isotope geochemistry and Appendix H. Final report Retrieved from "http:en.openei.orgwindex.php?titleIsotopicAnalysis-Flu...

44

Sodium-Lithium Ratio In Water Applied To Geothermometry Of Geothermal...  

Open Energy Info (EERE)

Sign Up Search Page Edit with form History Facebook icon Twitter icon Sodium-Lithium Ratio In Water Applied To Geothermometry Of Geothermal Reservoirs Jump to: navigation,...

45

Geothermometry At Buffalo Valley Hot Springs Area (Laney, 2005) | Open  

Open Energy Info (EERE)

Buffalo Valley Hot Springs Area (Laney, 2005) Buffalo Valley Hot Springs Area (Laney, 2005) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermometry At Buffalo Valley Hot Springs Area (Laney, 2005) Exploration Activity Details Location Buffalo Valley Hot Springs Area Exploration Technique Geothermometry Activity Date Usefulness not indicated DOE-funding Unknown Notes Geochemical Sampling of Thermal and Non-thermal Waters in Nevada, Shevenell and Garside. The objective of this project is to obtain geochemical data from springs (and some wells) for which data are not publicly available, or for which the analyses are incomplete, poor, or nonexistent. With these data, geothermometers are being calculated and a preliminary assessment of the geothermal potential and ranking of the sampled areas is being

46

Isotopic Interdiffusion Analysis and its Application in Multicomponent ...  

Science Conference Proceedings (OSTI)

Presentation Title, Isotopic Interdiffusion Analysis and its Application in Multicomponent ... Calorimetric studies of lithium ion cells and their constructing materials.

47

Geothermometry At Socorro Mountain Area (Owens, Et Al., 2005) | Open Energy  

Open Energy Info (EERE)

Geothermometry At Socorro Mountain Area (Owens, Et Al., 2005) Geothermometry At Socorro Mountain Area (Owens, Et Al., 2005) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermometry At Socorro Mountain Area (Owens, Et Al., 2005) Exploration Activity Details Location Socorro Mountain Area Exploration Technique Geothermometry Activity Date Usefulness not indicated DOE-funding Unknown Notes Pre-existing evidence includes heat gradients of upwards of 490mW/m2 from thermal-gradient wells, tepid spring waters (32oC) and silica geochemistry indicating thermal waters with a minimum of 82oC at depth References Lara Owens, Richard Baars, David Norman, Harold Tobin (2005) New Methods In Exploration At The Socorro Peak Kgra- A Gred Iii Project Retrieved from "http://en.openei.org/w/index.php?title=Geothermometry_At_Socorro_Mountain_Area_(Owens,_Et_Al.,_2005)&oldid=389518

48

Geothermometry At Columbus Salt Marsh Area (Shevenell, Et Al., 2008) | Open  

Open Energy Info (EERE)

Geothermometry At Columbus Salt Marsh Area (Shevenell, Et Al., 2008) Geothermometry At Columbus Salt Marsh Area (Shevenell, Et Al., 2008) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermometry At Columbus Salt Marsh Area (Shevenell, Et Al., 2008) Exploration Activity Details Location Columbus Salt Marsh Area Exploration Technique Geothermometry Activity Date Usefulness useful DOE-funding Unknown Notes Borate crusts that were partially mined during the 1800s were identified and mapped at Rhodes, Teels, and Columbus Marshes (playas), all in western Nevada (Figure 1). Subsequent field verification and chemical analyses of well, spring and groundwater samples indicated the presence of hidden subsurface geothermal reservoirs. Cation and quartz geothermometry indicate subsurface reservoir temperatures between 118°C and 162°C at all three

49

Isotopic Analysis At Dixie Valley Geothermal Field Area (Laney, 2005) |  

Open Energy Info (EERE)

Isotopic Analysis At Dixie Valley Geothermal Field Area (Laney, 2005) Isotopic Analysis At Dixie Valley Geothermal Field Area (Laney, 2005) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Isotopic Analysis- Fluid At Dixie Valley Geothermal Field Area (Laney, 2005) Exploration Activity Details Location Dixie Valley Geothermal Field Area Exploration Technique Isotopic Analysis- Fluid Activity Date Usefulness not indicated DOE-funding Unknown Notes Gas and Isotopes Geochemistry, Kennedy, van Soest and Shevenell. During FY04, we concentrated on two primary projects. The first was a detailed study of helium isotope systematics throughout Dixie Valley and the inter-relationship between the Dixie Valley geothermal reservoir and local hydrology. The second is the construction of a helium isotope "map" of the

50

Geothermometry At Walker-Lane Transitional Zone Region (Shevenell & De  

Open Energy Info (EERE)

Shevenell & De Shevenell & De Rocher, 2005) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermometry At Walker-Lane Transitional Zone Region (Shevenell & De Rocher, 2005) Exploration Activity Details Location Walker-Lane Transition Zone Geothermal Region Exploration Technique Geothermometry Activity Date Usefulness not indicated DOE-funding Unknown References Lisa Shevenell, Ted De Rocher (2005) Evaluation Of Chemical Geothermometers For Calculating Reservoir Temperatures At Nevada Geothermal Power Plants Retrieved from "http://en.openei.org/w/index.php?title=Geothermometry_At_Walker-Lane_Transitional_Zone_Region_(Shevenell_%26_De_Rocher,_2005)&oldid=399607" Category: Exploration Activities What links here Related changes

51

Isotopic Analysis At Dixie Valley Geothermal Field Area (Kennedy...  

Open Energy Info (EERE)

| Sign Up Search Page Edit History Facebook icon Twitter icon Isotopic Analysis At Dixie Valley Geothermal Field Area (Kennedy & Van Soest, 2006) Jump to: navigation, search...

52

Geothermometry At Rhodes Marsh Area (Shevenell, Et Al., 2008) | Open Energy  

Open Energy Info (EERE)

Geothermometry At Rhodes Marsh Area (Shevenell, Et Geothermometry At Rhodes Marsh Area (Shevenell, Et Al., 2008) Exploration Activity Details Location Rhodes Marsh Area Exploration Technique Geothermometry Activity Date Usefulness useful DOE-funding Unknown Notes Borate crusts that were partially mined during the 1800s were identified and mapped at Rhodes, Teels, and Columbus Marshes (playas), all in western Nevada (Figure 1). Subsequent field verification and chemical analyses of well, spring and groundwater samples indicated the presence of hidden subsurface geothermal reservoirs. Cation and quartz geothermometry indicate subsurface reservoir temperatures between 118°C and 162°C at all three areas based on results from waters sampled proximal to borate crusts. References Lisa Shevenell, Mark Coolbaugh, Chris Sladek, Rick Zehner, Chris

53

Geothermometry At Salt Wells Area (Henkle, Et Al., 2005) | Open Energy  

Open Energy Info (EERE)

Geothermometry At Salt Wells Area (Henkle, Et Al., 2005) Geothermometry At Salt Wells Area (Henkle, Et Al., 2005) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermometry At Salt Wells Area (Henkle, Et Al., 2005) Exploration Activity Details Location Salt Wells Geothermal Area Exploration Technique Geothermometry Activity Date 2004 - 2005 Usefulness useful DOE-funding Unknown Exploration Basis Adsorbed mercury soil geochemical surveys and radiometric geophysical surveys were carried out in conjunction with geologic mapping to test the application of these ground-based techniques to geothermal exploration at three prospects in Nevada by Henkle Jr. et al. in 2005. Mercury soil vapor surveys were not widely used in geothermal exploration in the western US at the time, although the association of mercury vapors with geothermal

54

Geothermometry At Northern Basin & Range Region (Laney, 2005) | Open Energy  

Open Energy Info (EERE)

Geothermometry At Northern Basin & Range Region (Laney, 2005) Geothermometry At Northern Basin & Range Region (Laney, 2005) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermometry At Northern Basin & Range Region (Laney, 2005) Exploration Activity Details Location Northern Basin and Range Geothermal Region Exploration Technique Geothermometry Activity Date Usefulness not indicated DOE-funding Unknown Notes Geochemical Sampling of Thermal and Non-thermal Waters in Nevada, Shevenell and Garside. The objective of this project is to obtain geochemical data from springs (and some wells) for which data are not publicly available, or for which the analyses are incomplete, poor, or nonexistent. With these data, geothermometers are being calculated and a preliminary assessment of

55

Geothermometry At U.S. Midwest Region (Vugrinovich, 1987) | Open Energy  

Open Energy Info (EERE)

Geothermometry At U.S. Midwest Region (Vugrinovich, 1987) Geothermometry At U.S. Midwest Region (Vugrinovich, 1987) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermometry At U.S. Midwest Region (Vugrinovich, 1987) Exploration Activity Details Location U.S. Midwest Region Exploration Technique Geothermometry Activity Date Usefulness useful DOE-funding Unknown Notes Michigan "The silica heat flow estimator does provide estimates of surface heat flow which appear to be in good agreement with conventional estimates, but which are not entirely free from disturbances caused by groundwater movements. The technique should be more widely applied to areas where conventional heat flow measurements are lacking." References Raymond Vugrinovich (1987) Regional Heat Flow Variations In The

56

Geothermometry At Fish Lake Valley Area (Deymonaz, Et Al., 2008) | Open  

Open Energy Info (EERE)

Geothermometry At Fish Lake Valley Area (Deymonaz, Et Al., 2008) Geothermometry At Fish Lake Valley Area (Deymonaz, Et Al., 2008) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermometry At Fish Lake Valley Area (Deymonaz, Et Al., 2008) Exploration Activity Details Location Fish Lake Valley Area Exploration Technique Geothermometry Activity Date Usefulness useful DOE-funding Unknown Notes There are no thermal springs within the Emigrant prospect area, but unambiguously indigenous hotwater samples were collected from boreholes 211 (see above) and 112 (Fig. 3). These samples were analyzed for major and selected minor chemical components (Table 1; Pilkington, 1984). Hot water at 96degrees C from borehole 211 was collected by airlifting from a depth of 123 m (water level) at a rate of 240 liters per minute. The

57

Isotopic Analysis- Fluid At Sierra Valley Geothermal Area (1990) | Open  

Open Energy Info (EERE)

Isotopic Analysis- Fluid At Sierra Valley Geothermal Area (1990) Isotopic Analysis- Fluid At Sierra Valley Geothermal Area (1990) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Isotopic Analysis- Fluid At Sierra Valley Geothermal Area (1990) Exploration Activity Details Location Sierra Valley Geothermal Area Exploration Technique Isotopic Analysis- Fluid Activity Date 1990 Usefulness not indicated DOE-funding Unknown Exploration Basis Determine the recharge of the area Notes Hydrogen and oxygen isotope data on waters of Coso thermal and nonthermal waters were studied. Hydrogen and oxygen isotopes do not uniquely define the recharge area for the Coso geothermal system but strongly suggest Sierran recharge with perhaps some local recharge. References Whelan, J. A. (1 September 1990) Water geochemistry study of

58

Isotopic Analysis- Fluid At Indian Valley Hot Springs Geothermal Area  

Open Energy Info (EERE)

Isotopic Analysis- Fluid At Indian Valley Hot Springs Geothermal Area Isotopic Analysis- Fluid At Indian Valley Hot Springs Geothermal Area (1990) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Isotopic Analysis- Fluid At Indian Valley Hot Springs Geothermal Area (1990) Exploration Activity Details Location Indian Valley Hot Springs Geothermal Area Exploration Technique Isotopic Analysis- Fluid Activity Date 1990 Usefulness not indicated DOE-funding Unknown Exploration Basis Determine the recharge of the area Notes Hydrogen and oxygen isotope data on waters of Coso thermal and nonthermal waters were studied. Hydrogen and oxygen isotopes do not uniquely define the recharge area for the Coso geothermal system but strongly suggest Sierran recharge with perhaps some local recharge. References

59

Isotopic Analysis- Fluid At Rose Valley Geothermal Area (1990) | Open  

Open Energy Info (EERE)

Isotopic Analysis- Fluid At Rose Valley Geothermal Area (1990) Isotopic Analysis- Fluid At Rose Valley Geothermal Area (1990) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Isotopic Analysis- Fluid At Rose Valley Geothermal Area (1990) Exploration Activity Details Location Rose Valley Geothermal Area Exploration Technique Isotopic Analysis- Fluid Activity Date 1990 Usefulness not indicated DOE-funding Unknown Exploration Basis Determine the recharge of the area Notes Hydrogen and oxygen isotope data on waters of Coso thermal and nonthermal waters were studied. Hydrogen and oxygen isotopes do not uniquely define the recharge area for the Coso geothermal system but strongly suggest Sierran recharge with perhaps some local recharge. References Whelan, J. A. (1 September 1990) Water geochemistry study of

60

Isotopic Abundance in Atom Trap Trace Analysis  

isotopes for climate change and nuclear proliferation interests. The Invention Argonne scientists have created a novel method and system for

Note: This page contains sample records for the topic "geothermometry isotopic analysis" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Geothermometry At Central Nevada Seismic Zone Region (Laney, 2005) | Open  

Open Energy Info (EERE)

Region Region (Laney, 2005) Exploration Activity Details Location Central Nevada Seismic Zone Geothermal Region Exploration Technique Geothermometry Activity Date Usefulness not indicated DOE-funding Unknown Notes Geochemical Sampling of Thermal and Non-thermal Waters in Nevada, Shevenell and Garside. The objective of this project is to obtain geochemical data from springs (and some wells) for which data are not publicly available, or for which the analyses are incomplete, poor, or nonexistent. With these data, geothermometers are being calculated and a preliminary assessment of the geothermal potential and ranking of the sampled areas is being conducted using the new geochemical data. Objectives changed slightly in 2004. Samples are now being collected at sites identified by other

62

Plutonium isotopic analysis of highly enriched mixed oxides  

SciTech Connect

We investigated the analysis method used by the International Atomic Energy Agency (IAEA) to determine the plutonium isotopic composition of highly enriched mixed oxides (MOX). The IAEA currently uses the Cicero multichannel analyzer and the IAEAPU algorithm for its analysis. In our investigation the plutonium isotopic measurements were found to be good for PuO/sub 2/ powder or low-enriched MOX, but acceptable for highly enriched MOX in IAEA special nuclear material (SNM) accountability applications. The gamma-ray interferences from /sup 235/U resulted in underestimation of the isotopic composition of /sup 239/Pu and overestimation of all other plutonium isotopes. Samples with high /sup 240/Pu content were found to have significantly higher error in plutonium isotopic analyses of highly enriched MOX. Code modifications or use of calibration curves are necessary for plutonium isotopic analyses of highly enriched MOX in IAEA SNM accountability applications.

Clement, S.D.; Augustson, R.H.

1986-08-01T23:59:59.000Z

63

System and method for high precision isotope ratio destructive analysis  

DOE Patents (OSTI)

A system and process are disclosed that provide high accuracy and high precision destructive analysis measurements for isotope ratio determination of relative isotope abundance distributions in liquids, solids, and particulate samples. The invention utilizes a collinear probe beam to interrogate a laser ablated plume. This invention provides enhanced single-shot detection sensitivity approaching the femtogram range, and isotope ratios that can be determined at approximately 1% or better precision and accuracy (relative standard deviation).

Bushaw, Bruce A; Anheier, Norman C; Phillips, Jon R

2013-07-02T23:59:59.000Z

64

Isotopic Analysis-Fluid At Yellowstone Caldera Geothermal Region (1977) |  

Open Energy Info (EERE)

Isotopic Analysis-Fluid At Yellowstone Caldera Geothermal Region (1977) Isotopic Analysis-Fluid At Yellowstone Caldera Geothermal Region (1977) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Isotopic Analysis-Fluid At Yellowstone Caldera Geothermal Region (1977) Exploration Activity Details Location Yellowstone Caldera Geothermal Region Exploration Technique Isotopic Analysis-Fluid Activity Date 1977 Usefulness not indicated DOE-funding Unknown Exploration Basis Estimate deep reservoir temperature Notes The oxygen isotope compositions of dissolved sulfate and water from hot springs and shallow drillholes have been tested. Methods are described to calculate the effects of boiling and dilution. The geothermometer, is applied to thermal systems of Yellowstone Park, Wyoming, Long Valley, California, and Raft River, Idaho to estimate deep reservoir temperatures

65

Isotopic Analysis (Not Available) | Open Energy Information  

Open Energy Info (EERE)

Usefulness not indicated DOE-funding Unknown Notes Meeting proceedings - large list of papers and presentations dealing mostly with various isotopic analyses and their applications...

66

Isotopic Analysis At Yellowstone Region (Sturchio, Et Al., 1990) | Open  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Isotopic Analysis At Yellowstone Region (Sturchio, Et Al., 1990) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Isotopic Analysis- Fluid At Yellowstone Region (Sturchio, Et Al., 1990) Exploration Activity Details Location Yellowstone Caldera Geothermal Region Exploration Technique Isotopic Analysis- Fluid Activity Date Usefulness could be useful with more improvements DOE-funding Unknown Notes There are two possible explanations for the inferred presence of relatively 18O-enriched thermal water at Yellowstone in the past: (1) meteoric

67

Isotopic Analysis- Fluid At Coso Geothermal Area (1990) | Open Energy  

Open Energy Info (EERE)

Analysis- Fluid At Coso Geothermal Area (1990) Analysis- Fluid At Coso Geothermal Area (1990) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Isotopic Analysis- Fluid At Coso Geothermal Area (1990) Exploration Activity Details Location Coso Geothermal Area Exploration Technique Isotopic Analysis- Fluid Activity Date 1990 Usefulness not indicated DOE-funding Unknown Exploration Basis Determine the recharge of the area Notes Hydrogen and oxygen isotope data on waters of Coso thermal and nonthermal waters were studied. Hydrogen and oxygen isotopes do not uniquely define the recharge area for the Coso geothermal system but strongly suggest Sierran recharge with perhaps some local recharge. References Whelan, J. A. (1 September 1990) Water geochemistry study of Indian Wells Valley, Inyo and Kern Counties, California. Supplement.

68

Isotopic Analysis- Fluid At Coso Geothermal Area (2007) | Open Energy  

Open Energy Info (EERE)

Isotopic Analysis- Fluid At Coso Geothermal Area (2007) Isotopic Analysis- Fluid At Coso Geothermal Area (2007) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Isotopic Analysis- Fluid At Coso Geothermal Area (2007) Exploration Activity Details Location Coso Geothermal Area Exploration Technique Isotopic Analysis- Fluid Activity Date 2007 Usefulness not indicated DOE-funding Unknown Exploration Basis Determine the location of the heat source Notes Fluids have been sampled from 9 wells and 2 fumaroles from the East Flank of the Coso hydrothermal system with a view to identifying, if possible, the location and characteristics of the heat source inflows into this portion of the geothermal field. Preliminary results show that there has been extensive vapor loss in the system, most probably in response to

69

Isotopic Analysis- Fluid At Valles Caldera - Sulphur Springs Area (White,  

Open Energy Info (EERE)

Isotopic Analysis- Fluid At Valles Caldera - Sulphur Springs Area (White, Isotopic Analysis- Fluid At Valles Caldera - Sulphur Springs Area (White, Et Al., 1992) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Isotopic Analysis- Fluid At Valles Caldera - Sulphur Springs Area (White, Et Al., 1992) Exploration Activity Details Location Valles Caldera - Sulphur Springs Area Exploration Technique Isotopic Analysis- Fluid Activity Date Usefulness not indicated DOE-funding Unknown Notes Used various geochemical techniques to obtain data from which information regarding mass transfer rates. This then led to conclucions of the history/evolution of the geothermal system. Unclear whether useful for exploration purposes. References Art F. White, Nancy J. Chuma, Fraser Goff (1992) Mass Transfer Constraints On The Chemical Evolution Of An Active Hydrothermal System,

70

Quantitation of Glycidyl Esters via Stable Isotope Dilution Analysis  

Science Conference Proceedings (OSTI)

Quantitation of Glycidyl Esters via Stable Isotope Dilution Analysis Michael Granvogl and Peter Schieberle Technical University of Munich, Chair for Food Chemistry and German Research Centre for Food Chemistry, Lise-Meitner-Str. 34, Freising, Germ

71

Geothermometry At Salt Wells Area (Edmiston & Benoit, 1984) | Open Energy  

Open Energy Info (EERE)

Geothermometry At Salt Wells Area (Edmiston & Benoit, Geothermometry At Salt Wells Area (Edmiston & Benoit, 1984) Exploration Activity Details Location Salt Wells Geothermal Area Exploration Technique Geothermometry Activity Date 1980 - 1984 Usefulness useful DOE-funding Unknown Exploration Basis The blind Salt Wells geothermal system was first identified when Anadarko Petroleum Corporation drilled slim hole and geothermal exploration wells at the site in 1980. Two reports detail the results of this drilling activity. This paper seeks to (1) describe several moderate-temperature (150-200°C) geothermal systems discovered and drilled during the early 1980's that had not been documented previously in the literature, (2) summarize and compare chemical and temperature data from known moderate- to high-temperature (>200°C) in the region, and (3) to comment on the

72

Geothermometry At Salt Wells Area (Coolbaugh, Et Al., 2006) | Open Energy  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Geothermometry At Salt Wells Area (Coolbaugh, Et Al., 2006) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermometry At Salt Wells Area (Coolbaugh, Et Al., 2006) Exploration Activity Details Location Salt Wells Geothermal Area Exploration Technique Geothermometry Activity Date 2005 - 2005 Usefulness useful DOE-funding Unknown Exploration Basis Geochemical water sampling, mineral distribution mapping, and shallow (30 cm) temperature probe measurements were conducted to expand on a previous field mapping study of surface geothermal features at Salt Wells, in order

73

Geothermometry At Nw Basin & Range Region (Laney, 2005) | Open Energy  

Open Energy Info (EERE)

Geothermometry At Nw Basin & Range Region (Laney, Geothermometry At Nw Basin & Range Region (Laney, 2005) Exploration Activity Details Location Northwest Basin and Range Geothermal Region Exploration Technique Geothermometry Activity Date Usefulness not indicated DOE-funding Unknown Notes Geochemical Sampling of Thermal and Non-thermal Waters in Nevada, Shevenell and Garside. The objective of this project is to obtain geochemical data from springs (and some wells) for which data are not publicly available, or for which the analyses are incomplete, poor, or nonexistent. With these data, geothermometers are being calculated and a preliminary assessment of the geothermal potential and ranking of the sampled areas is being conducted using the new geochemical data. Objectives changed slightly in 2004. Samples are now being collected at sites identified by other

74

Geothermometry At Nevada Test And Training Range Area (Sabin, Et Al., 2004)  

Open Energy Info (EERE)

2004) 2004) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermometry At Nevada Test And Training Range Area (Sabin, Et Al., 2004) Exploration Activity Details Location Nevada Test And Training Range Area Exploration Technique Geothermometry Activity Date Usefulness not indicated DOE-funding Unknown Notes Groundwater data are limited to a portion of NAFR; data are more plentiful beyond the range boundaries. Geothermometry yields calculated groundwater temperatures generally ranging from 30 to 105degrees C, with a rough correlation between the SiO2-chalcedony and the Na-K-Na (Mg-corrected) geothermometers. References A. E. Sabin, J. D. Walker, J. Unruh, F. C. Monastero (2004) Toward The Development Of Occurrence Models For Geothermal Resources In The

75

Geothermometry At Teels Marsh Area (Shevenell, Et Al., 2008) | Open Energy  

Open Energy Info (EERE)

Shevenell, Et Al., 2008) Shevenell, Et Al., 2008) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermometry At Teels Marsh Area (Shevenell, Et Al., 2008) Exploration Activity Details Location Teels Marsh Area Exploration Technique Geothermometry Activity Date Usefulness useful DOE-funding Unknown Notes Borate crusts that were partially mined during the 1800s were identified and mapped at Rhodes, Teels, and Columbus Marshes (playas), all in western Nevada (Figure 1). Subsequent field verification and chemical analyses of well, spring and groundwater samples indicated the presence of hidden subsurface geothermal reservoirs. Cation and quartz geothermometry indicate subsurface reservoir temperatures between 118°C and 162°C at all three areas based on results from waters sampled proximal to borate crusts.

76

Method for isotopic analysis of chlorinated organic compounds  

DOE Patents (OSTI)

The present invention provides a method for preparing a VOC sample for carbon and chlorine isotope ratio analysis by mass spectrometer. A VOC sample is placed in a combustion tube and reacted with CuO to form CO.sub.2 and CuCl. The CO.sub.2 is then extracted and analyzed for the carbon isotope ratio. The CuCl is separated from the excess CuO and reacted with CH.sub.3 I to form CH.sub.3 Cl, extracted and analyzed for chlorine isotope ratio.

Holt, Ben D. (Hindsdale, IL); Sturchio, Neil C. (Oswego, IL)

1999-01-01T23:59:59.000Z

77

Isotopic Analysis- Rock At Coso Geothermal Area (1997) | Open Energy  

Open Energy Info (EERE)

Rock At Coso Geothermal Area (1997) Rock At Coso Geothermal Area (1997) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Isotopic Analysis- Rock At Coso Geothermal Area (1997) Exploration Activity Details Location Coso Geothermal Area Exploration Technique Isotopic Analysis- Rock Activity Date 1997 Usefulness useful DOE-funding Unknown Exploration Basis Determine a major lithospheric boundary Notes Sr and Nd isotope ratios of Miocene-Recent basalts in eastern California, when screened for crustal contamination, vary dramatically and indicate the presence of a major lithospheric boundary that is not obvious from surface geology. Isotope ratios from the Coso field form a bull's-eye pattern with very low 87Sr/86Sr (0.7033) centered just south of the geothermal area. The

78

ISOTOPES  

E-Print Network (OSTI)

Theory of Isotope Separation as Applied to the Large~scale Production of 235 u National Nuclear Energy

Lederer, C. Michael

2013-01-01T23:59:59.000Z

79

Isotopic Analysis- Fluid At Coso Geothermal Area (1982) | Open Energy  

Open Energy Info (EERE)

Analysis- Fluid At Coso Geothermal Area (1982) Analysis- Fluid At Coso Geothermal Area (1982) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Isotopic Analysis- Fluid At Coso Geothermal Area (1982) Exploration Activity Details Location Coso Geothermal Area Exploration Technique Isotopic Analysis- Fluid Activity Date 1982 Usefulness not indicated DOE-funding Unknown Exploration Basis Determine recharge for the system Notes Thirty-nine water samples were collected from the Coso geothermal system and vicinity and were analyzed for major chemical constituents and deltaD and delta18O. Non-thermal ground waters from the Coso Range were found to be isotopically heavier than non-thermal ground waters from the Sierra Nevada to the west. The deltaD value for the deep thermal water at Coso is

80

Isotopic Analysis- Rock At Coso Geothermal Area (1984) | Open Energy  

Open Energy Info (EERE)

Analysis- Rock At Coso Geothermal Area (1984) Analysis- Rock At Coso Geothermal Area (1984) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Isotopic Analysis- Rock At Coso Geothermal Area (1984) Exploration Activity Details Location Coso Geothermal Area Exploration Technique Isotopic Analysis- Rock Activity Date 1984 Usefulness not indicated DOE-funding Unknown Exploration Basis To analyze evidence for crustal interaction and compositional zonation in the source regions of Pleistocene basaltic and rhyolitic magmas of the Coso volcanic field Notes The isotopic compositions of Pb and Sr in Pleistocene basalt, high-silica rhyolite, and andesitic inclusions in rhyolite of the Coso volcanic field indicate that these rocks were derived from different levels of compositionally zoned magmatic systems. The two earliest rhyolites probably

Note: This page contains sample records for the topic "geothermometry isotopic analysis" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Isotopic Analysis- Rock At Valles Caldera - Sulphur Springs Area  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Isotopic Analysis- Rock At Valles Caldera - Sulphur Springs Area (Woldegabriel & Goff, 1992) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Isotopic Analysis- Rock At Valles Caldera - Sulphur Springs Area (Woldegabriel & Goff, 1992) Exploration Activity Details Location Valles Caldera - Sulphur Springs Area Exploration Technique Isotopic Analysis- Rock Activity Date Usefulness not indicated DOE-funding Unknown Notes Useful for age determinations - not indicated is useful for exploration. References Giday WoldeGabriel, Fraser Goff (1992) K-Ar Dates Of Hydrothermal

82

Isotopic Analysis At Valles Caldera - Sulphur Springs Area (Woldegabriel &  

Open Energy Info (EERE)

Valles Caldera - Sulphur Springs Area (Woldegabriel & Valles Caldera - Sulphur Springs Area (Woldegabriel & Goff, 1992) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Isotopic Analysis At Valles Caldera - Sulphur Springs Area (Woldegabriel & Goff, 1992) Exploration Activity Details Location Valles Caldera - Sulphur Springs Area Exploration Technique Isotopic Analysis Activity Date Usefulness not indicated DOE-funding Unknown Notes Useful for age determinations - not indicated is useful for exploration. References Giday WoldeGabriel, Fraser Goff (1992) K-Ar Dates Of Hydrothermal Clays From Core Hole Vc-2B, Valles Caldera, New Mexico And Their Relation To Alteration In A Large Hydrothermal System Retrieved from "http://en.openei.org/w/index.php?title=Isotopic_Analysis_At_Valles_Caldera_-_Sulphur_Springs_Area_(Woldegabriel_%26_Goff,_1992)&oldid=510971"

83

Selection of Isotopes and Elements for Fuel Cycle Analysis  

Science Conference Proceedings (OSTI)

Fuel cycle system analysis simulations examine how the selection among fuel cycle options for reactors, fuel, separation, and waste management impact uranium ore utilization, waste masses and volumes, radiotoxicity, heat to geologic repositories, isotope-dependent proliferation resistance measures, and so forth. Previously, such simulations have tended to track only a few actinide and fission product isotopes, those that have been identified as important to a few criteria from the standpoint of recycled material or waste, taken as a whole. After accounting for such isotopes, the residual mass is often characterized as fission product other or actinide other. However, detailed assessment of separation and waste management options now require identification of key isotopes and residual mass for Group 1A/2A elements (Rb, Cs, Sr, Ba), inert gases (Kr, Xe), halogens (Br, I), lanthanides, transition metals, transuranic (TRU), uranium, actinide decay products. The paper explains the rationale for a list of 81 isotopes and chemical elements to better support separation and waste management assessment in dynamic system analysis models such as Verifiable Fuel Cycle Simulation (VISION)

Steven J. Piet

2009-04-01T23:59:59.000Z

84

Geothermometry At Desert Queen Area (Garchar & Arehart, 2008) | Open Energy  

Open Energy Info (EERE)

Queen Area (Garchar & Arehart, 2008) Queen Area (Garchar & Arehart, 2008) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermometry At Desert Queen Area (Garchar & Arehart, 2008) Exploration Activity Details Location Desert Queen Area Exploration Technique Geothermometry Activity Date Usefulness not indicated DOE-funding Unknown Notes Temperatures of the reservoir at depth are estimated to be between 92-141 degrees C and were calculated using the δ18O(SO4-H2O) geothermometer. It is unclear whether these temperatures reflect waters from the outflow zone of the Desert Peak geothermal system, or waters from a different reservoir at Desert Queen. Quartz, chalcedony, amorphous silica, Na-K-Ca, and δ18O(SO4-H2O) geothermometer calculations were performed.

85

Geothermometry At Walker-Lane Transitional Zone Region (Laney, 2005) | Open  

Open Energy Info (EERE)

Laney, 2005) Laney, 2005) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermometry At Walker-Lane Transitional Zone Region (Laney, 2005) Exploration Activity Details Location Walker-Lane Transition Zone Geothermal Region Exploration Technique Geothermometry Activity Date Usefulness not indicated DOE-funding Unknown Notes Geochemical Sampling of Thermal and Non-thermal Waters in Nevada, Shevenell and Garside. The objective of this project is to obtain geochemical data from springs (and some wells) for which data are not publicly available, or for which the analyses are incomplete, poor, or nonexistent. With these data, geothermometers are being calculated and a preliminary assessment of the geothermal potential and ranking of the sampled areas is being

86

Geothermometry At Clear Lake Area (Thompson, Et Al., 1992) | Open Energy  

Open Energy Info (EERE)

Clear Lake Area (Thompson, Et Al., 1992) Clear Lake Area (Thompson, Et Al., 1992) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermometry At Clear Lake Area (Thompson, Et Al., 1992) Exploration Activity Details Location Clear Lake Area Exploration Technique Geothermometry Activity Date Usefulness useful DOE-funding Unknown Notes Based on the above discussion, we favor a model in which thermal water rises somewhere between Howard and Seigler Springs. At Howard Springs we see evidence for the most representative deep thermal water because the C1 is elevated (highest measured C1 concentrations occur at Howard Springs). Moreover, the Na-Li, Na-K and Na-K-Ca geothermometers suggest temperatures greater than 240 degrees C. References J. M. Thompson, R. H. Mariner, L. D. White, T. S. Presser, W. C.

87

Isotopic Analysis At Central Nevada Seismic Zone Region (Laney, 2005) |  

Open Energy Info (EERE)

Laney, 2005) Laney, 2005) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Isotopic Analysis- Fluid At Central Nevada Seismic Zone Region (Laney, 2005) Exploration Activity Details Location Central Nevada Seismic Zone Geothermal Region Exploration Technique Isotopic Analysis- Fluid Activity Date Usefulness not indicated DOE-funding Unknown Notes Geochemical Sampling of Thermal and Non-thermal Waters in Nevada, Shevenell and Garside. The objective of this project is to obtain geochemical data from springs (and some wells) for which data are not publicly available, or for which the analyses are incomplete, poor, or nonexistent. With these data, geothermometers are being calculated and a preliminary assessment of the geothermal potential and ranking of the sampled areas is being

88

Isotopic Analysis Fluid At Coso Geothermal Area (1997) | Open Energy  

Open Energy Info (EERE)

Fluid At Coso Geothermal Area (1997) Fluid At Coso Geothermal Area (1997) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Isotopic Analysis- Fluid At Coso Geothermal Area (1997) Exploration Activity Details Location Coso Geothermal Area Exploration Technique Isotopic Analysis- Fluid Activity Date 1997 Usefulness not indicated DOE-funding Unknown Exploration Basis Identify the source of chlorine Notes The 36Cl/Cl values for several geothermal water samples and reservoir host rock samples have been measured. The results suggest that the thermal waters could be connate waters derived from sedimentary formations, presumably underlying and adjacent top the granitic rocks, which have recently migrated into the host rocks. Alternatively, most of the chlorine but not the water, may have recently input into the system from magmatic

89

Isotopic Analysis At Central Nevada Seismic Zone Region (Kennedy & Van  

Open Energy Info (EERE)

Isotopic Analysis At Central Nevada Seismic Zone Region (Kennedy & Van Isotopic Analysis At Central Nevada Seismic Zone Region (Kennedy & Van Soest, 2007) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Isotopic Analysis- Fluid At Central Nevada Seismic Zone Region (Kennedy & Van Soest, 2007) Exploration Activity Details Location Central Nevada Seismic Zone Geothermal Region Exploration Technique Isotopic Analysis- Fluid Activity Date Usefulness useful regional reconnaissance DOE-funding Unknown Notes The correspondence of helium isotope ratios and active transtensional deformation indicates a deformation-enhanced permeability and that mantle fluids can penetrate the ductile lithosphere, even in regions where there is no substantial magmatism. Superimposed on the regional trend are local,

90

Hanford Isotope Project strategic business analysis Cesium-137 (Cs-137)  

SciTech Connect

The purpose of this business analysis is to address the beneficial reuse of Cesium 137 (Cs-137) in order to utilize a valuable national asset and possibly save millions of tax dollars. Food irradiation is the front runner application along with other uses. This business analysis supports the objectives of the Department of Energy National Isotope Strategy distributed in August 1994 which describes the DOE plans for the production and distribution of isotope products and services. As part of the Department`s mission as stated in that document. ``The Department of Energy will also continue to produce and distribute other radioisotopes and enriched stable isotopes for medical diagnostics and therapeutics, industrial, agricultural, and other useful applications on a businesslike basis. This is consistent with the goals and objectives of the National Performance Review. The Department will endeavor to look at opportunities for private sector to co-fund or invest in new ventures. Also, the Department will seek to divest from ventures that can more profitably or reliably be operated by the private sector.``

NONE

1995-10-01T23:59:59.000Z

91

Isotopic Analysis At San Juan Volcanic Field Area (Larson & Jr, 1986) |  

Open Energy Info (EERE)

Isotopic Analysis At San Juan Volcanic Field Area (Larson & Jr, 1986) Isotopic Analysis At San Juan Volcanic Field Area (Larson & Jr, 1986) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Isotopic Analysis- Rock At San Juan Volcanic Field Area (Larson & Jr, 1986) Exploration Activity Details Location San Juan Volcanic Field Area Exploration Technique Isotopic Analysis- Rock Activity Date Usefulness not indicated DOE-funding Unknown Notes Oxygen isotopes. References Peter B. Larson, Hugh P. Taylor Jr (1986) An Oxygen Isotope Study Of Hydrothermal Alteration In The Lake City Caldera, San Juan Mountains, Colorado Retrieved from "http://en.openei.org/w/index.php?title=Isotopic_Analysis_At_San_Juan_Volcanic_Field_Area_(Larson_%26_Jr,_1986)&oldid=687474" Categories: Exploration Activities

92

Isotopic Analysis At Newberry Caldera Area (Carothers, Et Al...  

Open Energy Info (EERE)

H. Mariner, Terry E. C. Keith (1987) Isotope Geochemistry Of Minerals And Fluids From Newberry Volcano, Oregon Retrieved from "http:en.openei.orgwindex.php?titleIsotopicA...

93

Stable Isotope Analysis of Modern Human Hair Collected From Asia (China, India,  

E-Print Network (OSTI)

Stable Isotope Analysis of Modern Human Hair Collected From Asia (China, India, Mongolia, IN 47907 4 Department of Geology and Geophysics, University of Utah, Salt Lake City, UT 84112 KEY WORDS hair keratin; stable isotope; Asia ABSTRACT We report isotopic data (d2 H, d18 O n 5 196; d13 C, d15 N

Ehleringer, Jim

94

Isotopic Analysis-Fluid At Steamboat Springs Geothermal Area (1982) | Open  

Open Energy Info (EERE)

Isotopic Analysis-Fluid At Steamboat Springs Geothermal Area (1982) Isotopic Analysis-Fluid At Steamboat Springs Geothermal Area (1982) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Isotopic Analysis-Fluid At Steamboat Springs Geothermal Area (1982) Exploration Activity Details Location Steamboat Springs Geothermal Area Exploration Technique Isotopic Analysis-Fluid Activity Date 1982 Usefulness not indicated DOE-funding Unknown Notes Helium isotope ratios have been measured in geothermal fluids. These ratios have been interpreted in terms of the processes which supply He in distinct isotopic ratios (i.e. magmatic He, ~10 Ra; atmospheric He, Ra; and crustal He, ~0.1 Ra) and in terms of the processes which can alter the isotopic ratio (hydrologic mixing, U-Th series alpha production and weathering

95

Isotopic Analysis At Separation Creek Area (Van Soest, Et Al., 2002) | Open  

Open Energy Info (EERE)

Isotopic Analysis At Separation Creek Area (Van Soest, Et Al., 2002) Isotopic Analysis At Separation Creek Area (Van Soest, Et Al., 2002) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Isotopic Analysis- Fluid At Separation Creek Area (Van Soest, Et Al., 2002) Exploration Activity Details Location Separation Creek Area Exploration Technique Isotopic Analysis- Fluid Activity Date Usefulness useful DOE-funding Unknown References M. C. van Soest, B. M. Kennedy, W. C. Evans, R. H. Mariner (2002) Mantle Helium And Carbon Isotopes In Separation Creek Geothermal Springs, Three Sisters Area, Central Oregon- Evidence For Renewed Volcanic Activity Or A Long Term Steady State System(Question) Retrieved from "http://en.openei.org/w/index.php?title=Isotopic_Analysis_At_Separation_Creek_Area_(Van_Soest,_Et_Al.,_2002)&oldid=687475"

96

Isotopic Analysis- Fluid At Long Valley Caldera Area (Sorey, Et Al., 1991)  

Open Energy Info (EERE)

Isotopic Analysis- Fluid At Long Valley Caldera Area (Sorey, Et Al., 1991) Isotopic Analysis- Fluid At Long Valley Caldera Area (Sorey, Et Al., 1991) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Isotopic Analysis- Fluid At Long Valley Caldera Area (Sorey, Et Al., 1991) Exploration Activity Details Location Long Valley Caldera Area Exploration Technique Isotopic Analysis- Fluid Activity Date Usefulness could be useful with more improvements DOE-funding Unknown Notes Useful for a whole variety of particular reservoir characterization goals, i.e.: "Isotopic values for the thermal waters become lighter with distance eastward from Casa Diablo, suggesting dilution with nonthermal ground waters from more easterly sources. In the Casa Diablo area, the effects of near-surface boiling cause the observed isotopic shift (along the line

97

Isotopic Analysis- Rock At Long Valley Caldera Area (Smith & Suemnicht,  

Open Energy Info (EERE)

Isotopic Analysis- Rock At Long Valley Caldera Area (Smith & Suemnicht, Isotopic Analysis- Rock At Long Valley Caldera Area (Smith & Suemnicht, 1991) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Isotopic Analysis- Rock At Long Valley Caldera Area (Smith & Suemnicht, 1991) Exploration Activity Details Location Long Valley Caldera Area Exploration Technique Isotopic Analysis- Rock Activity Date Usefulness useful DOE-funding Unknown Notes This oxygen isotope and fluid inclusion study has allowed us to determine the pathways of fluid circulation, set limits on the thermal regime, and link the source of the heat to prolonged volcanic activity. At shallow depths in the caldera References Brian M. Smith, Gene A. Suemnicht (1991) Oxygen Isotope Evidence For Past And Present Hydrothermal Regimes Of Long Valley Caldera, California

98

Isotopic Analysis At Dixie Valley Geothermal Field Area (Kennedy & Van  

Open Energy Info (EERE)

Isotopic Analysis At Dixie Valley Geothermal Field Area (Kennedy & Van Isotopic Analysis At Dixie Valley Geothermal Field Area (Kennedy & Van Soest, 2006) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Isotopic Analysis- Fluid At Dixie Valley Geothermal Field Area (Kennedy & Van Soest, 2006) Exploration Activity Details Location Dixie Valley Geothermal Field Area Exploration Technique Isotopic Analysis- Fluid Activity Date Usefulness useful DOE-funding Unknown Notes Fluids from springs, fumaroles, and wells throughout Dixie Valley, NV were analyzed for noble gas abundances and isotopic compositions. The helium isotopic compositions of fluids produced from the Dixie Valley geothermal field range from 0.70 to 0.76 Ra, are among the highest values in the valley, and indicate that _7.5% of the total helium is derived from the

99

Isotopic Analysis-Fluid At Raft River Geothermal Area (1982) | Open Energy  

Open Energy Info (EERE)

Analysis-Fluid At Raft River Geothermal Area Analysis-Fluid At Raft River Geothermal Area (1982) Exploration Activity Details Location Raft River Geothermal Area Exploration Technique Isotopic Analysis- Fluid Activity Date 1982 Usefulness not useful DOE-funding Unknown Exploration Basis Determine which reservoir model best matches the isotope data. Notes 1) Chemical and light-stable isotope data are presented for water samples from the Raft River geothermal area and nearby. On the basis of chemical character, as defined by a trilinear plot of per cent milliequivalents, and light-stable isotope data, the waters in the geothermal area can be divided into waters that have and have not mixed with cold water. 2) Helium isotope ratios have been measured in geothermal fluids. These ratios have been interpreted in terms of the processes which supply He in distinct isotopic

100

Isotopic Analysis- Fluid At Fenton Hill Hdr Geothermal Area (Goff, Et Al.,  

Open Energy Info (EERE)

Isotopic Analysis- Fluid At Fenton Hill Hdr Geothermal Area (Goff, Et Al., Isotopic Analysis- Fluid At Fenton Hill Hdr Geothermal Area (Goff, Et Al., 1981) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Isotopic Analysis- Fluid At Fenton Hill Hdr Geothermal Area (Goff, Et Al., 1981) Exploration Activity Details Location Fenton Hill Hdr Geothermal Area Exploration Technique Isotopic Analysis- Fluid Activity Date Usefulness not indicated DOE-funding Unknown References Fraser E. Goff, Charles O. Grigsby, Pat E. Trujillo Jr, Dale Counce, Andrea Kron (1981) Geology, Water Geochemistry And Geothermal Potential Of The Jemez Springs Area, Canon De San Diego, New Mexico Retrieved from "http://en.openei.org/w/index.php?title=Isotopic_Analysis-_Fluid_At_Fenton_Hill_Hdr_Geothermal_Area_(Goff,_Et_Al.,_1981)&oldid=692519

Note: This page contains sample records for the topic "geothermometry isotopic analysis" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Isotopic Analysis- Fluid At Long Valley Caldera Area (Goff & Janik, 2002) |  

Open Energy Info (EERE)

Isotopic Analysis- Fluid At Long Valley Caldera Area (Goff & Janik, 2002) Isotopic Analysis- Fluid At Long Valley Caldera Area (Goff & Janik, 2002) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Isotopic Analysis- Fluid At Long Valley Caldera Area (Goff & Janik, 2002) Exploration Activity Details Location Long Valley Caldera Area Exploration Technique Isotopic Analysis- Fluid Activity Date Usefulness not indicated DOE-funding Unknown Notes Gas samples from fumaroles, springs, and/or wells. At shallow depths in the caldera References Fraser Goff, Cathy J. Janik (2002) Gas Geochemistry Of The Valles Caldera Region, New Mexico And Comparisons With Gases At Yellowstone, Long Valley And Other Geothermal Systems Retrieved from "http://en.openei.org/w/index.php?title=Isotopic_Analysis-_Fluid_At_Long_Valley_Caldera_Area_(Goff_%26_Janik,_2002)&oldid=692525

102

Isotopic Analysis- Fluid At Valles Caldera - Redondo Area (Goff & Janik,  

Open Energy Info (EERE)

Isotopic Analysis- Fluid At Valles Caldera - Redondo Area (Goff & Janik, Isotopic Analysis- Fluid At Valles Caldera - Redondo Area (Goff & Janik, 2002) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Isotopic Analysis- Fluid At Valles Caldera - Redondo Area (Goff & Janik, 2002) Exploration Activity Details Location Valles Caldera - Redondo Area Exploration Technique Isotopic Analysis- Fluid Activity Date Usefulness not indicated DOE-funding Unknown Notes Gas samples from fumaroles, springs, and/or wells. References Fraser Goff, Cathy J. Janik (2002) Gas Geochemistry Of The Valles Caldera Region, New Mexico And Comparisons With Gases At Yellowstone, Long Valley And Other Geothermal Systems Retrieved from "http://en.openei.org/w/index.php?title=Isotopic_Analysis-_Fluid_At_Valles_Caldera_-_Redondo_Area_(Goff_%26_Janik,_2002)&oldid=692533"

103

Isotopic Analysis- Fluid At Valles Caldera - Sulphur Springs Area (Goff &  

Open Energy Info (EERE)

Isotopic Analysis- Fluid At Valles Caldera - Sulphur Springs Area (Goff & Isotopic Analysis- Fluid At Valles Caldera - Sulphur Springs Area (Goff & Janik, 2002) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Isotopic Analysis- Fluid At Valles Caldera - Sulphur Springs Area (Goff & Janik, 2002) Exploration Activity Details Location Valles Caldera - Sulphur Springs Area Exploration Technique Isotopic Analysis- Fluid Activity Date Usefulness not indicated DOE-funding Unknown Notes Gas samples from fumaroles, springs, and/or wells. References Fraser Goff, Cathy J. Janik (2002) Gas Geochemistry Of The Valles Caldera Region, New Mexico And Comparisons With Gases At Yellowstone, Long Valley And Other Geothermal Systems Retrieved from "http://en.openei.org/w/index.php?title=Isotopic_Analysis-_Fluid_At_Valles_Caldera_-_Sulphur_Springs_Area_(Goff_%26_Janik,_2002)&oldid=692539"

104

Isotopic Analysis At Yellowstone Region (Goff & Janik, 2002) | Open Energy  

Open Energy Info (EERE)

Isotopic Analysis At Yellowstone Region (Goff & Janik, 2002) Isotopic Analysis At Yellowstone Region (Goff & Janik, 2002) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Isotopic Analysis- Fluid At Yellowstone Region (Goff & Janik, 2002) Exploration Activity Details Location Yellowstone Caldera Geothermal Region Exploration Technique Isotopic Analysis- Fluid Activity Date Usefulness not indicated DOE-funding Unknown Notes Gas samples from fumaroles, springs, and/or wells. References Fraser Goff, Cathy J. Janik (2002) Gas Geochemistry Of The Valles Caldera Region, New Mexico And Comparisons With Gases At Yellowstone, Long Valley And Other Geothermal Systems Retrieved from "http://en.openei.org/w/index.php?title=Isotopic_Analysis_At_Yellowstone_Region_(Goff_%26_Janik,_2002)&oldid=687484"

105

Isotopic Analysis At Jemez Springs Area (Goff & Janik, 2002) | Open Energy  

Open Energy Info (EERE)

Isotopic Analysis At Jemez Springs Area (Goff & Janik, 2002) Isotopic Analysis At Jemez Springs Area (Goff & Janik, 2002) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Isotopic Analysis- Fluid At Jemez Springs Area (Goff & Janik, 2002) Exploration Activity Details Location Jemez Springs Area Exploration Technique Isotopic Analysis- Fluid Activity Date Usefulness not indicated DOE-funding Unknown Notes Gas samples from fumaroles, springs, and/or wells. References Fraser Goff, Cathy J. Janik (2002) Gas Geochemistry Of The Valles Caldera Region, New Mexico And Comparisons With Gases At Yellowstone, Long Valley And Other Geothermal Systems Retrieved from "http://en.openei.org/w/index.php?title=Isotopic_Analysis_At_Jemez_Springs_Area_(Goff_%26_Janik,_2002)&oldid=687458"

106

Isotopic Analysis- Fluid At Long Valley Caldera Area (Goff, Et Al., 1991) |  

Open Energy Info (EERE)

Page Page Edit History Facebook icon Twitter icon » Isotopic Analysis- Fluid At Long Valley Caldera Area (Goff, Et Al., 1991) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Isotopic Analysis- Fluid At Long Valley Caldera Area (Goff, Et Al., 1991) Exploration Activity Details Location Long Valley Caldera Area Exploration Technique Isotopic Analysis- Fluid Activity Date Usefulness not indicated DOE-funding Unknown Notes At shallow depths in the caldera References Fraser Goff, Harold A. Wollenberg, D. C. Brookins, Ronald W. Kistler (1991) A Sr-Isotopic Comparison Between Thermal Waters, Rocks, And Hydrothermal Calcites, Long Valley Caldera, California Retrieved from "http://en.openei.org/w/index.php?title=Isotopic_Analysis-_Fluid_At_Long_Valley_Caldera_Area_(Goff,_Et_Al.,_1991)&oldid=692527"

107

Isotopic Analysis-Fluid At Raft River Geothermal Area (1977) | Open Energy  

Open Energy Info (EERE)

Isotopic Analysis-Fluid At Raft River Geothermal Area (1977) Isotopic Analysis-Fluid At Raft River Geothermal Area (1977) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Isotopic Analysis-Fluid At Raft River Geothermal Area (1977) Exploration Activity Details Location Raft River Geothermal Area Exploration Technique Isotopic Analysis- Fluid Activity Date 1977 Usefulness not indicated DOE-funding Unknown Exploration Basis Estimate deep reservoir temperature Notes The oxygen isotope compositions of dissolved sulfate and water from hot springs and shallow drillholes have been tested. Methods are described to calculate the effects of boiling and dilution. The geothermometer, is applied to thermal systems of Yellowstone Park, Wyoming, Long Valley, California, and Raft River, Idaho to estimate deep reservoir temperatures

108

Isotopic Analysis At Northern Basin & Range Region (Cole, 1983...  

Open Energy Info (EERE)

Date Usefulness not indicated DOE-funding Unknown References David R. Cole (1983) Chemical And Isotopic Investigation Of Warm Springs Associated With Normal Faults In Utah...

109

Isotopic Analysis At Newberry Caldera Area (Goles & Lambert,...  

Open Energy Info (EERE)

References Gordon G. Goles, Richard St J. Lambert (1990) A Strontium Isotopic Study Of Newberry Volcano, Central Oregon- Structural And Thermal Implications Retrieved from...

110

Isotopic Analysis At Dixie Valley Geothermal Field Area (Kennedy...  

Open Energy Info (EERE)

system. References B. Mack Kennedy, Matthijs C. van Soest (2005) Regional And Local Trends In Helium Isotopes, Basin And Range Province, Western North America- Evidence For Deep...

111

Geothermometry At Long Valley Caldera Area (Sorey, Et Al., 1991) | Open  

Open Energy Info (EERE)

Long Valley Caldera Area (Sorey, Et Long Valley Caldera Area (Sorey, Et Al., 1991) Exploration Activity Details Location Long Valley Caldera Area Exploration Technique Geothermometry Activity Date Usefulness could be useful with more improvements DOE-funding Unknown Notes Silica-geothermometer temperature estimates for the Casa Diablo and RDO-8 well samples ( 196-202 degrees C) are lower than the corresponding cation-geothermometer temperature estimates, indicating loss of silica with declining reservoir temperature or dilution with low-silica waters. At shallow depths in the caldera References Michael L. Sorey, Gene A. Suemnicht, Neil C. Sturchio, Gregg A. Nordquist (1991) New Evidence On The Hydrothermal System In Long Valley Caldera, California, From Wells, Fluid Sampling, Electrical Geophysics, And

112

Oxygen-isotope geochemistry of quaternary rhyolite from the Mineral Mountains, Utah, USA  

DOE Green Energy (OSTI)

Oxygen isotope analyses were made of phenocryst and glass separates from four Quaternary rhyolite flows and domes in the Mineral Mountains, southwest Utah. With the exception of biotite in all samples and alkali feldspar in the rhyolite domes, all minerals appear to be in close oxygen isotope exchange equilibrium. The geothermometry equations proposed by Bottinga and Javoy (1973) and Javoy (1977) for quartz, alkali feldspar and magnetite produce the best agreement with temperature results fom two-feldspar and iron-titanium oxide geothermometry for these rhyolites. If the rhyolites were generated by partial melting in the crust, their whole-rock (glass) delta/sup 18/O values (6.3 to 6.9 permil) are consistent with generation from I-type (Chappell and White, 1974, O'Neil and Chappell, 1977; O'Neil et. al., 1977) sources.

Bowman, J.R.; Evans, S.H. Jr.; Nash, W.P.

1982-03-01T23:59:59.000Z

113

Detecting intraannual dietary variability in wild mountain gorillas by stable isotope analysis of feces  

E-Print Network (OSTI)

Detecting intraannual dietary variability in wild mountain gorillas by stable isotope analysis 10016; and Departments of c Biology and e Geology and Geophysics, University of Utah, Salt Lake City, UT Board November 1, 2012 (received for review September 19, 2012) We use stable isotope ratios in feces

Rothman, Jessica M.

114

A direct and rapid leaf water extraction method for isotopic analysis  

E-Print Network (OSTI)

technique based on centrifugation/filtration of leaf samples pulverised in their original sampling tubes for isotopic analysis via pyrolysis gas chromatography isotope ratio mass spectrometry (PYR/GC/IRMS). The new of the centrifuge(s) used. This method provides a rapid, low-cost and reliable alternative to conventional vacuum

Yakir, Dan

115

Isotopic Analysis- Rock At Valles Caldera - Sulphur Springs Area (Ito &  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Isotopic Analysis- Rock At Valles Caldera - Sulphur Springs Area (Ito & Tanaka, 1995) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Isotopic Analysis- Rock At Valles Caldera - Sulphur Springs Area (Ito & Tanaka, 1995) Exploration Activity Details Location Valles Caldera - Sulphur Springs Area Exploration Technique Isotopic Analysis- Rock Activity Date Usefulness not indicated DOE-funding Unknown References Hisatoshi Ito, Kazuhiro Tanaka (1995) Insights On The Thermal History Of The Valles Caldera, New Mexico- Evidence From Zircon

116

Isotopic Analysis At U.S. West Region (Welhan, Et Al., 1988) | Open Energy  

Open Energy Info (EERE)

U.S. West Region (Welhan, Et Al., 1988) U.S. West Region (Welhan, Et Al., 1988) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Isotopic Analysis- Fluid At U.S. West Region (Welhan, Et Al., 1988) Exploration Activity Details Location U.S. West Region Exploration Technique Isotopic Analysis- Fluid Activity Date Usefulness useful DOE-funding Unknown Notes Helium isotope ratios are not correlated with regional heat flow in the western United States. High helium isotope ratios (R/RA > 2) occur only in magma-based geothermal systems. A direct correlation exists between geothermal reservoir temperature and helium isotope ratio of the fluids, suggesting that both heat and helium in a geothermal reservoir are derived from a shallow magmatic source. The rapid lateral decrease in 3He away from

117

Isotopic Analysis-Fluid At Geysers Geothermal Area (1982) | Open Energy  

Open Energy Info (EERE)

82) 82) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Isotopic Analysis-Fluid At Geysers Geothermal Area (1982) Exploration Activity Details Location Geysers Geothermal Area Exploration Technique Isotopic Analysis-Fluid Activity Date 1982 Usefulness not indicated DOE-funding Unknown Notes Helium isotope ratios have been measured in geothermal fluids. These ratios have been interpreted in terms of the processes which supply He in distinct isotopic ratios (i.e. magmatic He, ~10 Ra; atmospheric He, Ra; and crustal He, ~0.1 Ra) and in terms of the processes which can alter the isotopic ratio (hydrologic mixing, U-Th series alpha production and weathering release of crustal He, magma aging and tritiugenic addition of 3He). Raft

118

Isotopic Analysis At Dixie Valley Geothermal Field Area (Kennedy & Van  

Open Energy Info (EERE)

Dixie Valley Geothermal Field Area (Kennedy & Van Dixie Valley Geothermal Field Area (Kennedy & Van Soest, 2005) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Isotopic Analysis- Fluid At Dixie Valley Geothermal Field Area (Kennedy & Van Soest, 2005) Exploration Activity Details Location Dixie Valley Geothermal Field Area Exploration Technique Isotopic Analysis- Fluid Activity Date Usefulness useful DOE-funding Unknown Notes Dixie Valley study suggests that helium isotopes may provide a new tool for mapping zones of deep permeability and therefore the potential for high fluid temperatures. The permeable zones are identified by local enrichments in 3He relative to a regional helium isotope trend. More work needs to be done, but it appears that helium isotopes may provide the best and perhaps

119

Isotopic Analysis At Kilauea East Rift Area (Quane, Et Al., 2000) | Open  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Isotopic Analysis At Kilauea East Rift Area (Quane, Et Al., 2000) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Isotopic Analysis- Rock At Kilauea East Rift Area (Quane, Et Al., 2000) Exploration Activity Details Location Kilauea East Rift Area Exploration Technique Isotopic Analysis- Rock Activity Date Usefulness not indicated DOE-funding Unknown References S. L. Quane, M. O. Garcia, H. Guillou, T. P. Hulsebosch (2000) Magmatic History Of The East Rift Zone Of Kilauea Volcano, Hawaii Based On Drill Core From Soh 1 Retrieved from "http://en.openei.org/w/index.php?title=Isotopic_Analysis_At_Kilauea_East_Rift_Area_(Quane,_Et_Al.,_2000)&oldid=687735"

120

Isotopic Analysis- Fluid At Chena Area (Erkan, Et. Al., 2008) | Open Energy  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Isotopic Analysis- Fluid At Chena Area (Erkan, Et. Al., 2008) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Isotopic Analysis- Fluid At Chena Area (Erkan, Et. Al., 2008) Exploration Activity Details Location Chena Area Exploration Technique Isotopic Analysis- Fluid Activity Date Usefulness useful DOE-funding Unknown Notes Stable isotope analyses showthat thermalwaters at Chena Hot Springs are meteoric in origin. A Carbon-14 analysis indicates that the age of the springwaters is less than 3000 years. The minimum depth of circulation must

Note: This page contains sample records for the topic "geothermometry isotopic analysis" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Isotopic Analysis At U.S. West Region (Krohn, Et Al., 1993) | Open Energy  

Open Energy Info (EERE)

Isotopic Analysis At U.S. West Region (Krohn, Et Al., 1993) Isotopic Analysis At U.S. West Region (Krohn, Et Al., 1993) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Isotopic Analysis- Rock At U.S. West Region (Krohn, Et Al., 1993) Exploration Activity Details Location U.S. West Region Exploration Technique Isotopic Analysis- Rock Activity Date Usefulness useful DOE-funding Unknown Notes The purpose of this discussion is to document mineralogic and textural characteristics of ammonium-bearing minerals at several known gold and mercury-bearing hydrothermal systems. Submicroscopic textural and paragenetic relations of ammonium-bearing minerals are examined at two gold deposits, Ivanhoe, Nevada and McLaughlin, California (Fig. 1 ), to understand how ammonium is related to other hydrothermal minerals. Nitrogen

122

Isotopic Analysis- Fluid At Valles Caldera - Redondo Area (White, Et Al.,  

Open Energy Info (EERE)

Isotopic Analysis- Fluid At Valles Caldera - Redondo Area (White, Et Al., Isotopic Analysis- Fluid At Valles Caldera - Redondo Area (White, Et Al., 1992) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Isotopic Analysis- Fluid At Valles Caldera - Redondo Area (White, Et Al., 1992) Exploration Activity Details Location Valles Caldera - Redondo Area Exploration Technique Isotopic Analysis- Fluid Activity Date Usefulness not indicated DOE-funding Unknown Notes Used various geochemical techniques to obtain data from which information regarding mass transfer rates. This then led to conclucions of the history/evolution of the geothermal system. Unclear whether useful for exploration purposes. References Art F. White, Nancy J. Chuma, Fraser Goff (1992) Mass Transfer Constraints On The Chemical Evolution Of An Active Hydrothermal System,

123

Isotopic Analysis At Lassen Volcanic National Park Area (Janik & Mclaren,  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Isotopic Analysis At Lassen Volcanic National Park Area (Janik & Mclaren, 2010) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Isotopic Analysis- Fluid At Lassen Volcanic National Park Area (Janik & Mclaren, 2010) Exploration Activity Details Location Lassen Volcanic National Park Area Exploration Technique Isotopic Analysis- Fluid Activity Date Usefulness useful DOE-funding Unknown Notes Both fluid and gas isotopic analysis. References Cathy J. Janik, Marcia K. McLaren (2010) Seismicity And Fluid Geochemistry At Lassen Volcanic National Park, California- Evidence For Two

124

Isotopic Analysis At Nw Basin & Range Region (Laney, 2005) | Open Energy  

Open Energy Info (EERE)

Isotopic Analysis At Nw Basin & Range Region (Laney, 2005) Isotopic Analysis At Nw Basin & Range Region (Laney, 2005) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Isotopic Analysis- Fluid At Nw Basin & Range Region (Laney, 2005) Exploration Activity Details Location Northwest Basin and Range Geothermal Region Exploration Technique Isotopic Analysis- Fluid Activity Date Usefulness not indicated DOE-funding Unknown Notes Geochemical Sampling of Thermal and Non-thermal Waters in Nevada, Shevenell and Garside. The objective of this project is to obtain geochemical data from springs (and some wells) for which data are not publicly available, or for which the analyses are incomplete, poor, or nonexistent. With these data, geothermometers are being calculated and a preliminary assessment of

125

Isotopic Analysis- Fluid At Fenton Hill Hdr Geothermal Area (Goff, Et Al.,  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Isotopic Analysis- Fluid At Fenton Hill Hdr Geothermal Area (Goff, Et Al., 1981) (Redirected from Isotopic Analysis At Fenton Hill Hdr Geothermal Area (Goff, Et Al., 1981)) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Isotopic Analysis- Fluid At Fenton Hill Hdr Geothermal Area (Goff, Et Al., 1981) Exploration Activity Details Location Fenton Hill Hdr Geothermal Area Exploration Technique Isotopic Analysis- Fluid Activity Date Usefulness not indicated DOE-funding Unknown References Fraser E. Goff, Charles O. Grigsby, Pat E. Trujillo Jr, Dale Counce,

126

Isotopic Analysis- Fluid At Salt Wells Area (Shevenell & Garside, 2003) |  

Open Energy Info (EERE)

Isotopic Analysis- Fluid At Salt Wells Area (Shevenell & Garside, 2003) Isotopic Analysis- Fluid At Salt Wells Area (Shevenell & Garside, 2003) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Isotopic Analysis- Fluid At Salt Wells Area (Shevenell & Garside, 2003) Exploration Activity Details Location Salt Wells Geothermal Area Exploration Technique Isotopic Analysis- Fluid Activity Date 2002 - 2002 Usefulness not useful DOE-funding Unknown Exploration Basis The objective of the study was to expand knowledge of Nevada's geothermal resource potential by providing new geochemical data from springs in less studied geothermal areas and to refine geochemical data from springs for which only incomplete data were available. This work fills in gaps in publicly available geochemical data, thereby enabling comprehensive

127

Isotopic Analysis At Walker-Lane Transitional Zone Region (Kennedy & Van  

Open Energy Info (EERE)

Kennedy & Van Kennedy & Van Soest, 2007) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Isotopic Analysis- Fluid At Walker-Lane Transitional Zone Region (Kennedy & Van Soest, 2007) Exploration Activity Details Location Walker-Lane Transition Zone Geothermal Region Exploration Technique Isotopic Analysis- Fluid Activity Date Usefulness useful regional reconnaissance DOE-funding Unknown Notes The correspondence of helium isotope ratios and active transtensional deformation indicates a deformation-enhanced permeability and that mantle fluids can penetrate the ductile lithosphere, even in regions where there is no substantial magmatism. Superimposed on the regional trend are local, high 3He/4He anomalies indicating hidden magmatic activity and/or deep

128

Isotopic Analysis- Fluid At Long Valley Caldera Area (Evans, Et Al., 2002)  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Isotopic Analysis- Fluid At Long Valley Caldera Area (Evans, Et Al., 2002) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Isotopic Analysis- Fluid At Long Valley Caldera Area (Evans, Et Al., 2002) Exploration Activity Details Location Long Valley Caldera Area Exploration Technique Isotopic Analysis- Fluid Activity Date Usefulness useful DOE-funding Unknown Notes Detailed chemical and isotopic studies not only help quantify the discharge, but also may provide additional insight to subsurface conditions. For example, CO2-rich groundwaters that are cold and dilute may

129

Stable carbon isotope ratio of polycyclic aromatic hydrocarbons (PAHs) in the environment: validation of isolation and stable carbon isotope analysis methods  

E-Print Network (OSTI)

Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous, toxic contaminants that are released to the environment from various petrogenic and pyrogenic sources. In an effort to more clearly identify and trace sources of PAHs in the environment, purification and compound specific isotope analysis methods were developed to accurately measure the stable carbon isotope ratio of individual PAHs. Development of the method included improving accuracy and precision of the isotopic measurement by producing highly pure extracts using various chromatographic techniques. The method was refined by improving compound separations using purification techniques and high resolution chromatographic columns. The purification method consists of alumina/silica gel column chromatography, gel permeation chromatography and thin layer chromatography. The mean recovery of PAHs after the purification procedure was approximately 80 %. Sample purities after purification were verified by GC/FID and full scan mass spectrometry. To better resolve peaks and provide more accurate stable carbon isotope measurements, various gas chromatographic conditions were evaluated. The precision of the method ranged between 0.08 and 0.43 . The analytical protocols were evaluated to confirm compositional and stable isotopic integrity during purification and stable isotopic analysis. To confirm the utility of the purification and isotope analysis methods, various environmental samples from marine, land and lacustrine environments were analyzed. The isolates were analyzed for the composition and the stable carbon isotope ratios of PAHs. The stable carbon isotope ratio was measured by GC/IRMS and the results, along with quantitative compound compositions, were used to characterize and identify the contaminant sources. The sources of the PAHs in the study areas were differentiated by PAH molecular ratios and confirmed by stable carbon isotope ratios. This study confirms that compound specific isotope analysis of pollutants by GC/IRMS can be used to identify PAH sources in environmental samples. The study also confirms that the purification and stable carbon isotope analysis methods that were developed can be used to accurately measure the stable carbon isotope ratios of PAHs in environmental samples for the purpose of source identification. GC/IRMS measurement of stable isotopic compositions can be an effective fingerprinting method when used in conjunction with traditional molecular composition methods.

Kim, Moon Koo

2004-08-01T23:59:59.000Z

130

Isotopic Analysis- Fluid At Valles Caldera - Sulphur Springs Area (Rao, Et  

Open Energy Info (EERE)

Analysis- Fluid At Valles Caldera - Sulphur Springs Area (Rao, Et Analysis- Fluid At Valles Caldera - Sulphur Springs Area (Rao, Et Al., 1996) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Isotopic Analysis- Fluid At Valles Caldera - Sulphur Springs Area (Rao, Et Al., 1996) Exploration Activity Details Location Valles Caldera - Sulphur Springs Area Exploration Technique Isotopic Analysis- Fluid Activity Date Usefulness useful DOE-funding Unknown References U. Fehn, R. T. D. Teng, Usha Rao, Fraser E. Goff (1996) Sources Of Chloride In Hydrothermal Fluids From The Valles Caldera, New Mexico- A 36Cl Study Retrieved from "http://en.openei.org/w/index.php?title=Isotopic_Analysis-_Fluid_At_Valles_Caldera_-_Sulphur_Springs_Area_(Rao,_Et_Al.,_1996)&oldid=692543" Category: Exploration

131

Cu isotope fractionation during bornite dissolution: An in situ X-ray diffraction analysis  

Science Conference Proceedings (OSTI)

Low-temperature ore deposits exhibit a large variation in {delta}{sup 65}Cu ({approx}12{per_thousand}), and this range has been attributed, in part, to isotope fractionation during weathering reactions of primary minerals such as chalcocite and chalcopyrite. Here, we examine the fractionation of Cu isotopes during dissolution of another important Cu ore mineral, bornite, using a novel approach that combines time-resolved X-ray diffraction (XRD) and isotope analysis of reaction products. During the initial stages of bornite oxidative dissolution by ferric sulfate ( 20 mol% Cu was leached from the solid, the difference between the Cu isotope composition of the aqueous and mineral phases approached zero, with {Delta}{sub aq - min}{sup 0} values ranging from - 0.21 {+-} 0.61{per_thousand} to 0.92 {+-} 0.25{per_thousand}. XRD analysis allowed us to correlate changes in the atomic structure of bornite with the apparent isotope fractionation as the dissolution reaction progressed. These data revealed that the greatest degree of apparent fractionation is accompanied by a steep contraction in the unit-cell volume, which we identified as a transition from stoichiometric to non-stoichiometric bornite. We propose that the initially high {Delta}{sub aq - min} values result from isotopically heavy Cu ({sup 65}Cu) concentrating within Cu{sup 2+} during dissolution. The decrease in the apparent isotope fractionation as the reaction progresses occurs from the distillation of isotopically heavy Cu ({sup 65}Cu) during dissolution or kinetic isotope effects associated with the depletion of Cu from the surfaces of bornite particles.

Wall, Andrew J.; Mathur, Ryan; Post, Jeffrey E.; Heaney, Peter J. (Juniata); (Smithsonian); (Penn)

2012-10-24T23:59:59.000Z

132

Secondary Ionization Mass Spectrometric Analysis of Impurity Element Isotope Ratios in Nuclear Reactor Materials  

Science Conference Proceedings (OSTI)

Secondary ion mass spectrometry (SIMS) analysis has been used to measure isotope ratios of selected impurity elements in irradiated reactor materials. Samples of reactor materials such as graphite or aluminum alloys are obtained from fuel channels or supporting materials. During reactor operations and fuel burn up, some isotopic abundances change due to nuclear reactions and provide sensitive indicators of neutron fluence. The rate of change is related to cross section for a particular isotope. Different isotopes can be used as indicators of burn up during different stages in the reactor operating history. Isotope ratios of B are useful indicators for low burnup stages early in reactor operations, Ti isotope ratios are useful at later burn up stages, and Cl isotope ratios are useful in both early and later stages. Knowledge of the sample position within the reactor also yields information on the fluence shape or profile. In a sequence of samples from one reactor, 10B/11B ratios decreased from near natural values of 0.25 to blasting, plasma etching, and vacuum furnace treatment.

Gerlach, David C.; Cliff, John B.; Hurley, David E.; Reid, Bruce D.; Little, Winston W.; Meriwether, George H.; Wickham, Anthony J.; Simmons, Tere A.

2006-07-30T23:59:59.000Z

133

Isotopic Analysis At Cascades Region (Kennedy & Van Soest, 2007) | Open  

Open Energy Info (EERE)

Analysis At Cascades Region (Kennedy & Van Soest, 2007) Analysis At Cascades Region (Kennedy & Van Soest, 2007) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Isotopic Analysis-Fluid At Cascades Region (Kennedy & Van Soest, 2007) Exploration Activity Details Location Cascades Geothermal Region Exploration Technique Isotopic Analysis- Fluid Activity Date Usefulness useful regional reconnaissance DOE-funding Unknown Notes The correspondence of helium isotope ratios and active transtensional deformation indicates a deformation-enhanced permeability and that mantle fluids can penetrate the ductile lithosphere, even in regions where there is no substantial magmatism. Superimposed on the regional trend are local, high 3He/4He anomalies indicating hidden magmatic activity and/or deep

134

SIMS ISOTOPIC ANALYSIS OF INTERPLANETARY DUST FROM SPACE-EXPOSED AEROGEL. F. J. Stadermann  

E-Print Network (OSTI)

SIMS ISOTOPIC ANALYSIS OF INTERPLANETARY DUST FROM SPACE-EXPOSED AEROGEL. F. J. Stadermann 1: Aerogel is the medium of choice for the intact capture of small particles in space, because it is capable materials [1, 2]. After space-exposed aerogel is returned to the laboratory, the first step of analysis

135

Isotopic Analysis At Geyser Bight Area (Motyka, Et Al., 1993) | Open Energy  

Open Energy Info (EERE)

Geyser Bight Area (Motyka, Et Al., 1993) Geyser Bight Area (Motyka, Et Al., 1993) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Isotopic Analysis- Fluid At Geyser Bight Area (Motyka, Et Al., 1993) Exploration Activity Details Location Geyser Bight Area Exploration Technique Isotopic Analysis- Fluid Activity Date Usefulness useful DOE-funding Unknown References Roman J. Motyka, Christopher J. Nye, Donald L. Turner, Shirley A. Liss (1993) The Geyser Bight Geothermal Area, Umnak Island, Alaska Retrieved from "http://en.openei.org/w/index.php?title=Isotopic_Analysis_At_Geyser_Bight_Area_(Motyka,_Et_Al.,_1993)&oldid=687446" Categories: Exploration Activities DOE Funded Activities What links here Related changes Special pages Printable version Permanent link

136

Isotopic Analysis- Fluid At Valles Caldera - Redondo Area (Rao, Et Al.,  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Isotopic Analysis- Fluid At Valles Caldera - Redondo Area (Rao, Et Al., 1996) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Isotopic Analysis- Fluid At Valles Caldera - Redondo Area (Rao, Et Al., 1996) Exploration Activity Details Location Valles Caldera - Redondo Area Exploration Technique Isotopic Analysis- Fluid Activity Date Usefulness useful DOE-funding Unknown References U. Fehn, R. T. D. Teng, Usha Rao, Fraser E. Goff (1996) Sources Of Chloride In Hydrothermal Fluids From The Valles Caldera, New Mexico- A 36Cl Study Retrieved from

137

Isotopic Analysis At Seven Mile Hole Area (Larson, Et Al., 2009) | Open  

Open Energy Info (EERE)

2009) 2009) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Isotopic Analysis- Rock At Seven Mile Hole Area (Larson, Et Al., 2009) Exploration Activity Details Location Seven Mile Hole Area Exploration Technique Isotopic Analysis- Rock Activity Date Usefulness useful DOE-funding Unknown Notes The 40Ar/39Ar data were collected from a single fragment of alunite from sample Y-05-25, approximately 0.5 cm3 in size. References Peter B. Larson, Allison Phillips, David John, Michael Cosca, Chad Pritchard, Allen Andersen, Jennifer Manion (2009) A Preliminary Study Of Older Hot Spring Alteration In Sevenmile Hole, Grand Canyon Of The Yellowstone River, Yellowstone Caldera, Wyoming Retrieved from "http://en.openei.org/w/index.php?title=Isotopic_Analysis_At_Seven_Mile_Hole_Area_(Larson,_Et_Al.,_2009)&oldid=68747

138

Isotopic Analysis At Reese River Area (Henkle & Ronne, 2008) | Open Energy  

Open Energy Info (EERE)

Henkle & Ronne, 2008) Henkle & Ronne, 2008) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Isotopic Analysis- Fluid At Reese River Area (Henkle & Ronne, 2008) Exploration Activity Details Location Reese River Area Exploration Technique Isotopic Analysis- Fluid Activity Date Usefulness useful regional reconnaissance DOE-funding Unknown Notes Four formation water samples were collected from well 56-4, during an airlift test which took place between November 11 and November 14, 2007. One sample was taken from the Steiner Well which was the source for drilling water for the drilling of 56-4 and for the short injection test. The samples were analyzed by Thermochem for chemical constituents and by Rafter Lab at GNS for isotope analysis. References

139

Isotopic Analysis- Fluid At Fenton Hill Hdr Geothermal Area (Rao, Et Al.,  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Isotopic Analysis- Fluid At Fenton Hill Hdr Geothermal Area (Rao, Et Al., 1996) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Isotopic Analysis- Fluid At Fenton Hill Hdr Geothermal Area (Rao, Et Al., 1996) Exploration Activity Details Location Fenton Hill Hdr Geothermal Area Exploration Technique Isotopic Analysis- Fluid Activity Date Usefulness useful DOE-funding Unknown References U. Fehn, R. T. D. Teng, Usha Rao, Fraser E. Goff (1996) Sources Of Chloride In Hydrothermal Fluids From The Valles Caldera, New Mexico- A 36Cl Study Retrieved from

140

Isotopic Analysis At U.S. West Region (Laney, 2005) | Open Energy  

Open Energy Info (EERE)

Isotopic Analysis- Fluid At U.S. West Region (Laney, Isotopic Analysis- Fluid At U.S. West Region (Laney, 2005) Exploration Activity Details Location U.S. West Region Exploration Technique Isotopic Analysis- Fluid Activity Date Usefulness useful DOE-funding Unknown Notes Characterization and Conceptual Modeling of Magmatically-Heated and Deep-Circulation, High-Temperature Hydrothermal Systems in the Basin and Range and Cordilleran United States, Moore, Nash, Nemcok, Lutz, Norton, Kaspereit, Berard, van de Putte, Johnson and Deymonaz. Utilizing a wealth of formerly proprietary subsurface samples and datasets for exemplary high-temperature western U.S. geothermal systems, develop and publish detailed and refined new conceptual and numerical hydrothermal-history models of fundamental scientific import but, more importantly, of use to

Note: This page contains sample records for the topic "geothermometry isotopic analysis" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Isotopic Analysis At Walker-Lane Transitional Zone Region (Laney, 2005) |  

Open Energy Info (EERE)

Isotopic Analysis- Fluid At Walker-Lane Transitional Isotopic Analysis- Fluid At Walker-Lane Transitional Zone Region (Laney, 2005) Exploration Activity Details Location Walker-Lane Transition Zone Geothermal Region Exploration Technique Isotopic Analysis- Fluid Activity Date Usefulness not indicated DOE-funding Unknown Notes Geochemical Sampling of Thermal and Non-thermal Waters in Nevada, Shevenell and Garside. The objective of this project is to obtain geochemical data from springs (and some wells) for which data are not publicly available, or for which the analyses are incomplete, poor, or nonexistent. With these data, geothermometers are being calculated and a preliminary assessment of the geothermal potential and ranking of the sampled areas is being conducted using the new geochemical data. Objectives changed slightly in

142

Isotopic Analysis At Geysers Area (Lambert & Epstein, 1992) | Open Energy  

Open Energy Info (EERE)

Isotopic Analysis- Rock At Geysers Area (Lambert & Isotopic Analysis- Rock At Geysers Area (Lambert & Epstein, 1992) Exploration Activity Details Location Geysers Area Exploration Technique Isotopic Analysis- Rock Activity Date Usefulness useful DOE-funding Unknown Notes Measurements of 180/160, 13C/12C and D/H ratio variations were made by the usual methods (McCrea, 1950; Taylor and Epstein, 1962; Epstein and Taylor, 1970) using mass spectrometers of the type described by Nier (1947) with modifications by McKinney et al. (1950). Results are reported in 8-notation with respect to the SMOW (Craig, 1961 ) and PDB (Urey et al., 1951 ) standards. Analytical precisions for multiple analyses of any single sample were _+ 0.2%0 for oxygen and carbon and _ 1%o for hydrogen. Inhomogeneities of cuttings fractions gave rise to variations within single cuttings

143

Isotopic Analysis At Northern Basin & Range Region (Laney, 2005) | Open  

Open Energy Info (EERE)

Isotopic Analysis- Fluid At Northern Basin & Range Isotopic Analysis- Fluid At Northern Basin & Range Region (Laney, 2005) Exploration Activity Details Location Northern Basin and Range Geothermal Region Exploration Technique Isotopic Analysis- Fluid Activity Date Usefulness not indicated DOE-funding Unknown Notes Geochemical Sampling of Thermal and Non-thermal Waters in Nevada, Shevenell and Garside. The objective of this project is to obtain geochemical data from springs (and some wells) for which data are not publicly available, or for which the analyses are incomplete, poor, or nonexistent. With these data, geothermometers are being calculated and a preliminary assessment of the geothermal potential and ranking of the sampled areas is being conducted using the new geochemical data. Objectives changed slightly in

144

Isotopic Analysis- Fluid At Fenton Hill Hdr Geothermal Area (Goff & Janik,  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Isotopic Analysis- Fluid At Fenton Hill Hdr Geothermal Area (Goff & Janik, 2002) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Isotopic Analysis- Fluid At Fenton Hill Hdr Geothermal Area (Goff & Janik, 2002) Exploration Activity Details Location Fenton Hill Hdr Geothermal Area Exploration Technique Isotopic Analysis- Fluid Activity Date Usefulness not indicated DOE-funding Unknown Notes Gas samples from HDR well References Fraser Goff, Cathy J. Janik (2002) Gas Geochemistry Of The Valles Caldera Region, New Mexico And Comparisons With Gases At Yellowstone, Long

145

Isotopic Analysis At Buffalo Valley Hot Springs Area (Laney, 2005) | Open  

Open Energy Info (EERE)

Isotopic Analysis- Fluid At Buffalo Valley Hot Isotopic Analysis- Fluid At Buffalo Valley Hot Springs Area (Laney, 2005) Exploration Activity Details Location Buffalo Valley Hot Springs Area Exploration Technique Isotopic Analysis- Fluid Activity Date Usefulness not indicated DOE-funding Unknown Notes Geochemical Sampling of Thermal and Non-thermal Waters in Nevada, Shevenell and Garside. The objective of this project is to obtain geochemical data from springs (and some wells) for which data are not publicly available, or for which the analyses are incomplete, poor, or nonexistent. With these data, geothermometers are being calculated and a preliminary assessment of the geothermal potential and ranking of the sampled areas is being conducted using the new geochemical data. Objectives changed slightly in

146

Isotopic Analysis-Fluid At Long Valley Caldera Geothermal Area (1977) |  

Open Energy Info (EERE)

Fluid At Long Valley Caldera Geothermal Area (1977) Fluid At Long Valley Caldera Geothermal Area (1977) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Isotopic Analysis-Fluid At Long Valley Caldera Geothermal Area (1977) Exploration Activity Details Location Long Valley Caldera Geothermal Area Exploration Technique Isotopic Analysis-Fluid Activity Date 1977 Usefulness not indicated DOE-funding Unknown Exploration Basis Estimate deep reservoir temperature Notes The oxygen isotope compositions of dissolved sulfate and water from hot springs and shallow drillholes have been tested. Methods are described to calculate the effects of boiling and dilution. The geothermometer, is applied to thermal systems of Yellowstone Park, Wyoming, Long Valley, California, and Raft River, Idaho to estimate deep reservoir temperatures

147

Isotopic Analysis At Nw Basin & Range Region (Kennedy & Van Soest, 2007) |  

Open Energy Info (EERE)

Nw Basin & Range Region (Kennedy & Van Soest, 2007) Nw Basin & Range Region (Kennedy & Van Soest, 2007) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Isotopic Analysis- Fluid At Nw Basin & Range Region (Kennedy & Van Soest, 2007) Exploration Activity Details Location Northwest Basin and Range Geothermal Region Exploration Technique Isotopic Analysis- Fluid Activity Date Usefulness useful regional reconnaissance DOE-funding Unknown Notes The correspondence of helium isotope ratios and active transtensional deformation indicates a deformation-enhanced permeability and that mantle fluids can penetrate the ductile lithosphere, even in regions where there is no substantial magmatism. Superimposed on the regional trend are local, high 3He/4He anomalies indicating hidden magmatic activity and/or deep

148

Isotopic Analysis At Northern Basin & Range Region (Kennedy & Van Soest,  

Open Energy Info (EERE)

Northern Basin & Range Region (Kennedy & Van Soest, Northern Basin & Range Region (Kennedy & Van Soest, 2007) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Isotopic Analysis- Fluid At Northern Basin & Range Region (Kennedy & Van Soest, 2007) Exploration Activity Details Location Northern Basin and Range Geothermal Region Exploration Technique Isotopic Analysis- Fluid Activity Date Usefulness useful regional reconnaissance DOE-funding Unknown Notes The correspondence of helium isotope ratios and active transtensional deformation indicates a deformation-enhanced permeability and that mantle fluids can penetrate the ductile lithosphere, even in regions where there is no substantial magmatism. Superimposed on the regional trend are local, high 3He/4He anomalies indicating hidden magmatic activity and/or deep

149

Isotopic Analysis At Clear Lake Area (Thompson, Et Al., 1992) | Open Energy  

Open Energy Info (EERE)

Clear Lake Area (Thompson, Et Al., 1992) Clear Lake Area (Thompson, Et Al., 1992) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Isotopic Analysis- Fluid At Clear Lake Area (Thompson, Et Al., 1992) Exploration Activity Details Location Clear Lake Area Exploration Technique Isotopic Analysis- Fluid Activity Date Usefulness useful DOE-funding Unknown Notes Deuterium and oxygen- 18 values of the thermal waters indicate that they recharged locally and became K271enriched in oxygen-18 by exchange with rock. The isotopic composition of the waters indicates that they are of meteoric origin. A plot of deuterium versus chloride indicates that as the chloride concentration increases, the deuterium composition remains essentially constant. A plot of oxygen-18 versus chloride shows that the

150

Compound Specific Stable Nitrogen Isotope Analysis of Amino Acids: What can this Novel Technique tell us about  

E-Print Network (OSTI)

Compound Specific Stable Nitrogen Isotope Analysis of Amino Acids: What can this Novel Technique, Jeff Seminoff2 1Department of Geology and Geophysics, University of Hawaii 2Southwest Fisheries Science trophic models, but relationships often complex and dynamic #12;· Bulk tissue nitrogen isotope analysis

Hawai'i at Manoa, University of

151

Isotopic Depletion and Decay Methods and Analysis Capabilities in SCALE  

Science Conference Proceedings (OSTI)

Technical Paper / Special Issue on the SCALE Nuclear Analysis Code System / Fuel Cycle and Management

Ian C. Gauld; Georgeta Radulescu; Germina Ilas; Brian D. Murphy; Mark L. Williams; Dorothea Wiarda

152

Compressed Air Sample Technology for Isotopic Analysis of Atmospheric Carbon Monoxide  

Science Conference Proceedings (OSTI)

A methodology for the collection of large (1000 L) air samples for isotopic analysis of atmospheric carbon monoxide is presented. A low-background, high-pressure, high-flow sampling system with a residual background of less than 2 ppbv CO has ...

John E. Mak; Carl A. M. Brenninkmeijer

1994-04-01T23:59:59.000Z

153

Analysis of gas centrifuge cascade for separation of multicomponent isotopes and optimal feed position  

SciTech Connect

Analysis of the concentration distribution in a gas centrifuge cascade for separation of multicomponent isotope mixtures is different from that in a cascade for separation of two-component mixtures. This paper presents the governing equations for a multicomponent isotope separation cascade. Numerically predicted separation factors for the gas centrifuge cascade agree well with the experimental data. A theoretical optimal feed position is derived for a short square cascade for a two-component mixture in a close-separation case. The optimal feed position for a gas centrifuge cascade for separation of multicomponent mixture is discussed.

Chuntong Ying; Hongjiang Wu; Mingsheng Zhou; Yuguang Nie; Guangjun Liu [Tsinghua Univ., Beijing (China)

1997-10-01T23:59:59.000Z

154

Development of high through-put Sr isotope analysis for monitoring reservoir integrity for CO{sub 2} storage.  

SciTech Connect

Recent innovations in multi-collector ICP-mass spectrometry (MC-ICP-MS) have allowed for rapid and precise measurements of isotope ratios in geological samples. Naturally occurring Sr isotopes has the potential for use in Monitoring, Verification, and Accounting (MVA) associated with geologic CO2 storage. Sr isotopes can be useful for: Sensitive tracking of brine migration; Determining seal rock leakage; Studying fluid/rock reactions. We have optimized separation chemistry procedures that will allow operators to prepare samples for Sr isotope analysis off site using rapid, low cost methods.

Wall, Andy; Jain, Jinesh; Stewart, Brian; Capo, Rosemary; Hakala, Alexandra J.; Hammack, Richard; Guthrie, George

2012-01-01T23:59:59.000Z

155

Isotopic Analysis At Geysers Area (Kennedy & Truesdell, 1996) | Open Energy  

Open Energy Info (EERE)

Geysers Area (Kennedy & Truesdell, 1996) Geysers Area (Kennedy & Truesdell, 1996) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Isotopic Analysis- Fluid At Geysers Area (Kennedy & Truesdell, 1996) Exploration Activity Details Location Geysers Area Exploration Technique Isotopic Analysis- Fluid Activity Date Usefulness could be useful with more improvements DOE-funding Unknown Notes The evidence provided by the noble gases for a magmatic gas component in the Northwest Geysers adds new constraints to genetic models of the system and its evolution. The high proportion of magmatic gas and high total NCG in HTR steam are inconsistent with an origin of the vapor-dominated Northwest Geysers reservoir from deep boiling of a connate or metamorphic water. Instead, the strong magmatic component suggests that the HTR and the

156

Geochemical Techniques | Open Energy Information  

Open Energy Info (EERE)

Geochemical Techniques Geochemical Techniques Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Geochemical Techniques Details Activities (0) Areas (0) Regions (0) NEPA(1) Exploration Technique Information Exploration Group: Geochemical Techniques Exploration Sub Group: None Parent Exploration Technique: Exploration Techniques Information Provided by Technique Lithology: Stratigraphic/Structural: Hydrological: Thermal: Dictionary.png Geochemical Techniques: No definition has been provided for this term. Add a Definition Related Techniques Geochemical Techniques Geochemical Data Analysis Geothermometry Gas Geothermometry Isotope Geothermometry Liquid Geothermometry Cation Geothermometers Multicomponent Geothermometers Silica Geothermometers Thermal Ion Dispersion

157

Sensitive multi-photon nonlinear laser spectroscopic methods for isotope analysis in atmospheric and environmental applications  

E-Print Network (OSTI)

isotopic spectra of atomic chlorine with its two naturallythese applications. Figure 2.4 Chlorine isotope ratios inIsotope Measurements of Atomic Chlorine Using a Low-Pressure

Lyons, Wendy Jean

2009-01-01T23:59:59.000Z

158

Compound and Elemental Analysis At Akutan Fumaroles Area (Kolker, Et Al.,  

Open Energy Info (EERE)

Akutan Fumaroles Area (Kolker, Et Al., Akutan Fumaroles Area (Kolker, Et Al., 2010) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Compound and Elemental Analysis At Akutan Fumaroles Area (Kolker, Et Al., 2010) Exploration Activity Details Location Akutan Fumaroles Area Exploration Technique Compound and Elemental Analysis Activity Date Usefulness useful DOE-funding Unknown Notes The chemistry of the hot springs strongly suggests the existence of a neutral chloride reservoir with economically developable temperature. The fluid geothermometry tells a consistent story, with cation geothermometry detecting a >210degrees C reservoir temperature, probably near the fumarole, and silica geothermometry and presence of sinter suggesting that 160 to 180degrees C exists close to hot spring B.

159

Partial Safety Analysis for a Reduced Uranium Enrichment Core for the High Flux Isotope Reactor  

SciTech Connect

A computational model of the reactor core of the High Flux Isotope Rector (HFIR) was developed in order to analyze non-destructive accidents caused by transients during reactor operation. The reactor model was built for the latest version of the nuclear analysis software package called Program for the Analysis of Reactor Transients (PARET). Analyses performed with the model constructed were compared with previous data obtained with other tools in order to benchmark the code. Finally, the model was used to analyze the behavior of the reactor under transients using a different nuclear fuel with lower enrichment of uranium (LEU) than the fuel currently used, which has a high enrichment of uranium (HEU). The study shows that the presence of fertile isotopes in LEU fuel, which increases the neutron resonance absorption, reduces the impact of transients on the fuel and enhances the negative reactivity feedback, thus, within the limitations of this study, making LEU fuel appear to be a safe alternative fuel for the reactor core.

Primm, Trent [ORNL; Gehin, Jess C [ORNL

2009-04-01T23:59:59.000Z

160

ANALYSIS OF RICIN TOXIN PREPARATIONS FOR CARBOHYDRATE AND FATTY ACID ABUNDANCE AND ISOTOPE RATIO INFORMATION  

Science Conference Proceedings (OSTI)

This report describes method development and preliminary evaluation for analyzing castor samples for signatures of purifying ricin. Ricin purification from the source castor seeds is essentially a problem of protein purification using common biochemical methods. Indications of protein purification will likely manifest themselves as removal of the non-protein fractions of the seed. Two major, non-protein, types of biochemical constituents in the seed are the castor oil and various carbohydrates. The oil comprises roughly half the seed weight while the carbohydrate component comprises roughly half of the remaining mash left after oil and hull removal. Different castor oil and carbohydrate components can serve as indicators of specific toxin processing steps. Ricinoleic acid is a relatively unique fatty acid in nature and is the most abundant component of castor oil. The loss of ricinoleic acid indicates a step to remove oil from the seeds. The relative amounts of carbohydrates and carbohydrate-like compounds, including arabinose, xylose, myo-inositol fucose, rhamnose, glucosamine and mannose detected in the sample can also indicate specific processing steps. For instance, the differential loss of arabinose relative to mannose and N-acetyl glucosamine indicates enrichment for the protein fraction of the seed using protein precipitation. The methods developed in this project center on fatty acid and carbohydrate extraction from castor samples followed by derivatization to permit analysis by gas chromatography-mass spectrometry (GC-MS). Method descriptions herein include: the source and preparation of castor materials used for method evaluation, the equipment and description of procedure required for chemical derivatization, and the instrument parameters used in the analysis. Two types of derivatization methods describe analysis of carbohydrates and one procedure for analysis of fatty acids. Two types of GC-MS analysis is included in the method development, one employing a quadrupole MS system for compound identification and an isotope ratio MS for measuring the stable isotope ratios of deuterium and hydrogen (D/H) in fatty acids. Finally, the method for analyzing the compound abundance data is included. This study indicates that removal of ricinoleic acid is a conserved consequence of each processing step we tested. Furthermore, the stable isotope D/H ratio of ricinoleic acid distinguished between two of the three castor seed sources. Concentrations of arabinose, xylose, mannose, glucosamine and myo-inositol differentiated between crude or acetone extracted samples and samples produced by protein precipitation. Taken together these data illustrate the ability to distinguish between processes used to purify a ricin sample as well as potentially the source seeds.

Wunschel, David S.; Kreuzer-Martin, Helen W.; Antolick, Kathryn C.; Colburn, Heather A.; Moran, James J.; Melville, Angela M.

2009-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "geothermometry isotopic analysis" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

The experimental and theoretical determination of combinatorial kinetic isotope effects for mechanistic analysis  

E-Print Network (OSTI)

Unfortunately, chemists can never experimentally unravel a full reaction pathway. Even our ability to define key aspects of mechanisms, such as short-lived intermediates and the even more ephemeral transition states, is quite limited, requiring subtle experiments and subtle interpretations. Arguably the most important knowledge to be gained about the mechanism of a reaction is the structure and geometry of the transition state at the rate-limiting step, as this is where a reactions rate and selectivity are generally decided. The Singleton group has developed a methodology for predicting the combinatorial kinetic isotope effects (KIEs) at every atomic position, typically carbon or hydrogen, at natural abundance. A combination of experimental isotope effects and density functional theory (DFT) calculations has greatly aided our ability to predict and understand a reactions pathway and transition state geometries. Precise application of this method has allowed for the mechanistic investigation of a myriad of bioorganic, organic, and organometallic reactions. The technique has been applied in the analysis of the catalytic borylation of arenes via C-H bond activation, dynamic effects in the enyne allene cyclization, palladium catalyzed allylic alkylation, the nature of proton transfer in orotate decarboxylase, and the epoxidation of enones with t-butyl hydroperoxide.

Christian, Chad F.

2007-05-01T23:59:59.000Z

162

Assessment of Non-traditional Isotopic Ratios by Mass Spectrometry for Analysis of Nuclear Activities: Annual Report Year 2  

Science Conference Proceedings (OSTI)

The objective of this work is to identify isotopic ratios suitable for analysis via mass spectrometry that distinguish between commercial nuclear reactor fuel cycles, fuel cycles for weapons grade plutonium, and products from nuclear weapons explosions. Methods will also be determined to distinguish the above from medical and industrial radionuclide sources. Mass spectrometry systems will be identified that are suitable for field measurement of such isotopes in an expedient manner. Significant progress has been made with this project within the past year: (1) Isotope production from commercial nuclear fuel cycles and nuclear weapons fuel cycles have been modeled with the ORIGEN and MCNPX codes. (2) MCNPX has been utilized to calculate isotopic inventories produced in a short burst fast bare sphere reactor (to approximate the signature of a nuclear weapon). (3) Isotopic ratios have been identified that are good for distinguishing between commercial and military fuel cycles as well as between nuclear weapons and commercial nuclear fuel cycles. (4) Mass spectrometry systems have been assessed for analysis of the fission products of interest. (5) A short-list of forensic ratios have been identified that are well suited for use in portable mass spectrometry systems.

Biegalski, S; Buchholz, B

2009-08-26T23:59:59.000Z

163

Provenance analysis of Olivella biplicata shell beads from the California and Oregon Coast by stable isotope fingerprinting  

E-Print Network (OSTI)

isotope composition of planktonic foraminifera, Geology 27 (isotope fractionation in biogenic aragonite: Temperature effects, Chemical GeologyIsotope paleontology: growth and composition of extant calcareous species, Marine Geology

Eerkens, J W; Herbert, G S; Rosenthal, J S; Spero, H J

2005-01-01T23:59:59.000Z

164

Isotope Enrichment Detection by Laser Ablation - Laser Absorption Spectrometry: Automated Environmental Sampling and Laser-Based Analysis for HEU Detection  

SciTech Connect

The global expansion of nuclear power, and consequently the uranium enrichment industry, requires the development of new safeguards technology to mitigate proliferation risks. Current enrichment monitoring instruments exist that provide only yes/no detection of highly enriched uranium (HEU) production. More accurate accountancy measurements are typically restricted to gamma-ray and weight measurements taken in cylinder storage yards. Analysis of environmental and cylinder content samples have much higher effectiveness, but this approach requires onsite sampling, shipping, and time-consuming laboratory analysis and reporting. Given that large modern gaseous centrifuge enrichment plants (GCEPs) can quickly produce a significant quantity (SQ ) of HEU, these limitations in verification suggest the need for more timely detection of potential facility misuse. The Pacific Northwest National Laboratory (PNNL) is developing an unattended safeguards instrument concept, combining continuous aerosol particulate collection with uranium isotope assay, to provide timely analysis of enrichment levels within low enriched uranium facilities. This approach is based on laser vaporization of aerosol particulate samples, followed by wavelength tuned laser diode spectroscopy to characterize the uranium isotopic ratio through subtle differences in atomic absorption wavelengths. Environmental sampling (ES) media from an integrated aerosol collector is introduced into a small, reduced pressure chamber, where a focused pulsed laser vaporizes material from a 10 to 20-m diameter spot of the surface of the sampling media. The plume of ejected material begins as high-temperature plasma that yields ions and atoms, as well as molecules and molecular ions. We concentrate on the plume of atomic vapor that remains after the plasma has expanded and then cooled by the surrounding cover gas. Tunable diode lasers are directed through this plume and each isotope is detected by monitoring absorbance signals on a shot-to-shot basis. The media is translated by a micron resolution scanning system, allowing the isotope analysis to cover the entire sample surface. We also report, to the best of our knowledge, the first demonstration of laser-based isotopic measurements on individual micron-sized particles that are minor target components in a much larger heterogeneous mix of background particles. This composition is consistent with swipe and environmental aerosol samples typically collected for safeguards ES purposes. Single-shot detection sensitivity approaching the femtogram range and relative isotope abundance uncertainty better than 10% has been demonstrated using gadolinium isotopes as surrogate materials.

Anheier, Norman C.; Bushaw, Bruce A.

2010-01-01T23:59:59.000Z

165

Sulfur stable isotopes separate producers in marine food-web analysis  

Science Conference Proceedings (OSTI)

Fry B (1983) Fish and shrimp migrations in the northern Gulf of. Mexico analysed using stable C, N and S isotope ratios. Fish. Bull 81:789801. Fry B (1988)...

166

Spectral Factor Analysis for Multi-isotope Imaging in Nuclear Medicine  

Science Conference Proceedings (OSTI)

In nuclear medicine, simultaneous dual-isotope imaging is used to determine the distribution of two radiotracers from a single acquisition and for emission/transmission (E/T) imaging in SPECT. However, no general solution to the cross-talk problem caused ...

Irne Buvat; S. Hapdey; Habib Benali; Andrew Todd-Pokropek; R. Di Paola

1999-06-01T23:59:59.000Z

167

Nitrogen isotopes in the recent solar wind from the analysis of genesis targets: evidence for large scale isotope heterogeneity in the nascent solar system  

DOE Green Energy (OSTI)

Nitrogen, the fifth most abundant element in the universe, displays the largest stable isotope variations in the solar system reservoirs after hydrogen. Yet the value of isotopic composition of solar nitrogen, presumably the best proxy of the protosolar nebula composition, is not known. Nitrogen isotopes trapped in Genesis spacecraft target material indicate a 40 % depletion of {sup 15}N in solar wind N relative to inner planets and meteorites, and define a composition for the present-day Sun undistinguishable from that of Jupiter's atmosphere. These results indicate that the isotopic composition of of nitrogen in the outer convective zone of the Sun (OCZ) has not changed through time, and is representative of the protosolar nebula. Large {sup 15}N enrichments during e.g., irradiation, or contributions from {sup 15}N-rich presolar components, are required to account for planetary values.

Wiens, Roger C [Los Alamos National Laboratory; Marty, Bernard [INSU-CNRS; Zimmermann, Laurent [INSU-CNRS; Burnard, Peter G [INSU-CNRS; Burnett, Donald L [CALTECH; Heber, Veronika S [ETH ZURICH; Wieler, Rainer [ETH ZURICH; Bochsler, Peter [UNIV OV BERN

2009-01-01T23:59:59.000Z

168

ANALYSIS AND OPTIMIZATION OF GAS- CENTRIFUGAL SEPARATION OF URANIUM ISOTOPES BY NEURAL NETWORKS  

E-Print Network (OSTI)

Abstract- Neural networks are an attractive alternative for modeling complex problems with too many difficulties to be solved by a phenomenological model. A feed-forward neural network was used to model a gas-centrifugal separation of uranium isotopes. The prediction showed good agreement with the experimental data. An optimization study was carried out. The optimal operational condition was tested by a new experiment and a difference of less than 1 % was found.

unknown authors

2002-01-01T23:59:59.000Z

169

Neutronic Analysis of an Advanced Fuel Design Concept for the High Flux Isotope Reactor  

Science Conference Proceedings (OSTI)

This study presents the neutronic analysis of an advanced fuel design concept for the Oak Ridge National Laboratory (ORNL) High Flux Isotope Reactor (HFIR) that could significantly extend the current fuel cycle length under the existing design and safety criteria. A key advantage of the fuel design herein proposed is that it would not require structural changes to the present HFIR core, in other words, maintaining the same rated power and fuel geometry (i.e., fuel plate thickness and coolant channel dimensions). Of particular practical importance, as well, is the fact that the proposed change could be justified within the bounds of the existing nuclear safety basis. The simulations herein reported employed transport theory-based and exposure-dependent eigenvalue characterization to help improve the prediction of key fuel cycle parameters. These parameters were estimated by coupling a benchmarked three-dimensional MCNP5 model of the HFIR core to the depletion code ORIGEN via the MONTEBURNS interface. The design of an advanced HFIR core with an improved fuel loading is an idea that evolved from early studies by R. D. Cheverton, formerly of ORNL. This study contrasts a modified and increased core loading of 12 kg of 235U against the current core loading of 9.4 kg. The simulations performed predict a cycle length of 39 days for the proposed fuel design, which represents a 50% increase in the cycle length in response to a 25% increase in fissile loading, with an average fuel burnup increase of {approx}23%. The results suggest that the excess reactivity can be controlled with the present design and arrangement of control elements throughout the core's life. Also, the new power distribution is comparable or even improved relative to the current power distribution, displaying lower peak to average fission rate densities across the inner fuel element's centerline and bottom cells. In fact, the fission rate density in the outer fuel element also decreased at these key locations for the proposed design. Overall, it is estimated that the advanced core design could increase the availability of the HFIR facility by {approx}50% and generate {approx}33% more neutrons annually, which is expected to yield sizeable savings during the remaining life of HFIR, currently expected to operate through 2014. This study emphasizes the neutronics evaluation of a new fuel design. Although a number of other performance parameters of the proposed design check favorably against the current design, and most of the core design features remain identical to the reference, it is acknowledged that additional evaluations would be required to fully justify the thermal-hydraulic and thermal-mechanical performance of a new fuel design, including checks for cladding corrosion performance as well as for industrial and economic feasibility.

Xoubi, Ned [ORNL; Primm, Trent [ORNL; Maldonado, G. Ivan [University of Tennessee, Knoxville (UTK)

2009-01-01T23:59:59.000Z

170

Oxygen Isotopes  

NLE Websites -- All DOE Office Websites (Extended Search)

Pages to Isotopes Data Modern Records of Carbon and Oxygen Isotopes in Atmospheric Carbon Dioxide and Carbon-13 in Methane 800,000 Deuterium Record and Shorter Records of...

171

Foraging Ecology of Green Turtles (Chelonia mydas) on the Texas Coast, as Determined by Stable Isotope Analysis  

E-Print Network (OSTI)

The green turtle, Chelonia mydas, is a circumglobal species that exhibits several important developmental or ontogenetic shifts throughout its life history. The first major shift occurs when juvenile turtles migrate from pelagic habitat, where they forage as omnivores, to coastal neritic habitat, where they become primarily herbivores, foraging on algae and seagrass. Anecdotal evidence and gut-content analyses suggest that juvenile green turtles in south Texas bays, such as the lower Laguna Madre and Aransas Bay, undergo an additional ontogenetic shift during this important life history stage. Evidence from stable isotope analysis (SIA) of scute tissues of green turtles from Texas' lower Laguna Madre and Aransas Bay supports an intermediate stage between this species' shift from pelagic waters to seagrass beds in neritic waters; this additional shift comprises an initial recruitment of post-pelagic juveniles to jetty habitat located on the channel passes Gulf-ward of adjacent bays before subsequently recruiting to seagrass beds in these bays. Examination of stable carbon ([delta]C) and nitrogen ([delta]?N) isotopes in microlayers of scute tissue from several size classes of green turtles from the lower Laguna Madre and Aransas Bay was used to confirm the occurrence of two ontogenetic shifts. Smaller green turtles ( 45 cm SCL) that displayed enriched [delta]C signatures and depleted ?N signatures, consistent with seagrass habitat. Changes in the isotopic composition between these size classes indicate distinct shifts in diet. Post-pelagic juveniles first recruit to jetty habitat and forage primarily on algae, before subsequently shifting to seagrass beds and foraging primarily on seagrass. These findings indicate the use of a characteristic sequence of distinct habitats by multiple life history stages of green turtles in Texas bays, a conclusion with broad management implications for this endangered species.

Gorga, Catherine Concetta Theresa

2010-08-01T23:59:59.000Z

172

Atmospheric Trace Gases, Carbon Isotopes, Radionuclides, and Aerosols: Isotopes in Greenhouse Gases Data from the Carbon Dioxide Information Analysis Center (CDIAC)  

DOE Data Explorer (OSTI)

(Scroll down to find Isotopes in Greenhouse Gases, a subheading under the broader heading of Atmospheric Trace Gases, etc.) CDIAC products are indexed and searchable through a customized interface powered by ORNL's Mercury search engine. Products include numeric data packages, publications, trend data, atlases, models, etc. and can be searched for by subject area, keywords, authors, product numbers, time periods, collection sites, spatial references, etc. Some of the collections may also be included in the CDIAC publication Trends Online: A Compendium of Global Change Data. Most data sets, many with numerous data files, are free to download from CDIAC's ftp area. Information related to isotopes in greenhouse gases includes: Monthly atmospheric 13C/12C isotopic ratios for 10 SIO stations, (2005) (Trends Online) Mixing ratios of CO, CO2, CH4, and isotope ratios of associated 13C, 18O, and 2H in air samples from Niwot Ridge, Colorado, and Montaa de Oro, California, USA (2004) Estimates of Monthly CO2 Emissions and Associated 13C/12C Values from Fossil-Fuel Consumption in the U.S.A., (2004) (Trends Online) ?13C in CO2 from the CSIRO GASLAB Flask Sampling Network (Trends Online) In Situ 13CO2 from Cape Grim, Tasmania, Australia: 1982-1993 (2001) (Trends Online) In situ Carbon 13 and Oxygen 18 Ratios of Atmospheric CO2 from Cape Grim, Tasmania, Australia: 1982-1993 (1995) Carbon-13 Isotopic Abundance and concentration of Atmospheric Methane for Background Air in the Southern and Northern Hemispheres from 1978 to 1989 (1995) Measurements of Atmospheric Methane and 13C/12C of Atmospheric Methane from Flask Air Samples (1999) 14CO 2 Observations from Schauinsland, Germany (1997) (Trends Online) Carbon-14 Measurements in Atmospheric CO 2 from Northern and Southern Hemisphere Sites, 1962-1992 (1996) Carbon-14 Measurements in Surface Water CO2 from the Atlantic, Indian and Pacific Oceans, 1965-1994 (1998) (Specialized Interface)

173

Elemental and Isotopic Analysis of Uranium Oxide an NIST Glass Standards by FEMTOSECOND-LA-ICP-MIC-MS  

Science Conference Proceedings (OSTI)

The objective of this work was to test and demonstrate the analytical figures of merit of a femtosecond-laser ablation (fs-LA) system coupled with an inductively coupled plasma-multi-ion collector-mass spectrometer (ICP-MIC-MS). The mobile fs-LA sampling system was designed and assembled at Ames Laboratory and shipped to Oak Ridge National Laboratory (ORNL), where it was integrated with an ICP-MIC-MS. The test period of the integrated systems was February 2-6, 2009. Spatially-resolved analysis of particulate samples is accomplished by 100-shot laser ablation using a fs-pulsewidth laser and monitoring selected isotopes in the resulting ICP-MS transient signal. The capability of performing high sensitivity, spatially resolved, isotopic analyses with high accuracy and precision and with virtually no sample preparation makes fs-LA-ICP-MIC-MS valuable for the measurement of actinide isotopes at low concentrations in very small samples for nonproliferation purposes. Femtosecond-LA has been shown to generate particles from the sample that are more representative of the bulk composition, thereby minimizing weaknesses encountered in previous work using nanosecond-LA (ns-LA). The improvement of fs- over ns-LA sampling arises from the different mechanisms for transfer of energy into the sample in these two laser pulse-length regimes. The shorter duration fs-LA pulses induce less heating and cause less damage to the sample than the longer ns pulses. This results in better stoichiometric sampling (i.e., a closer correlation between the composition of the ablated particles and that of the original solid sample), which improves accuracy for both intra- and inter-elemental analysis. The primary samples analyzed in this work are (a) solid uranium oxide powdered samples having different {sup 235}U to {sup 238}U concentration ratios, and (b) glass reference materials (NIST 610, 612, 614, and 616). Solid uranium oxide samples containing {sup 235}U in depleted, natural, and enriched abundances were analyzed as particle aggregates immobilized in a collodion substrate. The uranium oxide samples were nuclear reference materials (CRMs U0002, U005-A, 129-A, U015, U030-A, and U050) obtained from New Brunswick Laboratory-USDOE.

Ebert, Chris; Zamzow, Daniel S.; McBay, Eddie H.; Bostick, Debra A.; Bajic, Stanley J.; Baldwin, David P.; Houk, R.S.

2009-06-01T23:59:59.000Z

174

A one-group parametric sensitivity analysis for the graphite isotope ratio method and other related techniques using ORIGEN 2.2  

E-Print Network (OSTI)

Several methods have been developed previously for estimating cumulative energy production and plutonium production from graphite-moderated reactors. The Graphite Isotope Ratio Method (GIRM) is one well-known technique. This method is based on the measurement of trace isotopes in the reactors graphite matrix to determine the change in their isotopic ratios due to burnup. These measurements are then coupled with reactor calculations to determine the total plutonium and energy production of the reactor. To facilitate sensitivity analysis of these methods, a one-group cross section and fission product yield library for the fuel and graphite activation products has been developed for MAGNOX-style reactors. This library is intended for use in the ORIGEN computer code, which calculates the buildup, decay, and processing of radioactive materials. The library was developed using a fuel cell model in Monteburns. This model consisted of a single fuel rod including natural uranium metal fuel, magnesium cladding, carbon dioxide coolant, and Grade A United Kingdom (UK) graphite. Using this library a complete sensitivity analysis can be performed for GIRM and other techniques. The sensitivity analysis conducted in this study assessed various input parameters including 235U and 238U cross section values, aluminum alloy concentration in the fuel, and initial concentrations of trace elements in the graphite moderator. The results of the analysis yield insight into the GIRM method and the isotopic ratios the method uses as well as the level of uncertainty that may be found in the system results.

Chesson, Kristin Elaine

2007-08-01T23:59:59.000Z

175

Carbon Isotopes  

NLE Websites -- All DOE Office Websites (Extended Search)

Atmospheric Trace Gases » Carbon Isotopes Atmospheric Trace Gases » Carbon Isotopes Carbon Isotopes Gateway Pages to Isotopes Data Modern Records of Carbon and Oxygen Isotopes in Atmospheric Carbon Dioxide and Carbon-13 in Methane 800,000 Deuterium Record and Shorter Records of Various Isotopic Species from Ice Cores Carbon-13 13C in CO Measurements from Niwot Ridge, Colorado and Montana de Oro, California (Tyler) 13C in CO2 NOAA/CMDL Flask Network (White and Vaughn) CSIRO GASLAB Flask Network (Allison, Francey, and Krummel) CSIRO in situ measurements at Cape Grim, Tasmania (Francey and Allison) Scripps Institution of Oceanography (Keeling et al.) 13C in CH4 NOAA/CMDL Flask Network (Miller and White) Northern & Southern Hemisphere Sites (Quay and Stutsman) Northern & Southern Hemisphere Sites (Stevens)

176

Analysis of Experimental Data for High Burnup PWR Spent Fuel Isotopic Validation - Vandellos II Reactor  

Science Conference Proceedings (OSTI)

This report is one of the several recent NUREG/CR reports documenting benchmark-quality radiochemical assay data and the use of the data to validate computer code predictions of isotopic composition for spent nuclear fuel, to establish the uncertainty and bias associated with code predictions. The experimental data analyzed in the current report were acquired from a high-burnup fuel program coordinated by Spanish organizations. The measurements included extensive actinide and fission product data of importance to spent fuel safety applications, including burnup credit, decay heat, and radiation source terms. Six unique spent fuel samples from three uranium oxide fuel rods were analyzed. The fuel rods had a 4.5 wt % {sup 235}U initial enrichment and were irradiated in the Vandellos II pressurized water reactor operated in Spain. The burnups of the fuel samples range from 42 to 78 GWd/MTU. The measurements were used to validate the two-dimensional depletion sequence TRITON in the SCALE computer code system.

Ilas, Germina [ORNL; Gauld, Ian C [ORNL

2011-01-01T23:59:59.000Z

177

Soil carbon dynamics beneath switchgrass as indicated by stable isotope analysis  

Science Conference Proceedings (OSTI)

Surface (0--40 cm) soil organic carbon (SOC) dynamics were studied beneath four switchgrass (Panicum virgatum L.) field trails in the southeastern US. Soil organic carbon was partitioned into particulate organic matter (POM) and mineral-associated organic matter (MOM). Most (75--90%) of the SOC at each study site was affiliated with MOM (<0.053 mm). Changes in stable carbon isotope ratios were used to derive carbon inputs to and losses from POM and MOM at each site. Inventories of existing SOC and new C{sub 4}-derived SOC beneath switchgrass decreased with increasing soil depth. Approximately 5 yr after establishment, 19 to 31% of the existing SOC inventories beneath switchgrass had been derived from new C{sub 4}-carbon inputs. Calculated turnover times of POM and MOM ranged from 2.4 to 4.3 yr and 26 to 40 yr, respectively. The turnover time of SOC in the POM fraction increased with decreasing mean annual temperature. A simple, two-compartment model was parameterized to predict the potential for soil carbon sequestration under switchgrass. An example calculation with the model indicated a measurable and verifiable recovery of soil carbon (=12% increase) on degraded lands through one decade of switchgrass production. The potential to sequester carbon through switchgrass cultivation will depend on initial soil carbon inventories, prevailing climate, soil types and site management.

Garten, C.T. Jr.; Wullschleger, S.D.

2000-04-01T23:59:59.000Z

178

Soil carbon dynamics beneath switchgrass as indicated by stable isotope analysis  

Science Conference Proceedings (OSTI)

Surface (0-40 cm) soil organic carbon (SOC) dynamics were studied beneath four switchgrass (Panicum virgatum L.) field trials in the southeastern United States. Soil organic carbon was partitioned into particulate organic matter (POM) and mineral-associated organic matter (MOM). Most (75-90%) of the SOC at each study site was affiliated with MOM (<0.053 mm). Changes in stable carbon isotope ratios were used to derive carbon inputs to and losses from POM and MOM at each site. Inventories of existing SOC and new C4-derived SOC beneath switchgrass decreased with increasing soil depth. Approximately 5 yr after establishment, 19 to 31% of the existing SOC inventories beneath switchgrass had been derived from new C{sub 4}-carbon inputs. Calculated turnover times of POM and MOM ranged from 2.4 to 4.3 yr and 26 to 40 yr, respectively. The turnover time of SOC in the POM fraction increased with decreasing mean annual temperature. A simple, two-compartment model was parameterized to predict the potential for soil carbon sequestration under switchgrass. An example calculation with the model indicated a measurable and verifiable recovery of soil carbon ({approx}12% increase) on degraded lands through one decade of switchgrass production. The potential to sequester carbon through switchgrass cultivation will depend on initial soil carbon inventories, prevailing climate, soil type, and site management.

Garten Jr, Charles T [ORNL; Wullschleger, Stan D [ORNL

2000-04-01T23:59:59.000Z

179

Extraction Chromatographic Methods in the Sample Preparation Sequence for Thermal Ionization Mass Spectrometric Analysis of Plutonium Isotopes  

Science Conference Proceedings (OSTI)

A sample preparation sequence for actinide isotopic analysis by TIMS is described that includes column-based extraction chromatography as the first separation step, followed by anion exchange column separations. The sequence is designed to include a wet ashing step after the extraction chromatography to prevent any leached extractant or oxalic acid eluent reagents from interfering with subsequent separations, source preparation, or TIMS ionization. TEVA-resin and DGA-resin materials, containing extractants that consist only of C, N, O, and H atoms, were investigated for isolation of plutonium. Radiotracer level studies confirmed expected high yields from column-based separation procedures. Femtogram-level studies were carried out with TIMS detection, using multiple isotopic spikes through the separation sequence. Pu recoveries were 87% and 86% for TEVA- and DGA-resins separations respectively. The Pu recoveries from 400 {mu}L anion-exchange column separations were 89% and 93% for trial sequences incorporating TEVA and DGA-resin. Thus, a prior extraction chromatography step in the sequence did not interfere with the subsequent anion exchange separation when a simple wet ash step was carried out in between these column separations. The average measurement efficiency, for Pu, encompassing the chemical separation recoveries and the TIMS ionization efficiency, was 2.73 {+-} 0.77% (2-sigma) for the DGA-resin trials and 2.67 {+-} 0.54% for the TEVA-resin trials, compared to 3.41% and 2.37% (average 2.89%) for two spikes in the experimental set. These compare with an average measurement efficiency of 2.78 {+-} 1.70%, n = 33 from process benchmark analyses using Pu spikes processed through a sequence of oxalate precipitation, wet ash, iron hydroxide precipitation, and anion exchange column separations. We conclude that extraction chromatography can be a viable separation procedure as part of a multistep sequence for TIMS sample preparation.

Grate, Jay W.; O'Hara, Matthew J.; Farawila, Anne F.; Douglas, Matthew; Haney, Morgan M.; Peterson, Steve L.; Maiti, Tapas C.; Aardahl, Christopher L.

2011-10-17T23:59:59.000Z

180

HEAVY ELEMENT ISOTOPIC ANALYSIS OF UO$sub 2$ FUEL IRRADIATED IN THE VBWR. Report No. 1  

SciTech Connect

Slightly enriched UO/sub 2/ fuel, irradiated in the Vallecitos Boiling Water Reactor (VBWR), with exposures ranging from 100 Mwd/t to 3200 Mwd/t was analyzed for heavy element isotopic composition and compared with computed data. The primary objective of this program is to obtain improved data on the changes in nuclear characteristics with burnup of UO/sub 2/ fuel in a boiling water reactor. This information is important in both evaluating the economics of a given reactor design and also in providing a sounder physics basis for improving reactor designs to minimize the resuiting fuel costs. Uranium oxide pellets, with an enrichment of 2.8 atom percent, were analyzed at several axial positions along the fuel rod, spanning the void (steam fraction) range of 0 to 30%. The isotopic composition for each pellet was computed, utilizing a general fuel cycle depletion code. Results of the analysis of the comparison of the measured and computed data indicate that the total amount of Pu computed is consistently lower than that implied from the measurement by approximately 10%, and the percentage difference between the measured and computed data increases slightly with exposure. One rod was irradiated near a control rod which was approximately 25% inserted. As expected, since no control rod effects were included in the calcuiation, the measured data in that region of the rod shows a greater Pu production per Mwd/t than computed. Physical effects which might explain the small, but apparentiy consistent, differences between the measured and computed data were postulated. It is concluded that the observed differences are the result of a substantial underestimate of void fraction and small uncertainties in fuel exposure and cross sections. (auth)

Hackney, M.R.; Ruiz, C.P.

1962-12-28T23:59:59.000Z

Note: This page contains sample records for the topic "geothermometry isotopic analysis" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

GUM Analysis for TIMS Isotopic Ratios in BEP0 Graphite Qualification Samples, Round 2  

Science Conference Proceedings (OSTI)

In May 2007, one set of three samples from NBL were addressed to Steve Petersen for TIMS analysis, and included BEP0 samples numbered 27008, 30986, and 50846. All cores were trimmed by tooling, and lightly cleaned by CO2 pellet blasting. Small discs were cut from the second set of samples for SIMS analysis, with the remainder of each used for TIMS preparation.

Gerlach, David C.; Heasler, Patrick G.; Reid, Bruce D.

2009-01-01T23:59:59.000Z

182

International Workshop on Gamma Spectrometry Analysis Codes for U and Pu Isotopics: Workshop Results and Next Steps  

Science Conference Proceedings (OSTI)

In November 2008, the Institute of Nuclear Materials Management (INMM) and the European Safeguards Research and Development Association (ESARDA) co-hosted the International Workshop on Gamma Spectrometry Analysis Codes for U and Pu Isotopics at the Oak Ridge National Laboratory (ORNL). This workshop was conducted in response to needs expressed by the international safeguards community to understand better the capabilities and limitations of the codes; to ensure these codes are sustained; and to ensure updates or revisions are performed in a controlled manner. The workshop was attended by approximately 100 participants. The participants included code developers, code suppliers, safeguards specialists, domestic and international inspectors, process operators, regulators, and programme sponsors from various government agencies. The workshop provided a unique opportunity for code developers, commercial distributors and end users to interact in a hands-on laboratory environment to develop solutions for programmatic and technical issues associated with the various codes. The workshop also provided an international forum for discussing development of an internationally accepted standard test method. This paper discusses the organization of the workshop, its goals and objectives and feedback received from the participants. The paper also describes the significance of the working group's contribution to improving codes that are commonly used during inspections to verify that nuclear facilities are compliant with treaty obligations that ensure nuclear fuel cycle facilities are used for peaceful purposes.

McGinnis, Brent R [ORNL; Solodov, Alexander A [ORNL; Shipwash, Jacqueline L [ORNL; Zhernosek, Alena V [ORNL; McKinney, Teressa L [ORNL; Pickett, Chris A [ORNL; Peerani, Paolo [ORNL

2009-01-01T23:59:59.000Z

183

Telling friends from foes : strontium isotope and trace element analysis of companion burials from Pusilh, Toledo District, Belize  

E-Print Network (OSTI)

Powell 1972 Strontium Isotope Geology. Minerals, Rocks, andisotope ratios in an ecosystem are a factor of the local geology andisotope and trace element values in human bone vary depending on the geology

Somerville, Andrew D.

2010-01-01T23:59:59.000Z

184

Independent Verification of Research Reactor Operation (Analysis of the Georgian IRT-M Reactor by the Isotope Ratio Method)  

SciTech Connect

The U.S. Department of Energys Office of Nonproliferation and International Security (NA-24) develops technologies to aid in implementing international nuclear safeguards. The Isotope Ratio Method (IRM) was successfully developed in 2005 2007 by Pacific Northwest National Laboratory (PNNL) and the Republic of Georgias Andronikashvili Institute of Physics as a generic technology to verify the declared operation of water-moderated research reactors, independent of spent fuel inventory. IRM estimates the energy produced over the operating lifetime of a fission reactor by measuring the ratios of the isotopes of trace impurity elements in non-fuel reactor components.The Isotope Ratio Method is a technique for estimating the energy produced over the operating lifetime of a fission reactor by measuring the ratios of the isotopes of impurity elements in non-fuel reactor components.

Cliff, John B.; Frank, Douglas P.; Gerlach, David C.; Gesh, Christopher J.; Little, Winston W.; Reid, Bruce D.; Tsiklauri, Georgi V.; Abramidze, Sh; Rostomashvili, Z.; Kiknadze, G.; Dzhavakhishvily, O.; Nabakhtiani, G.

2010-08-11T23:59:59.000Z

185

from Isotope Production Facility  

NLE Websites -- All DOE Office Websites (Extended Search)

Cancer-fighting treatment gets boost from Isotope Production Facility April 13, 2012 Isotope Production Facility produces cancer-fighting actinium - 2 - 2:32 Isotope cancer...

186

ISOTOPE SEPARATORS  

DOE Patents (OSTI)

An improvement is presented in the structure of an isotope separation apparatus and, in particular, is concerned with a magnetically operated shutter associated with a window which is provided for the purpose of enabling the operator to view the processes going on within the interior of the apparatus. The shutier is mounted to close under the force of gravity in the absence of any other force. By closing an electrical circuit to a coil mouated on the shutter the magnetic field of the isotope separating apparatus coacts with the magnetic field of the coil to force the shutter to the open position.

Bacon, C.G.

1958-08-26T23:59:59.000Z

187

Isotopic Analysis of N and O in Nitrite and Nitrate by Sequential Selective Bacterial Reduction to N2O  

E-Print Network (OSTI)

composition of NO2 - is linked to those of NO3 -, N2O, NH4 +, and N2 gas, the production or consumption in natural aquatic systems is poorly understood. Isotopic data can be used to study the sources independently, reproducible 15N and 18O values were obtained at both natural-abundance levels ((0.2-0.5 for 15N

188

Glossary Term - Isotope  

NLE Websites -- All DOE Office Websites (Extended Search)

Helios Previous Term (Helios) Glossary Main Index Next Term (Joule) Joule Isotope The Three Isotopes of Hydrogen - Protium, Deuterium and Tritium Atoms that have the same number of...

189

Post-test analysis of components from selenide isotope generator modules M-7, M-15, and M-18  

DOE Green Energy (OSTI)

Several critical components removed from SIG (Selenide Isotope Generator) thermoelectric modules M-7, M-15C, M-15D, and M-18 were examined. These modules failed to show the predicted stability and conversion efficiency. Understanding the degradation and identifying means for preventing it necessitated detailed post-test examinations of key parts in the modules. Steel springs, which provided pressure for contacts at the hot and cold ends of P- or N-legs, relaxed more than expected. Beryllium oxide insulators had dark deposits that caused electrical shorts. The GdSe/sub 1/ /sub 49/ N-leg exhibited cracking. The (Cu,Ag)/sub 2/Se P-leg lost weight or sublimed excessively in module M-7 and more than expected in the other modules.

Wei, G.C.; Keiser, J.R.; Crouse, R.S.; Allen, M.D.; Schaffhauser, A.C.

1979-05-01T23:59:59.000Z

190

Stable isotope studies  

SciTech Connect

The research has been in four general areas: (1) correlation of isotope effects with molecular forces and molecular structures, (2) correlation of zero-point energy and its isotope effects with molecular structure and molecular forces, (3) vapor pressure isotope effects, and (4) fractionation of stable isotopes. 73 refs, 38 figs, 29 tabs.

Ishida, T.

1992-01-01T23:59:59.000Z

191

Method for separating isotopes  

DOE Patents (OSTI)

Isotopes are separated by contacting a feed solution containing the isotopes with a cyclic polyether wherein a complex of one isotope is formed with the cyclic polyether, the cyclic polyether complex is extracted from the feed solution, and the isotope is thereafter separated from the cyclic polyether.

Jepson, B.E.

1975-10-21T23:59:59.000Z

192

Isotopes: Isotope Production, Medical IsotopesOffice of Science...  

NLE Websites -- All DOE Office Websites (Extended Search)

Managers Put a short description of the graphic or its primary message here Isotope Production and Applications The Los Alamos National Laboratory has produced radioactive...

193

Isotope separation by photochromatography  

DOE Patents (OSTI)

An isotope separation method which comprises physically adsorbing an isotopically mixed molecular species on an adsorptive surface and irradiating the adsorbed molecules with radiation of a predetermined wavelength which will selectively excite a desired isotopic species. Sufficient energy is transferred to the excited molecules to desorb them from the surface and thereby separate them from the unexcited undesired isotopic species. The method is particularly applicable to the separation of hydrogen isotopes.

Suslick, Kenneth S. (Stanford, CA)

1977-01-01T23:59:59.000Z

194

Supplement Analysis for the Programmatic Environmental Impact Statement (PEIS) for Accomplishing Expanded Civilian Nuclear Energy Research and Development and Isotope Production Missions in the United States, (DOE/EIS-0310-SA-01) (08/05/04)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

0-SA-01 0-SA-01 Supplement Analysis for the Programmatic Environmental Impact Statement (PEIS) for Accomplishing Expanded Civilian Nuclear Energy Research and Development and Isotope Production Missions in the United States, Including the Role of the Fast Flux Test Facility Introduction and Background The Department of Energy (DOE), pursuant to the National Environmental Policy Act (NEPA), issued the Final PEIS for Accomplishing Expanded Civilian Nuclear Energy Research and Development and Isotope Production Missions in the United States, Including the Role of the Fast Flux Test Facility (Nuclear Infrastructure (NI) PEIS, DOE/EIS-0310) in December 2000. Under the Authority of the Atomic Energy Act of 1954, the DOE's missions include: (1) producing isotopes for research and applications

195

Isotope ratio analysis of actinides, fission products, and geolocators by high-efficiency multi-collector thermal ionization mass spectrometry  

SciTech Connect

A ThermoFisher 'Triton' multi-collector thermal ionization mass spectrometer (MC-TIMS) was evaluated for trace and ultra-trace level isotoperatioanalysis of actinides (uranium, plutonium, and americium), fission products and geolocators (strontium, cesium, and neodymium). Total efficiencies (atoms loaded to ions detected) of up to 0.5-2% for U, Pu, and Am, and 1-30% for Sr, Cs, and Nd can be reported employing resin bead load techniques onto flat ribbon Re filaments or resin beads loaded into a millimeter-sized cavity drilled into a Re rod. This results in detection limits of <0.1 fg (10{sup 4} atoms to 10{sup 5} atoms) for {sup 239-242+244}Pu, {sup 233+236}U, {sup 241-243}Am, {sup 89,90}Sr, and {sup 134,135,137}Cs, and {le} 1 pg for natural Nd isotopes (limited by the chemical processing blank) using a secondary electron multiplier (SEM) or multiple-ion counters (MICs). Relative standard deviations (RSD) as small as 0.1% and abundance sensitivities of 1 x 10{sup 6} or better using a SEM are reported here. Precisions of RSD {approx} 0.01-0.001% using a multi-collector Faraday cup array can be achieved at sub-nanogram concentrations for strontium and neodymium and are suitable to gain crucial geolocation information. The analytical protocols reported herein are of particular value for nuclear forensic and nuclear safeguard applications.

Brger, Stefan [New Brunswick Laboratory, Argonne, IL; Riciputi, Lee R [Los Alamos National Laboratory (LANL); Bostick, Debra A [ORNL; Turgeon, Steven [University of Alberta, Edmondton, Canada; McBay, Eddie H [ORNL; Lavelle, Mark [ORNL

2009-01-01T23:59:59.000Z

196

AVLIS enrichment of medical isotopes  

SciTech Connect

Under the Sponsorship of the United states Enrichment Corporation (USEC), we are currently investigating the large scale separation of several isotopes of medical interest using atomic vapor isotope separation (AVLIS). This work includes analysis and experiments in the enrichment of thallium 203 as a precursor to the production of thallium 201 used in cardiac imaging following heart attacks, on the stripping of strontium 84 from natural strontium as precursor to the production of strontium 89, and on the stripping of lead 210 from lead used in integrated circuits to reduce the number of alpha particle induced logic errors.

Haynam, C.A.; Scheibner, K.F.; Stern, R.C.; Worden, E.F. [Lawrence Livermore National Laboratory, CA (United States)

1996-12-31T23:59:59.000Z

197

Atmospheric Trace Gases, Carbon Isotopes, Radionuclides, and Aerosols: Atmospheric Carbon Dioxide Data from the Carbon Dioxide Information Analysis Center (CDIAC)  

DOE Data Explorer (OSTI)

CDIAC products include numeric data packages, publications, trend data, atlases, models, etc. and can be searched for by subject area, keywords, authors, product numbers, time periods, collection sites, spatial references, etc. Some of the collections may also be included in the CDIAC publication titled Trends Online: A Compendium of Global Change Data. Most datasets, many with numerous data files, are free to download from CDIAC's ftp area. Information related to atmospheric carbon dioxide data includes: Atmospheric Carbon Dioxide and Carbon Isotopes Atmospheric carbon dioxide records from Mauna Loa, Hawaii Monthly atmospheric CO2 mixing ratios and other data from the NOAA/CMDL continuous monitoring network Data from the CSIRO GASLAB Flask Sampling Network Atmospheric CO2 records from continuous measurements at Jubany Station, Antarctica and from 10 sites in the SIO air sampling network Historical data from the extended Vostok ice core (2003) and the Siple Station ice core (1997) Historical records from the Law Dome DE08, DE08-2, and DSS ice cores (1998) AmeriFlux Carbon Dioxide, Water Vapor, and Energy Balance Measurements Data from the Canadian Background Air Pollution Monitoring Network Flask Samples from at U.S.S.R.-Operated Sites (1991) The CISIRO (Australia) Monitoring Program from Aircraft for 1972-1981 CO2 Concentrations in Surface Water and the Atmosphere during 1986-1989 NOAA/PMEL Cruises in the Pacific and Indian Oceans Surface Water and Atmospheric CO2 and Nitrous Oxide Observations by Shipboard Automated Gas Chromatography: Results from Expeditions Between 1977 and 1990 (1992) IPCC Working Group 1, 1994: Modeling Results Relating Future Atmospheric CO2 Concentrations to Industrial Emissions (1995). New datasets are added when available to the category of atmospheric carbon dioxide.

198

Lead and strontium isotopic evidence for crustal interaction...  

Open Energy Info (EERE)

Mineralogy and Petrology, 111984 Document Number: Unavailable DOI: 10.1007BF01150293 Source: View Original Conference Proceedings Isotopic Analysis- Rock At Coso Geothermal...

199

Isotope Enrichment Calculator  

Science Conference Proceedings (OSTI)

... incremental isotopic percentages which are compared with an input experimentally derived profile. The theoretical profile of 15 N percentage which ...

2012-10-09T23:59:59.000Z

200

Isotopically controlled semiconductors  

SciTech Connect

Semiconductor bulk crystals and multilayer structures with controlled isotopic composition have attracted much scientific and technical interest in the past few years. Isotopic composition affects a large number of physical properties, including phonon energies and lifetimes, bandgaps, the thermal conductivity and expansion coefficient and spin-related effects. Isotope superlattices are ideal media for self-diffusion studies. In combination with neutron transmutation doping, isotope control offers a novel approach to metal-insulator transition studies. Spintronics, quantum computing and nanoparticle science are emerging fields using isotope control.

Haller, Eugene E.

2001-12-21T23:59:59.000Z

Note: This page contains sample records for the topic "geothermometry isotopic analysis" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

ISOTOPE CONVERSION DEVICE  

DOE Patents (OSTI)

This patent relates to nuclear reactors of tbe type utilizing a liquid fuel and designed to convert a non-thermally fissionable isotope to a thermally fissionable isotope by neutron absorption. A tank containing a reactive composition of a thermally fissionable isotope dispersed in a liquid moderator is disposed within an outer tank containing a slurry of a non-thermally fissionable isotope convertible to a thermally fissionable isotope by neutron absorption. A control rod is used to control the chain reaction in the reactive composition and means are provided for circulating and cooling the reactive composition and slurry in separate circuits.

Wigner, E.P.; Young, G.J.; Ohlinger, L.A.

1957-12-01T23:59:59.000Z

202

ARM - Measurement - Isotope ratio  

NLE Websites -- All DOE Office Websites (Extended Search)

govMeasurementsIsotope ratio govMeasurementsIsotope ratio ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Isotope ratio Ratio of stable isotope concentrations. Categories Atmospheric Carbon, Atmospheric State Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a list of all available measurements, including those recorded for diagnostic or quality assurance purposes. ARM Instruments FLASK : Flask Samplers for Carbon Cycle Gases and Isotopes Field Campaign Instruments FLASK : Flask Samplers for Carbon Cycle Gases and Isotopes Datastreams FLASK : Flask Samplers for Carbon Cycle Gases and Isotopes

203

Isotopic Generation and Confirmation of the PWR Application Model  

SciTech Connect

The objective of this calculation is to establish an isotopic database to represent commercial spent nuclear fuel (CSNF) from pressurized water reactors (PWRs) in criticality analyses performed for the proposed Monitored Geologic Repository at Yucca Mountain, Nevada. Confirmation of the conservatism with respect to criticality in the isotopic concentration values represented by this isotopic database is performed as described in Section 3.5.3.1.2 of the ''Disposal Criticality Analysis Methodology Topical Report'' (YMP 2000). The isotopic database consists of the set of 14 actinides and 15 fission products presented in Section 3.5.2.1.1 of YMP 2000 for use in CSNF burnup credit. This set of 29 isotopes is referred to as the principal isotopes. The oxygen isotope from the UO{sub 2} fuel is also included in the database. The isotopic database covers enrichments of {sup 235}U ranging from 1.5 to 5.5 weight percent (wt%) and burnups ranging from approximately zero to 75 GWd per metric ton of uranium (mtU). The choice of fuel assembly and operating history values used in generating the isotopic database are provided is Section 5. Tables of isotopic concentrations for the 29 principal isotopes (plus oxygen) as a function of enrichment and burnup are provided in Section 6.1. Results of the confirmation of the conservatism with respect to criticality in the isotopic concentration values are provided in Section 6.2.

L.B. Wimmer

2003-11-10T23:59:59.000Z

204

Category:Geochemical Data Analysis | Open Energy Information  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Category Edit History Facebook icon Twitter icon » Category:Geochemical Data Analysis Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermalpower.jpg Looking for the Geochemical Data Analysis page? For detailed information on exploration techniques, click here. Category:Geochemical Data Analysis Add.png Add a new Geochemical Data Analysis Technique Pages in category "Geochemical Data Analysis" The following 3 pages are in this category, out of 3 total. G Geothermometry T Thermal Ion Dispersion Thermochronometry Retrieved from "http://en.openei.org/w/index.php?title=Category:Geochemical_Data_Analysis&oldid=689825"

205

Hybrid isotope separation scheme  

DOE Patents (OSTI)

A method of yielding selectively a desired enrichment in a specific isotope including the steps of inputting into a spinning chamber a gas from which a scavenger, radiating the gas with a wave length or frequency characteristic of the absorption of a particular isotope of the atomic or molecular gas, thereby inducing a photochemical reaction between the scavenger, and collecting the specific isotope-containing chemical by using a recombination surface or by a scooping apparatus.

Maya, Jakob (Brookline, MA)

1991-01-01T23:59:59.000Z

206

HYDROGEN ISOTOPE TARGETS  

DOE Patents (OSTI)

The design of targets for use in the investigation of nuclear reactions of hydrogen isotopes by bombardment with accelerated particles is described. The target con struction eomprises a backing disc of a metal selected from the group consisting of molybdenunn and tungsten, a eoating of condensed titaniunn on the dise, and a hydrogen isotope selected from the group consisting of deuterium and tritium absorbed in the coatiag. The proeess for preparing these hydrogen isotope targets is described.

Ashley, R.W.

1958-08-12T23:59:59.000Z

207

The use of post detonation analysis of stable isotope ratios to determine the type and production process of the explosive involved  

SciTech Connect

The detonation of a series of explosives was performed in a controlled manner to collect the resulting, solid residue or {open_quotes}soot.{close_quotes} This residue was examined to determine the ratios of the stable carbon, hydrogen, and nitrogen isotopes. The goal of the experiment was to determine if these ratios could be used to indicate, from the post detonation residues, the type and origin of the detonated explosive. The ratios of the stated stable isotopes in the undetonated explosive were also determined. Despite some reservations in the quality of the data resulting from contamination by nonexplosive components, certain trends can be discerned. (1) Carbon isotopes allow aromatic explosives to be distinguished from nonaromatic explosives. This trend seems to carry through the detonation so that the distinction might be made after the fact. (2) The amination process for TATB can be detected through the hydrogen and, to some extent, the nitrogen isotope ratios. Unfortunately, the data are not sufficiently good to determine if this differential carries through the detonation. (3) The relative magnitude and sign of the nitrogen isotope ratio seems to carry through the detonation: some exchange with atmospheric nitrogen is probable. Even though this set of experiments must also be viewed as preliminary, there is a definite indication that certain qualitative characteristics of explosives can be detected after the detonation. This {open_quotes}signature{close_quotes} could have application to both intelligence and counter terrorism.

McGuire, R.R.; Velsko, C.A.; Lee, C.G.; Raber, E.

1993-03-05T23:59:59.000Z

208

Stable isotope investigations of chlorinated aliphatic hydrocarbons.  

Science Conference Proceedings (OSTI)

Stable isotope ratio measurements for carbon (C) and chlorine (Cl) can be used to elucidate the processes affecting transformation and transportation of chlorinated aliphatic hydrocarbons (CAHs) in the environment. Methods recently developed in our laboratory for isotopic analysis of CAHs have been applied to laboratory measurements of the kinetic isotope effects associated with aerobic degradation of dichloromethane (DCM) and with both anaerobic and aerobic cometabolic degradation of trichlomethene (TCE) in batch and column microbial cultures. These experimental determinations of fractionation factors are crucial for understanding the behavior of CAHs in complex natural systems, where the extent of biotransformation can be masked by dispersion and volatilization. We have also performed laboratory investigations of kinetic isotope effects accompanying evaporation of CAHs, as well as field investigations of natural attenuation and in situ remediation of CAHs in a number of contaminated shallow aquifers at sites operated by the federal government and the private sector.

Abrajano, T.; Heraty, L. J.; Holt, B. D.; Huang, L.; Sturchio, N. C.

1999-06-01T23:59:59.000Z

209

Discovery of the Mercury Isotopes  

E-Print Network (OSTI)

Forty mercury isotopes have so far been observed; the discovery of these isotopes is discussed. For each isotope a brief summary of the first refereed publication, including the production and identification method, is presented.

D. Meierfrankenfeld; M. Thoennessen

2009-12-01T23:59:59.000Z

210

Chromatographic Measurement of Isotopic Hydrogen Impurities in Purified Tritium  

SciTech Connect

A cryogenic gas chromatograph is described that was constructed for dedicated analysis of permanent gas and hydrogen isotopic impurities in tritium and deuterium-tritium mixtures. The operating characteristics of this instrument and some results are presented in order to introduce gas chromatography as an analytical technique for potential application to CTR technology situations that require accurate measurement of parts per million and higher levels of isotopic and permanent gas impurities in tritium, deuterium, or mixtures of the isotopes.

Warner, D. K.; Kinard, C.; Bohl, D. R.

1970-09-21T23:59:59.000Z

211

Fuel Cycle and Isotopes Division  

NLE Websites -- All DOE Office Websites (Extended Search)

Divisions Fuel Cycle and Isotopes Division Jeffrey Binder, Division Director Jeffrey Binder, Division Director The Fuel Cycle and Isotopes Division (FCID) of the Nuclear Science...

212

Isotope Enrichment | ornl.gov  

NLE Websites -- All DOE Office Websites (Extended Search)

Modern electromagnetic isotope separator developed and being scaled-up to replace the Manhattan Project-era Calutrons used for stable isotope enrichment. Since 1945, ORNL has...

213

Laser isotope separation  

DOE Patents (OSTI)

A process and apparatus for separating isotopes by selective excitation of isotopic species of a volatile compound by tuned laser light is described. A highly cooled gas of the volatile compound is produced in which the isotopic shift is sharpened and defined. Before substantial condensation occurs, the cooled gas is irradiated with laser light precisely tuned to a desired wavelength to selectively excite a particular isotopic species in the cooled gas. The laser light may impart sufficient energy to the excited species to cause it to undergo photolysis, photochemical reaction or even to photoionize. Alternatively, a two-photon irradiation may be applied to the cooled gas to induce photolysis, photochemical reaction or photoionization. The process is particularly applicable to the separation of isotopes of uranium.

Robinson, C.P.; Reed, J.J.; Cotter, T.P.; Boyer, K.; Greiner, N.R.

1975-11-26T23:59:59.000Z

214

Isotope GeochemistryIsotope Geochemistry Isotopes do not fractionate during partial  

E-Print Network (OSTI)

/204Pb, 207Pb/204Pb, due to U and Th decay The isotope geology of PbThe isotope geology of Pb #12;The isotope geology of PbThe isotope geology of Pb µ = 238U/204Pb Primeval lead (Isotope ratios of Pb tT t eea Pb Pb -µ+= 30.90 204 206 == a Pb Pb i 29.100 204 207 == b Pb Pb i #12;The isotope geology

Siebel, Wolfgang

215

The analysis of cross-sections of proton and deuteron induced reactions on tin isotopes at the beam energy of 3.65 GeV/nucleon  

E-Print Network (OSTI)

In the given paper the total inelastic cross-sections of the reactions of protons and deuterons on nuclear targets of enriched tin isotopes were compared. The factorization of cross-sections of reactions was discussed. Furthermore, the comparison of theoretical estimations on total inelastic cross-sections with corresponding experimental ones was made.

A. R. Balabekyan; N. A. Demekhina; V. M. Zhamkochyan; G. S. Karapetyan

2013-02-07T23:59:59.000Z

216

Pacific North American Teleconnection Controls on Precipitation Isotopes (?18O) across the Contiguous United States and Adjacent Regions: A GCM-based Analysis  

Science Conference Proceedings (OSTI)

The Pacific North American (PNA) teleconnection pattern has a strong influence on winter North American climate, but much less is known about how the PNA pattern controls precipitation isotopes (e.g., ?18O) across the USA. In this study, we use an ...

Zhongfang Liu; Kei Yoshmura; Gabriel J. Bowen; Jeffrey M. Welker

217

Isotopically controlled semiconductors  

SciTech Connect

The following article is an edited transcript based on the Turnbull Lecture given by Eugene E. Haller at the 2005 Materials Research Society Fall Meeting in Boston on November 29, 2005. The David Turnbull Lectureship is awarded to recognize the career of a scientist who has made outstanding contributions to understanding materials phenomena and properties through research, writing, and lecturing, as exemplified by the life work of David Turnbull. Haller was named the 2005 David Turnbull Lecturer for his 'pioneering achievements and leadership in establishing the field of isotopically engineered semiconductors; for outstanding contributions to materials growth, doping and diffusion; and for excellence in lecturing, writing, and fostering international collaborations'. The scientific interest, increased availability, and technological promise of highly enriched isotopes have led to a sharp rise in the number of experimental and theoretical studies with isotopically controlled semiconductor crystals. This article reviews results obtained with isotopically controlled semiconductor bulk and thin-film heterostructures. Isotopic composition affects several properties such as phonon energies, band structure, and lattice constant in subtle, but, for their physical understanding, significant ways. Large isotope-related effects are observed for thermal conductivity in local vibrational modes of impurities and after neutron transmutation doping. Spectacularly sharp photoluminescence lines have been observed in ultrapure, isotopically enriched silicon crystals. Isotope multilayer structures are especially well suited for simultaneous self- and dopant-diffusion studies. The absence of any chemical, mechanical, or electrical driving forces makes possible the study of an ideal random-walk problem. Isotopically controlled semiconductors may find applications in quantum computing, nanoscience, and spintronics.

Haller, Eugene E.

2006-06-19T23:59:59.000Z

218

Expert Panel: Forecast Future Demand for Medical Isotopes  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Expert Panel: Expert Panel: Forecast Future Demand for Medical Isotopes March 1999 Expert Panel: Forecast Future Demand for Medical Isotopes September 25-26, 1998 Arlington, Virginia The Expert Panel ............................................................................................. Page 1 Charge To The Expert Panel........................................................................... Page 2 Executive Summary......................................................................................... Page 3 Introduction ...................................................................................................... Page 4 Rationale.......................................................................................................... Page 6 Economic Analysis...........................................................................................

219

Strategic Isotope Production | ornl.gov  

NLE Websites -- All DOE Office Websites (Extended Search)

Strategic Isotope Production SHARE Strategic Isotope Production ORNL's unique facilities at the High Flux Isotope Reactor (HFIR), Radiochemical Engineering Development Center...

220

Isotopes as Environmental Tracers in Archived Biological ...  

Science Conference Proceedings (OSTI)

... Tissue Archival and Monitoring Program (STAMP ... and isotopes) and carbon/nitrogen (isotopes). The carbon/nitrogen isotope data provide valuable ...

2012-10-02T23:59:59.000Z

Note: This page contains sample records for the topic "geothermometry isotopic analysis" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Geothermometry (Fouillac & Michard, 1981) | Open Energy Information  

Open Energy Info (EERE)

for geochemical surveys. An interesting point is the remarkable constancy of the NaLi ratio from aquifer to surface manifestations. References C. Fouillac, G. Michard (1981)...

222

Atomic line emission analyzer for hydrogen isotopes  

DOE Patents (OSTI)

Apparatus for isotopic analysis of hydrogen comprises a low pressure chamber into which a sample of hydrogen is introduced and then exposed to an electrical discharge to excite the electrons of the hydrogen atoms to higher energy states and thereby cause the emission of light on the return to lower energy states, a Fresnel prism made at least in part of a material anomalously dispersive to the wavelengths of interest for dispersing the emitted light, and a photodiode array for receiving the dispersed light. The light emitted by the sample is filtered to pass only the desired wavelengths, such as one of the lines of the Balmer series for hydrogen, the wavelengths of which differ slightly from one isotope to another. The output of the photodiode array is processed to determine the relative amounts of each isotope present in the sample. Additionally, the sample itself may be recovered using, a metal hydride.

Kronberg, J.W.

1991-05-08T23:59:59.000Z

223

Atomic line emission analyzer for hydrogen isotopes  

DOE Patents (OSTI)

Apparatus for isotopic analysis of hydrogen comprises a low pressure chamber into which a sample of hydrogen is introduced and then exposed to an electrical discharge to excite the electrons of the hydrogen atoms to higher energy states and thereby cause the emission of light on the return to lower energy states, a Fresnel prism made at least in part of a material anomalously dispersive to the wavelengths of interest for dispersing the emitted light, and a photodiode array for receiving the dispersed light. The light emitted by the sample is filtered to pass only the desired wavelengths, such as one of the lines of the Balmer series for hydrogen, the wavelengths of which differ slightly from one isotope to another. The output of the photodiode array is processed to determine the relative amounts of each isotope present in the sample. Additionally, the sample itself may be recovered using a metal hydride.

Kronberg, J.W.

1993-03-30T23:59:59.000Z

224

Atomic line emission analyzer for hydrogen isotopes  

DOE Patents (OSTI)

Apparatus for isotopic analysis of hydrogen comprises a low pressure chamber into which a sample of hydrogen is introduced and then exposed to an electrical discharge to excite the electrons of the hydrogen atoms to higher energy states and thereby cause the emission of light on the return to lower energy states, a Fresnel prism made at least in part of a material anomalously dispersive to the wavelengths of interest for dispersing the emitted light, and a photodiode array for receiving the dispersed light. The light emitted by the sample is filtered to pass only the desired wavelengths, such as one of the lines of the Balmer series for hydrogen, the wavelengths of which differ slightly from one isotope to another. The output of the photodiode array is processed to determine the relative amounts of each isotope present in the sample. Additionally, the sample itself may be recovered using a metal hydride.

Kronberg, James W. (108 Independent Blvd., Aiken, SC 29801)

1993-01-01T23:59:59.000Z

225

Separation of sulfur isotopes  

DOE Patents (OSTI)

Sulfur isotopes are continuously separated and enriched using a closed loop reflux system wherein sulfur dioxide (SO.sub.2) is reacted with sodium hydroxide (NaOH) or the like to form sodium hydrogen sulfite (NaHSO.sub.3). Heavier sulfur isotopes are preferentially attracted to the NaHSO.sub.3, and subsequently reacted with sulfuric acid (H.sub.2 SO.sub.4) forming sodium hydrogen sulfate (NaHSO.sub.4) and SO.sub.2 gas which contains increased concentrations of the heavier sulfur isotopes. This heavy isotope enriched SO.sub.2 gas is subsequently separated and the NaHSO.sub.4 is reacted with NaOH to form sodium sulfate (Na.sub.2 SO.sub.4) which is subsequently decomposed in an electrodialysis unit to form the NaOH and H.sub.2 SO.sub.4 components which are used in the aforesaid reactions thereby effecting sulfur isotope separation and enrichment without objectionable loss of feed materials.

DeWitt, Robert (Centerville, OH); Jepson, Bernhart E. (Dayton, OH); Schwind, Roger A. (Centerville, OH)

1976-06-22T23:59:59.000Z

226

Stable Isotopes in Hailstones. Part I: The Isotopic Cloud Model  

Science Conference Proceedings (OSTI)

Equations describing the isotopic balance between five water species (vapor, cloud water, rainwater, cloud ice and graupel)have been incorporated into a one-dimensional steady-state cloud model. The isotope contents of the various water ...

B. Federer; N. Brichet; J. Jouzel

1982-06-01T23:59:59.000Z

227

ISOTOPE SEPARATION AND ISOTOPE EXCHANGE. A Bibliography with Abstracts  

SciTech Connect

The unclassified literature covering 2498 reports from 1907 through 1957 has been searched for isotopic exchange and isotepic separation reactions involving U and the lighter elements of the periodic chart through atomic number 30. From 1953 to 1957, all elements were included Numerous references to isotope properties, isotopic ratios, and kinetic isotope effects were included. This is a complete revision of TID-3036 (Revised) issued June 4, 1954. An author index is included. (auth)

Begun, G.M.

1959-10-28T23:59:59.000Z

228

A theoretical analysis of the CH{sub 3} + H reaction : isotope effects, the high pressure limit, and transition state recrossing.  

DOE Green Energy (OSTI)

The reaction of methyl radicals with hydrogen atoms is studied with a combination of ab initio quantum chemistry, variational transition state theory, and classical trajectory simulations. The interaction between the two radicals, including the umbrella mode of the methyl radical, is examined at the CAS+1+2 level using an augmented correlation consistent polarized valence triple zeta basis set. The implementation of an analytic representation of the ab initio data within variable reaction coordinate transition state theory yields predictions for the zero-pressure limit isotopic exchange rate constants that are about 15% greater than the available experimental data. Trajectory simulations indicate that the transition state recrossing factor for the capture process is 0.90, essentially independent of temperature and isotope. The dynamically corrected theoretical prediction for the CH{sub 3} + H high pressure rate coefficient is well reproduced by the expression 1.32 x 10{sup -10}T{sup 0.153}exp(-15.1/RT) cm{sup 3}molecule{sup -1}s{sup -1}, where R = 1.987 cal mole{sup -1} K{sup -1}, for temperatures between 200 and 2400 K. This prediction is in good agreement with the converted experimental data for all but the one measurement at 200 K. Calculations for the triplet abstraction channel suggest that it is unimportant. Methyl umbrella mode variations have surprisingly little effect on the predicted rate coefficients.

Klippenstein, S. J.; Georgievskii, Y.; Harding, L.

2001-12-20T23:59:59.000Z

229

DEEP WATER ISOTOPIC CURRENT ANALYZER  

DOE Patents (OSTI)

A deepwater isotopic current analyzer, which employs radioactive isotopes for measurement of ocean currents at various levels beneath the sea, is described. The apparatus, which can determine the direction and velocity of liquid currents, comprises a shaft having a plurality of radiation detectors extending equidistant radially therefrom, means for releasing radioactive isotopes from the shaft, and means for determining the time required for the isotope to reach a particular detector. (AEC)

Johnston, W.H.

1964-04-21T23:59:59.000Z

230

Isotope Production and Distribution Program`s Fiscal Year 1997 financial statement audit  

SciTech Connect

The Department of Energy Isotope Production and Distribution Program mission is to serve the national need for a reliable supply of isotope products and services for medicine, industry and research. The program produces and sells hundreds of stable and radioactive isotopes that are widely utilized by domestic and international customers. Isotopes are produced only where there is no U.S. private sector capability or other production capacity is insufficient to meet U.S. needs. The Department encourages private sector investment in new isotope production ventures and will sell or lease its existing facilities and inventories for commercial purposes. The Isotope Program reports to the Director of the Office of Nuclear Energy, Science and Technology. The Isotope Program operates under a revolving fund established by the Fiscal Year (FY) 1990 Energy and Water Appropriations Act and maintains financial viability by earning revenues from the sale of isotopes and services and through annual appropriations. The FY 1995 Energy and Water Appropriations Act modified predecessor acts to allow prices charged for Isotope Program products and services to be based on production costs, market value, the needs of the research community, and other factors. Although the Isotope Program functions as a business, prices set for small-volume, high-cost isotopes that are needed for research purposes may not achieve full-cost recovery. As a result, isotopes produced by the Isotope Program for research and development are priced to provide a reasonable return to the U.S. Government without discouraging their use. Commercial isotopes are sold on a cost-recovery basis. Because of its pricing structure, when selecting isotopes for production, the Isotope Program must constantly balance current isotope demand, market conditions, and societal benefits with its determination to operate at the lowest possible cost to U.S. taxpayers. Thus, this report provides a financial analysis of this situation.

1998-03-27T23:59:59.000Z

231

Method for separating boron isotopes  

SciTech Connect

A method of separating boron isotopes .sup.10 B and .sup.11 B by laser-induced selective excitation and photodissociation of BCl.sub.3 molecules containing a particular boron isotope. The photodissociation products react with an appropriate chemical scavenger and the reaction products may readily be separated from undissociated BCl.sub.3, thus effecting the desired separation of the boron isotopes.

Rockwood, Stephen D. (Los Alamos, NM)

1978-01-01T23:59:59.000Z

232

Department of Energy's Isotope Development and Production for Research and Applications Program's Fiscal Year 2009 Balance Sheet Audit, OAS-FS-12-08  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Department of Energy's Isotope Department of Energy's Isotope Development and Production for Research and Applications Program's Fiscal Year 2009 Balance Sheet OAS-FS-12-08 March 2012 ISOTOPE DEVELOPMENT AND PRODUCTION FOR RESEARCH AND APPLICATIONS PROGRAM Fiscal Year 2009 Annual Report and Balance Sheet September 30, 2009 i UNITED STATES DEPARTMENT OF ENERGY ISOTOPE DEVELOPMENT AND PRODUCTION FOR RESEARCH AND APPLICATIONS PROGRAM Fiscal Year 2009 Annual Report and Balance Sheet Table of Contents Page Management's Discussion and Analysis 1 Isotope Program Overview 2 Isotope Program Funding 4 Isotope Program Performance 5 Financial Performance 6 Management Challenges and Significant Issues 7 Balance Sheet Limitations 7

233

Isotopically labeled compositions and method  

DOE Patents (OSTI)

Compounds having stable isotopes .sup.13C and/or .sup.2H were synthesized from precursor compositions having solid phase supports or affinity tags.

Schmidt, Jurgen G. (Los Alamos, NM); Kimball, David B. (Los Alamos, NM); Alvarez, Marc A. (Santa Fe, NM); Williams, Robert F. (Los Alamos, NM); Martinez, Rudolfo A. (Santa Fe, NM)

2011-07-12T23:59:59.000Z

234

ISOTOPE FRACTIONATION PROCESS  

DOE Patents (OSTI)

A new method is described for isotopic enrichment of uranium. It has been found that when an aqueous acidic solution of ionic tetravalent uraniunn is contacted with chelate complexed tetravalent uranium, the U/sup 238/ preferentially concentrates in the complexed phase while U/sup 235/ concentrates in the ionic phase. The effect is enhanced when the chelate compound is water insoluble and is dissolved in a water-immiscible organic solvent. Cupferron is one of a number of sultable complexing agents, and chloroform is a suitable organic solvent.

Clewett, G.H.; Lee, DeW.A.

1958-05-20T23:59:59.000Z

235

Chromatographic hydrogen isotope separation  

DOE Patents (OSTI)

Intermetallic compounds with the CaCu.sub.5 type of crystal structure, particularly LaNiCo.sub.4 and CaNi.sub.5, exhibit high separation factors and fast equilibrium times and therefore are useful for packing a chromatographic hydrogen isotope separation colum. The addition of an inert metal to dilute the hydride improves performance of the column. A large scale mutli-stage chromatographic separation process run as a secondary process off a hydrogen feedstream from an industrial plant which uses large volumes of hydrogen can produce large quantities of heavy water at an effective cost for use in heavy water reactors.

Aldridge, Frederick T. (Livermore, CA)

1981-01-01T23:59:59.000Z

236

Raman spectroscopic and mass spectrometric investigations of the hydrogen isotopes and isotopically labelled methane  

Science Conference Proceedings (OSTI)

Suitable analytical methods must be tested and developed for monitoring the individual process steps within the fuel cycle of a fusion reactor and for tritium accountability. The utility of laser-Raman spectroscopy accompanied by mass spectrometry with an Omegatron was investigated using the analysis of all hydrogen isotopes and isotopically labeled methanes as an example. The Omegatron is useful for analyzing all hydrogen isotopes mixed with the stable helium isotopes. The application of this mass spectrometer were demonstrated by analyzing mixtures of deuterated methanes. In addition, it was employed to study the radiochemical Witzbach exchange reaction between tritium and methanes. A laser-Raman spectrometer was designed for analysis of tritium-containing gases and was built from individual components. A tritium-compatible, metal-sealed Raman cuvette having windows with good optical properties and additional means for measuring the stray light was first used successfully in this work. The Raman spectra of the hydrogen isotopes were acquired in the pure rotation mode and in the rotation-vibration mode and were used for on. The deuterated methanes were measured by Raman spectroscopy, the wavenumbers determined were assigned to the corresponding vibrations, and the wavenumbers for the rotational fine-structure were summarized in tables. The fundamental Vibrations of the deuterated methanes produced Witzbach reactions were detected and assigned. The fundamental vibrations of the molecules were obtained with Raman spectroscopy for the first time in this work. The @-Raman spectrometer assembled is well suited for the analysis of tritium- containing gases and is practical in combination with mass spectrometry using an Omegatron, for studying gases used in fusion.

Jewett, J.R., Fluor Daniel Hanford

1997-02-24T23:59:59.000Z

237

Isotopic identification of leakage gas from underground storage reservoirs. Progress report  

SciTech Connect

The Illinois State Geological Survey reports that in areas where bacteriogenic methane occurs in the near-surface groundwater, isotopic analysis of methane reliably distinguishes this gas from gas that has leaked from underground storage reservoirs. Bacteriogenic methane generally has an isotopic-carbon composition of -64 to -90 per mil, whereas the pipeline and reservoir gases analyzed thus far have all had isotopic-carbon compositions in the range of -40 to -46 per mil.

Coleman, D.D.; Meents, W.F.; Liu, C.L.; Keogh, R.A.

1977-01-01T23:59:59.000Z

238

Method of separating boron isotopes  

SciTech Connect

A method of boron isotope enrichment involving the isotope preferential photolysis of (2-chloroethenyl)dichloroborane as the feed material. The photolysis can readily be achieved with CO.sub.2 laser radiation and using fluences significantly below those required to dissociate BCl.sub.3.

Jensen, Reed J. (Los Alamos, NM); Thorne, James M. (Provo, UT); Cluff, Coran L. (Provo, UT); Hayes, John K. (Salt Lake City, UT)

1984-01-01T23:59:59.000Z

239

It's Elemental - Isotopes of the Element Neptunium  

NLE Websites -- All DOE Office Websites (Extended Search)

Uranium Previous Element (Uranium) The Periodic Table of Elements Next Element (Plutonium) Plutonium Isotopes of the Element Neptunium Click for Main Data Most of the isotope...

240

It's Elemental - Isotopes of the Element Sulfur  

NLE Websites -- All DOE Office Websites (Extended Search)

Phosphorus Previous Element (Phosphorus) The Periodic Table of Elements Next Element (Chlorine) Chlorine Isotopes of the Element Sulfur Click for Main Data Most of the isotope...

Note: This page contains sample records for the topic "geothermometry isotopic analysis" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

It's Elemental - Isotopes of the Element Argon  

NLE Websites -- All DOE Office Websites (Extended Search)

Chlorine Previous Element (Chlorine) The Periodic Table of Elements Next Element (Potassium) Potassium Isotopes of the Element Argon Click for Main Data Most of the isotope data...

242

The marine biogeochemistry of zinc isotopes  

E-Print Network (OSTI)

Zinc (Zn) stable isotopes can record information about important oceanographic processes. This thesis presents data on Zn isotopes in anthropogenic materials, hydrothermal fluids and minerals, cultured marine phytoplankton, ...

John, Seth G

2007-01-01T23:59:59.000Z

243

It's Elemental - Isotopes of the Element Ruthenium  

NLE Websites -- All DOE Office Websites (Extended Search)

Technetium Previous Element (Technetium) The Periodic Table of Elements Next Element (Rhodium) Rhodium Isotopes of the Element Ruthenium Click for Main Data Most of the isotope...

244

It's Elemental - Isotopes of the Element Molybdenum  

NLE Websites -- All DOE Office Websites (Extended Search)

Niobium Previous Element (Niobium) The Periodic Table of Elements Next Element (Technetium) Technetium Isotopes of the Element Molybdenum Click for Main Data Most of the isotope...

245

It's Elemental - Isotopes of the Element Thorium  

NLE Websites -- All DOE Office Websites (Extended Search)

Table of Elements Next Element (Protactinium) Protactinium Isotopes of the Element Thorium Click for Main Data Most of the isotope data on this site has been obtained from...

246

It's Elemental - Isotopes of the Element Protactinium  

NLE Websites -- All DOE Office Websites (Extended Search)

Thorium Previous Element (Thorium) The Periodic Table of Elements Next Element (Uranium) Uranium Isotopes of the Element Protactinium Click for Main Data Most of the isotope data...

247

High-Precision Isotopic Reference Materials  

Science Conference Proceedings (OSTI)

... sources, is now capable of measuring isotope ratios with ... revolution in the use of isotopes by revealing ... This program will have an impact in several ...

2012-10-22T23:59:59.000Z

248

First AID (Atom counting for Isotopic Determination).  

SciTech Connect

Los Alamos National Laboratory (LANL) has established an in vitro bioassay monitoring program in compliance with the requirements in the Code of Federal Regulations, 10 CFR 835, Occupational Radiation Protection. One aspect of this program involves monitoring plutonium levels in at-risk workers. High-risk workers are monitored using the ultra-sensitive Therrnal Ionization Mass Spectrometry (TIMS) technique to ensure compliance with DOE standards. TIMS is used to measure atom ratios of 239Pua nd 240Puw ith respect to a tracer isotope ('Pu). These ratios are then used to calculate the amount of 239Pu and 240Pup resent. This low-level atom counting technique allows the calculation of the concentration levels of 239Pu and 240Pu in urine for at risk workers. From these concentration levels, dose assessments can be made and worker exposure levels can be monitored. Detection limits for TIMS analysis are on the order of millions of atoms, which translates to activity levels of 150 aCi 239Pua nd 500 aCi for 240Pu. pCi for Our poster presentation will discuss the ultra-sensitive, low-level analytical technique used to measure plutonium isotopes and the data verification methods used for validating isotopic measurements.

Roach, J. L. (Jeffrey L.); Israel, K. M. (Kimberly M.); Steiner, R. E. (Robert E.); Duffy, C. J. (Clarence J.); Roench, F. R. (Fred R.)

2002-01-01T23:59:59.000Z

249

Aberrant Water Homeostasis Detected by Stable Isotope Shannon P. O'Grady1  

E-Print Network (OSTI)

Aberrant Water Homeostasis Detected by Stable Isotope Analysis Shannon P. O'Grady1 *, Adam R. Wende States of America, 5 Department of Geology and Geophysics, University of Utah, Salt Lake City, Utah, United States of America Abstract While isotopes are frequently used as tracers in investigations

Ehleringer, Jim

250

Compelling Research Opportunities using Isotopes  

SciTech Connect

Isotopes are vital to the science and technology base of the US economy. Isotopes, both stable and radioactive, are essential tools in the growing science, technology, engineering, and health enterprises of the 21st century. The scientific discoveries and associated advances made as a result of the availability of isotopes today span widely from medicine to biology, physics, chemistry, and a broad range of applications in environmental and material sciences. Isotope issues have become crucial aspects of homeland security. Isotopes are utilized in new resource development, in energy from bio-fuels, petrochemical and nuclear fuels, in drug discovery, health care therapies and diagnostics, in nutrition, in agriculture, and in many other areas. The development and production of isotope products unavailable or difficult to get commercially have been most recently the responsibility of the Department of Energy's Nuclear Energy program. The President's FY09 Budget request proposed the transfer of the Isotope Production program to the Department of Energy's Office of Science in Nuclear Physics and to rename it the National Isotope Production and Application program (NIPA). The transfer has now taken place with the signing of the 2009 appropriations bill. In preparation for this, the Nuclear Science Advisory Committee (NSAC) was requested to establish a standing subcommittee, the NSAC Isotope Subcommittee (NSACI), to advise the DOE Office of Nuclear Physics. The request came in the form of two charges: one, on setting research priorities in the short term for the most compelling opportunities from the vast array of disciplines that develop and use isotopes and two, on making a long term strategic plan for the NIPA program. This is the final report to address charge 1. NSACI membership is comprised of experts from the diverse research communities, industry, production, and homeland security. NSACI discussed research opportunities divided into three areas: (1) medicine, pharmaceuticals, and biology, (2) physical sciences and engineering, and (3) national security and other applications. In each area, compelling research opportunities were considered and the subcommittee as a whole determined the final priorities for research opportunities as the foundations for the recommendations. While it was challenging to prioritize across disciplines, our order of recommendations reflect the compelling research prioritization along with consideration of time urgency for action as well as various geopolitical market issues. Common observations to all areas of research include the needs for domestic availability of crucial stable and radioactive isotopes and the education of the skilled workforce that will develop new advances using isotopes in the future. The six recommendations of NSACI reflect these concerns and the compelling research opportunities for potential new discoveries. The science case for each of the recommendations is elaborated in the respective chapters.

None

2009-04-23T23:59:59.000Z

251

Isotopic Bias and Uncertainty for Burnup Credit Applications  

Science Conference Proceedings (OSTI)

The application of burnup credit requires calculating the isotopic inventory of the irradiated fuel. The depletion calculation simulates the burnup of the fuel under reactor operating conditions. The result of the depletion analysis is the predicted isotopic composition, which is ultimately input to a criticality analysis to determine the system multiplication factor (k{sub eff}). This paper demonstrates an approach for calculating the isotopic bias and uncertainty in k{sub eff} for commercial spent nuclear fuel burnup credit. This paper covers 74 different radiochemical assayed spent fuel samples from 22 different fuel assemblies that were irradiated in eight different pressurized water reactors (PWRs). The samples evaluated span an enrichment range of 2.556 wt% U-235 through 4.67 wt% U-235, and burnups from 6.92 GWd/MTU through 55.7 GWd/MTU.

J.M. Scaglione

2002-08-19T23:59:59.000Z

252

Studies in Photosynthesis with Isotopes  

E-Print Network (OSTI)

chlorophyll) SCHEMATIC DIAGRAM OF PHOTOSYNTHESIS Fig, P Fig.2 Time of photosynthesis 60c.f M U 1646 Fig. 5 Fig. 8 Fig. 94705-eng-48 STUDIES IN PHOTOSYNTHESIS WITH ISOTOPES M Calvin

Calvin, M.; Bassham, J.A.

1952-01-01T23:59:59.000Z

253

Novel hybrid isotope separation scheme and apparatus  

DOE Patents (OSTI)

A method of yielding selectively a desired enrichment in a specific isotope including the steps of inputting into a spinning chamber a gas from which the specific isotope is to be isolated, radiating the gas with frequencies characteristic of the absorption of a particular isotope of the atomic or molecular gas, thereby inducing a photoionization reaction of the desired isotope, and collecting the specific isotope ion by suitable ion collection means.

Maya, Jakob (Brookline, MA)

1991-01-01T23:59:59.000Z

254

Nitrogen and carbon isotope values of individual amino acids: a tool to study foraging ecology of penguins in the Southern Ocean  

E-Print Network (OSTI)

Nitrogen and carbon isotope values of individual amino acids: a tool to study foraging ecology Cedex, France 5 Department of Geology and Geophysics, University of Hawaii, USA 6 NIOO-KNAW, Yerseke, 79360 Villiers-en-Bois, France Running header: Compound-specific isotope analysis and penguin isotopic

Paris-Sud XI, Université de

255

Isotope separation apparatus and method  

DOE Patents (OSTI)

The invention relates to an improved method and apparatus for laser isotope separation by photodeflection. A molecular beam comprising at least two isotopes to be separated intersects, preferably substantially perpendicular to one broad side of the molecular beam, with a laser beam traveling in a first direction. The laser beam is reflected back through the molecular beam, preferably in a second direction essentially opposite to the first direction. Because the molecules in the beam occupy various degenerate energy levels, if the laser beam comprises chirped pulses comprising selected wavelengths, the laser beam will very efficiently excite substantially all unexcited molecules and will cause stimulated emission of substantially all excited molecules of a selected one of the isotopes in the beam which such pulses encounter. Excitation caused by first direction chirped pulses moves molecules of the isotope excited thereby in the first direction. Stimulated emission of excited molecules of the isotope is brought about by returning chirped pulses traveling in the second direction. Stimulated emission moves emitting molecules in a direction opposite to the photon emitted. Because emitted photons travel in the second direction, emitting molecules move in the first direction. Substantial molecular movement of essentially all the molecules containing the one isotope is accomplished by a large number of chirped pulse-molecule interactions. A beam corer collects the molecules in the resulting enriched divergent portions of the beam.

Feldman, Barry J. (Los Alamos, NM)

1985-01-01T23:59:59.000Z

256

Isotope production facility produces cancer-fighting actinium  

NLE Websites -- All DOE Office Websites (Extended Search)

Cancer therapy gets a boost from new isotope Isotope production facility produces cancer-fighting actinium A new medical isotope project shows promise for rapidly producing major...

257

Carbon Isotope Separation and Molecular Formation in Laser-Induced...  

NLE Websites -- All DOE Office Websites (Extended Search)

Carbon Isotope Separation and Molecular Formation in Laser-Induced Plasmas by Laser Ablation Molecular Isotopic Spectrometry Title Carbon Isotope Separation and Molecular Formation...

258

A High-Volume Cryosampler and Sample Purification System for Bromine Isotope Studies of Methyl Bromide  

Science Conference Proceedings (OSTI)

A system was developed for collecting from the ambient atmosphere the methyl halides CH3Cl and CH3Br in quantities sufficient for chlorine and bromine isotope analysis. The construction and operation of the novel cryogenic collection system (...

Brett F. Thornton; Axel Horst; Daniel Carrizo; Henry Holmstrand; Per Andersson; Patrick M. Crill; rjan Gustafsson

259

Modes of Global Climate Variability during Marine Isotope Stage 3 (6026 ka)  

Science Conference Proceedings (OSTI)

Recent analysis of 38 globally distributed paleoclimatic records covering Marine Isotope Stage 3 (MIS 3) 6026 ka demonstrated that the two leading empirical orthogonal functions (EOFs) explaining the data are the Greenland ice-core signal (...

Nicklas G. Pisias; Peter U. Clark; Edward J. Brook

2010-03-01T23:59:59.000Z

260

A High-Volume Cryosampler and Sample Purification System for Bromine Isotope Studies of Methyl Bromide  

Science Conference Proceedings (OSTI)

A system was developed for collecting from the ambient atmosphere the methyl halides CH3Cl and CH3Br in quantities sufficient for chlorine and bromine isotope analysis. The construction and operation of the novel cryogenic collection system (...

Brett F. Thornton; Axel Horst; Daniel Carrizo; Henry Holmstrand; Per Andersson; Patrick M. Crill; rjan Gustafsson

2013-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "geothermometry isotopic analysis" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Isotope separation apparatus and method  

DOE Patents (OSTI)

The invention relates to a method and apparatus for laser isotope separation by photodeflection. A molecular beam comprising at least two isotopes to be separated intersects, preferable substantially perpendicular to one broad side of the molecular beam, with a laser beam traveling in a first direction. The laser beam is reflected back through the molecular beam, preferably in a second direction essentially opposite to the first direction. The laser beam comprises .pi.-pulses of a selected wavelength which excite unexcited molecules, or cause stimulated emission of excited molecules of one of the isotopes. Excitation caused by first direction .pi.-pulses moves molecules of the isotope excited thereby in the first direction. Stimulated emission of excited molecules of the isotope is brought about by returning .pi.-pulses traveling in the second direction. Stimulated emission moves emitting molecules in a direction opposite to the photon emitted. Because emitted photons travel in the second direction, emitting molecules move in the first direction. Substantial molecular movement is accomplished by a large number of .pi.-pulse-molecule interactions. A beam corer collects the molecules in the resulting enriched divergent portions of the beam.

Cotter, Theodore P. (Los Alamos, NM)

1982-12-28T23:59:59.000Z

262

Isotope dilution study of exchangeable oxygen in premium coal samples  

Science Conference Proceedings (OSTI)

A difficulty with improving the ability to quantitate water in coal is that truly independent methods do not always exist. The true value of any analytical parameter is always easier to determine if totally independent methods exist to determine that parameter. This paper describes the possibility of using a simple isotope dilution technique to determine the water content of coal and presents a comparison of these isotope dilution measurements with classical results for the set of Argonne coals from the premium coal sample program. Isotope dilution is a widely used analytical method and has been applied to the analysis of water in matrices as diverse as chicken fat, living humans, and coal. Virtually all of these applications involved the use of deuterium as the diluted isotope. This poses some problems if the sample contains a significant amount of exchangeable organic hydrogen and one is interested in discriminating exchangeable organic hydrogen from water. This is a potential problem in the coal system. To avoid this potential problem /sup 18/O was used as the diluted isotope in this work.

Finseth, D.

1987-01-01T23:59:59.000Z

263

Atom probe microscopy of three-dimensional distribution of silicon isotopes in {sup 28}Si/{sup 30}Si isotope superlattices with sub-nanometer spatial resolution  

Science Conference Proceedings (OSTI)

Laser-assisted atom probe microscopy of 2 nm period {sup 28}Si/{sup 30}Si isotope superlattices (SLs) is reported. Three-dimensional distributions of {sup 28}Si and {sup 30}Si stable isotopes are obtained with sub-nanometer spatial resolution. The depth resolution of the present atom probe analysis is much higher than that of secondary ion mass spectrometry (SIMS) even when SIMS is performed with a great care to reduce the artifact due to atomic mixing. Outlook of Si isotope SLs as ideal depth scales for SIMS and three-dimensional position standards for atom probe microscopy is discussed.

Shimizu, Yasuo; Kawamura, Yoko; Uematsu, Masashi; Itoh, Kohei M. [School of Fundamental Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522 (Japan); Tomita, Mitsuhiro [Corporate Research and Development Center, Toshiba Corporation, 8 Shinsugita-cho, Isogo-ku, Yokohama 235-8522 (Japan); Sasaki, Mikio; Uchida, Hiroshi; Takahashi, Mamoru [Toshiba Nanoanalysis Corporation, 1 Komukai Toshiba-cho, Saiwai-ku, Kawasaki 212-8583 (Japan)

2009-10-01T23:59:59.000Z

264

Isotopic Abundance in Atom Trap Trace Analysis  

E-Print Network (OSTI)

-mail:maynard@anl.gov Website:http://www.anl.gov/ techtransfer/ ABOUT ARGONNE TECHNOLOGY TRANSFER Argonne

Kemner, Ken

265

It's Elemental - Isotopes of the Element Mendelevium  

NLE Websites -- All DOE Office Websites (Extended Search)

The Periodic Table of Elements Next Element (Nobelium) Nobelium Isotopes of the Element Mendelevium Click for Main Data Most of the isotope data on this site has been obtained...

266

It's Elemental - Isotopes of the Element Uranium  

NLE Websites -- All DOE Office Websites (Extended Search)

Periodic Table of Elements Next Element (Neptunium) Neptunium Isotopes of the Element Uranium Click for Main Data Most of the isotope data on this site has been obtained from...

267

It's Elemental - Isotopes of the Element Lithium  

NLE Websites -- All DOE Office Websites (Extended Search)

Periodic Table of Elements Next Element (Beryllium) Beryllium Isotopes of the Element Lithium Click for Main Data Most of the isotope data on this site has been obtained from...

268

It's Elemental - Isotopes of the Element Hydrogen  

NLE Websites -- All DOE Office Websites (Extended Search)

The Periodic Table of Elements Next Element (Helium) Helium Isotopes of the Element Hydrogen Click for Main Data Most of the isotope data on this site has been obtained from...

269

Isotope GeoloGy1 Unlike physics or chemistry, teaching isotope  

E-Print Network (OSTI)

Isotope GeoloGy1 Unlike physics or chemistry, teaching isotope geochemistry is difficult because. Writing an effective book on geochemistry is thus even more difficult. Claude Allègre's Isotope Geology geochemistry book, given how effective the texts by Faure and Dickin are. However, Allègre's Isotope Geology

Lee, Cin-Ty Aeolus

270

ISOTOPE FRACTIONATION Isotopes are atoms whose nuclei contain the same number of protons but a different number of neutrons. The  

E-Print Network (OSTI)

for the utilization of stable isotopes in geology, geochemistry, biogeochemistry, paleoceanography and elsewhere____________________________ ISOTOPE FRACTIONATION ____________________________ Isotopes are atoms whose nuclei contain the same number of protons but a different number of neutrons. The term `isotope

Zeebe, Richard E.

271

Application of Environmental Isotopes to the Evaluation of the Origin of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Application of Environmental Isotopes to the Evaluation of the Application of Environmental Isotopes to the Evaluation of the Origin of Contamination in a Desert Arroyo: Many Devils Wash, Shiprock, New Mexico Application of Environmental Isotopes to the Evaluation of the Origin of Contamination in a Desert Arroyo: Many Devils Wash, Shiprock, New Mexico Application of Environmental Isotopes to the Evaluation of the Origin of Contamination in a Desert Arroyo: Many Devils Wash, Shiprock, New Mexico Application of Environmental Isotopes to the Evaluation of the Origin of Contamination in a Desert Arroyo: Many Devils Wash, Shiprock, New Mexico More Documents & Publications Multivariate Statistical Analysis of Water Chemistry in Evaluating the Origin of Contamination in Many Devils Wash, Shiprock, New Mexico Natural Contamination from the Mancos Shale

272

Charge radii and ground state structure of lithium isotopes: Experiment and theory reexamined  

Science Conference Proceedings (OSTI)

Changes in the nuclear charge radii of lithium isotopes were determined using a combination of precise isotope shift measurements and theoretical atomic structure calculations. We discuss the choice of the reference isotope for absolute charge radii determinations in the lithium isotopic chain and report a new value for the charge radius of {sup 6}Li, based on the analysis of the world scattering data. A summary of the lithium nuclear charge radii obtained in this way is presented. Additionally, new calculations in fermionic molecular dynamics for the lithium isotopes were performed. We summarize the status of the lithium nuclear charge radii, magnetic dipole and electric quadrupole moments from experimental investigations and compare them to the results of various microscopic and three-body nuclear models.

Noertershaeuser, W. [Institut fuer Kernchemie, Universitaet Mainz, D-55099 Mainz (Germany); GSI Helmholtzzentrum fuer Schwerionenforschung GmbH, D-64291 Darmstadt (Germany); Neff, T. [GSI Helmholtzzentrum fuer Schwerionenforschung GmbH, D-64291 Darmstadt (Germany); Sanchez, R. [Helmholtzinstitut Mainz, Johannes Gutenberg-Universitaet, D-55099 Mainz (Germany); Sick, I. [Departement fuer Physik, Universitaet Basel, CH-4056 Basel (Switzerland)

2011-08-15T23:59:59.000Z

273

Isotope Development & Production | Nuclear Science | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

Medical Radioisotope Radiochemical Separation & Processing Strategic Isotope Production Super Heavy Element Discovery Nuclear Security Science & Technology Nuclear Systems...

274

"Environmental Isotope Geochemistry": Past, Present Mark Baskaran  

E-Print Network (OSTI)

Chapter 1 "Environmental Isotope Geochemistry": Past, Present and Future Mark Baskaran 1.1 Introduction and Early History A large number of radioactive and stable isotopes of the first 95 elements unraveling many secrets of our Earth and its environmental health. These isotopes, because of their suitable

Baskaran, Mark

275

Radioactive isotopes on the Moon  

SciTech Connect

A limited review of experiments and studies of radioactivity and isotope ratios in lunar materials is given. Observations made on the first few millimeters of the surface where the effects of solar flare particles are important, some measurements on individual rocks, and some studies of radioactivities produced deep in the lunar soil by galactic cosmic rays, are among the experiments discussed. (GHT)

Davis, R. Jr.

1975-01-01T23:59:59.000Z

276

Nitrogen Isotopic Composition of Coal-Fired Power Plant NOx: Influence of Emission Controls and Implications for Global Emission  

E-Print Network (OSTI)

Nitrogen Isotopic Composition of Coal-Fired Power Plant NOx: Influence of Emission Controls from coal-fired power plants in the U.S. at typical operating conditions with and without the presence this, a novel method for collection and isotopic analysis of coal-fired stack NOx emission samples

Elliott, Emily M.

277

Measurement of Trace Uranium Isotopes  

Science Conference Proceedings (OSTI)

The extent to which thermal ionization mass spectrometry (TIMS) can measure trace quantities of 233U and 236U in the presence of a huge excess of natural uranium is evaluated. This is an important nuclear non-proliferation measurement. Four ion production methods were evaluated with three mass spectrometer combinations. The most favorable combinations are not limited by abundance sensitivity; rather, the limitations are the ability to generate a uranium ion beam of sufficient intensity to obtain the required number of counts on the minor isotopes in relationship to detector background. The most favorable situations can measure isotope ratios in the range of E10 if sufficient sample intensity is available. These are the triple sector mass spectrometer with porous ion emitters (PIE) and the single sector mass spectrometer with energy filtering.

Matthew G. Watrous; James E. Delmore

2011-05-01T23:59:59.000Z

278

Nuclear Energy Protocol for Research Isotopes Owen Lowe  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Protocol for Protocol for Research Isotopes Owen Lowe Office of Isotopes for Medicine and Science Office of Nuclear Energy, Science and Technology April 16, 2002 Isotopes for Life Isotopes for Life Isotopes for Life Office of Nuclear Energy, Science and Technology Lowe/April16_02 NEPRI to NERAC.ppt (2) Nuclear Energy Protocol For Research Isotopes Nuclear Energy Protocol For Research Isotopes Why NEPRI? 6 NEPRI implements DOE funding priorities for fiscal year 2003 6 NEPRI will * Bring order to DOE's responses to requests for research isotopes * Introduce a high-quality peer review to the selection of research isotopes * Enable DOE to concentrate on operating its unique isotope production facilities Isotopes for Life Isotopes for Life Isotopes for Life Office of Nuclear Energy, Science and Technology

279

Strategic Isotope Production | ornl.gov  

NLE Websites -- All DOE Office Websites (Extended Search)

Strategic Isotope Strategic Isotope Production SHARE Strategic Isotope Production Typical capsules used in the transport of 252Cf source material inside heavily shielded shipping casks. ORNL's unique facilities at the High Flux Isotope Reactor (HFIR), Radiochemical Engineering Development Center (REDC), Irradiated Fuels Examination Laboratory (IFEL), and Irradiated Materials Examination Testing facility (IMET) are routinely used in the production, purification, packaging, and shipping of a number of isotopes of national importance, including: 75Se, 63Ni, 238Pu, 252Cf, and others. The intense neutron flux of the HFIR (2.0 x 1015 neutrons/cm²·s) permits the rapid formation of such isotopes. These highly irradiated materials are then processed and packaged for shipping using the facilities at the REDC, IFEL, and IMET.

280

Electromagnetic Isotope Separation Lab (EMIS) | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

Electromagnetic Isotope Separation Lab Electromagnetic Isotope Separation Lab May 30, 2013 ORNL established the Stable Isotope Enrichment Laboratory (SIEL) as part of a project funded by the DOE Office of Science, Nuclear Physics Program to develop a modernized electromagnetic isotope separator (EMIS), optimized for separation of a wide range of stable isotopes. The SIEL is located in the Building 6010 Shield Test Station, space formerly allocated to the Oak Ridge Electron Linear Accelerator, on the main campus of ORNL. ORNL staff have designed and built a nominal 10 mA ion current EMIS (sum of all isotopes at the collector) in the SIEL. This EMIS is currently being tested to determine basic performance metrics such as throughput and enrichment factor per pass. This EMIS unit and space will be used to

Note: This page contains sample records for the topic "geothermometry isotopic analysis" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Stable Isotope Enrichment Capabilities at ORNL  

SciTech Connect

The Oak Ridge National Laboratory (ORNL) and the US Department of Energy Nuclear Physics Program have built a high-resolution Electromagnetic Isotope Separator (EMIS) as a prototype for reestablishing a US based enrichment capability for stable isotopes. ORNL has over 60 years of experience providing enriched stable isotopes and related technical services to the international accelerator target community, as well as medical, research, industrial, national security, and other communities. ORNL is investigating the combined use of electromagnetic and gas centrifuge isotope separation technologies to provide research quantities (milligram to several kilograms) of enriched stable isotopes. In preparation for implementing a larger scale production facility, a 10 mA high-resolution EMIS prototype has been built and tested. Initial testing of the device has simultaneously collected greater than 98% enriched samples of all the molybdenum isotopes from natural abundance feedstock.

Egle, Brian [ORNL; Aaron, W Scott [ORNL; Hart, Kevin J [ORNL

2013-01-01T23:59:59.000Z

282

METHOD AND APPARATUS FOR COLLECTING ISOTOPES  

DOE Patents (OSTI)

A method and apparatus for collecting isotopes having a high vapor pressure, such as isotopes of mercury, in a calutron are described. Heretofore, the collected material would vaporize and escape from the ion receiver as fast as it was received. By making the receiver of pure silver, the mercury isotopes form a nonvolatile amalgam with the silver at the water cooled temperature of the receiver, and the mercury is thus retained.

Leyshon, W.E.

1957-08-01T23:59:59.000Z

283

It's Elemental - Isotopes of the Element Nobelium  

NLE Websites -- All DOE Office Websites (Extended Search)

Mendelevium Previous Element (Mendelevium) The Periodic Table of Elements Next Element (Lawrencium) Lawrencium Isotopes of the Element Nobelium Click for Main Data Most of the...

284

It's Elemental - Isotopes of the Element Fermium  

NLE Websites -- All DOE Office Websites (Extended Search)

Einsteinium Previous Element (Einsteinium) The Periodic Table of Elements Next Element (Mendelevium) Mendelevium Isotopes of the Element Fermium Click for Main Data Most of the...

285

WEB RESOURCE: Exploring the Table of Isotopes  

Science Conference Proceedings (OSTI)

Feb 16, 2007 ... This page offers an interactive table of isotopes, an animated glossary of nuclear terms and relevant support documents created by the...

286

Available Technologies: Real Time High Throughput Isotopic ...  

Space exploration; Any scientific research involving the tracking of isotopic labels, as in: Solar power; Scintillators (deuterated, 10 B, 6 Li, 3 He) Batteries (doping)

287

Zeolite Cryopumps for Hydrogen Isotopes Transportation  

Science Conference Proceedings (OSTI)

Tritium Processing / Proceedings of the Fifth Topical Meeting on Tritium Technology in Fission, Fusion, and Isotopic Applications Belgirate, Italy May 28-June 3, 1995

Ivan A. Alekseev; Sergey P. Karpov; Veniamin D. Trenin

288

It's Elemental - Isotopes of the Element Rhodium  

NLE Websites -- All DOE Office Websites (Extended Search)

Isotopes Mass Number Half-life Decay Mode Branching Percentage 89 1.5 microseconds Electron Capture (suspected) No Data Available Proton Emission (suspected) No Data Available...

289

It's Elemental - Isotopes of the Element Promethium  

NLE Websites -- All DOE Office Websites (Extended Search)

Isotopes Mass Number Half-life Decay Mode Branching Percentage 126 No Data Available Electron Capture (suspected) No Data Available 127 No Data Available Proton Emission...

290

It's Elemental - Isotopes of the Element Niobium  

NLE Websites -- All DOE Office Websites (Extended Search)

Isotopes Mass Number Half-life Decay Mode Branching Percentage 81 < 200 nanoseconds Electron Capture No Data Available 82 50 milliseconds Electron Capture 100.00% Electron...

291

It's Elemental - Isotopes of the Element Indium  

NLE Websites -- All DOE Office Websites (Extended Search)

Isotopes Mass Number Half-life Decay Mode Branching Percentage 97 No Data Available Electron Capture (suspected) No Data Available Proton Emission (suspected) No Data Available...

292

It's Elemental - Isotopes of the Element Cerium  

NLE Websites -- All DOE Office Websites (Extended Search)

Isotopes Mass Number Half-life Decay Mode Branching Percentage 119 No Data Available Electron Capture (suspected) No Data Available 120 No Data Available Electron Capture...

293

NIDC: Online Catalog of Isotope Products Home  

NLE Websites -- All DOE Office Websites (Extended Search)

Catalog of Isotope Products Please select an option below. PRODUCTS VIEWING Select using PERIODIC TABLE or NUCLIDE CHART or LIST SEARCHING SEARCH for a Product REQUESTING REQUEST a...

294

HFIR | High Flux Isotope Reactor | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

HFIR Working with HFIR Neutron imaging offers new tools for exploring artifacts and ancient technology Home | User Facilities | HFIR HFIR | High Flux Isotope Reactor SHARE The High...

295

Isotopic Exchange in Air Detritiation Dryers  

Science Conference Proceedings (OSTI)

Tritium Processing / Proceedings of the Third Topical Meeting on Tritium Technology in Fission, Fusion and Isotopic Applications (Toronto, Ontario, Canada, May 1-6, 1988)

A.E. Everatt; A.H. Dombra; R.E. Johnson

296

CLUMPED ISOTOPIC EQUILIBRIUM AND THE RATE OF ISOTOPE EXCHANGE BETWEEN CO2 AND WATER  

E-Print Network (OSTI)

CLUMPED ISOTOPIC EQUILIBRIUM AND THE RATE OF ISOTOPE EXCHANGE BETWEEN CO2 AND WATER HAGIT P. AFFEK Department of Geology and Geophysics, Yale University, 210 Whitney Ave., New Haven, Connecticut, 06511, USA the exchange of oxygen isotopes with water. The use of 18 O as an environmental indicator typically assumes

297

Mercury Isotope Fractionation by Environmental Transport and Transformation Processes  

E-Print Network (OSTI)

isotope fractionation in fossil hydrothermal systems. Geology,isotopes: Evaporation, chemical diffusion and Soret diffusion. Chemical Geology,isotope records of atmospheric and riverine pollution from two major European heavy metal refineries. Chemical Geology,

Koster van Groos, Paul Gijsbert

2011-01-01T23:59:59.000Z

298

ISOTOPES  

E-Print Network (OSTI)

U.S. Department of Energy: Uranium Enrichment (1978). UnitedRaux and W.L. Grant, uranium Enrichment in South Africa,for heavy~water and uranium enrichment is more severe. In

Lederer, C. Michael

2013-01-01T23:59:59.000Z

299

ISOTOPES  

E-Print Network (OSTI)

depends on the cost and energy efficiency of the laser.and the low cost and energy efficiency of existing, large-

Lederer, C. Michael

2013-01-01T23:59:59.000Z

300

ISOTOPES  

E-Print Network (OSTI)

uranium, heavy-water-moderated CANDU reactor, as contrastedis important, and in the CANDU power reactor, which uses

Lederer, C. Michael

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "geothermometry isotopic analysis" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

ISOTOPES  

E-Print Network (OSTI)

A Guidebook to Nuclear Reactors, University of Californiaa thermal position of a nuclear reactor followed by analysisproduced by six large nuclear reactors. The power usage per

Lederer, C. Michael

2013-01-01T23:59:59.000Z

302

ISOTOPES  

E-Print Network (OSTI)

is somewhat uncertain~ and projections have been reducedFigure 15 shows the recent CONAES projections for the U.S. (72,90), along with earlier projections for the U.S. and the

Lederer, C. Michael

2013-01-01T23:59:59.000Z

303

ISOTOPES  

E-Print Network (OSTI)

Klein and S.V. Peterson, May 9-ll, 1973, Argonne NationalLaboratory, Argonne, Illinois (1973). 97. R.A. Muller,S.V. Peterson, May 9-11, 1973, Argonne National Laboratory,

Lederer, C. Michael

2013-01-01T23:59:59.000Z

304

ISOTOPES  

E-Print Network (OSTI)

as occurs in batch distillation. The urgency of developingor one plate of a distillation column, for example. Anas in the case of a distillation column, for which any other

Lederer, C. Michael

2013-01-01T23:59:59.000Z

305

Dynamical aspects of isotopic scaling  

E-Print Network (OSTI)

Investigation of the effect of the dynamical stage of heavy-ion collisions indicates that the increasing width of the initial isospin distributions is reflected by a significant modification of the isoscaling slope for the final isotopic distributions after de-excitation. For narrow initial distributions, the isoscaling slope assumes the limiting value of the two individual initial nuclei while for wide initial isotopic distributions the slope for hot fragments approaches the initial value. The isoscaling slopes for final cold fragments increase due to secondary emissions. The experimentally observed evolution of the isoscaling parameter in multifragmentation of hot quasiprojectiles at E$_{inc}$=50 AMeV, fragmentation of $^{86}$Kr projectiles at E$_{inc}$=25 AMeV and multifragmentation of target spectators at relativistic energies was reproduced by a simulation with the dynamical stage described using the appropriate model (deep inelastic transfer and incomplete fusion at the Fermi energy domain and spectator-participant model at relativistic energies) and the de-excitation stage described with the statistical multifragmentation model. In all cases the isoscaling behavior was reproduced by a proper description of the dynamical stage and no unambiguous signals of the decrease of the symmetry energy coefficient were observed.

M. Veselsky

2006-07-17T23:59:59.000Z

306

Advanced Mass Spectrometers for Hydrogen Isotope Analyses  

DOE Green Energy (OSTI)

This report is a summary of the results of a joint Savannah River Laboratory (SRL) - Savannah River Plant (SRP) ''Hydrogen Isotope Mass Spectrometer Evaluation Program''. The program was undertaken to evaluate two prototype hydrogen isotope mass spectrometers and obtain sufficient data to permit SRP personnel to specify the mass spectrometers to replace obsolete instruments.

Chastagner, P.

2001-08-01T23:59:59.000Z

307

The Quest for the Heaviest Uranium Isotope  

E-Print Network (OSTI)

We study Uranium isotopes and surrounding elements at very large neutron number excess. Relativistic mean field and Skyrme-type approaches with different parametrizations are used in the study. Most models show clear indications for isotopes that are stable with respect to neutron emission far beyond N=184 up to the range of around N=258.

S. Schramm; D. Gridnev; D. V. Tarasov; V. N. Tarasov; W. Greiner

2011-07-06T23:59:59.000Z

308

5, 547577, 2008 Isotope hydrology of  

E-Print Network (OSTI)

HESSD 5, 547­577, 2008 Isotope hydrology of cave dripwaters L. Fuller et al. Title Page Abstract are under open-access review for the journal Hydrology and Earth System Sciences Isotope hydrology of Geology and Palaeontology, University of Innsbruck, Innrain 52, 6020 Innsbruck, Austria 3 School

Paris-Sud XI, Université de

309

Positive and inverse isotope effect on superconductivity  

E-Print Network (OSTI)

This article improves the BCS theory to include the inverse isotope effect on superconductivity. An affective model can be deduced from the model including electron-phonon interactions, and the phonon-induced attraction is simply and clearly explained on the electron Green function. The focus of this work is on how the positive or inverse isotope effect occurs in superconductors.

Tian De Cao

2009-09-04T23:59:59.000Z

310

Modern Records of Carbon and Oxygen Isotopes in Atmospheric Carbon...  

NLE Websites -- All DOE Office Websites (Extended Search)

Modern Records of Carbon and Oxygen Isotopes in Atmospheric Carbon Dioxide and Carbon-13 in Methane Modern Records of Carbon and Oxygen Isotopes in Atmospheric Carbon Dioxide and...

311

EIS-0249: Medical Isotopes Production Project | Department of...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

49: Medical Isotopes Production Project EIS-0249: Medical Isotopes Production Project Summary This EIS evaluates the potential environmental impacts of a proposal to establish a...

312

CALIFORNIUM ISOTOPES FROM BOMBARDMENT OF URANIUM WITH CARBON IONS  

E-Print Network (OSTI)

Isotopes from Bombardment of Uranium with Carbon Ions A.ISOTOPES FROM BOMBARDMENT OF URANIUM WITH CARBON IONS A.the irradiations, the uranium was dissolved in dilute

Ghiorso, A.; Thompson, S.G.; Street, K. Jr.; Seaborg, G.T.

2008-01-01T23:59:59.000Z

313

A Helium Isotope Perspective On The Dixie Valley, Nevada, Hydrothermal...  

Open Energy Info (EERE)

Helium Isotope Perspective On The Dixie Valley, Nevada, Hydrothermal System Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: A Helium Isotope...

314

Geothermometry At Central Nevada Seismic Zone Region (Shevenell...  

Open Energy Info (EERE)

DOE-funding Unknown References Lisa Shevenell, Ted De Rocher (2005) Evaluation Of Chemical Geothermometers For Calculating Reservoir Temperatures At Nevada Geothermal Power...

315

Geothermometry At Walker-Lane Transitional Zone Region (Shevenell...  

Open Energy Info (EERE)

DOE-funding Unknown References Lisa Shevenell, Ted De Rocher (2005) Evaluation Of Chemical Geothermometers For Calculating Reservoir Temperatures At Nevada Geothermal Power...

316

Geothermometry At Olowalu-Ukumehame Canyon Area (Thomas, 1986...  

Open Energy Info (EERE)

of the water produced by this aquifer indicates that the chloridemagnesium ion ratio has been significantly altered by thermal processes. References Donald M. Thomas (1...

317

It's Elemental - Isotopes of the Element Radon  

NLE Websites -- All DOE Office Websites (Extended Search)

Astatine Astatine Previous Element (Astatine) The Periodic Table of Elements Next Element (Francium) Francium Isotopes of the Element Radon [Click for Main Data] Most of the isotope data on this site has been obtained from the National Nuclear Data Center. Please visit their site for more information. Naturally Occurring Isotopes Radon has no naturally occurring isotopes. Known Isotopes Mass Number Half-life Decay Mode Branching Percentage 193 1.15 milliseconds Alpha Decay 100.00% 194 0.78 milliseconds Alpha Decay 100.00% 195 6 milliseconds Alpha Decay 100.00% 195m 5 milliseconds Alpha Decay 100.00% 196 4.4 milliseconds Alpha Decay 99.90% Electron Capture ~ 0.10% 197 53 milliseconds Alpha Decay 100.00% 197m 25 milliseconds Alpha Decay 100.00% 198 65 milliseconds Alpha Decay No Data Available

318

It's Elemental - Isotopes of the Element Francium  

NLE Websites -- All DOE Office Websites (Extended Search)

Radon Radon Previous Element (Radon) The Periodic Table of Elements Next Element (Radium) Radium Isotopes of the Element Francium [Click for Main Data] Most of the isotope data on this site has been obtained from the National Nuclear Data Center. Please visit their site for more information. Naturally Occurring Isotopes Francium has no naturally occurring isotopes. Known Isotopes Mass Number Half-life Decay Mode Branching Percentage 199 12 milliseconds Alpha Decay > 0.00% Electron Capture No Data Available 200 49 milliseconds Alpha Decay 100.00% 201 62 milliseconds Alpha Decay 100.00% 201m 19 milliseconds Alpha Decay 100.00% 202 0.30 seconds Alpha Decay 100.00% 202m 0.29 seconds Alpha Decay 100.00% 203 0.55 seconds Alpha Decay <= 100.00% 204 1.8 seconds Alpha Decay 92.00%

319

Selected Isotopes for Optimized Fuel Assembly Tags  

SciTech Connect

In support of our ongoing signatures project we present information on 3 isotopes selected for possible application in optimized tags that could be applied to fuel assemblies to provide an objective measure of burnup. 1. Important factors for an optimized tag are compatibility with the reactor environment (corrosion resistance), low radioactive activation, at least 2 stable isotopes, moderate neutron absorption cross-section, which gives significant changes in isotope ratios over typical fuel assembly irradiation levels, and ease of measurement in the SIMS machine 2. From the candidate isotopes presented in the 3rd FY 08 Quarterly Report, the most promising appear to be Titanium, Hafnium, and Platinum. The other candidate isotopes (Iron, Tungsten, exhibited inadequate corrosion resistance and/or had neutron capture cross-sections either too high or too low for the burnup range of interest.

Gerlach, David C.; Mitchell, Mark R.; Reid, Bruce D.; Gesh, Christopher J.; Hurley, David E.

2008-10-01T23:59:59.000Z

320

Isotope Enrichment Detection by Laser Ablation - Dual Tunable Diode Laser Absorption Spectrometry  

Science Conference Proceedings (OSTI)

The rapid global expansion of nuclear energy is motivating the expedited development of new safeguards technology to mitigate potential proliferation threats arising from monitoring gaps within the uranium enrichment process. Current onsite enrichment level monitoring methods are limited by poor sensitivity and accuracy performance. Offsite analysis has better performance, but this approach requires onsite hand sampling followed by time-consuming and costly post analysis. These limitations make it extremely difficult to implement comprehensive safeguards accounting measures that can effectively counter enrichment facility misuse. In addition, uranium enrichment by modern centrifugation leads to a significant proliferation threat, since the centrifuge cascades can quickly produce a significant quantity of highly enriched uranium (HEU). The Pacific Northwest National Laboratory is developing an engineered safeguards approach having continuous aerosol particulate collection and uranium isotope analysis to provide timely detection of HEU production in a low enriched uranium facility. This approach is based on laser vaporization of aerosol particulate samples, followed by wavelength tuned laser diode spectroscopy, to characterize the 235U/238U isotopic ratio by subtle differences in atomic absorption wavelengths arising from differences in each isotopes nuclear mass, volume, and spin (hyperfine structure for 235U). Environmental sampling media is introduced into a small, reduced pressure chamber, where a focused pulsed laser vaporizes a 10 to 20-m sample diameter. The ejected plasma forms a plume of atomic vapor. A plume for a sample containing uranium has atoms of the 235U and 238U isotopes present. Tunable diode lasers are directed through the plume to selectively excite each isotope and their presence is detected by monitoring absorbance signals on a shot-to-shot basis. Single-shot detection sensitivity approaching the femtogram range and abundance uncertainty less than 10% have been demonstrated with measurements on surrogate materials. In this paper we present measurement results on samples containing background materials (e.g., dust, minerals, soils) laced with micron-sized target particles having isotopic ratios ranging from 1 to 50%.

Anheier, Norman C.; Bushaw, Bruce A.

2009-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "geothermometry isotopic analysis" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Atomic vapor laser isotope separation  

SciTech Connect

Atomic vapor laser isotope separation (AVLIS) is a general and powerful technique. A major present application to the enrichment of uranium for light-water power reactor fuel has been under development for over 10 years. In June 1985 the Department of Energy announced the selection of AVLIS as the technology to meet the nation's future need for the internationally competitive production of uranium separative work. The economic basis for this decision is considered, with an indicated of the constraints placed on the process figures of merit and the process laser system. We then trace an atom through a generic AVLIS separator and give examples of the physical steps encountered, the models used to describe the process physics, the fundamental parameters involved, and the role of diagnostic laser measurements.

Stern, R.C.; Paisner, J.A.

1985-11-08T23:59:59.000Z

322

Apparatus for storing hydrogen isotopes  

DOE Green Energy (OSTI)

An improved method and apparatus for storing isotopes of hydrogen (especially tritium) are provided. The hydrogen gas(es) is (are) stored as hydrides of material (for example uranium) within boreholes in a block of copper. The mass of the block is critically important to the operation, as is the selection of copper, because no cooling pipes are used. Because no cooling pipes are used, there can be no failure due to cooling pipes. And because copper is used instead of stainless steel, a significantly higher temperature can be reached before the eutectic formation of uranium with copper occurs, (the eutectic of uranium with the iron in stainless steel forming at a significantly lower temperature).

McMullen, John W. (Los Alamos, NM); Wheeler, Michael G. (Los Alamos, NM); Cullingford, Hatice S. (Houston, TX); Sherman, Robert H. (Los Alamos, NM)

1985-01-01T23:59:59.000Z

323

Isotope separation by photoselective dissociative electron capture  

DOE Patents (OSTI)

Disclosed is a method of separating isotopes based on photoselective electron capture dissociation of molecules having an electron capture cross section dependence on the vibrational state of the molecule. A molecular isotope source material is irradiated to selectively excite those molecules containing a desired isotope to a predetermined vibrational state having associated therewith an electron capture energy region substantially non-overlapping with the electron capture energy ranges associated with the lowest vibration states of the molecules. The isotope source is also subjected to electrons having an energy corresponding to the non-overlapping electron capture region whereby the selectively excited molecules preferentially capture electrons and dissociate into negative ions and neutrals. The desired isotope may be in the negative ion product or in the neutral product depending upon the mechanism of dissociation of the particular isotope source used. The dissociation product enriched in the desired isotope is then separated from the reaction system by conventional means. Specifically, [sup 235]UF[sub 6] is separated from a UF[sub 6] mixture by selective excitation followed by dissociative electron capture into [sup 235]UF[sub 5]- and F. 2 figs.

Stevens, C.G.

1978-08-29T23:59:59.000Z

324

Isotope separation by photoselective dissociative electron capture  

DOE Patents (OSTI)

A method of separating isotopes based on photoselective electron capture dissociation of molecules having an electron capture cross section dependence on the vibrational state of the molecule. A molecular isotope source material is irradiated to selectively excite those molecules containing a desired isotope to a predetermined vibrational state having associated therewith an electron capture energy region substantially non-overlapping with the electron capture energy ranges associated with the lowest vibration states of the molecules. The isotope source is also subjected to electrons having an energy corresponding to the non-overlapping electron capture region whereby the selectively excited molecules preferentially capture electrons and dissociate into negative ions and neutrals. The desired isotope may be in the negative ion product or in the neutral product depending upon the mechanism of dissociation of the particular isotope source used. The dissociation product enriched in the desired isotope is then separated from the reaction system by conventional means. Specifically, .sup.235 UF.sub.6 is separated from a UF.sub.6 mixture by selective excitation followed by dissociative electron capture into .sup.235 UF.sub.5 - and F.

Stevens, Charles G. (Pleasanton, CA)

1978-01-01T23:59:59.000Z

325

Tritium Isotope Separation Using Adsorption-Distillation Column  

Science Conference Proceedings (OSTI)

Technical Paper / Tritium Science and Technology - Tritium Science and Technology - Detritiation, Purification, and Isotope Separation

Satoshi Fukada

326

Preface to bLithium isotope geochemistryQ The use of light stable isotopes to elucidate Earth  

E-Print Network (OSTI)

Li reflect heavier isotopic ratios. Chemical Geology 212 (2004) 1­4 wwwPreface Preface to bLithium isotope geochemistryQ The use of light stable isotopes to elucidate isotope geochemistry. Taylor and Urey (1938) used ion exchange chromatography to sepa- rate 6 Li from 7 Li

Rudnick, Roberta L.

327

It's Elemental - Isotopes of the Element Boron  

NLE Websites -- All DOE Office Websites (Extended Search)

Beryllium Beryllium Previous Element (Beryllium) The Periodic Table of Elements Next Element (Carbon) Carbon Isotopes of the Element Boron [Click for Main Data] Most of the isotope data on this site has been obtained from the National Nuclear Data Center. Please visit their site for more information. Naturally Occurring Isotopes Mass Number Natural Abundance Half-life 10 19.9% STABLE 11 80.1% STABLE Known Isotopes Mass Number Half-life Decay Mode Branching Percentage 6 No Data Available Double Proton Emission (suspected) No Data Available 7 3.255×10-22 seconds Proton Emission No Data Available Alpha Decay No Data Available 8 770 milliseconds Electron Capture 100.00% Electron Capture with delayed Alpha Decay 100.00% 9 8.439×10-19 seconds Proton Emission 100.00% Double Alpha Decay 100.00%

328

It's Elemental - Isotopes of the Element Tungsten  

NLE Websites -- All DOE Office Websites (Extended Search)

Tantalum Tantalum Previous Element (Tantalum) The Periodic Table of Elements Next Element (Rhenium) Rhenium Isotopes of the Element Tungsten [Click for Main Data] Most of the isotope data on this site has been obtained from the National Nuclear Data Center. Please visit their site for more information. Naturally Occurring Isotopes Mass Number Natural Abundance Half-life 180 0.12% >= 6.6×10+17 years 182 26.50% STABLE 183 14.31% > 1.3×10+19 years 184 30.64% STABLE 186 28.43% > 2.3×10+19 years Known Isotopes Mass Number Half-life Decay Mode Branching Percentage 157 275 milliseconds Electron Capture No Data Available 158 1.25 milliseconds Alpha Decay 100.00% 158m 0.143 milliseconds Isomeric Transition No Data Available Alpha Decay No Data Available 159 7.3 milliseconds Alpha Decay ~ 99.90%

329

It's Elemental - Isotopes of the Element Carbon  

NLE Websites -- All DOE Office Websites (Extended Search)

Boron Boron Previous Element (Boron) The Periodic Table of Elements Next Element (Nitrogen) Nitrogen Isotopes of the Element Carbon [Click for Main Data] Most of the isotope data on this site has been obtained from the National Nuclear Data Center. Please visit their site for more information. Naturally Occurring Isotopes Mass Number Natural Abundance Half-life 12 98.93% STABLE 13 1.07% STABLE Known Isotopes Mass Number Half-life Decay Mode Branching Percentage 8 1.981×10-21 seconds Proton Emission 100.00% Alpha Decay No Data Available 9 126.5 milliseconds Electron Capture 100.00% Electron Capture with delayed Proton Emission 61.60% Electron Capture with delayed Alpha Decay 38.40% 10 19.308 seconds Electron Capture 100.00% 11 20.334 minutes Electron Capture 100.00% 12 STABLE - -

330

It's Elemental - Isotopes of the Element Rhenium  

NLE Websites -- All DOE Office Websites (Extended Search)

Tungsten Tungsten Previous Element (Tungsten) The Periodic Table of Elements Next Element (Osmium) Osmium Isotopes of the Element Rhenium [Click for Main Data] Most of the isotope data on this site has been obtained from the National Nuclear Data Center. Please visit their site for more information. Naturally Occurring Isotopes Mass Number Natural Abundance Half-life 185 37.40% STABLE 187 62.60% 4.33×10+10 years Known Isotopes Mass Number Half-life Decay Mode Branching Percentage 159 No Data Available No Data Available No Data Available 160 0.82 milliseconds Proton Emission 91.00% Alpha Decay 9.00% 161 0.44 milliseconds Proton Emission 100.00% Alpha Decay <= 1.40% 161m 14.7 milliseconds Alpha Decay 93.00% Proton Emission 7.00% 162 107 milliseconds Alpha Decay 94.00% Electron Capture 6.00%

331

Isotopically engineered semiconductors: from the bulk tonanostructures  

SciTech Connect

Research performed with semiconductors with controlled isotopic composition is evolving from the measurement of fundamental properties in the bulk to those measured in superlattices and nanostructures. This is driven in part by interests associated with the fields of 'spintronics' and quantum computing. In this topical review, which is dedicated to Prof. Abstreiter, we introduce the subject by reviewing classic and recent measurements of phonon frequencies, thermal conductivity, bandgap renormalizations, and spin coherence lifetimes in isotopically controlled bulk group IV semiconductors. Next, we review phonon properties measured in isotope heterostructures, including pioneering work made possible by superlattices grown by the group of Prof. Abstreiter. We close the review with an outlook on the exciting future possibilities offered through isotope control in 1, 2, and 3 dimensions that will be possible due to advances in nanoscience.

Ager III, Joel W.; Haller, Eugene E.

2006-04-07T23:59:59.000Z

332

It's Elemental - Isotopes of the Element Magnesium  

NLE Websites -- All DOE Office Websites (Extended Search)

Sodium Sodium Previous Element (Sodium) The Periodic Table of Elements Next Element (Aluminum) Aluminum Isotopes of the Element Magnesium [Click for Main Data] Most of the isotope data on this site has been obtained from the National Nuclear Data Center. Please visit their site for more information. Naturally Occurring Isotopes Mass Number Natural Abundance Half-life 24 78.99% STABLE 25 10.00% STABLE 26 11.01% STABLE Known Isotopes Mass Number Half-life Decay Mode Branching Percentage 19 4.0 picoseconds Double Proton Emission 100.00% 20 90.8 milliseconds Electron Capture 100.00% Electron Capture with delayed Proton Emission ~ 27.00% 21 122 milliseconds Electron Capture 100.00% Electron Capture with delayed Proton Emission 32.60% Electron Capture with delayed Alpha Decay < 0.50%

333

It's Elemental - Isotopes of the Element Chlorine  

NLE Websites -- All DOE Office Websites (Extended Search)

Sulfur Sulfur Previous Element (Sulfur) The Periodic Table of Elements Next Element (Argon) Argon Isotopes of the Element Chlorine [Click for Main Data] Most of the isotope data on this site has been obtained from the National Nuclear Data Center. Please visit their site for more information. Naturally Occurring Isotopes Mass Number Natural Abundance Half-life 35 75.76% STABLE 37 24.24% STABLE Known Isotopes Mass Number Half-life Decay Mode Branching Percentage 28 No Data Available Proton Emission (suspected) No Data Available 29 < 20 nanoseconds Proton Emission No Data Available 30 < 30 nanoseconds Proton Emission No Data Available 31 150 milliseconds Electron Capture 100.00% Electron Capture with delayed Proton Emission 0.70% 32 298 milliseconds Electron Capture 100.00%

334

It's Elemental - Isotopes of the Element Potassium  

NLE Websites -- All DOE Office Websites (Extended Search)

Argon Argon Previous Element (Argon) The Periodic Table of Elements Next Element (Calcium) Calcium Isotopes of the Element Potassium [Click for Main Data] Most of the isotope data on this site has been obtained from the National Nuclear Data Center. Please visit their site for more information. Naturally Occurring Isotopes Mass Number Natural Abundance Half-life 39 93.2581% STABLE 40 0.0117% 1.248×10+9 years 41 6.7302% STABLE Known Isotopes Mass Number Half-life Decay Mode Branching Percentage 32 No Data Available Proton Emission (suspected) No Data Available 33 < 25 nanoseconds Proton Emission No Data Available 34 < 25 nanoseconds Proton Emission No Data Available 35 178 milliseconds Electron Capture 100.00% Electron Capture with delayed Proton Emission 0.37% 36 342 milliseconds Electron Capture 100.00%

335

It's Elemental - Isotopes of the Element Phosphorus  

NLE Websites -- All DOE Office Websites (Extended Search)

Silicon Silicon Previous Element (Silicon) The Periodic Table of Elements Next Element (Sulfur) Sulfur Isotopes of the Element Phosphorus [Click for Main Data] Most of the isotope data on this site has been obtained from the National Nuclear Data Center. Please visit their site for more information. Naturally Occurring Isotopes Mass Number Natural Abundance Half-life 31 100% STABLE Known Isotopes Mass Number Half-life Decay Mode Branching Percentage 24 No Data Available Electron Capture (suspected) No Data Available Proton Emission (suspected) No Data Available 25 < 30 nanoseconds Proton Emission 100.00% 26 43.7 milliseconds Electron Capture 100.00% Electron Capture with delayed Proton Emission No Data Available 27 260 milliseconds Electron Capture 100.00% Electron Capture with

336

It's Elemental - Isotopes of the Element Oxygen  

NLE Websites -- All DOE Office Websites (Extended Search)

Nitrogen Nitrogen Previous Element (Nitrogen) The Periodic Table of Elements Next Element (Fluorine) Fluorine Isotopes of the Element Oxygen [Click for Main Data] Most of the isotope data on this site has been obtained from the National Nuclear Data Center. Please visit their site for more information. Naturally Occurring Isotopes Mass Number Natural Abundance Half-life 16 99.757% STABLE 17 0.038% STABLE 18 0.205% STABLE Known Isotopes Mass Number Half-life Decay Mode Branching Percentage 12 1.139×10-21 seconds Proton Emission No Data Available 13 8.58 milliseconds Electron Capture 100.00% Electron Capture with delayed Proton Emission 100.00% 14 70.620 seconds Electron Capture 100.00% 15 122.24 seconds Electron Capture 100.00% 16 STABLE - - 17 STABLE - - 18 STABLE - - 19 26.88 seconds Beta-minus Decay 100.00%

337

It's Elemental - Isotopes of the Element Gallium  

NLE Websites -- All DOE Office Websites (Extended Search)

Zinc Zinc Previous Element (Zinc) The Periodic Table of Elements Next Element (Germanium) Germanium Isotopes of the Element Gallium [Click for Main Data] Most of the isotope data on this site has been obtained from the National Nuclear Data Center. Please visit their site for more information. Naturally Occurring Isotopes Mass Number Natural Abundance Half-life 69 60.108% STABLE 71 39.892% STABLE Known Isotopes Mass Number Half-life Decay Mode Branching Percentage 56 No Data Available Proton Emission (suspected) No Data Available 57 No Data Available Proton Emission (suspected) No Data Available 58 No Data Available Proton Emission (suspected) No Data Available 59 No Data Available Proton Emission (suspected) No Data Available 60 70 milliseconds Electron Capture 98.40%

338

It's Elemental - Isotopes of the Element Sodium  

NLE Websites -- All DOE Office Websites (Extended Search)

Neon Neon Previous Element (Neon) The Periodic Table of Elements Next Element (Magnesium) Magnesium Isotopes of the Element Sodium [Click for Main Data] Most of the isotope data on this site has been obtained from the National Nuclear Data Center. Please visit their site for more information. Naturally Occurring Isotopes Mass Number Natural Abundance Half-life 23 100% STABLE Known Isotopes Mass Number Half-life Decay Mode Branching Percentage 18 1.3×10-21 seconds Proton Emission 100.00% 19 < 40 nanoseconds Proton Emission No Data Available 20 447.9 milliseconds Electron Capture with delayed Alpha Decay 20.05% Electron Capture 100.00% 21 22.49 seconds Electron Capture 100.00% 22 2.6027 years Electron Capture 100.00% 23 STABLE - - 24 14.997 hours Beta-minus Decay 100.00%

339

It's Elemental - Isotopes of the Element Neon  

NLE Websites -- All DOE Office Websites (Extended Search)

Fluorine Fluorine Previous Element (Fluorine) The Periodic Table of Elements Next Element (Sodium) Sodium Isotopes of the Element Neon [Click for Main Data] Most of the isotope data on this site has been obtained from the National Nuclear Data Center. Please visit their site for more information. Naturally Occurring Isotopes Mass Number Natural Abundance Half-life 20 90.48% STABLE 21 0.27% STABLE 22 9.25% STABLE Known Isotopes Mass Number Half-life Decay Mode Branching Percentage 16 9×10-21 seconds Double Proton Emission 100.00% 17 109.2 milliseconds Electron Capture with delayed Alpha Decay No Data Available Electron Capture 100.00% Electron Capture with delayed Proton Emission 100.00% 18 1.6670 seconds Electron Capture 100.00% 19 17.22 seconds Electron Capture 100.00% 20 STABLE - -

340

It's Elemental - Isotopes of the Element Copper  

NLE Websites -- All DOE Office Websites (Extended Search)

Nickel Nickel Previous Element (Nickel) The Periodic Table of Elements Next Element (Zinc) Zinc Isotopes of the Element Copper [Click for Main Data] Most of the isotope data on this site has been obtained from the National Nuclear Data Center. Please visit their site for more information. Naturally Occurring Isotopes Mass Number Natural Abundance Half-life 63 69.15% STABLE 65 30.85% STABLE Known Isotopes Mass Number Half-life Decay Mode Branching Percentage 52 No Data Available Proton Emission No Data Available 53 < 300 nanoseconds Electron Capture No Data Available Proton Emission No Data Available 54 < 75 nanoseconds Proton Emission No Data Available 55 27 milliseconds Electron Capture 100.00% Electron Capture with delayed Proton Emission 15.0% 56 93 milliseconds Electron Capture 100.00%

Note: This page contains sample records for the topic "geothermometry isotopic analysis" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Atomic vapor laser isotope separation process  

DOE Patents (OSTI)

A laser spectroscopy system is utilized in an atomic vapor laser isotope separation process. The system determines spectral components of an atomic vapor utilizing a laser heterodyne technique. 23 figs.

Wyeth, R.W.; Paisner, J.A.; Story, T.

1990-08-21T23:59:59.000Z

342

It's Elemental - Isotopes of the Element Dysprosium  

NLE Websites -- All DOE Office Websites (Extended Search)

Isotopes Mass Number Half-life Decay Mode Branching Percentage 138 No Data Available Electron Capture (suspected) No Data Available 139 0.6 seconds Electron Capture No Data...

343

It's Elemental - Isotopes of the Element Antimony  

NLE Websites -- All DOE Office Websites (Extended Search)

Isotopes Mass Number Half-life Decay Mode Branching Percentage 103 1.5 microseconds Electron Capture (suspected) No Data Available 104 0.44 seconds Electron Capture 100.00%...

344

Improved process for preparing strontium-82 isotope  

DOE Patents (OSTI)

This invention is comprised of a process for making {sup 82}Sr by bombarding a molybdenum target enriched in light-mass molybdenum isotopes with high energy protons resulting in high yield, high purity {sup 82}Sr.

Michaels, G.E.; Beaver, J.E.; Moody, D.C.

1991-12-31T23:59:59.000Z

345

Selective Isotope Determination of Uranium using HR-RIMS  

Science Conference Proceedings (OSTI)

The detection of lowest abundances of the ultra trace isotope {sup 236}U in environmental samples requires an efficient detection method which allows a high elemental and isotopic selectivity to suppress neighbouring isotopes of the same element and other background. High Resolution Laser Resonance Ionization Mass Spectrometry (HR-RIMS) uses the individual electron structure of each isotope to provide an outstanding element and isotope selective ionization.

Raeder, S.; Fies, S.; Wendt, K. D. A. [Institut fuer Physik, Johannes Gutenberg Universitaet Mainz, 55128 Mainz (Germany); Tomita, H. [Nagoya University (Japan)

2009-03-17T23:59:59.000Z

346

Iron isotopic fractionation during continental weathering  

SciTech Connect

The biological activity on continents and the oxygen content of the atmosphere determine the chemical pathways through which Fe is processed at the Earth's surface. Experiments have shown that the relevant chemical pathways fractionate Fe isotopes. Measurements of soils, streams, and deep-sea clay indicate that the {sup 56}Fe/{sup 54}Fe ratio ({delta}{sup 56}Fe relative to igneous rocks) varies from +1{per_thousand} for weathering residues like soils and clays, to -3{per_thousand} for dissolved Fe in streams. These measurements confirm that weathering processes produce substantial fractionation of Fe isotopes in the modern oxidizing Earth surface environment. The results imply that biologically-mediated processes, which preferentially mobilize light Fe isotopes, are critical to Fe chemistry in weathering environments, and that the {delta}{sup 56}Fe of marine dissolved Fe should be variable and negative. Diagenetic reduction of Fe in marine sediments may also be a significant component of the global Fe isotope cycle. Iron isotopes provide a tracer for the influence of biological activity and oxygen in weathering processes through Earth history. Iron isotopic fractionation during weathering may have been smaller or absent in an oxygen-poor environment such as that of the early Precambrian Earth.

Fantle, Matthew S.; DePaolo, Donald J.

2003-10-01T23:59:59.000Z

347

Final Report, NEAC Subcommittee for Isotope Research & Production Planning  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Final Report, NEAC Subcommittee for Isotope Research & Production Final Report, NEAC Subcommittee for Isotope Research & Production Planning Final Report, NEAC Subcommittee for Isotope Research & Production Planning Isotopes, including both radioactive and stable isotopes, make important contributions to research, medicine, and industry in the United States and throughout the world. For nearly fifty years, the Department of Energy (DOE) has actively promoted the use of isotopes by funding (a) production of isotopes at a number of national laboratories with unique nuclear reactors or particle accelerators, (b) nuclear medicine research at the laboratories and in academia, (c) research into industrial applications of isotopes, and (d) research into isotope production and processing methods. The radio- pharmaceutical and radiopharmacy industries have their origin in

348

Compound and Elemental Analysis At Long Valley Caldera Area ...  

Open Energy Info (EERE)

and Elemental Analysis Activity Date Usefulness useful DOE-funding Unknown Notes The chemical and isotopic characteristics of fluid sampled from the principal fracture zone in...

349

Compound and Elemental Analysis At Long Valley Caldera Area ...  

Open Energy Info (EERE)

Analysis Activity Date Usefulness not indicated DOE-funding Unknown Notes Detailed chemical and isotopic studies not only help quantify the discharge, but also may provide...

350

Yucca Mountain Area Saturated Zone Dissolved Organic Carbon Isotopic Data  

SciTech Connect

Groundwater samples in the Yucca Mountain area were collected for chemical and isotopic analyses and measurements of water temperature, pH, specific conductivity, and alkalinity were obtained at the well or spring at the time of sampling. For this project, groundwater samples were analyzed for major-ion chemistry, deuterium, oxygen-18, and carbon isotopes of dissolved inorganic carbon (DIC) and dissolved organic carbon (DOC). The U.S. Geological Survey (USGS) performed all the fieldwork on this project including measurement of water chemistry field parameters and sample collection. The major ions dissolved in the groundwater, deuterium, oxygen-18, and carbon isotopes of dissolved inorganic carbon (DIC) were analyzed by the USGS. All preparation and processing of samples for DOC carbon isotopic analyses and geochemical modeling were performed by the Desert Research Institute (DRI). Analysis of the DOC carbon dioxide gas produced at DRI to obtain carbon-13 and carbon-14 values was conducted at the University of Arizona Accelerator Facility (a NSHE Yucca Mountain project QA qualified contract facility). The major-ion chemistry, deuterium, oxygen-18, and carbon isotopes of DIC were used in geochemical modeling (NETPATH) to determine groundwater sources, flow paths, mixing, and ages. The carbon isotopes of DOC were used to calculate groundwater ages that are independent of DIC model corrected carbon-14 ages. The DIC model corrected carbon-14 calculated ages were used to evaluate groundwater travel times for mixtures of water including water beneath Yucca Mountain. When possible, groundwater travel times were calculated for groundwater flow from beneath Yucca Mountain to down gradient sample sites. DOC carbon-14 groundwater ages were also calculated for groundwaters in the Yucca Mountain area. When possible, groundwater travel times were estimated for groundwater flow from beneath Yucca Mountain to down gradient groundwater sample sites using the DOC calculated groundwater ages. The DIC calculated groundwater ages were compared with DOC calculated groundwater ages and both of these ages were compared to travel times developed in ground-water flow and transport models. If nuclear waste is stored in Yucca Mountain, the saturated zone is the final barrier against the release of radionuclides to the environment. The most recent rendition of the TSPA takes little credit for the presence of the saturated zone and is a testament to the inadequate understanding of this important barrier. If radionuclides reach the saturated zone beneath Yucca Mountain, then there is a travel time before they would leave the Yucca Mountain area and flow down gradient to the Amargosa Valley area. Knowing how long it takes groundwater in the saturated zone to flow from beneath Yucca Mountain to down gradient areas is critical information for potential radionuclide transport. Radionuclide transport in groundwater may be the quickest pathway for radionuclides in the proposed Yucca Mountain repository to reach land surface by way of groundwater pumped in Amargosa Valley. An alternative approach to ground-water flow and transport models to determine the travel time of radionuclides from beneath Yucca Mountain to down gradient areas in the saturated zone is by carbon-14 dating of both inorganic and organic carbon dissolved in the groundwater. A standard method of determining ground-water ages is to measure the carbon-13 and carbon-14 of DIC in the groundwater and then correct the measured carbon-14 along a flow path for geochemical reactions that involve carbon containing phases. These geochemical reactions are constrained by carbon-13 and isotopic fractionations. Without correcting for geochemical reactions, the ground-water ages calculated from only the differences in carbon-14 measured along a flow path (assuming the decrease in carbon-14 is due strictly to radioactive decay) could be tens of thousands of years too old. The computer program NETPATH, developed by the USGS, is the best geochemical program for correcting carbon-14 activities for geochemical r

Thomas, James; Decker, David; Patterson, Gary; Peterman, Zell; Mihevc, Todd; Larsen, Jessica; Hershey, Ronald

2007-06-25T23:59:59.000Z

351

Sulfur isotope fractionation during oxidation of sulfur dioxide: gas-phase oxidation by OH radicals and aqueous oxidation by H2O2, O3 and iron catalysis  

E-Print Network (OSTI)

The oxidation of SO[subscript 2] to sulfate is a key reaction in determining the role of sulfate in the environment through its effect on aerosol size distribution and composition. Sulfur isotope analysis has been used to ...

Harris, E.

352

Laser Isotope Separation Employing Condensation Repression  

SciTech Connect

Molecular laser isotope separation (MLIS) techniques using condensation repression (CR) harvesting are reviewed and compared with atomic vapor laser isotope separation (AVLIS), gaseous diffusion (DIF), ultracentrifuges (UCF), and electromagnetic separations (EMS). Two different CR-MLIS or CRISLA (Condensation Repression Isotope Separation by Laser Activation) approaches have been under investigation at the University of Missouri (MU), one involving supersonic super-cooled free jets and dimer formation, and the other subsonic cold-wall condensation. Both employ mixtures of an isotopomer (e.g. {sup i}QF{sub 6}) and a carrier gas, operated at low temperatures and pressures. Present theories of VT relaxation, dimerization, and condensation are found to be unsatisfactory to explain/predict experimental CRISLA results. They were replaced by fundamentally new models that allow ab-initio calculation of isotope enrichments and predictions of condensation parameters for laser-excited and non-excited vapors which are in good agreement with experiment. Because of supersonic speeds, throughputs for free-jet CRISLA are a thousand times higher than cold-wall CRISLA schemes, and thus preferred for large-quantity Uranium enrichments. For small-quantity separations of (radioactive) medical isotopes, the simpler coldwall CRISLA method may be adequate.

Eerkens, Jeff W.; Miller, William H.

2004-09-15T23:59:59.000Z

353

RAPID FUSION METHOD FOR DETERMINATION OF PLUTONIUM ISOTOPES IN LARGE RICE SAMPLES  

Science Conference Proceedings (OSTI)

A new rapid fusion method for the determination of plutonium in large rice samples has been developed at the Savannah River National Laboratory (Aiken, SC, USA) that can be used to determine very low levels of plutonium isotopes in rice. The recent accident at Fukushima Nuclear Power Plant in March, 2011 reinforces the need to have rapid, reliable radiochemical analyses for radionuclides in environmental and food samples. Public concern regarding foods, particularly foods such as rice in Japan, highlights the need for analytical techniques that will allow very large sample aliquots of rice to be used for analysis so that very low levels of plutonium isotopes may be detected. The new method to determine plutonium isotopes in large rice samples utilizes a furnace ashing step, a rapid sodium hydroxide fusion method, a lanthanum fluoride matrix removal step, and a column separation process with TEVA Resin? cartridges. The method can be applied to rice sample aliquots as large as 5 kg. Plutonium isotopes can be determined using alpha spectrometry or inductively-coupled plasma mass spectrometry (ICP-MS). The method showed high chemical recoveries and effective removal of interferences. The rapid fusion technique is a rugged sample digestion method that ensures that any refractory plutonium particles are effectively digested. The MDA for a 5 kg rice sample using alpha spectrometry is 7E-5 mBq g{sup -1}. The method can easily be adapted for use by ICP-MS to allow detection of plutonium isotopic ratios.

Maxwell, S.

2013-03-01T23:59:59.000Z

354

Features of adsorbed radioactive chemical elements and their isotopes distribution in iodine air filters AU-1500 at nuclear power plants  

E-Print Network (OSTI)

The main aim of research is to investigate the physical features of spatial distribution of the adsorbed radioactive chemical elements and their isotopes in the granular filtering medium in the iodine air filters of the type of AU1500 in the forced exhaust ventilation systems at the nuclear power plant. The gamma activation analysis method is applied to accurately characterize the distribution of the adsorbed radioactive chemical elements and their isotopes in the granular filtering medium in the AU1500 iodine air filter after its long term operation at the nuclear power plant. The typical spectrum of the detected chemical elements and their isotopes in the AU1500 iodine air filter, which was exposed to the bremsstrahlung gamma quantum irradiation, produced by the accelerating electrons in the tantalum target, are obtained. The spatial distributions of the detected chemical element 127I and some other chemical elements and their isotopes in the layer of absorber, which was made of the cylindrical coal granules of the type of SKT3, in the AU1500 iodine air filter are also researched. The possible influences by the standing acoustic wave of air pressure in the iodine air filter on the spatial distribution of the chemical elements and their isotopes in the iodine air filter are discussed. The comprehensive analysis of obtained research results on the distribution of the adsorbed chemical elements and their isotopes in the absorber of iodine air filter is performed.

I. M. Neklyudov; A. N. Dovbnya; N. P. Dikiy; O. P. Ledenyov; Yu. V. Lyashko

2013-06-21T23:59:59.000Z

355

The rare isotope accelerator (RIA) facility project  

DOE Green Energy (OSTI)

The envisioned Rare-Isotope Accelerator (RIA) facility would add substantially to research opportunities for nuclear physics and astrophysics by combining increased intensities with a greatly expanded variety of high-quality rare-isotope beams. A flexible superconducting driver linac would provide 100 kW, 400 MeV/nucleon beams of any stable isotope from hydrogen to uranium onto production targets. Combinations of projectile fragmentation, target fragmentation, fission, and spallation would produce the needed broad assortment of short-lived secondary beams. This paper describes the project's background, purpose, and status, the envisioned facility, and the key subsystem, the driver linac. RIA's scientific purposes are to advance current theoretical models, reveal new manifestations of nuclear behavior, and probe the limits of nuclear existence [3]. Figures 1 and 2 show, respectively, examples of RIA research opportunities and the yields projected for pursuing them. Figure 3 outlines a conceptual approach for delivering the needed beams.

Christoph Leemann

2000-08-01T23:59:59.000Z

356

REPORT OF SURVEY OF OAK RIDGE ISOTOPE  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

OAK RIDGE ISOTOPE OAK RIDGE ISOTOPE ENRICHMENT (CALUTRON) FACILITY BUILDING 9204-3 U.S. Department of Energy Office of Environmental Management & Office of Nuclear Energy Report of Survey of Oak Ridge Isotope Enrichment (Calutron) Facility Building 9204-3 FINAL May 8, 2000 Contents 1. Introduction 1.1 Purpose 1.2 Facility Description 1.3 Organization Representatives 1.4 Survey Participants 2. Summary, Conclusions & Recommendations 2.1 Transfer Considerations 2.2 Post-Transfer EM Path Forward & Management Risk 3. Survey Results 4. Stabilization and Other Actions Required for Transfer 5. Surveillance & Maintenance After Transfer 6. Other Transfer Details 7. Attachments and References Appendix A - Detailed Survey Notes

357

Apparatus for separating and recovering hydrogen isotopes  

DOE Patents (OSTI)

An apparatus for recovering hydrogen and separating its isotopes. The apparatus includes a housing bearing at least a fluid inlet and a fluid outlet. A baffle is disposed within the housing, attached thereto by a bracket. A hollow conduit is coiled about the baffle, in spaced relation to the baffle and the housing. The coiled conduit is at least partially filled with a hydride. The hydride can be heated to a high temperature and cooled to a low temperature quickly by circulating a heat transfer fluid in the housing. The spacing between the baffle and the housing maximizes the heat exchange rate between the fluid in the housing and the hydride in the conduit. The apparatus can be used to recover hydrogen isotopes (protium, deuterium and tritium) from gaseous mixtures, or to separate hydrogen isotopes from each other.

Heung, Leung K. (Aiken, SC)

1994-01-01T23:59:59.000Z

358

Isotope Shift Measurements of Stable and Short-Lived Lithium Isotopes for Nuclear Charge Radii Determination  

E-Print Network (OSTI)

Changes in the mean-square nuclear charge radii along the lithium isotopic chain were determined using a combination of precise isotope shift measurements and theoretical atomic structure calculations. Nuclear charge radii of light elements are of high interest due to the appearance of the nuclear halo phenomenon in this region of the nuclear chart. During the past years we have developed a new laser spectroscopic approach to determine the charge radii of lithium isotopes which combines high sensitivity, speed, and accuracy to measure the extremely small field shift of an 8 ms lifetime isotope with production rates on the order of only 10,000 atoms/s. The method was applied to all bound isotopes of lithium including the two-neutron halo isotope Li-11 at the on-line isotope separators at GSI, Darmstadt, Germany and at TRIUMF, Vancouver, Canada. We describe the laser spectroscopic method in detail, present updated and improved values from theory and experiment, and discuss the results.

Nrtershuser, W; Ewald, G; Dax, A; Behr, J; Bricault, P; Bushaw, B A; Dilling, J; Dombsky, M; Drake, G W F; Gtte, S; Kluge, H -J; Khl, Th; Lassen, J; Levy, C D P; Pachucki, K; Pearson, M; Puchalski, M; Wojtaszek, A; Yan, Z -C; Zimmermann, C

2010-01-01T23:59:59.000Z

359

Laser isotope separation by multiple photon absorption  

DOE Patents (OSTI)

Multiple photon absorption from an intense beam of infrared laser light may be used to induce selective chemical reactions in molecular species which result in isotope separation or enrichment. The molecular species must have a sufficient density of vibrational states in its vibrational manifold that, in the presence of sufficiently intense infrared laser light tuned to selectively excite only those molecules containing a particular isotope, multiple photon absorption can occur. By this technique, for example, intense CO.sub.2 laser light may be used to highly enrich .sup.34 S in natural SF.sub.6 and .sup.11 B in natural BCl.sub.3.

Robinson, C. Paul (Los Alamos, NM); Rockwood, Stephen D. (Los Alamos, NM); Jensen, Reed J. (Los Alamos, NM); Lyman, John L. (Los Alamos, NM); Aldridge, III, Jack P. (Los Alamos, NM)

1977-01-01T23:59:59.000Z

360

Laser isotope separation by multiple photon absorption  

DOE Patents (OSTI)

Multiple photon absorption from an intense beam of infrared laser light may be used to induce selective chemical reactions in molecular species which result in isotope separation or enrichment. The molecular species must have a sufficient density of vibrational states in its vibrational manifold that, is the presence of sufficiently intense infrared laser light tuned to selectively excite only those molecules containing a particular isotope, multiple photon absorption can occur. By this technique, for example, intense CO.sub.2 laser light may be used to highly enrich .sup.34 S in natural SF.sub.6 and .sup.11 B in natural BCl.sub.3.

Robinson, C. Paul (Los Alamos, NM); Rockwood, Stephen D. (Los Alamos, NM); Jensen, Reed J. (Los Alamos, NM); Lyman, John L. (Los Alamos, NM); Aldridge, III, Jack P. (Los Alamos, NM)

1987-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "geothermometry isotopic analysis" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Method for production of an isotopically enriched compound  

Science Conference Proceedings (OSTI)

A method is presented for producing and isolating an isotopically enriched compound of a desired isotope from a parent radionuclide. The method includes forming, or placing, a precipitate containing a parent radionuclide of the desired daughter isotope in a first reaction zone and allowing sufficient time for the parent to decay into the desired gaseous daughter radioisotope. The method further contemplates collecting the desired daughter isotope as a solid in a second reaction zone through the application of temperatures below the freezing point of the desired isotope to a second reaction zone that is connected to the first reaction zone. Specifically, a method is presented for producing isotopically enriched compounds of xenon, including the radioactive isotope Xe-131m and the stable isotope Xe-131.

Watrous, Matthew G.

2012-12-11T23:59:59.000Z

362

Cryogenic Adsorption of Hydrogen Isotopes over Nano-Structured Materials  

Science Conference Proceedings (OSTI)

Detritiation and Isotope Separation / Proceedings of the Ninth International Conference on Tritium Science and Technology (Part 2)

X. Xiao; L. K. Heung

363

Isotope effect in BEDT-TTF based organic superconductors  

SciTech Connect

The results of the comprehensive isotope effect studies, in which seven different isotopically labeled (involving {sup 13}C, {sup 34}S and {sup 2}H labeling) BEDT-TTF derivatives and isotopically labeled anion [Cu({sup 15}N{sup 13}CS){sub 2}]{sup {minus}} were utilized, are summarized. For the first time, convincing evidence for a genuine BCS-like mass isotope effect in an organic superconductor is revealed in these studies.

Kini, A.M.; Carlson, K.D.; Dudek, J.D.; Geiser, U.; Wang, H.H.; Williams, J.M.

1996-10-01T23:59:59.000Z

364

Expression of Stable Isotopically Labeled Proteins for Use as ...  

Science Conference Proceedings (OSTI)

Expression of Stable Isotopically Labeled Proteins for Use as Internal Standards for Mass Spectrometric Quantitation of Clinical Protein Biomarkers. ...

2013-03-13T23:59:59.000Z

365

Facility for Endurance Testing of Hydrophobic Isotope Exchange Catalysts  

Science Conference Proceedings (OSTI)

Detritiation and Isotope Separation / Proceedings of the Ninth International Conference on Tritium Science and Technology (Part 2)

Lidia Matei; C. Postolache; C. Tuta; S. Brad

366

Space isotope power program. Quarterly report, October--December 1968  

SciTech Connect

Progress during October through December 1968 in the Space Isotope Power Program at the Sandia Laboratories is reported. (LCL)

1969-02-01T23:59:59.000Z

367

NID Copper Sample Analysis  

SciTech Connect

The current focal point of the nuclear physics program at PNNL is the MAJORANA DEMONSTRATOR, and the follow-on Tonne-Scale experiment, a large array of ultra-low background high-purity germanium detectors, enriched in 76Ge, designed to search for zero-neutrino double-beta decay (0???). This experiment requires the use of germanium isotopically enriched in 76Ge. The MAJORANA DEMONSTRATOR is a DOE and NSF funded project with a major science impact. The DEMONSTRATOR will utilize 76Ge from Russia, but for the Tonne-Scale experiment it is hoped that an alternate technology, possibly one under development at Nonlinear Ion Dynamics (NID), will be a viable, US-based, lower-cost source of separated material. Samples of separated material from NID require analysis to determine the isotopic distribution and impurities. DOE is funding NID through an SBIR grant for development of their separation technology for application to the Tonne-Scale experiment. The Environmental Molecular Sciences facility (EMSL), a DOE user facility at PNNL, has the required mass spectroscopy instruments for making isotopic measurements that are essential to the quality assurance for the MAJORANA DEMONSTRATOR and for the development of the future separation technology required for the Tonne-Scale experiment. A sample of isotopically separated copper was provided by NID to PNNL in January 2011 for isotopic analysis as a test of the NID technology. The results of that analysis are reported here. A second sample of isotopically separated copper was provided by NID to PNNL in August 2011 for isotopic analysis as a test of the NID technology. The results of that analysis are also reported here.

Kouzes, Richard T.; Zhu, Zihua

2011-09-12T23:59:59.000Z

368

SCALE Validation Experience Using an Expanded Isotopic Assay Database for Spent Nuclear Fuel  

Science Conference Proceedings (OSTI)

The availability of measured isotopic assay data to validate computer code predictions of spent fuel compositions applied in burnup-credit criticality calculations is an essential component for bias and uncertainty determination in safety and licensing analyses. In recent years, as many countries move closer to implementing or expanding the use of burnup credit in criticality safety for licensing, there has been growing interest in acquiring additional high-quality assay data. The well-known open sources of assay data are viewed as potentially limiting for validating depletion calculations for burnup credit due to the relatively small number of isotopes measured (primarily actinides with relatively few fission products), sometimes large measurement uncertainties, incomplete documentation, and the limited burnup and enrichment range of the fuel samples. Oak Ridge National Laboratory (ORNL) recently initiated an extensive isotopic validation study that includes most of the public data archived in the Organization for Economic Cooperation and Development/Nuclear Energy Agency (OECD/NEA) electronic database, SFCOMPO, and new datasets obtained through participation in commercial experimental programs. To date, ORNL has analyzed approximately 120 different spent fuel samples from pressurized-water reactors that span a wide enrichment and burnup range and represent a broad class of assembly designs. The validation studies, completed using SCALE 5.1, are being used to support a technical basis for expanded implementation of burnup credit for spent fuel storage facilities, and other spent fuel analyses including radiation source term, dose assessment, decay heat, and waste repository safety analyses. This paper summarizes the isotopic assay data selected for this study, presents validation results obtained with SCALE 5.1, and discusses some of the challenges and experience associated with evaluating the results. Preliminary results obtained using SCALE 6 and ENDF/B-VII cross sections libraries are also briefly summarized. Oak Ridge National Laboratory (ORNL) has been performing spent-fuel isotopic validation studies using the depletion analysis methods in the SCALE [1] code system for the past 20 years. These studies involve comparisons of calculated inventories against measured isotopic composition data obtained from destructive radiochemical analysis of commercial spent nuclear fuel samples. The results of these benchmark studies are used to quantify the bias and uncertainties associated with isotopic calculations and ultimately determine appropriate margins for uncertainty that can be applied in safety-related analyses such as burnup credit in criticality calculations, decay heat analysis, and source terms. Previous studies using several versions of SCALE and nuclear data libraries have been published in multiple validation reports [2-6] that evaluate selected experimental data obtained largely from public sources. A study was recently initiated at ORNL with the objectives of updating and expanding the validation calculations using a comprehensive database of experimental isotopic assay data that includes isotopic composition data obtained from both publicly available sources and international commercial programs. As part of the study, an extensive isotopic database of nearly 120 measured spent fuel samples with an expanded range of initial enrichments and burnup values compared to previously analyzed data was reviewed and analyzed. The calculations were performed using two-dimensional (2-D) assembly models and a consistent set of modeling assumptions using the SCALE 5.1 code system and ENDF/B-V 44-group cross section library. As part of the current study, detailed benchmark modeling information and measurement data are being documented in a format that is readily usable for validating depletion and decay codes. The work is being extended to include analysis results using SCALE 6 and the ENDF/B-VII 238-group cross section library. This paper describes the isotopic composition data evaluated in this study and highlights the pre

Gauld, Ian C [ORNL; Radulescu, Georgeta [ORNL; Ilas, Germina [ORNL

2009-01-01T23:59:59.000Z

369

Discovery of Scandium, Titanium, Mercury, and Einsteinium Isotopes  

E-Print Network (OSTI)

Currently, twenty-three scandium, twenty-five titanium, forty mercury and seventeen einsteinium isotopes have been observed and the discovery of these isotopes is discussed here. For each isotope a brief synopsis of the first refereed publication, including the production and identification method, is presented.

D. Meierfrankenfeld; A. Bury; M. Thoennessen

2010-03-26T23:59:59.000Z

370

Final Report on Isotope Ratio Techniques for Light Water Reactors  

SciTech Connect

The Isotope Ratio Method (IRM) is a technique for estimating the energy or plutonium production in a fission reactor by measuring isotope ratios in non-fuel reactor components. The isotope ratios in these components can then be directly related to the cumulative energy production with standard reactor modeling methods.

Gerlach, David C.; Gesh, Christopher J.; Hurley, David E.; Mitchell, Mark R.; Meriwether, George H.; Reid, Bruce D.

2009-07-01T23:59:59.000Z

371

E.L. Grossman Chapter 10 Oxygen Isotope Stratigraphy  

E-Print Network (OSTI)

are the mineral and water respectively. Oxygen isotopic ratios are The Geologic Time Scale 2012. DOI: 10.1016/B978E.L. Grossman Chapter 10 Oxygen Isotope Stratigraphy Abstract:Variations in the 18 O/16 O ratios for global correlation. Relying on previous compilations and new data, this chapter presents oxygen isotope

Grossman, Ethan L.

372

Laser Isotope Enrichment for Medical and Industrial Applications  

SciTech Connect

Laser Isotope Enrichment for Medical and Industrial Applications by Jeff Eerkens (University of Missouri), Jay Kunze (Idaho State University), and Leonard Bond (Idaho National Laboratory) The principal isotope enrichment business in the world is the enrichment of uranium for commercial power reactor fuels. However, there are a number of other needs for separated isotopes. Some examples are: 1) Pure isotopic targets for irradiation to produce medical radioisotopes. 2) Pure isotopes for semiconductors. 3) Low neutron capture isotopes for various uses in nuclear reactors. 4) Isotopes for industrial tracer/identification applications. Examples of interest to medicine are targets to produce radio-isotopes such as S-33, Mo-98, Mo-100, W-186, Sn-112; while for MRI diagnostics, the non-radioactive Xe-129 isotope is wanted. For super-semiconductor applications some desired industrial isotopes are Si-28, Ga-69, Ge-74, Se-80, Te-128, etc. An example of a low cross section isotope for use in reactors is Zn-68 as a corrosion inhibitor material in nuclear reactor primary systems. Neutron activation of Ar isotopes is of interest in industrial tracer and diagnostic applications (e.g. oil-logging). . In the past few years there has been a sufficient supply of isotopes in common demand, because of huge Russian stockpiles produced with old electromagnetic and centrifuge separators previously used for uranium enrichment. Production of specialized isotopes in the USA has been largely accomplished using old calutrons (electromagnetic separators) at Oak Ridge National Laboratory. These methods of separating isotopes are rather energy inefficient. Use of lasers for isotope separation has been considered for many decades. None of the proposed methods have attained sufficient proof of principal status to be economically attractive to pursue commercially. Some of the authors have succeeded in separating sulfur isotopes using a rather new and different method, known as condensation repression. In this scheme a gas, of the selected isotopes for enrichment, is irradiated with a laser at a particular wavelength that would excite only one of the isotopes. The entire gas is subject to low temperatures sufficient to cause condensation on a cold surface. Those molecules in the gas that the laser excited are not as likely to condense as are the unexcited molecules. Hence the gas drawn out of the system will be enriched in the isotope that was excited by the laser. We have evaluated the relative energy required in this process if applied on a commercial scale. We estimate the energy required for laser isotope enrichment is about 20% of that required in centrifuge separations, and 2% of that required by use of "calutrons".

Leonard Bond

2006-07-01T23:59:59.000Z

373

A Review of Antarctic Surface Snow Isotopic Composition: Observations, Atmospheric Circulation, and Isotopic Modeling  

Science Conference Proceedings (OSTI)

A database of surface Antarctic snow isotopic composition is constructed using available measurements, with an estimate of data quality and local variability. Although more than 1000 locations are documented, the spatial coverage remains uneven ...

V. Masson-Delmotte; S. Hou; A. Ekaykin; J. Jouzel; A. Aristarain; R. T. Bernardo; D. Bromwich; O. Cattani; M. Delmotte; S. Falourd; M. Frezzotti; H. Galle; L. Genoni; E. Isaksson; A. Landais; M. M. Helsen; G. Hoffmann; J. Lopez; V. Morgan; H. Motoyama; D. Noone; H. Oerter; J. R. Petit; A. Royer; R. Uemura; G. A. Schmidt; E. Schlosser; J. C. Simes; E. J. Steig; B. Stenni; M. Stievenard; M. R. van den Broeke; R. S. W. van de Wal; W. J. van de Berg; F. Vimeux; J. W. C. White

2008-07-01T23:59:59.000Z

374

The Effects of Flux Spectrum Perturbation on Transmutation of Actinides: Optimizing the Production of Transcurium Isotopes  

SciTech Connect

This research presented herein involves the optimization of transcurium production in the High Flux Isotope Reactor at Oak Ridge National Laboratory. Due to the dependence of isotope cross sections on incoming neutron energy, the efficiency with which an isotope is transmuted is highly dependent upon the flux spectrum. There are certain energy bands in which the rate of fission of transcurium production feedstock materials is minimized, relative to the rate of non-fission absorptions. It is proposed that by perturbing the flux spectrum, it is possible to increase the amount of key isotopes, such as 249Bk and 252Cf, that are produced during a transmutation cycle, relative to the consumption of feedstock material. This optimization process is carried out by developing an iterative objective framework involving problem definition, flux spectrum and cross section analysis, simulated transmutation, and analysis of final yields and transmutation parameters. It is shown that it is possible to perturb the local flux spectrum in the transcurium target by perturbing the composition of the target. It is further shown that these perturbations are able to alter the target yields in a non-negligible way. Future work is necessary to develop the optimization framework, and identify the necessary algorithms to update the problem definition based upon progress towards the optimization goals.

Hogle, Susan L [ORNL; Maldonado, G Ivan [ORNL; Alexander, Charles W [ORNL

2012-01-01T23:59:59.000Z

375

It's Elemental - Isotopes of the Element Nitrogen  

NLE Websites -- All DOE Office Websites (Extended Search)

Carbon Carbon Previous Element (Carbon) The Periodic Table of Elements Next Element (Oxygen) Oxygen Isotopes of the Element Nitrogen [Click for Main Data] Most of the isotope data on this site has been obtained from the National Nuclear Data Center. Please visit their site for more information. Naturally Occurring Isotopes Mass Number Natural Abundance Half-life 14 99.636% STABLE 15 0.364% STABLE Known Isotopes Mass Number Half-life Decay Mode Branching Percentage 10 No Data Available Proton Emission 100.00% 11 5.49×10-22 seconds Proton Emission 100.00% 12 11.000 milliseconds Electron Capture 100.00% 13 9.965 minutes Electron Capture 100.00% 14 STABLE - - 15 STABLE - - 16 7.13 seconds Beta-minus Decay 100.00% Beta-minus Decay with delayed Alpha Decay 1.2×10-3 % 17 4.173 seconds Beta-minus Decay 100.00%

376

RADIATION PROTECTION AND DECONTAMINATION IN ISOTOPE LABORATORIES  

SciTech Connect

An accident trolley is described that contains everything needed if an accident with radioactive materials occurs. Instructions for decontamination are given and measures to be taken after mishaps with open isotopes are recommended. Cleansing and treatment of laundry that is contaminated with radioactive materials are discussed and an active laundry is described. (auth)

Schanze, U.O.

1963-12-01T23:59:59.000Z

377

Method and apparatus for noble gas atom detection with isotopic selectivity  

DOE Patents (OSTI)

Apparatus and methods of operation are described for determining, with isotopic selectivity, the number of noble gas atoms in a sample. The analysis is conducted within an evacuated chamber which can be isolated by a valve from a vacuum pumping system capable of producing a pressure of 10.sup.-8 Torr. Provision is made to pass pulses of laser beams through the chamber, these pulses having wavelengths appropriate for the resonance ionization of atoms of the noble gas under analysis. A mass filter within the chamber selects ions of a specific isotope of the noble gas, and means are provided to accelerate these selected ions sufficiently for implantation into a target. Specific types of targets are discussed. An electron measuring device produces a signal relatable to the number of ions implanted into the target and thus to the number of atoms of the selected isotope of the noble gas removed from the gas sample. The measurement can be continued until a substantial fraction, or all, of the atoms in the sample have been counted. Furthermore, additional embodiments of the apparatus are described for bunching the atoms of a noble gas for more rapid analysis, and for changing the target for repetitive cycling of the gas in the chamber. The number of repetitions of the cyclic steps depend upon the concentration of the isotope of interest, the separative efficiency of the mass filter, etc. The cycles are continued until a desired selectivity is achieved. Also described are components and a method of operation for a pre-enrichment operation for use when an introduction of a total sample would elevate the pressure within the chamber to levels in excess of those for operation of the mass filter, specifically a quadrupole mass filter. Specific examples of three noble gas isotope analyses are described.

Hurst, G. Samuel (Oak Ridge, TN); Payne, Marvin G. (Harriman, TN); Chen, Chung-Hsuan (Knoxville, TN); Parks, James E. (Oak Ridge, TN)

1984-01-01T23:59:59.000Z

378

High Flux Isotopes Reactor (HFIR) Cooling Towers Demolition Waste Management  

SciTech Connect

This paper describes the results of a joint initiative between Oak Ridge National Laboratory, operated by UT-Battelle, and Bechtel Jacobs Company, LLC (BJC) to characterize, package, transport, treat, and dispose of demolition waste from the High Flux Isotope Reactor (HFIR), Cooling Tower. The demolition and removal of waste from the site was the first critical step in the planned HFIR beryllium reflector replacement outage scheduled. The outage was scheduled to last a maximum of six months. Demolition and removal of the waste was critical because a new tower was to be constructed over the old concrete water basin. A detailed sampling and analysis plan was developed to characterize the hazardous and radiological constituents of the components of the Cooling Tower. Analyses were performed for Resource Conservation and Recovery Act (RCRA) heavy metals and semi-volatile constituents as defined by 40 CFR 261 and radiological parameters including gross alpha, gross beta, gross gamma, alpha-emitting isotopes and beta-emitting isotopes. Analysis of metals and semi-volatile constituents indicated no exceedances of regulatory limits. Analysis of radionuclides identified uranium and thorium and associated daughters. In addition 60Co, 99Tc, 226Rm, and 228Rm were identified. Most of the tower materials were determined to be low level radioactive waste. A small quantity was determined not to be radioactive, or could be decontaminated. The tower was dismantled October 2000 to January 2001 using a detailed step-by-step process to aid waste segregation and container loading. The volume of waste as packaged for treatment was approximately 1982 cubic meters (70,000 cubic feet). This volume was comprised of plastic ({approx}47%), wood ({approx}38%) and asbestos transite ({approx}14%). The remaining {approx}1% consisted of the fire protection piping (contaminated with lead-based paint) and incidental metal from conduit, nails and braces/supports, and sludge from the basin. The waste, except for the asbestos, was volume reduced via a private contract mechanism established by BJC. After volume reduction, the waste was packaged for rail shipment. This large waste management project successfully met cost and schedule goals.

Pudelek, R. E.; Gilbert, W. C.

2002-02-26T23:59:59.000Z

379

Method of preparing mercury with an arbitrary isotopic distribution  

DOE Patents (OSTI)

This invention provides for a process for preparing mercury with a predetermined, arbitrary, isotopic distribution. In one embodiment, different isotopic types of Hg[sub 2]Cl[sub 2], corresponding to the predetermined isotopic distribution of Hg desired, are placed in an electrolyte solution of HCl and H[sub 2]O. The resulting mercurous ions are then electrolytically plated onto a cathode wire producing mercury containing the predetermined isotopic distribution. In a similar fashion, Hg with a predetermined isotopic distribution is obtained from different isotopic types of HgO. In this embodiment, the HgO is dissolved in an electrolytic solution of glacial acetic acid and H[sub 2]O. The isotopic specific Hg is then electrolytically plated onto a cathode and then recovered. 1 fig.

Grossman, M.W.; George, W.A.

1986-12-16T23:59:59.000Z

380

Method of preparing mercury with an arbitrary isotopic distribution  

DOE Patents (OSTI)

This invention provides for a process for preparing mercury with a predetermined, arbitrary, isotopic distribution. In one embodiment, different isotopic types of Hg.sub.2 Cl.sub.2, corresponding to the predetermined isotopic distribution of Hg desired, are placed in an electrolyte solution of HCl and H.sub.2 O. The resulting mercurous ions are then electrolytically plated onto a cathode wire producing mercury containing the predetermined isotopic distribution. In a similar fashion, Hg with a predetermined isotopic distribution is obtained from different isotopic types of HgO. In this embodiment, the HgO is dissolved in an electrolytic solution of glacial acetic acid and H.sub.2 O. The isotopic specific Hg is then electrolytically plated onto a cathode and then recovered.

Grossman, Mark W. (Belmont, MA); George, William A. (Rockport, MA)

1986-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "geothermometry isotopic analysis" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

CARBON ISOTOPE STRATIGRAPHY AND DIAGENESIS OF PENNSYLVANIAN (DESMOINESIAN-MISSOURIAN) CARBONATES IN EAST-CENTRAL IDAHO  

E-Print Network (OSTI)

Carbon isotope stratigraphy of carbonate sediments is instrumental in examining major perturbations in the global carbon cycle and in correlating strata. However, the primary isotopic signal recorded in these sediments can vary with depositional environment and diagenetic alteration. This study examines the carbon isotope stratigraphy and its relation to depositional environment, lithology, and diagenetic history in a section of the 312-307 million year old Pennsylvanian (Desmoinesian-Missourian) Snaky Canyon Formation in the Beaverhead Mountains, east-central Idaho. Petrography of 90 thin sections show carbonate rocks ranging from mudstone to boundstone containing variable amounts of eolian siliciclastics with as much as 50% silt to medium sand grains in some samples. The abundance of siliciclastic influx decreases upsection to less than 1% sand and roughly corresponds to an increase in parasequence thickness. Open marine carbonate facies include abundant crinoids, bryozoans, foraminifera, brachiopods, green algae, phylloid algae, and arthropod fragments. Chert, bioturbation features (e.g. burrows), intraclasts, pellets, coarse calcite spar, calcite-filled fractures, and fossil silicification also occur in these rocks. Cathodoluminescence (CL) analysis of thin sections reveals a lack of luminescence in nearly all components, suggesting that depositional and diagenetic waters were low in Mn2+ or high in Fe2+. Approximately 130 billets were analyzed to yield 13C/12C and 18O/16O ratios. Fractures have much lower ?18O (-13.9)reflecting post-depositional tectonic processes. Most of the isotopic data for micritic components are within -8 to -1 for ?18O and -1 to +5 for ?13C. Previously reported oxygen isotope values for Pennsylvanian brachiopods from the U.S. Midcontinent are -2.2 0.7, indicating outlier ?18O values in this study are altered. Most of the isotope data for carbon are within previously reported Pennsylvanian fine grained carbonate ranges of +1 to +5. These isotopic values appear to be independent of lithology and percent carbonate; thus, the main controlling influence on the ?13C and ?18O data may be depositional environment. Three significant trends in the ?13C data appear to correspond to thickness and boundaries of stratigraphic parasequences. Isotope values in this study were compared to those of Arrow Canyon,Nevada and showed similar trends for the Desmoinesian but not for the Missourian.

Wood, Stephanie

2011-05-01T23:59:59.000Z

382

Performance and safety parameters for the high flux isotope reactor  

Science Conference Proceedings (OSTI)

A Monte Carlo depletion model for the High Flux Isotope Reactor (HFIR) Cycle 400 and its use in calculating parameters of relevance to the reactor performance and safety during the reactor cycle are presented in this paper. This depletion model was developed to serve as a reference for the design of a low-enriched uranium (LEU) fuel for an ongoing study to convert HFIR from high-enriched uranium (HEU) to LEU fuel; both HEU and LEU depletion models use the same methodology and ENDF/B-VII nuclear data as discussed in this paper. The calculated HFIR Cycle 400 parameters, which are compared with measurement data from critical experiments performed at HFIR, data included in the HFIR Safety Analysis Report (SAR), or data reported by previous calculations, provide a basis for verification or updating of the corresponding SAR data. (authors)

Ilas, G. [Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, TN 37831-6172 (United States); Primm III, T. [Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, TN 37831-6172 (United States); Primm Consulting, LLC, 945 Laurel Hill Road, Knoxville, TN 37923 (United States)

2012-07-01T23:59:59.000Z

383

Performance and Safety Parameters for the High Flux Isotope Reactor  

SciTech Connect

A Monte Carlo depletion model for the High Flux Isotope Reactor (HFIR) Cycle 400 and its use in calculating parameters of relevance to the reactor performance and safety during the reactor cycle are presented in this paper. This depletion model was developed to serve as a reference for the design of a low-enriched uranium (LEU) fuel for an ongoing study to convert HFIR from high-enriched uranium (HEU) to LEU fuel; both HEU and LEU depletion models use the same methodology and ENDV/B-VII nuclear data as discussed in this paper. The calculated HFIR Cycle 400 parameters, which are compared when available with measurement data from critical experiments performed at HFIR, data included in the HFIR Safety Analysis Report (SAR), or data reported by previous calculations, provide a basis for verification or updating of the corresponding SAR data.

Ilas, Germina [ORNL; Primm, Trent [Primm Consulting, LLC

2012-01-01T23:59:59.000Z

384

Neutronics Modeling of the High Flux Isotope Reactor using COMSOL  

Science Conference Proceedings (OSTI)

The High Flux Isotope Reactor located at the Oak Ridge National Laboratory is a versatile 85 MWth research reactor with cold and thermal neutron scattering, materials irradiation, isotope production, and neutron activation analysis capabilities. HFIR staff members are currently in the process of updating the thermal hydraulic and reactor transient modeling methodologies. COMSOL Multiphysics has been adopted for the thermal hydraulic analyses and has proven to be a powerful finite-element-based simulation tool for solving multiple physics-based systems of partial and ordinary differential equations. Modeling reactor transients is a challenging task because of the coupling of neutronics, heat transfer, and hydrodynamics. This paper presents a preliminary COMSOL-based neutronics study performed by creating a two-dimensional, two-group, diffusion neutronics model of HFIR to study the spatially-dependent, beginning-of-cycle fast and thermal neutron fluxes. The 238-group ENDF/B-VII neutron cross section library and NEWT, a two-dimensional, discrete-ordinates neutron transport code within the SCALE 6 code package, were used to calculate the two-group neutron cross sections required to solve the diffusion equations. The two-group diffusion equations were implemented in the COMSOL coefficient form PDE application mode and were solved via eigenvalue analysis using a direct (PARDISO) linear system solver. A COMSOL-provided adaptive mesh refinement algorithm was used to increase the number of elements in areas of largest numerical error to increase the accuracy of the solution. The flux distributions calculated by means of COMSOL/SCALE compare well with those calculated with benchmarked three-dimensional MCNP and KENO models, a necessary first step along the path to implementing two- and three-dimensional models of HFIR in COMSOL for the purpose of studying the spatial dependence of transient-induced behavior in the reactor core.

Chandler, David [ORNL; Primm, Trent [ORNL; Freels, James D [ORNL; Maldonado, G Ivan [ORNL

2011-01-01T23:59:59.000Z

385

NID Copper Sample Analysis  

Science Conference Proceedings (OSTI)

The current focal point of the nuclear physics program at PNNL is the MAJORANA DEMONSTRATOR, and the follow-on Tonne-Scale experiment, a large array of ultra-low background high-purity germanium detectors, enriched in 76Ge, designed to search for zero-neutrino double-beta decay (0???). This experiment requires the use of germanium isotopically enriched in 76Ge. The DEMONSTRATOR will utilize 76Ge from Russia, but for the Tonne-Scale experiment it is hoped that an alternate technology under development at Nonlinear Ion Dynamics (NID) will be a viable, US-based, lower-cost source of separated material. Samples of separated material from NID require analysis to determine the isotopic distribution and impurities. The MAJORANA DEMONSTRATOR is a DOE and NSF funded project with a major science impact. DOE is funding NID through an SBIR grant for development of their separation technology for application to the Tonne-Scale experiment. The Environmental Molecular Sciences facility (EMSL), a DOE user facility at PNNL, has the required mass spectroscopy instruments for making these isotopic measurements that are essential to the quality assurance for the MAJORANA DEMONSTRATOR and for the development of the future separation technology required for the Tonne-Scale experiment. A sample of isotopically separated copper was provided by NID to PNNL for isotopic analysis as a test of the NID technology. The results of that analysis are reported here.

Kouzes, Richard T.; Zhu, Zihua

2011-02-01T23:59:59.000Z

386

Multiple stable isotope characterization as a forensic tool to distinguish acid scavenger samples  

SciTech Connect

Acid scavengers are frequently used as stabilizer compounds in a variety of applications. When used to stabilize volatile compounds such as nerve agents, the lower volatility and higher stability of acid scavengers make them more persistent in a post-event forensic setting. We are employing compound-specific stable isotope analysis of the carbon, nitrogen, and hydrogen components of three acid scavenging compounds (N,N-diethylaniline, tributylamine, and triethylamine) as a tool for distinguishing between different samples of the stabilizers. Combined analysis of three stable isotopes in these samples improves the technique's resolving potential, enhancing sample matching capabilities. The compound specific methods developed here can be applied to instances where these compounds are not pure, such as when mixed with an agent or when found as a residue at an event site. Effective sample matching can be crucial for linking compounds at multiple event sites or linking a supply inventory to an event.

Moran, James J.; Kreuzer, Helen W.; Carman, April J.; Wahl, Jon H.; Duckworth, Douglas C.

2012-01-01T23:59:59.000Z

387

Optically pumped isotopic ammonia laser system  

DOE Patents (OSTI)

An optically pumped isotopic ammonia laser system which is capable of producing a plurality of frequencies in the middle infrared spectral region. Two optical pumping mechanisms are disclosed, i.e., pumping on R(J) and lasing on P(J) in response to enhancement of rotational cascade lasing including stimulated Raman effects, and, pumping on R(J) and lasing on P(J+2). The disclosed apparatus for optical pumping include a hole coupled cavity and a grating coupled cavity.

Buchwald, Melvin I. (Santa Fe, NM); Jones, Claude R. (Los Alamos, NM); Nelson, Leonard Y. (Seattle, WA)

1982-01-01T23:59:59.000Z

388

Diffusional exchange of isotopes in a metal hydride sphere.  

DOE Green Energy (OSTI)

This report describes the Spherical Particle Exchange Model (SPEM), which simulates exchange of one hydrogen isotope by another hydrogen isotope in a spherical metal hydride particle. This is one of the fundamental physical processes during isotope exchange in a bed of spherical metal particles and is thus one of the key components in any comprehensive physics-based model of exchange. There are two important physical processes in the model. One is the entropy of mixing between the two isotopes; the entropy of mixing is increased by having both isotopes randomly placed at interstitial sites on the lattice and thus impedes the exchange process. The other physical process is the elastic interaction between isotope atoms on the lattice. The elastic interaction is the cause for {beta}-phase formation and is independent of the isotope species. In this report the coupled diffusion equations for two isotopes in the {beta}-phase hydride are solved. A key concept is that the diffusion of one isotope depends not only on its concentration gradient, but also on the concentration gradient of the other isotope. Diffusion rate constants and the chemical potentials for deuterium and hydrogen in the {beta}-phase hydride are reviewed because these quantities are essential for an accurate model of the diffusion process. Finally, a summary of some of the predictions from the SPEM model are provided.

Wolfer, Wilhelm G.; Hamilton, John C.; James, Scott Carlton

2011-04-01T23:59:59.000Z

389

Hydrogen isotope separation utilizing bulk getters  

DOE Patents (OSTI)

Tritium and deuterium are separated from a gaseous mixture thereof, derived from a nuclear fusion reactor or some other source, by providing a casing with a bulk getter therein for absorbing the gaseous mixture to produce an initial loading of the getter, partially desorbing the getter to produce a desorbed mixture which is tritium-enriched, pumping the desorbed mixture into a separate container, the remaining gaseous loading in the getter being deuterium-enriched, desorbing the getter to a substantially greater extent to produce a deuterium-enriched gaseous mixture, and removing the deuterium-enriched mixture into another container. The bulk getter may comprise a zirconium-aluminum alloy, or a zirconium-vanadium-iron alloy. The partial desorption may reduce the loading by approximately fifty percent. The basic procedure may be extended to produce a multistage isotope separator, including at least one additional bulk getter into which the tritium-enriched mixture is absorbed. The second getter is then partially desorbed to produce a desorbed mixture which is further tritium-enriched. The last-mentioned mixture is then removed from the container for the second getter, which is then desorbed to a substantially greater extent to produce a desorbed mixture which is deuterium-enriched. The last-mentioned mixture is then removed so that the cycle can be continued and repeated. The method of isotope separation is also applicable to other hydrogen isotopes, in that the method can be employed for separating either deuterium or tritium from normal hydrogen.

Knize, Randall J. (Los Angeles, CA); Cecchi, Joseph L. (Lawrenceville, NJ)

1991-01-01T23:59:59.000Z

390

Hydrogen isotope separation utilizing bulk getters  

DOE Patents (OSTI)

Tritium and deuterium are separated from a gaseous mixture thereof, derived from a nuclear fusion reactor or some other source, by providing a casing with a bulk getter therein for absorbing the gaseous mixture to produce an initial loading of the getter, partially desorbing the getter to produce a desorbed mixture which is tritium-enriched, pumping the desorbed mixture into a separate container, the remaining gaseous loading in the getter being deuterium-enriched, desorbing the getter to a substantially greater extent to produce a deuterium-enriched gaseous mixture, and removing the deuterium-enriched mixture into another container. The bulk getter may comprise a zirconium-aluminum alloy, or a zirconium-vanadium-iron alloy. The partial desorption may reduce the loading by approximately fifty percent. The basic procedure may be extended to produce a multistage isotope separator, including at least one additional bulk getter into which the tritium-enriched mixture is absorbed. The second getter is then partially desorbed to produce a desorbed mixture which is further tritium-enriched. The last-mentioned mixture is then removed from the container for the second getter, which is then desorbed to a substantially greater extent to produce a desorbed mixture which is deuterium-enriched. The last-mentioned mixture is then removed so that the cycle can be continued and repeated. The method of isotope separation is also applicable to other hydrogen isotopes, in that the method can be employed for separating either deuterium or tritium from normal hydrogen.

Knize, Randall J. (Los Angeles, CA); Cecchi, Joseph L. (Lawrenceville, NJ)

1990-01-01T23:59:59.000Z

391

Hydrogen isotope separation utilizing bulk getters  

DOE Patents (OSTI)

Tritium and deuterium are separated from a gaseous mixture thereof, derived from a nuclear fusion reactor or some other source, by providing a casing with a bulk getter therein for absorbing the gaseous mixture to produce an initial loading of the getter, partially desorbing the getter to produce a desorbed mixture which is tritium-enriched, pumping the desorbed mixture into a separate container, the remaining gaseous loading in the getter being deuterium-enriched, desorbing the getter to a substantially greater extent to produce a deuterium-enriched gaseous mixture, and removing the deuterium-enriched mixture into another container. The bulk getter may comprise a zirconium-aluminum alloy, or a zirconium-vanadium-iron alloy. The partial desorption may reduce the loading by approximately fifty percent. The basic procedure may be extended to produce a multistage isotope separator, including at least one additional bulk getter into which the tritium-enriched mixture is absorbed. The second getter is then partially desorbed to produce a desorbed mixture which is further tritium-enriched. The last-mentioned mixture is then removed from the container for the second getter, which is then desorbed to a substantially greater extent to produce a desorbed mixture which is deuterium-enriched. The last-mentioned mixture is then removed so that the cycle can be continued and repeated. The method of isotope separation is also applicable to other hydrogen isotopes, in that the method can be employed for separating either deuterium or tritium from normal hydrogen. 4 figures.

Knize, R.J.; Cecchi, J.L.

1991-08-20T23:59:59.000Z

392

An Isotope Effect in Photosynthesis  

DOE Green Energy (OSTI)

In the course of some kinetic studies on photosynthesis of barley seedlings, it has been found that plants utilize C{sup 12}O{sub 2} faster than C{sup 14}O{sub 2}. The plants were placed in a closed system containing an infra-red absorption-cell for the analysis of total CO{sub 2} and an ionization chamber for the determination of C{sup 14}O{sub 2} in the gas phase, both instruments recording continuously. Carbon dioxide, containing about 2% C{sup 14}O{sub 2}, was introduced in the dark and the specific activity at this point taken as unity. After a short dark period, the lights were turned on and photosynthesis was allowed to take place. A figure shows the result of a typical experiment. During the initial dark period the specific activity fell because of dilution by inactive respired CO{sub 2}. However, as photosynthesis proceeded, the specific activity of the residual CO{sub 2} rose until, when only 1/6 of it remained, the specific activity reached a peak some 20% higher than it had been at the start of photosynthesis. At this point the steady respiratory dilution became an appreciable fraction of the total remaining CO{sub 2}, and the specific activity dropped rapidly.

Weigl, J.W.; Calvin, M.

1948-11-23T23:59:59.000Z

393

Measuring of fissile isotopes partial antineutrino spectra in direct experiment at nuclear reactor  

E-Print Network (OSTI)

The direct measuring method is considered to get nuclear reactor antineutrino spectrum. We suppose to isolate partial spectra of the fissile isotopes by using the method of antineutrino spectrum extraction from the inverse beta decay positron spectrum applied at Rovno experiment. This admits to increase the accuracy of partial antineutrino spectra forming the total nuclear reactor spectrum. It is important for the analysis of the reactor core fuel composition and could be applied for non-proliferation purposes.

V. V. Sinev

2009-02-22T23:59:59.000Z

394

The Multi-Isotope Process (MIP) Monitor Project: FY12 Progress and Accomplishments  

Science Conference Proceedings (OSTI)

The Multi-Isotope Process (MIP) Monitor, being developed at Pacific Northwest National Laboratory (PNNL), provides an efficient approach to monitoring the process conditions in reprocessing facilities in support of the goal of "...(minimization of) the risks of nuclear proliferation and terrorism." The MIP Monitor measures distributions of a suite of indicator (radioactive) isotopes present within product and waste streams of a nuclear reprocessing facility. These indicator isotopes are monitored on-line by gamma spectrometry and compared, in near-real-time, to spectral patterns representing "normal" process conditions using multivariate pattern recognition software. The monitor utilizes this multivariate analysis and gamma spectroscopy of reprocessing streams to detect small changes in the gamma spectrum, which may indicate changes in process conditions. Multivariate analysis methods common in chemometrics, such as principal component analysis (PCA) and partial least squares regression (PLS), act as pattern recognition techniques, which can detect small deviations from the expected, nominal condition. By targeting multiple gamma-emitting indicator isotopes, the MIP Monitor approach is compatible with the use of small, portable, relatively high-resolution gamma detectors that may be easily deployed throughout an existing facility. The automated multivariate analysis can provide a level of data obscurity, giving a built-in information barrier to protect sensitive or proprietary operational data. Proof-of-concept simulations and experiments have been performed in previous years to demonstrate the validity of this tool in a laboratory setting. Development of the MIP Monitor approach continues to evaluate the efficacy of the monitor for automated, real-time or near-real-time application. This report details follow-on research and development efforts sponsored by the U.S. Department of Energy Fuel Cycle Research and Development related to the MIP Monitor for fiscal year 2012 (FY12).

Coble, Jamie B.; Orton, Christopher R.; Jordan, David V.; Schwantes, Jon M.; Bender, Sarah; Dayman, Kenneth J.; Unlu, Kenan; Landsberger, Sheldon

2012-09-27T23:59:59.000Z

395

Measuring of fissile isotopes partial antineutrino spectra in direct experiment at nuclear reactor  

E-Print Network (OSTI)

The direct measuring method is considered to get nuclear reactor antineutrino spectrum. We suppose to isolate partial spectra of the fissile isotopes by using the method of antineutrino spectrum extraction from the inverse beta decay positron spectrum applied at Rovno experiment. This admits to increase the accuracy of partial antineutrino spectra forming the total nuclear reactor spectrum. It is important for the analysis of the reactor core fuel composition and could be applied for non-proliferation purposes.

Sinev, V V

2009-01-01T23:59:59.000Z

396

Near-Surface Co2 Monitoring And Analysis To Detect Hidden Geothermal...  

Open Energy Info (EERE)

Book Gas Flux Sampling (Lewicki & Oldenburg) Isotopic Analysis (Lewicki & Oldenburg) LiDAR (Lewicki & Oldenburg) Modeling-Computer Simulations (Lewicki & Oldenburg)...

397

Isotope Development & Production for Research and Applications (IDPRA) |  

NLE Websites -- All DOE Office Websites (Extended Search)

Research » Isotope Research » Isotope Development & Production for Research and Applications (IDPRA) Nuclear Physics (NP) NP Home About Research Facilities Science Highlights Benefits of NP Funding Opportunities Nuclear Science Advisory Committee (NSAC) News & Resources Contact Information Nuclear Physics U.S. Department of Energy SC-26/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-3613 F: (301) 903-3833 E: sc.np@science.doe.gov More Information » Research Isotope Development & Production for Research and Applications (IDPRA) Print Text Size: A A A RSS Feeds FeedbackShare Page The Isotope subprogram supports the production, and the development of production techniques of radioactive and stable isotopes that are in short supply for research and applications. Isotopes are high-priority

398

Isotope Geochemistry Of Minerals And Fluids From Newberry Volcano, Oregon |  

Open Energy Info (EERE)

Isotope Geochemistry Of Minerals And Fluids From Newberry Volcano, Oregon Isotope Geochemistry Of Minerals And Fluids From Newberry Volcano, Oregon Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Isotope Geochemistry Of Minerals And Fluids From Newberry Volcano, Oregon Details Activities (2) Areas (1) Regions (0) Abstract: Isotopic compositions were determined for hydrothermal quartz, calcite, and siderite from core samples of the Newberry 2 drill hole, Oregon. The Δ15O values for these minerals decrease with increasing temperatures. The values indicate that these hydrothermal minerals precipitated in isotopic equilibrium with water currently present in the reservoirs. The Δ18O values of quartz and calcite from the andesite and basalt flows (700-932 m) have isotopic values which require that the equilibrated water Δ18O values increase slightly (- 11.3 to -9.2‰) with

399

CRAD, Management- Oak Ridge National Laboratory High Flux Isotope Reactor |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Management- Oak Ridge National Laboratory High Flux Isotope Management- Oak Ridge National Laboratory High Flux Isotope Reactor CRAD, Management- Oak Ridge National Laboratory High Flux Isotope Reactor February 2007 A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for a February 2007 assessment of the Management in preparation for restart of the Oak Ridge National Laboratory High Flux Isotope Reactor. CRADs provide a recommended approach and the types of information to gather to assess elements of a DOE contractor's programs. CRAD, Management- Oak Ridge National Laboratory High Flux Isotope Reactor More Documents & Publications CRAD, Nuclear Safety - Oak Ridge National Laboratory High Flux Isotope

400

CRAD, Engineering - Oak Ridge National Laboratory High Flux Isotope Reactor  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Engineering - Oak Ridge National Laboratory High Flux Isotope Engineering - Oak Ridge National Laboratory High Flux Isotope Reactor CRAD, Engineering - Oak Ridge National Laboratory High Flux Isotope Reactor February 2007 A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for a February 2007 assessment of the Engineering Program in preparation for restart of the Oak Ridge National Laboratory High Flux Isotope Reactor. CRADs provide a recommended approach and the types of information to gather to assess elements of a DOE contractor's programs. CRAD, Engineering - Oak Ridge National Laboratory High Flux Isotope Reactor More Documents & Publications CRAD, Engineering - Oak Ridge National Laboratory High Flux Isotope Reactor

Note: This page contains sample records for the topic "geothermometry isotopic analysis" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Oxygen Isotope Evidence For Past And Present Hydrothermal Regimes...  

Open Energy Info (EERE)

oxygen isotope compositions of cores and cuttings from Long Valley exploration wells show that the Bishop Tuff has been an important reservoir for both fossil and active...

402

Stable Isotope Enrichment by Thermal Diffusion, Chemical Exchange, and Distillation  

SciTech Connect

Applications of stable isotopes in medicine are becoming more widespread. This has resulted from the increased availability and reduced cost of these isotopes and the improved reliability and sensitivity of detection techniques such as carbon-13 nuclear magnetic resonance. Isotopes are used in compounds labeled with either the stable isotope itself, such as carbon-13 and oxygen-18, or with the radioactive isotope that can be produced by irradiating the stable isotope, such as the irradiation of xenon-124 to produce iodine-125. As the demand for stable isotopes increases, larger scale production facilities will be justifiable. The increased size of production facilities should result in yet lower unit selling prices. A large number of methods has been suggested for the separation of stable isotopes. This paper concerns itself with four methods which have proven extremely useful for the separation of the isotopes of low and medium atomic weight elements. The four processes discussed are gas phase thermal diffusion, liquid phase thermal diffusion, chemical exchange, and distillation.

Schwind, Dr. Roger A.; Rutherford, Dr. William M.

1973-03-01T23:59:59.000Z

403

Mantle Helium And Carbon Isotopes In Separation Creek Geothermal...  

Open Energy Info (EERE)

Mantle Helium And Carbon Isotopes In Separation Creek Geothermal Springs, Three Sisters Area, Central Oregon- Evidence For Renewed Volcanic Activity Or A Long Term Steady State...

404

Chemical and isotopic characteristics of the coso east flank...  

Open Energy Info (EERE)

Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Proceedings: Chemical and isotopic characteristics of the coso east flank hydrothermal fluids: implications...

405

A Strontium Isotopic Study Of Newberry Volcano, Central Oregon...  

Open Energy Info (EERE)

Strontium Isotopic Study Of Newberry Volcano, Central Oregon- Structural And Thermal Implications Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: A...

406

John De Laeter Centre For Isotope Research | Open Energy Information  

Open Energy Info (EERE)

2013 DOI Not Provided Check for DOI availability: http:crossref.org Online Internet link for John De Laeter Centre For Isotope Research Citation Curtin University. John...

407

Regional And Local Trends In Helium Isotopes, Basin And Range...  

Open Energy Info (EERE)

Superimposed on this general regional trend are isolated features with elevated helium isotope ratios (0.8-2.1 Ra) compared to the local background. Spring geochemistry and...

408

Gas Chromatographic Separation of Hydrogen Isotopes on Molecular Sieves  

Science Conference Proceedings (OSTI)

Tritium Processing / Proceedings of the Third Topical Meeting on Tritium Technology in Fission, Fusion and Isotopic Applications (Toronto, Ontario, Canada, May 1-6, 1988)

R. Vogd; H. Ringel; H. Hackfort; T. Schober; C. Dieker

409

Report of Survey of Oak Ridge Isotope Enrichment (Calutron) Facility...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Power Marketing Administration Other Agencies You are here Home Report of Survey of Oak Ridge Isotope Enrichment (Calutron) Facility Building 9204-3 Report of Survey of Oak...

410

Small-Scale Reactor for the Production of Medical Isotopes ...  

Currently, there is a severe worldwide shortage of medical isotopes-specifically Molybdenum 99 (Mo-99) which is essential in cancer treatment, ...

411

Small-Scale Reactor for the Production of Medical Isotopes  

Small-Scale Reactor for the Production of Medical Isotopes IP Home; Search/Browse Technology ... Drawing upon proven technology with minimal research effort required;

412

Isotopic Analysis- Fluid At Valles Caldera - Sulphur Springs...  

Open Energy Info (EERE)

to obtain data from which information regarding mass transfer rates. This then led to conclucions of the historyevolution of the geothermal system. Unclear whether...

413

Isotopic Analysis- Fluid At Valles Caldera - Redondo Area (White...  

Open Energy Info (EERE)

to obtain data from which information regarding mass transfer rates. This then led to conclucions of the historyevolution of the geothermal system. Unclear whether...

414

Using Nuclear Resonance Fluorescence for Nondestructive Isotopic Analysis  

E-Print Network (OSTI)

1.7% to 8.5% 238 U (depleted uranium) fractions in a 7.5 cmareal densities of the depleted uranium plates measured. The

Ludewigt, Bernhard A.

2010-01-01T23:59:59.000Z

415

Isotopic Analysis At Long Valley Caldera Area (Evans, Et Al....  

Open Energy Info (EERE)

but also may provide additional insight to subsurface conditions. For example, CO2-rich groundwaters that are cold and dilute may be a general indicator that a volcano...

416

Isotopic Analysis At Florida Mountains Area (Brookins, 1982)...  

Open Energy Info (EERE)

not indicated DOE-funding Unknown References D. G. Brookins (1982) Potassium, Uranium, Thorium Radiogenic Heat Contribution To Heat Flow In The Precambrian And Younger...

417

Using Nuclear Resonance Fluorescence for Nondestructive Isotopic Analysis  

E-Print Network (OSTI)

screening and nuclear nonproliferation applications[2,3].of the Office of Nonproliferation and International

Ludewigt, Bernhard A.

2010-01-01T23:59:59.000Z

418

Isotopic Analysis At Central Nevada Seismic Zone Region (Kennedy...  

Open Energy Info (EERE)

of deep permeability from surface measurements, and anomalies superimposed on regional trends can identify potential resources. References B. M. Kennedy, M. C. van Soest (2007)...

419

Isotopic Analysis At Nw Basin & Range Region (Kennedy & Van Soest...  

Open Energy Info (EERE)

of deep permeability from surface measurements, and anomalies superimposed on regional trends can identify potential resources. References B. M. Kennedy, M. C. van Soest (2007)...

420

Isotopic Analysis At Walker-Lane Transitional Zone Region (Kennedy...  

Open Energy Info (EERE)

of deep permeability from surface measurements, and anomalies superimposed on regional trends can identify potential resources. References B. M. Kennedy, M. C. van Soest (2007)...

Note: This page contains sample records for the topic "geothermometry isotopic analysis" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Isotopic Analysis At Northern Basin & Range Region (Kennedy ...  

Open Energy Info (EERE)

of deep permeability from surface measurements, and anomalies superimposed on regional trends can identify potential resources. References B. M. Kennedy, M. C. van Soest (2007)...

422

Isotopic Analysis At Valles Caldera - Sulphur Springs Area (White...  

Open Energy Info (EERE)

to obtain data from which information regarding mass transfer rates. This then led to conclucions of the historyevolution of the geothermal system. Unclear whether...

423

Using Nuclear Resonance Fluorescence for Nondestructive Isotopic Analysis  

E-Print Network (OSTI)

7, (1959) pp. 54. [12] B.J. Quiter, ``Nuclear ResonanceFluorescence for Nuclear Materials Assay,'' University ofclandestine material with nuclear resonance fluorescence,"

Ludewigt, Bernhard A.

2010-01-01T23:59:59.000Z

424

Isotopic Analysis- Rock At Valles Caldera - Sulphur Springs Area...  

Open Energy Info (EERE)

source History View New Pages Recent Changes All Special Pages Semantic SearchQuerying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook...

425

A New Theory for Isotopic Interdiffusion Analysis and its Application  

Science Conference Proceedings (OSTI)

Such a general theory of interdiffusion involving the atomic components and their available ... First Order Structural Transformations in Symmetrical Tilt S5 Grain...

426

Analysis  

NLE Websites -- All DOE Office Websites (Extended Search)

Analysis Analysis of Short-Bunch Production with the APS Booster and a Bunch Compressor Michael Borland, AOD/OAG ∗ August 8, 2003 1 Abstract There is significant interest among x-ray scientists in short-pulse x-rays. The x-rays from the APS ring, although very bright, are produced by an electron bunch with an rms length of more than 30 ps. Typically, it is only a linear accelerator that can produce a very short bunch. An idea was brought to my attention by Glenn Decker that might allow us to produce a short bunch using the APS booster. This idea involves extracting the beam from the booster at 3 to 4 GeV, while it is still relatively short, then compressing it with a magnetic bunch compressor. In this note, we present a preliminary analysis of this idea, along with the related idea of using a nonequilibrium beam from the APS photoinjector. 2 Background We will begin with an examination of the ideal result

427

Apparatus for isotopic alteration of mercury vapor  

DOE Patents (OSTI)

An apparatus for enriching the isotopic Hg content of mercury is provided. The apparatus includes a reactor, a low pressure electric discharge lamp containing a fill including mercury and an inert gas. A filter is arranged concentrically around the lamp. In a preferred embodiment, constant mercury pressure is maintained in the filter by means of a water-cooled tube that depends from it, the tube having a drop of mercury disposed in it. The reactor is arranged around the filter, whereby radiation from said lamp passes through the filter and into said reactor. The lamp, the filter and the reactor are formed of a material which is transparent to ultraviolet light.

Grossman, Mark W. (Belmont, MA); George, William A. (Gloucester, MA); Marcucci, Rudolph V. (Danvers, MA)

1988-01-01T23:59:59.000Z

428

Shell model description of zirconium isotopes  

Science Conference Proceedings (OSTI)

We calculate the low-lying spectra and several high-spin states of zirconium isotopes (Z=40) with neutron numbers from N=50 to N=58 using a large valence space with the {sup 78}Ni inert core, which a priori allows one to study the interplay between spherical and deformed configurations, necessary for the description of nuclides in this part of the nuclear chart. The effective interaction is derived by monopole corrections of the realistic G matrix. We reproduce essential nuclear properties, such as subshell closures in {sup 96}Zr and {sup 98}Zr. The spherical-to-deformed shape transition in {sup 100}Zr is addressed as well.

Sieja, K. [GSI-Helmholtzzentrum fuer Schwerionenforschung mbH., Planckstrasse 1, D-64-220 Darmstadt (Germany); Institut fuer Kernphysik, Technische Universitaet Darmstadt, D-64289 Darmstadt (Germany); Nowacki, F. [Institute Pluridisciplinaire Hubert Curien, 23 rue du Loess, Strasbourg (France); Langanke, K. [Institut fuer Kernphysik, Technische Universitaet Darmstadt, D-64289 Darmstadt (Germany); Frankfurt Institute for Advanced Studies, D-60438 Frankfurt am Main (Germany); Martinez-Pinedo, G. [GSI-Helmholtzzentrum fuer Schwerionenforschung mbH., Planckstrasse 1, D-64-220 Darmstadt (Germany)

2009-06-15T23:59:59.000Z

429

Isotopic ratio method for determining uranium contamination  

SciTech Connect

The presence of high concentrations of uranium in the subsurface can be attributed either to contamination from uranium processing activities or to naturally occurring uranium. A mathematical method has been employed to evaluate the isotope ratios from subsurface soils at the Rocky Flats Nuclear Weapons Plant (RFP) and demonstrates conclusively that the soil contains uranium from a natural source and has not been contaminated with enriched uranium resulting from RFP releases. This paper describes the method used in this determination which has widespread application in site characterizations and can be adapted to other radioisotopes used in manufacturing industries. The determination of radioisotope source can lead to a reduction of the remediation effort.

Miles, R.E.; Sieben, A.K.

1994-02-03T23:59:59.000Z

430

Final Report "Structure of Rare Isotopes"  

SciTech Connect

The Junior Investigator grant 'Structure of Rare Isotopes' (DE-FG02-07ER41529) supported research in low-energy nuclear theory from September 1, 2007 to August 31, 2010. It was the main goal of the proposed research to develop and optimize an occupation-number-based energy functional for the computation of nuclear masses, and this aim has been reached. Furthermore, progress was made in linking two and three-body forces from low-momentum interactions to pairing properties in nuclear density functionals, and in the description of deformed nuclei within an effective theory.

Papenbrock, Thomas

2012-05-09T23:59:59.000Z

431

CONTROL SYSTEM FOR ISOTOPE SEPARATING APPARATUS  

DOE Patents (OSTI)

A method is described for controlling the position of the ion beams in a calutron used for isotope separation. The U/sup 238/ beams is centered over the U/sup 235/ receiving pocket, the operator monitoring the beam until a maximum reading is achieved on the meter connected to that pocket. Then both beams are simultaneously shifted by a preselected amount to move the U/sup 235/ beam over the U/sup 235/ pocket. A slotted door is placed over the entrance to that pocket during the U/sup 238/ beam centering to reduce the contamination to the pocket, while allowing enough beam to pass for monitoring purposes.

Barnes, S.W.

1960-01-26T23:59:59.000Z

432

Laser-assisted isotope separation of tritium  

DOE Patents (OSTI)

Methods for laser-assisted isotope separation of tritium, using infrared multiple photon dissociation of tritium-bearing products in the gas phase. One such process involves the steps of (1) catalytic exchange of a deuterium-bearing molecule XYD with tritiated water DTO from sources such as a heavy water fission reactor, to produce the tritium-bearing working molecules XYT and (2) photoselective dissociation of XYT to form a tritium-rich product. By an analogous procedure, tritium is separated from tritium-bearing materials that contain predominately hydrogen such as a light water coolant from fission or fusion reactors.

Herman, Irving P. (Castro Valley, CA); Marling, Jack B. (Livermore, CA)

1983-01-01T23:59:59.000Z

433

Hydrogen Isotope Permeation In Elastomeric Materials  

SciTech Connect

The permeabilities of elastomeric and polymeric materials to hydrogen isotopes were measured at room temperature. The technique for measuring permeation rates is based on the following constant-volume method: a fixed pressure of gas is applied to one side of the specimen to be studied and the permeability constant is determined from the observed rate of pressure increase in an initially evacuated volume on the other side of the specimen. Permeability constants for hydrogen, deuterium, and tritium were measured for Mylar, Teflon, Kapton, Saran, Buna-N, and latex rubber. Results were compared with literature values for hydrogen and deuterium where available and showed excellent agreement.

Steinmeyer, R. H.; Braun, J. D.

1976-03-01T23:59:59.000Z

434

Examining Wari influence in the Las Trancas Valley, Peru using oxygen isotopes from bone carbonate  

E-Print Network (OSTI)

Results. Chemical Geology (Isotope Geosciences Section),isotopes in fossil teeth from Pakistan. Chemical Geology,Isotope Composition of Human Tooth Enamel from Medieval Greenland: Linking Climate with Society: Comment. Geology,

Henry, Erin-Marie Lelik

2008-01-01T23:59:59.000Z

435

MULTIPLE SULFUR ISOTOPE FRACTIONATIONS IN BIOLOGICAL SYSTEMS: A CASE STUDY WITH SULFATE REDUCERS  

E-Print Network (OSTI)

MULTIPLE SULFUR ISOTOPE FRACTIONATIONS IN BIOLOGICAL SYSTEMS: A CASE STUDY WITH SULFATE REDUCERS*, DONALD E. CANFIELD**, and KIRSTEN S. HABICHT** ABSTRACT. Multiple sulfur isotope measurements of sulfur disproportionation indicate that different types of metabolic processes impart differ- ent multiple isotope

Kaufman, Alan Jay

436

Final Progress Report: Isotope Identification Algorithm for Rapid and Accurate Determination of Radioisotopes Feasibility Study  

SciTech Connect

This is the final report of the project titled, 'Isotope Identification Algorithm for Rapid and Accurate Determination of Radioisotopes,' PMIS project number LA10-HUMANID-PD03. The goal of the work was to demonstrate principles of emulating a human analysis approach towards the data collected using radiation isotope identification devices (RIIDs). It summarizes work performed over the FY10 time period. The goal of the work was to demonstrate principles of emulating a human analysis approach towards the data collected using radiation isotope identification devices (RIIDs). Human analysts begin analyzing a spectrum based on features in the spectrum - lines and shapes that are present in a given spectrum. The proposed work was to carry out a feasibility study that will pick out all gamma ray peaks and other features such as Compton edges, bremsstrahlung, presence/absence of shielding and presence of neutrons and escape peaks. Ultimately success of this feasibility study will allow us to collectively explain identified features and form a realistic scenario that produced a given spectrum in the future. We wanted to develop and demonstrate machine learning algorithms that will qualitatively enhance the automated identification capabilities of portable radiological sensors that are currently being used in the field.

Rawool-Sullivan, Mohini [Los Alamos National Laboratory; Bounds, John Alan [Los Alamos National Laboratory; Brumby, Steven P. [Los Alamos National Laboratory; Prasad, Lakshman [Los Alamos National Laboratory; Sullivan, John P. [Los Alamos National Laboratory

2012-04-30T23:59:59.000Z

437

Determination of Light Water Reactor Fuel Burnup with the Isotope Ratio Method  

Science Conference Proceedings (OSTI)

For the current project to demonstrate that isotope ratio measurements can be extended to zirconium alloys used in LWR fuel assemblies we report new analyses on irradiated samples obtained from a reactor. Zirconium alloys are used for structural elements of fuel assemblies and for the fuel element cladding. This report covers new measurements done on irradiated and unirradiated zirconium alloys, Unirradiated zircaloy samples serve as reference samples and indicate starting values or natural values for the Ti isotope ratio measured. New measurements of irradiated samples include results for 3 samples provided by AREVA. New results indicate: 1. Titanium isotope ratios were measured again in unirradiated samples to obtain reference or starting values at the same time irradiated samples were analyzed. In particular, 49Ti/48Ti ratios were indistinguishably close to values determined several months earlier and to expected natural values. 2. 49Ti/48Ti ratios were measured in 3 irradiated samples thus far, and demonstrate marked departures from natural or initial ratios, well beyond analytical uncertainty, and the ratios vary with reported fluence values. The irradiated samples appear to have significant surface contamination or radiation damage which required more time for SIMS analyses. 3. Other activated impurity elements still limit the sample size for SIMS analysis of irradiated samples. The sub-samples chosen for SIMS analysis, although smaller than optimal, were still analyzed successfully without violating the conditions of the applicable Radiological Work Permit

Gerlach, David C.; Mitchell, Mark R.; Reid, Bruce D.; Gesh, Christopher J.; Hurley, David E.

2007-11-01T23:59:59.000Z

438

Hydrogen isotope exchange in metal hydride columns  

DOE Green Energy (OSTI)

Several metal hydrides were shown to act as chromatographic media for hydrogen isotopes. The procedure was to equilibrate a column of hydride with flowing hydrogen, inject a small quantity of tritium tracer, and observe its elution behavior. Characteristic retention times were found. From these and the extent of widening of the tritium band, the heights equivalent to a theoretical plate could be calculated. Values of around 1 cm were obtained. The following are the metals whose hydrides were studied, together with the temperature ranges in which chromatographic behavior was observed: vanadium, 0 to 70/sup 0/C; zirconium, 500 to 600/sup 0/C; LaNi/sub 5/, -78 to +30/sup 0/C; Mg/sub 2/Ni, 300 to 375/sup 0/C; palladium, 0 to 70/sup 0/C. A dual-temperature isotope separation process based on hydride chromatography was demonstrated. In this, a column was caused to cycle between two temperatures while being supplied with a constant stream of tritium-traced hydrogen. Each half-cycle was continued until ''breakthrough,'' i.e., until the tritium concentration in the effluent was the same as that in the feed. Up to that point, the effluent was enriched or depleted in tritium, by up to 20%.

Wiswall, R; Reilly, J; Bloch, F; Wirsing, E

1977-11-21T23:59:59.000Z

439

Sandia National Laboratories Medical Isotope Reactor concept.  

SciTech Connect

This report describes the Sandia National Laboratories Medical Isotope Reactor and hot cell facility concepts. The reactor proposed is designed to be capable of producing 100% of the U.S. demand for the medical isotope {sup 99}Mo. The concept is novel in that the fuel for the reactor and the targets for the {sup 99}Mo production are the same. There is no driver core required. The fuel pins that are in the reactor core are processed on a 7 to 21 day irradiation cycle. The fuel is low enriched uranium oxide enriched to less than 20% {sup 235}U. The fuel pins are approximately 1 cm in diameter and 30 to 40 cm in height, clad with Zircaloy (zirconium alloy). Approximately 90 to 150 fuel pins are arranged in the core in a water pool {approx}30 ft deep. The reactor power level is 1 to 2 MW. The reactor concept is a simple design that is passively safe and maintains negative reactivity coefficients. The total radionuclide inventory in the reactor core is minimized since the fuel/target pins are removed and processed after 7 to 21 days. The fuel fabrication, reactor design and operation, and {sup 99}Mo production processing use well-developed technologies that minimize the technological and licensing risks. There are no impediments that prevent this type of reactor, along with its collocated hot cell facility, from being designed, fabricated, and licensed today.

Coats, Richard Lee; Dahl, James J.; Parma, Edward J., Jr.

2010-04-01T23:59:59.000Z

440

Global Security, Medical Isotopes, and Nuclear Science  

Science Conference Proceedings (OSTI)

Over the past century basic nuclear science research has led to the use of radioactive isotopes into a wide variety of applications that touch our lives everyday. Some are obvious, such as isotopes for medical diagnostics and treatment. Others are less so, such as National/Global security issues. And some we take for granted, like the small amount of 241Am that is in every smoke detector. At the beginning of this century, we are in a position where the prevalence and importance of some applications of nuclear science are pushing the basic nuclear science community for improved models and nuclear data. Yet, at the same time, the push by the basic nuclear science community to study nuclei that are farther and farther away from stability also offer new opportunities for many applications. This talk will look at several global security applications of nuclear science, summarizing current R&D and need for improved nuclear data It will also look at how applications of nuclear science, such as to medicine, will benefit from the push for more and more powerful radioactive ion beam facilities.

Ahle, L E

2007-09-17T23:59:59.000Z

Note: This page contains sample records for the topic "geothermometry isotopic analysis" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Tracking the lithium isotopic evolution of the mantle using carbonatites  

E-Print Network (OSTI)

Tracking the lithium isotopic evolution of the mantle using carbonatites Ralf Halama a,, William F. © 2007 Elsevier B.V. All rights reserved. Keywords: lithium isotopes; carbonatites; mantle geochemistry 1. Introduction Lithium (Li) is an incompatible element that is typi- cally enriched 10 to 50-fold in crustal

Mcdonough, William F.

442

Hafnium isotopes in Arctic Ocean water Bettina Zimmermann a  

E-Print Network (OSTI)

-GEOMAR, 24148 Kiel, Germany d Laboratory for Isotope Geology, Swedish Museum of Natural History, Box 50007, SEHafnium isotopes in Arctic Ocean water Bettina Zimmermann a , Don Porcelli b,*, Martin Frank c-104 05 Stockholm, Sweden e Department of Geology, Wayne State University, Detroit, MI 48202, USA f

Baskaran, Mark

443

Isotopic validation for PWR actinide-only burnup credit using Yankee Rowe data  

Science Conference Proceedings (OSTI)

Safety analyses of criticality control systems for transportation packages include an assumption that the spent nuclear fuel (SNF) loaded into the package is fresh or unirradiated. In other words, the spent fuel is assumed to have its original, as-manufactured U-235 isotopic content. The ``fresh fuel`` assumption is very conservative since the potential reactivity of the nuclear fuel is substantially reduced after being irradiated in the reactor core. The concept of taking credit for this reduction in nuclear fuel reactivity due to burnup of the fuel, instead of using the fresh fuel assumption in the criticality safety analysis, is referred to as ``Burnup Credit.`` Burnup credit uses the actual physical composition of the fuel and accounts for the net reduction of fissile material and the buildup of neutron absorbers in the fuel as it is irradiated. Neutron absorbers include actinides and other isotopes generated as a result of the fission process. Using only the change in actinide isotopes in the burnup credit criticality analysis is referred to as ``Actinide-Only Burnup Credit.`` The use of burnup credit in the design of criticality control systems enables more spent fuel to be placed in a package. Increased package capacity results in a reduced number of storage, shipping and disposal containers for a given number of SNF assemblies. Fewer shipments result in a lower risk of accidents associated with the handling and transportation of spent fuel, thus reducing both radiological and nonradiological risk to the public. This paper describes the modeling and the results of comparison between measured and calculated isotopic inventories for a selected number of samples taken from a Yankee Rowe spent fuel assembly.

NONE

1997-11-01T23:59:59.000Z

444

NATIONAL USES AND NEEDS FOR SEPARATED STABLE ISOTOPES IN PHYSICS, CHEMISTRY, AND GEOSCIENCE RESEARCH  

E-Print Network (OSTI)

York, K. Rankama, Isotope Geology, McGraw-Hill, New York,geochronometry and isotope geology. elements report. ofisotopes were utilized in the research areas and geology,

Zisman, M.S.

2010-01-01T23:59:59.000Z

445

CRAD, Management - Oak Ridge National Laboratory High Flux Isotope Reactor  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Oak Ridge National Laboratory High Flux Isotope Oak Ridge National Laboratory High Flux Isotope Reactor Contractor ORR CRAD, Management - Oak Ridge National Laboratory High Flux Isotope Reactor Contractor ORR February 2007 A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for a February 2007 assessment of the Management portion of an Operational Readiness Review of the Oak Ridge National Laboratory High Flux Isotope Reactor. CRADs provide a recommended approach and the types of information to gather to assess elements of a DOE contractor's programs. CRAD, Management - Oak Ridge National Laboratory High Flux Isotope Reactor Contractor ORR More Documents & Publications

446

CRAD, Training - Oak Ridge National Laboratory High Flux Isotope Reactor |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Reactor Reactor CRAD, Training - Oak Ridge National Laboratory High Flux Isotope Reactor February 2007 A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for a February 2007 assessment of the Training Program in preparation for restart of the Oak Ridge National Laboratory High Flux Isotope Reactor. RADs provide a recommended approach and the types of information to gather to assess elements of a DOE contractor's programs. CRAD, Training - Oak Ridge National Laboratory High Flux Isotope Reactor More Documents & Publications CRAD, Nuclear Safety - Oak Ridge National Laboratory High Flux Isotope Reactor CRAD, Training - Oak Ridge National Laboratory High Flux Isotope Reactor

447

CRAD, Maintenance - Oak Ridge National Laboratory High Flux Isotope Reactor  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Reactor Reactor CRAD, Maintenance - Oak Ridge National Laboratory High Flux Isotope Reactor February 2007 A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for a February 2007 assessment of the Maintenance Program in preparation for restart of the Oak Ridge National Laboratory High Flux Isotope Reactor. CRADs provide a recommended approach and the types of information to gather to assess elements of a DOE contractor's programs. CRAD, Maintenance - Oak Ridge National Laboratory High Flux Isotope Reactor More Documents & Publications CRAD, Safety Basis - Oak Ridge National Laboratory High Flux Isotope Reactor CRAD, Maintenance - Oak Ridge National Laboratory High Flux Isotope Reactor

448

CRAD, Nuclear Safety - Oak Ridge National Laboratory High Flux Isotope  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

CRAD, Nuclear Safety - Oak Ridge National Laboratory High Flux CRAD, Nuclear Safety - Oak Ridge National Laboratory High Flux Isotope Reactor CRAD, Nuclear Safety - Oak Ridge National Laboratory High Flux Isotope Reactor February 2007 A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for a February 2007 assessment of the Nuclear Safety Program in preparation for restart of the Oak Ridge National Laboratory High Flux Isotope Reactor. CRADs provide a recommended approach and the types of information to gather to assess elements of a DOE contractor's programs. CRAD, Nuclear Safety - Oak Ridge National Laboratory High Flux Isotope Reactor More Documents & Publications CRAD, Engineering - Oak Ridge National Laboratory High Flux Isotope Reactor

449

Enforcement Letter, International Isotopes Idaho Inc - August 20, 1999 |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

International Isotopes Idaho Inc - August 20, International Isotopes Idaho Inc - August 20, 1999 Enforcement Letter, International Isotopes Idaho Inc - August 20, 1999 August, 20, 1999 Issued to International Isotopes Idaho, Inc. related to the Relocation of an Irradiated Pellet at the Test Reactor Area Hot Cell Facility at the Idaho National Engineering and Environmental Laboratory This letter refers to the Department of Energy's (DOE) evaluation of the facts and circumstances concerning the relocation of an irradiated [isotope] pellet from within a hot cell to an adjoining, outside, charging port service area. This incident occurred on January 6, 1999, at the Idaho National Engineering and Environmental Laboratory's Test Reactor Area Hot Cell Facility (TRA-632). Building TRA-632 is utilized by International

450

Geothermal reservoir temperatures estimated from the oxygen isotope  

Open Energy Info (EERE)

reservoir temperatures estimated from the oxygen isotope reservoir temperatures estimated from the oxygen isotope compositions of dissolved sulfate and water from hot springs and shallow drillholes Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Geothermal reservoir temperatures estimated from the oxygen isotope compositions of dissolved sulfate and water from hot springs and shallow drillholes Details Activities (3) Areas (3) Regions (0) Abstract: The oxygen isotope compositions of dissolved sulfate and water from hot springs and shallow drillholes have been tested as a geothermometer in three areas of the western United States. Limited analyses of spring and borehole fluids and existing experimental rate studies suggest that dissolved sulfate and water are probably in isotopic equilibrium in all reservoirs of significant size with temperatures above

451

CRAD, Engineering - Oak Ridge National Laboratory High Flux Isotope Reactor  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Oak Ridge National Laboratory High Flux Isotope Oak Ridge National Laboratory High Flux Isotope Reactor Contractor ORR CRAD, Engineering - Oak Ridge National Laboratory High Flux Isotope Reactor Contractor ORR February 2007 A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for a February 2007 assessment of the Engineering Program portion of an Operational Readiness Review of the Oak Ridge National Laboratory, High Flux Isotope Reactor. CRADs provide a recommended approach and the types of information to gather to assess elements of a DOE contractor's programs. CRAD, Engineering - Oak Ridge National Laboratory High Flux Isotope Reactor Contractor ORR More Documents & Publications

452

Expert Panel: Forecast Future Demand for Medical Isotopes | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Expert Panel: Forecast Future Demand for Medical Isotopes Expert Panel: Forecast Future Demand for Medical Isotopes Expert Panel: Forecast Future Demand for Medical Isotopes The Expert Panel has concluded that the Department of Energy and National Institutes of Health must develop the capability to produce a diverse supply of radioisotopes for medical use in quantities sufficient to support research and clinical activities. Such a capability would prevent shortages of isotopes, reduce American dependence on foreign radionuclide sources and stimulate biomedical research. The expert panel recommends that the U.S. government build this capability around either a reactor, an accelerator or a combination of both technologies as long as isotopes for clinical and research applications can be supplied reliably, with diversity in adequate

453

Cancer-fighting treatment gets boost from Isotope Production Facility  

NLE Websites -- All DOE Office Websites (Extended Search)

Cancer-fighting treatment gets boost from Isotope Production Cancer-fighting treatment gets boost from Isotope Production Facility Cancer-fighting treatment gets boost from Isotope Production Facility New capability expands existing program, creates treatment product in quantity. April 13, 2012 Medical Isotope Work Moves Cancer Treatment Agent Forward Medical Isotope Work Moves Cancer Treatment Agent Forward - Los Alamos scientist Meiring Nortier holds a thorium foil test target for the proof-of-concept production experiments. Research indicates that it will be possible to match current annual, worldwide production of Ac-225 in just two to five days of operations using the accelerator at Los Alamos and analogous facilities at Brookhaven. Alpha particles are energetic enough to destroy cancer cells but are unlikely to move beyond a tightly controlled target region and destroy

454

Enforcement Letter, International Isotopes Idaho Inc - August 20, 1999 |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

International Isotopes Idaho Inc - August 20, International Isotopes Idaho Inc - August 20, 1999 Enforcement Letter, International Isotopes Idaho Inc - August 20, 1999 August, 20, 1999 Issued to International Isotopes Idaho, Inc. related to the Relocation of an Irradiated Pellet at the Test Reactor Area Hot Cell Facility at the Idaho National Engineering and Environmental Laboratory This letter refers to the Department of Energy's (DOE) evaluation of the facts and circumstances concerning the relocation of an irradiated [isotope] pellet from within a hot cell to an adjoining, outside, charging port service area. This incident occurred on January 6, 1999, at the Idaho National Engineering and Environmental Laboratory's Test Reactor Area Hot Cell Facility (TRA-632). Building TRA-632 is utilized by International

455

A Helium Isotope Perspective On The Dixie Valley, Nevada, Hydrothermal  

Open Energy Info (EERE)

Helium Isotope Perspective On The Dixie Valley, Nevada, Hydrothermal Helium Isotope Perspective On The Dixie Valley, Nevada, Hydrothermal System Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: A Helium Isotope Perspective On The Dixie Valley, Nevada, Hydrothermal System Details Activities (3) Areas (1) Regions (0) Abstract: Fluids from springs, fumaroles, and wells throughout Dixie Valley, NV were analyzed for noble gas abundances and isotopic compositions. The helium isotopic compositions of fluids produced from the Dixie Valley geothermal field range from 0.70 to 0.76 Ra, are among the highest values in the valley, and indicate that similar to 7.5% of the total helium is derived from the mantle. A lack of recent volcanics or other potential sources requires flow of mantle-derived helium up along the

456

Fractionation of Boron Isotopes in Icelandic Hydrothermal Systems  

DOE Green Energy (OSTI)

Boron isotope ratios have been determined in a variety of different geothermal waters from hydrothermal systems across Iceland. Isotope ratios from the high temperature meteoric water recharged systems reflect the isotope ratio of the host rocks without any apparent fractionation. Seawater recharged geothermal systems exhibit more positive {delta}{sup 11}B values than the meteoric water recharged geothermal systems. Water/rock ratios can be assessed from boron isotope ratios in the saline hydrothermal systems. Low temperature hydrothermal systems also exhibit more positive {delta}{sup 11}B than the high temperature systems, indicating fractionation of boron due to adsorption of the lighter isotope onto secondary minerals. Fractionation of boron in carbonate deposits may indicate the level of equilibrium attained within the systems.

Aggarwal, J.K.; Palmer, M.R.

1995-01-01T23:59:59.000Z

457

Compact hydrogen/helium isotope mass spectrometer  

DOE Patents (OSTI)

The compact hydrogen and helium isotope mass spectrometer of the present invention combines low mass-resolution ion mass spectrometry and beam-foil interaction technology to unambiguously detect and quantify deuterium (D), tritium (T), hydrogen molecule (H.sub.2, HD, D.sub.2, HT, DT, and T.sub.2), .sup.3 He, and .sup.4 He concentrations and concentration variations. The spectrometer provides real-time, high sensitivity, and high accuracy measurements. Currently, no fieldable D or molecular speciation detectors exist. Furthermore, the present spectrometer has a significant advantage over traditional T detectors: no confusion of the measurements by other beta-emitters, and complete separation of atomic and molecular species of equivalent atomic mass (e.g., HD and .sup.3 He).

Funsten, Herbert O. (Los Alamos, NM); McComas, David J. (Los Alamos, NM); Scime, Earl E. (Morgantown, WV)

1996-01-01T23:59:59.000Z

458

Carbon isotope fractionation in protoplanetary disks  

E-Print Network (OSTI)

We investigate the gas-phase and grain-surface chemistry in the inner 30 AU of a typical protoplanetary disk using a new model which calculates the gas temperature by solving the gas heating and cooling balance and which has an improved treatment of the UV radiation field. We discuss inner-disk chemistry in general, obtaining excellent agreement with recent observations which have probed the material in the inner regions of protoplanetary disks. We also apply our model to study the isotopic fractionation of carbon. Results show that the fractionation ratio, 12C/13C, of the system varies with radius and height in the disk. Different behaviour is seen in the fractionation of different species. We compare our results with 12C/13C ratios in the Solar System comets, and find a stark contrast, indicative of reprocessing.

Woods, Paul M

2008-01-01T23:59:59.000Z

459

Carbon isotope fractionation in protoplanetary disks  

E-Print Network (OSTI)

We investigate the gas-phase and grain-surface chemistry in the inner 30 AU of a typical protoplanetary disk using a new model which calculates the gas temperature by solving the gas heating and cooling balance and which has an improved treatment of the UV radiation field. We discuss inner-disk chemistry in general, obtaining excellent agreement with recent observations which have probed the material in the inner regions of protoplanetary disks. We also apply our model to study the isotopic fractionation of carbon. Results show that the fractionation ratio, 12C/13C, of the system varies with radius and height in the disk. Different behaviour is seen in the fractionation of different species. We compare our results with 12C/13C ratios in the Solar System comets, and find a stark contrast, indicative of reprocessing.

Paul M. Woods; Karen Willacy

2008-12-01T23:59:59.000Z

460

Stable carbon isotopes as an indicator of petroleum biodegradation in estuarine sediments  

E-Print Network (OSTI)

An investigation into the use of stable carbon isotopes (513C) as tracers of biodegradation of petroleum in estuarine sediments was performed. This technique uses the 813C of respired C02 as an indicator of the organic matter being degraded. The precision of this procedure in biometer flasks was determined to be ?0.8 %. over an eight day period. This precision is sufficient to distinguish between petroleum hydrocarbons, which have a typical ratio from-30 to-26 %. depending on the petroleum, and for example, estuarine grasses that range from-1 6 to-1 0 %. or phytoplankton which have a ratio around-21.7%.. The carbon isotope discrimination between C02 and substrate during peak C02 production was less than 2.2 %. for all but one substrate tested. Experiments in which the C:N ratio varied, indicated that substrate availability, not nitrogen availability, affected the discrimination between C02 and substrate. Parallel 14C-CO2 experiments and gas chromatography analysis of residuals was performed for experiments with more than one possible substrate. Results from these analyses confirmed results from the 513C of the respired C02. Findings from the laboratory work indicated that stable carbon isotopes of respired C02 are useful in determining the substrate that is being utilized.

Hesse, Deborah Louise

1994-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "geothermometry isotopic analysis" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Neutron-Induced Fission Cross Section Measurements for Uranium Isotopes and Other Actinides at LANSCE  

Science Conference Proceedings (OSTI)

A well established program of neutron-induced fission cross section measurement at Los Alamos Neutron Science Center (LANSCE) is supporting the Fuel Cycle Research program (FC R&D). The incident neutron energy range spans from sub-thermal up to 200 MeV by combining two LANSCE facilities, the Lujan Center and the Weapons Neutron Research center (WNR). The time-of-flight method is implemented to measure the incident neutron energy. A parallel-plate fission ionization chamber was used as a fission fragment detector. The event rate ratio between the investigated foil and a standard {sup 235}U foil is translated into a fission cross section ratio. Thin actinide targets with deposits of <200 {micro}g/cm{sup 2} on stainless steel backing were loaded into a fission chamber. In addition to previously measured data for {sup 237}Np, {sup 239-242}Pu, {sup 243}Am, new measurements include the recently completed {sup 233,238}U isotopes, {sup 236}U data which is being analyzed, and {sup 234}U data acquired in the 2011-2012 LANSCE run cycle. The new data complete the full suite of Uranium isotopes which were investigated with this experimental approach. When analysis of the new measured data is completed, data will be delivered to evaluators. Having data for multiple Uranium isotopes will support theoretical modeling capabilities and strengthens nuclear data evaluation.

Laptev, Alexander B. [Los Alamos National Laboratory; Tovesson, Fredrik K. [Los Alamos National Laboratory; Hill, Tony S. [Los Alamos National Laboratory

2012-08-16T23:59:59.000Z

462

Hydrogen Isotope Exchange Properties of Porous Solids Containing Hydrogen  

Science Conference Proceedings (OSTI)

Porous solids such as activated alumina, silica and molecular sieves generally contain significant amounts of hydrogen atoms in the form of H2O or OH even at high temperature and low humidity environment. A significant amount of this hydrogen is available for reversible isotopic exchange. This exchange reaction is slow under normal conditions and does not render itself to practical applications. But if the exchange kinetics is improved this reaction has the potential to be used for tritium removal from gas streams or for hydrogen isotopic separation.The use of catalysts to improve the exchange kinetics between hydrogen isotope in the gas phase and that in the solid phase was investigated. Granules of alumina, silica and molecular sieve were coated with platinum or palladium as the catalyst. The granules were packed in a 2-cm diameter column for isotope exchange tests. Gas streams containing different concentrations of deuterium in nitrogen or argon were fed through the protium saturated column. Isotope concentration in column effluent was monitored to generate isotope break-through curves. The curves were analyzed to produce information on the kinetics and capacity of the material. The results showed that all materials tested provided some extent of isotope exchange but some were superior both in kinetics and capacity. This paper will present the test results.

HEUNG, LEUNGK.

2004-08-18T23:59:59.000Z

463

Validation of a Monte Carlo based depletion methodology via High Flux Isotope Reactor HEU post-irradiation examination measurements  

Science Conference Proceedings (OSTI)

The purpose of this study is to validate a Monte Carlo based depletion methodology by comparing calculated post-irradiation uranium isotopic compositions in the fuel elements of the High Flux Isotope Reactor (HFIR) core to values measured using uranium mass-spectrographic analysis. Three fuel plates were analyzed: two from the outer fuel element (OFE) and one from the inner fuel element (IFE). Fuel plates O-111-8, O-350-1, and I-417-24 from outer fuel elements 5-O and 21-O and inner fuel element 49-I, respectively, were selected for examination. Fuel elements 5-O, 21-O, and 49-1 were loaded into HFIR during cycles 4, 16, and 35, respectively (mid to late 1960s). Approximately one year after each of these elements were irradiated, they were transferred to the High Radiation Level Examination Laboratory (HRLEL) where samples from these fuel plates were sectioned and examined via uranium mass-spectrographic analysis. The isotopic composition of each of the samples was used to determine the atomic percent of the uranium isotopes. A Monte Carlo based depletion computer program, ALEPH, which couples the MCNP and ORIGEN codes, was utilized to calculate the nuclide inventory at the end-of-cycle (EOC). A current ALEPH/MCNP input for HFIR fuel cycle 400 was modified to replicate cycles 4, 16, and 35. The control element withdrawal curves and flux trap loadings were revised, as well as the radial zone boundaries and nuclide concentrations in the MCNP model. The calculated EOC uranium isotopic compositions for the analyzed plates were found to be in good agreement with measurements, which reveals that ALEPH/MCNP can accurately calculate burn-up dependent uranium isotopic concentrations for the HFIR core. The spatial power distribution in HFIR changes significantly as irradiation time increases due to control element movement. Accurate calculation of the end-of-life uranium isotopic inventory is a good indicator that the power distribution variation as a function of space and time is accurately calculated, i.e. an integral check. Hence, the time dependent heat generation source terms needed for reactor core thermal hydraulic analysis, if derived from this methodology, have been shown to be accurate for highly enriched uranium (HEU) fuel.

Chandler, David [ORNL; Maldonado, G Ivan [ORNL; Primm, Trent [ORNL

2010-01-01T23:59:59.000Z

464

Calculation of heating values for the high flux isotope reactor  

Science Conference Proceedings (OSTI)

Calculating the amount of energy released by a fission reaction (fission Q value) and the heating rate distribution in a nuclear reactor is an important part of the safety analysis. However, these calculations can become very complex. One of the codes that can be used for this type of analyses is the Monte Carlo transport code MCNP5. Currently it is impossible to calculate the Q value and heating rate disposition for delayed beta and delayed gamma particles directly from MCNP5. The purpose of this paper is to outline a rigorous method for indirectly calculating the Q values and heating rates in the High Flux Isotope Reactor (HFIR), based on previous similar studies carried out for very high-temperature reactor configurations. This method has been applied in this study to calculate heating rates for the beginning of cycle (BOC) and end-of-cycle (EOC) states of HFIR. In addition, the BOC results obtained for HFIR are compared with corresponding results for the Advanced Test Reactor. The fission Q value for HFIR was calculated as 200.2 MeV for the BOC and 201.3 MeV for the EOC. It was also determined that 95.1% and 95.4% of the heat was deposited within the HFIR fuel plates for the BOC and EOC models, respectively. This methodology can also be used for heating rate calculations for HFIR experiments. (authors)

Peterson, J.; Ilas, G. [Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, TN 37831-6172 (United States)

2012-07-01T23:59:59.000Z

465

Calculation of Heating Values for the High Flux Isotope Reactor  

SciTech Connect

Calculating the amount of energy released by a fission reaction (fission Q value) and the heating rate distribution in a nuclear reactor is an important part of the safety analysis. However, these calculations can become very complex. One of the codes that can be used for this type of analyses is the Monte Carlo transport code MCNP5. Currently it is impossible to calculate the Q value and heating rate disposition for delayed beta and delayed gamma particles directly from MCNP5. The purpose of this paper is to outline a rigorous method for indirectly calculating the Q values and heating rates in the High Flux Isotope Reactor (HFIR), based on previous similar studies carried out for very high-temperature reactor configurations. This method has been applied in this study to calculate heating rates for the beginning of cycle (BOC) and end-of-cycle (EOC) states of HFIR. In addition, the BOC results obtained for HFIR are compared with corresponding results for the Advanced Test Reactor. The fission Q value for HFIR was calculated as 200.2 MeV for the BOC and 201.3 MeV for the EOC. It was also determined that 95.1% and 95.4% of the heat was deposited within the HFIR fuel plates for the BOC and EOC models, respectively. This methodology can also be used for heating rate calculations for HFIR experiments.

Peterson, Joshua L [ORNL; Ilas, Germina [ORNL

2012-01-01T23:59:59.000Z

466

Isotope and Nuclear Chemistry Division annual report, FY 1983  

Science Conference Proceedings (OSTI)

This report describes progress in the major research and development programs carried out in FY 1983 by the Isotope and Nuclear Chemistry Division. It covers radiochemical diagnostics of weapons tests; weapons radiochemical diagnostics research and development; other unclassified weapons research; stable and radioactive isotope production, separation, and applications (including biomedical applications); element and isotope transport and fixation; actinide and transition metal chemistry; structural chemistry, spectroscopy, and applications; nuclear structure and reactions; irradiation facilities; advanced analytical techniques; development and applications; atmospheric chemistry and transport; and earth and planetary processes.

Heiken, J.H.; Lindberg, H.A. (eds.)

1984-05-01T23:59:59.000Z

467

VELOCITY SELECTOR METHOD FOR THE SEPARATION OF ISOTOPES  

DOE Patents (OSTI)

A velocity selector apparatus is described for separating and collecting an enriched fraction of the isotope of a particular element. The invention has the advantage over conventional mass spectrometers in that a magnetic field is not used, doing away with the attendant problems of magnetic field variation. The apparatus separates the isotopes by selectively accelerating the ionized constituents present in a beam of the polyisotopic substance that are of uniform kinetic energy, the acceleration being applied intermittently and at spaced points along the beam and in a direction normal to the direction of the propagation of the uniform energy beam whereby a transverse displacement of the isotopic constituents of different mass is obtained.

Britten, R.J.

1957-12-31T23:59:59.000Z

468

Scoping assessment on medical isotope production at the Fast Flux Test Facility  

Science Conference Proceedings (OSTI)

The Scoping Assessment addresses the need for medical isotope production and the capability of the Fast Flux Test Facility to provide such isotopes. Included in the discussion are types of isotopes used in radiopharmaceuticals, which types of cancers are targets, and in what way isotopes provide treatment and/or pain relief for patients.

Scott, S.W.

1997-08-29T23:59:59.000Z

469

Isotopes of helium, hydrogen, and carbon as groundwater tracers in aquifers along the Colorado River  

E-Print Network (OSTI)

isotope studies in the Mojave Desert, California: implications for groundwater chronology and regional seismicity, Chemical Geology.

Haber, Samuel Ainsworth

2009-01-01T23:59:59.000Z

470

New Contact Device for Separation of Hydrogen Isotopes in the Water-Hydrogen System  

Science Conference Proceedings (OSTI)

Technical Paper / Tritium Science and Technology - Tritium Science and Technology - Detritiation, Purification, and Isotope Separation

I. L. Rastunova; M. B. Rozenkevich

471

Isotope-shift measurements of stable and short-lived lithium isotopes for nuclear-charge-radii determination  

Science Conference Proceedings (OSTI)

Changes in the mean square nuclear charge radii along the lithium isotopic chain were determined using a combination of precise isotope shift measurements and theoretical atomic structure calculations. Nuclear charge radii of light elements are of high interest due to the appearance of the nuclear halo phenomenon in this region of the nuclear chart. During the past years we have developed a laser spectroscopic approach to determine the charge radii of lithium isotopes which combines high sensitivity, speed, and accuracy to measure the extremely small field shift of an 8-ms-lifetime isotope with production rates on the order of only 10 000 atoms/s. The method was applied to all bound isotopes of lithium including the two-neutron halo isotope {sup 11}Li at the on-line isotope separators at GSI, Darmstadt, Germany, and at TRIUMF, Vancouver, Canada. We describe the laser spectroscopic method in detail, present updated and improved values from theory and experiment, and discuss the results.

Noertershaeuser, W.; Sanchez, R. [GSI Helmholtzzentrum fuer Schwerionenforschung GmbH, D-64291 Darmstadt (Germany); Institut fuer Kernchemie, Universitaet Mainz, D-55099 Mainz (Germany); Ewald, G.; Dax, A.; Goette, S.; Kluge, H.-J.; Kuehl, Th.; Wojtaszek, A. [GSI Helmholtzzentrum fuer Schwerionenforschung GmbH, D-64291 Darmstadt (Germany); Behr, J.; Bricault, P.; Dilling, J.; Dombsky, M.; Lassen, J.; Levy, C. D. P.; Pearson, M. [TRIUMF, Vancouver, British Columbia, V6T 2A3 (Canada); Bushaw, B. A. [Pacific Northwest National Laboratory, Richland, Washington 99352 (United States); Drake, G. W. F. [Department of Physics, University of Windsor, Windsor, Ontario, N9B 3P4 (Canada); Pachucki, K. [Faculty of Physics, University of Warsaw, PL-00-681 Warsaw (Poland); Puchalski, M. [Faculty of Chemistry, Adam Mickiewicz University, Grunwaldzka 6, PL-60-780 Poznan (Poland); Yan, Z.-C. [Department of Physics, University of New Brunswick, Fredericton, New Brunswick, E3B 5A3 (Canada)

2011-01-15T23:59:59.000Z

472

Stable Isotope, Site-Specific Mass Tagging For Protein Identification  

NLE Websites -- All DOE Office Websites (Extended Search)

Stable Isotope, Site-Specific Mass Tagging For Protein Stable Isotope, Site-Specific Mass Tagging For Protein Identification Stable Isotope, Site-Specific Mass Tagging For Protein Identification Proteolytic peptide mass mapping as measured by mass spectrometry provides an important method for the identification of proteins, which are usually identified by matching the measured and calculated m/z values of the proteolytic peptides. Available for thumbnail of Feynman Center (505) 665-9090 Email Stable Isotope, Site-Specific Mass Tagging For Protein Identification Proteolytic peptide mass mapping as measured by mass spectrometry provides an important method for the identification of proteins, which are usually identified by matching the measured and calculated m/z values of the proteolytic peptides. A unique identification is, however, heavily

473

CRAD, Safety Basis - Oak Ridge National Laboratory High Flux Isotope  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Reactor Contractor ORR Reactor Contractor ORR CRAD, Safety Basis - Oak Ridge National Laboratory High Flux Isotope Reactor Contractor ORR February 2007 A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for a February 2007 assessment of the Safety Basis portion of an Operational Readiness Review of the Oak Ridge National Laboratory High Flux Isotope Reactor. CRADs provide a recommended approach and the types of information to gather to assess elements of a DOE contractor's programs. CRAD, Safety Basis - Oak Ridge National Laboratory High Flux Isotope Reactor Contractor ORR More Documents & Publications CRAD, Engineering - Oak Ridge National Laboratory High Flux Isotope Reactor